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ABSTRACT

Newborn screening aims to detect rare, inherited metabolic diseases early in newborns. The pre-
symptomatic diagnosis of these diseases, enabling effective therapies, can enhance the quality of life
for affected children and their families. However, newborn screening for specific diseases faces chal-
lenges, such as false-positive screening results and a need for individualized disease management
due to the substantial clinical variability of inherited metabolic diseases. This dissertation aims to
develop new mathematical and data-based modeling approaches to support and improve newborn
screening. Therefore, data-based machine learning models using data from over two million new-
borns are developed to enhance diagnostic accuracy in newborn screening for isovaleric aciduria
and glutaric aciduria type 1. Furthermore, in the course of this dissertation a genome-based,
mathematical whole-body model is developed to depict the metabolism of newborns and infants.
This model enables personalized in silico simulations of newborns with an inherited metabolic
disease, thereby facilitating individualized disease management. The proposed mathematical and
data-based models hold considerable promise for application in personalized medicine and newborn
screening, contributing to their improvement and support.

ZUSAMMENFASSUNG

Im Rahmen des Neugeborenenscreenings werden Neugeborene frühzeitig auf seltene Stoffwech-
selkrankheiten untersucht. Die präsymptomatische Diagnose dieser Krankheiten kann in Verbin-
dung mit wirksamen Therapien die Lebensqualität der betroffenen Kinder und ihrer Familien
verbessern. Das Neugeborenenscreening steht jedoch vor den Herausforderungen falsch-positiver
Screening-Ergebnisse sowie der Notwendigkeit von individualisierten Behandlungsstrategien auf-
grund der großen Variabilität der Stoffwechselkrankheiten. Ziel dieser Dissertation ist die En-
twicklung neuer mathematischer und datenbasierter Modellierungsansätze zur Unterstützung und
Verbesserung des Neugeborenenscreenings. Daher werden datenbasierte Modelle der künstlichen
Intelligenz erarbeitet, die Daten von mehr als zwei Millionen Neugeborenen nutzen, um die di-
agnostische Genauigkeit beim Neugeborenenscreening auf Isovalerianazidurie und Glutarazidurie
Typ 1 zu verbessern. Des Weiteren wird im Rahmen dieser Dissertation ein genombasiertes, math-
ematisches Ganzkörpermodell entwickelt, das den Stoffwechsel von Neugeborenen und Säuglin-
gen abbildet. Dies ermöglicht personalisierte in silico Simulationen von betroffenen Neugebore-
nen und vereinfacht somit die gezielte Entwicklung von individualisierten Behandlungsstrategien.
Die entwickelten mathematischen und datenbasierten Modelle zeigen vielversprechende Anwen-
dungsmöglichkeiten im Bereich der personalisierten Medizin und des Neugeborenenscreenings auf,
zu dessen Verbesserung und Unterstützung sie beitragen.
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1
Introduction

”The essence of math is not to make

simple things complicated, but to make

complicated things simple.”

Stanley Gudder

In a chaotic and dynamic world, the ability to break down complex systems into simpler ones

is key to comprehending reality. As Stanley Gudder states, mathematical models can enable this

process by simplifying complex elements in the world, thus generating sufficient value for a given

application. In the medical domain, mathematical models have been helpful in our understanding

of the human body’s biochemical and dynamic processes related to diseases and drugs. However,

in pediatric metabolic research which investigates the complex system of metabolism, there are

specific challenges in the context of metabolic diseases. Mathematically modeling such a complex

system would enable a detailed causal analysis of different processes, particularly regarding the

metabolic diseases examined in newborn screening. Most of these diseases are classified as rare

inherited metabolic diseases (IMDs) known to be severe and life-threatening without treatment.

Fortunately, newborn screening enables an early diagnosis of some of these diseases, while the

subsequent treatment can potentially decrease morbidity and mortality. However, there are still

many open questions about the impact of different metabolites on infant metabolism and associ-

ated disease diagnosis. This research work aims at developing new mathematical and data-based

models to support newborn screening by improving diagnostic accuracy and enabling a systematic

analysis of the infant metabolism and its disease processes. This chapter introduces the research

by contextualizing its relevance and motivation, specifying research goals, and discussing current

research challenges while providing an overview of the different sections of the dissertation as a

whole.



2 CHAPTER 1. INTRODUCTION

1.1 Background

More than 50 years ago, newborn screening programs started worldwide. These programs aim to

identify newborns with treatable severe rare diseases early, ideally pre-symptomatic. Therefore,

blood samples from newborns are collected on the first days of life (i.e., in Germany at 36-72 h of

life) and sent to a newborn screening center for analysis [1]. Early identification allows the early

start of treatment of affected newborns to reduce morbidity and mortality, making them highly

successful instruments of secondary prevention [2]. In the last 50 years, the panel of screened

conditions has been growing, including 19 screened conditions in Germany in 2022 [3]. Two of

these metabolic diseases are isovaleric aciduria (IVA) and glutaric aciduria (GA1), which belong to

the group of organic acidurias leading to severe life-threatening (neonatal) metabolic compensations

if untreated. IVA and GA1 are both rare diseases, with IVA having a prevalence of ∼ 1:90,000 -

100,000 newborns [4], [5] and GA1 having a prevalence of 1:140,000 newborns in Germany [3]. For

all newborn screening diseases, the prompt evaluation of newborns with a suspected diagnosis is

time-sensitive, as some treatments need to be initiated as soon as possible to prevent long-term

harm [3]. Besides correctly identifying all newborns suffering from a condition, a low number of

false-positive screening results is essential. However, only about one out of five newborns with

positive screening is subsequently confirmed [3]. Moreover, due to the substantial variability of

IMDs, there is a need for individualized disease management. Hence, new methods are needed to

reduce the false-positive rate and improve the understanding of these diseases on a systemic level.

To this end, mathematical models can simplify complex processes such as human metabolism and

associated diseases by modeling metabolic connections.

Data-based modeling Due to the wide availability of large data sets, data-based models such

as machine learning (ML) methods, a sub-field of artificial intelligence (AI), have been applied

to process large amounts of data and detect valuable patterns within this data. In the medical

domain, the application areas of data-based models range from image classification tasks such as

mammography interpretation [6], [7], to disease prediction such as diabetes prediction [8], and lung

cancer screening [9], [10]. In the context of newborn screening, various supervised classification ML

methods have been applied to newborn screening data to predict whether or not a newborn suffers

from a condition. Here, not only the known biomarkers (so-called first-tiers) for a disease are

investigated, but several screened metabolites and physiological parameters which are usually not

utilized for the interpretation of screening results. These can improve the classification accuracy
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as the metabolite concentrations are influenced by various factors such as ethnic and demographic

factors [11]. In newborn screening, ML methods showed promising results for improving specificity

for different conditions [12]–[14].

Nevertheless, the black-box nature of advanced ML algorithms poses a significant challenge

in their acceptance by clinicians and integration into newborn screening practices. This under-

scores the critical need for explainable AI (XAI) methods in the medical context. Therefore,

XAI methods have been utilized to provide human-understandable interpretations of advanced

ML algorithms [15]. XAI methods are applied in different areas either using intrinsic or post-hoc

mechanisms to identify patterns and important features an ML algorithm uses to classify an in-

stance correctly [16]. They aim to become trustworthy, transparent, interpretable, and explainable

for human experts.

Mathematical metabolic modeling Mathematical models simulate processes from the real

world, often applying ordinary differential equations (ODEs) or partial differential equations to

capture time or spatial dependencies within a model framework derived from experiments and the-

ory. The human metabolism is an extensive network capturing various information on metabolic

reactions, fluxes, and corresponding metabolites. For this complex network, mathematical models

have been developed, assembled from a genome level to investigate the complexity of an organ-

ism’s metabolism in health and disease. Starting with the Recon1 [17] human reconstruction, sev-

eral successive cell-based generic reconstructions of human metabolism have been published [18],

[19]. Extending this work, sex-specific and organ-resolved whole-body models (WBMs) of hu-

man metabolism have been developed [20]. Using the constraint-based reconstruction and analysis

(COBRA) approach, they can predict emergent metabolic properties in human metabolism.

Regarding IMDs, computational metabolic models have been applied to predict known IMD

biomarkers by comparing predicted reaction fluxes of different models. The IMD biomarker pre-

diction has been performed on cell-based models [21], organ-specific models [22], and whole-body

models [20]. All these models assume that the metabolite concentrations do not change over time.

In pharmacokinetic modeling, time-dependent mathematical models simulating the dynamic be-

haviors of metabolism concerning drugs have been developed. These models enable the analysis of

metabolite concentrations and the simulation of changes on small time scales. For time-dependent

evaluation of IMD biomarker prediction in metabolic models an approach combining pharmacoki-

netic modeling with cell-based metabolic human models has been developed [23].
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1.2 Current research challenges

Newborn screening and IMD research have evolved significantly since the 1960s. However, com-

bining this field of medical research with mathematical modeling is still a relatively new field and

faces some challenges.

1. Large number of false positives in newborn screening for IVA and GA1

In general, newborn screening is a highly effective program. However, newborn screening for IVA

and GA1 is hampered by limited diagnostic accuracy. In newborn screening for IVA, there is an

increasing number of false positives due to the increasing use of pivmecillinam, an antibiotic used

in urinary tract infections in pregnant women [24]. Furthermore, newborn screening for GA1 is

also challenged by a high number of false positives. Due to the low prevalence of both diseases,

the newborn screening data sets are highly imbalanced. At the same time, a sensitivity of 100%,

translating to identifying all newborns with IVA or GA1, and a very high specificity, are essential.

For IVA, there is another challenge as its inclusion in the newborn screening disease panel also

resulted in the identification of individuals with an attenuated, possibly asymptomatic, disease

variant (”mild” IVA [25]), which was unknown in the pre-screening era. By this, the estimated

birth prevalence of IVA increased from 1 in 280,000 newborns to 1 in 90,000 - 100,000 newborns

worldwide [26].

2. Black-box nature of machine learning methods

In many medical ML applications and also in newborn screening, non-interpretable AI methods

are used [13], [27]. However, these methods often rely on a mixture of features or complex learning

algorithms that lack interpretability, as they are black-box algorithms. In critical areas such as

the health care domain, there is a high demand for medical professionals to understand how and

why AI methods work and what their decisions are based on since the corresponding lack of

interpretability could prevent the usage of complex algorithms. Clinicians require good model

explanations to interpret a system’s confidence, estimate the reliability of the system’s decision,

and understand the features driving a prediction [16], [28].
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3. Understanding whole-body metabolism of newborns on a systematic

level

The subsequent disease management of IMDs after identification of affected individuals through

newborn screening is highly individualized due to the substantial variability of IMDs. Mathe-

matically modeling the affected newborn’s whole-body metabolism could support clinicians by

understanding the diseases and individualized treatment planing. For male and female adults,

metabolic whole-body models already exist [20]. However, these adult models are unsuitable for

investigating in silico infant metabolism. To correctly model newborn metabolism and the ef-

fect of IMDs on it, newborn-specific metabolic whole-body models would be required. Although

generic cell-level metabolic models do exist for infant metabolism [18], [29], so far, no metabolic

whole-body models for infant metabolism have been developed.

4. Lacking time-dependency in whole-body models

Cell-based metabolic mathematical models such as Recon [17] and the WBMs [20] operate on a

steady-state assumption. This assumes that the concentration of metabolites in cells or organs

remains constant over time, indicating an overall balance between metabolite inflow and outflow.

These models do not account for short-term effects, such as responses to perturbations or time-

dependent variations in gene expression and metabolite levels. Evaluations on small time scales

with dynamic metabolite concentrations are not possible since these models cannot capture the

dynamics of the metabolic system and essential nutrients such as the concentrations of essential

amino acids before and after feeding.

5. Reliable mathematical models for newborn screening

Mathematical models rarely resemble an underlying natural system perfectly. Hence, necessary

assumptions and simplifications must be employed to build a model. However, this introduces

uncertainties into the mathematical model. WBMs for infants are parameterized with various

parameters from literature and experiments. Parameter values suggested by different sources in

the literature often vary, either within a wide range or with conflicting values that do not align

or agree with each other, sometimes being limited to a specific range. However, for mathematical

models of infant metabolism to be applicable and have a positive impact, the reliability of the
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models must be estimated, along with the uncertainty associated with parameters and possible

measurement errors coupled with their impact on the model’s output.

1.3 Main goals of this work

The explicit goal of this dissertation is to develop data-based classification models to improve the

diagnostic accuracy for newborn screening diseases IVA and GA1 by reducing the false-positive

rate in the disease diagnosis. Furthermore, this work strives to develop a mathematical model for

the metabolism of newborns and infants, using newborn screening data to personalize these. Here,

the goal is to enable a systematic analysis of IMDs and test in silico treatment strategies for these

diseases. In doing so, the aim is to overcome existing challenges by advancing the following five

research goals.

1. Develop data-based models for IVA and GA1 to reduce false-positive

screening results

To improve newborn screening for IVA and GA1, the goal is to develop a data-based classification

model using previously collected newborn screening data. The ML model should be able to identify

all patients suffering from one of the diseases, achieving 100% sensitivity and reducing the false-

positive rates for both IVA and GA1. Here, two approaches will be developed: a digital-tier method

that simulates the scenario when the ML classification is applied as an additional tier after regular

newborn screening and a full data approach, where the ML method is applied to all screened data

points before newborn screening.

2. Develop explainable AI models for newborn screening

Adding upon the first goal, the second goal is then to develop an explainable AI method for

newborn screening classification, allowing the interpretation of black-box classification methods

used for data-based modeling. In addition, the goal is to develop a framework that uses explainable

AI to detect patterns in different patient groups within an IMD data set. This framework will be

model-agnostic so that it can be applied to other newborn screening conditions and ML methods,

and, hence, promote a more common application of XAI methods in ML-based newborn screening.



1.3. MAIN GOALS OF THIS WORK 7

3. Develop metabolic whole-body models of infants

The third goal is to develop sex-specific, organ-resolved whole-body models of infant metabolism

(infant-WBM) by applying a constrained-based modeling approach. These models will use de-

tailed knowledge of infants’ physiology and metabolic processes, such as organ-specific parameters.

Furthermore, they will include the infant’s energy demand for brain development, heart function,

muscular activity, and thermoregulation while enabling reasonable growth comparable to WHO

growth recommendations [30]. The models will be personalizable utilizing parameters collected in

newborn screening, such as sex, body weight, and measured metabolite concentrations. To show

the applicability of the models for newborn screening, they will be tested on their ability to predict

known biomarkers and dietary treatment strategies for IMDs correctly.

4. Develop time-dependent whole-body models of infants

Besides evaluating the infant-WBMs on a daily time scale, another goal is to develop time-

dependent whole-body models of infants. Therefore, one goal of this dissertation is to integrate

a physiology-based pharmacokinetic (PBPK) modeling framework into whole-body models for in-

fants. For this, an infant-specific PBPK model will be developed, which models the change of

biomarker concentration over time in different organs and the blood compartment. Then, this

model will be integrated into the previously developed whole-body models for infant metabolism.

These integrated models will then be evaluated on their predictions of the concentration of a known

IMD biomarker over a specified time interval.

5. Perform uncertainty quantification for whole-body models of infants

Uncertainty quantification will be performed to ensure the reliability of the time-dependent infant-

WBMs and to understand the impact of parameter uncertainties on the model output. Therefore,

Monte Carlo simulations will be used to estimate the model’s sensitivity toward uncertain input

parameters establishing the overall reliability of the time-dependent infant-WBMs concerning these

parameter estimations.
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1.4 Main contributions of this work

In the course of this research, four scientific papers were published in peer-reviewed journals. A

novel data-based method, combining linear discriminant analysis and logistic regression, was pre-

sented, which reduced the false-positive rate for IVA classification [31]. Moreover, to evaluate the

reliability of ML-based newborn screening methods, the application of explainable AI algorithms

on an ensemble and deep learning classifier was shown, using a cumulative approach to understand

patterns within patient groups of IVA classification [32]. These attribution could be addressed

based on a systematic literature review which was conducted to gather knowledge on state-of-

the-art research in ML-based newborn screening [33]. To enable a systematic understanding of

newborn and infant metabolism and its malfunctioning due to IMDs, a sex-specific, organ-resolved

WBMs of infant metabolism was developed [34].

1.5 Motivation and research impact

Through the development of data-based models using a digital-tier approach, false-positive rates

for IVA and GA1 could be successfully reduced. This has a positive impact on newborns and their

families as it reduces their burden of false positives, including overtreatment. Furthermore, using

ML methods as a digital-tier could support the cost-effectiveness of newborn screening for IVA and

GA1 since false-positive screening results are associated with additional costs and effort. These

human and material costs include costs for information transmission to the local hospital, clinical

evaluation of the newborn, costs for these metabolic (and genetic) analyses, and time used for

communicating the results. These resources could be reduced while the hard- and software costs

for the developed methods are low. Moreover, reducing false-positive screening results would allow

the screening for IVA and GA1 to focus on the true positives.

Furthermore, developing metabolic infant models could be the first step toward a digital

metabolic twin for newborn and infant metabolism, which would allow for personalized systematic

simulations and treatment planning. These methods could eventually be used to test therapies and

treatments in silico, as due to the extreme variability of IMDs, their management and treatment

have to be personalized for each patient, based on the patient’s diagnosis and phenotype [35].

Certain IMDs investigated in newborn screening, such as IVA and GA1, can be treated effectively

with dietary intervention [35], which can be simulated using the developed infant-WBMs by adapt-
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ing the dietary intake constraints. Moreover, the proposed time-dependent framework could be

used for modeling pharmacokinetics of drugs specifically for infants as these processes are often

different from adults [36], [37]. Hence, being able to model drug-related infant metabolism could

be very beneficial for both researchers and patients. In the era of precision medicine, the ability to

accurately predict an infant’s metabolic response to dietary and drug-related interventions holds

immense potential for personalized nutritional strategies, clinical decision-making, and improving

the management of IMDs in infants [38].

1.6 Thesis structure

This dissertation is structured in the following order. Chapter 2 introduces the medical background

on newborn screening and the analyzed diseases IVA and GA1, as well as the state-of-the-art re-

search on ML methods for newborn screening and whole-body metabolic models. Based on this

foundation, chapter 3 presents the results of the developed data-based algorithms for newborn

screening classification of IVA and GA1. Chapter 4 builds upon the latter chapter by integrating

an XAI analysis for ML-based newborn screening to interpret the algorithm’s decision patterns.

Then, chapter 5 presents the developed mathematical models for infant metabolism, infant-WBMs,

and their application to newborn screening and IMDs. The subsequent chapters build upon enhanc-

ing these models by expanding the infant-WBMs for time-dependent metabolic analysis through

integrating PBPK models and performing a singular value decomposition of the underlying stoi-

chiometric matrix, chapter 7. In each chapter, the respective results are discussed. Additionally,

chapter 8 provides an overall conclusion with a discussion of the main findings, limitations, and

implications for future research.
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2
State-of-the-art

This chapter will present an overview of the background and current research in newborn screening

for IVA and GA1, machine learning-based newborn screening, and metabolic whole-body modeling.

By emphasizing the most relevant concepts, methodologies, and findings, it aims to establish the

foundational knowledge necessary for the subsequent chapters.

2.1 Medical background on newborn screening

This section introduces the medical and biochemical background of newborn screening for IMDs

and especially for IVA and GA1.

2.1.1 Newborn screening

In 1961, Robert Guthrie introduced the first method for population-based mass blood screening for

phenylketonuria (PKU) [39], laying the foundation for newborn screening. Newborn screening pro-

grams aim at the early detection of treatable rare diseases that pose a risk to the physical and men-

tal development of affected children. Ideally, this identification should occur pre-symptomatically

to significantly reduce morbidity and mortality, making these programs highly successful instru-

ments of secondary prevention [40]. Therefore, blood samples from newborns are collected on the

first days of life (i.e., in Germany at 36 - 72 h of life) and sent to a newborn screening center for

analysis [1]. Starting with PKU, nowadays, there is a growing panel of different newborn screening
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conditions [1], [41]. The number of conditions examined in newborn screening varies significantly

among different countries worldwide and within Europe [2]. Loeber et al [1] conducted a detailed

inventory of newborn screening programs in Europe since 2010. The results revealed that from

the 51 examined countries 49 have some kind of newborn screening program in place [1]. The

number of diseases screened ranged from one to 35 in different European countries including pi-

lots [1]. The sensitivity and specificity of the testing methods for each disease play a crucial role

in assessing the program’s effectiveness [2]. Since 2021, the national German newborn screening

panel has comprised 19 conditions [3]. These conditions include 13 metabolic diseases, two en-

docrinopathies, cystic fibrosis, severe combined immunodeficiency, 5q-associated spinal muscular

atrophy, and sickle cell disease [3]. The screening for these conditions is based on the analysis of

biochemical and genetic markers in blood or urine, aiming for a diagnostic sensitivity of 100% to

avoid false negatives and a very high specificity (> 99.5%) to minimize false positives [42]. Ad-

ditionally, second- and multiple-tier strategies have been established for some diseases to improve

the specificity [43]. These strategies, for example, involve an extra analysis step of additional

biochemical parameters in the same dried blood spot sample if the primary biomarker (first-tier)

shows pathological changes [43].

Tandem Mass Spectrometry The biochemical targeted method of tandem mass spectrome-

try (MS/MS) was introduced to the German regular newborn screening in 2005 [2]. Before this

introduction, MS/MS was tested in pilot projects for extended newborn screening in Hannover,

Heidelberg, and Munich in 1998 and 1999 [2]. MS/MS consists of two mass spectrometries used

sequentially to identify and quantify metabolite profiles [44]. By this, the method enables the effi-

cient evaluation of various metabolites from small samples, such as dried newborn blood spots [35].

MS/MS analyzes more than 50 analytes, including amino acids and acylcarnitines, at once. This

makes it an ideal high throughput method test for newborn screening and hereby allows early

therapy and treatment, successfully preventing severe, even fatal, manifestations of the disease [2].

2.1.2 Human metabolism

The human metabolism is a complex, intertwined system of physical and chemical reactions and

processes responsible for sustaining an individual’s life [45]. As described by Lanpher et al,

metabolism can be understood as ”the totality of all the chemical reactions that operate in a

living organism” [35]. The metabolic system consists of small molecules, the metabolites, which

are chemically transformed during metabolism. In newborn screening, the blood concentrations of
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known disease biomarkers are measured to detect abnormal increases or decreases, which may in-

dicate a specific condition. At the newborn screening laboratory at Heidelberg University Hospital

(UKHD), 52 biomarkers are screened, Table 2.1. Most of these biomarkers belong to the substance

group of amino acids or acylcarnitines, Table 2.1.

Amino Acids The human body relies on amino acids as they are the building blocks of proteins.

The absence of even one amino acid can disrupt the synthesis of most proteins [46]. Fortunately,

the human body can produce many amino acids on its own [46]. However, there are eight essential

amino acids that the body cannot produce on its own. These essential amino acids include valine,

leucine, isoleucine, phenylalanine, tryptophan, lysine, methionine, and threonine. They must be

acquired through nutrition, as plants and microorganisms can synthesize them [46]. Furthermore,

there exist conditionally essential amino acids, which are essential during pregnancy (histidine)

and in the neonatal period growth or during times of stress (arginine) [46], [47]. The non-essential

amino acids can be converted into one another, which is a crucial process as the human body often

does not receive the optimal amount of each amino acid through nutrition [46]. The concentrations

of various amino acids in the blood remain relatively constant, with cells selectively taking up the

amino acids they currently need for their biosynthesis. Amino acids are then utilized to build

proteins.

Acylcarnitines Acylcarnitines are a large class of metabolites in the non-protein amino acid

family. Their abundance and special structure make acylcarnitines play an essential role in cell

physiological activities and become a fundamental substance for cell metabolism [48]. They are

the transport form of activated long-chain fatty acids, which enables them to be carried into

and out of the mitochondria. Here, the metabolism of fatty acids takes place in the form of

β-oxidation, the degradation of fatty acids as source for energy production [46]. Without the

transport molecule carnitine, the outer mitochondrial membrane would be impassable for the fatty

acids [46]. In particular, for the brain, carnitine is an essential factor as it highly relies on oxidative

metabolism [49].

2.1.3 Inherited metabolic diseases

Inherited metabolic diseases (IMDs) is a growing group of disorders with a variable but often severe

clinical phenotype which is caused by inherited deficiency of enzymes or transporter proteins in

a specific metabolic pathway. This can entail pathogenic gene variants causing either a loss or
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Table 2.1: Metabolites measured for regular newborn screening at the newborn screening
laboratory at Heidelberg University Hospital showing their respective abbreviations and
substance groups.

Abbreviation Name Substance group

17p 17-hydroxyprogesterone steroid
TSH Thyroid-stimulating hormone hormon
BIO Biotinidase activity enzyme
3HMG 3-OH-2-methyl-butyrylcarnitine acylcarnitine
Ala Alanine amino acid
Arg Arginine amino acid
Asa Argininosuccinate amino acid
Asp Aspartate amino acid
C0 Free carnitine acylcarnitine
C10 Decanoylcarnitine acylcarnitine
C10:1 Decenoylcarnitine acylcarnitine
C12 Dodecanoylcarnitine acylcarnitine
C14 Tetradecanoylcarnitine acylcarnitine
C14:1 Tetradecenoylcarnitine acylcarnitine
C14OH 3-OH-Tetradecanoylcarnitine acylcarnitine
C16 Hexadecanoylcarnitine acylcarnitine
C16:1 Hexadecenoylcarnitine acylcarnitine
C16:1OH 3-OH-Hexadecenoylcarnitine acylcarnitine
C16OH 3-OH-Hexadecanoylcarnitine acylcarnitine
C18 Octadecanoylcarnitine acylcarnitine
C18:1 Octadecenoylcarnitine acylcarnitine
C18:1OH 3-OH-Octadecenoylcarnitine acylcarnitine
C18:2 Octadecadienoylcarnitin acylcarnitine
C18OH 3-OH-Octadecanoylcarnitine acylcarnitine
C2 Acetylcarnitine acylcarnitine
C3 Propionylcarnitine acylcarnitine
C4 Butyrylcarnitine acylcarnitine
C5 Isovalerylcarnitine acylcarnitine
C5:1 Tiglylcarnitine acylcarnitine
C6 Hexanoylcarnitine acylcarnitine
C8 Octanoylcarnitine acylcarnitine
C8:1 Octenoylcarnitine acylcarnitine
Cit Citrulline amino acid
GALT Galactose-1-phosphate-Uridyltransferase activity enzyme
Gln Glutamine amino acid
Glu Glutamic acid amino acid
Glut Glutarylcarnitine acylcarnitine
Gly Glycine amino acid
Hci Homocitrulline amino acid
His Histidine amino acid
IRT Immun Reactiv Trypsin enzyme
Leu+Ile Leucine + Isoleucine amino acid
MeGlut 3-Methylglutarylcarnitine acylcarnitine
Met Methionine amino acid
Orn Ornithine amino acid
Phe Phenylalanine amino acid
Pro Proline amino acid
SUCC-MS Succinylacetone organic acid
Thr Threonine amino acid
Trp Tryptophan amino acid
Tyr Tyrosine amino acid
Val Valine amino acid
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gain of function in proteins, significantly impacting the overall metabolism and health of the

affected individual [35]. Therefore, an IMD’s overall impact at the organismic level is altering

one or several metabolic fluxes within the pathway regulated by the mutant protein [35]. The

metabolic flux is defined as the production or elimination of several metabolites per mass of an

organism over a specific amount of time [35]. IMDs are diseases that are individually rare (from

1:10,000 to 1:1,000,000 newborns) but cumulatively account for over 1,904 recorded IMDs in 2023

(http://www.iembase.org). Ideally a diagnostic biomarker for an IMD is a measurable metabolite

that might provide information about the presence or severity of the disorder. These biomarkers

are valuable in diagnostics as they consistently exhibit changes in concentration during a disease

state [21]. An IMD’s impact on the human body can manifest through various mechanisms,

including a toxic accumulation or deficiency of metabolites, and a redirection of the metabolic flow

to secondary metabolic pathways [35]. Two IMDs screened for in newborn screening are IVA and

GA1.

2.1.4 Isovaleric aciduria (IVA)

Isovaleric aciduria (IVA; OMIM #243500) is an organic aciduria leading to severe life-threatening

(neonatal) metabolic decompensations. IVA has an estimated disease prevalence of 1 in 90,000 -

100,000 newborns in Germany [4], [5], [26]. The disease is inherited autosomal recessively, meaning

that a child needs to receive an affected allele each from mother and father to develop the condition.

IVA is caused by bi-allelic pathogenic variants in the isovaleryl-CoA dehydrogenase (IVD) gene (cy-

togenic location: 15q15.1). These variants result in a deficiency of IVD (EC 1.3.99.10) in the leucine

degradation pathway and, hence, accumulation of metabolites deriving from isovaleryl-CoA. The

regular way would be that leucine is broken down into isovaleric acid, which is subsequently con-

verted into energy [4]. However, the variation in the IVA patients leads to a decrease in enzyme

activity of the mitochondrial IVD, followed by an aggregation of isovaleryl-CoA and its correspond-

ing metabolites [4]. For patients suffering from IVA, there exists a dysfunction in the activity of

the enzyme isovaleryl-CoA dehydrogenase. Hence, the process of breaking down isovalerylcarnitine

(C5) is impaired leading to an accumulation of isovaleric acid, 3-hydroxyisovaleric acid, C5, and

isovalerylglycine [50].

If not treated, many patients experience severe life-threatening (neonatal) metabolic decompen-

sations. Treatments aim at long-term metabolic stability of patients with IVA [51]. The primary

treatment strategy is to decrease the production and enhance the excretion of isovaleryl-CoA. The

http://www.iembase.org


16 CHAPTER 2. STATE-OF-THE-ART

early detection enables specific treatment and reduced mortality for affected individuals with the

classical disease course [4]. However, newborn screening for IVA has faced two challenges in recent

years. First, there is an increasing number of false-positive screening results due to the increasing

use of pivmecillinam, an antibiotic used in urinary tract infections in pregnant women [24]. Since

the antibiotic’s metabolite pivaloylcarnitine is isobaric to the primary marker C5, newborns with

an increased pivaloylcarnitine level are falsely suspected as newborns with IVA [52]. Second, since

the inclusion of IVA into the newborn screening disease panel, individuals with an attenuated, pos-

sibly asymptomatic, disease variant (“mild” IVA [4], [25]) have been identified. This identification

increased the estimated birth prevalence of IVA from 1:280,000 newborns to 1:90,000 - 100,000

newborns worldwide [4], [5], [26]. Hence, patients with mild IVA constitute 80% of those screened

for IVA in Germany [4]. These mild IVA patients are at risk of overtreatment, as a multi-center

long-term observational study showed [4].

2.1.5 Glutaric aciduria type 1 (GA1)

Glutaric aciduria type 1 (GA1; OMIM: #231670) is an organ aciduria that is inherited autosomal

recessively and has an estimated disease prevalence of 1:140,000 newborns [3]. GA1 arises due

to a deficiency of the enzyme glutaryl-CoA dehydrogenase [53] which mediates degradation of

lysine and tryptophan [54]. The disease is characterized by an accumulation of glutaric acid,

3-hydroxyglutaric acid, and glutarylcarnitine (Glut), as well as an accumulation of glutaconic

acid, which is less frequent [53]. Through biochemical analysis, an increase of these metabolite

concentrations can be detected in urine, plasma, cerebrospinal fluid, and tissue [53]. Based on

their amount of urinary excretion of glutaric acid, two biochemical patient subgroups can be

distinguished [55]. Low excretors are defined by a urinary glutaric acid level below 100 millimoles

(mmol) per mol creatinine, while high excretors are those patients with urinary glutaric acid

excretions above 100 mmol per mol creatinine [55].

Without treatment, 80 % - 90 % of GA1 patients develop neurological diseases mainly between

the ages of 3 - 36 months following an acute encephalopathic crisis [53], [56]. GA1 is considered

a treatable disease with the first evidence-based guidelines published in 2007 [57], which were

further revised in recent years [58], [59]. Treatment of GA1 patients includes a low lysine diet

with a lysine-free, tryptophan-reduced, arginine-fortified amino acid mixture and oral carnitine

supplementation [59]. Furthermore, for patients with catabolic episodes an intensified intermittent

emergency treatment is recommended [59]. However, newborn screening for GA1 is also challenged
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by a high numbers of false positives. One known factor for false-positive screening results is renal

insufficiency due to congenital or acquired renal disease in newborns since it delays the excretion

of Glut via the kidneys, which increases the Glut concentration in plasma [60].
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2.2 Data-based modeling in newborn screening

This section is based on and extends the published work Zaunseder et al [33]. It presents a

systematic literature review on applying machine learning (ML) methods in newborn screening

programs. Overall, the literature review showed considerable heterogeneity among the 17 studies,

including data from ten screening centers, investigating 21 diseases, applying 12 ML classification

methods, and 14 feature selection strategies.

2.2.1 Methodology of systematic literature review

The systematic literature review was performed and reported according to the preferred reporting

items for systematic reviews and meta-analyses (PRISMA) guidelines (www.prisma-statement.

org). The methodological steps for this analysis included defining three research questions, out-

lining the literature search strategy and study eligibility criteria, as well as defining the data

extraction and synthesis steps, which are summarized in a PRISMA flow chart, Figure 2.1.

Research questions

The primary outcome of this systematic literature review was to evaluate the applicability, ad-

vantages, and limitations of ML-based newborn screening. Therefore, the published studies were

analyzed according to the following research questions:

1. Which data pre-processing methods have been applied in newborn screening?

2. Which ML classification methods have been applied in newborn screening, and how did they

perform?

3. How were pattern recognition techniques implemented in newborn screening?

Search strategy

A two-stage search procedure was conducted to compile relevant papers. In the initial phase, five

electronic databases (ScienceDirect, IEEE, ACM, Sage, PubMed) were searched in May 2021 and

October 2021 to collect literature. The search keywords were “Newborn Screening” AND (“Machine

Learning” OR “Deep Learning” OR “Data Mining”). In the second phase, cross-references from

www.prisma-statement.org
www.prisma-statement.org


2.2. DATA-BASED MODELING IN NEWBORN SCREENING 19

eligible literature compiled in the first phase were searched via Google Scholar, and advice from

pediatric experts was added to compile the final literature collection.

Inclusion and exclusion criteria for study selection

All included studies applied an ML classification method in regular newborn screening and were

published between January 2000 and September 2021. Studies were excluded if they did not concern

newborn screening, did not use data obtained from MS/MS, or did not apply ML algorithms for

disease classification.

Study eligibility

Duplicates were removed before assessment. First, titles and abstracts were screened, and stud-

ies unrelated to the research question were excluded. Then, full-text articles were reviewed for

inclusion. In case of exclusion, the reason was reported, Figure 2.1.

S T U D I E S   F R O M   D A T A B A S E S S T U D I E S   F R O M   O T H E R   S O U R C E S

IDENTIFICATION

SCREENING

INCLUSION

Records identified from
5 databases: 119

Record sought
for retrieval: 99

Records assessed
for eligibility:  98

Records assessed
for eligibility:  6

Records not retrieved: 1

Records excluded:
  -  No usage of ML: 2
  -  No NBS: 1

Records excluded: 
  -  No usage of ML: 32
  -  No NBS: 18
  -  No MS/MS data: 34

Records removed 
before screening:
  -  Duplicate records: 20

Records identified from:
  -  Citation searching: 4
  -  Expert consultation: 1
  -  Websites: 1

Reports for study: 14 Reports for study: 3

Studies included in systematic literature review: 17

ELIGIBILITY

Figure 2.1: PRISMA flow diagram describing the two-stage search procedure for studies
identified, screened, included, and excluded for this review. Figure taken from Zaunseder
et al [33].

Data extraction and synthesis

Data from all studies, including information on authors, data pre-processing, ML classification

models, performance, and pattern recognition were extracted and summarized in Supplementary
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Table B.1. For the data analysis, key indicators based on their underlying approaches, data require-

ments, interpretability on a modular level, and performance were considered. The classification

performance was evaluated based on the sensitivity, specificity, and positive predictive value (PPV).

These performance measures were compared to reference values and other ML methods in com-

parative studies. For studies lacking sensitivity or specificity values, these values were calculated

based on the published contingency tables. The studies were insufficient for a meta-analysis; hence,

the findings were synthesized into an overall narrative.

A total of 125 records were identified, and 17 publications were considered for the systematic

literature review. The main reasons for dismissing publications were that they did not apply ML

methods, did not utilize data obtained from MS/MS, or were not conducted in the context of

newborn screening.

2.2.2 Literature review for data-based models in newborn screening

The reviewed literature was analyzed in four categories: examined diseases, applied pre-processing

methods, ML classification models, and pattern recognition techniques.

Examined diseases

Overall, 21 diseases were examined in the 17 publications. Among these diseases, PKU [12],

methylmalonic aciduria [14], and medium-chain acyl-CoA dehydrogenase deficiency [61] were the

most frequently studied diseases. However, ML methods were not frequently applied in the study

of IVA and GA1. IVA was only considered in one study [13], where results were not reported for

individual diseases, so the predictive power of the developed algorithms could not be assessed for

IVA specifically. GA1 was considered in the same cumulative study [13]. Another study developed a

two-step approach to discover metabolic markers and showed that their method detects Glut as the

primary biomarker for GA1 and suggests C4 as a secondary biomarker candidate [12]. Furthermore,

a Random Forest (RF) algorithm was developed, reducing false positives from first-tier newborn

screening from 1344 to 150 [14].

Pre-processing methods

Pre-processing methods are employed on a data set before applying an ML algorithm. This pro-

cess involves analyzing and preparing the data and its features, aiming to enhance the results
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when utilizing an ML algorithm. Here, the pre-processing methods for data imbalance, feature

construction, and feature selection will be presented.

Data imbalance methods Various techniques are used in the literature to overcome data im-

balance, which is a key characteristic of newborn screening data due to the low prevalence of the

examined conditions. In previous studies, random sampling techniques were applied to change the

data imbalance ratio by randomly excluding data points from the normal (unremarkable) newborn

screening profiles [62]. Moreover, an advanced technique called informed sampling was employed

in newborn screening. This method involves including newborns in a data set based on specific

clinical criteria. These criteria were, for instance, the inclusion of newborns with a normal new-

born screening profile but elevated primary markers [61], particularly removing samples close to

the decision boundary [13], or normal patients with varying birth weight and gestational age [63].

These sampling methods were able to reduce false-positive classifications in newborn screening

by applying additional expert knowledge on primary markers and medical background. Oversam-

pling describes the process of enhancing the data set with synthetic samples from the minority

class to decrease the data imbalance. In newborn screening, oversampling was applied by adding

spiked blood samples, designed to mimic unhealthy blood samples [64], and mixed models such

as SMOTE+ENN [13]. These methods are advantageous as they address the challenge of the

low number of samples in the minority class. However, whether the synthetically created sample

patients accurately represent a positive confirmed diagnosis remains unclear.

Feature construction Feature construction involves creating new features from existing ones,

thereby expanding the feature space dimensionality. These new-build features aim to account for

non-linear correlations spread over several metabolites and discover hidden interactions. Feature

construction on newborn screening data mainly uses arithmetic operators on original features to

construct new features. A new feature x′ can be built from two features xi, xj by calculating their

ratio [64]:

x′ = [xi/xj ] ; i = 0, 1, ..., n− 1; j = i+ 1, i+ 2, ..., n.

Combining multiple features using arithmetic operators such as addition, subtraction, and multi-

plication was employed to generate complex new features. The features xi, i = 1, ..., n can contain

all original features [61] or a subset of disease-specific primary markers [64]. Moreover, principal

component analysis [63] and self-developed algorithms [65] were applied to build new features.
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Feature selection methods Feature selection techniques eliminate irrelevant and redundant

information for a classification method. This aids in reducing the number of false-positive results

in newborn screening. For this, either a fixed number [66] or adaptive approaches [61] were applied

to select the most relevant features. The methods are usually grouped into the three categories

filter, wrapper, and embedded methods [67]. For newborn screening, the category of informed

methods was added, which includes using diagnostic flags developed by biochemical and medical

experts [62] and expert consultation with a pediatric endocrinologist [68] to identify informative

features. Furthermore, filter methods were frequently applied using statistical measures such as

analysis of variance (ANOVA) [13], χ2 tests [61], mutual information [13], Pearson-like formula [69],

Fisher score [70], information gain [68], and relief-based methods [71] to identify relevant features.

Moreover, embedded methods such as decision tree splitting rules [13], the discriminatory threshold

from logistic regression (LR) [72], learned vector quantization [73], and underlying cost functions,

such as L1 norm [13] were analyzed for feature selection. Wrapper methods were used to identify

subsets of all features [64] or subsets pre-selected by another method [65], which were relevant for

classification.

Implementation of pattern recognition techniques in newborn screening

Feature selection techniques are used to identify patterns within the data by comparing the results

to established primary markers [13] and letting clinical and biochemical experts analyze them [62].

Interpretable methods allow to analyze patterns using their built-in decision functions [61] and

discriminatory thresholds [71], whereas for non-interpretable methods, model agnostic approaches

such as mean decrease accuracy are applied [14]. These pattern recognition methods could confirm

established biomarkers and identify markers without other a priori assumptions or conditions [62].

Model agnostic pattern recognition can be applied to non-interpretable methods by discovering

non-explainable incidents such as a higher percentage of false-positive newborns with Hispanic

ethnicity [11], [74]. The application of explainable artificial intelligence (XAI) for ML methods in

newborn screening was not proposed in any of the identified literature.

Evaluation of applied ML classification algorithms

Due to the availability of the confirmation diagnosis, supervised classification methods were ap-

plied in newborn screening. ML classification methods can be distinguished according to their

interpretability on a modular level, which refers to methods that can inherently explain how parts
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of the model affect predictions [75]. The most frequently used interpretable method was logis-

tic regression (LR) [73], followed by the usage of ridge regression (RR) [64], decision trees [63],

rule learners [61], and Naive Bayes [12]. Support vector machine (SVM) [70] was applied us-

ing linear kernels [12], radial basis function [65], or polynomial kernels [12]. From the class of

non-interpretable methods ensemble learners such as random forest [74] and boosting algorithms

such as adaptive boosting [68], extremely randomized trees [13], and gradient boosting [13], as

well as bagging methods such as Bagging-SVM [68] were applied. Furthermore, neural networks

(NNs) [68] and other methods such as K-nearest neighbor [13] and linear discriminant analysis [71]

were implemented.

Table 2.2: Sensitivity, specificity, and positive predictive value (PPV) of considered ML
classification methods. (A) Results of comparative studies (best-performing ML clas-
sification methods with highest sensitivity and specificity). (B) Result of single ML
method studies. Where sensitivity and specificity were not stated, the results are cal-
culated based on the published contingency table (italics). Results in brackets show a
comparison to traditional newborn screening. Diseases with * are biochemical variations
nowadays known as non-diseases. Abbreviations: CAH - Congenital adrenal hyperplasia,
CH - Congenital hypothyroidism, CIT2 - Citrullinemia type II, DT - Decision Tree, GA1
- Glutaric aciduria type I, IVA - Isovaleric aciduria, LR - Logistic Regression, MCADD
- Medium-chain acyl-CoA dehydrogenase deficiency, 3-MCCD - 3-methylcrotonyl-CoA
carboxylase deficiency, MET - Hypermethioninemia, MMA - Methylmalonic aciduria,
NN - Neural Network, OTCD - Ornithine transcarbamylase deficiency, PKU - phenylke-
tonuria, RF - Random Forest, RR - Logistic ridge regression, SCADD - Short-chain
acyl-CoA dehydrogenase deficiency, SVM - Support vector machine, VLCADD - Very
long-chain acyl-CoA dehydrogenase deficiency.

Disease ML Classification Sensitivity (%) Specificity (%) PPV (%)

(A) Comparative ML classification studies

PKU LR [71] 100 99.793 17.41

LR [76] 98.0 99.9 -

LR [62] 96.809 99.905 49.46

MMA NN [12] 98.0 - 98.0

MCADD RR [71] 100 99.987 33.90

LR [71] 96.83 99.992 88.41

LR [62] 95.238 99.992 88.24

3-MCCD* LR [62] 95.455 99.957 33.33

CH Bagging-SVM [68] 73.33 100 -
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CIT2, MET,

MMA, PKU,

SCADD*

SVM [13] 91.30 36.36 19.29

(B) Single ML classification studies

PKU SVM [65] 100 99.997 (99.971) -

SVM [70] 100 (100) 99.98 (99.96) -

LR [73] 97.66 31.61 24.59

MMA SVM [66] 100 (100) 100 (99.79) -

RF [14] 100 (100) 89.678 (81.226) 26.40 (16.40)

RF [74] 96.117 (96.117) 65.143 (28.286) 28.9 (16.5)

SVM [69] 95.9 (81.4) 95.6 (76.2) -

MCADD LR [72] 100 (100) 99.988 (99.924) 18.2 (3.4)

RL[77] 100 (100) 99.901 (98.463) 93.75 (49.18)

GA1 RF [14] 100 (100) 94.503 (50.751) 22.30 (3.10)

3-MCCD* SVM [65] 100 99.936 (99.711) -

MET SVM [65] 100 99.986 (99.958) -

VLCADD LR [72] 100 (100) 100 (100) 100 (100)

RF [14] 100 (100) 92.786 (92.639) 23.40 (23.10)

OTCD RF [14] 100 (100) 99.601 (81.983) 62.10 (3.50)

SCADD* LR [72] 100 (100) 99.997 (99.974) 73.3 (22.0)

CAH DT [63] 90.909 (100) 100 (87.194) 66.7 (20)

For parameter optimization, grid search is commonly applied [64]. The robustness of the

methods was tested using cross-validation [65] or stratified cross-validation [64] as well as evaluation

of receiver operating characteristic curves [14]. The classification performance was evaluated using

classification sensitivity, specificity, and PPV. Previous ML classification results could be evaluated

separately for single and comparative studies, as the latter enabled a comparison of various ML

methods on the same data set, Table 2.2. Most studies applied sampling algorithms, changing

the sick-to-control ratio and reduced data sets, such as only including false-positive patients from

regular newborn screening. Hence, Table 2.2 presents the results from the largest or unknown

validation data sets. In the comparative studies, LR, RR, SVM, Bagging-SVM, and NNs achieved

the best results, whereas evaluating the single studies was more difficult due to the differences in
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the data sets. The results from Lin et al [13] are presented in a separate row since they only report

average evaluation results for groups of diseases. To evaluate the performance of the classification

methods, the following criteria were established:

• ability to maintain 100% sensitivity and high specificity results

• frequency of application,

• performance in comparative studies and in comparison to reference values,

• interpretability on a modular level.

Considering all reviewed studies, the classification methods LR and SVM were valuable candidates

for newborn screening classification according to these criteria. They were frequently applied in

newborn screening, achieved 100% sensitivity for various diseases in several studies, were the best

algorithms in most comparative studies, and could increase the sensitivity, specificity, and PPV

compared to reference values from traditional screening, Table 2.2. LR is interpretable on a modular

level, as the model and weights can be intuitively interpreted, whereas SVM is more difficult to

interpret on a modular level. Furthermore, in two comparative studies, advanced versions of these

methods, such as Bagging-SVM and RR, achieved the best results [64], [68].
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2.3 Metabolic whole-body modeling

2.3.1 Metabolic modeling for human metabolism

For the last decades, metabolic models have played an increasing role in understanding human

metabolism and IMDs. Thanks to advancements in whole genome sequencing, methods to auto-

matically annotate the genome and to derive genome-scale metabolic models (GEMs) were cre-

ated [78]. The process of annotation is based on gene–protein–reaction rules, using information

that links enzymes and protein identifiers, reaction names, and reaction metabolites, Figure 2.2.

The fundamental goal is to accurately define the chemical transformations that take place among

chemical components in a network and build a GEM to analyze complex metabolic networks,

Figure 2.2.

Figure 2.2: Overview of genome-scale metabolic network reconstruction. (A) Starting
from genome annotations, which lead to (B) an assembly of biochemical reactions, which
are then connected through (C) a metabolic network reconstruction.

A detailed understanding of molecular-level processes within a metabolic system is achieved

by creating metabolic networks. This is done using constraint-based reconstruction and analysis

(COBRA), as described by Palsson [79]. The network is built by compiling the identified bio-

chemical reactions, which account for all metabolic reactions encoded within the genome [80].

These metabolic models can be used for biotechnological applications across different cell types.

The applications of metabolic models extend to various organisms, including microbial models like

Escherichia coli [81] and animal cells such as the Chinese hamster ovary [82]. Additionally, in

agricultural contexts, metabolic engineering is employed to model plant metabolism, showcasing

the variability of these models across different domains [83]. Human metabolic networks enable a

systematic view of human metabolism and its connections to various diseases. In the medical field,

a comprehensive understanding of human metabolism at a systemic level is crucial.
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Human models Numerous successive generic reconstructions of human metabolism have been

published, such as Recon1 [17] and the human metabolic reaction series [84], which presented the

first generic reconstructions of the human metabolic network using cell-based models. Recon1

is an extensive GEM as it includes 2,766 metabolites as well as 3,311 metabolic and transport

reactions [18]. Recon2 [85], Recon2.2 [80], and Recon3D [18] expanded Recon1 by utilizing several

metabolic data sets to identify new metabolites as well as transport and catalyzing reactions.

Furthermore, Human1 [19] presents a unified human GEM which was developed by integrating

and extensively curating Recon models [17], [18] and the human metabolic reactions series (HMR1,

HMR2) [86], [87]. Based on HMR2, a GEM modeling infant metabolism was developed and applied

to predict the infant’s growth rate over the first six months of life [29]. The simulation toolbox for

infant growth (STIG-met) was created to achieve this. This toolbox simulates the growth of an

infant fed with breast milk and adapts to the infant’s energy needs, considering energy required for

maintenance, the energy expenditure of major organs, and muscular activity [29]. In general, GEMs

enable considerable personalization as they allow for an integration of various data sources, such

as metabolomics [88], transcriptomic [89], proteomic [90], and metagenomic data [91]. For specific

applications, the metabolism of particular pathways and the requirements of specific organs are of

interest. This has led to the development of organ-specific metabolic models, including those for

the liver [92], adipocytes [93], myocytes [93], erythrocyte metabolism [94], and small intestine [95].

Analyzing the impacts of diseases, drugs, or nutrition on the entire body goes beyond studying

individual organs. Hence, it is crucial to capture the interactions between all organs to gain

a comprehensive overview [20]. Sex-specific whole-body models (WBMs) of humans have been

constructed by integrating information from Recon3D, organ-specific details, and omics data [20].

These models capture the metabolism of 26 organs and six blood cell types in two, male and

female, adult models named Harvey and Harvetta [20]. The goal is to model the metabolism of

the entire human, and not solely on a cellular level, as seen in the Recon models [20]. Each model

was constrained with 15 physiological parameters, leading to a novel paradigm in constraint-based

modeling known as physiologically and stoichiometrically constrained modeling (PSCM) [20]. The

PSCM toolbox is available in MATLAB at opencobra.github.io/cobratoolbox. By this, WBMs

present a first step towards a virtual metabolic human, or digital metabolic twin [20].

opencobra.github.io/cobratoolbox
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2.3.2 Constrained-based modeling

For the mathematical analysis and simulation of fluxes within a metabolic reconstruction, the

reconstruction network is transformed into a stoichiometric matrix S ∈ Rm×n where the rows

correspond to the m metabolites and the columns to the n reactions, Figure 2.3 (C), (D).

C  Network reconstruction D  Stoichiometric Matrix S

0 0 1 1 -1 0 0

1 0 1 -1 0 1 0

0 1 0 0 1 0 0

-1 0 0 0 0 0 1

Reactions
M
et
ab

ol
ite

s

E  Constrained based modeling

Constraints

Solution space
Flux balance analysis

Figure 2.3: Overview of (C) genome-scale metabolic network reconstruction, the trans-
lation into (D) a stoichiometric matrix, and the subsequent (E) evaluation in constraint-
based modeling.

The matrix entries sij are assigned a stoichiometric coefficient if metabolite i takes part in

reaction j and zero otherwise. However, besides the connectivity of the stoichiometric matrix,

further biological knowledge on metabolic reactions can be described in the form of constraints.

Palsson [79] identified different types of constraints that limit cellular functions which he divided

into the following four categories:

1. Fundamental physio-chemical constraints: These are hard constraints that must not

be breached, encompassing principles such as conservation of mass, elements, energy, and

momentum. They are deducted from physio-chemical conditions within cells and their sur-

rounding.

2. Spatial constraints: These constraints describe the spatial or three-dimensional limitations

on the cell determined by the accumulation of molecules within the cell. These spatial

constraints and their consequences can contribute to comprehending the three-dimensional

organization of cells.

3. Environmental constraints: The cell is subjected to environmental constraints imposed by

its surroundings, including factors like nutrient availability, pH, temperature, and osmolarity.

Understanding these environmental conditions is crucial for supporting quantitative studies.

While experimental setups allow for precise determination of these constraints, achieving the

same precision level in natural environments becomes challenging.
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4. Regulatory constraints: These constraints stand apart from the aforementioned, being

self-imposed and time-dependent. This implies that they limit the behavior of a cell based on

evolutionary factors and that, at any given time, the transcriptional activity is determined

by the state of both the external and internal environments [96].

All these constraints are then incorporated into the metabolic system by setting upper ub and

lower bounds lb on the reaction fluxes v,

lb ≤ v ≤ ub, (2.1)

where the flux describes the amount of a metabolite measured in mmol, passing through the

reaction in a specific time t, relative to a mass, for instance, dry weight or human body. A specific

flux vk describes the change of a metabolite concentration xk over time t in reaction k. The change

of a metabolite concentration over time coming from all reactions in the network can be expressed

by multiplying the stoichiometric matrix S with the flux vector v, resulting in the mass-balance

equation for all metabolites
dx

dt
= S · v. (2.2)

Flux balance analysis (FBA) [81] is a mathematical approach to calculate the flux through the

metabolic network. This approach assumes that the metabolic system is in a steady state and,

hence, dx/dt = S · v = 0. The steady-state constraint indicates that the metabolite concentrations

remain constant over time since the input and output fluxes must balance.

2.3.3 Modeling of inherited metabolic diseases

In medical applications, metabolic modeling is increasingly utilized, encompassing tasks such as

identifying drug targets [97] and off-target drug effects [85], studying cancer metabolism [98], en-

hancing the understanding of microbial interactions with the host organism [99], and also emerging

as a field for investigating IMDs [21]. IMD analysis is utilized in metabolic modeling to demon-

strate the human metabolic model’s capability to predict known biomarkers accurately. IMDs often

involve a disruption of the normal metabolite flux [35]. Therefore, analyzing the metabolic flux

over time is significantly more informative for IMDs than the static measurement of intermediary

metabolites [35].

In this regard, Shlomi et al [21] developed a computational framework based on constraint-based

modeling to predict changes in metabolite concentrations in Recon1 [17]. In their framework, they
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perform gene knockouts to simulate an IMD in a metabolic model and compare it with an un-

changed wild-type model. The comparison involves assessing the flux intervals, representing the

maximal and minimal uptake and secretion fluxes within the feasible flux state. This is accom-

plished through a method known as flux variability analysis [100]. In the wild-type model, reactions

are assumed to be activated, with the flux set to a non-zero value, whereas in the IMD model, they

are assumed to be inactive, with the flux set to zero [21]. The fluxes of interest involve exchange

reactions simulating the uptake or secretion of a biomarker metabolite between intracellular and

extracellular compartments. This comparative analysis evaluates whether the biomarker is pro-

jected to be elevated, reduced, or unchanged in the IMD model compared to the wild-type model.

The change is considered highly certain if the flux intervals of the two models do not overlap. The

framework of Shlomi et al [21] identified a set of 233 metabolites with predictions of elevated or

reduced changes based on 176 possible dysfunctional enzymes.

Recently, these biomarker prediction strategies have been incorporated to assess the validity

of human reconstructions. Recon2 employed a manually compiled compendium of IMDs as a

benchmark, encompassing 330 IMDs [85]. They showed that Recon2 achieved a 77% accuracy in

predicting known biomarkers for IMDs. In comparison, Recon3D accurately predicted 50.2% of

biomarkers in biofluid correctly [20]. This accuracy was further improved by using sex-specific

WBMs for biomarker prediction, evaluated across 57 IMDs, where all organ-specific reactions

carrying the known defective gene(s) were removed [20]. The analysis of 57 IMDs showed that the

female WBM qualitatively predicted 215 out of 252 (85.3%) biofluid-specific biomarkers correctly,

while the male WBM accurately predicted 214 out of 252 (84.9%). The authors suggest that

the enhanced predictive abilities of the WBMs primarily stem from a reduction in inconclusive

or unchanged predictions. Additionally, organ-specific metabolism, such as liver metabolism, was

examined in the context of IMDs [22]. Pagliarini et al [22] proposed a computational workflow

designed to model the changes in metabolism resulting from IMDs and predict the metabolites

and reactions affected by the mutation. They adapted and examined a published metabolic model

of hepatocyte metabolism [92] to detect metabolites accumulating in hepatocytes in IMDs. They

employed the principle of flux-minimization as a biological objective function, which enables the

comparison between the metabolic model predictions and the known biomarkers for each IMD.

They developed a new method named flux difference analysis to examine 38 IMDs in the liver,

demonstrating that for approximately 50% of the investigated IMDs, the flux difference analysis

accurately predicted the known IMD biomarkers.
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2.3.4 Time-dependent metabolic modeling

As mentioned earlier, the FBA approach assumes a steady state, which implies no changes in

the metabolite concentrations over time. Models incorporating time-dependent features can sim-

ulate dynamic changes within the metabolic network. These dynamic aspects include allosteric

and posttranslational regulation, alterations in metabolite concentrations, and considerations of

thermodynamics [101]. Building upon the abilities of dynamic models, approaches to combining

dynamic and constraint-based models have recently been developed since they increase the spa-

tial and temporal resolution of GEMs [101]. For instance, the unsteady-state FBA approach has

been developed to improve the accurate prediction of metabolic flux states for red blood cells by

relaxing the steady-state assumption [102]. Mannan et al [103] introduced an approach, which

integrates parameters from a genome-scale metabolic network model into a kinetic model of the

central carbon metabolism of E. coli. Another modeling framework considered both reaction kinet-

ics and network connectivity constraints, emphasizing the role of metabolic network connectivity

in influencing cellular control over metabolite levels [104]. For human metabolism, Mohammad

et al [105] integrated physiology-based pharmacokinetics (PBPK) modeling and constraint-based

metabolic models to investigate the gut-brain axis for patients with an autism spectrum disorder.

Moreover, Guebila et al [106] integrated a PBPK model of glucose regulation by insulin, glucagon,

and incretins into whole-body models to perform dynamic flux balance analysis for type 1 diabetes.

Furthermore, to analyze the effect of processes and genetic variations in ethanol metabolism, Zhu

et al [107] integrated a PBPK model with whole-body models.

Furthermore, in the context of IMD biomarker prediction, Toroghi et al [23] developed the

dynamic parsimonious flux balance analysis method to depict changes in biomarker concentrations

within the blood compartment quantitatively. They constructed a comprehensive mathematical

whole-body model, incorporating 14 organs and the human serum, and integrated data from 237

serum metabolites sourced from HMDB [108] and Recon1 [17]. They applied PBPK modeling

where the metabolite concentrations Corgan represented the concentration in each organ. Then,

the concentration change of time t in an organ receiving arterial blood was modeled as,

Ċorgan =
Qorgan

Vorgan

(
Cart −

Corgan

Korgan

)
−Rorgan,i, (2.3)

where Cart is the concentration in the arterial compartment, Vorgan is the organ volume, Qorgan

is the blood flow rate to the organ, and Korgan is the organ-specific tissue partition coefficient.

The lung receives blood from the venous blood compartment Cven, and, hence, the change of a
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metabolite concentration over time t in the lung can be modeled as,

Ċlung =
Qlung

Vlung

(
Cven − Clung

Klung

)
−Rlung,i. (2.4)

For all organs, Ri describes the Michaelis-Menten kinetic model, where Ci is the concentration of

a specific metabolite i in human serum,

Rorgan,i =
Vorgan,iCi

Korgan,i + Ci
. (2.5)

This model represents the production or consumption rate of a metabolite in a specific organ. All

organs are connected by the blood compartment, with the venous and arterial blood being modeled

as,

Ċart =
Qlung

Vlung

(
Clung

Klung
− Cart

)
+Qext,

Cven =

∑8
i=1

QiCi

Ki

Qlung
,

Ql = Qs +Qp +Qsp +Qg +Ql,art, (2.6)

where Qext describes the exogenous appearance rate of a metabolite. And the abbreviations s, p,

sp, g, and l correspond to the stomach, pancreas, spleen, gut, and lung. Additionally, the input of

metabolite concentrations for the liver model was given as,

Cl,input =

CsQs

Ks
+

CpQp

Kp
+

CspQsp

Ksp
+

CgQg

Kg
+ CartQl,art

Ql
, (2.7)

where Ql,art is the arterial blood flow rate to the liver. Since the entire model consisted of 237

human metabolites in each compartment (14 organs and the human serum), this led to a system

of 3555 ODEs. This network of ODEs was then coupled with the human metabolic reconstruc-

tion Recon1 [17] through the transport reactions associated with the metabolic networks. Hence,

the metabolic exchange rate depended on the kinetic parameters associated with these reactions

and metabolite concentrations in the human serum. The validity of this coupled model and the

application of dynamic parsimonious flux balance analysis was assessed on IMD biomarker pre-

dictions. Toroghi et al [23] showed that their model correctly predicts known biomarkers of ten

IMDs of amino acid metabolism over time. They demonstrated that models integrating kinetic and

constraint-based modeling can effectively simulate a range of IMDs. This suggests their potential

application in treatment strategies and personalized medicine.



3
Data-based modeling in newborn

screening

Data-based mathematical modeling techniques, including machine learning (ML) methods, are

frequently employed in the medical domain. These methods can handle large amounts of data and

learn valuable rules and patterns from the data. The strength of these methods comes from the

availability of large data sets and the required computational power to train these methods. In

the context of newborn screening, various supervised classification ML methods have been applied

to newborn screening data to classify whether or not a newborn suffers from a condition, see

section 2.2. In traditional newborn screening, the metabolite concentrations in dried blood samples

collected from the newborns are automatically determined using an tandem mass spectrometry.

Based on these estimates, newborn screening applies internal decision rules to classify the newborns

into unremarkable and suspected diagnosis newborn screening profiles. The latter are further

analyzed in confirmatory diagnostic steps (see A in Figure 3.1). This work introduces two additional

strategies: the digital-tier strategy and the full data strategy, both of which are compared to the

traditional newborn screening procedure. The digital-tier strategy simulates the scenario where

ML classification methods are applied as an additional step after traditional newborn screening

(see B in Figure 3.1). Consequently, it is only applied to suspected diagnosis newborn screening

profiles. This approach allows building upon the existing newborn screening procedures and focuses

solely on reducing false-positive screening results. The third strategy (see C in Figure 3.1) takes

a different approach. It applies ML directly to the full data set without considering the screening
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Blood sample
analysis with MS/MS

A  TRADITIONAL

Newborn screening Machine Learning Con�rmation
diagnostics

B  DIGITAL-TIER
STRATEGY

C  FULL DATA 
STRATEGY

Figure 3.1: Data-based strategies for newborn screening. Comparison of (A) traditional
newborn screening to (B) the digital-tier strategy and (C) the full data strategy.

results of traditional newborn screening. After both ML strategies, the suspected positive profiles

are further analyzed to obtain confirmation of the results.

In this chapter, both presented data-based strategies are applied and evaluated for the diseases

IVA and GA1, including respective data analysis and ML classification results. First, this chapter

will introduce the applied data-based modeling methods, section 3.1. Then, the results of the ML

classification for IVA, section 3.2, and GA1, section 3.3, will be presented, followed by a discussion

of the results, section 3.4.

3.1 Methodological background

Data-based models solve problems and associated tasks by learning from problem-specific data,

thus automating the process of constructing analytical models [109]. By this, a large number of

data points can be analyzed for tasks that would be impossible or very time-consuming for humans.

For these types of problems, we consider a data matrix X ∈ Rm×n consisting of n data vectors

x = (x1, ..., xm)T which each have m features. For binary classification tasks, such as in disease

prediction, there exists one feature y ∈ {0, 1}, the target label, which specifies the class C each

data point x belongs to. For a classification problem with two classes C0, C1, this could be,
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y =

0, x ∈ C0,

1, x ∈ C1.
(3.1)

In a disease classification task, C0 could correspond to the class of healthy individuals, while C1

could correspond to the class of diseased individuals. The initial step in developing an algorithm

for a classification task involves analyzing the underlying data.

3.1.1 Data analysis methods

Data analysis methods provide insights into the high-dimensional space of the data. For ML tasks

on data sets with a large number of features, data analysis algorithms are often employed to reduce

dimensionality and/or identify important features. One method to determine whether a feature is

significantly different in two classes is the analysis of variance (ANOVA) [110].

ANOVA ANOVA is a statistical method applied to test whether the means µ0, µ1 of different

classes C0, C1 are significantly different. ANOVA assumes that the data is normally distributed

and is evaluated with a predefined p-value. Here, the null hypothesis H0 assumes that the means

of the different classes are equal,

H0 : µ0 = µ1. (3.2)

The alternative hypothesis HA assumes that the means are different,

HA : µ0 6= µ1

Hence, the ANOVA can be applied to test whether the mean values differ between classes. In a

disease classification task, features shown to be significantly different in healthy and sick patients

can be valuable features for the classification algorithm. This method is frequently applied for

feature selection in ML-based newborn screening, section 2.2 and Table B.1.

3.1.2 Machine learning classification methods

Classification algorithms are often supervised methods, meaning each data point x has a corre-

sponding target label y ∈ {0, 1} for a problem with two classes C0, C1. ML classification algorithms
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then attempt to detect a pattern for this classification by updating internal model parameters. The

fitting of these model parameters is conducted to optimize the classification of training samples,

where the model receives the true target label y as feedback in supervised learning.

Linear discriminant analysis Linear discriminant analysis (LDA) is a supervised method that

is applied to maximize the separability between groups by projecting the data X ∈ Rm×n onto

a new axis to simultaneously maximize the distance between the class means µk and minimize

the variation within the classes Ck [111]. The following description of the LDA is based on the

presentations in [111], [112]. Suppose we have a two-class problem with classes C0, C1 and each

data point x ∈ C0 ∪ C1 is in the disjoint union of these classes. There are n0 data points in class

C0 and n1 data points in class C1, with n0 + n1 = n. Let µ0 and µ1 be the mean vectors of those

classes. Let xj ∈ Rm with j = 1, ..., n be the different data points. Then, we can consider any unit

vector v ∈ Rm and pj = vTxj the projection of the xj on the line with the unit vector, Figure 3.2.

Figure 3.2: The projection pj of data points xj along unit vector v

.

This projection does not change the separability of the data points. Then, the projected means

of the two classes can be written as,

µ̂0 =
1

n0

n0∑
xj∈C0

vTxj = vTµ0, (3.3)

and

µ̂1 =
1

n1

n1∑
xj∈C1

vTxj = vTµ1. (3.4)

A simple way to measure the distance between the points is to measure the distance between these
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means. However, to obtain a good measure to separate groups of data, the LDA also considers the

variances σ̂0, σ̂1 of the two classes,

σ̂0 =
∑

xj∈C0

(pj − µ̂0)
2, (3.5)

and

σ̂1 =
∑

xj∈C1

(pj − µ̂1)
2. (3.6)

Then, LDA aims to maximize the means of groups and minimize the variance within groups by

maximizing J(v),

J(v) =
(µ̂0 − µ̂1)

2

σ̂0 + σ̂1
. (3.7)

The maximization of the means can be rewritten using the between-class scatter matrix

M = (µ0 − µ1)(µ0 − µ1)
T ∈ Rm×m. M is square, symmetric and positive semidefinite, with

rank(M) = 1 and, hence, M only has one positive eigenvalue. Then,

(µ̂0 − µ̂1)
2 = (vTµ0 − vTµ1)

2

= vT (µ0 − µ1) · (µ0 − µ1)
T v

= vTMv.

The minimization of the variance can be reformulated utilizing the within-class matrix Sj for every

class c ∈ {0, 1}, which is defined as Sc =
∑

xj∈Cc
(xj − µc)(xj − µc)

T ∈ Rm×m. The variance σc of

each class can be formulated as

σc =
∑

xj∈Cc

(pj − µ̂c)
2

=
∑

xj∈Cc

(vTxj − vTµc)
2

=
∑

xj∈Cc

vT (xj − µc)(xj − µc)
T v

= vT
∑

xj∈Cc

(xj − µc)(xj − µc)
T v

= vTScv.

Thus, the total within-class scatter is

σ0 + σ1 = vTS0v + vTS1v = vT (S0 + S1)v = vTSwv, (3.8)
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where Sw = S0 + S1. The matrix Sw ∈ Rm×m is also square, symmetric and positive semidefinite.

In summary, the following optimization problem needs to be maximized,

max
v

vTMv

vTSwv
(3.9)

s.t.‖v‖ = 1.

Logistic Regression Logistic regression (LR) is a discriminative method which models the

posterior probability distribution P(y|x), of the target label y given the features xi of a data point

x ∈ Rm. The following description of the LR method is based on the presentations in [113],

[114]. The principles of LR rely on the linear regression method, which aims at modeling linear

relationships in data by determining the best fitting linear model

ŷ = b0 + b1 · x1 + b2 · x2 + ...+ bm · xm, (3.10)

through adjusting the regression coefficients b0, ..., bm. However, for a classification problem, the

target variables are discrete categorical classes and not continuous values. Hence, the LR aims to

model the probability of a data point belonging to a class Cc. To obtain probabilities between 0

and 1, the logistic function,

f(x) =
1

1 + e−x
, (3.11)

is applied. Leading to the following probability distributions for class C1,

P(y = 1|x1, ..., xm) =
1

1 + e−(b0+b1x1+...+bmxm)
, (3.12)

and class C0,

P(y = 0|x1, ..., xm) = 1− 1

1 + e−(b0+b1x1+...+bmxm)
. (3.13)

To acquire the regression coefficients b = b0, ..., bm, the Maximum Likelihood Estimation, a sta-

tistical method to estimate the parameters of a mathematical model, is applied. Therefore, a

probability distribution for the class C1 is assumed, and then a likelihood function L is defined.

This function calculates the probability that given the features xi and the LR model, x ∈ C1

will be observed. The likelihood function L is then optimized to find the best fitting regression

coefficients b that obtain the maximum sum of L for each data point in the training set. Hence,
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the likelihood function L for LR is given as

L(b) =
∏
yi=1

1

1 + e−bxi
·
∏
yi=0

(
e−bxi

1 + e−bxi

)
. (3.14)

Taking the logarithm and simplifying the function, the log-likelihood function l is obtained,

l(b) =

m∑
i=1

yibxi − log
(

1

1 + ebxi

)
. (3.15)

Several algorithms can be applied to maximize the log-likelihood by determining the best fit-

ting regression coefficients b [114]. In this work, the limited-memory Broyden-Fletcher-Goldfarb-

Shannon algorithm is applied, which is a quasi-Newton method to approximate the Broyden-

Fletcher-Goldfarb-Shannon algorithm using only limited computer memory [115].

Ridge logistic regression Ridge logistic regression (RR) extends the LR method by penalizing

the complexity of the resulting model. Therefore, an additional penalty parameter λ > 0 is added

to the LR function, and an additional λ‖b‖2 is added to the log-likelihood [64], [116]. In the RR

optimization, coefficients are constrained by the square of the Euclidean norm of the coefficients.

Hence, the penalized log-likelihood is

lr(b) = l(b)− λ

2

m∑
k=1

b2k, (3.16)

where b ∈ Rm are the regression coefficients and the penalty parameter λ controls the amount of

shrinkage towards zero [117]. The intercept b0 is omitted from the penalty term, resulting in an

average predicted probability that equals the observed event rate [117].

Support vector machines Support vector machines (SVMs) attempt to find a separating hy-

perplane between two classes by transforming the features xi of a data point x ∈ Rm into a higher

dimensional space [12]. The following description of the SVM method is based on the presentations

in [118], [119]. A linear hyperplane can be written as

wTx+ b = 0, (3.17)

where w is the orthogonal vector to the hyperplane, and b ∈ Rm is the distance of the hyperplane

from the origin along w ∈ Rm. A margin can be defined for the data point x ∈ Rm. A true positive

x has a margin of (w · x + b) > 0, and a true negative x has a margin (w · x + b) < 0. Then, the
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margin mi, the distance between a data point with features xi and the decision boundary, can be

calculated, utilizing the Euclidean norm ‖w‖2 =
√

w2
1 + w2

2 + ...+ w2
n of the orthogonal vector,

mi =
wTxi + b

‖w‖2
. (3.18)

The data points x nearest to the decision boundary are called support vectors. The decision bound-

ary of an SVM is defined as a linear combination of these support vectors. The class predictions

of a linear binary classifier for a data point are then,

ŷ =

0, w · x+ b < 0,

1, w · x+ b ≥ 0.
(3.19)

For a hard margin linear SVM classifier, the maximization of the margin leads to a quadratic,

constrained optimization problem to find the optimal parameters w and b,

min
w,b

1

2
‖w‖22 (3.20)

s.t. y(wTx+ b) ≥ 1 for x ∈ Rm

However, data points from different classes can often not be separated by a linear decision boundary.

Therefore, kernel functions K(·, ·) : Rn×Rn → R are applied for non-linear SVM. These are used to

transform the input data into a high-dimensional feature space where the data is linearly separable.

3.1.3 Experimental setup

The experimental setup describes how the ML algorithms were developed and optimized in this

work. The experiments were performed using the programming language Python [120], and the

Python libraries scikit-learn [121] (version 1.0.2) and scipy [122] (version 1.10.1).

Optimization In the optimization step, the internal parameters of the ML algorithms are up-

dated to improve the model accuracy. Data imbalance is an important characteristic of newborn

screening data due to the low prevalence of IMDs and the resulting low numbers of positive patients.

Several methods exist to handle large data imbalances [123]. However, the newborn screening data

lies on the spectrum of very high imbalance data sets. In this work, data imbalance is addressed by

adapting the internal loss function of an ML method. This procedure will be shown as an example
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in LR, where the logistic loss function L is used to calculate the loss,

L =
1

N

N∑
i=1

−(yi · log(ŷi) + (1− yi) · log(1− ŷi)), (3.21)

where yi is the actual value of the target class and ŷi is the predicted probability of the target

class. To overcome this data imbalance, a weighted logistic loss function Lw with class weight

parameters w0 and w1 for the two classes is applied,

Lw =
1

N

N∑
i=1

−(w1(yi · log(ŷi)) + w0((1− yi) · log(1− ŷi))). (3.22)

In this work, the majority class weight parameter w0 was set to 1. A grid search optimization

strategy on the hyperparameters was applied on the training data set to find the optimal minority

class weight parameter w1, which optimized the two objectives, maintaining 100% sensitivity Sn

and maximizing specificity Sp,

Sn =
TP

TP+ FN
and Sp =

TN
TN+ FP

(3.23)

with true negatives (TN), false positives (FP), false negatives (FN), and true positives (TP). For

every algorithm and data set, the class weight parameter w1, which achieved 100% sensitivity and

the highest specificity, was chosen.

Validation For model validation, the algorithms were first evaluated on training and validation

set performance, with both data sets randomly split into an 80% training and 20% validation set.

The classification performance on both data sets was then evaluated with the confusion matrix C,

C =

TN FP

FN TP

 . (3.24)

Subsequently, ten repeats of five-fold cross-validation were applied to evaluate the reliability of the

results and estimate the effect of a single train and validation split.



42 CHAPTER 3. DATA-BASED MODELING IN NEWBORN SCREENING

3.2 Data-based newborn screening for IVA

This section is based on and extends the published work of Zaunseder et al [31] on ML-based

classification for isovaleric aciduria (IVA) in newborn screening data. IVA is one of the target

conditions in regular newborn screening and has faced two challenges in recent years. First, due

to the increasing use of pivmecillinam in urinary tract infections in pregnant women, there is a

rising number of false-positive screening results [24]. Second, since the start of newborn screening

for IVA, individuals with an attenuated, possibly benign, disease variant (“mild” IVA [4], [25]) are

identified. Hence, this section shows new data-based approaches to overcome these two challenges.

It is divided into a description and analysis of the IVA data set, as well as the classification results

on the two-fold classification (normal, IVA) and the three-fold classification (normal, mild IVA,

classic IVA). Finally, the developed methods are validated on a previously unknown IVA test data

set.

3.2.1 Newborn screening data set – IVA

Data lies at the core of data-based modeling, hence, the quality of the data is of great value for

the development and performance of the methods. In the following, the data set composition and

applied data cleaning steps are described in detail.

Newborn screening data composition and extraction

The anonymized data used for this work was screened at the newborn screening laboratory at

UKHD between 2002 and 2021. The laboratory screens approximately 20% of the newborns in

Germany (i.e., about 140,000 newborns per year) [5]. For this study, the data extraction was

restricted to all profiles of newborns with suspected IVA and unremarkable newborn screening

profiles. Hence, newborn screening profiles with confirmed or suspected positive diagnoses for

other newborn screening conditions were excluded. The suspected IVA profiles contained newborns

with subsequently confirmed mild IVA and classic IVA, as well as subsequently excluded newborn

screening profiles, the false positives. The data extraction for the set of normal newborn screening

profiles was restricted to first screenings of newborns of at least 32 weeks of gestation, at least

36 hours of life age at sampling, and unremarkable newborn screening reports (hereafter called

’normal’). In total, the newborn screening data contained newborn screening profiles of 2, 237, 142

newborns, including 145 cases with suspected IVA. For every newborn screening profile, the data
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set consisted of 60 variables, which contained 52 metabolite concentrations, and eight additional

variables, such as birth weight, sex, gestational age, birth year, age at blood sample, age at sample

arrival, and, if given, the suspected and the subsequently confirmed or excluded diagnosis.

NBS profiles excluded:
  -  Birth weight not 1000 – 6000 g: n=1396
  -  Gestational age not 32 – 42 weeks: n=6
  -  Age at sample arrival not 0 – 20 days: n=958
  -  Age at sampling not 36 – 120 hours: n=54,811
  -  Metabolites not 0 – 50,000 μmol/l: n=4
 
 

Total 2,106,960 NBS profiles including:

2,106,829 normal NBS profiles
103 NBS profiles false positive for IVA
22 newborns with mild IVA
6 newborns with classic IVA

Cleaning data entries:
  -  NBS profiles with unclear/unknown values and
unsettled diagnosis: n=73,877

 

2,237,142 NBS profiles with

- 60 features (52 metabolites,
8 additional variables)

Metabolites excluded:
 - More than 100,000 missing values: 'SUCC-MS',
'IRT', 'GALT', 'Gln'
 

NBS Profiles screened at Heidelberg University Hospital between 2002 and 2021

EXCLUDED DATA

2,236,997 normal NBS
profiles with

- gestational age ≥ 32 weeks
- age at sampling ≥ 36 hours

DATA
CLEANING

DATA
EXTRACTION

145 NBS profiles with
suspected IVA

FULL DATA
SET

SUSPECTED
DIAGNOSIS
DATA SET

2,237,142 NBS profiles with

- 56 features (48 metabolites,
8 additional variables)

2,163,265 NBS profiles with

- 56 features (48 metabolites,
8 additional variables)

Figure 3.3: Data extraction and data cleaning flow chart for newborn screening data for
IVA. Figure adapted from Zaunseder et al [31].

Newborn screening data cleaning

A data set’s data quality can be reduced due to several reasons, such as manual input errors, errors

from automatic scans, and data input format errors. Hence, data cleaning is of tremendous impor-

tance to ensure high data quality and remove artifacts within the data, Figure 3.3. The newborn

screening data quality was evaluated based on the data set entries’ completeness, correctness, and

plausibility.

First, the completeness of the metabolite concentrations was investigated. Therefore, metabolic

features with missing values were identified. After consulting with clinical experts, the metabolic

features glutamine, succinylacetone, immune reactive trypsin, and galactose-1-phosphate uridyl-

transferase were removed from the data set. These metabolites had more than 100, 000 missing

values, and no connection between them and IVA was reported. Second, the correctness of the
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newborn screening data was investigated by evaluating the non-numeric data entries. Data entries

with non-interpretable values such as ’?’, ’ ’, ’U’, and ’unknown’ were removed. Third, the plau-

sibility of the data set entries was analyzed, and only data sets with plausible numeric values in

the following ranges: Birth weight: 1000 − 6000 g; gestational age: 32 − 42 weeks, age at sam-

pling: 36− 120 hours, age at sample arrival: 0− 20 days, and metabolites: 0− 50, 000µmol/l were

included, Figure 3.3. For the algorithms’ numerical readability, the categorical variable sex was

encoded as ’0’ for female and ’1’ for male newborns. The total newborn screening data set, named

the ’full data set’, contained 2, 106, 090 newborn screening profiles. The full data sets comprised

131 cases with the suspected diagnosis IVA, including 28 subsequently confirmed IVA cases (22

mild, 6 classic) and 103 confirmed false positives. This subset was named the ’suspected diagnosis

data set’.

3.2.2 Data analysis

Data analysis and statistical methods aim to reveal knowledge within a data set’s feature space. For

the IVA newborn screening data, first, the mean and standard deviation of the measured metabo-

lites in dried blood samples were compared for the groups of normal and false-positive newborns

as well as newborns with mild and classic IVA, Supplementary Table B.2. In newborn screening,

isovalerylcarnitine (C5) is the primary biomarker to identify newborns with IVA. It is until now

known to be the best metabolite to discriminate mild and classic IVA in larger cohorts [4], [25]. In

the IVA newborn screening data, the mean of the measured C5 concentration was highest in new-

borns with classic IVA (12.6±5.22 µmol/l) and lowest in newborns with normal newborn screening

profiles (0.1±0.07 µmol/l) but very similar in newborns with mild IVA (2.6±1.16 µmol/l) and

false-positive newborns from newborn screening (2.6±2.06 µmol/l), Figure 3.4 and Supplementary

Table B.2.

Then, an ANOVA on the full and the suspected diagnosis data sets was performed with p-value

< 0.05, Table 3.1. For both data sets, the ANOVA was performed with the target classes ’normal’

and ’IVA’. The ANOVA confirmed the known biomarker C5 as a significant feature in the full

newborn screening data set but not in the suspected diagnosis data set, Table 3.1. This underlined

that the newborn screening profiles in the suspected diagnosis data set could not be accurately

classified solely based on their C5 concentration, which is used in regular newborn screening. In

the suspected diagnosis data set, other metabolites such as Trp and birth year were identified as

significant features.
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A  Trp B  Trp

C  Birth year D  C5

Figure 3.4: Box plot of newborn screening data for tryptophan (Trp) on (A) the full data
set and (B) the suspected diagnosis data set and box plots of (C) birth year and (D)
isovaleryl carnitine (C5) for the groups normal, false positive (FP), mild IVA and classic
IVA. Figure adapted from Zaunseder et al [31].

The comparison of the mean and standard deviation of the metabolites showed that the groups

of false positives had the highest mean value of Trp (102.8±34.42 µmol/l) from all groups. When

comparing the box plots of the full and the suspected diagnosis data set, the normal and false-

positive newborns showed higher Trp concentration values than newborns with IVA, Figure 3.4.

Furthermore, the birth year was identified as a significant feature for both full and suspected

diagnosis data sets and showed an accumulation of data points since 2016, Figure 3.4. This is
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highly correlated with the increasing use of pivmecillinam, leading to an increase in false-positive

screening results since 2016 [24].

Table 3.1: ANOVA results. All presented features have a p-value < 0.05. All methods
were applied to (A) the full newborn screening data set and (B) the suspected diagnosis
data set. For ANOVA, five features with the largest F values with binary target variable
normal or IVA are presented. Metabolite abbreviations can be found in Table 2.1.

(A) Full newborn screening data set (B) Suspected diagnosis data set

Feature F value Feature F value

C5 97909.21 Trp 38.86

C16:1OH 28.17 Birth year 24.37

Age at blood sample 15.74 C14OH 22.55

Val 10.28 MeGlut 20.64

Birth year 8.43 His 18.22

Moreover, the newborn screening data was analyzed using data analysis methods to detect

patterns and non-linear relationships within the data. The dimensionality reduction with LDA

revealed a pattern within the newborn screening data. The data points of the resulting LDA

dimensions were colored depending on their membership to the groups of normal, false-positive,

mild IVA, and classic IVA newborn screening profiles. Figure 3.5 shows that a strict separation of

clusters of the full data set was not possible based on the LDA dimensions. However, the individuals

in each patient group were closely together. In particular, the newborns with classic IVA (stars)

in the LDA dimensions had large negative values in the LDA 1 dimension compared to the other

groups, Figure 3.5. Figure 3.5 shows that the suspected diagnosis data set was transformed into

LDA dimensions, revealing three distinct clusters for groups of false positives, mild, and classic

IVA. The group of newborns with classic IVA had values larger than 5.0 in the first LDA dimension,

whereas the values for the other two groups were centered around 0.0. The second LDA dimension

separated these two groups well, with an LDA 2 value of approximately 1.0.
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A  FULL DATA SET B  SUSPECTED DIAGNOSIS DATA SET

Figure 3.5: Dimensions from linear discriminant analysis (LDA) are presented. Normal
newborn screening profiles are presented in gray (circle) and false-positive newborns in
blue (cross), as well as newborns with mild IVA in purple (triangle) and with classic
IVA in green (star) for (A) the full newborn screening data set and (B) the suspected
diagnosis data set. Figure adapted from Zaunseder et al [31].

3.2.3 Machine learning for IVA classification

The application of ML methods for the classification of IVA from newborn screening data aims

at detecting complex relationships within the large feature space of the data set to model the

classification process enabling the classification of new and unknown data. For improving newborn

screening for IVA, a new machine learning classification method based on LDA dimensions is

presented in the following section.

LDA-LR Method

The application of adapted methods, such as constructing new features with arithmetic operations

or combining several methods, has significantly enhanced the performance for several newborn

screening conditions, surpassing the results of the application without the adaption [61]. The data

analysis with LDA revealed a good separation of false positives, mild, and classic IVA clusters in

the data sets, Figure 3.5. The proposed new method, a combination of LR, RR, and SVM with

LDA dimensions used as inputs are named LDA-LR, LDA-RR, and LDA-SVM. The workflow used

for all three methods is presented here as an example of the LDA-LR method in Figure 3.6. First,

the newborn screening data was split into 80% training and 20% validation data. Second, an LDA

was trained on the training data, and then the LDA dimensions created by the model were used as

input to train an LR classifier. The resulting model was evaluated to estimate the performance of
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the training data. Third, the features of the validation data were transformed into LDA dimensions

using the trained LDA and then these were used as input to the trained LR classifier. The labels

of the validation data were then utilized to evaluate the LDA-LR method on the validation data

set.

Training data

Validation data

LDA

NBS DATA

Trained
LDA

LR Trained
LR

Trained
LDA

Trained
LR

Features &
Labels

Features

Labels

Model
evaluation

LDA-LR METHOD

Model
evaluation

Figure 3.6: The workflow for the LDA-LR method shows the training process with
features and labels of the training data and the evaluation of the trained methods on the
validation data. Figure adapted from Zaunseder et al [31].

ML classification results

Each ML algorithm was applied to the full and suspected diagnosis data set using the digital-

tier strategy, Figure 3.1. The algorithms were evaluated on different feature subsets with varying

sizes, which contained significant features (p - value < 0.05) according to ANOVA, starting with

one feature. After consultation with clinical experts, the birth year was excluded as a feature,

due to its high correlation with the increasing use of pivmecillinam [24] leading to an increase in

false-positive screening results. For ML classifications, the target class termed ’normal’, included

normal newborn screening profiles and newborn screening profiles, which were false positives in

newborn screening. The target class termed ’IVA’ included newborns with mild and classic IVA.

The evaluation results are presented in Table 3.2.

LR was the only method obtaining 100% sensitivity on the full data set. However, this method

only slightly reduced the number of false positives in the training and validation set compared to

traditional newborn screening.
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Table 3.2: Evaluation results of ML methods on (B) the full data set and (C) the sus-
pected diagnosis data set compared to (A) the traditional newborn screening. Methods
are applied to all 53 features, five features selected with ANOVA (Trp, C14OH, MeGlut,
His, Asa), or LDA dimensions. The methods were evaluated by false negatives (FN) and
false positives (FP) on the training and validation data set.

Method Features (number) Train CV Validation

FN FP Sn Sp FN FP

(A) TRADITIONAL NEWBORN SCREENING

Newborn screening C5 0 73 100 99.9951 0 30

(B) FULL DATA SET

LR all (53) 0 65 100 99.9958 0 27

RR all (53) 6 20,065 96.2143 99.8587 3 5,005

SVM all (53) 1 35 97.9286 99.9975 0 9

(C) SUSPECTED DIAGNOSIS DATA SET

LR ANOVA (5) 0 35 100 99.9978 0 6

RR ANOVA (5) 0 35 100 99.9979 0 6

SVM ANOVA (5) 0 37 100 99.9979 0 6

LDA-LR LDA 0 9 100 99.9981 0 10

LDA-RR LDA 0 22 100 99.9985 0 12

LDA-SVM LDA 0 99.2857 99.9985 12 0 10

For the suspected diagnosis data set, the digital-tier strategy, all considered methods could

maintain 100% sensitivity in the training and validation set while reducing the total amount of

false positives. Here, the LDA-RR and LDA-LR methods obtained the highest specificity, 99.9981%

and 99.9985% compared to 99.9951% in traditional newborn screening. The evaluation of LR, RR,

and SVM on the reduced feature set showed a reduction of the false-positive rate of 54−56% from

the 103 false positives in traditional newborn screening. Accumulating the classification results of

the training and validation data set, the LDA-LR method reduced the false-positive rate by nearly

70%, from 103 to 19 false positives.
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3.2.4 Machine learning for IVA severity

Incorporating IVA into the newborn screening disease panel led to the identification of individ-

uals with an attenuated, possibly asymptomatic, mild disease variant in contrast to classic IVA

patients [4], [25]. In this work, ML methods were applied for the first time to investigate if these

methods could be utilized to classify newborn screening profiles into three distinct groups: nor-

mal, mild IVA, and classic IVA. The normal group encompassed individuals with normal profiles

and false-positive results within the full data set, while the suspected diagnosis data set solely

comprised false-positive cases. For both data sets, an ANOVA was performed using three target

classes, Table 3.3. This showed that on both data sets, C5 was the significant feature with the

highest F values. C5 was followed by Trp, MeGlut, birth year, and C16:1OH in the suspected

diagnosis data set, Table 3.3. The high C5 value correlated with the fact that classic IVA patients

tend to have higher C5 values than mild IVA patients.

Table 3.3: ANOVA results. All presented features had a p-value< 0.05. All methods were
applied to (A) the full newborn screening data set and (B) the suspected diagnosis data
set (B). For 3-class ANOVA, five features with the largest F values with target variable
normal (false positives for (B)), mild IVA, and classic IVA are presented. Metabolite
abbreviations can be found in Table 2.1.

(A) Full newborn screening data set (B) Suspected diagnosis data set

Feature F value Feature F value

C5 90027.83 C5 57.75

C16:1OH 35.23 Trp 19.72

Tyr 17.29 MeGlut 17.00

Val 13.61 Birth year 13.30

C18:1OH 12.90 C16:1OH 13.06

The same experimental setup was used for the ML evaluation as described in the methodological

background section 3.1. The algorithms performing best on the disease severity classification were

evaluated with a mean confusion matrix of 100 independent runs comparing the predicted and

confirmed diagnosis on both data sets, Figure 3.7. On the full data set, LR, on average, predicted

5.9 of 6 newborns with classic IVA and all newborns with mild IVA correctly. However, it falsely

predicted on average 88.8 normal newborn screening profiles as mild IVA and 5.8 normal newborn

screening profiles as classic IVA, Figure 3.7. On the other hand, applying RR to the suspected
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diagnosis data set reduced the number of false positives on average to 17.43. At the same time,

nearly all newborns with mild IVA (21 of 22) and newborns with classic IVA (5.7 of 6) were

predicted correctly, Figure 3.7. With the presented LDA-LR method, the overall number of false-

positive newborns was reduced to 9.85, while newborns with mild and classic IVA were predicted

similarly well.
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Figure 3.7: Mean confusion matrix of 100 independent runs of (A) LR classification on
full data set, as well as (B) RR, and (C) LDA-LR classification on suspected diagnosis
data set for normal, mild, and classic IVA are presented. Figure adapted from Zaunseder
et al [31].

3.2.5 Proof of concept on IVA test data set

For the proof of concept of the developed methods for improved IVA classification, the methods were

evaluated on an additional test data set from the UKHD. This test data set contained 73 newborn

screening profiles screened in Heidelberg between 01.12.2021 and 31.12.2022 with suspected IVA.

The test data set was curated based on the same data cleaning and exclusion criteria established

in section 3.2.1 for the original suspected diagnosis data set, which will be called ’original data set’

hereafter. Five newborn screening profiles had to be excluded, resulting in 68 newborn screening

profiles being included in the test data set. This test data set contained one mild and one classic

IVA patient, corresponding to 3% true positives in the test data set, compared to 20% (28 of 131

newborn screening profiles) in the original data set. For the proof of concept of the LDA-LR,

LDA-RR, and LDA-SVM method, first, the trained LDA was applied to the test data set. Then,

these data points were compared in the LDA dimension to the original data set, Figure 3.8.
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Figure 3.8: Dimensions from LDA labeled with false-positive newborns in green (circle),
newborns with mild IVA in grey (triangle), and with classic IVA in red (star) for (A) the
original data set and (B) the test data set.

This comparison showed that the classic IVA patient from the test data set had a low value

(-7.66) in the LDA 1 dimension, such as the IVA patients in the original data set, which had a

mean LDA 1 value of −9.64 ± 1.39, Figure 3.8. Moreover, the false-positive newborn screening

profiles in the test data set had a higher LDA 1 mean value (1.02± 1.57), which was in agreement

with the mean value from the false positives in the original data set (1.30± 0.96). Also, the mild

IVA patient showed a higher but similar LDA 1 value (3.55) compared to the mean of the LDA 1

value of the mild IVA patients in the original data set (1.59± 1.05). This led to a clear separation

of the classic IVA patients and the other two groups based on the LDA 1 dimension in both data

sets. However, the LDA 2 value was used to visually distinguish the mild IVA and false-positive

newborn screening profiles in the original data set, with the mean of the LDA 2 value of mild

patients being 1.61± 0.86 and of false positives being −1.53± 1.02. This was different in the test

data set. Here, the LDA 2 value of the false positives was similar (−1.97±1.01), whereas the LDA

2 value of the mild IVA patient was -2.88.

Based on the trained LDA, the LDA-LR, LDA-RR, and LR-SVM methods were applied to the

test data set. The results presented in Table 3.4 show that tall three methods were able to classify

the classic IVA patient and 74 - 80% of the formerly false-positive newborn screening profiles cor-

rectly. However, the mild IVA patient was not correctly identified and classified as unremarkable

by all three algorithms.
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Table 3.4: Evaluation results of ML methods on the test data set. Methods are applied to
the LDA dimensions. The methods were evaluated by true positives (TP), true negatives
(TN), false negatives (FN), and false positives (FP) on the test set.

Method Features (number) TP TN FN FP

TEST DATA SET

LDA-LR LDA dimensions 1 51 1 15

LDA-RR LDA dimensions 1 49 1 17

LDA-SVM LDA dimensions 1 53 1 13

This misclassification was probably due to the assignment of the LDA 2 value in the LDA.

Reasons for the difference in LDA 2 value and, therefore, the incorrect classification could lie

in the change of feature distributions over time. To analyze this effect the distributions of all

measured metabolite concentrations in the full data set were compared between different birth

years, Figure 3.9. Figure 3.9 presents box plots of the metabolite concentrations (µmol/l) of Asa

and Trp per year from 2011 to 2021. For both metabolites, the mean values of year 2020 and 2021

(Asa: 2.93± 2.1 µmol/l, Trp: 112.25± 30.8 µmol/l) were significantly higher (Wilcoxon rank sum

test: p < 0.0001) than the mean values from years 2005 to 2019 (Asa: 0.26 ± 0.11 µmol/l, Trp:

73.73 ± 252 µmol/l ) of all newborn screening profiles. For further analysis, the mean values of

the different groups of newborn screening profiles were compared to see whether the trend was

also reflected in the different patient groups. A comparison of the Trp levels revealed that the

levels in the test data set were higher in the false positives (127.63 ± 28.54 µmol/l), mild IVA

(224 µmol/l), and classic IVA (123 µmol/l) than compared to the original data set (false positives:

102.8 ± 34.42 µmol/l, mild IVA: 63.6 ±13.89 µmol/l, classic IVA 51.55 ±9.78 µmol/l). The

metabolite concentration values of Asa revealed a similar trend, as the mean values in the test data

set for the group of false positives (3.76±2.12 µmol/l), mild IVA patients (0.8 µmol/l), and classic

IVA patients (1.39 µmol/l) were significantly (Wilcoxon rank sum test: Asa: p < 0.0001 and Trp:

p < 0.0001 ) higher than the mean values in the original data set (false positives: 2.05±2.34 µmol/l,

mild IVA: 0.26 ±0.07 µmol/l, classic IVA 0.21 ±0.08 µmol/l). As the other two groups each

consisted of one patient in the test data set, no statistical test was performed. Therefore, the

training data from 2020 and 2021 should be particularly valuable for the ML method. However,

although 55% (57/103) of the false-positive screened newborns were born between 2020 and 2021,

no mild or classic IVA patients were screened in these two years. This unequal distribution of the
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different patient groups in the data sets probably led to the ML algorithm’s incorrect classification

of the mild IVA patient.

Figure 3.9: Boxplots of yearly concentration (measured in µmol/l) of argininosuccinate
(Asa) and tryptophan (Trp) in the full data set compared between years 2011 and 2021.
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3.3 Data-based newborn screening for GA1

Glutaric aciduria type 1 (GA1) has been one of the target conditions in regular newborn screening

in Germany since 2005 [3]. The primary marker for GA1 is glutarylcarnitine (Glut). Newborn

screening for GA1 is suffering from high numbers of false-positive screening results. Renal insuffi-

ciency due to congenital or acquired renal disease in newborns is one known factor for false-positive

screening results since it delays the excretion of Glut via the kidneys, which increases the Glut

concentration in plasma [60]. Hence, this work aims to improve newborn screening for GA1 by re-

ducing the false-positive rate while maintaining 100% sensitivity using ML algorithms that consider

several of the measured metabolite concentrations.

3.3.1 Newborn screening data set – GA1

The newborn screening data set for GA1 was obtained from the newborn screening laboratory

at UKHD. The UKHD data protection officer checked the data set for anonymization. Further,

the data extraction and evaluation were checked to be in accordance with the European GDPR.

Similar to the newborn screening data set for IVA, section 3.2.1, this data set consisted of 60

variables (52 metabolite concentrations, birth weight, sex, gestational age, birth year, age at blood

sample, sample arrival, and specification, and if given: suspected and the subsequently confirmed

diagnosis). The data set was restricted to first screenings of newborns of at least 32 weeks of

gestation, at least 36 hours of life age at sampling, and unremarkable newborn screening reports

(hereafter called ’normal’). Additionally, all profiles of newborns with suspected GA1, subsequently

confirmed (’GA1’) or excluded (’false positives’) were extracted. The newborn screening data set

comprised newborn screening profiles of 1.055.885 newborns (including 603 cases with suspected

GA1, 9 with confirmed GA1) born between 2014 and 2022. Data cleaning of the extracted data

set was performed by defining the following ranges to exclude data sets with implausible values:

Birth weight: 1000 − 6000 g; gestational age: 32 − 42 weeks, age at sample arrival: 0 − 20 days,

and metabolite concentrations: 0−50, 000 µmol/l. Furthermore, categorical values were converted

to numerical values. The metabolite variables, Glutamine, succinylacetone, and immune reactive

trypsin, were removed from the data set due to the large number of missing values (>100,000)

as they were not measured continuously within the time frame. Finally, the full data set applied

for the data analysis (hereafter “full data set”) contained 1,025,953 newborn screening profiles

(including 494 cases with the suspected diagnosis GA1, hereafter: “suspected diagnosis data set”).
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The suspected diagnosis data set contained nine subsequently confirmed GA1 cases, including six

low excretors and three high excretors as well as 485 confirmed false positives. Note that the

suspected data set was reduced disproportionately from 603 to 494 newborn screening profiles.

The main reason for this was that the initial suspected GA1 data set included premature-born

newborns and profiles with incomplete first or second screening cards.

Feature sets

After the data analysis, the feature set was prepared based on the following procedure. First, all

input features used in the experimental setup were normalized between 0 and 1 to allow for direct

comparability of the features. Then, feature selection techniques were applied. Hence, besides

using all features, the algorithms were also applied to different data subsets that only consisted

of features with significantly different values in the different groups of newborns (ANOVA p-value

< 0.05). To improve newborn screening for GA1, each algorithm was applied to the full and

suspected diagnosis data set (digital-tier strategy).

3.3.2 Data analysis

Statistical methods were applied to analyze the large GA1 data set. First, the mean and standard

deviation of the measured metabolites in dried blood samples were compared for the three groups

of normal newborn screening profiles, false-positive newborn screening profiles, and newborns with

GA1, Supplementary Table B.3.

Table 3.5: ANOVA results with five features that have a p-value < 0.05 with binary target
variable normal or GA1 are presented. All methods were applied to (A) the full newborn
screening data set and (B) the suspected diagnosis data set. Metabolite abbreviations
can be found in Table 2.1.

(A) Full newborn screening data set (B) Suspected diagnosis data set

Feature F value Feature F value

Glut 17270.68 Glut 757.69

Hci 17.42 C10 10.07

C5 13.18 C14:1 5.71

Glu 12.55 C8 5.55

C18:1 10.07 C12 5.24
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In newborn screening for GA1, Glut is the primary biomarker to identify newborns with GA1.

A comparison of the Glut values revealed that the Glut mean was significantly higher in newborns

with GA1 (2.698±1.548 µmol/l) than in newborns with suspected but not confirmed GA1 (0.526±

0.106 µmol/l), and newborns with normal NBS profiles (0.157 ± 0.057 µmol/l), Supplementary

Table B.3. The ANOVA on the full and the suspected diagnosis GA1 data sets was performed

with p-value < 0.05, Table 3.5.

ANOVA identified Glut as a significant feature in the full and the suspected diagnosis data set,

Table 3.5. However, further significant features were present in the full data set, while different

features were present in the suspected diagnosis data set, Table 3.5 andFigure 3.10.

A  Glut B  Hci C  C10

Figure 3.10: Boxplots of significant features (A) glutarylcarnitine (Glut), (B) homoc-
itrulline (Hci), and (C) decanoylcarnitine (C10) compared for the three groups of normal
newborn screening profiles, false-positive (FP) newborn screening profiles, and newborns
with GA1.

The box plot of the Glut feature showed a distribution of high Glut values in newborns with

GA1 and elevated but lower values for the suspected diagnosis profiles, Figure 3.10. The mean of

decanoylcarnitine (C10) was higher in the suspected diagnosis data set (0.19±0.11 µmol/l) than in

the normal data set (0.07 ± 0.03 µmol/l) and in patients with GA1 (0.07 ± 0.03 µmol/l), Table B.3

and Figure 3.10. The homocitrulline (Hci) values were on average higher (2.25 ± 1.77 µmol/l) in

the false positives than in the normal newborn screening profiles (1.66 ± 0.78 µmol/l) but lower
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than in newborns with GA1 (2.72 ± 1.41 µmol/l), Figure 3.10.

Furthermore, dimensionality reduction with LDA was applied to both data sets to reveal pat-

terns within the large newborn screening data set, Figure 3.11. On the full data set, three groups

of normal, false positive, and newborns with GA1 could be visually identified, however, these

groups were overlapping and did not offer a clear distinction, Figure 3.11. Both groups overlapped

completely on the suspected diagnosis dataset, and no visually distinct clusters could be identified,

Figure 3.11.

Figure 3.11: Dimensions from LDA dimensionality reduction presenting normal newborn
screening profiles in gray (circle) and false positive profiles in blue (cross) as well as
newborns with GA1 orange (star) for (A) the full newborn screening data set and (B)
the suspected diagnosis data set.

3.3.3 Machine learning for GA1 classification

The same experimental setup, optimization, and validation strategies as in the analysis of the

newborn screening data for IVA, described in section 3.1.3, were applied. The ML algorithms

under investigation were LR, RR, and SVM, the best-performing algorithms in comparative studies

on ML-based newborn screening, section 2.2. Table 3.6 presents the classification results of these

three algorithms on the full and suspected diagnosis data (digital-tier strategy).

Overall, for both the full data set and the suspected diagnosis data set, the best methods could

decrease the number of false positives while having no false negatives in the respective training

and validation data set, Table 3.6. For most algorithms, basing the evaluation on Glut and C10

led to the best results. On both data sets, the RR method performed worse than LR and SVM in

terms of overall false-positive rate reduction. SVM reduced the false positives by 82.06% on the

full data set and by 93.4% on the suspected diagnosis data set while having no false negatives.
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The LR using the features Glut and C10 presented the best-performing algorithm with respect

to specificity while minimizing the number of false negatives for both data sets. LR reduced the

number of false positives by 93.61% on the full data set and by 95.05% on the suspected diagnosis

data set. Although the LR and SVM algorithms showed no false negatives on a randomly stratified

split of the training and validation set, 5-fold cross-validation with stratified splitting revealed that

neither algorithm achieved 100% sensitivity.

Table 3.6: ML classification results for GA1 comparing (A) traditional screening results,
(B) the full data set, and (C) the suspected diagnosis data set. The best-performing
features were selected with ANOVA. The methods were evaluated by sensitivity Sn and
specificity Sp calculated from the mean results of ten repeats of 5-fold cross-validation
(CV), as well as the number of false positives (FP) and false negatives (FN) (real num-
bers are rounded up) for training and validation set. For the suspected diagnosis data
set, these evaluations were calculated based on the full data set to allow comparability
between both data sets.

Method Features Train CV Validation

FN FP Sn(%) Sp(%) FN FP

(A) TRADITIONAL NEWBORN SCREENING

Newborn screening Glut 0 388 100 99.9527 0 97

(B) FULL DATA SET

LR Glut, C10 0 26 99.11 99.9962 0 5

RR Glut, C10, C14:1 1 583 92.44 99.25 2 152

SVM Glut, C10 0 73 92.44 99.9987 0 14

(C) SUSPECTED DIAGNOSIS DATA SET

LR Glut, C10 0 19 86.67 99.9987 0 5

RR Glut, C10 0 51 84.67 99.9965 0 18

SVM Glut, C10 0 28 90.89 99.9981 0 5

The LR methods for the full and suspected diagnosis data set could be explicitly determined.

On the full data set, the best parameters for LR were β0 = −9.03, β1 = 68.16 and β2 = −9.04

with x̃ the normed ’Glut’ and ’C10’ concentrations of newborn x leading to the following decision

equation,

P(GA1 profile|X = x) =
1

1 + e−(−9.03+68.16x̃1−9.04x̃2)
. (3.25)

On the suspected diagnosis data set, the best parameters for LR were β0 = −0.65, β1 = 8.72
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and β2 = −6.77 with x̃ the normed ’Glut’ and ’C10’ concentrations of newborn x leading to the

following decision equation,

P(GA1 profile|X = x) =
1

1 + e−(−0.65+8.72x̃1−6.77x̃2)
. (3.26)

Since the cross-validation results for the algorithms did not obtain 100% sensitivity, another grid

search was applied for this. A 5-fold stratified cross-validation over the applied class weight param-

eter w0, w1 was used. The parameter w0 corresponding to the majority (’healthy’) class was set to

w0 = 1. The optimal parameter w1 corresponding to the minority class was searched in the interval

IF = [1, 50000] for the full data set and in the interval IS = [1, 500] for the suspected diagnosis

data set. The best-performing methods in terms of highest mean sensitivity and specificity are

presented in Table 3.7.

Table 3.7: ML classification results optimized for 100% sensitivity for GA1 on (B) the
suspected diagnosis data set compared to (A) the traditional newborn screening results.
The methods were evaluated by sensitivity Sn and specificity Sp calculated from the
mean results of ten repeats of 5-fold cross-validation (CV), as well as the number of false
positives (FP) and false negatives (FN) (real numbers are rounded up) on the training
and validation set. For the suspected diagnosis data set, these evaluations are calculated
based on the full data set to allow comparability between both data sets.

Method Features Train CV Val

FN FP Sn(%) Sp(%) FN FP

(A) TRADITIONAL NEWBORN SCREENING

Newborn screening Glut 0 388 100 99.9527 0 97

(B) SUSPECTED DIAGNOSIS DATA SET

RR Glut, C10 0 184 100 99.9809 0 51

LR Glut, C10 0 112 100 99.9889 0 35

SVM Glut, C10 0 129 100 99.9870 0 35

On the full data set, no method achieved 100 % sensitivity. Hence, only the results of the

suspected diagnosis data set are presented. By increasing the class weight w1 to values between

180 and 183, all three methods—LR, RR, and SVM—achieved 100% sensitivity in cross-validation.

However, this weight adjustment also decreased the specificity of all three methods. LR classifica-

tion had the best results with 114 false positives overall, while SVM had 135 false positives and
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RR had 195, as shown in Table 3.7. Consequently, the total false positives were reduced by 59.8%

with RR, 76.5% with LR, and 72.4% with SVM.

3.3.4 Proof of concept on GA1 test data set

For the proof of concept an independent test data set, including data from January 2022 until

October 2023, was extracted from the newborn screening laboratories in Heidelberg. This test data

set consisted of 257,414 newborn screening profiles, including 268 false-positive screened newborns

and two patients with GA1. The test data set was curated based on the same data cleaning and

exclusion criteria established for the original GA1 data set. This resulted in a test data set of

236,210 newborn screening profiles, including 235 false positives and and two patients with GA1.

Table 3.8: Proof of concept of ML classification results for GA1 compared from (A) tra-
ditional screening results, (B) the full data set and (C) the suspected diagnosis data set.
The best-performing features were selected with ANOVA. The methods were evaluated
by sensitivity Sn and specificity Sp, as well as the number of false positives (FP) and
false negatives (FN) on the test data set. For the suspected diagnosis data set, these
evaluations were calculated based on the full data set to allow comparability between
both data sets.

Method Features (number) Test data set

FN FP Sn(%) Sp(%)

(A) TRADITIONAL NEWBORN SCREENING

Newborn screening Glut 0 235 100 99.90

(B) FULL DATA SET

LR Glut, C10 0 16 100 99.99

(C) SUSPECTED DIAGNOSIS DATA SET

LR Glut, C10 0 18 100 99.99

The LR presented the best classification results on the training and validation data set, Ta-

ble 3.6. Hence, the test data was only evaluated with the trained LR models. The results are

presented in Table 3.8. On the test data set, the LR classification method, which was initially

trained on the full data set, Eq. (3.25), reduced the false positives by 93.19% compared to tradi-

tional newborn screening (from 235 to 16 FP results), Table 3.8. On the test data set, the LR

classification method, which was initially trained on the suspected diagnosis data set, Eq. (3.26),
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reduced the false positives by 92.34% compared to traditional newborn screening (from 235 to

18 FP results), Table 3.8. Both algorithms identified the patients with GA1 correctly, which led

to 100% sensitivity, Table 3.8. Moreover, the LR method optimized to achieve 100% sensitivity

in cross-validation, Table 3.7, classified all newborns with GA1 patients correctly. However, it

classified 115 newborn screening profiles incorrectly as GA1, which was a false-positive reduction

of only 51%.
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3.4 Summary and outcome

Newborn screening is marked by high data imbalance due to the low prevalence of the investigated

diseases.  At the same time, there is a strong requirement for high sensitivity and specificity in

newborn screening methods and recently, a relatively high number of false-positive screening results

challenges newborn screening for IVA and GA1.  Hence, this chapter evaluated the application of

data analysis and machine learning methods as potential digital-tier and full data strategies to

improve the specificity of newborn screening for IVA and GA1. 

3.4.1 Digital-tier strategy in newborn screening

The current standards in newborn screening for IVA and GA1 are well developed and obtain

100% sensitivity. A large number of false-positive screening results hampers newborn screening

for IVA and GA1. The developed digital-tier approach simulates the scenario where the ML

classifier is used after traditional newborn screening. For both diseases, this strategy showed the

best results regarding sensitivity and specificity. For IVA, the proposed LDA-LR and LDA-RR

methods achieved the best sensitivity, specificity, and most reliable results, leading to a false-

positive rate reduction of nearly 70%. For GA1, the LR method achieved the best results regarding

sensitivity, specificity, and reliability, leading to a false-positive rate reduction of over 76%. This

work showed that the grid search for optimal class weight parameters was essential for increasing

specificity while maintaining 100% sensitivity. These high sensitivity results are important as

newborn screening needs to identify all newborns suffering from a disease. The proposed algorithms

relied on several metabolites to improve the disease classification. These identified metabolites

present a starting point for future metabolic research to identify metabolites that second the

current disease biomarkers.

Moreover, additional costs and effort accompany false-positive newborn screening results, as

these results entail the information transmission about the suspicious newborn screening result to

the local hospital and the families by a physician, clinical evaluation of the newborn, and sampling

for the confirmatory diagnostics by a pediatrician, as well as costs for metabolic (and genetic)

analyses. Hence, the increased specificity, i.e., reduction of false positives, could reduce harm to

the infants and their families and support the cost-effectiveness of newborn screening. The results

for both IVA and GA1 suggest that adding ML methods as digital-tier to traditional newborn

screening, similar to implementing a biomarker-based two- or multiple-tier strategy, can benefit
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newborn screening.

3.4.2 Method validation

Method validation is particularly important in data-based modeling for newborn screening due to

the data imbalance and low number of patients with a disease. Despite its vast size of over one

million screening profiles, the newborn screening data set was marked by the low prevalence of

the conditions. Specifically, there were only 28 (22 mild, 6 classic) newborns with IVA and 9 (3

high excretor, 6 low excretor) newborns with GA1. Usually, having more data samples can always

improve a model. However, there is no fixed minimum number of samples required to train a

successful classification system. It is highly dependent on the underlying task and, notably, the

significant variability within the data. These imbalanced newborn screening data sets can pose

significant challenges. One such challenge is that the provided data set may not sufficiently cover

the entire feature space, potentially leading to skewed results. The developed methods for both

diseases IVA and GA1 were tested on additional unknown test sets from 2022 and 2023. The results

showed that the models achieved the same sensitivity and specificity for the classic IVA, GA1, and

false-positive newborn screening profiles as in the original data sets. However, the mild IVA patient

was not classified correctly, although identifying all affected individuals is essential for successful

newborn screening. Therefore, these results highlighted the importance of model validation on

external data sets and the need for a larger training data set. The test set results further revealed

the complexity of the newborn screening data set. Newborns with mild and classic IVA were not

evenly distributed over the birth years, and existing time trends were revealed. Hence, additional

data from recent years with classic IVA patients are required. The evaluation of the test data

also showed how important it is that the test data and the training data have similar feature

distributions, such as the Trp and Asa values, which showed significantly different values in the

test data set.

In the future, the proposed methods should undergo additional validation on independent data

sets from recent years to ensure their validity. Moreover, based on the developed methodology,

promising avenues for future research open up. For instance, other newborn screening conditions

with high false-positive rates can be evaluated, potentially leading to significant advancements in

the field.



4
Explainable AI (XAI) in newborn

screening

This chapter describes the application of explainable artificial intelligence (XAI) for model inter-

pretation and pattern recognition in newborn screening for IVA. This chapter is based on and

extends the published work Zaunseder at al, Copyright ©2023, IEEE [32]. The previous chapter,

chapter 3, showed how applying ML methods could improve newborn screening classification for

IVA and GA1. However, the applied methods did not include ensemble and deep learning methods,

which showed remarkable results for disease prediction tasks such as diabetes prediction [8] and

prediction of colorectal cancer [124] as well as for newborn screening [12]. The drawback of these

complex ML classifiers is their black-box nature, implying a lack of or reduced intuitive under-

standing of the classifiers’ output. In the medical domain, there is a high demand for medical

professionals to comprehend how and why AI methods work and what their decisions are based

on. Clinicians require explanations to interpret a system’s confidence and estimate the reliability

of the system’s decision [16]. Through exploratory interviews, Tonekaboni et al [28] identified that

the following features make a model explainable for clinicians:

• provides information about the model’s context,

• understands and rationalizes the predictions,

• augments or supplements clinical ML systems.
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The absence of interpretability could potentially hinder the use of complex algorithms, thereby

limiting their potential benefits to the medical field. This leads to a growing demand for integrat-

ing XAI methods in ML-based medical decision-making to make them trustworthy, transparent,

interpretable, and, therefore, explainable to human experts. There are different examples in the

literature where ML methods were implemented to work alongside clinicians, such that they can

review each other’s steps, which contributes to more explainability [16]. In particular, in the area

of medical imaging, there exist several promising approaches for the integration of XAI methods,

such as a method to classify cardiac pathology [125] or an initial XAI-enabled software for breast

core biopsies [126]. In newborn screening, methods to interpret ML algorithms have been mainly

applied to inherently interpretable models by analyzing model internal parameters such as built-in

decision functions [68], [71] and discriminatory thresholds [12], [71]. These were used to identify

important metabolite concentrations. However, for ML-based newborn screening, XAI methods

have yet to be applied.

In this chapter, first the applied ensemble and deep learning methods as well as the XAI

algorithms are described. Then, the results of IVA classification, model interpretation, and pattern

recognition are presented. Finally, the methods are discussed regarding their applicability and

implications.

4.1 Methodological background

The methodological background describes the known classification and XAI methods applied for

newborn screening in IVA. The experiments were performed using the programming language

Python [120] and the Python libraries xgboost (version 1.5.0) [127], pytorch (version 1.12.0) [128],

shap (version 0.40.0) [129], captum lime (version 0.5.0) [130], and scikit-learn (version 1.0.2) [121].

4.1.1 Ensemble and deep learning methods

Extreme Gradient Boosting Trees

The scalable end-to-end tree boosting system extreme gradient boosting (XGBoost) was introduced

by Chen et al. [131]. It belongs to the ensemble methods, which combine the power of several base

learners to obtain one powerful algorithm. Two widely applied methods to ensemble the learners’

results are Bagging and Boosting. XGBoost uses the latter, where each base learner aims to reduce
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the error of its predecessor. In the following, the XGBoost method is presented based on the work

of Chen et al [131]. A tree ensemble model is described to consist of K additive functions to predict

the output for a data point i with m features D = {(xi, yi)} where xi ∈ Rm, yi ∈ R,

ŷi = φ(xi) =

K∑
k=1

fk(xi), fk ∈ F . (4.1)

Here, F = {f(x) = wq(x)} with q : Rm → T and leaf weight w ∈ RT is the space of regression

trees with T the number of leaves in a tree. Each fk corresponds to an independent tree structure

q that maps an example to the corresponding leaf index with leaf weight w [131]. To learn the

corresponding parameters the regularized objective L is minimized,

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk), (4.2)

where Ω(f) = γT + 1
2λ‖w‖

2 penalizes the complexity of the model to avoid overfitting and l is a

differentiable convex loss function [131]. As this objective cannot be optimized using traditional

methods in Euclidean space, it is trained in an additive manner [131]. For the prediction of the

ith instance at the tth iteration, ŷ(t)i , the term ft needs to be added to minimize the following

objective,

L(t) =

n∑
i=1

l
(
yi, ŷi

(t−1) + ft(xi)
)
+Ω(ft) (4.3)

and by this adding greedily the tree ft that minimizes the loss in Eq. (4.2). This problem can

be solved using exact greedy or approximated algorithms, both available in XGBoost [131]. XG-

Boost improves general gradient boosting by using parallel and distributed computing to enable

faster model exploration and offers efficient memory usage [131]. Furthermore, introducing regu-

larization generates simpler base learners, increasing speed and interpretability. XGBoost applies

a distributed weighted quantile sketch algorithm to handle weighted data effectively [132]. The

algorithm can be applied to different data types and has achieved good results for classification

tasks on tabular data [133].

Neural Networks

Neural networks (NNs) are part of the deep learning methods, a sub-field of AI. Feed-forward NNs

try to mimic the signaling processes in the human brain and exclusively pass information forward

through multilayer perceptrons [134]. The feed-forward architecture was applied in this study, since

the newborn screening profiles are independent of each other. Each layer in the network consists

of nodes, also known as neurons or units. The connections between these nodes are characterized
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by associated weights, defining the network’s ability to process input data through multiple layers

of computation to yield an output. Information propagation in a feed-forward NN involves two

main steps: First, the weighted sum of inputs and the application of an activation function f . The

output zj of a layer j applied to an input vector x ∈ Rn can then be described as

zj = f

(
n∑

i=1

wij · xi

)
+ bj (4.4)

where wi,j ∈ R and bj ∈ R are the weights and biases of each layer. At the start of the training

process, these are initialized with random, often small numbers. Common activation functions,

are the ReLU(y) = max(0, y) or softmax function s(y) = ey∑n
i eyi . In the second step, the data is

passed through the NN to obtain an output prediction. Based on a chosen loss function L, the

difference between predicted and actual value is quantified. In this work, the binary cross entropy

loss function LC is applied for N training samples,

LC = − 1

N

N∑
i=1

ŷi · log(yi) + (1− ŷi) · log(1− yi), (4.5)

where yi ∈ {0, 1} is the actual binary class label, and ŷi ∈ [0, 1] is the predicted probability of

the class label [135]. Following the forward propagation phase, backpropagation is subsequently

employed to compute the gradients of the loss concerning the model parameters. This involves

the application of the chain rule of calculus, facilitating the systematic calculation of gradients

by backward error propagation throughout the network. After backpropagation, the optimization

process continues with gradient descent to update the weights w and biases b in a direction that

minimizes the loss function L. The learning rate, a crucial hyperparameter, governs the magnitude

of these updates. Several well-established variants of gradient descent exist, including stochastic

gradient descent [136], root mean squared propagation [137], and adaptive optimization algorithms

like Adam [138]. The neural network architecture encompasses details regarding the number of

layers, the arrangement of neurons within each layer, the specific activation functions denoted

as f , and the optimizer employed. These network parameters are strategically selected by a

comprehensive hyperparameter optimization process [139]. This iterative optimization ensures

an informed choice of hyperparameters, enhancing the neural network’s overall performance and

generalization capabilities.
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4.1.2 Explainable artificial intelligence methods

XAI methods generate interpretable, intuitive, and ideally human-understandable explanations of

an AI’s decision making process [140]. For this, different types of XAI algorithms have been

developed in recent years. Das et al [140] suggest three general categories to distinguish these

algorithms: 1. The scope of the algorithm identifies where a method is focusing on, either locally

mainly focusing on explaining the classification of individual instances, or globally to understand

the model as a whole. 2. The methodology, comparing the algorithmic approach of the methods

with either BackProb by depending on gradients that are backpropagated from output to input or

perturbation, which is based on (forced) changes of features in the data input. 3. The usage depends

on how the XAI method is developed, either intrinsic, where it is inherent in the architecture of

the method, or Post-Hoc, which is independent of the model and can be applied to already trained

ML methods. In this work, the latter type of XAI methods were applied, as they are classification

model-agnostic methods, which enable the comparison of interpretations of different AI models.

Shapley additive explanations

From the XAI methods, the Shapley additive explanations (SHAP) method developed by Lundberg

et al [129] is widely applied in several areas. In the medical domain, it was, for instance, applied to

melanoma detection in skin imaging [141]. In the following, the SHAP method is explained based

on the work of Lundberg et al [129]. The method derives from Shapely values in game theory,

wherein the features represent players in a coalition game used to compute individual feature

contributions. The method assigns payouts to players (features) depending on their contribution

to the total payout. These players then cooperate in a coalition and receive a profit from this

cooperation. The Shapely value is the average contribution of a feature from all possible coalitions.

To achieve this, suppose we have a value function v where vx(S) is the prediction for feature values

in a feature subset S ⊆ F , where F is the set of all features. The value function is the payout

function for a coalition of players, which in this case are represented by the features. Then, the

exact Shapley value of player j, which are the features in the classification task, is defined as,

φj(v) :=
∑

S⊆F\{j}

|S|!(|F | − 1− |S|)!
|F |!

(vS∪{j}(xS∪{j})− vS(xS))
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where vS represents the value function trained without feature j and vS∪{j} represents the value

function trained including feature j. Lundberg et al [129] proposed SHAP values as a unified fea-

ture importance measure, which are the Shapley values calculated from a conditional expectation

function derived from the original model. They demonstrate that SHAP values offer a distinct ad-

ditive measure of feature importance that conforms to local accuracy, missingness, and consistency

principles. However, the computation of the Shapley values for the SHAP method is expensive for

a high dimensional feature space. Hence, they can be approximated using, for instance, Shapely

sampling values [129].

Local interpretable model-agnostic explanations

Local interpretable model-agnostic explanations (LIME) is another XAI Method that has been

applied for interpreting ML methods and explaining a classifier’s predictions by learning an in-

terpretable model locally around the prediction [142]. It can be applied to different data types,

such as text, images, and medical data. For instance, SurvLIME was developed for explaining

ML survival models [143]. In the following, the LIME algorithm is presented based on the work

of Ribeiro et al [142]. The general idea of LIME is to approximate a complex ML model locally

around a given prediction by a less complex model such as a linear model, simple decision trees,

or learned rules. To make the interpretations of the LIME algorithm understandable, Ribeiro et

al [142] distinguished between the original representation of an instance x ∈ Rd and the inter-

pretable representation of the instance in a binary vector x′ ∈ {0, 1}d, which would be a superpixel

for image classification for example. In newborn screening, the features are the metabolite concen-

trations that are interpretable for clinical experts. Hence, there is no need for a transformation to

an interpretable representation of the instance into a binary vector. The explanation model for a

model f : Rd → R is defined as g ∈ G the class of interpretable models where the domain of g is

{0, 1}d. Furthermore, a proximity measure between an instance z and an instance x is defined as

πx(z). The loss function L(f, g, πx) is defined assessing the quality of g approximating f within the

locality defined by πx(z). Complex models with multiple features are more difficult to interpret.

Hence, the complexity is penalized with a measure of model complexity defined as Ω(g). Then, the

goal is to find the function g that minimizes the loss function while also minimizing this complexity

measure, which results in a general LASSO-approach [142], with loss function L and regularization

function Ω,

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g). (4.6)
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A sampling approach for local exploration is used to learn the local behavior of f . Therefore,

L(f, g, πx) is approximated by drawing samples which are weighted by the proximity measure

πx(z). The perturbed samples z′ ∈ {0, 1}d contain a fraction of nonzero elements of x and are

transformed to instances in the original representation z ∈ Rd. The original classification model f

is then used to obtain a label for this perturbed sample f(z) based on the data set Z of perturbed

samples. Their corresponding labels, Eq. (4.6), can be optimized to obtain an explanation model

g [142]. This explanation model g can be used to gain insights into the model’s decision-making

process for one instance x from the data set.
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4.2 XAI in newborn screening

This section describes the results of the ensemble and deep learning methods applied to the IVA

data set and the subsequently applied XAI method to interpret and find patterns within the

classification algorithms.

4.2.1 Data set and experimental setup

For the ML experiments, the IVA full data set containing 2,106,090 newborn screening profiles and

the suspected diagnosis data set containing 131 newborn screening profiles established in section 3.2

were applied. The IVA profiles are not further distinguished in patients with mild and classic IVA.

For both data sets, stratified splitting was applied to obtain randomly split training, validation,

and test data sets with a 65-15-20 split. The data sets were highly imbalanced and contained the

same proportional number of IVA samples.

The correct classification of IVA patients is crucial and the best hyperparameters had to be

established to reduce misclassification from IVA patients. A grid search optimization strategy on

the hyperparameters of the XGBoost and NN models was applied to find the optimal number

of estimators ([1, 50]), tree depth ([1, 25]), and scale positive weight ([1, 20]) from the respective

predefined parameter ranges. This strategy revealed that the optimal number of estimators was 16

for both data sets, and the maximal tree node depth was three. For the full data set, a scaled weight

ws = 6 was optimal, whereas for the suspected diagnosis subset ws = 1 showed to be optimal. For

the NN, the grid search for hyperparameter optimization resulted in two different architectures

for the two data sets, Table 4.1. In particular, the class weight parameters differ between the two

architectures as the data imbalance is higher in the full data set than in the suspected diagnosis

data set. The minority class weight parameter w1 can be used to penalize the misclassification of a

true positive in the cross entropy loss function LC . For the model evaluation, the same procedures

Table 4.1: Overview of hyperparameters for NN architectures in the suspected diagnosis
and the full data set with four layers each. Copyright ©2023, IEEE [32].

Suspected diagnosis data Full data
Class weight w0 0.64 0.520833

Class weight w1 2.34 37608.75

Neurons [100, 53, 6, 2] [256, 128, 64, 2]
Optimizer Stochastic Gradient Descent [136] Root Mean Squared Propagation [137]
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as for the ML methods in section 3.2 were chosen to allow for comparability. The algorithms were

evaluated on the number of false positives and false negatives as well as the mean sensitivity Sn

and specificity Sp from ten times repeated 5-fold cross-validation.

4.2.2 Ensemble and deep learning for IVA classification

The XGBoost and NN classification results on the suspected diagnosis data set and the full IVA

data set are presented in Table 4.2. On both data sets, XGBoost showed a substantial decrease

Table 4.2: Classification results on training, validation, and test set with the number
of false positives (FP) and false negatives (FN) as well as the mean sensitivity Sn and
specificity Sp from ten times repeated 5-fold cross-validation (CV). Copyright ©2023,
IEEE [32].

Method Train Validation CV Test
FN FP FN FP Sn(%) Sp(%) FN FP

FULL DATA SET
Traditional 0 67 0 18 100 99.995 0 18
XGBoost 0 0 1 1 93.727 99.999 2 1
NN 2 7 1 0 65.357 99.999 2 4
SUSPECTED DIAGNOSIS SUBSET
Traditional 0 72 0 12 100 0 0 19
XGBoost 0 0 1 3 94.491 97.382 1 0
NN 0 0 1 3 43.357 71.237 1 2

in false positives on the training, validation, and test sets. For the full data set, the false positives

decreased from 67 to 0 in the training set, as well as from 18 to 1 in the validation, and in

the test set, Table 4.2. This was an overall decrease of false positives of 98.06% compared to

traditional newborn screening. On the suspected diagnosis data set, the number of false positives

was decreased by 97.09% compared to traditional newborn screening, from 72 to 0 in the training

set, 12 to 3 in the validation set, and 19 to 0 in the test set, Table 4.2. The NN classification also

showed a decrease in false positives on the full data set, decreasing the number of false positives

from 67 to 7 in the training set, 18 to 0 in the validation, and 18 to 4 in the test data set.

This represents an overall decrease of false positives of 89.32% compared to traditional newborn

screening. On the suspected diagnosis data set, the number of false positives was decreased by

95.15% compared to traditional newborn screening, from 72 to 0 in the training set, 12 to 3 in the

validation set, and 19 to 2 in the test set, Table 4.2. The cross-validation for XGBoost showed

a high specificity of 99.99% on the full data set and 97.38% on the suspected diagnosis data set,

Table 4.2. However, the NN showed less reliable results in cross-validation, decreasing the mean

sensitivity to 43.36% and specificity to 71.24%, Table 4.2. Note, both algorithms classified at least
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Figure 4.1: Positive and negative LIME scores lix1
for ten features i with the highest

absolute LIME scores for a single newborn x1 with IVA which was correctly classified
by XGBoost trained on the full data set. Metabolite abbreviations can be found in
Table 2.1. Copyright ©2023, IEEE [32].

one newborn with IVA wrongly as unremarkable in the validation and test data set, whereas in

traditional newborn screening, all patients with IVA are identified correctly. This is also shown in

the decreased sensitivity of XGBoost on both data sets, with 93.73% sensitivity on the full data set

and 94.49% on the suspected diagnosis data set, which is 100% for traditional newborn screening.

The NN showed less reliable results also for the mean sensitivity, decreasing it to 65.36% on the

full data set, Table 4.2.

4.2.3 LIME method for pattern recognition

The model-agnostic method LIME is widely applied to interpret ML predictions. For one instance,

x, which is the newborn screening profile in this application, the LIME method provides LIME

scores for each feature depending on the best local linear model g. Figure 4.1 shows the positive

and negative LIME scores lix1
for ten features i with the highest absolute LIME scores for a

single newborn x1 with IVA, which was correctly classified by XGBoost trained on the full data

set. The bar chart showed that the feature values of isovalerylcarnitine (C5) (0.61), birth year

(0.45), octanoylcarnitine (C8) (0.22), and phenylalanine (Phe) (0.21) had the highest positive

LIME score, meaning that these features made a positive IVA prediction more likely. In particular,

C5, the known biomarker for IVA, and the birth year had a high positive impact. Furthermore,

the features gestational age (SWS) (-0.13), 17-hydroxyprogesterone (17p) (-0.1), and tryptophan

(Trp) (-0.9) had negative LIME scores. Based on these results, the model could be interpreted as

the values of C5 and the birth year being the main reasons for the model’s correct prediction of
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Figure 4.2: Positive and negative cumulative LIME scores L+
j and L−

j for five features j
with highest absolute LIME scores for the groups of true positives, the correctly classified
IVA patients by (A), (B) XGBoost and (C), (D) neural network (NN) trained on (A),
(C) the suspected diagnosis and (B), (D) the full data set. Metabolite abbreviations can
be found in Table 2.1. Copyright ©2023, IEEE [32].

IVA. LIME presents an algorithm with a local scope. Another implementation of LIME, SP-LIME,

aims at a global interpretation by selecting a representative set of explanations [142]. However,

in classification tasks, the classification interpretation of a specific group of instances, such as

a specific group of patients, is often more insightful than that of single instances or the whole

group of instances. Hence, this research presents a novel configuration of LIME to interpret the

classification model for different specific groups of instances. For every instance x from a group of

n instances, where n ≤ d is a subgroup of the whole data set with d instances, we obtain a LIME

score ljx for every feature j. These were used to build two cumulative LIME scores, which add the

positive L+
j and negative contributions L−

j separately for every feature j,

L+
j =

∑
x

lxj , i = {i = 1, ..., n|lij > 0},

L−
j =

∑
x

lxj , i = {i = 1, ..., n|lij < 0}.
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These two cumulative LIME scores could then be used to evaluate and compare the interpretation

of the model classification for specific groups. Figure 4.2 shows the cumulative LIME scores for

the group of newborns with IVA, which the XGBoost and NN correctly classified. For the group

of true-positive IVA patients classified by the XGBoost method and trained on the suspected

diagnosis data set, Trp had a LIME score L+
Trp = 17.7 and is by far the feature with the highest

absolute cumulative LIME score (see A in Figure 4.2). For the same group classified with the NN,

C8 had the highest cumulative LIME score L+
C8 = 5.1 and Trp the second highest L+

Trp = 1.2

(see C in Figure 4.2. This indicates that the feature values of C8 and Trp made a positive disease

prediction more likely in both classification methods. For the group of true-positive IVA patients

classified by the XGBoost method and trained on the full data set, the top three features (C5,

birth year, C8) with the highest absolute LIME score were the same as for the single newborn

(see B in Figure 4.2). Based on the NN classification, C5 also had the highest cumulative LIME

score L+
C5 = 7.9 on the full data set, with Phe and birth year being the features with the next

highest LIME score (L+
Phe = 3.1, L+

Y ear = 2.3). This emphasizes that the patterns in the single

newborn can also be found in the whole group of newborns with correctly predicted confirmed IVA.

Interestingly, different features had the highest cumulative LIME scores in the suspected diagnosis

data set and the full data set. Moreover, all features either showed a high positive cumulative LIME

score L+
j or a high negative cumulative LIME score L−

j , indicating that the features influenced the

model output in the same direction within one group.

4.2.4 SHAP method for interpretability

Further, the SHAP method was utilized to interpret the prediction mechanism of the XGBoost

classifier. This method can be applied to an individual newborn to understand the impact different

features or metabolite concentrations measured in the newborn’s sample have on the classifier’s

prediction. To also understand the explanations for different groups of newborns, the full data

set was divided into unremarkable newborns, newborns with suspected but not confirmed IVA,

and newborns with confirmed IVA. This distinction aimed to gain insights into the differences and

similarities of these groups. First, the SHAP method was applied to the three different groups

from the full data set, where each group is presented in a swarm plot, Figure 4.3.

Figure 4.3 (A) shows that the feature with the strongest negative impact on the decision was

the C5 value for the newborns with normal newborn screening profiles. These points were mainly

colored in blue, indicating a low feature value, corresponding to the fact that an elevated level of
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Figure 4.3: SHAP values for the full data set with the groups of (A) unremarkable
newborns, (B) newborns with suspected IVA, and (C) newborns with confirmed IVA
presenting the ten highest features. The data points are color-coded depending on the
feature value, where blue data points show low feature values, and red data points show
high feature values. Metabolite abbreviations can be found in Table 2.1. Copyright
©2023, IEEE [32].

C5 is the primary indicator for IVA [4], [25]. Also, for the group of newborns with suspected and

confirmed IVA, Figure 4.3, the C5 values had the highest impact on the model output. Furthermore,

the feature birth year (Year) had a high positive or negative impact on the model in the different

groups. In particular, the group of newborns with suspected IVA revealed an interesting pattern,

as a high birth year had a strong negative impact on the model output, Figure 4.3 (B).

For the suspected diagnosis data set, the 131 newborn screening profiles were divided into two

groups, containing the newborns with suspected IVA and containing the newborns with confirmed

IVA (including both mild and classic IVA), Figure 4.4. For both groups, the metabolite concen-

trations of Trp, and C5 had the strongest impact on the model’s output. Interestingly, high Trp

values had a negative impact on the model output for the group of newborns with suspected IVA.
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SUSPECTED DIAGNOSIS DATA SET

A  Newborns with suspected IVA B  Newborns with con�rmed IVA

Trp

C5

C14:1

C14OH

C8

C16:1

C8:1

C18:2

C10 

C3

Trp

C5

C14:1

C8

C8:1

C14OH
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C16:1

C18:2

C6

SHAP value (impact on model output) SHAP value (impact on model output)

Legend
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Figure 4.4: SHAP values for the suspected diagnosis data set with the groups of (A)
newborns with suspected IVA, and (B) newborns with confirmed IVA presenting the ten
highest features. The data points are color-coded depending on the feature value, where
blue data points show low feature values, and red data points show high feature values.
Metabolite abbreviations can be found in Table 2.1. Copyright ©2023, IEEE [32].

In contrast, low Trp values positively impacted the model output (see A in Figure 4.4). There

was no clear distinction of this effect for newborns with confirmed IVA, although a similar trend

could be seen in B in Figure 4.4. In contrast to the results on the full data set, the birth year was

not a feature with high impact, which can be explained by the fact that this group already mainly

included newborns with suspected IVA, who were generally born in recent years. The median birth

year of newborns in the suspected diagnosis data set was 2019 since 80 of 103 newborns had a

birth year of 2016 or later.
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4.3 Summary and outcome

XAI methods enable to introduce interpretability into black-box AI models. The interpretability

and traceability of an algorithm’s actions are often key for adopting systems in the real world,

particularly in system-critical areas such as the medical domain. Applying XAI methods provides

a first step to tackle these problems and peek inside the AI black-box as they have been successfully

applied to provide human-understandable interpretations of deep learning algorithms in the medical

domain [15], [144]. However, the presented results showed the first application of XAI methods to

interpret methods in machine learning-based newborn screening.

4.3.1 Ensemble and deep learning in newborn screening for IVA

In addition to applying basic machine learning methods in chapter 3, this chapter presented the

application of ensemble and deep learning methods. On both data sets, XGBoost and NN classi-

fication showed promising results in reducing the false positives. However, the ensemble method

XGBoost obtained good classification results more reliably than NN on both data sets. In partic-

ular, on the suspected diagnosis data set, the number of newborns falsely classified as newborns

with IVA on the test set could be reduced by 100% with XGBoost, Table 4.2. When evaluating the

cross-validation results, XGBoost proved to be a robust method obtaining Sn = 93.727% sensitiv-

ity and Sp = 99.999% specificity on the full data set. Whereas in traditional newborn screening, a

sensitivity of 100% and specificity of 99.995% is obtained For integrating machine learning-based

newborn screening in practice, a sensitivity of 100% is essential to identify all newborns suffering

from IVA. However, complex algorithms often require more data for accurate classification. In fu-

ture studies, more newborn screening data could be included to train these algorithms and ensure

higher positive sample sizes. In this work, the gradient boosting method XGBoost was shown to be

the best performing algorithm; for other diseases also, other state-of-the-art methods in gradient

boosting such as CatBoost[145] and LightGBM [146] could be evaluated.

4.3.2 XAI in newborn screening

In this work, the XAI methods SHAP [129] and LIME [142] were applied, which are commonly

used in various medical applications [141], [143]. SHAP guarantees that the prediction is fairly

distributed among the feature values of a patient and is based on a solid theory [129]. SHAP values
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allow contrastive explanations, enabling comparisons of explanations to a subset or even to a single

data point. On the limitations of SHAP, Frye et al [147] argue that SHAP values are ignorant of

causal structures and have problems with correlated features within the data since they place all

features equally in the model explanation by requiring attributions to be equally distributed over

identically informative features. Two methods are presented to solve the problem of correlated

features: Asymmetric SHAP and causal SHAP values [148], [149]. In newborn screening, all

metabolic features are causally related by the metabolic network. However, how and if this causal

relation influences the SHAP explanation is unclear and could potentially be investigated in future

studies. When comparing SHAP to LIME, Aas et al [150] state that Shapley values explain the

difference between the prediction and the global mean prediction. In contrast, LIME explains

the difference between the prediction and a local mean prediction. Furthermore, Lundberg et

al [129] evaluated the consistency of the model’s explanation with human intuition and showed

that Shapely values more strongly agree with human explanation than LIME. In general, humans

prefer selective explanations. The superpixels used in the LIME algorithm can produce these,

whereas the Shapley value method always uses all the features. In newborn screening, all features

are interpretable for clinicians, which is not the case for single pixels in image classification.

Overall, the applied algorithms SHAP and LIME enable a model-agnostic evaluation and,

by this, a simple comparison of explanations between different classification algorithms. Both

methods are suitable for newborn screening, and it needs to be clarified whether one method

should be preferred over the other. In the case of XGBoost, the most important features can

also be analyzed with the feature importance parameter of the trained model. However, this is a

measure of importance inherent to the algorithm and cannot be compared to other classification

methods such as the NN classification. Moreover, this measure of importance only gives a global

interpretation but no information on different groups within the data set, such as the different

patient groups in newborn screening for IVA.

To enhance the benefits of these methods, the results on a group level were evaluated by

introducing a cumulative LIME score, Figure 4.2, and by distinguishing the swarm plots of the

SHAP values of different groups, Figure 4.3. These evaluations confirmed biological knowledge,

such as highlighting C5 in both XGBoost and NN as a important feature for the full data set.

C5 is the known biomarker of newborn screening for IVA in Germany, [4], [25]. Furthermore, the

birth year was identified as an influential feature in both algorithms, Figure 4.2, which coincides

with the increasing number of false positives in recent years due to the use of pivmecillinam as

an antibiotic in pregnant women since its authorization in Germany in 2016 [24]. Moreover, both
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methods highlighted additional metabolite concentrations, which were important for the correct

prediction and need further analysis in future research. The features highlighted by the cumulated

LIME method varied based on whether the XGBoost or NN classification method was applied. This

discrepancy raises doubts about the significance of these particular features and needs in-depth

analysis by biochemical experts.

In summary, this chapter demonstrated that the utilization of ensemble and deep learning

techniques led to increased specificity but not 100% sensitivity in IVA classification. Applying

XAI methods provided promising insights into result interpretation, offering novel prospects for

further research in newborn screening. In the future, XAI methods could lead to higher acceptance

of machine learning methods in newborn screening as it is still being determined how black-box

machine learning methods can be applied in the clinical setting and if patients and society will

accept them.
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5
Whole-body modeling for infant

metabolism

This chapter is based on and extends the published work of Zaunseder et al [151]. It presents the de-

velopment and validation of mathematical whole-body models for newborn and infant metabolism

(infant-WBMs). These are organ-resolved, sex-specific, anatomically accurate models of newborn

and infant metabolism representing the first 180 days of an infant’s life. First, the methodological

background is described. Then, the model development, including the modeling choices for the

organ weights and the energy requirements, is presented. Subsequently, the model is validated

on its quality to predict accurate infant growth and metabolic fluxes. Moreover, the model is

used in three applications regarding newborn screening, including model personalization, inher-

ited metabolic disease (IMD) biomarker prediction, and in silico evaluation of dietary treatment

strategies for IMD patients. Finally, the presented model is discussed regarding its limitations and

future work.

5.1 Methodological background

The mathematical models developed in this chapter are metabolic whole-body models (WBMs)

based on the basic principles of constraint-based modeling.
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5.1.1 Whole-body models

WBMs are metabolic network reconstructions of humans. They present a progression of the first

human cell-based models, the Recon series [17], [18], [80], [85]. They extend this cell-based view

by developing an ensemble of organ-specific reconstructions and their interactions. They have

been constructed by integrating information from Recon3D [18], organ-specific details, and omics

data [20]. These models capture the metabolism of 20 sex-independent organs, six blood cell

types, as well as two sex-specific organs (testis and prostate) for the male model (’Harvey’) and

four sex-specific organs (breast, cervix, uterus, and ovary) for the female model (’Harvetta’) [20].

Overall, Harvey has 81,094 reactions and 56,452 metabolites, whereas Harvetta contains 83,521

reactions and 58,851 metabolites [20]. Each of the models was constrained with 15 physiological

parameters, which led to a novel paradigm in constraint-based modeling named physiologically and

stoichiometrically constrained modeling (PSCM) [20], described in the PSCM toolbox in MATLAB

(www.opencobra.github.io/cobratoolbox).

5.1.2 Flux balance analysis

For the mathematical analysis and simulation of fluxes within a metabolic reconstruction, the

reconstruction network is transformed into a stoichiometric matrix S ∈ Rm×n where the rows

correspond to the m metabolites and the columns to the n reactions. The matrix entries sij are

assigned a stoichiometric coefficient if metabolite i takes part in reaction j and zero otherwise.

The change of a metabolite concentration xk over time t is then represented by the kth row and

the flux through the reaction by the flux vector v = (v1, ..., vn). Resulting in the mass-balance

equation for all metabolite concentrations x ∈ Rm as,

dx

dt
= S · v. (5.1)

For the simulations, the constrained-based reconstruction and analysis (COBRA) [79] approach is

applied. This approach assumes that the metabolic system is in a steady state dx
dt = S · v = 0.

The steady-state constraint implies that metabolite concentrations remain constant over time, as

the input and output fluxes must balance [101]. This concept can be seen as applying Kirchhoff’s

law to the metabolites within the network [101]. The constraint is then used in flux balance

analysis (FBA), which presents an approach to calculate the optimal flux through the metabolic

www.opencobra.github.io/cobratoolbox
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network [81]. It is applied to optimize an objective function, leading to the linear program (LP),

max
v

cT v

s.t. S · v = 0

lb ≤ v ≤ ub,

(5.2)

where lb ∈ Rn and ub ∈ Rn are the lower and upper bounds on the fluxes v ∈ Rn. These

are based on specific constraints such as physicochemical constraints, nutrient uptake rates, and

enzyme reaction rates. The vector of weights c ∈ Rn indicates both which reactions and to what

extent each reaction v contributes to the objective [81]. The lb of irreversible reactions is set to

0 mmol/day/person and ub > 0 mmol/day/person [20]. Negative flux through the reactions is

allowed for reversible reactions, which leads to lb < 0 mmol/day/person. The bounds lb and ub of

unconstrained reactions are set to -1,000,000 mmol/day/person and 1,000,000 mmol/day/person,

respectively. FBA operates under the assumption that the network is in a state of homeostasis,

signifying a stable condition with constant metabolite concentrations [101]. In this state, nutrients

are consistently transformed for biomass production [101]. Additionally, FBA assumes that in

each state, one or multiple biologically reasonable objectives are optimized [101]. The feasible

flux distributions for a system of linear equations and inequality constraints then lie in a convex

polyhedral cone [101].

In this work, the flux optimization methods are employed using the commercial solver IBM

ILOG CPLEX Optimizer by the software company IBM [152] to solve the optimization problem.

This high-performance programming solver implements the simplex method in the programming

language C, providing interfaces to other programming languages such as MATLAB [153]. CPLEX

solves LP, mixed integer programming, and quadratic programming. The simplex method is a

widely applied algorithm that can solve any linear program. It operates in a two-phase manner,

initially identifying a feasible solution as a starting point to determine the problem’s feasibility

or infeasibility. The simplex method is self-initiated from this solution, utilizing the solution as a

starting point. In the second phase, an optimal feasible solution is sought, which either exists or an

infinite edge, along which the objective function is unbounded, exists [154]. The simplex algorithm

can identify redundant constraints in the problem formulation, efficiently solve problems with one

or more optimal solutions, and addresses the dual problem, offering insights into cost coefficients,

constraint coefficients, and right-hand-side data [155].
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5.1.3 Quadratic flux balance analysis

The stoichiometric matrix S consists of more columns than rows, n > m. Hence, the problem is

underdetermined, leading to a polyhedral convex steady-state solution space containing all feasible

steady-state solutions. A second problem based on flux-minimization [156] is applied to reduce

this feasible solution space. The main idea here is that, when provided with the values of key

target fluxes, the probable arrangement of steady-state fluxes in the metabolic network tends to

minimize the weighted sum of all fluxes [22]. The biological idea behind flux-minimization is based

on enzyme limitations in a cell. An enzyme catalyzes each metabolic reaction, and hence, the flux

through each reaction is aimed to be minimized [157]. This minimization ensures the most efficient

use of the available proteome [157]. The parsimonious FBA presented by Lewis et al [158] is such

a method. It aims to minimize the sum of all gene-associated reaction fluxes while maintaining

optimal growth. For this, the L1 norm ‖v‖1 = |v1| + |v2| + ... + |vn| is minimized leading to a

bi-level LP [158],

min
v

‖v‖1

s.t. S · v = 0,

lb ≤ v ≤ ub,

z∗ = cT v,

where z∗ is the optimal solution. However, the solution to this problem is not unique since all fluxes

are penalized the same. For the flux-minimization of the whole-body models, a second, quadratic

program (QP) is applied. Here, the Euclidean norm ‖v‖2 of the flux vector is minimized,

min
v

cT v + η‖v‖2

s.t. S · v = 0,

lb ≤ v ≤ ub,

where the regularization parameter η = 1.0 · 10−6 corresponding to the standard configura-
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tion used in the COBRA Toolbox [159] is applied. The Euclidean norm enforces a more equal

distribution of the fluxes and disproportionately penalizes large fluxes.

5.1.4 Biomass objective function

For FBA, it is essential to determine an objective function z = cT v that is a biologically reasonable

objective function for the underlying metabolic system. For both cell-based and whole-body mod-

els, the biomass reaction is often used as the objective function to compute an optimal network

state [81], [160]. The biomass objective function can be formulated depending on the composition

of the cell and energetic requirements to generate biomass content from metabolic precursors and

describe the growth requirements of a cell [160]. For human adult WBMs, only some organs have

regenerative capacities such as the liver [161], heart [162], and kidney [20], [163]. To account for

these organ-specific differences, the whole-body biomass reaction is a coupled reaction of organ-

specific biomass reactions, weighted by the organ weights [20]. Organs that can regenerate are

assigned a different organ-specific biomass reaction than organs that cannot. To address this, a

biomass maintenance reaction was introduced for every organ. This ensures the upkeep of cellular

metabolic profiles, specifically the organs’ ability to produce all biomass components except nuclear

deoxynucleotides [20]. Every organ includes a biomass maintenance reaction that accounts for the

macromolecular precursors, such as amino acids, necessary for maintaining the organ [20].

5.1.5 Inherited metabolic diseases analysis

IMD analysis is utilized in metabolic modeling to demonstrate the human metabolic model’s ca-

pability to predict known biomarkers accurately. IMDs often disrupt the normal metabolite flux.

Hence, analyzing the metabolic flux over time is more informative for IMDs than the static mea-

surement of metabolites at a single time point [35]. For the IMD analysis in the whole-body

models, the method established in Thiele et al [20] and encoded by the performIEMAnalysis.m

function in the COBRA Toolbox v3.0 [159] can be applied. This method is a two-step process. In

the first step, all reactions k = (k1, ..., kn)
T in all model organs associated with the defect gene

that causes the IMD are identified. The contribution of these reactions ki is then summed in an

artificial reaction vd. This reaction is added to the model, and a first LP is solved, maximizing vd.

In the second step, 75% of the optimal solution z∗ is used as a lower bound on vd in a second LP.

For this LP, an artificial demand reaction in the blood compartment vD is set as objective function

for flux maximization. This demand reaction is added using the addDemandReaction.m (COBRA
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Toolbox V3.0 [159]) function for each biomarker. The second LP can be written as,

max
vD

vD

s.t. S · v = 0

lb ≤ v ≤ ub,

0.75 · z∗ ≤ vd ≤ ubd.

Here, S and v correspond to the stoichiometric matrix and flux vector. The reactions vd and vD

are added to the original model. This LP describes the evaluation for the wild-type model, which

simulates the reference (healthy) model to obtain the fluxes vWT . For the knock-out (disease)

infant-WBM, the lower and upper bound of vd are set to 0, and the maximization through each

biomarker metabolite demand reaction vD is determined,

max
vD

vD

s.t. S · v = 0

lb ≤ v ≤ ub,

0 ≤ vd ≤ 0,

to obtain the flux vD for the respective biomarkers. Finally, the obtained fluxes within the

biomarker reaction of the wild-type model vWT and the diseased model vIMD are compared.

The relative flux increase fv is calculated,

fv =
vIMD − vWT

vWT
.

With this ratio the flux changes between various biomarkers in a wild-type and IMD model can

be compared.
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5.2 Development of whole-body models for infants (infant-

WBM)

The development of whole-body models for newborns and infants is based on the adult sex-specific,

organ-resolved WBMs [20], Figure 5.1. The models were assembled in an anatomically and physio-

logically consistent manner and can be parameterized with physiological, dietary, and metabolomic

data.

Figure 5.1: Overview of the reconstruction process and sample applications of the infant-
WBMs. (A) The infant-WBMs were derived from the adult WBMs [20]. (B) Main
adaptations made to the adult model to generate the infant WBMs. (C) Validation of
the infant-WBMs with growth evaluation and flux predictions. (D) Application of the
infant-WBMs for newborn screening personalization and biomarker prediction of IMDs.
Figure taken from Zaunseder et al [34].

The development of the infant-WBMs consisted of six steps, resulting in the final model assem-

bly. The final model is presented as a constrained-based optimization problem.
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5.2.1 Organ-specific biomass growth reactions

All organ compartments in the infant-WBMs were presumed to undergo growth to mimic infant

metabolism. While most organs in adult WBMs do not exhibit growth, certain organs, like the

skin, already encompass biomass growth reactions in the model and, therefore, were not modified.

The function metBabies_WBM_adjustment.m developed for the COBRA Toolbox 3.0, [159] was

applied to change the biomass reactions in the male and female infant models. Therefore, the

biomass growth reaction for all organs that do not undergo growth in adult models was restruc-

tured and incorporated into the models. These biomass growth reactions encompass all known

components necessary for replicating the cells of an organ [160], [164]. Modeled upon the existing

biomass maintenance reactions in adult WBMs, the biomass growth reactions were expanded to en-

compass both molecular and energetic prerequisites for replication. To accommodate organ-specific

biomass growth reactions, additional reactions were introduced to the infant-WBMs, facilitating

the transportation of biomass constituents into the appropriate compartments. These changes

were integrated into the stoichiometric matrix representing the connections within the metabolic

reaction network. By this, two new sex-specific and time-invariant stoichiometric matrices were

created. The stoichiometric matrix Smale ∈ R57,980×83,149 had 236 additional and the stoichio-

metric matrix Sfemale ∈ R60,436×85,662 had 259 additional reactions compared to the respective

adult models. These stoichiometric matrices are both very sparse matrices with not even 0.01% of

non-zero entries.

5.2.2 Whole-body biomass reaction, organ weights, and blood flow

The infant-WBMs were scaled according to the infant’s body weight and individual organ weights.

Where available these values were obtained from literature [165]. For organs without corresponding

literature values, the relative organ weight of the female and male adult WBM [20] was applied

and scaled based on the infant’s body weight. For the reference male infant-WBM, a body weight

of 3.3 kg was assumed whereas for the reference female infant-WBM, a body weight of 3.2 kg was

assumed. The whole-body biomass reaction with associated flux vWBB is the weighted sum of the

organ-specific biomass reactions depending on the organ weights. It represents the material and

energy (adenosine triphosphate (ATP)) required to maintain the non-metabolic cellular functions

of the body [20]. For the formulation of the infant-specific biomass reaction, the relative organ

weights measured in literature [165] were applied. Additionally, in the female infant-WBMs, the

weight of the uterus was specifically decreased, instead of adopting the relative value obtained from



5.2. DEVELOPMENT OF WHOLE-BODY MODELS FOR INFANTS (INFANT-WBM) 91

the female adult model. This adjustment was made to enhance the accuracy of the representation.

Moreover, the organ weights were applied to calculate the infant-specific organ blood flow rates

b [165].

5.2.3 Physiological parameters

To enhance the accuracy of modeling infant metabolism, crucial physiological parameters—includ-

ing heart rate, stroke volume, cardiac output, hematocrit value, creatinine in the urine, urine flow

rate, glomerular filtration rate, and cerebrospinal fluid flow rate—were customized to be specific to

infants. The modeling of these parameters involved the application of measured literature values

and phenomenological models, based on the infant’s weight w and age a, Table 5.1.

Table 5.1: Applied physiological parameters for the infant-WBM based on measured
literature values (*) or phenomenological models calculated with the infant’s weight w
and age a. Comparison to parameters applied in adult WBMs.

Parameter Adult WBM (unit) [20] Infant-WBM (unit)

Heart rate 67 (beats/min) 140 (beats/min)* [166]

Stroke volume 80 (ml/beat) (1.77± 0.28) · w (ml/beat) [167]

Cardiac output 5,360 (ml/min) Heart rate · Stroke volume (ml/min) [168]

Creatinine in urine 0.5 - 1.2 (mg/dl) 27.56 - 61.05 (mg/dl)* [169]

Urine flow rate 2000 (ml/day) 2 · w · 24 (ml/day) [170]

Glomerular filtration rate 90 (ml/min) 40 (ml/min)* [171]

The cerebrospinal fluid flow rate measured in ml/day was approximated as [172],

CSFrate =
2.78 + 0.97 · log( a

365 ) + 2.26 · log(w)
60

.

In the initial phenomenological model, a subtraction of 2.23 was applied for female infants. How-

ever, for the sake of simplicity, the same phenomenological model was applied for both sex-specific

infant-WBMs. The physiological parameters were then used to adapt the bounds on the related

fluxes in the model. The blood flow rate and cardiac output were used to adapt the lower bound

lbm,organ of metabolite fluxes from the blood compartment into individual organs which constrains

the uptake of metabolite concentration from an organ. For this, first the organ-specific plasma
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flow rate PFR was calculated as:

PFRorgan = borgan · CO · (1− h), (5.3)

based on the organ-, sex-, and age-specific blood flow percentage borgan, the cardiac output CO,

and the hematocrit value h. The organ-specific plasma flow rate PFRorgan and metabolite concen-

trations M obtained from the Human Metabolome Database (HMDB) [20], [108] were then used

to constrain the lower bound of metabolite fluxes M into an organ,

lbm,organ = (−1) · M

1000
· PFRorgan · 60 · 24

1000
, (5.4)

given in mmol/day/person.

5.2.4 Water balance in infants

The water balance describes the equilibrium between water intake and water loss in the human

body. Maintaining optimal hydration is essential for the proper functioning of various physiological

processes in both adults and infants [173]. The intake and excretion of water differ significantly

between infants and adults. The urinary excretion of water can be approximated as

2 · w (in kg) · 24 (ml/day)

per infant on their second day of life [170]. For the reference male infant-WBM, which weighs 3.3

kg, this is an excretion of 158 ml urine per day and for the reference female (3.2 kg) this leads to

an excretion of 154 ml urine per day. These estimated values correspond to approximately 10% of

the urine excretion of the male adult WBM, which has been estimated to be 1,400 ml per day [20].

Hence, the water excretion through urine feces, sweat, and air has been set to 10% of the adult

WBMs on the second day of life. From these constraints set on the first days of life, the amount

of excreted water was then daily increased depending on the daily water intake from the infant’s

diet. Since the water excretion can be variable, a margin of ± 10% was set for each water excretion

path on every day. The upper bounds ubi and lower bounds lbi of each water excretion reaction i

were approximated based on the bound bi on the respective reaction in the adult WBMs [20] and
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set to

lbi = bi · 10% · 90% · p

ubi = bi · 10% · 110% · p,

where p is the milk intake percentage.

5.2.5 Energy balance in infants

In contrast to the adult WBMs, the infant-WBMs are modeled in an active, and not in a rest-

ing state, which resembles the real human metabolism more closely. By this, the aim of infant’s

metabolism to optimize nutrition for growth, activity, and normal organ development can be sim-

ulated under the constraint that all energy requirements necessary for normal infant development

are met. Since the energy balance is very different in infants compared to adults, a large part

of the model development included the integration of organ-specific energy demands [174]. These

cover the energy intake by the diet and infant-specific energy expenditures to allow for a normal

development of the infant, which should be able to move around, keep warm, and regulate heat.

In particular, the energy demands for brain development, heart function, muscular activity, and

thermoregulation over six months were included.

Dietary nutrition

In this model, the infants were assumed to be exclusively breastfed until the age of 6 months, as

recommended by the WHO [175]. To model the dietary intake of breast milk correctly, the diet

composition and amount of diet intake had to be defined. The diet composition of infants varies

over time according to the needs of a growing child [176], as well as depending on environmen-

tal pollution [177], exogenous chemicals, such as drugs and synthetic compounds [178], and the

mother [179]. In this study, the human milk diet composition c ∈ Rl of the Virtual Metabolic

Human database [180] (https://www.vmh.life/) was applied to determine the number of com-

ponents of c and their concentrations per 100 ml. Consultation with pediatric clinicians from

Heidelberg University Hospital (UKHD) showed that the diet lacked lactose but was appropriate

for infants otherwise. Lactose has been shown to account for approximately 7% of breast milk [181].

Hence, this component was added to the breast milk diet c. The formulated diet comprised ap-

proximately 87.5% of water, aligning with findings from studies that analyzed the composition of

https://www.vmh.life/
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human breast milk [182]. As the diet is a very complex and sensitive part of the model, it had to

be modified to ensure the feasibility of the linear problem in FBA [81] over several time steps to

allow adequate flux through the whole-body biomass reaction vWBB . For this, the uptake bounds

of dietary fluxes in the model of 12 metabolites, including six essential amino acids (L-methionine,

L-isoleucine, L-valine, L-phenylalanine, L-threonine, L-leucine) and six other components (choline,

phosphatidylethanolamine, homocitrulline, D-glucose, thiamin monophosphate, guanidinoacetic

acid), were increased. Additionally, the model experienced growth-stunting effects due to a re-

duced phosphate concentration in the diet. Also, the L-lysine concentration was decreased every

month starting from two months, which agrees with L-lysine concentration measurements, that

showed a decrease in breast milk after two weeks of lactation [183]. Furthermore, for the female

infant-WBMs, the dietary intake of L-cysteine was adapted as it presented another growth-limiting

factor in the models.

The amount of daily milk intake was based on the milk model applied in the STIG-met

model [29] and agreed with mean values of Swedish babies at 1, 2, 3, and 6 months of age [184],

[185]. The only adaptation to this milk model was, that on the second day of life, it was increased

from 100 g to 225 g per day since on their second day of life newborns consume 22-27 ml milk per

feed at 8-10 feeds per day [186]. Hence, for every day the diet d ∈ Rl was obtained by multiplying

the diet composition c with the corresponding daily milk intake m. Additionally, a band of ±20%

was applied on the diet fluxes vdiet to account for variability of the diet,

d0.8 = 0.8 · c ·m ≤ vdiet ≤ 1.2 · c ·m = d1.2. (5.5)

For both male and female infant-WBMs, the same milk model was employed, as a study of a

healthy infant cohort revealed that milk intake was comparable between male and female infants

at both 1 month and 3 months of age [187].

Brain development

The development of the brain and its associated demand for glucose play a crucial role in the

overall growth of infants and, consequently, in the construction of infant-WBMs. The extended

duration and energy investment dedicated to learning and brain development have been suggested

as factors contributing to the comparatively slow pre-adult life stage in humans [188], [189]. The

brain glucose uptake per infant per day was calculated as the sum of the cerebral, cerebellar,

and brainstem glucose uptake and has been predicted to be 19.7 grams (converted to 100 mmol
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of glucose using the molecular weight of glucose 180,156 g/mol) [188]. For the infant-WBMs,

it was assumed that the glycerine-3-phosphate shuttle is used to produce 30 mol ATP from 1 g

glucose [190]. This conversion was applied to model the brain energy demand DMbrain, adapting

the lower bound of the brain ATP demand reaction. In detail, the predicted accumulated brain

glucose uptake was used and converted into mmol assuming the aforementioned conversion. On

day 1 this resulted in a lower bound of the glucose uptake of DMbrain = 100 mmol · 30 = 3, 000

mmol for the infant-WBMs. The lower limit was increased daily, initially with a rapid increase

over two months, and then with a more slow ascent aligning with the typical body growth pattern

of an infant. The constraint on the brain ATP demand reaction flux could be described for any

day as,

DMbrain ≤ vbrain,atp. (5.6)

During the first six months of the infant’s life, the ATP demand of the brain increased daily as

shown in Figure 5.2 (blue line).

Thermoregulation

The regulation of body temperature in humans involves the capacity to manage both heat

production and loss, ensuring that the body temperature is maintained within a normal range.

For infants, thermoregulation of the body temperature is very important due to several factors.

They have less insulating fat compared to adults making it more difficult for them to keep the

heat [191], [192]. Furthermore, their body proportions make thermoregulation challenging, as they

have a relatively high surface-area-to-mass ratio, and a high head-to-body size ratio [191], [192].

Moreover, newborns and infants that are younger than six months are not able to shiver to produce

heat since their muscles are relatively immature [193]. Infants employ a process known as non-

shivering thermogenesis for thermoregulation, which does not require muscle contraction [194],

[195]. When using non-shivering thermogenesis, heat is mainly produced by the brown adipose

tissue and also to a smaller extent in skeletal muscle, brain, liver, and white adipose tissue [196].

Brown adipose tissue is the main component of the infant’s fat [197] and it enables thermoregulation

by an uncoupling protein, i.e., thermogenin [194], [195]. As there are no precise measurements for

the exact energy needs of thermoregulation in infants, the ATP demand DMheat was estimated

using literature references and the energy demand of the brain. This was based on the estimation

that around 44% [198] to 55% [191] of the total heat production of an infant originates from brain
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metabolism. For brain metabolism, it has been reported that approximately 1/3 of the glucose

consumed by the brain is released as heat, while the remaining portion is utilized to generate

ATP [199], [200]. In the previous paragraph, the non-metabolic energy demand of the brain was

estimated as 3,000 mmol ATP per infant per day at age one day. Hence, a minimum of a third of

this value was assumed to correspond to the reported 1/3 of consumed glucose leading to a lower

bound on the adipose tissue energy demand reaction of DMheat = 3, 000 · 1/3 = 1, 000 mmol ATP

per infant per day at age one day. Similar to the brain ATP demand it increased proportionally

every day, Figure 5.2 (orange line), expressing the nearly equivalent contribution (44% [198] and

55% [191]) of both the brain and brown fat to the infant’s heat production. More generally, the

adipose tissue ATP demand reaction flux vadipose,atp could be described for any day as,

DMheat ≤ vadipose,atp. (5.7)

Heart

For infants and adults, the heart is a life-sustaining organ and the main organ of the cardiovascular

system, responsible for pumping blood throughout the body. Besides the heart rate and the

stroke volume, Table 5.1, also the size of the heart is different in infants and adults [165]. At

birth, the infant’s heart weight was approximated as 20 g [165], whereas the adult’s heart weighs

approximately 330 g [20]. The heart ATP demand for adult WBMs has been estimated to be

6,000 mmol ATP per day [20]. These two heart weight approximations were used to estimate the

heart ATP demand DMheart for the infant-WBMs. The infant’s heart weight (20 g) corresponds

to 6% of the adult’s heart weight. Therefore, the lower bound on the heart ATP demand was set

to DMheart = 6, 000 · 6% = 360 mmol ATP on day one and then increased daily according to the

relative heart weight of the infant, Figure 5.2 (red line). More generally, the heart ATP demand

reaction flux vheart,atp could be described for any day as,

DMheart ≤ vheart,atp. (5.8)

Muscular activity

In comparison to other cell-based [18] and whole-body reconstruction [20] of humans, the infant-

WBMs are developed to model the infant’s metabolism in an active and not in a resting state.
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Lower bound constraint of ATP demand reactions
Brain

Adipose tissue

Heart

Muscle

Figure 5.2: Lower bounds (lb) on ATP demand reactions in brain, heart, muscle and
adipose tissue in mmol/day/person during the first six months of a male infant’s life.
Figure taken from Zaunseder et al [34].

Therefore, another vital mechanism considered in the model development was the energy expended

by the infant in physical activity. For the integration of this energy demand, DMmuscle, a published

activity model [29] was applied which accounted for the difference between sleeping energy expen-

diture and total energy expenditure. The energy expenditure varies with age and was determined

to be 4.2 kcal/kg in newborns [201], 10 kcal/kg in 3-month-old infants [202], and 14.4 kcal/kg

in 4 - 6 month-old infants [203]. To account for this variability in the activity model, the value

of 14.4 kcal/kg was multiplied by a factor α ∈ [0, 1], which was determined based on estimated

changes in physical activity sourced from the literature and interpolated by a second-degree poly-

nomial function [29], [204]. The energy expenditure was subsequently converted to 28.12 mmol

ATP hydrolyzed per kcal, a value estimated through the simulation of ATP production from glu-

cose considering the known energy content of 4 kcal/g [29]. As a result, the obtained value was

then multiplied by the infant’s body weight, resulting in the calculated energy expenditure for

physical activity ranging from 328 to 3,515 mmol/day/infant ATP in the female models and 338

to 4,033 mmol/day/infant ATP in the male models, depending on the age,

DMmuscle ≤ vmuscle,atp. (5.9)

In the infant-WBMs, this calculated activity expenditure in ATP was used to set the lower bound

of the muscle ATP demand reaction vmuscle,atp, Figure 5.2 (green line).
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5.2.6 Integration of newborn screening data

The newborn screening data used for integration into the infant-WBMs was obtained from the

newborn screening laboratory at UKHD. The data was already applied in this work for machine

learning methods in IVA diagnostics, section 3.2. To ensure data protection, the metabolite con-

centrations applied for the reference male and female infant-WBMs were synthetic data. Each

metabolite concentration in the synthetic data was based on the sex-specific mean values µ from

newborn screening, by uniform random sampling from the interval [0.8µ, 1.2µ]. From all 52 new-

born screening metabolites, only 29 (17 amino acids and 12 acylcarnitines) were utilized as well as

information on sex, and birth weight from each newborn. To integrate the metabolite concentration

measurements, the blood uptake reactions for each organ corresponding to the metabolites m were

identified to update their bounds respectively. To allow variability within the fluxes the metabolite

concentrations mconc,m ∈ R≥0 were multiplied with a coefficient of variation cm ∈ R≥0 determined

by the UKHD newborn screening laboratory, reflecting day-to-day variability within the tandem

mass spectrometry. This range was further constrained with the coefficient xm = min {cm, 0.1}.

Hence, the bounds of the flux interval mmin,m and mmax,m were calculated for every metabolite

concentrations as:

mmin,m = mconc,m · (1− xm),

mmax,m = mconc,m · (1 + xm).

The minimum and maximum concentrations of a metabolite were denoted as mmin and mmax,

respectively, and expressed in µmol/l of blood. These characterize the metabolite’s concentration

in the blood compartment. Given that an organ cannot absorb more of the metabolite from the

blood than what is maximally present in the blood compartment, the lower bound lbm,organ of the

flux into an organ was restricted by the maximum metabolite concentration mmax. For all organs

except for the kidney, only the uptake of metabolites from the blood was constrained utilizing the

organ-specific plasma flow rate PFRorgan, Eq. (5.3),

lbm,organ = (−1) · mmax,m

1000
· PFRorgan · 60 · 24

1000
, (5.10)

given in mmol/day/person. For the kidney, the lower bound lbm,kidney and upper bound ubm,kidney

on its metabolite uptake reaction fluxes were calculated using the glomerular filtration rate (GFR),
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Table 5.1,

ubm,kidney = (−1) · mmin,m

1000
·GFR · 60 · 24

1000

lbm,kidney = (−1) · mmax,m

1000
·GFR · 60 · 24

1000
,

and are given in mmol/day/person. In cases where literature data for the blood flow percentage

was unavailable, it was assigned the default value of 1%. These equations and flux relationships

were formulated by Thiele et al [20].

5.2.7 Model assembly

After these six model development steps, the male and female infant-WBMs were assembled. The

male infant-WBM accounted for 1,724 unique genes (2,071 transcripts), 83,149 reactions, and

57,980 metabolites stoichiometrically represented in Smale and the female infant-WBM accounted

for 1,724 unique genes (2,071 transcripts), 85,662 reactions, and 60,436 metabolites stoichiomet-

rically represented in Sfemale. The flux through the whole-body biomass functions vmale
WBB and

vfemale
WBB were applied as maximization objective functions for the sex-specific models respectively.

The resulting LP for a male infant can then be formulated as,

max
vmale
WBB

vmale
WBB

s.t. Smale · v = 0

lbmale ≤ v ≤ ubmale

d0.8 ≤ vdiet ≤ d1.2

DMbrain ≤ vbrain,atp

DMheat ≤ vmale
heat,atp

DMmale
heart ≤ vheart,atp

DMmale
muscle ≤ vmale

muscle,atp

(−1) · M

1000
· PFRorgan · 60 · 24

1000
≤ vM,organ

(−1) · mmax,m

1000
· PFRorgan · 60 · 24

1000
≤ vm,organ

−mmax,m

1000
·GFR · 60 · 24

1000
≤ vm,kidney ≤ −mmin,m

1000
·GFR · 60 · 24

1000

(5.11)

where lbdiet and ubdiet denote the lower and upper bounds on the intake flux of the l diet
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metabolites. The lower bounds vbrain,atp, vheat,atp, vmale
heart,atp, and vmale

muscle,atp, are the fluxes through

the ATP demand reaction in the respective organs. Uptake reactions, such as dietary intake, were

defined with negative flux values, while excretion reactions, including urine, fecal, air, and sweat

excretion, were defined with positive flux values [20]. The heart and the muscles bounds are sex-

specific, as they depend on the weight of the infant, which is lower in the female reference model.

All energy demands, milk intake constraints (d0.8, d1.2), and the bounds on metabolite uptake

rates are age-dependent, implying that on each day an infant’s metabolism was modeled these

constraints changed respectively.
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5.3 Infant-WBM - Model validation

Mathematical models that simulate real processes, including biological systems, must be validated

against data from the underlying real system to ensure their functionality. The underlying system

for infant-WBMs is infant metabolism. Therefore, this section presents two validation steps linked

to the infant’s ability to grow while maintaining a functioning water balance and ATP synthase

over the first six months of life.

5.3.1 Model growth prediction

B    Growth curves of female infantsA    Growth curves of male infants

Figure 5.3: (A) Male and (B) female infant-WBM growth predictions in comparison with
WHO quartiles [30] and predictions by the STIG-Met model [29]. The light gray area
shows the 100% distribution, the dark gray shows the 25 - 75% distribution, and the black
line presents the median of the WHO reference values. Figure taken from Zaunseder et
al [34].

During the first six months, infants undergo rapid growth and aim to optimize their nutrient

intake for body growth, activity, and organ development [205], [206]. This differs significantly

from adults, where only a few organs can reproduce cells. Hence, the development step of the

infant-WBMs included integrating organ-specific biomass reactions, which allow growth in all or-

gans. For the validation of the infant-WBMs, the predicted growth of the models was compared to

growth charts from the WHO [30] and a generic genome-scale model of infant metabolism, STIG-

Met [29]. Therefore, the whole-body biomass reaction vWBB , which accounts for the organ-specific

biomass reactions relative to their organ weight, was maximized. This optimization simulated the

maximal possible growth rate, considering limitations imposed by nutritional inputs and require-

ments for thermoregulation, brain development, heart function, and muscular activity. For the

daily growth starting at age day 0, the LP, Eq. (5.11), maximizing the flux through the whole-
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body biomass reaction, was solved. The resulting flux can be interpreted as the growth rate. A

flux value of 1.01 corresponded to a 1% gain in biomass, i.e., an infant’s body weight increased

by 1%. According to the growth rate, the body and organ weights were adapted equally. On

every following day, age-dependent parameters such as milk intake (d0.8, d1.2), energy demands

(DMbrain, DMheat, DMmale
heart, DMmale

muscle) and metabolite uptake rates (lbm,organ, ubm,organ) were

updated. This update was performed until the infant model reached the age of six months. The

growth evaluation started with a birth weight of 3300 g in the male and 3200 g in the female

model, Figure 5.3. On a daily average, the male infant-WBMs gained 0.49%, reaching a weight of

7,900 g after six months, whereas the female models gained 0.43%, reaching a weight of 6,889 g

after six months. Overall, both models showed continuous growth with more rapid growth in

the first two months (mean male: 0.9%; female: 0.73%) and a slower increase in the subsequent

months (male: 0.28%; female: 0.27%). The growth predictions of both models were within the

25 - 75% quartile of the WHO reference values [30] and were comparable to the predictions of

the STIG-Met model [29]. For further validation, the weight prediction of each organ at age six

months was compared to organ measurements of infants at this age [165], Figure 5.4.

Figure 5.4: (A) Organ weights of male infant-WBM compared to reference values on
day 180 (Ref.a) [165]. (B) Organ weights of female infant-WBM compared to reference
values on day 180 (Ref.a) [165]. Figure taken from Zaunseder et al [34].

For both models, the organ predictions at age six months agreed well with the measured

literature values, Figure 5.4. The predicted weights of the blood compartment, brain, heart, lung,

liver, and stomach were within ±15% of the measured organ weights for both male and female

models. The models tended to overestimate kidney, skin, and gut growth. The most considerable

differences were in both models’ muscle and adipose tissue. The male infant-WBMs overestimated

the muscle organ growth by 34% and underestimated the adipose tissue growth by 32%. In the

female models, the muscle growth was overestimated by 24%, and the adipose tissue growth was

underestimated by 35%.



5.3. INFANT-WBM - MODEL VALIDATION 103

5.3.2 Water excretion flux prediction

The water balance in the human body is maintained through dietary intake of water and water loss

via excretions through urine, feces, skin, and respiration. It is crucial to properly balance these

factors for adults and infants, as the appropriate functioning of several physiological processes

depends on it [173]. For the validation of the infant-WBMs, the prediction of water loss was

evaluated by analyzing the flux distribution through the water excretion reactions at several time

points, Figure 5.5.

A    Water balance in male infants
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B    Water balance in female infants
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Figure 5.5: Predictions of water intake and excretion fluxes through urine, air, sweat,
and feces in (A) male and (B) female infant-WBMs over first six months of an infant’s
life. Figure taken from Zaunseder et al [34].

Overall, the water balance predictions were similar for male and female infant-WBMs, Fig-

ure 5.5. The predicted water excretion for both models ranged from 141 - 990 ml/day over the first

six months. The average water excretion per day was 784 ml, and the predicted water excretion

of both models on day 30 was 810 ml/day. This compared well with the reported mean water

excretion of 900 ml/day from 78 male babies aged between 8 and 180 days (mean=36 days) [207].

From all excretion pathways, urinary excretion had the highest volume and was predicted between

66 - 462 ml per day for both models. These flux predictions are comparable with literature values,

where the urine excretion of an infant was estimated as 2 · weight (kg) · 24 (ml/day) [170]. For

the male model weighing between 3.3 - 7.9 kg, this led to an approximated urine excretion of 158

- 379 ml/day, and for the female model weighing 3.2 - 6.9 kg, this led to an approximated urine

excretion of 154 - 331 ml/day. The water loss through air and sweat was predicted as 71 - 495 ml

in male and female models and was consistent with estimations on water evaporation through skin

and air being 149 - 356 ml per day for 0 - 6 month olds [208]. The predicted fecal water loss ranged

between 5 and 33 ml/day for male models and 6 - 33 ml/day for female models. These predictions
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were comparable to literature values where fecal water loss for newborns was estimated as 5 ml/kg

per day, which converts to 17 - 40 ml/day for male and 16 - 35 ml/day for female models over the

first six months [208]. Moreover, the infant-WBMs also accounted for the metabolic production of

water, which was between 56 - 169 ml/day in male models and 57 - 93 ml/day in female models.

5.3.3 ATP synthase flux prediction

Adipose tissue

Liver

Brain

Heart

Muscle

A    ATP synthase in different organs in male infants B    ATP synthase in different organs in female infants

Brain

Adipose tissue

Heart

Muscle

Liver

Figure 5.6: Predicted flux through ATP synthase reaction of the infant-WBM in brain,
liver, muscle adipose tissue, and heart for (A) male and (B) female infants. Icons from
https://icons8.de. Figure taken from Zaunseder et al [34].

The energy balance in the human body describes the energy intake and consumption. For infants,

it is crucial to maintain sufficient energy for essential functions such as brain development, ther-

moregulation, heart function, and physical activity based on the energy intake from the breast

milk diet. This analysis can only be performed in a whole-body model, such as the infant-WBMs,

as they allow the allocation of distinct energy demands to specific organs for these functionali-

ties. Each infant-WBM contained organ-specific ATP demand reactions, representing the ATP

hydrolysis for non-growth-associated metabolic processes such as physical or brain activity. As the

constraints on these reactions increased, an increase in the flux through the ATP synthase reaction

was also expected. The ATP synthase reaction is involved in oxidative phosphorylation in these

organs. For male and female models, the predicted flux through the brain and liver ATP synthase

reaction was the highest over all time points, Figure 5.6. For male models, the brain ATP synthase

flux was predicted to be 3,080 - 6,388 mmol/day/infant, and the liver ATP synthase flux was

predicted to be 1,328- 4,591 mmol/day/infant. For female models, the brain ATP synthase flux

was predicted as 4,146 - 6.123 mmol/day/infant, and the liver ATP synthase flux was predicted

as 1,528 - 6,692 mmol/day/infant. No single factor could be identified that caused the sex-specific

https://icons8.de
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differences in the hepatic ATP synthase flux. Although no constraints were imposed on the liver

ATP demand reaction, both models predicted that the liver ATP synthase flux would increase. An

analysis of the temporal changes of the ATP synthase flux showed that the muscle was predicted to

experience the highest increase, which was five times higher on day 180 than on day 1. In contrast,

the adipose tissue ATP synthase flux increased only by 40%, Figure 5.6.
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5.4 Infant-WBM - Model application

Following the validation, three applications of the infant-WBMs are presented to show their po-

tential use in future newborn screening research.

5.4.1 Personalization with newborn screening data

To demonstrate the infant-WBM’s generalization capabilities, 10,000 models were personalized

using data measurements from newborn screening. The data was already applied in this work for

machine learning in newborn screening, section 3.2. For this evaluation, only unremarkable male

newborn screening profiles were used. The cleaned data set consisted of 798,221 male newborns.

From this, a uniformly random sampled subset of 10,000 newborn screening profiles of male new-

borns was drawn. Only 29 (17 amino acids and 12 acylcarnitines) of the 52 newborn screening

metabolites were utilized, along with information on sex and birth weight for each newborn. A

Wilcoxon rank-sum test was conducted to verify whether the birth weights of the subset (10,000

newborns) and the cleaned dataset of male newborns (798,221 newborns) originated from the

same distribution, yielding a p-value of 0.27 (calculated with the Python library scipy [122]). The

metabolite concentration data were then used to update the bounds on the uptake fluxes from

the blood compartment into individual organs and all weight- and sex-specific parameters of the

infant-WBMs were adjusted.

A    Birth weight distribution B    Growth rate distribution

Figure 5.7: Evaluation results of 10,000 male infant-WBMs. (A) Birth weight and (B)
growth rate distribution of infants with predicted weight loss (WeightLoss) and infants
with predicted weight gain (WeightGain). Figure taken from Zaunseder et al [34].

The mean measured birth weight in the subset of the 10,000 newborns was 3, 508 g and ranged
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between 1,770 - 5,590 g, Figure 5.7. The subset of the 10,000 individuals adequately represented

the general male newborn population since the birth weight quartiles of the subset were within

170 g (3 - 5%) of the WHO reference values for boys at age 0. The 25 - 75% quartile of the subset’s

birth weight was 3200 - 3800 g, agreeing well with the WHO references 3027 - 3687 g, and the

median was 3490 g (WHO reference 3346 g) [29], [30]. To estimate whether all these personalized

models predicted reasonable in silico growth rates, FBA [81] was applied.

From all models in the subset, 8, 736 (87.36%) models had a predicted growth rate between

1.0089 - 1.0092 (mean = 1.0091 ± 0.00008), which corresponded to a weight gain of 0.89 - 0.92%

per day, Figure 5.7. Whereas 1,108 models (11.08%) had a predicted growth rate between 0.22 and

0.996 (mean = 0.74±0.23), indicating a weight loss, Figure 5.7. A decrease in birth weight of up to

10% during the initial days of life is considered normal [209] and presumably attributed to fluid loss

through urination [210]. However, no water-related constraints were changed in the personalized

infant-WBMs. Since the data used for personalization came from unremarkable newborn screening

profiles, no further information on the infants’ follow-up weight, general health status, potential

feeding problems, delivery mode, or the mother’s age was available. This information could have

helped validate the predicted weight loss since all these factors have been associated with excessive

weight loss in newborns [211]. Overall, only 156 of the 10,000 personalized infant-WBMs (1.56%)

were infeasible, meaning no flux solution that satisfied Eq. (5.11) could be found.

Arginine distribution

WeightGain infants

ø arginine: 14.3 μmol/l

WeightLoss infants

ø arginine: 6.8 μmol/l

Figure 5.8: Comparison of measured arginine concentration (µmol/l) of predicted
WeightGain infant models (orange) and predicted WeightLoss infant models (blue). Fig-
ure taken from Zaunseder et al [34].

The models were further investigated for potential metabolic reasons for the predicted weight

loss. This comparison showed that the measured blood concentration of arginine was significantly

lower in infants with predicted weight loss (mean = 6.8 ± 4.1 µmol/l) compared to infants with
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predicted weight gain (mean = 14.3±7.4 µmol/l), Figure 5.8. Arginine showed the highest absolute

relative median difference (0.5) between the group of weight gainers and weight losers and had

the lowest p-value (Wilcoxon rank sum test, p < 0.0001) of all compared metabolites. To test

whether the arginine concentration was indeed the growth-stunting factor, the blood arginine

concentration was increased in silico to 14 µmol/l. This increase enabled 762 (69%) of the models

with predicted weight loss to grow with a growth rate of at least 1.005. The majority of these

models, 99.74% (760), originally had a blood arginine concentration lower than 14 µmol/l. For

the remaining 346 (31%) of the weight-loser infant-WBMs, no single measured blood metabolite

could be identified to explain the predicted weight loss. Also, no dietary supplementation could

achieve higher in silico growth rates in the predicted weight loss models, using a dedicated nutrition

algorithm [212]. These results confirm literature knowledge on arginine, which is known to be an

essential amino acid in newborns and infants [213], while not being an essential dietary amino

acid in healthy adults [214]. The relationship between low arginine levels and growth stunting has

been suggested in two studies. For children and adolescent patients with methylmalonic acidemia

and propionic acidemia, low plasma l-arginine levels have been suggested as a potential cause of

growth retardation [215]. Additionally, an investigation involving Danish schoolchildren revealed

a connection between the intake of dietary arginine and the rate of growth [216].

5.4.2 Biomarker prediction for inherited metabolic diseases

IMD analysis is utilized in metabolic modeling to demonstrate the human metabolic model’s ca-

pability to predict known biomarkers accurately. Starting with the first prediction of known IMD

biomarkers using Recon1 [17], [21] this evaluation has been performed with cell-based models [18],

[85], whole-body models [20], and models of organ-specific metabolism [22], [23]. Hence, the infant-

WBM models’ ability to predict known biomarkers was evaluated. Phenylketonuria (PKU) is an

inborn error of phenylalanine (Phe) metabolism explicitly in the synthesis of tyrosine (Tyr) from

Phe by the phenylalaninhydroxylase. If untreated, PKU is associated with global developmental

delay and severe intellectual impairment of patients [217]. For the IMD prediction, the method per-

formIEMAnalysis.m established in Thiele et al [20] was applied for male and female infant-WBMs.

In addition to the known PKU biomarkers, 27 further metabolites routinely measured in the dried

blood spots for newborn screening at the UKHD were evaluated. For the comparison, the relative

flux change f from the wild type (’WT’) model and the knock-out (’PKU’) model was calculated,

see also section 5.1.5. In the PKU model, the reactions tetrahydrobiopterin: oxygen oxidoreductase

were deleted in all organs having the known defective gene phenylalanine hydroxylase.



5.4. INFANT-WBM - MODEL APPLICATION 109

A    PKU male model - relative �ux increase to WT B    PKU female model - relative �ux increase to WT

Figure 5.9: Relative change of flux through blood demand reactions of metabolites mea-
sured in newborn screening for (A) the male and (B) the female infant-WBM comparing
the wild type (WT) with a phenylketonuria (PKU) knock-out model. Metabolite abbre-
viations can be found in Table 2.1. Figure taken from Zaunseder et al [34].

In male and female PKU infant-WBMs, the Phe flux was predicted to increase by more than

300%, and the Tyr flux was predicted to decrease by 97% in male and 91% in female PKU models.

The flux through all other newborn screening metabolite reactions showed no or small relative flux

changes below 3%, Figure 5.9. Hence, the known biomarkers showed the highest relative change

in flux prediction. From the remaining metabolites with small relative flux changes, 12 out of 27

metabolite fluxes were predicted to change in both female and male models. One metabolite flux

glutarylcarnitine (Glut) was only predicted to change in the male PKU model, and two metabolite

fluxes, histidine (His) and isovalerylcarnitine (C5), were only predicted to change in the female

PKU model, Figure 5.9.

The infant-WBMs enable an evaluation of fluxes over different time points in the first six months

of an infant’s life. Hence, the biomarker prediction for IMDs was also analyzed over three different

time points. This analysis was performed for the three newborn screening conditions PKU, IVA,

and GA1, section 2.1.4. For each of these IMDs, the flux through their known biomarkers over

the first six months was predicted for both male and female models. The predicted fluxes were

analyzed qualitatively by comparing the flux through the known biomarker reactions in the wild

type and IMD model, and it was noted whether an elevation or reduction of the flux was predicted,

Table 5.2. For all IMDs and all biomarkers, the predictions were consistent over all three time

points as well as with the change in biomarkers reported in IEMBase [218]. Further, the biomarker

changes were consistent with changes predicted by the adult WBMs, Table 5.2. The adult WBMs

have previously demonstrated strong predictive capabilities for IMDs [20].
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Table 5.2: Qualitative flux change through biomarker reactions in blood on day 1, 90, and
180 for (A) male and (B) female infant-WBMs compared to adult whole-body models [20],
when maximizing the respective biomarker reactions in the knockout (disease) and the
wild type (healthy) model. A predicted flux increase is highlighted with an up-arrow ⇑
and a decrease with a down-arrow ⇓. Metabolite abbreviations can be found in Table 2.1.
PKU - phenylketonuria, IVA - isovaleric aciduria, GA1 - glutaric aciduria type 1.

Diseases Metabolites Day 1 Day 90 Day 180 Adult WBM

(A) MALE MODELS

PKU Phe ⇑ ⇑ ⇑ ⇑

Tyr ⇓ ⇓ ⇓ ⇓

IVA C5 ⇑ ⇑ ⇑ ⇑

GA1 Glut ⇑ ⇑ ⇑ ⇑

(B) FEMALE MODELS

PKU Phe ⇑ ⇑ ⇑ ⇑

Tyr ⇓ ⇓ ⇓ ⇓

IVA C5 ⇑ ⇑ ⇑ ⇑

GA1 Glut ⇑ ⇑ ⇑ ⇑

5.4.3 Dietary treatment effect prediction

The management of IMDs consists of treatment strategies such as the restriction of metabolite

uptake or dietary supplementation [219]. Based on these dietary guidelines, necessary treatment

and therapy can be planned. However, due to the substantial variability of IMDs, the disease

management and therapy need to be adapted to the age-dependent requirements and the individual

disease severity [35]. Identifying the best treatment strategy for a patient, including the amount

of natural food and supplements, is part of the patient-specific diet [220]. Hence, the response of

the infant-WBMs to dietary interventions for PKU was analyzed. In the IMD analysis, Table 5.2,

it was shown that the infant-WBMs predicted an increase or decrease of a biomarker flux caused

by the respective in silico gene knockout in an IMD model. For the dietary interventions, it

was assessed whether these predicted changes could be attenuated through applying an in silico

dietary treatment strategy. Therefore, the female and male PKU infant-WBMs were compared to

the wild-type prediction, with and without dietary intervention.
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Figure 5.10: Flux prediction through blood demand reactions of biomarkers of infant-
WBMs with dietary interventions. For (A) the male and (B) the female infant-WBMs, the
predicted phenylalanine flux is compared in the wild type (WT) and the phenylketonuria
(PKU) model, as well as in PKU models with four dietary treatment strategies (T−25,
T−50, T−60, T−75), where 25%, 50%, 60% and 75% less dietary phenylalanine is given,
respectively. The predicted tyrosine flux is compared in the WT and the PKU model,
as well as in PKU models with three dietary treatment strategies (T+10, T+20, T+25),
where 10%, 20%, and 25% more dietary tyrosine is given, respectively. Figure taken from
Zaunseder et al [34].

For PKU patients, a highly restrictive low-Phe diet directly starting after birth is the most

important dietary recommendation [219]. A low-Phe diet is achieved by restricting but not elimi-

nating natural food to allow some Phe intake as it is an essential amino acid [219]. Additionally, an

amino acid-based, Phe-free formula or amino acid-based medical food is added to provide sufficient

nutrition [219]. The tolerance level of dietary Phe is very patient-specific as it depends, among

others, on the type of PKU (mild or moderate PKU), the dosage, the growth, and the catabolic

state during illness [220]. Furthermore, the supplementation of Tyr has been tested to increase the

plasma Tyr levels found to be low in PKU patients [221].

Two dietary interventions with varying therapeutic strategies for PKU were tested for the
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treatment analysis. In the first dietary intervention, the dietary Phe intake of the infant-WBM was

varied to different therapeutic intensity levels, i.e., 25%, 50%, 60%, and 75% of the regular intake

of the infant-WBMs. The impact of the dietary treatment on the infant-WBMs was compared

in Figure 5.10 for male and female PKU models. For both models, the first dietary intervention

had the clinically desired effect as a reduction of dietary Phe led to a reduced flux through the

blood demand reaction of Phe in the PKU infant-WBM compared to the non-treated PKU infant-

WBM, Figure 5.10. At a reduction of 60% of dietary Phe intake, the predicted Phe blood flux

was comparable to the flux in the wild-type infant-WBM, while the further decrease in Phe intake

lowered the predicted Phe blood flux below the wild type. Note that the results could only be

compared qualitatively and not quantitatively since the IMD analysis maximizes the flux through

the biomarker blood demand reaction to assess a model’s capacity to produce this metabolite.

In the second dietary intervention, the in silico dietary intake of Tyr was increased, i.e., by

10%, 20%, and 25% of the regular intake of the infant-WBMs. This second dietary intervention

also showed the clinically desired effect since it increased the predicted flux through the blood

demand reaction of Tyr, Figure 5.10. Moreover, the varying therapeutic strategies showed small,

gradual increases in the predicted flux through the blood demand reaction of Tyr. However, these

predicted increases were still relatively small compared to the wild-type flux. Overall, the two

therapeutic strategies led to similar results in the female and male infant-WBMs, Figure 5.10.
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5.5 Summary and outcome

This chapter presented the development and validation of metabolic whole-body models for new-

borns and infants. These models simulate the metabolic systems of male and female infants by

connecting metabolic pathways throughout several organs and blood compartments. They present

an infant’s metabolism not only for a specific age but throughout its first six months of life. During

this time, the models were constrained to ensure that energy requirements and nutrition match

values from reference infants. In contrast to adult WBMs, which are modeled in a resting state,

the infant-WBMs were modeled in an active state. The energy requirements, especially due to the

energy demand for brain development, heart function, muscular activity, and thermoregulation,

were essential to simulate an active metabolism. Based on these requirements, the infant-WBMs

could accurately, in accordance with WHO growth charts [30], predict the growth trajectory dur-

ing the first six months. The water balance and ATP synthase evaluation demonstrated that

the infants-WBMs agreed with in vivo measurements of infants throughout the six-month time

frame and presented an emergent feature of the infant-WBM. Related to newborn screening, three

applications were presented. The personalization capabilities of the models were evaluated with

10,000 personalized infant-WBMs utilizing the sex, birth weight, and 29 metabolite concentrations

measured during newborn screening. Further, the infant-WBMs showed that they could correctly

predict known metabolic biomarkers for PKU, IVA, and GA1 at different time points. More-

over, they proved their applicability for personalized treatment planning by predicting expected

metabolic responses to simulated dietary interventions in PKU patients.

5.5.1 Modeling choices

The infant-WBMs were derived from female and male adult WBMs. The included reactions were

exclusively expanded for biomass growth reactions in each organ, highlighting a crucial distinction

between adult and infant metabolism. Except for these reactions, no further stoichiometric changes

were placed on Sfemale and Smale compared to the adult models. However, the metabolic profile

changes at various stages of human life [222]. For example, an examination of urine samples revealed

significant variations in the activity of pathways related to amino acid metabolism between infants

aged six months and one year [222]. These changes were not accounted for in the infant-WBMs

and could lead to inaccuracies in the representation of the infant metabolism. Furthermore, the

organ weights used to parameterize the infant-WBM were based on average measurements of real
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newborns at birth [165]. After birth, each organ was assumed to grow equally according to the

predicted body growth rate. A comparison with measurements of infants at age six months showed

that the organ weights of the infant-WBMs agreed well for most organs but not for muscle and

adipose tissue, Figure 5.4. Hence, future research could focus on applying different growth models

for adipose tissue and muscle, which agree better with data measurements.

This work used the COBRA [79] approach for metabolic modeling. The placed steady-state

assumption dx
dt = Sv = 0 is a strong restriction that erases the time component by assuming

no changes in metabolite concentrations over time. The infant-WBMs consistently represent an

accumulated flux over an entire day, making small-scale, time-dependent changes have a limited

impact. Metabolite concentration changes over time could be more important when evaluating

these models on a smaller time scale. These evaluations could include metabolite concentrations of

a remarkably high biomarker concentration or simulations of dietary treatments for patients with

IMDs.

5.5.2 Model limitations and future work

For the development of the infant-WBMs, no data measurements of an infant at different time

points were available. Therefore, the essential information on infant metabolism was extracted

from the literature and interpolated where necessary, resulting in model approximations and as-

sumptions. These approximated parameters add uncertainty to the model and could influence the

model’s output. Moreover, the ability of the infant-WBMs to integrate personalized data and de-

velop models that predict a reasonable growth rate was already shown using the newborn screening

data. Hence, in future work, it would be very beneficial to obtain data from an infant at several

time points, where all the required information, such as daily weight measurements, breast milk

intake, and urine excretion, is measured. This data could be used to personalize the models, gain

insights, and further validate them. For a Crohn’s disease patient, fecal time series data covering

several dates was already integrated to personalize metabolic whole-body models and simulate the

patient-specific metabolism [223]. Using data from several time steps, also the growth prediction

could be evaluated, which was difficult in the infants with predicted weight loss since no further

information on the infants’ follow-up weight (e.g., on day 3) and factors that are associated with

weight loss in newborns [211] were available.

Furthermore, information on the exact milk composition and amount of milk intake could be

used to personalize the models. The milk composition is very infant-specific, depending on the envi-
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ronmental pollution [177], exogenous chemicals, such as drugs and synthetic compounds [178], the

mother’s nutrition [224] and milk production quantities [179]. Hence, the applied adjustments for

the model feasibility of the milk diet could be justified with this variability of the diet composition.

This personalization could provide valuable insights into the newborn’s early-life metabolism and,

thus, enable personalized interventions. A first analysis for in silico evaluation of dietary treatment

strategies with infant-WBMs was already presented for the treatment of PKU. The infant-WBMs

showed that they accurately predicted qualitative flux changes due to dietary treatment strategies

with varying intensity levels. With this, the management of IMDs in infants could be improved as

therapies could be tested in silico. Due to the extreme variability of IMDs, their management must

be personalized for each patient, based on their diagnosis and phenotype [35]. In future research,

infant-WBMs could be a first step toward a digital metabolic twin for infant metabolism, which

could be used for personalized systematic simulations, treatment planning, and quantitative flux

change prediction.

Moreover, time-dependent infant-WBMs could be very valuable in the area of drug research

as the infant’s immature drug metabolism is often associated with drug toxicity [225], and the

pharmacokinetics and pharmacodynamics of drugs are often different in children and adults [36],

[37]. For drug modeling, often PBPK models [226] are applied, accounting for the time-dependent

metabolism changes. Hence, integrating these existing time-dependent modeling techniques with

the infant-WBMs could allow for a detailed analysis of the infant metabolism. This could also

include an analysis on a small time scale to estimate the effects of metabolic changes, nutrition,

and drugs. Therefore, the development of a time-dependent infant-WBM will be presented and

discussed in chapter 6.
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6
Time-dependent modeling for

infant-WBMs

The infant-WBMs established in the previous chapter allow a detailed evaluation of metabolic fluxes

through an infant’s body and individual organs. However, they are only evaluated daily and predict

the flux through a reaction operating under steady-state conditions. By this, these models do not

account for short-term effects, such as responses to perturbations or time-dependent variations

in metabolites. Time-dependent modeling of metabolite concentrations enables the simulation

and analysis of metabolite concentrations and their dynamics at different, also very small, time

scales. One possibility to capture the time-dependent features of the infant metabolism is the

integration of kinetic modeling such as in physiological-based pharmacokinetic (PBPK) modeling

[105], [226]. This chapter will present the development of time-dependent evaluations for the

metabolic infant whole-body models. First, the methodological background of PBPK modeling will

be described. Then, the integration into the infant-WBM models will be presented and evaluated

on IMD biomarker predictions, with a subsequent quantification of the model uncertainty. Finally,

the integrated model and its potential application in newborn screening will be discussed.

6.1 Methodological background

In drug research, time-dependent mathematical models are developed to predict how drugs behave

in the human body, particularly in pharmacokinetics [227]. These models are then used to gain
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knowledge on human drug behavior for research in drug discovery and development [227].

6.1.1 Pharmacokinetic modeling

Pharmacokinetic (PK) models are used to understand drugs and their distribution in an organism

following an intravenous or oral dosing [228]. A PK model usually consists of several linked

compartments, where a central compartment depicting the blood plasma is connected to the other

compartments [228]. PK models describe the change of drug concentration C over time t depending

on the drug clearance Cl, which describes the volume of plasma or blood that is cleared of the

drug per unit time (l/min) and the volume of distribution V which is the space a drug distributes

into [229],
dC

dt
= −Cl

V
· C. (6.1)

Although it is possible to account for demographic and physiological parameters as covariates in

these models, not all prior information on the physiology can be integrated despite their known

effect on the drug-concentration relationship [228].

6.1.2 Physiological-based pharmacokinetic modeling (PBPK)

Physiological-based pharmacokinetic (PBPK) models are based on the same mathematical frame-

work and extend PK models. They enable the integration of various physiological parameters by

adding compartments that correspond to different organs and tissues in the human body [228].

PBPK models can extrapolate a drug dose from one population to another if the relevant physi-

ological parameters are available [228]. The arterial and venous blood compartments connect the

different organs in the model. In the following, the term tissue T will be used for all organs and

compartments of the human body considered in the PBPK models. A schematic image of the

compartments and the direction of their corresponding blood flow is presented in Figure 6.1.

In a PBPK model, tissues T are connected through the blood exchange in both venous and

arterial blood. The arterial blood is the oxygenated blood, which is transported to all organs except

the lung, where the organs take up oxygen, Figure 6.1. The venous blood is the deoxygenated blood,

which leaves the organs and is pumped back into the lungs for oxygen uptake, Figure 6.1. For

each tissue T , except for the lung, the rate of concentration change over time t of a compound

CT is described by the arterial inflow concentration Ca and the tissue-specific venous outflow
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Figure 6.1: Overview of general PBPK model. Red arrows describe the blood exchange
between artery blood and organs, blue arrows present the blood exchange between venous
blood, and organs. The green arrow presents the renal and bile clearance.

concentration CvT ,

VT · dCT

dt
= QT · Ca −QT · CvT

, (6.2)

where VT is the tissue volume (l), QT is the blood flow (l/h), and CvT = CT

KT /B is the venous outflow

concentration (mol/l) with KT the tissue partition coefficient and B the blood-to-plasma ratio.

The blood-to-plasma ratio is utilized to correct for blood when the plasma is used to determine the

pharmacokinetic parameters, although the blood should be the true central compartment. In this

study, the blood-to-plasma ratio is set to B = 1. Based on this, the generic ordinary differential

equation (ODE) of the rate concentration CT in a tissue T that is changing over time t can be

written as
dCT

dt
=

QT

VT
·
(
Ca −

CT

KT

)
. (6.3)

Different approaches, such as perfusion rate-limited kinetics and permeability rate-limited kinetics,

are used to model the kinetics within the compartments. In this work, all processes are modeled

with perfusion rate-limited kinetics since it often occurs for small lipophilic molecules, which can

dissolve easier in lipids than in water [228]. For these molecules, the blood flow to the tissue

becomes the limiting process [228]. In perfusion rate-limited kinetics, it is assumed that at steady

state, the total drug concentration in a tissue T is in equilibrium with the total drug concentration
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in the circulation as determined by the drug-specific tissue partition coefficient KT [228]. The

time to reach a steady state is determined by KT , the blood flow rate QT , and the tissue volume

VT [228]. There are several methods to estimate the tissue partition coefficient KT . In this work,

the Poulin method will be applied [230], which assumes that the compound diffuses passively,

distributing homogeneously into both tissue and plasma [228]. Based on this method, the tissue

partition coefficient KT of a tissue T can then be determined as,

KT =
10l(V nl

T + 0.3V ph
T ) + (V w

T + 0.7V ph
T )fu

p

10l(V nl
p + 0.3V ph

p ) + (V w
p + 0.7V ph

p )fu
T

, (6.4)

where l is the lipophilicity, referring to the capacity of a chemical compound to dissolve in lipids,

V nl
T and V nl

p are the specific volume fractions of neutral lipid, V ph
T and V ph

p are the specific volume

fractions of phospholipid, and V w
T and V w

p are the specific volume fractions of water in tissue T

and plasma p, respectively. All these volumes can be obtained from literature [231]. Furthermore,

the chemical bind in plasma or fractional unbound plasma fu
p defines a drug’s binding degree in

plasma [232]. This term describes the fraction of the compound that is not bound to plasma

proteins and free for interaction with receptors, metabolizing enzymes, and renal filtration. The

compound-specific values for fu
p can be obtained from experimental results in literature [233] and

applied to calculate the chemical bind in tissue, fu
T , with

fu
T =

1

1 +

√
1−fu

p

fu
p

. (6.5)

In addition to the tissue-specific models described by Eq. (6.3), the PBPK model incorporates

additional equations for the arterial and venous blood compartment, as well as for the renal and

bile excretion. The arterial and venous blood compartments connect all the tissue-specific ODEs.

In this work, the PBPK model from Mohammad et al [105] is used for the integrated modeling,

which describes the dynamics of a system with 23 ODEs. For each compound of interest i, the

time-dependent concentration in a specific tissue such as adipose tissue, brain, small intestine,

large intestine, heart, kidney, liver, lung, muscle, pancreas, skin, spleen, stomach, and bone is

calculated. Additionally, there are auxiliary ODEs to describe the transit from bile to small and

large intestine lumen as well as separate equations for renal and bile clearance. For a compound

i (a metabolite or drug), the applied PBPK model can be described by the following system of

equations:



6.1. METHODOLOGICAL BACKGROUND 121

Adipose tissue:
dCadipose,i

dt
=

Qadipose

Vadipose

(
Cart,i −

Cadipose,i

Kadipose,i

)
(6.6)

Artery blood
dCart,i

dt
=

QlungClung,i

Vart ·Klung,i
− Cart,iQart

Vart
(6.7)

Brain
dCbrain,i

dt
=

Qbrain

Vbrain

(
Cart,i −

Cbrain,i

Kbrain,i

)
(6.8)

Small intestine
dCSI,i

dt
=

QSI

VSI

(
Cart,i −

CSI,i

KSI,i

)
(6.9)

Large Intestine
dCLI,i

dt
=

QLI

VLI

(
Cart,i −

CLI,i

KLI,i

)
+ kai · CLIL (6.10)

Heart
dCheart,i

dt
=

Qheart

Vheart

(
Cart,i −

Cheart,i

Kheart,i

)
(6.11)

Kidney
dCkidney,i

dt
=

Qkidney

Vkidney

(
Cart,i −

Ckidney,i

Kkidney,i

)
− clurine,i · Ckidney,i

Vkidney ·Kkidney,i
(6.12)

Liver

dCliver,i

dt
=
Qliver

Vliver

(
Cart,i −

Cliver,i

Kliver,i

)
+

QspleenCspleen,i

Kspleen,iVliver
+

QpancreasCpancreas,i

Kpancreas,iVliver
(6.13)

+
QstomachCstomach,i

Kstomach,iVliver
+

QSICSI,i

KSI,iVliver
+

QLICLI,i

KLI,iVliver
− clbile,iCliver,i

Kliver,iVliver

Lung
dClung,i

dt
=

Qlung

Vlung

(
Cven,i −

Clung,i

Klung,i

)
(6.14)

Muscle
dCmuscle,i

dt
=

Qmuscle

Vmuscle

(
Cart,i −

Cmuscle,i

Kmuscle,i

)
(6.15)

Pancreas
dCpancreas,i

dt
=

Qpancreas

Vpancreas

(
Cart,i −

Cpancreas,i

Kpancreas,i

)
(6.16)
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Skin
dCskin,i

dt
=

Qskin

Vskin

(
Cart,i −

Cskin,i

Kskin,i

)
(6.17)

Spleen
dCspleen,i

dt
=

Qspleen

Vspleen

(
Cart,i −

Cspleen,i

Kspleen,i

)
(6.18)

Stomach
dCstomach,i

dt
=

Qstomach

Vstomach

(
Cart,i −

Cstomach,i

Kstomach,i

)
(6.19)

Bone
dCbone,i

dt
=

Qbone

Vbone

(
Cart,i −

Cbone,i

Kbone,i

)
(6.20)

Venous

dCven

dt
=
QliverCliver,i

Kliver,iVven
+

QheartCheart,i

Kheart,iVven
+

QbrainCbrain,i

Kbrain,iVven
+

QmuscleCmuscle,i

Kmuscle,iVven

+
QadiposeCadipose,i

Kadipose,iVven
+

QskinCskin,i

Kskin,iVven
+

QboneCbone,i

Kbone,iVven
(6.21)

+
QkidneyCkidney,i

Kkidney,iVven
− QlungCven

Vven

Transit from bile to small intestine lumen

dCtransit1,i

dt
=

clbile,i · Cliver,i

Kliver,i
− kbilei · Ctransit1,i (6.22)

dCtransit2,i

dt
= kbilei · Ctransit1,i − kbilei · Ctransit2,i (6.23)

dCtransit3,i

dt
= kbilei · Ctransit2,i − kbilei · Ctransit3,i (6.24)

Small intestine lumen

dCSIL,i

dt
= kbilei · Ctransit3,i − kLIi · CSIL,i (6.25)

Large intestine lumen

dCLIL,i

dt
= kLIi · CSIL,i − (kai + kfecali) · CLIL,i (6.26)
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Urine
dCurine,i

dt
=

clurine,i · Ckidney,i

Kkidney,i
(6.27)

Feces
dCfeces,i

dt
= kfecali · CLILi (6.28)

Here, CT,i represents the concentration of the compound i in a specific tissue T , VT is the tissue

volume, QT the blood flow rate, and KT,i the calculated organ-specific tissue partition coefficient,

Eq. (6.4), for the compound i. Furthermore, clurine,i and clbile,i present renal and bile clearance

for a specific compound, which are set to zero if the compound cannot be found in the urine or

feces, respectively. The compound-specific constants kai, kbilei, kfecali, and kLIi are the large

intestine, bile, and feces coefficients. These are set to zero if the compound cannot be found in

the feces. This system of equations can then be solved by a commercial ode solver such as the

ode15s.m function in MATLAB [153], which is a quasi-constant step size implementation of the

numerical differentiation formulas in terms of backward difference [234].

6.1.3 Uncertainty quantification

Mathematical models, such as infant-WBMs and PBPK models, attempt to simulate complex

biological processes. These models are developed using necessary assumptions about process be-

haviors, parameters from the literature, and parameter approximations. However, these assump-

tions and simplifications introduce uncertainties into the models. Uncertainty quantification (UQ)

analyzes all sources of error and uncertainty in mathematical models. These methods assess the

extent to which a model should be trusted rather than determining whether the model is correct

or incorrect [235]. Model uncertainties are often divided into aleatoric and epistemic uncertainties.

Aleatoric uncertainties describe a model’s uncertainty inherent to the model, such as the natural

variability in the system itself [235]. For the infant-WBM, such a natural variability could be the

infant’s birth weight, which varies greatly for an infant’s population [30]. Epistemic uncertainties

stem from a system’s lack of knowledge, either because the model itself is incorrect or the param-

eters used in the models are incorrect [235]. These could be parameters such as the lipophilicity

l in the PBPK models, which varies from different literature sources, and it needs to be clarified

which estimation is correct. UQ can help assess an uncertain parameter’s impact on a model by

studying the relationship between the uncertainty in the output and input of a model [236].
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Monte-Carlo Simulations

To analyze parametric uncertainties in a mathematical model m computational methods, such

as Monte Carlo simulation, can be applied. This non-intrusive method propagates uncertainties

through a mathematical model [237]. It is based on random sampling for which an underlying

probability distribution with a probability density function f is chosen. This distribution could be

a continuous uniform distribution in an interval I = [a, b],

f(x) =


1

b−a , for a ≤ x ≤ b,

0, for x < a or x > b.
(6.29)

Such a uniform distribution can be applied when there is a minimum and maximum value in which

the parameter arbitrarily lies. Then, N input random variables Z ∈ Rd are generated according

to the chosen probability density function f . The parameters Z(i) with i = 1, ..., N are used

as input to the model m(Z(i)). When evaluating the model output m(Z(i)), the impact of the

variation of the parameter in the interval I on the model output can be assessed. Using these

model realizations, the quantity of interest, such as the expected value, can be computed [237],

E[m(Z)] ≈ 1

N

N∑
i=1

m
(
Z(i)

)
. (6.30)
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6.2 Development of time-dependent infant-WBMs

The development of time-dependent infant-WBMs is based on the coupling of PBPK models and

infant-WBMs such that metabolite concentration predictions can be used to update the constraints

on the fluxes within the infant-WBM and vice versa. Integrated time-dependent metabolic models

have been developed for adult metabolism, especially for a cell-based liver model [23] and for

studying the gut-brain axis in autism spectrum disorder [105]. Furthermore, PBPK models have

been combined with whole-body models to investigate glucose regulation in type 1 diabetes [238]

and the effect of processes and genetic variations in ethanol metabolism [107]. This section describes

in detail the development of time-dependent infant-WBMs, particularly how PBPK models and

infant-WBMs can be integrated and used for dynamic IMD biomarker predictions.

6.2.1 Coupling of PBPK modeling and infant-WBMs

For the coupling of PBPK models and infant-WBMs, the flux through a metabolic reaction in

the infant-WBM was interpreted as the intrinsic ability of a compound to be metabolized by the

relevant enzyme. Hence, the flux was used to update the initial value of the initial value problem in

the PBPK model for predicting the metabolite concentration, Figure 6.2. Likewise, the predicted

metabolite concentrations were used to update the bounds on the flux values in the infant-WBM.

This led to an iterative scheme, where both models were evaluated one after the other, and the

predictions of one model were used to update the other. Through this iterative scheme, it was

possible to combine all information from physiology, pharmacokinetics, and metabolism to obtain

more accurate predictions on the metabolite concentrations. The following four steps describe the

coupling of both models leading to time-dependent infant-WBMs.

Step 1. PBPK adaptations for infant physiology

PBPK models can be adapted for specific physiological parameters corresponding to an individ-

ual. These parameters were extracted from the model.IndividualParameters variable of the infant-

WBM. Similar to Toroghi et al [23], the physiological and physicochemical properties in the PBPK

model were assumed to be constant over time since only short time frames of several hours were

evaluated. In particular, the PBPK parameters for the body mass, organ volumes, and organ flow

rates were obtained directly from the infant-WBM models; see also chapter 5. The calculation of

the organ volumes was based on the organ weights reported in the infant-WBM and the respective
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Figure 6.2: Schematic overview presenting coupling of PBPK models and infant-WBMs
to account for time-dependent changes in metabolite concentrations. Icons from https:
//icons8.de.

organ density obtained from literature [239]. The venous and arterial blood volume estimations

were based on the total blood volume. They resulted in 144 ml blood in both compartments for

a 3.3 kg newborn at day 1 (total blood volume: 288 ml), which is comparable to the blood range

of newborns at 72 hours of age (75 to 107 ml/kg) ranging between 248 - 353 ml for a 3.3 kg

infant [240].

The organ flow rates were obtained from the organ flow rate parameters of the infant-WBM,

which were measured in l/min/kg tissue and converted to l/h/organ. The blood flow rate for

venous and arterial blood was estimated at 4.85 l/h. Hence, it is estimated to be higher than the

blood flow rate ranging from 10 to 50 ml/min in infants weighing less than 5 kg [241], leading to

an estimation of 0.6 - 3 l/h by multiplication with 60/1000. The body surface area was calculated

based on the Mosteller method [242], using the average height of 50 cm for male and 49 cm for

female newborns [243].

Step 2. Compound-specific parameters

In the second step, the compound-specific parameters were set. A compound of interest could be

a drug or a biomarker, such as an amino acid or acylcarnitine. All processes were modeled with

perfusion rate-limited kinetics, and the Poulin method [230] was used for calculating the tissue

https://icons8.de
https://icons8.de
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partition coefficient Kt, section 6.1.2. For every compound, the molecular weight, lipophilicity l,

and fractional unbound plasma fu
p had to be determined. The molecular weight and lipophilicity

l were obtained from databases such as HMDB [108]. The fractional unbound plasma fu
p could

be measured experimentally for amino acids [233] and acylcarnitines [244] evaluating the recovery

rate, which was obtained by comparing results before and after spiking with known concentrations

of standards in plasma [244]. Furthermore, the renal and bile clearance rate (l/h) was extracted

from the literature for amino acids [245] and L-carnitine [246].

Step 3. Time-dependent model parameters

To integrate time dependency into the models, the length of the total time intervals and the time

intervals calculated by the ODE solver had to be defined. Furthermore, the frequency of the update

of the infant-WBM to the ODE model had to be determined. The ODE system of equations was

solved with the ode15s.m function in MATLAB [153], [234].

Step 4. Iterative integration of PBPK and infant-WBM

After steps 1. - 3. an infant-specific PBPK model for a specific compound of interest was assembled.

However, this model did not account for the intrinsic ability of a compound to be metabolized

by the relevant enzymes as it did not take the metabolic system into consideration [228]. The

integrated PBPK infant-WBM is able to account for this by iteratively updating the PBPK model

with the flux predictions from the infant-WBM, which is similarly updated based on the predicted

metabolite concentrations from the infant-WBMs. This integration is presented in the following

sub-steps.

Step 4.1 Set initial values for compound concentrations in organs The initial value of the

compound concentration of interest was set to a published measurement of this compound. This

value was set for the concentration in every organ and compartment that had an exchange reaction

from the organ to the blood compartment. Additionally, the concentration of the artery and venous

blood compartment was set to the initial concentration. The renal and bile clearance ODEs were

added to the PBPK model depending on the excretion ways of the compound of interest. All other

tissue-specific ODEs from the full PBPK model were excluded from the compound-specific PBPK

model.
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Step 4.2 Compute metabolite concentration with PBPK model The PBPK model com-

puted the metabolite concentration for a set time frame (e.g., 30 seconds, 1 minute). Hence, a

dynamic concentration prediction on the PBPK model assembled in steps 1-3 was solved with the

ode15s solver implemented in MATLAB [153], [234].

Step 4.3 Update bounds of infant-WBM with PBPK prediction After the ODE time

interval, the predicted metabolite concentration (in mmol/l) was utilized to update the infant-

WBM bounds. For this, the bounds on the fluxes in the infant-WBM were set precisely instead

of arbitrary. Therefore, the metabolite concentration mconc,m ∈ Rm
≥0 was converted to µmol/l by

multiplying it with 1000. This metabolite concentration was multiplied by 0.9 to obtain a minimal

metabolite concentration,

mmin,m = 0.9 ·mconc,m, (6.31)

mmax,m = mconc,m. (6.32)

Based on this, the uptake of metabolites from the blood into an organ was updated similarly to

the newborn screening data integration; see also section 5.2.6. Hence, the lower bounds on the

uptake flux lbm,organ from the blood circulation into individual organs were updated utilizing the

organ-specific plasma flow rate (PFRorgan), Eq. (5.3),

lbm,organ = (−1) · mmax,m

1000
· PFRorgan · 60 · 24

1000
, (6.33)

given in mmol/day/person. For the kidney, the lower bound lbm,kidney and upper bound ubm,kidney

on its metabolite uptake reaction fluxes were calculated using the glomerular filtration rate (GFR);

see also Table 5.1,

ubm,kidney = (−1) · mmin,m

1000
·GFR · 60 · 24

1000
(6.34)

lbm,kidney = (−1) · mmax,m

1000
·GFR · 60 · 24

1000
, (6.35)

and were given in mmol/day/person. Restricting the lower bound of the reactions restricted the

uptake of the biomarker from the blood into the organ since the lower bounds of these reactions

are negative. The arterial blood is the oxygenated blood transporting oxygen from the lungs to

the organs. Hence, the concentration of the biomarker in the arterial blood was used to update

the individual organ bounds of all organs except the lung. The lung obtains inflowing metabolites
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from the venous blood. Hence, the concentration of the venous blood compartment was used to

update the lower bounds of reaction fluxes to the lung.

Step 4.4 Run infant-WBM QP optimization After step 4.3, the infant-WBM was updated

based on the PBPK model and could be evaluated. The whole-body biomass reaction was set

to 1 since the model was evaluated in a very short time interval (seconds/minutes). In this time

interval, no body growth was expected, and the model was supposed to maintain its weight. Then,

the quadratic program (QP), section 5.1.3, for the infant-WBM was solved, minimizing the fluxes

while adhering to all constraints to obtain a flux value vj for each reaction j in the metabolic

network.

Step 4.5 Update PBPK model with infant-WBM flux prediction From the QP solution,

the predicted flux v through the exchange reaction of the biomarker was extracted. First, these

fluxes were converted from mmol/person/day to mmol/volume/second. Second, the resulting value

was divided by the respective organ volume, as the concentration change over time in the PBPK

model is given per organ volume. By this, the converted flux v̂organ for each organ was obtained.

Third, the organ-specific metabolite concentrations were updated in the PBPK model. Therefore,

the respective flux v̂organ from the organ into the blood compartment,

dCorgan,i

dt
=

Qorgan

Vorgan

(
Cart,i −

Corgan,i

Korgan,i

)
− v̂organ, (6.36)

was subtracted. The updated concentration was set as the initial concentration value for the

subsequent PBPK evaluation. The time interval was updated by setting the starting point of the

next time interval to the last point of the previous time interval, and the procedure was initiated

again at step 4.1.

6.2.2 Assembly of time-dependent infant-WBMs

For model application, the time-dependent infant-WBM was applied to predict a biomarker concen-

tration over two hours. Therefore, the biomarker for isovaleric aciduria (IVA), isovalerylcarnitine

(C5), was chosen as the target compound for the time-dependent infant-WBM and its concen-

tration was predicted in several organs. The model was assembled according to the developed

four-step process.
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Table 6.1: Calculated tissue partition coefficients for C5 in 16 different tissues calculated
with Poulin’s method [230].

Tissue T KT

Adipose tissue 0.2
Artery 1
Brain 0.8559
Small intestine 0.7711
Large intestine 0.7711
Heart 0.8132
Kidney 0.8394
Liver 0.8124
Lung 0.8635
Muscle 0.8085
Pancreas 0.7119
Skin 0.7670
Spleen 0.8474
Stomach 0.8421
Bone 0.4654
Venous 1

Step 1 for C5 prediction: First, a generic male infant-WBM at age day one was created using

the create_newborn.m function [34]. Then, this personalized model and its parameters were used

to create an infant-specific PBPK model. The model was assigned a body weight of 3.3 kg, based

on which the organ weights and organ-specific blood flow rates were extracted. The body surface

area was then estimated as 0.2141m2 using the Mosteller method [242].

Step 2 for C5 prediction: In the second step, the compound-specific, in this case the C5-

specific parameters, were obtained and used to parameterize the model. The molecular weight

of C5 is 245.3153 mol [108]. Further, the predicted lipophilicity l = −2 [108] was applied. The

fractional unbound plasma was determined based on experimental studies performed in literature

as fu
p = 0.908 for all tissues T [244]. The blood-to-plasma ratio was set to B = 1. Based on

these parameters and the predefined organ volumes [231], the tissue partition coefficient KT was

calculated for C5 utilizing the Poulin method [230] and presented for different tissues T , Table 6.1.

Furthermore, it was assumed that C5 is only excreted through urine, not feces, since HMDB

only lists the urine as excreta in the disposition section [108]. No data were available on the

renal clearance of C5; hence, the clearance was estimated based on the renal clearance of free

carnitine (C0). The renal clearance of C0 is 1 - 3 ml/min per adult person [246]. Taking 2 ml/min

and dividing this by the average body surface area of 1.73m², the renal clearance of C0 could be

estimated as 1.16 ml/min/1.73m². The renal clearance of acylcarnitines is estimated to be 4 - 8

times higher than the renal clearance of C0 [247]. Hence, the renal clearance of C5 was estimated
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to be 4.64, which is six-times higher than the renal clearance of C0.

Step 3 for C5 prediction: The PBPK model was evaluated for a time frame of five minutes in

which the flux v̂organ was assumed to be constant. After five minutes, v̂organ was updated using a

new flux prediction from the adapted infant-WBM. This step was repeated 24 times, resulting in

a total C5 concentration prediction interval of two hours.

Step 4 for C5 prediction: In the case of C5, there only existed exchange reactions for the lung,

heart, muscle, and kidney in the infant-WBMs. Hence, the PBPK model was reduced to these

organs, the blood compartment, and the respective excretion pathways, resulting in the following

reduced PBPK model for time-dependent C5 prediction:

dCheart

dt
=

Qheart

Vheart

(
Cart −

Cheart

Kheart

)
− v̂heart (6.37)

dCkidney

dt
=

Qkidney

Vkidney

(
Cart −

Ckidney

Kkidney

)
− clurine · Ckidney

Vkidney ·Kkidney
− v̂kidney (6.38)

dClung

dt
=

Qlung

Vlung

(
Cven − Clung

Klung

)
− v̂lung (6.39)

dCmuscle

dt
=

Qmuscle

Vmuscle

(
Cart −

Cmuscle

Kmuscle

)
− v̂muscle (6.40)

dCart,i

dt
=

QlungClung,i

Vart ·Klung,i
− Cart,iQart

Vart
(6.41)

dCven

dt
=

QheartCheart

KheartVven
+

QmuscleCmuscle

KmuscleVven
+

QkidneyCkidney

KkidneyVven
− QlungCven

Vven
(6.42)

dCurine

dt
=

clurine · Ckidney

Kkidney
(6.43)

6.2.3 Biomarker prediction with time-dependent infant-WBMs

In the time-dependent infant-WBM for C5 prediction, the initial concentration of C5 was set to

0.1 µmol/l, the healthy average of over 2 million newborns [31]. This initial concentration was

set for all tissues T . The integrated analysis for the C5 prediction over a two-hour interval for

the artery, heart, kidney, lung, muscle, and venous blood compartment of a healthy infant-WBM

model is presented in Figure 6.3.



132 CHAPTER 6. TIME-DEPENDENT MODELING FOR INFANT-WBMS

Figure 6.3: Concentration prediction of C5 from the time-dependent infant-WBM for
the artery and venous blood compartment, as well as the heart, kidney, lung, muscle.

At time point 0, all tissues had a concentration of 0.1 µmol/l. After two hours, the predicted

venous blood compartment had the highest concentration with 0.34 µmol/l. Followed by the lung

with a predicted concentration of 0.29 µmol/l, the artery blood compartment with a predicted

concentration of 0.04 µmol/l, as well as the muscle, heart, and kidney all with a predicted con-

centration of 0.03 µmol/l. After approximately 1 hour, the predicted C5 concentration in all

organs was almost constant. These predictions were difficult to verify as no organ-specific C5 mea-

surements were available. However, all of the predicted values were beneath the 99th percentile

(0.51 µmol/l) of blood C5 concentration used as cutoff value for IVA [248].

Furthermore, to investigate the applicability of time-dependent infant-WBMs, healthy and

diseased infant models were compared. For this comparison, a time-dependent infant-WBM with

IVA was simulated using the gene-knockout method for IMD modeling, section 5.1.5. The initial

C5 concentration of the IVA model was set to 5 µmol/l, the reported mean of 28 newborns with

IVA [31]. The comparison of the wild type (WT) and IVA time-dependent infant-WBM for C5 over

a two-hour interval for several tissues is presented in Figure 6.4. At time point 0, all compartments

in the WT model had a C5 concentration of 0.1 µmol/l, whereas all compartments in the IVA

model had a set C5 concentration of 5 µmol/l, Figure 6.4. After two hours, the predicted venous

blood compartment had the highest concentration with 18 µmol/l (WT: 0.34 µmol/l). Followed

by the lung with a predicted concentration of 14 µmol/l (WT: 0.29 µmol/l), the artery blood

compartment which had a predicted concentration of 2 µmol/l (WT: 0.04 µmol/l), as well as the
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Figure 6.4: Concentration prediction of C5 from time-dependent infant-WBM for wild
type (WT) and IVA models over the two hours interval for the artery, lung, muscle, and
venous blood compartment.

muscle which had a predicted C5 concentration of 1.7 µmol/l (WT: 0.03 µmol/l). Hence, the

predictions of the IVA model in all compartments were higher than the 99.99th percentile (>1.37

µmol/l) of the blood C5 concentration used as cutoff value for IVA [248].

Furthermore, to show the personalization capabilities of the time-dependent infant-WBMs,

measurements from newborn screening from a mild and classic IVA patient were used to per-

sonalize the infant-WBM model that was integrated into the PBPK model. For this, the initial

concentration for all tissues in the mild IVA model was set to 2.6 µmol/l, the reported mean

of 22 newborns with mild IVA, Supplementary Table B.2. In the classic IVA model, the initial

concentration for all tissues was set to 12.6 µmol/l, the reported mean of 6 newborns with classic

IVA.

The C5 concentration prediction after 2 hours was the highest in the classic IVA model, with

predictions between 4 - 36 µmol/l, Figure 6.5. The C5 predictions of the mild IVA were lower,

with values between 0.2 and 2 µmol/l. The classic IVA model predictions were above the 99th

percentile (0.51 µmol/l) of the blood C5 concentration used as cutoff values for IVA [248]. In the

mild IVA model, the predictions for the lung were above the 99.99th percentile (>1.37 µmol/l) of the

blood C5 concentration. However, the prediction of the artery and muscle were beneath the 99th

percentile (0.51 µmol/l) of the blood C5 concentration used as cutoff values for IVA [248]. These

predictions could not be validated as no personalized data of C5 measurements of the individuals
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for later time points or specific organs were available. Nevertheless, this application also showed

that time-dependent infant-WBMs can be personalized using data from newborn screening.

Figure 6.5: Concentration prediction of C5 from time-dependent infant-WBM for wild
type (WT), mild IVA, and classic IVA models over the two hours interval for the artery,
lung, and muscle blood compartment.
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6.3 Uncertainty quantification for time-dependent infant-

WBMs

In the previous section, time-dependent infant-WBMs were developed based on a PBPK formula-

tion of the infant metabolism’s pharmacokinetic interactions. This model was parameterized with

parameters obtained from literature, which can introduce uncertainties into the models. Therefore,

in this section, UQ methods will be employed to analyze the uncertainty of the time-dependent

infant-WBM regarding specific parameters. By quantifying this uncertainty and its impact on the

model’s output, the reliability of the model when confronted with real-world data errors can be

estimated.

6.3.1 Monte Carlo simulations for uncertain model parameters

In the time-dependent infant-WBMs, the parameters lipophilicity l, urinary clearance clurine, and

unbound plasma flow rate fu
p were obtained from the literature. A Monte Carlo simulation [237]

with 100,000 realizations for every parameter was applied to analyze the uncertainties these pa-

rameters added to the model. From these, 100 randomly selected realizations were compared in

line plots, showing the impact of the uncertain parameters over a two-hour interval. Since the

metabolic flux predictions v showed a minor effect on the C5 prediction Ct, the realizations were

only tested on the C5-specific PBPK modeling part for computational efficiency,

PBPK(l, clurine, f
u
p , Ct−1)t = Ct. (6.44)

The C5 concentration in the venous compartment, representing the blood concentration, was eval-

uated for the prediction comparison. In the previous section, the lipophilicity was assumed to

be -2 [108]. The fractional unbound plasma was determined based on experimental studies per-

formed in literature as fu
p = 0.908 for all tissues T [244]. The renal clearance of C5 was estimated

as 4.64 [246], [247]. With these parameters fixed, the model predicted a C5 concentration in

the venous compartment of 0.338 µmol/l after two hours. For each Monte Carlo evaluation, the

parameters that were not randomly sampled were fixed to these values.
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Lipophilicity

The lipophilicity parameter refers to the capacity of C5 to dissolve in lipids. The lipophilicity

was predicted as l = −2 using ALOGPS (https://vcclab.org/lab/alogps/) and l = −3 us-

ing ChemAxom (https://chemaxon.com/calculators-and-predictors#logp_logd) according

to the HMDB [108]. Uniform sampling in the interval Il = [−3,−2] was applied to obtain 100,000

random samples for the lipophilicity parameter Z
(i)
l , i = 1, ..., 100, 000. These samples were then

used as lipophilicity input parameters for the PBPK model to predict the C5 concentration over

2 hours in the venous compartment. The 100,000 C5 concentration predictions are presented in

a histogram, Figure 6.6. The mean of the predicted concentration was 0.3386 µmol/l, and the

values were between 0.3384 - 0.3387 µmol/l. Although the underlying distribution of the random

A    C5 prediction histogram B    2h prediction of 100 realizations

Figure 6.6: (A) Histogram of 100,000 random initializations of lipophilicity parameter
evaluated in the venous blood concentration prediction after 2 hours. (B) 100 realizations
of two-hour C5 predictions with randomly initialized lipophilicity parameter.

variables Z(i)
l is uniform, the C5 prediction was negatively skewed, s = −0.7763, (calculated with

skewness.m [153]), Figure 6.6. The C5 predictions over two hours of 100 realizations showed min-

imal variability in the C5 prediction over time due to the variation in the lipophilicity parameter

l, Figure 6.6.

Urine clearance rate

The urine clearance rate clurine describes the amount of urine excreted by an infant per time unit.

The urine clearance rate of C5 is 4 - 8 times higher than the renal clearance of C0 [247], estimated

as 1.16 ml/min/1.73m² [246]. This leads to interval boundaries for the renal clearance between 4.64

and 9.28, rounded to the interval Icl = [4.5, 9.5]. Uniform sampling in this interval was applied to

obtain 100,000 random samples for the renal clearance parameter, which was multiplied with the

https://vcclab.org/lab/alogps/
https://chemaxon.com/calculators-and-predictors#logp_logd


6.3. UNCERTAINTY QUANTIFICATION FOR TIME-DEPENDENT INFANT-WBMS 137

infant-specific body surface area. The resulting value was used for the renal clearance parameter

Z
(i)
clurine

, i = 1, ..., 100, 000 to predict the C5 concentration over 2 hours in the venous compartment.

The 100,000 C5 concentration predictions were presented in a histogram, Figure 6.7. The mean of

the predicted concentration was 0.3383 µmol/l, and the values were between 0.3317 - 0.3451µmol/l.

A    C5 prediction histogram B    2h prediction of 100 realizations

Figure 6.7: (A) Histogram of 100,000 random initializations of urine clearance rate pa-
rameter evaluated in the venous blood concentration prediction after 2 hours. (B) 100
realizations of two-hour C5 predictions with randomly initialized renal clearance rate
parameter.

The histogram of the model output PBPK(Z
(i)
clurine

) shows that the predictions are nearly

uniform distributed with a slight positive skewness, s = 0.0345, (calculated with skewness.m [153]).

The C5 predictions over two hours of 100 realizations showed that there was some variability due

to the variation in the urine clearance rate clurine, Figure 6.7. For the first 30 min, the prediction

was very similar for all 100 realizations, and with progressing time, the predictions showed more

variation, Figure 6.7.

Fractional Unbound Plasma

The chemical bind in plasma or fractional unbound plasma, fu
p , defines a drug’s binding degree

in plasma [232]. It describes the fraction of the compound that is not bound to plasma proteins

and free for interaction with receptors, metabolizing enzymes, and renal filtration. The fractional

unbound plasma fu
p was determined based on a standard addition experiment performed in lit-

erature, as fu
p = 0.908, fu

p = 0.933, and fu
p = 1.04 depending on the amount of compound

addition [244]. Therefore, uniform sampling was applied in the interval If = [0.9, 1.05] for 100,000

samples, Z(i)
fu
p
, i = 1, ..., 100, 000. These samples were then used as fractional unbound plasma in-

put parameters for the PBPK model to predict the C5 concentration over 2 hours in the venous
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A    C5 prediction histogram B    2h prediction of 100 realizations

Figure 6.8: (A) Histogram of 100,000 random initializations of fractional unbound plasma
parameter evaluated in the venous blood concentration prediction after 2 hours. (B) 100
realizations of two-hour C5 predictions with randomly initialized fractional unbound
plasma parameter.

Figure 6.9: Boxplot of venous C5 prediction of PBPK model after 2 hours based on
Monte Carlo Sampling for three uncertain parameters: lipophilicity, renal clearance rate,
and unbound plasma rate.

compartment. The C5 concentration predictions for the 100,000 realizations are presented in a

histogram, Figure 6.8. The mean of the predicted concentration was 0.2982 µmol/l, and the values

were between 0.2327 - 0.3789 µmol/l. Unlike the underlying uniform distribution of the random

variables Z
(i)
fu
p
, the model output PBPK(Z

(i)
fu
p
) shows a positive skewness s = 0.2167 (calculated

with skewness.m [153]). Already starting after 10 minutes of prediction time, the 100 evaluated

realizations showed variation in the concentration prediction, which increased with progressing

time, Figure 6.8.
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6.3.2 Evaluation of uncertain parameters

All three investigated parameters, lipophilicity l, urinary clearance clurine, and unbound plasma

flow rate fu
p , had uncertainties attached to them based on the methods and literature that were used

to determine them. The model’s prediction responded differently depending on the investigated

parameter. Figure 6.9 shows a boxplot comparing the C5 predictions in venous blood after two

hours from the UQ evaluations of all three parameters. The variation in the output due to the

random sampling in the lipophilicity parameter l and urine clearance rate clurine is small compared

to the impact the unbound plasma fraction fu
p has on the prediction, Figure 6.9. The expected

mean value of the C5 concentration after two hours is 0.34 µmol/l with the UQ evaluation for the

lipophilicity l, and 0.34 µmol/l with the UQ for renal clearance clurine. However, the expected

mean value of the C5 concentration after two hours is considerably lower with the UQ evaluation

for fu
p (0.30 µmol/l).
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6.4 Summary and outcome

In this chapter, the development and application of time-dependent infant-WBMs were presented.

These models are an extension of the infant-WBMs developed in chapter 5. They incorporate

PBPK modeling, which allows them to account for the intrinsic ability of a compound to be

metabolized by the relevant enzymes [228]. Using time-dependent infant-WBMs, the development

of a biomarker concentration prediction over time can be analyzed. Further, the models enable

a comparison of the concentration development for personalized and disease-specific models on

different time scales. By taking the metabolite kinetics into account, changes in small time intervals

and metabolic responses could also be modeled.

6.4.1 Modeling choices

For the integration of time dependencies, an existing PBPK model [105] developed for drug re-

search was utilized. This PBPK model was then adapted for infant physiology based on measured

data [165] and adult references. The choice of this PBPK model allowed the integration of 23

compartments and metabolic transportation pathways. For the prediction of C5, only the organs

that had C5 blood exchange reactions in the infant-WBMs were integrated into the time-dependent

infant-WBM. However, the chosen setup enables a flexible integration of different compartments,

which can be selected depending on the investigated metabolite concentration. This allows for a

compound-specific adaptation of the model, which is probably more accurate for each compound.

Nevertheless, this could make model comparisons between different compounds difficult, as the

PBPK part of the model is then based on different ODEs. Hence, the compound-specific inclusion

and exclusion of ODEs into the model should be evaluated carefully for every use case. For the

PBPK integration, it was assumed that the predicted flux through the infant-WBM did not change

every time step and was only updated every five minutes for computational efficiency. When chang-

ing this evaluation interval to shorter intervals, the simulations showed no major differences in the

C5 prediction. However, this assumption could be inaccurate in scenarios where a rapid change

of the metabolite flux is expected in a short time interval and should be reevaluated for different

applications in future studies.

The models were parameterized with multiple parameters calculated or obtained from experi-

mental results in the literature. These parameters have uncertainties attached to them as a result

of the experimental methods applied to obtain them. Hence, UQ for three of these parameters was
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performed to quantify the corresponding uncertainty. The Monte Carlo method highlighted the

impact of variations of lipophilicity l, urinary clearance clurine, and unbound plasma flow rate fu
p

parameters on the C5 predictions over two hours. Here, especially the unbound plasma flow rate

fu
p showed large variations in the output C5 prediction of the model after two hours. The mean

C5 prediction of these realizations after two hours was 0.30 µmol/l and, therefore, considerably

lower than the mean values of the other predictions (0.34 µmol/l). Hence, it should be ensured

that the fractional unbound plasma rate fu
p used in the time-dependent infant-WBM is estimated

correctly, as this parameter strongly impacts the output of the model. The UQ analysis high-

lighted the importance of quantifying parameter uncertainties in mathematical models such as the

time-dependent infant-WBMs.

6.4.2 Model limitations and future work

The time-dependent infant-WBMs enable a simulation of the dynamic behaviors of infant metabo-

lism. Also, the field of IMD research is evolving from a ’static’ view of simple pathways towards a

’dynamic’ view of metabolic fluxes [35]. For IMDs, the time-dependent infant-WBMs showed their

predictive capabilities by predicting the C5 concentrations in various organs for WT (’healthy’) and

IVA models. All values predicted by the WT model remained below the 99th percentile cutoff value

(0.51 µmol/l) used in clinical practice for IVA [248]. However, the lack of organ-specific and time-

dependent C5 measurements hinders quantitative model validation. In future applications, the

prediction results need to be further analyzed and validated by clinical experts. Obtaining all the

data necessary to personalize the time-dependent infant-WBMs from one individual would allow

for an improved personalization of the models. Additional data, especially measurements from

infants over several time intervals, is essential to enhance model validation in the future. This

would contribute to the model’s reliability and applicability. In this work, the time-dependent

infant-WBMs were used to predict the biomarker of IVA and C5 over time and provide a proof of

concept for dynamic biomarker evaluations in infants. Using this framework, future studies could

investigate biomarkers of other inherited metabolic diseases associated with newborn screening.

Moreover, the developed framework can be used for modeling pharmacokinetics and pharma-

codynamics of drugs specifically for infants as these processes are often different from adults [36],

[37]. This could allow for infant-specific drug dosage determination, which enables to account for

the infant’s immature drug metabolism that is often associated with drug toxicity [225]. This is

important since almost 50% of prescription drugs lack age-appropriate dosing guidelines [225]. Ad-
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ditionally, pediatric drug clearance data is less attainable, which is probably due to the difficulties

associated with conducting pediatric clinical trials [249], [250]. Hence, analyzing these drug-related

metabolic processes in silico could be very beneficial for both researchers and patients.

In section 5.4.3, the infant-WBMs ability to predict the effect of dietary interventions on an

IMD model were demonstrated. This kind of treatment analysis needs to be patient-specific since

the disease therapy and dietary guidelines for IMD patients have to be adapted to age-dependent

requirements and the patient’s disease severity [35]. Here, personalized infant-WBMs can account

for the substantial variability of the diseases in patients. The progression to time-dependent infant-

WBMs enables in silico predictions of short-term metabolic responses of an individual’s metabolism

to the diet intake. By this, the models could support clinicians in personalized treatment planning

and therapy for IMDs.

In conclusion, the time-dependent infant-WBMs showcased the potential of combining PBPK

and infant-WBMmodels, opening new research directions for dynamic evaluations of infant metabolism.

This capability holds significance for future infant-specific drug research and dietary treatment

planning, where understanding the development of metabolite concentrations and the metabolic

response to dietary interventions over time is crucial.



7
Singular value decomposition for

infant-WBMs

In this chapter, first, the singular value decomposition (SVD) is introduced. Then, its application

on the stoichiometric matrices of adult and infant metabolic models is demonstrated, and the

biological meaning of the singular values revealed in the metabolic network structure is examined.

Further, preliminary work on model reduction of metabolic networks based on the SVD is presented,

which will be subsequently discussed in the final section.

7.1 Methodological background

First, the required methodological background on SVD is presented which is based on the works

of Brunton et al [251], Golub et al [252], and Strang et al [253].

7.1.1 Singular value decomposition (SVD)

SVD presents a matrix factorization method that is used in various applications such as image

processing or noise reduction, engineering, and kinematics. It is numerically reliable and efficient,

guaranteeing its existence for any given matrix [251]. For high-dimensional data sets, SVD provides

a systematic approach to determining low-dimensional approximations. No supervision or expert
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knowledge is required for this, as SVD autonomously uncovers dominant patterns directly from

the data. In general, SVD is performed to obtain a complex-valued matrix decomposition of a

matrix C ∈ Cm×n. In this work, SVD will only be applied to real-valued matrices A ∈ Rm×n.

SVD decomposes A into two orthogonal matrices U ∈ Rm×m and V ∈ Rn×n and a diagonal matrix

Σ ∈ Rm×n. The vectors ui ∈ Rm are the left singular vectors and vi ∈ Rn the right singular

vectors,

AV = ΣU. (7.1)

The diagonal matrix Σ stores the singular values σi of A,

Σ1 =



σ1 0 · · · 0

0 σ2 · · · 0

...
...

. . .
...

0 0 · · · σp


, Σ =

Σ1 0

0 0

 ∈ Rm×n,

where p = min(m,n). The singular values are arranged in decreasing order, σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0.

Due to the orthogonality of V , Eq. (7.1) can be transformed into the well-known formulation of

the SVD using Theorem 7.1.1 stated by Golub [252].

Theorem 7.1.1 (Singular value decomposition) If A is a real m×n matrix, then there exist

orthogonal matrices

U =



u1,1 u1,2 · · · u1,m

u2,1 u2,2 · · · u2,m

...
...

. . .
...

um,1 um,2 · · · um,m


and V =



v1,1 v1,2 · · · v1,n

v2,1 v2,2 · · · v2,n
...

...
. . .

...

vn,1 vn,2 · · · vn,n


such that

UTAV = diag(σ1, · · · , σp) with p = min(m,n),

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Proof 7.1.2 See Golub et al [252].

The orthogonal matrices U and V are real quadratic matrices with orthonormal column and row

vectors with respect to the scalar product. Hence, the inverse of these matrices is equal to the

transposed matrix, UT = U−1. The rank r of matrix A represents the number of independent
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columns in A. Hence, the column and row space is r-dimensional and there are r positive singular

values, ordered in descending order σ1 ≥ σ2 ≥ · · · ≥ σr > 0 with,

A · v1 = σ1u1, ..., A · vr = σrur.

The m − r columns of U are in the nullspace of AT and the n − r columns of V are in the null

space of A,

A · vr+1 = σr+1ur+1, ..., A · v0 = σ0u0.

Property 7.1.3 If UTAV = Σ is the SVD of A ∈ Rm×n, then for i = [1, ..., n],

Avi = σiui and ATui = σvi.

To see this property, compare columns in AV = UΣ and ATU = V ΣT , see Golub et al [252].

7.1.2 SVD matrix approximation

For a given matrix A, the SVD provides an optimal low-rank approximation. This approximation

creates a hierarchy of low-rank approximations since a rank-r approximation is obtained by keeping

the first r singular values and vectors while discarding the rest. The approximation theorem of

Schmidt, which was reformulated by Eckart-Young, Theorem 7.1.4, establishes the truncated SVD

as the optimal low-rank approximation of the matrix A [251].

Theorem 7.1.4 (Eckart-Young) The optimal rank-r approximation to A, in a least-squares

sense, is given by the rank-r SVD truncation Ã:

argmin
Ã,

s.t.rank(Ã)=r

(‖A− Ã‖F ) = Ũ Σ̃Ṽ , (7.2)

where Ũ and Ṽ denote the first r leading columns of U and V , and Σ̃ contains the leading r × r

sub-block of Σ, where ‖ · ‖F =
√∑m

i=1

∑n
j=1 |aij |2 is the Frobenius norm.

Proof 7.1.5 See Brunton et al [251].

This theorem asserts that, as the singular values are arranged in order of importance, the sum

of the first r components provides the optimal rank-r approximation of A. Additionally, σ1u1v
T
1
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represents the closest rank-one matrix to A. By this, the truncated SVD basis will be denoted by

Ã = Ũ Σ̃Ṽ T ,

Ã =



u1,1 u1,2 · · · u1,r

u2,1 u2,2 · · · u2,r

...
...

. . .
...

um,1 um,2 · · · um,r





σ1 0 · · · 0

0 σ2 · · · 0

...
...

. . .
...

0 0 · · · σr





v1,1 v1,2 · · · v1,r

v2,1 v2,2 · · · v2,r
...

...
. . .

...

vn,1 vn,2 · · · vn,r



T

=



σ1u1,1 σ2u1,2 · · · σru1,r

σ1u2,1 σ2u2,2 · · · σru2,r

...
...

. . .
...

σ1um,1 σ2um,2 · · · σrum,r





v1,1 v1,2 · · · v1,r

v2,1 v2,2 · · · v2,r
...

...
. . .

...

vn,1 vn,2 · · · vn,r



T

=
r∑

k=1

σkukv
T
k

= σ1u1v
T
1 + σ2u2v

T
2 + · · ·σrurv

T
r ,

since, Σ̃ is a diagonal matrix. For a given rank r, this approximation is the best approximation for

A in the L2 norm. This means that high-dimensional data could be represented by a few dominant

patterns given by the columns of Ũ and Ṽ .

7.1.3 Computation of SVD

In this work, the exact SVD method svd.m embedded in MATLAB2020b [153] was applied for small

matrices. For larger matrices such as the stoichiometric matrix of metabolic whole-body models,

the reduced SVD method svds.m implemented in MATLAB2020b [153] was applied. This method

is based on the Lanczos bidiagonalization with partial reorthogonalization algorithm (PROPACK

package) [254].
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7.2 SVD of whole-body models

The adult WBMs established by Thiele et al [20] and the infant-WBMs established in chapter 5, are

constrained-based models. These models consist at their core of a stoichiometric matrix S ∈ Rm×n

which describes the metabolic reactions network of m metabolites taking part in n metabolic

reactions,

Sm,n =



s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n
...

...
. . .

...

sm,1 sm,2 · · · sm,n


.

The stoichiometric matrix maps the vector of fluxes v onto the time derivatives of the metabolite

concentrations x,
dx

dt
= Sv. (7.3)

7.2.1 SVD of infant and adult whole-body models

A stoichiometric matrix S is a real matrix. According to Theorem 7.1.1 there exist orthogonal

matrices U ∈ Rm×m and V ∈ Rn×n such that S can be decomposed into three matrices, which

compose the SVD,

S = UΣV T . (7.4)

For the constrained-based model in Eq. (7.3), this implies that the application of V T creates a

linear combination of the fluxes v, which are then stretched by the diagonal matrix Σ. Then, U

ensembles the linear combinations of the time derivatives,

dx

dt
= UΣV T v. (7.5)

For the application on WBMs, the SVD was applied to the stoichiometric matrix of the adult

male WBM SH (Harvey) [20] and the male infant-WBM Smale. The stoichiometry of the infant-

WBM is based on the adult model, but extends this by adding growth-enabling reactions for all

organs. Hence, the infant-WBMs consist of more reactions and metabolites. More specifically

SH ∈ RmH ,nH with mH = 57, 897 the number of metabolites and nH = 82, 913 the number of

reactions, was decomposed to

SH = UHΣH(V H)T . (7.6)
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And the stoichiometric matrix of the infant-WBM Smale ∈ Rmmale,nmale with mmale = 57, 980 the

number of metabolites and nmale = 83, 149 the number of reactions, was decomposed to

Smale = UmaleΣmale(V male)T . (7.7)

The singular values appear in decreasing order on the diagonal entries of ΣH and Σmale. Due to

computational limitations, the full SVD for these matrices could not be calculated. The svds.m

algorithm from MATLAB [153] was applied to obtain a r-reduced SVD containing the r largest

singular values. By Theorem 7.1.4 this gives us the best rank-r approximation. Therefore, the

reduced SVD with r=100 was computed for both matrices, SH and Smale. Figure 7.1 shows the

corresponding 100 largest singular values σi of both matrices.

Figure 7.1: The 100 largest singular values of the adult WBM (green) and infant-WBM
(red).

Interestingly, the infant-WBM had three singular values σ1, σ2, σ3, which were larger than any

singular value of the adult model, Figure 7.1. Moreover, from rank 37 onwards, the singular values

of both matrices were nearly identical. In particular, the first 31 singular values in the infant-WBM

had high values (above 68) compared to the subsequent singular values, which decreased quickly,

Figure 7.1.

7.2.2 Mode-by-mode analysis

The mode-by-mode analysis of the SVD was investigated to gain further insights into the mech-

anisms underlying these differences. The SVD expresses S as a non-negative linear combination

of min(m,n) rank-1 matrices, with the singular values providing the multipliers and the outer

products of the left and right singular vectors providing the rank-1 matrices,
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S =

min{m,n}∑
i=1

σiui · vTi . (7.8)

The outer product of this equation 〈uiv
T
i 〉 is a matrix of rank 1 as it is obtained from a single

vector, and each of these matrices has a norm at the order of unity ‖ · ‖≈ 1. Hence, the singular

values directly give the relative contribution of each outer product to the reconstruction of the

original matrix [79].

Figure 7.2: Modes corresponding to ui vectors with highest singular values in mlae adult
(Harvey) model. Colored according to the ui values, where darker blue indicates a higher
value.

In particular, the vectors ui and vi corresponding to the largest singular values were of interest.

Hence, the ui vectors corresponding to the five largest singular values were analyzed. The results

are presented in Figure 7.2 for the male adult WBM and in Figure 7.3 for the male infant-WBM.

In each evaluated mode the metabolites with the highest values belonged to the same organ. In the

adult WBM, these were liver, kidney, muscle, and colon, Figure 7.2, whereas in the infant-WBM,
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these were muscle, prostate, testis, liver, and kidney, Figure 7.3. Moreover, in both models, the

metabolites corresponding to the largest ui values were adenosine triphosphate (ATP), Hydrogen

Ion, Phosphate, and water in all organs and additionally adenosine diphosphate (ADP) in the

adult WBMs.

Figure 7.3: Modes corresponding to ui vectors with highest singular values in male infant-
WBM. Colored according to the ui values, where darker blue indicates a higher value.

These represent the main metabolites that take part in the biomass reactions in the individual

organs. For instance, the adult liver biomass reaction is presented by the following equation,

using virtual metabolic human identifiers which can be found in the data base (https://www.vmh.

life/) [180].

Liver-Biomass reaction: 20.3289 h2o + 26.4397 atp + 0.3832 glu_L + 0.3023 asp_L +

0.03903 gtp + 0.00017 adrn + 2.1e-05 pa_hs + 0.5441 ala_L + 0.2838 asn_L + 0.1332 cys_L +

0.3586 gln_L + 0.6217 gly + 0.3292 ser_L + 0.3292 thr_L + 0.002295 arachd + 0.4557 lys_L +

8.5e-05 arach + 0.2995 arg_L + 0.1031 met_L + 6e-06 pail_hs + 0.03444 ctp + 3e-05 pchol_hs +

2.8e-05 pe_hs + 0.03078 chsterol + 1e-06 clpn_hs + 0.000425 crvnc + 0.005659 dgtp[n] + 0.005659

dctp[n] + 0.008488 datp[n] + 0.02067 utp + 2.1e-05 tag_hs + 0.000425 dlnlcg + 0.008488 dttp[n]

+ 0.024225 elaid + 0.001105 ddca + 0.00289 ttdca + 8.5e-05 ttdcea + 0.030175 hdca + 0.0051

hdcea + 0.006205 ocdca + 0.01054 lnlc + 0.000255 lnlnca + 8.5e-05 tmndnc + 0.9399 glygn2 +

0.1327 his_L + 0.1352 tyr_L + 0.2778 ile_L + 0.5186 leu_L + 0.03431 trp_L + 0.1863 phe_L

https://www.vmh.life/
https://www.vmh.life/
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+ 0.2967 pro_L + 9e-06 ps_hs + 6e-06 sphmyln_hs + 0.3649 val_L + 1.6e-05 xolest2_hs +

0.000255 CE2510 + 0.00034 clpnd + 0.000255 ptdca + 8.5e-05 hpdca −→ 26.4191 h + 26.4191

adp + 26.4191 pi + 0.1431 ppi

The evaluation of the vectors vi corresponding to the largest singular values further underscored

the significance of the biomass reaction, emphasizing its important role in both models. This

evaluation revealed that the highest values of the first vi vectors corresponded to the biomass

reactions of the organs identified in Figure 7.2 and Figure 7.3 for both models. In addition to

the biomass reaction, the analysis highlighted further reactions. For the adult Harvey model,

the Long-Chain-Fatty-Acid—Coa Ligase was associated with a high value in the first vectors vi,

whereas for the infant-WBM, the values corresponding to reaction Folylpolyglutamyl Synthetase

had high values in the first vectors vi.

7.2.3 Preliminary work on model reduction with SVD

Model reduction aims to lower the computational complexity of high-dimensional complex math-

ematical models, which pose challenges in numerical simulations. A reduced model is obtained

by reducing the associated state space or decreasing the degrees of freedom. In this section, pre-

liminary work on model reduction of the constrained growth optimization model using SVD is

presented. The flux balance analysis (FBA), Eq. (5.2), applied for growth optimization in the

infant-WBM was defined as

max
v

cT v

s.t. S · v = 0

lb ≤ v ≤ ub,

where lb and ub are the lower and upper bounds on the fluxes v based on specific constraints,

and c is a vector of weights indicating which and how much each reaction v contributes to the

objective [81]. FBA is an n dimensional optimization problem. Model reduction aims at reducing

the computational complexity of this problem while capturing the most important features of the

model.

The approximated SVD revealed a small number of singular values with high values and a large

number of singular values with low values. Therefore, the SVD was used to obtain a reduced model

approximating the original problem. For the model reduction the rank-r approximated SVD was
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computed, with Û ∈ Rm×r, the first r columns of U , V̂ ∈ Rn×r the first r columns of V , and

Σ̂ ∈ Rr×r containing the r largest singular values,

S ≈ Û Σ̂V̂ T .

The basis vectors in V̂ were then used to reduce the optimization problem to dimension r with

y ∈ Rr by projecting the problem into an r-dimensional space. Therefore, a two-step process was

followed. First, the steady-state condition needed to be satisfied in the new problem. Therefore, a

quadratic optimization problem was formulated to obtain the optimal vectors Ω = [ω1, ..., ωn] with

ωi ∈ Rr,

min
ωi∈Rr

‖ωi‖2

s.t. Sωi = −Sv̂i.

By this, Swi = 0 with wi = v̂i + ωi should always fulfill the steady-state condition. This system

was solved applying the lsqlin.m function available in MATLAB 2023b [255]. In the second step,

the computed matrix W = [w1, ..., wn]
T with wi ∈ Rr was used to solve the problem:

max
y∈Rr

cTWy

s.t. SWy = 0

lb ≤ Wy ≤ ub,

for y ∈ Rr. This system was solved by applying the Optimization Toolbox available in MATLAB

2023b [256]. To determine the length r of y, different values for r were evaluated and compared

to the real flux vector v with an error analysis. For the error analysis, the absolute error Ev and

relative error Rv of v were compared and presented in Table 7.1,

Ev = ‖(Wy)− v‖, Rv =
‖(Wy)− v‖

‖v‖
.

Both, the absolute and the relative error decrease with increasing r, Table 7.1. However, both

errors are still very large, indicating that the reduced model does not adequately capture the

features of the original model to compute an appropriate approximation of v.
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Table 7.1: Absolute error Ev and relative error Rv of flux v optimization for different
rank r values and solution after 1,000 steps of the ODE solver.

Ranks r Absolute error Ev Relative error Rv

10 23,810 0.9941

30 23,543 0.9829

50 23,480 0.9803

100 23,251 0.9708



154 CHAPTER 7. SINGULAR VALUE DECOMPOSITION FOR INFANT-WBMS

7.3 Summary and outcome

This chapter applied SVD to analyze and compare the stoichiometric matrices of the male infant-

WBM, Smale, and the male adult model SH . For high-dimensional data sets, SVD provides a

data-based systematic approach to determine low-dimensional approximations. No supervision or

expert knowledge is required for this, as SVD autonomously uncovers dominant patterns directly

from the data.

When evaluating both models’ first 100 singular values, a similar pattern could be detected,

Figure 7.1. Both models exhibited 31 large first singular values. The subsequent singular values

rapidly decreased to smaller values. These results suggest that a few factors in both stoichiometric

matrices represent dominant low-dimensional patterns within the matrix [251]. The columns ui

and vi corresponding to the largest singular values were evaluated in the mode-by-mode analysis.

This evaluation showed that each u1, ..., u5 corresponded to one organ. This pattern was consistent

for both the infant-WBM and the adult WBM. However, the models identified different organs

associated with the largest modes. Further, the largest entries in ui corresponded to the primary

metabolites participating in the biomass reaction of these individual organs, Figure 7.2 and Fig-

ure 7.3. The biomass reactions couple the biomass maintenance and growth of the individual

organs with the whole-body biomass growth reaction. Moreover, the evaluation of vi showed that

the largest entries in these vectors were associated with the biomass growth and biomass mainte-

nance reactions of the previously identified organs. Therefore, the SVD reduction and subsequent

mode-by-mode analysis have demonstrated their ability to discern biologically relevant dominant

patterns from the stoichiometric matrix directly.

The SVD approximation transforms a matrix from its original high-dimensional space into a

low-dimensional space, in which the dominant patterns lie [251]. For a given rank r, this approx-

imation is the best approximation for A with the L2 norm, Theorem 7.1.4. This concept proves

highly beneficial across applications involving high-dimensional data represented in large matrices,

such as image compression. In such scenarios, essential attributes of a matrix can be represented

through low-dimensional patterns within the dataset [251]. This work demonstrated preliminary

efforts on model reduction for the FBA growth problem for infant-WBMs. Here, the main goal was

to decrease the size of the problem by projecting the solution into an r-dimensional space using the

truncated matrix V̂ obtained from SVD. However, the reduced model did not predict a sufficiently

accurate flux solution, resulting in large absolute and relative errors. Even when increasing r,

both errors only decreased marginally. Hence, the proposed model reduction can not sufficiently
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approximate the FBA flux prediction. However, this work provides a starting point in model re-

duction for metabolic networks and corresponding optimization problems and should be extended

in future research. Nevertheless, a critical consideration lies in the uncertain impact of model

reduction on the biological accuracy of a metabolic model. Determining how much qualitative in-

formation is lost through the model reduction and how this affects the subsequent evaluation will

be essential. Therefore, future studies should clarify this aspect, enabling well-informed decisions

regarding model order reduction for infant-WBMs.
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8
Discussion and future works

In this dissertation, mathematical and data-based models have been developed to improve new-

born screening and understand the complex infant metabolism associated with inherited metabolic

diseases (IMDs). Therefore, five explicit research goals were defined in the introduction, chapter 1,

to develop new approaches and tackle the current challenges in newborn screening research.

1. Develop data-based models for IVA and GA1 to reduce false-positive screening results

2. Develop explainable AI models for newborn screening

3. Develop metabolic whole-body models of infants

4. Develop time-dependent whole-body models of infants

5. Perform uncertainty quantification for whole-body models of infants

The first two goals mainly involved developing data-based models to improve the diagnostic

accuracy of newborn screening for isovaleric aciduria (IVA) and glutaric aciduria type 1 (GA1). The

three subsequent goals involved developing metabolic whole-body models for infants. This chapter

will discuss the main findings, limitations, and implications for future research and provide an

overall conclusion of this work.



158 CHAPTER 8. DISCUSSION AND FUTURE WORKS

8.1 Main findings and limitations

The main findings and limitations of this thesis are summarized individually for each of the five

defined research goals in the following.

1. Data-based models for IVA and GA1 reduce false-positive newborn

screening results

This work examined the development of data-based models to overcome current challenges regard-

ing rising numbers of false-positive newborn screening results for IVA and GA1, and this aims at

the main research goal 1 of this thesis. First, a systematic literature review on machine learning-

based newborn screening applications was performed, published in a peer-reviewed journal [33]

and summarized in chapter 2. It showed that, due to the low prevalence of the diseases and the

associated low number of true positives, handling the large data imbalance is key for developing

data-based approaches to improve newborn screening. In chapter 3, the development and appli-

cation of machine learning methods for IVA and GA1 were presented. The results for IVA were

published in a peer-reviewed journal [31]. A digital-tier strategy was proposed for both diseases to

improve the classification results in newborn screening for IVA and GA1. This strategy simulates

the scenario when machine learning classification methods are applied as an additional step after

traditional newborn screening, focusing only on the suspected diagnosis newborn screening pro-

files. The algorithms were trained on over two million newborn screening profiles screened between

2002 - 2021. For both diseases, the developed method demonstrated a remarkable decrease in

false-positive results, ranging from 70% to 76%, while maintaining a sensitivity of 100% on the

training and validation data sets. Furthermore, this work presents the first instance of applying

machine learning classification methods to distinguish between mild and classic IVA patients and

obtained a similar reduction of false positives for both groups.

The proposed methods were further validated on an additional test data set containing newborn

screening profiles screened at UKHD from 2022 and 2023. The validation results showed that

the machine learning methods reduced false-positive newborn screening profiles for both diseases.

However, one mild IVA patient was not classified correctly, whereas all other GA1 and IVA patients

were classified correctly. Due to the scarcity of positive screening outcomes and a high prevalence of

false-positive classifications, the algorithms could not be tested on a more extensive data set. Hence,

the low number of true positives in the data set limited the work, and the proof of concept showed
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how crucial in-depth model validation is since the methods must accurately detect all newborns

affected by a newborn screening condition. Therefore, in the future, the proposed methods should

undergo additional validation on independent data sets from recent years. Furthermore, how these

data-driven methods could be legally and technically integrated into a clinical decision-support

system needs to be evaluated.

2. Explainable AI methods identify metabolic patterns in newborn screen-

ing

In chapter 4, explainable artificial intelligence (XAI) methods were implemented to interpret ma-

chine learning-based newborn screening, which aimed at main research goal 2 of this thesis. The

results were presented and subsequently published at an IEEE conference [32]. The interpretability

of a machine learning algorithm’s actions is not just theoretical but a crucial factor for adopting

algorithms in the real world, especially in system-critical areas such as the medical domain. In

this work, the explainable artificial intelligence methods SHAP [129] and LIME [142] were applied.

These methods enabled a model-agnostic evaluation and, by this, a simple comparison of expla-

nations between different classification algorithms. Both methods were shown to be suitable for

application in newborn screening. To enhance the benefits of these methods, the results on group

levels were evaluated by distinguishing the swarm plots of the SHAP values of different groups and

introducing a cumulative LIME score. The evaluation of the SHAP values and cumulative LIME

method confirmed biological knowledge, such as highlighting the known biomarker of newborn

screening for IVA, as a significant feature for the full data set. Furthermore, the birth year was

identified as an influential feature, which coincided with the increasing number of false-positive IVA

screening results in recent years. This increase is due to the increased use of the antibiotic pivme-

cillinam for urinary tract infections in pregnant women [24]. However, both methods highlighted

further metabolite concentrations, which were important for the correct prediction but are not

known to be associated with IVA. The features highlighted by the cumulated LIME method varied

depending on whether the XGBoost or NN classification method was applied. This discrepancy

needs to be further analyzed by biochemical experts.
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3. Mathematical whole-body models for infant metabolism predict body

growth, biomarkers, and treatment strategies for inherited metabolic dis-

eases

In this work, the first whole-body models for male and female infant metabolism were presented in

chapter 5, which aimed at main research goal 3 of this thesis. These models have been published

in the peer-reviewed journal Cell Metabolism [34]. The developed models represent the infant

metabolism through a life span of six months modeled in an active state. During this period,

the models were constrained to ensure that energy requirements and nutrition matched reference

values from the literature. The energy requirements, mainly due to the energy demand for brain

development, heart function, muscular activity, and thermoregulation, were essential to simulate an

active metabolism. Based on these requirements, the infant-WBMs could accurately, in accordance

with growth standards from the WHO [30], predict the growth trajectory during the first six months

of life. The water balance and ATP synthase evaluation demonstrated that the infant-WBMs

agreed with in vivo measurements of infants throughout the six-month time frame and presents an

emergent feature of the infant-WBM. Related to newborn screening, three further applications were

presented. The models’ personalization capabilities were evaluated using 10,000 personalized infant

WBMs utilizing the sex, birth weight, and 29 metabolite concentrations measured during newborn

screening. Moreover, the infant-WBMs showed they could correctly predict known metabolic

biomarkers for three IMDs at different time points. Furthermore, they proved their applicability for

personalized treatment planning by predicting expected metabolic responses to simulated dietary

interventions in IMD patients.

The most significant limitation of the developed model is the absence of personalized data from

individual newborns and infants. Except for the sex, weight, and 29 metabolite concentrations, no

further physiological information from one specific newborn was available to parameterize the mod-

els. Hence, the models were adapted using reported means, measurements from different infants,

and relative values calculated from the reference adult models. Due to this lack of personalized

data, the growth rate, metabolic fluxes, and biomarker predictions could only be evaluated quali-

tatively. Furthermore, the milk composition and amount of milk intake used for the infant-WBM

nutrition were based on different literature sources [29], [180]. Hence, the milk composition in the

infant-WBMs was adjusted. These adjustments for the model feasibility of the milk diet could

be justified by the natural variability of the diet composition in newborns and infants. Still, they

should be further validated in future studies.
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Moreover, the infant-WBMs originated from both female and male adult WBMs. The included

reactions were exclusively expanded for biomass growth reactions in each organ, highlighting a

crucial distinction between adult and infant metabolism. No further stoichiometric changes were

placed except for these reactions compared to the adult models. However, there should be more

changes in the infantile stoichiometry since the metabolic profile changes at various stages of human

life [222].

4. Model advancement with PBPK modeling enables the creation of

time-dependent infant-WBMs

In chapter 6, time-dependent infant-WBMs were developed to incorporate dynamic metabolic

changes in the infant-WBMs and achieved main research goal 4 of this thesis. This development

showed how infant-WBMs operating in a steady state can be coupled with existing physiological-

based pharmacokinetic (PBPK) modeling to enable time-dependent evaluations of infant metabo-

lism. These models allowed for comparing the time-dependent concentration trends between per-

sonalized and disease-specific models across various time scales. For the integration of time depen-

dencies, an existing PBPKmodel [105] developed for drug research was utilized. Based on measured

data and adult references, this PBPK model was then adapted for infant physiology. The choice of

this PBPK model allowed the integration of 23 compartments and metabolic transportation path-

ways. The setup enabled adapting the model for specific compounds, such as biomarkers of IMDs.

However, this could limit model comparisons between different compounds, as the PBPK part of

the model is based on different ordinary differential equations (ODEs). Hence, the compound-

specific inclusion and exclusion of ODEs into the model should be evaluated carefully for future

compounds of interest. For the PBPK integration, it was assumed that the predicted flux through

the infant-WBM did not change every time step. For computational efficiency, it was only updated

every five minutes of the infant’s life. This assumption was sufficient in the investigated biomarker

prediction. However, it could be inaccurate for predictions where a rapid change of the metabo-

lite flux is expected in a short time interval and should be reevaluated when applied to different

scenarios in future studies.
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5. Uncertainty quantification for time-dependent infant-WBMs estimate

parameter uncertainties

Furthermore, in chapter 6, uncertainty quantification (UQ) was performed to assess the developed

time-dependent infant-WBMs and fulfill main research goal 5 of this thesis. The time-dependent

infant-WBMs were parameterized with multiple parameters derived from calculations or extracted

from experimental findings in existing literature [108], [246]. These parameters inherently carry

uncertainties due to the experimental methodologies employed in their determination. Hence, UQ

for three of these parameters was performed to quantify the corresponding uncertainty. The Monte

Carlo method [237] was used to highlight the impact of variations of three model parameters with

uncertain parameter ranges in literature. These parameters included the lipophilicity l, urinary

clearance clurine, and unbound plasma flow rate fu
p parameters on the C5 predictions over two

hours. Here, especially the unbound plasma flow rate fu
p showed large variations in the C5 pre-

diction of the model after two hours. Hence, it should be ensured that the fractional unbound

plasma rate fu
p used in the time-dependent infant-WBM is estimated correctly, as this parameter

strongly impacts the output of the model. In this application, the Monte Carlo method was suffi-

cient for assessing the parameter uncertainty; however, in future UQ evaluations, more advanced

techniques such as Quasi-Monte Carlo methods could be applied [257]. Overall, the UQ analysis

highlights the importance of quantifying parameter uncertainties in mathematical models such as

the time-dependent infant-WBMs.

6. Singular value decomposition reveals dominant patterns for infant-

WBMs

Moreover, in chapter 7, the stoichiometric matrix of the infant-WBM was decomposed with a

singular value decomposition to investigate the metabolic network structure of the infant model

and compare it to the adult model. The largest singular values revealed a similar pattern in

both models. These results suggested that a few factors in both stoichiometric matrices represent

dominant low-dimensional patterns within the matrix [251]. Furthermore, for both models, the

largest modes corresponded to different organs, and the largest entries to the primary metabolites

participated in the biomass reaction of these individual organs. Therefore, the SVD reduction and

subsequent mode-by-mode analysis showed their ability to discern biologically relevant dominant

patterns from the stoichiometric matrix directly. Additionally, this work demonstrated preliminary
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efforts on model reduction for the FBA growth problem for infant-WBMs based on SVD. Although

the reduced model did not predict a sufficiently accurate flux solution, resulting in large absolute

and relative errors, the work provides a starting point for research in model reduction for metabolic

networks and should be extended in future research.

8.2 Implications and future work

This work developed new approaches for mathematical and data-based modeling, opening new

avenues for future research in newborn screening. This section will discuss the implications and po-

tential starting points for future work on data-based modeling in newborn screening and metabolic

whole-body modeling for infants.

8.2.1 Data-based modeling in newborn screening

The proposed digital-tier strategy integrates machine learning methods into newborn screening

diagnostics for IVA and GA1 and presents a methodology for how data-based methods can improve

specificity in newborn screening. Based on the developed methodology, promising avenues for

future research open up. For instance, other newborn screening conditions with high false-positive

rates can be evaluated, potentially leading to significant advancements in the field. Moreover, a

reduction of the false-positive rates for both investigated diseases, IVA and GA1, would reduce the

burden of false-positive classifications for newborns and their families, ultimately mitigating the

risks associated with over-treatment. This reduction yields additional positive effects by decreasing

the demand for human and material resources. It would streamline the reporting and tracking

workload for newborn screening laboratories. Importantly, the costs associated with hardware

and software for implementing a digital-tier strategy are relatively low, offering a cost-effective

solution. Therefore, this approach should be assessed alongside traditional newborn screening in

daily practice to evaluate its potential cost-effectiveness. By this, the methods provide a first step

to an AI-enhanced clinical-decision support system in newborn screening.

For the successful integration of machine learning methods into clinical routine there needs to be

a high acceptance rate for the algorithms by the practitioner. In critical areas such as the medical

domain, there is a high demand for medical professionals to understand how and why AI methods

work and what their decisions are based on. Therefore, an algorithm’s lack of interpretability

could hinder and completely prevent its usage. This underscores the urgency and necessity of
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this research. To overcome the challenges of non-interpretable algorithms, this work showed the

first integration of XAI methods for machine learning-based newborn screening. This lays the

basis for a more frequent application of XAI methods, which could lead to higher acceptance of

machine learning methods in newborn screening and be valuable for future data-based research in

newborn screening. Highlighting the most important metabolic features in an algorithm’s decision

can enhance its traceability and uncover valuable metabolic patterns. Patterns revealed by this

approach might serve as starting points for future biochemical research in newborn screening

diseases.

8.2.2 Metabolic whole-body modeling for infants

The developed metabolic models for infant metabolism (infant-WBMs) already demonstrated

promising results in accurately representing infant metabolism and predicting metabolic func-

tions. In future research, several avenues exist to build upon this research and further enhance

and advance these models. In the adult WBMs, microbiome data were integrated, and a similar

integration can be pursued for the infant-WBMs. This has the potential to provide a more accu-

rate representation of infant metabolism, given the crucial role of gut microbiome interactions in

infant development [258]. Additionally, by integrating the microbiome, the mode of birth could be

considered, which is known to impact the newborn’s microbiome. Vaginally delivered newborns

have a microbiome more similar to the mother’s vaginal microbiome. In contrast, the microbiome

of C-section delivery newborns shows a more similar microbiome found in the environment and

the mother’s skin [259].

Future studies that collect personalized data, including various physiological parameters, uri-

nary excretion, data from different time points, and information on nutrition intake and composi-

tion, can integrate this data into the developed models to simulate personalized infant metabolism.

The models presented in this work can be seen as the first step to metabolic digital twins. The

developed models present an infant up to age six months. However, based on the framework devel-

oped in this work, future researchers could extend the model to represent metabolism in children

and adolescents at all life stages, from 6 months to 18 years, when retrieving the necessary data

and literature information. In IMD research, understanding a patient’s metabolism and the impact

of a condition on an individual’s metabolic processes is very valuable. The infant-WBMs demon-

strated the ability to predict known metabolic biomarkers at various time points accurately. The

precision observed in biomarker predictions suggests that the infant-WBMs can also accurately
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predict biomarkers for other IMDs. However, achieving this would require an accurate represen-

tation of the impaired metabolism in the metabolic model and thorough clinical validation of the

findings. Furthermore, personalized infant-WBMs could contribute to newborn screening for IVA.

They could be employed to model the effects of antibiotics administered to pregnant women for

treating urinary tract infections [24] and pivalate-containing creams [260] on infant metabolism.

This approach could assist in distinguishing between true- and false-positive IVA screening results.

Moreover, in newborn screening, treatment strategies primarily involve dietary interventions,

such as restricting the uptake of metabolites or providing supplements. These nutritional guidelines

are meticulously planned for each patient because, due to the variability of IMDs, disease man-

agement and therapy must be personalized based on the patient’s diagnosis [35]. The presented in

silico evaluation of dietary treatment strategies with infant-WBMs marked the first simulation of

dietary treatment for an IMD using metabolic models. In this context, the infant-WBMs accurately

predicted qualitative flux changes resulting from dietary treatment strategies of varying intensity

levels. This suggests that in silico testing can be used to manage IMDs in infants, allowing thera-

pies to be assessed virtually. Future work can build upon the developed model to conduct in silico

treatment evaluations for various IMDs and quantitatively compare these to data from treated IMD

patients. In the era of precision medicine, this ability to accurately predict an infant’s metabolic

response to different dietary interventions holds significant potential for developing personalized

nutritional strategies [38].

Furthermore, the developed time-dependent infant-WBM pave the way for research on metabol-

ically modeling the pharmacokinetics of drugs tailored explicitly to infants, given that these pro-

cesses often differ from those in adults. This application could facilitate the determination of

infant-specific drug dosages, accounting for the immature drug metabolism frequently associated

with drug toxicity [225]. Hence, the presented framework, enabling in silico analyses of these

drug-related metabolic processes, is highly beneficial for researchers and infantile patients.

8.3 Conclusion

Overall, the developed mathematical and data-based modeling approaches can improve and sup-

port newborn screening and IMD research by enabling systematic and data-based analyses. The

presented data-based methods demonstrate their applicability in newborn screening and are highly

efficient in improving newborn screening by reducing false-positive screening results. The devel-
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oped infant-WBMs present the first step towards a digital metabolic twin for infants. They enable

personalized systematic simulations for newborns and infants with IMDs and open new avenues in

IMD research. In the future, research in the field of clinical treatment planning for IMD patients

and infant-specific drug modeling could benefit from the developed models as they enable precise

in silico simulations of infant metabolism.
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List of Abbreviations

Abbreviation Description

17p 17-hydroxyprogesterone

AI Artificial intelligence

ANOVA Analysis of variance

ADP Adenosine diphosphat

ATP Adenosine triphosphat

C5 Isovalerylcarnitine

C8 Octanoylcarnitine

C10 Decanoylcarnitine

COBRA Constraint-based reconstruction and analysis

CV Cross-validation

FBA Flux balance analysis

FN False negatives

FP False positives

GA1 Glutaric aciduria 1

GDPR General data protection regulation

GEM Genome-scale metabolic model

Hci Homocitrulline
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His Histidine

HMDB Human metabolome database

HMR Human metabolic reaction series

IMD Inherited metabolic disease

IVA Isovaleric aciduria

IVD Isovaleryl-CoA dehydrogenase

LDA Linear discriminant analysis

LIME Local interpretable model-agnostic explanations

LP Linear program

LR Logistic regression

ML Machine learning

MMA Methylmalonic aciduria

mmol Millimol

MS/MS Tandem mass spectrometry

NBS Newborn screening

NN Neural network

ODE Ordinary differential equation

OMIM Online mendelian inheritance in man

PBPK Physiology-based pharmacokinetic

PDE Partial differential equation

Phe Phenylalanine

PK Pharmacokinetic

PKU Phenylkentonuria

PPV Positive predictive value

PRISMA Preferred reporting items for systematic reviews and meta-analyses

PSCM Physiologically and stoichiometrically constrained modeling

QP Quadratic program

RF Random forest

RR Ridge logistic regression

SHAP Shapley additive explanations

SVD Singular value decomposition

SVM Support vector machine

SWS Gestational age



B
Supplementary tables

In this supplementary material, three additional tables are presented, which are associated with

chapter 2 and chapter 3. Table B.1 depicts a summary of all studies analyzed in the systematic

literature in chapter 2 on machine learning-based newborn screening and was presented in the

published work Zaunseder et al [33]. The Tables B.2 and B.3 describe the mean metabolite con-

centrations recorded in newborn screening for IVA and GA1, chapter 3. Table B.2 was presented

in the published work Zaunseder et al [31].

Table B.1: Summary of all reviewed studies on machine learning-based newborn screen-
ing. Diseases with * are biochemical variations nowadays known as non-diseases. Abbre-
viations: CAH - Congenital adrenal hyperplasia, CH - Congenital hypothyroidism, CIT1
- Citrullinemia type I, ASSD CIT2 - Citrullinemia type II, CPT1D- Carnitine palmi-
toyltransferase I deficiency, DT - Decision Tree, GA1 - Glutaric aciduria type I, IBDD
- Isobutyryl-CoA dehydrogenase deficiency, IVA - Isovaleric aciduria, KNN - K-Nearest
Neighbors, LCHADD - Long-chain hydroxyacyl-CoA deficiency, LDA - Linear Discrimi-
nant Analysis, LR - Logistic Regression Analysis, LVQ - Learned Vector Quantization,
MADD - Multiple acyl-CoA dehydrogenase deficiency, MCADD - Medium-chain acyl-
CoA dehydrogenase deficiency, 3-MCCD - 3-methylcrotonyl-CoA carboxylase deficiency,
MET - Hypermethioninemia, MMA - Methylmalonic aciduria, MSUD - Maple syrup urine
disease, NN - Neural Network, OTCD - Ornithine transcarbamylase deficiency, PA - Pro-
pionic aciduria, PCA - Principal Component Analysis, PKU - phenylketonuria, PTPSD
- 6-Pyruvoyl-tetrahydrobiopterin synthetase deficiency, RF - Random Forest, RR - Lo-
gistic ridge regression, SCADD - Short-chain acyl-CoA dehydrogenase deficiency, SVM -
Support vector machine, VLCADD - Very long-chain acyl-CoA dehydrogenase deficiency

Disease Data

Imbalance

Feature

Construction

Feature

Selection

ML classification

PKU Random sampling Information gain DT, LR [76]
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MCADD, PKU Random sampling Information gain,

Relief based

LDA, DT, KNN,

LR, NN, SVM [71]

3-MCCD*, MCADD,

PKU

Random sampling Diagnostic flag DT, LR [62]

3-MCCD*, PKU, GA1,

MMA, PA, MCADD,

LCHADD

Random sampling Discriminatory

threshold

KNN, LR, Naive

Bayes, NN,

SVM [12]

MCADD Informed sampling Arithmetic ra-

tio

χ2 Rule learner [61]

MMA Pearson coefficient SVM [69]

MMA Random sampling Pearson coefficient SVM [66]

MCADD Oversampling Arithmetic ra-

tio

Variable set opti-

mization

DT, LR, RR [64]

PKU Fisher score SVM [70]

3-MCCD*, PKU, MET Arithmetic ra-

tio

Fisher score, Vari-

able set optimiza-

tion

SVM [65]

CIT1, CIT2, CPT1D,

GA1, IBDD, IVA,

MADD, MET, MMA,

MSUD, PA, PKU,

PTPSD, SCADD*,

VLCADD

Random sampling,

Oversampling, In-

formed sampling

χ2, ANOVA, Mu-

tual information,

L1-norm, Tree-

based

Bagging,

Boosting, DT,

KNN, LDA, LR,

RF, SVM [13]

MMA Oversampling RF [74]

SCADD*, MCADD,

VLCADD

Arithmetic ra-

tio

Discriminatory

threshold

LR [72]

CH χ2, Information

gain, Expert con-

sultation

Bagging,

Boosting,

DT, NN, SVM [68]

GA1, MMA, OTCD,

VLCADD

Second tier RF [14]

PKU Arithmetic ra-

tio

Pearson coefficient,

LVQ

LR [73]

CAH Informed sampling PCA DT [63]
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Table B.2: Newborn screening data analysis showing mean values and standard deviation
of 48measured metabolites in µmol/l for the groups of normal and false positive newborns
as well as newborns with mild and classic IVA. The metabolite abbreviations can be found
in Table 2.1.

Metabolites Normal False Positive Mild IVA Classic IVA
(µmol/l) (µmol/l) (µmol/l) (µmol/l)

Newborns (no.) 2,105,959 103 22 6

17p 9.2±7.22 8.0±4.2 8.8±4.67 14.9±8.72
TSH 2.6±1.75 2.7±1.86 2.9±2.09 0.7±0.47
BIO 0.4±0.09 0.5±0.1 0.5±0.06 0.5±0.09
3HMG 0.0±0.02 0.0±0.01 0.0±0.01 0.0±0.01
Ala 237.1±204.09 268.7±194.71 236.6±116.16 282.5±86.74
Arg 14.7±9.02 14.8±10.97 15.5±6.95 21.2±11.1
Asa 0.6±1.16 2.0±2.34 0.3±0.07 0.2±0.08
Asp 52.8±23.23 67.4±60.31 55.7±17.91 58.5±12.63
C0 21.9±11.35 20.8±15.98 21.1±8.49 24.5±12.39
C10 0.1±0.05 0.1±0.06 0.1±0.06 0.1±0.03
C10:1 0.1±0.05 0.1±0.06 0.1±0.07 0.1±0.02
C12 0.1±0.06 0.1±0.04 0.1±0.08 0.1±0.08
C14 0.2±0.08 0.2±0.09 0.3±0.11 0.3±0.06
C14:1 0.1±0.06 0.1±0.05 0.2±0.09 0.1±0.02
C14OH 0.1±0.03 0.0±0.03 0.1±0.06 0.1±0.04
C16 3.4±1.59 3.3±1.66 3.3±1.8 5.4±1.97
C16:1 0.2±0.08 0.1±0.1 0.2±0.07 0.2±0.04
C16:1OH 0.1±0.02 0.0±0.03 0.1±0.04 0.1±0.08
C16OH 0.0±0.02 0.0±0.03 0.0±0.03 0.0±0.01
C18 1.0±0.33 0.9±0.3 1.0±0.36 1.3±0.37
C18:1 1.1±0.6 1.2±0.7 1.0±0.61 2.0±0.99
C18:1OH 0.0±0.03 0.0±0.03 0.0±0.02 0.1±0.07
C18:2 0.1±0.1 0.2±0.1 0.1±0.06 0.3±0.26
C18OH 0.0±0.02 0.0±0.01 0.0±0.01 0.0±0.01
C2 26.4±12.72 22.8±12.53 24.1±9.56 30.5±11.97
C3 2.1±1.1 2.1±1.3 2.0±0.94 2.6±1.12
C4 0.2±0.14 0.3±0.33 0.2±0.13 0.3±0.13
C5 0.1±0.07 2.6±2.06 2.6±1.16 12.6±5.22
C5:1 0.0±0.02 0.0±0.02 0.0±0.02 0.0±0.02
C6 0.1±0.04 0.1±0.04 0.1±0.03 0.0±0.01
C8 0.1±0.05 0.1±0.06 0.1±0.02 0.1±0.05
C8:1 0.1±0.07 0.1±0.07 0.1±0.08 0.1±0.04
Cit 12.0±6.59 15.0±9.18 12.0±2.99 17.5±12.3
Glu 411.8±103.84 411.8±156.43 415.6±99.99 372.7±63.81
Glut 0.1±0.08 0.1±0.08 0.1±0.09 0.0±0.01
Gly 474.8±166.87 468.8±293.0 494.5±181.09 386.8±68.31
Hci 1.8±1.05 2.0±2.78 1.8±0.58 2.7±2.85
His 448.0±392.35 952.2±770.84 346.7±170.6 230.0±77.2
Leu+Ile 137.8±47.4 145.6±70.45 148.8±62.9 210.3±73.74
MeGlut 0.1±0.04 0.0±0.04 0.1±0.04 0.0±0.01
Met 17.5±7.96 20.6±9.28 17.0±10.84 23.0±8.54
Orn 76.0±78.38 83.5±70.38 75.6±74.08 33.7±63.66
Phe 46.6±13.06 55.5±15.5 45.5±14.01 66.3±29.08
Pro 904.4±440.26 681.6±713.35 985.1±360.82 1203.8±505.32
Thr 119.4±61.79 89.9±109.52 124.0±43.31 125.2±24.0
Trp 78.5±236.31 102.8±34.42 63.6±13.89 51.7±9.78
Tyr 81.3±37.95 96.8±40.64 70.8±34.75 170.2±147.11
Val 102.5±43.83 115.0±64.51 111.3±57.15 194.3±87.61
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Table B.3: Newborn screening data analysis showing mean values and standard deviation
of 48measured metabolites in µmol/l for the groups of normal and false positive newborns
as well as newborns with GA1. The metabolite abbreviations can be found in Table 2.1.

Metabolites Normal False Positive GA1
(µmol/l) (µmol/l) (µmol/l)

Newborns (no.) 1,025,459 485 9

17p 7±5.23 10±5.99 8±3.96
TSH 2±1.74 3±1.97 4±3.34
BIO 0±0.08 0±0.08 0±0.11
GALT 12±2.84 12±2.96 12±2.82
3HMG 0±0.01 0±0.01 0±0.01
Ala 158±50.93 212±166.09 210±45.29
Arg 15±9.4 23±41.63 23±13.44
Asa 0±1.58 1±2.18 1±1.84
Asp 52±23.32 64±77.04 59±14.88
C0 18±7.24 24±11.68 21±13.13
C10 0±0.03 0±0.11 0±0.03
C10:1 0±0.06 0±0.11 0±0.06
C12 0±0.06 0±0.13 0±0.1
C14 0±0.07 0±0.12 0±0.06
C14:1 0±0.06 0±0.14 0±0.06
C14OH 0±0.03 0±0.07 0±0.04
C16 3±0.93 4±1.43 3±0.65
C16:1 0±0.07 0±0.1 0±0.08
C16:1OH 0±0.02 0±0.03 0±0.04
C16OH 0±0.02 0±0.03 0±0.03
C18 1±0.28 1±0.42 1±0.44
C18:1 1±0.27 1±0.46 1±0.41
C18:1OH 0±0.02 0±0.02 0±0.02
C18:2 0±0.07 0±0.08 0±0.08
C18OH 0±0.01 0±0.01 0±0.01
C2 23±8.25 34±12.89 26±9.49
C3 1±0.83 2±1.47 2±1.07
C4 0±0.11 0±0.19 0±0.14
C5 0±0.05 0±0.09 0±0.08
C5:1 0±0.02 0±0.02 0±0.02
C6 0±0.04 0±0.06 0±0.05
C8 0±0.05 0±0.09 0±0.07
C8:1 0±0.05 0±0.1 0±0.06
Cit 12±5.59 16±7.16 17±5.6
Glu 399±105.29 423±152.61 523±107.94
Gly 450±164.27 527±209.12 578±190.9
Hci 1±0.78 2±1.77 2±1.41
His 569±475.69 811±703.58 650±354.27
Leu+Ile 124±32.85 143±78.94 143±35.58
MeGlut 0±0.04 0±0.14 0±0.06
Met 15±4.49 20±11.77 19±8.25
Orn 104±58.17 130±96.51 126±54.47
Phe 43±9.84 53±23.91 50±8.87
Pro 789±449.95 905±956.95 1023±493.43
Thr 105±66.18 104±97.95 122±65.72
Trp 76±29.91 92±45.35 81±19.78
Tyr 84±34.82 113±58.22 79±27.82
Glut 0±0.06 0±0.11 2±1.55
Val 90±26.38 99±49.89 98±32.83
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