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Abstract

Diastolic heart failure is the most common cause of heart insufficiency worldwide. Diagnosis is

typically established via hemodynamic measurements during invasive cardiac catheterization.

However, this is associated with interventional risks for the patient. In this dissertation artificial

intelligence (AI) models are proposed to predict left-ventricular filling pressures based on non-

invasive cardiac magnetic resonance imaging (MRI).

A total cohort of 66,936 patients receiving cardiac catheterization, including 11,699 cardiac MRI

examinations, was investigated. The developed AI model could distinguish between elevated

and normal filling pressures, providing valuable information on the heart’s diastolic function. The

novel approach was found superior to established echocardiographic biomarkers and human

experts.

A secondary AI model was developed to automatically diagnose various types of cardiomy-

opathies from cardiac MRI. The detectable disease patterns were: hypertrophic, dilated and

ischemic cardiomyopathy, cardiac amyloidosis and control. The AI only required a single MRI

frame to reach a diagnosis, which could enable less time-intensive MRI protocols in the future.

Both AI applications were introspected by attention mapping revealing the AI’s approach to

solve those tasks, thus contributing to explainability. The AI model behind the filling pressure

prediction was validated in three independent hospitals involving multiple MRI manufacturers,

protocols and models.

In essence, artificial neural networks can predict filling pressure and diagnosis from cardiac

MRI, representing a highly scalable approach in the face of overburdened health systems,

potentially impacting future diagnosis and treatment strategies.
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Zusammenfassung

Die diastolische Herzinsuffizienz ist weltweit die häufigste Ursache für eine Herzinsuffizienz.

Die Diagnose wird in der Regel durch hämodynamische Messungen während einer invasiven

Herzkatheteruntersuchung gestellt. Dies ist jedoch mit interventionellen Risiken für den Pa-

tienten verbunden. In dieser Dissertation wird künstliche Intelligenz (KI) zur Vorhersage des

linksventrikulären Füllungsdrucks auf der Grundlage der nicht-invasiven kardialen Magnetreso-

nanztomographie (MRT) vorgeschlagen.

Insgesamt wurde eine Kohorte von 66.936 Patienten untersucht, bei denen eine Herzka-

theteruntersuchung durchgeführt wurde, einschließlich 11.699 kardialen MRT-Untersuchungen.

Das entwickelte KI-Modell konnte zwischen erhöhtem und normalem Füllungsdruck unterschei-

den und damit wichtige Informationen über die diastolische Funktion des Herzens liefern. Der

neu-entwickelte Ansatz erwies sich als überlegen gegenüber etablierten echokardiografischen

Biomarkern und menschlichen Experten.

Ein sekundäres KI-Modell wurde entwickelt, um verschiedene Arten von Kardiomyopathien

anhand von kardialen MRTs automatisch zu diagnostizieren. Die erkennbaren Krankheitsbilder

waren: hypertrophe, dilatative und ischämische Kardiomyopathie, kardiale Amyloidose und

Kontrollgruppe. Die KI benötigte nur ein einziges MRT-Bild, um eine Diagnose zu stellen, was

zukünftig weniger zeitintensive MRT-Protokolle ermöglichen könnte.

Beide KI-Anwendungen wurden durch Aufmerksamkeitslokalisierung untersucht, welche den

Ansatz der KI zur Lösung dieser Aufgaben offenbart und zur Erklärbarkeit beiträgt. Das KI-Modell

für die Füllungsdruckvorhersage wurde in drei unabhängigen Krankenhäusern unter Verwendung

mehrerer MRT-Hersteller, Protokolle und Modelle validiert.

Im Wesentlichen können künstliche neuronale Netze den Füllungsdruck und die Diagnose

aus kardialen MRTs vorhersagen, was angesichts der überlasteten Gesundheitssysteme einen

hochgradig skalierbaren Ansatz darstellt, der sich möglicherweise auf künftige Diagnose- und

Behandlungsstrategien auswirkt.
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1 Introduction

Cardiovascular diseases, which often result in heart failure (HF), present the leading cause of

mortality worldwide and are a significant contributor to reduced quality of life [Mensah et al., 2019].

They constitute a major burden on global healthcare systems. Especially, diastolic heart failure

is the most prevalent underlying cause of heart insufficiency resulting in substantial morbidity

and death [Tsao et al., 2018].

Diastolic heart failure, also known as heart failure with preserved ejection fraction (HF-pEF),

is a condition where the heart’s ventricles become stiff and do not relax properly during the

diastolic phase of the heart cycle, resulting in inadequate filling of the heart with blood. This

impairs the heart’s ability to pump blood effectively, even though the ejection fraction is nor-

mal [Mandinov et al., 2000, Smiseth and Tendera, 2008].

Diastolic heart failure presents unique challenges in management compared to heart failure

with reduced ejection fraction (HF-rEF). In recent years, there have been significant advances and

shifts in treatment strategies for HF-pEF, reflecting a deeper understanding of the disease’s patho-

physiology and a focus on personalized medicine [Kirchhof et al., 2014, Spertus et al., 2021,

Shah et al., 2024]. Traditionally, treatment for diastolic heart failure has focused on managing

symptoms and controlling comorbid conditions with diuretics, antihypertensives and Aldosterone

antagonists [McDonagh et al., 2021].

Recent years have seen a shift towards more targeted therapies and novel approaches

based on evolving research and clinical trials. Initially used for diabetes management, SGLT2

inhibitors have shown promise in HF-pEF. They aid in decreasing hospitalization rates and

enhancing the quality of life for heart failure patients. The DELIVER and EMPEROR-Preserved

trial demonstrated significant benefits of Dapagliflozin and Empagliflozin medication in reducing

heart failure hospitalizations in HF-pEF patients [Solomon et al., 2021, Anker et al., 2021].

Besides the remarkable progress in the medical treatment options of diverse HF-pEF etiologies,

the early and accurate identification of patients and the precise characterization of diastolic

function parameters remain difficult tasks [Lehmann et al., 2024]. The gold standard for defining

diastolic dysfunction is undoubtedly the invasive intracardiac hemodynamics measured during

cardiac catheterization [Dal Canto et al., 2022]. In this procedure, a thin tube (catheter) is in-

serted into an artery at the patient’s groin or wrist and steered through the blood vessels to the left

heart chamber. While this can measure the diastolic properties of the heart with the utmost preci-

sion, invasive procedures are expensive, not ubiquitous available and carry the risk of potentially

severe complications. The risk of major complications during diagnostic cardiac catheterization

is 1%, and the incidence of mortality is 0.05% for diagnostic purposes [Tavakol et al., 2012].

As a result, echocardiography and cardiac biomarkers are commonly utilized in daily

clinical routines for diagnosing diastolic dysfunction without requiring surgical proce-

dures [Vieillard-Baron et al., 2019, Nadar and Shaikh, 2019]. Since the echocardiographic as-

sessment is based on indirect quantification of wall-motion and flow-velocities, the assessment
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1 Introduction

is frequently challenged by different anatomical, structural and functional co-conditions, often

resulting in contradictory information [Mottram and Marwick, 2005, Lehmann et al., 2024]. The

natriuretic peptides are critical biomarkers used extensively in the diagnosis and management

of HFpEF, as the associated myocardial stress stimulates their release. However, this biomarker

also comes with considerable limitations, as its levels may be elevated by other cardiac condi-

tions beyond HFpEF and are affected by factors such as atrial fibrillation, renal dysfunction and

obesity [Januzzi Jr and Myhre, 2020].

Artificial intelligence and scalable digital solutions, transforming healthcare globally, with even

stronger implications anticipated in the future, are the pristine paradigm to address these modern

challenges [van Smeden et al., 2022, Vardas et al., 2022]. Especially, Convolutional Neural

Networks (CNNs) have particularly excelled in processing visual information, such as medical

imaging data [Avendi et al., 2016, Esteva et al., 2017, Poplin et al., 2018, Zhang et al., 2019].

Artificial neural networks are composed of millions of neurons organized into layers, providing

the network with the ability to recognize patterns far beyond human cognition and therefore

enabling solutions for previously unsolvable tasks [Goodfellow et al., 2016].

In this dissertation, a non-invasive method to predict important diagnosis of patients undergoing

cardiac magnetic resonance imaging (cMRI) and to obtain the left ventricular end-diastolic pres-

sure (LVEDP) by using artificial intelligence is presented. The LVEDP relates both acutely and

chronically to clinical conditions that affect ventricular function. It is an important biomarker to as-

sess the extent and severity of the diastolic impairment [Mielniczuk et al., 2007, Du et al., 2015].
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Figure 1.1: Structure of the dissertation.

The integration of this methodology could have a positive impact on treatment strategies

and stimulate further scientific advances by enabling the comprehensive characterization of
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patients’ systolic and diastolic functions, as well as cardiac diagnoses, within a singular cMRI

examination [Lehmann et al., 2024]. This novel approach would further increase the already

extensive capabilities of cMRI, which is recognized as a Class I diagnostic approach according

to recent guidelines [Arbelo et al., 2023]. Addressing diastolic dysfunction and its contributing

factors at an earlier stage would greatly benefit a significant number of patients, providing

increased precision in the care of this challenging patient group.

In order to achieve this objective, a patient collective that underwent both invasive intra-

cardiac pressure measurements and cMRI examination was selected. Deep neural networks

were trained on the cMRI images to predict not only several diagnoses but also LVEDP as an

important marker of diastolic function [Chung et al., 2015]. The AI responsible for the LVEDP

prediction was named ”AI-LVEDP”. The AI model developed to predict patient’s diagnosis is

referred to as ”AI-CMP”.

AI-LVEDP was benchmarked against human experts, cardiac biomarkers and echocardio-

graphic parameters. For both AI agents, a comprehensive sensitivity analysis was conducted

and AI-introspection was performed to assess the neural network’s approach for predicting

hemodynamics and diagnosis. Finally, AI-LVEDP was extensively validated in a multicenter,

multi-vendor and multi-protocol study, including data from maximum-care hospitals located in

Heidelberg, Ulm and Stuttgart.

An overview of the dissertation structure is presented in Figure 1.1, highlighting the different

utilized electronic health record resources and the, in the scope of this work, developed algorithms

andAI systems. In Chapter 2, the functionality of artificial neural networks is introduced, including

concepts and various techniques, i.e. model regularization and introspection methodology, which

were fundamental to the success of this machine learning endeavor.

In Chapter 3, an algorithm was developed to automatically annotate the hemodynamic left

ventricular pressure curves, which were recorded during the cardiac catheterization. The main

objective of the algorithm was to robustly extract the LVEDP, which was later used as the

ground truth objective to train AI-LVEDP. However, the functionality was extended to provide

a comprehensive analysis of the pressure curves, contributing to a deeper understanding of

cardiac hemodynamics and enabling the search for novel biomarkers. Based on these findings

AI models capable of inferring patient’s sex, age and diagnosis of coronary artery disease from a

ventricular pressure curve were developed (Chapter 4), giving intriguing insights into the hidden

information content of the curves.

In Chapter 5, the development and evaluation of AI-LVEDP is discussed. This included

careful selection of training data, since all patients with events likely affecting LVEDP between

cardiac MRI and hemodynamics had to be excluded. Moreover, thorough benchmarking against

gold-standard methods, introspection and independent external validation was conducted.

The design of AI-CMP is outlined in Chapter 6, where CMP is short for cardiomyopathy. AI-

CMP was trained to diagnose hypertrophic cardiomyopathy, dilated cardiomyopathy, ischemic

cardiomyopathy and cardiac amyloidosis, which constitute the most common myocardial dis-

eases [Brieler et al., 2017]. Additionally, the learning task included identifying patients without

any structural heart disease.

Finally, in Chapter 7, the potential impact and implications of this dissertation and foundations

for future research are discussed.
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1 Introduction

The research findings presented in Chapter 3, 4, 5 and 6 have been partially published in

The Lancet Digital Health as part of this dissertation’s academic contribution [Lehmann et al., 2024].
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2 Artificial Neural Networks

Artificial neural networks, or simply neural networks (NN), are transforming industries by enabling

machines to learn from data and perform tasks that previously required human intelligence. Their

potential for automation and rapid processing of data at a large scale continues to drive innovation

and opens up new possibilities across various fields [Voulodimos et al., 2018, Devlin et al., 2018,

Jaganathan et al., 2019].

Commonly, the term neural network is used synonymously with terms such as artificial intelli-

gence, machine learning or deep learning. However, these terms have a distinct hierarchical

relationship (Figure 2.1).

Artificial intelligence

Machine learning

Artificial neural networks

Deep learning

Convolutional
(U-net, Inception)

Transformer
(GPT, Llama)

Recurrent
(LSTM, GRU)

Diffusion model
(DALL-E, Stable 

diffusion)

Figure 2.1: Artificial intelligence - hierarchical overview.

Artificial intelligence (AI) is a broad domain comprising systems that can extract intelli-

gence. Intelligence itself is a vague entity, which is not trivial to define. Definitions range

from the capability of thought processes and reasoning to the mimicking of human behav-

ior [Russell and Norvig, 2016].

Machine learning is a sub-domain of AI requiring the algorithms to learn without being explicitly

programmed [El Naqa and Murphy, 2015]. Consecutively, neural networks constitute the sub-

domain of neurologically-inspired machine learning models. They comprise the collective of

brain-inspired algorithms, although methods are highly mathematically idealized and further

evolved, often leaving only little conformity with the biological foundation [Yang and Wang, 2020].

The highly popularized term of deep learning is a sub-field of artificial neural net-

works [Campesato, 2020]. Formally, deep neural networks are neural networks with a high

number of neuron layers [Schmidhuber, 2014]. Advances in hardware (e.g. graphic process-

ing units) and the realization that neural networks scale well with large amounts of data have

contributed significantly to the success of deep learning [Owens et al., 2008].

13



2 Artificial Neural Networks

A recurring pattern in deep learning is the creation of hierarchical representations. Chal-

lenging machine learning problems require sophisticated representations in order to enable

adequate solutions. Neural networks with multiple layers learn different levels of representations.

By recombining simple features, the artificial neural network can model relationships of any

complexity [LeCun et al., 2015, Lehmann, 2018].

This is the basis for complex deep learning architectures such as large convolutional

neural networks (U-net, Inception) [Ronneberger et al., 2015, Szegedy et al., 2016], recurrent

neural networks inspired by memorization mechanisms [Hochreiter and Schmidhuber, 1997],

diffusion models for text-to-image generation [Marcus et al., 2022, Rombach et al., 2022]

and transformer-based large language models (Chat GPT, Llama) [Singh et al., 2023,

Touvron et al., 2023].

Despite these very stunning and overwhelming applications, the essence of all machine

learning models is simple pattern recognition and interpolation. This chapter gives an overview

on the functionality of artificial neural networks and prominent associated techniques.

2.1 Introduction to Artificial Neural Networks

An artificial neural network consists of individual neurons, which are the basic compo-

nent [Nielsen, 2015, Choi et al., 2020]. The artificial neuron is motivated by the biological neuron.

However, it is highly mathematically idealized. Biological neurons naturally model neuron ac-

tivation over time (e.g. spiking), whereas the artificial neuron does not describe temporal

dependencies. An illustration of an artificial neuron is shown in Figure 2.2. The neuron has an

Σ φ

Input

x1

x2

x3

Weights Transfer function Activation function

b

y
w1

w2

w3

Output

Bias

Figure 2.2: Artificial neuron.

input 𝑥. The respective output 𝑦 of the neuron can be formalized as

𝑦 = 𝜑(∑
𝑖

𝑤𝑖𝑥𝑖 + 𝑏), (2.1)

where 𝑤 is the weight vector of the neuron. The bias 𝑏 is an offset added to the product of

weight vector and input. This scalar is then processed by an activation function 𝜑 to produce the

output 𝑦.
Artificial neurons are aggregated into layers, each of which consists of multiple individual

neurons. In the case of a fully-connected neural network, each neuron is connected to all neurons

in the preceding and succeeding layer (Fig. 2.3). Neurons within the same layer are typically not

interconnected. The first layer is the input layer and models the input dimensions of the network.
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2.2 Training Artificial Neural Networks

Input layer

x1

x2

x3

h3

Hidden layer

h2

h1

h4

Output layer

y1

y2

wowh

Figure 2.3: Artificial neural network.

The last layer, also known as the output layer, provides the model prediction. The intermediate

layers are referred to as hidden layers [Yadav et al., 2015]. The outputs of the hidden layers

are frequently called the latent space [Pan et al., 2008]. The latent space captures the essential

features or characteristics of the input data in a compressed form. The model output ⃗𝑦 for a
fully-connected neural network with a single hidden layer and an input layer activation ⃗𝑥 is given

by

⃗𝑦 = 𝜑𝑜(𝑊𝑜 ⋅ 𝜑ℎ(𝑊ℎ ⋅ ⃗𝑥 + ⃗𝑏ℎ) + ⃗𝑏𝑜). (2.2)

The functions 𝜑ℎ and 𝜑𝑜 represent the activation functions for the hidden layer and the output

layer. In neuron layers, the weight vectors of individual neurons expand to weight matrices.

These weight matrices comprise all the connection weights to the preceding layer. Specifically,

𝑊ℎ denotes the weight matrix of the hidden layer, while 𝑊𝑜 represents the weight matrix of

the output layer. Each bias vector 𝑏 includes a bias value for each neuron in its respective

layer [Haykin, 1999]. The process of producing the output of a neural network is known as

forward propagation, as each activation is passed on to the subsequent layer to generate the

next layer activation.

2.2 Training Artificial Neural Networks

A key characteristic of artificial neural networks is their ability to learn. The learning process

itself consists of adapting the strength of the connections between the neurons. Neural net-

works are trained through the process of backpropagation. The backpropagation algorithm

is a gradient-based optimization method for calculating the parameter updates of neural net-

works [Rumelhart et al., 1986]. In order to quantify the feedback, a loss function has to be

specified. The loss function evaluates the discrepancy between the model output and the ground

truth label. The explicit comparison of the model prediction to the ground truth is categorized as

supervised learning [Niculescu-Mizil and Caruana, 2005].

The output is produced by propagating the input through the network, with the network input

as initial activation. The loss function 𝐿 takes network output 𝑦 and the label ̂𝑦 as arguments and
generates the model loss. Commonly used metrics to quantify this distance are mean squared
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error (MSE), mean absolute error (MAE) and cross-entropy

𝐿𝑀𝑆𝐸 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 𝐿𝑀𝐴𝐸 = 1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖| 𝐿𝐶𝐸 = − ∑
𝑖

∑
𝑗

̂𝑦𝑖,𝑗log(𝑦𝑖,𝑗). (2.3)

Here, 𝑖 is the sum over all training instances. Cross entropy is often used in a multiclass

setting, implying multiple output neurons [Grandini et al., 2020]. Hence, 𝑗 denotes the sum over

each individual output neuron. The objective of the training procedure is to minimize the loss

by optimizing the parameter configuration, with gradient descent enabling this process. The

derivatives of the loss function provide the neurons with the necessary feedback to modify their

weights and biases accordingly. This is achieved through the calculation of the appropriate

derivatives of the loss function. As a result, the loss travels backwards through the network. The

update rules for weights 𝑤 and biases 𝑏 are

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑑𝐿(𝑤𝑡)
𝑑𝑤𝑡

and 𝑏𝑡+1 = 𝑏𝑡 − 𝜂𝑑𝐿(𝑏𝑡)
𝑑𝑏𝑡

. (2.4)

The learning rate, denoted by the hyperparameter 𝜂, controls the size of the gradient update.
The dynamic programming paradigm and the chain rule are utilized to compute the derivatives

of the loss function effectively [Bellman, 1954]. With the chain rule for derivatives, commonly

computed parts of the total derivative can be separated and stored [Deisenroth et al., 2020].

This leads to a considerable reduction in calculation complexity, as partial derivatives can be

reused and do not have to be calculated redundantly.

In general, loss functions in neural networks are non-convex, resulting in few theoretical

guarantees regarding convergence [Goodfellow and Vinyals, 2014]. The non-convex nature

of the loss function, combined with a multitude of parameters, leads to numerous local min-

ima. The gradient descent algorithm adjusts weights and biases to follow the direction of the

steepest descent on the multidimensional error surface. Given the typical non-convexity of the

loss function, gradient descent can only ensure convergence to a local minimum. Even the

convergence to global minima (zero training loss) is feasible in deep over-parametrized neural

networks [Du et al., 2019, Oymak and Soltanolkotabi, 2020]. However, the non-convexity is not

a limitation since global convergence is not a desirable constellation as it implies a lack of

generalization (overfitting).

2.3 Activation functions

The activation function is a crucial component of an artificial neuron, as it introduces non-linearity

into the system. Without an activation function, the weight matrices from multiple neuron layers

can be multiplied together to form a single weight matrix that represents the entire network. As a

result, the multilayer network would effectively be reduced to an equivalent single-layer network,

which can only perform a linear combination of inputs [LeCun et al., 2015, Lehmann, 2018]. A

commonly used activation function is the rectified linear unit (ReLU)

ReLU(𝑥) =
⎧{
⎨{⎩

𝑥 if 𝑥 > 0

0 if 𝑥 ≤ 0
. (2.5)
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The advantage of ReLU is the fast calculation, as it is often evaluated as zero. However, ReLU

units can be fragile during training and can ”die” [Lu et al., 2019]. A large gradient in a ReLU

neuron can update its weights so drastically that it will never activate on any datapoint again. As

a result, the gradients of the neuron’s parameters will remain zero permanently.

The scaled exponential linear unit (SELU) does not inherit this problem and is proven to have

self-normalizing properties. Based on the Banach fixed-point theorem it is proven that SELU

activation

SELU(𝑥) =
⎧{
⎨{⎩

𝑠 ⋅ 𝑥 if 𝑥 > 0

𝑠 ⋅ 𝑎 ⋅ (𝑒𝑥 − 1) if 𝑥 ≤ 0
, where a≈1.673 and s≈1.051. (2.6)

causes activations propagated through many network layers to converge towards zero mean

and unit variance [Klambauer et al., 2017].

Both activations presented are not affected by the vanishing gradient problem that occurs

with functions such as sigmoid or tangens hyperbolicus, which compress their inputs into a

restricted output range. Thereby, the gradient can decrease exponentially as it is passed

backwards through each layer, which leads to inadequately small signals for parameter optimiza-

tion [Hochreiter, 1991, Hochreiter et al., 2001].

In multiclass classification it is typical to use one neuron per class in the output layer. In such

cases the target vectors are one-hot encoded and the preferred activation function is softmax

activation [Bishop, 2006]. The softmax activation transforms an unprocessed activation vector

𝑥 by applying the exponential function to each value. Another key property is that the sum

of all values in the softmax vector equals one [Graves and Schmidhuber, 2005]. Hence, the

softmax output can be interpreted as a pseudo-probability. This is ensured by normalizing each

exponential value with the sum of all exponentials. The softmax activation of neuron 𝑖 for an
input vector ⃗𝑥 is given by

softmax(𝑥𝑖) = 𝑒𝑥𝑖

∑𝑗 𝑒𝑥𝑗
. (2.7)

The exponential scaling increases the discrepancy between input activations. This often

results in the predominant pseudo probability being close to 1.0 and hence making the neural

network appear very decisive.

2.4 Parameter initialization

Research suggests that many attempts in the past to train deep neural networks have likely

failed due to poor initialization schemes [Sutskever et al., 2013]. A well-regarded approach for

initializing weight matrices is Glorot Uniform Initialization [Glorot and Bengio, 2010]. Also known

as Xavier Initialization, this method uses values sampled from a uniform distribution to set the

weight matrix values, with biases initialized to zero

Glorot ∼ Uniform[−
√

6
√𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

,
√

6
√𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

]. (2.8)
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Where 𝑛𝑖𝑛 stands for the number of input neurons and 𝑛𝑜𝑢𝑡 for the number of output neurons

in the corresponding layer. The initialization weights are drawn from a uniform distribution with

boundaries set at
√

6√𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
for the upper limit and −

√
6√𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

for the lower limit.

Glorot Uniform Initialization helps in preserving the gradient magnitude during backpropaga-

tion. By maintaining constant variance of gradients, Glorot Uniform Initialization addresses the

vanishing and exploding gradient problem. Consistent gradient flow ensures that all layers learn

effectively, making the training process faster, more stable and efficient [Hanin, 2018].

2.5 Optimization

Optimization in the context of neural networks is the process of systematic adjustment of model

parameters, such as weights and biases, to achieve minimal loss [Abdolrasol et al., 2021].

Basic weight updates through gradient descent, as stated in Equation 2.4, are infrequently

used to optimize neural networks. To enhance convergence speed and reach superior optima,

supplementary techniques are typically applied. Two widely used enhancements are learning

rate decay and momentum.

At first, it is assumed that the optimum is far away from the initialization, hence the gradient

updates should be large to accelerate convergence. Momentum increases the size of the current

parameter update dependent on previous gradients by adding an additional term to the update

rule

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑑𝐿(𝑤𝑡)
𝑑𝑤𝑡

− 𝛼𝑑𝐿(𝑤𝑡−1)
𝑑𝑤𝑡−1

. (2.9)

In this expression, 𝐿 denotes the loss function,
𝑑𝐿(𝑤𝑡−1)

𝑑𝑤𝑡−1
indicates the gradient update from the

earlier time step, and 𝛼 is a hyperparameter that controls the sizing of the momentum term.

Momentum is based on the principle that a large gradient update in the previous step sug-

gests that the next gradient update should also be large. Empirical studies have shown

that using a momentum term can significantly enhance convergence speed in neural net-

works [Rumelhart et al., 1986]. Moreover, momentum is advantageous for escaping poor local

minima within the non-convex loss function surface, often resulting in a model with better overall

performance [Sutskever et al., 2013].

Learning rate decay, a second commonly used technique, involves gradually decreasing the

learning rate as the training advances. This is particularly useful when the neural network’s weight

configuration is nearing a good minimum, where smaller parameter updates are more effective

for precise convergence. Conversely, a high learning rate could lead to oscillation around the

minimum in the same setting [Lehmann, 2018]. RMSprop (Root Mean Square propagation)

builds upon this intuition and introduces adaptive learning rates for each individual trainable

parameter [Hinton et al., 2012a].

Adam (Adaptive moment estimation) is a widely used optimization algorithm for training

machine learning models and the preferred choice for optimization in this dissertation. Adam

combines ideas from RMSprop and momentum. The algorithm calculates an exponential moving

average of past gradients and squared gradients to adaptively adjust the learning rates for each

parameter [Kingma and Ba, 2014].

Furthermore, bias correction is utilized to compensate for the initialization bias of the 𝑚 and 𝑣
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Algorithm 1 Adam

Input: Initial parameter vector 𝜃0
Stochastic objective function 𝑓(𝜃0)
Learning rate 𝛼 = 0.001
Exponential decay rates for the moment estimates 𝛽1 = 0.9, 𝛽2 = 0.999
Numerical term 𝜖 = 10−8

𝑚0 ← 0 ▷ Initialize 1𝑠𝑡 moment vector

𝑣0 ← 0 ▷ Initialize 2𝑠𝑡 moment vector

𝑡 ← 0 ▷ Initialize timestep

while 𝜃𝑡 not converged do

𝑡 ← 𝑡 + 1
𝑔𝑡 ← ∇𝜃𝑓𝑡(𝜃𝑡−1) ▷ Get gradients with respect to stochastic objective at timestep 𝑡
𝑚𝑡 ← 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡 ▷ Update biased first moment estimate

𝑣𝑡 ← 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔2
𝑡 ▷ Update biased second raw moment estimate

𝑚𝑡 ← 𝑚𝑡
1−𝛽𝑡

1
▷ Compute bias-corrected first moment estimate

𝑣𝑡 ← 𝑣𝑡
1−𝛽𝑡

2
▷ Compute bias-corrected second raw moment estimate

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼⋅𝑚𝑡
√𝑣𝑡+𝜖 ▷ Update parameters

end while

return 𝜃𝑡 ▷ Return updated parameters

estimates. Particularly, in the early stages of training, the moving averages are biased towards

zero. The exact functionality of Adam is stated in Algorithm 1.

In essence, Adam is conceived to offer a dynamic and effective optimization method that uses

momentum, adaptive learning rates and bias corrections. This combination aims to increase

the speed of convergence and overcome the complexity of training deep neural networks. By

adaptively adjusting learning rates based on historical gradients, Adam deftly navigates the

intricacies of different datasets and network architectures, making it an efficient optimization

strategy for deep learning endeavors.

2.6 Regularization

Regularization is an essential component of machine learning and neural network training to

improve model generalization and prevent overfitting. Rather than learning the fundamental

concepts in the data, the model might simply memorize the entire training set. Neural networks

are highly prone to this phenomenon due to the large number of trainable parameters (degrees

of freedom) they possess [Ying, 2019].

If a model fits the training data too precisely, it might not reliably forecast future data, which

means the model is overfitted. In other words, overfitting is a model’s inability to general-

ize [Pitt and Myung, 2002, Lehmann, 2018]. Overfitting can be detected by observing a signifi-

cant disparity between the model’s performance on the training data versus its performance on

the validation or test data.

This occurs when not only essential patterns in the data aremodeled, but also noise (Figure 2.4).

To distinguish between real signals and noise, data is needed. The amount of available data is in

direct relationship to the complexity of patterns that can be potentially modeled and distinguished

from noise (Nyquist-Shannon sampling theorem) [Shannon, 1949].
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(b) Regularized model.

Figure 2.4: Overfitting and regularization. The dashed black lines represent the decision bound-

aries of the models. In Figure (a), an overfitted model is depicted, classifying every

data point perfectly, resulting in a complex decision boundary. In Figure (b), a regu-

larized model is shown, emphasizing generalization rather than fitting to the noise

within the training data.

Regularization techniques address this issue by introducing additional constraints or penalties

to the model training process, promoting simpler and more generalized models. In traditional

machine learning models, the reduction of fit-able parameters was a widely used method to

prevent overfitting. In deep learning, the trend is towards keeping the number of parame-

ters high and enforcing regularization with other approaches. However, creating intermediate

information bottlenecks is still frequently utilized (e.g. autoencoders) to prevent overadapta-

tion [Hinton and Salakhutdinov, 2006]. The following sections present commonly used methods

to counteract overfitting in neural networks.

2.6.1 L1- and L2-regularization

L2-regularization, also known as L2-norm or ridge regularization, is a long prevalent

technique used in machine learning to improve model generalization and prevent overfit-

ting [Kukačka et al., 2017]. L2-regularization operates by imposing a penalty on the size of

the model parameters, thus favoring smaller coefficients.

This is achieved by introducing a regularization term into the loss function. For a weight

matrix 𝑊, the regularization part of the loss is defined as the squared sum of all its elements

𝐿𝐿2 = 𝜆 ∑
𝑖𝑗

𝑊 2
𝑖𝑗 = 𝜆‖𝑊‖2. (2.10)

The hyperparameter 𝜆 controls the strength of the regularization. L2-regularization is not ex-

clusive to neural networks, but is applicable to any parametric model. L2-regularization is also

commonly known as weight decay because it encourages the parameters to move towards zero
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in order to reduce the regularization term [Ng, 2004].

By analogy, the closely related L1-regularization uses the absolute distances instead of squared

distance weightings

𝐿𝐿1 = 𝜆 ∑
𝑖𝑗

|𝑊𝑖𝑗| = 𝜆‖𝑊‖1. (2.11)

Both variants can be applied simultaneously to the same loss function (elastic net regulariza-

tion) [Zou and Hastie, 2005].

In essence, L1- and L2-regularization are promoting simpler models by reducing the influence

of individual features.

2.6.2 Dropout

In contrast to L2-regularization, Dropout is a technique specifically crafted for neural network

regularization [Srivastava et al., 2014]. The regularization does not originate from a penalty,

but indirectly from altering the network topology. Specifically, the network interconnections are

changed during each training cycle. Applying Dropout to a network layer means that each node

is removed from the network with a probability 𝑑.
For instance, if 𝑑 = 0.5, approximately half of the neurons will be omitted. This removal implies

that all network connections associated with the dropped neuron are ignored. As a result, the

network topology changes with each new training step (i.e. for each individual training sample).

This process is illustrated in Figure 2.5.

Figure 2.5: Dropout. Neurons excluded at random during each training step, resulting in different

network topologies.

Commonly used dropout rates range from 0.1 to 0.5 [Park and Kwak, 2017]. A dropout rate

that is too high may lead to underfitting, while a rate that is too low may not effectively prevent

overfitting. The optimal dropout rate for a specific use case can only be determined through

experimentation and validation.

However, the reduced number of neurons during training comes with implications. Since only

a reduced number of neurons is available during training, but the full network is used during

inference and testing, the output amplitude has to be adjusted appropriately. To account for the

dropout, it is essential that the weights are multiplied by 1
(1−𝑑) to balance the reduced number of

neurons during training [Goodfellow et al., 2016].
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By applying Dropout, the network is forced to generate redundant feature representations,

since it prevents the network from relying only on specific neurons to detect essential features.

This is a consequence of the network’s prediction failing whenever essential neurons drop

out. The network learns to not depend on singular neurons by assigning additional neurons

to compensate for the deficiency. The network’s non-dependability towards specific neurons

encourages robustness and generalization [Lehmann, 2018].

Dropout also addresses the challenge of co-adaptation. Co-adaptation occurs when neurons

across different layers show strongly correlated behavior. Certain neurons become highly

dependent on the presence of other neurons. This dependency can result in poor generalization

to new data, as the network becomes too specialized in capturing patterns present in the training

data but fails to generalize well to unseen data. Dropout forces neurons to detect features that are

universally helpful without excessively relying on specific other neurons [Hinton et al., 2012b].

One negative aspect of Dropout is the increased length of the training process. In every

training step, a different sub-network of the full neural network is trained. The resulting gradient

updates are solely addressing the sparse network layout. Generally, more sparse gradient

updates than full updates are required to achieve comparable performance. The sparse gradient

updates can be considered noisy updates in the context of the full network.

Despite this, Dropout remains a leading technique for regularizing neural net-

works [Labach et al., 2019]. In fact, noisy gradients are not necessarily a disadvantage, as

they have been proven to promote generalization in many scenarios [Neelakantan et al., 2015].

2.6.3 Batch normalization

Network parameter updates are usually not calculated for individual training instances, but for

multiple instances (batches) simultaneously. Training in large batches benefits generalization,

as gradient updates are calculated over a large sample size, reducing the focus on individual

entities [Keskar et al., 2016, He et al., 2019].

Whitened input data is known to speed up the convergence of neural net-

works [LeCun et al., 1998]. Whitening data refers to transforming the data to have a

mean of zero, unit variance and to ensure decorrelation. Evolving this concept further, batch

normalization normalizes the activation of a neural network layer [Ioffe and Szegedy, 2015].

Batch normalization comprises two consecutive processing parts: a normalization step and a

scaling/shifting procedure. During the normalization step, the batch of data 𝑥 is normalized by

the batch mean 𝜇𝐵 and the batch variance 𝜎𝐵

̂𝑥𝑖 = 𝑥𝑖 − 𝜇𝐵
𝜎𝐵

. (2.12)

The resulting batch ̂𝑥𝑖 possesses zero mean and unit variance. The batch mean 𝜇𝐵 and the

batch variance 𝜎𝐵 are calculated as

𝜇𝐵 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 and 𝜎𝐵 = √𝜖 + 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇𝐵)2. (2.13)

The small positive constant 𝜖 is added to avoid division by zero in Equation 2.12. During inference,
the mean and variance are not calculated from the batches, but are estimated from the entire
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training set or accumulated during training. This ensures that the normalization is consistent and

independent of the batch size.

One challenge with batch normalization is that the imposed unit variance and zero mean on

activations ̂𝑥𝑖 can limit the expressiveness of the network’s neurons. To overcome this limitation,

trainable parameters 𝛾 and 𝛽 are introduced, enabling arbitrary mean and standard deviation

values [Ioffe and Szegedy, 2015]. The final output of the batch normalization 𝑥𝐵 is given as

𝑥𝐵,𝑖 = 𝛾 ̂𝑥𝑖 + 𝛽. (2.14)

The parameters 𝛾 and 𝛽 are trained analogously to network weights and biases by error back-

propagation.

Batch normalization provides regularization effects and leads to faster and more stable train-

ing. As specific activation magnitudes are not important due to normalization, but rather the

relationships between activations within a batch, batch normalization inherently acts as a regu-

larizer, when applied to neural networks. Incorporating batch normalization layers in a neural

network can lessen the need for additional regularization or even make it completely redun-

dant [Lehmann, 2018].

Despite the evident benefits of batch normalization, the underlying mechanisms still remain

a topic of discussion. It was previously believed to mitigate internal covariate shift, a phe-

nomenon where parameter initialization and changes in layer input distributions influence the

learning rate. However, recent arguments suggest that batch normalization does not actually

reduce internal covariate shift but rather smooths the objective function and thereby enhancing

performance [Santurkar et al., 2018].

Batch normalization has become a standard component in the design of modern neural

networks due to its ability to accelerate training, improve stability, make the network less sensitive

to weight initialization and offer a form of regularization. Furthermore, normalizing the activations

addresses the vanishing/exploding gradient problem, making batch normalization instrumental for

enabling the successful training of deeper neural network architectures [Goodfellow et al., 2016].

2.6.4 Data augmentation

In deep learning, the quality and quantity of data play a pivotal role in model perfor-

mance. Data augmentation is a technique that addresses both aspects by artificially ex-

panding the dataset through various transformations, while preserving its original mean-

ing [Shorten and Khoshgoftaar, 2019, Wong et al., 2016, Perez and Wang, 2017].

Especially in medical imaging, data scarcity is a common challenge for machine learning

projects as obtaining labeled data is expensive and time-consuming [Rajpurkar et al., 2022].

Limited data can lead to overfitting, where the models perform well on training data but fail

when generalizing to unseen examples. Data augmentation mitigates these issues by artificially

generating additional training samples and thus improving model robustness and generalization.

There are several techniques for data augmentation. In the following, the most relevant options

are summarized.

Geometric transformations involve altering the spatial characteristics of the data without

changing its semantic content. Common transformations include rotation, translation,
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scaling, cropping, flipping and distortion. Slight rotational or translational transformations in

MRI images simulate uncertainties in the patient’s position and angle. This likely does not

change the presence of a heart disease and provides additional variations for the model to

learn from [Zoph et al., 2020].

Color augmentation involves modifying the color space of images. This can include

changes in brightness, contrast, saturation, and hue. By adjusting the brightness level of

images can simulate different lighting conditions, making the model more robust to varying

environmental factors.

Noise injection introduces random perturbations to the data, mimicking real-world noise.

Gaussian noise, salt and pepper noise, and Poisson noise are common types of noise

added to images or numerical data. By exposing the model to augmented inputs, it learns

to focus on the most informative features and becomes more tolerant to noise during

inference [Maharana et al., 2022, Akbiyik, 2023].

Synthetic data, resembling the original distribution, can be created by generative

models such as generative adversarial networks (GANs) or variational autoencoders

(VAEs) [Goodfellow et al., 2020, Kingma and Welling, 2013]. These models learn the un-

derlying data manifold and can produce new samples with realistic variations. Augmenting

the dataset with synthetic samples from generative models enriches the training data and

thereby positively influences model performance [Antoniou et al., 2017].

In summary, data augmentation is a powerful technique for improving the performance and

generalization of machine learning models, especially in situations where labeled data is scarce.

Furthermore, by expanding the training dataset through various transformations, data augmenta-

tion enables models to learn robust representations that more accurately capture the underlying

data distribution.

2.7 Convolutional Neural Networks

Convolutional neural networks (CNNs) are commonly used in computer vision. Their ability to

detect complex visual patterns is yet unmatched by other approaches [Voulodimos et al., 2018,

Szeliski, 2022]. It is remarkable that convolutional layers empower machines with the ability to

see [Forsyth and Ponce, 2002]. In order to understand the functionality behind convolutional

neural networks, we have to inquire: How does human vision work?

Although the human brain is an incredibly complex structure and is not understood in its entirety

by the scientific world, the discovery of simple and complex cells in the visual cortex by Hubel

and Wiesel in 1962 gave important glimpses on its optical functionality [Hubel and Wiesel, 1962,

Zeki, 1993]. The cells in the visual cortex are organized into receptive fields. These biological

receptive fields consist of locally connected photoreceptor cells. The photoreceptor cells are

interconnected in such a way that they can recognize contrasts and edges [Lehmann, 2018].

Convolutional neural networks gained prominence after their introduction by LeCun et

al. in 1989, due to their effectiveness in handwritten digit classification and face de-

tection [LeCun et al., 1989]. However, in 1980, Fukushima had already proposed the
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idea of using convolutional layers in neural networks that resembled contemporary con-

cepts [Fukushima, 1980].

2.7.1 Convolutional layer

In analogy to the visual cortex of mammals, a convolutional layer can also detect simplistic

patterns in image data. In the context of computer vision, the receptive field is conventionally

referred to as a filter or kernel. The basic functionality of convolutional layers is that a filter is

multiplied by a fraction of the input image, resulting in a scalar matrix product (Figure 2.6). The

sliding window is then shifted across the image’s dimensions and the matrix product is calculated

for each position.

1 1 1
1 1 1
1 0 1

1
0
1

0
0
1

0 0 1
0 0 0

1
1

0
1

1 1
0 1

0
1

0 1 1

5 4 3
3 3 3
2 3 4

Image data Feature map

1 0 1
0 1 0
1 0 1

Filter 
(Receptive Field)

*1 *0 *1

*0 *1 *0

*1 *0 *1 X =

Figure 2.6: Convolutional layer functionality.

The resulting values are called the feature map [Goodfellow et al., 2016]. In areas where the

filter matches the image window well, the corresponding feature map entry displays a high value.

Filters can be used to detect distinctive patterns such as edges and contrast. This process is

shown in Figure 2.7.
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Figure 2.7: Principle of filters functioning as feature detectors.

The feature map is therefore an overview of where certain patterns can be found in the original

image. The filter weights are trained via error backpropagation similar to the neuron weights

of fully-connected layers. The number of filters per layer are pre-chosen hyperparameters and

determine how many feature maps are generated.

The initial layer of a CNN learns a diverse set of filters that are selective for different frequencies,

orientations and color blobs [Krizhevsky et al., 2012]. By adding a second convolutional layer
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on top, the network now has the ability to recombine learned simplistic patterns and form filters

which are selective for more complex structures (Figure 2.8).

The additional layers use a mixture of the previous patterns to generate even higher level

features, producing a feature hierarchy. Neural networks begin by detecting simple edges

and geometric patterns in the first convolutional layer, which are subsequently combined into

higher-level features like circles and other geometric shapes.

As more layers are utilized, these progressively combined features enable the network to

recognize increasingly complex shapes, such as human faces or various animal species. With

just three layers, it is possible to detect human faces [Zeiler and Fergus, 2013]. Considering

that modern neural networks often have more than 100 layers, the attainable complexity goes

far beyond what is comprehensible for humans.

First Convolutional Layer 
features

Possible second 
Convolutional layer 
features

Figure 2.8: Combining features by stacking convolutional layers.

The generic nature of convolutional features, especially in the early network layers, results in

high reusability. Task-specific networks can be reused for other tasks. The pre-trained model is

retrained to solve a novel task (transfer learning). Only the task-specific features in the back

layers of the network have to be adjusted; other parts can remain unmodified [Tan et al., 2018,

Lehmann, 2018].

Although the architecture of convolutional neural networks is highly mathematically idealized

compared to the visual cortex, it is intriguing to see how feature generation could work in the

human brain on the basis of deep learning.

2.7.2 Pooling layer

Alongside their finding of receptive fields, Hubel and Wiesel observed another important aspect

in the visual cortex, which motivated an additional core concept of CNNs: the spatial invariance

of complex cells. In other words, complex receptive fields are not reliant on the precise location of

an object [Hubel and Wiesel, 1962]. This characteristic can be gained in CNNs through the use

of pooling layers. Pooling operations are commonly known as sub-sampling or down-sampling.

The maximum-pooling technique is a frequently utilized variant employed in neural networks to

obtain spatial invariance [Weng et al., 1992].

The max-pooling operation involves the kernel shifting over the data and outputting the

maximum value found within the area covered by the pooling window (Figure 2.9). Max-pooling

can enhance a model’s prediction performance by improving generalization and robustness
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Figure 2.9: Max pooling operation.

through spatial invariance. The concept of spatial invariance can also be interpreted as a

decrease in variance within the data [Boureau et al., 2010]. Another major advantage of pooling

is the reduction of feature map sizes, which speeds up both training and inference by decreasing

computational complexity.

Average-pooling is another popular pooling variant, where instead of returning the maximum

value, it calculates the average value of the data within the pooling window.

Taking the idea of local invariance to the extreme, global pooling operations discard all spatial

information. Global pooling sets the kernel size equal to the total image size. Only a single

numeric value per feature map is extracted [Lin et al., 2013]. This follows the intuition that the

key aspect is on whether a feature exists within the image, along with additional importance

placed on the frequency and precision of how well the filter pattern is matched.

2.8 Residual Neural Networks

Residual neural networks (ResNets) represent a significant advancement in the design of

deep neural network architectures. Introduced by He et al. in 2015, ResNets address

key challenges associated with training very deep networks, such as vanishing gradients

and degradation of performance [He et al., 2015]. In the same year, Ronneberger et al. in-

troduced the U-net, which heavily relies on residual connections and is still the state-of-

the-art architecture for segmentation tasks such as heart segmentation or cancer detec-

tion [Ronneberger et al., 2015, Isensee et al., 2021, Liu et al., 2019]. Residual connections are

nowadays an essential component of deep learning and can be found in various benchmark

models [Tan and Le, 2019, Dai et al., 2021].

The key characteristic of residual networks is the presence of shortcuts, or residual connections,

that bypass specific layers. This means that certain connections in the network skip over layers

and deliver activations directly to deeper layers. Thus, during backpropagation, gradients are

also transmitted through these direct shortcuts.

Without residual connections, significantly increasing the depth of a network is not advanta-

geous. Beyond a certain point, adding more layers can actually diminish the model’s performance.

This decline is not attributable to overfitting but rather reflects that deeper networks become

more challenging to optimize. In theory, deeper networks should perform at least as well as their

shallower counterparts, as additional intermediate layers could just output the activation from

the preceding layer (i.e. returning their identity) [He et al., 2015].

By incorporating skip connections, ResNets help mitigate the vanishing gradient problem

that often occurs in very deep networks. The shortcut connections provide alternate paths for
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Figure 2.10: U-net. Each box symbolizes a convolutional layer. Box height denotes the feature

map resolution. Width indicates the number of feature maps. Each arrow represents

a connection. An upward or downward arrow denotes up- or down-sampling by

pooling operations.

gradients to flow backward through the network, making it easier to propagate gradients during

training. This significantly improves the training of deeper networks [Szegedy et al., 2017]. In

Figure 2.10, the various residual connections of a U-net are shown.

2.9 Universal approximation theorem for neural networks

Universal approximation theorems state the limits of what neural networks can theoretically

learn [Tikk et al., 2003]. Theoretical foundations of neural network properties have been inves-

tigated extensively [Mhaskar, 1996, Dreiseitl and Ohno-Machado, 2002]. In 1989, George Cy-

benko first proved that neural networks with one hidden layer using ReLU activation and arbitrary

width (number of hidden layer neurons) are universal function approximators [Cybenko, 1989].

Hence, they are able to approximate any continuous mathematical function with arbitrary pre-

cision. The theorem was extended by Leshno et al. for any non-linear activation function

by showing that the universal approximation property is equivalent to the utilization of a non-

polynomial activation function [Leshno et al., 1993, Pinkus, 1999]. The resulting doctrine is

stated in Theorem 2.9.1

Theorem 2.9.1 (Universal approximation theorem).

Let 𝐶(𝑋, ℝ𝑚) denote the set of continuous functions from a subset 𝑋 of a Euclidean ℝ𝑛

space to a Euclidean space ℝ𝑚. Let 𝜎 ∈ 𝐶(ℝ, ℝ). Note that (𝜎 ∘ 𝑥)𝑖 = 𝜎(𝑥𝑖), so 𝜎 ∘ 𝑥 denotes

𝜎 applied to each component of 𝑥.
Then 𝜎 is not polynomial if and only if for every 𝑛 ∈ ℕ, 𝑚 ∈ ℕ, compact 𝐾 ⊆ ℝ𝑛,

𝑓 ∈ 𝐶(𝐾, ℝ𝑚), 𝜀 > 0 there exist 𝑘 ∈ ℕ, 𝐴 ∈ ℝ𝑘×𝑛, 𝑏 ∈ ℝ𝑘, 𝐶 ∈ ℝ𝑚×𝑘 such that

sup
𝑥∈𝐾

‖𝑓(𝑥) − 𝑔(𝑥)‖ < 𝜀

where 𝑔(𝑥) = 𝐶 ⋅ (𝜎 ∘ (𝐴 ⋅ 𝑥 + 𝑏)).

Similar to the arbitrary width case, there exist proofs for the arbitrary depth (number of layers)
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case [Gripenberg, 2003, Yarotsky, 2017]. In recent years, theorems were also extended for

convolutional and residual neural networks [Zhou, 2020, Tabuada and Gharesifard, 2020].

Many different universal approximation theorems exist, implying that neural networks can,

in theory, represent a large variety of mathematical functions with appropriate neuron weights.

If the chosen network architecture is too small, the inherent representation power may not be

sufficient to model the objective function properly. However, the practical value is limited since

the theorems do not provide a recipe for distinguishing noise from real signals in the data, which

is a major challenge in deep learning. Instead, backpropagation and gradient descent are used

for optimization, whereby convergence often results in local minima rather than the optimal

solution [Shang and Wah, 1996, Agarwal et al., 2017].

Furthermore, the existence of an objective function 𝑓 mapping the input information to the
desired outcome is not given. Machine learning applications can fail, if the desired objective

information can not be derived from the neural network input parameters.

2.10 Attention mapping

Neural networks are often described as black boxes [Castelvecchi, 2016]. Traditionally, de-

cision trees or rule-based learning are perceived to be more explainable than deep learning

models [Rokach and Maimon, 2005, Fürnkranz et al., 2012]. However, this is not a problem

specific to neural networks, but rather a universal complexity and information problem commonly

affecting machine learning algorithms. It may be just as difficult for humans to understand a

very large decision tree as it is to comprehend the characteristic matrix multiplication of a neural

network, since the amount of parallel processable information is quite limited in humans. These

observations lead to the following deliberation:

It may be a paradox in itself to ask an artificial neural network for an explanation, since the

complexity of the neural network is potentially far beyond human cognition. The existence of an

elucidation understandable to humans is therefore not trivial.

Irrespective of these philosophical considerations, many approaches have been developed

to open the black box. A prominent approach in computer vision for generating explanations

is attention mapping. The purpose of attention mapping is to mark regions in the input image

that were most relevant for the outcome prediction. Attention mapping is mostly done via gra-

dient tracking or occlusion [Smilkov et al., 2017, Shrikumar et al., 2016, Montavon et al., 2018,

Zeiler and Fergus, 2013].

In gradient tracking, the gradients of the target class score with respect to the feature maps

are calculated. The gradient magnitudes are then projected into a heatmap, indicating parts of

the image are most influential in the model’s prediction [Selvaraju et al., 2016].

The process of generating saliency (attention) maps by occlusion is highlighted in Figure 2.11.

The model prediction for a specific input sequence is compared to the model output for an

occluded version of the input. The output difference can then be mapped to the occluded image

part. After each part of the image was occluded once or several times, a pixel-precise heatmap

can be generated.

Best practice is to replace occluded pixels with the mean pixel value across the input. However,
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Figure 2.11: Attention mapping by occlusion.

the optimum strategy depends on the specific use case. It can be beneficial to pad around

the occlusion kernel with interpolation techniques, since convolutional neural networks are

strongly influenced by edges [Yosinski et al., 2015]. The decision on the kernel size is also

crucial. The occlusion window should be invasive enough to break the patterns recognized

by the convolutions, but not so extensive that it changes the overall semantic content of the

input. Combining results from multiple kernel sizes can further increase the robustness and

decisiveness of the generated attention localizations.
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3 Automated Analysis of Left Ventricular
Pressure Curves

In the years between 2006 and 2024 a total of 183,772 left-ventricular pressure curves were

measured in the cathlabs of the University Hospital of Heidelberg. Pressure curves and elec-

trocardiogram (ECG) traces were extracted from the hemodynamics database (Ethics vote No

S-158/2021) followed by a conversion (decoding) with the help of a self-developed script. Due

to the large volume of data, automated processing was essential.

In this chapter, the development and application of an algorithm for the automated evaluation

of left-ventricular pressure curves is showcased. The results and structured information, which

originated from the automated analysis, built the foundation for the artificial intelligence models

developed in Chapter 4, 5 and 6 and enabled comprehensive insights into cardiac hemodynamics.

3.1 Cardiac catheterization

Inter-cardiac pressure is measured via cardiac catheterization. A catheter is inserted into a

blood vessel at the patient’s arm or groin and pushed through the artery or vein into the heart

chamber [Baim and Grossman, 2006, Sorajja et al., 2020]. To access the intercardiac pressure,

Femoral artery 
entry points

Pressure 
measurement

Contrast agent

Water

Catheter to
coronaries

Catheter to 
left ventricle

Conduit to 
manometer

Fluid injection 
syringe 

Figure 3.1: Showcase of a cardiac catheterization procedure.
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3 Automated Analysis of Left Ventricular Pressure Curves

the fluid-filled catheter is used to transmit the pressure signal outside the patient’s body to

pressure transducers (Figure 3.1). The unit used for quantifying the pressure is traditionally

”millimetre of mercury” (mmHg), defined as the extra pressure generated by a column of mercury

one millimetre high. The pressure of one millimetre of mercury corresponds to approximately

133.32 𝑘𝑔
𝑚⋅𝑠2 (Pascal) [Taylor, 2001].

Usually, the pressure is recorded at least twice per patient, once before and once after the ven-

triculography (visualization of the ventricle). During ventriculography, contrast agent is injected.

If capable, the patients hold breath in respiratory center position during both measurements in

order to reduce pressure fluctuations caused by intrathoracic pressure changes. The primary

goal of the automated analysis is to obtain the left-ventricular end-diastolic pressure (LVEDP)

from the curves. The LVEDP is the blood pressure inside the left ventricle at the end of the filling

phase of the heart (diastole), in which the volume of the left ventricle is maximized [Taylor, 2018].

Hence, the LVEDP is also referred to as the filling pressure. The extraction of the LVEDP is

a non-trivial task, already due to the unstructuredness of the curves. Recorded LV pressure

curves may include a multitude of artifacts from the measurement equipment.

3.2 Algorithm description

The left-ventricular pressure curve is a complicated entity. The final algorithm is made up of

a multitude of components, each of which solves small subtasks that together constitute the

superordinate function. The application was developed according to the ”divide-and-conquer”

paradigm [Cormen et al., 2022]. In this section, a detailed description of the algorithm compo-

nents is given. The full algorithm comprised over 2,300 lines of Python code.
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Figure 3.2: Left-ventricular pressure curve analysis algorithm example and overview.

An illustration of a fully analyzed pressure curve is shown in Figure 3.2a. An overview of the

algorithm functionality is presented in Figure 3.2b. The color encoding of areas marked in the
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curve matches the colorization of components in the flow diagram. Next to the main functionality

of extracting the LVEDP, the analysis gives us structured access to a multitude of other variables

obtained from the pressure curves.

3.2.1 Categorization of curve sections

During the left heart catheterization, the catheter is either in the left ventricle or is retracted into

the aorta. Furthermore, the measurement can be disconnected from the catheter. Then, usually,

outside pressure is displayed. To distinguish intervals showing aortic pressure from ventricular

pressure, the difference in minimum pressure is utilized. Whereas the normal aortic pressure is

between 60 and 140mmHg, the minimum left-ventricular pressure during a heart cycle is usually

around zero mmHg [Corsini et al., 2022]. Hence, intervals showing a consistent pressure of

greater than 40mmHg for more than one second can be classified as aortic pressure and were

excluded from further analysis.

Next, intervals of extreme values were excluded. The typical left-ventricular pressure ranges

from -5 to 140mmHg. Outliers are defined as values lower than -30 or greater than 300mmHg

indicating artifacts from the measurement device. These thresholds were selected conservatively

due to the diverse patient spectrum, including patients with severe cardiological impairments.

Another source of expected artifacts is the disconnection of the catheter from the pressure

conductor or the catheter pullback from the ventricle into the aorta. In both cases, the pressure

curve may show strong fluctuations. Accordingly, intervals with more than four oscillations of

±10mmHg within 500ms were excluded as well.

3.2.2 Detection of cardiac cycles and outlier detection

After merging and excluding all previously defined intervals, heartbeats were detected by recog-

nizing systolic peaks with prominence (freestanding height) greater than 35mmHg and a width of

more than 70ms. The peak width refers to the respective width at 50% height. It might happen

that a peak is isolated, i.e. that no other consecutive peak is found in the same interval, usually

because the peak was followed or preceded by an excluded interval. Isolated peaks were as

well excluded.

In the following, a multitude of statistical tests were conducted to exclude various out-

lier heartbeats. The implemented outlier detection is based on Median Absolute Deviation

(MAD) [Leys et al., 2013]. However, the MAD score was supplemented by an additional condi-

tion to ensure that only empirically relevant deviations were classified as outliers. The absolute

difference between median and potential outlier has to be above a defined threshold in addition to

the z-score requirement fromMAD [Falk et al., 2012]. The full criterion is illustrated inAlgorithm 2.

The tilde operator (∼) denotes the median.
Next, extrasystoles were detected by comparing cardiac cycle lengths. Extrasystoles are

premature heartbeats that occur when the cardiac electrical signals cause the heart to contract

earlier than normal, potentially disrupting the normal cardiac rhythm [Greten and Andrassy, 2010].

The reference point for obtaining cardiac cycle length was the systolic peak. The cycle-specific

heart rate (beats per minute) can be calculated from the length of the cardiac cycle. A predefined

exclusion cutoff was not suitable, since cardiac cycle length is largely defined by the patient’s
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Algorithm 2 Outlier detection

Input: List of numbers 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑛]
Z-score threshold 𝑧𝑡
Absolute difference threshold 𝑑𝑡

Output: Boolean mask indicating outliers

𝐷 ← |𝐴 − 𝐴| ▷ List of absolute differences to the median

𝑍 ← 0.6745𝐷
𝐷

▷ List of modified z-scores

𝑍𝑏 ← 𝑍 > 𝑧𝑡 ▷ Boolean list z-score outliers

𝐷𝑏 ← 𝐷 > 𝑑𝑡 ▷ Boolean list absolute difference outliers

return 𝑍𝑏 ∧ 𝐷𝑏 ▷ Conjunction list of z-score and absolute difference outliers

baseline heart rate. Instead, heartbeats were excluded in an individualized iterative process.

Starting with the list of cardiac cycle lengths, very slow heartbeats, indicating mostly interruptions

in the measuring process, were excluded.

Thereafter, heartbeats with high heart frequency were eliminated by comparing them to the

25% list percentile. The comparison to the percentile instead of the cycle with the lowest heart

frequency adds another layer of protection against outliers. The criterion for exclusion was that

the reference heart frequency divided by the potential outlier heart frequency is smaller than

0.7. If there are only three heartbeats remaining, the removal process stops. The described

algorithm for the exclusion of extrasystolic heartbeats is summarized in Algorithm 3. Once the

selection of heartbeats has been completed, the patient’s total heart rate is calculated based on

the remaining heartbeats.

Algorithm 3 Exclusion of extrasystolic heartbeats

Input: List of cardiac cycle lengths in bpm 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑛]
Output: List of cardiac cycle lengths outliers

while Length 𝐴 > 3 do

if min(𝐴) < 30 bpm then ▷ Exclude slow heartbeats

𝐴 ←𝐴 without lowest value

else if 25% percentile of 𝐴
max(𝐴)

< 0.7 then ▷ Exclude extrasystolic outliers

𝐴 ←𝐴 without highest value

else

return 𝐴
end if

end while

return 𝐴

At this stage of the curve analysis, the algorithm is utilized to detect outlier peaks in terms

of peak width and peak prominence. The used z-score threshold 𝑧𝑡 was 3.5 in both cases.

The absolute difference threshold 𝑑𝑡 was 75ms for peak widths and 15mmHg for prominences.

Outliers of that kind indicate highly irregular or only partially recorded cardiac cycles.

3.2.3 Automated curve calibration

During the ventricular pressure measurement, the physician normally records a calibration

interval. The calibration is a part of the pressure curve, where the measurement device is not

measuring the ventricular pressure, but the environment pressure (1013.25 hPa = 1atm). The
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(a) Missing calibration interval

(b) Calibration interval between two heartbeats

Figure 3.3: Automatically annotated left ventricular curves with ECG traces.

next step in the automated analysis is the detection of the calibration interval. An example of a

detected calibration interval (yellow color) is shown in Fig. 3.2a.

Detecting the calibration interval is not trivial as it can be in any part of the curve or not present

at all (Figure 3.3a). The basic approach is that the calibration is an interval of relatively constant

pressure and should be around zero mmHg. However, these simple rules are not sufficient

to solve the problem adequately. In Figure 3.3b, the natural interval between two heartbeats

is very shallow and can easily be mistaken for the calibration. In this case, the ECG trace

can be utilized to check if a heartbeat indicated by the electric stimulus (QRS complex) in the

ECG is missing in the pressure curve [Josephson, 2008]. Also, the calibration interval itself

may fluctuate by several millimetres of mercury. Especially, unclean calibration intervals can be

difficult to distinguish from natural pressure signals. Therefore, several additional characteristics

of calibration intervals are used for effective differentiation. In the following, the key criteria are

summarized.

Sufficiently long interval of relatively constant pressure. If the candidate interval is

short, then the threshold for pressure variation must be chosen strictly. Vice versa, if the

interval is longer, the variation threshold can be chosen less strictly.

High derivatives at interval borders. When changing the hydraulic manometer to mea-

sure the environmental pressure, the pressure abruptly changes to zero. Analysis showed

that the derivatives measured in such an incident are usually distinguishable higher than

derivatives measured during normal heart function.

Consideration of adjacent peaks and ECG. If the potential calibration interval is in

between two heartbeats, it can be easily confused with a natural shallow interval during

the diastole. In such a case, the ECG can be utilized to detect heartbeats that are missing
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in the pressure curve.

Based on these criteria, a set of rules is comprised. An example of a rule pattern is: minimum

700ms interval length, maximum difference in pressure during that interval 0.7mmHg, interval is

not between peaks (i.e. at the start or end of the curve). If the candidate interval is only 500ms

long, then the maximum pressure difference should be more strict (e.g. 0.5mmHg) to preserve

the same level of confidence. If additional information is included in the rule (e.g. high derivatives

and ECG consideration), other conditions can be chosen less strictly.

The algorithm matches each pattern described in those rules to the curve. If a rule is success-

fully matched, the iteration breaks and the mean value of the found calibration interval is returned.

If multiple curve sequences are matched to the same rule, outlier detection is performed and the

arithmetic mean is calculated over all non-outlier calibration candidates. This step is necessary

since sometimes multiple calibration intervals are recorded by the physician. Additionally, a

single calibration interval can have artifacts. In that case, the interval part before and after the

artifact (e.g. fluctuation in pressure) is matched separately to the pattern. This iterative and

outlier-identifying approach not only ensures the robust determination of an existing calibration

interval, but also ensures that only the calibration that carries the highest confidence is selected.
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Figure 3.4: Distribution of automatically detected calibration intervals. The offset needed to

calibrate the LV curve correctly is presented.

The LV curve can now be adjusted by the calculated offset in order to calibrate the pressure

scale to environment pressure. In Figure 3.4, the distribution of found calibration intervals is

shown. The mean offset value was -0.27mmHg with a standard deviation of 1.89mmHg. The

occurrence of calibration offsets greater than 4mmHg was more rare than offsets lower than

-4mmHg. This is potentially the case because if the offset is positive, then the diastolic intervals

are frequently below zero, which is easily detectable by the human eye. In contrast, a negative

offset is more difficult to detect since the curve often does not cross the negative range.

This analysis emphasizes the importance of careful left ventricular pressure curve calibration,

as even small fluctuations of a few millimetres of mercury can significantly influence the diagnosis
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of diastolic heart failure [Oh et al., 2023].

3.2.4 Feature extraction

The final step of the automated curve analysis is the extraction of features. The primary goal is

to extract the LVEDP, however a variety of additional features are extracted to find relevant new

biomarkers. In this section all automatically extracted features are described.

Left-ventricular end-diastolic pressure (LV-EDP)

Starting at half height on the left flank of the systolic peak, a linear function is fitted to

20ms curve intervals. The interval is shifted by a single data point at every step. The fit

parameters are the slope 𝑎 and the bias of the linear function. The slope at 50% height is

usually high since this is the center of the contraction phase of the heart cycle. While the

20ms window shifts to the left, the slope will decrease at some point. If the slope is lower

than 0.14 𝑚𝑚𝐻𝑔
𝑚𝑠 , the related interval is an LVEDP candidate. Multiple candidate intervals

can be found until the algorithm terminates at the end of the heart cycle. Since patients

may have a weak heartbeat, a standalone slope threshold is not sufficient. Hence, the

algorithm also takes into account the adjacent interval slopes 𝑎𝑡+1.

∃𝑥 ∈ [0, 0.2] ∶ 𝑎𝑡 < 𝑥 + 0.3 and 𝑎𝑡+1 − 𝑎𝑡 > 2𝑥 + 0.3. (3.1)

The condition (Equation 3.1) is checked for every time step 𝑡, starting with the last time
step. If the condition is fulfilled in time step 𝑡 the LVEDP is assigned as 80% height of the

corresponding interval and does not need to be checked for 𝑡−1, 𝑡−2, ⋯. The consideration
of the whole 20ms interval compared to calculating the slope between only two points,

showed an improvement in terms of robustness.

Left-ventricular peak systolic pressure (LV-SP)

The main challenge to obtain the peak systolic pressure is to take into account systolic

overshoots. This is done by detecting peaks in the 50% height interval (left edge to

right edge) of the systolic phase. Systolic overshoots are characterized by a small peak

width and small prominence-to-width ratio. Subpeaks with higher widths are unlikely

overshoots and represent a more accurate manifestation of the actual pressure. Peaks

with a high prominence-to-width ratio compared to other subpeaks are excluded. The

remaining peaks are fitted by a Gauss function and the height is assigned as the function

maximum [Lifshits, 2013]. All subpeak heights are weighted by width to finally assign the

peak systolic pressure.

Left-ventricular minimum diastolic pressure (LV-DP)

The minimum diastolic pressure is obtained in a similar way to the peak systolic pressure.

Peak detection is executed on the inverted curve from the diastolic phase. Gaussian

functions are fitted to smoothen the peak values. However, the LV-DP is less prone to

overshoots and usually only one peak is considered relevant.

Heart rate

A heart rate is assigned to each individual heartbeat by measuring the distance between

systoles. The heart rate in beats per minute can then be derived from the time interval.
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3 Automated Analysis of Left Ventricular Pressure Curves

Peak prominence

The peak prominence is measured as the freestanding peak height. Systolic overshoots

are treated with the same regularizing method utilized to obtain the systolic pressure.

Peak width

The peak width is measured as the width at 50% prominence.

Peak integral

The peak integral is measured from the minimum diastolic pressure of the current peak to

the next peak. The mean pressure value during that time period is calculated and multiplied

by the heart cycle time.

Peak rise time

Peak rise time is defined as the time the curve needs to rise from 25% of the total

prominence to 75%.

Peak receding time

In analogy, the peak receding time is defined as the time the curve needs to recede from

75% of the total peak prominence to 25%.

Rising slope

A straight line is fitted to the left peak edge at 50% prominence. A 20ms interval is fitted.

The rising slope is defined as the slope of the fitted function.

Receding slope

A straight line is fitted to the right peak edge at 50% prominence (20ms interval). The

receding slope is defined as the slope parameter of the straight.
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Figure 3.5: Acquisition of LV-EDP by fitting multiple straight lines and acquisition of LV-SP by

weighting subpeaks by width.

The extraction of the features is performed for each non-outlier heartbeat individually resulting

in a list of values for each feature. Outlier detection with z-score threshold of 1.6 is executed

before assigning the final feature value as the arithmetic mean.
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3.3 Comparison of automated labeling of LVEDP versus labeling by human experts

3.3 Comparison of automated labeling of LVEDP versus labeling by
human experts

Data quality is crucial for the success of machine learning applications [Jain et al., 2020]. The

LVEDP is labeled in the cathlab by clinical experts following the inter-ventricular pressure

measurement. The dataset was collected over a period of almost 20 years, and accordingly the

LVEDP was labeled by over 100 different investigators. Hence, a major occurring problem is the

inter-observer variability [Pinedo et al., 2010, Maroules et al., 2018].
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Figure 3.6: LVEDP human expert label distribution.

In contrast, a deterministic algorithm system provides a consistent concept for the artificial

intelligence agent to learn [Lehmann, 2018]. In Figure 3.6, a histogram of the expert LVEDP

labels is shown. The histogram reveals that the human experts tend to label in steps of 5mmHg.

Hence, labels such as 5, 10, 15, 20mmHg are much more frequent than others, whereas the

automated algorithm labels are continuous without any quantization bias.

Expert and algorithm labels showed a strong Pearson correlation of 0.84 (Fig 3.7). The

corresponding coefficient of determination (R²) was 0.67 [Wright, 1921, Chicco et al., 2021].

The software framework assisting the physicians during the clinical routine only allowed whole

numbers as input for LVEDP. This value quantization is evident on the x-axis of the graph.

Minor differences in expert versus algorithm labels can be explained by considering calibration,

exclusion of extrasystoles, dequantization and exact statistical tests.

Larger differences are often caused by saddle points in the pressure curve during the end-

diastolic phase. The left ventricular pressure at the end of the saddle point would be considered

correct LVEDP, however in some cases it is hard to distinguish if the filling pressure is still

manifested or the systole already started. The difference between measuring the LVEDP after

and before the saddle point can easily be 20mmHg or even more.
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Figure 3.7: LVEDP human expert label versus automated algorithm label.

3.4 Effect of contrast agent application

During the cardiac catheterization, the ventricular pressure is usually measured twice. Once

before and once after the ventriculography. For the visualization of the ventricle contrast agent

is needed. At the University Hospital of Heidelberg, mainly iodine-based contrast agents such

as Iomeprol or Iohexol are utilized [Koç et al., 2019]. The imaging is carried out using X-ray

angiography protocols [Van der Meer, 2002].

The automated analysis of pressure curves enables quantification of contrast agent effects

on various heart characteristics. In Figure 3.8, a comparison of heart rate, LVEDP and LVSP

distributions before (blue) and after (orange) contrast agent is shown. Dashed lines are the

accordingly fitted Gaussian distributions. Stated values are mean±std.

The average LVEDPwas 17.60mmHg (CI95% 17.54-17.66), with a volume-induced increase to

18.64mmHg (CI95% 18.57-18.71) after ventriculography indicating a significant effect. As many

as 20,402 patients (30.1%) had resting LVEDP greater than 20mmHg, representing candidates

with impaired diastolic function [Leistner et al., 2020]. Furthermore, the average patient heart

rate accelerates from 73.3 bpm to 74.8 bpm and the peak systolic pressure decreases from

139mmHg to 137mmHg. All observed trends are in concordance with the toxic influence of

contrast agents on heart functionality [Hasebroock and Serkova, 2009].

3.5 Assessment of biological variation of the LVEDP

The LVEDP was computed for each cardiac cycle within the period of time where patients

have been instructed to stop breathing during cardiac catheterization. Outliers in terms of the

pressure curve’s width or height were removed beforehand and assessment was undertaken in

the relatively stable situation of at least three consecutive heartbeats. The difference between
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Figure 3.8: Heartrate, left ventricular end-diastolic pressure and left ventricular peak systolic

pressure distributions before (Prae) and after (Post) ventriculography.

minimum and maximum LVEDP in the pre-determined interval was calculated to assess LVEDP’s

biovariability.

Even when using direct invasive measurements of LVEDP in stable patients, considerable

variation within one individual can be seen and LVEDPmay significantly change with each cardiac

cycle. To underline this fact, the heartbeat-specific LVEDP-variability in cardiac catheterization

curves was calculated over more than 183,000 processed LV pressure curves. The beat-to-beat

variation per patient (difference between minimum and maximum LVEDP) was on average

7.91mmHg with a standard deviation of 5.48mmHg.

These results indicate that the LVEDP is a volatile parameter underlying considerable back-

ground noise. Hence, LVEDP prediction models (as developed in Chapter 5) are particularly

difficult to create, as they should be competent to deal with noisy data. Furthermore, the quantized

noise levels introduce theoretical performance limits for those prediction models.
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4 Prediction of Clinical Phenotypes from
Left-Ventricular Pressure Curves using
Artificial Neural Networks

The detailed automated curve analysis enables various scientific opportunities. This chapter

investigates the hidden information that can be derived from left ventricular pressure curves

using artificial neural networks. Neural networks are known to be able to derive information,

which is not accessible for humans from various data sources. Popular examples are the sex

and cardiovascular risk factor prediction from retinal fundus photographs or detection of mRNA

splicing sites via deep learning [Poplin et al., 2018, Jaganathan et al., 2019].

The investigated phenotypes are patient age, sex and the presence of a coronary artery disease

(CAD). Coronary artery disease is a condition where plaque buildup narrows the arteries supplying

blood to the heart, leading to reduced blood flow and heart insufficiency [McCullough, 2007].

CAD is diagnosed with a computerized tomography coronary angiogram. Thereby, a contrast

agent is injected into the coronary arteries [Kariyanna et al., 2020]. If the presence or absence

of CAD can be predicted alone from the left ventricular pressure, such a system could function

as a gatekeeper for the coronary angiogram. If the angiogram is only performed on patients with

positive CAD indication from the pressure curve, the amount of procedures could potentially

be greatly reduced. The predictions of sex and age do not have such immediate applications.

However, the AI-based analysis of the overall information content could benefit future research

and the general comprehension of pressure curves.

4.1 Correlation of automatically extracted features with phenotypes

Before utilizingmachine learning techniques to find complex patterns, the stand-alone correlations

of the derived features by the pressure curve algorithm with the mentioned phenotypes are

investigated.

In Table 4.1, the correlations of extracted features with sex, age and coronary artery disease are

shown. The binary classification tasks are evaluated in terms of receiver operating characteristic

area under the curve (ROC AUC) [Fawcett, 2006]. The correlation between features and patient

age is quantified using the Pearson correlation coefficient [Lee Rodgers and Nicewander, 1988].

All observed ROC AUC values were smaller than 0.6 for the sex and CAD, indicating a low

discrimination capability [Yang and Berdine, 2017]. Also, all the Pearson correlations with age

were smaller than 0.3, displaying a weak relationship [Akoglu, 2018].

The peak systolic pressure showed the highest AUC with sex. Women had a higher peak

systolic pressure at rest than men. Additionally, the peak systolic pressure also had the second-

highest correlation with patient age. Surprisingly, the peak receding time has the highest
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Phenotype Sex Age CAD

Metric ROC AUC Pearson ROC AUC

Peak systolic pressure 0.586 0.242 0.541

Peak integral 0.583 0.14 0.507

Peak prominence 0.58 0.162 0.518

Peak rise time 0.571 0.231 0.51

Receding slope 0.569 0.051 0.535

Peak width 0.562 0.042 0.513

End-diastolic pressure 0.551 0.017 0.56

Heart rate 0.541 -0.072 0.508

Minimum diastolic pressure 0.538 0.109 0.553

Rising slope 0.505 -0.054 0.508

Peak receding time 0.504 0.283 0.565

Table 4.1: Correlation of automatically extracted features with patient phenotypes.

correlation with age and the highest discernment with CAD, although carrying the lowest amount

of information about the patient’s sex. In particular, in patients with CAD, the pressure curve

needed more time to recede from 75% to 25% pressure after the ventricle contraction.

4.2 Prediction of age, sex and coronary artery disease from left
ventricular pressure curves

In the previous section, only weak correlations with phenotypes were found. Now, the pattern

matching capabilities of AI are leveraged to substantially increase the performance. Two different

approaches were investigated. First, the extracted features are used as inputs for the artificial

neural network. Secondly, 1D-CNNs were utilized to predict the phenotypes directly from the

pressure curves.

Using the pressure curves directly as input for the CNN was not sufficient. Standardization

greatly increased performance. Artifacts from the measurement device and aortic pressure

intervals introduce disorder to the curve. However, the pressure curve algorithm (Chapter 3)

was used to find intervals of ”clean” ventricular pressure. The evaluation showed that most

examinations had such intervals with a duration of more than two seconds. The input for the

CNNs was accordingly defined as two seconds of clean ventricular pressure intervals. The time

series input was further standardized so that it always starts at the point of minimum diastolic

pressure.

The models were trained and benchmarked using 5-fold cross-validation. For each phenotype,

several neural network architectures were evaluated with varying numbers of network layers

and layer characteristics (activation function, batch normalization, number of filters/neurons,

Dropout). The performances from the best respective models were reported.

The best feature-based neural networks achieved an ROC AUC of 0.71 predicting sex, a

Pearson correlation of 0.47 with patient age and an ROCAUC of 0.66 classifying coronary artery

disease (Table 4.5). This is already an improvement in comparison to the individual feature

correlations (Section 4.1).

However, if the AI models have even more freedom to find arbitrary patterns, as realized with
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4.2 Prediction of age, sex and coronary artery disease from left ventricular pressure curves

the preprocessed input curves instead of the feature-based approach, all performance indicators

increase further. The trained CNN was able to predict sex with an AUC of 0.78 (CI95% 0.77-0.78)

and patient’s age with a mean absolute error of 7.86 years (CI95% 7.77-7.95) and a Pearson

correlation of 0.57 (CI95% 0.56-0.57) (Table 4.2). The accuracy when giving the model a margin

Prediction task Number of samples ROC AUC Accuracy

Sex 33,405 0.78 (CI95% 0.77-0.78) 0.71 (CI95% 0.70-0.72)

CAD 24,005 0.70 (CI95% 0.70-0.71) 0.65 (CI95% 0.64-0.66)

Age 33,461

Pearson correlation Age ± 10 years accuracy

0.57 (CI95% 0.56-0.57) 0.71 (CI95% 0.70-0.71)

Mean absolute error [years] Age ± 5 years accuracy

7.86 (CI95% 7.77-7.95) 0.41 (CI95% 0.40-0.41)

Table 4.2: Predicting phenotypes from LV pressure curves utilizing convolutional neural networks.

of ±10 years on the age prediction was 0.71 (CI95% 0.70-0.71). If the margin was only ±5 years,

the according accuracy was 0.41 (CI95% 0.40-0.41). The scatterplot of predicted versus actual

patient age is presented in Figure 4.1. A more clinically relevant example was the predictive

capability for the presence of coronary artery disease (AUC=0.70; CI95% 0.70-0.71), defined as

≥50% stenosis of a major coronary artery [Libby and Theroux, 2005].

Attention mapping with Grad-CAM showed that the systolic peak was most relevant for the

sex prediction. This is concordant with the finding that the automatically extracted peak systolic

pressure showed the strongest correlation with sex [Selvaraju et al., 2017]. For both other

phenotypes no significant trends were discovered.

Figure 4.1: AI-predicted age versus actual patient age.

The circumstances of the age predictions were further investigated. Therefore, the cohort

was divided into two separate groups. The first group included patients in which the AI age

prediction was more than 10 years older than the actual patient age. Whereas the second group

comprised patients with a predicted age of at least 10 years younger than the actual age. The
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4 Prediction of Clinical Phenotypes from Left-Ventricular Pressure Curves using Artificial Neural Networks

group of patients categorized by the AI as at least 10 years older had an actual mean age of

45.8 years. The group labeled at least 10 years younger had a mean age of 76.5 years. Due to

the large age discrepancy, the patient groups could not be compared directly. To ensure a fair

comparison, cohorts of the same age were sampled from the dataset according to the observed

age distribution (Table 4.3).

For those patients, comprehensive information on cardiovascular health was collected from

the electronic health records. The cohort of patients with at least 10 years older predicted age

had significantly higher NT-proBNP levels than the according age-matched cohort [Hall, 2005].

The left-ventricular ejection fraction (LV-EF) was significantly lowered and the occurrence of

dilated cardiomyopathy (DCM) was elevated. All these factors indicate an overall deteriorated

cardiovascular health compared to the age-matched cohort.

Variable
AI predicted

>10years older

than actual age

Age match p-value

AI predicted

>10years younger

than actual age

Age match p-value

Age (years) 45.8±12.6 45.8±12.6 1.00 76.5±7.1 76.5±7.1 1.00

Sex (%male) 71.3 74.3 0.225 77.7 74.6 0.286

NT-proBNP mean±std (ng/l) 1982±6300 1410±4024 0.0489 1801±3513 2937±7273 0.0045

NT-proBNP median (ng/l) 437 348 - 454 750 -

LV-EF mean±std (%) 51.8±13.9 54.0±12.1 0.0021 55.6±11.2 54.1±12.9 0.0692

Atrial fibrillation (%) 9.4 7.8 0.3183 24.8 27.2 0.419

DCM (%) 24.6 19.6 0.0294 6.8 8.0 0.4993

hsTnT mean±std (ng/l) 274±553 293±583 0.5426 232±560 155±409 0.0188

hsTnT median (ng/l) 31.0 28.0 - 29.0 28.0 -

CAD (%) 66.1 63.8 0.4020 95.4 95.3 0.9630

Arterial hypertension (%) 60.8 58.1 0.3219 83.8 87.0 0.1933

Heart attack (%) 17.6 19.1 0.4921 25.6 27.4 0.4951

Table 4.3: Comparing patient characteristics and cardiovascular health between AI-predicted

age groups.

Following the same pattern, the group of patients with an age predicted at least 10 years

younger had improved cardiovascular health compared to patients from the same age distribution.

This was manifested in significantly lowered Nt-proBNP levels and improved ejection fraction.

The measured hsTnT levels were higher in the group of patients with younger AI-predicted

age, indicting the contrary [Gaggin and Januzzi Jr, 2013]. However, the hsTnT median was

qualitatively equally leveled in both groups.

In summary, the results suggest that the AI age prediction is influenced by the cardiac health

status of the patient, and thus, the model potentially categorizes patients with a higher biological

age as older [Jylhävä et al., 2017].

4.3 Phenotype prediction based on Fourier transformed pressure
curves

Fourier transformation is a mathematical procedure that represents a function as a combination

of sinusoidal functions with varying frequencies, phases and amplitudes. Fourier transformation

allows to move between the time and frequency domain, providing a powerful way to analyze

signals and functions [Bochner and Chandrasekharan, 1949]. By expressing complex functions

as a sum of simpler trigonometric functions, it enables the understanding of intricate mathematical
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structures in terms of their frequency components [Kaiser and Hudgins, 1994]. The Fourier

transform ̂𝑓 of an integrable function 𝑓 ∶ ℝ → ℂ is defined as

̂𝑓(𝜉) = ∫
∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥. (4.1)

The Discrete Fourier Transform (DFT) is used for sampled, discrete data points. It transforms

a sequence of discrete numbers 𝑥 = (𝑥0, … , 𝑥𝑁−1) ∈ ℂ into the Fourier-transformed sequence

of complex numbers 𝑋 = (𝑋0, … , 𝑋𝑁−1), which is defined by

𝑋𝑘 =
𝑁−1
∑
𝑛=0

𝑥𝑛𝑒− 2𝜋𝑖
𝑁 𝑘𝑛. (4.2)

The DFT is usually implemented utilizing the Fast Fourier Transform (FFT) algo-

rithm [Brigham, 1988]. Since characteristics of the LV pressure curve are strongly influenced by

the patient’s heart rate, a frequency-based analysis is a natural choice.

The preprocessed clean intervals had a length of two seconds. The sampling rate from the

manometer was 250Hz, equaling one measurement every 4ms. Hence, each curve consisted

of 500 data points. If the DFT is calculated for purely real input, the output is Hermitian-

symmetric [Cooley and Tukey, 1965, Press et al., 1986]. In other words, the negative frequency

terms are merely the complex conjugates of the corresponding positive frequency terms (𝑋𝑁−𝑘 =
𝑋𝑘), so that the negative frequency terms are redundant and do not provide additional information.

Accordingly, the full FFT spectrum is characterized by only 251 coefficients (𝑁
2 + 1).

4.3.1 Model evaluation on reconstructed curves from partial FFT spectra

An elegant method to estimate the information content of specific DFT coefficients regarding

the prediction task is to evaluate the existing model on reconstructed curves. The convolutional

neural network for the sex prediction task, using LV pressure curves as the input, achieved an

ROC AUC of 0.7765. This benchmark was obtained by evaluating the network on the test set.

However, it is possible to reconstruct the pressure curves based on partial spectra. In Figure 4.2,

curve reconstructions with varying numbers of included coefficients are shown. The first 10

Fourier coefficients already provide a qualitatively accurate reconstruction. A reconstruction with

less than half the spectrum (70 coefficients) looks nearly indistinguishable from the original time

series.

The unchanged model was evaluated on the reconstructed test set curves. The reconstruction

with 100 or more coefficients produced the exact same performance. The reconstruction with

the first 70 coefficients even resulted in a minor performance increase. This highlights the

applicability of low-pass filters for noise reduction [Gasquet and Witomski, 2013]. The reduction

of noise is another layer of data standardization that can lead to improved results in machine

learning tasks. By using 30 coefficients, the ROC AUC still only drops by 1.96%. With only 5

coefficients the ROC AUC is still above 0.6. This may be partially explained by the fact that the

peak systolic pressure (highest feature correlation, Section 4.1) is already manifested by a low

amount of Fourier coefficients. However, it is intriguing that the neural network is capable of

deriving the sex from highly deprived curves considerably better than baseline (random guessing)

and any previously observed feature correlation.
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Figure 4.2: LV pressure curve reconstruction using partial FFT spectra.

The reconstruction approach could also function as a potential data augmentation technique

in neural network training pipelines.

In conclusion, this experiment indicates that the Fourier coefficients at the end of the spectrum

contribute only minor information. This enables the option to discard parts of the FFT spectrum

and reduce the number of parameters (problem size) considerably. Subsequent machine learning

ventures could benefit from the reduced problem size in terms of training/inference time and

energy cost [García-Martín et al., 2019].

It is still imaginable that newly trained machine learning models could utilize the information

contained in these coefficients. However, the experiments conducted in this section with normal

time series input constitute lower bounds on performance for FFT models trained on partial

spectra, since the information to match the CNN performance is potentially available.

4.3.2 Scaling methods for FFT spectra

Normalization of input data is an important component for deep learning applications, with a pos-

itive impact on benchmark performance [Jayalakshmi and Santhakumaran, 2011]. Often, input

parameters are preprocessed to be in the range [0, 1]. Dealing with FFT spectra is particularly
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FFT Sex

reconstruction with ROC AUC

251 coefficients 0.7765

200 coefficients 0.7765

100 coefficients 0.7765

70 coefficients 0.7769

50 coefficients 0.7734

40 coefficients 0.7634

30 coefficients 0.7613

20 coefficients 0.7383

10 coefficients 0.6470

5 coefficients 0.6059

Baseline CNN 0.7765

Table 4.4: Re-evaluation of the best CNN model using reconstructed curves based on partial

FFT spectra for sex prediction.

difficult, since the Fourier coefficients deviate by orders of magnitude. Commonly, the first Fourier

coefficient of left-ventricular pressure curves is easily greater than 30,000. In contrast, other

coefficients may be smaller than one. Ordinary Min-Max normalization is potentially suboptimal,

since smaller coefficients encoding information are divided by a large number [Larose, 2005].

This results in values very close to zero, which can not be properly distinguished by the artificial

neural network

In order to solve the described problem, more sophisticated normalization techniques are

needed. For left ventricular pressure curves, the first Fourier coefficient𝑋0 is the largest occurring

value in the FFT spectrum (Figure 4.2), representing the sum over all data points values. The

second peak in the FFT corresponds to the patient’s heart rate, which is the dominant frequency

in the spectrum. The remaining peaks are multiples of the heart frequency. The observed

magnitudes of the peaks are more likely to follow an exponential rather than a linear relationship.

Therefore, applying an exponential scaling function is at hand. In a series of experiments,

multiple normalization methods were evaluated and compared.

Logarithmic scaling

To deal with the large difference in coefficients, the logarithm of each coefficient is calcu-

lated.

Exponential scaling

An exponential function 𝑓(𝑡) = 𝑎 ⋅ 𝑒−𝑏𝑡 is fitted via least-squares method [Kelley, 1999] to

every individual curve. The medians of fitting parameters ̃𝑎, ̃𝑏 are calculated across the
whole dataset. The final scaling function is given by inserting the parameter medians into

the exponential function and dividing every FFT coefficient by the respective function value

𝑋𝑡,𝑛𝑜𝑟𝑚 = 𝑋𝑡
�̃�⋅𝑒−�̃�𝑡 at position 𝑡.

Channel-wise normalization

In the two previousmethods, a normalization function is applied to all coefficients. Therefore,

the difference in magnitude of the first FFT coefficients compared to higher coefficients is

tackled. However, early coefficients in the spectrum, not corresponding to the heart rate
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frequency, may still be divided by a large number. In this method, the median value for

each coefficient 𝑋𝑡 is calculated across the whole dataset. The transformation is then

given by 𝑋𝑡,𝑛𝑜𝑟𝑚 = 𝑋𝑡
𝑋𝑡
.

No normalization

Control experiments are also conducted with unprocessed FFT coefficients as neural

network input (Min-Max scaling is still applied).

After the application of every described method, Min-Max scaling was additionally applied to

ensure the final coefficients to be in the range [0, 1].

4.3.3 Neural network architectures for FFT data

The utilization of convolutional layers is a leading paradigm in computer vision and time series

analysis [Zhao et al., 2017]. In computer vision, the pixels are locally related, whereas in time

series, the data points are temporally related. In a locally related setting multiple stacked

convolutions can describe patterns that match complex objects or structures. In a temporal

setting, the convolutions can detect specific changes or motifs over time.

In the FFT spectra, the data points are related in frequency space. In frequency space,

the interpretation of convolutions is not as trivial. What does it mean to combine coefficients

corresponding to adjacent frequencies? The modeling of features, which showed the highest

correlations, such as peak systolic pressure (Section 4.1), can not be modeled as easily as in

time-space.

To investigate the applicability of convolutional neural networks to FFTs, the experiments

are conducted with networks based on convolutional layers and networks consisting of only

fully-connected layers. Again, many different architectures are calculated for each scenario

with varying numbers of layers, numbers of neurons / filter sizes / numbers of filters, resid-

ual connections, activation functions, loss functions and application of different regularization

techniques.

4.3.4 Model evaluation predicting phenotypes from FFT spectra

A comprehensive analysis was conducted predicting patient age, sex or the presence of coronary

artery disease based on FFT spectra from LV pressure curves. The FFT models were developed

with the same training scheme as the CNNs operating on the time series data (Section 4.2).

Different neural network archetypes and the already introduced various scaling methods were

evaluated (Table 4.5). The best result was reported. The inputs for the models were the first 70

coefficients of the FFT spectrum, which is considerably less than the 500 data points used in

the time series model. In terms of normalization, logarithmic scaling was found to be inferior to

the three other scaling schemes. Overall, channel-wise normalization yielded the best results.

However, there was no qualitative difference to exponential scaling and no normalization. In terms

of architecture, the dense network architectures performed slightly better than the convolutional

FFT networks. This indicates, that building features based on neighboring frequency proportions

was not beneficial for the investigated prediction tasks.
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4.3 Phenotype prediction based on Fourier transformed pressure curves

Model Type
Sex Age CAD

ROC AUC Accuracy MAE Pearson ROC AUC Accuracy

FFT Dense No normalization 0.74 0.68 8.70 0.45 0.68 0.63

FFT Dense Logarithmic scaling 0.71 0.65 8.98 0.39 0.66 0.62

FFT Dense Exponential scaling 0.74 0.68 8.72 0.44 0.68 0.63

FFT Dense Channel-wise normalization 0.74 0.68 8.69 0.45 0.68 0.64

FFT CNN No normalization 0.73 0.67 9.04 0.39 0.67 0.62

FFT CNN Logarithmic scaling 0.71 0.66 9.11 0.39 0.65 0.61

FFT CNN Exponential scaling 0.73 0.67 8.97 0.40 0.67 0.62

FFT CNN Channel-wise normalization 0.73 0.67 8.89 0.41 0.67 0.62

Feature-based NN 0.71 0.65 8.61 0.47 0.66 0.61

Baseline CNN 0.78 0.71 7.86 0.57 0.70 0.65

Table 4.5: Evaluation of different architectures and scaling methods to predict sex, age and

diagnosis of a coronary artery disease from left ventricular pressure curves.

Also, in Table 4.5, a comparison of the networks operating with FFT spectra as input and the

CNNs trained on the time series data is shown. The FFT approach resulted in a considerable

performance decrease compared to the baseline CNN. However, it was still superior to the

feature-based approach in terms of sex and CAD prediction.

Although the cardiac cycle is a highly recurrent and frequency-dependent entity, the use of

FFT spectra was found to be inferior to normal CNN approaches. Moreover, the performance

loss of the FFT compared to the normal time series approach is likely not a normalization

problem. These findings may be strongly influenced by the actual prediction task. For other

tasks, frequency-based features may be more expressive. Also, the combination of frequency-

and time series-based features could be a promising approach, but it would increase the problem

size.
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5 Predicting Ventricular Pressure from Cardiac
MRI (AI-LVEDP)

Intercardiac pressure provides important information on the heart’s diastolic properties, is instru-

mental in deciding on cardiac surgeries and interventions such as valve replacements, and is

predictive for negative clinical events [Aalaei-Andabili and Bavry, 2019, Brienesse et al., 2018].

To obtain the LVEDP, the pressure in the left heart chamber is measured invasively during cardiac

catheterization. Thereby, a catheter is inserted through the patient’s groin or arm and guided

through the venous system to the heart. Although the procedure is routinely done and associated

with low number of complications, the intervention is not completely risk-free and potentially

induces stress and discomfort for the patient [Al-Hijji et al., 2019].

In this chapter, it is investigated to non-invasively predict left ventricular cardiac filling pressure

from cardiac MRI. This developed AI model is referred to as AI-LVEDP.

5.1 Core cohort dataset

The retrospective study cohort consisted of 66,936 patients who underwent cardiac catheteriza-

tion with more than 183,000 individual left-ventricular pressure measurements at the University

Hospital of Heidelberg (Figure 1.1). Of these patients, 11,699 cardiac MRI examinations were

recorded. The examinations included diagnostic and therapeutic as well as elective and emer-

gency cases and were extracted from the University Clinic’s IT infrastructure in accordance

with the ethics vote (No S-158/2021). Data from the cMR examinations was extracted from the

central PACS servers.

When deriving the cardiac filling pressure from the MRI, the most important prerequisite is

that the LVEDP is the same or at least comparable at the time of the cardiac catheterization and

at the time of the cardiac MRI. Strict filtering procedures were enforced to reduce the likelihood

of significant changes to the filling pressures. The first precaution was to only select patients

with both cMRI and cardiac catheterization performed within a timeframe of 30 days. 4,708

cMRI/cardiac catheterization couplets could be identified with both procedures within 30-day

window. The mean time difference was 4.6±7.1 days. However, 55.5% of patients had both

examinations within one day.

Next, diagnosis and summary reports of the cardiac catheterization were extracted from

the hemodynamics/cathlab database. Based on this information, all emergency examinations

(n=1,646), surgeries (n=183) and coronary interventions (n=2,019) were excluded from the

dataset as these can be associated with higher fluctuations in filling pressures. Emergencies

included (non-) ST-elevation myocardial infarction, ventricular fibrillation and Tako-Tsubo syn-

drome [Sinning et al., 2010]. The final core cohort dataset consisted of 1,437 examination pairs

53
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Variable Value

Number of examination pairs 1,437

Number of patients 1,400

Sex (% male) 69.1

Age (years) mean ± std 60.1 ± 15.7

Weight (kg) mean ± std 80.0 ± 15.9

NYHA (%)

I 32.6

II 36.4

III 19.9

IV 11.1

Time between cardiac catheterization

and cMRI

Days between examinations mean ± std 4.6 ± 7.1

Cardiac catheterization

LV-EDP (mmHg) mean ± std 16.8 ± 7.7

Cardiac MRI examination

LV-EF (%) mean ± std 53.2 ± 14.5

LV mass (g) mean ± std 117.3 ± 45.9

LV-EDD (mm) mean ± std 52.8 ± 8.8

LV-ESD (mm) mean ± std 31.3 ± 12.8

LA-diameter (mm) mean ± std 38.3 ± 8.1

Table 5.1: Clinical characteristics of core cohort patients.

from 1,400 patients. 37 patients had two cMRI/cardiac catheterization couplets, all at least one

year apart.

The recorded pressure curves were automatically analyzed by the in the scope of this disser-

tation developed algorithm described in Chapter 3. The automatically extracted LVEDP value is

used as the ground truth for the regression task. Therefore, the ground truth is completely free

of observer bias.

The core cohort is the development cohort for predicting LVEDP from cMRI (AI-LVEDP).

The characterization of training data is essential to estimate potential limitations of AI sys-

tems [Johnson et al., 2021]. The mean age of patients in the core cohort was 60.1 years with

a standard deviation of 15.7 years. The mean patient weight was 80.0±15.9 kg. 30.4% expe-

rienced no cardiac-related limitations on physical activity (NYHA I), whereas 12.6% already

showed symptoms of heart failure at rest (NYHA IV) [Dolgin et al., 1994]. The automatically

extracted LVEDP was on average 16.8 ± 7.7mmHg. Additional patient characteristics can be

found in Table 5.1.

Additionally, electronic health records were investigated to obtain a more detailed disease

spectrum (Table 5.2). 4.5% of patients had a diagnosed hypertrophic cardiomyopathy. The

most prevalent cardiomyopathy was dilated cardiomyopathy, with a frequency of 25%. The

majority of patients (73.5%) suffered from coronary artery disease. The occurrence of atrial

fibrillation (14.3%) is of particular interest, since commonly used LV filling pressure biomark-

ers from echocardiography can not be calculated during rapid and irregular beating of the

atrium [Nagueh et al., 1996]. Furthermore, 14.3% had diabetes mellitus.

The ethnicity of patients was not individually recorded. However, the expected ethnicity
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5.2 Model development of AI-LVEDP

Condition Occurrence (%)

Hypertrophic cardiomyopathy 4.5

Restrictive cardiomyopathy 0.2

Arrhythmogenic right ventricular cardiomyopathy 0.1

Other cardiomyopathies 2.2

Dilated cardiomyopathy 25.0

Coronary artery disease 73.5

Atrial fibrillation 14.3

Arterial hypertension 66.7

Diabetes mellitus 13.4

Peripheral artery disease 0.1

Stroke 0.5

Table 5.2: Patient’s disease spectrum in the core cohort.

spectrum of the dataset is represented by the southern German population. In the area covered

by the University Hospital of Heidelberg, 30.9% of inhabitants have a migration background.

50% of those come from other EU states than Germany, predominately Italy and Greece. The

majority of patients coming from outside the EU are from Turkey and the former Yugoslavia with

corresponding ethnicities1.

5.2 Model development of AI-LVEDP

The 2-chamber cine MRI view was selected for the input, as this method is frequently used in

various cMRI protocols. Preliminary investigations in this study have shown that the 2-chamber

view is the most promising compared to the short-axis and 3-/4-chamber view. When multiple

2-chamber MRIs were obtained during the same examination, the latter was used, assuming

that the sequence was recorded again due to quality issues. The 2-chamber cine MRI shows the

left ventricle and the left atrium of the heart. Also, the area of the mitral valve is clearly visible,

which could be important as the area of the mitral valve is used to infer the filling pressure during

echocardiography [Dagdelen et al., 2001]. A cine MRI consists of multiple frames obtained over

multiple heart cycles. The final cine MRI in the core dataset consists of 35 frames representing

one full heart cycle. All 35 images can not be obtained during a single heart cycle because of

the limited image acquisition speed from the MRI machine (relaxation time).

The dataset was divided into a training, validation, and test dataset. Before the

training phase, the neural network weights were initialized at random (Glorot initializa-

tion) [Glorot and Bengio, 2010]. During training, cMRI cine sequences were presented to the

neural network. The network predicted the LVEDP and the prediction was compared to the

actual value from the invasive hemodynamic measurement. The discrepancy was used to adjust

network weight via backpropagation. The training process consisted of up to 500 epochs. The

validation dataset was used to detect potential overfitting. Also, if poor model convergence was

detected on the validation set, the network weights were reinitialized and the training process

was repeated.

1https://www.baden-wuerttemberg.de/en/our-state/the-state-and-its-people, 15:42 09.03.2024
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5 Predicting Ventricular Pressure from Cardiac MRI (AI-LVEDP)

In addition to the cMRI, the AI-LVEDP received the patient’s heart rate during the MRI ex-

amination, the patient’s sex, age, and weight as additional input. All parameters are com-

monly obtained before or during the MRI examination. Especially heart rate and patient’s

weight are essential for the correct calibration of the cMRI procedure. The neural network

architecture ensured a non-linear combination of the patient information with the cMRI fea-

tures by leaving at least one hidden layer after feature concatenation. The used optimizer

was Adam [Kingma and Ba, 2014]. To improve the expressiveness of the results, 5-fold cross-

validation was used for performance estimation. The results were averaged over those five

cross-validation models. For model development Python, Tensorflow, Pytorch and Keras were

used [Abadi et al., 2016, Paszke et al., 2019, Chollet, 2018].

5.2.1 Data preprocessing

Based on each individual patient, the investigators and software plan the cMRI protocol. Each

sequence might differ in terms of physical image size and resolution. The cMRI images were

preprocessed so that the size of the cutout was physically 29.5x29.5 cm and the image dimen-

sion was 200x200pixels. Hence, the physical scale on all cMRIs was consistent throughout

the dataset. The final image resolution was adjusted using bi-cubic or Lanczos interpola-

tion [Keys, 1981, Duchon, 1979]. In case that the whole obtained cutout was smaller than the

required size, the image limits were padded with black pixels.

The greyscale values of the cMRI are coded in 8-bit. It was observed that sometimes, outlier

pixels appeared very bright compared to the rest of the MRI. This made the overall MRI appear

much darker and potentially inhibited optimal machine learning performance. In order to address

this observation, each pixel was normalized to the 99% percentile brightest pixel in each individual

MRI sequence. Pixels brighter than the 99% threshold were clipped at one. Hence, the resulting

pixel values were all in the range [0, 1].
Each sequence resembled a complete cardiac cycle. The standard cMRI protocol for 2-

chamber cine MRIs obtained 35 frames. These frames were obtained throughout multiple heart

cycles due to limits in frame acquisition speed. The start of the MRI sequences was gated

by ECG (95% of cases) or pulse-oximetry (5%), for the ECG gating the R-wave is used as a

trigger. The R-wave usually does not align with the heart-cycle-induced increase in oxygen

saturation in the blood detected during the pulse-oximetry [Denslow and Buckles, 1993]. To

mitigate this discrepancy, time synchronization was done manually for all pulse-oximetry-gated

MRI sequences.

5.2.2 Data augmentation

Data augmentation during model training can significantly improve generaliza-

tion [Mikołajczyk and Grochowski, 2018]. Thereby, the training images were slightly rotated,

vertically/horizontally shifted at random for each training epoch. The specific augmentation

operations are stated in Table 5.3.

For the random rotation, shift operations and brightness adjustment, a random value is

uniformly sampled from the stated interval [Walpole et al., 1993]. In analogy, a random bit

is generated to determine whether the instance is horizontally flipped. The horizontal flip is
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5.2 Model development of AI-LVEDP

Operation Parameter space

Random rotation [−20°, 20°]
Horizontal shift [−7%, 7%]
Vertical shift [−7%, 7%]
Brightness adjustment [−20%, 20%]
Horizontal flip Flip probability 50%

Table 5.3: Applied data augmentations during neural network training.

particularly important, since the 2CH MRI dataset included sequences recorded from the sagittal

and coronal body plane of the patient [Ginat et al., 2011]. The sagittal sequence looks ’taken

from the other side’ compared to the coronary sequence. The flip operation mediates between

those two views, resulting in higher generalization.

To ensure the consistency of these transformations throughout the image stack (time dimen-

sion) of the 2CH Cine MRI, each operation is applied with the same random value to each image

in the sequence.

5.2.3 AI-LVEDP output calibration

After training; the neural networks had the tendency to predict LVEDP very conservatively.

The ground truth spectrum of LVEDP values varied between 1 and 55mmHg, whereas the

neural network predictions only ranged from 7 to 34mmHg. The model was trained to minimize

the discrepancy between ground truth and prediction. Hence, it naturally tries to avoid large

deviations by predicting mostly conservative LVEDP values centered around the data mean.

Some loss function tend to penalize large differences more than others, e.g. mean square

loss penalizes outliers quadratically, whereas mean absolute loss only penalizes by absolute

distance. Furthermore, strictly monotonously rising custom loss functions, which penalize larger

variations even less harshly (e.g. logarithmic scaling) can be easily implemented.

However, it was not possible to adjust the prediction spectrum satisfactorily by applying the

aforementioned techniques. To address the problem, a post-training calibration was implemented

by utilizing the validation dataset. The test dataset remained untouched and was only used for

the final performance benchmarking. With the ground truths labels of the validation dataset

𝑣𝑡𝑟𝑢𝑡ℎ and the model predictions on the validation data 𝑣𝑝𝑟𝑒𝑑, the transformation of the model

output 𝑦 is given by

𝑦𝑟𝑒𝑐𝑎𝑙 = std(𝑣𝑡𝑟𝑢𝑡ℎ)
std(𝑣𝑝𝑟𝑒𝑑)

(𝑦 − mean(𝑣𝑝𝑟𝑒𝑑) + mean(𝑣𝑡𝑟𝑢𝑡ℎ)) , (5.1)

where std denotes the standard deviation and mean the arithmetic mean of the list of values.

The calibration assures that the AI-LVEDP output distribution matches the ground truth LVEDP

distribution of validation dataset in terms of mean and standard deviation. Therefore, the

calibrated prediction spectrum is comparable to the LVEDP spectrum obtained from the cathlab.
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5 Predicting Ventricular Pressure from Cardiac MRI (AI-LVEDP)

5.3 Model evaluation on core cohort

A 3D-convolutional neural network (AI-LVEDP) was trained based on the core cohort to predict

the LVEDP from cMRI. The model output is a single value representing the predicted LVEDP

value in mmHg. The final cross-validated AI-LVEDP model could distinguish between elevated

LVEDP (>20mmHg) and normal LVEDP (<14mmHg) with an accuracy of 0.75 (CI95% 0.70-0.80)

and AUC of 0.78 (CI95% 0.75-0.81) based on ROC analysis (Table 5.6). The mean absolute

error was 5.27mmHg (CI95% 5.14-5.41) for individual predictions.

The dichotomization into the elevated versus normal LVEDP group represents rele-

vant diagnosis windows used in clinical practice [Dokainish et al., 2008, Chemla et al., 2009,

Posina et al., 2013]. Performance metrics for other thresholds mentioned in the literature are

shown in Table 5.7. Because of the large biovariability of LVEDP discussed in Section 3.5 and

the fact that most pressure measurement data points cluster around 15mmHg, it is particularly

difficult for AI-LVEDP and other commonly used biomarkers to distinguish between <15 and

>15mmHg.

5.3.1 Model architecture

The architecture of a neural network refers to the network topology, i.e. the arrangement of the

neurons and their interconnection. The neural network architecture can have a great impact on

the model performance [Bianco et al., 2018]. The final neural network architecture of AI-LVEDP

is presented in Figure 5.1.
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Figure 5.1: AI-LVEDP neural network architecture.

Several paradigms can be recognized by looking at the specified output dimensions of the

hidden layers of AI-LVEDP. The first convolutional layers allow the network to build up complex

2D-feature maps. However, the network is not yet able to utilize temporal characteristics

between MRI images. It has proven to be advantageous not to model local and temporal patterns

simultaneously from the outset. In the rear layers of the network, the convolutions spanned over

the time dimension. This enabled the learning of patterns that represent the change in cMRI

images over time.

AI-LVEDP received the patient’s age, weight, sex and heart rate during the cMRI as additional

input. The additional input features were normalized to the range [0, 1] to ensure optimal
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5.3 Model evaluation on core cohort

information flow. The network architecture ensured that the additional input features could be

combined in a non-linear fashion with latent features originating from the cMRI.

Several architectures were explored with varying numbers of layers, neurons and network

topology based on the architecture shown in Figure 5.1. Furthermore, commonly used com-

puter vision benchmark models were also explored instead of developing a completely custom

topology. Architectures based on InceptionV3 received an ROC AUC of 0.77 (CI95% 0.74-

0.80) [Szegedy et al., 2016]. Adapted networks from the EfficientNet family achieved an AUC of

0.78 (CI95% 0.75-0.80) [Tan and Le, 2019]. Likely, the limit of distinguishable pattern complexity

was already reached. In order to distinguish more volatile patterns from noise, more data would

be needed. However, it is also possible that the signal originating from the MRIs has already

been exhausted with regard to the LVEDP. A study that includes significantly more data could be

used to estimate whether all the relevant information contained in the cMRIs has been utilized.

The results with EfficientNet and Inception were qualitatively indistinguishable from the bench-

mark of the final AI-LVEDPmodel. However, the custom architecture was more resource-efficient

in terms of the number of trainable parameters and execution time and was therefore preferred.

Moreover, especially Inception was difficult to train. Sometimes the network was converging to a

poor local minimum (detected by evaluation on the validation set) requiring reinitialization and

retraining. This indicates that AI-LVEDP had advantages in terms of robustness.

The modeling of the time dimension was finally done by 3D-convolutions. Prior trials modeling

the cMRI time dimension based on Long short-termmemory (LSTM) modules yielded significantly

inferior results [Hochreiter and Schmidhuber, 1997]. Experimentation with vision transformers

showed more promising results [Dosovitskiy et al., 2020]. This could be an interesting approach

for future research.

5.3.2 Analysis of AI-LVEDP predictions and NT-proBNP levels

N-terminal pro b-type natriuretic peptide (NT-proBNP) is a biomarker used extensively in car-

diology for several purposes [Mueller et al., 2007]. NT-proBNP is a widely used biomarker

for heart failure and is used for risk stratification for patients with acute coronary syndromes

(ACS)[McKie and Burnett, 2016, Hall, 2005, Zdravkovic et al., 2013].

0 500 1000 1500 2000 2500 3000 3500

AI-predicted high LVEDP group

AI-predicted normal LVEDP group

Median NT-proBNP in ng/l

p=7e-19

Figure 5.2: NT-proBNP levels in AI-predicted elevated and normal LVEDP groups.

NT-proBNP concentrations are measured via blood tests. Available measurements from

patients were compared between the subgroup of individuals with an AI-predicted increased

LVEDP and those patients with predictably normal pressure. The median NT-proBNP serum

concentration was 263 ng/l in the normal LVEDP cohort and 3,156 ng/l in the increased LVEDP

group (Figure 5.2). A t-test showed that the concentration differences were statistically significant

(p-value = 7e-19). This further highlights the capabilities of AI-LVEDP dichotomizing patients in

biologically and clinically relevant groups.
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5 Predicting Ventricular Pressure from Cardiac MRI (AI-LVEDP)

The Log(NT-proBNP) levels correlated with the ground truth LVEDP with a Pearson correlation

of 0.41, which is slightly lower than the AI-LVEDP predictions (Pearson = 0.46).

5.3.3 Subgroup analysis

To test AI models for potential bias in the predictions, benchmarking performance for various

patient subgroups is essential [Wang et al., 2007]. For this purpose, the trained AI-LVEDP was

evaluated for specific subgroups of the test dataset (e.g. only female patients). The results were

accumulated across all cross-validation folds. In Table 5.4, a comprehensive subgroup analysis

investigating the impact of various patient characteristics is shown, thus revealing possible model

biases.

The classification performance was homogeneous across age groups, sex and diagnosis

of atrial fibrillation. The distribution of left ventricular ejection fraction (LV-EF) was as follows:

LV-EF>50: n=996, 40≤LV-EF≤50: n=187, LV-EF<40: n=231, showing that the largest fraction of

cases was in the normal LV-EF group and patients in this group were considered heart failure

patients with preserved ejection fraction (HF-pEF) if they had elevated LVEDP. In the different

Subgroup Age (years) Sex LV-EF (%) Afib

Cut-off ≥60 <60 male female >50 40-49 <40 yes no

AUC 0.78 0.78 0.79 0.77 0.72 0.78 0.83 0.77 0.78

Subgroup
Days between NT-proBNP Diuretics

MRI and CC (ng/l) changed

Cut-off ≤1 >1 >10 >125 ≤125 yes no

AUC 0.77 0.80 0.75 0.78 0.74 0.79 0.76

Table 5.4: AI-LVEDP model performance in different patient subgroups.

LV-EF groups, there was a slightly reduced performance in the normal group (AUC=0.72), which

is the group that is also especially challenging for the human experts (AUC=0.64).

Most patients had the cardiac catheterization and the cMRI within one day. The corresponding

AUC for this time window was 0.77. All cases outside the one-day window resulted in an AUC

of 0.8. In the subgroup of procedures that are more than 10days apart, the AUC decreases to

0.75. This indicates the introduction of additional noise due to the larger time difference.

Next, differences in NT-proBNP subgroups are investigated. In patients with blood concen-

trations >125ng/l the AUC was 0.78. In the reciprocal group with ≤125ng/l, the performance

declined to 0.74. This is in concordance with the trend already observed in the ejection fraction

groups that AI-LVEDP tends to benchmark higher in groups with less healthy patients (low EF,

high NT-proBNP).

Diuretics play a crucial role in the management of various conditions in cardiology by promot-

ing the excretion of excess sodium and water from the body, thereby reducing blood volume

and subsequently lowering blood pressure [Mullens et al., 2019, Felker et al., 2020]. Hence,

diuretics likely have a direct effect on cardiac filling pressure.

To understand whether diuretics have any negative impact on the prediction by affecting the

filling pressures the two assessments, 2501 doctoral letters (electronic health records) were
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manually screened for the use and change of diuretics during the time window, as no structured

information on diuretics was available. 42.3% of patients had any diuretics including aldosterone-

antagonists [Garthwaite and McMahon, 2004]. A total of 25% of patients had a change in the

diuretics medication. The AI performance remained robust in the diuretics group (AUC=0.79),

irrespective of any changes in the dose or type of diuretics within the time window between the

cMRI and hemodynamic assessment. The AUC in the cases in which the diuretic medication

did not change or was completely absent was 0.76. This analysis suggests a rather negligible

influence of diuretics on LVEDP compared to other factors.

5.4 External validation

External validation is often seen as the ultimate test to conclusively evaluate the safety, reliability

and generalizability of a machine learning model [Youssef et al., 2023]. Internal cross-validation

is not sufficient [Keevers, 2019]. Often, prediction models are too specialized for certain condi-

tions and protocols in the development cohort and fail to reproduce applicability on reproduction

cohorts [Data et al., 2016, Collins and Moons, 2019]. However, some argue that there is no

such thing as a validated prediction model, as protocols and patient spectra change over

time [Van Calster et al., 2023]. Hence, a careful monitoring of model performance over time is

required in order to detect concept drifts and to ensure maximum reliability.

5.4.1 Validation cohort dataset

To access the generalizability of AI-LVEDP, both external validation and observation of model

performance over time was conducted. AI-LVEDP was tested in three independent validation

cohorts using the same model without retraining.

The external cohorts were derived from two centers, one university hospital (Ulm) and one

larger-scale regional hospital (Robert-Bosch Hospital, Stuttgart). Both centers are experienced

cardiac imaging centers with in-house cMR machines, allowing for narrow time windows between

invasive and non-invasive phenotyping. From an initial set of 1,800 invasive and 2,200 cMR-

examinations, matching for the timeframe of a maximum of 30 days and application of exclusion

criteria (Section 5.1) resulted in n=113 cMR-hemodynamics couplets from Ulm and n=240

cMR-hemodynamics couplets from Stuttgart.

Furthermore, a current internal validation cohort from the University Hospital of Heidelberg

was realized to observe model performance over time. This cohort was temporally separated

from the core cohort and comprised n=903 patients from the years 2019-2023, whereas the

development cohort included patients from the years 2006-2019.

A comparison of patient characteristics for all cohorts is shown in Table 5.5. Patients in the

core cohort and external validation cohorts had an average age close to 60 years. The more

recent validation cohort from Heidelberg had an average age of 65.6 years suggesting an aging

patient collective. The mean weight was around 80 kg in all centers. The ratio of male patients is

increased in all centers, which is consistent with known sex differences in patients with heart

failure [Strömberg and Mårtensson, 2003].

The MRI scanner vendors, models and field strengths differed across the three centers, which
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Variable Core cohort Ulm Stuttgart Heidelberg

Number of patients (n) 1,437 113 240 903

Sex (% male) 69.1 65.5 67.5 73.3

Age (years) 60.1 ± 15.7 59.9 ± 17.0 57.4 ± 14.2 65.6 ± 14.4

Weight (kg) 80.0 ± 15.9 81.2 ± 17.4 79.9 ± 15.1 80.9 ± 16.1

NYHA (%)

I 32.6 37.6 13.5 29.1

II 36.4 23.9 43.9 44.1

III 19.9 33.9 31.6 23.5

IV 11.1 4.6 11.0 3.3

Days between

cardiac catheterization

and cardiac MRI

4.6 ± 7.1 7.7 ± 8.5 5.1 ± 10.0 3.9 ± 6.6

Cardiac catheterization

LV-EDP (mmHg) 16.8 ± 7.7 18.9 ± 8.3 20.6 ± 9.0 16.0 ± 7.5

Cardiac MRI examination

LV-EF (%) 53.2 ± 14.5 56.3 ± 15.4 43.5 ± 18.8 51.8 ± 14.5

LV mass (g) 117.3 ± 45.9 125.2 ± 53.7 - 118.7 ± 41.6

LV-EDD (mm) 52.8 ± 8.8 53.3 ± 9.0 57.1 ± 10.1 51.4 ± 8.4

LV-ESD (mm) 31.3 ± 12.8 36.6 ± 10.5 - 35.8 ± 10.8

Left atrial diameter (mm) 38.3 ± 8.1 44.1 ± 8.1 38.1 ± 8.3 40.3 ± 8.9

Cardiac MRI model,

vendor and magnetic

field strength

Philips Medical Systems

Achieva 1.5T

59.6% of cases

Philips Medical Systems

Ingenia CX 1.5T

18.4% of cases

Philips Medical Systems

Ingenia 3T

14.9% of cases

Philips Medical Systems

Intera Achieva 1.5T

7.1% of cases

Philips Medical Systems

Achieva 1.5T

100% of cases

SIEMENS Sonata

1.5T

70% of cases

SIEMENS Aera

1.5T

30% of cases

Philips Medical Systems

Achieva 1.5T

29.6% of cases

Philips Medical Systems

Ingenia CX 1.5T

36.2% of cases

Philips Medical Systems

Ingenia 3T

30.7% of cases

Philips Medical Systems

Intera Achieva 1.5T

3.5% of cases

Table 5.5: Overview of core cohort characteristics and validation cohorts. Values are stated as

mean ± std.

introduced additional heterogeneity and made generalization more difficult. Heidelberg and Ulm

used on Philips machines, whereas Stuttgart relied on Siemens scanners. The cMRI protocols

in all centers greatly varied, which introduced challenges. The cMRI images used for model

training were 2-chamber cine sequences consisting of 35 frames. However, other centers greatly

utilized other framerates ranging from 15 to 40 images per heart cycle. To overcome this problem,

Real-time intermediate flow estimation RIFE was used for up/downsampling of framerates to

match the development cohort [Huang et al., 2020]. LV mass and LV ESD were not routinely

assessed during the cMRI in Stuttgart, which further illustrates the differences in the protocols.

The time window distribution for cMRI and hemodynamics is shown in Figure 5.3. The

distributions are displayed with kernel density estimation [Chen, 2017]. The core cohort and the

Heidelberg validation cohort both usually had cardiac catheterization before the cMRI, whereas

in Ulm, the majority of MRI procedures were conducted before hemodynamics. Ulm also had the

highest average time difference between the procedures at 7.8 days. In the center of Stuttgart,

the distribution is balanced and resembles a normal distribution.

The mean LVEDP observed in the core cohort was 16.8mmHg, in Ulm 18.9mmHg and

16.0mmHg in the validation cohort from Heidelberg (Figure 5.4). The mean LVEDP seen in

patients from Stuttgart was as high as 20.6mmHg. Since an elevated LVEDP is an indication of

impaired cardiac health, the Stuttgart cohort represents a more severely ill patient population
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Figure 5.3: Distribution of time differences between cardiac catheterization and cMRI examina-

tions for all cohorts.

compared to other centers. This is additionally reflected in the significantly lower ejection fraction.

5.4.2 Model evaluation on validation cohorts

The fixed AI-LVEDP model was evaluated on the validation cohorts without any adaptation. The

results, including various metrics, are presented in Table 5.6. The artificial intelligence agent was

capable of predicting LVEDP (normal vs. elevated) with almost equal performance compared to

the core cohort (AUC = 0.78): 0.71 (University Hospital Ulm)and 0.75 (Robert-Bosch Hospital

Stuttgart), AUC of 0.78 (University Hospital Heidelberg).

Metric Core cohort Heidelberg Ulm Stuttgart

ROC AUC 0.78 (0.75-0.81) 0.75 (0.73-0.77) 0.71 (0.68-0.74) 0.75 (0.73-0.78)

Accuracy 0.75 (0.70-0.80) 0.69 (0.65-0.74) 0.66 (0.61-0.70) 0.76 (0.75-0.77)

MAE (mmHg) 5.27 (5.14-5.41) 5.95 (5.84-6.06) 6.71 (6.65-6.77) 6.62 (6.49-6.76)

F1-Score 0.63 (0.57-0.71) 0.61 (0.56-0.69) 0.50 (0.41-0.59) 0.79 (0.76-0.82)

Specificity 0.76 (0.70-0.81) 0.59 (0.53-0.65) 0.40 (0.30-0.51) 0.81 (0.73-0.89)

Sensitivity 0.56 (0.45-0.66) 0.63 (0.57-0.70) 0.77 (0.67-0.87) 0.77 (0.75-0.80)

Table 5.6: AI-LVEDP model performance core cohort and validation cohorts. In brackets, the

95% confidence intervals are stated.

The accuracy benchmarks ranged from 0.66 to 0.76. Themean absolute difference of individual

predictions to the measured pressure values was 5.95mmHg in Heidelberg. The mean absolute

error in Ulm and Stuttgart was above 6.5mmHg. This is partly explained by the higher ratio of

patients with elevated LVEDP in those centers, allowing a larger margin of error.

A scatterplot of all data points is shown in Figure 5.5. The Pearson correlation coefficient

between LVEDP ground truth and AI prediction was 0.46 on the core cohort, 0.36 in Ulm, 0.46

in Stuttgart and 0.48 in Heidelberg. The data from Ulm included the least number of patients.

Hence, the confidence intervals for the metrics calculated on this data subset are the widest,
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Figure 5.4: LVEDP distribution for the core cohort and all validation cohorts.

especially for the F1 score, specificity and sensitivity.

Despite the strong heterogeneity in the validation datasets, e.g. different MRI vendors/mod-

els/protocols and diverse patient spectra, AI-LVEDP maintains comparable performance. This is

likely due to the methods applied during model development forcing the AI-LVEDP to generalize.

The major techniques used to promote generalization were MRI preprocessing to establish data

consistency and data augmentation to prevent overfitting.

5.5 Comparison to state-of-the-art ”biomarkers” from
echocardiography

Benchmarking performance is essential to establish a comprehension of the model’s capabilities.

However, it is similarly important to put these numbers into context. Therefore, comparing

benchmarks to related and competing methods is crucial.

The gold standard for non-invasive assessment of LVEDP are currently biomarkers measured

during echocardiography [Jones et al., 2021]. Both the E/A and E/E’ quotients were routinely

calculated within Doppler echocardiography examinations in the University Hospital Heidelberg.

Pulse Doppler echocardiography is a procedure in which Doppler ultrasound is used to measure

the speed and direction of blood flow by utilizing the Doppler effect [Oglat et al., 2018]. The

E/A quotient refers to the ratio of early (E) to late (A) diastolic filling velocities of blood in the

left ventricle of the heart [Cohen et al., 1996]. However, to calculate the E/E’ quotient, the early

diastolic mitral annular velocity (E’) is used instead of the late diastolic filling velocities. The

early diastolic mitral annular velocity reflects the velocity of movement of the mitral annulus (the

base of the mitral valve) toward the apex of the heart, which is measured by tissue Doppler

imaging [Ommen et al., 2000].

All available echocardiography examinations from patients in the core cohort were extracted

from the research data warehouse, including calculated E/A and E/E’ ratios. Due to the loss of

the A-wave in patients with atrial fibrillation, the number of available E/A measurements (n=430)
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Figure 5.5: Individual AI-LVEDP predictions versus actual left-ventricular pressure for each

center.

is less than the number of E/E’ quotients (n=487). The E/E’ ratio reached an AUC of 0.69,

distinguishing between elevated LVEDP (>20 mmHg) and normal LVEDP (<14 mmHg), and the

E/A ratio presented an AUC of 0.72 (Figure 5.6). Both echocardiographic parameters slightly

underperformed when compared to AI-LVEDP (AUC=0.78) on the exact same patient subset.

The ROC analyses were statistically compared using the DeLong test [Robin et al., 2018]. The

resulting p-value for E/E’ and AI-LVEDP was p=0.01. Comparing the ROC curves between E/A

and AI-LVEDP yielded p=0.08, indicating a tendency towards superiority of the AI.

ROC AUC AI-LVEDP E/E’ E/A

<14 vs. >20 0.78 0.69 0.72

>12mmHg 0.67 0.64 0.66

>14mmHg 0.69 0.63 0.66

>15mmHg 0.70 0.63 0.65

>20mmHg 0.74 0.67 0.69

Table 5.7: Echo biomarkers versus AI-LVEDP for different classification thresholds.

Scatterplots of the measured LVEDP values and the echocardiography biomarkers result in a

Pearson correlation of 0.39 for E/A and 0.41 for E/E’. Furthermore, confidence intervals including

95% of prediction were calculated (Figure 5.6 top panels). The slope and offset of the linear

functions were determined by a linear fit utilizing the least squares method. The confidence

interval borders, stated in absolute LVEDP deviation (mmHg), were then generated in such a way

that 95% of data points were comprised in the enclosed area. The calculated 95% prediction

intervals were ±16.8mmHg for E/A and ±17.9mmHg for E/E’. The equivalent confidence intervals

obtained from AI-LVEDP were only ±15.45mmHg, thus favoring the novel approach.

In Table 5.7, the performance of AI-LVEDP, E/E’ and E/A for different classification thresholds is

stated. In addition to the dichotomization into elevated and normal filling pressure, also singular
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Figure 5.6: Echocardiography biomarker correlation with LVEDP.

thresholds are evaluated. Regardless of the exact scenario, AI-LVEDP scored higher AUCs

than the echocardiography biomarkers. However, the magnitude of the difference varied. For

classification thresholds close to 12mmHg, where the majority of data points lay, the biovariability

of LVEDP (Section 3.5) introduces the strongest effective noise levels. Thus, these tasks are

more difficult for each biomarker and dampen their respective differences.

5.6 Comparison to cardiac MRI experts

Next, the performance of the deep learning model was compared to human experts. For this,

the capabilities of four expert cardiologists to predict LV filling pressures from cMRI sequences

were accessed. However, there is no evidence-based methodology of estimating LV-EDP from

cardiac MRI imaging sequences, both for patients with reduced ejection fraction and patients

with preserved ejection fraction.

300 cMRI/LVEDP couplets from the core cohort dataset were randomly selected and an app

was developed with sequential visualization of the cMRIs and with the possibility for the observer

to enter a numerical value for the LVEDP. In order to access the intra-observer reliability, 25 of

the 300 cMRIs were duplicated and, therefore, presented to the experts twice. In addition to the

cMRI, the experts were provided with the patient’s age, weight, sex and heart rate during the
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Figure 5.7: ROC analysis of expert cardiologists and comparison to AI-LVEDP.

MRI. Hence, the physicians were provided with exactly the same information as AI-LVEDP had.

The experts evaluated the LVEDP independently using their extensive experience in cardiac

imaging. There were no time constraints enforced during the assessment, so the physicians

could individually decide how much time they needed for the prediction.

The experts reached an overall AUC of 0.66 (CI95% 0.62-0.69), distinguishing between

elevated LVEDP (>20 mmHg) and normal LVEDP (<14 mmHg). The AI model showed a better

performance with an AUC of 0.79 on the same data subset (Figure 5.7, blue curve) and an

overall AUC of 0.78 on the complete multicenter dataset including all available patients (green

curve).
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Figure 5.8: Inter- and intra-correlation coefficients for LVEDP prediction using cMRI by expert

cardiologists and time required for prediction.

The experts spent an average time period of 7 seconds on each cMR sequence to make

their prediction, whereas the AI needed only 0.02 seconds (Figure 5.8, right panel), showcasing

the fast inference time of AI-LVEDP, enabling real-time real-time application possibilities. The

hardware used for this benchmark was an Intel Core i9-9940X CPU paired with two NVIDIA

TITAN RTX GPUs.

The intra-observer reliability was quantized by Lin’s concordance correlation coeffi-
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Predict LVEDP<14 and LVEDP>20mmHg ROC AUC

Expert 1 0.67

Expert 2 0.63

Expert 3 0.65

Expert 4 0.68

Experts mean ± std 0.66 ± 0.02

AI model 0.79

Time spent per cMRI mean ± std [s]

Expert 1 8.8 ± 4.4

Expert 2 5.5 ± 3.5

Expert 3 7.7 ± 5.1

Expert 4 6.2 ± 4.0

Experts mean ± std 7.1 ± 1.3

AI model 0.02 ± 0.01

Intra-observer reliability Lin’s concordance correlation coefficient

Experts 0.63 (CI95%0.43-0.84)

AI model 1.00 (CI95%1.00-1.00)

Inter-observer reliability

Absolute agreement (ICC3) 0.75 (CI95%0.71-0.79)

Table 5.8: Expert predictions of LVEDP based on cMRI.

cient [Lawrence and Lin, 1989]. The intra-observer reliability was 0.63 (CI95% 0.43-0.84).

Since AI-LVEDP is a completely deterministic model, the intra-observer reliability of the deep

learning model was 1. The inter-observer reliability was evaluated by intraclass correla-

tion [Shrout and Fleiss, 1979]. The inter-observer agreement was 0.75 (CI95% 0.71-0.79) in

terms of absolute agreement and 0.92 (CI95% 0.91-0.94) in terms of consistency (Figure 4B,

middle panel and left panel, respectively). The individual expert performance measures are

shown in Table 5.8.

Furthermore, the experts were interviewed to provide insights on their approach for estimating

LVEDP from the cine cMR sequences. They stated that signs of atrial enlargement, ventricular

dilation, paradox septal movements of the left ventricle, septal bounce and post-systolic septal

displacement were important features influencing their estimation of LVEDP. Additionally, they

took into consideration the presence of mitral prolaps, visual contrast perturbance and significant

jets potentially representing mitral insufficiency.

5.7 Explaining AI-LVEDP predictions - Model introspection by
attention mapping

After investigating human approaches for the determination of LVEDP using cardiac MRI, this

section attempts to unveil the approach used by artificial intelligence. Especially in medicine, the

ability to inspect and interpret functionality can improve trust and acceptance of machine learning

models [Teng et al., 2022]. Attention mapping (Section 2.10) is an excellent instrument to provide

a visual indication of a model’s functionalism by highlighting the most important information for

creating the prediction in the input image.

Attention maps were generated by systematically obscuring different regions of the cMRI
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Figure 5.9: Cumulative attention map. Generated by overlaying all individual attention maps

from the core cohort dataset.

sequences. In detail, a 5x5 pixel window was slid across the image stack (x-,y- and time-

dimension) to occlude a small part of the image. The obscured pixels were substituted with the

mean grayscale pixel value throughout the particular cMRI sequence. To assess the significance

of the occluded region for the LVEDP prediction, the baseline prediction from the normal cMRI

video was compared with the prediction from the occluded cMRI video (Figure 2.11). Utilizing

this approach, attention maps for every frame in the cMRI video were calculated. In the end,

overlays of the attention maps with the cMRI were generated to visualize the most relevant

regions.

The directionality of the LVEDP prediction was also obtained and denoted by color coding.

Regions marked as green contributed to a lower LVEDP prediction, whereas areas colored in a

red shade were signaling elevated filling pressure. The transparency of the color quantified the

strength of the impact. The lower the transparency, the higher the impact.

An overlay of all generated attention maps from the core cohort is displayed in Figure 5.9. A

reference cMRI is shown below to aid localization. The analysis reveals that the neural network’s

attention is predominantly centered on the mitral valve area. However, the observed dispersion

may appear larger than it actually is, since the MRIs producing the individual attention maps

were not perfectly aligned.
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Figure 5.10: AI-LVEDP attention maps for different patients over time.

Attention maps for individual patients are shown in Figure 5.10. Each row (a-d) refers to a

different patient. The image sequence displayed in each row shows the AI-LVEDP attention

over time during exactly one heart cycle. For reference, an ECG trace and a left-ventricular

pressure are aligned with the time axis. Especially during the diastolic phase of the cardiac cycle,

the majority of highlighted areas can be observed. Prior to the opening of the mitral valve, the

attention focus is on the left atrium in the vicinity of the mitral valve. Upon valve opening, the

attention moves to follow the blood flow through the mitral valve into the left ventricle (Figure 5.10

(a)). After the blood flow stops, the visualized attention vanishes.

Furthermore, small levels of attention outside the cardiac cavities could be observed. This

is not necessarily wrong, since peripheral water retention or other potential biomarkers found

in the cMRI could aid the prediction, e.g. as an indication of heart insufficiency. To investigate

the effect of this periphery attention, every pixel outside the heart was masked (replaced) by

black pixels. The AI model was retrained based on the masked dataset. However, this had

no significant impact on model performance, suggesting that extracardiac information was not

largely relevant for the AI prediction.

Overall, findings emphasize the correct functionality of AI-LVEDP and found concepts

are in agreement with established echocardiography-based estimations of diastolic func-

tion [Lancellotti et al., 2017].
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6 AI-based Diagnosis of Cardiomyopathies using
Cardiac MRI (AI-CMP)

Cardiomyopathies (CMPs) show an increasing prevalence worldwide [Roth et al., 2020]. The

diverse nature of cardiomyopathies makes diagnosis a challenging task [Belloni et al., 2008].

In this chapter, it is shown that AI agents (named AI-CMP) can accurately diagnose cardiomy-

opathies from a single 4-chamber cardiac MRI. Furthermore, a thorough model introspection

shows interesting insights into which heart structures were important for the AI for diagnosis

discovery.

6.1 Cardiomyopathies

Cardiomyopathies are a group of pathologies that affect the heart muscle, leading to struc-

tural and functional abnormalities [Ciarambino et al., 2021]. The cardiomyopathies included

in AI-CMP are hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), ischemic

cardiomyopathy (ICM) and cardiac amyloidosis, which is one of the leading causes of restrictive

cardiomyopathy [Kittleson et al., 2020].

Hypertrophic cardiomyopathy (HCM) is characterized by the thickening of the heart

muscle, particularly the left ventricle. Genetics are the most important factor for the

manifestation of the disease [Maron and Maron, 2013]. Hence, it is often inherited. The

thickening can obstruct blood flow out of the heart, making the heart less effective at

pumping blood.

Dilated cardiomyopathy (DCM) is a condition expressed by the dilation or enlargement

of the heart’s chambers. DCM can be caused by a variety of factors, including infections,

genetic traits or exposure to drugs and toxins [Weintraub et al., 2017]. The dilation weakens

the heart muscle, leading to impaired cardiac function.

Ischemic cardiomyopathy (ICM) is a type of cardiomyopathy that develops as a result of

coronary artery disease, which leads to inadequate blood supply to the heart muscle due

to the buildup of plaque [Moroni et al., 2021]. The reduced blood flow deprives the heart

muscle of oxygen and nutrients, which leads to damage to the heart muscle and prevents

it from pumping blood effectively.

Cardiac amyloidosis has a significantly lower incidence than the other mentioned car-

diomyopathies [Rubin and Maurer, 2020]. The cause of cardiac amyloidosis is the deposi-

tion of abnormal protein fibers called amyloids in the heart tissue. These amyloid deposits

lead to stiffening and thickening of the heart muscle, impairing its function over time.
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Common consequences of cardiomyopathies are shortness of breath, fatigue, arrhythmias, chest

pain, heart failure or even sudden cardiac death [McKenna et al., 2017].

Cardiac MRI is gold-standard for diagnosis of cardiomyopathies [Salerno et al., 2017]. How-

ever, cardiologists usually do not rely on only a single cMRI view and often include other

modalities. Especially for late gadolinium enhancement (LGE), gadolinium is a cMRI con-

trast agent, enables information about potential cardiac fibrosis and can therefore aid the

physician heavily in concluding a diagnosis. LGE can be used to diagnose myocarditis (ICM),

showing patterns of patchy midmyocardial or focal subepicardial LGE as a sign of potentially

irreversible damage (necrosis, fibrosis, edema). Also, DCM (midmyocardial to subepicardial

LGE), HCM (patchy to streaky midmyocardial LGE) and amyloidosis (subendocardial LGE)

can be diagnosed by different LGE patterns [Becker et al., 2018, Weng et al., 2016]. The addi-

tional information from the LGE would likely improve the classification accuracy of the model

developed here. However, by only relying on a single frame 4-chamber cardiac MRI, the

requirements for usage are kept minimal. The injection of the contrast agent gadolinium is

regarded safe, but could cause nausea, headache, abnormal skin sensation, or, in rare cases,

an allergic reaction. In-vitro studies have found gadolinium-based contrast agents to be neuro-

toxic, but the long-term effects of gadolinium remain unclear, even after several retrospective

studies [Bower et al., 2019, Olchowy et al., 2017]. As a consequence, LGE is only used conser-

vatively in clinical practice [Blumfield et al., 2017, Organization et al., 2010].

6.2 Model development of AI-CMP

More than 11,000 MRI examinations of the heart were carried out at the University Hospital of

Heidelberg, between 2006 and 2023. From those patients, structural cardiomyopathy phenotypes

or confirmed no structural heart disease could be verified in 4,390 patients via semi-automated

doctoral letter screening (Fig. 1.1). In recent cMRI reports the diagnosis has been specified

in a fully structured way (dropdown selection). Before, the list of diagnoses was stated in the

semi-structured diagnosis section from the doctoral letters. If this section was detected, the

relevant diagnoses were extracted automatically. If the diagnosis section was not found by the

automated script, a keyword search (HCM, Amyloidosis, …) was conducted and the letter was

evaluated manually with highlighted keywords in the free text. The keyword highlighting proved

to be very beneficial in terms of manual screening speed. Patients without any structural heart

disease indication during the cMRI were marked as controls.

The 4-chamber cine MRIs were preprocessed via brightness adaptation and bi-cubic interpo-

lation [Keys, 1981]. Deep convolutional neural networks were trained in a 5-fold cross-validation

scenario to benchmark performance. The model was trained to distinguish between four types

of cardiomyopathies and controls. An architecture search was conducted by varying the number

of layers and layer configurations. The best results were achieved with scaled exponential linear

unit (SELU) activation [Klambauer et al., 2017]. The optimizer was Adam. The data was divided

into train/validation/test set with a split of 60/20/20%. The validation set played a crucial role

in monitoring overfitting and implementing early stopping. In each epoch, the current model is

checked to determine whether it is the best model with regard to the validation data. If this is the

case, the model is saved. After training, the performance is reported by evaluating the saved

72
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Figure 6.1: AI-CMP architecture.

model on the test set.

During training, data augmentation was utilized to improve generalization. The augmentations

included rotation, chopping, brightness variation, contrast variation, sharpness variation and

distortion. The data augmentation proved to be essential for regularizing the models. The

preprocessing and data augmentation techniques used for AI-CMP were similar to the methods

described in Section 5.2. The batch size during training was 250. The output activation was

softmax activation and the loss function was categorical cross-entropy. The final AI-CMP

architecture is shown in Figure 6.1, with the type and output dimension of each layer specified.

6.3 AI-CMP results and benchmarking

Model outputs are the class probabilities for cardiomyopathies and control. Only a singular

frame of the 4-chamber MRI was required to solve the classification problem. Therefore, the

final model input was specified accordingly. By requiring only a single frame, the examination

time could be significantly reduced compared to a full cine sequence acquisition. This could

benefit patient throughput and potentially impact future cMRI protocols.

ROC AUCs for specific classes were calculated in a one-vs-all scenario. Plots of the receiver-

operator curves can be found in Figure 6.2. The class AUCs ranged from 0.82-0.92. In gray, the

individual curves from each cross-validation are shown. The low variation in the individual ROCs
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Figure 6.2: ROC curves for AI diagnosis from cardiac MRI.

highlights the large amounts of data. The class-specific accuracies ranged from 0.78 to 0.96
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6 AI-based Diagnosis of Cardiomyopathies using Cardiac MRI (AI-CMP)

(Table 6.1). However, the high accuracy for amyloidosis is biased by an already high majority

class baseline of 95%. The overall accuracy for the five-class classification problem was 64%.

In comparison, the control group was with 27% the most occurring class in the dataset.

Diagnosis Number of patients AUC Accuracy

HCM 816 0.92 (CI95% 0.91-0.94) 0.89 (CI95% 0.88-0.90)

DCM 1,064 0.85 (CI95% 0.84-0.87) 0.81 (CI95% 0.78-0.84)

ICM 1,131 0.82 (CI95% 0.79-0.84) 0.78 (CI95% 0.76-0.80)

Amyloidosis 202 0.90 (CI95% 0.86-0.93) 0.96 (CI95% 0.96-0.97)

Control 1,077 0.89 (CI95% 0.89-0.90) 0.83 (CI95% 0.82-0.84)

Table 6.1: Class-specific AI-CMP performance predicting diagnosis using cMRI.

A detailed confusion matrix is shown in Figure 6.3. The AI was able to distinguish between

DCM and HCM with an accuracy of 94%. The distinction between DCM/Control (Accuracy=82%)

or ICM/DCM (Accuracy=76%) was much more difficult for the AI model, which also reflects the

actual task difficulty for experts [Mahrholdt et al., 2005].

A subgroup analysis was conducted to investigate the robustness and potential bias of AI-CMP.

The average patient was 58 years old. In the group of patients older than 60 years, the overall

accuracy decreased to 0.6 and class-specific ROC AUCs ranged from 0.76-0.90, with the ICM

classification being the most difficult. In the group of patients younger than 60 years, the overall

accuracy increased to 0.68 (AUCs 0.81-0.94). The number of male patients was 72%. In the

subgroup of male patients, the accuracy was 0.63, whereas in the female patients group, the

overall accuracy was 0.66. The ejection fraction (EF) was on average 52%. No major differences

in model performance could be found between the low EF (≤50) and the high EF (>50) group

(Accuracy 0.63 vs. 0.65).
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Figure 6.3: Confusion matrix AI-CMP predictions utilizing cardiac MRI.

Across the spectrum of analyzed patient characteristics no substantial model bias was re-

vealed.The developed application could aid physicians making a differential diagnosis and

function as a gatekeeper for LGE. Also, in smaller healthcare providers less common diseases
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6.4 Introspection of AI-CMP by attention mapping

such as amyloidosis can be easily missed. Furthermore, there are potential areas of application

in teaching.

6.4 Introspection of AI-CMP by attention mapping

Attention mapping by occlusion was employed to highlight the MRI areas that had a strong

impact on the AI model’s predictions. Further technical details on the attention mapping setup

are provided in Section 5.7.

Overall, the highlighted areas are in concordance with areas described as relevant by MRI ex-

pert readers (Figure 6.4). For the diagnosis of HCM, the neural network recognizes the thickened

interventricular septum as the most pertinent information. Furthermore, it is intriguing that the AI

recognizes the LV apex aneurysm, which is a common symptom of ischemic cardiomyopathy. In

HCM DCM ICM Amyloidosis Control

Figure 6.4: Attention maps for diagnosis predictions from cardiac MRI.

the DCM cMRI, the AI’s attention is concentrated on the areas outside the heart’s periphery. The

marked pleural effusion (water retention) is characteristic of heart insufficiency, which is often

caused by cardiomyopathies [Maisch et al., 2012]. Hence, the presence of pleural effusions is

a valid biomarker, which could provide important information regarding this classification task.

Secondly, the focus was also on the dilated left ventricle and the left atrium. A variety of disease

patterns are frequently observed in cardiac amyloidosis, including myocardial thickening, atrial

dilatation, dark blood pools and pericardial effusion [Maceira et al., 2005]. In concordance, the

network attention is extensively distributed over the whole heart region. In controls, the mapping

usually highlighted the cardiac septum area.
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7 Discussion and Conclusion

Diagnosis of diastolic heart failure remains one of the most challenging problems in cardiology.

The left ventricular end-diastolic pressure (LVEDP) is recognized as the key indicator for the

assessment of diastolic heart function. However, this biomarker is difficult to obtain in clinical

routine, as it involves invasive intracardiac pressure measurements, which are naturally associ-

ated with interventional risks for the patient. Therefore, LVEDP is often unavailable in suspected

heart failure patients. The AI-LVEDP model, as developed in the context of this dissertation,

constitutes a non-invasive option to infer the LVEDP from commonly available cardiac MRI

recordings [Lehmann et al., 2024].

For this, a collective of 66,936 patients who underwent cardiac catheterization including hemo-

dynamic measurements was evaluated and filtered for patients additionally receiving a cardiac

MRI examinations within a 30 day window. The automated annotation of left ventricular pressure

curves resulting from the hemodynamics, with over 183,000 individual samples, by a self devel-

oped algorithm was essential in providing unbiased training objectives forAI-LVEDP. Furthermore,

the extended analysis yielded quantified measures of LVEDP-biovariability and the effects of

contrast agents. Artificial neural networks were trained to reveal the hidden information content

inherent in LV pressure curves, such as the patient’s age and sex. A subsequent investigation

concluded that the AI model was also inferring the patient’s cardiac health status during the age

prediction. Furthermore, the model’s capability to diagnose coronary artery disease has clinical

applicability in aiding as a possible gatekeeper for coronary angiography [Patel et al., 2010].

Following this analysis, the convolutional AI-LVEDP network was trained using cardiac MRI as

the input data, with the automated LVEDP labels serving as the objective function.

AI-LVEDP could deliver more precise LVEDP estimates than those achieved by human cMRI

experts and routinely used echocardiographic parameters for diastolic dysfunction. Although

echocardiography, including AI-enhanced echocardiography, is widely used for predicting filling

pressures, incorporating AI-supported cMRI can enhance the accuracy and efficiency of diastolic

function assessment [Lancellotti et al., 2017, Tromp et al., 2022]. This integration could also

provide valuable new annotations for large-scale biobanks [Gomes et al., 2024].

AI estimates for filling pressure showed a significant correlation with natriuretic peptides,

indicating heart insufficiency, further highlighting its capability to dichotomize patients into clinically

relevant subgroups [Members et al., 2008, Oremus et al., 2014]. AI-LVEDP only requires a

common 2-chamber MRI sequence as input and does not rely on contrast agent requiring or

time-intensive protocols, thus making possible integration of AI-LVEDP into the clinical workflow

feasible. A large number of patients could benefit from earlier diagnosis of diastolic heart failure

through this commonly used modality.

An extensive introspection strategy using attention mapping was employed to address the

model’s explainability, demonstrating that blood flow and, specifically, the mitral valve area had

a pivotal role in driving the LVEDP prediction. The performance of AI-LVEDP was consistent

77



7 Discussion and Conclusion

regardless of age, sex, atrial fibrillation status and left-ventricular ejection fraction. The analysis

on ejection fraction subgroups indicated that signs of heart insufficiency are identified by the AI

as an important contributing factor, but demonstrates that the recognition of elevated LVEDP is

not primarily driven by the diagnosis of systolic heart failure itself [Lehmann et al., 2024].

While AI models have performed well in initial research cohorts, they frequently encounter

issues when deployed in other centers or on varied datasets [Vardas et al., 2022]. Therefore,

adopting a comprehensive validation strategy is crucial, as the absence of generalization severely

limits the clinical application [Cabitza et al., 2021].

The complete dataset gathered for the development of AI-LVEDP included cMRI sequences

from various different MRI scanners, vendors, field strengths and imaging protocols and was

collected over a time span of 18 years. More than 100 investigators captured the left ventricular

pressure curves throughout the same timeframe. The anticipated inter-observer variability was

addressed through the automated analysis of pressure curves. Even though the dataset exhibited

considerable heterogeneity, attributable to the external validation across two separate clinical

centers and an extra validation cohort from Heidelberg, the AI demonstrated the ability to address

this diversity effectively [Lehmann et al., 2024].

Additionally to the automated inference of diastolic function, the AI-CMP model was developed

to diagnose various types of cardiomyopathies including hypertrophic, dilated, and ischemic

cardiomyopathy (ICM) and cardiac amyloidosis, which constitute another major burden for health

care systems [Brieler et al., 2017]. AI-CMP was extensively validated via attention mapping

and sensitivity analysis. The methodology of AI-CMP, as revealed by introspection, used for

diagnosis was comparable to guideline approaches by human experts. Further, a subgroup

analysis yielded no significant bias across different patient groups. AI-CMP only requires a

single cMRI frame for diagnosis, which could enable shorter cMRI protocols in the future. Also,

experts rely on contrast agent-enhanced sequences, whereas the AI only relied on standard

procedures, keeping the prerequisites minimal for application. Especially in centers with lower

patient throughput, AI-assisted diagnosis of less frequent conditions, such as cardiac amyloidosis,

could benefit diagnosis precision.

Finally, to summarize the key implication of this dissertation, AI-enhanced cardiac magnetic

resonance imaging is capable of inferring left ventricular filling pressures and diagnosing heart

diseases. If cardiac MRI is conducted, the additional availability of AI-CMP and AI-LVEDP can

add to clinical decision-making without further effort. These automated and highly scalable

systems could facilitate diagnostics in an ever-increasing number of patients.

However, this study is not without its limitations. An essential prerequisite in the development

of AI-LVEDP was that the LVEDP was comparable at the time of the cardiac catheterization and

the cMRI. This was ensured by excluding emergency cases and patients with procedures likely

affecting the filling pressure during that time window.

Even direct invasive measurements of LVEDP in stable patients still reveal considerable

variability within the same individual, with LVEDP showing notable changes with each cardiac

cycle. The average variability in LVEDP, measured as the difference between minimum and max-

imum LVEDP extracted per beat over the course of the cardiac catheterization, was 7.91mmHg.

This limitation was partly addressed by aggregating the LVEDP from individual heartbeats and

deriving robust LVEDP annotations utilizing outlier detection and statistical tests. This possibly
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led to a reduction of noise in the annotations, but can not eliminate the inherent uncertainty in its

entirety.

The use of diuretics, which was not considered an exclusion criterion, is known to influence the

filling pressure by overall blood volume reduction. Data on patient medications showed that 42%

were on diuretics or aldosterone antagonists, which could impact LVEDP and possibly impair

the AI’s prediction accuracy for filling pressure. While this effect was not observed for the entire

cohort, it may have led to misclassification in certain individual cases [Lehmann et al., 2024].

The data used for the AI models came from retrospective sources. Retrospective data rarely

matches the quality of clinical trial data [DeMaria, 2008]. It is crucial to emphasize the necessity

for additional real-world applications of the AI models. A registered clinical trial, potentially

in a multicenter setting, could be the final test to validate the robustness of the AI models.

Incorporating a diverse range of minorities and rare-disease patients is also essential for a

well-rounded assessment, as extending the monitoring of model performances across additional

subgroups reveals the full scope of application and biases [Zohuri and Moghaddam, 2020].

Incorporating federated learning could be an effective approach, with the algorithm traveling

securely to different clinical sites to train or validate the AI model while minimizing the risk of

data leaks [Rieke et al., 2020]. However, there is also the possibility of reconstructing training

data from neural network weights. This form of data dissemination is still subject to ongoing

research [Haim et al., 2022]. Preventive strategies likely involve using large training datasets

and applying strong model regularization, as these issues are related to signs of overfitting.

Heart segmentation was considered as a possible preprocessing step of AI-LVEDP and

AI-CMP to remove less relevant and potentially distracting information from the heart’s pe-

riphery. Investigative analysis revealed that the additional segmentation did not lead to an

immediate improvement in performance. Although modern segmentation models yield robust

performance, it is still sometimes the case that the segmentation result is unstable for no obvious

reason [Sander et al., 2020, Alabed et al., 2022]. This consideration, combined with the idea

that peripheral information, such as water retention associated with heart insufficiency, could yield

useful additional information for the AI (as observed in attention mapping), led to the decision to

exclude segmentation in the final models. The main concern was the segmentation, which intro-

duced another layer of possible failure, especially with regard to the heterogeneous validation

data. However, the potential of upstream segmentation for AI-LVEDP and AI-CMP is still evident

and could be further investigated in subsequent studies. In particular, the use of segmentation

for precise centering of the heart in the sequences presented to the AI models, adding another

important level of data consistency, could yield a positive impact on future performance.

Multimodal approaches, incorporating additional information such as blood biomarkers, con-

trast agent enhanced cMRI sequences and echocardiography in the AI models, would also likely

lead to improved precision. However, this comes with multiple implications. A strong limitation

would be the lack of complete data, since it is unlikely that a large number of patients has the

complete information across the multiple modalities available for training and for prospective

prediction. Applying data imputation is not a promising approach, as these methods rely on linear

interpolation, which is insufficient in the context of the complex non-linear patterns recognized

by deep neural networks [Azur et al., 2011]. A better option is to use sophisticated AI models

that are inherently capable of handling incomplete data. These models should be designed
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to train with incomplete information, in order to not limit applicability, while still being able to

utilize additional information whenever available. Such large-scale models would certainly be

superior to existing solutions and could yield groundbreaking advances similar to Chat-GPT in

the domain of large language models [Zhao et al., 2023]. However, the vast amount of data

needed for training such ambitious models would require more data accumulation initiatives and

digital infrastructure, following the example of the UK Biobank [Bycroft et al., 2018].

AI-LVEDP and AI-CMP could aid in the early diagnosis of cardiomyopathies and diastolic heart

failure. To receive the necessary cMRI, patients must already be in contact with the hospital,

which is often the case only if the patient is already exhibiting symptoms. There is a great need

for screening tools that can assess the patient’s cardiac status before severe symptoms manifest.

Yet, there are currently no reliable screening options available. Population-wide screening

for early-stage heart failure is not feasible using cMRI. Smartwatch-based ECGs are among

the most promising approaches [Isakadze and Martin, 2020]. Smartwatch ECGs have been

previously used for the diagnosis of arrhythmias, which are normally identified using normal

ECG [Bumgarner et al., 2018, Perez et al., 2019]. Those results are promising. However, it

remains uncertain whether valuable information about cardiomyopathies and diastolic heart

failure can be extracted from ECG. The relevance of even a moderately effective screening tool

would be substantial. Consequently, this area should be explored extensively in future research.

To further address the point of early diagnosis, it is not clear if the diagnosis and early

treatment of cardiomyopathies and diastolic heart failure is the optimal point of intervention

when it comes to maximizing the impact on public health. Although the genetic aspect of heart

failure is well established, lifestyle also has a large impact in preventing disease or mitigating

symptoms [Morita et al., 2005, Hershberger et al., 2018]. Drug abuse, excessive sodium intake,

obesity and smoking are key factors promoting heart failure [Ponikowski et al., 2014]. In analogy,

a healthy diet, physical exercise and leisure activity are known to significantly reduce the

incidence of negative cardiovascular events and mortality [Woolf, 2008, Nayor and Vasan, 2015,

Aggarwal et al., 2018]. Hence, promoting prevention via adopting lifestyle changes could even

have a higher impact on public health than novel diagnostics or treatment options.

Estimating the impact of prevention on healthcare systems is complex. The anticipated effect

of preventive measures is that people live longer. Nevertheless, they will still require medical care

at some point, albeit with a delay of a few years. Despite the benefits of prevention in extending

healthy years and improving quality of life, the onset of age-related symptoms is ultimately

unavoidable. Significant relief for the healthcare system can probably only be achieved through

the automation of processes and the associated increase in patient throughput. This inevitable

evolution of future healthcare will be heavily directed by AI.
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List of Abbreviations

ACS Acute coronary syndrome

Adam Adaptive moment estimation

Afib Atrial fibrillation

AI Artificial intelligence

atm Atmosphere

AUC Area under curve

bpm Beats per minute

CC Cardiac catheterization

CI Confidence interval

CMP Cardiomyopathies

CNN Convolutional neural network

DCM Dilated cardiomyopathy

DFT Discrete Fourier transform

EDD End-diastolic dimension

EF Ejection fraction

ESD End-systolic dimension

FFT Fast Fourier transform

g Gram

GAN Generative adversarial networks

Grad-CAM Gradient-weighted class activation mapping

HCM Hypertrophic cardiomyopathy

HF Heart failure

HF-pEF Heart failure with preserved ejection fraction

HF-rEF Heart failure with reduced ejection fraction

hPa Hectopascal

hsTnT High-sensitivity troponin T

Hz Hertz

i.e. Id est

ICM Ischemic cardiomyopathy

kg Kilogram

l Litre

LA Left atrium

LGE Late Gadolinium enhancement

LSTM Long short-term memory

LV Left ventricle

LV-DP Left-ventricular minimum diastolic pressure
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LV-SP Left-ventricular peak systolic pressure

LVEDP Left-ventricular end-diastolic pressure

MAD Median absolute deviation

MAE Mean absolute error

mmHg Millimetre of mercury

MRI Magnetic resonance imaging

ms Milliseconds

MSE Mean squared error

ng Nanogram

NN Neural network

NT-proBNP N-terminal pro–B-type natriuretic peptide

NYHA New York heart association classification

PACS Picture archiving and communication system

ReLU Rectified linear unit

ResNet Residual neural network

RIFE Real-time intermediate flow estimation

RMSprop Root mean square propagation

ROC Receiver operating characteristic

R² Coefficient of determination

SELU Scaled exponential linear unit

SGLT2 Sodium glucose transporter 2

std Standard deviation

VAE Variational autoencoder
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