
Inaugural dissertation

for

obtaining the doctoral degree

of the

Combined Faculty of Mathematics,

Engineering and Natural Sciences

of the

Ruprecht - Karls - University

Heidelberg

Presented by

Etienne Sollier, M.Sc.

Born in Paris, France

Oral Examination: 2nd December 2024



Enhancer hijacking in acute myeloid

leukemia with a complex karyotype

Referees

Prof. Dr. Benedikt Brors

Prof. Dr. Christoph Plass





SUMMARY

Acute myeloid leukemia (AML) is a cancer of blood cells, in which hematopoietic pro-

genitor cells have their differentiation impaired and proliferate excessively. This is a

heterogeneous disease with many subtypes. While new treatments have been devel-

oped for several subtypes, which have led to great improvements in survival, one sub-

type which still retains a dismal prognosis is AML with a complex karyotype (ckAML). It

is defined by the presence of at least three cytogenetic abnormalities and is still poorly

understood at the molecular level. Genomic studies have identified that copy number

alterations (CNAs) are very frequent in ckAML, especially deletions which occur pre-

dominantly in the chromosome arms 5q, 7q, 17p and 12p. However, for the most part,

it is still unknown how these deletions might drive the disease.

Here, I hypothesized that the numerous genomic rearrangements in ckAML might, in

addition to the CNAs, lead to the aberrant expression of oncogenes by repositioning

them in the vicinity of active enhancers. Such "enhancer hijacking" events are known

to occur in many cancer types, but in AML only a few genes have been reported to be

activated by this mechanism. Thirty-nine ckAML samples were profiled with whole

genome sequencing (WGS) and RNA-seq. I analyzed the somatic alterations and the

transcriptomes of these samples, and confirmed the high frequency of TP53 mutations,

deletions and chromothripsis events. I developed a tool called pyjacker to systemati-

cally search for enhancer hijacking events. This led to the identification of 19 genes

activated by structural rearrangements, including known genes like MECOM, BCL11B

and MNX1, as well as novel genes like EPO and GSX2. I further analyzed nanopore

sequencing data from a subset of these samples, and found that enhancer hijacking

can result in allele-specific alterations in the DNA methylation profile, although these

changes are modest.

Taken together, these results show that enhancer hijacking plays a more important role

in ckAML than previously thought. Studying the genes activated by this mechanism

could lead to novel targeted therapies. Nevertheless, enhancer hijacking is not as re-

current in ckAML as the most common deletions like del(5q) and del(7q), so studying

how these deletions drive ckAML might be the most promising route towards improv-

ing therapies for ckAML patients.
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ZUSAMMENFASSUNG

Akute myeloische Leukämie (AML) ist eine Krebserkrankung der Blutzellen, bei der die

hämatopoetischen Vorläuferzellen in ihrer Differenzierung gestört sind und sich über-

mäßig vermehren. Es handelt sich um eine heterogene Krankheit mit vielen Subtypen.

Während für mehrere Subtypen neue Therapien entwickelt wurden, die zu einer er-

heblichen Verbesserung der Überlebensrate geführt haben, ist AML mit komplexem

Karyotyp (ckAML) ein Subtyp, der nach wie vor von einer schlechten Prognose be-

troffen ist. CkAML ist durch das Vorhandensein von mindestens drei zytogenetischen

Anomalien definiert und auf molekularer Ebene noch wenig verstanden. Genomische

Studien haben ergeben, dass Kopienzahlveränderungen (CNAs) bei ckAML sehr häu-

fig sind, insbesondere Deletionen, die vorwiegend in den Chromosomenarmen 5q, 7q,

17p und 12p auftreten. Es ist jedoch noch weitgehend unbekannt, wie diese Deletio-

nen die Krankheit auslösen können.

Hier stellte ich die Hypothese auf, dass die zahlreichen Strukturvarianten bei ckAML

zusätzlich zu den CNAs zu einer erhöhten Expression von Onkogenen führen könnten,

indem sie in der Nähe von aktiven Enhancern neu positioniert werden. Es ist schon

bekannt, dass solche "Enhancer-Hijacking" Ereignisse in vielen Krebsarten auftreten,

aber in AML sind nur wenige Gene bekannt, die durch diesen Mechanismus aktiviert

werden. 39 ckAML-Proben wurden mittels Ganzgenomsequenzierung (WGS) und

RNA-seq profiliert. Ich analysierte die somatischen Veränderungen und das Transkrip-

tom dieser Proben und bestätigte die hohe Häufigkeit von TP53-Mutationen, Dele-

tionen und Chromothripsis. Ich habe eine Software, "pyjacker", entwickelt, um sys-

tematisch nach "Enhancer-Hijacking" Ereignissen zu suchen. Dies führte zur Identi-

fizierung von 19 Genen, die durch Strukturvarianten aktiviert werden, darunter bekan-

nte Gene wie MECOM, BCL11B oder MNX1, aber auch neue Gene wie EPO oder GSX2.

Ich analysierte außerdem Nanopore Sequenzierungsdaten von einigen dieser Proben

und stellte fest, dass Enhancer Hijacking zu allelspezifischen Veränderungen im DNA-

Methylierungsprofil führen kann, obwohl diese Veränderungen nur geringfügig sind.

Insgesamt zeigen diese Ergebnisse, dass Enhancer Hijacking bei ckAML eine

wichtigere Rolle spielt als bisher angenommen. Die Untersuchung der durch diesen

Mechanismus aktivierten Gene könnte zu neuen zielgerichteten Therapien führen.

Dennoch tritt Enhancer Hijacking bei ckAML nicht so häufig auf wie die häufigsten

Deletionen wie del(5q) und del(7q), so dass die Untersuchung, wie diese Deletionen

v
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ckAML antreiben, der vielversprechendste Weg zur Verbesserung der Therapien für

ckAML-Patienten sein könnte.
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1
INTRODUCTION

The goal of this thesis is to investigate to what extent enhancer hijacking drives acute

myeloid leukemia with a complex karyotype (ckAML). In the introduction, I will first

outline how epigenetic variation allows the numerous cells of the human body to co-

operate by serving various roles (Section 1.1), and highlight the role of enhancers in

this respect. I will then describe how this multicellular cooperation can break down in

cancer (Section 1.2), with various types of somatic alterations that can drive aberrant

proliferation. I will then define enhancer hijacking and show its importance in can-

cer (Section 1.3). Finally, I will summarize the current knowledge on AML (Section 1.4),

and in particular on the subtype ckAML that is the focus of this thesis.

1.1 Epigenomics

All cells of a multicellular organism are derived from a single cell which divided nu-

merous times. This initial cell had genetic information encoded as DNA sequences of

nucleotide bases A, C, G and T. The human genome is made up of three billion bases

(3Gb) split into 23 pairs of chromosomes. DNA replication is very faithful, so all cells

of an organism will share the same genome of the initial cell, apart from some somatic

alterations to the genome, which can lead to cancer. In spite of this shared genome,

different cells of an organism can play very different roles and express different sets

of genes. This is possible because they differ in their epigenome: chemical modifi-

cations that are added on top of the genome, and that regulate which genes are ex-

pressed in a particular cell. Epigenomic marks are inherited through cell division, but

they are more plastic than the genome and can change as cells undergo differentiation

into specialized cell types. The epigenome is made up of several layers: DNA methy-

lation, chromatin accessibility, histone modifications and 3D chromatin interactions

1



2 CHAPTER 1. INTRODUCTION

regulated by insulators. The combination of these epigenetic layers results in an epige-

nomic profile for each genomic region, which can be characteristic for functional units

like enhancers and promoters.

1.1.1 DNA methylation

Cytosine methylation is an important epigenetic mark. In vertebrates, it is only found

at cytosines in a CpG context (a C followed by a G). There are 28 million such CpG sites

in the human genome, amounting to less than 1% of the genome. Considering that the

percentage of G and C bases in the human genome, also known as its GC content, is

40% [1], one would expect the proportion of CpG dinucleotides to be 0.2∗ 0.2 = 4%,

much higher than the actual value. This CpG depletion is likely due to the tendency

of methylated cytosines to spontaneously deaminate into thymines [2]. Even though

most of the human genome is CpG-poor, CpG islands are an exception: they are re-

gions of about 1kb with a high concentration of CpG sites [3]. They are particularly

enriched at gene promoters: 50-70% of promoters have a CpG island, and housekeep-

ing genes (which are expressed in many cell types) are particularly likely to have a CpG

island at their promoter [4]. 70-80% of the CpG sites are methylated in the human

genome, but most CpG islands are unmethylated, which protects them from deamina-

tion.

A first clue concerning the functional role of DNA methylation came from a study by

McGhee and Ginder in 1979, where they showed that in chickens, the promoter of the

beta-globin gene is only unmethylated in cell types which express it, and methylated

in other cell types, indicating that promoter DNA methylation could silence a gene [5].

This was confirmed by later studies, also in humans, which showed that promoter

methylation is strongly associated with a silencing of the corresponding gene [6, 7].

Further studies showed that DNA methylation at promoters is really causative for si-

lencing and not merely associated with it, since targeted methylation can silence a

gene [8], and DNA demethylation can reactivate genes [9]. Even though promoter

methylation is strongly associated with silencing of the corresponding gene, the con-

verse is not true: an unmethylated promoter does not imply that the gene is expressed [6,

7] (Figure 1A). In fact, most promoters are always unmethylated, regardless of their

transcriptional state.

DNA methylation is involved in several normal processes, including development, si-

lencing of transposable elements, X-chromosome inactivation and genomic imprint-

ing [10]. For example, the inactive X chromosome shows hypermethylation at pro-
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moters, which can take part in the silencing of this chromosome. However, this hy-

permethylation occurs after the X chromosome has already been inactivated [11], so

it cannot be directly responsible for the inactivation. In fact, it appears that in most

cases, DNA methylation does not silence an active gene, but merely locks an already

inactive gene in a repressed state [12]. Interestingly, DNA methylation within gene

bodies is not associated with silencing, and transcribed genes have on average higher

methylation within their body [6]. The inactive X chromosome is less methylated than

the active one, despite the hypermethylation at promoters, and this difference mainly

comes from gene bodies being less methylated in the inactive X chromosome [13].

DNA methylation also has a functional impact outside of genes. For example, it can

prevent binding of CTCF, thus altering large-scale 3D chromatin structure (Figure 1B).

H19 and IGF2 are two oppositely imprinted genes: IGF2 is expressed from the pater-

nal allele and H19 from the maternal allele. The two genes can be activated by the

same enhancer, but a CTCF binding site lies between them. If the CTCF binding site

is methylated, CTCF cannot bind, and the enhancer activates IGF2 [14, 15]. However,

if it is unmethylated, CTCF binds, and the same enhancer instead activates H19. More

generally, DNA methylation can alter transcription factor binding, which could also

play a role at enhancers. Some enhancers appear to be sensitive to DNA methylation,

although most are not [16].

Several enzymes are involved in methylating and demethylating DNA [10]. De novo

DNA methylation is carried out by DNMT3A and DNMT3B (Figure 1C). DNMT1 is re-

sponsible for DNA methylation maintenance, by methylating hemi-methylated CpG

sites after DNA duplication (Figure 1D). TET enzymes (TET1, TET2, TET3) can demethy-

late CpG sites by successively converting methylated cytosines (5mC) to hydroxymethy-

lated (5hmC), formylated (5fC), carboxylated (5caC), and finally unmodified cytosines

(Figure 1C). Decitabine and 5-azacytidine are drugs that can lower methylation levels

genome-wide by acting as DNMT inhibitors [17]. They are cytidine analogs that can

be integrated into DNA (and RNA for 5-azacytidine) in place of cytosines, bind DNMTs

and trap them, leading to global DNMT depletion, and methylation loss upon DNA

replication.

Several technologies can be used to profile DNA methylation. Methylation arrays pro-

file only a subset of CpGs (850,000 for EPIC arrays) but are rather cheap and can be

applied to large cohorts. Whole genome bisulfite sequencing, where the DNA is first

treated with bisulfite to convert unmethylated cytosines to uracil, used to be the gold

standard for genome-wide DNA methylation profiling. However, the bisulfite treat-

ment results in an important loss of the input material. Nanopore sequencing is be-
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Figure 1: Schematic representation of DNA methylation. A. Schematic representation of the role of
CpG methylation at promoters: methylation can silence a promoter, but when a promoter is unmethy-
lated, it can be either active or inactive. B. Schematic representation of the role of CpG methylation
at CTCF binding sites: methylation prevents binding of CTCF, thus altering long range chromatin
interactions, and potentially gene expression. C. Chemical structure of cytosine and its modified forms,
with arrows indicating how one form can be generated from another. D. Schematic representation of
DNA methylation maintenance during DNA replication with DNMT1.

coming an attractive approach to profile DNA methylation: an electrical current is ap-

plied to a nanopore and, as DNA fragments go through the pore, they alter the electric

signal. This signal alteration depends on the nucleotides present in the pore, and also

on their modifications. Therefore, it can be used to measure DNA methylation with-

out bisulfite treatment [18]. Additionally, nanopore sequencing provides long reads,

which often cover several single-nucleotide polymorphisms (SNPs) and can therefore

be phased to each of the two parental haplotypes, thus providing allele-specific infor-
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mation [19]. Each long read typically covers many CpGs, so this also provides infor-

mation about intra-read methylation heterogeneity. Remora, the deep learning model

used to detect base modification from nanopore sequencing, was trained using DNA

amplified by PCR to remove modifications, and optionally treated with the methyl-

transferase M.Sss1 to add methylation at CpG sites.

1.1.2 Nucleosomes: histone marks and chromatin accessibility

Each human cell has a total linear DNA length of about 2m, which has to fit inside a

nucleus with a diameter of 10 µm. It therefore needs to be densely packaged, which is

made difficult by the fact that it is negatively charged, so repulses itself. The solution

found by nature is to wrap the DNA around positively charged proteins, thus negating

the charge [20]. 147bp of DNA are wrapped around a histone octamer (two of each of

the four canonical core histones: H2A, H2B, H3 and H4), which forms the nucleosome

core, and linker DNA separates two nucleosome cores. The canonical histone proteins

can be replaced by histone variants, which give them specific functions [21]. For exam-

ple, CENPA is an H3 variant found at centromeres which interacts with the kinetochore,

enabling the segregation of chromosomes during mitosis [22]. In addition, histones

frequently carry post-translational modifications, specifically at their N-terminal tail

which protrude out of the nucleosome core and can interact with other nucleosomes,

thus regulating chromatin structure [23]. The most studied histone modifications

are acetylation and methylation, although many more exist. Acetylation is found on

lysines and neutralizes their positive charge. It is added by histone acetyltransferases

(HATs) and removed by histone deacetylases (HDACs). Histone methylation is found

on lysines and arginines, and can be found as either monomethylation, dimethylation

or trimethylation. Different histone modifications are associated with various func-

tions. For example, H3K27ac is found at active promoters and enhancers, H3K4me1

at active enhancers, H3K4me3 at promoters, and H3K27me3 is associated with gene

silencing. These histone marks can be profiled with ChIP-seq (chromatin immuno-

precipitation followed by sequencing) using an antibody against the specific histone

modification [24]. Other methods for profiling histone marks include CUT&RUN [25],

CUT&TAG [26] or ACT-seq [27], which require fewer input cells than ChIP-seq.

The density of nucleosomes, their modifications, and the binding of transcription fac-

tors determine how accessible the chromatin is in a particular genomic region [28].

Typically, inactive regions are densely packed and inaccessible, while active promoters

and enhancers are accessible. Chromatin accessibility is very cell type specific, and
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may be better suited than RNA-seq to distinguish cell types. For example, TET2 is ex-

pressed in all hematopoietic cell types, but is activated by several enhancers, each of

which is only accessible in some cell types [29]. This chromatin accessibility can be

measured by various assays, the most popular one currently being the assay for trans-

posase accessible chromatin with high-throughput sequencing (ATAC-seq) [30]. An al-

ternative method is NOMe-seq [31], which uses a GpC methyltransferase to methylate

accessible GpC sites (which are not normally methylated), which allows the simulta-

neous profiling of accessibility and endogeneous CpG methylation in the same DNA

molecules. NOMe can be combined with nanopore sequencing (nanoNOMe), which

adds a new layer of information to nanopore data [32].

1.1.3 3D genome organization

The chromosomes that make up our genome consist of linear DNA sequences, but

the DNA is folded in the nucleus of the cells, meaning that DNA sequences which are

far apart in the linear genome can interact with each other. As a consequence, the

expression of a gene can be regulated by regions far away from its promoter, provided

that they are able to interact with the promoter.

Chromosome Conformation Capture (3C) can be used to quantify interaction frequen-

cies between two regions [33]. Formaldehyde is used to cross-link segments of DNA

which are in spatial proximity. Then, DNA is digested, and re-ligated at low DNA con-

centration, which favours the ligation of DNA segments which were cross-linked. In

3C, the ligated products are then quantified by PCR, using primers specific to the two

regions of interest. 4C allows the quantification of all interactions with one particular

region [34]. It can be used to investigate which enhancers interact with a particular

promoter, and reciprocally, which promoters interact with a particular enhancer. Hi-C

captures all interactions of any region with any other region in the genome, providing

the most comprehensive picture of DNA-DNA interactions [35, 36]. Hi-C contact maps

can be visualised as heatmaps, where the color of position (x,y) indicates the frequen-

cies of contacts between region x and region y. When looking at whole chromosomes

with a resolution of 1Mb, Hi-C data reveals a checker-board pattern, indicating that the

genome is divided into two compartments (A and B), and that regions from one com-

partment preferentially interact with other regions from the same compartment [35]

(Figure 2A). When looking at a higher resolution, with bin sizes below 100kb, squares

(or triangles) begin to appear, which correspond to topologically associating domains

(TADs) [37] (Figure 2B). TADs are megabase-sized self-interacting regions, which are
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flanked by CTCF binding sites and are rather conserved across cell types. The current

model explaining TADs is that DNA loops are extruded by cohesin until it reaches con-

verging CTCF binding sites. Enhancer-promoter interactions only occur within a TAD.

If a high sequencing depth is used, peaks can be detected in Hi-C data. They corre-

spond to one pixel in the heatmap with stronger interactions than in the surrounding

area, and are thought to occur because of a loop whose anchors are the two interacting

regions corresponding to the pixel [36]. Loops often occur between the two ends of a

TAD, and they also often occur between a promoter and its enhancers. CTCF, as well as

the cohesin subunits RAD21 and SMC3, are often found at loop anchors, and the CTCF

motifs are in convergent orientation [36]. CTCF and cohesin have been shown to be

required for loop formation at TAD boundaries, as their depletion results in a loss of

TADs [38, 39]. However, active and inactive compartments were not lost upon CTCF or

cohesin depletion, and the transcriptional changes were rather small considering the

complete loss of TADs.

A B

Figure 2: Hi-C data visualizased as heatmap. A. "Checkerboard" pattern observed in Hi-C data at
a large scale, here the first 120Mb of chr1, for IMR90 data from Rao et al. [36] visualized with the
Juicebox web app. B. TADs observed in Hi-C data at a smaller scale, here chr1:18-23.5Mb for IMR90
data from Rao et al. [36] visualized with the Juicebox web app.

While Hi-C is the most comprehensive method, it requires a very high sequencing

depth. If one is only interested in DNA contacts involving regions marked by a specific

protein, it is possible to use HiChIP: contact libraries are created similarly to Hi-C, and

ChIP-seq is then performed to select the long range interactions which also interact

with a protein of interest [40]. For example, it is possible to use HiChIP with H3K27ac

in order to look for enhancer-promoter interactions, since both of these elements har-

bour H3K27ac [41]. HiChIP against H3K27ac requires less than 10% of the sequencing

depth of Hi-C to get similar resolution, which makes it very efficient.
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1.1.4 Enhancers

Enhancers are DNA sequences that can increase the transcription of target genes in cis

(located nearby on the same DNA molecule) [42]. They contain DNA binding motifs

for transcription factors. Enhancers can be located far away from their target genes,

upstream or downstream, in either orientation. The only requirement is that they must

be able to physically interact with their target genes, so they should be located in the

same TAD. The first enhancer to be discovered was a 72bp sequence from the genome

of the virus SV40 [43], which was found to increase the transcription of the beta-globin

gene by 200-fold. Many other enhancers were discovered later, not only in viruses but

also in cells, and they vastly outnumber genes: the human genome is estimated to

contain hundreds of thousands of enhancers [42]. However, enhancers are very cell

type specific, and only a small subset is active in a particular cell type.

Enhancers are defined based on their ability to increase gene expression. This requires

experimental validation, by inserting or removing a putative enhancer, in order to re-

ally prove that a sequence can increase expression of the associated gene. However, it

is possible to predict putative enhancers based on epigenomic profiling. Active pro-

moters reside in open chromatin (e.g. profiled with ATAC-seq), harbour H3K4me1 and

H3K27ac marks, and are bound by P300 [42]. Since H3K4me1 can also be found at

primed enhancers, which do not harbour H3K27ac and are not yet active, H3K27ac is

a popular mark to identify active enhancers. It is also found at promoters, but these

can be distinguished from enhancers based on gene annotations, or with H3K4me1/3.

P300 is a histone acetyltransferase, which deposits H3K27ac, and was found to be a

very good predictor of enhancer activity in ChIP-seq data [44].

A gene is typically regulated by several enhancers. Enhancers do not always activate

the gene closest to them. It is unclear why an enhancer would activate a gene and not

another one. It was hypothesized that there could be enhancer-promoter compatibil-

ities, but no evidence was found for it [45]. Instead, most enhancers can activate most

genes, and they act multiplicatively.

Enhancers are often found in clusters, leading to the definition of super-enhancers.

Unlike typical enhancers, which are defined biologically based on their ability to en-

hance transcription, super-enhancers are defined bioinformatically [46, 47]: peaks are

called in ChIP-seq data against H3K27ac, peaks within 12.5kb of each other are stitched

together, and they are ranked according to their total H3K27ac signal. When plotting

these values, the point where the curve has a slope of 1 is identified, and enhancers to

the right of that point are classified as super-enhancers, while the other ones are typical
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enhancers. The hierarchy within a super-enhancer is not always clear: are all compo-

nents independent or do they act synergistically? Are some components essential? For

the alpha-globin super-enhancer, the different enhancers seem to act independently,

and deletion of a single enhancer does not result in significant downregulation of the

gene [48]. For the Wap gene, the deletion of a single enhancer in a super-enhancer re-

sulted in a 90% expression reduction, while a deletion of other enhancers had a smaller

impact [49]. This indicates that there is an enhancer hierarchy, where some compo-

nents of a super-enhancer are more important than others, although this cannot be

predicted based on ChIP-seq data alone.

1.2 Cancer

1.2.1 A historical perspective: oncogenes and tumor suppressors

In a multi-cellular organism, cells must cooperate for the good of the whole, to the

point where a cell should not divide if this is not useful for the organism, and even un-

dergo apoptosis if it is not needed anymore, if it is infected by a virus, or if it failed to

repair damage to its DNA. However, if a cell stops cooperating and instead decides to

proliferate without restraints, if this rebel behaviour is inherited by its daughter cells,

and if the immune system fails to eliminate it, a neoplasm will arise. This aberrant

cell proliferation may be benign, but it will become cancerous if it spreads and in-

vades other tissues. For this uncontrolled proliferation to be inheritable through cell

division, it must be encoded genetically, as a result of a somatic genomic alteration.

Theodor Boveri was the first to boldly postulate in 1914 that cancer may be caused

by alterations to the chromosome [50]. At the time, it was still unknown that chro-

mosomes carried hereditary information, but by observing chromosomes through a

microscope, he noticed that cancer cells had scrambled chromosomes, leading to his

visionary idea. However, it took many years for the proof to come and for this idea to

be accepted. Indeed, this theory was at odds with another hypothesis which was gain-

ing traction at the same time: that cancer was caused by viruses, and not by something

internal to the cell. In 1910, Peyton Rous discovered that a virus, now known as the

Rous sarcoma virus (RSV), could cause cancer in chickens [51]. In hindsight, this viral

cause of cancer was somewhat of a false lead, since only a small minority of cancers are

actually caused by viruses, but the RSV still led to the identification of the first onco-

gene, and cancer-causing viruses in general were instrumental in many discoveries in

cancer research. By studying the RSV, researchers found that it is a retrovirus, and that
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its genome contains a gene, v-Src, which is reponsible for tumor induction [52], and

was therefore called an oncogene. It was later found that v-Src had high homology to

a gene found in the genome of normal chicken cells, called c-Src for cellular Src [53].

c-Src is a tyrosine kinase [54] which integrates various signals in the cell, and which

can, when activated, trigger cell proliferation. v-Src is actually a mutated version of

c-Src, which is constitutively active and always stimulates proliferation, regardless of

external signals. This encouraged the field to come back to Boveri’s idea: that can-

cer could be caused by alterations to the chromosomes. c-Src is a proto-oncogene:

a gene found in the genome of normal cells which, when mutated or overexpressed,

can become an oncogene and drive cancer. Since then, many other oncogenes have

been discovered, like MYC and RAS, which all start as proto-oncogenes in the normal

genome, and which get mutated in cancer, resulting in a fitness advantage for the cells

having the mutation. However, the activation of a single oncogene is not sufficient to

drive cancer, and a multi-step process involving several somatic events is necessary for

malignant progression [55].

In 1971, Knudson postulated that retinoblastomas could be initiated by only two mu-

tational events [56]. This prediction was based on statistical modelling, starting from

the observation that retinoblastomas come in two distinct forms: familial and spo-

radic cases. In familial cases, several individuals from the same family have the disease

and they develop it early in life, often with several independent tumors. Conversely,

sporadic cases are developed much later in life, with a single tumor arising in each

individual. This can be explained by the fact that familial cases already inherited one

mutation, and only need one further somatic event to initiate tumor growth, while spo-

radic cases can only occur if two somatic events occur in the same cell lineage, which

is much rarer and takes more time. Further studies identified that the two "hits" pos-

tulated by Knudson actually occur on the two alleles of the same gene RB1, and com-

pletely inactivate it [57]. The normal role of the retinoblastoma protein is to halt the

cell cycle at the G1 checkpoint until the cell is ready to divide, and when both copies are

no longer present, this control is lost. RB1 was the first tumor suppressor gene (TSG) to

be identified, and since then others have been discovered, which must also be biallel-

ically inactivated in order to drive cancer, like TP53 or APC. RB1 is mutated in several

cancer types, not just retinoblastomas, but TP53 is the most commonly mutated gene

across all cancer types [58]. TP53 was first identified as a 53KDa-protein which binds to

an antigen of the simian virus SV40 (another tumor-inducing virus) [59, 60]. TP53 was

also found in high amounts in other cancer cells, but absent or very lowly expressed

in normal cells, and it was shown to induce cancer formation [61], leading to the inital

hypothesis that it was an oncogene. However, sequencing of the gene revealed that
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the TP53 found in cancer cells and which could induce transformation was a mutated

version of the wild-type gene [58]. In 1989, the wild-type TP53 was shown to inhibit

tumor formation [62], and it was also found that both TP53 alleles were inactivated in

colorectal cancer [63], typically through a combination of a deletion and a mutation.

This made it clear that TP53 is a TSG, which protects against cancer, but can be biallel-

ically inactivated in cancer.

1.2.2 Cancer in the sequencing era

It is now well established that cancer is a multi-step process which requires several so-

matic mutational events. Some events are seen across many cancer types, like TP53 or

KRAS, but many are specific to certain tumor entities. With next generation sequenc-

ing, we now have a clear picture of the somatic alterations that occur in cancer. Several

types of alterations can be detected, and each of these types of events can drive cancer

in various ways.

1.2.2.1 Single nucleotide variants and indels

The most simple type of somatic alteration to the genome is a single nucleotide vari-

ant (SNV), which is when one nucleotide is changed to one of the three other bases.

Slightly more complex, indels are small insertions or deletions of less than 1kb. The

number of somatic SNVs found in tumor cells is very variable, both within a cancer

type and across cancer types, ranging from less than 1 per megabase in leukemias

to more than 10 per megabase in lung and skin cancers [64]. Some mutagens create

specific types of mutations, and it is possible to computationally infer the mutational

signatures which resulted in a particular set of mutations [64]. For example, tobacco

smoking results in a high rate of C>A mutations and exposure to UV light leads to C>T

mutations (specifically CC>TT). Some SNVs will be driver events, for example by acti-

vating an oncogene or inactivating a TSG, but the majority of them will be passenger

events with a neutral effect. An SNV can be coding, if it occurs in a coding portion of

a gene, or non-coding otherwise. Coding SNVs are more studied since they are more

likely to be driver events. Among coding SNVs, some are synonymous, meaning that

they change the nucleotide sequence but leave the amino acid sequence unchanged,

and they are likely passenger events. Potential drivers are missense mutations which

change an amino acid, nonsense mutations which lead to an early stop, and variants

which affect splice sites. The pattern of SNVs differs between oncogenes and TSGs:

since there are many more ways to inactivate a protein than to grant it a new function,
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mutations in oncogenes are typically only found at "hotspots", where the exact same

mutation occurs in many samples, whereas SNVs in TSGs are typically spread through-

out the gene, and may be nonsense or frameshifts (when the number of deleted or

added bases in an indel is not a multiple of three). Mutations outside of genes are

more difficult to study. Many of them are likely passenger events, but some have been

identified as driver events, for example those which result in creation or removal of

transcription factor binding sites. A well-known example is the activation of TERT by

mutations in its promoter [65]. Similarly, in T-ALL, micro-insertions upstream of TAL-1

can create a neo-enhancer, which drives aberrant expression of TAL-1 [66].

1.2.2.2 Structural variants and copy number alterations

Structural variants alter the structure of chromosomes. They include balanced translo-

cations, inversions, deletions and duplications (Figure 3A). They can be detected from

whole-genome sequencing (WGS) data with split-reads, where two different segments

of a read are aligned to different regions of the reference genome. In the case of paired-

end sequencing, they can also be detected with split pairs, where two reads from a pair

map to different regions. Several bioinformatic tools can detect SVs from WGS data, in-

cluding manta [67], GRIDSS [68] and DELLY [69]. Short-read data is sufficient to detect

most SVs, but some regions contain repetitive sequences where the mapping of short

reads is difficult, and SVs occurring in these regions can be missed. Long reads can

help to identify such SVs, and new SV callers such as Sniffles2 [70] are being developed

specifically for long-read data.

Another type of genomic aberration, which often co-occurs with structural variants, is

a copy number alteration (CNA). This is when a genomic region is lost or duplicated,

leading to an altered number of copies for this region. CNAs can affect whole chro-

mosomes (e.g. monosomy, trisomy) or smaller portions of the genome. In WGS data,

CNAs are detected based on the coverage of genomic regions: the coverage is expected

to be uniform across the genome, and regions with lower (resp. higher) coverage have

a lower (resp. higher) copy number. The allelic imbalance can also be taken into ac-

count, since a deletion would for example lead to loss of heterozygosity. WGS is best

suited for the detection of CNAs, but methylation arrays, SNP arrays or whole exome

sequencing can also be used for this purpose, albeit with a lower resolution. Unlike for

SVs, short reads are actually better than long reads for CNA calling, because the pre-

cision depends on the number of reads rather than on the coverage. Tools to detect

CNAs from short-read WGS data include Control-FREEC [71] and the HMF pipeline

which uses AMBER, COBALT and PURPLE (https://github.com/hartwigmedica

https://github.com/hartwigmedical/hmftools
https://github.com/hartwigmedical/hmftools


1.2. CANCER 13

l/hmftools). ASCAT can detect allele-specific CNAs from SNP array data [72], and

has been extended to sequencing data. Conumee calls CNAs from methylation array

data [73].

Structural variants can drive cancer through different mechanisms. Breakpoints can

create oncogenic fusion proteins, or activate silent oncogenes by enhancer hijacking.

Deletions can contribute to the inactivation of a TSG (usually in complement to a mu-

tation, but occasionally through biallelic deletions), or to haploinsufficiency if only one

copy is lost and if the cells cannot compensate by increasing the transcription from the

remaining allele. Finally, amplifications can lead to increased expression of oncogenes.

1.2.2.3 Chromothripsis

SVs can be simple, but they may also be part of very complex events with a high num-

ber of breakpoints. The most extreme example is chromothripsis, which is a single

catastrophic event where one or several chromosomes are shattered into tens, hun-

dreds, or even thousands of fragments, and are then randomly pieced back together,

with some parts being lost and the others completely reshuffled (Figure 3B). This was

first discovered in chronic lymphocytic leukemia [74], but was later found to occur in

most cancer types, with a prevalence of about 50% across all cancers [75, 76]. Chro-

mothripsis is thought to be caused by DNA damage in micronuclei, or by shattering of a

dicentric chromosome. Several criteria have to be met to ensure that the genomic rear-

rangements observed were caused by a single chromothriptic event [77]. The main cri-

terion is the presence of copy number oscillations, which result from the loss of some

genomic regions not integrated into the derivative chromosome. The exact thresh-

old is somewhat arbitrary, but typically a minimum of ten copy number oscillations is

used. This criterion can be assessed with many data types, including SNP arrays, and

is sometimes used as only criterion for chromothripsis when other criteria cannot be

assessed. This, however, can result in false positives, in cases where many deletions

happened successively. Other criteria, which require WGS data, include the cluster-

ing of breakpoints and the randomness of fragment joins. Shatterseek can be used to

assess these criteria [75].

Chromothripsis directly leads to deletions, for the parts that are not integrated into the

reshuffled chromosome, but may also indirectly promote amplifications. One mech-

anism for amplification is through extrachromosomal circular DNA (eccDNA). After

chromothripsis, some DNA fragments might, instead of joining the reshuffled chromo-

some, be fused as a small circle of less than a few megabases. These eccDNA lack a cen-

https://github.com/hartwigmedical/hmftools
https://github.com/hartwigmedical/hmftools
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Figure 3: Schematic representation of simple structural variants (A), chromothripsis (B), and BFB
cycles (C).

tromere, and are randomly assigned to each of the two daughter cells during mitosis.

If a higher copy number of the eccDNA provides a fitness advantage, then the daugh-

ter cell which inherits a higher copy number will be selected, which can progressively

lead to massive amplifications. The eccDNA can either stay extrachromosomal, or be

reintegrated into the genome. Another mechanism is breakage-fusion-bridge (BFB)

cycle. When a chromosome loses its telomeric end because of a DNA break, there is a
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chance that, during mitosis, the two sister chromatids which lack the telomere might

fuse together. This is because cells generally try to repair DNA breaks, unless they are

protected by a telomere. When the two sister chromatids are pulled towards opposite

poles for cell division, this bridge will break, but not necessarily at the exact position

where the two chromatids had fused. Consequently, one cell will inherit a larger part

of the chromosome, with a duplicated fragment, while the other cell will have a dele-

tion (Figure 3C). If the duplication provides a fitness advantage to the cell, it will be

selected for. The cell which inherited the longer chromosome still lacks a telomere

for this chromosome, so other BFB cycles can occur successively, leading to massive

amplifications. BFB amplification can be detected in sequencing data with foldback

inversions: at amplification boundaries, a read goes in one direction, and then "turns"

to go back in the other direction. BFB can occur after chromothripsis, if the reshuffled

chromosome lacks a centromere, but it can also trigger chromothripsis, if the chromo-

somes are shattered when they are pulled apart. The relative order of chromothripsis

and BFB amplifications can potentially be reconstructed [78]: if chromothripsis oc-

curs on a normal chromosome, the breakpoints link regions which have the same copy

number. If BFB amplifications occur later, regions which had been linked together

by chromothripsis will still have the same copy number. On the other hand, if chro-

mothripsis occurs after the amplifications, the breakpoints will link segments with a

different copy number. Hence, looking at copy number jumps across breakpoints can

inform the ordering of events.

1.2.2.4 Epigenetic alterations in cancer

In addition to genomic alterations, cancer cells exhibit epigenetic alterations in com-

parison to their healthy counterparts, for example at the methylation level. In 1983,

researchers already observed that cancer cells had a global hypomethylation [79]. This

global hypomethylation is now mostly attributed to a methylation loss in partially

methylated domains (PMDs) [80]. These are megabase-sized regions which are al-

ready partially methylated in normal cells, and which lose methylation in cancer cells.

They cover close to 50% of the genome, mostly in gene-sparse, lamina-associated, late-

replicating regions [81]. The hypomethylation of PMDs is thought to be due to imper-

fect methylation maintenance, and it is unclear whether it is a passenger or a driver

event.

Another type of epigenetic alteration in cancer for which the role is much clearer is hy-

permethylation of gene promoters. This can silence a TSG, potentially in combination

to another "hit" on the other allele. This was first observed in renal carcinoma, where
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the promoter of the TSG VHL was methylated on one allele in some samples, with the

other allele being deleted or mutated [82]. Since then, many TSG have been found to be

hypermethylated in some cancer samples, including CDKN2A and BRCA1 [83]. How-

ever, it is not clear whether hypermethylation is causal, or whether the gene is silenced

by a different mechanism and the methylation simply occurs later to lock the gene in

the inactive state. An important thing to note is that promoter hypermethylation is

much more pronounced in cancer cell lines that in primary cancer samples [84, 85].

This must be taken into account when analyzing DNA methylation from cell lines, as

their methylation may not faithfully represent the methylation patterns of the cancers

from which they were derived.

1.3 Enhancer hijacking

When a structural rearrangement brings an active enhancer close to a gene that is not

normally expressed in this tissue, the gene can "hijack" this enhancer, leading to its

aberrant expression (Figure 4). This was first reported in Burkitt’s lymphoma, where a

translocation t(8;14) brings the IGH enhancer close to the MYC oncogene and activates

it [86]. Since then, many oncogenes have been reported to be activated by enhancer

hijacking in various cancer types, including GFI1 in medulloblastoma [87], TERT in

neuroblastoma [88], and IRS4 in lung cancer and sarcomas [89]. In AML, the most

recurrent enhancer hijacking event is MECOM activation, typically though an inv(3) or

a t(3;3) [90], but other genes have been reported to be activated in this manner, such

as BCL11B [91] and MNX1 [92].

Gene Enhancer

H3K27ac

Enhancer

H3K27ac

Gene

P300P300

Wild-type allele

Deletion

Rearranged allele

Figure 4: Schematic representation of an enhancer hijacking event.

Several tools have been developed to detect enhancer hijacking events. Cis-Expression

Structural Alteration Mapping (CESAM) performs a linear regression on gene expres-

sion based on the presence of a breakpoint nearby [89]. The breakpoints are inferred

from SNP array data, which has the advantage of being a data type widely available

from large cohorts, but cannot detect balanced translocations and inversions which do
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not result in CNAs. CESAM successfully identified oncogenes activated by enhancer hi-

jacking, like IRS4 and IGF2, but an important limitation is that it can only detect events

which are very recurrent, and not genes activated by enhancer hijacking in a single

sample. HYENA [93] is similar to CESAM, in that it uses a regression of the gene ex-

pression based on the presence of breakpoints and can only detect recurrent events.

Cis-X follows a different approach: it identifies cis-activated genes based on overex-

pression and monoallelic expression, using WGS and RNA-seq data [94]. For the over-

expression, cis-X requires gene expression from a reference cohort of the same cell

type, where only samples with biallelic expression are included, and tests for overex-

pression by comparing the gene expression of a tested sample to this reference cohort.

Most genes are expected to be biallelically expressed, so the read counts for each allele

should be similar, whereas if a gene is activated by a somatic event in cis, only one al-

lele should be expressed. Cis-X compares the observed allelic read counts to a binomial

distribution where the probability of observing each allele is the same. A major advan-

tage of cis-X is that it can detect genes activated in a single sample. In addition, cis-X

does not only detect genes activated by structural rearrangements, but it also analyses

somatic SNVs and indels to detect new transcriptor factor binding sites, which might

also lead to the activation of a gene in cis. While this somatic analysis of SNVs and

indels might capture more events than an analysis only including SVs, this step is not

optional in cis-X and it requires matched normal samples, which are rarely available

for AML samples, thus reducing the applicability of this method. NeoLoopFinder is a

completely different method, which takes as input Hi-C data instead of expression and

breakpoints [95]. It is based on the detection of neo-loops, which are peaks in Hi-C

data between regions brought together by a structural rearrangement. An important

limitation is that Hi-C data is not as widely available as RNA-seq and WGS, thus pre-

cluding large-scale screens. In addition, the absence of gene expression in the method

may result in many false positives, with neo-loops not being functionally relevant.

1.4 Acute myeloid leukemia

1.4.1 AML as a hematological malignancy

The blood is made up of many different cell types. Hematopoietic stem cells (HSCs),

which can self-renew or give rise to more differentiated progenitors. HSCs can give rise

to cells of the two main hematopoietic lineages: myeloid and lymphoid. Myeloid cells

include monocytes, red blood cells and megakaryocytes, while the lymphoid lineage is
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made up of natural killer (NK) cells, T-cells and B-cells (Figure 5). Several types of can-

cers can develop from myeloid cells. The most threatening is acute myeloid leukemia

(AML), which is defined clinically by the presence of more than 20% of blasts (undiffer-

entiated progenitors) in the blood or bone marrow. AML is very heterogeneous, with

different subtypes associated with very different prognoses. Myelodisplastic syndrome

(MDS) is milder than AML, defined by the presence of less than 20% blasts in the bone

marrow, but can progress to AML. Myeloproliferative neoplasms (MPN) correspond

to an abnormal proliferation of myeloid cells, but without block in differentiation, of-

ten associated with somatic mutations in JAK2, CALR, TET2 or MPL. Chronic myeloid

leukemia (CML) is now considered as an MPN. It is defined genetically by the presence

of the Philadelphia chromosome: a translocation t(9;22) resulting in the BCR-ABL1 fu-

sion protein [96], a constitutively active tyrosine kinase which drives proliferation. To-

day, CML can be well treated with tyrosine kinase inhibitors [97]. Recently, sequencing

of large cohorts has uncovered that clonal evolution can occur in HSCs even in the

absence of symptoms: HSCs acquire somatic mutations which grant them a fitness

advantage, leading to the growth of a clone with this mutation. This is known as clonal

hematopoiesis of indeterminate potential (CHIP), is more frequent in older individu-

als, is associated with an increased risk of leukemia, and is often driven by mutations

in DNMT3A, TET2, or ASXL1 [98].
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Figure 5: Simplified diagram of hematopoiesis showing the main cell types, with possible block in
differentiation leading to AML. Cell type images were downloaded from bioicons.com, and had originally
been made by Servier.
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1.4.2 Genomic landscape of AML

The clinical classification in AML used to be based on the French-American-British

(FAB) classification, which relied on the determination of the cell of origin with

immunophenotyping [99]. More recently, the World Health Organization (WHO)

provided a new classification, which was last updated in 2022 and which is based

on genetic alterations, or on differentiation if no genetic classification is avail-

able [100]. The genetic classification is based on recurrent translocations and mu-

tations: t(8;21) with RUNX1::RUNX1T1, inv(16) with CBFB::MYH11, t(15;17) with

PML::RARA, inv(3)(q21q26.2) or t(3;3)(q21;q26.2) with MECOM expression, NPM1 mu-

tation, RUNX1 mutation, etc. These different subgroups have very different prognoses,

e.g. inv(16) and t(15;17) have rather good survival while patients with MECOM rear-

rangements have much poorer prognosis.

Recent sequencing endeavours have attempted to refine these subgroups by analyz-

ing more somatic alterations [101, 102]. AML has fewer somatic alterations than most

other cancer types, and the most commonly mutated genes are FLT3, NPM1, DNMT3A,

NRAS and KRAS, TET2, IDH1/2, CEBPA, PTPN11, TP53 and SRSF2. There are patterns of

co-occurrence and mutual exclusivity between the frequent somatic alterations, for ex-

ample mutations in FLT3, NPM1, DNMT3A tend to co-occur together. TP53 mutations

co-occur with many copy number alterations, and this corresponds to the subtype of

AML with a complex karyotype.

1.4.3 AML with a complex karyotype

AML with a complex karyotype (ckAML) is defined by the presence of at least three

cytogenetically detectable alterations, in the absence of other class-defining genetic

alterations. It accounts for 10-15% of all AML cases, is more frequent among older pa-

tients and carries a very poor prognosis with a 3-year survival of only 12% [103]. 60%

of ckAML samples harbour mutations in TP53, almost always with biallelic inactiva-

tion, and this is associated with a higher number of CNAs and a worse survival [103].

Chromothripsis is found in 35% of all ckAML samples, almost always co-occurring with

TP53 inactivation [104].

Losses are more common than gains in ckAML, and the most common deletions occur

in 5q, 7q, 17p and 12p [105]. Deletions in cancer typically lead to the complete inactiva-

tion of a TSG, in combination with a mutation on the remaining allele. Such TSGs are

traditionally identified by mapping the minimally deleted regions across many sam-
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ples, and screening for mutations in genes located in these minimally deleted regions.

TP53 is almost always mutated in cases with del(17p), leading to biallelic inactiva-

tion [103]. However, the other frequently deleted regions like 5q and 7q do not harbour

such clear TSGs.

Del(5q) is very frequent in ckAML where it co-occurs with many CNAs, but it is also

very common in MDS, typically as a sole abnormality, in which case it is associated

with a good prognosis [106]. Some genes in the minimally deleted region are sporad-

ically mutated on the remaining allele, like CSNK1A1, KDM3B or G3BP1, but only in a

small percentage of del(5q) samples [107, 108, 109]. Since no gene is frequently bial-

lelically inactivated in del(5q), the prevailing hypothesis is that del(5q) is selected for

because it leads to haploinsufficiency of some genes in the deleted region. Partial loss

of function of RPS14, located within the minimally deleted region, was shown to reca-

pitulate the del(5q) phenotype with impaired erythroid differentation [110]. Haploin-

sufficiency of EGR1, also located in the minimally deleted region, was shown to favour

leukemia development in mice [111].

Del(7q) is also very frequent in AML, both in ckAML or as a sole abnormality [112]. Sev-

eral genes in the minimally deleted region are mutated in some del(7q) cases: KMT2C

in 16% of cases, EZH2 in 10% and CUX1 in 5% [113]. In total, approximately one third

of del(7q) cases have a concomitant mutation in at least one gene of the deleted re-

gion. However, since the majority of del(7q) cases do not harbour any mutations in the

deleted region, haploinsufficiency of some genes in 7q might already be sufficient to

drive leukemogenesis, and this effect might be increased by mutations.

The molecular mechanisms driving ckAML remain therefore unclear, although the

most likely explanation for the CNAs is that they drive the disease by reducing or in-

creasing the expression of genes in the deleted or gained regions.
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Complex karyotype AML has a very poor prognosis and is still poorly understood at

the molecular level. Until now, it had mainly been studied through cytogenetics, SNP

arrays and targeted sequencing, which do not provide a complete picture of the rear-

rangements occurring in these samples. The general aim of this thesis is to investigate

how more advanced sequencing assays like WGS, RNA-seq and nanopore sequencing

might provide more information and shed light on the mechanisms driving the disease.

The current prevailing paradigm in ckAML is that the disease is driven by CNAs, mainly

deletions, which can be detected through SNP arrays. However, the SVs may also have

a driver effect through the elements that are joined together, rather than through re-

gions being gained or lost, for example with enhancer hijacking.

2.1 Comprehensively analyzing molecular alterations in

ckAML

Thirty-nine ckAML samples were profiled with WGS and RNA-seq, and I aimed to use

these data to answer the following questions:

• What are the recurrent genomic alterations in ckAML?

• Do the genomic alterations in ckAML differ between younger and older patients?

• Are there patterns of mutual exclusivity or co-occurrence among the recurrent

alterations?

• Can ckAML be subdivided into several subtypes, based on genomics or transcrip-

tomics?

21



22 CHAPTER 2. AIMS

• Can WGS provide novel insights into chromothripsis in ckAML?

• How relevant are fusion transcripts in ckAML?

2.2 Identifying novel oncogenes activated by enhancer

hijacking in ckAML

The division of Cancer Epigenomics at DKFZ recently identified that MNX1 was a gene

activated by enhancer hijacking in some AML cases with del(7q), which led to the hy-

pothesis that some of the rearrangements in ckAML could lead to enhancer hijacking,

in addition to haploinsufficiency of genes in the deleted regions. Therefore, I aimed to:

• Develop a pipeline to systematically search for enhancer hijacking events, in-

cluding rare ones.

• Apply this pipeline to a ckAML cohort.

• Analyze the most interesting events and understand how they are activated and

how they may drive the disease.

2.3 Investigating allele-specific methylation with

nanopore sequencing

Nanopore sequencing is a third generation sequencing technology which provides long

reads with methylation information, thus enabling the study of allele-specific methy-

lation, which could be relevant for enhancer hijacking. Here, I aimed to answer the

following questions:

• Can nanopore sequencing be used to study allele-specific methylation?

• Does enhancer hijacking lead to allele-specific methylation, and if yes, can it be

used as a criterion to detect enhancer hijacking?
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RESULTS

3.1 Genomic and transcriptomic landscape of ckAML

CkAML is characterized by a strong genomic complexity, with many CNAs, most of

which are deletions, and frequent TP53 mutations and chromothripsis events. To date,

ckAML has mainly been studied with SNP arrays, which provide information about

CNAs, but not about breakpoints, so WGS data could provide new information. In

this project, 39 ckAML samples were profiled with WGS and RNA-seq (sequencing per-

formed by Anna Riedel). They were part of the ASTRAL-1 clinical trial [114, 115] (see

methods for details). I analyzed this data in order to get a more complete picture of

the genomic and transcriptomic landscape of ckAML. In addition, I collected SNP and

methylation array data from several ckAML cohorts, resulting in the largest dataset of

CNAs in ckAML ever generated, which I leveraged to gain new insights into how these

CNAs may drive ckAML.

3.1.1 Genomic alterations in 39 ckAML samples profiled with WGS

I processed the WGS data and identified somatic alterations. Since no matched nor-

mal samples were available for this cohort, I only considered SNVs in genes known to

be mutated in AML, and used a panel of normal samples to filter out germline SVs (see

Section 5.2 for details about the processing of the WGS data). The landscape of so-

matic genomic alterations in this cohort matched what had previously been reported

in ckAML [103] with frequent deletions in 5q (69.2%, N=27) and 7q (66.7%, N=26) and

TP53 mutations (61.5%, N=24) (Figure 6A). TP53 was by far the most frequently mu-

tated gene, followed by PTPN11, SRSF2 and RUNX1 which were each mutated in less

than 20% of samples (Figure 6B). Apart from one sample, all samples with a TP53 mu-
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tation also had a second inactivating event: 9 with a deletion of the other allele, 8 with

a copy number neutral loss of heterozygosity (CNLOH), 5 with a second mutation, and

one with a breakpoint within TP53 (Figure 6A). Interestingly, one sample (16PB3075)

had no mutation in TP53, but two breakpoints within the gene, which probably re-

sulted from a single chromoplexy event involving several other chromosomes. Sam-

ples with TP53 inactivation had more CNAs (Figure 6C), in agreement with previous

reports [103].

A

B C

Figure 6: Summary of the somatic alterations in the ckAML cohort. A. Oncoplot showing the most
frequent somatic alterations in each sample. B. Frequency of SNVs among the 39 ckAML samples. C.
Number of CNAs in samples without TP53 alterations (TP53wt), with one alteration (monoallelic), or
with both alleles disrupted (biallelic).
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Chromothripsis

I detected chromothripsis events in 17/39 samples (see Section 5.2 for the criteria used),

all of which had biallelic TP53 inactivation. Chromothripsis affected various chromo-

somes: 13/24 chromosomes were affected by chromothripsis in at least one sample

(Figure 7A), and chr3 was most commonly affected (7 samples), followed by chr12

(4 samples) and chr17 (3 samples). Rücker et al. had also found that chromothrip-

sis could affect various chromosomes, although in their cohort chr7 was the chro-

mosome most commonly affected by chromothripsis [104]. Some samples have sev-

eral chromosomes affected by chromothripsis. SNP arrays only provide CNA infor-

mation but no SVs, so they cannot be used to distinguish whether one chromoth-

ripsis event affected several chromosomes (resulting in many breakpoints between

the chromosomes), or whether several chromothripsis events occurred independently.

With WGS data, I found that only a single sample had a chromothriptic chromosome

with only intra-chromosomal breakpoints (chromosome 3 in sample 15PB19457). All

other chromothriptic chromosomes had breakpoints leading to other chromosomes,

although these other chromosomes did not necessarily harbour massive rearrange-

ments too. I observed very complex chromothriptic events involving several chromo-

somes (Figure 7B). Several samples had several independent chromothripsis events,

some of which were subclonal (Figure 7C-E).

Chromothripsis can result in amplifications through eccDNA or BFB cycles. In this

cohort, I found several samples with copy numbers >=4 in some regions, especially

on chr11, chr13 and chr21 (Figure 7C-D for example). However, only one sample had

a region with a copy number greater than 10: sample 15KM18875 had complex rear-

rangements on chr19 with massive amplifications, up to a copy number of 30 around

EPOR (Figure 8A). This sample contained foldback inversions at amplification bound-

aries (Figure 8B), so these amplifications were likely due to BFB cycles. Analysis of copy

number jumps at breakpoints revealed that many breakpoints joined segments with

different copy numbers (Figure 8C), indicating that chromothripsis probably occurred

after the BFB amplifications, since if chromothripsis had occurred first, both ends of

most breakpoints should have the same copy number. However, it is possible that the

chromosome was shattered several times, both before and after the amplifications.
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Figure 7: Chromothripsis in the ckAML cohort. A. Number of samples with chromothripsis on each
chromosome. B. Circos plot showing structural rearrangements for sample 16PB1441, where only the
chromosomes involving in a large chromothripsis event are shown. Shatterseek only called chromoth-
ripsis on chr7, but there were breakpoints leading to other chromosomes. C-E. Circos plots showing
structural rearrangements in samples 16KM4020 (A), 15PB9630 (B) and 16KM16320 (C). Only chro-
mosomes involved in chromothriptic events are shown, and they were reordered so that chromosomes
involved in the same chromothripsis event are grouped together.
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Figure 8: Amplification of EPOR with foldback inversions. A. Copy numbers and SVs for chr19 in
sample 15KM18875. Vertical yellow lines indicate foldback inversions. B. Example foldback inversions
on chr19 in 15KM18875: here nanopore reads are shown in orange, with black dashed lines linking
the two alignments of a split read. BFB results in such foldback inversions, where a read goes in one
direction, and then back in the other direction. C. Copy numbers at each end of a breakpoint, for
SVs on chr19 in sample 15KM18875. Most points are away from the diagonal, indicating that most
breakpoints join segments with different copy numbers.
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3.1.2 Transcriptomic analysis

In order to see if the cohort consisted of different subgroups, I used the RNA-seq data

and clustered the samples based on correlations of the 5000 most variable genes (Fig-

ure 9A). This revealed two main groups, but they were not biologically relevant, since

they corresponded to whether the sample came from the peripheral blood (PB) or the

bone marrow (BM). I performed a differential expression analysis between samples

from BM and PB and found 1316 genes upregulated in the BM (log2 fold change>1,

FDR<0.01), including chemokine ligands CXCL12 and CCL14, and 378 genes upregu-

lated in the PB. Apart from this PB/BM difference, no strong clustering was observed,

even when this PB/BM difference was removed using ComBat [116]. One small sub-

group corresponded to samples with a high erythrocyte enrichment computed with

xCell [117], and they probably correspond to samples with acute erythroid leukemia

(AEL), a rare AML subtype accounting for 5% of all AML cases, but strongly enriched

for complex karyotypes. Samples did not cluster according to TP53 mutation status.

I a performed differential expression analysis between TP53-mutated (TP53-mut) and

wild-type (TP53-wt) samples, and I identified 178 upregulated genes in TP53-mut sam-

ples and 129 downregulated genes (Figure 9B). ZNF560 was the most upregulated gene

in TP53-mut samples, and this gene was also reported to be the most differentially ex-

pressed in TP53-mut AML in another cohort [118]. I performed gene set enrichment

analysis (GSEA) with gseapy. The most significant gene sets were a downregulation of

the interferon alpha and gamma responses in TP53-mut samples (Figure 9C-D). This is

in line with the role of TP53 in innate immunity [119]. There was also an enrichment for

the hematopoietic stem cell (HSC) gene set, indicating that TP53-mut samples might

be more stem cell-like. The LSC17 score is a score for leukemic stemness based on

the expression of 17 genes [120]. In this dataset, I observed a higher LSC17 score for

TP53-mut cases (Figure 9E), confirming that TP53-mut samples are less differentiated,

which might explain their poor prognosis.

Fusion transcripts

Many AML cases are driven by recurrent fusion proteins like RUNX1::RUNX1T1 or

PML::RARA, but ckAML generally do not harbour those recurrent translocations. Nev-

ertheless, I hypothesized that there could be many rare fusions in ckAML. Among the

39 ckAML samples, I detected 147 fusion transcripts, but none of them were recurrent.

RUNX1 is known to be involved in many fusions [121], and in this cohort I detected

4 fusions involving RUNX1: RUNX1::RCAN1, SMIM11::RUNX1, RUNX1::RWDD2B and



3.1. GENOMIC AND TRANSCRIPTOMIC LANDSCAPE OF CKAML 29

Correlation

Erythrocite enrichment

TP53 

BM PB 

mut wt 

A B

C D E

TP53 mut vs wt

Figure 9: RNA-seq data analysis of the ckAML cohort. A. Clustering of the 39 RNA-seq samples based
on correlations, using the 5000 most variable genes. B. Volcano plot showing differentially expressed
genes between TP53 -mut and wt samples. C. GSEA results for gene sets with FDR<1%. D. GSEA
result for the interferon gamma response gene set. E. LSC17 score between TP53 -mut and TP53 -wt
samples.

LTN1::RUNX1. Of those, only RUNX1::RCAN1 was mentioned in the literature [121].

The role of the other fusions is unclear, but many of them are likely passenger

events. For example, there were two fusions involving TP53 (C11orf48::TP53 and

TP53::FBXL18). The fusion transcripts themselves are probably irrelevant, but the

breakpoints were likely selected for because they disrupt TP53.

3.1.3 CNAs across several ckAML cohorts

Although WGS provides a higher resolution, CNAs can be detected with other assays,

like SNP arrays or methylation arrays. I collected data from several ckAML cohorts

profiled with different technologies (Table 1), resulting in a total of 418 ckAML samples

with CNA information. Such a large dataset could be used to gain new insights into

CNAs in ckAML.
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Table 1: List of cohorts included in the CNA analysis, with the number of complex ckAML samples
in each, the type of assay, whether TP53 mutation information is available, and the mean age at
diagnosis with standard deviation. For the BEAT-AML cohort, TP53 status and age information was
only available for a subset of the samples. The data for the OSUckAML cohort was provided by
Ann-Kathrin Eisfeld and Christopher Walker from Ohio State University.

Cohort #ckAML Assay TP53 Age (years)

ASTRAL1-WGS 41 WGS YES 75.2±5.3

ASTRAL1-EPIC 65 EPIC array YES 76.0±6.0

BEAT-AML [122] 59 EPIC array Partial 54.6±18.9

TCGA [101] 25 SNP array YES 54.9±16.1

Rücker2012 [103] (GSE34542) 82 SNP array YES 58.6±14.1

Parkin2015 [123] (GSE61323) 36 SNP array YES 60.3±14.4

OSUckAML 110 SNP array NO Unavailable

Total 418

Regions frequently deleted or gained

I started by looking at the most common CNAs in ckAML, and the minimally deleted or

gained regions (Figure 10). The most common CNA is del(5q), which is often large, re-

sulting in haploinsufficiency of many genes, including the histone demethylase KDM3B,

EGR1 whose haploinsufficiency leads to increased rates of hematological malignancies

in mice [111], RPS14 whose downregulation recapitulates del(5q) syndrome [110], and

CSNK1A1 which is sometimes mutated in del(5q) cases [108]. Del(7q) is the second

most common CNA, which also deletes a very large region containing many genes in-

cluding EZH2. Del(12p) typically deletes a small region around ETV6. Chromosome

17 has two deletion peaks, the main one in 17p around TP53 and a secondary peak in

17q around NF1, which is involved in the RAS pathway. Trisomy 8 is the most common

gain, and some samples have small amplifications around MYC. Chromosomes 11 and

21 frequently harbour amplifications, involving numerous members of the ETS family

of transcription factors like ETS1, ETS2, FLI1 and ERG. Copy neutral loss of heterozy-

gosity (CNLOH) frequently affected 17p, but not the other commonly deleted regions.

CNLOH of 17p can inactivate the second TP53 allele after the first one is mutated. The

absence of CNLOH in the other commonly deleted regions is another argument against

the presence of TSGs in these regions, and in favour of the hypothesis that these dele-

tions drive leukemia through gene dosage alterations.
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Figure 10: Recurrently deleted (first two rows) and gained (last row) regions across several ckAML
cohorts. Vertical gray lines indicate the centromere of each chromosome. Somes genes, which have
been proposed as putative drivers for these CNAs, are highlighted.

3.1.4 Haploinsufficiency of genes in the deleted regions

Apart from TP53 in 17p, the deletions in ckAML do not contribute to the bialellic inac-

tivation of a TSG, so the most likely explanation for their positive selection is that they

result in haploinsuffiency of the deleted genes. If one copy of a gene is lost in all cells,

we would expect the expression to be 50% of what it normally is in cells diploid for

this gene, unless feedback mechanisms compensate for it by increasing transcription

from the remaining allele. For three cohorts (ASTRAL1-WGS, TCGA-LAML and BEAT-

AML), RNA-seq data was available in addition to copy number data, which allowed

me to test whether the genes have a lower expression in samples in which they are
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deleted. I computed for each gene the ratio of the mean expression (in TPM) of sam-

ples with a deletion divided by the mean expression of samples without a deletion for

this gene. I performed this for each cohort (provided at least 5 samples had deletions

in this cohort), and averaged the results for all cohorts. The median expression ratio

was 0.6 (Figure 11A), which is the expected expression ratio if the tumor purity is 80%

(0.8∗ 1
2 +0.2∗ 2

2 = 0.6). In addition, 97.5% of genes had a lower expression when they

are deleted than when they are not. This strong impact of deletions on gene expression

suggests that gene dosage effects might play an important role in these deletions. How-

ever, since most deleted genes have their expression reduced, this information cannot

be used to identify which genes in the minimally deleted regions are relevant. For ex-

ample, almost all genes in the minimally deleted regions of del(5q) and del(7q) have

their expression strongly reduced in samples with deletions (Figure 11B-C). One pos-

sible strategy to identify genes whose haploinsufficiency provides a fitness advantage

would be to perform a CRISPR screen with a positive selection [124], but this is outside

the scope of this thesis.

TP53 mutations are strongly associated with del(5q)

For some cohorts, TP53 mutation status was also available, which enables the detec-

tion of associations between TP53 mutations and CNAs. When I performed Fisher’s ex-

act test with the number of CNAs in each chromosome arm depending on TP53 status,

I found that many CNAs were positively associated with TP53 status (20 chromosome

arm-level CNAs with FDR<5%, Table 2), in line with previous reports [103]. However,

since TP53 mutations are also associated with the total number of CNAs in a sample,

it could be that these associations between TP53 mutation and specific CNAs are sim-

ply due to the fact that TP53-mut samples have more CNAs. In order to remove the

impact of the total number of CNAs and to see which CNAs are specifically associated

with TP53 mutation, I computed empirical p-values by generating a null distribution,

where I randomly assigned CNAs to samples, while keeping constant the number of

CNAs in each sample and the number of occurrences of each CNA. This led to a much

lower number of CNAs associated with TP53: del(5q) was by far the CNA most strongly

associated with TP53, followed by CNLOH of 17p, del(18q) and del(16p). Association

between TP53 and CNLOH of 17p is not surprising, since this CNLOH provides a fit-

ness advantage by inactivating the second TP53 copy after the first one is mutated.

Del(18q) and del(16q) are not as common as del(5q) and del(7q) and are not as well

studied, but this analysis reveals that they could be very important secondary events

in TP53-mutated ckAML. The association of del(5q) and TP53 is well known, but this
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Figure 11: Reduced expression for deleted genes in AML. A. Scatter plot showing for each gene, the
number of samples in which it is deleted (y-axis) and the ratio of expression between samples with a
deletion compared to samples without deletion (x-axis), with marginal densities. B. Ratio of expression
between samples with and without deletion of the gene, for genes in the minimally deleted region of
5q. C. Ratio of expression between samples with and without deletion of the gene, for genes in the
minimally deleted region of 7q.

analysis shows that del(5q) is really a critical event in TP53-mut ckAML. Del(7q), the

other very common deletion in ckAML, is not as strongly associated with TP53 because,

even though it is very frequent in TP53-mut samples, it is also common in TP53-wt

cases, often as a monosomy 7. The association of del(5q) with TP53 is interesting be-
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Table 2: FDR of associations between TP53 mutations and CNAs, either using Fisher’s exact test or
by performing a test where the number of CNAs in each sample was kept constant.

CNA FDR Fisher’s exact test FDR constant number of CNAs

5q_loss 1.476E-25 0.00001

18q_loss 0.000009086 0.01907

17p_CNLOH 0.00001277 0.0022

16p_loss 0.0001061 0.0264

7q_loss 0.0005735 0.5594

18p_loss 0.001123 0.2394

17p_loss 0.001675 0.5802

16q_loss 0.002702 0.5594

12q_loss 0.005376 0.5594

7p_loss 0.005376 0.6975

3p_loss 0.008523 0.5802

3q_loss 0.01112 0.5802

20q_loss 0.01212 0.5802

5p_loss 0.01841 0.5802

17q_loss 0.03061 0.8913

21q_gain 0.03286 1

21q_loss 0.03286 0.5802

11q_gain 0.03299 0.9002

2q_loss 0.04676 0.7183

11p_gain 0.04676 0.8456

cause TP53 mutations are associated with a complex karyotype and a poor prognosis,

but outside of ckAML, del(5q) is often seen as a sole abnormality in MDS, and in this

case it is associated with a good prognosis [106]. Even though the commonly deleted

region is similar between MDS with isolated del(5q) and ckAML, a striking difference is

that some regions to the left and to the right of the deleted region are always retained

in isolated del(5q), whereas in AML the deletions can be larger and encompass these

commonly retained regions (CRRs) [125]. I processed public SNP and methylation ar-

ray data for MDS with isolated del(5q) [126, 127] and verified the presence of these

CRRs (Figure 12). These CRRs might contain genes which, when lost, precipitate the

progression to AML.
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CRR1 CRR2

Figure 12: MDS with isolated del(5q). Number of samples having deletions at each position of chr5,
for MDS samples having del(5q) as a sole abnormality. Vertical lines separate the commonly retained
regions from the region with deletions.

Del(20q) is more frequent in older patients, but does not preferentially affect a

particular allele

CkAML is more common among older patients, but can still occur among younger pa-

tients, and one open question is whether older and younger ckAML patients show the

same CNA profiles. I tested associations between CNAs and age by comparing CNAs

between the 33% younger patients and the 33% older patients. This revealed that for

the most part, younger and older ckAML cases show the same frequency of CNAs, ex-

cept for del(20q), which is more common among older patients (Fisher’s test two-sided

statistic 5.1, p-value 0.01, FDR 0.03; Figure 13A). This result is not very surprising, since

mosaic del(20q) has been reported to be common in blood cells of healthy older indi-

viduals [128]. ASXL1, which together with DNMT3A and TET2 is commonly mutated in

clonal hematopoiesis, lies close to the boundary of the commonly deleted region, but is

deleted only in a minority of samples, in accordance with previous reports [129]. Since

ASXL1 mutations are gain of function and not loss of function [130], it is not surprising

that ASXL1 is not in the minimally deleted region.

I performed a differential expression analysis between samples with del(20q) and oth-

ers and found that several genes in the deleted region were downregulated with log2

fold changes lower than -1, as would have been expected if one of the two alleles is

lost (Figure 13B). The deleted region in 20q contains several imprinted genes, so losing

the active allele could be sufficient to completely abrogate the expression of the gene.

In 2002, Kuerbitz et al. found that NNAT, a gene located in the commonly deleted
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Figure 13: Deletion 20q. A. Number of samples with deletions at each position on chr20, split by age.
There are as many samples in each age group. B. Differential expression between samples with del(20q)
and others. Downregulated genes which lie on 20q are indicated by a cross. C-E. Boxplots for the
expression of L3MBTL1, SGK2 and NNAT, split between del(20q) and other samples. H. Nanopore
sequencing data around L3MBTL1 colored by methylation (red: methylated, blue: unmethylated) for
two samples with del(20q), and one sample without del(20q) with reads split by haplotype. G-H.
Average methylation values in the promoters of NNAT and L3MBTL1 measured by EPIC array, split
between samples with deletion and others.

region, was imprinted, and was also hypermerthylated in some AML cases without

del(20q) [131]. In 2004, Li et al. found that L3MBTL1 was another imprinted gene in

this region [132]. However, among four samples with del(20q), they found two samples

which retained the methylated allele and two which retained the unmethylated one,
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so it was not always the inactive allele which was lost. In 2013, Aziz et al. found that

samples with del(20q) lost expression of L3MBTL1 and of its neighbour SGK2 [133].

Out of 6 samples with del(20q), 5 had lost the unmethylated allele, which suggested

that the unmethylated allele was preferentially lost, leading to complete inactivation

of L3MBTL1. In addition, they showed that downregulation of L3MBTL1 and SGK2

could activate MYC. I verified that these genes were downregulated in the del(20q)

samples of the ASTRAL-1 cohort profiled with RNA-seq (Figure 13C-E). I also verified

in nanopore data that in samples without del(20q), there was a differential methyla-

tion at the L3MBTL1 promoter between the two haplotypes (Figure 13F), and that only

the allele unmethylated at the promoter was expressed in RNA-seq data. However, I

found that both the methylated and the unmethylated allele could be retained, both in

nanopore data and in EPIC array data (Figure 13F-H). There were slightly more sam-

ples hypermethylated (N=18) than hypomethylated (N=11) among the samples with

del(20q), but this was not statistically significant (binomial test: p-value=0.26). Among

the 11 del(20q) samples hypomethylated at the L3MBTL1 promoter, only one had been

profiled with RNA-seq, so it is possible that the other samples which lost the inactive

L3MBTL1 allele might still express it. For NNAT, I observed in samples without del(20q)

a bimodal distribution of the methylation values: some samples had 50% methylation,

typical of an imprinted gene, while others had higher methylation, which would agree

with the observation that NNAT can become hypermethylated even without deletion.

The majority of samples with del(20q) had high methylation at the NNAT promoter,

but this can be explained by the fact that some samples lost the methylated allele, and

the unmethylated allele then underwent hypermethylation. In conclusion, it appears

that del(20q) does not have a strong bias for a particular allele, contrary to some re-

ports [133]. L3MBTL1 downregulation might be relevant, but it is likely not the only

driver event in del(20q), otherwise a stronger allelic bias would have been expected.

Co-occurrence and mutual exclusivity of CNAs

The large number of ckAML samples with CNA information allowed me to also look

at patterns of co-occurrence and mutual exclusivity between CNAs. In order to avoid

seeing mainly patterns of co-occurrence driven by the fact that some samples harbour

more CNAs than others, I again computed p-values by using a null distribution, where I

randomly assigned CNAs to samples, keeping the number of CNAs in each sample and

the total number of occurrences of each CNA constant (Figure 14). 8p and 8q gains

appeared mutually exclusive with most CNAs, which reflects the fact that trisomy 8

is often seen as a sole abnormality, although it is also common in ckAML. Del(5q) co-
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occurred frequently with deletions in chr7, in chr16 and in chr18. The strongest mutual

exclusivity was between del(12p) and gain of 21q. This might be because 12p dele-

tions are selected for because they result in haploinsuffiency of ETV6, while 21q gains

amplify ETS2 and ERG. These three genes are transcription factors of the ETS family,

but they have opposite effects: ETV6 is a silencer while ETS2 and ERG are activators.

Consequently, del(12p) might result in a similar effect as amplifications of 21q, which

might be why these two events rarely co-occur. 1p, 11p and 22q gains often co-occur

together. This might be because these gains are often caused by trisomies, and some

samples harbour a large number of trisomies.

Co-occurrence

Mutually exclusive

log10 FDR

Figure 14: Co-occurrence and mutual exclusivity of chromosome arm-level CNAs in ckAML. Red colors
indicate mutual exclusivity, blue co-occurrence, and grey indicates pairs which were not tested because
they correspond to the same CNA type on the same chromosome. One asterisk indicates a FDR <0.05,
2 asterisks a FDR<0.01 and 3 asterisks a FDR<0.001.
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3.2 Detection of enhancer hijacking events

I showed in the previous section that ckAML samples have very complex genomes,

which in particular harbour many deletions. In this section, I investigated whether

enhancer hijacking events could play an important role in ckAML, as well as in other

cancer types. I developed a computational method called pyjacker to detect enhancer

hijacking events using WGS and RNA-seq, and I applied it to a ckAML cohort, as well

as to sarcoma and prostate cancer samples.

3.2.1 Pyjacker

An enhancer hijacking event can occur when an SV brings an active enhancer close to

an inactive gene, which can lead to the aberrant expression of this gene and potentially

drive cancer. Although several methods already exist for the detection of enhancer hi-

jacking events, none of them were directly applicable to our ckAML data (Table 3).

CESAM [89] and HYENA [93] can only detect recurrent events, at least present in four

samples of a cohort, whereas in this project I aimed at discovering rare events, includ-

ing those present in only a single sample. Cis-X [94] can detect genes activated by SVs

in single samples, but it requires matched normals to be provided, and is therefore

not applicable to our cohort, for which only leukemic samples were available. I de-

veloped pyjacker, a computational method to detect enhancer hijacking events using

WGS, RNA-seq and enhancer information, even in single samples, without the need

for matched normals.

For each gene, the first step in pyjacker is the identification of "candidate samples"

which have a breakpoint in the same TAD as the gene (Figure 15A). Then, pyjacker will

assign a score to each candidate sample, which reflects how likely this gene is to be ex-

pressed in this sample because of the SV. This score consists of an overexpression score,

a monoallelic expression score, and an enhancer score, which are combined with cus-

tom weights (see methods section). Yhe scores for the same gene from all candidate

samples are aggregated, resulting in a single score for each gene. In order to get a more

interpretable FDR, I compute empirical p-values by generating a null distribution of

scores in the absence of enhancer hijacking. For each gene, I ignore the true candi-

date samples with breakpoints nearby, and I randomly assign some of the reference

samples (without breakpoint) to be candidate samples. I then compute the scores for

these "false" candidate samples, resulting in a null distribution. I can then compute

an empirical p-value by counting the proportion of null scores higher than a particular
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Table 3: Comparison of tools to detect enhancer hijacking. Features that are problematic for this
study are colored in red, others in blue.

Method Required
data

Can
be run
without
matched
normals

Can detect
enhancer
hijacking
events in
single sam-
ples

Uses
expres-
sion
level

Uses
monoal-
lelic
expres-
sion

Uses
en-
hancers

CESAM
break-
points +
expres-
sion

YES NO YES NO NO

SVXpress
WGS +
RNA-seq

YES NO YES NO NO

HYENA
WGS +
RNA-seq

YES NO YES NO NO

cis-X
WGS +
RNA-seq

NO YES YES YES YES

NeoLoop
Finder HiC YES YES NO NO NO

pyjacker
WGS +
RNA-seq

YES YES YES YES YES

score. Finally, I correct for multiple testing of all genes with the Benjamini-Hochberg

method. This yields a ranked list of genes putatively activated by structural rearrange-

ments, with a false discovery rate for each (Figure 15B). In addition to enhancer hijack-

ing, an SV can cause monoallelic overexpression of a gene by creating a fusion tran-

script. In order to differentiate between genes activated by a fusion and enhancer hi-

jacking, I detected gene fusions with STAR-Fusion [134], and annotated the results of

pyjacker with the potential presence of fusion transcripts. Pyjacker is implemented in

python and available on GitHub at https://github.com/CompEpigen/pyjacker.

https://github.com/CompEpigen/pyjacker
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Figure 15: Pyjacker overview. A. Schematic representation of the main sources of information used
by pyjacker: breakpoints, overexpression, monoallelic expression, enhancers. B. Diagram of pyjacker’s
inputs and outputs.

3.2.2 Pyjacker applied to ckAML

3.2.2.1 Results overview

I applied pyjacker to the cohort of 39 ckAML samples, which resulted in 19 genes ac-

tivated by SVs with FDR<20%, 9 of which were not involved in fusions and are there-

fore likely activated by enhancer hijacking (Figure 16). Among those events were genes

which were known to be activated by enhancer hijacking in AML: MECOM [90] was

overexpressed as a result of a SV in two samples, and BCL11B [91] and MNX1 [92] in

one sample each. These positive controls show that pyjacker identifies previously re-

ported enhancer hijacking events. In addition, pyjacker found several novel interesting

genes. Most of those genes were recurrently expressed in the TCGA-LAML [101], BEAT-

AML [122] and TARGET-AML [135] cohorts, albeit at low frequencies (Figure 16B).

BCL11B and CLEC10A are expressed in normal T cells and dendritic cells, respectively,

and are therefore expressed in a high proportion of AML samples, probably due to low

tumor purity.



42 CHAPTER 3. RESULTS

A

B

Figure 16: Putative enhancer hijacking events and fusion transcripts detected in 39 ckAML samples. A.
Scatter plots of genes identified by pyjacker as being potentially activated by genomic rearrangements
in one or more samples, where the x-axis shows the genomic location of the genes and the y-axis
shows the FDR. Gene names for the enhancer hijacking candidates are written in bold, and if a fusion
transcript was detected, the fusion partner is named. B. Proportion of samples expressing the top
candidate genes, for three AML cohorts profiled with RNA-seq: TCGA-LAML [101], BEAT-AML [122]
and TARGET-AML [135].

3.2.2.2 MECOM and its homolog PRDM16 activated by the GATA2 enhancer

The only gene identified by pyjacker in more than one sample from this ckAML cohort

was MECOM, found in two samples (15PB19457 and 15KM20146), where I found both

overexpression and monoallelic expression (Figure 17A-C). In both cases, the rear-

rangements were more complex than t(3;3) or inv(3) which are the most frequent rear-

rangements responsible for MECOM activation. Sample 15PB19457 had chromothrip-

sis on chromosome 3 (Figure 17D), while sample 15KM20146 had several breakpoints

between chr3 and chr14 (Figure 17F). Even though these rearrangements were com-

plex, they still resulted in the GATA2 enhancer (next to RPN1) coming close to MECOM

(Figure 17E), which is the same enhancer that activates MECOM in the more common

t(3;3) and inv(3) [90]. However, the complexity of the rearrangements prevented the

identification of the 3q26 region to be identified through cytogenetics.
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Figure 17: Rearrangements leading to MECOM activation. A. Expression of MECOM in all samples,
ranked by expression, where the two samples 15PB19457 and 15KM20146 with MECOM activation by
SVs are highlighted in green. B,C. Variant allele frequencies in DNA and RNA for SNPs in MECOM,
for samples 15PB19457 and 15KM20146 respectively. D. Copy numbers and SVs on chr3 for sample
15PB19457. E. ChIP-seq tracks for P300 and H3K27ac in the myeloid cell lines MOLM-1 and Kasumi-1
in the region around MECOM for the rearranged chromosome of sample 15PB19457. F. Copy numbers
and SVs on chr3 and chr14 for sample 15KM20146.

The GATA2 enhancer was also reported by pyjacker to activate, in a different sam-

ple (16KM11270), PRDM16, which is a homolog of MECOM [136]. In this sam-

ple, a t(1;3)(p36;q21) translocation juxtaposed PRDM16 next to the GATA2 enhancer

(Figure 18C). This translocation t(1;3) has been reported in the literature as a rare

event [136]. Even though the expression was monoallelic (Figure 18B), which is a strong

indicator of activation by enhancer hijacking, the FDR reported by pyjacker was high

(47%) because eight samples without breakpoints near PRDM16 had a higher expres-

sion than in this sample (Figure 18A). MECOM is also expressed in samples without

breakpoints nearby, although to a lesser extent, which indicates that there must be ad-

ditional activation mechanisms for these two genes in addition to enhancer hijacking.
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Figure 18: PRDM16 enhancer hijacking. A. Expression of PRDM16 in all ckAML samples, ranked
by expression, where sample 16KM11270 with PRDM16 activation by SVs is highlighted in green. B.
Variant allele frequencies in DNA and RNA for SNPs in PRDM16, for sample 16KM11270. C. ChIP-seq
tracks for P300 and H3K27ac in the myeloid cell lines MOLM-1 and Kasumi-1 in the region around
PRDM16 for the rearranged chromosome of sample 16KM11270. D. Expression of PRDM16 in all
ckAML samples (grey) and the t(1;2) sample (green). E. Variant allele frequencies in DNA and RNA
for SNPs in PRDM16, for the t(1;2) sample. F. Enhancer marks and CTCF/RAD21 binding near the
breakpoint in the t(1;2) sample, with Hi-C data from HSPCs. The two super-enhancers are highlighted
in orange.

Outside of this ckAML cohort, I also analyzed an AML sample with diabetes insipidus,

which harboured a t(1;2) translocation leading to PRDM16 expression. Compared to

the ckAML sample with t(1;3) which had lower PRDM16 expression than some samples

without rearrangements (Figure 18A), this t(1;2) sample showed much higher PRDM16

expression than all other samples (Figure 18D). This expression was also monoal-

lelic (Figure 18E). The t(1;2) translocation has been reported before, and the expres-

sion of PRDM16 was hypothesized to be due to a juxtaposition to the THADA pro-
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moter [137]. However, in the sample analyzed here, the THADA promoter was not in

the region translocated to PRDM16, but two strong hematopoietic super-enhancers

were brought close to PRDM16 (Figure 18F). Therefore, it is likely that PRDM16 ex-

pression in this sample is driven by the hijacking of these two enhancers. Although

these two enhancers were ranked by ROSE [46, 47] among the strongest hematopoietic

super-enhancers, their role in normal hematopoiesis is unclear. Considering that they

are in the same TAD as ZFP36L2, a gene with high expression in hematopoietic cells,

it is likely that these enhancers normally activate this gene. These enhancers on chr2

have also been reported to activate MECOM in atypical rearrangements [138].

3.2.2.3 MNX1 and GSX2 can be activated by atypical mechanisms

Among the top pyjacker hits were two homeobox genes, MNX1 and GSX2. Home-

obox genes are often upregulated in AML [139], so activation of homeobox genes by

enhancer hijacking could be a driver event. Both MNX1 and GSX2 are known to be

activated by rare but recurrent translocations to the ETV6 locus: MNX1 is activated

by t(7;12)(q36;p13) in pediatric AML [92], and GSX2 becomes activated by t(4;12)(q11-

q12;p13) in adult AML [140]. However, here I found these two genes activated by atyp-

ical mechanisms. Sample 15PB8708 had outlier high and monoallelic expression of

MNX1 (Figure 19A-B). A 200kb region in the CDK6 region on chr7, containing two

putative enhancers, was duplicated and inserted next to MNX1 (Figure 19D-E). This

hematopoietic super-enhancer has already been reported to be involved in enhancer

hijacking events in AML, activating BCL11B [91] or MECOM [138].

Sample 16PB5693 has outlier high GSX2 expression (Figure 19C) and harbours a chro-

mothripsis event involving multiple chromosomes, with several parts amplified, in-

cluding GSX2. (Figure 19F). The putative enhancer is located less than 1Mb away from

GSX2 in the wild-type state, but in a different TAD (Figure 19G). A deletion removed

the TAD boundary, which likely allowed GSX2 to interact with the enhancer. GSX2 is

usually expressed as a result of the t(4;12) translocation, which also frequently leads

to PDGFRA activation and to an ETV6-CHIC2 fusion transcript in addition to GSX2 ex-

pression [141]. Here, I found only GSX2 expression without PDGFRA expression and

without fusion transcript, indicating that GSX2 expression is likely the driving event.
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Figure 19: Activation of MNX1 and GSX2 by atypical mechanisms. A. MNX1 expression in all
samples, with the sample 15PB8708 with MNX1 overexpression highlighted in green. B. Variant allele
frequencies in DNA and RNA for a SNP in MNX1 in sample 15PB8708. C. GSX2 expression in all
samples, with the sample 16PB5693 with GSX2 expression highlighted in green. D. Copy numbers and
breakpoints on chr7 for sample 15PB8708. E. ChIP-seq tracks for P300 and H3K27ac in myeloid cell
lines MOLM-1 and Kasumi-1 in the region around MNX1, on the rearranged chromosome of sample
15PB8708. Enhancers of the CDK6 region are highlighted in yellow. F. Circos plot showing CNAs and
SVs in sample 16PB5693, for the chromosomes involved in a chromothripsis event. G. HiC data from
HSPCs and ChIP-seq data from myeloid cell lines in the region around GSX2. The putative enhancer
is highlighted in yellow and the region in grey is deleted in sample 16PB5693.

3.2.2.4 Aberrant EPO expression cooperates with EPOR amplification to drive AEL

EPO is a novel gene identified by pyjacker that has never been reported to be acti-

vated by enhancer hijacking in human leukemias. However, EPO can be overexpressed

because of genomic rearrangements in a mouse model of erythroleukemia, provid-

ing growth factor independence [142, 143]. EPO is normally expressed in the kidneys
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when oxygen levels in the blood are low, and it stimulates the proliferation of erythroid

progenitor cells by binding to its receptor (EPOR) and activating the JAK/STAT path-

way [144]. If EPO can promote the growth and survival of erythroid progenitor cells, it

is likely that it could drive acute erythroleukemia (AEL), which is a rare subtype of AML

enriched for complex karyotypes. AS-E2 is an AEL cell line which requires EPO for sur-

vival, which further highlights the importance of EPO for AEL cells [145]. In our ckAML

cohort, the AEL sample 15KM18875 had high EPO expression (Figure 20A). Although no

samples from the TCGA-LAML, BEAT-AML and TARGET-AML cohorts expressed EPO,

I found that among three AEL cohorts profiled with RNA-seq [146, 147, 148], one sam-

ple from each cohort expressed EPO (Figure 20B), indicating that EPO expression is a

rare but recurrent event in AEL. In sample 15KM18875, a 100kb region on chr7 around

EPO was duplicated, with breakpoints leading to a 200kb duplicated region on chr11

(Figure 20C). The breakpoints indicated that these two pieces of DNA from chr7 and

chr11 likely formed a circle (Figure 20D). Extrachromosomal circular DNA (eccDNA)

are rather common in cancer, but they are often amplified, whereas in this sample I

found that the average copy number of this circle was less than 1. This eccDNA is

therefore subclonal, but it is unclear whether most cells have one copy, or whether a

small percentage of cells contain numerous copies. The region on chr11 which comes

close to EPO contains a putative enhancer with P300 and H3K27ac peaks in the ery-

throid cell line K562, and this putative enhancer is likely responsible for the activation

of EPO. In addition to high EPO expression, I also observed very high EPOR expres-

sion in this sample (Figure 20E), which was due to a massive amplification of EPOR on

chr19 (Figure 20F). Chr19 harboured patterns of chromothripsis, as well as foldback in-

versions, indicating that the amplifications were likely due to breakage-fusion-bridge

cycles [149]. Amplification of EPOR has recently been reported as a recurrent driver

event in AEL [148], but EPO overexpression was not mentioned. High EPOR expres-

sion could make the cells very sensitive to EPO, thus increasing the fitness advantage

provided by endogenous EPO expression by the leukemic cells. In both the Iacobucci

2019 and Fagnan 2020 cohorts, the sample with EPO expression also had outlier EPOR

overexpression, indicating that EPO is recurrently overexpressed together with EPOR.
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Figure 20: Aberrant EPO expression cooperates with EPOR amplification to drive AEL. A. EPO
expression in all samples, with the sample 15KM18875 with EPO overexpression highlighted in green.
B. Proportion of samples with EPO expression in three AEL cohorts profiled with RNA-seq. C. Copy
numbers and SVs on chr7 (containing EPO) and chr11 in sample 15KM18875. D. 300kb circular piece
of DNA containing EPO and a putative enhancer (highlighted in yellow), with P300 and H3K27ac
peaks in the erythroid cell line K562. E. EPOR expression in all samples, with sample 15KM18875
highlighted in green. F. Copy numbers and SVs on chr19 for sample 15KM18875.

3.2.2.5 Rare genes overexpressed as a result of a complex rearrangement

Among the genes identified by pyjacker, some were not found overexpressed in other

cohorts (Figure 16). This can be either because they are false positives, because the

activation of these genes is a very rare driver event, or because the activation of these

genes was a passenger event and was selected for because it was part of a complex

genomic rearrangement which contained other driver events. For example, the activa-

tions of TEKT1 (in 16PB3075) and of SLC22A10 (in 15KM20146) were due to complex

rearrangements which also contained SVs within TP53 (Figure 21), so these rearrange-

ments might have been selected for because of the TP53 disruption rather than TEKT1

or SLC22A10 activation.
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Figure 21: Example rearrangements leading to gene activation and TP53 inactivation. A. TEKT1
expression in all samples, with sample 16PB3075 (with breakpoint close to TEKT1) highlighted in
green. B. SLC22A10 expression in all samples, with sample 15KM20146 (with breakpoint close to
SLC22A10) highlighted in green. C. Copy numbers and SVs on chromosomes 7, 11 and 17 in sample
16PB3075. D. Copy numbers and SVs around TEKT1 and TP53 in sample 16PB3075. E. Copy
numbers and SVs on chromosomes 11, 17 and 20 in sample 15KM20146. F. Copy numbers and SVs
around SLC22A10 and TP53 in sample 15KM20146.

3.2.3 Mapping of enhancer elements

Once an enhancer hijacking is predicted, whether by pyjacker or by any other method,

the next step is to precisely identify the enhancer responsible for the activation of this

gene. This is ultimately achieved by inserting the predicted enhancer element next

to the target gene, and measuring if the gene becomes expressed, which would un-

equivocally prove that the predicted enhancer can activate the gene. However, this re-
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quires knowledge of the most likely enhancer element. Enhancer marks (e.g. H3K27ac,

H3K4me1, P300 measured by ChIP-seq, and ATAC-seq signal) in the correct cell type

are very useful to predict active enhancers, but this is not always sufficient. Some-

times, several regions are equally good candidates based on enhancer marks, but only

one of them can lead to gene activation. Another complementary method consists in

analyzing multiple samples where the same enhancer is involved in enhancer hijack-

ing, and mapping the minimal region which is always brought to the target gene. For

the GATA2 enhancer activating MECOM, Gröschel et al. analyzed 41 AML samples with

t(3;3) or inv(3) and found that the breakpoint in the GATA2 region were always located

between GATA2 (on the left) and RPN1 (on the right) [90]. All breakpoints occurred

at least 18kb to the left of RPN1. This 18kb region contained two putative enhancers,

which were equally strong candidate based on enhancer marks. However, the fact that

the breakpoint always occurred to the left of the leftmost enhancer in 41 samples was a

strong indication that this enhancer was important for gene activation. Luciferase as-

says proved that this leftmost putative enhancer was able to activate genes in myeloid

cell lines, while the rightmost enhancer was not. Here, I applied a similar method to

precisely map the enhancer element in the ETV6 and CDK6 regions, which are recur-

rently involved in enhancer hijacking.

3.2.3.1 ETV6 enhancer

The ETV6 region is involved in multiple enhancer hijacking events. It can activate

MNX1 with the t(7;12) translocation in pediatric AML [92], GSX2 with the t(4;12)

translocation in adult AML [140], BCL11B with a t(12;14) [91] or MECOM with a

t(3;12) [150].

In all samples analyzed, the breakpoints always occur within the TAD of ETV6, which

extends up to BCL2L14 (Figure 22, bottom). Within these regions, there are multiple

H3K27ac peaks present in several myeloid cell lines. Two of them coincide with P300

peaks, and are therefore strong enhancer candidates: the first one is within intron 2 of

ETV6 at chr12:11,952,000 (hg19), and the second one is located close to BCL2L14 at chr

12:12,165,000.

I analyzed 6 samples with t(7;12) and 9 samples with t(4;12) and in all cases, the break-

point was in intron 1 or in intron 2 of ETV6, and the part to the right of the breakpoint

was translocated to MNX1 or GSX2. Among all these samples, the rightmost breakpoint

was located at chr12:11,948,616 in sample T4 with a t(7;12) (Figure 22). The fact that

all of these breakpoints are located to the left of the leftmost enhancer is already a very
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strong indication that this enhancer might be relevant. Otherwise, some breakpoints

could have occurred to its right, although the small number of samples does not allow

to exclude the possibility of breakpoints occurring to the right.

I also analyzed one sample with a t(3;12) and one with a t(12;14). In these cases, the

other side of the breakpoint gets into contact with the target gene (MECOM or BCL11B).

Assuming that the same enhancer is hijacked with these translocations, this allows for

a mapping of the enhancer from two sides, which drastically reduces the size of the

region where the enhancer could be located: sample SJAML040681 with a t(12;14) [91]

has a breakpoint located at chr12:11,956,435, so the enhancer should be located in

the 8kb region chr12:11,948,616-11,956,435 (hg19). This region contains the leftmost

P300 peak, which is therefore the most likely enhancer responsible for the activation of

MNX1, GSX2, MECOM or BCL11B in these translocations.

In an iPSC/HSPC model, HSPCs with the translocation t(7;12) express MNX1 while

wild-type HSPCs do not [151]. The deletion of a 200kb region containing the two P300

peaks resulted in the loss of MNX1 expression in HSPCs [92]. Based on my prediction

that the leftmost P300 peak is likely the enhancer responsible for MNX1 activation,

Anna Riedel deleted this enhancer in the t(7;12) iPSCs, and observed that this abol-

ished MNX1 expression in HSPCs, confirming that this enhancer is necessary for MNX1

activation. However, to date, this enhancer has not been inserted on its own, so it re-

mains unknown whether this enhancer is sufficient for MNX1 activation, or whether

other elements in this region are required as well.



52 CHAPTER 3. RESULTS

HSPC Hi-C

11,800 11,850 11,900 11,950 12,000 12,050 12,100 12,150 12,200kb

chr12

ETV6 BCL2L14

HIPO-030-T2D7
SJAML040681

PARUNX
PASIBG

T4
T3
T2
T1

AML29802
AML602

23PB0191924
23KM0197087
23KM0189654

15PB14811
15KM14424
13KM17552
12KM14362

[0-2.0]
MOLM1 H3K4me3

[0-0.79]
MOLM1 H3K4me1

[0-1.0]
MOLM1 ATAC

[0-5.8]
MOLM1 P300

[0-3.3]
MOLM1 H3K27ac

[0-54.8]
K562 P300

[0-17.2]
K562 H3K27ac

[0-0.79]
Kasumi1 P300

[0-7.2]
Kasumi1 H3K27ac

to GSX2

to MNX1

to BCL11B
to MECOM

11,948,616-11,956,435

Figure 22: Enhancer mapping in the ETV6 region. ChIP-seq and ATAC-seq tracks in myeloid cell lines
are shown at the top. Regions translocated in samples with t(4;12), t(7;12), t(12;14) and t(3;12) are
shown in the middle, where the color indicates the gene activated by the enhancer: turquoise for GSX2,
orange for MNX1, purple for BCL11B and green for MECOM. Hi-C interactions in HSPCs in the region
around ETV6 are shown at the bottom. The region highlighted in orange is always translocated to the
activated gene, and contains a putative enhancer based on enhancer marks.

3.2.3.2 CDK6 enhancer

The CDK6 region is also involved in several enhancer hijacking events, with different

target genes: MNX1 in del(7q) [152] or with the enhancer duplication observed in this

ckAML cohort, BCL11B [91], and MECOM [138]. Sample 15PB8708 from the ASTRAL-

1 ckAML cohort has a duplication of the region chr7:92187729-92415065 which is in-

serted next to MNX1. This already restricts the search for the enhancer to a 200kb re-

gion containing two P300 peaks: at chr7:92,268,000 and at chr7:92,384,500. I analyzed

thirteen del(7q) samples with MNX1 expression (either sequenced at the DKFZ or at
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the MLL), as well as two t(3;7) samples with MECOM expression [138] and four t(7;14)

samples [91], three of which had BCL11B expression confirmed. One t(7;14) sample

(SJMPAL068288) was only profiled with WGS and not with RNA-seq, so BCL11B expres-

sion could not be confirmed. If this sample is excluded, then both putative enhancers

are always brought close to the target gene, and several samples have a breakpoint very

close to the rightmost enhancer, indicating that this enhancer could be required (Fig-

ure 23). However, the sample for which BCL11B expression was not assessed had a

breakpoint located to the left of the rightmost enhancer. If this sample does express

BCL11B, then this would imply that the rightmost enhancer is not required. In conclu-

sion, for CDK6, I could not reliably identify a small enhancer element that is required

for CDK6 expression. It may also be that none of the two P300 peaks are sufficient on

their own to drive the expression of the target gene, and that both are required.
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Figure 23: Enhancer mapping in the CDK6 region. ChIP-seq and ATAC-seq tracks in myeloid cell
lines, regions translocated in t(7;12), t(3;12) and t(12;14) in the region around CDK6. The region
highlighted in red is always translocated to the activated gene, and the region in yellow is translocated
to the activated gene in all but one sample.
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3.2.4 Pyjacker applied to sarcoma

Although I developed pyjacker with the intent to apply it to ckAML samples, the method

is general and can be applied to any cancer type. I collaborated with Simon Linder from

the group of Stefan Fröhling at DKFZ to apply pyjacker to a large cohort of sarcoma

samples (MASTER cohort). 639 samples were profiled with WGS and RNA-seq, from

various sarcoma entities (Table 4). Pyjacker must be run on a homogeneous dataset

where all tumor samples have a similar cell type as cell of origin. Otherwise, if different

cancer types are combined, some events might be missed, if one gene is normally ex-

pressed in a particular cancer type, but only expressed in another cancer type when it is

activated by enhancer hijacking. As a consequence, I did not run pyjacker on the whole

sarcoma dataset at once, but I instead ran pyjacker on several homogeneous subsets.

Since some tumor entities are similar, and since some entities had too few samples, I

grouped similar tumor entities, resulting in 20 groups (Table 4). The very large number

of samples resulted in a high number of pyjacker hits: 154 with FDR<5% and 1744 with

FDR<20% across all 20 entities. To focus on interesting candidates, I only displayed

genes activated in at least two samples (Figure 24). Similar to the ckAML dataset, this

revealed both known and novel genes.

Figure 24: Overview of the genes identified by pyjacker for the sarcoma dataset.

TERT activated in several sarcoma entities

TERT (telomerase reverse transcriptase) was the gene found overexpressed in the high-

est number of samples: four angiosarcomas (ANGS), three liposarcomas (LIPO), one
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Table 4: List of sarcoma groups to which pyjacker was applied.

group entities #samples

Leiomyosarcoma (LMS) Leiomyosarcoma (LMS), Uterine leiomyosarcoma
(ULMS)

113

Synovial sarcoma (SYNS) Synovial sarcoma (SYNS) 36

Liposarcoma (LIPO) Liposarcoma (LIPO), dedifferentiated liposarcoma
(DDLS), well-differentiated liposarcoma (WDLS),
pleomorphic piposarcoma (PLLS), myxoid/round-
cell liposarcoma (MRLS)

60

Chordoma (CHDM) Chordoma (CHDM) 51

Solitary fibrous tumor
(SFT)

Solitary fibrous tumor (SFT) 24

Ewing sarcoma (ES) Ewing sarcoma (ES), Ewing sarcoma of soft tissue
(ESST)

44

Malignant Fibrous Histio-
cytoma (MFH)

Malignant Fibrous Histiocytoma (MFH) 22

Spindle cell sarcoma (SC-
SARC)

Spindle cell sarcoma (SCSARC) 21

Chondrosarcoma (CHS) Chondrosarcoma (CHS), dedifferentiated chon-
drosarcoma (DDCHS), Myxoid chondrosarcoma
(MYCHS), Mesenchymal chondrosarcoma (MCHS)

26

Osteosarcoma (OS) Osteosarcoma (OS), osteoblastic osteosarcoma
(OSOS), chondroblastic osteosarcoma (CHOS),
high-grade surface osteosarcoma (HGSOS)

39

Angiosarcoma (ANGS) Angiosarcoma (ANGS), breast angiosarcona (BA) 23

Low-Grade Fibromyxoid
Sarcoma (LGFMS)

Low-Grade Fibromyxoid Sarcoma (LGFMS) 15

Rhabdomyosarcoma
(RMS)

Low-Grade Fibromyxoid Sarcoma (PLRMS), alvero-
lar rhabdomyosarcoma (ARMS), rhabdomyosar-
coma (RMS), embryonal rhabdomyosarcoma
(ERMS), spindle cell rhabdomyosarcoma (SCRMS)

30

Uterine sarcoma (USARC) Endometrial stromal sarcoma (ESS), uterine
leiomyoma (ULM)

15

Giant cell tumor (GCT) giant cell tumor not otherwise specified (GCTNOS),
giant cell tumor of bone (GCTB)

16

Alveolar soft part sarcoma
(ASPS)

Alveolar soft part sarcoma (ASPS) 10

Epithelioid sarcoma (EPIS) Epithelioid sarcoma (EPIS) 10

Desmoplastic small-
round-cell tumor (DSRCT)

Desmoplastic small-round-cell Tumor (DSRCT) 9

Desmoid/aggressive fibro-
matosis (DES)

Desmoid/aggressive fibromatosis (DES) 8

Sarcoma not otherwise
specified (SARCNOS)

Sarcoma not otherwise specified (SARCNOS), ep-
ithelioid hemangioendothelioma (EHAE), fibrosar-
coma (FIBS), clear cell sarcoma (CCS), malignant
phyllodes tumor of the breast (MPT), inflammatory
myofibroblastic tumor (IMT)

67
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leiomyosarcoma (LMS), one osteosarcoma (OS), one synovial sarcoma (SYNS), and one

germinal cell tumor (GCT). This is in line with TERT being overexpressed in many can-

cer types, through various mechanisms. Here, I did not find a recurrent SV leading to

TERT overexpression, but instead various types of rearrangements. In angiosarcomas,

SLC6A18, which lies directly next to TERT on 5p, was overexpressed together with TERT

when breakpoints were located near TERT.

IRS4 activated in LMS

IRS4 was found activated in eight leiomyosarcomas (LMS, including six uterine

leiomyosarcomas) (Figure 25A), as well as one liposarcoma (LIPO) and one rhab-

domyosarcoma (RMS). This gene had already been reported to be activated by en-

hancer hijacking in sarcomas [89]. All eight LMS samples with IRS4 rearrangements

had a deletion which overlapped the promoters of COL4A5 and COL4A6 (Figure 25B-

D), which probably allowed the IRS4 promoter to interact with their enhancers. Due

to the lack of epigenetic data for the relevant cell types, it was not possible to identify

putative enhancers.
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Figure 25: IRS4 enhancer hijacking in leiomyosarcoma. A. IRS4 expression in the leiomyosarcoma
cohort, with the 8 rearranged samples highlighted in green. B. Copy numbers and SVs on chrX for
sample RMZXUB, with IRS4 rearrangements. C. Copy numbers and SVs around IRS4 for sample
RMZXUB. D. Summary of the rearrangements leading to IRS4 overexpression in the LMS cohort, with
the minimally deleted region highlighted in orange.

FGF8 activated in LGFMS and SCSARC

A novel interesting gene identified by pyjacker is fibroblast growth factor 8 (FGF8). This

gene is overexpressed in several cancer types, including alveolar rhabdomyosarcoma

(ARMS) [153], but has not been reported to be activated by enhancer hijacking. I found

FGF8 activated by an imbalanced t(1;10) translocation in four samples (three low-grade

fibromyxoid sarcomas (LGFMS) and one spindle cell sarcoma (SCSARC)) (Figure 26).

Again, the lack of epigenetic data in the relevant cell types prevented me from identify-

ing the putative enhancers. I also confirmed that FGF8 is overexpressed in ARMS (data

not shown), but without SVs, indicating that different mechanisms can lead to FGF8
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Figure 26: FGF8 enhancer hijacking in sarcoma. A. FGF8 expression in the low-grade fibromyxoid
sarcoma (LFGMS) cohort, with the 3 rearranged samples highlighted in green. B. Copy numbers and
SVs on chr1 and chr10 for sample 5R9UHP, with t(1;10). C. Summary of the rearrangements leading
to FGF8 overexpression in the 3 LGFMS samples and the SCSARC sample with t(1;10).

overexpression.

Chromothripsis on chr12 in liposarcomas lead to the activation of various genes

Pyjacker identified many putative enhancer hijacking events on chr12 in liposarco-

mas (Figure 24), including GLI1, NXPH4, WIF1. Almost all liposarcoma samples have a

chromothriptic chr12 with massive amplifications, and often other chromosomes are
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involved in the complex rearrangements (Figure 27A-C). This high frequency of chro-

mothripsis on chr12 in liposarcomas has been reported before [154]. The main driver

event that is selected for with these amplifications is thought to be the overexpres-

sion of MDM2, a negative regulator of TP53 [155]. Other genes are often frequently

co-amplified together with MDM2, including CDK4 and HMGA2. CDK4 phosphory-

lates the retinoblastoma protein, thus allowing progressing into the S phase of the cell

cycle [156], so its overexpression may driver cancer. Pyjacker corrects the gene expres-

sion for amplifications in order to specifically select enhancer hijacking events, and not

amplifications. Consequently, MDM2 and CDK4 were not identified by pyjacker, since

these genes are expressed in all samples, and that their overexpression is explained by

the higher copy number. However, HMGA2 was identified by pyjacker, indicating that

the SVs in its vicinity lead to an increased expression beyond what would be expected

from the increased copy number. Pyjacker identified several genes which are activated

more rarely and that may have been overlooked before. NXPH4 was among the top

pyjacker hits and is overexpressed in various cancer types, including lung cancer [157],

but through different mechanisms than enhancer hijacking. WIF1 (Wnt inhibitory fac-

tor 1) is a more surprising candidate since it inhibits Wnt, which is usually upregulated

in cancer, so WIF1 is generally considered to be a TSG in many cancer types [158].

Therefore the overexpression of WIF1 may be a passenger event, or this gene may have

a unique role in liposarcomas. GLI1 was overexpressed only in 3 samples, but with a

very strong overexpression (Figure 27D). It is involved in the Sonic Hedegehog pathway

and has been hypothesized to play a role in some cancer types [159].

Potential false positives because of metastasis when allele-specific expression is not

available

Among the pyjacker hits for which no SNP information was available (and for which

the FDR was therefore rather high), I noticed that several false positives could be due

to contamination from normal cells at the metastatic site. Indeed, if the sample comes

from a metastasis to a rare site and contains normal cells from this site, it will have a

high expression for the genes normally expressed in this tissue. If some of these genes

happen to be near a breakpoint, pyjacker will detect high outlier expression near a

breakpoint, and identify this as a candidate enhancer hijacking event. In such cases,

the expression should be biallelic, but if no heterozygous SNPs are present, pyjacker

will still report it, albeit with a high FDR. For example, REG3A was reported as a pu-

tative enhancer hijacking event in one leiomyosarcoma sample, based on a high ex-

pression near a breakpoint, but without SNP information. This gene is normally ex-
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Figure 27: Chr12 rearrangements in liposarcoma. A-C. Copy numbers and SVs on chr12 in three
liposarcoma samples: 1GLAY, CB5S4F and QFC8A8. D. GLI1 expression among the liposarcoma
samples, with pyjacker hits highlighted in green.
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pressed in the pancreas and intestines. In this sample, I found a very high expression

of insulin and glucagon (highly expressed in the beta and alpha cells of the pancreas,

respectively), indicating that this sample is probably a metastasis to the pancreas, and

that the REG3A expression likely comes from the pancreas cells and not from the tumor

cells. In the case of pancreas, there are some clear marker genes (insulin and glucagon),

but contamination from other tissues may not always be so easy to detect. Hence, I did

not implement an automatic detection of aberrant expression because of contamina-

tion from cells from the metastatic site. This potential source of false positives should

be taken into account when analyzing pyjacker results from metastatic samples. A pos-

sible future improvement of pyjacker would be to perform cell type deconvolution of

RNA-seq data to account for this contamination.

3.2.5 Pyjacker applied to prostate cancer

I applied pyjacker to a cohort of 63 prostate cancer samples profiled with WGS and

RNA-seq. This resulted in 18 genes activated by structural rearrangements with FDR<5%

and 64 with FDR<20% (Figure 28A). However, the large majority were fusion genes,

most of which are already known. By far the most recurrent event was a TMPRSS2::ERG

fusion (leading to ERG upregulation), which was found in 26 samples, often with a sim-

ple deletion between ERG and TMPRSS2, and sometimes with more complex events.

This TMPRSS2::ERG fusion is indeed known to be the most common somatic event in

prostate cancer, occurring in approximately half of all prostate cancer cases [160]. One

sample had an ERG fusion with FANCC instead of PRSS2, and three other members

of the ETS family of transcription factors, ETV1, ETV4 and ETV5, were among the top

pyjacker hits and were upregulated through fusions in 4, 3, and 1 samples respectively.

If I exclude fusions, the list of candidate genes identified by pyjacker becomes much

smaller, without any recurring event. One interesting candidate is NRP2, found up-

regulated in a single sample, with monoallelic expression (Figure 28B-C). This gene

has been reported in relation to prostate cancer, because it may favor bone metasta-

sis [161] and may also be involved in neuroendocrine-like prostate cancer [162]. Thus,

its activation by enhancer hijacking may be a driver event in prostate cancer. In this

sample ICGC_PCA161, a breakpoint brought NRP2 close to a putative enhancer within

CSGALNACT1 on chr8 (Figure 28D).
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Figure 28: Enhancer hijacking in 63 prostate cancer samples. A. Overview of the top pyjacker hits in
the cohort of 64 prostate cancer samples. B. NRP2 expression in the 63 prostate cancer samples, with
sample ICGC_PCA161 with a breakpoint near NRP2 highlighted in green. C. Variant allele frequency
of SNPs in NRP2 in DNA and RNA, for sample ICGC_PCA161. D. Breakpoint linking NRP2 to a
putative enhancer within CSGALNACT1 on chr8. ChIP-seq against H3K27ac for two prostate cancer
samples from the ENCODE project were used (file IDs: ENCFF648XQW and ENCFF364WFY).
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3.3 Allele-specific methylation with nanopore

sequencing

Nanopore sequencing is a third generation sequencing technology which provides methy-

lation information as well as long reads that can be phased to each of the two parental

haplotypes. In this section, I investigated what information can be gained from this

allele-specific methylation (ASM) information, and in particular whether it could help

to detect enhancer hijacking events.

3.3.1 Methylation detection with nanopore sequencing

15 AML samples and two AML cell lines were profiled with nanopore sequencing (se-

quencing performed by Jessica Heilmann). Each sample was sequenced on one Prome-

thION flow cell, except two (15KM12995 and 15KM20146) which were sequenced on

two different flow cells, with two different size selection protocols. Most samples (17/19)

had an N50 higher than 15kb, meaning that more than 50% of their coverage comes

from reads longer than 15kb (Figure 29), which is sufficient to phase most reads. Most

samples also had a good coverage > 25x, except one (16KM16045) which had a coverage

of only 11x and was excluded from the subsequent analyses. When the size selection

was more stringent (SRE kit), the N50 was generally higher, although it also varied a lot

from sample to sample. For the two samples that were sequenced twice with differ-

ent size selection kits, the more stringent size selection resulted, as expected, in longer

reads. There is usually a negative correlation between coverage and read length with

nanopore data, but this was not observed here because a narrow range of read lengths

was used; the coverage might drop if the N50 went beyond 30kb. The median sequence

identity was higher than 99% (99.2% on average), meaning that the sequencing error

rate is lower than 1%.

Nanopore sequencing directly provides base modification information, without the

need for bisulfite treatment. Since the 15 AML samples profiled with nanopore se-

quencing had also been profiled with EPIC array, I verified that the nanopore data had

good correlation with EPIC array, for the CpGs targeted by the EPIC array. The correla-

tion was higher than 0.83 for all samples, and higher than 0.90 for most samples (Fig-

ure 30A-B). The genome-wide methylation level was about 80% for most samples, but

only about 22% in CpG islands (Figure 30C), in agreement with previous reports [3].

Using the RNA-seq data, I defined expressed genes as genes with expression greater
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Figure 29: Coverage and N50 of the nanopore runs. The shape of the dots indicate the size selection
kit that was used (SRE is more stringent than SRE XS).

than 5 TPM in all samples, and unexpressed genes as genes with expression lower

than 0.2 TPM in all samples. When restricting CpG islands to those that overlapped

promoters of expressed genes, the methylation level was even lower (mean: 2.4%),

but promoters of unexpressed genes had similar methylation levels as other CpG is-

lands. Nanopore sequencing also provides hydroxymethylation information, but this

base modifications is much rarer (1.7% genome-wide).

The long reads provided by nanopore sequencing typically cover several germline het-

erozygous SNPs, so can be phased to each of the two parental haplotypes. Combined

with methylation, this provides allele-specific methylation information. I first verified

that I could observe allele-specific methylation at imprinted genes, for example H19

(Figure 31A). Female cells inactivate one X chromosome, and this inactivation is inher-

ited through cell division, so all cells from the same tumor should have the same allele

inactivated. When looking at genes on the X chromosome, for example IGBP1, I could

indeed see that, for female samples, one allele was unmethylated at the promoter and

the other allele was methylated (Figure 31B). The active allele had higher methylation

levels within the gene body, consistent with the fact that the active X chromosome has

on average higher methylation [13].
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Figure 30: Overview of methylation data from nanopore sequencing data. A. Heatmap showing the
correlations between the beta values measured from EPIC array and the beta values measured with
nanopore sequencing, for sample 15PB8708 and all CpGs covered with the EPIC array and covered
by at least 6 nanopore reads. Red indicates higher density. B. Correlations between ONT and EPIC
array data, for all 15 samples profiled with nanopore sequencing. C. Average methylation (5mC) and
hydroxymethylation (5hmC) for each sample, by considering different types of regions: all CpGs (genome
wide), only CpGs in CpG islands (CGI), only CpGs located in CpG islands at promoters of expressed
genes, or only CpGs located in CpGs islands at promoters of unexpressed genes.

3.3.2 Within-sample methylation heterogeneity

At a particular location, a read is either methylated or unmethylated, but in a bulk sam-

ple there might be heterogeneity across reads, leading to methylation frequencies be-

tween 0 and 1. This can have several reasons, the main one being a mixture of different

cell types, and several metrics have been defined to measure this heterogeneity [163].

For simplicity, I only considered CpG islands on autosomes, and I computed, for each
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Figure 31: Allele-specific methylation with nanopore sequencing. A. Alignments around H19 for sample
15PB8708, grouped by haplotype and colored by methylation (blue: unmethylated, red: methylated).
B. Alignments around IGBP1 for sample 16KM16320, grouped by haplotype and colored by methylation
(blue: unmethylated, red: methylated).

read, its average methylation level within the CGI. I then computed the standard devia-

tion across all reads, and I defined a CGI to have a high heterogeneity in a sample if this

standard deviation is greater than 0.3 (when methylation values are between 0 and 1). I

also defined an allele-specific heterogeneity, by computing separately the standard de-

viations from reads of each haplotype, and then averaging the heterogeneities within

each haplotype. This is exemplified in Figure 32, where sample 15KM12995 does not

have heterogeneity in the region displayed, sample 15KM15252 has heterogeneity, but

only across and not within haplotypes, and sample 15PB9630 is heterogeneous, even
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within haplotypes.
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Figure 32: Example of within-sample methylation heterogeneity. Alignments colored by methylation
and split by haplotype for three samples, in a region with methylation heterogeneity in some samples.

Approximately 1.5% of CGI had a high within-sample heterogeneity (Figure 33A). When

looking at heterogeneity within haplotypes, the two cell lines GDM-1 and MUTZ-3

were not heterogeneous anymore, as expected for a homogeneous population of cells.

For most patient samples, the methylation heterogeneity also disappeared when look-

ing within haplotypes. Sample 15KM19129 was a strong outlier, since it showed hetero-

geneity for 8% of CGIs, and remained heterogeneous when looking within haplotypes.

This high methylation heterogeneity in one sample could be due to a low tumor pu-

rity, but based on CNAs the purity was 89% in this sample, similar to most samples.

Sample 15KM19129 has an enhancer hijacking of BCL11B, which is associated with

mixed-phenotypes leukemia, so the heterogeneity could be due to some cells having a

myeloid phenotype while other cells being more lymphoid. However, I did not observe

differential methylation between myeloid and lymphoid progenitors at regions with

allele-specific methylation in sample 15KM19129, using data from Farlik et al. [164]. In

conclusion, for most samples the methylation heterogeneity at CGIs is largely allele-

specific, and I could not find an explanation for the very high methylation heterogene-

ity in sample 15KM19129.

I then focused on allele-specific methylation. For each sample and each CGI, I con-

sidered that there was allele-specific methylation if the absolute difference in average

methylation between the two haplotypes was greater than 0.5. For each CGI, I counted

the proportion of samples with allele-specific methylation. The large majority of CGIs

did not show allele-specific methylation (Figure 33B). 18 CGIs, corresponding to 13

genes, had allele-specific methylation in more than 80% of the samples. I checked

in databases of imprinted genes [165, 166], and found that all of those genes, except
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SNU13, had been reported as imprinted genes in at least one database (Table 5). For

example H19 is a well known imprinted gene [167]. Many CGIs showed allele-specific

methylation in 20-50% of samples. This might be because the methylation state is in-

fluenced by nearby SNPs, but I could not test this because the number of samples was

low, and SNPs might potentially impact methylation over long distances, leading to a

very high number of tests.

A B

Figure 33: A. Proportion of CGIs having a high methylation heterogeneity (std>0.3) in each sample,
either by considering heterogeneity across all reads (blue) or by considering heterogeneity only within
haplotypes (orange). B. Number of CGIs showing allele-specific methylation (ASM) in different pro-
portions of samples, with a logarithmic scale for the y-axis.

3.3.3 Allele-specific methylation in cases of enhancer hijacking

Enhancer hijacking leads to the activation of a single allele, and I wondered whether

this would lead to methylation differences between the two alleles. I first started by

looking at cell lines with known enhancer hijacking events: GDM-1 has a translocation

t(6;7) leading to MNX1 activation [168], and MUTZ-3 has an inv(3) leading to MECOM

activation [90] as well as a t(12;22) leading to MN1 activation [169]. In these three cases,

I observed clear hypomethylation at the promoter of the gene activated by enhancer

hijacking in the rearranged allele, compared to the wild-type allele (Figure 34). This

was very promising, because such allele-specific methylation could be used as a crite-

rion to detect enhancer hijacking, especially when no SNPs are covered in the RNA-seq

data and allele-specific expression cannot be assessed.

However, the methylation state of cell lines often differs from primary cancer sam-

ples, and in particular cell lines often have the promoters of their unexpressed genes

hypermethylated [84, 85]. When I analyzed AML samples, I realized that in patient

samples most promoters are unmethylated, even when the gene is not expressed, so

there cannot be a strong hypomethylation in cases of enhancer hijacking. Neverthe-
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Table 5: List of CGIs with allele-specific methylation in more than 80% of samples. The column
"% ASM" indicates the percentage of samples with allele-specific methylation, the column "geneim-
print" indicates whether the gene was listed as imprinted in geneimprint.com [165], and the column
"Court2014" indicates whether the CGI was reported as imprinted in Court et al. [166].

CGI (hg19) Gene % ASM geneimprint Court2014

11:2019565-2019863 H19 100 YES YES

19:54040812-54041857 ZNF331 100 NO YES

19:54057414-54058254 ZNF331 100 NO YES

15:25200035-25201054 SNURF 100 YES YES

7:50849752-50850871 GRB10 100 YES YES

20:57429024-57431239 GNAS 100 YES YES

22:42078060-42078549 SNU13 100 NO NO

8:141107837-141110984 PEG13 100 YES YES

11:2720410-2722087 KNCQ1 100 YES YES

20:42143210-42143591 L3MBTL1 100 YES YES

14:101292043-101292709 MEG3 93 YES YES

6:144328916-144329847 PLAGL1 92 YES YES

19:57351283-57351995 PEG3 92 YES YES

16:3493098-3493569 ZNF597 91 YES YES

20:57415135-57417153 GNAS 89 YES YES

20:57426729-57427047 GNAS 89 YES YES

19:57349997-57350470 PEG3 85 YES YES

15:25018174-25018533 SNURF 82 YES NO

less, for most of the genes identified by pyjacker for which the corresponding sample

had been profiled with nanopore, I observed a slight hypomethylation on the rear-

ranged allele (Figure 35). The WT allele is already mostly unmethylated, but some CpG

sites are methylated, whereas the rearranged allele is fully unmethylated. In addition,

the unmethylated region was wider on the rearranged allele, extending beyond the pro-

moter. Nevertheless, the methylation profile was only mildly altered by the enhancer

hijacking, and the effects were not systematic, so I did not integrate the allele-specific

methylation into the enhancer hijacking detection with pyjacker.
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Figure 34: Allele-specific methylation for cell lines with enhancer hijacking. Nanopore reads colored by
methylation and split by haplotype, around MNX1 in GDM-1 (A), around MECOM in MUTZ-3 (B),
and around MN1 in MUTZ-3 (C).
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Figure 35: Allele-specific methylation for AML samples with enhancer hijacking. Nanopore reads are
colored by methylation and split by haplotype, around MNX1 in 15PB8708, MECOM in 15PB19457
and BCL11B in 15KM19129.
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4
DISCUSSION

4.1 Somatic alterations in ckAML

My analysis into the somatic alterations in ckAML mainly confirmed existing knowl-

edge, but provided some novel insights thanks to the use of WGS and to the large

number of samples analyzed. CkAML samples frequently harbour TP53 mutations, in

which case they typically have more CNAs and more complex rearrangements, includ-

ing chromothripsis. The detection of breakpoints with WGS allowed me to show that in

most cases, chromothripsis events involve multiple chromosomes, and some samples

have several independent chromothripsis events involving different chromosomes. On

the one hand, ckAML is very heterogeneous since each sample has a unique combina-

tion of rearrangements. On the other hand, ckAML is somewhat homogeneous be-

cause some events are very recurrent and found in almost all samples, like TP53 mu-

tations, del(5q) and del(7q). Although there are some patterns of co-occurrence and

mutual exclusivity between CNAs, there are no clear subgroups within ckAML, neither

at the genomic nor at the transcriptomic level. Deletions are more common than gains,

and, apart from TP53 in 17p, they do not lead to the biallelic inactivation of a TSG. Us-

ing RNA-seq data, I showed that the large majority of genes have a reduced expression

when they are deleted. The haploinsufficiency of the genes in the deleted regions is

therefore the likely reason for the positive selection of these deletions. However, it is

very difficult to study how these deletions may drive cancer because they are often very

large, especially in 5q and 7q, and therefore encompass many genes. Typically, mini-

mally deleted regions across a large number of samples are identified, and this is used

to map the candidate genes whose haploinsufficiency may drive AML [170]. However,

for 5q and 7q, the deletions are larger than 50Mb for 90% of samples, so it is likely that

many genes, even outside the minimally deleted regions, are relevant. Del(5q) is inter-

esting because on the one hand, it is the CNA most strongly co-occurring with TP53

73
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mutations, which are associated with a poor prognosis. On the other hand, it is fre-

quently seen as a sole abnormality in MDS, in which case it is associated with a good

prognosis. Deletions in 5q target a similar region in ckAML and MDS, but in MDS two

commonly retained regions are always spared from the deletions. These retained re-

gions could be important for the progression from MDS to AML.

4.2 Enhancer hijacking

I developed pyjacker, a computational method to detect enhancer hijacking events

using WGS and RNA-seq, and applied it to 39 ckAML samples. Pyjacker identified

genes known to be activated by enhancer hijacking in AML, like MECOM, BCL11B,

and MNX1, as well as novel genes that could be interesting to study further. GSX2 is a

homeobox gene that was overexpressed in one sample, with a breakpoint nearby. This

gene was expressed in other cohorts as a result of a rare translocation t(4;12) which

brings an ETV6 enhancer close to GSX2. This translocation typically does not only lead

to GSX2 overexpression, but also to PDGFRA overexpression and to an ETV6::CHIC2

fusion [141]. Here, the ckAML sample overexpressing GSX2 had a different genomic

rearrangement which did not lead to CHIC2 overexpression nor to an ETV6::CHIC2 fu-

sion, which argues in favor of GSX2 activation being the driver event. Another novel

gene is EPO which was found overexpressed in an AEL sample. EPO drives prolifera-

tion of red blood cells by binding to its receptor (EPOR), thus activating the JAK/STAT

pathway [144]. This event could cooperate with EPOR amplification, a phenomenon

recently described in AEL [148]. Ruxolitinib, a JAK inhibitor, was shown in a PDX model

to be effective against EPOR-amplified samples, so it could also be a good option in

samples overexpressing EPO.

An important question in the field of enhancer hijacking is whether there are any com-

patibility rules between promoters and enhancers, or whether a gene can be activated

by any enhancer. On the one hand, several super-enhancers like ETV6, CDK6 or MYC

have been reported to be hijacked by several genes, so any strong hematopoietic en-

hancer might be able to activate any gene. On the other hand, some enhancer-gene

pairs are more frequent. For example, although MECOM can be activated by various

enhancers [138], it is most frequently activated by the GATA2 enhancer. This could have

various explanations: the colocalization of MECOM and of the GATA2 enhancer on

chr3 could make it more likely for SVs to bring them together, or the haploinsufficiency

of GATA2 resulting from the loss of its enhancer could cooperate with MECOM activa-

tion. The cooperation hypothesis might be more likely, considering that PRDM16 is
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frequently activated by the GATA2 enhancer, even though it lies on a different chro-

mosome, and that PRDM16 and MECOM overexpression may result in similar pheno-

types.

More generally, it is still very difficult to predict whether a particular enhancer se-

quence can activate a gene, and whether the location of the enhancer with respect

to the target gene is relevant. Enhancer marks like H3K27ac, H3K4me1, P300 or open

chromatin can help identify putative enhancers. However, the analysis of the ETV6 en-

hancer shows that several regions might be equally good candidates based on these

marks, but only one is required for activation of the target gene. Consequently, en-

hancer marks are not sufficient, and ultimately one needs to insert or delete a sequence

to prove that it is an enhancer capable of activating a gene. However, this has a very low

throughput, and very few enhancers can be tested in this manner. In the wake of the

great results achieved by large language models in natural language processing, a lot

of research is now being spent on applying them to DNA sequences. For example, En-

former can predict gene expression based on the surrounding 200kb sequence [171].

However, it still poorly leverages effects from distal enhancers [172]. I expect that the

performance of such models will improve in the future, and that they might be able to

accurately predict whether a particular enhancer sequence can activate a gene. The

ability to test enhancer function in-silico would save a lot of time, although some in-

vitro validation would still be required.

In this thesis, I focused on ckAML, but also applied pyjacker to sarcoma and prostate

cancer. This led to the identification of numerous genes putatively activated by en-

hancer hijacking in these other cancer types, with some already known like IRS4 or

TERT and some new candidates like FGF8 in low-grade fibromyxoid sarcoma. How-

ever, this also revealed that impurity in solid tumors can lead to false positives, in par-

ticular for metastatic samples. In case pyjacker is to be applied further to solid tumors,

the detection of contamination from other cell types could be an area of improvement.

Since pyjacker relies on samples without genomic rearrangements near a gene to esti-

mate a reference distribution for the expression of this gene, it requires a cohort of at

least ten samples profiled with WGS and RNA-seq. A higher number of samples would

be beneficial, because it would lead to a high number of candidate genes. In addi-

tion, more samples lead to lower FDR and more confident predictions by pyjacker. In

ckAML, applying pyjacker to a larger cohort would likely lead to the identification of

some additional genes, but this would not dramatically change the results.
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4.3 Allele-specific methylation

With pyjacker, I test for monoallelic expression, which is a strong indicator that a gene

is expressed because of enhancer hijacking. I initially planned to do the same with

allele-specific methylation, where ASM could be an indication for enhancer hijacking,

if this information is available. I did observe that in most cases, enhancer hijacking re-

sulted in an altered DNA methylation profile on the rearranged allele, but the changes

were rather minimal. This is because most gene promoters are unmethylated, even

when the gene is not expressed. With the resolution provided by nanopore sequencing,

I observed that, typically, promoters of unexpressed genes still have some methylated

CpG sites, and this methylation is completely removed when an allele is activated by

enhancer hijacking. In addition, the unmethylated region can become wider. However,

these changes are mild and not systematic, so I was not able to include allele-specific

methylation in pyjacker. However, this allele-specific DNA methylation information

might still be very useful for other purposes. For example, fluctuating CpG sites, which

randomly switch between a methylated and an unmethylated state, have been used to

infer clonal dynamics, like the number of stem cells in colon crypts or in blood [173].

Briefly, if the population is clonal, the methylation percentage at a CpG site should be

0% (both alleles unmethylated), 50% (one allele methylated, one allele unmethylated),

or 100% (both alleles methylated), while intermediate values are expected if the pop-

ulation is more heterogeneous. Having allele-specific information would improve the

model, because if the methylation level is 50% in the bulk sample, one could distin-

guish between whether all reads from one allele are methylated and all reads from the

other allele are unmethylated, or whether there is heterogeneity within each allele. The

long reads provided by nanopore sequencing can also be used to look at within-read

methylation heterogeneity. Typically, there is a strong correlation between the methy-

lation state of neighbouring CpGs, but some regions or some samples might show high

within-read heterogeneity.

4.4 Conclusion and outlook

In this thesis, I showed that the numerous genomic rearrangements in ckAML can

lead to enhancer hijacking, and I discovered new genes activated by this mechanism.

Among 39 ckAML samples, I found 19 genes activated by structural rearrangements,

10 of which were fusions and 9 were likely enhancer hijacking events. Enhancer hi-

jacking is therefore an important event in ckAML, although it is not as recurrent as the
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common deletions like 5q and 7q. The next step would be to investigate the function

of these genes, to understand how they drive the disease, in order to ultimately find

targeted therapies. However, the large number of candidate genes and their low recur-

rence makes it difficult to select genes which would be worth investigating. MECOM

is the gene most frequently activated by enhancer hijacking in AML and is therefore

the most studied. MECOM impairs differentiation of hematopoietic cells by interfer-

ing with transcription factors, but so far no targeted therapy has been identified [174].

BET inhibitors can reduce the activity of super-enhancers and have been proposed as

a general treatment against oncogenes activated by super-enhancers [47, 90], but they

have effects genome-wide and are therefore not targeted to a specific gene.

Considering that CNAs, and especially deletions, are a lot more recurrent in ckAML

than enhancer hijacking, they remain the most probable main driver in ckAML. Onco-

genes activated by enhancer hijacking might provide additional driver events, but they

are not required in ckAML. Understanding how CNAs drive the disease would be im-

portant, but this is very difficult considering the large number of genes whose dosage is

affected by the CNAs. A possible strategy would be to study in detail the difference be-

tween MDS with isolated del(5q) and ckAML with del(5q), in order to understand why

the former has good survival while the latter is associated with a dismal prognosis.
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5
METHODS

5.1 ckAML samples from the ASTRAL-1 cohort

39 ckAML samples were profiled by WGS and RNA-seq (sequencing done by Anna

Riedel). They are diagnostic samples from the ASTRAL-1 phase 3 clinical trial, which

evaluated the efficacy and safety of guadecitabine, a new hypomethylating agent [114,

115]. The ASTRAL-1 cohort included previously untreated AML patients who were not

eligible to intensive chemotherapy, either because they were too old (>75 years) or had

co-morbidities. 480 samples from this cohort had been profiled with EPIC array. Anna

Riedel selected 42 of them which had at least three CNAs (based on the EPIC array data)

and for which sufficient material was available for further profiling, and performed

WGS and RNA-seq on those samples. RNA-seq failed for three samples, resulting in a

total of 39 ckAML samples with WGS and RNA-seq.

5.2 WGS data processing

I developed a nextflow workflow to process WGS data: https://github.com/Com

pEpigen/wf_WGS. The main motivation for this new workflow was to detect somatic

variants from WGS data, even when no matched normals are available.

CNAS were called CNAs with Control-FREEC [71]. I initially ran Control-FREEC on

healthy samples from the Simons Genome Diversity Project [175], which allowed me

to identify regions recurrently affected by CNAs across several healthy samples, which

might be due to germline CNVs or repetitive regions. I then excluded these regions

from the CNA inference when running Control-FREEC on tumor samples. I also only

considered CNAs greater than 40kb.

79
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I called SVs with manta [67]. I used a panel of normals provided by the Hartwig Medical

Foundation (https://github.com/hartwigmedical/hmftools) to filter out puta-

tive germline SVs (due to retrotransposons, and potential mapping errors in repetitive

regions, there are many SVs, including interchromosomal ones, in healthy samples). I

also excluded SVs smaller than 40kb, as well as long-distance SVs which, when com-

bined to another SV, appeared to result in a very small insertion.

As an alternative workflow to Control-FREEC and manta, I also called SVs and CNAs

with the HMF pipeline (https://github.com/hartwigmedical/hmftools): SVs

called with GRIDSS [68] and CNAs with amber and cobalt, and SVs and CNAs are then

merged with purple. This workflow is slower, because GRIDSS is slower than manta,

but has the advantage to combine CNA and SV calls, which can be used to get the copy

number at each end of a breakpoint.

SNVs were called with mutect2 [176]. Since germline SNPs vastly outnumber so-

matic SNVs (about 1000 times more in AML), I only considered variants in a list

of 52 genes known to be recurrently mutated in AML, or which were of particular

interest: DNMT3A, NPM1, FLT3, RUNX1, SF3B1, SRSF2, U2AF1, NF1, JAK2, TP53,

IDH1, IDH2, NRAS, KRAS, KIT, TET1, TET2, CEBPA, WT1, PTPN11, ASXL1, ASXL2,

EZH2, KMT2A, KMT2C, KMT2D, KMT2E, CREBBP, KDM6A, KAT6A, DNMT3B, NSD1,

SUZ12, JARID2, ETV6, KDM3B, RB1, CEBPG, NCOR1, NCOR2, BCOR, GATA2, NOTCH1,

NOTCH2, ZRSR2, PHF6, MED12, SMARCA2, SMARCA4, SMC1A, SMC3, STAG2. In ad-

dition, I filtered out non-coding and synonymous variants, as well as variants found

in the gnomAD database [177], except for variants in DNMT3A, TET2 and ASXL1 and

TP53 for which I allowed them to have a small frequency in the population, since these

variants in these genes are common in clonal hematopoiesis, and gnomAD can contain

somatic variants of these genes.

In order to detect allele-specific expression, I called germline SNPs in genes in the WGS

data using HaplotypeCaller [178], selected heterozygous ones (VAF between 0.28 and

0.72), and used ASEReadCounter [178] to count the allelic read counts in the RNA-seq

data at these heterozygous SNPs.

Chromothripsis events were detected using shatterseek [75], where I used as criteria:

• At least ten copy number switches in one chromosome.

• At least six SVs in one chromosome.

• Clustered breakpoints: p-value>=0.05 for an exponential distribution of the dis-

tance between breakpoints, which would be expected if the breakpoints were

uniformly distributed.

https://github.com/hartwigmedical/hmftools
https://github.com/hartwigmedical/hmftools
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• A random orientation of breakpoints: p-value<0.05 for a multinomial distribu-

tion of SV types with equal weights for each of the four SV types (deletion, dupli-

cation, tail-to-tail inversion, head-to-head inversion).

5.3 Detection of CNAs from SNP arrays and methylation

arrays

For methylation arrays, CNAs were called using conumee [73]. By comparing to WGS

(for samples profiled both with EPIC array and WGS), I noticed that many small CNAs

called by conumee were false positives. Therefore, I post-processed the CNA calls by

removing CNAs smaller than 200kb, and those for which the signal was low.

For SNP array data, I used PennCNV-Affy to generate ASCAT’s inputs starting from CEL

files (https://github.com/VanLoo-lab/ascat/blob/master/ExampleData/ASCA

T_fromCELfiles.R), and I then called CNAs with ASCAT [72]. I also called CNAs with

ASCAT using samples with a normal karyotype (without CNAs) and used those samples

to create a panel of normals, which contains CNAs found in normal samples and are

therefore artefacts. I used this panel of normals to filter out CNA calls from ASCAT.

For testing associations between CNAs and categorical variables (TP53 mutation sta-

tus, age group), I considered all chromosome arm level CNAs (deletion, gain or CN-

LOH) which occurred in at least 30 samples of the cohort. I performed Fisher’s exact

test, and for TP53 associations, I also tested for specific CNA associations, while keep-

ing the total number of CNAs constant. This was done by randomly assigning CNAs

to samples, while keeping the number of occurrences of each CNA and the number of

CNAs in each sample constant. With these random assignments, I computed p-values

from Fisher’s exact test, and used those p-values as a null distribution, to test for en-

richment of specific CNAs.

5.4 RNA-seq processing

Differential expression analysis was performed using pydeseq2 [179], a python imple-

mentation of DESeq2 [180].

Gene set enrichment analysis (GSEA) was performed using gseapy [181]. I used the

hallmark gene sets [182], as well as gene sets derived from bone marrow cell types [183].

https://github.com/VanLoo-lab/ascat/blob/master/ExampleData/ASCAT_fromCELfiles.R
https://github.com/VanLoo-lab/ascat/blob/master/ExampleData/ASCAT_fromCELfiles.R
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I identified fusion transcripts using STAR-Fusion [134], and I filtered the results using

the WGS data, by only keeping fusions supported by a breakpoint in the WGS data.

5.5 Identification and scoring of enhancers

In order to identify and score enhancers, I used public ChIP-seq data of H3K27ac and

P300 from three myeloid cell lines: K562 (data from the ENCODE project [184]), MOLM-

1 (data from array expression accession E-MTAB-2224 [90]), and Kasumi-1 (data from

GEO accession GSE167163 [185]). I used ROSE [46, 47] to score and rank enhancers in

each of these six datasets, where I excluded transcription start sites. Since the ranking

was quite variable depending on the dataset being used, I then averaged the ROSE en-

richment scores from all six datasets, yielding a list of enhancers scored based on the

enrichment of active enhancer marks in myeloid cell lines.

5.6 Pyjacker details

For each gene, pyjacker splits samples between "candidate samples" that have a break-

point in the same TAD as the gene, and might therefore be activated by a structural

rearrangement, and "reference samples" which do not. Each pair of (gene, candidate

sample) is then scored to prioritize events. This score is made up of three parts: an

overexpression score, a monoallelic expression score, and an enhancer score.

Overexpression score The expression values in TPM (transcript per million) are first

log-transformed: E = log(0.5+ETPM). Then, the mean µref and standard deviation σref

of these log-transformed expression are computed for the reference samples, which

do not have breakpoints in the vicinity of the gene. For each candidate sample, I

count the number of standard deviations away from the mean its expression lies: t =
(E−µref)/(σref+0.3), where I add 0.3 to the standard deviation to account for situations

where all reference samples have the same expression. I then compute the overex-

pression score as follows: if t > 2, then Soverexpression = log(t − 1), else Soverexpression =
−2log(3− t ). This results in the overexpression score being positive if the expression is

more than two standard deviations above the mean, and negative otherwise. The log

transformation ensures that the score does not get too extreme.
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Allele-specific expression score For each gene and each sample, I identify heterozy-

gous SNPs within this gene in the WGS data, and if there is coverage in the RNA-seq

data, I count the number of reads corresponding to each allele. For each SNP i , I com-

pute the log likelihood ratio llri between monoallelic and biallelic expression. For bial-

lelic expression, I assume that the allelic read counts follows a beta-binomial distri-

bution centered at 50%, and for monoallelic expression, I use a mixture of two beta-

binomial distributions centered at 2% and 98% (to account for possible low expression

from the other allele). This log-likelihood ratio is positive if the expression is more

likely to be monoallelic, which would support an expression due to enhancer hijack-

ing, and negative otherwise. If a gene contains several SNPs, they are combined, in a

way that gives a higher score if several SNPs are present, but still reaches a threshold

when a very large number of SNPs are present: Sase = (
∑n

i=0 llri )/(n +2), where n is the

number of SNPs in the gene. This score is positive if the expression is more likely to be

monoallelic, negative if it is more likely to be biallelic, and null if no SNP is present (or if

the allele-specific expression is unclear). Imprinted genes and genes on the X chromo-

some (apart from the pseudoautosomal region) have their allele-specific expression

score set to 0 because their expression is expected to be monoallelic.

Enhancer score Using the breakpoint and enhancer information (see Section 5.5),

I identify enhancers which are brought into the same TAD as the gene by the break-

points. For this, I take the orientation of the breakpoints into account, but I did not at-

tempt to assemble multiple SVs together. Thus, the correct enhancers might be missed

in case of complex rearrangements, but should be correctly identified for simple rear-

rangements. The enhancer score is a weighted sum of all ROSE [46, 47] scores, putting

more weight on the strongest enhancers: Senhancer =
∑m

j=1 R j /10000/ j , where R j is the

ROSE score of the j -th strongest enhancer coming close to the gene and m is the total

number of enhancers coming close to the gene.

Combined score The final score for each putative enhancer hijacking event is a

weighted sum of the overexpression, monoallelic expression and enhancer scores:

S =ωoverexpressionSoverexpression +ωaseSase +ωenhancerSenhancer

where the weights ω can be chosen by the user, and were set by default to

ωoverexpression = 4, ωase = 2, and ωenhancer = 1.

Gene score The score defined above is for each pair of gene and candidate sample. I

then aggregate the scores for each gene, by giving higher scores to genes activated in
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multiple samples, but with a threshold in case a large number of candidate samples

are present:

Sgene = 5/(n +4)
n∑

i=1
Sgene,i

where Sgene,i is the gene score in the i -th candidate sample, where only positive scores

are considered and n is the number of candidate samples for the gene.

False discovery rate The score defined above reflects how likely a gene is expressed

because of a structural rearrangement, but is somewhat arbitrary. In order to get a

more meaningful FDR, I compute empirical p-values by first generating a null distri-

bution of scores. For each gene, I ignore the true candidate samples which have break-

points nearby, and I randomly assign some reference samples to the candidate sam-

ples. Here, I choose a random number between one and three, and randomly select

this number of reference samples to be considered as candidate samples. I then com-

pute the scores for these "false" candidate samples, which results in a null distribution

of scores in the absence of enhancer hijacking. In order to get a sufficient number

of null scores, I iterate several times (50 by default) through all genes, each time se-

lecting different samples to be considered as candidate samples. I can then count the

proportion of null scores which are higher than a particular score, which results in an

empirical p-value corresponding to this score. I then correct for multiple testing with

the Benjamini-Hochberg method, resulting in an FDR.

5.7 Nanopore sequencing and data processing

Nanopore sequencing was performed by Jessica Heilmann. DNA was extracted using

the QIAamp DNA micro kit. Size selection was performed with either the PacBio SRE

or the PacBio SRE XS kit. Libraries were prepared using the kit SQK-LSK114 and were

sequenced 96h or 120h on one PromethION flow cell, with at least one wash and reload

of the flow cell.

I performed basecalling with dorado (https://github.com/nanoporetech/dorado),

using the model dna_r10.4.1_e8.2_400bps_sup@v4.2.0 and the remora model for

base modifications dna_r10.4.1_e8.2_400bps_sup@v4.2.0_5mCG_5hmCG@v2. In

order to phase reads, I used the epi2me human variation workflow v1.9.0 (https://gi

thub.com/epi2me-labs/wf-human-variation). This calls SNPs using clair3 [186]

and phases them with WhatsHap [187], thus generating a haplotagged bam file, where

https://github.com/nanoporetech/dorado
dna_r10.4.1_e8.2_400bps_sup@v4.2.0
dna_r10.4.1_e8.2_400bps_sup@v4.2.0_5mCG_5hmCG@v2
https://github.com/epi2me-labs/wf-human-variation
https://github.com/epi2me-labs/wf-human-variation
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the HP tag indicates the haplotype of the read. I used modkit to generate bedmethyl

files.

5.8 Figure generation with figeno

A large number of the figures of this thesis were generated with figeno [188], a visu-

alization tool that I developed. It can display various types of sequencing data, in-

cluding ChIP-seq or ATAC-seq in bigwig format, Hi-C, nanopore data with base mod-

ifications, and WGS with copy numbers and breakpoints. Figeno can display several

regions simultaneously, which can for example be used to show interactions across

breakpoints in Hi-C data, or SVs linking several regions in WGS data. Figeno also pro-

vides several layouts, for example the circular layout can be used to generate circos

plots for WGS data. Figeno is implemented in python, and provides a graphical user

interface made with javascript and the React framework. It is available on GitHub at

https://github.com/CompEpigen/figeno.

https://github.com/CompEpigen/figeno




ACRONYMS

AEL: Acute erythroid leukemia

AML: Acute myeloid leukemia

ASM: Allele-specific methylation

ATAC-seq: Assay for transposase-accessible chromatin with sequencing

BM: Bone marrow

BFB: Breakage-fusion-bridge

CGI: CpG island

ChIP-seq: Chromatin immunoprecipitation followed by sequencing

ckAML: Acute myeloid leukemia with a complex karyotype

CNA: Copy number alteration

DNA: Deoxyribonucleic acid

FDR: False discovery rate

HSC: Hematopoietic stem cell

HSPCs: Hematopoietic stem and progenitor cells

PB: Peripheral blood

PCR: Polymerase chain reaction

PDX: Patient-derived xenograft

PMD: Partially methylated domain

RNA: Ribonucleic acid

RNA-seq: RNA sequencing

SNP: Single nucleotide polymorphism

SNV: Single nucleotide variant
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SV: Structural variant

TAD: Topologically associating domain

TSG: Tumor suppressor gene

WGS: Whole genome sequencing

WT: Wild-type
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