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1 Abstract 
Pediatric cancer is a conglomerate of complicated diseases remaining one of the leading causes 
of death worldwide in patients aged 1 – 19. In recent years, major sequencing and precision 
oncology programs were launched and aggregated unprecedented amounts of data giving 
detailed insights into pediatric cancer at multiple omics levels.  
One possible avenue for improved treatment strategies, leverages synthetic lethality (SL) 
interactions between genes, potentially resulting in clinically relevant combination treatments. 
Despite the great interest, discovery of gene pairs with synthetically lethal interaction is very 
challenging and resource consuming because of the sheer size of the combinatorial space that 
needs to be covered. Advancements in in-silico prediction methods, utilizing multi-omics data, 
for SL interactions to narrow down the scope of investigation have gained popularity over the 
last years. In the first part of this study, I present and extensively evaluate a computational 
approach for the prediction of interacting pairs of genes exhibiting synthetic lethality. I apply 
my approach to two dedicated dataset I curated from multi-omics data of pediatric high-grade 
glioma (pedHGG) patients and compare the results. Finally, I describe a set of predicted SL 
pairs specific for pedHGG K27M, a particularly challenging childhood brain tumor, which 
includes multiple drug targets, targetable for example by HDAC inhibitors, that might serve as 
a guide for future investigations. 
 
Mutational signatures as a proxy for underlying mutational processes can be used as a 
biomarker for example for the detection of homologous recombination (HR) deficiency in adult 
cancer patients. However, biomarkers identified for adult cancer cannot be used for pediatric 
patients without further investigation and validation because of the different disease types and 
biological characteristics of pediatric cancer. In the second part of this study, I present an 
investigation into the active mutational processes in pediatric patients with disorders with 
abnormal DNA damage response. Using the latest set of mutational signatures and comparing 
two extraction algorithms, I thoroughly investigate associations of mutational signatures with 
clinically relevant characteristics and present a comprehensive overview of the mutational 
landscape in pediatric patients with abnormal DNA damage response. I was able to confirm 
reported associations of mutational signatures and my results further refine previous results 
especially with regard to differences between patients with germline TP53 mutation and 
patients with wildtype TP53. Further, I compare differences, reflected in mutational signatures, 
between patients with germline mutation in MSH6, MSH2, MLH1 or PMS2 that belong to the 
mismatch repair deficiency syndrome.  
 
Not just mutational signatures but also methylation can be used as a reliable biomarker e.g. to 
classify pediatric tumors with high accuracy into subgroups beyond what is possible via 
morphological differences. This classification method poises challenges for patients with 
hereditary abnormal DNA damage response and currently there is only limited knowledge about 
methylation patterns in such patients. In the third part of this study, I present new insights 
investigating methylation patterns in patients with abnormal DNA damage response. Using a 
molecularly characterized control cohort I assembled and accounting for immune cell 
infiltration, I was able to identify methylation signatures specific for defective DNA damage 
response across different tumor types. After detailed characterization of the discriminatory 
power of the identified methylation signature, that indicated achieving 90% precision is 
possible, I further investigated the biological function of identified methylation sites. This 
revealed association with biological functions including the RISC complex, RNAi and DNA 
damage response pathways such as base excision repair and nucleotide excision repair. Finally, 
I validated the presented methylation signatures in an additional internal and one external 
patient cohort consisting of liquid biopsy samples, demonstrating the broader applicability and 
highlighting a potential clinical application of the methylation signatures. 
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2 Zusammenfassung 
Krebs in Kindern ist eine komplizierte Ansammlung von Krankheiten und bleibt weltweit eine 
der häufigsten Todesursachen bei Patienten im Alter von 1 bis 19 Jahren. In den letzten Jahren 
wurden große Sequenzierungs- und Präzisionsonkologieprogramme gestartet, die beispiellose 
Datenmengen zusammengetragen haben, die detaillierte Einblicke in Kinderkrebs auf mehreren 
omics-Ebenen liefern.  
 
Ein möglicher Weg für eine verbesserte Behandlung besteht darin, die synthetische 
Letalitätsinteraktion zwischen Genen zu nutzen, was zu klinisch relevanten kombinatorischen 
Behandlungsstrategien führen kann. Trotz des großen Interesses ist die Entdeckung von 
Genpaaren mit synthetisch tödlicher Interaktion aufgrund der schieren Größe des 
kombinatorischen Raums, der abgedeckt werden muss, eine große Herausforderung und 
ressourcenintensiv. Fortschritte bei in-silico-Vorhersagemethoden unter Verwendung von 
Multi-omics-Daten für SL-Interaktionen zur Eingrenzung der Untersuchung haben in den 
letzten Jahren an Popularität gewonnen. Im ersten Teil dieser Studie stelle ich einen 
verbesserten Ansatz zur Vorhersage interagierender Genpaare welche synthetische Letalität 
aufweisen vor und evaluiere ihn ausführlich. Ich wende meine Methode auf zwei Datensätze 
an, die ich aus Multi-omics-Daten von pedHGG-Patienten kuratiert habe und vergleiche die 
Ergebnisse. Abschließend beschreibe ich eine Reihe vorhergesagter SL-Paare, die spezifisch 
für pedHGG K27M, einem besonders herausfordernden Hinrtumor, sind und Ziele mehrerer 
Medikamente enthalten, beispielsweise HDAC-Inhibitoren. 
 
Mutationssignaturen als Proxy für zugrundeliegende Mutationsprozesse können und wurden 
als Biomarker, beispielsweise für die Erkennung von HR-Defekten bei Erwachsenen, 
verwendet. Allerdings können für Krebs bei Erwachsenen identifizierte Biomarker, aufgrund 
der unterschiedlichen Krankheitsbilder und biologischen Merkmalen von Krebs bei Kindern, 
nicht ohne Weiteres für pädiatrische Patienten verwendet werden. Im zweiten Teil dieser Studie 
präsentiere ich eine Untersuchung der aktiven Mutationsprozesse bei pädiatrischen Patienten 
mit abnormaler DNA-Schadensreaktion. Mithilfe des neuesten Satzes von Mutationssignaturen 
und dem Vergleich zweier Extraktionsalgorithmen untersuche ich gründlich die 
Zusammenhänge von Mutationssignaturen mit klinisch relevanten Merkmalen und präsentiere 
einen umfassenden Überblick über die Mutationslandschaft bei pädiatrischen Patienten mit 
abnormaler DNA-Schadensreaktion. Ich konnte die bekannten Assoziationen von 
Mutationssignaturen bestätigen und meine Ergebnisse verfeinern frühere Ergebnisse weiter, 
insbesondere im Hinblick auf Unterschiede zwischen Patienten mit Keimbahn-TP53-Mutation 
und Patienten mit Wildtyp-TP53. Darüber hinaus vergleiche ich Unterschiede, die sich in 
Mutationssignaturen widerspiegeln, zwischen Patienten mit Keimbahnmutationen in MSH6, 
MSH2, MLH1 oder PMS2, die zum Mismatch-Repair-Defizienz-Syndrom gehören. 
 
Nicht nur Mutationssignaturen, sondern auch die Methylierung können als zuverlässiger 
Biomarker verwendet werden, z.B. um pädiatrische Tumoren mit einer hohen Präzision in 
Untergruppen zu klassifizieren, die über das hinausgehen, was durch morphologische 
Unterschiede möglich ist. Diese Klassifizierungsmethode funktioniert bei Patienten mit 
abnormaler DNA-Schadensreaktion weniger zuverlässig und es liegen derzeit nur begrenzte 
Kenntnisse über Methylierungsmuster bei solchen Patienten vor. Im dritten Teil dieser Studie 
präsentiere ich neue Erkenntnisse zur Untersuchung von Methylierungsmustern bei Patienten 
mit abnormaler DNA-Schadensreaktion. Mithilfe einer molekular charakterisierten 
Kontrollkohorte, die ich zusammengestellt habe und unter Berücksichtigung der Immunzellen 
in Tumoren, identifizierte ich spezifische Methylierungssignaturen. Nach einer detaillierten 
Charakterisierung der Unterscheidungskraft der identifizierten Methylierungssignatur, die 
zeigte, dass eine Genauigkeit von 90 % möglich ist, untersuchte ich weiter die biologische 
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Funktion der identifizierten Methylierungsprobes. Dies zeigte einen Zusammenhang mit 
biologischen Funktionen, einschließlich des RISC-Komplexes, RNAi und DNA-
Schadensreaktionswegen wie der Base-excision-repair und der Nucleotide-excision-repair. 
Abschließend validierte ich die präsentierten Methylierungssignaturen in einer internen und 
einer externen Patientenkohorte welche aus Liquid-biopsy-Proben besteht, um die breitere 
Anwendbarkeit zu demonstrieren und eine potenzielle klinische Anwendung der 
Methylierungssignatur hervorzuheben. 
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3 Acronyms 
 
SL Synthetic lethality 
RF Random forest 
KNN K-nearest neighbors 
ABC AdaBoost classifier 
CMFW Collective matrix factorization weighted 
CMF Collective matrix factorization 
RNA Ribonucleic acid 
DNA Deoxyribonucleic acid 
KG Knowledge graph 
HGG High-grade glioma 
ped (prefix) Pediatric 
WES Whole exome sequencing 
WGS Whole genome sequencing 
lc (prefix) Low coverage 
CNV Copy number variation 
SNV Single nucleotide variation 
INDEL Insertion or Deletion 
CV Crossvalidation 
NER Nucleotide excision repair 
HR Homologous recombination 
NHEJ Non-homologous end joining 
RNAi RNA interference 
NGS Next generation sequencing 
PXA Pleomorphic xanthoastrocytoma 
NMF Non-negative matrix factorization 
WHO World health organization 
DADDR Disorders with abnormal DNA damage 

response 
DMR Differentially methylated region 
VMR Variably methylated region 
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5 Introduction 
5.1 Cancer 
Cancer is a complex disease characterized by the uncontrolled proliferation of cells. Locally 
limited, tissue invasive clusters of such cells are called tumors, which can stay in their place of 
origin or spread via the bloodstream or the lymphatic system in which case they are referred to 
as metastatic tumors. Cancer is one of the leading causes of disease related deaths worldwide, 
causing around 10 million premature deaths in 2020 and is one of the major barriers preventing 
higher life expectancies globally [1]. There are many distinct types of cancer, often arising from 
different locations in the body, these can further be divided into subtypes based on intrinsic or 
extrinsic characteristics that can require a range of different treatment modalities with different 
clinical outcome and prognosis. Overall the lifetime risk of being diagnosed with cancer is 
40.9% for males and 39.1% for females [2, 3]. The causes for this marginal difference are not 
clear but are generally attributed to environmental influences (e.g. smoking habits, occupation, 
etc.) and endogenous properties. Next to gender, other factors such as age or race and ethnicity 
play an important role in the risk of being diagnosed with a certain type of cancer and outcome. 
For example black males in the USA have a 2 to 4 fold increased risk of dying from prostate 
cancer than any other ethnic group, although this is a purely descriptive statement [2]. Normal 
cells transform into cancer cells when acquired damage to the DNA, alterations to the 
epigenome or other biological components renders the cell unable to regulate this damage with 
appropriate responses through either apoptosis or repair mechanisms. Researchers have 
identified six overarching characteristic capabilities developed by cancer cells that enable 
uncontrolled proliferation and metastasis across all distinct subtypes of cancer. These 
characteristics are referred to as hallmarks of cancer: (1) sustaining proliferative signaling, (2) 
evading growth suppressors, (3) enabling replicative immortality, (4) activating invasion and 
metastasis, (5) inducing angiogenesis, (6) resisting cell death [4].  

 
Figure 1: The 6 original hallmarks of cancer (sustaining proliferative signaling, evading growth suppressors, enabling 
replicative immortality, activating invasion and metastasis, inducing angiogenesis, resisting cell death). Graphic adapted from 
Hanahan 2011 [4]. 

More recently two additional hallmarks, (7) deregulating cellular metabolism and (8) avoiding 
immune destruction, were described as well as other enabling factors and emerging hallmarks 
[5]. 
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5.1.1 Pediatric cancer 
One of the major factors influencing the risk of cancer is age with the risk of developing cancer 
rising from 3.5% in the 0-49 years age bracket to 34% in the 70+ age bracket for males and 
from 5.8% to 27.2% in the respective age brackets for females [2]. This increased risk with 
rising age is linked to prolonged exposure to mutational processes and decreased fitness of the 
immune system. As such pediatric cancer is fundamentally different from adult cancers across 
multiple characteristics including but not limited to cancer types, cellular origins, driver 
mutations and underlying processes [6]. One major difference between adult and pediatric 
cancers is the lower overall mutational burden in pediatric cancers as a direct results from the 
shorter exposure time [7]. Further, pediatric tumors often lack the immune response typical for 
their adult counterparts, a phenomenon referred to as immune cold [8]. Overall, the treatment 
of pediatric cancers harbors distinct challenges for example the different ways children 
metabolize drugs and the larger emphasize that has to be placed on long-term consequences of 
applied treatments [9, 10]. Other challenges include insufficient economic incentives to develop 
therapies for pediatric oncology [11]. The most common types of cancer among children (age 
0-14 years) are acute lymphocytic leukemia (26%), CNS tumors (21%), neuroblastoma (7%) 
and Non-Hodgkin lymphoma (6%). Among adolescents (age 15-19 years), the most common 
entities are Hodgkin lymphoma (15%), thyroid carcinoma (11%), CNS tumors (10%) and 
testicular germ cell tumors (8%). Since 1975, incidence rates for pediatric cancer have increased 
slightly at 0.6% per year (Figure 2). The exact causes for this rise are unknown, however a 
change in environmental factors as well as more advanced diagnosis are speculated to 
contribute [12].  

 
Figure 2: Incidence rates of different types of pediatric cancer in the USA. Ages 0-19 years. Graphic adapted from Ward et al. 
[12]. 

With this ever rising incidence rate and the decidedly different treatment requirements 
compared to adult cancer, there is considerable interest in addressing the specific needs of 
diagnosing and treating pediatric cancer, because just like in adults cancer remains the leading 
disease related cause of death in children from 1 to 19 globally [13-15]. Additionally, patients 
treated for pediatric cancer exhibited a significantly higher risk to develop cancer again later in 
life compared to the general population, thus urgently asking for more research into better 
treatment options [16]. It is not entirely understood, yet, whether the main factors influencing 
the increased risk are treatment or hereditary predisposition associated [17, 18]. For a better 
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understanding and more effective treatment of pediatric cancer while minimizing risk later in 
life, multiple international projects in the area of sequencing and precision medicine leverage 
the latest multi-omics techniques generating vast amounts of data and valuable insights leading 
to advances in the treatment and diagnosis of pediatric cancer. Among them there are the 
International Cancer Genome Consortium (ICGC), the pediatric cancer genome project (PCGP) 
and the INdividualized Therapy For Relapsed Malignancies (INFORM) to name but a few [19-
23].  

 
Figure 3: Precision medicine programs in pediatric oncology. Graphic adapted from Langenberg et al. [23]. 

The survival rate for pediatric cancer has risen considerably by 50% on average since 1975. 
While there are types of cancer with greater than average improvement of survival rates such 
as various leukemias, for other types there is still a lot more room for improvement [12]. The 
more recent efforts made in the sequencing or precision medicine programs mentioned above 
and other similar projects, however, had mixed effects [23]. In particular it is challenging to 
assess and compare the overall clinical benefit of these programs because there is no 
standardized patient selection plan, no standardized sample and data processing and no 
standardized treatment recommendations. For example some programs recruit relapsed patients 
or patients with refractory cancer (e.g. ClinOmics, MOSCATO-01, TRICEPS) while other 
programs focus on primary high-risk patients or rare tumors (e.g. TARGET, KiCS, BASIC3) 
[24-29]. There is also considerable variance in the applied NGS techniques ranging from only 
WES or targeted gene panel sequencing (e.g. BASIC3, ProfiLER) to more extensive protocols 
using WES, lcWGS, RNAseq and methylation arrays (e.g. INFORM, iTHER) [21, 22, 27, 30, 
31]. Consequently the tumor boards of each program, responsible for translating molecular 
findings into clinically relevant recommendations, have to base their decisions on different sets 
of information while taking into account the rapidly changing landscape of biomarkers and 
treatments. Another challenge faced by these programs are legal hurdles concerning the sharing 
of patient data, increasing the difficulty for cooperation. 
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5.1.2 The importance of omics  
On the molecular level, many cancers have been shown to be caused by alterations in critical 
locations to the genome or the epigenome. These alterations influence multiple processes across 
the cell that are working in a dynamic, connected manner. To capture a complete picture of all 
interactions caused by a set of alterations it is necessary to interrogate multiple layers of omics 
[32-34]. In this study, I will focus mainly on DNA sequencing and methylation. 
 
WES and WGS 
DNA sequencing used to be a very time consuming and laborious task with the human genome 
project taking roughly a decade to sequence one complete human genome [35]. In a large step 
towards high-throughput DNA sequencing the advent of commercially available next 
generation sequencing since 2005 dramatically changed the applicability of DNA sequencing 
in research paving the way for whole exome sequencing (WES) and whole genome sequencing 
(WGS). Today, NGS can be used to capture not only point mutations, insertions and deletions 
but also events like amplifications, translocations, inversions and gene fusions [36, 37]. WES 
refers to the targeted sequencing of only the exomes, so the protein coding part of the human 
genome. While this technique is very valuable, it misses about 99 % of the human genome. 
WGS on the other hand covers the whole human genome, at least what is technically feasible, 
enabling researchers to additionally investigate the non-coding regions of the genome which 
are equally important in understanding cancer. While WGS has been traditionally more 
expensive to conduct in the laboratory and requires more resources when saving and processing 
the much larger generated data, the additional insights are likely to add great benefit [38, 39]. 
Association of features in the non-coding part of the genome like promoters and other 
regulatory regions with cancer has highlighted the need to study the whole genome [40, 41]. 
Importantly, the cost of whole genome sequencing is becoming more and more affordable 
allowing for its more frequent use. From the bioinformaticians perspective, WES or WGS 
typically are the starting point for investigations, enabling routine things like mutation calling 
but also more advanced techniques like identification of mutational signatures. 
 
DNA methylation 
Methylation of the DNA is most commonly investigated in regards to the transfer of a methyl 
group to the C5 position of cytosine forming 5-methylcytosine. Such a methyl transfer most 
often takes place on cytosines located before a guanine (in 5’ to 3’ direction) referred to as CpG 
sites. DNA methylation plays a very important role in regulating gene expression, influencing 
the repression of proteins or the binding of transcription factors [42]. Methylation patterns can 
lead to different phenotypes even if the underlying genome is identical and can be highly tissue 
specific. Especially during tumorigenesis, DNA methylation and demethylation has been shown 
to play an important role in the initiation, maintenance and progression of cancer [43]. DNA 
methylation has become a proven biomarker in cancer diagnosis and classification leading to 
new insights enabling researchers to distinguish tumor subtypes not previously distinguishable 
by histology alone [44]. Microarrays are a cost effective and fast way to measure the 
methylation level at defined CpG sites throughout the whole genome, however the affordability 
has been decreasing in recent years. Methylation microarrays use a series of treatments with 
methylation sensitive restriction enzymes to measure the level of DNA methylation at each 
defined CpG site [45]. The most widely used commercially available microarray platform for 
methylation analysis is the Illumina BeadChip, primarily the 450K , EPIC and most recently 
the EPICv2 versions [46]. 
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5.2 Unveiling genetic dependencies 
In the search of more effective treatment for different types of cancers while simultaneously 
minimizing adverse effects to healthy cells, identification and leveraging of specific genetic 
vulnerabilities has been a promising avenue of investigation [47]. Especially the concept of 
synthetic lethality (SL), which was first described in fruit flies and yeast, has been used for 
treatment [48, 49]. Briefly, a synthetic lethality pair are two genes where disturbance of either 
does not have negative effects on cell survival but simultaneous disturbance of both leads to 
cell death. In a cancer cell that is dependent on the disturbance of one gene of an SL pair, the 
other gene of the SL pair becomes a suitable target for drugs that will then selectively kill only 
cancer cells (Figure 4). An example for the successful usage of this phenomenon is the well 
known SL relationship between BRCA1/2 and PARP1/2 which lead to effective treatment with 
PARP inhibitors in different cancer types affected by disturbance of BRCA1/2 such as breast 
cancer or ovarian cancer [50-52].  

 
Figure 4: General concept of synthetic lethality. Two genes A and B don’t lead to cell death if only one of them is disturbed. If 
gene B is disturbed, the cell can survive with no negative side effects. If gene A is disturbed and if that event is characteristic 
for a certain cancer cell type, these cancer cells can then selectively be targeted by a drug targeting gene B (and/or its products).  
Graphic adapted from Liany et al. [53].  

Identification of such SL pairs which offer potential vulnerabilities useful for treatment is 
usually done with high-throughput approaches such as RNAi or CRISPR screens, leading to 
valuable insights into genetic dependencies [54-60]. However, such approaches are very 
resource and time consuming, because of the size of the combinatorial space that needs to be 
covered on top of the influence of the genetic background for each cell type that needs to be 
taken into consideration. This lead to increased interest in computational predictions of SL pairs 
being used to narrow down the scope of investigations to more tractable and likely candidates. 
So far, previously proposed prediction methods fall into two broad categories, knowledge based 
predictions and machine learning (ML) methods, the latter can in turn be split into classic ML 
and advanced ML methods. The knowledge-based methods use expert knowledge and 
assumptions about specific biological entities, e.g. copy-number changes or specific mutations, 
together with statistical methods to generate their predictions. A prime example for this method 
is DAISY, which leverages copy number profiles, expression profiles and shRNA screens to 
make SL predictions [61]. This makes the formulation of such a knowledge based prediction 
framework difficult for real world applicability, because a lot of entity specific expert 
knowledge is required up front. Another drawback of such knowledge based methods is that the 
integration of additional layers of data is very challenging since the assumptions behind the 
original model are very specific for a certain type of input. This issue can be addressed by using 
ML methods for SL predictions. On the more classical side of these methods there are 
approaches such as by Paladugu et al. where they extracted features from protein-protein 
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interaction networks and fed them into a trained support vector machine classifier to predict SL 
pairs [62]. Another approach by De Kegel et al. focused on SL relationships between paralog 
pairs using a mixture of features including neighbourhood, sequence and expression features in 
combination with a RF classifier to make predictions [63]. Common for classic ML approaches 
is the integration of features generated from multiple heterogeneous types of omics data, 
highlighting the ability to overcome the problem faced by knowledge based approaches [53]. It 
is important to note that these classic ML methods allow for robust performance even if the data 
used for training is somewhat limited in cohort size as is often the case with SL pairs. Promising 
even better performance are more advanced ML models which leverage graph neural network 
approaches for their predictions such as GCATSL, DDGCN or KG4SL [64-66]. These methods 
are reliant on substantial datasets for training, sometimes using entire online databases as input 
for example KG4SL. A major issue currently for advanced ML methods is that confirmed SL 
pairs are very limited and online databases often include unconfirmed in-silico predictions [67]. 
Additionally, classic ML methods produced predictions which could be later confirmed in 
separate experiments, demonstrating their usefulness selecting potential SL pairs [63]. 
 

5.3 Cancer predisposition and DADDR patients 
Because of the earlier age of onset and lower mutational burden than adult cancers, pediatric 
cancers are not thought to be commonly related to environmental exposures because of lower 
exposure time. Rather at least 10% of pediatric cancer patients harbor an underlying cancer 
predisposition syndrome (CPS) [68]. CPS are often defined by alterations in genes already 
known to be associated with cancer from adult cancer, such as TP53, but recent efforts expanded 
that list to include ELP1 which is associated with pediatric medulloblastoma [69]. That number 
is suspected to increase in the coming years when more cancer driver genes are identified and 
linked to a specific cancer type. For the treating physician, it is important to know about the 
presence of a cancer predisposition syndrome to avoid syndrome-specific increased toxicity, 
for example avoiding DNA damaging agents in patients who are more predisposed to DNA 
damage, or resistance to certain treatments. 
Even before cancer is diagnosed, it may be important for an individual to know about their CPS 
syndrome, which can have great impact for a patient and their relatives. Individuals with a CPS 
have a significantly higher risk of being diagnosed with cancer throughout their lifetime and it 
is generally accepted that earlier detection of cancer, when the tumors have not had time to 
progress or metastasize, improves overall outcome [70]. Harmonization of recommendations 
for surveillance programs targeting patients with CPS syndromes resulted in well accepted 
AACR guidelines but simultaneously is ongoing work and will remain dynamic as new 
information becomes available [71]. One study proposed an easy to use questionnaire to 
determine if a patient might benefit from further genetic assessments based on five 
characteristics associated with cancer predisposition: family history, specific malignancies, 
multiple primary cancers, specific features and excessive toxicity [72]. Another study 
surveilling individuals with TP53 mutation via biochemical analysis and imaging lead to a 
88.8% 5-year-survival rate for the group under surveillance while the control group who 
declined surveillance had a 59.6% 5-year-survival rate, highlighting the importance of early 
detection and surveillance [73, 74]. The effectiveness of surveillance programs suffers from the 
tendency of patients to not participate any longer or even start if the protocol used for 
surveillance is too complex and/or time consuming [75]. 
Not all cancer predisposition syndromes are equal. Some types of cancer correlate with a certain 
CPS. Choroid plexus carcinoma for example has been linked to germline TP53 mutation and 
colorectal cancer which is more commonly found in adults has been linked to mismatch repair 
deficiency (MMRD) having biallelic germline mutation MLH1, PMS2, MSH2, MSH6, 
acknowledging the fact that the reversal of these associations is not necessarily true [76, 77]. 
Li-Fraumeni syndrome and MMRD can be pooled with other syndromes under the umbrella 
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term “disorders with abnormal DNA damage response” (DADDR). Among these DADDR 
syndromes are those that affect single strand break repair pathways like Xeroderma 
pigmentosum or the already mentioned MMR deficiency. Other DADDR related syndromes 
affect pathways that are responsible for the repair of double strand breaks like Nijmegen 
breakage syndrome or Fanconi anemia [78]. 
 
This study mainly focuses on two DADDR syndromes: mismatch repair deficiency (MMR) and 
Li-Fraumeni syndrome (LFS). MMR is characterized on the molecular level by a germline 
mutation in one of the genes involved in human DNA mismatch repair system: PMS2, MLH1, 
MSH2, MSH6. In healthy cells the DNA mismatch repair system controls for single-base 
mismatches and INDEL loops that may arise during replication. Defects in these genes and 
therefore decreased possibility for the cell to control this kind of DNA damage leads to genomic 
instability and an increased risk of cancer (for a review see Peltomäki 2003) [79]. When talking 
about defects in the MMR genes one often differentiates whether they are heterozygous (Lynch 
syndrome) or homozygous/biallelic (constitutional MMR-deficiency syndrome CMMRD) [77]. 
The presence of Lynch or CMMRD syndrome also has influence on the management of patients 
with a reported higher response to cytotoxic drugs or a decrease in response to alkylating agents 
[80, 81]. Li-Fraumeni syndrome, characterized on the molecular level by the presence of a TP53 
germline mutation, is not directly related to DNA damage response. Rather TP53 serves as a 
tumor suppressor gene regulating various other pathways in the cellular stress response. The 
detection of DNA damage and subsequent activation of the TP53 pathway can result in (among 
other things) apoptosis, cell-cycle arrest or activation of DNA repair mechanisms [82]. 
Alterations affecting the function of the TP53 pathway like germline mutations in TP53 itself 
or alterations of upstream regulators are linked to early development of cancer as well as 
unusually early onset of certain cancer types for example breast cancer in women before 
menopause [83]. Overall, Li-Fraumeni syndrome is also linked to a higher overall genomic 
instability. Much like with Lynch/CMMRD syndrome, the management of Li-Fraumeni 
patients requires special attention and patients have been reported to benefit from regular 
surveillance measures [75]. 
 
5.3.1 Mutational signatures 
During the lifetime of any person, their genome, on a cell individual basis, acquires thousands 
of somatic mutations, most of them without any effect on tumorigenesis. While some of these 
mutations happen at random, some can be attributed to a specific source or a specific mutational 
process. Comparable to a microphone in a crowded room, recording multiple conversations at 
once, the microphone would be the genome of an individual and the conversations are the 
mutational processes active simultaneously. There is considerable interest in deconvolution 
algorithms capable of identifying the mutational source processes from the mutational 
landscape of a genome, enabling researchers to leverage this knowledge for preventative care 
or treatment. In the comparison above, this would be an algorithm capable of restoring the 
individual conversations from the recording of the entire room. Pioneering work regarding 
deconvolution algorithms capable of obtaining mutational signatures used to describe these 
mutational source processes was done by Alexandrov et al. using non-negative matrix 
factorization (NMF) [84, 85]. The initial set of 21 distinct mutational signatures extracted from 
7042 cancer cases has since been expanded to over 70 single base substitution (SBS) signatures 
and over 20 small insertions or deletions (ID) signatures in the latest release of the COSMIC 
database (cancer.sanger.ac.uk) [86]. Analyzing large cohorts of cancer samples revealed that 
some mutational signatures are ubiquitous across different cancer types while others are very 
specific for certain entities. Efforts linking the obtained mutational signatures to inherent 
characteristics of the samples or outside influences showed varying success. Some signatures, 
especially the ubiquitous, are speculated to represent clock-like processes and are heavily 
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correlated with the age of a patient [87]. Mutational signatures often active in lung cancer are 
reported to be linked to tobacco smoking which causes overproduction of C>A transversions 
[88]. Another example is signatures most active in skin cancer that were linked to UV light 
exposure [89]. Retroactively investigating and deducing what the sources causing mutations in 
certain cancers were is helpful for avoiding them in healthy individuals, but has little use for 
individuals already diagnosed with cancer.  
 
Leveraging mutational signatures 
As mentioned above, the vast majority of somatic mutations acquired in a genome throughout 
a lifetime are not related to tumorigenesis and are often referred to as passenger mutations. The 
set of mutations that are directly related to tumorigenesis and that are often very specific for a 
certain cancer type are called driver mutations [90]. These driver mutations can serve as reliable 
biomarkers for a decision about targeted therapy increasing the success of the treatment [91, 
92]. While driver mutations are very useful, not all cancer types are linked to a driver mutation 
(yet). The number of known driver mutations is expected to go up in the future with further 
investigations. Mutational signatures can serve as a proxy biomarker in cases where no driver 
mutation is known since they are directly linked to the underlying mutational process and can 
give insights into the history of mutational processes that have occurred before tumorigenesis 
[84, 93]. A prominent example where mutational signatures can be used as biomarker is in 
tumors with defective homologous repair pathways. Mutations in this pathway force cancer 
cells to compensate by using other repair pathways such as non-homologous end joining 
(NHEJ). These alternative repair pathways are themselves not error free and produce a 
mutational pattern that is very characteristic [94-97]. Identification of samples with HR 
deficiency via mutational signatures is possible with dedicated tools (a prominent example is 
HRDetect by Davies et al.) and paves the way for recommendations on the targeted use of PARP 
inhibitors for such patients [98]. In their investigation, Davies et al. propose a regression model 
for the prediction of HR deficiency, taking various mutational signatures as input with a 
reported sensitivity of 98.7%. This model was not only able to detect samples with mutations 
in BRCA1/2, the genes causing HR deficiency, but was also able to find additional samples 
without mutations in these genes but with functional inactivation. This analysis revealed that 
the proportion of breast cancer patients with HR deficiency is roughly 4 times as high as 
previously thought, meaning that more patients could benefit from treatment with PARP 
inhibitors, showcasing a direct benefit for the patient from the analysis of mutational signatures. 
 
Mutational signatures in pediatric cancer 
Since pediatric cancers are different from their adult counterparts regarding multiple 
characteristics as discussed above, the mutational signatures active in them need to be studied 
independently. In independent pediatric pan-cancer studies different sets of driver mutations 
compared to adult type cancers were identified and the activity of mutational signatures was 
determined to be specific for distinct types of cancer [99, 100]. Gröbner et al. investigated 24 
distinct types of pediatric cancer identifying multiple driver genes and actionable drug targets. 
In particular, they point out the importance of hereditary cancer predisposition in pediatric 
cancer with 7.6% of pediatric cancer patients being affected on average and for some types as 
many as 50% of patients carry such a germline mutation [101]. Regarding mutational 
signatures, Gröbner et al. identified signatures active across the entire cohort such as the clock-
like signature Signature 1, signatures linked to genomic instability and TP53 mutation 
(Signature 3,8 and 13) and signatures more active in certain types of cancer. For example, 
signature 16 was reported to be linked to pilocytic astrocytomas and signature 18 is linked to 
neuroblastoma, while the aetiology for both these signatures is unknown. They also describe a 
novel signature (signature P1) particularly active in the SHH subgroup of ATRT tumors, 
highlighting the fact that more in-depth investigations into mutational signatures active in 
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pediatric cancer is needed. Building on the work done by Gröbner et al, Thatikonda et al. 
focused more on the investigation of mutational signatures and used the latest set of algorithms 
and known mutational signatures for their analysis. In their work, Thatikonda et al. showed that 
pediatric cancer is affected by a relatively smaller number of mutational processes compared to 
adult cancers, and that much of the present somatic mutations (45.4% of SBS and 93.2% of ID 
mutations) are attributed to clock-like signatures SBS1, SBS5, ID1 and ID2. Due to using the 
latest set of known mutational signatures, they were able to refine the previously reported novel 
signature P1 and reported a novel signature themselves, IDN appearing to be active only in 
pediatric leukemia, further highlighting the need to study mutational signatures in pediatric 
cancers. Thatikonda et al. also briefly touched upon signatures linked to HR deficiency and 
their predictive power. They postulate that since in pediatric cancers the overall mutational 
burden is much lower compared to adult tumors multiple orthogonal signatures should be 
considered for assessment of HR deficiency. Currently, there is ongoing investigation towards 
developing a pediatric equivalent to the HRDetect tool (BRCAddict https://transcan.eu/output-
results/funded-projects/brcaddict.kl). 
  
5.3.2 Cancer methylome 
The methylome of a cell, the methylation status of each cytosine located before a guanine in 5’ 
to 3’ direction (5’-CpG-3’) throughout the genome, is affected just like the genome itself by 
somatically acquired DNA methylation changes and methylation patterns characteristic for the 
cell of origin. Taking the methylome of cells into account is very important since it has large 
effects on development, differentiation and phenotype of different cells even if the underlying 
genotype is the same [102, 103]. Furthermore, it was shown that methylation plays a key role 
in tumorigenesis, meaning that it is necessary to interrogate the methylome to understand the 
full context of alterations in a cancer cell [104]. The preserved methylation pattern allowing to 
trace the origins of a cell is especially useful in the classification of cancer that is not 
distinguishable by histological characteristics alone or to characterize metastasized cancer cells 
[105, 106]. Even if classification via histology is possible, classification via methylome still 
offers advantages because it removes the influence of human error. From a practical viewpoint, 
methylation exhibits higher stability than transcriptomic data or proteomics and it essentially 
shows a bimodal distribution of methylation values making it very suitable for use as a 
biomarker [107, 108]. Another key factor making the methylome so attractive for investigations 
into biomarkers is the fact that one does not need much sample material and that processing at 
different laboratories yields reliable results [109]. 
 
Leveraging the methylome 
The methylome of cancer cells, mainly from solid tumors, has led to novel sub classifications 
of tumors previously thought to be homogenous entities [110-112]. To address the 
interobserverational variability in hisopathological diagnosis shown in multiple cancer 
subtypes, Capper et al. demonstrated in a landmark study, that the cancer cell methylome can 
be used to reliably distinguish between a large cohort of diverse cancer subtypes, in this case 
brain tumors [44, 110, 113, 114]. In total, they considered 91 by methylation distinguishable 
classes of brain cancer, some of which were equivalent to known WHO classes while others 
represented novel but distinct subclasses. This was achieved by training a random forest 
classifier followed by logistic regression on the methylation data of the training cohort leading 
to highly robust prediction of the correct class with small error rates. In cross validation, an 
AUCROC of 0.99 and an error rate of 4.28% were achieved. Testing the prediction method in 
practice resulted in reclassification for 12% of total cases with subsequent amendment of the 
histopathological assessment in favor of the predicted tumor class. With their work, Capper et 
al. demonstrated the valuable impact that classification based on methylation can have on 
diagnosis although in their study they mainly focused on CNS tumors and used a mixture of 

https://transcan.eu/output-results/funded-projects/brcaddict.kl
https://transcan.eu/output-results/funded-projects/brcaddict.kl
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adult and pediatric samples. In a follow-up study focusing on pediatric patients with CNS 
tumors, Sturm et al. confirmed the applicability of methylation based tumor classifier leading 
to a change in treatment protocol for 5% of samples with a very high proportion in tumors that 
were histologically diagnosed as high-grade gliomas, but molecularly appeared to be low-grade 
[115]. Simultaneously Sturm et al. also point out the prevalence of cancer predisposition 
syndrome in pediatric brain tumors and the fact that for those samples the methylation based 
classifier often gives unreliable predictions, showing the need for further investigation into such 
samples with the main suggestions being the inclusion of more such samples in the discovery 
cohort or even a dedicated cohort.  
 
Methylation patterns in cancer predisposition patients 
A common cancer predisposition syndrome in pediatric cancers is Li-Fraumeni syndrome 
characterized canonically by germline mutation in the TP53 gene and often clinically diagnosed 
by Chompret criteria [116]. Samuel et al. investigated the differential methylation in blood 
leucocytes across multiple cancer types between patients with and without germline TP53 
mutation [117]. They identified hypomethylation of microRNA miR-34A to be relevant, 
however their statistical analysis did not take the different tumor types in the cohort into 
account. Another study by Subasri et al. investigated the associations of characteristic 
methylation patterns with germline TP53 mutation and other mutations based on blood 
leukocytes [118]. They found that multiple genes linked to cancer are mutated in LFS patients 
and concluded that LFS should not be viewed as only being driven by TP53 status. 
Unfortunately, only a small subset of their methylation samples was complimented by either 
WES or WGS giving insights about further somatic mutations of the patient limiting the study 
in that regard and the overall age distribution of the cohort was rather large ranging from 0-70.4 
years of age with the older patients being mainly breast cancer patients. Because changes in 
methylation are strongly correlated with age, investigating a discovery cohort with a drastically 
different age structure compared to the target demographic, in this case pediatric patients, might 
be detrimental to translational efforts [119-121]. Taking a step towards early detection of Li-
Fraumeni syndrome, a study on the application of liquid biopsy as a potential complement for 
traditional screening methods was conducted by Wong et al. [122]. With their blood samples 
and a curated set of methylation cancer markers described by Vrba et al., Wong et al. described 
a pan-cancer, LFS specific methylation pattern [123]. While the methylation signal accessible 
via liquid biopsy yields some valuable insights, analysis of tumor samples accompanied by 
WGS data is still needed to refine previous results.  
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5.4 Aims 
With this thesis, I pursued three overall goals. First, I aimed to generate predictions of 
synthetically lethal gene pairs in pediatric high grad gliomas. The two subsequent aims were 
directed towards the investigation of samples from patients with cancer predisposition 
syndrome that took into consideration both genomic and epi-genomic data. 
 
1) Prediction of synthetically lethal gene pairs in pedHGG K27M 
There is considerable interest in the prediction of synthetically lethal gene pairs to narrow down 
the scope of investigation needed to be realistically covered in laboratory experiments for the 
identification of new specific vulnerabilities in tumors. With this study, I aimed to evaluate 
different data preparation techniques for the integration of heterogeneous sources of data and 
the performance of different prediction models for the prediction of SL gene pairs. Specifically, 
I focused on pediatric high-grade gliomas and the multi-omics dataset I curated from the 
INFORM cohort. First, I compared the performance of different models and different data 
preparation techniques between a dataset prepared from pedHGG K27M patients and another 
dataset prepared from other pedHGG patients. Culminating in the prediction of SL pairs specific 
for pedHGG K27M tumors. 

 
2) Association of mutational signatures with different DADDR CPS syndromes 
Mutational signatures can be a valuable tool for detecting underlying genomic features. In this 
study, I aimed to investigate the association of extracted mutational signatures with features of 
interest focusing specifically on the presence of germline mutations characteristic for DADDR 
patients. For this purpose, I called mutational signatures for a set of DADDR patients with high 
coverage WGS. Further, I compared two mutational signature calling algorithms and compared 
results to other studies conducted on pediatric cancer patients. Finally, I investigated the 
association of the identified mutational signatures with LFS and MMR DADDR syndrome and 
searched for possible intra-DADDR-syndrome variability. 
 
3) Methylation patterns in DADDR patients across multiple cancer types 
Capper et al. showed the ability of the methylome to serve as the basis for categorization of 
pediatric tumors into distinct clinically relevant classes. However, they noted that the 
performance of such categorization might deteriorate in the presence of a pathogenic germline 
mutation, which hinted at an influence on the methylome. With this study, I aimed to discover 
specific methylation patterns associated with germline mutations leading to a DADDR 
syndrome and investigated if this pattern is present across multiple tumor types. First, I 
assembled a dataset from the INFORM cohort and used the associated WGS data to make sure 
that there was no somatic mutation in any DADDR related gene possibly disturbing the 
analysis. Further, I matched tumor classes in my control cohort to the DADDR cohort, which 
made it possible to account for tumor type specific methylation. I analyzed this dataset with 
various statistical methods and ML models. 
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6 Materials and methods 
Paragraphs in quotes were written by other authors than myself. 
 

6.1 Prediction of synthetic lethality in pedHGG K27M 
The following sections describe the extraction and preparation of data and the used methods for 
the prediction of synthetically lethal gene pairs. 
 
6.1.1 Selection of known synthetic lethality pairs 
For the selection of known synthetically lethal gene pairs to be used as training data I considered 
SynLethDB, a comprehensive database of synthetically lethal gene sets from various sources 
including experiments and in-silico predictions, as a prime source [67]. From SynLethDB I 
created a set of criteria that allowed for the identification and selection of high confidence SL 
pairs. Specifically, a pair was considered high confidence if it was derived from analysis of 
functional experiments such as CRISPR screens or other similar functional analysis and not in-
silico predictions. I manually added known SL interactions from consultation with experts. 
Further, I annotated the selected known SL pairs with loss-loss, gain-loss or gain-gain. This 
annotation refers to the change in expression level/function both SL partners need to undergo 
to exhibit synthetic lethality. Loss-loss, meaning that both genes exhibit a drop in expression or 
lose their function, is the most common case for which synthetic lethality is described [48, 124, 
125]. Induction of synthetic lethality if one or both genes are overexpressed, also known as 
dosage lethality, is less common and is annotated as gain-loss or gain-gain [126-128]. Overall 
I prepared ~1200 known SL pairs, the vast majority of which are annotated with loss-loss 
(~1000), because the vast majorities of studies these SL pairs are taken from were loss of 
function studies. For training of the prediction models I only used the loss-loss SL pairs because 
the experimental techniques for potential verification only allowed to mimic a loss-loss SL 
interaction.  
 
6.1.2 Patient cohort, available data and data processing 
Patients from which I extracted and aggregated data were selected from the INFORM cohort 
and are listed in the appendix. Briefly the INFORM pipeline takes samples from tumor and 
nonmalignant “germline” tissue (usually from a blood draw) as input which are then subjected 
to WES, WGS, lcWGS, RNAseq and other molecular profiling techniques. Raw sequencing 
data is further processed with bioinformatics tools for calling SNVS, INDELS as well as CNV. 
Further details on the INFORM processing pipeline are described in the original publications 
[21, 22]. From the selected INFORM patients, I assembled two datasets: a nonK27M dataset 
containing pedHGG cases classified as pedRTK1, PXA or OTHER and a K27M dataset 
containing exclusively pedHGG K27M cases. All tumor types used were generated in the 
context of the INFORM pipeline via the molecular classification algorithm and associated 
expert panels. 
From each patient in these datasets, I extracted SNV, INDEL, RNAseq and CNV data for further 
processing with the steps outlined below to finally generate a specific matrix format which 
could be used as input for collective matrix factorization and subsequent machine learning 
models. In total, 1 matrix with known SL pairs and 8 data matrices were used for the predictions. 
Each data matrix exist as two version, one constructed from the nonK27M dataset and one 
constructed from the K27M dataset. 
 
Coexpression matrix  
The first data matrix is called the coexpression matrix. For the coexpression matrix I extracted 
expression values normalized to TPM from the RNAseq data and arranged them in a matrix 
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with patients as columns and genes as rows. From this matrix I calculated the pearson 
correlation coefficients for all possible pairs of genes across all patients in the matrix. After I 
calculated the absolute values of the correlation coefficients, I introduced a binary label where 
correlation coefficients equal to or greater than 0.8 were replaced by 1 while those <0.8 were 
replaced with 0. 
 
INDEL matrices 
The second and third data matrix contains information about recurrence and mutual exclusivity 
of INDELS. For the INDEL matrices, I counted INDELS and arranged them in a matrix with 
patients as columns and genes as rows that will subsequently be referred to as raw INDEL 
matrix. Only protein coding genes were considered in the downstream analyses.  From this raw 
INDEL matrix, I prepared a recurrence matrix with genes both as columns and rows. This 
recurrence matrix was labeled with a 1 on the diagonal if a particular gene had more than 1 
INDEL and 0 everywhere else. To calculate mutual exclusivity with the R package Rediscover 
(version 0.3.2), I prepared the raw INDEL matrix as binary matrix where any count equal or 
greater than 1 was replaced by 1 else 0 and used that as input for Rediscover [129]. I used 
Rediscover as described in its manual to obtain a matrix with information about mutual 
exclusivity. 
 
SNV matrices 
The fourth and fifth data matrix contains information about recurrence and mutual exclusivity 
of SNVs. For the SNV matrices, I counted SNVS and arranged them in a matrix with patients 
as columns and genes as rows called raw SNV matrix. Only protein coding genes were 
considered.  From this raw SNV matrix I prepared a recurrence matrix with genes both as 
columns and rows. This recurrence matrix was labeled 1 on the diagonal if a particular gene 
had more than 10 SNVs and 0 everywhere else. To calculate mutual exclusivity with the R 
package Rediscover, I prepared the raw SNV matrix as binary matrix where any count equal or 
greater than 1 was replaced by 1 else 0 and used that as input for Rediscover. I used Rediscover 
as described in its manual to obtain a matrix with information about mutual exclusivity. 
 
CNV matrix  
The sixth data matrix contains information on CNVs. For the CNV matrix, I extracted the log2 
fold change for each protein coding gene from the data produced by the INFORM pipeline. 
From this I calculated a binary matrix which was labelled 1 on the diagonal if a gene had a log2 
fold change of smaller than -1 else 0. 
 
Protein matrix  
The seventh data matrix contains information on protein co-occurrence. I prepared the protein 
co-occurrence matrix from data downloaded from CORUM database (version 3.0) [130-132]. 
With this data, I calculated a binary matrix with genes as both columns and rows with a 1 in a 
cell if two genes contributed to the same protein complex and 0 otherwise. 
 
Pathway matrix 
The eighth matrix contains information on pathway co-occurrence. For the pathway co-
occurrence matrix I downloaded data from MSigDB, specifically the HALLMARK pathways 
dataset (version v2023.2) [133-135]. With this data I calculated a binary matrix with genes as 
both columns and rows with a 1 in a cell if two genes occurred in the same pathway and 0 
otherwise. 
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Integration of data layers 
The whole data preparation and integration process is visualized in Figure 5. The preparation 
of matrices from the dataset together with external sources MSigDB and CORUM to compile, 
together with the known SL pairs, the input for CMFW model. 

 
Figure 5: Data preparation for input into CMFW model. From either the K27M or nonK27M dataset, which I prepared as 
described above, 8 layers of data were extracted and saved in 297 x 297 matrices with genes both as rows and columns. In 
addition to these 8 data layers, I compiled a 297 x 297 matrix with known SL pairs, as described above. I used these in total 9 
matrices as input for training the CMFW model. 

 
6.1.3 Weighted collective matrix factorization model 
Collective matrix factorization as proposed by Singh and Gordon aims to obtain low-rank 
representations of arbitrary collections of matrices, each matrix representing relations between 
two distinct entities used as row and column labels, by solving an optimization problem for 
which solutions can be obtained with stochastic gradient descent [136, 137]. One limitation of 
CMF is that only matrices relating two distinct entities, such as genes and patients, can be used 
but no matrices with the same entities in both rows and columns, e.g. genes in both rows and in 
columns. To overcome this limitation Liany et al. proposed CMFW, where a matrix specific 
weight is added representing the transformation in each input source responsible for different 
values and data types [53]. 

 
Figure 6: CMFW general concept. The matrix X with input values and same entities e1 for both rows and columns is 
decomposed. The decomposition results in the matrices Ue1 and Ue1

T with latent dimensions k (later referred to as KMAX), 
known from CMF, and the matrix specific weight WX characteristic for CMFW. Graphic adapted from Liany et al. [53]. 

I implemented CMFW as described by Liany et al. with tensorflow (version 2.13.1) and used 
the Adam optimizer to solve the optimization problem [138, 139]. The input data matrices and 
the known SL pairs for training were prepared as described above. It is important to note that 
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CMFW was intended as and is used for matrix completion in this study, filling unknown entries 
in the matrices based on known data, not predicting interactions outside the matrices. 
 
6.1.4  Data transformation with knowledge graphs 
I also used the nonK27M dataset, the K27M dataset and the data layers extracted from them as 
described above, for making SL predictions based on classic machine learning models described 
below. 
In addition to the described matrices themselves, I processed the data with graph based methods 
to engineer additional features attempting to better capture the interwoven nature of the different 
layers of data used in this investigation. For this purpose, an undirected graph was constructed 
with genes as vertices. The data matrices were interpreted as adjacency matrices and labeled 
edges between vertices were added if in a data matrix a 1 was present. This results in 8 types of 
edges being possible in the graph, one for each input matrix. Multiple edges between vertices 
are possible but only one per type. From the resulting graph, I extracted a set of features of both 
vertices and communities. The graph construction and processing was done with igraph for 
python (version 0.10.8), in braces are the actual igraph functions and their parameters [140]. 
Specifically, I extracted information on betweenness (betweenness(cutoff = 10)), pagerank 
(pagerank()), harmonic centrality (harmonic_centrality(cutoff = 10)), eigenvector centrality 
(eigenvector_centrality()), authority score (authority_score()), closeness (closeness(cutoff = 
10)), coreness (coreness()), degree (degree(loops = False)), neighborhood size 
(neighborhood_size(order = 1)) , walktrap community (community_walktrap()), infomap 
community (community_infomap()), label propagation community 
(community_label_propagation()), leading eigenvector community 
(community_leading_eigenvector()), leiden community (community_leiden()) and multilevel 
community (community_multilevel()). Since these features are at vertex level, I moved them to 
edge level either by matrix product, resulting in a single feature, or by outer vector product, 
resulting in a matrix where features of the vertices are directly translated into features of the 
edges. All results presented in this study are obtained by processing with outer vector 
transformation unless explicitly stated otherwise. The features extracted from the graph were 
merged with the input features (the data layers used in CMFW) in a long format and used as 
input for the classic ML models. This process is visualized in Figure 7. Starting from the layers 
of data directly extracted from the nonK27M/K27M datasets as described above, the KG 
transformation (steps Ia, IIa and IIIa) takes place in parallel to the transformation into long 
format of the original data (step Ib) before concatenation and feeding into the classic ML models 
together with the known SL pairs (steps Ic and IIc). 
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Figure 7: Processing via KG. The 8 data layers used as input into CMFW are interpreted as adjacency matrices and 
transformed into an undirected graph with genes as nodes (Ia). Multiple types of edges possible are possible with one type of 
edge for each layer of input data. From this graph features are extracted at node level (IIa). These features are then transformed 
to edge level (IIIa) either via outer product or dot product and then scaled. Simultaneously the 8 data layers are transformed 
into a long format (Ib). The data from IIIa and Ib are concatenated (Ic) and used as input together with the known SL pairs 
(also transformed into long format) for the classic ML models. 

 
6.1.5 Classic ML models and evaluation 
Three machine learning models, which I refer to as classic machine learning models, were used 
with the input data generated via knowledge graph processing. Specifically, from scikit-learn 
(version 1.2.2) the models RF (ensemble.RandomForestClassifier), ABC 
(ensemble.AdaBoostClassifier) and KNN (neighbors.KNeighborsClassifier) were used. 
Especially the RF method was already successfully used by De Kegel et al. for prediction of SL 
interactions among paralogs [63]. 
I conducted several test detailed below with these classic ML models as well as with the CMFW 
model to evaluate their performance and to investigate the connection from input data to model 
performance. 
 
Dot product vs outer vector product 
I calculated the evaluation metrics described below with only the original data (no KG 
processing), original data plus the aggregated KG features (dot product) and the original data 
plus the outer KG features (outer vector product). This test gives insights about which data 
preparation technique leads to better performance. 
 
Shuffle test 
Further, I conducted a shuffle test, where the labels of the learning data (here the known SL 
pairs) is randomly shuffled and the effect on performance is observed. The shuffle test was 
carried out with 5x cross validation. This test gives insights into the causal connection between 
input data and model performance. 
 
 
 
 



 

 17 

Permutation test 
On top of the shuffle test I calculated a p-value to assign significance to the observed differences 
in metrics via permutations (n = 1000).  
 
Downsampling test 
Lastly, I conducted a downsampling test, also with 5x cross validation, were I calculated the 
evaluation metrics with different levels of downsampling of either the negative learning class 
(nonSL pairs) or both classes. 
 
Making predictions 
With performance evaluation of the models done, I decided to move forward with the RF model 
to make the actual predictions. For this purpose, input data was prepared in the same way as 
described above, using the outer vector product method on KG features. The trained model was 
applied to all possible gene pairs where both partners showed a minimum mean expression of 
20 TPM within each dataset across all patients in the K27M dataset. The obtained SL 
predictions were investigated via GO enrichment analysis with clusterProfiler (version 4.8.2). 
 
6.1.6 Validation metrics 
For the evaluation of the models with the tests described above, I chose three evaluation metrics. 
First, I used the well-known precision recall and the associated area under curve metric 
(PRAUC), which is very well suited for situations where the learning dataset is unbalanced 
[141, 142]. Second, I used the receiver operating characteristic and the associated area under 
curve metric (ROCAUC) [143]. Lastly, the Probability-at-N metric, giving information about 
the probability of how many true positive predictions are in the top N predictions. This metric 
is especially useful in this context, because while evidence for positive SL pairs is strong, 
evidence for negative SL pairs is weaker, meaning one could interpret negative SL pairs as 
unlabeled, making metrics from the area of positive-unlabeled training relevant such as 
probability-at-N [53, 144].  
 

6.2 Multi-omics analysis of DADDR patients 
The following sections describe the used data, processing of the data and investigation methods 
used for the multi-omics analysis of DADDR patients. 
 
6.2.1 Patient cohort and available data 
WGS  
In preparation for the calling of mutational signatures, tumor samples and matching 
nonmalignant tissue were recruited from DADDR patients in the context of the ADDRess 
project (http://www.krebs-praedisposition.de/register/address/). These samples were 
supplemented with suitable DADDR patients from INFORM for which enough tumor material 
was still available to carry out additional high coverage WGS on top of the usual INFORM 
processing (samples listed in appendix). The WGS was carried out with a minimum coverage 
of 30x for germline control and 60-90x tumor coverage. The WGS was carried out with Illumina 
NovaSeq 6000 S4 by the DKFZ Genomics and Proteomics Core Facility (GPCF) and 
downstream processing was performed by the omics and Data Core Facility with the well-
established and validated OTP workflow. Specifically, the OTP SNVCallingWorkflow 
(https://github.com/DKFZ-ODCF/SNVCallingWorkflow) was used for calling of SNVS and 
the OTP IndelCallingWorkflow (https://github.com/DKFZ-ODCF/IndelCallingWorkflow) was 
used for the calling of INDELS. These two pipelines were already successfully used in two 
other studies investigating mutational signatures [100, 145].  

http://www.krebs-praedisposition.de/register/address/
https://github.com/DKFZ-ODCF/SNVCallingWorkflow
https://github.com/DKFZ-ODCF/IndelCallingWorkflow
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Filtering of the generated VCF files before calling of mutational signatures was done with 
Nagarajan’s blacklist, a DKFZ in-house list used for filtering out common artefacts produced 
by the downstream pipeline that was constructed as follows: “A variant frequency > 1% in the 
DKFZ local control database consisting of 4879 WGS and 1198 WES samples was used to 
remove common artefacts and single-nucleotide polymorphisms from the somatic SNVs and 
indels." [146]. Tumor types were determined by INFORM molecular classification algorithm 
and associated expert panels. 
 
Methylome data 
Samples (listed in appendix) were subjected to methylation analysis with Illumina Infinium 
HumanMethylation450 BeadChip or Illumina Infinium MethylationEPIC to be processed and 
saved in the MNP database as described in Capper et al. [44]. Batch effect correction was 
applied with limma’s removeBatcheffect linear model taking into account preparation of the 
tissue (frozen vs FFPE) and the Illumina chip (450 vs EPIC). CpG probes were filtered to 
contain the intersection of CpG probes from the 450K the EPIC and EPICv2 Illumina array and 
on top the 450K filter as described in Zhou et al. was used to remove certain CpG probes [147]. 
Tumor types were determined by INFORM molecular classification algorithm and associated 
expert panels. 
 
 
6.2.2 Mutational signature calling  
Preparation of mutational catalogues 
I aggregated the VCF files with SNV and INDEL information generated by the in-house DKFZ 
sequencing and processing service as described above into several subgroups. From each 
subgroup I prepared a mutational catalogue, one for SNV and one for INDEL as described 
previously [85, 96]. Briefly, for the SNV mutational catalogue the 6 classes of base substitutions 
(C>A, C>G, C>T, T>A, T>C, T>G) are recorded as well as their immediate 5’ and 3’ bases 
resulting in 96 substitution classes. These 96 classes serve as row names in a matrix called 
mutational catalogue. As column names in a mutational catalogue, serve the samples 
contributing to the catalogue. The matrix cells are filled with counts how often a substitution 
class can be found in a sample. 
For the INDEL mutational catalogues, I applied a similar process. 83 classes of INDEL 
described previously are used as row names [87]. As column names the samples are used again 
and the cells are filled with counts how often a given INDEL class occurs in a sample. 
 
Reference mutational signature catalogue 
As curated reference for mutational signature calling I downloaded the COSMIC SBS96 and 
ID83 signature catalogue (v3) [86].  
 
Mutational signature calling with SigProfiler 
Using the mutational catalogues as input, I did de novo extraction of mutational signatures with 
SigProfiler (SigProfilerExtractor version 1.1.22) [148].  
The core concept at the heart of SigProfiler is a matrix decomposition given by the following 
equation. 

𝑀 ≈ 	𝑆	𝑥	𝐸 
In this equation, M is the mutational catalogue with mutation classes as rows and samples as 
columns and cells with counts how often a certain mutation was present in each sample. S, the 
signature matrix, is a matrix with mutation classes as rows and signatures as columns and cells 
containing the probability that a mutation is produced by a signature. E, the exposure matrix, is 
a matrix with signatures as rows and samples as columns and cells containing the contribution, 
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or exposure, of a signature to a sample. For a given mutational catalogue, SigProfiler estimates 
both S and E via non-negative matrix factorization (NMF). Overall, SigProfiler searches for an 
optimal number of novel signatures between 1 and 25 by minimizing the generalized Kullback-
Leibler distance constrained for non-negativity. The selection for the number of novel 
signatures is based on the average stability of the decomposition and the error of the 
reconstruction. For each number of novel signatures, SigProfiler performs as default 100 
independent NMF runs with the matrix M being resampled for every run. Clustering of the 
results from these 100 NMF runs is used to determine the most stable solutions. 
The final selection of de novo extracted signatures is compared to known signatures, such as 
the COSMIC signatures, by calculation of cosine distance between signatures. De novo 
signatures are deconstructed into the known signatures if they pass a certain threshold of 
similarity. Completely novel signatures are reported as such if they cannot be reconstructed 
with known signatures.  
 
Mutational signature calling with SIGNAL 
In contrast to SigProfiler, I did not use SIGNAL (signature.tools.lib version 2.4.3) for de novo 
signature extraction [149]. Instead, I used it to assign the contributions of a known set of 
signatures. With regard to the matrix decomposition, this means that the matrix M is given as 
well as the matrix S describing the set of known signatures. 

𝑀 ≈ 	𝑆	𝑥	𝐸 
The aim is to obtain the exposure matrix E using NMF. This is implemented in the “FitMS” 
function in the mentioned R library. This function takes multiple steps for the extraction of 
mutational signatures. In the first step the most common mutational signatures are assigned 
before more rare signatures are assigned in a second step but only if they improve the total error 
above a certain threshold. 
 
Splitting cohort for analysis 
While I applied both SigProfiler and SIGNAL to the whole cohort, I also split the cohort into 
several subgroups and extracted mutational signatures again from these subgroups. The 
rationale behind this is to avoid bleed-over effects that can occur when analyzing a 
heterogeneous dataset [150]. The problem here is that the extraction algorithms assume that all 
samples share a somewhat similar mutational signature landscape and try to assign signatures 
accordingly. If a subset of samples is influenced by a different set of mutational signatures than 
the rest, this assumption is violated. For this reason, I split the cohort in two ways. Once by 
cancer types and once based on whether or not CPS was present. The exact group composition 
is given in the appendix. On top of splitting the cohort in the described way, if a subgroup 
contained hypermutators, I reanalyzed that group without the hypermutators since they can 
disproportionally impact the signature assignments.  
 
POL* mutations 
In this study POL* should be read as wildcard notation and refers to any of the following genes: 
POLR2A, POLR3G, POLQ, POLD3, MIPOL1, POLG2, POLDIP3, POLA1, PAPOLG, POLE4, 
POLR1A, POLR1B, POLN, POLR2B, POLK, POLH, POLR3D, POLB, POLR1E, POLR3A, 
POLA2, APOLD1, POLR3B, POLE, POLE2, PAPOLA, POLR2M, POLI, POLRMT, POLD1, 
APOL5, APOL3, POLR2F, POLR3H, POLR3GL, POLR1D, POLR3F, POLR3K, PRIMPOL, 
POLR3C, POLD2, POLE3, POLR3E, APOL6, APOL1, POLR2E, POLR2D, POLR2J4, 
POLR2G, POLG, APOL2, APOL4, PAPOLB, POLM, POLR2K, POLR2C, POLDIP2, POLR2J, 
POLD4 
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6.2.3 Statistical analysis of mutational signatures 
For further statistical analysis of the extracted mutational signatures, I used R (version 4.3.0). I 
normalized the activity per sample to the total activity in that sample to enable comparison 
among samples. To obtain activity per megabase, I divided the activity by 2800, the effective 
size of the human genome in megabases that can be accessed by WGS. 
To determine correlation of mutational signatures with age I used spearman correlation. I 
compared means of signature activity between groups with Wilcoxon test as previously 
described [151]. I investigated the association of traits with specific mutational signatures with 
linear regression models followed by ANOVA [152, 153]. P-values were adjusted for multiple 
testing via Benjamini-Hochberg method [154]. 
 
6.2.4 Purification of methylation signal 
Tumor samples are a mixture of immune cells, normal cells and cancer cells. This results in a 
mixed signal when analyzing the methylation of a given sample. To extract the methylation 
signal specific for the cancer cells, I used an in-house tool called PROMISCE to purify the 
mixed methylation signal (publication pending). Briefly, the cell type composition of a given 
samples was estimated with EpiDISH [155]. These estimates for the composition of different 
cell types are the base for the purification of the methylation values. Using a reference database 
build from methylation profiles of very pure cell cultures of cells expected in a pediatric tumor 
sample, together with the estimates of composition, an expectation maximization algorithm 
determines the methylation signal specific for cancer cells. 
 
6.2.5 Statistical analysis of methylation 
I conducted the statistical analysis of the methylation data with R (version 4.3.0). First, I 
identified differentially and variably methylated probes and regions with linear models. Second, 
I assigned permutational importance to each probe using a random forest to select the most 
important probes. After these steps, I analyzed the identified probes and regions for functional 
enrichment, generated UMAP embeddings and calculated metrics to quantify the specificity for 
DADDR syndromes of the identified probes. I applied further downstream processing by 
embedding identified probes in correlated probe clusters via networks analysis to remove noise 
followed by additional enrichment analysis. Lastly, I used an internal and an external sample 
cohort for validation. P-values were adjusted for multiple testing via Benjamini-Hochberg 
method [154]. M values, which I use because of their continuous nature and because they offer 
better performance for differential analysis, are defined by the following equation [156]: 

𝑀 = log! &
𝐵𝑒𝑡𝑎

1 − 𝐵𝑒𝑡𝑎- 
 
Selection of reference samples for methylation analysis 
For the statistical analysis of the methylation data I selected matching samples of the same 
tumor type without germline mutation from the INFORM methylation database to serve as 
control. The absence of somatic or even germline mutations in the control cases was confirmed 
by molecular profiling done in the context of INFORM. Additionally, I curated a set of samples 
from the INFORM dataset, harboring somatic mutations in at least one of the genes of interest. 
 
Linear contrasts 
Differentially methylated probes were identified with linear contrasts built on top of linear 
models using the Limma R package(version 3.56.2) [157]. The linear contrasts and models used 
are detailed in Figure 8. First, I used a model which does not account for tumor type, only for 
whether there is a germline mutation or not. With this model, I used a linear contrast referred 
to as contrast I which contrasts methylation between samples with germline mutation (CPS) 
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and non-germline mutation (NCPS). This model was both applied to the original M values and 
to the purified M values. 
 

 
Figure 8: Linear models and linear contrasts used for identification of differentially and variably methylated probes and 
regions. CPS = cancer predisposition syndrome, NCPS = non CPS, CPSB = CPS blood, NCPSB = non CPS blood 

On the second level, I used two different linear models accounting for the tumor type on top of 
the presence of germline mutation. Linear model IIa accounts for presence of germline 
mutation, tumor type and tissue (blood or tumor). For model IIa, the matching nature of the 
blood and tumor methylation data is incorporated by modelling patients as a random effect. The 
linear contrast for IIa investigates differential methylation regardless of tumor type while 
controlling for methylation in non-malignent tissue. Linear model IIb accounts for both 
presence of germline mutation and tumor type, with the linear contrast IIb being the same as 
for I.  For the identification of differentially methylated regions, I used the same linear models 
and linear contrasts as described above for analysis with DMRcate, which allows for region 
based combination of clustered methylation sites (version 2.14.1) [158, 159]. For the 
identification of differentially methylated probes and differentially methylated regions, I used 
M values. 
 
Variable methylation 
Since not only differences in mean methylation are important, I also investigated the differences 
in variance of methylation between groups. For the identification of these variably methylated 
probes, I used the same linear models and linear contrasts as described above together with the 
varfit function from the missMethyl R package(version 1.34.0) [160]. For the identification of 
variably methylated regions, I used the same linear models and linear contrasts with DMRcate. 
For the identification of variably methylated probes and variably methylated regions, I used M 
values. 
 
Pathway enrichment 
For gene ontology (GO) enrichment, I used the function “gsameth” for differentially/variably 
methylated probes and the “gsaregion” for differentially/variably methylated regions, both from 
the MissMethyl package [160-163]. Contrary to a traditional over representation analysis, these 
functions take into account how many CpG probes map to each gene. 
I extracted the GOTERMS from the org.Hs.eg.db package (version 3.17.0), specifically 
org.Hs.egGO2ALLEGS and filtered them for a minimum length of 5 genes and a maximum 
length of 2000 genes similar to MSigDB C5 dataset [133, 134]. Further I downloaded DNA 
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damage response pathways prepared by Pearl et al. and used them for enrichment analysis on 
top of the GO pathways [164]. 
 
Permutation importance 
Next to the analysis with limma and DMRcate, I identified probes which contributed most to 
the differentiation between germline and non-germline cases by calculating their permutational 
importance with a RF. The filtered methylation data gets split into 36 equal chunks, each 
containing ~10000 probes. To each chunk, a RF is fitted, considering 600 features for splitting. 
After fitting the RF, I calculated the permutation importance for all probes. Afterwards, I 
concatenated the results from the 36 chunks and calculated the rank of each probe according to 
the permutation importance metric.  
 

 
Figure 9: One round of calculations for permutation importance and according rank for each probe. 

In Figure 9 I show the process of division into chunks and calculation of permutation 
importance. I repeated this process 100 times, each time shuffling the order of probes, before 
calculating the median rank of each probe. Selection of the most important probes with such an 
algorithm was already successfully applied by Capper et al. [44]. 
 
WGCNA 
I performed weighted correlation network analysis using the WGCNA R package (version 1.72) 
[165, 166]. As mentioned above this method was applied to obtain clusters of correlated probes 
with the goal to reduce the noise inside these clusters. 
 
GRAPH analysis 
From a matrix of beta values with samples as columns and CpG probes as rows, I calculated 
the Pearson correlation across samples for all probes. The cells in the resulting correlation 
matrix were set to 0 if the correlation was smaller than 0.8 except for those cells which represent 
probes which were manually specified, for example probes identified as significantly 
differentially enriched. This updated correlation matrix was interpreted as adjacency matrix 
from which I constructed an undirected graph with probes as vertices. Edges were weighted 
with the absolute Pearson correlation as weight and colored according to the sign of the Pearson 
correlation. Loops and multiple edges were removed as well as vertices with no edges. 
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Communities were detected with the fast greedy algorithm. Graph computations were 
implemented with igraph (version 1.5.1) [140]. This procedure was applied with the same goal 
as WGCNA, to obtain clusters of correlated probes with reduced noise inside each cluster. 
 
UMAP 
I calculated the low dimensional embeddings of samples with UMAP, implemented in the R 
package umap (version 0.2.10.0) [167].  
 
External control cohort 
As external control, I downloaded the methylation data from LFS patients from the european 
genome-phenome archive (EGAD00010002461). To obtain the beta values I processed the data 
similar to what is described in Subasri et al. [118]. I used the ssNoob normalization from the 
minfi package, removed probes located on the sex chromosomes and removed all patients older 
than 21 years from the cohort and filtered for tumor types present in the discovery cohort 
investigated in this study. Afterwards I removed all probes not present in the discovery cohort. 
Finally I applied batch correction with Harmony [168]. 
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7 Results 
7.1 Prediction of synthetic lethality in pedHGG K27M 
The aim of predicting synthetically lethal gene pairs was to narrow down the scope of 
investigation for a potential follow-up screen in order to identify specific vulnerabilities in 
pediatric high-grade glioma. To assess and compare the performance of different data 
preparation and prediction methods, I prepared two datasets containing different types of 
pedHGG cases. From the INFORM patients, I identified a subset of 149 patients diagnosed as 
pedHGG by the INFORM pipeline (methods 6.1.2). 70/149 pedHGG patients were classified 
as molecular type K27M and used for the K27M dataset. The rest of the pedHGG patients (79 
patients) were classified as pedRTK1, PXA or OTHER and were subsequently used for the 
nonK27M dataset (Figure 10). 
 

 
Figure 10: Composition of K27M and nonK27M datasets used for prediction of SL pairs. The K27M dataset is solely comprised 
of patients classified as molecular type K27M while the nonK27M dataset is comprised of patients classified as pedRTK1, PXA 
and OTHER. 

With both datasets of roughly equivalent size, I evaluated the effects of different data 
preparation methods on predictive performance, specifically unprocessed data or processed via 
knowledge graphs. Further, I evaluated the predictive performance of different models, 
specifically collective matrix factorization, random forest classifier, k-nearest neighbours 
classifier or AdaBoost classifier. 
 
7.1.1 Predictions with CMFW model 
With both the K27M and nonK27M datasets as input, I performed detailed performance 
evaluation of the CMFW model. First, I investigated the influence of the KMAX parameter 
(methods 6.1.3). This parameter decided the dimensions of the components of the matrix 
decomposition. This dimension represented latent factors describing the most important 
features in the original data. For performance evaluation I mainly used area-under-curve (AUC, 
theoretical maximum indicating perfect performance at AUC = 1) values for the precision recall 
curve (PR) and receiver operating characteristic curve (ROC) that relates true and false positive 
rates. Below (Figure 11) it was immediately visible that, for both the K27M dataset (panel A) 
and the nonK27M dataset (panel C), there was a sharp initial rise in both ROCAUC and PRAUC 
from very low values of KMAX till a plateau was reached at about KMAX = 30 for the 
ROCAUC metric and at KMAX = 60 for the PRAUC metric.  
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Figure 11: Performance evaluation of the CMFW model for selection of KMAX parameter, given the number of latent 
dimensions represented by KMAX. A) AUCPR and AUCROC for different values of KMAX with K27M dataset as input. Error 
bars calculated from 3x CV. B) Probability-at-N curves for different values of KMAX with K27M dataset as input. C) AUCPR 
and AUCROC for different values of KMAX with nonK27M dataset as input. Error bars calculated from 3x CV. D) Probability-
at-N curves for different values of KMAX with nonK27M dataset as input. 

I observed similar behaviour by the probability-at-N curves, desired behaviour of which was 
sharp initial rise to high values (methods 6.1.6), for both the K27M dataset (panel B) and the 
nonK27M dataset (panel D). For very low KMAX values, there was improvement, visible by a 
sharper initial rise in the curve, but starting from KMAX = 40 a plateau was reached with no 
further improvement in performance. Because of this observation, I decided to use KMAX = 
60 for all further testing of the CMFW model. Next, I investigated differences in model 
performance depending on the composition of the input data to better understand the 
information offered by each incorporated layer and possibly remove redundant input data to 
reduce noise. To investigate this, I applied two strategies: first, I iteratively removed one by one 
layer from the input, second I used one source layer of data as the only input. For the K27M 
dataset (Figure 12 A and B) there were no significant differences visible for the tested 
compositions of input data in both the ROCAUC and PRAUC evaluations metrics. Similarly, 
there was no apparent improvement or decline in performance when looking at the probability-
at-N curves. The same held true for the nonK27M dataset (Figure 12 C and D) with no 
improvement or decline in performance observed due to input data composition. The only 
deviation for both datasets was that there appeared to be a dip in performance of ~10% points 
as measured by AUCPR when using pathways as the only source layer of input. 
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Figure 12: Performance evaluation of the CMFW model for selection of different composition of input data. A) AUCPR and 
AUCROC for different input value compositions based on K27M dataset. Error bars calculated from 3x CV. B) Probability-at-
N curves different input value compositions based on K27M dataset. C) AUCPR and AUCROC for different input value 
compositions based on nonK27M dataset. Error bars calculated from 3x CV. D) Probability-at-N curves for different input 
value compositions based on nonK27M dataset. 

This apparent lack of variation across all cases, except “only pathway”, regarding the 
composition of source layers of data was not expected. Especially because using only one 
source layer as input achieved comparable performance to the leave-one-out cases seemed 
counterintuitive. This prompted further evaluation of the CMFW model by investigating the 
causal connection between input data and performance. For this purpose, I shuffled the known 
SL pairs before training and calculating evaluation metrics again (methods 6.1.5). For the 
K27M dataset, (Figure 13 A and B) I observed improved performance across all metrics and 
against expectations for the shuffled data. The same behaviour was observed when using the 
nonK27M dataset (Figure 13 C and D). While not the desired behaviour, this was in line with 
the previously described behaviour of apparent indifference to composition of input data. 
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Figure 13: Performance evaluation how model behaves with shuffled or original input data. A) AUCPR and AUCROC 
calculated for original and shuffled input data from K27M dataset. Error bars from 3x CV. B) Probability-at-N curves for 
original and shuffled data from K27M dataset. C) AUCPR and AUCROC calculated for original and shuffled input data from 
nonK27M dataset. Error bars from 3x CV. D) Probability-at-N curves for original and shuffled data from nonK27M dataset. 

The better performance when using shuffled data indicated that there was no causal connection 
between input data and model performance that was detectable by CMFW. The differences in 
performance measured were likely based on mathematical and technical artefacts, e.g. the 
specific parameters used for training. These results demonstrated that CMFW was not fit for 
my purposes and that using the known SL pairs and input data that was available to me with 
this method would not yield reliable results. These findings prompted me to explore other 
avenues for this analysis. 
 
7.1.2 Predictions with classic ML models 
Turning to the evaluation of the classic ML models, I focused mainly on ROCAUC and PRAUC 
as evaluation metrics because comparisons between these metrics are more widely used and 
studied compared to probability-at-N curves [169, 170]. In addition to the investigation of 
multiple ML models, I also looked at further data processing before feeding the data into a 
model. Biological systems are very complex and interrogation of only a single aspect, e.g. via 
RNAseq, makes it difficult to capture this complexity. Integration of multiple heterogeneous 
data sources via the early integration approach can offer benefits for capturing the complexity 
[171-173]. I hypothesized that such data integration might improve the performance because it 
captures the interwoven nature of the data better and mimics the implicit sharing of information 
across layers by the CMFW approach in a more explicit way. In particular, I decided to use a 
graph based approach for further data processing, since matrices are easily interpretable in the 
context of a graph and because graphs were used previously with great success in the area of 
SL prediction [63, 66]. To assess the feasibility of classic ML models, I used an AdaBoost 
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classifier (ABC), a k-nearest neighbours classifier (KNN) and a random forest classifier (RF). 
To set a benchmark for comparisons, I calculated the evaluation metrics for the investigated 
models with data before further processing via knowledge graphs (KG). In Figure 14 the metrics 
for ABC, KNN and RF models for both K27M dataset (panel A) and nonK27M dataset (panel 
B) are shown. The AUCROC was consistently around 0.5 for both datasets across all models. 
The values for PRAUC hovered around 0.45 with particularly large error bars in comparison to 
the ROCAUC values. The best PRAUC value was reached at 0.5 for K27M dataset with KNN 
and the worst value was at 0.3 for RF with nonK27M dataset. 
 

 
Figure 14: Evaluation metrics for the three classic ML models using unprocessed data..A) 5x cross validation of AUCPR and 
AUCROC for all three classic ML models with K27M dataset. B) 5x cross validation of AUCPR and AUCROC for all three 
classic ML models with nonK27M dataset.  

As a next step, with the results from the CMFW model in mind, I proceeded to evaluate the 
causal connection between input data and performance again by shuffle test. In contrast to the 
CMFW model the expected behaviour was exhibited here. Specifically, I measured a decline in 
performance when calculating the evaluation metrics for the models with shuffled data. In 
Figure 15 panel A are the results from the shuffle test when using the K27M dataset. All three 
evaluated models showed a decline in performance for both metrics when comparing original 
and shuffled data. The most severe drop was exhibited by the RF model with a drop in 
AUCROC from 0.83 ± 0.01 to 0.5 ± 0.01 and a drop in AUCPR from 0.54 ± 0.02 to 0.035 ± 
0.01. When using the nonK27M dataset (panel B) a slightly different behaviour was exhibited 
by the ABC and KNN models compared to using the K27M dataset. The ABC model had a drop 
in AUCROC as expected but the AUCPR showed hardly any difference between original and 
shuffled data. The KNN model showed a drop in AUCROC as well that was expected but the 
AUCPR, contrary to expectations, increased from original to shuffled data. Meanwhile the RF 
model also showed good performance with the nonK27M dataset for both metrics with the 
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AUCROC dropping form 0.87 ± 0.01 to 0.49 ± 0.01 and AUCPR dropping from 0.55 ± 0.01 to 
0.02 ± 0.01. 
 

 
Figure 15: Evaluation metrics for shuffled or original data and for aggregated or outer transformation. A) Comparison of 
evaluation metrics for shuffled or original data from K27M dataset processed with KG and outer product across all three 
classic ML models. All metrics calculated as 5x cross validation. B) Comparison of evaluation metrics for shuffled or original 
data from nonK27M dataset processed with KG and outer product across all three classic ML models. All metrics calculated 
as 5x cross validation.  C) Comparison of evaluation metrics for data preparation via dot product (aggregated) or outer vector 
product (outer) from K27M dataset across all three classic ML models. All metrics calculated as 5x cross validation.  D) 
Comparison of evaluation metrics for data preparation via dot product (aggregated) or outer vector product (outer) from 
nonK27M dataset across all three classic ML models. All metrics calculated as 5x cross validation. 

After confirming that there was a causal connection between input data and performance, I 
turned towards evaluation of data processing technique. The evaluation of the data processing 
technique showed a clear trend towards preparation via outer product, suggesting that this 
method effectively prepared data in a way that was beneficial for subsequent analysis. Figure 
15 (panel C for K27M and panel D for nonK27M) demonstrates a clear improvement in 
performance for the RF model regardless of the used dataset. The ABC and KNN models 
showed an improvement or no change in performance between preparation techniques, but this 
was dependent on dataset input. Going forward I always used the data processing technique via 
outer product. Finally, I calculated p-values for the differences between metrics calculated from 
original and shuffled data. In Figure 16 (panels A and B) are the AUCPR and AUCROC values 
shown when I used the unshuffled data. Asterisks (***) above each column indicate if there 
was a p-value < 0.05 when compared to shuffled data. For the AUCROC value all models 
showed significant differences between shuffled and unshuffled data. For the AUCPR value 
only the RF method showed significant differences for both K27M and nonK27M dataset. 
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Figure 16: Evaluation metrics from permutation testing and down sampling tests. A) AUCPR and AUCROC using the 
unshuffled, with KG and outer product transformed K27M dataset across all three classic ML models. *** indicates pvalue < 
0.05 in comparison to same metric calculated with shuffled data as calculated by permutation testing. B) AUCPR and AUCROC 
using the unshuffled, with KG and outer product transformed nonK27M dataset across all three classic ML models. *** indicate 
pvalue < 0.05 in comparison to same metric calculated with shuffled data as calculated by permutation testing. C) 5x cross 
validation of AUCPR and AUCROC metrics for different downsampling strategies. AS means downsampling of both negative 
and positive SL pairs from training data. NES means downsampling of only negative SL pairs from training data. The RF model 
was used together with the unshuffled K27M dataset after KG and outer product transformation. D) 5x cross validation of 
AUCPR and AUCROC metrics for different downsampling strategies. AS means downsampling of both negative and positive 
SL pairs from training data. NES means downsampling of only negative SL pairs from training data. The RF model was used 
together with the unshuffled nonK27M dataset after KG and outer product transformation. 

With the expected behavior exhibited during the shuffle test and after selection of a data 
processing technique, I wanted to investigate the performance behavior for several 
downsampling techniques that further probed the causal connection between input data and 
model performance. In Figure 16 panels C and D show the evaluation metrics for the 
downsample tests. For both datasets, if only the nonSL pairs were downsampled for training 
there was no change in model performance for both metrics. This was expected since the nonSL 
pairs greatly outnumbered the SLpairs in the training data. The drop in performance at higher 
down sampling levels for the nonSL pairs could be explained with the processing via graphs. 
When too many vertices from the graph were removed, the graph became disconnected which 
had detrimental effects on the ability of the generated features to capture the remaining 
connectivity. When both the nonSL and SL pairs were downsampled equally, one could 
immediately observe a drop in performance for both datasets, with the AUCPR showing the 
effect even before the AUCROC metric. This again suggested a causal connection between 
input data and model performance. Based on these test results, I decided to go ahead using the 
RF algorithm, which showed the most robust performance for both datasets, together with the 
outer product preparation technique to make the actual predictions using both the K27M dataset 
and nonK27M dataset. For both datasets, I obtained 98 novel predicted SL pairs and 37527778 
negative predictions, which was < 0.0001% positive prediction rate. While there was an overlap 



 

 31 

(n = 69) between predicted SL pairs for both datasets, there were also such predictions that were 
unique for either dataset. Interestingly, the predictions of both datasets were made from the 
same 89 unique genes, which occurred in different combinations. Running GO term enrichment 
analysis on the 89 unique genes revealed a significant overrepresentation in a handful of 
pathways. Figure 17 panel A shows a cnetplot of the enriched GO terms, where the majority of 
genes fell into the mitochondrion GO term, which overlapped with the organelle envelope GO 
term. Another cluster was related to the Golgi apparatus, specifically the Golgi stack and Golgi 
cisterna. Two genes clustered away from these two GO terms. These were AP3S2 and AP3S1, 
two subunits of the same complex which fall inside the AP-3 adaptor complex GO term. 

 
Figure 17: A) Cnetplot for unique genes from predicted SL pairs in significantly enriched GO terms. B) Adjusted pvalues and 
gene ratio for enriched GO terms using unique genes from positive SL predictions.  

In panel B are the adjusted p-values of the enrichment analysis shown in more detail. I further 
filtered down the predictions and removed genes which were predicted to form an SL pair with 
themselves and removed duplicates that were predicted as SL in both orientations. This left me 
with the same 29 predicted SL pairs for both K27M dataset and nonK27M datasets, which were 
made of 55 unique genes. One concern with these predicted SL pairs was selection bias 
introduced via the training data [174, 175]. However as Seale et al. pointed out, topology based 
ML predictions methods are more affected by gene selection bias compared to feature based 
ML methods, which was the kind of technique used in this study to make the predictions. 
Interestingly the CMFW model, that was determined to be unsuitable here, is a topology based 
model which might be another reason its performance was lacking in this study. Another 
measure recommended to estimate the effect of selection bias is application of the prediction 
algorithm to multiple datasets, which I did by comparing nonK27M and K27M predictions, 
noting the good agreement, not only for the predictions themselves but also across the 
evaluation tests shown above. Further robustness to selection bias was introduced by my usage 
of context-free features, such as interaction network affiliation, and context-specific features, 
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derived from omics data, as recommended by Tepeli et al. [175].  After I filtered the predicted 
SL pairs, I repeated the GO enrichment that revealed that the mitochondrion GO term contained 
most of the predicted SL pairs. 

 
Figure 18:  A) Cnetplot for unique genes from filtered predicted SL pairs in significantly enriched GO terms. B) Adjusted 
pvalues and gene ratio for enriched GO terms using unique genes from filtered positive SL predictions. 

Figure 18 shows the GO term enrichment results for the filtered SL predictions and Table 1 
shows the raw predictions, which include pairs not in the mitochondrion GO term.  
 
Table 1: Filtered predictions made from both the K27M and nonK27M datasets. 

Gene 1 Gene 2  Symbol 1 Symbol 2 
ENSG00000268332 ENSG00000116675 - DNAJC6 
ENSG00000131238 ENSG00000168310 PPT1 IRF2 
ENSG00000168710 ENSG00000178104 AHCYL1 PDE4DIP 
ENSG00000143384 ENSG00000128016 MCL1 ZFP36 
ENSG00000143727 ENSG00000115540 ACP1 MOB4 
ENSG00000163930 ENSG00000161547 BAP1 SRSF2 
ENSG00000144908 ENSG00000204228 ALDH1L1 HSD17B8 
ENSG00000083896 ENSG00000269955 YTHDC1 FMC1-LUC7L2 
ENSG00000170445 ENSG00000171720 HARS1 HDAC3 
ENSG00000090263 ENSG00000106028 MRPS33 SSBP1 
ENSG00000179388 ENSG00000138135 EGR3 CH25H 
ENSG00000168003 ENSG00000087076 SLC3A2 HSD17B14 
ENSG00000255639 ENSG00000111652  COPS7A 
ENSG00000139613 ENSG00000179912 SMARCC2 R3HDM2 
ENSG00000172458 ENSG00000266964 IL17D FXYD1 
ENSG00000165389 ENSG00000168175 SPTSSA MAPK1IP1L 
ENSG00000139990 ENSG00000176903 DCAF5 PNMA1 
ENSG00000119711 ENSG00000189221 ALDH6A1 MAOA 
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ENSG00000157823 ENSG00000242498 AP3S2 ARPIN 
ENSG00000167720 ENSG00000132382 SRR MYBBP1A 
ENSG00000185722 ENSG00000029725 ANKFY1 RABEP1 
ENSG00000161920 ENSG00000132522 MED11 GPS2 
ENSG00000004139 ENSG00000076351 SARM1 SLC46A1 
ENSG00000141741 ENSG00000159199 MIEN1 ATP5MC1 
ENSG00000267303 ENSG00000011451 - WIZ 
ENSG00000130175 ENSG00000105700 PRKCSH KXD1 
ENSG00000130204 ENSG00000105568 TOMM40 PPP2R1A 
ENSG00000130204 ENSG00000069998 TOMM40 HDHD5 
ENSG00000105568 ENSG00000069998 PPP2R1A HDHD5 

 
This table of predicted SL pairs includes multiple drug targets, making it a suitable resource for 
planning further investigations for example via combinatorial drug screens or CRISPR screens. 
These drugs include aldehyde dehydrogenase inhibitors, MAO inhibitors, HDAC inhibitors or 
BAP1 inhibitors [176-179]. Alternatively because the aimed at reduction in combinatorial space 
that needs to be investigated was substantial, low-throughput experiments of selected pairs 
might already be sufficient and bring novel insights. With this study I was able to further 
underline the suitability of random forest models for the prediction of synthetically lethal 
interactions, a result in agreement with previous studies [63, 174, 175]. I tested the presented 
method that integrates context-specific as well as context-free features to achieve higher 
robustness towards selection bias in training data on two datasets derived from pedHGG 
patients. The behavior across multiple tests, which demonstrated the ability of my method to 
capture causal connections between the training and input data, and regarding the predictions 
themselves were in good agreement for both datasets, an important characteristics hinting at 
robustness towards selection bias in training data. The context-specific features used for this 
method not only included the usual features like expression or mutation features but further 
included topology based features. Previous models for SL prediction that leveraged topology 
delivered good performance but severely suffered from a susceptibility to selection bias [174]. 
However in this study I was able to set up the model in a way that enabled use of topology 
based features while maintaining robustness. Another important aspect of this study was that in 
contrast to the majority of literature on SL prediction that uses publicly available data which is 
mainly derived from adult patients, here I used a dedicated in-house dataset from exclusively 
pediatric patients.   
 

7.2 Mutational signature analysis of DADDR patients 
With this analysis, I investigated active mutational processes in samples from patients with 
cancer predisposition syndrome (methods 6.2.1). In particular, I investigated mutational 
signature associations with Li-Fraumeni syndrome, MMRD syndrome and tumor type. Further, 
I compared the differences in mutational signatures relative to the respective gene(s) commonly 
associated with MMRD syndrome. I also investigating the connection of mutational processes 
to mutations in POL* genes, treatment and between patients with germline mutation vs somatic 
mutation or wild type.  
 
7.2.1 Mutational burden 
After I obtained the mutational catalogues, matrices containing information about which sample 
contained which mutations (SBS96 and ID83 context, methods 6.2.2) and how many, I checked 
whether the extracted mutations matched expectations regarding their number, correlation and 
distribution across samples before proceeding with the analysis of the extracted mutational 
signatures. Unexpected behavior regarding the number of mutations and the correlation 
between SNVs and INDELs could indicate a problem with the sequencing workflow or the 
mutation-calling algorithm. The correlation between SNV (or SBS) mutations and INDEL (or 
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ID) mutations by spearman correlation was as expected. These two kinds of mutations 
correlated significantly across the cohort with a correlation coefficient of R = 0.87 (Figure 19A). 
Some samples showed a hypermutator (> 10 mutations/megabase (MB)) behaviour, some even 
exhibited ultramutator (>100 mutations/MB) behaviour, where the hyper- and ultramutators 
appeared to be mainly associated with MMR related CPS, in this case PMS2, MSH2, MSH6 and 
MLH1, a result in line with previous investigations [100]. This ultra-/hypermutator behavior 
was visible more clearly when I looked into the mutational burden produced by both the SBS 
and ID mutations across the whole cohort split by the different DADDR syndromes (Figure 
19B). As expected, the cases with BRCA1 and BRCA2 mutations together with the cases with 
TP53 mutation exhibited a relatively lower mutational burden compared to the cases which 
carried mutations in MSH2, MSH6, MLH1 or PMS2. This was clearly visible when observing 
the ID mutation results, while for the SBS mutations the division was less clear but still present 
since the hyper- and ultramutators were mainly present in the MSH2, MSH6, MLH1 and PMS2 
groups.  
 

 
Figure 19: log = natural logarithm A) ID mutations per megabase over SBS mutations per megabase from all samples on a 
logarithmic scale. Spearman correlation coefficient and p-value are shown. Every dot is one patient. B) Mutational burden as 
mutations per megabase shown on a logarithmic scale across the different CPS present in the cohort for both ID mutations and 
SBS mutations. C) Mutational burden as mutations per megabase shown on a logarithmic scale across the different subgroups 
used in the analysis process for both ID mutations and SBS mutations. Pie charts show present CPS in each subgroup. 
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In panel C I show the mutational burden across the different cancer entities in the cohort. In 
case of ID mutations, all subgroups had a very similar mutational burden except for HGG and 
specifically the pedRTK1 HGG subgroup, which exhibited a slightly increased mutational 
burden. This was expected because these two subgroups majorly consisted of patients with 
mutations in MMR related genes that were associated with a higher mutational burden. A 
similar trend could be observed in the SBS mutations, where the HGG and pedRTK1 HGG 
subgroups had the highest mutational burden and all other subgroups again exhibited a roughly 
similar mutational burden. Statistical testing revealed that only the difference between the 
MMR and non-MMR subgroup was significant for both SBS and ID while the apparent 
difference of the HGG and pedRTK1 HGG was not statistically significant (graphic in 
appendix). Overall, all samples exhibited the expected behavior concerning their mutational 
burden, for both SBS and ID mutations, that reflected the CPS. Further, the mutational burden 
identified for the different cancer types was a reflection of the underlying CPS in the samples, 
as expected. This indicated that the workflow for sequencing and downstream processing did 
not introduce any artefacts or miss mutations, which was expected since it was already 
successfully used in multiple studies that investigated mutational signatures in pediatric cancers 
and consequently raised no concerns for further analysis in this study [100, 145]. 
 
7.2.2 Extracted SBS and ID signatures 
Turning towards mutational signatures, in total I extracted 31 different SBS signatures and 12 
different ID signatures with SigProfiler. Concurrently, I extracted 9 different SBS signatures 
with SIGNAL all of which were also extracted by SigProfiler. An overview of the extracted 
signatures and their contribution and proportion in the different groups is given in Figure 20 for 
SBS signatures and Figure 21 for ID signatures. As expected the clock-like mutational 
signatures SBS1 and SBS5 contributed to 93 % and 96 % of samples respectively when 
analysed with SigProfiler applied to all samples simultaneously. When analysed with SIGNAL, 
SBS1 and SBS5 contributed to 42 % and 84 % of samples respectively. Another prominent 
signature was SBS40, which contributed to 38 % of samples when analysed with Sigprofiler 
and was not assigned at all when analysed with SIGNAL. Instead SIGNAL heavily assigned 
SBS3 which has a high cosine similarity of 0.88 to SBS40 and was associated with mutations 
in BRCA1 or BRCA2. That could indicate the assignment of SBS3 was a potential false 
assignment by SIGNAL. One reason could be inherent in the algorithm used in SIGNAL where 
in a first step a set of common signatures was fitted (which included SBS3) and in a second step 
a set of rare signatures (which included SBS40) was iteratively fitted but only kept if the overall 
error improved beyond a certain threshold. In contrast SigProfiler used simultaneous 
assignment of an iteratively increasing number of signatures and selected the best solution by 
overall stability. Because SBS3 and SBS40 had a high cosine similarity, additional fitting 
SBS40 could be judged by SIGNAL to not improve the error enough and therefore SIGNAL 
dropped SBS40 assignment altogether. 
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Figure 20: A - L) Mutational SBS signatures extracted by SigProfiler for different the different groups investigated. M) 
Contribution and proportion of each signature to the groups. 
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SBS8, which was proposed to be linked to HR deficiency and NER deficiency, was another 
signature that prominently contributed to 35 % of samples when analysed with SigProfiler and 
98 % of samples when analysed with SIGNAL. SigProfiler most prominently assigned this 
signature in the BRCA subgroup, but also in other subgroups which contained samples with 
BRCA CPS such as HGG, MED and SARCOMA RMS. This was in line with previous results, 
that showed SBS8 contributes more to BRCA mutated cancers [180, 181]. SIGNAL on the other 
hand probably assigned SBS8 too much as a result of the different algorithm. As discussed 
above SBS8 was included in the first pass for assignment of common signatures. The signature 
linked to defective homologous repair and BRCA1 or BRCA2 mutation, SBS3, was assigned to 
almost all samples with SIGNAL (85 %) while to no samples with SigProfiler using cross-
cohort analysis. Especially in the BRCA subgroup, were assignment of SBS3 would be 
expected, not a single sample was assigned SBS3 by SigProfiler, instead SBS8 and SBS2 were 
assigned. Perhaps this was due to the fact that assignment of SBS3 was reported to be linked 
with biallelic inactivation BRCA1/2 mutation and not all BRCA1/2 mutations [145]. SBS2 and 
SBS13, signatures associated with APOBEC activity, were assigned to 5% and 7 % respectively 
with SigProfiler, most prominently in the TP53 subgroup, a result in line with previous studies 
[145, 182, 183]. As previously described by Thatikonda et al. not all tumors with germline TP53 
mutation were assigned SBS2 and/or SBS13, underlining a potential link to tissue specificity 
of these signatures. Looking at panels J, K, L and the respective columns in panel M it was 
immediately clear that the MMR samples exhibited a different mutational pattern from the TP53 
and BRCA CPS samples. This was mainly due to the extraction of MMR related signatures 
SBS14, SBS15, SBS20, SBS21, SBS23 and SBS44, which contributed as expected most 
prominently in the MMR subgroup [84, 87]. Due to bleeding effects (explained in detail section 
6.2.2 splitting cohort), their contribution was diluted in other subgroups containing MMR 
related germline mutations although they were still present, most prominently in those 
subgroups harboring multiple MMR samples such as HGG and pedRTK1 HGG subgroup. On 
the other hand, TP53 and BRCA CPS were not obviously different from each other in terms of 
extracted signatures and all differences still identifiable could be due to the different cancers 
inside each group. SBS31 and SBS35, signatures linked to treatment with platinum based drugs, 
were assigned to some samples which were treated with such drugs but not all of them without 
preference to a particular subgroup.  
Regarding the ID signatures, I extracted a total of 12 different signatures with SigProfiler. Most 
prominent in cross-cohort analyses were the clock-like signatures associated with slippage 
during DNA replication, ID1 and ID2 assigned to 87 % and 62 % of samples respectively. As 
reported previously, these two ID signatures also contributed most strongly to samples with 
MMR deficiency in which most mutations/MB were attributed to them. In the MMR subgroup, 
they were accounting for all present ID mutations. Other prominent ID signatures that 
contributed across the cohort were ID5, ID8 and ID9 with 23 %, 35 % and 53 % of samples 
respectively. Particularly ID8, which was linked to repair of DNA via NHEJ mechanisms, was 
featured in every subgroup. ID3, which was supposedly linked to tobacco smoking, was present 
mainly in the TP53 and osteosarcoma subgroup. Although passive smoking could not be ruled 
out, tobacco use of the patients with ID3 appeared unlikely since these were pediatric patients, 
which suggested another mechanism producing the mutational signature. Other ID signatures 
were rarer and appeared not to be linked to any investigated genomic feature. 
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Figure 21: A - L) Mutational ID signatures extracted by SigProfiler for different the different groups investigated. M) 
Contribution and proportion of each signature to the groups. 
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In contrasts to the SBS signatures, the MMR subgroups did not exhibit a different profile of ID 
signatures compared to TP53 and BRCA subgroup. The only difference was in mutational 
burden, but this was due to the presence of hypermutators in the MMR subgroup. 
With this analysis I was able to further confirm previously made associations of signatures with 
certain features for pediatric cancer. For example the major contributions across samples of 
clock-like signatures SBS1 and SBS5 as well as ID1 and ID2 and the prevalence of SBS40. The 
assignment of SBS40 also revealed problems with the analysis via SIGNAL, which appeared 
to be less sensitive due to differences in the assignment algorithm. The assignment of SBS2 and 
/or SBS13 to some but not all TP53 mutated samples further hinted at previous suggestions of 
influence of tissues for these signatures [145]. The well-known association of SBS14, SBS15, 
SBS20, SBS21, SBS23 and SBS44 with MMR mutations could be confirmed again and was 
further analyzed below. Interesting ID signatures that contributed across the cohort were ID5, 
ID8 and ID9. For ID8 the suggested aetiology is DNA repair while the other two signatures 
have no known aetiology. Finally the suggested aetiology of ID3 as tobacco smoking appeared 
more unlikely for pediatric cancer after this analysis instead other suggested links to treatment 
induced DNA damage or an unknown mechanism appeared more likely, especially considering 
the correlation analysis below [145]. 
 
7.2.3 Correlation between signatures 
Next, I investigated the correlations between ID and SBS signatures extracted by SigProfiler. 
In Figure 22 I show the spearman correlation among SBS and ID signatures sorted by 
hierarchical clustering. One could observe several clusters of correlated signatures along the 
diagonal. In the upper left corner, there are two clusters visible. First, SBS10a, SBS10b and 
SBS10c which all showed correlation with each other. These signatures are linked to mutations 
in the polymerase epsilon exonuclease domains or defective POLD1 proofreading and are 
known to majorly contribute to the high amount of mutations found in hypermutators [84, 87]. 
The next cluster of signatures that exhibited elevated correlation among each other was made 
of SBS14, SBS20 and SBS23 all signatures linked to MMR deficiency and as such expected to 
correlate. Also correlated were SBS15, SBS6 and SBS44, which were also linked to defective 
mismatch repair. It is noteworthy that these three signatures were separate from the other MMR 
related signatures, in particular SBS15 showed negative correlation with SBS14, SBS20 and 
SBS23. 
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Figure 22: Spearman correlation of SBS and ID signatures extracted with SigProfiler (SP). Columns and rows are rearranged 
by hierarchical clustering. 

The clock-like signatures SBS1, ID1 and ID2 exhibited a positive correlation between them and 
were clustered together while the other clock-like signature SBS5 was negatively correlated. 
The next bigger cluster of correlated signatures contained ID6, ID8, SBS3 and SBS39. While 
SBS3 and ID6 were linked to defective homologous recombination DNA damage repair 
previously, ID8 was linked to repair by NHEJ or more recently late replication error [184]. 
SBS39 is currently of unknown aetiology but this correlation suggested a link to DNA damage 
repair. Another strong cluster of correlation consisted of SBS31, SBS35 and ID3. SBS31 and 
SBS35 were linked to treatment with platinum based drugs while ID3 was supposedly linked 
to tobacco smoking. As mentioned above, a link to tobacco smoking was unlikely and suggested 
another mechanism behind the mutations represented by ID3. Interestingly these 3 signatures 
were negatively correlated with the clock-like signature SBS1, which might have been due to 
misassignment since SBS1 and SBS31 have similar patterns in C>T channels. SBS2 and SBS13 
exhibited a very strong correlation, which was expected since they were both linked to 
APOBEC activity.  
This analysis showed correlated blocks of signatures. While some correlations were expected 
like the clock-like signatures others suggested novel associations like SBS39 with DNA repair. 
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An interesting observation was the split among the MMR related signatures into two groups, 
which I hypothesized occured due to an influence of the particular MMR gene and further 
investigated below. The suspected alternative association of ID3 away from tobacco smoking 
towards treatment induced effects was further supported because of the observed correlation 
with SBS31 and SBS35, two signatures associated with platinum based drugs.  
 
7.2.4 Correlation with age and differences among MMR mutations 
After I evaluated the correlation of signatures among each other, I investigated the correlation 
of signatures with patient age. In Figure 23 I show all significant correlations with age I could 
identify in this study. The expected significant correlation with age of the clock-like signatures 
SBS1 (panel A), SBS5 (panel D and E) as well as ID1 (panel I) and ID2 (panel H) were all 
confirmed. Next to these I was also able to identify significant correlation for SBS8 (panel B 
and panel C), SBS40 (panel F) and SBS3 (panel G). Concerning the correlation of SBS3 with 
age, it has to be mentioned that it was no longer significant after removal of hypermutators, 
while for all other signatures the correlation remained significant when tested without 
hypermutators. Another caveat here is that there was only significant correlation of SBS3 with 
age when using SIGNAL as algorithm, the apparent inferior algorithm for this dataset. This 
could also be related to the false over-assignment of SBS3 by SIGNAL for technical reasons 
discussed above. 
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Figure 23: Spearman correlation (correlation coefficient = R) of mutational signatures with age. I also checked correlation 
without hypermutators (mutations/MB > 10), and it is still significant (p < 0.05) for all cases except the correlation of SBS3 
extracted by SIGNAL. 



 

 43 

SBS8 is reported to be linked with HR and/or NER deficiency or more recently to late 
replication errors, not with age so the identified correlation may not have a causal connection. 
However SBS40 has been reported to exhibit clock-like behavior in pediatric cancer before, 
which I could confirm in the context of my investigation [145]. 
After I investigated correlation with age I turned towards the MMR subgroup, wanting to learn 
if the different mutations present (MSH6,MSH2,PMS2 and MLH1) were reflected in the 
extracted mutational signatures as hinted at by the correlation analysis. In Figure 24 I show the 
identified differences which were only statistically significant between PMS2 germline mutated 
cases and the other (MSH6, MSH2 and PMS2). For some signatures which were associated with 
age, specifically ID1 (panel A), ID2 (panel B) and SBS1 (panel E), the apparent differences 
could be influenced by the difference in mean age between the PMS2 and nonPMS2 group 
which was 11,7 and 12.2 years respectively although this age differences was not statistically 
significant. 
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Figure 24: Significant differences between the CPS present in the MMR subgroup reflected in the mutational signatures. 
Pvalues calculated by Wilcoxon test. 
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The higher contribution of SBS20 (panel C) and SBS14 (panel D), both signatures mostly active 
in the C>A channel unlike the other MMR linked signatures, to PMS2 mutated cases than to 
other MMR cases might be specific to this particular mutation. Although this assessment was 
limited by the number of samples inside the MMR subgroup given in the following table. 
 
Table 2: Number of CPS present in the MMR subgroup. 

PMS2 MLH1 MSH2 MSH6 
3 2 2 4 

 
Further, I investigated within the MMR subgroup if there were differences depending on the 
heterozygous or homozygous nature of the mutation. The only statistically significant 
difference I was able to identify in this dataset was the contribution of SBS5, a clock-like 
signature, although this could be influenced by the different mean patient age in the respective 
subgroups (graphic in appendix). 
With this analysis I was able to confirm again the correlation with age for multiple clock-like 
signatures like SBS1 and SBS5. But also the previously described clock-like role of SBS40 in 
pediatric cancer was further confirmed [145]. SBS8, which was also identified as correlated 
with age, is usually not linked to age. One factor here could be the similarity SBS8 possesses 
to SBS5, which is a clock-like signature. Of note was also the elevated contribution of SBS14 
and SBS20 to MMR cases with underlying PMS2 mutation compared to the other MMR cases. 
SBS14 and SBS20 were also identified to correlate among each other as described above. This 
could be interpreted to be specific to PM2, although due to the low sample size of MMR cases 
in this study this statement should be treated carefully. On the other hand a difference in 
mutational signatures between PMS2 and other MMR related genes has been described 
previously [185, 186]. 
 
7.2.5 Association with POL* mutations and treatment 
As next steps, I investigated the association of the extracted mutational signatures with the 
presence of POL* mutations (methods 6.2.2), chromothripsis, kataegis and different treatments 
as far as information was available to me with the help of linear models. I determined the 
presence of chromothripsis or kataegis manually by considering copy number variation (CNV) 
plots of the samples which were generated inside the INFORM pipeline. The linear models used 
the normalized signature exposure as response and the feature under investigation (mutation 
status, treatment, chromothripsis or kataegis), the CPS, the cancer type and the age as 
explanatory variables. In the typical R notation, the linear models were given by the following 
equation, with the leading 0 setting the intercept to 0, making interpretation of the other 
coefficients more straightforward:  
 

𝑆𝐼𝐺𝑁𝐴𝑇𝑈𝑅𝐸	~	0 + 	𝐹𝐸𝐴𝑇𝑈𝑅𝐸 + 𝐶𝑃𝑆 + 𝐶𝐴𝑁𝐶𝐸𝑅𝑇𝑌𝑃𝐸 + 𝐴𝐺𝐸	 
 
In the equation “SIGNATURE” was defined as the normalized exposure of the signature under 
investigation. “FEATURE” was a one-hot encoded variable giving information about the 
presence of a characteristic, here the presence of a POL* mutation each investigated in turn, the 
presence of chromothripsis or kataegis and whether a treatment was administered.  “CPS” was 
a categorical variable with information about the germline mutation in a sample. 
“CANCERTYPE” was also a categorical variable encoding the specific type of cancer in a 
patient. “AGE” was a continuous variable. Since there were categorical variables, some of 
which had multiple levels, after the fitting of the linear models I applied ANOVA (type II due 
to the unbalanced nature of the dataset) to estimate the overall effect of the explanatory 
variables.  
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Concerning the analysis for association of signatures with POL* mutations I only considered 
POL* genes which had at least 3 cases both in the mutated and wildtype state of the gene in 
question. For SBS signatures, both extracted by SIGNAL and SigProfiler, and for ID signatures 
I identified multiple statistically significant associations with POL* mutations. Interestingly 
despite the linear model accounting for patient age, there were some significant associations 
made with POL* mutation status and mutational signatures usually linked to age. Specifically 
with mutational signatures extracted by SIGNAL: SBS8, which exhibited correlation with age 
in this study, showed association with POLR3D. Other mutational signatures extracted by 
SIGNAL, which exhibited association with POL* mutation were: SBS17b with POLB and 
POLQ and SBS17a with APOL1, PAPOLB, POLM, POLR2E, POLR3D and POLR3K. The 
associations with mutational signatures extracted by SIGNAL should be interpreted with 
caution due to the apparently less sensitive algorithm and a tendency to over-assign certain 
signatures as discussed above. There were also numerous associations of mutational signatures 
extracted with SigProfiler with POL* mutation status. Among them association of MMR related 
signatures like SBS14, SBS15, SBS20 and SBS23. With these mutational signatures there 
appeared to be an alternating pattern of association, where POL* mutation that were associated 
with SBS14 and SBS15 were not associated with SBS20 and SBS23 and vice versa. Previously 
concurrent loss of polymerase proof reading and defective mismatch repair function gave rise 
to mutational patterns resulting in assignment of SBS14 and SBS20 [187]. Of the clock-like 
signatures only SBS1, SBS5 and SBS8 were associated with POL* mutations. While SBS1 was 
associated with 13 POL* mutations, SBS5 was associated with POLR1D and SBS8 was only 
associated with POLR2J4 and PRIMPOL. Overall in the associations of signatures extracted by 
SigProfiler with POL* mutations, one could see a reflection of the correlation of the mutational 
signatures. Clusters of signatures which exhibited high correlation as shown above, e.g. 
SBS10a, SBS10b and SBS10c or SBS9 and SBS86, also tended to be associated with the same 
POL* mutations. ID signatures showed fewer significant associations with POL* mutations. 
The only statistically significant associations I identified was that of ID4 with POLRMT. 
Regarding the association of signatures with different treatment there were fewer significant 
findings than in regard to POL* status. For SIGNAL, the only significant association identified 
was SBS17b with the treatment with steroids. Association with steroids was also the only 
significant finding using the mutational signatures extracted with SigProfiler, which identified 
SBS9 and SBS86 to be associated. The ID signatures showed more associations with treatment: 
ID5 and ID10 were associated with peptide antibiotics, ID11 was associated with steroid 
treatment and ID5 again was associated with treatment with vinca alkaloids. Applying these 
linear models, I could not identify any association of any mutational signature, regardless of 
extraction algorithm, with chromothripsis or kataegis in this study. 
 
7.2.6 Differences among germline, somatic and wildtype samples 
Next, I turned my attention towards the subgroup of samples with germline TP53 mutation, 
aiming to learn whether there was a difference, reflected in the mutational signatures, to samples 
that carried a somatic TP53 mutation. For this purpose, I utilized the mutational signatures 
extracted by Thatikonda et al. to use in the comparison [145]. Since Thatikonda et al. used 
SigProfiler for extraction of mutational signatures, I only used the signatures I extracted with 
SigProfiler for these comparisons. In total, I compared 66 samples with somatic TP53 mutation 
to 36 samples with germline TP53 mutation analysed in this study, which were complimented 
by 17 samples from Thatikonda et al. that also carried germline TP53 mutation. Overall, 8 
signatures showed significant differences between somatic and germline mutated TP53 cases, 
shown in Figure 25. Among these differences were signatures usually associated with age 
(SBS1, SBS5, ID1 and ID2). SBS40, which was associated with age in this study and by 
Thatikonda et al. was also identified with a significant difference between somatic and germline 
TP53 samples.  
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Figure 25: Significant differences between somatic and germline mutated TP53 cases. Pvalues calculated by Wilcoxon test. 
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The other signatures that exhibited a significant difference between somatic and germline 
mutated TP53 samples were SBS9, SBS18 and ID4. ID4 showed a positive correlation with 
SBS18, while SBS18 and SBS9 exhibited a negative correlation to each other. While ID4 does 
not have a known aetiology, SBS18 was shown to be related to reactive oxygen species and was 
previously observed in germline TP53 samples [188, 189]. However ID4 was recently 
suggested to be linked to transcription associated process [190]. Specifically it was linked to 
TOP1 which in turn was shown to interact with TP53 [191]. SBS9 on the other hand has not 
been linked to Li-Fraumeni syndrome before to the best of my knowledge but was primarily 
observed in leukemia. While there were three leukemia cases investigated, all of them had zero 
contribution from SBS9. The proposed mutational process underlying SBS9 is currently 
polymerase eta somatic hypermutation. 
 
Finally, wanting to learn about the association of mutational signatures with the CPS of 
DADDR patients I employed linear models and used control samples from Thatikonda et al. 
The linear model is described by the following equation: 
 

𝑆𝐼𝐺𝑁𝐴𝑇𝑈𝑅𝐸	~	0 + 	𝐶𝑃𝑆 + 𝐶𝐴𝑁𝐶𝐸𝑅𝑇𝑌𝑃𝐸 + 𝐴𝐺𝐸	 
 
The response variable “SIGNATURE” was the normalized exposure of the signature under 
investigation. “CANCERTYPE” was a categorical variable encoding the specific cancer type. 
“AGE” was a continuous variable with patient age. “CPS” was a categorical variable encoding 
whether a sample belongs to the BRCA, MMR or TP53 group. The leading 0 was again setting 
the intercept to 0, making interpretation of the other coefficients more straightforward. Since 
there were categorical variables, some of which had multiple levels, I applied ANOVA (type II 
due to the unbalanced nature of the dataset) to estimate the overall effect of the explanatory 
variables. In total, I compared 659 control samples to 57 samples with germline TP53, BRCA 
or MMR mutation analysed in this study, which additionally included 25 samples from 
Thatikonda et al. that carried germline mutations in the gene of interest. 
Overall, 20 SBS signatures were significantly associated with germline mutation status, while 
only 6 among them were not simultaneously significantly associated with cancer type (Table 
3). For signatures like SBS1, SBS5 and SBS40, which are known to (and did in this study as 
well) exhibit clock-like behaviour, it was interesting that they were associated with CPS despite 
accounting for age in the linear model. Another false association with CPS could be SBS35 and 
SBS31, both signatures linked to treatment with platinum based drugs. Treatment was not 
accounted for with this linear model since the information was not available for all samples. 
Signatures linked to possible sequencing artefacts, SBS46 and SBS95 may also be ruled out to 
be linked with CPS. 
 
Table 3: FDR for association of SBS signatures with CPS and cancer type. Lines in bold are only significantly associated with 
CPS. 

SBS signature CPS cancer type 
SBS6 3.1e-40 1.2e-26 
SBS40 1.3e-30 2.9e-34 
SBS15 1.2e-26 4.8e-02 
SBS21 1.1e-22 1.5e-02 
SBS13 7.8e-22 1.5e-22 
SBS2 5.9e-21 1.2e-24 
SBS12 3.4e-12 6.7e-02 
SBS19 5.2e-10 2.6e-01 
SBS35 1.1e-09 2.2e-04 
SBS11 2.5e-09 7.8e-02 
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SBS10a 1.4e-07 2.1e-01 
SBS10b 4.6e-07 2.4e-01 
SBS20 7.1e-07 1.3e-04 
SBS5 8.1e-07 6.5e-26 
SBS8 2.7e-06 5.6e-03 
SBS31 4.0e-04 1.2e-05 
SBS95 8.6e-04 6.2e-03 
SBS46 1.8e-03 1.9e-01 
SBS1 7.9e-03 9.5e-07 
SBS39 4.3e-02 8.7e-07 

 
Other signatures have been known to be associated with certain molecular characteristics in the 
CPS group. For example, both SBS2 and SBS13 have been known to be associated with 
APOBEC activity and TP53 germline mutation. Their simultaneous significant association with 
cancer type underlines a potential tissue specificity as discussed above already and pointed out 
previously by Thatikonda et al. SBS6, SBS15, SBS20 and SBS21 are known to be associated 
with DNA mismatch repair deficiency so their association with the samples in the MMR group 
was not surprising. A similar picture presented itself when considering the significant 
association of ID signatures with CPS status, although all ID signatures were simultaneously 
significantly associated with CPS and cancer type. Just as with SBS signatures, some ID 
signatures are well known for their association with other characteristics. For example ID1 and 
ID2 are known to be associated with age, as was also confirmed in this study. Another signature 
reported to have clock-like behavior is ID5, although I was not able to confirm this in this study. 
Despite accounting for age in the linear model, these 3 signatures still showed significant 
association with CPS. ID6 and ID8 are linked to DNA damage repair and it was not surprising 
that they were linked to the MMR samples. ID3 is linked to tobacco smoking. 
Table 4: FDR for association of ID signatures with CPS and cancer type. 

ID signature CPS cancer type 
ID9 1.9e-16 9.1e-12 
ID6 2.3e-14 7.9e-20 
ID1 3.7e-10 6.1e-15 
ID3 3.2e-08 3.7e-05 
ID8 3.2e-08 6.9e-17 
ID2 1.9e-06 3.7e-05 
ID11 5.2e-05 1.5e-02 
ID12 6.2e-05 1.7e-14 
ID5 1.7e-03 1.8e-02 

For the signatures not linked to any known characteristic or without any known aetiology, I 
considered the coefficients from the linear models to see whether the overall association was 
skewed by one of the CPS present in this cohort or if they were similar across CPS (Figure 26). 
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Figure 26: Linear model coefficients quantifying contribution of signatures to the CPS present and WT. Scale shows high or 
low association. 

The majority of coefficients were close to 0, which indicated that the level of activity for a 
signature was hardly influenced by the CPS status. Some signatures showed the same direction 
of association with the different CPS and WT only the absolute value was different. Specifically 
SBS5, SBS40, SBS35, SBS2, SBS13, ID9 and ID1 all showed positive coefficients across CPS 
status. As discussed above some of these signatures are known to be linked to certain 
characteristics. SBS5, SBS40 and ID1 are linked to age, while SBS35 is linked to treatment 
with platinum based drugs. SBS2 and SBS13 are linked to APOBEC activity, but a possible 
tissue specificity was not accounted for in the linear model. ID9 has an unknown aetiology 
currently and was most active in the BRCA and TP53 subgroups. While still positively 
associated with MMR and WT, the contribution of ID9 was notably smaller in those subgroups. 
Next to those signatures there were also those that showed positive and negative association 
with certain subgroups. I identified SBS8, SBS1, ID8, ID5 and ID2 that showed this behaviour. 
SBS8, suspected to be linked to HR or NER deficiency, was negatively associated with MMR 
and WT, while positively associated with BRCA and TP53. SBS1 and ID1, known to exhibit 
clock-like behaviour, were negatively associated with BRCA and positively associated with all 
other subgroups. ID5, also linked to age, and ID8, linked to NHEJ deficiency, were positively 
associated with BRCA, negatively associated with MMR while they hardly played any role for 
TP53 or WT. Overall the differences between MMR and the other three subgroups were more 
pronounced than BRCA vs TP53 or any of the 3 CPS compared to WT. This trend was already 
visible from the activity and contributions of each signature shown earlier, but was confirmed 
with this analysis. 
Overall this analysis confirmed several known associations of mutational signatures made for 
pediatric cancer. For example the previously pointed out clock-like nature of SBS40 was 
confirmed [145]. In the latest release of the COSMIC database (v3.4), SBS40 was split into 
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SBS40a, SBS40c and SBS40b all of which have unknown aetiology. Another example would 
be the association of MMR signatures with samples that carried a germline mutation in one of 
the MMR genes. I reported in this study that there appeared two correlating blocks of MMR 
signatures appeared and hypothesized that these blocks were the result of the specific 
underlying germline mutation. I was able to identify SBS14 and SBS20 to contribute 
significantly more to samples with PMS2 germline mutation compared to all other MMR cases. 
Through the correlation analysis, I could also report that SBS39, a signature with unknown 
aetiology, clustered with several other signatures known to be linked with DNA damage repair 
suggesting such a link for SBS39 as well. Another observed correlation was that of ID3 with 
SBS31 and SBS35. The latter two are associated with platinum based drugs treatment while 
ID3 was linked to tobacco smoking. As discussed above and in agreement with previous reports, 
this analysis suggested another link to treatment caused DNA damage or something novel. 
Concerning the differences between germline and somatic TP53 mutated samples, several 
signatures were identified with significantly different contributions (that were higher in the 
somatic samples), among them clock-like signatures as well as SBS9, SBS18 and ID4. 
Estimations for association of signatures with CPS via linear model revealed several SBS 
signatures. SBS10a, SBS10b, SBS11, SBS12 and SBS19 all were significantly associated with 
CPS and have potential to be leveraged for classification purposes based on their contribution. 
Other signatures significantly associated with CPS were simultaneously associated with tumor 
type, which may be a hint at tissue specific processes, but could also be leveraged for 
classification. 
 
 

7.3 Methylome analysis of DADDR patients 
After the analysis of the mutational signature landscape, I turned to the impact of the different 
DADDR syndromes on the methylome. I hypothesized that there might be an influence of 
DADDR on the methylome because the in-house methylation based tumor classifier (as initially 
published by Capper et al.) exhibited bad performance with samples later identified with a 
DADDR germline mutation [44]. For this purpose, I analyzed 62 samples from patients with 
germline TP53 mutation, among them 28 had methylation data available from both the tumor 
and the blood from the same patient, and 20 MMR patients, among which there were 10 with 
both tumor and blood methylation available from the same patient (cohort details methods 
6.2.1). While I had 6 samples from patients with BRCA mutation available, unfortunately for 
none of them a matching blood control sample was available. For this reason and because of 
the small number of cases, patients with BRCA germline mutation were excluded from further 
analysis. 
 
7.3.1 Assembling the control cohort 
Greatly influencing an investigation like this, were the control samples used for statistical 
testing. It was important to make sure that the samples used as control did not carry any 
germline mutation in the genes in question but also to make sure that there was no somatic 
mutation acquired in the CPS genes as well. To achieve this I utilized the INFORM dataset, 
which offers in depth molecular characterization that allowed me to select with high confidence 
a suitable control cohort. I aggregated 811 samples without germline or somatic mutations in 
the genes of interest (here MSH6, MSH2, MLH1, PMS2, TP53, BRCA1 or BRCA2). The top 10 
genes with the most alterations in the control cohort are shown in Figure 27. 
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Figure 27: Oncoprint of the control samples (n = 811) used in this analysis. Shown here are only the top 10 genes with the most 
alterations. In the barplots overexpression is represented by golden color. Barplots at the sides show fractions. 

13% of control samples had an alteration in CDKN2A/B, next MYCN with 12% alterations and 
then CDK4 with 8% followed by ALK alterations with 7%. 
For later evaluation of the results, I also curated a set of samples (n = 364) that carried somatic 
mutations in the genes of interest but no germline mutation. As expected, the somatic samples 
(methods 6.2.5) had a different set of most prominent mutations compared to control cases. 
83% had a somatic mutation in TP53, 25% in H3F3A followed by 17% and 13 % in ATRX and 
CDKN2A/B respectively (Figure 28). The high prevalence of somatic TP53 mutations was 
expected and is already well described for human cancers in literature, although it is usually 
lower in pediatric patients compared to adults. 
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Figure 28: Oncoprint of the somatic samples (n = 364) used in this analysis. Shown here are is the intersection of the genes of 
interest (MSH6, MSH2, MLH1, PMS2, TP53, BRCA1 and BRCA2) and the top 10 genes with the most alterations. In the 
barplots overexpression is represented by golden color. Barplots at the sides show fractions. 

 
7.3.2 Methylation landscape overview 
Before going into the finer details of the analysis results, I present an overview of the cell type 
composition, the influence of the purification process and the differentially methylated probes. 
In Figure 29 I show a summary of the results from the analysis of the germline TP53 mutated 
samples. In panel A is the estimated composition of different cell types in each tumor sample, 
which shows that as expected none of the samples consisted of pure cancer cells based on 
methylation data and EPIDISH estimation, rather they were a mixture of various brain cells, 
immune cells and cancer cells. Cancer cell fractions ranged from 0.03 to 0.9 (mean = 0.45 ± 
0.25) and one sample showed no cancer cells and subsequently was excluded in the analysis 
when I used purified beta values, but kept for the analysis with raw values because I could not 
determine with absolute certainty that there were no tumor cells present. Comparisons of cell 
type fractions of tumor samples between the LFS germline and control cohort while taking into 
account tumor type, revealed significant differences for all investigated cell types except cancer 
cells (Figure 48). Further investigation into the fractions of cell types showed influences from 



 

 54 

certain tumor types or from the interaction term “germline:tumor type” on the fractions. For 
example, ALL and AML types showed a higher fraction of blood cell progenitors and a lower 
fraction of glia cells. The interaction of germline status with HGG pedRTK1 or ATRT SHH 
status showed increased association with basophile cells, maybe a hint at an increased immune 
response. This heterogeneity in non-cancer cell composition and its interaction with germline 
mutation prompted me to purify the methylation values, based on reference methylation profiles 
of immune cells derived from pediatric tumors, using the estimated fractions of immune cells 
[192]. In panel B I show raw methylation beta values compared with the purified methylation 
beta values. The purification was based on the estimation of cell type fractions shown in panel 
A and aimed to obtain only the cancer related methylation signal (methods 6.2.4). The 
histograms on the side of panel B reflect an overall shift in the corrected methylation values 
when comparing non-purified values to purified values. This is visually observed as the peaks 
at the fully methylated and un-methylated ends of the purified beta values that increased in size 
but were shifted away from the maxima and minima and formed wider and slightly less focused 
peaks. The interpretation here was that the cancer related methylation signal had more 
emphasize on beta values closer to the middle than before purification. Beta values closer to 
the middle could mean a mixture of methylated and un-methylated probes which prompted me 
to include the analysis of variable methylation. Panel C and D show the number of differentially 
methylated probes identified with contrasts Ia, Ib, IIa and IIb at different FDR cutoff values. 
Contrast Ib (using purified beta values) returned less differentially enriched probes than its 
counterpart Ia that used raw methylation values, and the same was true about contrasts IIa and 
IIb. However, contrast IIa (raw methylation values) returned more values than Ia, the opposite 
situation could be observed for contrasts Ib (purified methylation values) and IIb. This is clearly 
visible in panel E where the percentages of differentially enriched probes for each of the 4 
contrasts are shown. A lower number of selected methylation probes was expected when 
purified methylation values were analysed since the purification algorithm was used to remove 
all non-cancer methylation signal. This removed the influence of immune cell infiltration, 
which could be highly different between different cancer types or even between different tumors 
of the same type, or other impurities that resulted from the sampling process. Consequently, 
less noise was present so less probes were falsely returned as significantly differentially 
enriched between CPS and non-CPS probes. 
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Figure 29: Overview of results from analysis of samples with TP53 germline mutation. A) Estimation of present fractions in of 
different cell types in the tumor samples. B) Original beta values vs purified beta values based on the estimation of cell type 
fractions. C-D) Number and percentages of significant differentially methylated probes at different FDR cutoffs for contrasts 
Ia, Ib, IIa and IIb. F) Overlap of differentially enriched probes by the different contrasts at FDR < 0.01 G) Overlap of 
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differentially enriched probes from contrasts IIa and IIb at FDR < 0.01 with top 1000 most important probes identified by RF 
method. TT = tumor type, purRF = random forest method with purified methylation values 

Panel F visualizes the overlap of probes identified as differentially enriched between contrasts 
at FDR < 0.01. For the contrasts Ia and Ib, there was substantial (>50%) overlap in identified 
probes while for IIa and IIb the overlap regarding significant probes was more limited. The 
overlap between all contrasts was rather small with only 414 probes compared to the total 
number of probes in contrasts Ia, Ib and IIa but might be explained by the limited number of 
probes identified with contrast IIb which only produced 3175 differentially enriched probes. 
The largest overlap was between contrasts Ia and Ib with ~13000 probes. Looking at contrasts 
IIa and IIb and the probes identified with random forest method (panel G) a different picture 
emerged. Most differentially enriched probes were unique to their method of identification and 
there was no overlap among all 4 methods (contrasts IIa and IIb and random forest on original 
and purified data) shown in this graphic and only 2 probes (located in SEMA4C and GPN3) 
overlapped between both RF methods. The analysis of the MMR samples showed comparable 
results (graphic in appendix). All the tumor samples were estimated to contain a mixture of cells 
very similar to the composition identified for the TP53 samples with cancer cell fraction ranging 
from 0.06 to 0.89 (mean = 0.55 ± 0.27). Although with the MMR samples there was no sample 
with 0 contribution from cancer cells. The comparison of the raw and purified beta values 
revealed a similar behaviour for the MMR samples. The raw beta values had a very similar 
distribution to the TP53 samples, the purified beta values showed peaks that were shifted away 
from the maxima and minima and formed wider peaks, that again hinted at the importance to 
investigate variable methylation. Another explanation for this behaviour might also be inherent 
in the purification algorithm and in particular with the prior distribution (a uniform distribution) 
assumed for the cancer methylation signal. The overall difference in cell type estimation to the 
TP53 samples might be explained by the different identified tumor type composition in these 
cohorts. Regarding the number of probes identified as differentially methylated, the contrasts 
Ia and Ib returned more probes than IIa and IIb, while Ia and IIa returned more probes than their 
respective counterparts using purified methylation values. The absolute numbers of probes was 
comparable to the situation with the TP53 cases but with slightly more overlap between 
contrasts. This might be explained again by less tumor types present in the MMR cohort. For 
the non-type adjusted contrasts Ia and Ib, there were more identified probes shared between 
them (~24000) than were unique to either (Ia ~10000, Ib ~21000). Contrasts IIa and IIb showed 
a similar behaviour compared to the TP53 analysis. The overlap between results by random 
forest method (for both raw and purified values) and contrasts IIa and IIb remained low. 
With this analysis I was able to show that not only was there a very diverse set of tumor 
microenvironment (TME) present in the samples but there was influence of the tumor type on 
the composition of the TME and there also was influence from the interaction of germline status 
with tumor type. Comparison of the germline mutated samples with the control samples 
revealed that there were significant differences in all considered cell types except cancer cells, 
and that the germline mutated samples usually exhibited higher levels of non-cancer cell 
invasion. This prompted me to account for the influence of the different TME by applying a 
purification method. Purely judged on the amount of identified probes, the purification method 
appeared to work as intended because it removed noise that was otherwise falsely identified as 
differentially methylated. Likewise the investigation methods that aimed to remove the 
influence of tumor type appeared to work, again judged purely on the number of identified 
probes. Another important observation here was that the RF methods appeared to be more 
sensitive to the influence of the purification and overall less stable. It is important to note that 
these observations held true for the MMR samples as well.  
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7.3.3 Quantifying the differentiation power 
The applied linear models, linear contrasts built on top of them and random forest permutation 
importance calculations aimed at the identification of a methylation signature specific for TP53 
or MMR germline mutation regardless of tumor type and obtained partially overlapping sets of 
probes with potential clinical application for diagnosis that needed further investigation. Having 
gained a general overview of the results, next I turned towards quantification of how good a 
differentiation between germline and non-germline samples, regardless of tumor type, was 
possible using only the identified differentially methylated probes. For this purpose I used a 
random forest classifier and the raw beta values. I trained the classifier on a subset of samples 
and calculated evaluation metrics on the remaining held out samples not used for training. 
Applying cross validation, I re-calculated the evaluation metrics 3 times and made sure that the 
split into training and test dataset was stratified to ensure that the percentages of germline and 
control classes in each remained the same compared to the complete dataset. This was important 
since the overall dataset was rather unbalanced with few CPS cases compared to non-CPS cases 
in the control set. First, I set a baseline using all available probes resulting in ROCAUC of 0.8 
± 0.07 and PRAUC of 0.59 ± 0.06 for TP53 germline cases. 
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Figure 30: 3x cross validation for differentiation between TP53 vs nonTP53 germline mutated tumors using probes identified 
as differentially enriched by different methods. A – D shown PRAUC and ROCAUC over different thresholds. E – F show AUC 
accuracy over different thresholds. I – L show AUC precision over different thresholds. A,E and I: probes identified by contrast 
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IIa . B,G and K:  probes identified b contrast IIb. C,G and L: probes identified by RF on raw methylation values. D,H and L: 
probes identified by RF on purified methylation values.  

Next, I calculated these metrics, as well as accuracy and precision, using only the probes 
identified by contrasts IIa and IIb at different FDR cutoff values or using the top N probes 
ranked by the permutation importance calculated with raw and purified beta values (Figure 30). 
Across both linear contrast methods of selecting probes (panel A and B), the ROCAUC value 
did not show much movement regardless of FDR cutoff, however an increase was visible in 
panel B above the baseline of 0.8 close to 0.9 compared to panel A were it stayed just around 
0.8. In contrast, when using probes selected by RF permutation importance, the ROCAUC value 
increased before it reached a plateau around 0.8 after selecting the top 250 probes especially 
when raw beta values were used (panel C). In regard to the ROCAUC values, contrasts IIb 
appeared to give the best performance of the 4 methods. However to judge the performance of 
theses probe selection methods the PRAUC value was more informative since this is a “needle 
in a haystack” situation. While for contrast IIa the PRAUC value did not change much, only the 
variance across the different FDR thresholds, contrast IIb showed an increased performance up 
to PRAUC close to 0.7 above baseline with performance dropping of only at higher FDR 
thresholds. The maximum of PRAUC = 0.71 ± 0.05 was achieved at FDR cutoff 0.025 for 
contrast IIb. Turning towards the probes selected by ranking by permutation importance 
calculated from raw beta values (panel C) and purified beta values (panel D), performance as 
measured by PRAUC values started below baseline and improved only with the inclusion of 
more probes but never increased above baseline. Comparing the permutation importance 
methods to contrasts IIa and IIb, they appeared to give worse results when measured by PRAUC 
but comparable results when judged by ROCAUC except for contrast IIb that resulted in better 
performance. To assess accuracy and precision which are two important metrics for clinical 
classification, I also calculated the AUC of these methods. In this case, AUC refers to the area-
under-curve resulting from plotting decision threshold on the x-axis and accuracy or precision 
at a given decision threshold on the y-axis. The accuracy (panels E - H) hardly changed across 
FDR levels for contrasts IIa and IIb and only minimally increased with N for the RF methods. 
Between methods, the linear contrasts performed slightly better than the RF methods as already 
shown with the PRAUC and ROCAUC metrics. The apparent indifference to changing 
thresholds compared to PRAUC and ROCAUC could be explained by the imbalanced nature 
of the dataset where the nonCPS cases far outweigh the CPS cases. The differences in 
performance between methods and applied thresholds again became visible when considering 
the AUC precision (panels I - L). Both RF methods again started with a lower precision and 
increased with N, but never achieved a better performance than the linear contrasts. Between 
contrasts IIa and IIb, IIb achieved a slightly better performance hovering around 0.7 paired with 
a smaller error. Looking at the precision curves themselves revealed that with both set of probes, 
precision above 90% was achievable (data not shown). Overall, the linear contrasts 
outperformed both RF methods and between the contrasts, IIb offerd slightly better 
performance than IIa across all metrics investigated here.  
Running the same evaluation for the MMR samples, a similar behaviour could be observed 
(graphic in appendix). The baseline using all available probes resulted in ROCAUC of 0.97 ± 
0.02 and PRAUC of 0.92 ± 0.04 for MMR germline cases. Both contrasts IIa and IIb gave good 
differentiation performance, especially the most selective FDR cutoff values with contrast IIb 
improved the PRAUC the most, up to 0.99 ± 0.006. The RF methods of probe selection 
interestingly offered decreased performance not only compared to the linear contrasts methods 
but also compared to baseline. The ROCAUC values did not offer much insight, hovering just 
under the theoretical maximum of 1.0 for contrasts IIa and IIb while for the RF methods an 
improvement with the inclusion of more probes was observable. The PRAUC values started 
below the baseline for the RF methods and approached baseline with the increase in cutoff. 
Regarding the AUC accuracy the same trend was visible, with the linear contrasts offering the 
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best performance, especially contrast IIb. The same was true for the AUC precision, especially 
the most restrictive cutoff value for contrast IIb gave the best results. In summary, in this 
investigation the tumor type adjusted linear contrasts offered better differentiation between 
germline mutated cases and control cases for both the TP53 and MMR syndromes compared to 
probes identified by RF methods and improved performance above the baseline. High precision 
values of 90% or better were achievable, a good starting position for further evaluation and 
potential clinical application. The better differentiation was observed with a drastically more 
limited set of probes than the baseline that used all available probes, hinting that the more 
limited selection was indeed a methylation pattern linked to the respective syndromes. In any 
case, further investigation into the selected probes and contextualization for biological 
interpretability was needed for a deeper understanding. 
 
7.3.4 Cancer type specificity 
After picking cutoff values for each of the identification methods with consideration to the 
evaluation metrics, I investigated the qualitative specificity of the identified probes for the 
respective germline mutation across cancer types. For this purpose, I plotted the tumor samples 
with germline mutation and the control tumor cases in a UMAP (methods 6.2.5) plot, using 
only the probes identified by the respective selection methods. In Figure 31, I show UMAP 
plots where I used the probes identified by contrasts IIa, IIb and by ranking via permutational 
importance calculated from raw and purified beta values. In general, there were clusters of 
tumors representing the different tumor types in this analysis, sometimes more distinct (e.g. 
NBL samples cluster tightly together) and sometimes with more fluid borders, for example the 
different sarcoma or HGG types. Using the probes returned by contrast IIa (panel A) there was 
no clear separation of germline mutated cases from their control counterparts without such a 
mutation. However, there were two agglomerations of germline mutated samples, one in the 
vicinity of sarcoma control samples the other near HGG control samples. A similar picture 
emerged when using contrast IIb (panel B). The two agglomerations of germline mutated 
samples were still visible but in contrast to IIa they were at the fringes and not in the middle, 
with a smaller third cluster forming. The larger two still mainly consisted of sarcoma types and 
HGG types, notably the HGG cluster now also included the present SHH medulloblastoma 
samples. Also worth noting, is that the NBL samples that previously clustered away from all 
the other samples, now moved towards the sarcoma dominated cluster so that there no longer 
was such obvious separation. Looking at the probes selected by random forest from raw 
methylation beta values (panel C) a very similar picture to the selection made by contrast IIa 
presented itself. However, there no longer was one sarcoma dominated cluster and one HGG 
dominated cluster, instead only one sarcoma dominated cluster was visible and the HGG cases 
clustered with their respective control samples. The probes selected by random forest from the 
purified methylation values (panel D) resulted in a very similar picture to the RF method on 
raw values. One thing immediately noticeable when comparing the linear model methods with 
the RF methods was that for the RF methods the individual tumor type clusters were more 
preserved while the borders were much more fluid with the linear models. Comparing these 4 
methods of selecting probes, again hinted at the influence of methylation signal from immune 
or other non-cancer cells since the linear contrast using purified beta values exhibited better 
separation. Together with the evaluation metrics discussed above, the contrast IIb appeared to 
achieve the desired results best followed by contrast IIa. 
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Figure 31: Umap plots using tumor samples with TP53 germline mutation and tumor samples from control cohort. A) UMAP 
plot using only significantly differentially methylated probes identified by contrast IIa with cutoff FDR < 0.01. B) UMAP plot 
using only significantly differentially methylated probes identified by contrast IIb with cutoff FDR < 0.01. C) UMAP plot using 
only top 1000 probes ranked by permutation importance calculated with raw beta values. D) UMAP plot using only top 1000 
probes ranked by permutation importance calculated with purified beta values. 
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Of course, one concern with this analysis was that for each tumor type, there were not enough 
samples available, especially germline mutated samples, to accurately infer the methylation 
pattern associated with the syndrome and therefore correct for it. A comparison with contrasts 
Ia and Ib, which did not take tumor type into account, helped to contextualize the problem. In 
the figure below the UMAP plots using only probes selected by contrasts Ia (panel A) and Ib 
(panel B) are shown. If one directly compared contrast Ia to its type adjusted counterpart IIa 
(Figure 31 panel A) one could see that contrast Ia better preserved the individual type clusters 
while with contrast IIa borders between types were more fluid.  

 
Figure 32: Umap plots using tumor samples with TP53 germline mutation and tumor samples from control cohort. A) UMAP 
plot using only significantly differentially methylated probes identified by contrast Ia with cutoff FDR < 0.01. B) UMAP plot 
using only significantly differentially methylated probes identified by contrast Ib with cutoff FDR < 0.01 

The same could be observed when comparing contrast Ib (Figure 32b) to its type adjusted 
counterpart IIb (Figure 31 panel B). The individual tumor types were more clearly organized in 
clusters using contrast Ib while there were more fluid borders using contrast IIb. For both 
contrasts Ia and Ib the germline samples did not form distinct clusters away from all other 
probes, but a tendency to cluster near each other was clearly visible, again with two major 
agglomerations dominated by sarcoma and HGG tumors visible. Overall, the contrasts taking 
into account the tumor type appeared to identify CPS specific methylation patterns as desired, 
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giving insights into the methylation pattern associated with the underlying germline mutation 
regardless of tumor type. The calculation of permutational importance achieved a worse 
performance than linear contrasts and occasionally even below baseline performance set by 
making no selection at all. Further, the RF methods performed worse than linear contrasts with 
the identification of a tumor type agnostic methylation signature, visible by the still present type 
clusters (Figure 31 C and D). As in almost all statistical analysis, more germline samples for 
each of the tumor types in question would lead to higher power of the analysis. Generating the 
same plots for the MMR cohort (graphics in appendix) revealed the same behaviour as observed 
with the TP53 cohort. Using probes identified by contrast IIb resulted in the most distinct cluster 
of germline cases, an observation in line with the calculated metrics, which hinted again at the 
influence TME. The other methods of investigation resulted in less clear clusters of germline 
cases, however the separation was still better than what was achieved in the TP53 cohort. This 
was mainly due to the fewer cancer types present in the MMR cohort. As a general trend, the 
samples with germline mutation investigated here were not drastically different from their 
control counterparts and a tendency to cluster together if only the identified probes were used 
was observed. Further there was no batch effect or other technical artefact that led to false 
results. 
 
7.3.5 Pathway enrichment 
After I investigated the discriminatory power and looked at the specificity for germline 
mutation regardless of tumor type, I further wanted to know about the biological function 
associated with the identified sets of methylation probes. For this purpose, I analysed the 
enrichment in selected DNA damage response (DDR) pathways and gene ontology (GO) 
pathways, taking into account the nature of the CpG probes, specifically that they can map to 
multiple genes. Starting with contrasts Ia and Ib (Figure 33) I analysed pathway enrichment for 
both differentially and variably methylated probes and regions. The first thing to note is that no 
pathways were significantly enriched by the variably methylated probes despite roughly 1400 
probes being identified as significantly variably methylated by contrast Ia and roughly 3700 by 
contrast Ib. This might be a hint that variably methylated probes were not associated with a 
meaningful biological pattern captured by the pathways used here or that the cutoff values were 
not restrictive enough so too much noise was still included. Likewise, the contrasts applied to 
identify significant differences in mean methylation did not lead to enriched pathways at FDR 
< 0.05. Contrast Ia returned roughly 29000 significant probes at FDR < 0.01 and Ib returned 
roughly 18000 at FDR < 0.01. Again, this might be a sign that too much noise was still included. 
I investigated the differentially and variably methylated regions (DMRs and VMRs) within 
these contrasts and contrasts Ia and Ib (panel A and B respectively) both produced significantly 
enriched pathways. For both contrasts, the VMRs lead to enriched pathways in all three GO 
categories (molecular function, cellular composition and biological process), even the number 
of affected genes in these pathways was very similar with 771 for VMR Ia and 410 for VMR 
Ib. However only DMRs from the purified contrast Ib lead to enriched pathways, again across 
all three GO categories, and with significantly more genes affected inside these pathways 
(11458 affected genes). This difference in the set of enriched pathways when looking at regions 
instead of individual probes was the result of different cutoff values used to decide which probes 
are taken into further consideration for identification of regions.  



 

 64 

 
Figure 33: Enrichment of GO paths (FDR < 0.05) for probes and regions identified by contrasts Ia and Ib. The numbers on the 
axes show the amount of differentially methylated genes in the pathways. CC = cellular component pathway, BP = biological 
process pathway, MF = molecular function pathway  

Looking at the enriched pathways directly, not only at the amount and composition, showed a 
trend towards certain functions (Figure 34). The enriched GO terms for VMR identified by 
contrast Ia (panel A) were related to RNAi effector complex, RISC complex, post-
transcriptional gene silencing and translation repressor activity among others. The VMRs 
identified by contrast Ib (panel C) were a subset of the pathways identified by VMR Ia. The 
enriched GO terms from the DMRs identified by contrast Ib (panel B) also included the same 
pathways related to RNAi interference, RISC complex and transcriptional regulation. This 
convergence on similar biological functions with varying degrees of noise was reassuring, 
indicating there was a common biological function being picked up by the contrasts. On top of 
that, effects on pathways related to transcriptional regulation were not unexpected since TP53 
has been previously shown to effect polymerase activity and transcriptional regulation [193]. 
Beyond pathways related to transcriptional regulation, the DMRs Ib also enriched pathways 
related to morphogenesis and embryonic skeletal system development pathways. Two of the 
more known affected genes previously linked to cancer inside the skeletal development 
pathway were FGFR2 and FOXC2 which was linked to metastasis [194, 195].  
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Figure 34: Top significantly enriched GO terms (FDR < 0.05) sorted by FDR. Only top 15 shown in case there were more. 
Color codes the ratio of differentially methylated genes (DE) in a term to the number of total genes (N) in that term. Dotted 
line indicated FDR = 0.05 

The shared set of pathways between the three enrichment analysis for VMR Ia, VMR Ib and 
DMR Ib were pathways related to transcriptional regulation, miRNA and RISC complex. 
Effects of TP53 mutations on posttranscriptional gene expression regulation have been 
identified in previous studies and the important role of certain miRNA coding genes have been 
highlighted [117, 196]. These pathways in particular could indicate that germline TP53 
mutation has an influence in the RNAi pathway steps involving the RISC complex. 
 
Running the enrichment analysis for contrasts IIa, IIb and the RF methods of probe 
identification revealed that the different contrasts and methods caused distinct behaviour 
between them in the enrichment analysis (Figure 35). The first thing to point out is that no 
significantly enriched pathways were identified for contrast IIa variable methylation, none for 
contrast IIa VMRs, none for contrast IIb differentially methylated as well as none for either RF 
method. For contrast IIa differential methylation, significantly enriched pathways exclusively 
from the molecular function category were identified (panel A). For contrast IIa DMR (panel 
C) significantly enriched pathways from molecular function, cellular composition, biological 
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processes and DDR were found, although molecular function and cellular composition clearly 
dominated. For both IIb differential methylation, DMR IIb and VMR IIb only pathways from 
biological processes were identified (panel B and D). 

 
Figure 35: Enrichment of GO paths for different contrasts (FDR < 0.05). The numbers on the axes show the amount of 
differentially methylated genes in the pathways. CC = cellular component pathway, BP = biological process pathway, MF = 
molecular function pathway, DDR = DNA damage response pathway 

Looking at the enriched pathways directly (Figure 36) revealed a slightly different focus 
compared to contrasts Ia and Ib. For contrast IIa, the focus was mainly on pathways involved 
in the energy metabolism of the cell e.g. the ATP binding pathway. The pathways enriched by 
IIa DMR also included energy metabolism related pathways but also DDR specific pathways 
were affected, specifically CPF, NER and BER. Contrasts IIb DMR and IIb VMR enriched 
pathways related to cell-cell adhesion and pathways with functions in plasma membrane cell 
adhesion. 
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Figure 36: Top significantly enriched GO terms (FDR < 0.05)  sorted by FDR. Only top 15 shown in case there were more. 
Color codes the ratio of differentially methylated genes (DE) in a term to the number of total genes (N) in a term. 

Probes identified by contrast IIb variable methylation enriched one pathway involved in the 
regulation of inclusion body formation. Inclusion bodies are aggregations of faulty proteins and 
known to be correlated to inactive or mutated p53 protein [197]. 
While this enrichment analysis yielded some insights, especially for contrasts Ia, Ib and IIa 
DMR, the other methods hardly led to enriched pathways. Just from the number of identified 
probes and regions and the success of these probes in the classification shown above a different 
result was expected. The most interesting identified pathways revolved around RNAi effects, 
RISC complex and DNA damage response and are further discussed in chapter 8. 
 
7.3.6 Network analysis and enrichment 
As alluded to above, despite the often large number of probes identified as significantly 
differentially or variably methylated across all contrasts, the number of significantly enriched 
pathways identified with them was lower than expected. I hypothesised that this was mostly 
due to noise carried over from the differential methylation analysis that subsequently disturbed 
the enrichment analysis. To obtain a clearer picture of the processes associated with the 
identified probes and to gain more undisturbed insights into the biology behind the identified 
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probes from each contrast I applied network analysis methods followed by additional 
enrichment analysis. The rationale behind this was to obtain clusters of probes that correlated 
regarding their methylation pattern. These clusters should be larger and more pure in function 
with less noise, ideally leading to a more insightful enrichment analysis. As a first step, I 
extracted the top 10% of probes with the highest variance in methylation signal. These were 
combined with the probes identified by each method which resulted in three datasets: top 10% 
of probes plus probes identified by contrasts Ia and Ib (networkd dataset 1, ND1), top 10% of 
probes plus probes identified by contrasts IIa and IIb (ND2) and top 10% of probes plus probes 
identified by RF method on raw and purified methylation values (ND3). Next, I processed these 
three datasets with WGCNA and GRAPH method to identify clusters of correlated probes. For 
each of these identified clusters of correlated probes I ran pathway enrichment analysis, 
correlation analysis with traits of interest and tested for significant contribution of probes 
identified via contrasts or RF to the clusters. Traits of interest in this context meant gender (male 
or female), disease status (primary, progression or relapse), sarcoma (SA) or non-sarcoma 
(NSA) and PCA cluster (Cluster1 or Cluster2). PCA clusters refers to the two cluster detected 
via PCA coupled with KNN clustering ran on the same germline tumor data used for the UMAP 
plots above (PCA not shown), which I hypothesized were a proxy for sarcoma and non-sarcoma 
status. The results are shown in the following 3 graphics. First, Figure 37 shows the analysis of 
top 10% of probes plus probes identified by contrasts Ia and Ib. Overall WGCNA detected more 
clusters than GRAPH, which was true for the analysis of all three datasets mentioned above 
(ND1, ND2 and ND3), indicating that WGCNA was able to achieve a finer resolution. From 
the clusters identified by WGCNA, 15 showed significant enrichment with probes identified by 
contrasts Ia and Ib while only two clusters identified by GRAPH were significantly enriched. 
Interestingly, not every cluster that was significantly enriched showed significant correlation 
with a trait of interest and vice versa, an observation that held true for the network analysis of 
IIa and IIb as well as RF methods. For example, clusters MElightgreen and MEsalmon were 
significantly enriched but showed only weak correlation let alone significant correlation with 
any trait. In contrast, MEgreen was not significantly enriched but showed strong and significant 
correlation with the sarcoma (SA) and nonsarcoma (NSA) trait and their associated clusters 
found in PCA (Cluster1 and Cluster2). 
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Figure 37: Results from network analysis with WGCNA (A) and GRAPH (B) for probes identified with contrasts Ia and Ib 
pooled with top 10% most variably methylated probes. The heatmap shows pearson correlation coefficients with each column 
a trait of interest. * inside a cell indicates significant correlation with FDR < 0.05. Row annotation “significant” indicates if 
an identified module is significantly enriched with probes identified by contrast Ia or Ib. Row annotation numbers show how 
many probes are in a given module and how many of those were identified with contrast Ia or Ib. 

There were also those clusters that were significantly enriched with probes and also exhibited 
significant correlation with a trait of interest, for example ME1 (Figure 37b). The general trend 
for both WGCNA and GRAPH analysis was that most significant correlations were related to 
the SA and NSA traits and their associated PCA clusters. This observation was in line with 
previous observations made during tumor type classification based on methylation, which 
resulted in a dedicated sarcoma classifier next to a brain classifier 
(www.molecularneuropathology.org). Focusing on the clusters significantly enriched with 
probes identified by Ia and Ib that resulted in significantly enriched pathways (FDR < 0.05), 
MEbrown, MEdarkred and MEmidnightblue, the identified pathways were associated with 
different processes. MEbrown, which was significantly correlated with traits Cluster1 and 
Cluster2, enriched pathways associated with ATP and nucleotide binding as well as catalytic 
activity acting on nucleic acid. MEdarkred enriched pathways with functions in nucleotide 
metabolic processes. MEmidnightblue, which was significantly correlated with the SA and NSA 
trait, enriched pathways related to embryonic skeletal development, morphogenesis as well as 
polymerase transcription regulation already known from analysis on contrasts Ia and Ib without 
network analysis shown above. The clusters not significantly enriched with probes were 
associated with various function like transcriptional regulation and chromatin organisation 
(MEblack, MEblue, MEgrey60), cytoskeletal function (MEcyan), nucleosome organization 
(MEorange), embryonic skeletal development and morphogenesis (MEsaddlebrown) as well as 
dendritic tree functions (MEyellow). 
 

http://www.molecularneuropathology.org/
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An association with the SA and NSA traits and their associated PCA clusters was also visible 
from the analysis of contrasts IIa and IIb, underlining previous findings. In Figure 38, there is 
one cluster identified by WGCNA (panel A) which exhibited a correlation with the progression 
trait and was significantly enriched with probes identified by IIa and IIb, MEplum1, which 
unfortunately did not significantly enrich any pathways. In contrast, the clusters identified with 
GRAPH only exhibited correlation with SA or NSA and their respective PCA clusters. In total 
31 clusters identified by WGCNA and 2 by GRAPH showed significant enrichment with probes 
identified by contrasts IIa and IIb.  

 
Figure 38: Results from network analysis with WGCNA (A) and GRAPH (B) for probes identified with contrasts IIa and IIb 
pooled with top 10% most variably methylated probes. The heatmap shows pearson correlation coefficients with each column 
a trait of interest. * inside a cell indicates significant correlation with FDR < 0.05. Row annotation “significant” indicates if 
an identified module is significantly enriched with probes identified by contrast IIa or IIb. Row annotation numbers show how 
many probes are in a given module and how many of those were identified with contrast IIa or IIb. 

Focusing on the clusters from WGCNA which were significantly enriched by probes and lead 
to enriched pathways, MEgreen, MElightgreen, MEpink and MEsalmon, again each cluster was 
associated with different functions. MEgreen was associated with functions related to 
chromosomal organization, cellular response to DNA damage, mitotic cell cycle and mRNA 
processes. MElightgreen was associated with extracellular matrix structure while MEpink was 
associated with protein modification. Finally, MEsalmon was also associated with cellular 
response to DNA damage, regulation of cell cycle and DNA repair. The clusters which lead to 
pathway enrichment that were not enriched in probes identified by IIa and IIb were associated 
with function in transcriptional regulation and chromatin organization (MEbrown, 
MEgreenyellow), embryonic skeletal development and morphogenesis (MEgreenyellow), 
DNA packaging and nucleosome organization (MEviolet) or immune response (MEyellow). 
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Finally turning towards the network and enrichment analysis of probes identified by RF 
methods (Figure 39), WGCNA (panel A) identified 4 clusters significantly enriched with probes 
and GRAPH (panel B) identified only one cluster. 
 

 
Figure 39: Results from network analysis with WGCNA (A) and GRAPH (B) for probes identified with contrasts RF on original 
and purified methylation values pooled with top 10% most variably methylated probes. The heatmap shows pearson correlation 
coefficients with each column a trait of interest. * inside a cell indicates significant correlation with FDR < 0.05. Row 
annotation “significant” indicates if an identified module is significantly enriched with probes identified by RF method Row 
annotation numbers show how many probes are in a given module and how many of those were identified with RF method. 

Of the clusters enriched with probes, none lead to significant enrichment in pathways. However 
multiple other clusters did produce enriched pathways already known from network analysis of 
the linear contrasts. Some pathways were associated with transcriptional regulation and 
chromatin organization (MEblue, MEred, ME4, ME5), embryonic skeletal development and 
morphogenesis (ME4), RNAi and RISC complex (ME13) or DNA packaging and telomere 
organization (MEmidnightblue). Interestingly one cluster, MEgreen, was significantly 
correlated with the primary trait, but unfortunately no significantly enriched pathways were 
identified for this cluster. Further details on the enriched pathways are given in the supplements.  
While looking at all the clusters and their associated enriched pathways gave a good oversight, 
I further focused on clusters identified by WGCNA used on ND1 and ND2 because the linear 
contrasts outperformed the RF methods as shown above and because they showed more 
agreement among each other regarding identified probes than the RF methods. In particular I 
was interested in clusters that were enriched with identified probes from their respective 
contrasts. From ND1 that were the clusters MEbrown, MEmidnightblue and MEdarkred, all 
other enriched clusters unfortunately did not lead to enriched pathways. From each cluster I 
selected the top 10 enriched pathways (sorted by FDR) and inside each pathway I selected the 
top 10 affected genes (sorted by FDR of the matching methylation probes) and used this data 
for a network plot (Figure 50). Cluster MEmidnightblue revolved around embryonic skeletal 
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development, RNA polymerase II regulation or more general cell differentiation functions. Of 
the affected genes inside each pathway HOXA3 was ranked first for all pathways. Other HOX 
genes were also affected as well as RUNX3, a development regulator gene, involved in cell 
cycle regulation among other things that was previously associated with metastasis and MYC 
interaction [198-200]. For network cluster MEdarkred, pathways related to the turnover of 
polyphosphates were enriched. Specifically the two paralogs NUDT4 and NUDT4B were 
affected, that were proposed to be involved in signal transduction [201, 202]. Network cluster 
MEbrown revolved around nucleotide binding, ATP binding and catalytic activity. KSR1, a 
kinase involved in downstream signalling of RAS and positive regulation of MAPK cascade, 
was ranked first for three pathways [203, 204]. Another gene present in three pathways was 
EIF4A3, a helicase which is involved in RNA processing via the spliceosome and has been 
linked to glioblastoma growth in adults [205, 206]. These three clusters did not share any 
enriched pathway nor gene. One reason for this could be that MEbrown and MEmidnightblue 
were significantly associated with the NSA/SA trait or the Cluster1/Cluster2 trait, which could 
mean they were be more linked to tumor type than germline TP53 mutation. The same network 
plot for WGCNA analysis of ND2 revealed more shared pathways and genes among MEpink, 
MEsalmon, MElightgreen and MEgreen. Cluster MEpink lead to two enriched pathways with 
function in protein modification by protein conjugation. The two genes ranked first and second 
for both pathways were UNKL, which was suspected to be involved in Rac signalling, and 
AMBRA1 which regulates autophagy, is involved in cell cycle control and acts as tumor 
suppressor [207-212]. Another interesting gene in this cluster was HDAC4, which codes a 
histone deactetylase, with HDACs recently being investigated as drug targets in pediatric brain 
cancer [176]. Network cluster MElightgreen enriched three pathways involved in extracullular 
matrix components. Most prominently in all pathways were genes TNXB and LAMA2, which 
were ranked first and second respectively, involved in signalling and organization of cells 
during embryonic development. MEsalmon mainly enriched pathways with function in cell 
cycle control, response to DNA damage and DNA repair. Genes ranked first place for multiple 
pathways were RPTOR and EP400. RPTOR is a vital component of the mTOR pathway that 
regulates cell growth and that has been linked to emergence of cancer [213-215]. EP400 codes 
for a member of an acetyltransferase complex and an important paralog is SMARCA4, which 
was also ranked in the top 10 for each pathways where EP400 was ranked first [216]. Further 
functions of EP400 include cell cycle regulation and DNA repair [217-219]. Another pair of 
paralogs that appeared in the top 10 affected genes were EHMT2 and EHMT1. These two 
histone methyltransferase coding genes play a critical role in methylation status of histone H3 
and interact with HDACs [220]. Another identified differentially methylated gene, directly 
linked to the p53 pathway and other cell cycle regulation functions, was E4F1 [221]. Lastly, 
MEgreen also enriched pathways with function in cell cycle control and response to DNA 
damage but also pathways involved in chromosomal organization and mRNA metabolic 
processes. Some genes already described in the context of other network clusters also occured 
here for example RPTOR, HDAC4 and EHMT2. Other genes included FOXO1, a transcription 
factor that has been linked to tumor growth, DDB1, part of a DNA binding complex involved 
in nucleotide excision repair, or TNKS1BP1, a member of the PARP superfamily involved in 
double-strand break repair [222-224]. Looking at the shared enriched pathways and genes 
between the 4 clusters (Figure 51) revealed a focus on mitotic cell cycle pathway and cellular 
response to DNA damage pathway shared between MEgreen and MEsalmon. Genes shared 
between MEgreen and MEsalmon included DEAD/DEAH-box helicases and 
methyltransferases such as RUVBL1, PPP2R2D, RPTOR, TFIP11, DHX30 and EHMT2. 
Between MEgreen and MEpink no pathways were shared but two genes: TADA2B and 
UBE2D4. TADA2B and its paralog TADA2A have previously been reported to influence p53 
stability and facilitate apoptosis as response to DNA damage [225]. Likewise UBE2D4 and its 
paralog UBE2D2 are known to be involved in regulation of p53 via ubiquitination [226]. Of 
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note was HDAC4, which was shared between MEgreen, MEsalmon and MEpink. 
MElightgreen, focused on extracellular functions, did not show overlap with the other three 
clusters. 
The enrichment analysis without previous network analysis demonstrated a link to RNAi related 
pathways as well as DNA damage repair pathways and other functions. However not all 
contrasts led to enriched pathways, let alone to a comparable number of enriched pathways if 
they did. Especially the discrepancy between which investigation methods led to good 
classification performance and which investigation method led to enriched pathways was 
interesting. While one could speculate this was due to the differential methylation analysis 
identifying mainly random noise that happened to lead to good classification power in this 
dataset I hypothesized that additional filtering was needed. With the applied network analysis 
methods and subsequent enrichment analysis of the network clusters I was able to identify 
biological functions mainly related to transcriptional regulation, cell cycle control, 
chromosomal organization or response to DNA damage. In particular the network plot derived 
from WGCNA analysis of ND2 revealed a focus on cellular response to DNA damage and 
mitotic cell cycle control. The affected genes linked to this function included pairs of paralogs 
and focused on a few shared genes. Especially HDAC4 was shared among most clusters in the 
analysis. 
 
7.3.7 Validation 
Finally, after having quantified the power of differentiation offered by the identified probes via 
cross validation above, I further tested the performance with two additional datasets. One 
dataset consisted of in-house tumor samples from patients with somatic mutations in TP53 
(somatic dataset), the other was prepared from the methylation data generated from liquid 
biopsy samples collected from Li-Fraumeni patients by Subasri et al. (Subasri dataset) [118]. 
When applying the classification process to the somatic dataset, the desired behaviour was that 
none of the somatic TP53 mutated samples would be classified as germline TP53 mutated, so 
the correct prediction would be negative. To measure this behaviour, I calculated the negative 
predictive value, which could be interpreted as precision for negative predictions. In Figure 40, 
I show the AUC negative predictive values across multiple thresholds for contrasts IIa and IIb 
(panel A and B) and both RF methods (panel C and D). Across all methods and thresholds, the 
negative predictive value was very high, around 0.95, and close to the theoretical maximum of 
1.0. For both tumor type adjusted contrasts IIa and IIb the negative predictive value hardly 
changed across thresholds and contrast IIb obtained slightly higher values than IIa. This 
indicated that false positive predictions for germline mutated TP53 cases were unlikely even 
for very selective thresholds. For the RF methods, one could observe a slight increase in 
performance with the inclusion of additional probes and a minimally worse performance 
compared to contrast IIb. This demonstrated a classification behaviour exactly as desired, which 
would be important for possible future application in a clinical setting. 
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Figure 40: Validation for differentiation between TP53 vs nonTP53 germline mutated tumors using probes identified as 
differentially enriched by different methods on somatic validation cohort. 

Next, I moved on to test the ability to correctly classify samples from germline mutated TP53 
patients that were not in the original discovery dataset. Although the cross validation gave a 
first insight into this with encouraging results as shown above, I wanted to further test the 
performance with external data. The Subasri dataset offered a unique opportunity in this regard. 
Although these results have to be interpreted with care since not only were the Subasri samples 
processed with a different protocol than the discovery dataset, they were also derived from 
blood samples in contrast to the tissue samples available in the discovery cohort. Another issue 
with the Subasri dataset in the context of this investigation was its cell type composition which 
was vastly different from the samples in the discovery cohort. As shown in the supplements 
(Figure 49) they mainly were made of neutrophil type cells, CD8 T-cells and B-cells. Only two 
samples were estimated to contain any cancer cells at all. Nevertheless, in Figure 41 I show the 
validation metrics, using the Subasri cohort for testing, across multiple thresholds for contrasts 
IIa, IIb and both RF methods. 
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Figure 41: Validation for differentiation between TP53 vs nonTP53 germline mutated tumors using probes identified as 
differentially enriched by different methods on external validation cohort. A – D shown PRAUC and ROCAUC over different 
thresholds. E – F show AUC accuracy over different thresholds. I – L show AUC precision over different thresholds. 

The ROCAUC value was the highest for contrast IIa and both RF methods, hovering around or 
just above 0.75, while for contrast IIb it started at slightly above 0.5 before it dipped and then 
increased again with less restrictive thresholds. While with contrast IIa the ROCAUC did not 
exhibit major changes, with the RF methods there appeared to be more instability, with sudden 
spikes in performance at certain thresholds. Also noteworthy was the fact that for RF method 
on purified methylation values (panel D) the performance appeared to decrease with less 
restrictive thresholds. The PRAUC value behaved similar for both RF methods, it indicated 
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spikes in performance and decreased with less restrictive values. Among the linear contrasts, 
contrast IIa came out on top with a maximum PRAUC value of 0.25, while IIb hovered around 
0.15 across thresholds. Looking at the AUC precision both RF methods showed the same 
behaviour as with the PRAUC and ROCAUC values, indicating spikes in performance at 
seemingly arbitrary values, although this time spikes appeared at the same values for N for both 
methods. Among the contrasts, IIa lead to the highest AUC precision values at 0.32 for the most 
restrictive FDR cutoff. In general, while encouraging, the performance for testing with the 
Subasri dataset was not as good as the cross validation but that was expected. Ultimately, if the 
decrease in performance came from the different type of sample (tumor tissue vs liquid biopsy) 
or the different processing, that could not be fully corrected via the applied batch effect 
correction methods, or a mixture of both remained unclear. 
Next to testing with these two validation cohorts, I compared the probes and regions identified 
in this study with previous results of studies that investigated the methylation landscape of LFS 
patients. Wong et al. investigated a liquid biopsy cohort containing a mixture of adult and 
pediatric Li-Fraumeni patients and identified one methylation signature derived from 
differential methylation analysis of LFS patients (LFS-signature) and one pan-cancer signature 
by mapping probes they identified as hypermethylated onto a cancer marker set described by 
Vrba et al. (pan-cancer-signature) [122, 123]. It must be noted that I could only identify overlaps 
with either signature with probes or regions identified by contrasts Ia DMR, Ib DMR, IIa DMR, 
Ia, Ib, IIa and both RF on raw and purified methylation values. The most overlaps were 
identified for Ia DMR with 53 overlaps (29 from the LFS-signature and 24 from the pan-cancer-
signature, notation 29:24) followed by DMR IIa (32:13) and DMR Ib (22:19) with 45 and 41 
overlaps respectively. Contrasts Ia, IIa and Ib had 19 (16:3), 18 (13:5) and 10 (10:0) overlaps 
respectively while both RF methods had 3 overlaps (3:0 for both). Of the 18 overlaps from 
contrast IIa, 7 were labelled as promoter associated and linked to genes KLF3, PIK3R5, TPM4 
and CDK5R1 among others. The overlaps from DMR IIa included 406 unique methylation 
probes, 165 of which were promoter associated while the rest was labelled as unclassified or 
had no label. The affected genes include PIK3R5 again as well as HOXA1. Overlap of the probes 
and regions identified in this study with the regions identified by Wong et al. was encouraging 
given that they analysed liquid biopsy samples. At the same time, the limited overlap was also 
expected because Wong et al. investigated a cohort made of 26 pediatric individuals mixed with 
63 adult individuals representing a different set of tumor types than in this study and the samples 
were liquid biopsy. Testing the pan-cancer signature reported by Wong et al. for classification 
on the discovery cohort resulted in evaluation metrics that described performance below what 
was achieved with the signatures presented in this study (ROCAUC = 0.74 ± 0.06, PRAUC = 
0.43 ± 0.01). The results presented in this study can be interpreted as a refinement of an LFS 
specific methylation signature towards pediatric cancer patients without the preselection bias 
introduced by considering only probes described by Vrba et al. The focus of the enrichment 
analysis on functions related to cell cycle control, RNAi, transcriptional regulation or the RISC 
complex went beyond the LFS signature described by Wong et al. Additionally, here I presented 
methylation patterns specific for MMR, but unfortunately comparisons to external cohorts were 
not possible in the same fashion as with the LFS specific patterns because knowledge is 
currently much more limited. 
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8 Discussion 
Pediatric cancer is a complex disease and remains one of the leading causes of death worldwide 
in patients aged 1 – 19. Since 1975, the average survival rate for pediatric cancer has risen by 
50%. In recent years, major sequencing and precision oncology programs were launched and 
aggregated unprecedented amounts of data giving detailed insights into pediatric cancer at 
multiple omics levels. Despite the major resource investments, the beneficial effects for patients 
through such programs were mixed. Thus, there still is need for more investigations regarding 
treatment and diagnosis. 
 
Prediction of synthetic lethality in pedHGG K27M 
Treatment of BRCA1/2 deficient cancers with PARP1 inhibitors, leveraging the synthetic 
lethality interaction between these genes, resulted in clinically relevant improvements of 
progression free survival e.g. for ovarian and breast cancer [227]. Despite the great interest, 
discovery of gene pairs with synthetically lethal interaction is very challenging and resource 
consuming even with high-throughput methods because of the sheer size of the combinatorial 
space that needs to be covered while simultaneously taking into account the genetic background 
of a given tumor type. Advancements in in-silico prediction methods for SL interactions to 
narrow down the scope of investigation have gained popularity over the last years. In the first 
part of this study, I presented a computational approach for the prediction of interacting pairs 
of genes exhibiting synthetic lethality.  
 
The first challenge faced was the integration of heterogeneous data sources. While non-trivial, 
integration of multiple information layers derived from omics data, interaction databases and 
other sources is highly needed since synthetic lethality is a very complex phenomenon and one 
needs to interrogate multiple data sources to capture a complete picture [228]. From a purely 
technical standpoint biological data arrives in multiple formats but can almost always be 
represented in a matrix format. The matrix format has several advantages: it easily allows to 
describe relations between entities (in the SL context two genes), it is directly accessible and 
interpretable for manual inspection, it is easily interpreted in other contexts (e.g. as graph 
adjacency matrix). One strength of the described method was that it used exclusively matrices 
as input, a useful feature as already pointed out earlier [53]. Other published models for 
predicting SL interaction need more complex input for example: a genome-scale model of 
metabolism and an objective function for IDLE, a systems biology markup language model of 
an organism for Fast-SL, LINCS L1000 expression profiles for EXP2SL or a SL graph for 
DDGCN, making it much harder for researchers to prepare custom datasets or use additional 
data to be used with those models [65, 229-231]. Another advantage of using exclusively 
matrices as input was that any additional data that may be available to researches could be easily 
integrated. Concerning the actual data sources, there is no consensus currently on what data is 
needed to sufficiently describe SL interaction. In general the rational was to use data sources 
that have a causal connection to synthetic lethality phenomenon, analog to efforts in protein-
protein-interaction predictions [232]. Some approaches use exclusively protein sequences, 
exclusively information on SL interaction, GO and KEGG pathways or a mixture of omics-data 
[65, 233-235]. Another strength of my method was the integration of omics-data as well as 
publicly available data, which brought advantages discussed in more detail below. Another 
advantage of the selected set of omics-data from which the input was prepared was that they 
are widely used in large scale sequencing projects, resulting in a very large pool of potential 
input data. While more specialized input for example LINCS L1000 expression profiles could 
offer more performance, generating this kind of data is more complex and often not part of 
sequencing or precision oncology programs [23, 231, 236].  
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As hinted at earlier, machine learning techniques were favorable for the available data (see 
Wang et al. for a review) because of size limitations of the data and because of their ability to 
integrate multiple data sources without much upfront expertise needed [237]. At first glance, 
my application of CMFW, previously reported to produce robust results, appeared to confirm 
these reports [53]. As indicated by multiple metrics, the performance was decent and it reacted 
as expected to hyperparameter tuning. However, further investigations into the influence of 
input data composition on performance led to doubts about the suitability of CMFW in this 
study. Further probing the connection of input data with performance via a shuffle test 
confirmed my suspicions about CMFW not being able to capture a connection between the 
available input data and training data. This result stands in contrast to the original publication 
by Liany et al. where CMFW achieved good performance [53]. However they did not perform 
a shuffle test. Overall the presented results should not be interpreted as proof that CMFW is 
unsuitable for SL predictions in general, just that it did not perform well with this dataset, 
highlighting the need to carefully evaluate the chosen ML model when making SL predictions. 
Why CMFW failed in this study did not become clear. 
 
Afterwards I pursued other methods for this analysis and in contrast to CMFW, I was able to 
show that my method captured a connection between the input data and the training data. The 
ability to capture a connection between input data and training data with my approach was 
demonstrated via shuffle tests and downsample tests. In separate tests, I was able to show that 
my strategy of processing data with graphs for feature generation improved the performance 
above what was achievable with the unprocessed data. Further, I compared the performance of 
three ML classifiers and was able to confirm that the random forest classifier delivered the most 
robust performance for the datasets in this study, in good agreement with previous results [63, 
174, 175]. This suggested that a random forest classifier has the potential for more general 
application to other datasets for prediction of SL interaction. However this statement has to be 
taken with a slight caveat because it is not clear, from this study or literature, if the good 
performance of random forests is because such algorithms are good in general with tabular data 
or if there is an aspect making them uniquely suitable for SL prediction [238]. One strength of 
the data preparation technique presented here was the usage of both context-specific (derived 
from omics data) and context-free (derived from pathways, databases etc.) features. This 
improved the robustness against selection bias in the training data [175]. Another strength was 
the usage of context-specific features derived from topology while the prediction model was 
feature based. Feature based models are less influenced by selection bias but topology based 
models are top performers across multiple metrics [174, 175]. This observation might also be a 
hint at why CMFW failed, because that is a topology based model. 
 
Finally I applied my approach, which was not limited to predictions on a subset of genes in 
contrast to methods like CMFW, to a dedicated dataset I curated from multi-omics data of 
pedHGG patients. I presented in this study the first prediction of SL pairs for pediatric high-
grade glioma using a cohort of 149 patients to generate the input data that was integrated with 
other context-free data. In particular, I made predictions based on data derived from a cohort 
containing only K27M type (n = 70) and predictions based on data derived from nonK27M 
types (n = 79). This focus on pediatric cancer was another unique feature of the presented 
results. Because large sequencing projects and other online databases mainly focus on adults, 
consequently a lot of the SL prediction literature which leverages this data also focuses on adults 
[237, 239]. Noteworthy about the made predictions was the overlap between those based on the 
K27M and nonK27M datasets. The same set of genes were predicted for both datasets, although 
the predicted interaction among them appeared in slightly different combinations for both 
datasets. This could indicate a smaller influence of selection bias, as application to multiple 
datasets was a suggested method to estimate this [174]. Overall, the amount of positive SL 
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predictions was small with only 98 pairs in total, which was both expected and desired because 
the goal was to limit the scope of a potential downstream investigation and because SL 
interaction is a rare phenomenon anyway. This overlap may also indicate that the input data was 
not sufficient for the classifier to pick up the biological differences present. Another 
interpretation could be that while there are molecular differences between pedHGG types 
important for diagnostic and treatment purposes, they do not influence the present SL 
interactions. Whether the problem lies primarily with the input training data that was not 
specific enough for HGG or with the patient derived omics data remains unclear.   
Investigating the made predictions with gene set enrichment of GO terms showed that the 
involved genes mainly had functions related to the mitochondrion, the Golgi apparatus or cell 
membrane functions. Further filtering of the made predictions resulted in 55 unique genes 
predicted to interact in various ways. Taking into account the hallmarks of cancer, especially 
the characteristic that cancer cells deregulate their energy metabolism, might make it 
worthwhile to further investigate the predictions related to the mitochondrion. However it must 
be admitted that despite taking measures to prevent too much selection bias, among the 
predictions there were most likely false positives. To name one example that might be 
interesting to follow up on with low-throughput experiments is the predicted SL interaction 
between HARS1 and HDAC3. The potential benefit of follow up experiments regarding the 
HARS1-HDAC3 interaction would be that there is ongoing investigation into the therapeutic 
potential of HDAC inhibitors in pediatric brain cancer with special attention to K27M mutated 
DIPGs, making a potential SL partner to one HDAC gene an interesting target for combination 
treatment [176]. Next to this pair, multiple other predicted SL pairs included genes for which 
drugs are available, including aldehyde dehydrogenase inhibitors, MAO inhibitors, HDAC 
inhibitors and BAP1 inhibitors, making such pairs also interesting for further investigation. 
Overall, these predictions may serve as guidance for future research investigating SL 
interactions specific for pedHGG.  
 
As already alluded to, a general problem with this study was that I trained this classifier on an 
imperfect set of known SL interaction pairs likely to contain both false positives and false 
negatives. Further, these SL pairs were not specific for pediatric HGG tumors. Unfortunately, 
today there is no feasible alternative to using this dataset since there are few confirmed SL 
interactions available and the evidence for the absence of SL interaction is lacking as well. 
Likewise the omics data and features engineered from it used in this study were a reflection of 
current trends in this research area and don’t represent a definitive set of data and features 
needed to describe synthetic lethality. 
One of the biggest challenges when predicting synthetic lethality was how to account for the 
context specificity of the interactions, which in this study was done by using data derived from 
patients diagnosed with the tumor in question and comparing it to results produced from data 
of closely related tumors.  
Another point towards preparation of known SL pairs for training purposes is that while there 
is overlap in identified SL pairs across studies, most SL pairs appear to be specific to the study 
they were identified in. A harmonized analysis method across studies could improve the 
situation and lead to better training data. Interesting in this context is a publication by Zhao et 
al., which described sets of 100-300 genes where interrogation via CRISPR enables loss-of-
function prediction across 18000 genes with only minor information loss [240]. This not only 
suggested that cell line specificity of SL interactions is describable by measuring a very limited 
set of features, but that it can also be leveraged to make predictions. Integrating such cell line 
characterization with a prediction model for synthetic lethality in a two-branch model, similar 
to what is already known from drug response prediction models, could lead to further 
refinement of SL predictions [241]. Overall this study presented an easily extendible, 
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performant and widely applicable method for SL predictions and the first prediction of potential 
SL pairs for pedHGG patients that might guide future research.   
 
 
Mutational signatures in DADDR patients 
Mutational signatures, as a proxy for underlying mutational processes, can be used as a 
biomarker. A prominent example would be the detection of HR deficiency via the HRDetect 
tool [98]. However, biomarkers identified for adult cancer cannot be used with pediatric patients 
without further investigation and validation because of the different characteristics of pediatric 
cancer [6, 100]. Consequently, there is a need for dedicated investigation into potential 
biomarkers specific for pediatric cancer. To extend the knowledge of mutational processes 
related to cancer predisposition syndromes and possibly identify potential biomarkers, an 
investigation into the association of mutational signatures with CPS syndromes is needed. 
Gröbner et al. and Thatikonda et al. described the mutational signature landscape for different 
types of pediatric cancer [100, 145]. Both these studies noted the importance of CPS in the 
context of pediatric cancer and hinted at the differences these CPS samples exhibited with 
regard to mutational signatures. While Gröbner et al. worked with the older COSMIC v2 
signatures, Thatikonda et al. already used the latest COSMIC v3 signatures and identified a 
higher contribution of SBS2 and SBS13 to samples with germline TP53 mutation compared to 
wildtype samples. In this study, I presented a dedicated investigation into the mutational 
processes that are active in DADDR patients and identified mutational signatures that showed 
significant differences in their activity in these patients. 
 
Investigations into the amount of mutations, both in the SBS96 and ID83 context and their 
distribution revealed the expected behavior across samples with a Pearson correlation 
coefficient at R = 0.87 and a p-value < 0.05. A high correlation between SBS and ID mutations 
was expected since a higher overall mutational burden leads to both types of mutations, 
indicating that the processing and downstream mutation calling did not introduce artefacts or 
miss present mutations [145]. Looking at the individual samples, some exhibited a 
hypermutator behaviour (> 10 mutations/MB) and some even ultramutator behaviour (>100 
mutations/MB). In line with previous results, the ultra- and hypermutator samples were mainly 
associated with the MMR CPS [242-245].  
 
Proceeding with the evaluation of assigned signatures by SigProfiler and SIGNAL showed 
some similarities between the two methods but also disagreement. As expected the clock-like 
mutational signatures SBS1 and SBS5 were most abundant. Another prominent signature was 
SBS40, which contributed to 38 % of samples when analysed with SigProfiler but was not 
assigned at all when analysed with SIGNAL. Instead, SIGNAL probably made false 
assignments of SBS3, a behavior that has already been discussed previously for pediatric cancer 
[100, 145]. Overall SIGNAL appeared to be less sensitive compared to SigProfiler which I 
hypothesized was due to the inherent differences in the algorithm, as suggested by previous 
evaluations [148]. For various signatures I was able to confirm a correlation with age among 
them SBS40 as described previously [145]. Very recently, SBS40 was proposed to be split into 
three separate signatures, SBS40a, SBS40b and SBS40c [246]. A subsequent study on lung 
cancer in non-smokers identified SBS40a to contribute to the majority of analyzed 
adenocarcinoma samples, which often carried TP53 driver mutations [247]. This observation 
could be a hint that the mutational process resulting in assignment of SBS40 (or its variations) 
is linked to TP53 mutation status although further research is needed. Some additional 
signatures I was able to identify with SigProfiler were linked to HR and NER deficiency or 
APOBEC activity like SBS8 or SBS2 and SBS13 respectively, which was reported previously 
[145]. While some of the TP53 mutated samples exhibited SBS2 and SBS13 activity, in line 
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with previous results linking TP53 and APOBEC activity, not all of them did [182, 183]. A 
previously suspected tissues specificity of signatures SBS2 and SBS13 appeared more likely 
with the presented results in mind although a link to the small intestine as suggested by Wang 
et al. could not be made [145, 248]. Signatures specific to MMR CPS samples, SBS14, SBS15, 
SBS20, SBS21, SBS23 and SBS44 were identified as well, appearing exclusively in such 
samples, as was expected [87, 187]. Correlation analysis of the signatures revealed two clusters 
of MMR signatures, which I hypothesized were due to the different underlying mutated genes. 
Among the genes inside the MMR subgroup (MSH2, MSH6, MLH1, PMS2), I was able to 
identify significant differences between the PMS2 germline mutated samples and all other 
MMR samples regarding assignment of signatures SBS14 and SBS20 as well as other 
signatures usually suspected to be clock-like. Different mutational patterns resulting from 
PMS2 mutation were described earlier and could potentially be leveraged for pediatric patients 
as well, comparable to the MMRdetect tool [185, 186]. However the identified differences 
inside the MMR subgroup have to be treated with care because of the very limited set of 
patients. The correlation analysis revealed another cluster of correlating signatures. Specifically 
SBS39, which has unknown aetiology, correlated with signatures linked to DNA repair 
function. Currently SBS39 is most often identified in breast cancer samples and has been 
reported to correlate with APOBEC activity [153]. 
Regarding ID signatures, twelve different signatures were identified with SigProfiler most 
prominently, as expected, the clock-like signatures ID1 and ID2. Next to those two signatures, 
other ID signatures linked to NHEJ repair mechanisms such as ID8 were extracted, interestingly 
only in samples from patients with underlying germline mutation in TP53 or BRCA1/2, not in 
MMR patients. Co-occurrence of SBS3 and ID6, which has previously been reported for 
samples with HR deficiency, was not observed in samples with BRCA germline mutation, a 
result in line with findings by Thatikonda et al. [100, 145]. Another identified signature, ID3, 
previously linked to tobacco smoking, was correlated in this analysis with signatures SBS31 
and SBS35, which are linked to treatment with platinum based drugs. This further supported 
previous suggestions where ID3 could be linked to treatment induced DNA damage or another 
unknown mutational process [145].  
  
Next, I tested the differences of signature activity between germline and somatic TP53 
mutations. Among the significant differences identified were clock-like signatures like SBS1, 
SBS5, SBS40, ID1 and ID2 despite the investigation method accounting for patient age. This 
could indicate that the level of activity of these signatures is different between germline and 
somatic patients. In case of SBS40 there could be a more direct link to TP53 mutation status as 
discussed above. Re-analysis with the split signature (SBS40a, SBS40b and SBS40c) could be 
beneficial. Other signatures identified with a significantly higher contribution to somatic cases, 
that were previously linked to other characteristics or without aetiology, were SBS9, SBS18 
and ID4. SBS9 has been previously linked to DNA damage. SBS18 shares a similar profile with 
SBS36, that was associated with defective base excision repair, which could lead to false 
assignment. The identified signatures could be leveraged via their activity for future efforts 
towards classification. Unique assignment of a signature to only germline or somatic TP53 
cases was not observed nor a novel signature. 
Finally, I investigated the association of mutational signatures with the different germline 
mutations in this cohort by comparing germline mutated samples with wildtype samples. This 
identified, among others, SBS10a, SBS10b, SBS11, SBS12, SBS19, ID6 and ID9 to be 
significantly influenced by germline mutation status. SBS10a and SBS10b were linked to 
polymerase epsilon status and usually contributed to a high mutational load resulting in 
hypermutators which were inside the MMR group in this study [249]. ID6 was linked to 
defective homologous DNA damage repair, usually linked to BRCA mutation [87]. Signatures 
SBS12, SBS19 and ID9 currently have unknown aetiology. These signatures could serve as 
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potential biomarker to detect germline mutation status similar to what has been proposed with 
MMRdetect, however more research and careful evaluation is needed [185]. Other signatures 
were associated with germline mutation and simultaneously with tumor type. This could be due 
to correlation among germline mutation and tumor types or hint at a tissue specific influence 
with those signatures. However further investigations into the quantity of mutations assigned 
did not reveal an obvious pattern regarding specificity for one of the germline mutations. The 
original reason to use SIGNAL along with SigProfiler was the tissue specific signatures the 
former offers. Unfortunately these could not be leveraged as hoped to separate tissue specific 
effects from germline related effects but future investigations might include such 
considerations. Overall no obvious separation by a single signature was identified. Instead the 
different levels of activity could be leveraged for a classification. 
 
Despite the limited size of this cohort, especially in the MMR (n = 11) and BRCA (n = 6) 
groups, the presented results could serve as refinement of the mutational landscape in pediatric 
cancer with an emphasis on patients with germline mutations. Inclusion of more patients across 
a more diverse set of tumor types could improve the power of the analysis, but recruitment of 
additional pediatric DADDR samples is slow and is hampered in any case due to the fact that 
certain tumor types are more common for certain CPS. Further investigation into structural 
variants might also be beneficial in the context of DADDR patients, at least for LFS they play 
a role [250, 251]. The strength of SIGNAL, the tissue specific signatures, could not prevail. In 
future studies with more information on the tissue of origin, in the SIGNAL sense, consideration 
of tissue specific signatures could lead to more insights. 
 
Methylation patterns in DADDR patients 
The methylome of cancer cells allows not only tracing of the origin of cells but also is a 
powerful tool for classification of tumors and for use in identifying biomarkers by differential 
analysis. Classification via the methylome of tumors into categories not distinguishable by 
morphological characteristics is possible as demonstrated by Capper et al. [44]. Currently there 
is only limited knowledge about methylation patterns associated with CPS syndromes in 
pediatric cancer. While the classification tool presented by Capper et al. gives robust results for 
most tumor samples, a drop in performance was observed when applying this technique in-
house to samples that harbor a germline mutation, suggesting a distinct methylation landscape 
in these samples. Research into methylation patterns specific for Li-Fraumeni patients was done 
previously using liquid biopsy samples and identified differentially enriched methylation sites, 
although those investigations often included adult patients, influencing the applicability of the 
results on pediatric patients [117, 118, 122]. 
 
In this study, I presented results from the investigation of a cohort of exclusively pediatric 
patients with different CPS, including Li-Fraumeni patients, using matched tumor tissue and 
blood samples, giving a deeper insight into the associated methylation pattern and refining 
previous results based on liquid biopsy samples from mixed cohorts. Focusing on samples with 
TP53 germline mutation (n = 62) and MMR syndrome (n = 20), I assembled a control cohort 
of samples from the same tumor type, making sure that no germline or somatic mutation in 
TP53, PMS2, MSH2, MSH6 or MLH1 was present in the control samples. Further filtering of 
control samples with several strategies including based on correlation or distance in 2D 
projections to CPS samples did not improve results (data not shown) but could be further 
investigated in the future. 
Since tumor tissue samples in general do not consist of cancer cells exclusively, I estimated the 
cell type composition of the tumor tissue samples. As expected, all samples contained a mixture 
of various cell types, ranging from immune cells to blood cells. Further statistical testing 
revealed significant differences in cell type composition between germline TP53 and control 
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cases and showed the different influences of tumor types, which justified the application of the 
purification algorithm. The TME of pediatric cancers is an area of ongoing research. While 
most pediatric solid tumors were reported to be immune-cold some of them showed invasion 
with immune cells but those lacked activation. However these studies did not take into 
consideration the presence of possible cancer predisposition syndromes despite a not 
insignificant amount of affected pediatric patients [252-254]. The identified higher invasion of 
certain immune cells like natural killer cells in CPS tumors could suggest a possible benefit 
from immune therapy for those patients, although further investigations would be needed 
because this study only considered the TME insofar as to correct for it. 
Based on the composition estimations, I applied a purification algorithm to obtain the 
methylation signal specific for the cancer cells. In a two-pronged approach, I applied statistical 
methods on both the original raw methylation data as well as the purified methylation data for 
the identification of differentially and variably methylated probes and regions. The number of 
identified differentially methylated probes for all applied statistical methods exhibited the 
expected behavior concerning the number of identified probes. This indicated that the methods 
accounting for tumor type identified less probes as significant compared to the methods that 
only accounted for presence of CPS. Similarly, analysis using the purified methylation values 
resulted in less significant probes compared to their counterparts using the raw methylation 
values. This was expected because the purification process removed noise stemming from non-
cancer cells that could mistakenly be picked up by the differential analysis. One strength of this 
study was that the purification process actually obtained methylation beta values that could be 
further analyzed, not just estimations of cell type composition that were integrated as factors in 
the analysis. While there can be certain benefits to this as demonstrated by Lee et al., working 
with actual methylation beta values allowed more flexibility regarding the downstream analysis 
methods [255].    
One caveat with the applied purification algorithm was a somewhat uncharacteristic distribution 
of methylation values after purification. The resulting beta value profiles with less defined 
peaks at both ends of the scale appeared unfamiliar. Inspection of the influence of the 
purification process on the control cohort revealed a similar picture although less extreme with 
peaks shifted less from their original position. One explanation could be in the technical details 
of the applied algorithm, which leveraged Bayesian statistics and assumed a uniform prior for 
cancer specific methylation, which could have contributed to the resulting less defined 
distribution of the purified beta values. Another explanation could be that the patients in the 
LFS and MMR groups actually had a more than usually shifted methylation landscape. At the 
same time, one has to acknowledge that the results obtained by analysis of purified methylation 
values resulted in good differentiation performance, at times even better compared to the raw 
methylation value analysis, lending some credibility to the purification algorithm. Looking at 
the overlap of identified probes between analysis methods, the most agreement was between 
the linear contrasts regardless of raw or purified methylation values. A larger effect of the 
purified beta values on the analysis with random forest was observable compared to the linear 
models with much less overlap in identified probes between random forest methods. This 
apparent instability of the random forest approach could be a result of the limited dataset 
available and may be improved with inclusion of more patients. The capabilities of random 
forests for identification of methylation biomarker has been demonstrated by Capper et al. so 
in the future with more data available the random forest analysis method could be applied again 
for further refinement of results [44]. 
Proceeding with the quantification of classification power offered by the sets of identified 
probes, I was able to show that the desired behavior was achieved. A quality of classification, 
as quantified by PRAUC, ROCAUC and other metrics, above baseline was achieved with a 
much more limited set of probes. Especially the probes identified via linear models achieved 
particular good performance while the random forests methods could not reach a performance 
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above baseline. Looking at the achieved precision values, a metric particularly important in a 
diagnostic setting, the probes identified via linear model applied to purified methylation values 
achieved the best performance although the probes identified via linear model on raw 
methylation values were not far off. This again underlined the issues that were apparent with 
the random forest analysis in this study. Further evaluation revealed a performance above what 
was achievable with a previously suggested LFS pan-cancer signature. The previously 
suggested LFS pan-cancer signature was obtained by analysis of liquid biopsy samples from a 
mixed cohort of pediatric and adult patients. Consequently the presented signatures in this study 
can be interpreted as a refinement of previous signatures with special attention towards pediatric 
patients because I investigated only pediatric patients and did not preselect methylation probes. 
Fearing that the achieved performance was only a technical artefact veiled by the encouraging 
metrics, I turned towards a more qualitative inspection of the achieved separation between CPS 
and nonCPS cases. UMAP plots confirmed the assessment that separation was achieved and 
that the linear contrasts delivered better performance compared to random forest application. 
Further, it was visible that the measured performance was not merely a technical artefact but 
there were clusters of CPS cases. One thing immediately noticeable was that there appeared to 
be two clusters of CPS cases, one dominated by sarcoma tumors, the other by nonsarcomas. 
These two clusters were further confirmed by application of PCA and KNN clustering. Such a 
behavior of sarcoma cases needing separate consideration was already known and resulted in 
two tumor type classifier in previous studies, one dedicated for sarcoma types, one dedicated to 
central nervous system tumors (www.molecularneuropathology.org). In this study whether the 
shown behavior of forming two clusters was a result of underlying biology or was a reflection 
of the used dataset remained unclear. Splitting the cohort further appeared unfeasible because 
of the already limited availability of CPS samples. Re-analysis while integrating a variable in 
the linear models accounting for the observed clusters could be an option for future research. 
Comparing the qualitative differentiation power between linear contrasts that took tumor type 
into account and those who only accounted for CPS showed the expected behavior. The tumor 
type cluster were more clearly separated with sharper borders with the linear contrasts that only 
took CPS into account while the contrasts that accounted for tumor type produced more fluid 
borders and a more compact clustering across tumor types. This was an encouraging 
observation that could mean that accounting for tumor type worked as intended. Of course, 
better results could be obtained with more samples, especially a more uniform distribution of 
samples across tumor types. However, since recruitment of patients with CPS tumors is slow, 
the dataset analyzed in this study represents, to the best of my knowledge, the largest of its kind. 
In any case the bias towards certain tumor types could most likely never be rectified completely 
because certain tumor types are associated more frequently with certain CPS. The fact that the 
probes identified via linear models gave better performance than those identified via random 
forest could be the result of the ability to encode the matching nature of samples, the different 
types of tissue and the tumor groups explicitly in the linear model. As already mentioned with 
increased sample size a revisit to the random forest analysis could lead to better performance 
eventually. 
Turning towards the biological interpretability of the identified sets of differentially and 
variably methylated probes and regions, I presented the significantly enriched GO terms and 
DDR pathways. Using linear models only accounting for CPS (models Ia/Ib), most enriched 
pathways were identified using the differentially and variably methylated regions. Across all 
three major GO categories, enriched pathways were related to the RISC complex, RNA 
interference, miRNA regulated gene silencing, transcriptional regulation, embryonic skeletal 
development and organ morphogenesis. Genes inside the RISC complex in which differentially 
methylated probes were located included, next to a number miRNA coding genes, DHX9, DCP2 
and DICER1. Especially the association of germline TP53 mutation with miRNA functionality 
has been pointed out earlier [117]. Comparing the effects of mutations in TP53 on miRNAs for 
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adult cancer and the presented results may offer new insights into the miRNA landscape in 
pediatric patients [256]. The linear models accounting for tumor type (model IIa/IIb) enriched 
pathways across all three major GO categories but also some DDR pathways. The function of 
the enriched pathways were related to energy metabolism, cell-cell adhesion and again the RISC 
complex and RNAi. Further, DDR pathways related to CPF, BER and NER were significantly 
enriched. A link between LFS and miRNA and the RISC complex and its importance for 
tumorigenesis has been discussed earlier [257]. In particular it was pointed out that the 
interferon signaling pathway (IFN) was disrupted by methylation [258, 259]. Further the 
authors pointed out that treatment with demethylating drugs restored some function of IFN 
which led to senescence [260]. Currently there are multiple studies testing drugs that influence 
the methylome in pediatric cancer and additional special attention towards patients with 
DADDR syndrome could lead to novel insights [261]. Other pathways implicated in the study 
by Fridman et al. included cell cycle pathways and cytoskeletal pathways that were also 
significantly enriched in this study [260]. Cytoskeletal components are under active research as 
drug targets and special attention towards pediatric patients with CPS could bring benefits 
[262]. While the cited study was conducted on immortalized cells from an adult male patient, 
with the presented results a link to pediatric cancer has been made.  
 
Comparing the number of probes and regions identified as differentially or variably methylated 
with the number of enriched pathways resulting from them, I hypothesized that noise carried 
over from the differential analysis disturbed the enrichment analysis. To deal with the noise, I 
applied network analysis methods to obtain clusters of probes with highly correlated 
methylation patterns. Correlation analysis of these clusters with traits of interest underlined the 
different behaviour exhibited by sarcoma and nonsarcoma samples observed earlier in the 
UMAP plots. Some of the identified network clusters (n = 5) correlated with disease state 
(primary, progression or relapse) but unfortunately for those no enriched pathways could be 
identified at the applied FDR threshold. For example, cluster MEplum1, identified using 
WGCNA with IIa and IIb probes (Figure 38), correlated with progression state. Affected genes 
in the MEplum1 cluster included HDAC4 and PRMT5. HDAC inhibitors have been studied 
earlier as treatment in pediatric brain cancer while PRMT5 has been discussed as potential target 
in medulloblastomas and treatment relevant links to TP53 mutation status have been identified 
[176, 263, 264]. Looking at which cluster contained a significant amount of probes identified 
as differentially methylated revealed a subset of clusters. Running enrichment analysis on all 
clusters obtained via network analysis but focusing on those that contained a significant amount 
of probes identified as differentially enriched revealed further insight into the biology behind 
the differentially enriched probes. The pathways identified in those cases were associated with 
functions in energy metabolism, nucleotide binding, embryonic skeletal development, 
chromatin organization, polymerase transcription regulation, chromosomal organization, 
cellular response to DNA damage and mitotic cell cycle to name but a few. Concentrating at the 
most significant enriched pathways and the most affected genes inside them revealed a focus 
on certain biological functions and genes. Pathways related to mitotic cell cycle and cellular 
response to DNA damage appeared to be most important. Further HDAC4 was implicated most 
often. In a recent study that investigated pediatric CNS tumors and accounted for cell type 
composition, HDAC4 was also one of the most important genes identified [255]. Previously 
HDAC4 has been associated with multiple cancer types as well as unfavourable disease 
progression, an observation in line with the above mentioned MEplum1 that was associated 
with progression [265-268]. Although targeting of HDACs alone or as part of a combinatorial 
treatment isn’t a novel idea, further evaluation for CPS patients could be beneficial [269]. 
Another thing to note were the affected paralog pairs identified. There could be potential for a 
treatment if the differential methylation of both paralogs led to some form of synthetic sickness. 
In general, the network analysis offered the possibility to investigate smaller correlated subsets 
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of differentially methylated probes that otherwise might have been drowned by the overall 
noise. Considering the genes affected by differential methylation, some of which were 
highlighted above, it appeared unlikely that the identified sets of differentially methylated 
probes were coincidental or based on technical artefacts but rather were related to underlying 
biology. 
 
Finally, I turned towards additional validation that complemented the already encouraging 
results obtained via cross validation. Investigating the ability of the identified probes to 
distinguish somatic from germline TP53 mutated samples by using a dedicated dataset 
containing only samples with somatic mutations demonstrated robust performance. Across all 
applied thresholds and for all methods of investigation a very high negative predictive value at 
or above 0.95 was measured. Negative predictive value can be interpreted as precision for 
negative predictions, meaning that the identified probes result in a low chance for false positive 
predictions erroneously labeling a somatic case as a germline case. This knowledge in itself 
may provide a benefit for treatment decisions because knowing that a given patient is not 
affected by MMR or LFS is important information. Overall such a behavior is very important 
and highly desirable in case of possible clinical application with patients in the future. Taking 
one step further, I prepared a dataset based on liquid biopsy samples from Li-Fraumeni patients 
to test a more generalized applicability. The best performance labeling the germline mutated 
TP53 cases was achieved with the probes identified by a contrast taking into account the 
matching nature of the blood and tumor tissue samples in the discovery cohort. Even though 
the performance achieved during testing on the liquid biopsy samples was far below what was 
achieved in cross validation, this result is encouraging. Precision of 90% was still achievable, 
although at cost for recall but that might be acceptable in a clinical setting. The contrast fully 
leveraging the matching blood and tumor tissue samples performed the best, indicating that the 
performed analysis works as intended and currently the bottleneck is mainly the small sample 
size. Especially considering the fact that not all germline samples in the discovery cohort had 
matching blood samples available. Further, the processing of the samples in the liquid biopsy 
cohort was different from the sample processing of the discovery cohort. Even though I was 
able to correct for this to some extent with different batch effect correction methods, a 
standardized sample processing would benefit the performance. Another major issue with the 
liquid biopsy samples was revealed by cell type estimation. As discussed only two samples 
were identified to contain any cancer cells at all. Of course these estimations have to be taken 
with a grain of salt, but overall the cancer cell fraction in the liquid biopsy samples was very 
low. Comparing the probes identified in this study with methylation signatures identified by 
Wong et al. showed some overlap [122]. Taking into account that Wong et al. investigated liquid 
biopsy samples, that their cohort was a mixture of adult and pediatric patients and that they 
preselected probes for their pan-cancer signature, this study offered refinement of the 
methylation patterns in germline mutated TP53 patients because it focused exclusively on 
pediatric patients and did not introduce a preselection bias for the probes. This refinement lead 
to the demonstrated increased performance achieved with the methylation signatures presented 
in this study beyond the one described by Wong et al. The investigation of tumor tissue samples 
instead of liquid biopsy samples was a great strength of this analysis because liquid biopsy does 
have its drawbacks, in particular when sensitivity is concerned [270]. In addition to the 
presented results for germline TP53 mutated cases, I presented results for patients with germline 
mutations in MMR related genes. The analysis for this cohort had to be interpreted with care 
however because the cohort was only 1/3 of the TP53 cohort and much more biased towards 
one tumor type. Also in the analysis of the MMR cohort, I did not take into account if a Lynch 
syndrome of CMMRD was present which might have an influence [77, 271]. Unfortunately, for 
the MMR cases there was no external validation cohort available, so further confirmation 
beyond cross validation was not possible. Judged by the performance of the analysis methods 
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with the TP53 cohort, the results produced from the analysis of the MMR cohort had a certain 
credibility. 
 
In summary, I further expanded on the latest computational methods for prediction of synthetic 
lethality by combining several of the best aspects of previous methods. Especially the 
combination of techniques that offer robustness towards selection bias with topology based 
techniques that are known to offer good performance stands out. I integrated multiple sources 
of omics input prepared from a dedicated set of pediatric patients to generate the first SL 
predictions for pedHGG tumors. My predictions may serve as a basis to decide on future targets 
when investigating vulnerabilities in pedHGG. The computational method for predicting SL 
pairs can be easily used and extended by researchers and is set up in such a way that seamless 
integration of additional data is possible. Further, I applied state of the art bioinformatics 
methods to broaden the knowledge on mutational processes and the methylome in DADDR 
patients. I applied and compared two cutting-edge mutational signature calling algorithms, 
described the mutational signature landscape of DADDR patients which further confirmed 
several observations made previously and led to novel suggestions for signature aetiology. 
Additionally, I compared intra MMR syndrome variability and described mutational signatures 
associated with underlying germline mutations. Concerning the differences between wildtype, 
germline or somatic mutation I identified several signatures with significantly different 
contributions that may serve as basis for a classification tool. Concerning the methylome of 
DADDR patients, I identified methylation signatures capable of identifying such patients with 
high precision which may improve molecular diagnostic tools that previously struggled with 
such patients. The presented signatures can be viewed as a refinement of previously published 
signatures, offering improved performance and specificity for pediatric patients. In the process 
of my analysis I also discovered interesting properties of the immune cell composition of the 
investigated samples that may offer possibilities for future research avenues. Finally, with my 
work I was able to show that DADDR syndromes influence the methylome in a way that several 
key biological functions are implicated, for example functions related to HDAC4 or cytoskeletal 
functions. Some of these functions offer possibilities for treatment or are currently under 
investigation for treatment and could benefit from special attention towards their impact on 
DADDR patients. 
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8.1 Outlook 
The presented results offered insights into potential novel avenues for future research. The 
predicted SL interactions may serve as guideline for future high-throughput interaction screens 
in pedHGG cell lines, especially the predictions involving HDAC could be interesting for 
pedHGG K27M. Until that time, a manually selected subset of the predicted SL pairs could be 
investigated in low-throughput experiments for evaluation. Leveraging one of the major 
advantages of the presented ML model, the ability to integrate additional data sources, future 
research could include additional layers of data or more patients as they become available. For 
example more context-free features such as protein sequence or context-specific features such 
as methylation could be useful. While major online databases still focus on adults, in recent 
years data for pediatric patients became available which could be integrated as well. Especially 
useful for SL prediction could be the pediatric DepMap that includes CRISPR screens, which 
were leveraged to great effect in other SL prediction projects [272]. Computational aspects of 
the presented methods could also be further investigated, especially the generation of topology 
based features and evaluation of other tree-based ML models could yield better performance. 
Another area future research could focus on, are the much needed improvements of cell type 
specificity. The identification of small subsets of genes whose loss-of-function behavior enables 
predictions for the loss-of-function behavior of the remaining genes, could be extended and 
applied to two way interaction predictions as presented in this study [240]. The necessary two 
branch prediction models, were one arm is responsible for SL prediction and the other is 
responsible for cell line specificity, could be adapted from drug response prediction models in 
use today. In the long run, standardized detection of SL pairs from high-throughput screen could 
improve the needed training data and consequently the predictions. 
 
The current cohort of DADDR patients used for analysis of mutational signatures was biased 
towards certain tumor types, especially sarcomas and high-grade gliomas. Inclusion of more 
samples from underrepresented tumor types could improve and generalize the analysis, 
although this will be difficult since these CPS are enriched in certain tumor types. Nevertheless 
the de novo extraction of mutational signatures could benefit from more input data. At the same 
time, bleeding effects in the assignment of signatures between tumor types could be reduced, 
giving a clearer picture of the mutational landscape. Expanded annotation including treatment 
response and clinical outcome for samples could add beneficial insights, especially for the 
presented considerations towards ID3. Also the application of tissue specific signatures to 
distinguish tissue effects from CPS effects could drastically improve the analysis. Translational 
relevance of the signatures identified to be associated with the CPS does require further 
investigation into their discriminatory power. One interesting aspect was SBS40 and the latest 
signatures based on it (SBS40a, SBS40b and SBS40c) which could be linked to TP53 germline 
mutation but more research is needed. Other possible avenues include further investigation into 
the identified signatures contributing more towards PMS2 affected samples than to other MMR 
samples which may enable a higher mutational signature based resolution of MMR mutations. 
 
Like the dataset used for mutational signature calling, the discovery dataset for methylation 
patterns associated with CPS was biased towards sarcomas and high-grade gliomas. Further 
inclusion of samples of underrepresented tumor types should improve the power of the applied 
analysis although the inherent bias towards certain tumor types is an issue here as well. 
Crucially, further inclusion of paired samples for which both blood and tumor tissue 
methylation data is available is of utmost importance. This will benefit the generalization of the 
identified CPS associated patterns and further improve the diagnostic power as hinted at with 
the evaluation of the external liquid biopsy cohort. Especially a more thorough evaluation of 
the application of the methylation signatures on liquid biopsy samples is advisable with a 
clinical application in mind to fully reap the benefits of liquid biopsy samples as a surveillance 
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measure. Stepping towards clinical application for example with the MNP project, further 
tuning of the algorithm for classification is advisable before eventual dissemination. 
Specifically the application of gradient boosting algorithms is promising in this area because of 
their suitability for tabular data and their capability to deal with missing values. Another 
exciting avenue for future research could be further refinement of the methylation purification 
algorithm. In its current state the distribution of the purified values is somewhat unusual. 
Further work is required to better understand the reasons behind this and ideally amend the 
purification algorithm. As discussed there were influences of the tumor type and its interaction 
with CPS status on the TME. Immunotherapy is a promising field and further research could 
help to better understand its applicability in pediatric patients with CPS. Other possible avenues 
of research to improve the overall outcome for patients could include further investigation into 
HDAC targeting drugs or demethylating drugs or possible combinatorial treatment involving 
them. 
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10 Appendix 
Table 5: INFORM  patients used in the predictions of SL pairs for both CMFW and classic ML methods. Patients are annotated 
with their tumor type. Here both K27M and nonK27M patients are listed. 

TUMOR TYPE INFORM_PUBLIC_PID 
HGG_K27M INF_R_140_primary 
HGG_K27M INF_R_031_relapse1 
HGG_K27M INF_R_1261_relapse1 
HGG_K27M INF_R_005_primary 
HGG_K27M INF_R_006_primary 
HGG_K27M INF_R_007_primary 
HGG_K27M INF_R_043_primary 
HGG_K27M INF_R_047_primary 
HGG_K27M INF_R_089_primary 
HGG_K27M INF_R_091_primary 
HGG_K27M INF_R_1130_primary 
HGG_K27M INF_R_1153_primary 
HGG_K27M INF_R_1155_primary 
HGG_K27M INF_R_1186_primary 
HGG_K27M INF_R_1194_primary 
HGG_K27M INF_R_1199_primary 
HGG_K27M INF_R_1209_primary 
HGG_K27M INF_R_1286_primary 
HGG_K27M INF_R_1339_primary 
HGG_K27M INF_R_1350_primary 
HGG_K27M INF_R_1387_primary 
HGG_K27M INF_R_1446_primary 
HGG_K27M INF_R_145_primary 
HGG_K27M INF_R_176_primary 
HGG_K27M INF_R_199_primary 
HGG_K27M INF_R_201_primary 
HGG_K27M INF_R_206_primary 
HGG_K27M INF_R_253_primary 
HGG_K27M INF_R_257_primary 
HGG_K27M INF_R_281_primary 
HGG_K27M INF_R_293_primary 
HGG_K27M INF_R_331_primary 
HGG_K27M INF_R_449_primary 
HGG_K27M INF_R_472_primary 
HGG_K27M INF_R_510_primary 
HGG_K27M INF_R_529_primary 
HGG_K27M INF_R_533_primary 
HGG_K27M INF_R_538_primary 
HGG_K27M INF_R_539_primary 
HGG_K27M INF_R_574_primary 
HGG_K27M INF_R_614_primary 
HGG_K27M INF_R_617_primary 
HGG_K27M INF_R_665_primary 
HGG_K27M INF_R_717_primary 
HGG_K27M INF_R_772_primary 
HGG_K27M INF_R_813_primary 
HGG_K27M INF_R_815_primary 
HGG_K27M INF_R_835_primary 
HGG_K27M INF_R_843_primary 
HGG_K27M INF_R_845_primary 
HGG_K27M INF_R_854_primary 
HGG_K27M INF_R_898_primary 
HGG_K27M INF_R_961_primary 
HGG_K27M INF_R_989_primary 
HGG_K27M INF_R_928_progression 
HGG_K27M INF_R_954_progression 
HGG_K27M INF_R_955_progression 
HGG_K27M INF_R_1068_progression 
HGG_K27M INF_R_1092_progression 
HGG_K27M INF_R_782_relapse1 
HGG_K27M INF_R_878_relapse1 
HGG_K27M INF_R_1329_relapse1 
HGG_K27M INF_R_1362_relapse1 
HGG_K27M INF_R_1376_relapse1 
HGG_K27M INF_R_1403_relapse1 
HGG_K27M INF_R_375_relapse2 
HGG_K27M INF_R_548_relapse2 
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HGG_K27M INF_R_709_relapse2 
HGG_K27M INF_R_1254_relapse2 
HGG_K27M INF_R_542_relapse6 
HGG_X-OTHERS INF_R_273_primary 
HGG_X-OTHERS INF_R_013_primary 
HGG_X-OTHERS INF_R_1451_primary 
HGG_X-OTHERS INF_R_223_primary 
HGG_X-OTHERS INF_R_1060_primary 
HGG_X-OTHERS INF_R_1082_primary 
HGG_X-OTHERS INF_R_1264_primary 
HGG_X-OTHERS INF_R_859_primary 
HGG_X-OTHERS INF_R_1320_relapse1 
HGG_X-OTHERS INF_R_042_primary 
HGG_X-OTHERS INF_R_1123_primary 
HGG_X-OTHERS INF_R_864_primary 
HGG_X-OTHERS INF_R_114_primary 
HGG_PXA INF_R_1061_primary 
HGG_pedRTK1 INF_R_729_relapse1 
HGG_pedRTK1 INF_R_118_primary 
HGG_pedRTK1 INF_R_148_primary 
HGG_pedRTK1 INF_R_431_primary 
HGG_pedRTK1 INF_R_639_primary 
HGG_pedRTK1 INF_R_1164_primary 
HGG_pedRTK1 INF_R_1204_primary 
HGG_pedRTK1 INF_R_1223_primary 
HGG_pedRTK1 INF_R_1341_primary 
HGG_pedRTK1 INF_R_968_primary 
HGG_X-OTHERS INF_R_237_relapse1 
HGG_pedRTK1 INF_R_305_progression 
HGG_pedRTK1 INF_R_1078_progression 
HGG_PXA INF_R_384_progression 
HGG_X-OTHERS INF_R_667_progression 
HGG_X-OTHERS INF_R_1369_progression 
HGG_X-OTHERS INF_R_609_relapse1 
HGG_pedRTK1 INF_R_212_relapse1 
HGG_pedRTK1 INF_R_756_relapse1 
HGG_pedRTK1 INF_R_940_relapse1 
HGG_pedRTK1 INF_R_1180_relapse1 
HGG_PXA INF_R_063_relapse1 
HGG_PXA INF_R_727_relapse1 
HGG_PXA INF_R_1189_relapse1 
HGG_PXA INF_R_1234_relapse1 
HGG_X-OTHERS INF_R_026_relapse1 
HGG_X-OTHERS INF_R_195_relapse1 
HGG_X-OTHERS INF_R_594_relapse1 
HGG_X-OTHERS INF_R_1063_relapse1 
HGG_X-OTHERS INF_R_1281_relapse1 
HGG_X-OTHERS INF_R_072_relapse1 
HGG_X-OTHERS INF_R_127_relapse1 
HGG_X-OTHERS INF_R_320_relapse1 
HGG_X-OTHERS INF_R_085_relapse1 
HGG_X-OTHERS INF_R_1275_relapse1 
HGG_X-OTHERS INF_R_057_relapse1 
HGG_X-OTHERS INF_R_292_relapse1 
HGG_X-OTHERS INF_R_1160_relapse1 
HGG_X-OTHERS INF_R_1358_relapse1 
HGG_X-OTHERS INF_R_1058_relapse1 
HGG_X-OTHERS INF_R_1357_relapse1 
HGG_X-OTHERS INF_R_1448_relapse1 
HGG_X-OTHERS INF_R_220_relapse1 
HGG_pedRTK1 INF_R_1073_relapse1a 
HGG_pedRTK1 INF_R_1176_relapse2 
HGG_PXA INF_R_707_relapse1 
HGG_PXA INF_R_065_relapse2 
HGG_PXA INF_R_241_relapse2 
HGG_PXA INF_R_302_relapse2 
HGG_PXA INF_R_490_relapse2 
HGG_PXA INF_R_1188_relapse2 
HGG_X-OTHERS INF_R_025_relapse2 
HGG_X-OTHERS INF_R_1246_relapse2 
HGG_X-OTHERS INF_R_505_relapse2 
HGG_X-OTHERS INF_R_638_relapse2 
HGG_X-OTHERS INF_R_806_relapse2 
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HGG_X-OTHERS INF_R_893_relapse2 
HGG_PXA INF_R_1319_relapse3 
HGG_X-OTHERS INF_R_1048_relapse3 
HGG_X-OTHERS INF_R_1301_relapse3 
HGG_X-OTHERS INF_R_686_relapse3 
HGG_X-OTHERS INF_R_073_relapse3 
HGG_PXA INF_R_513_relapse4 
HGG_X-OTHERS INF_R_569_relapse4 
HGG_X-OTHERS INF_R_275_relapse4b 

 
 

 
Figure 42: A) Comparison of mutational burden between MMR and non-MMR for both ID and SBS. B) Comparison of 
mutational burden between HGG and pedRTK1 HGG and other tumor types for both ID and SBS. All p-values calculated with 
the Wilcoxon test. 
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Figure 43: Mutational signatures assigned by SIGNAL. 

 
Figure 44: Differences between lynch syndrom (heterozygous) or cMMRD (homozygous) mutations inside MMR subgroup. 
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Figure 45: Overview of results from analysis of samples with MMR germline mutation. A) Estimation of present fractions in of 
different cell types in the tumor samples. B) Original beta values vs purified beta values based on the estimation of cell type 
fractions. C-D) Number and percentages of significant differentially methylated probes at different FDR cutoffs for contrasts 
Ia, Ib, IIa and IIb. F) Overlap of differentially enriched probes by the different contrasts at FDR < 0.01 G) Overlap of 
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differentially enriched probes from contrasts IIa and IIb at FDR < 0.01 with top 1000 most important probes identified by RF 
method. 

 
Figure 46: 3x cross validation for differentiation between MMR vs nonMMR germline mutated tumors using probes identified 
as differentially enriched by different methods. 
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Figure 47: Umap plots using tumor samples with MMR germline mutation and tumor samples from control cohort. A) UMAP 
plot using only significantly differentially methylated probes identified by contrast IIa with cutoff FDR < 0.01. B) UMAP plot 
using only significantly differentially methylated probes identified by contrast IIb with cutoff FDR < 0.01. C) UMAP plot using 
only top 1000 probes ranked by permutation importance calculated with raw beta values. D) UMAP plot using only top 1000 
probes ranked by permutation importance calculated with purified beta values. 
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Table 6: Pathway enrichment of network clusters identified by WGCNA and GRAPH. For probes identified by contrasts Ia and 
Ib pooled with the top 10% most variably methylated probes in the cohort. Per cluster top 10 pathways sorted by FDR listed. 
N = number of genes in pathway, DE = number of differentially methylated genes in pathway 

GOID N DE FDR Cluster TERM 

GO:0000977 1118 93 1.14141E-06 black 
RNA polymerase II transcription regulatory region 
sequence-specific DNA binding 

GO:0000976 1276 96 1.42714E-06 black transcription cis-regulatory region binding 
GO:0001067 1277 96 1.42714E-06 black transcription regulatory region nucleic acid binding 
GO:0000785 1083 92 2.48706E-06 black chromatin 

GO:0001228 381 49 1.8301E-05 black 
DNA-binding transcription activator activity, RNA 
polymerase II-specific 

GO:0001216 388 49 2.01103E-05 black DNA-binding transcription activator activity 
GO:0007389 429 52 5.53019E-05 black pattern specification process 

GO:0000978 946 76 0.000233464 black 
RNA polymerase II cis-regulatory region sequence-
specific DNA binding 

GO:0000987 981 77 0.000292115 black cis-regulatory region sequence-specific DNA binding 

GO:0045944 1123 81 0.000399313 black 
positive regulation of transcription by RNA 
polymerase II 

GO:0000977 1118 369 1.3509E-07 blue 
RNA polymerase II transcription regulatory region 
sequence-specific DNA binding 

GO:0000978 946 325 1.31876E-06 blue 
RNA polymerase II cis-regulatory region sequence-
specific DNA binding 

GO:0000987 981 331 1.59527E-06 blue cis-regulatory region sequence-specific DNA binding 
GO:0000976 1276 386 1.59527E-06 blue transcription cis-regulatory region binding 
GO:0001067 1277 386 1.59527E-06 blue transcription regulatory region nucleic acid binding 
GO:0000785 1083 358 4.18812E-05 blue chromatin 
GO:0001216 388 164 4.88933E-05 blue DNA-binding transcription activator activity 

GO:0001228 381 162 5.9168E-05 blue 
DNA-binding transcription activator activity, RNA 
polymerase II-specific 

GO:0045165 272 121 0.0004734 blue cell fate commitment 
GO:0048568 386 165 0.000482029 blue embryonic organ development 
GO:0016604 550 230 0.000421903 brown nuclear body 
GO:0005524 996 410 0.002587673 brown ATP binding 
GO:0140640 611 159 0.006198366 brown catalytic activity, acting on a nucleic acid 
GO:0032559 1051 422 0.012433786 brown adenyl ribonucleotide binding 
GO:0030554 1126 446 0.012433786 brown adenyl nucleotide binding 
GO:0022613 310 101 0.031792372 brown ribonucleoprotein complex biogenesis 
GO:0005882 141 17 2.13394E-14 cyan intermediate filament 
GO:0045111 179 17 6.18161E-13 cyan intermediate filament cytoskeleton 
GO:0099513 565 17 9.32365E-05 cyan polymeric cytoskeletal fiber 
GO:0099512 858 17 0.006262936 cyan supramolecular fiber 
GO:0099081 865 17 0.006262936 cyan supramolecular polymer 
GO:0071543 2 2 0.047908991 darkred diphosphoinositol polyphosphate metabolic process 
GO:1901906 2 2 0.047908991 darkred diadenosine pentaphosphate metabolic process 
GO:1901907 2 2 0.047908991 darkred diadenosine pentaphosphate catabolic process 
GO:1901908 2 2 0.047908991 darkred diadenosine hexaphosphate metabolic process 
GO:1901909 2 2 0.047908991 darkred diadenosine hexaphosphate catabolic process 

GO:1901910 2 2 0.047908991 darkred 
adenosine 5'-(hexahydrogen pentaphosphate) 
metabolic process 

GO:1901911 2 2 0.047908991 darkred 
adenosine 5'-(hexahydrogen pentaphosphate) 
catabolic process 

GO:0000298 2 2 0.047908991 darkred endopolyphosphatase activity 
GO:0034431 2 2 0.047908991 darkred bis(5'-adenosyl)-hexaphosphatase activity 
GO:0034432 2 2 0.047908991 darkred bis(5'-adenosyl)-pentaphosphatase activity 

GO:0000977 1118 20 0.000581253 grey60 
RNA polymerase II transcription regulatory region 
sequence-specific DNA binding 

GO:0000976 1276 20 0.000581253 grey60 transcription cis-regulatory region binding 
GO:0001067 1277 20 0.000581253 grey60 transcription regulatory region nucleic acid binding 
GO:0000785 1083 19 0.001167419 grey60 chromatin 

GO:0045944 1123 18 0.002020783 grey60 
positive regulation of transcription by RNA 
polymerase II 

GO:0000987 981 16 0.018397545 grey60 cis-regulatory region sequence-specific DNA binding 
GO:0048704 88 13 4.85245E-11 midnightblue embryonic skeletal system morphogenesis 
GO:0009952 179 16 4.74616E-08 midnightblue anterior/posterior pattern specification 
GO:0048706 117 14 1.10189E-07 midnightblue embryonic skeletal system development 
GO:0048705 205 14 9.17678E-06 midnightblue skeletal system morphogenesis 
GO:0000987 981 24 9.27499E-06 midnightblue cis-regulatory region sequence-specific DNA binding 

GO:0000978 946 23 2.53401E-05 midnightblue 
RNA polymerase II cis-regulatory region sequence-
specific DNA binding 
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GO:0000977 1118 24 4.22981E-05 midnightblue 
RNA polymerase II transcription regulatory region 
sequence-specific DNA binding 

GO:0003002 388 16 5.26054E-05 midnightblue regionalization 
GO:0048562 249 14 6.33569E-05 midnightblue embryonic organ morphogenesis 
GO:0000976 1276 24 9.40471E-05 midnightblue transcription cis-regulatory region binding 
GO:0030527 29 9 9.31869E-14 orange structural constituent of chromatin 
GO:0000786 62 9 8.97923E-11 orange nucleosome 
GO:0044815 97 9 3.99955E-09 orange DNA packaging complex 
GO:0006334 63 7 1.24558E-08 orange nucleosome assembly 
GO:0034728 74 7 5.24295E-08 orange nucleosome organization 
GO:0032993 161 9 2.02545E-07 orange protein-DNA complex 
GO:0046982 202 9 8.37182E-07 orange protein heterodimerization activity 
GO:0032200 178 7 1.3033E-06 orange telomere organization 
GO:0065004 134 7 2.1468E-06 orange protein-DNA complex assembly 
GO:0071824 148 7 3.06379E-06 orange protein-DNA complex subunit organization 

GO:0007156 144 10 6.12012E-05 royalblue 
homophilic cell adhesion via plasma membrane 
adhesion molecules 

GO:0098742 288 11 0.000204127 royalblue 
cell-cell adhesion via plasma-membrane adhesion 
molecules 

GO:0048706 117 9 1.69768E-12 saddlebrown embryonic skeletal system development 
GO:0009952 179 9 4.29451E-11 saddlebrown anterior/posterior pattern specification 
GO:0001501 497 10 1.87714E-07 saddlebrown skeletal system development 
GO:0003002 388 9 1.44926E-06 saddlebrown regionalization 
GO:0048705 205 8 1.44926E-06 saddlebrown skeletal system morphogenesis 
GO:0048704 88 7 1.44926E-06 saddlebrown embryonic skeletal system morphogenesis 
GO:0007389 429 9 3.45022E-06 saddlebrown pattern specification process 
GO:0043009 514 9 7.24239E-06 saddlebrown chordate embryonic development 
GO:0009792 533 9 7.73028E-06 saddlebrown embryo development ending in birth or egg hatching 
GO:0000785 1083 10 4.45492E-05 saddlebrown chromatin 
GO:0007218 85 9 0.000568528 tan neuropeptide signaling pathway 
GO:0030594 149 9 0.000568528 tan neurotransmitter receptor activity 
GO:0004930 687 17 0.000568528 tan G protein-coupled receptor activity 
GO:0043005 1277 30 0.001276593 tan neuron projection 
GO:0007268 808 22 0.001331685 tan chemical synaptic transmission 
GO:0098916 808 22 0.001331685 tan anterograde trans-synaptic signaling 
GO:0099537 818 22 0.001379045 tan trans-synaptic signaling 
GO:0050877 1232 27 0.001572629 tan nervous system process 
GO:0099536 846 22 0.001671389 tan synaptic signaling 

GO:0007187 43 6 0.003323795 tan 
G protein-coupled receptor signaling pathway, 
coupled to cyclic nucleotide second messenger 

GO:0050911 200 183 1.64857E-50 turquoise 
detection of chemical stimulus involved in sensory 
perception of smell 

GO:0050907 221 194 6.92201E-48 turquoise 
detection of chemical stimulus involved in sensory 
perception 

GO:0009593 254 207 4.12063E-40 turquoise detection of chemical stimulus 
GO:0050906 277 222 1.79773E-39 turquoise detection of stimulus involved in sensory perception 
GO:0007608 264 192 2.34577E-34 turquoise sensory perception of smell 
GO:0004984 171 144 2.15531E-32 turquoise olfactory receptor activity 
GO:0007606 316 215 2.46578E-32 turquoise sensory perception of chemical stimulus 
GO:0051606 406 266 1.89392E-25 turquoise detection of stimulus 
GO:0004930 687 326 1.39455E-15 turquoise G protein-coupled receptor activity 
GO:0007600 696 370 8.22573E-14 turquoise sensory perception 
GO:0097447 520 155 0.001209259 yellow dendritic tree 
GO:0030425 517 154 0.001209259 yellow dendrite 
GO:0036477 747 201 0.011451819 yellow somatodendritic compartment 
GO:0015631 315 83 0.025860454 yellow tubulin binding 

GO:0050907 187 120 2.30336E-47 ME3 
detection of chemical stimulus involved in sensory 
perception 

GO:0050911 172 114 5.05609E-47 ME3 
detection of chemical stimulus involved in sensory 
perception of smell 

GO:0050906 235 135 7.41253E-45 ME3 detection of stimulus involved in sensory perception 
GO:0009593 216 125 1.26503E-42 ME3 detection of chemical stimulus 
GO:0007608 229 119 7.53271E-42 ME3 sensory perception of smell 
GO:0007606 268 129 8.60949E-41 ME3 sensory perception of chemical stimulus 
GO:0004984 152 91 8.47609E-34 ME3 olfactory receptor activity 
GO:0051606 343 149 5.17034E-33 ME3 detection of stimulus 
GO:0007600 586 205 9.46384E-32 ME3 sensory perception 
GO:0050877 1042 302 6.60779E-31 ME3 nervous system process 
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Table 7: Pathway enrichment of network clusters identified by WGCNA and GRAPH. For probes identified by contrasts IIa 
and IIb pooled with the top 10% most variably methylated probes in the cohort. Per cluster top 10 pathways sorted by FDR 
listed. N = number of genes in pathway, DE = number of differentially methylated genes in pathway 

GOID N DE FDR from TERM 

GO:0000977 1293 273 3.09956E-33 brown 
RNA polymerase II transcription regulatory region 
sequence-specific DNA binding 

GO:0000976 1488 280 2.24557E-29 brown transcription cis-regulatory region binding 
GO:0001067 1490 280 2.2464E-29 brown transcription regulatory region nucleic acid binding 
GO:0000987 1127 241 3.1417E-27 brown cis-regulatory region sequence-specific DNA binding 

GO:0000978 1087 236 3.35569E-27 brown 
RNA polymerase II cis-regulatory region sequence-specific 
DNA binding 

GO:0007389 489 148 9.92853E-24 brown pattern specification process 
GO:0003002 444 134 9.77876E-22 brown regionalization 
GO:0000785 1399 257 2.40328E-21 brown chromatin 
GO:0009887 1107 238 2.9571E-21 brown animal organ morphogenesis 
GO:0001216 442 125 1.09848E-17 brown DNA-binding transcription activator activity 
GO:0140535 1338 395 3.16206E-17 green intracellular protein-containing complex 
GO:1990234 1164 362 1.68174E-16 green transferase complex 
GO:0016604 747 331 2.77071E-12 green nuclear body 
GO:0098687 428 182 2.72524E-11 green chromosomal region 
GO:0006886 870 336 4.74508E-11 green intracellular protein transport 
GO:0006974 1213 357 6.04111E-11 green cellular response to DNA damage stimulus 
GO:0051276 778 265 6.04111E-11 green chromosome organization 
GO:0022613 501 191 3.01034E-10 green ribonucleoprotein complex biogenesis 
GO:0016071 1057 301 4.19337E-10 green mRNA metabolic process 
GO:0000278 1074 373 4.52586E-10 green mitotic cell cycle 

GO:0048562 292 28 0.001222693 
greeny
ellow embryonic organ morphogenesis 

GO:0009887 1107 55 0.001222693 
greeny
ellow animal organ morphogenesis 

GO:0048598 626 41 0.001222693 
greeny
ellow embryonic morphogenesis 

GO:0048568 450 33 0.00149977 
greeny
ellow embryonic organ development 

GO:0000977 1293 53 0.004179328 
greeny
ellow 

RNA polymerase II transcription regulatory region 
sequence-specific DNA binding 

GO:0000976 1488 56 0.004179328 
greeny
ellow transcription cis-regulatory region binding 

GO:0001067 1490 56 0.004179328 
greeny
ellow transcription regulatory region nucleic acid binding 

GO:0048705 224 22 0.004179328 
greeny
ellow skeletal system morphogenesis 

GO:0048736 186 19 0.013665574 
greeny
ellow appendage development 

GO:0060173 186 19 0.013665574 
greeny
ellow limb development 

GO:0050907 202 51 1.32472E-41 
lightcy
an 

detection of chemical stimulus involved in sensory 
perception 

GO:0050911 175 48 2.29657E-40 
lightcy
an 

detection of chemical stimulus involved in sensory 
perception of smell 

GO:0009593 238 52 6.72096E-40 
lightcy
an detection of chemical stimulus 

GO:0007608 239 49 6.34173E-39 
lightcy
an sensory perception of smell 

GO:0007606 296 52 1.28237E-38 
lightcy
an sensory perception of chemical stimulus 

GO:0050906 261 53 1.47016E-38 
lightcy
an detection of stimulus involved in sensory perception 

GO:0051606 400 57 6.23922E-35 
lightcy
an detection of stimulus 

GO:0004930 665 57 3.30786E-28 
lightcy
an G protein-coupled receptor activity 

GO:0007600 710 63 6.99199E-28 
lightcy
an sensory perception 

GO:0004984 148 34 3.19732E-26 
lightcy
an olfactory receptor activity 

GO:0005201 234 12 0.049532568 
lightgr
een extracellular matrix structural constituent 
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GO:0031012 677 21 0.049532568 
lightgr
een extracellular matrix 

GO:0030312 678 21 0.049532568 
lightgr
een external encapsulating structure 

GO:0070647 1332 135 0.011651134 pink 
protein modification by small protein conjugation or 
removal 

GO:0032446 1103 123 0.011651134 pink protein modification by small protein conjugation 
GO:0022402 1542 85 0.000915321 salmon cell cycle process 
GO:0140097 359 24 0.013436774 salmon catalytic activity, acting on DNA 
GO:0010564 781 52 0.029522203 salmon regulation of cell cycle process 
GO:0006974 1213 57 0.029522203 salmon cellular response to DNA damage stimulus 
GO:0000278 1074 62 0.029522203 salmon mitotic cell cycle 
GO:0051726 1174 69 0.029522203 salmon regulation of cell cycle 
GO:0005819 426 32 0.029522203 salmon spindle 
GO:0006281 819 40 0.029522203 salmon DNA repair 
GO:0006289 96 13 0.029522203 salmon nucleotide-excision repair 
GO:0018205 461 31 0.029522203 salmon peptidyl-lysine modification 

GO:0050911 175 123 6.16367E-27 
turquoi
se 

detection of chemical stimulus involved in sensory 
perception of smell 

GO:0050907 202 133 5.33821E-26 
turquoi
se 

detection of chemical stimulus involved in sensory 
perception 

GO:0050906 261 162 6.09419E-24 
turquoi
se detection of stimulus involved in sensory perception 

GO:0009593 238 147 1.11915E-23 
turquoi
se detection of chemical stimulus 

GO:0004984 148 102 5.41335E-23 
turquoi
se olfactory receptor activity 

GO:0007608 239 130 9.90816E-21 
turquoi
se sensory perception of smell 

GO:0007606 296 151 1.89993E-20 
turquoi
se sensory perception of chemical stimulus 

GO:0051606 400 209 9.47072E-20 
turquoi
se detection of stimulus 

GO:0004930 665 264 5.69524E-17 
turquoi
se G protein-coupled receptor activity 

GO:0050877 1289 525 1.32526E-15 
turquoi
se nervous system process 

GO:0030527 47 9 1.92267E-11 violet structural constituent of chromatin 
GO:0000786 100 9 1.22827E-08 violet nucleosome 
GO:0032993 229 9 2.96842E-07 violet protein-DNA complex 
GO:0006334 93 7 2.96842E-07 violet nucleosome assembly 
GO:0044815 157 9 2.96842E-07 violet DNA packaging complex 
GO:0034728 112 7 1.10234E-06 violet nucleosome organization 
GO:0046982 241 9 7.30536E-06 violet protein heterodimerization activity 
GO:0032200 245 7 2.84863E-05 violet telomere organization 
GO:0065004 205 7 3.78651E-05 violet protein-DNA complex assembly 
GO:0071824 228 7 6.33017E-05 violet protein-DNA complex subunit organization 
GO:0045321 960 271 2.81228E-18 yellow leukocyte activation 
GO:0001775 1132 304 4.32102E-18 yellow cell activation 
GO:0046649 777 225 2.40304E-15 yellow lymphocyte activation 
GO:0042110 544 170 2.3904E-13 yellow T cell activation 
GO:0098609 1045 282 1.49713E-12 yellow cell-cell adhesion 
GO:0002684 1122 253 4.95342E-12 yellow positive regulation of immune system process 
GO:0050865 627 185 5.5599E-12 yellow regulation of cell activation 
GO:0002694 568 171 8.87431E-12 yellow regulation of leukocyte activation 
GO:0007159 401 132 9.13421E-12 yellow leukocyte cell-cell adhesion 
GO:0032101 1148 269 9.13421E-12 yellow regulation of response to external stimulus 

GO:0050911 138 123 2.59902E-59 ME2 
detection of chemical stimulus involved in sensory 
perception of smell 

GO:0050907 158 129 7.13992E-54 ME2 
detection of chemical stimulus involved in sensory 
perception 

GO:0009593 189 140 2.55732E-49 ME2 detection of chemical stimulus 
GO:0007608 193 130 9.66444E-47 ME2 sensory perception of smell 
GO:0050906 209 147 2.99867E-43 ME2 detection of stimulus involved in sensory perception 
GO:0004984 120 99 7.88861E-43 ME2 olfactory receptor activity 
GO:0007606 240 142 7.67864E-41 ME2 sensory perception of chemical stimulus 
GO:0051606 330 181 9.48045E-35 ME2 detection of stimulus 
GO:0007600 602 264 5.68443E-28 ME2 sensory perception 
GO:0050877 1119 419 1.74165E-27 ME2 nervous system process 
GO:0048706 106 4 0.002232034 ME4 embryonic skeletal system development 
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GO:0009952 173 4 0.002232034 ME4 anterior/posterior pattern specification 
GO:0003002 380 4 0.011270886 ME4 regionalization 
GO:0007389 419 4 0.013903905 ME4 pattern specification process 
GO:0001501 485 4 0.026877435 ME4 skeletal system development 
GO:0043009 553 4 0.03244181 ME4 chordate embryonic development 
GO:0009792 574 4 0.03244181 ME4 embryo development ending in birth or egg hatching 
GO:0048704 79 3 0.036578664 ME4 embryonic skeletal system morphogenesis 

 

Table 8: Pathway enrichment of network clusters identified by WGCNA and GRAPH. For probes identified by random forest 
applied to raw and purified methylation values pooled with the top 10% most variably methylated probes in the cohort. Per 
cluster top 10 pathways sorted by FDR listed. N = number of genes in pathway, DE = number of differentially methylated 
genes in pathway 

GOID N DE FDR from TERM 
GO:0045296 175 17 0.024521268 black cadherin binding 

GO:0000977 860 310 1.14391E-07 blue 
RNA polymerase II transcription regulatory region 
sequence-specific DNA binding 

GO:0000987 746 282 1.53214E-07 blue cis-regulatory region sequence-specific DNA binding 

GO:0000978 720 276 1.53214E-07 blue 
RNA polymerase II cis-regulatory region sequence-specific 
DNA binding 

GO:0000976 978 324 6.28136E-07 blue transcription cis-regulatory region binding 
GO:0001067 979 324 6.47739E-07 blue transcription regulatory region nucleic acid binding 
GO:0000785 796 299 6.67606E-06 blue chromatin 
GO:0001216 316 140 0.000240684 blue DNA-binding transcription activator activity 

GO:0007156 127 72 0.000264759 blue 
homophilic cell adhesion via plasma membrane adhesion 
molecules 

GO:0001228 314 138 0.000380824 blue 
DNA-binding transcription activator activity, RNA 
polymerase II-specific 

GO:0009887 846 294 0.001394889 blue animal organ morphogenesis 
GO:0045321 704 154 0.011872905 brown leukocyte activation 
GO:0001775 838 174 0.022218155 brown cell activation 
GO:0046649 573 128 0.035868894 brown lymphocyte activation 

GO:0098742 259 11 0.01305654 cyan 
cell-cell adhesion via plasma-membrane adhesion 
molecules 

GO:0007156 127 9 0.01305654 cyan 
homophilic cell adhesion via plasma membrane adhesion 
molecules 

GO:0007218 65 11 0.000519596 magenta neuropeptide signaling pathway 
GO:0004930 565 23 0.001899352 magenta G protein-coupled receptor activity 
GO:0030594 129 11 0.001899352 magenta neurotransmitter receptor activity 
GO:0008528 130 11 0.002668911 magenta G protein-coupled peptide receptor activity 
GO:0001653 134 11 0.002668911 magenta peptide receptor activity 
GO:0008188 43 7 0.004077594 magenta neuropeptide receptor activity 

GO:0007187 36 7 0.015442893 magenta 
G protein-coupled receptor signaling pathway, coupled to 
cyclic nucleotide second messenger 

GO:0031045 30 6 0.015442893 magenta dense core granule 
GO:0042923 16 5 0.015442893 magenta neuropeptide binding 
GO:0007186 940 28 0.015442893 magenta G protein-coupled receptor signaling pathway 
GO:0030527 25 7 2.51689E-06 midnightblue structural constituent of chromatin 
GO:0000786 51 7 5.06484E-06 midnightblue nucleosome 
GO:0044815 77 7 1.82541E-05 midnightblue DNA packaging complex 
GO:0032200 112 6 0.000380069 midnightblue telomere organization 
GO:0032993 114 7 0.00052576 midnightblue protein-DNA complex 
GO:0006334 49 5 0.002423917 midnightblue nucleosome assembly 
GO:0034728 53 5 0.002822227 midnightblue nucleosome organization 
GO:0045638 64 6 0.005811888 midnightblue negative regulation of myeloid cell differentiation 
GO:0046982 148 7 0.007647995 midnightblue protein heterodimerization activity 
GO:0061644 6 3 0.010726579 midnightblue protein localization to CENP-A containing chromatin 

GO:0000977 860 88 5.0081E-06 red 
RNA polymerase II transcription regulatory region 
sequence-specific DNA binding 

GO:0000976 978 92 5.0081E-06 red transcription cis-regulatory region binding 
GO:0001067 979 92 5.0081E-06 red transcription regulatory region nucleic acid binding 
GO:0000785 796 88 5.70992E-06 red chromatin 
GO:0051253 843 83 7.4743E-06 red negative regulation of RNA metabolic process 

GO:0000978 720 76 9.56223E-05 red 
RNA polymerase II cis-regulatory region sequence-specific 
DNA binding 

GO:0000987 746 77 9.56223E-05 red cis-regulatory region sequence-specific DNA binding 
GO:0045892 776 75 9.56223E-05 red negative regulation of DNA-templated transcription 
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GO:1903507 778 75 9.56223E-05 red 
negative regulation of nucleic acid-templated 
transcription 

GO:1902679 784 75 9.60598E-05 red negative regulation of RNA biosynthetic process 

GO:0050911 173 156 7.59683E-33 turquoise 
detection of chemical stimulus involved in sensory 
perception of smell 

GO:0050907 194 166 9.0795E-30 turquoise 
detection of chemical stimulus involved in sensory 
perception 

GO:0009593 222 180 5.96689E-27 turquoise detection of chemical stimulus 
GO:0050906 240 192 3.38374E-26 turquoise detection of stimulus involved in sensory perception 
GO:0004984 145 121 2.07678E-20 turquoise olfactory receptor activity 
GO:0007608 231 163 2.51275E-20 turquoise sensory perception of smell 
GO:0007606 276 183 5.41772E-19 turquoise sensory perception of chemical stimulus 
GO:0051606 347 224 2.98917E-14 turquoise detection of stimulus 
GO:0005549 59 55 5.14487E-12 turquoise odorant binding 
GO:0007600 583 318 1.52904E-08 turquoise sensory perception 

GO:0050911 129 118 0.000290613 ME1 
detection of chemical stimulus involved in sensory 
perception of smell 

GO:0050907 139 123 0.007091223 ME1 
detection of chemical stimulus involved in sensory 
perception 

GO:0050906 166 143 0.024045676 ME1 detection of stimulus involved in sensory perception 
GO:0031424 22 10 2.31554E-16 ME11 keratinization 
GO:0030216 59 10 1.05929E-11 ME11 keratinocyte differentiation 
GO:0009913 85 10 3.37099E-10 ME11 epidermal cell differentiation 
GO:0008544 137 11 7.13674E-10 ME11 epidermis development 
GO:0001533 24 7 2.40726E-09 ME11 cornified envelope 
GO:0043588 112 10 2.91633E-09 ME11 skin development 
GO:0030855 265 10 3.18151E-06 ME11 epithelial cell differentiation 
GO:0060429 504 10 0.001071013 ME11 epithelium development 
GO:0018149 19 3 0.049991115 ME11 peptide cross-linking 
GO:0016442 55 7 0.008974025 ME13 RISC complex 
GO:0031332 55 7 0.008974025 ME13 RNAi effector complex 
GO:0035195 118 7 0.030726048 ME13 miRNA-mediated gene silencing 
GO:0035194 125 7 0.030726048 ME13 RNA-mediated post-transcriptional gene silencing 
GO:0016441 128 7 0.030726048 ME13 post-transcriptional gene silencing 
GO:0031047 155 7 0.036941431 ME13 RNA-mediated gene silencing 
GO:0048706 66 4 0.022649717 ME16 embryonic skeletal system development 
GO:0009952 92 4 0.022649717 ME16 anterior/posterior pattern specification 
GO:0048706 66 8 2.85679E-10 ME4 embryonic skeletal system development 
GO:0009952 92 8 3.28292E-07 ME4 anterior/posterior pattern specification 
GO:0001501 277 9 1.03505E-06 ME4 skeletal system development 
GO:0003002 190 8 9.65161E-06 ME4 regionalization 
GO:0007389 210 8 1.50251E-05 ME4 pattern specification process 
GO:0048705 117 7 1.50251E-05 ME4 skeletal system morphogenesis 
GO:0043009 248 8 2.18489E-05 ME4 chordate embryonic development 
GO:0048704 49 6 2.26588E-05 ME4 embryonic skeletal system morphogenesis 
GO:0009792 258 8 2.38691E-05 ME4 embryo development ending in birth or egg hatching 
GO:0000785 492 9 3.85579E-05 ME4 chromatin 

GO:0000977 545 26 5.12091E-06 ME5 
RNA polymerase II transcription regulatory region 
sequence-specific DNA binding 

GO:0000976 621 26 5.39002E-06 ME5 transcription cis-regulatory region binding 
GO:0001067 622 26 5.39002E-06 ME5 transcription regulatory region nucleic acid binding 
GO:0000785 492 23 9.80468E-05 ME5 chromatin 
GO:0009790 472 21 0.000499401 ME5 embryo development 
GO:0043009 248 16 0.000739359 ME5 chordate embryonic development 
GO:0007389 210 15 0.000739359 ME5 pattern specification process 
GO:0009792 258 16 0.001049634 ME5 embryo development ending in birth or egg hatching 
GO:0009952 92 11 0.001482511 ME5 anterior/posterior pattern specification 
GO:0045944 567 20 0.002578197 ME5 positive regulation of transcription by RNA polymerase II 
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Figure 48: A) Differences in cell type composition between germline (G) and control (C) for LFS cohort. Pvalues calculated 
while accounting for tumor type. Bold black line = mean B) Estimation of effect size of tumor type and other on cell type 
composition by linear model with logit transformed cell type fraction as response variable.  
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Table 9: Germline mutated tumor samples of the TP53 and MMR cohort used for methylation analysis. 

INFORM_PUBLIC_PID SENTRIXID CPS TUMOR TYPE 
INF_R_1121_primary 203723180078_R02C01 MMR MED_WNT 
INF_R_1164_primary 203726680028_R01C01 MMR HGG_pedRTK1 
INF_R_1180_relapse1 203946830162_R05C01 MMR HGG_pedRTK1 
INF_R_1246_relapse2 203949840087_R04C01 MMR HGG_X_OTHERS 
INF_R_1622_relapse1 204391650168_R02C01 MMR HGG_IDH 
INF_R_1733_primary 204792770073_R01C01 MMR HGG_IDH 
INF_R_1899_primary 205023290135_R06C01 MMR HGG_pedRTK1 
INF_R_305_progression 201332340037_R05C01 MMR HGG_pedRTK1 
INF_R_686_relapse3 202259350090_R07C01 MMR HGG_IDH 
INF_R_991_relapse2 203430580030_R05C01 MMR SARCOMA_OSTEO 
INF_R_1320_relapse1 203985930014_R02C01 MMR HGG_IDH 
INF_R_1575_relapse1 204391650033_R07C01 MMR ALL_T 
INF_R_1078_progression 203537580046_R07C01 MMR HGG_pedRTK1 
INF_R_756_relapse1 203033880113_R08C01 MMR HGG_pedRTK1 
INF_R_1472_relapse1 203990170064_R02C01 MMR UNKNOWN 
140F46SD 205799790171_R01C01 MMR AS 
140F42S1D 205814880070_R08C01 MMR GBM 
140F42S2D 205799790171_R03C01 MMR GBM 
140F45SD 205814880020_R02C01 MMR GBM 
140F57SD 205814880020_R03C01 MMR AS 
INF_R_050_relapse2 3998523055_R05C02 TP53 SARCOMA_OSTEO 
INF_R_1116_relapse4 203717910104_R02C01 TP53 ACC 
INF_R_1159_relapse1 203726680028_R08C01 TP53 MED_SHH 
INF_R_1273_relapse2 203949840122_R02C01 TP53 SARCOMA_X_OTHERS 
INF_R_1281_relapse1 203960200125_R04C01 TP53 HGG_X_OTHERS 
INF_R_1357_relapse1 203986500025_R05C01 TP53 HGG_pedRTK2 
INF_R_1397_relapse1 203986510105_R06C01 TP53 SARCOMA_RMS_EMB 
INF_R_1407_relapse1 203989100011_R05C01 TP53 ACC 
INF_R_1412_relapse1 203989100025_R03C01 TP53 SARCOMA_X_OTHERS 
INF_R_1676_progression 204391650167_R05C01 TP53 AML 
INF_R_168_relapse1 200397860036_R06C02 TP53 ADENOCARCINOMA 
INF_R_1681_relapse1 204379160024_R05C01 TP53 HGG_X_OTHERS 
INF_R_1691_primary 204390590044_R05C01 TP53 SARCOMA_RMS_EMB 
INF_R_177_relapse1 200397860074_R01C02 TP53 SARCOMA_OSTEO 
INF_R_1854_progression 205023290128_R01C01 TP53 ACC 
INF_R_273_primary 201194000072_R01C01 TP53 HGG_X_OTHERS 
INF_R_307_relapse1 201364900076_R05C01 TP53 ATRT_SHH 
INF_R_354_relapse1 201465970003_R03C01 TP53 ACC 
INF_R_401_progression 201530470018_R08C01 TP53 MED_SHH 
INF_R_431_primary 201533480032_R04C01 TP53 HGG_pedRTK1 
INF_R_473_relapse1 201869690154_R05C01 TP53 SARCOMA_OSTEO 
INF_R_769_relapse1 203034110090_R02C01 TP53 SARCOMA_X_OTHERS 
INF_R_790_relapse1 203049640025_R08C01 TP53 ACC 
INF_R_914_primary 203197470212_R02C01 TP53 SARCOMA_X_OTHERS 
INF_R_924_relapse3 203197470212_R04C01 TP53 PLEXUS_CA 
INF_R_994_progression 203723190083_R02C01 TP53 SARCOMA_OSTEO 
INF_R_743_primary 202292320097_R07C01 TP53 NBL 
INF_R_1079_primary 203537580023_R08C01 TP53 SARCOMA_OSTEO 
INF_R_1023_relapse1 203504440004_R07C01 TP53 SARCOMA_OSTEO 
INF_R_1030_relapse3 203537580023_R03C01 TP53 SARCOMA_OSTEO 
INF_R_823_relapse1 203049640066_R03C01 TP53 SARCOMA_RMS_EMB 
INF_R_993_relapse2 203430580030_R04C01 TP53 NHL_BURKITT 
INF_R_265_progression 201247480007_R02C01 TP53 SARCOMA_X_OTHERS 
INF_R_1879_primary 205049780038_R08C01 TP53 SARCOMA_OSTEO 
INF_R_1123_primary 203723180077_R08C01 TP53 HGG_pedMYCN 
INF_R_852_relapse7 203949840163_R07C01 TP53 ACC 
INF_R_1677_relapse1 204391650167_R06C01 TP53 AML 
INF_R_130_relapse7 201869690154_R03C01 TP53 SARCOMA_OSTEO 
INF_R_117_relapse1 200325530125_R04C01 TP53 NBL 
INF_R_1662_relapse5 204391650167_R02C01 TP53 NBL 
INF_R_1904_relapse1 205049780056_R03C01 TP53 HGG_X_OTHERS 
INF_R_1908_relapse1 205049780056_R01C01 TP53 HGG_X_OTHERS 
INF_R_1962_relapse2 205049780056_R07C01 TP53 NBL 
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INF_R_1998_primary 205055470084_R06C01 TP53 SARCOMA_MPNST 
INF_R_2031_relapse1 205059630016_R03C01 TP53 HGG_X_OTHERS 
INF_R_2050_relapse 205058490051_R01C01 TP53 HGG_pedMYCN 
INF_R_2091_relapse1 205555380045_R05C01 TP53 SARCOMA_OSTEO 
INF_R_2103_primary 205555380180_R07C01 TP53 HGG_pedMYCN 
INF_R_2203_relapse2 205624630031_R01C01 TP53 SARCOMA_OSTEO 
INF_R_2228_relapse2 205624630173_R08C01 TP53 ALL_B 
INF_R_2301_primary 205799790061_R01C01 TP53 HGG_pedMYCN 
INF_R_2345_primary 205799790159_R06C01 TP53 SARCOMA_MPNST 
INF_R_2374_relapse3 205854140020_R07C01 TP53 SARCOMA_MPNST 
INF_R_2418_primary 206129780103_R01C01 TP53 HGG_pedMYCN 
INF_R_2560_relapse1 206462450069_R01C01 TP53 SARCOMA_RMS_EMB 
INF_R_2564_primary 206466470167_R08C01 TP53 SARCOMA_RMS_EMB 
INF_R_2570_relapse1 206466470172_R01C01 TP53 MED_SHH 
INF_R_2601_relapse1 206467010109_R06C01 TP53 SARCOMA_X_OTHERS 
INF_R_2687_relapse1 207131890002_R04C01 TP53 HGG_X_OTHERS 
INF_R_2717_primary 207131890001_R06C01 TP53 HGG_X_OTHERS 
INF_R_2728_relapse1 207131890002_R06C01 TP53 SARCOMA_OSTEO 
INF_R_2252_relapse4 207127950039_R07C01 TP53 SARCOMA_RMS_EMB 

 
 
 
Table 10: Samples used for the mutational signature analysis. 

SUBGROUP INFORM_PUBLIC_PID 
NBL INF_R_743_primary 
SARCOMA_OSTEO INF_R_050_relapse2 
HGG_X-OTHERS INF_R_1281_relapse1 
PLEXUS_CA INF_R_924_relapse3 
HGG_X-OTHERS INF_R_1733_primary 
MED_SHH INF_R_1702_primary 
SARCOMA_OSTEO INF_R_1079_primary 
SARCOMA_OSTEO INF_R_991_relapse2 
SARCOMA_X-OTHERS INF_R_1031_relapse1 
SARCOMA_OSTEO INF_R_1023_relapse1 
MED_WNT INF_R_1121_primary 
HGG_X-OTHERS INF_R_1622_relapse1 
ACC INF_R_1116_relapse4 
SARCOMA_X-OTHERS INF_R_1412_relapse1 
ADENOCARCINOMA INF_R_168_relapse1 
ACC INF_R_790_relapse1 
MED_SHH INF_R_401_progression 
MED INF_R_742_relapse2 
SARCOMA_OSTEO INF_R_1030_relapse3 
HGG_X-OTHERS INF_R_1681_relapse1 
HGG_pedRTK1 INF_R_1164_primary 
HGG_pedRTK1 INF_R_305_progression 
ACC INF_R_1407_relapse1 
MED_SHH INF_R_1159_relapse1 
DIPG INF_R_574_primary 
SARCOMA_RMS_EMB INF_R_823_relapse1 
HGG_pedRTK1 INF_R_431_primary 
NHL_BURKITT INF_R_993_relapse2 
SARCOMA_X-OTHERS INF_R_265_progression 
SARCOMA_X-OTHERS INF_R_1273_relapse2 
HGG_X-OTHERS INF_R_686_relapse3 
SARCOMA_RMS_ALV INF_R_1007_relapse1 
SARCOMA_OSTEO INF_R_994_progression 
SARCOMA_OSTEO INF_R_473_relapse1 
AML INF_R_1676_progression 
HGG_pedRTK1 INF_R_1180_relapse1 
SARCOMA_RMS_EMB INF_R_1397_relapse1 
SARCOMA_RMS_EMB INF_R_1691_primary 
ATRT INF_R_307_relapse1 
HGG_X-OTHERS INF_R_273_primary 
HGG_pedRTK1 INF_R_1899_primary 
HGG_X-OTHERS INF_R_1320_relapse1 
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ACC INF_R_354_relapse1 
HGG_X-OTHERS INF_R_1246_relapse2 
SARCOMA_OSTEO INF_R_177_relapse1 
SARCOMA_OSTEO INF_R_1879_primary 
SARCOMA_X-OTHERS INF_R_769_relapse1 
SARCOMA_X-OTHERS INF_R_914_primary 
ACC INF_R_1854_progression 
HGG_X-OTHERS INF_R_1357_relapse1 
MED_SHH INF_R_1076_primary 
HGG_X-OTHERS INF_R_025_relapse2 
HGG_X-OTHERS INF_R_1123_primary 
SARCOMA_OSTEO INF_R_130_relapse6 
X-OTHERS_BRAIN INF_R_852_relapse6 

 

 
Figure 49: EpiDISH cell type composition estimations of liquid biopsy samples from Subasri cohort. 
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Figure 50: Networkplot generated by considering clusters identified via WGCNA on ND1 that were significantly enriched with 
probes identified by contrasts Ia or Ib. For each cluster the top 10 enriched pathways were selected (sorted by FDR) and inside 
each pathway the top 10 genes were selected (sorted by FDR of the matched methylation probe). 
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Figure 51: Networkplot generated by considering clusters identified via WGCNA on ND2 that were significantly enriched with 
probes identified by contrasts IIa or IIb. For each cluster the top 10 enriched pathways were selected (sorted by FDR) and 
inside each pathway the top 10 genes were selected (sorted by FDR of the matched methylation probe). 
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