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Abstract

Aedes-borne arboviral infections, such as dengue, are a major public health
threat, with 400 million infections and 40,000 deaths annually. The WHO projects
that by 2080, over 60% of the global population will reside in areas at risk from
Ae.aegypti. This risk is driven by the impacts of climate change and accelerating
urbanization, the latter increasing the availability of artiĄcial containers that Ae.
aegypti prefers for breeding. Effective control requires a thorough understanding
of Ae.aegyptiŠs distribution and interactions with humans. Pathogen transmis-
sion is complicated by the mosquitoŠs daytime biting behavior and high spatial
variability in abundance, which is particularly pronounced in heterogeneous ur-
ban settings due to the limited Ćight range of Aedes mosquitoes. Sample-based
entomological surveillance methods, such as ovitraps, often considered for guid-
ing interventions, cannot capture these complex dynamics. This work aims to
enhance surveillance by integrating geospatial big data to reĄne disease control.

This thesis developed novel methods for (i) generating environmental suit-
ability indicators for Ae.aegypti, to interpolate ovitrap data across heterogeneous
urban landscapes considering Aedes Ćight range, and (ii) modeling daytime Aedes-
human interactions to incorporate biting risk into guidance for local interventions.
To enable practical application, all methods were designed to be scalable to the
municipal level, as demonstrated in the Rio de Janeiro case study (1,221 km2),
representing the primary intervention level in many countries, including Brazil.

The results indicate that (i) Aedes breeding container density, estimated
at scale using satellite and street view imagery, can be a signiĄcant indicator
(p ≤ 0.05) for modeling Ae.aegypti egg and larval counts, as monitored with
2,700 ovitraps. The signiĄcance varies by container type, data source, and the
modeled Aedes habitat size around ovitrap locations. (ii) When combined with
additional suitability indicators derived from geospatial big data, such as water
accumulation, urban morphology, and urban climate, these indicators explained
up to 75% of ovitrap count variation in this case study. (iii) Modeling daytime
Aedes-human interactions with mobile phone data improved dengue predictions
by 14%, contributing to the explanation of 77% in spatial deviance of 8-year oc-
currence (2015-2022). Collectively, these Ąndings provide improved guidance for
interventions, informed by (a) continuous environmental suitability maps for Ae.
aegypti and (b) key Aedes-human interaction hotspots. Major challenges limiting
accuracy remain due to heterogeneous data availability and coarse resolution.

The developed concept can potentially reduce public health costs in two ways:
(i) by providing more precise intervention guidance and (ii) by minimizing the
number of ovitraps needed, through interpolation of entomological measurements
and optimal surveillance positioning. These insights are particularly important
as long as vector control measures, such as Wolbachia and insecticide spraying,
(i) remain among the most effective interventions against Aedes-borne arboviral
infections due to the challenges in vaccine development and equitable healthcare
access, and (ii) continue to be costly or face environmental regulations. Although
tailored to the municipality of Rio de Janeiro, these methods may be applicable
to other Aedes-endemic areas with similar ecological contexts, pending further
research for broader application and integration into prescriptive analytics, facil-
itating the transition from predictive insights to more actionable strategies.
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Zusammenfassung

Arbovirus-Infektionen, die durch Aedes-Mücken übertragen werden, wie bei-
spielsweise Dengue, stellen eine erhebliche Bedrohung für die öffentliche Gesund-
heit dar, mit jährlich 400 Millionen Infektionen und 40.000 Todesfällen. Die
WHO prognostiziert, dass bis 2080 über 60% der Weltbevölkerung in Gebieten
leben werden, die von Ae.aegypti besiedelt sind. Diese Risikozunahme wird
durch die Auswirkungen des Klimawandels und die zunehmende Urbanisierung
angetrieben, wobei Letzteres die Verfügbarkeit künstlicher Wasserbehälter er-
höht, die von Ae.aegypti bevorzugt zur Eiablage genutzt werden. Eine wirksame
Krankheitsbekämpfung erfordert ein umfassendes Verständnis der Verbreitung
von Ae.aegypti und der Interaktionen zwischen Mücken und Menschen. Die
Modellierung des Krankheitsübertragungsrisikos wird jedoch durch das tagak-
tive Stechverhalten und die begrenzte Flugreichweite von Ae.aegypti erschwert,
was insbesondere in heterogenen Stadtgebieten, die sich durch unterschiedliche
Umweltbedingungen auszeichnen, zu einer hohen Variabilität in der Populations-
dichte führen kann. Stichprobenartige entomologische Überwachungsmethoden,
wie beispielsweise Ovitraps, die oft zur Steuerung von Interventionen herangezo-
gen werden, können diese komplexen Dynamiken nur unzureichend erfassen. Ziel
dieser Dissertation ist es, die Überwachung durch die Integration von georeferen-
zierten Daten zu verbessern, um die Krankheitsbekämpfung zu optimieren.

In dieser Dissertation wurden Methoden zur Generierung von Umwelt-Eig-
nungsindikatoren für Ae.aegypti entwickelt, die aus georeferenzierten Daten ex-
trahiert wurden und eine Interpolation von Ovitrap-Daten über heterogene städ-
tische Strukturen unter Berücksichtigung der Flugreichweite von Aedes ermöglich-
en. Zudem wurde ein Ansatz zur Modellierung stündlicher Aedes-Mensch-Interak-
tionen vorgestellt, um das Stechrisko in lokale Interventionsleitlinien zu integrie-
ren. Die praktische Anwendbarkeit dieser Methoden wurde am Fallbeispiel der
Kommune Rio de Janeiro (1.221km2) demonstriert, um ihre Eignung für die In-
terventionsplanung auf kommunaler Ebene zu validieren, die in vielen Ländern
eine zentrale Rolle in der Koordination von Interventionen zur Bekämpfung von
Aedes-übertragenen Krankheiten spielt.

Die Ergebnisse zeigen, dass die mithilfe von Satelliten- und Straßenansicht-
bildern geschätzte Dichte von Brutbehältern für Aedes ein signiĄkanter Um-
welt-Eignungsindikator (p ≤ 0,05) für die Modellierung der mit 2.700 Ovitraps
erfassten Ae.aegypti-Ei- und -Larvenzahlen sein kann. Die SigniĄkanz dieses
Indikators variiert in Abhängigkeit vom Behältertyp, der Datenquelle und der
Größe des modellierten Aedes-Lebensraums um die Ovitrap-Standorte. In Kom-
bination mit weiteren Umwelt-Eignungsindikatoren für Ae.aegypti, die aus georef-
erenzierten Daten abgeleitet wurden - wie Wasseransammlungen, städtische Mor-
phologie und klimatische Faktoren - erklärte der Indikator ŞBrutbehälterdichteŤ
bis zu 75% der Variation der Ovitrap-Zahlen in dieser Fallstudie. Die daraus re-
sultierende Modellierung der stündlich variierenden Aedes-Mensch-Interaktionen
anhand von Mobilfunkdaten verbesserte die Vorhersage von Dengue-Fällen um
14% und trug zur Erklärung von 77% der räumlichen Verteilung gemeldeter Fälle
über den 8-jährigen Zeitraum (2015-2022) bei. Zusammen können diese Erkennt-
nisse verbesserte Leitlinien für Interventionen liefern, die auf den im Rahmen
der Forschung erstellten kontinuierlichen Umwelt-Eignungskarten für Ae.aegypti
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und den identiĄzierten Hotspots für Aedes-Mensch-Interaktionen basieren. Her-
ausforderungen, die die Modellgenauigkeit einschränken, bestehen weiterhin auf-
grund heterogener Datenverfügbarkeit und zu grober AuĆösung.

Die entwickelten Methoden zur Erfassung von Umweltfaktoren, die für Arbo-
virus-Infektionen relevant sind, haben das Potenzial, die Kosten im öffentlichen
Gesundheitswesen zu senken, indem sie zur Erstellung präziserer Risikokarten
genutzt werden, die eine gezieltere Durchführung von Kontrollmaßnahmen und
eine effizientere Platzierung von Ovitraps ermöglichen. Diese Erkenntnisse sind
besonders bedeutsam, solange Vektorkontrollmaßnahmen wie Wolbachia und In-
sektizid-Sprühungen (i) aufgrund von Herausforderungen bei der Impfstoffent-
wicklung zu den wirksamsten Interventionen gegen Aedes-übertragene Arbovirus-
Infektionen gehören und (ii) kostenintensiv bleiben oder unter UmweltauĆagen
stehen. Obwohl die Methoden auf die Kommune Rio de Janeiro zugeschnitten
sind, könnten sie auf andere Aedes-endemische Gebiete mit ähnlichem ökologisch-
en Kontext übertragbar sein, vorbehaltlich weiterer Forschung zur breiteren An-
wendung und Integration in präskriptive Analysen, um den Übergang von vor-
ausschauenden Erkenntnissen zu umsetzbareren Strategien zu erleichtern.
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Synopsis
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żAll models are wrong, but some are useful.ń

Ű George E.P. Box (1976)
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Part I: Synopsis 5

1 Introduction

In recent years, the integration of big data analytics into public health has
transformed approaches to disease prevention and control (Dolley, 2018). Among
the various data sources being leveraged, geospatial big data (GBD) has emerged
as a pivotal tool for understanding and mitigating the spread of infectious dis-
eases (Mir et al., 2022; Oliver et al., 2020; Shah and Patel, 2020). In the Ąeld
of infectious disease modeling, GBD has shown particular promise for vector-
borne diseases (VBDs), where human movement patterns - derivable from GBD
sources - not only inĆuence the dissemination of pathogens but also affect the
exposure risk to vectors (Iggidr et al., 2017; Ramadona et al., 2019). Tradition-
ally, entomological surveillance has been the cornerstone of VBD risk assessment
and intervention guidance, primarily relying on Ąeld-based sampling methods for
monitoring vector populations (World Health Organization et al., 2016). How-
ever, this approach is constrained by high labor costs, which limits both spatial
coverage and temporal resolution. These limitations are particularly challenging
for VBDs, where vector abundance and associated infection risk can vary sig-
niĄcantly over short geographic distances, e.g., due to small vector habitats in
combination with high spatial variability in environmental circumstances (Kache
et al., 2022a; Killeen et al., 2018).

Figure 1: Comparison of the state-of-the-art and proposed workĆow for VBD control guidance,
highlighting the addressed challenge and the selected case study in this dissertation.

This cumulative dissertation investigates the integration of GBD for improving
VBD surveillance and control, with a speciĄc focus on Aedes-borne arboviral
infections. It addresses the challenges posed by high spatial variability in vector
populations and the limitations of traditional surveillance methods by exploring
the potential of GBD to enhance the guidance of local intervention strategies.
Part I in this thesis is structured into two main sections. The Ąrst section presents
the background of GBD and Aedes-borne arboviral infections and motivates the
selection of the municipality of Rio de Janeiro as a suitable case study region
for the analysis. The second section outlines the primary research objectives
and questions addressed in this thesis, detailing the innovative contributions. It
references the relevant publications included in Part II, summarizing key Ąndings,
discussions, conclusions, and future perspectives that highlight the impact of this
work at the intersection of geoinformatics and public health.
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2 Background

2.1 Geospatial Big Data

GBD refers to the vast volumes of spatial and geographical information that
are collected from a variety of sources, including satellite imagery, Global Posi-
tioning System (GPS) devices, and remote sensing technologies (Werner, 2021).

The key characteristics of GBD can be described as its high volume, veloc-
ity, variety, and veracity, underscoring its complexity and its potential for spatial
analysis in various application Ąelds (Werner, 2021). The volume of GBD is ex-
ceptionally large, often reaching petabyte scales, due to the continuous collection
of information from diverse sources such as satellites, GPS devices, and Inter-
net of Things sensors. The velocity at which this data is generated is another
crucial attribute, necessitating efficient management and, in some cases, prompt
analysis, particularly when data processing occurs at the edge rather than in
centralized systems. GBD also exhibits variety, encompassing various forms such
as raster data from satellite imagery, vector data from maps, and textual data
from geotagged social media posts. This diversity requires sophisticated data in-
tegration techniques to enable comprehensive analysis. Finally, veracity is a key
characteristic, as the accuracy and reliability of GBD are contingent on factors
such as sensor precision, data resolution, and the methodologies employed in data
collection. Ensuring data quality through rigorous validation and error correction
is essential for producing reliable and actionable insights.

The sources of GBD are varied and technologically advanced, each offering
unique advantages that justify the use of complementary approaches, such as
Principal Component Analysis (PCA), which enables the extraction of underly-
ing structures and patterns, facilitating a more comprehensive understanding of
complex spatial phenomena, and mitigating potential biases inherent in single
data types (Gao et al., 2024). Satellite imagery stands out as a primary source,
providing high-resolution images of the EarthŠs surface. Ongoing advancements
in remote sensing technologies have signiĄcantly enhanced the resolution and fre-
quency of these images, increasing their applicability across various domains such
as environmental monitoring (Rolf et al., 2021). Furthermore, street view imagery
offers ground-level visual data that complements satellite imagery by providing
more detailed perspectives of built-up environments, making it particularly useful
for urban analytics or studying human perceptions (Hou et al., 2024; Ito et al.,
2024; Zhang et al., 2018). In parallel, GPS and mobile devices contribute vast
amounts of location data, which are crucial for navigation and location-based
services. The ubiquity of these devices ensures a constant Ćow of GBD that
reĆects human mobility patterns and spatial dynamics, adding a temporal di-
mension that other sources might lack (Kwan and Schwanen, 2017; Maddison
and Ni Mhurchu, 2009). Additionally, social media represent emerging sources
of GBD, where geotagged information from platforms like X (formally known
as Twitter) offers real-time insights into human activities (Terroso-Saenz et al.,
2022). Further, crowdsourced data, such as that from the volunteered geographic
information platform OpenStreetMap (OSM), provides detailed, user-generated
geographic data, which is crucial for maintaining up-to-date knowledge, for ex-
ample, on urban morphology (Boeing, 2021; Sussman and Hollander, 2021).

The Ąelds of application for GBD are diverse, including environmental moni-
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toring, disaster management, or public health, where it can be speciĄcally applied
to estimate the environmental suitability of disease vectors such as mosquitoes.
This approach differs from monitoring adult mosquitoes, as it involves predict-
ing habitats and conditions favorable for their abundance. These insights can
be crucial for public health officials, enhancing vector control strategies by en-
abling more efficient resource management and targeted interventions (Louis et
al., 2014). In the same domain, GBD can be instrumental in tracking human
movement patterns, enabling the identiĄcation of host-vector interactions. This
knowledge further supports the design of targeted intervention strategies specif-
ically aimed at disrupting the transmission cycle of vector-borne diseases (Mar-
tinez et al., 2021; Wen et al., 2015). In summary, GBD holds the potential to
enhance the preparedness and effectiveness of public health efforts, ultimately
contributing to improved disease prevention and control.

However, harnessing GBD comes with several challenges. One of the pri-
mary difficulties is the substantial computational power and advanced analytical
techniques, such as parallel processing, required to manage and analyze the vast
volumes of data generated (Gao et al., 2024). Another challenge lies in data inte-
gration, where combining data from multiple sources with varying formats, res-
olutions, and quality can be complex and time-consuming. Effective integration
is crucial for generating accurate insights, yet it requires sophisticated methods
to ensure consistency and compatibility across datasets (Werner, 2021). Addi-
tionally, privacy and security concerns are paramount, especially when dealing
with personalized datasets. Ensuring that personal data is properly anonymized
and protected is essential for maintaining public trust in innovative solutions and
complying with legal regulations, making it a critical aspect of any GBD project.

The potential of GBD is vast, with advancements in technology expected
to further enhance the resolution, frequency, and accuracy of GBD collection,
thereby offering increasingly detailed and timely data (Werner, 2021). More-
over, the integration of artiĄcial intelligence (AI) into GBD analysis holds the
promise of revolutionizing the Ąeld, enabling more insights. These technologies
will enhance pattern detection, trend prediction, and the automation of com-
plex analyses. The proliferation of Internet of Things devices, such as smart
mosquito traps that can automatically monitor mosquito densities using opti-
cal and acoustic sensors, represents another signiĄcant area of growth, though
these devices are still relatively costly and not widely rolled out yet. However,
they enable continuous monitoring of environmental conditions and vector popu-
lations, providing near real-time data that can potentially enhance vector control
strategies (Liu et al., 2023). Finally, open data initiatives are expected to gain
momentum, with growing efforts to make GBD publicly accessible. Projects like
TensorFlow, a free and open-source software library for machine learning (ML)
developed by the Google Brain team (Alphabet Inc., 2024), exemplify the trend
of sharing advanced research tools. These initiatives promote innovation, collab-
oration, and the establishment of new data standards, such as those seen with
the Overture Maps Foundation, a mapping platform supported by the compet-
ing corporate members AWS, Meta, Microsoft, and TomTom. By making GBD
available to researchers, businesses, and governments, these efforts enable broader
use of open-source development to expand the applicability of GBD and, in our
context, provide more detailed, timely information for societal beneĄt.
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In conclusion, GBD holds immense potential for addressing a broad spec-
trum of challenges, with its development still in the early stages, where scientiĄc
research plays a pivotal role. Through pioneering studies and proof-of-concept
initiatives, science can lay the groundwork for leveraging advanced technologies
and open-source analytical methods, ultimately driving informed decision-making
in critical areas.

2.2 Aedes-borne Arboviral Infections

Aedes mosquitoes, belonging to the family Culicidae, are a diverse genus com-
prising over 950 species (Harbach, 2007). Among them, Ae.aegypti and Ae.al-
bopictus are the most prominent due to their role as vectors of human arboviruses,
including dengue, Zika, chikungunya, and yellow fever viruses (Panigrahi et al.,
2024). These species exhibit distinct ecological and behavioral traits that fa-
cilitate their ability to thrive in various environments. The life cycle of Aedes
mosquitoes includes four stages: egg, larva, pupa, and adult. Females typically
lay eggs on the inner, damp walls of containers with water, where the larvae then
develop. The larvae and pupae are aquatic, requiring standing water to complete
their development. Adult Aedes mosquitoes are adapted to urban and suburban
environments, often breeding in artiĄcial containers such as Ćower pots, discarded
tires, and water storage containers (Sallam et al., 2017). Aedes mosquitoes exhibit
diurnal feeding patterns, with peak biting activity occurring during early morning
and late afternoon (Muhammad et al., 2020; Mutebi et al., 2022a; Zahid et al.,
2023). Biting activity is generally low during the day and, when present, tends to
occur under low-light conditions, such as in shaded areas. However, some studies
have observed increased biting behavior under artiĄcial light conditions at night,
even though Aedes mosquitoes are typically inactive during night hours (Rund
et al., 2020). Additionally, the Ćight range of these species is estimated to be less
than 1,000 meters without the assistance of wind. Aedes mosquitoes are highly
adaptable and have expanded their geographic distribution signiĄcantly over the
past few decades, largely due to global trade and travel (Kraemer et al., 2019;
Semenza et al., 2014; Swan et al., 2022; Willoughby et al., 2024). Ae.aegypti is
predominantly found in tropical and subtropical regions, while Ae.albopictus has
a broader range, extending into temperate zones. Understanding the taxonomy,
life cycle, and global distribution of Aedes mosquitoes is crucial for developing
effective vector control strategies and mitigating the spread of MBDs.

Aedes mosquitoes are primary vectors for several arboviruses that pose signif-
icant public health threats globally (Leta et al., 2018). Dengue virus (DENV),
with its four distinct serotypes (DENV-1 to DENV-4), is transmitted primarily by
Ae.aegypti and Ae.albopictus. Dengue is endemic in over 100 countries, leading
to millions of infections annually, characterized by fever, severe joint and muscle
pain, and in severe cases, hemorrhagic fever and shock syndrome (Guzman and
Harris, 2015; Halstead, 2007; Wilder-Smith et al., 2019). Zika virus (ZIKV),
Ąrst identiĄed in Uganda in 1947, gained global attention during the 2015-2016
epidemic in the Americas. It is transmitted by Aedes mosquitoes and can cause
mild symptoms such as fever and rash, but it is particularly concerning due to its
association with congenital abnormalities like microcephaly and neurological dis-
orders such as Guillain-Barré syndrome (Musso and Gubler, 2016; Petersen et al.,
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2016). Chikungunya virus (CHIKV) also relies on Aedes mosquitoes for trans-
mission and causes an illness marked by severe, debilitating joint pain, fever,
and rash, with outbreaks frequently occurring in Africa, Asia, and the Indian
subcontinent (Pialoux et al., 2007; Sudeep and Parashar, 2008; Vu et al., 2017).
Yellow fever virus (YFV), which can be transmitted in both urban and sylvatic
cycles by Aedes and other mosquito species, causes a spectrum of disease from
mild symptoms to severe liver damage and hemorrhagic fever; it is preventable
by vaccination, which is crucial for outbreak control (Monath and Vasconcelos,
2015). In addition to these major pathogens, Aedes mosquitoes also transmit
other arboviruses such as Mayaro and Rift Valley fever viruses, which are less
common but still signiĄcant due to their potential to cause outbreaks and severe
disease. Understanding the epidemiology, transmission dynamics, and impact of
these arboviruses is essential for developing targeted public health interventions
and controlling their spread.

The epidemiology of Aedes-borne arboviral infections reveals signiĄcant global
and regional trends marked by periodic outbreaks and shifting endemic zones
(Chang et al., 2016; Guo et al., 2017). Current statistics indicate a rising inci-
dence of diseases like dengue and Zika, with dengue alone affecting an estimated
390 million people annually, predominantly in tropical and subtropical regions
(Vasconcelos, 2017). Historical trends show a dramatic increase in the geographi-
cal range of these viruses, inĆuenced by the impacts of accelerating urbanization,
globalization, and climate change (Messina et al., 2019) (cf. Figure 1 in publica-
tion IV). Key risk factors for the spread include environmental conditions such
as warm temperatures and stagnant water bodies, demographic factors like high
population density and international travel, and behavioral aspects such as inad-
equate waste management and water storage practices. Effective surveillance and
reporting systems are crucial for monitoring these infections, employing methods
like geographic information systems (GIS) for mapping outbreaks, polymerase
chain reaction (PCR) for the accurate diagnosis of transmitted pathogens, in-
cluding serotypes, and integrated disease surveillance programs to ensure timely
reporting and response. The epidemiology of Dengue is particularly challeng-
ing due to complex cross-immunity between subsequent serotypes (DENV-1 to
DENV-4). In brief, past infections with a heterologous serotype confer short-term
cross-immunity, while past infections with a homotypic serotype confer long-term
immunity to the same serotype. The duration and effect size of heterologous
cross-immunity, as well as potential enhancement, depend on the time interval
between infections and the speciĄc sequence of serotypes and their genotypic
similarity (Guzman et al., 2016; Katzelnick et al., 2015; Simmons et al., 2012).

Prevention and control of Aedes-borne diseases rely on a multi-faceted ap-
proach involving two main strategies: (i) vector control, which focuses on reduc-
ing mosquito populations and minimizing human exposure, and (ii) vaccines and
therapeutics, which focus on protecting humans.

Vector control strategies are selected based on their relevance at different
stages of an epidemic. Depending on the epidemic level, a speciĄc combination of
interventions is typically chosen: some strategies are implemented continuously,
while others are considered only during high epidemic levels due to their cost (cf.
Figure 2). Vector control strategies designed for constant application may include
(i) community education programs to raise awareness about prevention methods,
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(ii) legislative actions to enforce vector control regulations and public health poli-
cies that promote sustainable environmental management and urban planning to
reduce mosquito habitats (Buhler et al., 2019; Horstick et al., 2010; Luz et al.,
2011), (iii) house-to-house visits to eliminate stagnant water in common breeding
sites, (iv) inspections of strategic locations such as cemeteries, tire repair shops,
junkyards, scrap metal or building materials depots, and bus garages, and (v)
residual household spraying targeting Aedes mosquitoes. When launching health
education initiatives to engage the community, it is crucial to consider additional
socio-economic factors. Individuals from different socio-economic backgrounds
may have varying priorities, such as safety, food security, access to clean water
and sanitation facilities, healthcare services, education, and employment oppor-
tunities. When the epidemic situation becomes more severe, additional measures
can be implemented collectively, incorporating more technical methods such as (i)
the application of the larvicide Temephos to rainwater tanks, (ii) dissemination
stations containing larvicides, (iii) sterile insect techniques, or (iv) the Wolbachia
method. These approaches can be crucial for addressing structural problems re-
lated to socio-economic inequalities in water supply and solid waste management.
Wolbachia, a naturally occurring bacterium, can be introduced into mosquito cells
to reduce the transmission of viruses by Ae.aegypti and inĆuence mating out-
comes, thereby promoting its spread and sustainability within natural mosquito
populations. Larvicides should be employed in a rotational scheme to avoid lar-
vicide resistance. In Brazil the products used include Bacillus thuringiensis israe-
lensis (BTI), insect growth regulators (IGRs) such as juvenile hormone analogs
(JHAs) and chitin synthesis inhibitors (CSIs), and more recently, Spinosad, a
neurotoxic insecticide (Valle et al., 2019). The use of insecticides to reduce adult
mosquito populations and biological control methods, such as introducing natu-
ral predators or genetically modiĄed mosquitoes, becomes particularly relevant
during epidemic situations, as these strategies have demonstrated high efficacy
in vector control (Vinhal Frutuoso and Barbosa Duraes, 2023). However, most
methods are either costly to implement or face environmental constraints, which
is why they are not applied on a larger scale year-round. To reduce associated
costs, these interventions are usually deployed in a targeted manner, guided by
entomological surveillance. Their use may be triggered only when certain thresh-
olds of egg and larval density are reached.

Vaccines and therapeutics are another vital components in the Ąght against
Aedes-borne arboviral infections. Currently, vaccines are available for yellow
fever, which has been highly effective in preventing outbreaks, and the dengue vac-
cine (Dengvaxia), approved in several countries for individuals with prior dengue
infection (Aguiar et al., 2016; Schwartz et al., 2015; Thomas and Yoon, 2019;
Tully and Griffiths, 2021). Ongoing research is focused on developing more uni-
versally effective vaccines for dengue, as well as for Zika and chikungunya, which
are in various stages of clinical trials. Antiviral treatments remain limited, with
supportive care being the primary management for most Aedes-borne diseases.
Experimental treatments and research into speciĄc antiviral drugs are ongoing,
aiming to provide targeted therapies to reduce viral load and improve patient
outcomes in the future. In addition to conventional vector control methods and
vaccines, are personal protection measures essential for the prevention and con-
trol of Aedes-borne arboviral infections. These measures include using repellents,
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wearing protective clothing, and sleeping under insecticide-treated bed nets to
prevent mosquito bites. Targeted public education about personal protection
can, in turn, be an integral part of vector control strategies.

Figure 2: Catalog of local intervention strategies for the control of Aedes-borne arboviral
infections, where interventions in the outer circles represent those that should be conducted
universally during both non-pandemic and pandemic periods, and interventions in the inner
circles represent more costly interventions or those that face environmental constraints and,
due to limited Ąnancial resources, are mostly implemented in a targeted manner during high
epidemic levels. While the Ągure shows a gradient from lower to higher costs per km2 from
the outer to inner circles, it is important to note that the overall implementation costs are
not solely determined by the size of the application area but also by the frequency with which
interventions must be applied to reach and maintain effectiveness. This nuance is crucial to
avoid potential misinterpretation of the cost gradient.

Targeted prevention and control need sophisticated guidance to be effective
and feasible, especially when Ąnancial resources are limited or environmental
regulations must be adhered to. For Aedes-borne arboviral infections, interven-
tion guidance is primarily informed by either disease occurrence or entomolog-
ical surveillance. Entomological surveillance may include monitoring Aedes egg
and larval counts using ovitraps (cf. Figure 3 in publication I), tracking adult
mosquitoes with smart traps based o acoustic or optical sensors, or conducting
infestation assay to collect entomological indices that can guide targeted inter-
ventions (cf. Figure 3). Ovitraps refer to Ąxed measurement stations speciĄcally
designed to function as breeding sites. These stations are characterized by water
retention and a dark color to attract mosquitoes. Infestation assay indices are
block-level indicators derived from manual sampling processes and can include:
(i) the House Index (HI), which measures the proportion of houses infested with
larvae relative to the total number of houses surveyed, and (ii) the Breteau Index
(BI), which represents the number of positive containers per 100 houses inspected.
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While infestation assay indices depend on the active search for breeding sites by
health agents, ovitraps are ŠsoughtŠ by mosquitoes, making ovitrap counts a more
sensitive indicator. Additionally, infestation assay indices typically yield low val-
ues due to the transient nature of positive containers and their limited persistence
over time. Therefore, to obtain a comprehensive and representative sample, it is
necessary to include a large number of properties, as most may not have posi-
tive containers. However, from an operational perspective, ovitraps cannot fully
replace infestation assays, as the latter often provide additional indices, such as
the Šcontainer type index,Š which monitors infestation levels by container type.
Beyond structural components, the reliability of infestation assay indices also de-
pends on human factors, such as the dedication and expertise of Ąeld workers,
including their understanding of vector biology and index calculation methods
(Valle and Aguiar, 2023a). Another factor contributing to spatial discrepan-
cies is that ovitrap-based surveillance does not account for indoor breeding sites.
Moreover, ovitrap surveillance focuses on egg and larval counts, whereas infesta-
tion assay indices usually also account for infestation by Ae.aegypti pupae, which
have different lifespans and lower mortality rates.

Figure 3: Comparison of infestation assay and ovitraps for entomological surveillance.

The global burden of Aedes-borne arboviral infections on public health is pro-
found, manifesting in signiĄcant morbidity and mortality. These diseases cause a
considerable health burden, with millions of cases reported annually, leading to
severe symptoms, long-term complications, and thousands of deaths, particularly
in endemic regions (Puntasecca et al., 2021; Shepard et al., 2016; Stanaway et al.,
2016). The economic impact is substantial, estimated to be at least 94.7 billion
US dollars (cumulative for the period 1975Ű2020), encompassing direct costs such
as medical care and hospitalization, and indirect costs like lost productivity and
strain on healthcare systems (Roiz et al., 2024). Socioeconomic factors play a
critical role in the spread and impact of these diseases, with impoverished com-
munities often experiencing higher transmission rates due to inadequate housing,
limited access to healthcare, and lack of resources for effective vector control mea-
sures. Addressing these factors is crucial for mitigating the public health impact
of these infections.

Future directions in combating Aedes-borne arboviral infections focus on ad-
dressing current research gaps, developing innovative strategies, and enhancing
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global health initiatives. Identifying knowledge gaps, such as understanding the
genetic and environmental factors inĆuencing virus transmission and mosquito
behavior, is essential for advancing research. Innovative strategies include the de-
velopment of novel vector control technologies like Wolbachia-infected mosquitoes,
which reduce mosquito lifespan and viral transmission, and next-generation vac-
cines that provide broad protection against multiple arboviruses. Global health
initiatives emphasize international collaboration, improved surveillance systems,
and coordinated response efforts to manage outbreaks and prevent the spread
of these diseases. In this context, harnessing GBD for improved guidance on
interventions targeting Aedes-borne arboviral infections could play a crucial role
(Li and Dong, 2022). Strengthening inter- and intra-sectoral collaboration, en-
hancing vector surveillance and monitoring, and scaling up and integrating tools
and approaches were listed as key pillars in the World Health OrganizationŠs
(WHO) Global Vector Control Response Framework for 2017Ű2030 (WHO, 2017).
Strengthening these areas of action from a scientiĄc perspective will be pivotal in
reducing the burden of Aedes-borne arboviral infections worldwide (Makepeace
and Gill, 2016; McCall and Lenhart, 2008; Muĳoz et al., 2020; Murray et al.,
2013; Werren et al., 2008).

Figure 4: WHO global vector control response framework (WHO, 2017).

In Brazil, which consistently ranks highest in global dengue prevalence, in-
cluding in 2024, the ŞNational guidelines for the prevention and control of ar-
bovirusesŤ prioritize interventions in large cities. Between 2013 and 2022, 52% of
probable dengue cases were reported in municipalities with populations exceeding
100,000. The Brazilian Ministry of Health recommends several key strategies for
controlling Aedes-borne arboviruses: (i) entomological monitoring using ovitraps,
(ii) household residual spraying (BRI-Aedes), (iii) the deployment of larvicide
spraying stations, (iv) the release of mosquitoes carrying Wolbachia, and (v) the
utilization of sterile insect techniques to control Ae. aegypti. These interven-
tions are implemented based on an local action plan that require ovitrap-based
risk stratiĄcation and are supplemented by household visits and community en-
gagement, particularly in high-risk areas (Vinhal Frutuoso and Barbosa Duraes,
2023).
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2.3 Study Area: Municipality of Rio de Janeiro

The municipality of Rio de Janeiro was selected as the case study region for
this research on harnessing GBD to guide local interventions for Aedes-borne ar-
boviral infections due to several compelling factors. The cityŠs suitable climate
for Aedes mosquitoes is characterized by hot, humid summers and mild, wet
winters, providing optimal conditions for the proliferation of Aedes mosquitoes,
which thrive in warm, humid environments with plentiful water containers for
breeding (Neiva et al., 2017). Additionally, Rio de Janeiro is an endemic region
for Aedes-borne diseases, with a history of frequent and severe outbreaks, such as
the dengue emergency during Carnival 2024, where the local health infrastructure
was stretched to its limits (CNN World, 2024). Between January 2015 and De-
cember 2022, approximately 95,000 dengue cases, 42,000 Zika cases, and 68,000
chikungunya cases were reported, emphasizing the critical need for research and
improvement of control measures in this region. The cityŠs heterogeneous urban
landscape and socio-economic disparities add signiĄcant complexity to guiding in-
terventions effectively. Unlike cities with more homogeneous landscapes or evenly
distributed topography, Rio de JaneiroŠs urban fabric includes dense urban areas,
sprawling informal settlements often scattered throughout the city on steep hill-
sides, and relatively undeveloped green spaces (OŠHare and Barke, 2002). This
varied and complex topography makes it more challenging to predict and man-
age the distribution and availability of Aedes breeding sites, thereby complicating
efforts to implement targeted interventions and increasing the necessity for ad-
vanced geospatial analysis techniques.

With a large population, Rio de Janeiro is the second-largest city in Brazil,
making it a signiĄcant area at risk for Aedes-borne diseases. The cityŠs size (1,221
km2) and high population count (6.2 million (Instituto Brasileiro de GeograĄa e
Estatìstica, 2024) heighten the need for effective vector control strategies, align-
ing with the Brazilian Ministry of HealthŠs focus on cities with populations over
100,000 inhabitants for concentrated intervention measures (Vinhal Frutuoso and
Barbosa Duraes, 2023). Moreover, Brazil is recognized for its innovative public
health strategies, and the city of Rio de Janeiro has shown strong interest in
integrating GBD into their vector control efforts. This research was developed in
close cooperation with Fiocruz and RioŠs Center for Epidemiological Intelligence,
ensuring that the Ąndings are directly applicable and beneĄcial to ongoing public
health initiatives in the city. Furthermore, Rio de JaneiroŠs membership in the
C40 Cities Network reĆects its commitment to innovative and sustainable urban
solutions, including addressing public health threats posed by climate change
and vector-borne diseases. The municipalityŠs open data initiative, particularly
through the Data Rio portal, provided a wealth of datasets necessary for this re-
search. Importantly, the city also shared non-public data, including mobile phone
records, entomological surveillance data, and detailed clinical records, with ethical
approval and restricted use speciĄcally for this research. These clinical records are
particularly valuable, containing PCR test results to determine dengue serotypes,
lists of symptoms, patient age, and precise home addresses. The availability of
such detailed and sensitive data, coupled with proper anonymization, was crucial
in enabling the comprehensive analysis conducted in this study. The science-
friendly data sharing culture from the Brazilian Health Ministry, the support
from the Brazilian World Mosquito Program, and close collaboration with the
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Universidade Federal Fluminense as well as the Non-Governmental Organization
(NGO) project ŞHeróis Contra DengueŤ to conduct science communication and
understand community needs provided a favorable environment for this research,
aligning with their shared interest in combining geoinformatics and public health
to tackle contemporary challenges. This institutional backing, coupled with the
cityŠs commitment to data sharing and innovative public health strategies, un-
derscores the relevance and impact of this work in the municipality of Rio de
Janeiro.

Figure 5: Geographical location of the municipality of Rio de Janeiro (top) and representative
images illustrating the diverse urban landscape within the study area (bottom). © iStock
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3 Contribution of This Thesis

3.1 Main Research Objectives and Questions

The overarching research objective of this thesis is Şharnessing geospa-

tial big data to guide local interventions for Aedes-borne arboviral

infections.Ť To fulĄll this objective, two more speciĄc research objectives were
identiĄed through a thorough literature review, each addressing distinct aspects
of this topic, as detailed in the following paragraphs. For each research objec-
tive, a speciĄc hypothesis and a corresponding research question were formulated,
emphasizing the most promising strategies for leveraging GBD in guiding local
interventions for Aedes-borne arboviral infections, taking into account current
GBD availability and practical implementation potential. While various research
paths could have been explored, the chosen approach was carefully selected to
target speciĄc research gaps, thereby maximizing the potential impact of this
study.

Figure 6: Breakdown of the overarching research objective into two speciĄc research objec-
tives, followed by the derivation of individual hypotheses, from which corresponding research
questions were formulated. The two speciĄc research objectives were formulated to address the
overarching objective of harnessing GBD to guide local interventions for Aedes-borne arboviral
infections. These objectives, along with their associated hypotheses and research questions,
were chosen to explore the most promising research pathways, considering the available GBD
at the time of analysis. Each research question was formulated to test a speciĄc hypothesis.

Derivation of Research Objective I

Figure 7: Research objective I.
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Entomological surveillance, which involves the monitoring and study of in-
sect populations, constitutes a crucial component in guiding interventions for
Aedes-borne arboviral infections. Various methods are employed in entomological
surveillance, including: (i) ovitraps, which are artiĄcial water containers designed
to attract mosquitoes and used to monitor Aedes eggs and larval counts, (ii) in-
festation assay that calculate block-level and container type immature mosquito
infestation indices, and (iii) smart adult mosquito traps that enable more fre-
quent and less labor-intensive mosquito monitoring through automated visual or
acoustic detections. Each of these methods entails distinct costs, beneĄts, and
limitations (cf. Section 2.2). However, collectively, they often lack sufficient spa-
tial resolution or coverage for precise mosquito mapping relevant for implementing
interventions efficiently (cf. Figure C. 1 in publication III). In other words, the
current state of the art solutions hamper the ability to capture the potential high
spatial variability in mosquito abundance that can occur in heterogeneous urban
environments due to the limited Ćight range of Aedes mosquitoes (Kache et al.,
2022a; Li and Dong, 2022) (cf. Section 2.2).

Figure 8: Schematic visualization of the research gap, visualized as a green box on the space
time axis, leading to research objective I. Municipal coverage is of special interest as it is usually
the lowest level for decision making. Spatial coverage in high resolution (≤ Aedes Ćight range)
is necessary to capture high spatial variability that can occur in heterogeneous urban landscape
due to limited Aedes Ćight range.

Meanwhile, novel, highly effective disease control programs, such as the release
of Wolbachia-infected mosquitoes or Spinosad containing dissemination stations
(cf. Section 2.2), are emerging. These programs increase the need for more
precise intervention guidance due to their high associated costs and sometimes
associated environmental pollution. To address this current limitation in local
intervention guidance for Aedes-borne arboviral infection, a complementary ap-
proach integrating conventional Ąeld measurements with high-resolution remote
monitoring techniques is needed (Kache et al., 2022a; Li and Dong, 2022; Louis
et al., 2014; Moraga, 2024; Sallam et al., 2017). In accordance with the WHOŠs
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strategic pillar of action to Şscale up and integrate tools and approaches for vector
controlŤ (WHO, 2017), this thesis proposes an urban landscape indicator-driven
interpolation technique for entomological surveillance data. This complementary
approach aims to assess the environmental suitability for hosting Aedes mosquito
populations on a more continuous scale, than entomological surveillance alone.
It enables broad coverage while maintaining detailed resolution of Aedes habitat
size (cf. Section 2.2), which is valuable for intervention guidance.

Environmental suitability, in this context, refers to a relative measure of how
conducive an environment is to supporting Aedes mosquito populations compared
to other environments. This differs from the concept of carrying capacity, which
denotes an absolute measure of the maximum potential population size that an
environment can sustain (Levin, 2013). Comprehensive literature reviews (Li and
Dong, 2022; Louis et al., 2014; Sallam et al., 2017) indicate that scalable meth-
ods to generate signiĄcant (p ≤ 0.05) proxies for large-scale mosquito suitability
modeling are a prerequisite for implementing urban landscape indicator-driven
interpolations, particularly for its real-world applicability in vector control guid-
ance. Therefore, this thesis focused on hypothesis-driven urban landscape fea-
tures at a resolution Ąner than the Aedes Ćight range, to minimize the risk of
erroneous conclusions during interpolation and to rely on causality rather than
on correlations that may vary with different datasets. Considering this research
gap and the broader research goal of harnessing GBD to guide local interventions
for Aedes-borne arboviral infections, we formulated the following hypothesis to
guide our research:

Figure 9: Hypothesis I.

This speciĄc hypothesis (cf. Figure 9) was chosen because satellite and street
view imagery are becoming increasingly openly available at higher resolutions
and broader scales (cf. Section 2.1). Combined with modern deep learning
frameworks for computer vision tasks, these geospatial data sources provide a
promising means for capturing urban landscapes in a scalable manner, applicable
across various research domains and case study locations. Initial studies have
explored the potential of these openly available geospatial data sources for de-
tecting Aedes breeding sites (Haddawy et al., 2019; Su Yin et al., 2021). However,
documentation on workĆows for large-scale applications (≥ municipality, repre-
senting the primary intervention level in many countries, including Brazil (Vinhal
Frutuoso and Barbosa Duraes, 2023)) remains scarce, hampering real-world ap-
plications of proof-of-concept Ąndings and method transfer to various locations at
risk of Aedes-borne arboviral infections. To test the aforementioned hypothesis
(cf. Figure 9), we designed the following research concept to achieve the outlined
research objective (cf. Figure 7):
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Figure 10: The research concept developed to test hypothesis I in order to achieve research
objective I, incorporating the formulated research question (RQ).

In a subsequent step, we expanded our set of breeding container density indi-
cators by incorporating additional digital indicators related to socio-economics,
urban morphology, climate, and water accumulation (cf. Figure 11). This aimed
to reĄne the environmental suitability models for Ae.aegypti beyond what could
be achieved with the indicators of breeding container density alone. Although
this expansion is not directly aligned with Research Objective and Hypothesis I,
it addresses the second part of our overarching research objective: ŞHarnessing
geospatial data to guide local interventions for Aedes-borne arboviral infectionsŤ.

Figure 11: Conceptual idea of retrieving hypothesis-driven Ae.aegypti environmental suitabil-
ity indicators from open GBD to infer entomological surveillance.

The additional indicators were selected based on their documented causal re-
lationships with Aedes suitability (cf. Table A. 1 in publication III) to improve
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the accuracy of ovitrap count modeling. By prioritizing causality over correlation,
which can Ćuctuate with different entomological data collection periods, we aimed
to reduce the risk of overĄtting and better estimate environmental suitability in
areas without direct ovitrap data by drawing on similarities with areas where
data were available. This hybrid approach, combining entomological surveillance
with a comprehensive set of digital landscape indicators representing environ-
ments conducive to Ae.aegypti breeding, aimed to produce a continuous map of
environmental suitability at the mosquito habitat scale, extending beyond ovitrap
locations. Such mapping can potentially inform vector control strategies by iden-
tifying priority regions for cost-beneĄt analysis, which are typically conducted
before the deployment of interventions (cf. Section 2.2). Detailed methodologies
and results are provided in Section 3.2.1.

Derivation of Research Objective II

Figure 12: Research objective II.

While mosquito abundance, frequently monitored through entomological
surveillance, serves as an actionable metric for guiding local interventions, it
does not directly indicate the risk to humans of contracting Aedes-borne arbovi-
ral infections. The spatiotemporal transmission of these infections is inĆuenced
by several additional factors, including (i) pathogen prevalence within the Aedes
mosquito population, (ii) levels of human immunization, and (iii) daytime vari-
ations in Aedes-human interactions (cf. Section 2.2). The complex interplay of
these epidemiological factors is a key reason why the risk to humans of contract-
ing Aedes-borne arboviral infections has been the subject of extensive research
for several decades (Guzman and Harris, 2015; Murray et al., 2013).

In the context of the overarching research objective of Şharnessing GBD to
guide local interventions for Aedes-borne arboviral infectionsŤ, investigating day-
time variation in Aedes-human interactions presents the most promising research
pathway among the aforementioned factors. While data on pathogen prevalence
within mosquito populations and human immunization levels is limited, there is
an increasing amount of GBD on human trajectories collected via mobile devices,
enabling the modeling of daytime human movement. Numerous research studies
have harnessed human mobility data from mobile devices to analyze and eluci-
date the signiĄcance of human movement in modeling the spatiotemporal dynam-
ics of Aedes-borne arboviral infections across various scales (Chen et al., 2022b;
Kraemer et al., 2018; Ramadona et al., 2019; Stoddard et al., 2009). The pri-
mary outcome of these studies indicates that inferring and incorporating human
movement patterns is crucial for accurately predicting disease outcomes. This
relevance arises from the limited Ćight range of Aedes mosquitoes, which conĄnes
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them to localized habitat areas. Conversely, humans, through their daily activ-
ities, traverse multiple mosquito habitats, facilitating the dissemination of the
pathogen across different spatial regions and mosquito populations (Iggidr et al.,
2017). Only a few studies (Kraemer et al., 2018) have considered the preference
of Aedes mosquitoes for biting during daylight hours, particularly in the early
morning and late afternoon (cf. Section 2.2). Studies that do not account for this
biological behavior may be limited in their ability to accurately predict the risk of
infection and effectively guide interventions (Kraemer et al., 2018). Accordingly,
the following hypothesis was formulated to guide the research in this thesis:

Figure 13: Hypothesis II.

Mobile phone records, representing temporally ordered antenna connections
made during phone calls, mobile internet usage, or text messaging, have been
applied in various research domains to infer human trajectories and their inĆu-
ence on different phenomena (Althouse et al., 2015; Finger et al., 2016; Kogan
et al., 2021; Kraemer et al., 2016; Lenormand et al., 2014; Panigutti et al., 2017;
Sattenspiel, Lisa and Lloyd, Alun, 2009). Due to the limited open availability of
such anonymized GBD, which is typically collected by private companies, openly-
available social media posts are often used as an alternative proxy for human
movement patterns, with human trajectories reconstructed from sequential geo-
tagged posts. While the relevance of such datasets and their inference on human
movement patterns have been shown to be signiĄcant in modeling Aedes-borne
arboviral infection risk, integrating these data streams into intervention planning
maps, particularly at the municipal scale, has not been adequately documented.
This gap hampers the real-world application of reported scientiĄc insights. As
this thesis aims to Şharness GBD to guide local interventions for Aedes-borne ar-
boviral infectionsŤ, the following research concept was developed to address this
gap and test the aforementioned hypothesis (cf. Figure 13):

Figure 14: The research concept developed to test hypothesis II in order to achieve research
objective II, incorporating the formulated research question (RQ).
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To enhance the applicability of our research Ąndings and address the second
part of our overarching research objective, namely Şthe guidance of local inter-
ventions for Aedes-borne arboviral infectionsŤ, we incorporated estimates of likely
transmission areas, considering Aedes-human interactions, into the environmental
suitability map generated for local intervention planning. This integration aims
to inform decision-makers to focus not only on high ŞhazardŤ zones, indicated
by high environmental suitability for Aedes mosquitoes, but also on high ŞriskŤ
areas of transmission, indicated by high connectivity to areas with high infection
rates weighted by Aedes daytime biting. These high ŞriskŤ areas may be underes-
timated when relying solely on entomological surveillance data for planning local
interventions. The methodologies and results addressing research objective II are
detailed in Section 3.2.2.
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3.2 Research Framework and Core Methods

The relationship between research objectives I and II, along with the proposed
concept and key challenges addressed in this study, is schematically illustrated
in Figure 15. Given the Ąne spatiotemporal scale of Aedes-borne arboviral in-
fections, where transmission risk can vary over short distances and time due to
the limited Ćight range and daytime biting behavior of Aedes mosquitoes, this
research seeks to enhance local intervention guidance by reĄning (i) Ae.aegypti
environmental suitability mapping to the scale of Aedes habitats and (ii) the
analysis of Aedes-human interactions considering peak Aedes activity hours. Ad-
dressing these ecological complexities introduces a novel perspective to the tar-
geted research Ąeld. Beyond harnessing GBD to model these complex interactions
and improve dengue occurrence estimates, this study also aims to demonstrate
the critical importance of integrating ecological knowledge into local intervention
strategies, proposing practical solutions for informed decision-making.

Figure 15: High-level schematic overview of the core research concept including key challenges.

This research was organized into Ąve work packages (cf. Figure 16), each
corresponding to a scientiĄc manuscript submission. These submissions can be
grouped into three main topics: (i) environmental suitability for Ae.aegypti, (ii)
human movement, and (iii) Aedes-human interactions. Figure 17 depicts a more
detailed view on the research framework, which was developed to address the
two main research objectives and questions. It also incorporates Ąve additional
sub-research questions that emerged during the course of this study, focusing
on methodological concepts, predictive capabilities, and alternative evaluation
techniques. Key Ąndings related to each of these seven research questions are
presented in Section 3.3. A summary of applied methods, tools, and data sources
is provided in Figure 19.
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Figure 16: Integrated network of scientiĄc manuscript submissions for the research objective
of harnessing GBD to guide local interventions for Aedes-borne arboviral infections. Each of
the three subtopics included steps for data collection, modeling, and validation, resulting in
key outputs potentially relevant for guiding local interventions. Evaluation datasets (indicated
by darker colors) were retrieved via ethical approval from the municipal health ministry of Rio
de Janeiro to ensure compliance with ethical standards and participant conĄdentiality. The
methodological focus of this cumulative dissertation lies in the generation of urban suitability
indicators for Ae.aegypti to address the challenge outlined in Figure 1.
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Figure 17: Research framework, consisting of six sequential core methods: M1) detection
of Ae.aegypti breeding container, M2) generation of additional indicators for environmental
suitability of Ae.aegypti, M3), indicator-driven interpolation of ovitrap counts, M4) modeling
of human movement patterns, M5) feature engineering of daytime Aedes-human interactions,
and M6) inference on spatial dengue occurrence considering vulnerability indicators and spatial
autocorrelation, all conducted at the scale of the municipality of Rio de Janeiro to enhance
applicability for local intervention guidance. The red line indicates the guiding thread through
the analysis, illustrating how research question 6 and 7 build upon the preceding ones. The
research questions highlighted in a darker color align with those motivated in section 3.1.
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3.2.1 Environmental Suitability for Ae.aegypti (RO I)

Part one of the research framework focuses on the Ae.aegypti suitability map-
ping. This part consists of two sub-methods: (i) the generation of Ae.aegypti
suitability indicators, and (ii) the indicator-driven interpolation of ovitrap counts.
For the evaluation of the results, we acquired two types of entomological surveil-
lance data: egg and larval counts from ovitraps, as well as the BI and HI from
the Larval Infestation Rapid Assay Aedes (LIRAa) (Ministério da Saúde Brazil,
2013a), both collected by the municipal health department of Rio de Janeiro (cf.
Figure C. 1 in publication III).

Ovitrap data allowed for an examination of urban suitability indicators within
the vicinity of ovitrap locations, acknowledging that inferences on mosquito abun-
dance for locations beyond the Ae.aegypti Ćight range may be invalid. Ovitrap
data was gathered at 2 698 ovitrap locations on a monthly basis, from January
to December 2019. LIRAa data provided a broader assessment to evaluate con-
tinuous immature Ae.aegypti suitability maps generated from ovitrap data and
suitability indicators together. Correspondingly, the HI and BI were periodically
collected in 250 predeĄned city strata, representing homogeneous urban charac-
teristics, during February 3-9, 2019; May 5-11, 2019; August 4-10, 2019; and
October 13-19, 2019 (Secretario Municipal de Saúde Rio de Janeiro, 2024). The
HI gauged the number of larva-infested houses relative to the total number of
visited buildings during the survey, while the BI represented the number of pos-
itive containers per 100 houses inspected. The municipal health ministry of Rio
de Janeiro categorized the house index into three risk classes: HI < 0.9 (minor),
0.9 ≤ HI ≤ 3.9 (signiĄcant), and HI > 3.9 (severe). According to the study de-
sign, one LIRAa stratum consisted of 8 000 to 12 000 properties, of which 20%
were inspected following a structured schema. Field agents assessed the number
of eggs and larvae in all water containers present in each household surveyed.
The most prominently affected container types, ranging from water tanks and
ground-level deposits to furniture such as plates and vases, as well as the class
of Ąxed deposits, tires, garbage, and natural plants such as bromeliads, were also
recorded. For each container with mosquito larvae, the agents collected a sample
that was sent to the Vector Laboratory of the Agency for the Control of Endemic
Diseases for larval identiĄcation. Further details regarding the placement of ovit-
raps and the entomological surveillance in households are currently lacking in our
knowledge, but could potentially be provided by the municipal health ministry
of Rio de Janeiro upon request.

It is crucial to note that all entomological surveillance data was gathered
manually, introducing potential biases due to human error, observer variability,
and limitations in sampling frequency and coverage. These biases may lead to
inaccuracies in estimating spatial suitability for Ae.aegypti, as well as errors
in temporal trends, impacting the reliability of our analysis. Additionally,
micro-scale factors, such as the positioning of an ovitrap in shaded or unshaded
areas, can impact the observation values. The positioning of ovitraps was done
in a systematic manner, more or less uniformly across the built-up areas of the
municipality of Rio de Janeiro. This positioning resulted in an average distance
between the two closest ovitraps of 330.38m.
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Generation of Ae.aegypti Suitability Indicators (M1, M2)

As motivated in previous sections, we hypothesized that the generation of
Ae.aegypti suitability indicators can enable the interpolation of ovitrap data
into continuous spatial resolution, while considering the limited Ćight range of
Aedes mosquitoes and capturing the potential high spatial variability in Ae.ae-
gypti abundance that can occur in heterogeneous urban landscapes. This, in turn,
would allow for more targeted guidance of local interventions against Aedes-borne
arboviral infections. This section elaborates on the generation of Ae.aegypti suit-
ability indicators.

Urban suitability indicators for immature Ae.aegypti were selected based on
availability and a priori expectation of factors inĆuencing immature Ae.aegypti
abundance. Spatial as well as spatiotemporal covariates with differing resolutions
were retrieved to interpolate entomological surveillance data considering the lim-
ited mosquito Ćight range. The generation of Ae.aegypti suitability indicators
was divided into micro-habitat and macro-habitat indicators. The generation of
micro-habitat indicators referred to the detection of typical Ae.aegypti breeding
sites from satellite and street view imagery. Detected breeding sites included arti-
Ącial water containers such as water tanks, potted plants, trash bins, unmounted
car tires, or dumpsters often found in close vicinity to human settlements. All
these containers can harbor stagnant water after rainfall, which is highly suitable
for Ae.aegypti oviposition and subsequent adult population development. We
hypothesized that their spatial distribution and occurrence, in the form of con-
tainer density, could serve as a reliable indicator for the abundance of immature
Ae.aegypti in urban environments. In addition to micro-habitat urban suitability
indicators, we hypothesized a range of additional macro-habitat urban suitability
indicators for immature Ae.aegypti, mostly collected at a coarser spatial scale.
These indicators encompass a broad range of spatiotemporal proxies describ-
ing urban landscape in terms of demography, socio-economy, land use, climate,
weather, green spaces, and water availability. The corresponding hypotheses were
derived from previous literature (cf. Appendix A. 1 in publication III). An ex-
tended description of the applied methods and the hypothesized spatiotemporal
inĆuences of suitability indicators for the abundance of immature Ae.aegypti is
provided in the following paragraphs.

The generation of water tank counts as a micro-habitat indicator derived
from satellite imagery was extensively described in publication I (Knoblauch et
al., 2023). Here, we conceptualized a semi-supervised self-training (SSST) algo-
rithm to minimize the manual labeling effort for automated water tank detection
in urban areas based on satellite imagery. We used a Single-Stage Object De-
tection network consisting of Inception-ResNet-V2 as a feature extractor and a
multi-layer detector with a Non-Maximum Suppression layer pretrained on the
Microsoft COCO dataset (Lin et al., 2014). We Ąne-tuned this model using 4,000
manually labeled water tanks along with 10,400 pseudo water tank labels, en-
compassing various urban structure types, generated by the model during the
training process. In our case, pseudo labels represented the results of model
inference at 20,000 training iterations, applying a conĄdence threshold of 0.8.
In total, the neural network was trained for 40,000 iterations: 20,000 initial it-
erations using manual labels only and 20,000 subsequent iterations using both
manual and pseudo labels, which refers to a SSST procedure. We evaluated
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model performance using precision, recall, and F1-score, with particular atten-
tion to generalization across different urban structures. The model with the best
F1-score was then used for large-scale water tank prediction across the entire
metropolitan area of Rio de Janeiro, processing over 10 million satellite image
patches and storing predictions in a PostGIS database for further analysis. This
process resulted in the Ae.aegypti suitability indicators of Şwater tank densityŤ
covering the whole municipality of Rio de Janeiro (cf. Figure 8 in publication I).

In addition to the city-wide water tank detection from satellite imagery, we
derived the density of trash cans, catch basins, manholes and water valves from
the Mapillary API (Mapillary, 2023a) For the mapping of further common Ae.
aegypti breeding sites from street view imagery such as potted plants, small and
large trash bins, dumpsters, storm drains, unmounted car tires, and plastic bags,
we Ąne-tuned a YOLOv5 model using google street view (GSV) imagery. The
applied methods were extensively described in publication II (Knoblauch et al.,
2024). Here, we Ąne-tuned a multi-class object detector to map Ae.aegypti-
speciĄc habitats as an extension of prior research of publication I. To detect Ae.
aegypti breeding containers, we used street view images retrieved from GoogleŠs
Street View Static API (Google LLC, 2023). A 50 m downloading interval for
360-degree street view images calculated from the OSM road network was deemed
appropriate for the detection of mosquito breeding sites, following the approach
used in other studies (Haddawy et al., 2019; Su Yin et al., 2021). As of August
8th, 2023, this method yielded a total of 467,605 available street view images,
which were utilized for labeling and city-wide container detection. The times-
tamps of the retrieved images ranged from January 2010 until 2023, with a share
of 51% for images taken between 2022 and 2023, 15% from 2021, 19% from 2020
and 15% from before 2020. The downloaded image resolution was 600x500 pixels.
For the supervised training of our multi-class object detector we manually labeled
7,578 breeding containers on 3,979 images using the graphical image annotation
tool ŚlabelImgŠ (TuzuTa Lin, 2023). To minimize the manual labeling effort we
implemented additional data augmentation techniques for instances of the Śdump-
sterŠ container class, which were observed infrequently within our dataset. We
applied PCA color augmentation, horizontal Ćip and 180 degree rotation. The
labeled dataset was then randomly divided into 80% for training, 10% for val-
idation, and 10% for testing, resulting in 3,152, 454, and 373 image subsets,
respectively (cf. Table 1 in publication II).

The indicators of human population density and building density were se-
lected as macro-habitat proxies of human inĆuence on the Ae.aegypti population,
considering that human activities provide artiĄcial water containers suitable as
breeding habitats (Espinosa et al., 2016; Kamgang et al., 2010; Lindsay et al.,
2017; Tedjou et al., 2019; Wilson-Bahun et al., 2020). The indicators slope and
water Ćow accumulation, deĄned by the Horton-Strahler number, were selected
in consideration of their inĆuence on water accumulation (Cornel et al., 2016).
The water Ćow indicator was generated by applying a D8 approximation algo-
rithm to 5 m elevation data provided upon request by the Urban Data Platform
from PPGAU UFF (PPGAU UFF, 2023a). The indicator elevation level, includ-
ing building heights, was additionally added as a covariate to account for Ae.
aegyptiŠs sensitivity to altitude (Equihua et al., 2017; Liew and Curtis, 2004;
Lozano-Fuentes et al., 2012; Moreno-Madriĳán et al., 2014; Roslan et al., 2022;



Part I: Synopsis 29

Roslan et al., 2013).

The indicator local climate zones was selected to consider Ae.aegypti climate-
sensitive reproduction and fertility rate (Azevedo et al., 2018; Jesús Crespo and
Rogers, 2021). This indicator - based on urban climate estimates by Demuzere
et al. (2021) - considers ten different urban built-up types (compact highrise,
- midrise, - lowrise, open highrise, - midirse, - lowrise, lightweight lowrise, large
lowrise, sparsely built, heavy industry) inĆuencing shadow and heat accumulation
together with seven land cover classes (dense, trees, scattered trees, bush and
scrub, back rock or paved, bare soil or sand, water) in 30 m resolution. The
monthly indicators of air temperature (Chang et al., 2007; Lambrechts et al.,
2011; Misslin et al., 2018; Tsuda and Takagi, 2001), precipitation (Barrera et
al., 2011; Li et al., 1985; Souza et al., 2010; Stewart Ibarra et al., 2013; Valdez
et al., 2018; Vasconcelos et al., 2022; Vasconcelos et al., 2021), and relative
humidity (Costa et al., 2010; Lega et al., 2017; Nasir et al., 2017; Reiskind
and Lounibos, 2009) were derived from the Alerta system (Centro de Operacoes
Rio, 2023). Therefore, we interpolated 15-minute interval measurements from 33
weather stations during the study period of 2019 to consider both climate and
meteorological effects on Ae.aegypti populations. Additional urban heat island
effects (Araujo et al., 2015; Oliveira Lemos et al., 2021; Wilk-da-Silva et al., 2018)
were retrieved by Lucena et al. (2015) and Peres et al. (2018) and Miranda et al.
(2022) including cloud masking techniques, atmospheric correction and surface
emissivity.

As a further proxy to describe the habitat suitability of immature Ae.aegypti
in urban landscape, we calculated the road network density from OSM to consider
the barrier effects of roads on mosquito populations (Kaplan et al., 2010; Regilme
et al., 2021). The distance to coastal water bodies was also generated utilizing
OSM to account for additional wind exposure effects with a negative inĆuence
on mosquito activity (Wong and Jim, 2017). The distance and coverage of urban
drain lines were derived from a hydrographic data set (Data.Rio, 2023b) as an
additional urban-speciĄc proxy for immature Ae.aegypti populations. Normalized
difference vegetation index (NDVI) (Britos Molinas et al., 2022; Chaves et al.,
2021; Estallo et al., 2018; Estallo et al., 2008; Martín et al., 2022a; Martín et
al., 2022b) and normalized difference water index (NDWI) (Britos Molinas et al.,
2022; Estallo et al., 2018; Estallo et al., 2012; German et al., 2018) were computed
using Sentinel-2 satellite imagery from the European Space Agency to consider
vegetation types and water availability inĆuencing Ae.aegypti especially in non-
built up areas. An algorithm for cloud masking was applied to calculate the mean
of cloud-free pixels at a 30 m resolution from January 2019 until December 2019
using the Google Earth Engine. After band calculations, a threshold of ≥ 0.2
for the NDVI and ≥ 0.3 for the NDWI was applied to avoid false assumptions.
On top of this, land cover maps were extracted from DataRioPortal (Data.Rio,
2023a) to incorporate land use classes (Albrieu-Llinás et al., 2018; Benitez et al.,
2020; Egid et al., 2022a; Landau and van Leeuwen, 2012; Lorenz et al., 2020a;
Montagner et al., 2018; Vanwambeke et al., 2007; Westby et al., 2021; Young
et al., 2017; Zahouli et al., 2017) such as the location of favelas and to calculate
the minimum distance from ovitraps to forest areas to consider forest-speciĄc
climate effects such as locally increased humidity (Costa et al., 2010; Rowley and
Graham, 1968).
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An urban morphological clustering was computed using the momepy python
library (Fleischmann, 2019) and official building footprints provided upon re-
quest by the Urban Data Platform from PPGAU UFF (PPGAU UFF, 2023b).
Most recent census statistics for 10,233 strata such as the amount of collected
rubbish Bonnet et al., 2020; Chumsri et al., 2020; Manrique-Saide et al., 2008;
Maquart et al., 2022; Stewart Ibarra et al., 2014; Whelan et al., 2020, statistics
about waste water management (Burke et al., 2010; Chan et al., 1971; Martini
et al., 2019; Novaes et al., 2022), sanitation (Gomes et al., 2023), and edu-
cation level (Menchaca-Armenta et al., 2018; Stefopoulou et al., 2018) as well
as socio-economic indices (Liu-Helmersson et al., 2019; Lorenz et al., 2020b;
Moreno-Madriĳán et al., 2014; Nagao et al., 2003; Vannavong et al., 2017) were
obtained from the IBGE (Instituto Brasileiro de GeograĄa e Estatística), IPP (In-
stituto Pereira Passos, Prefeitura do Rio de Janeiro), IPEA (Instituto de Pesquisa
Econômica Aplicada), and the DataRioPortal.

To quantitatively evaluate how well Ae.aegypti suitability indicators can cap-
ture the inner-urban distribution of immature Ae.aegypti abundance measured
by entomological ovitrap data, we ran negative-binomial generalized linear re-
gression models (NB-GLM) with a log-link functions (Hilbe, 2012). We ran the
models for several estimated mosquito Ćight range scenarios to further test the
robustness of our results against the assumed Aedes habitat size. NB-GLMs (cf.
Equation 1 in publication II) were selected as they allow the model to account
for the overdispersion present in the applied entomological count data (cf. Figure
C. 1 in publication III).

As our response variable Yi we selected the seasonal mean eggs per trap
(S-MET) and seasonal mean larvae per trap (S-MLT) rates for the year 2019.
As explanatory variables, we used all main effects of our self-generated urban
indicators for immature Ae.aegypti suitability as listed in Table A. 1 in publica-
tion III. All collected urban indicators were clipped to the geographical extent of
the municipality of Rio de Janeiro. Using this stack of proxies, zonal statistics
were run in different square buffers of Ćight range size around ovitrap locations
to create Ąve different feature vectors. Based on literature Ąndings, we assumed
that the Ćight range of Ae.aegypti is consistently lower than 1 000 m for the
municipality of Rio de Janeiro (Honório et al., 2003; Moore and Brown, 2022).
Therefore, we deĄned Ćight ranges of 50, 100, 200, 400 and 1 000 m as our Ćight
range scenarios. The aerial coverage of ovitrap buffer regions in built-up areas
showed notable variation: from 1.05% for a 50 m Ćight range buffer to 15.41%
for a 200 m buffer, and up to 92.76% for a 1 000 m buffer. The lower percentages
for smaller buffers, indicative of assumptions regarding lower mosquito Ćight
ranges, underscore the difficulty in capturing the high spatial variability of urban
immature Ae.aegypti abundance with sample-based entomological surveillance.
To remove collinearity within our feature vectors we ran a PCA. All resulting
79 principal components (PC) were utilized to run the NB-GLMs for each
feature vector. The combination of Ąve different Ćight range buffers and the
two response variables led to 10 different models, which were evaluated using
CohenŠs pseudo R-square (cf. Equation 2 in publication II).
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Indicator-driven Interpolation of Ovitrap Counts (M3)

The second step in Ae.aegypti suitability mapping involved the indicator-
driven interpolation of ovitrap counts (cf. Figure 18). Here, we modeled ovitrap
egg and larval counts, denoted as the response variable Yit, observed at distinct
spatial locations i = 1, ..., 2698 and time periods t = 1, 2, 3, 4 using a Bayesian
spatiotemporal model with a negative-binomial probability distribution. Given
the observed overdispersion in the applied entomological count data (cf. Figure C.
1 in publication III), we employed a chi-squared test to evaluate the adequacy of
the negative-binomial distribution as a likelihood function. The model assumes,

Yit ∼ NB(µ̂it, θ̂)

E(Yit) = µ̂it ∗ (1 − θ̂)/θ̂

Var(Yit) = µ̂it ∗ (1 − θ̂)/θ̂2

log(µ̂it) = β̂0 +
79
∑

j=1

β̂j ∗ PCitj + ξ(xi, t)

ξ(xi, t) = aξ(xi, t − 1) + w(xi, t),

(1)

and consists of an intercept β̂0, PCs of spatiotemporal suitability indicators
PCitj, and independent and identically distributed spatiotemporal random effects
ξ(xi, t) that change in time with Ąrst order autoregressive dynamics (♣a♣ < 1)
(Blangiardo and Cameletti, 2015; Lindgren et al., 2011; Zuur et al., 2017). The
modelŠs incorporation of covariates is assumed to enhance its predictive capability
and facilitates a more holistic understanding of the actors inĆuencing immature
Ae.aegypti suitability. The spatial model component was modeled by Integrated
nested Laplace approximation (INLA) using the Euclidean distances between
ovitrap locations, a Matérn covariance function, and stochastic partial differential
equations (SPDEs). Gaussian Markov random Ąelds were built on triangle meshes
considering boundary effects that could artiĄcially inĆate variance near the edges
of the study area (cf. Figure E. 1 in publication III).

Figure 18: Schematic visualization of the process of indicator-driven interpolation of ovitrap
egg and larval counts.

To evaluate indicator-driven interpolations of ovitrap counts we considered
LIRAa indices as an evaluation set. Therefore, we organized monthly ovitrap
data into quarters that corresponded to the four LIRAa seasons. This grouping
was performed using the feature vector of the best-performing Ćight range buffer,
identiĄed through the NB-GLMs (cf. Section 3.2.1). Subsequently, we Ątted a
Bayesian spatiotemporal model with INLA (Rue and Lindgren, 2024), to generate
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seasonal and spatially continuous urban suitability maps for immature Ae.aegypti
covering the whole municipality of Rio de Janeiro. To map immature Ae.aegypti
suitability in continuous space, the inverse distance weighting (IDW) algorithm
was applied to interpolate point estimates from the mesh nodes to a uniformly
distributed raster of 100 000 cells for each season of 2019, visualized using QGIS
(QGIS Association, 2024). Here, point estimates represented the seasonal poste-
rior means of the spatial random effects. Scatterplots were utilized to compare the
predicted suitability values with the observed LIRAa indices. Additionally, we
calculated the PearsonŠs correlation coefficient and applied locally weighted scat-
terplot smoothing (LOESS) across all seasons. To achieve this, zonal statistics
were performed on LIRAa strata for each of the four seasons (Jan-Mar; Apr-
Jun; Jul-Sep; Oct-Dec) and response variables, respectively. Before calculating
zonal statistics, continuous egg and larva interpolations were clipped using the
urbanization area to avoid false inference and high bias, as interpolations were
created using egg and larval counts from urbanized area only. The results were
then compared with mean values of ovitrap counts from the Ąeld.

3.2.2 Daytime Aedes-human Interactions (RO II)

Part two of the research framework focuses on modeling daytime Aedes-human
interactions. This part consists of two sub-methods: (i) the retrieval of daytime
human movement data, and (ii) the feature engineering of daytime Aedes-human
interactions. To evaluate the results in this subsection, we acquired clinical
health records of Aedes-borne arboviral infections in the municipality of Rio de
Janeiro. The health records contained daily counts of DENV cases from 2015
to 2022 with geographical coordinates corresponding to residential addresses (cf.
Figure 3 in publication V). In adherence to ethical considerations and following
the approval granted by the Research Ethics Committee (CEP) under protocol
number 66143722.0.00005243, this dataset underwent anonymization and was
made accessible upon formal request by the municipal health ministry of Rio de
Janeiro (Ministério da Saúde Brazil, 2013b).

Modeling of Human Movement Patterns (M4)

To retrieve daytime human movements, we used anonymized mobile phone
records provided by a large Brazilian telecommunications company. The dataset
included individual antenna connections from approximately three million unique
users. This is equal to an approximated penetration rate of around 45 percent
for the population of the city of Rio de Janeiro. The temporal resolution of the
raw data was Ąve minutes. The data was provided at the level of the antennas
(cf. Figure 4 in publication IV - top right). The mobile phone user is typically
connected to the closest antenna, which is used as a proxy for the position of
the user at this point in time. The number of antennas in our data set varied
daily between 1200 and 1250 due to technical failures of some antennas. An
antenna connection from an user was recorded when sending a text message,
using mobile internet data, or making a call. We retrieved and processed the
data of 164250 million mobile phone records via the distributed computing tool
Apache Spark as well as the GPU-accelerated parallel computing framework
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Dask using the mobilkit python library (Ubaldi et al., 2021). As a Ąrst cleaning
step, we dropped connections with antennas outside the city boundaries. In
order to derive human movement patterns, we generated a sequence of antenna
connections for each user over the whole time period using a machine with 7
TB of local scratch. To increase the informative power of successive antenna
connections for inferring human movement patterns, we introduced a lower
bound (LB) and upper bound (UB) as Ąlters for the inter event time (IET)
between sequential antenna connections from a single user as proposed by Zhao
et al. (2019). As a result, successive antenna connections between which less
than 15 minutes (LB) or more than four hours (UB) elapsed were not counted
as movements (cf. Figure 4 in publication IV - top left). The introduction of
a LB was justiĄed by the fact that antenna congestion can cause the user to
jump back and forth between antennas without physical moving. A UB was
introduced to avoid the counting of movements that are not necessarily made
in a direct way. The choice of the lower threshold was selected based on Zhao
et al. (2019) and Schlosser et al. (2020). The choice of the upper threshold was
inspired by Barboza et al. (2021). Hourly origin-destination (OD) matrices were
created based on IET-Ąltered daily user sequences, spanning from July 2021 to
July 2022, encompassing a complete annual cycle of human mobility patterns.

Feature-engineering of Daytime Aedes-Human Interactions (M5)

To model daytime Aedes-human interactions Bi we combined continuous esti-
mates on Aedes suitability Mi from part 1 of the research framework with daytime
human movement patterns χi,j(h), incorporating knowledge of Aedes biting be-
havior ω(h):

Bi =





24
∑

h=1

ω(h)





N
∑

j=1

χi,j(h)Mj







 (2)

Equation 2 aims to incorporating two key principles. First, due to human move-
ment, individual hosts are exposed to different mosquito populations throughout the
day. To capture this for each hour of the day h, we calculated a weighted sum approxi-
mating the contribution of mosquito populations Mj from all cells Cj to the biting risk
of people resident in cell Ci. This sum reĆects the extent to which the hourly mosquito
biting risk originating from the mosquito population Mj in cell Cj affects individuals
residing in cell Ci. To this end, we estimated χi,j(h), representing the fraction of people
present in cellular tower tessellation cell Cj during hour h, relative to the total number
of residents in cellular tower tessellation cell Ci. The calculation of χi,j(h) utilized
hourly OD matrices, indicating collective human mobility from cell Ci to cell Cj .

Second, considering the daytime variation in mosquito biting behavior, we intro-
duced the hourly weighting function, denoted as w(h) in our model (cf. Equation 3). It
is well-documented that Ae.aegypti and Ae.albopictus exhibit biting behavior primarily
during daylight hours, with increased activity observed during twilight (Muhammad et
al., 2020; Mutebi et al., 2022b; Zahid et al., 2023). Therefore, we assumed a decrease
in mosquito biting activity during midday hours. However, we hypothesized that this
behavior might persist in shaded areas with high humidity and other environmental
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conditions favorable to mosquito activity (Baik et al., 2020; Egid et al., 2022b; Wei
et al., 2023). Notably, mosquito biting activity during the night was excluded from our
proposed model, as Aedes mosquitoes are typically inactive during nighttime, despite
some studies reporting increased biting behavior under artiĄcial light conditions (Rund
et al., 2020).

ω(h) =



















3, if h ∈ ¶6, 7, 8, 9, 15, 16, 17, 18♢
2, if h ∈ ¶5, 10, 14, 19♢
1, if h ∈ ¶4, 11, 12, 13, 20♢
0, otherwise

(3)

The proposed model deviates from density-dependent epidemiological models,
where transmission rates are directly proportional to population density and are typi-
cally modeled by multiplying the number of susceptible hosts by the vector population.
Instead, for MBDs, a frequency-dependent model is more appropriate, as it accounts
for the saturation effect, where each mosquito can feed on a limited number of hosts
within a speciĄc period. For simpliĄcation and consistency, we therefore modeled day-
time Aedes-human interactions by propagating the environmental suitability for Ae.
aegypti across space, utilizing human movement patterns weighted by hourly biting
activity.

The proposed feature engineering underwent evaluation employing a quasi-Poisson
generalized linear model (QP-GLM), wherein the target variable Di was deĄned by
overdispersed official dengue case counts aggregated on 1 359 cellular tower tessellations
between the years 2015 and 2022 (cf. Equation 4). For evaluation, we calculated
CohenŠs pseudo-R2 (cf. Equation 5). The explained deviance for this regression model
was compared to the pseudo-R2 of a base model that did not consider assumptions
related to diurnal Aedes mosquito biting behavior and hourly human movement (cf.
Figure 2). In contrast to the proposed model, the base model was implemented utilizing
identity OD matrices for χi,j(h).

Di ∼ quasi-Poisson(µ̂i, θ̂)
E(Di) = µ̂i

Var(Di) = µ̂i ∗ θ̂, with θ̂ ̸= 1

log(µ̂i) = log(Hi) + β̂0 + β̂1 ∗ Bi

(4)

Cohen′s pseudo R2 = 1 − model deviance
null model deviance

(5)

Inference on Spatial Dengue Occurrence (M6)

After evaluating the feature engineering of daytime Aedes-human interactions, we
expanded our QP-GLM in two aspects: (i) by incorporating vulnerability indicators
to model the likelihood of an infected individual being registered in official health
registries, geolocated by residency, and (ii) by integrating spatial eigenvectors to address
spatial autocorrelation of residuals. These modiĄcations were based on the hypothesis
that including vulnerability indicators and spatial eigenvectors would further enhance
the proposed QP-GLM, which considers Aedes-human interactions (cf. Equation 4) for
predicting the spatial occurrence of dengue in the municipality of Rio de Janeiro. To
mitigate multicollinearity among covariates, we selected vulnerability indicators with
low intercorrelation (≤ 0.7).

We additionally assessed the extent to which these additional variables improve
the predictive capability and understanding of DENV transmission dynamics within
the urban environment. Here, vulnerability features were deĄned as variables that
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inĆuence the appearance and collection process of DENV infections at the urban scale,
but not the human-mosquito interactions itself. This strategic inclusion allows us to
dissect the nuanced factors contributing to DENV occurrence, beyond solely focusing
on the dynamics of human-mosquito interactions. In this study, these factors included
the location of vulnerable age groups, accessibility to health care facilities, road network
centrality, the socio-economic factor of average income, and estimates on immunization
levels derived from past DENV infections. In contrast to the Ąrst model deĄned in
Equation 3, the year 2022 was selected as the reference year for predictions, coinciding
with the occurrence of the last major DENV outbreak in the municipality of Rio de
Janeiro (cf. Figure B. 1). Consequently, immunization levels were estimated based on
the spatial distribution of past infections recorded between 2015 and 2021.

The applied spatial eigenvector mapping, originally proposed by Griffith et al.
(2019) (Griffith, 2019), involved the incorporation of additional covariates to absorb
spatial autocorrelation. This ensures unbiased estimators for other predictors. These
covariates, derived from the eigenfunction decomposition of the spatial weight matrix
W , are called spatial eigenvectors. They represent orthogonal components that effec-
tively separate and capture information on spatial autocorrelation, similar to PCA. In
this dissertation, we employed daily aggregated OD matrices from July 2021 to July
2022 to illustrate human connectivity between antenna tessellations, serving as a spatial
weight matrix (cf. Figure 5). This led to the generation of 1 359 spatial eigenvectors,
out of which the ME function from the ŠspatialregŠ R package facilitated the identi-
Ącation of a speciĄc subset applying brute-force search (Bivand, 2023; Griffith, 2000)
under consideration of an alpha threshold of 0.05 to mitigate residual autocorrelation.
This selected subset of eigenvectors was integrated as additional covariates into the
QP-GLM (cf. Equation 3).

Figure 19: Variety of applied methods (M), tools, and data sources in this dissertation.
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3.3 Results and Discussion

This section presents the results and discussion related to the seven research ques-
tions, outlined in Figure 17 and grouped according to the two main research objectives.
For clarity and ease of understanding, key Ąndings are summarized in grey boxes.

3.3.1 Environmental Suitability for Ae.aegypti (RO I)

Key Findings (Research Objective I)

The density of Aedes breeding containers, as estimated using object detection
models trained on satellite and street view imagery (with F1-scores ≥ 0.84), has
been identiĄed as a signiĄcant predictor (p ≤ 0.05) for modeling Ae.aegypti egg
and larval counts, as monitored using ovitraps in this case study. The statisti-
cal signiĄcance of this micro-habitat indicator varies depending on the type of
breeding container, the selected imagery source, and the spatial scale of the Aedes
habitat modeled around ovitrap locations. Future research should explore the
potential of ultra-high-resolution satellite imagery, as the applied high-resolution
satellite imagery has shown limitations in detecting smaller breeding sites, and
drone imagery appears impractical for large-scale applications (cf. publication
I). Street view imagery can assist in detecting smaller breeding sites but is sub-
ject to greater spatial bias than satellite or airborne imagery, as it is restricted
by the road network and the availability of captured images (cf. publication II).
Both satellite and street view imagery are unable to account for indoor breeding
containers or those located beneath shelters or tree canopies in backyards and on
rooftops. Given these inherent data limitations, the proposed concept is unable
to estimate the absolute number of breeding containers, which aligns with carry-
ing capacity - a key variable in many epidemiological models for VBDs. However,
assuming uniform data biases, it can assess environmental suitability for Ae.ae-
gypti, which reĆects the likelihood of an area to sustain vector populations and
is useful for guiding interventions. Additional limitations of the proposed con-
cept include the temporal alignment of imagery with ovitrap records, as well
as a lack of information on waste collection or breeding container removal ini-
tiatives. In this context, more frequent imagery updates, combined with citizen
science initiatives such as ŞMosquito AlertŤ, could play a valuable role in enhanc-
ing surveillance by capturing data on unmonitored factors, thereby addressing
gaps in the proposed techniques. When combined with additional environmental
suitability indicators for Ae.aegypti such as Şwater accumulationŤ, Şurban mor-
phologyŤ, and Şurban climateŤ, Aedes breeding container density can explain up
to 75% of temporally aggregated ovitrap larval counts. The performance for egg
counts was slightly lower, with a pseudo-R2 value of 0.73 (cf. publication III).
The predictive power of the density of single Aedes breeding container types
was relatively low (≤ 2%) (cf. publication II). The predictive power, akin to
the signiĄcance of individual indicators, exhibited a strong dependence on the
timing of entomological surveillance and the spatial scale of the modeled Aedes
habitat. The replicability of the results is inĆuenced by data noise in entomolog-
ical surveillance, including factors such as human error, observer variability, and
undocumented micro-scale factors - such as the placement of ovitraps in shaded
or unshaded areas - which impact the ovitrap counts used for evaluation. This
variability underscores the rationale for temporally aggregating ovitrap counts
to facilitate a more robust spatial analysis.
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Broader applications should consider challenges related to non-uniform data
availability and resolution, as well as environmental diversity that can affect
the transferability of methods across diverse ecological contexts. These chal-
lenges may require adaptation of the selected hypotheses for indicator retrieval,
along with models that explicitly account for identiĄed data bias. Expanding the
set of hypothesis-driven indicators could potentially further enhance predictive
power, which is crucial for indicator-driven interpolation techniques of ovitrap
counts, offering more precise guidance for local interventions than entomologi-
cal surveillance alone (cf. publication III). Given that hypothesis-driven feature
engineering has proven to be labor-intensive in this study, future research could
additionally focus on developing multi-modal deep learning models that leverage
diverse GBD sources across various ecological landscapes to enable more robust
and scalable model inference for predicting the environmental suitability of Ae.
aegypti.

RQ1: To what potential extent can SSST outperform supervised learn-
ing when provided with an equivalent amount of manually labeled
training data?

The best semi-supervised self-trained water tank detection model achieved a pre-
cision score of 0.864, a recall of 0.823, and an F1 score of 0.843 on independent test
datasets, outperforming the supervised base model, which yielded a precision score of
0.59, a recall of 0.85, and an F1 score of 0.69 on the same test dataset (cf. Table 2
in publication I). An increasing training time on the merged label set of manual and
pseudo water tank labels continuously improved the F1-score of our object detection
models (cf. Table 2 in publication I). The best water tank detection model was the
model that used the additional pseudo labels for the longest SSST time (50% of the
total 40,000 iteration, SSST-50) with an overall F1-score of 0.84 averaged over all test
labels. This signiĄcant improvement of 22% compared to the supervised base model
indicates a good balance of precision and recall. All SSST models showed a slightly de-
crease in recall compared to the supervised base model - i.e the proportion of correctly
detected water tanks to the sum of all true water tanks decreased. However, this was
countered by major improvements in precision, as the amount of correct water tank
predictions on all predictions was higher for all four SSST models used.

For the best (SSST-50) model, the relative increase in F1-score (cf. Table 3 in
publication I) was more obvious for urban structure types excluded in the manual label
set (e.g. Commerce and Service, Education and Health, Industry) than for the urban
structure types included in the manual label set (Favela, Residential). The F1-score
improved, however, for all urban structure types. This makes the SSST-50 model more
applicable for large-scale predictions than the supervised base model. These results were
consistent with our expectations, namely that SSST models beneĄt from the additional
knowledge collected by the machine itself, leading to more precise and robust water
tank predictions across different urban structures relevant for large-scale predictions.
The trained SSST-50 model is provided in the supplementary materials of this work.

However, we also identiĄed several limitations in the results. First, not all urban
structure types were used for model evaluation. We focused only on Ąve of eleven land
classes included in the LULC map where we expect human population and thus the
largest risk for infections by Ae.aegypti. The second limitation results from the manual
labeling process. We generated the test set on the basis of satellite imagery instead
of a Ąeld study. Non-visible water tanks underneath shelters were thus not included
in our test labels for model evaluation. However, we assume that a Ąeld study for
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the labeling of water tanks would not mitigate the achieved performance improvement
of the SSST approach. Much more likely, it would have an impact on the absolute
performance metrics, but to the same extent on those of the supervised BM as on
those of the SSST models. The third limitation of this dissertation is the low amount
of manual training labels (4,000) compared to the amount of pseudo labels used for
training (10,800). This implies a relatively high risk of an inappropriate training with
potentially incorrect pseudo labels which can accumulate the error in the iterative self-
training process. To reduce such a bias, one could either develop a debiased self-training
algorithm similar to the one proposed by Chen et al. (2022a) or apply co-training of
classiĄers originally proposed by Blum and Mitchell (1998).

Further limitations of this dissertation become apparent when visually inspecting
raw prediction images of the SSST-50 model (cf. Figure 7 in publication I). Common
false negative predictions included water tanks in the shade or partial shade. To min-
imize the amount of these false negative predictions one could further Ąne-tune the
SSST-50 model by feeding it with more shaded water tank labels. It is noteworthy that
the number of objects in the study area which appear similar to water tanks was quite
high resulting in high numbers of false positives. While similar objects such as blue cars
and rooftop ventilators were rarely labeled as water tanks by our models, circular water
pools or blue sunshades on beaches were frequently false positives. The false positive
detection of water pools could be solved by applying a size Ąlter. The detection of
blue sunshades on beaches could be eliminated by applying an automatic land use map
based Ąltering. However, these solution methods would only work to a limited extent.
For very small water pools and blue sunshades not located on beaches this solution
method becomes obsolete. Another solution would be the Ąltering of predictions by
conĄdence score as applied during SSST training.

Further improvements of our models might be achieved by changing parameters of
our SSST framework. This includes the size of the areas used for supervised model
predictions to generate pseudo labels, the conĄdence threshold score applied for pseudo
label Ąltering, the overall training time for object detection models, and the correspond-
ing point for conducting the SSST loop. The training of a two-stage object detector
like Faster-RCNNs as proposed by Cao et al. (2019) could also be an option for further
investigations.

An alternative method for the reduction of manual labeling effort for object de-
tection could be data augmentation. Data augmentation describes the technique of
increasing the training set by creating slightly modiĄed copies of provided training
samples, for example by changing the rotation of the label (Shorten and Khoshgoftaar,
2019; van Dyk and Meng, 2001). It is a widely used method especially applied to avoid
overĄtting. However, for our use case of generating a robust model for large-scale pre-
dictions over various urban structure types, SSST seems to be more suitable. Instead of
creating label copies, self-training can create completely new water tank labels (pseudo
label) that can appear in different shape, color, and with varying shadow coverage.
In addition, it allows to incorporate background features in the training process, like
different rooftop types or water tank densities, not necessarily present in the limited
manual label set used. All these additionally features gathered during pseudo label
generation via self-training are extremely relevant, when trying to train robust object
detector using Convolutional-Neural-Networks (CNNs). Especially for applying these
models on over 10 million satellite image patches covering all types of urban structures.
SSST can avoid overĄtting similar to data augmentation (Nartey et al., 2020). Of
course, do both methods, data augmentation and self-training, allow a cost-sensitive
creation of additional labels, which is relevant for our use case to minimize the man-
ual labeling effort and associated cost and time. However, the capability of learning
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additionally background features, not present in the manual label set, is only possi-
ble through self-training in an automatic manner. Nevertheless, self-training requires
a relatively high conĄguration effort to be successful compared to data augmentation
techniques as described in the beginning of this result section.

In summary, the results for RQ1 show that SSST can outperform supervised learn-
ing by 22% in terms of performance (F1-score) and further improve generalization across
diverse urban landscapes for water tank detection from satellite imagery when using an
equivalent amount of manually labeled data. These Ąndings motivate the use of SSST
for the scalable generation of environmental suitability indicators for Ae.aegypti.

RQ2: To what potential extent can the spatial density of an Ae.aegypti

breeding container, derived from satellite and street view imagery,
serve as a signiĄcant (p ≤ 0.05) indicator for modeling Ae.aegypti egg
and larval counts?

The results of the implemented NB-GLMs (cf. Table 4 in publication II) indicated
that the density of all detected breeding containers, as identiĄed through satellite and
street view imagery, were highly signiĄcant (p ≤ 0.05) proxies for modeling urban Ae.
aegypti egg and larval counts while considering limited mosquito Ćight range below 1,000
m. This was in line with our expectations and implies that breeding site density maps
can be a useful indicator to enrich entomological surveillance data and thus support
future local interventions by providing more continuous and high resolution insights for
urban mosquito distributions.

Figure 20: Schematic visualization of AI-assisted mapping of water tanks, which serve as
common Ae.aegypti breeding sites, using satellite and street-view imagery to model the spatial
distribution of Ae.aegypti eggs and larvae, as monitored by ovitraps.

Water tanks, non-mounted car tires, storm drains, plastic bags, and potted plants
consistently displayed positive coefficient estimates for both response variables, whereas
the coefficient estimates for small and large trash bins, as well as dumpsters, consis-
tently demonstrated negativity across both model variations. These Ąndings aligned
with the intuitive understanding that an increased presence of trash bins of any kind
correlates with a reduced prevalence of uncontained refuse piles, thereby mitigating the
potential for additional mosquito breeding sites. The correlation between the density
of plastic bags and all three trash container classes was found to be negative, namely
-0.1 for the dumpster class, -0.03 for large trash bins, and -0.3 for small trash bins.
In addition, small and large trash bins, as well as dumpsters, are usually closed con-
tainers that rarely Ąll with water when it rains, which underlines their signiĄcance (p
≤ 0.05) and negative association with entomological data about Ae.aegypti immature
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abundance. Furthermore, these containers are regularly emptied by refuse collection
services, ensuring that they often remain dry and unsuitable for mosquito breeding,
thus contributing to mosquito control efforts.

When analyzing the results independently from the response variable, it was ob-
served that models using water tank density derived from satellite and street view
imagery consistently led to the lowest Akaike information criterion (AIC), indicating
a superior Ąt to the data across both immature abundance stages. Conversely, models
employing the density of potted plants displayed the highest AIC values in relation to
the mean eggs per trap (MET) rate, while models utilizing the density of large trash
bins exhibited the highest AIC values in relation to the mean larvae per trap (MLT)
rate. The extent of explained deviance in the regression models pertaining to the MLT
rate generally exhibited higher values compared to those associated with the MET
rate. SpeciĄcally, the MLT model, utilizing water tank density derived from satel-
lite imagery, achieved the highest explained deviance at 0.05 as quantiĄed by CohenŠs
pseudo-R2 (Cohen, 2013) (cf. Equation 2 in publication II). This indicates that approx-
imately 5% of the variance in the response variable is accounted for by the univariate
model.

The deviance function of the NB-GLM captured the increasing variance with the
mean that is typical for count data. The dispersion parameter captures how much the
variance increases with the mean relative to a Poisson GLM, where the variance equals
the mean. The theta values of all univariate regression models in this study indicated
a substantial overdispersion. This overdispersion can be attributed to two primary fac-
tors. First, the dataset on entomological observations contained a substantial number
of zero values, necessitating the adoption of a NB-GLM to account for excess varia-
tion. Second, the limited inclusion of predictors in modeling the urban distribution
of Ae.aegypti also contributed to the observed low value of explained deviance. It is
worth noting that certain potentially relevant predictors have been intentionally omit-
ted from the model, further contributing to the constrained explanatory power. The
incorporation of additional explanatory variables is planned for subsequent phases of
this research.

The outcomes of the performed sensitivity analysis (cf. Table A. 2 in publication
II), scrutinizing different assumed maximum Ćight ranges of Ae.aegypti (250 m, 500 m),
conĄrmed the robustness of the results outlined in Table 4 in publication II. Similar
to the results for a 1,000 m Ae.aegypti maximum Ćight range, at a maximum Ćight
range of 500 m, all container types exhibited signiĄcant p-values (p ≤ 0.05) for both
egg and larval counts. The same trend was observed for the assumed maximum Ae.
aegypti Ćight range of 250 m, except for the container types dumpster, storm drain,
and water tank detected from satellite imagery. Notably, the Ąndings concerning water
tanks from satellite imagery at 250 m scale show a slight contrast to our previous Ąnd-
ings in Knoblauch et al. (2023), where a different time frame for entomological data
was utilized; however, signiĄcance was detected at a Ćight range scale of 200 m. This
divergence of these Ąndings underscores the considerable inĆuence of the selected time
period of entomological surveillance on the validation of such results. The coefficients
for small and large trash bins, as well as the dumpster category, remained negative also
at lower estimated maximum Ae.aegypti Ćight ranges. Intriguingly, the coefficient for
potted plants shifted from positive to negative when simulating a maximum Ćight range
of 250 m for Ae.aegypti. Overall, there was an evident upward trend in signiĄcance
(indicated by a downward trend in p-values) across all container classes, with larger
buffer sizes, representing simulations of larger Ćight ranges, showing higher signiĄcance
levels. Essentially, larger buffer areas augment the probability of encountering contain-
ers, consequently yielding more dependable statistical outcomes in our methodology for
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modeling ovitrap count data with digital proxies. For a more nuanced understanding
of the relationship between assumed maximum Ae.aegypti Ćight range and signiĄcance
values, models implementing soft constraints could be considered, such as Bayesian
models.

The collective Ąndings presented here offer a comprehensive overview and exten-
sion of prior research about urban mosquito mapping (Haddawy et al., 2019; Su Yin
et al., 2021). For the Ąrst time the results underscore the practical efficacy of integrat-
ing satellite and street view imagery for identifying mosquito breeding sites in urban
areas, emphasizing the distinctive advantages of each method. A further alternative
data source for mapping mosquito breeding containers in urban areas could be drone
imagery, which offers both continuous spatial coverage and images in high resolution for
small breeding container detection (Passos et al., 2022; Passos et al., 2023). However,
it is essential to note that generating drone imagery incurs substantial costs and labor,
thereby limiting the applicability in diverse global urban settings. A common limita-
tion across all three data sources is their inability to detect breeding containers located
inside buildings. Consequently, the digital strategies outlined in this study cannot fully
replace on-site entomological surveillance. Instead, our approach aims to complement
manual monitoring efforts by augmenting them with high-resolution digital informa-
tion. Citizen Science offers a promising avenue to address this limitation, fostering
public participation, including crowdsourced mapping, to enhance data collection and
monitoring, particularly of indoor breeding sites. The primary challenge in utilizing
digital data sources for mosquito mapping lies in achieving temporal alignment with
entomological surveillance for modeling purposes.

Another challenge associated with digital data sources, such as satellite and street
view imagery, pertains to the potential obsolescence of information and the insights
derived from it. Street view images, in particular, are infrequently updated (Hou and
Biljecki, 2022). It is also crucial to consider the transient nature and shifting locations of
identiĄed containers, especially for plastic bags, potted plants, non-mounted car tires,
large trash bins, and dumpsters, which may have introduced a potential bias to the
measured signiĄcance values of these container classes in our results. Conversely, water
tanks, small city trash bins attached to streetlights, and storm drains are presumed
to have relatively stable locations over time, leading to more reliable results. Further-
more, the calculated container densities in this study may be inĆuenced by citywide
solid waste collections or vector control campaigns, wherein breeding containers may
have been removed before images were captured. In future studies, investigating the
relationship between image timestamps and such interventions, as well as exploring
alternative data sources (cf. Table 3 in publication II), could be beneĄcial. Crowd-
sourced platforms such as Mapillary (Mapillary, 2023b) and KartaView (KartaView,
2023) may particularly offer more continuous image updates (Biljecki et al., 2023).

In summary, these results demonstrated the enhanced efficiency in managing urban
diseases such as dengue through the application of digital techniques. The increas-
ing availability of spatial big data, such as satellite and street view imagery, presents
a considerable opportunity for obtaining high-resolution indicators for mapping ur-
ban mosquito suitability beyond entomological sample points and allows interpolations
without violating biological assumptions about limited mosquito Ćight ranges in the
future. The proposed approach can be combined with further urban-speciĄc mosquito
proxies for enabling more targeted vector control. A task that is challenging with en-
tomological surveillance alone. The proposed method can thus not only reduce surveil-
lance costs but also facilitates the potential interruption of infection chains at earlier
stages of an outbreak than with conventional methods.
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RQ3: What potential predictive power, in terms of explained deviance,
can be achieved by harnessing GBD for estimating the environmental
suitability for Ae.aegypti, as monitored through ovitrap egg and larval
counts?

The results presented in Table 1 in publication III underscore the degree to which
hypothesis-driven urban indicators for Ae.aegypti suitability can capture entomological
surveillance data on immature abundance collected via ovitraps in the municipality of
Rio de Janeiro for the year 2019, given the constraints of a limited Aedes Ćight range.
The CohenŠs explained deviance for NB-GLMs, using the seasonal mean eggs per trap
(S-MET) rate as a response variable, reached up to 0.7253 and varied only marginally
(+/- 0.003) for different simulated Ćight range buffers. Increasing the Ćight range buffer
from 50 m to 1 000 m exhibited similar patterns for models using the larval counts as
a response variable. In this case, the predictive performance of the collected urban
indicators was slightly higher, reaching a CohenŠs pseudo-R2 of 0.7473 at a Ćight range
of 200 m. This means that 74.73% of the deviance in the response is explained by
hypothesis-driven urban indicators for immature Ae.aegypti suitability derived from
openly available geospatial data. The deviance function of the NB-GLM captured the
increasing variance with the mean that is typical for count data. Upon evaluating
models with respect to both designated response variables, the best performance was
observed in association with a Ćight range buffer characterized by a diameter of 200 m.

The results demonstrate the potential of hypothesis-driven urban indicators for pre-
dicting immature Ae.aegypti abundance at ovitrap locations, though several method-
ological considerations and limitations must be acknowledged. The use of digital indi-
cators presents challenges related to (i) data availability, (ii) accuracy, and (iii) inter-
pretation. (i) Data availability is a concern because the employed data sources are not
universally accessible, limiting the generalizability of the framework to regions where
similar data cannot be obtained. (ii) Accuracy is affected by the methods used to
derive these indicators, which involve certain assumptions during processing. Addi-
tionally, not all data were available at a uniform spatial resolution, particularly one
that aligns with the scale of Aedes habitats, potentially introducing inaccuracies. (iii)
Interpretation of the results was complicated by high feature collinearity within the
dataset, which necessitated the use of PCA. Although PCA effectively addressed this
issue, it introduced a layer of abstraction that made it challenging to directly interpret
the inĆuence of individual indicators.

The selection of urban suitability indicators for immature Ae.aegypti in this study
was hypothesis-driven. An alternative choice of indicators could have yielded different
results. However, unlike much of the existing literature, the focus of this work was not
on analyzing the importance of individual features, which can vary signiĄcantly across
space and time and potentially offer limited practical utility, but rather on evaluat-
ing the potential of leveraging GBD to guide local interventions against Aedes-borne
arboviral infections. Another key point in discussing our results is that our approach
is inherently constrained by biases in the entomological data collection process and
the inĆuence of non-measurable micro-scale factors that affect the entomological count
data used for validation. Consequently, the sensitivity of our results requires further
investigation, particularly regarding different indicator selections, the inclusion of ento-
mological surveillance data from multiple years, and the application of the framework
to various case study regions. Such investigations could enhance the robustness of our
Ąndings. Follow-up research is planned to extend this framework to derive suitability
indicators for the secondary vector of dengue, Ae.albopictus, which has been present
in Brazil for nearly 30 years and is capable of transmitting YFV, DENV, ZIKV, and
CHIKV. Future studies could also explore the feature importance of the proposed in-
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dicators across various mosquito species, further enriching our understanding of urban
mosquito suitability and its implications for vector control strategies.

RQ4: To what potential degree can ovitrap count interpolations, re-
Ąned by environmental suitability indicators, align with infestation as-
say indices?

Figure 3 in publication III displays, as a highlight of this work, seasonal suitabil-
ity maps for immature Ae.aegypti covering the municipality of Rio de Janeiro. The
seasonal immature Ae.aegypti suitability maps accompany the spatiotemporal trend of
entomological Ąeld measurements presented in Figure C. 1 in publication III. While
the spatial variance of predicted immature Ae.aegypti suitability diverges signiĄcantly
due to the small-scale heterogeneity of the urban landscape in the municipality of Rio
de Janeiro, temporal effects are minimal owing to the year-long (sub)tropical climate
conditions in southeast Brazil.

Figure 4 in publication III provides a more detailed insight into the results by
illustrating how our best spatiotemporal model for Ae.aegypti larvae suitability (cf.
Table 1 in publication III) performs in interpolating entomological Ąeld measurements
from ovitrap locations. SpeciĄcally, it focuses on the exemplary regions of Jacarepaguá
(RRJ) and Galeão (GIG) airports, chosen for their distinct spatial heterogeneity in the
urban landscape, which enables a closer examination of the results at a Ąner spatial
scale. While ovitrap larval counts and interpolated immature Ae.aegypti suitability
remained predominantly low around both airport runways and buildings, abundance
values were higher in nearby residential regions when examining measurements from
the summer season of January to March 2019. The spatial heterogeneity observed in
immature Ae.aegypti suitability at a small scale, as depicted in the map, highlights
the impracticality of relying solely on the current state-of-the-art approach of coarse
entomological surveillance at ovitrap sample locations or within large LIRAa strata
(cf. Figure C. 1 in publication III) for targeted vector control interventions (Flores and
OŠNeill, 2018).

Figure 5 in publication III depicts the alignment between the generated suitabil-
ity maps and spatiotemporal measurements obtained from entomological surveillance
(ovitrap; LIRAa). Using locally estimated scatterplot smoothing (LOESS) analysis, we
observed that the predicted suitability values did not consistently align with seasonal
indices derived from LIRAa, regardless of the season (cf. Table 2 in publication III).
Correlation analysis between predicted suitability and ovitrap Ąeld counts, averaged
for each LIRAa zone over all seasons, reveals correlation coefficients of up to 0.76 for
Ae.aegypti larval counts. However, the correlation between suitability predictions and
LIRAa indices remains low, not exceeding a correlation coefficient of 0.08, as calculated
between larva suitability and the LIRAa house index for the year 2019.

The substantial spatial disparity observed between ovitrap-based suitability predic-
tions and LIRAa entomological indices is likely attributed to variations in collection
methodologies. The BI and HI indices, which serve as block-level indicators derived
from a manual sampling process, contrast with ovitrap counts obtained from Ąxed mea-
surement stations purposely designed as breeding sites. These stations, characterized
by water retention and a dark color to attract mosquitoes, differ signiĄcantly from
manual sampling methods. Whereas LIRAa indices depend on the active search for
breeding sites by health agents, the ovitrap is ŚsoughtŠ by the mosquito, making ovitrap
counts a more sensitive indicator. Furthermore, the LIRAa indices typically register
low values, given the temporary nature of positive recipients and their limited persis-
tence over time. Consequently, a comprehensive and representative sample necessitates
the inclusion of numerous properties, considering that the majority may lack positive
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recipients. The concentrated distribution of immature counts within LIRAa zones may
have also skewed the comparative results. However, in operational terms, ovitraps
could never replace LIRAa, as it provides additional indices like the Şcontainer type
indexŤ, monitoring infestation levels by container types not considered in this study.

In addition to the structural components mentioned, the reliability of LIRA indices
relies on human components such as the dedication and expertise of Ąeld workers,
encompassing their comprehension of vector biology and index calculation methods
(Valle and Aguiar, 2023b). In a previous study, Ribeiro et al. documented a high
level of coincidence between HI and BI derived from LIRAa in the municipality of Rio
de Janeiro (Ribeiro et al., 2021). However, from a biological perspective, the BI is
expected to be greater than the house index because the female Aedes spreads the eggs
in close locations. Our Ąndings on the misalignment with ovitrap counts corroborate
this assessment of the fragility of the indicators generated by LIRAa.

Another factor contributing to spatial divergence is that ovitrap-based surveillance
overlooks indoor breeding sites. Additionally, ovitrap surveillance concentrates on egg
and larval counts, whereas LIRAa encompasses infestation by Ae.aegypti pupae, which
exhibit distinct lifespans and lower mortality rates. Comparable Ąndings have been
reported by Nascimento et al. (2020), who additionally observed that ovitraps provide
a more rapid information due to heightened sensitivity compared to LIRAa in detecting
Ae.aegypti. Getis et al. (2003) indicated spatial divergence between immature and adult
Ae.aegypti populations. As the life cycle of immature Ae.aegypti, from emergence
as 1st instar (L1) larvae to adulthood, is estimated to be around 8-10 days, varying
with humidity and temperature conditions (Center for Disease Control and Prevention,
2024; Hossain et al., 2022), comparing entomological data from different surveillance
techniques on a seasonal level may be too coarse (Cromwell et al., 2017; Morrison et al.,
2004).

In addition to the previously discussed arguments, the presented Bayesian modeling
results are highly sensitive to the choice of priors, especially in constructing the Matérn
covariance Ąeld. The most critical assumptions in our case study were made for the
Penalized Complexity (PC) priors for the parametersŠ range and marginal standard
deviation of the Matérn Ąeld, modeling, among other factors, the extent of mosquito
movement in space in our case study. Besides that, passive dispersal of mosquito eggs
and adults, driven by transport and trade (Bennett et al., 2019; Díaz-Nieto et al.,
2016; Eritja et al., 2017; Guagliardo et al., 2015) was completely neglected in this
dissertation. Subsequent investigations may delve into methodologies for establishing
these priors through more entomological surveillance and bio-ecological Ąeld studies.
This would help eliminate potential bias in immature Ae.aegypti suitability maps and
could also enable Ąne-tuning of the proposed framework for other mosquito species.
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3.3.2 Daytime Aedes-human Interactions (RO II)

Key Findings (Research Objective II)

Integrating environmental suitability estimates for Aedes (cf. M1-M3) with hu-
man movement patterns (cf. M4) can enhance the precision of spatial predic-
tions for dengue occurrence (cf. M5-M6). This Ąnding was validated in a case
study of the municipality of Rio de Janeiro, where a spatial model for predicting
dengue occurrence (2015-2022) that incorporated a feature-engineered variable to
capture hourly variations in Aedes-human interactions outperformed a baseline
model that did not account for daytime variance in hazard exposure, resulting in
a 13.5% improvement in predictive accuracy. These results highlight the need to
incorporate Aedes-human interaction hotspots into local intervention strategies.
The analysis revealed signiĄcant discrepancies between mosquito abundance, in-
teraction points, and reported disease cases for the municipality of Rio de Janeiro.
Therefore, a novel guidance map for local interventions was proposed, combin-
ing mosquito distribution, dengue occurrence, and human movement patterns,
identifying potential transmission hotspots that may be underestimated by en-
tomological surveillance or occurrence data alone (cf. Figure 6 in publication
V).
While mobile phone data signiĄcantly improved predictive accuracy, potential bi-
ases may have been introduced by excluding individuals without mobile phones
or those using alternative service providers. Another limitation is related to the
spatial resolution of the analysis, as mobile phone records could only be georefer-
enced by antenna tessellation, which may have affected spatial precision. Future
studies could address this by validating the Ąndings using higher-resolution mo-
bility data, such as GPS trajectories. Additional preprocessing challenges, such
as accounting for offline movements and antenna congestion, further complicated
the accurate extraction of human movement patterns. While upper and lower
boundaries for inter-event times were implemented to mitigate data bias, future
research could explore the impact of these parameter choices on the retrieval of
human movements from mobile phone data. Incorporating cross-boundary hu-
man movements to out-of-city regions, which were not included in this disserta-
tion, could additionally contribute to reĄning exposure estimates and enhancing
overall predictive accuracy (cf. publication IV).
Given the restricted access to mobile phone data, this dissertation also evaluated
the use of geotagged tweets as a more openly available data source for modeling
human movement patterns. The corresponding Ąndings revealed the need for
caution when using Twitter/X data for short-term urban mobility modeling, as
it is vulnerable to policy changes and Ćuctuations in the availability of publicly
accessible geotagged tweets. However, the 27-month validation study demon-
strated that combining multiple mobility metrics, analyzing both dynamic and
static mobility changes, and employing robust preprocessing techniques - such as
rolling window downsampling - can improve the inference capabilities of Twit-
ter/X data. Nevertheless, despite the application of these advanced methods,
Twitter/X data may not always perform as well as mobile phone records in cap-
turing human movement patterns, as validated during the COVID-19 pandemic
using the stringency index, which measures the strictness of government-imposed
mobility restrictions (cf. publication IV).
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Future research could build on this validation study by exploring the potential
of additional openly available data sources for retrieving human movement pat-
terns. These may include data from public transit systems, ride-sharing apps,
delivery services, household surveys, wearables, smart city sensors, and volun-
teered geographic information from platforms like Strava and Waze. Such data
sources may offer valuable alternatives to mobile phone data and could provide
critical insights into movement dynamics, essential for accurately modeling the
spread of infectious diseases.
Another key limitation of the results lies in the reliance on two relatively basic,
temporally static statistical models for Aedes-human interactions: one assuming
constant human exposure to mosquito bites throughout the day, and the other
accounting for diurnal Ćuctuations. While these models offer valuable insights
for comparing theoretical frameworks, they fall short of fully capturing the com-
plexity of transmission dynamics. Future research could address this limitation
by developing spatial process-based models that simulate transmission dynamics
(Kache et al., 2022b; Wu et al., 2023). Though computationally demanding, such
models would allow for the integration of mosquito behavior, ecological factors,
and feedback mechanisms, including immunity dynamics and transmission cy-
cles, to provide a more comprehensive understanding. In addition, incorporating
the daytime variation in human host density across urban areas could enhance
the modelsŠ capacity to reĆect changes in local vectorial capacity, as Ćuctuations
in mosquito biting behavior and mosquito-to-host ratios could signiĄcantly inĆu-
ence transmission risk. This approach would offer more reĄned insights into the
efficacy of prevention and control strategies, presumably improving disease man-
agement in urban environments to a greater extent, as supported by the Ąndings
presented here. Besides that, future research could prioritize the development
of spatiotemporal models that directly integrate high-resolution environmental
suitability data and mobile phone data, rather than relying on spatiotemporal
feature engineering. Adapting the proposed models to different mosquito species
or regions will require accounting for variations in biting behavior inĆuenced by
factors such as day length. Seasonal shifts in sunrise and sunset times could
further reĄne risk predictions. Moreover, incorporating pathogen penetration
rates in both host and vector populations may enhance the predictive accuracy
of dengue occurrence models. However, widespread testing is often constrained
by high costs, logistical complexities, and limited availability of advanced labo-
ratory infrastructure.
Overall, these Ąndings underscore the importance of accounting for both vector
ecology and human behavior in disease modeling. A major challenge persists due
to the lack of data at the resolution required to accurately capture real-world
phenomena, often limiting biologically sound interpretations of transmission dy-
namics derived from eco-epidemiological models.
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RQ5: To what potential degree can X data be leveraged to model
long-term spatiotemporal mobility metrics derived from mobile phone
data, and to what extent can rolling window downsampling enhance
this modeling?

Figure 7 in publication IV illustrates the results related to this research question.
Examining the initial time period of analysis spanning from April 2020 to September
2020, all computed mobility metrics derived from Twitter exhibited discernible patterns
that aligned with our expectations based on the implemented lockdown measures in
the city of Rio de Janeiro. Notably, while the long-term trend of the graph modularity
metrics and the percentage of activity in residential areas decreased, the long-term
trends of average movement distance, overall movement volume, and the radius of
gyration increased.

During the subsequent time period from September 2020 to May 2021, all mobility
metrics derived from Twitter, except the percentage of activity in residential areas,
displayed unexpected changes. They all showed a rapid shift starting in February 2021
dis-aligning our assumptions on more or less constant mobility behavior in that time
period. Coinciding with this period, there was a sharp decline in the number of geolo-
cated tweets collected via the public Twitter API (cf. Figure 2 in publication IV). We
hypothesize that this decline was attributed to changes in the terms of use implemented
by Twitter. However, official evidence of regulatory changes during that speciĄc time
period has not been found. Additional experiments using a constant amount of tweets
per day, derived by the 98th percentile of tweet volume in the corresponding rolling
window subset, showed a similar shift in mobility metrics (cf. Figure A. 3 in publica-
tion IV). This highlights the robustness of calculated mobility metrics in the face of
daily Ćuctuations in the number of tweets.

For the analysis period subsequent to May 2021, the calculated mobility metrics
once again aligned with our expectations and conĄrmed our knowledge of fewer mo-
bility restrictions implemented in the city of Rio de Janeiro following the COVID-19
pandemic.

The results also demonstrate that, while a moving average can effectively eliminate
weekly Ćuctuations and data noise, it does not suffice for generating accurate long-term
trends for all considered mobility metrics in this analysis. However, when combined
with the speciĄcally designed rolling window downsampling (RWDS) approach, more
precise long-term mobility trends can be derived. This effect becomes particularly
evident when examining the calculated graph modularity metrics in our case study, as
the modularity values between the one-day window size signals and the seven- or 27-day
rolling window size signals exhibit larger differences. In contrast, for other calculated
mobility metrics, the impact of RWDS appears to have relatively low signiĄcance and
yields effects comparable to those obtained by calculating a one-day window trend
signal. Supplementary materials provide corresponding results of daily mobility metrics
calculated without applying a moving average (cf. Figure A. 3 in publication IV).
The inĆuence of different rolling window sizes is more extensively investigated in the
subsequent section in conjunction with long-term trends derived from mobile phone
data.

Long-term validations of urban mobility metrics derived from Twitter are infre-
quent, despite the well-established usage of Twitter applications in various research
domains worldwide. However, the outcomes of our comprehensive long-term validation
study emphasize the need for caution when utilizing Twitter data for urban studies
within restricted time frames. Although urban mobility metrics derived from Twitter
may exhibit high correlation values with mobility metrics computed from mobile phone
data during short time periods, long-term validation with mobile phone data reveals
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Ćuctuating deviations (cf. Figure 9 in publication IV). This phenomenon can poten-
tially give rise to erroneous assumptions when relying solely on Twitter as a reliable
source for modeling human movement patterns.

The results presented in section II in publication IV demonstrate that the RWDS
method is a valuable tool for addressing the data scarcity challenge associated with
urban Twitter data and deriving more precise long-term mobility trends. However,
additional Ąndings highlight the signiĄcant dependence of these Ąndings on the chosen
rolling window size (cf. Figure 8 in publication IV). In our experiments we observed
the highest average correlation value between mobility metrics from Twitter and mobile
data when using an 11-day rolling window size. Increasing the window size from one
day to three days had the most pronounced effect on the calculated Pearson correlation
values. For window sizes exceeding 11 days, the correlation values remained consistently
high but showed a slight Ćattening. This can be attributed to the loss of high-resolution
information resulting from the application of larger window sizes beyond 11 days. These
Ąndings align with our expectations regarding the functionality of the RWDS method
described in section II in publication IV. The mean movement distance index yielded the
highest average Pearson correlation coefficient among all considered mobility metrics,
achieving its peak of 0.48 at the 11-day rolling window downsampling size (cf. Table
A. 1 in publication IV).

During the dynamic analysis of the long-term trend of calculated mobility metrics
using moving window synchrony, it becomes evident that the PearsonŠs correlation
coefficients exhibit substantial variations over time for all the calculated mobility signals
(cf. Figure 9 in publication IV). We observed the occurrence of short time periods
characterized by both extremely high and extremely low correlation values. These
Ąndings indicate that the informative capacity of mobility metrics derived from Twitter
exhibits temporal variability and is strongly contingent upon the chosen time frame
for analysis. During the initial phase of the study period, when the most stringent
mobility restrictions were implemented (cf. Figure 6 in publication IV), we observed
high positive correlation values across all metrics simultaneously. Conversely, we did not
observe similar prolonged time periods characterized by a weak alignment, as indicated
by low PearsonŠs correlation coefficients around zero. Notably, higher moving window
correlation values exhibited greater statistical signiĄcance than lower values.

To eliminate the possibility of spurious correlations, all time series were examined
for unit roots using the appropriate version of the Dickey-Fuller test before calculating
Pearson correlation coefficients. The test results indicated that seven out of ten time
series were stationary, allowing for the calculation of Pearson correlation coefficients.
However, the time series for ŞNumber of movementsŤ, ŞGraph modularityŤ, and Ş%
activity in residential areasŤ measured based on Twitter data, remained non-stationary.
Following the ŞStandard sequence of steps for dealing with non-stationary time seriesŤ
as outlined by Studenmund, 2017, we tested the pairs of Twitter data and mobile phone
time series for the metrics ŞNumber of movementsŤ, ŞGraph modularityŤ, Ş% activity
in residential areasŤ for cointegration using the Engle-Granger test. The Engle-Granger
test results indicated that the time series for the metrics ŞNumber of movementsŤ and
Ş% activity in residential areasŤ were cointegrated at a conĄdence level of 95%, while
the time series for the metric ŞGraph modularityŤ were cointegrated at a conĄdence
level of 90%. According to Studenmund, 2017, if the variables have unit roots and are
also cointegrated, this allows for the calculation of the Pearson correlation coefficient
using the original units, thereby ruling out spurious correlations.

Additional Ąndings from a static change detection analysis reinforce the results of
our long-term trend analysis (cf. Figure 10 in publication IV). While it is evident that
Twitter data does not always accurately capture long-term mobility trends, it does
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have the potential to detect signiĄcant (cf. Table A. 2 in publication IV) inner-urban
mobility changes measured by mobile phone data and indicate the correct direction of
the shift. In our case study, this holds true for all the measured variables except for the
percentage of activity in residential areas during the time period of the second onset. In
summary, we conclude that both the Twitter and mobile phone datasets synchronously
detected the shift in inner-urban human movement behavior between the years 2020,
2021, and 2022, attributable to COVID-19 lockdown policies. Static mobility changes
between weekdays and weekends were not detected to be signiĄcant (cf. Table A. 2 in
publication IV) when testing both datasets, leading to the conclusion that Twitter can
be a useful substitute for mobile phone records when trying to derive the direction of
static inner-urban mobility shifts.

We performed a sensitivity analysis of various window sizes for RWDS. Thereby, we
employed a combination of different modeling techniques. This included a dynamic mo-
bility trend analysis and a static mobility change detection. In addition, we considered
a set of Ąve distinct mobility metrics. However, our Ąndings show certain limitations,
primarily stemming from the choice of a 28-day moving average for trend calculation, a
60-day window synchrony time frame for analyzing dynamic alignment of trend signals,
and the temporal selection of on- and offsets for static change detection analysis. Fur-
thermore, our results may be subject to potential biases due to the uneven distribution
of Twitter user groups within the overall population (Li et al., 2013; Malik et al., 2015).
We did not account for the spatial distribution of inferential uncertainty in our analy-
sis either, although districts with fewer geocoded tweets can be expected to exhibit a
higher degree of uncertainty (Huang and Carley, 2019; Huang and Wong, 2015). This
particularly affects the graph modularity metrics calculated based on daily OD matri-
ces. The spatial distortion in the applied datasets is supported by the low correlation of
non-zero OD matrix entries aggregated over the entire analysis period (cf. Figure 11 in
publication IV). Additional results from spatial data exploration, which highlight these
issues, are provided in the supplementary GitHub repository (Knoblauch and Gross,
2023).

To address these limitations, several approaches might be applicable: Recent stud-
ies on semantic analysis (Hu et al., 2023; Serere et al., 2023) demonstrate promising
results in deriving geolocalized information from tweet texts of non-geolocated tweets,
which could enhance the Twitter dataset with supplemental geoinformation. Another
approach involves utilizing the locations provided in user proĄles as a further source
of geoinformation. However, it should be noted that these techniques have limited
applicability in the context of inner-urban mobility studies (Nguyen et al., 2022).

Another aspect of discussion in our long-term validation study pertains to the dis-
parate spatial and temporal resolutions of the employed datasets. Additionally, the raw
Twitter data utilized represents less than one percent of the total mobile phone records
used in this validation study, leading to a substantial imbalance with potential implica-
tions on our validation outcomes (Zhao et al., 2021). Furthermore, certain assumptions
were made during the preprocessing stage to facilitate the generation of our validation
signal. These assumptions include the selection of lower and upper bounds for IET
Ąltering and the assumption of a uniform distribution of cellular activity in space when
converting antenna-based OD matrices into neighborhood-based mobility Ćows. Addi-
tionally, we assumed that the sequential activities of individual users directly represent
movements, disregarding the possibility of detours which may introduce a bias in our
results. However, we believe that the overall impact of these constraints is relatively
minor. We anticipate that conducting supplementary sensitivity analyses on the model
parameters would not alter the main Ąndings of this novel long-term validation study,
primarily because all parameters and steps were carefully chosen and justiĄed.
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Overall, our Ąndings indicate that rolling window downsampling is an effective
strategy for mitigating the limited availability of geolocated tweets in urban areas (cf.
Figure 7 in paper IV). Our results indicate that Twitter has the potential to capture
short-term changes in mobility at an inner-urban scale (cf. Figure 10 in publication
IV), although long-term disparities were observed when compared to mobility metrics
derived from mobile phone data in our case study (cf. Figure 9 in publication IV).
To enhance the reliability of short-term inference from Twitter data on inner-urban
human movement patterns, we propose a combination of multiple analysis techniques,
including dynamic and static mobility change detection, simultaneous consideration of
various human movement metrics, and sensitivity analysis for modeling parameters.
Implementing these approaches can signiĄcantly mitigate the risk of false inference
in diverse application domains where Twitter is commonly utilized as an open-source
proxy for deriving human movement patterns.

Considering the increasingly stringent open-access limitations to Twitter data, these
results of the long-term validation study establishes a foundation for assessing the
validity of also upcoming social media platforms. Voluntarily shared geosocial media
data can be a powerful and promising tool, especially in locations where other mobility
data sources are not openly-accessible or to costly to generate. Since the availability of
data sources signiĄcantly impacts applications, future research should encompass not
only data performance metrics for delineating mobility patterns but also sustainability
in terms of long-lasting and openly accessible APIs. Another research option could
involve the fusion of data from multiple sources such as Waze, GDELT, Facebook,
Instagram, Reddit, Telegram, YouTube, or Weibo. The methods developed could then
be transferred to other geosocial media platforms. Besides that developed methods and
generated insights could always be applied with payment plans for API access offered
by Twitter.

By conducting this study, our aim was not only to support researchers in effectively
utilizing social media data for modeling human movement patterns but also to gain
valuable insights into human mobility within the city of Rio de Janeiro, Brazil. These
Ąndings might open up new avenues for future research on unexplained mobility-driven
phenomena in urban science, such as the location of informal economy (López-García,
2023), accessibility impacts of transport policy (Pereira, 2019), and inner-urban trans-
mission processes of MBDs (Ramadona et al., 2019). Overall, the results for RQ5 led
us to use to utilize mobile phone data for further analysis, even though it is not always
openly available and does not offer a truly scalable approach.

RQ6: To what potential extent can a model incorporating daytime
Aedes-human interactions improve inference on spatial dengue occur-
rence, compared to a model that is identical except for neglecting hu-
man movement?

The results in Table 1 in publication V demonstrate how considering mosquito biting
hours and human movement corridors can enhance the accuracy of spatial estimates
for urban DENV occurrence. The proposed feature engineering method outperforms
the baseline model, which does not consider the daylight activity of Aedes mosquitoes,
and demonstrates a 13.5% increase in the explained deviance within the response of the
QP-GLM. Both models yielded positive and signiĄcant estimates for their hazard and
exposure combined covariate of human-mosquito biting risk Bi. The computed global
MoranŠs I value for the residuals was 0.59. Considering the aforementioned results,
it implies that integrating knowledge of Aedes biting behavior with human movement
patterns can also facilitate the inference of probable transmission sites for reported
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dengue cases. If this holds true, increased mosquito control interventions in these
locations would have the potential to combat Aedes-borne diseases more effectively.

Figure 6 in publication V presents, as a highlight of this work, the practical im-
plications of these research Ąndings for the municipality of Rio de Janeiro. A novel
mapping approach for vector control intervention was developed, incorporating (i) the
spatial distribution of mosquitoes, as indicated by temporally aggregated entomological
surveillance data, (ii) the spatial dispersal of dengue occurrence, and (iii) the most likely
transmission locations for reported dengue cases, taking into account daytime Aedes
biting behavior. This target effectiveness map marks regions that were potentially
underestimated for vector control planning using entomological datasets only, while
at the same time emphasizing the enduring importance of areas with high mosquito
abundance.

The results showed that the inferred degree of spatial variation in urban DENV
occurrence was sensitive to assumptions about daytime mosquito activity. Spatial dis-
crepancy existed between the dominant location of mosquitoes, the spatial patterns
of human-mosquito interaction points, and disease occurrence collected by residency.
Taking these Ąndings into account, one can conclude that methodologies that presume
consistent human exposure to mosquito bites throughout the day potentially yield ex-
aggerated and biologically inadequate interpretations regarding the patterns of disease
transmission. Additional knowledge about pathogen penetration rates in host and
vector populations would potentially enhance prediction capabilities for urban DENV
occurrence. However, the practical challenges associated with establishing such virus
penetration measurements, e.g. within entomological surveillance systems, pose signif-
icant obstacles, especially due to the need for appropriate laboratory infrastructure.
The utilization of mobile phone data as as a proxy for human movement in the present
study could have resulted in additional inherent constraints. Despite the high penetra-
tion rate of the mobile phone provider, mobility estimates may have been biased due to
the exclusion of individuals without mobile phones or those using different services. To
counteract this factor, an improvement strategy could involve integrating social media
streams. Higher-order descriptions of movement, such as social network structure, have
been shown to affect transmission dynamics in urban environments (Reiner et al., 2014;
Stoddard et al., 2013; Vazquez-Prokopec et al., 2013). The consideration of the inter-
play among disease symptoms, infectiousness, and the mobility of individuals infected
with DENV seems additionally promising in this context (Perkins et al., 2015; Perkins
et al., 2016; Schaber et al., 2019). This complicates the assumption that the move-
ment patterns of apparently healthy individuals can adequately represent the mobility
patterns of those involved in transmission (Wesolowski et al., 2016).

Follow-up activities could connect by examining cross-boundary human movements
to out-of-city regions and potentially model on individual human scale instead of ag-
gregating risk value into areal units. The Ąxed scenario employed to model the daytime
risk of human-mosquito biting could also be extended to consider seasonal Ćuctuations
in sunset and sunrise times. We showed that approximating residentŠs exposure to
different mosquito populations throughout the city, leveraging human movement Ćows
derived from mobile phone data, results in higher predictive power than focal mosquito
abundance alone. This highlights the importance of considering mechanisms driving
human-mosquito interactions for understanding of mosquito-borne disease occurrence
at urban scale. We employed a relatively basic and temporally static statistical model.
Future studies could leverage similar data for building spatial process-based models of
intra-city transmission dynamics (Kache et al., 2022b; Wu et al., 2023). Such models,
although computationally and conceptually challenging, could effectively incorporate
mosquito behavior as well as ecology and capture feedback processes, such as immunity
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dynamics and transmission cycles, among others. Furthermore, daytime variation of
human host density across the city could be incorporated, potentially impacting lo-
cal vectorial capacity by modulating mosquito biting behavior and mosquito-to-host
ratio. Implementing this modeling approach would yield additional insights on the ef-
Ącacy of prevention and control strategies, thereby enhancing our understanding and
management of MBDs in urban environments.

RQ7: What potential predictive power, in terms of explained deviance,
can be achieved for inference on spatial dengue occurrence by consid-
ering daytime Aedes-human interactions, vulnerability indicators, and
spatial autocorrelation?

We hypothesized that incorporating vulnerability indicators and spatial eigenvec-
tors would further enhance the proposed QP-GLM, which considers Aedes-human in-
teractions (cf. Equation 4) for predicting the spatial occurrence of dengue in the mu-
nicipality of Rio de Janeiro. The CohenŠs pseudo-R2 of the more extensive QP-GLM
considering hourly human-mosquito biting risk was determined to be 0.77, indicating
that the extended model was capable of explaining up to 77 percent of the deviance
in dengue occurrence on the sub-neighborhood level for the municipality of Rio de
Janeiro in the year 2022. The computed global MoranŠs I value for the residuals was
0.07, indicating low spatial autocorrelation. A QP-GLM with human-mosquito biting
risk and vulnerability indicators but without spatial eigenvectors was not considered,
as it yielded a higher overdispersion value of 26.85 and a higher global MoranŠs I of 0.2,
despite having a CohenŠs pseudo-R2 of 0.83. This underscores the importance of vul-
nerability indicators and spatial eigenvector mapping in improving spatial predictions
of sub-neighborhood dengue occurrences, which are georeferenced based on residency.
Additional result on the applied vulnerability indicators and spatial eigenvectors are
listed in Table B. 1 and Figure B. 2 in publication V.

Among the applied vulnerability indicators, the socio-economic variable of average
income emerged as the most inĆuential predictor, demonstrating a negative association
(Table B. 1 in publication V). This suggests that higher average income levels in the
municipality of Rio de Janeiro are associated with a reduced risk of dengue infections.
Conversely, the indicators of the hypothesized vulnerability categories accessibility and
centrality did not exhibit signiĄcant predictive power, contradicting our initial assump-
tions. The same applied to the density of older individuals. However, the density of
individuals under Ąve years emerged as a signiĄcant predictor in our model, exhibiting
a negative estimate, which suggests that a higher concentration of children was linked
to fewer dengue cases. This could potentially be explained by the fact that Ąrst dengue
infection per individual have a higher probability of being clinically mild (Guzman et
al., 2016). Additionally, behavioral factors could play a role, as households with young
children may be more vigilant in implementing mosquito control measures, thereby
reducing dengue transmission.

In the assessment of the vulnerability class of immunization, our analysis indi-
cated that the calculated signiĄcance values for each year of past infections depend
on the magnitude of the outbreak pattern (cf. Figure B. 1 in publication V). The
years with minor outbreaks and less spatial variance in DENV occurrence (2017, 2018,
2020) exhibited either no signiĄcant association or marginally statistically signiĄcant
association, whereas the major outbreak years with larger spatial variance in DENV
occurrence (2016, 2019) showed lower p-values. The most recent year in our analysis,
2021, yielded the highest p-value among the hypothesized immunological vulnerability
indicators, despite the occurrence of lower dengue incidence. Surprisingly, most esti-
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mates of this vulnerability category were positive, contrary to our initial hypothesis
about past infections conferring population immunity. We hypothesized that this is
related to the fact that environmental factors facilitating transmission are overruling
marginal gains in population immunity (under the assumption that cross-immunity
between subsequent serotypes or genotypes is relevant). The complex immunological
interactions between infections with the four dengue serotypes over time are not fur-
ther discussed in this context (Simmons et al., 2012). In brief, past infections with
a heterologous serotype confer short-term cross-immunity, while past infections with
a homotypic serotype confer long-term immunity to the same serotype. The duration
and effect size of the heterologous cross-immunity and potentially enhancement is de-
pendent on the time interval between the infections as well as on the speciĄc sequence
of the serotypes and their genotypic similarity (Guzman et al., 2016; Katzelnick et al.,
2015). These complex immunological interactions between dengue serotypes make it
challenging to utilize spatial distribution patterns of dengue cases from previous years
to model immunity levels. Here we can only show the possible existence of a con-
founding factor not accounted for in the model but inĆuential in driving the spatial
distribution of dengue cases at the sub-neighborhood scale.

It is important to note that the presented results are dependent on the selection
and calculation methods for vulnerability indicators and spatial eigenvectors. Not all
additional variables showed signiĄcance in our model, underscoring the nuanced impact
and selective relevance of certain variables within such broader predictive frameworks.
The signiĄcance of the proposed human-mosquito biting risk indicator did also dimin-
ish in a more extended spatial model. The spatial eigenvectors (cf. Figure B. 2 in
publication V) effectively absorbed a signiĄcant portion of the spatial autocorrelation
present in the residuals of the proposed QP-GLM. They can be instrumental in for-
mulating additional hypotheses regarding potential missing covariates or confounding
factors for integration into future models. Furthermore, they can serve as a tool for
testing spatially varying regression coefficients.
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3.4 Research in Context

3.4.1 Environmental Suitability for Ae.aegypti (ROI)

Evidence Before this Dissertation

Few studies have looked at the urban suitability for immature Ae.aegypti. In
February 2024, we searched articles indexed on PubMed using the syntax Ş(Ur-
ban AND Aedes aegypti AND Suitability)Ť and obtained 20 search results. While
the diverse urban environment and the restricted Ćight capacity of Ae.aegypti
can result in signiĄcant spatial variation in abundance, only three studies have
incorporated this bio-ecological understanding into their models of Ae.aegypti
suitability. None of them generated continuous suitability maps covering a whole
municipality, which is particularly relevant for guiding local vector control. Mod-
eling the suitability of immature Ae.aegypti for large municipalities considering
the limited Ćight range of Aedes remains challenging. Given the scarcity of sig-
niĄcant suitability indicators, particularly at Aedes habitat sizes.

Added Value of This Dissertation

The added value of this dissertation lies in the development of a comprehensive
set of hypothesis-driven urban landscape indicators and geospatial methods to
model the spatiotemporal likelihood of hosting Ae.aegypti populations. Scien-
tiĄc advancements were achieved, particularly in the realm of spatial resolution,
aligning with an Ae.aegypti habitat size of 200 meters. We demonstrated for
the Aedes-endemic municipality of Rio de Janeiro how the proposed suitability
indicators, derived from openly available GBD, can explain the distribution of
Ae.aegypti egg counts measured with ovitraps by up to 73% and the dispersion
of larval counts by up to 75%. By enriching sample-based entomological Ąeld
measurements from ovitraps with the proposed indicators, we were able to create
the Ąrst continuous Ae.aegypti suitability maps covering a whole municipality
on a seasonal basis while considering Ae. aegypti habitat size.

Implications of All The Available Evidence

Mapping the high spatial variability of Ae.aegypti, which can occur under suit-
able weather conditions due to heterogeneous landscape and limited Ae.aegypti
Ćight range, is relevant for advancing vector control. The proposed indicators
have substantial value to: (i) inform and optimize targeted vector control inter-
ventions such as Wolbachia; (ii) allow cost savings in entomological surveillance;
(iii) reduce environmental pollution, including mosquito insecticide resistance;
and most importantly, (iv) provide more efficient overall disease control of Aedes-
borne diseases such as yellow fever, dengue fever, Zika, and chikungunya.
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3.4.2 Daytime Aedes-human Interactions (RO II)

Evidence Before this Dissertation

Few studies have looked at the occurrence of dengue on a city scale, incorporat-
ing human movement patterns. In May 2024, we searched articles indexed on
PubMed using the syntax "(Urban AND Dengue AND Human Mobility)" and
obtained 42 search results. Although mosquito Ćight range is estimated to be
below 1 000 m without the assistance of wind, only 2 studies analyzed the urban
spread of dengue below the neighborhood scale. None of these studies addition-
ally considered the diurnality of Ae. aegypti and Ae. albopictus biting behavior,
nor the corresponding Ćuctuation in human exposure. Modeling dengue occur-
rence at a high spatial resolution while considering the characteristics of Aedes
mosquitoes is challenging due to the scarcity of (i) high-resolution data on urban
mosquito abundance, (ii) daytime human movements, and (iii) sub-neighborhood
knowledge about dengue infections.

Added Value of This Dissertation

To my knowledge, this dissertation is the Ąrst study to analyze the spatial dis-
tribution of urban dengue occurrence at a sub-neighborhood scale, considering
ecological and behavioral vector characteristics, such as diurnal biting behavior,
and corresponding daytime variations in human exposure to mosquito bites. The
Ąndings show that modeling human movement patterns on an hourly basis can
bring signiĄcant beneĄt to the explanation of urban dengue outbreaks in the mu-
nicipality of Rio de Janeiro. With these insights, we were able to showcase the
potential of integrating knowledge about human mobility for the design of vec-
tor control interventions. This dissertation suggests that the spatial allocation
of resources for mosquito control should not only consider mosquito abundance
but also prioritize locations with high connectivity during mosquito bite hours
to areas with a high dengue reporting rate.

Implications of All The Available Evidence

The evidence presented underscores the critical role of high-resolution data in
eco-epidemiological models, which aim to accurately simulate transmission dy-
namics by integrating both vector ecology and human behavior at Ąne spa-
tiotemporal scales. However, implementing such models is challenging due to the
widespread lack of high-resolution data, including crucial information on human
movement patterns, pathogen penetration rates, serotype prevalence, and health
occurrences. While the abstract models presented in this study validate theoret-
ical concepts, fostering an open-sharing culture of anonymized, high-resolution
data relevant to disease transmission would facilitate the development of more
advanced models that more accurately capture the complexities of transmission
dynamics. Building on these efforts, further advancements in the integration
of human and vector dynamics have the potential to signiĄcantly enhance our
understanding of vector-borne diseases and improve the effectiveness of local
intervention strategies for diseases such as dengue.
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3.5 Future Directions Towards Practical Application

Building on the reported research Ąndings and key contributions, this section out-
lines future directions for enhancing the real-world applicability of the proposed hybrid
local intervention guidance for Aedes-borne arboviral infections. It critically exam-
ines key aspects such as scalability, transferability, and replicability of the proposed
concepts, while also identifying remaining research gaps and highlighting emerging
technologies that have the potential to facilitate reliable implementation in the near
future.

Towards scalability

To successfully deploy the proposed hybrid local intervention guidance in real-world
settings, which integrates entomological surveillance with digital monitoring, scalable
workĆows are essential. To promote such workĆows and provide cost-sensitive solu-
tions, this research aimed to (i) develop scalable methods and (ii) utilize openly avail-
able datasets where available. Building on these two foundational objectives, one key
contribution of this work is the Ąne-tuning and publishing of computer vision models
to detect common Aedes breeding containers using openly available satellite and street
view imagery.

The designed semi-supervised water tank detection model, trained on openly avail-
able satellite imagery (cf. publication I), minimizes the need for manual labeling - an
often resource-intensive requirement for training object detection models. By employ-
ing a pseudo-labeling technique, the model generates high-conĄdence predictions at
an intermediate stage of training, which are then incorporated for further Ąne-tuning.
This algorithmic design enhances scalability and improves model performance and gen-
eralization while reducing costs, especially important for regions with limited public
health budgets. Once trained, the modelŠs computational complexity scaled linearly
with increasing data size during prediction, ensuring efficient deployment across large
application areas. However, despite its scalability, the approach was limited to detect-
ing larger Aedes breeding containers, such as water tanks, when using openly available
satellite imagery. To overcome this limitation, our research subsequently focused on
expanding detection capabilities to smaller breeding habitats by leveraging alternative
GBD sources, speciĄcally openly available street view imagery.

While the multi-object detection network applied to street view imagery demon-
strated the capability to detect smaller breeding containers (cf. publication II), it faced
more pronounced limitations in scalability compared to satellite-based methods. These
limitations were primarily due to inconsistencies in data availability, rather than model
performance, which remained comparable to that of satellite imagery-based approaches.
Street view imagery is inherently conĄned to areas accessible by vehicle, introducing
spatial bias as coverage is restricted to road networks where images have been captured.
This bias is particularly evident in regions with heterogeneous road infrastructure and
urban design, such as our case study area, where a marked disparity in street view
imagery availability was observed between favelas - characterized by narrow, non-car-
accessible streets - and other parts of the municipality with wider, car-accessible roads.
Furthermore, areas with higher crime rates, despite being car-accessible, often lacked
coverage in street view imagery, revealing additional spatial biases shaped by socio-
economic factors and safety concerns, rather than solely by urban infrastructure.

While Google Street View (GSV) provided the most extensive and uniform spatial
coverage across the municipality of Rio de Janeiro, along with more frequent temporal
updates compared to crowdsourced platforms like Mapillary and KartaView, the scal-
ability of GSV-based applications may be limited when extending beyond municipal
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boundaries. SpeciĄcally, in rural areas, GSV coverage is often sparse or entirely absent,
posing challenges for broader geographic applications. Similar limitations arise when
scaling these approaches to other Aedes-endemic countries, such as Cuba, Papua New
Guinea, or China, where GSV is banned.

Given these insights on provider-speciĄc local data availability, this thesis suggests
that future research aiming to scale the detection of Aedes breeding containers us-
ing street view imagery should begin with a comprehensive evaluation of all available
street view data sources in the study area. This initial assessment is critical for iden-
tifying data availability and addressing spatiotemporal biases to ensure the reliable
scalability of the proposed methods. Moreover, while crowdsourced platforms may
offer alternatives to proprietary datasets, they present inherent challenges, including
non-standardized image formats and inconsistent 360-degree coverage. These factors
complicate data processing and the integration of multiple street view imagery sources
into a single application.

Airborne imagery, such as orthophotos from drones, could provide an additional
GBD source for detecting Aedes breeding containers, particularly in small-scale ap-
plications. This imagery offers the potential for (i) spatially continuous detection of
breeding containers, including those located on rooftops and in backyards, similar to
satellite imagery, and (ii) the ability to detect smaller container types similar to street
view imagery. As a result, airborne imagery holds the potential to combine the strengths
of both satellite and street view data. However, its scalability is constrained by high
acquisition costs and the need for regulatory permissions, which limit its feasibility for
large-scale applications, especially in resource-constrained settings.

Given these limitations of openly available GBD for detecting common Aedes breed-
ing containers, this study recommends that future research prioritize the use of ultra-
high-resolution satellite imagery - speciĄcally, imagery with a resolution exceeding 0.03
meters per pixel, as utilized in this research (cf. publication I). At the time of this study,
ultra-high-resolution satellite imagery was only available for purchase from providers
such as DigitalGlobe, Planet Labs, or Skybox, making it incompatible with the cost-
sensitive focus on scalability and broad applicability. However, free-to-use access to
such ultra-high-resolution satellite imagery may change in the near future, similar to
scientiĄc opportunities for collaboration with commercial providers, particularly those
promoting initiatives for social good. Although not tested in this study, ultra-high-
resolution satellite imagery could enhance detection capabilities by (i) capturing a
broader range of Aedes breeding containers, and (ii) reducing spatiotemporal biases
that arised during this study from combining coarse satellite imagery with street view
data collected over multiple timestamps. Despite these potential advantages, inherent
challenges of top-down satellite imagery and bottom street view imagery will remain,
such as the inability to detect indoor breeding sites. This remaining limitation un-
derscores the importance of future research focusing on complementary strategies, in-
cluding citizen science initiatives, such as crowdsourced mapping platforms (e.g., the
Mosquito Alert platform (Bartumeus et al., 2018; Capineri et al., 2016; ICREA, 2024;
Jennex et al., 2017; Južnič-Zonta et al., 2022; Pataki et al., 2021)), which can help
identify indoor breeding habitats.

Building on the discussion of scalability and spatial biases in GBD, it is equally
important to address the temporal aspects of data richness, which should not be as-
sumed constant over time. This became evident in the long-term validation study on
the use of X data for tracking urban human movements (cf. publication III), which
revealed that the accuracy in detecting mobility pattern changes Ćuctuated due to
temporal variations in data access, particularly when compared to proprietary mobile
phone records. Short-term validation studies may have overlooked these limitations,
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underscoring the need for comprehensive evaluations of GBD-based applications across
both spatial and temporal dimensions before scaling the proposed methods. While the
increasing availability of openly available GBD (cf. Section 2.1) generally supports the
scalability of the proposed workĆows over time, unforeseen changes in data formats
or sudden restrictions - such as those observed for X data (cf. publication IV) - pose
signiĄcant challenges to temporal scalability. Addressing these issues will be essential
for future research and applications. Potential solutions could include: (i) fostering
collaborations with GBD providers to ensure stable and continuous access to data, (ii)
advancing data fusion techniques to integrate multiple data sources, thereby reduc-
ing reliance on any single dataset to improve the adaptability and robustness of the
proposed workĆows.

In our foundational objectives, scalability was deĄned as the methodŠs capacity to
handle large volumes of geospatial big data (GBD) and to be applied across the munic-
ipality of Rio de Janeiro, covering 1,221 km2. This involved the use of GBD, including
(i) 10 million satellite images (cf. publication I), (ii) approximately 500,000 street view
images (cf. publication II), (iii) around 700,000 tweets (cf. publication IV), and (iv)
1.6 × 1011 mobile phone records (cf. publication IV), alongside many smaller geospa-
tial datasets, which might have varying structures and availability in other case study
regions. Insights from this thesis indicate that the primary limitation to scalability for
both research objectives was not the performance of individual models, but rather the
quality of the GBD, particularly in terms of (i) availability, (ii) resolution, and (iii) con-
sistency in structure. To enhance scalability and enable real-world applications, future
research could focus on developing data standards and quality indicators for each GBD
source, which could be used to correct spatiotemporal biases and create more robust
workĆows. Additionally, increasing the degree of automation in data acquisition, pro-
cessing, and integration would further strengthen the proposed concepts. Until such
workĆows are established, this research remains a proof of concept, harnessing GBD to
demonstrate the potential of geoinformatics applications in the public health sector.

Towards transferability

Transferability refers to a methodŠs ability to maintain its performance when applied
across different contexts. In this study, transferability is deĄned as the applicability
of the developed methods across various ecological contexts, shaped by factors such
as climate, culture, and socio-economic conditions. These factors can inĆuence, for
example, (i) the availability, type, and physical characteristics of mosquito breeding
containers, including variations in size, material, form, and color, or (ii) the availability
and use of mobile phones, contributions to crowdsourced platforms, or social media
data, which may vary across locations.

One example is the water tanks discussed in publication I, which serve as common
breeding sites for Aedes mosquitoes in several Latin American cities where piped water
systems are often unreliable or unavailable. However, in other Aedes-endemic regions,
such water tanks may differ in appearance or be entirely lacking, regardless of the
piped water systems structure. This variation poses challenges to the transferability of
the trained water tank detection models for suitability mapping of Aedes mosquitoes.
Socio-economic factors can also affect ecological contexts. For instance, higher edu-
cation levels may promote more proactive efforts to eliminate common breeding sites,
potentially reducing Aedes habitat availability in certain areas. Such differences were
also observed within the case study region of Rio de Janeiro (cf. publication I). Addi-
tionally, cultural practices contribute to variations in ecological contexts, such as using
plastic bottles as Ąshing buoys, repurposing discarded tires as planters, or decorating
gardens with colorful glass bottles, all of which can create unique, localized conditions.
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To reliably transfer the proposed methods across such socio-economic and cultural gra-
dients, thorough evaluation of these concepts is essential before drawing inferences.
In the long term, ecological differences and speciation barriers may also drive evolu-
tionary processes, leading to ecological or even genetic adaptations in local mosquito
populations.

To enhance the transferability of the proposed methods across diverse ecological
contexts, future research should focus on two key aspects: (i) acquiring detailed knowl-
edge of local environmental and socio-cultural conditions, and (ii) adapting and re-
calibrating suitability indicators to account for these variations. This approach would
help ensure that the models remain accurate and relevant in diverse contexts. Trans-
ferability to other mosquito species would require a more extensive recalibration of the
models, such as developing new hypotheses to derive species-speciĄc suitability indica-
tors. Geospatial big data (GBD) has already been widely used to study other mosquito
species, such as the malaria-transmitting Anopheles mosquito. Therefore, this research
can be seen as an extension of transferability studies in the Ąeld, recalibrating existing
geoinformatics methods to better account for the speciĄc ecological characteristics of
Aedes aegypti, such as its limited Ćight range, breeding habitats, and daytime biting
behavior.

The overall thesis objective of harnessing GBD to guide local interventions for
Aedes-borne arboviral infections can be seen as a transferable concept, as it can be
adapted to various ecological contexts and is not dependent on speciĄc data sources.
The PCA applied in this study was chosen due to the high collinearity between the
derived suitability indicators, highlighting that many of the GBD sources can represent
similar environmental features, albeit at different scales due to spatiotemporal biases,
as discussed in the previous subsection on scalability. Future research could further
assess the robustness of the proposed concepts, particularly in their ability to explain
ovitrap counts across diverse ecological contexts and GBD sources. Another potential
task could be the recalibration of the models to Ąt the different stages of the Aedes life
cycle or other entomological indicators relevant for local intervention guidance.

The concept of using mobile phone and social media data to model Aedes-human
interactions is partially transferable. In our increasingly globalized world, mobile phone
and internet usage patterns are becoming more consistent across regions, creating com-
parable contexts. However, local variations in data providers and spatiotemporal res-
olution persist, which affect the scalability of the proposed methods more than their
transferability, as discussed in the subsection on scalability.

Towards reproducibility and replicability

Following the guidelines established by the Committee on Reproducibility and
Replicability in Science (National Academy of Sciences, 2019), we conclude that
the workĆows presented in this thesis demonstrate experimental reproducibility (R1),
meaning that an independent research team can achieve the same results using the same
implementation on the same data. However, achieving method reproducibility (R2),
where an independent research team can replicate the results using different methods
on the same data, and replicability (R3), where consistent results are obtained by ap-
plying similar methods to new data to address the same research question, will require
further investigation.

While access to the original data is essential for ensuring experimental reproducibil-
ity (R1) (Wilkinson et al., 2016), it was not always feasible to share some of the original
datasets outside the research team. The health records, entomological surveillance data,
and the mobile phone records we used are restricted and cannot be made publicly avail-
able, while the mobile phone dataset was additionally too large for inclusion in a data
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repository. In these cases, we have provided details on the data sources, including the
entities from which the data were obtained, version numbers or access dates, and other
relevant information to aid experimental reproducibility (R1), recognizing that many
datasets are subject to continuous updates. Restrictions on data sharing exist primar-
ily due to ethical considerations related to data privacy, conĄdentiality, and security.
Sensitive information, such as residential addresses, could potentially identify individ-
uals, even in anonymized data Ąles, when combined with other datasets (Crigger and
Khoury, 2019).

Regarding method reproducibility (R2), future research should investigate how dif-
ferent deĄnitions of spatiotemporal representations or dependencies may inĆuence the
results. In this thesis, we have provided a rationale for our methodological choices in
conceptualizing spatiotemporal space, including the use of train-test splits, the selec-
tion of speciĄc sizes for simulated Aedes Ćight ranges, the preference for Ąeld-based
rather than object-based representations, the adoption of raster-based models over
kernel-based encoders, and the decision to model urban dengue occurrence at an areal
level despite the ModiĄable Areal Unit Problem (MAUP) instead of using point-based
methods. However, these decisions are founded on assumptions that may not fully
align with biological realities. Thus, future research should (i) explore the sensitivity
of the Ąndings to these assumptions, as demonstrated in the analysis in Table A. 2 of
publication II, and (ii) examine how varying spatiotemporal representations may affect
the conclusions drawn from this thesis. Assessing the replicability (R3) of the results
across different spatial and temporal contexts remains a further important area for fu-
ture research, especially given the potential inĆuence of sampling bias. Future studies
should investigate the robustness of the Ąndings presented in this thesis across various
spatiotemporal scenarios to ensure their validity and reliability in diverse settings. Ad-
ditionally, spatiotemporal relationships may vary signiĄcantly across locations and over
time. For example, the elevation threshold above which Ae. aegypti is no longer present
can differ markedly between regions, as can the relationship between breeding container
densities and entomological measurements in non-endemic regions. Consequently, ap-
plying the methods developed in this thesis to new contexts, or to different mosquito
species, without Ąrst demonstrating replicability across space, time, and potentially
species may not be advisable.

Promising Technologies

Promising technologies to further advance the Ąeld of hybrid intervention guidance
beyond the proposed techniques include, but are not limited to (i) Geospatial artiĄcial
intelligence (GeoAI) methods, (ii) molecular and biochemical techniques for identifying
pathogen presence in vector populations, and (iii) smart traps equipped with bioacous-
tics sensors.

(i) GeoAI methods represent a interesting advancement in leveraging GBD. Unlike
traditional approaches, GeoAI combines geographical knowledge with artiĄcial intelli-
gence to analyze complex spatiotemporal data patterns. The methodological advantage
of GeoAI lies in its ability to process and learn from large volumes of geospatial data in
near-real time, using ML algorithms to identify subtle spatial and temporal trends that
are often overlooked by conventional analysis. As GBD becomes more widely available,
GeoAIŠs adaptive learning capabilities allow for the continuous reĄnement of predictive
models, enhancing both their reliability and applicability. The emergence of foundation
models - large-scale models pretrained on vast and diverse datasets - holds particular
promise in this context by enabling transfer learning and reducing the need for large
amounts of domain-speciĄc training data. They can provide a robust starting point
for various GeoAI tasks in our research Ąeld, such as Ae.aegypti breeding container
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detection, thereby accelerating the development of sophisticated models for guiding lo-
cal interventions. While GeoAI facilitates large-scale learning and feature extraction,
it should not replace mechanistic models and hypothesis-driven approaches. Although
data-driven learning can generate a richer set of features, it may offer less explainability
and could be inĆuenced by data-intrinsic spatiotemporal biases, potentially leading to
spurious correlations - especially problematic for inferential analysis. Therefore, the
development of explainable GeoAI methods tailored to guide local interventions for
Aedes-borne arboviral infections could be a key focus for future research. This would
help balance the strengths of data-driven approaches with the need for transparency in
public health decision-making.

(ii) Molecular and biochemical techniques offer another promising technology for
enhancing intervention guidance. These techniques allow for the precise identiĄcation
of pathogen presence within vector populations, providing critical insights into the
dynamics of Aedes-borne arboviral disease transmission. Understanding factors such
as pathogen penetration rates within mosquito and human populations can help in
assessing the risk of disease spread and identifying hotspots for targeted interventions.
Although these advanced epidemiological studies can yield valuable data, they are
often costly and challenging to conduct regularly at high spatial resolution. Thus,
while molecular and biochemical approaches can complement geospatial analyses by
providing a deeper understanding of disease dynamics, their application may be best
suited for high-priority areas where resources are concentrated.

(iii) Smart traps and bioacoustics represent cutting-edge technologies for in-Ąeld
data collection, offering near real-time monitoring of mosquito populations. These tools
improve the effectiveness of hybrid intervention approaches by enhancing the temporal
resolution of entomological surveillance and reducing the potential for human error
in entomological surveillance. While still in the early stages of development, smart
traps can address some of the limitations of existing GBD sources, such as openly
available satellite imagery, which may lack the temporal precision needed for dynamic
intervention guidance due to infrequent data updates. Additionally, integrating indoor
entomological surveillance, whether through smart traps or traditional methods such
as ovitraps, can provide more comprehensive data, further reĄning mapping estimates
and intervention strategies. However, the high costs associated with deploying smart
traps highlight the need for targeted research on more cost-effective solutions.

For these promising technologies to be implemented in real-world settings, it is
essential to (i) foster acceptance of digital innovations among public health stakehold-
ers through scientiĄc validation, such as that provided in this thesis, and (ii) secure
adequate funding to scale these digital tools into production-ready decision support
systems. An illustrative example in this context is the is GPS technology. Although
GPS has the potential to model human movement Ćows with high precision, the lim-
ited availability of GPS data for scientiĄc research signiĄcantly restricts its utility. This
example underscores that the mere existence of advanced technologies is not enough
to drive progress; successful application of these technologies for intervention guidance
also requires broad access to the data they generate, along with targeted funding and
active engagement from stakeholders.

Addressing these future directions will be crucial for enhancing the scalability, trans-
ferability, and replicability of hybrid intervention guidance, motivating the harnessing
of emerging technologies and GBD sources to mitigate the spread of Aedes-borne ar-
boviral infections in the future. Integrating future research with the proposed concepts
can lead to the development of a more robust, reliable, and adaptable framework for
guiding local interventions across diverse contexts, with potential applicability to other
vector-borne diseases.
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ReĆection on Limitations and Action Points

1. Data Limitations: The effectiveness of hybrid intervention guidance is
contingent upon the availability and quality of GBD. Inconsistent data
collection methods and gaps in spatial or temporal coverage limit the ac-
curacy of the proposed models and intervention guidance.

• Invest in standardized, high-resolution geospatial and temporal data
infrastructure to enhance data collection methods and reduce gaps.

• Foster partnerships between government agencies, research institu-
tions, and local organizations to improve data accessibility and shar-
ing.

• Utilize remote sensing technology and engage communities in data
collection through citizen science initiatives to expand coverage in
underserved areas.

2. Ecological Variability: Complex interactions between ecological factors
and vector populations vary signiĄcantly across regions, impacting the gen-
eralizability of proposed strategies and necessitating localized adaptations.

• Develop region-speciĄc adaptation models to Ąne-tune vector control
strategies based on local ecological conditions.

• Initiate pilot studies in different ecological regions to evaluate the
effectiveness of proposed strategies and make necessary adjustments.

• Promote collaboration between regions with similar ecological condi-
tions to share best practices and enhance adaptability.

3. Implementation Challenges: Successful implementation may be hin-
dered by socio-economic factors, including resource availability, political
will, and community acceptance.

• Involve local stakeholders, including community leaders and health
practitioners, in project design to ensure alignment with community
needs.

• Provide training, Ąnancial resources, and tools to local agencies for
sustainable implementation of GBD-informed interventions.

• Adapt vector control measures to reĆect local socio-economic reali-
ties, ensuring interventions are feasible and acceptable to communi-
ties.

4. Dynamic Environmental Factors: Climate change and other environ-
mental changes can rapidly alter vector population dynamics and disease
transmission.

• Create adaptive management protocols for regular updates to inter-
vention strategies based on changing environmental data.

• Integrate climate projection models with GBD to anticipate shifts in
vector populations and proactively adapt control measures.

• Implement real-time monitoring systems to track environmental
changes and their impacts on vector populations, enabling prompt
responses to emerging threats.
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3.6 Conclusion

Potential of GBD in Vector Surveillance and Disease Control

This dissertation underscores the potential of GBD to advance intervention strate-
gies for controlling Aedes-borne arboviral infections. By integrating sample-based ento-
mological surveillance with digital indicators that capture Aedes-suitable environments
and modeling daytime Aedes-human interactions, GBD-based approaches can gener-
ate continuous Aedes environmental suitability maps and identify potential pathogen
transmission hotspots. These advancements can improve the guidance for interventions,
with particular relevance to those that are resource-intensive or subject to environmen-
tal regulations. Beyond this, the proposed concepts can optimize ovitrap placement,
reĄne vector carrying capacity estimates to improve eco-epidemiological models (Wu
et al., 2022), or empower communities through educational programs that utilize GBD
to locate local vector breeding sites for elimination (Knoblauch, 2024). Although this
research focuses on Aedes-borne arboviral infections, GBDŠs potential extends to the
surveillance and control of other infectious diseases. Harnessing GBD can provide a
Ćexible framework adaptable to diverse epidemiological contexts, serving as a valuable
tool for a range of public health applications, such as (i) enabling early detection of
outbreaks, (ii) mapping high-risk areas, (iii) optimizing resource allocation, and (iv)
monitoring the effectiveness of interventions across various regions.

Challenges and Innovative GBD Application for Aedes Control

Major challenges persist, especially in terms of (i) data availability at relevant spa-
tiotemporal scales and (ii) the need for advanced data fusion techniques to address
spatiotemporal biases in GBD due to inconsistent data quality. Emerging technologies
related to GeoAI and smart mosquito traps offer promising solutions for controlling
Aedes-borne arboviral infections by enhancing the temporal resolution of entomologi-
cal surveillance and enabling the integration of hypothesis-driven feature engineering
with data-driven learning approaches. Particularly promising in this context could be
Theory-Trained Neural Networks, which integrate domain knowledge directly into the
learning process. When combined with multi-modal foundation models, these networks
could be leveraged to develop disease control systems that account for ecological con-
ditions and integrate diverse GBD sources, presumably enhancing the precision and
scope of spatiotemporal risk analysis for Aedes-borne arboviral infections in the future.
Broader application of the proposed hybrid intervention guidance requires Ąne-tuning
on GBD that spans diverse ecological and seasonal contexts to ensure robust and scal-
able outcomes. Additionally, given the high computational demands associated with
training such data-driven systems, responsible and sustainable AI development - fo-
cused on reducing energy consumption - should be prioritized. However, the effective-
ness of such models will remain limited as long as paired datasets, which are necessary
for capturing the complex relationships between ecological and epidemiological vari-
ables, continue to be insufficient.

Towards Sustainable Aedes Control

Beyond supporting public health authorities with intervention guidance, GBD has
the potential to inform urban planning by guiding infrastructure design to mitigate
disease transmission in high-risk areas. Traditionally, many vector control strategies,
such as the use of larvicides like BTI and temephos in water tanks, focus on directly
targeting the vector but do not address the underlying structural causes of the prob-
lem. Rethinking these approaches through interdisciplinary and innovative solutions,
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similar to the proposed concepts in this research, can lead to more sustainable out-
comes. Implementing water pipe systems in underserved regions can eliminate the
need for water tanks, addressing a key driver of Aedes breeding in many areas. Addi-
tional GBD-informed urban design strategies include (i) engineering trash bins with Ąne
grid bottoms to prevent water accumulation, (ii) enhancing solid waste management
in critical areas, and (iii) enforcing regulations to prohibit water-holding containers
in cemeteries. Regular educational outreach to local stakeholders, such as tire repair
shops, can further reinforce preventive efforts by promoting best practices for vector
control. Nature-based solutions also offer sustainable alternatives to conventional vec-
tor control. These strategies include planting mosquito-repellent plants (e.g., citronella,
lemongrass), introducing carnivorous plants (e.g., pitcher plants) in speciĄc zones, and
fostering natural mosquito predators (e.g., dragonĆies, birds) through habitat creation.
While these methods reduce reliance on chemical controls, careful management is es-
sential to maintain ecosystem balance and avoid unintended impacts on human and
environmental health. In conjunction with the proposed concept of hybrid intervention
guidance, these strategies represent a reimagined, holistic approach to Aedes-borne
arboviral control, emphasizing long-term, structural solutions over short-term Ąxes.
This is particularly crucial in developing regions, where healthcare systems are often
overstretched. By integrating proactive infrastructure improvements with community-
driven empowerment, these concepts can presumably improve public health outcomes,
enhance societal resilience to epidemics, and reduce the long-term social and economic
burdens associated with vector-borne diseases.

GBD in Action: From Vector Control to Environmental Resilience

On a global scale, the use of GBD in controlling Aedes-borne diseases aligns with
broader global health and environmental challenges, particularly in adapting to climate
change. As rising temperatures and shifting weather patterns alter the geographical
distribution of mosquito populations, GBD can support the monitoring of vector popu-
lation redistributions and predictive modeling, enabling countries to proactively adjust
their disease control strategies to respond to these evolving ecological dynamics. Ex-
tending the proposed concepts from Aedes-endemic regions to newly emerging Aedes
suitability areas can foster global collaboration, strengthening transnational efforts to
mitigate the spread of diseases like dengue, Zika, and chikungunya, which pose esca-
lating public health threats. Beyond vector surveillance, this dissertation underscores
GBDŠs potential as a transformative data source for a wider range of public health,
environmental, and urban planning challenges. As the volume of collected GBD is pro-
jected to increase, coupled with advancements in analytical tools and interdisciplinary
collaboration, GBD is poised to enhance our understanding of complex interactions
between built-up environments, ecosystems, and human health. This integration offers
a powerful resource for addressing multifaceted spatial and environmental challenges,
from urban resilience to ecosystem sustainability.
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Take home messages

1. Harnessing GBD for integration with entomological surveillance allows a
broader and more precise identiĄcation of mosquito breeding hotspots and
Aedes-human interactions, aiding in strategically placing entomological
surveillance and enhancing guidance for local interventions for Aedes-borne
arboviral infections. High-resolution indicators play a critical role in im-
proving the accuracy of these models.

2. Approximating residentsŠ exposure to Aedes populations by integrating
daytime human movement and with knowledge on diurnal Aedes biting
behavior can enhance predictive accuracy of models estimating the spatial
occurrence of dengue cases, compared to those that omit these factors.

3. Scalability and transferability remain critical challenges to the broader ap-
plicability of GBD-enriched intervention guidance. Effectively addressing
these challenges requires the implementation of adaptive approaches that
account for variations in data quality and ecological contexts.

4. The potential of harnessing GBD extends beyond public health to ur-
ban planning, biodiversity monitoring, and assessing ecological impacts
of urbanization, offering valuable insights for enhancing social well-being,
reducing economic burdens, and supporting sustainable development.

Actionable Recommendations

1. Enhance Data Collection Efforts: Public health authorities should in-
vest in robust data collection and sharing systems to ensure high-quality,
paired datasets. This includes deploying remote sensing technologies
and involving local communities in citizen science initiatives to monitor
mosquito populations and breeding sites.

2. Strengthen Community Engagement: Implement educational pro-
grams that empower local communities to participate in vector control
efforts. Engaging stakeholders such as schools and local organizations can
foster awareness and responsibility regarding mosquito breeding sites and
preventive measures.

3. Promote Integrated Urban Planning: Urban planners should incor-
porate GBD insights into infrastructure design to optimize urban environ-
ments for mosquito control. This includes improving water management,
enhancing waste practices, and enforcing regulations to reduce standing
water.

4. Invest in Nature-Based Solutions: Encourage the adoption of nature-
based strategies, such as planting mosquito-repellent plants and creating
habitats for natural predators. These approaches provide sustainable al-
ternatives to chemical controls and promote ecosystem health.

5. Support Research and Development: Allocate funding for research
into advanced data-driven models and innovative vector control technolo-
gies, including Theory-Trained Neural Networks and other machine learn-
ing techniques to enhance predictive capabilities in disease transmission.
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Abstract.
The disease transmitting mosquito Aedes Aegypti is an increasing global

threat. It breeds in small artiĄcial containers such as rainwater tanks and can
be characterized by a short Ćight range. The resulting high spatial variability
of abundance is challenging to model. Therefore, we tested an approach to map
water tank density as a spatial proxy for urban Aedes Aegypti habitat suitability.
Water tank density mapping was performed by a semi-supervised self-training ap-
proach based on open accessible satellite imagery for the city of Rio de Janeiro.
We ran a negative binomial generalized linear regression model to evaluate the sta-
tistical signiĄcance of water tank density for modeling inner-urban Aedes Aegypti
distribution measured by an entomological surveillance system between January
2019 and December 2021. Our proposed semi-supervised model outperformed a
supervised model for water tank detection with respect to the F1-score by 22%.
Water tank density was a signiĄcant predictor for the mean eggs per trap rate
of Aedes Aegypti. This shows the potential of the proposed indicator to enrich
urban entomological surveillance systems to plan more targeted vector control
interventions, presumably leading to less infectious rates of dengue, Zika, and
chikungunya in the future.

Keywords. Aedes Aegypti · Eco-epidemiology · GeoAI · Object detection ·
Ovitrap · Rio de Janeiro · Semi-supervised self-training · Urban health · Vector
control

1 Introduction

The recurring worldwide outbreaks of the severe acute respiratory syndrome
(SARS)-associated coronavirus in 2003 and 2020 demonstrate how frequently and
rapidly infectious diseases can spread in a globalized world. However, it is not
globalization alone that is a driving factor for increased occurrences of infectious
diseases but also climate change (Semenza et al., 2022). This is particularly
true for mosquito-borne diseases, as rising global temperatures lengthens annual
transmission seasons and leads to larger suitability areas for mosquitoes (Colón-
González et al., 2021; Rocklöv and Dubrow, 2020). Considering all pathogen
transmitting mosquitoes worldwide, Aedes Aegypti is the most prevalent one (Eu-
ropean Centre for Disease Prevention and Control, 2016; Wilke et al., 2020). It is
the primary vector for Zika, chikungunya, yellow fever, and dengue with a 30-fold
increase in incidences over the last 50 years (Ebi and Nealon, 2016). The WHO is
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estimating that by 2080 over 60 percent of the worldŠs population will live under
direct risk of Aedes Aegypti (Messina et al., 2019; WHO, 2017). This turns this
disease vector into an emerging global threat (Ebi and Nealon, 2016).

As of now there is no effective vaccine for dengue (Amorim and Birbrair, 2022;
Schwartz et al., 2015; WHO, 2022), Zika, or chikungunya (Kantor, 2018; Schrauf
et al., 2020). Accordingly, vector control, involving the process of eliminating
vector breeding habitats and the application of insecticides to maintain mosquito
populations at acceptable level, remains the most effective countermeasure for
these diseases (Hladish et al., 2020; Lobo et al., 2018; Wilson et al., 2020). Vector
control, however, is very costly as it requires a massive workforce and is often
limited by regulative constraints on the use of insecticides, especially in urban
areas where most infections by Aedes Aegypti occur (Knerer et al., 2020; Taborda
et al., 2022). Therefore, mapping of Aedes Aegypti on the urban scale is of
particular interest in order to implement local vector control measures in a more
targeted manner and, above all, at lower costs (Boser et al., 2021; Da Queiroz
and Medronho, 2022; Limkittikul et al., 2014; Runge-Ranzinger et al., 2014).
This is especially important for the Global South where public health budgets
for disease prevention are often scarce despite Ąnancial support from the WHO
(Yukich et al., 2008).

The mapping of Aedes Aegypti, however, is not trivial. Aedes Aegypti is an
urban favoring mosquito with a short Ćight range of around 200 meters and thus
limited habitat size (BomĄm et al., 2020; Harrington et al., 2005; Honório et al.,
2003). It lives in close vicinity to its breeding sites. These can be characterized as
small artiĄcial water containers, such as discarded tires (Getachew et al., 2015),
buckets, barrels, pet dishes, construction blocks (Morrison et al., 2004; WHO,
2012), storm drains (Paploski et al., 2016), trash (Banerjee et al., 2015), Ćower
pots (Vezzani, 2007), or water tanks (Trewin et al., 2021). Many of these con-
tainers occur with great spatial variance due to social urban structures (David et
al., 2009). This, in combination with the small size and the limited Ćight range
of mosquitoes, leads to a high spatial variability of Aedes Aegypti abundance.
It differentiates Aedes Aegypti strongly from other mosquito species such as the
malaria transmitting Anopheles mosquito, which tends to breed in large natural
water bodies and thus occurs in higher concentrations (Chavasse, 2002; Gwitira
et al., 2018; YousseĄ et al., 2022). Consequently, the task of spatial mapping
of mosquito distribution is more challenging for Aedes Aegypti than for other
mosquito species (Boser et al., 2021).

Currently, there are two Aedes Aegypti mapping approaches in use to imple-
ment vector control in a more efficient and cost-saving manner. One of them
are sample-based entomological surveillance systems including the positioning of
mosquito traps and the conduction of household surveys (Bowman et al., 2014;
Pan American Health Organization, 2019). These monitoring systems require a
large amount of manual work but provide valid information on mosquito abun-
dance, such as precise counts of mosquito eggs, larvae, and pupa. Nevertheless,
they are hard to scale due to their labor-exhaustive nature, often cannot cover
larger areas in high resolution and need trained personnel, which all together
limits its practical scope (Vasconcelos et al., 2021). The alternative approach is
based on the modeling of mosquito abundance via spatial proxies using modern
computing techniques and harnessing big spatial data such as satellite imagery.
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These methods are less precise, because proxies by deĄnition only provide in-
direct evidence of a phenomena. However, they require less manual work and
consequently offer the possibility for a much broader spatial coverage as well
as continuous mapping to capture the high spatial variability of Aedes Aegypti
abundance in urban areas (Boser et al., 2021; Louis et al., 2014).

There are several approaches in literature showing the beneĄts of Aedes Ae-
gypti mapping with spatial proxies. Some studies retrieve proxies from citizen
science (Agarwal et al., 2014; Caputo et al., 2020; Cho et al., 2021; Low et al.,
2021; Low et al., 2022; Muĳoz et al., 2020), others from remote sensing (Chang et
al., 2009; Cunha et al., 2021; Dandabathula, 2019; Fernandes et al., 2020; Lorenz
et al., 2020; Machault et al., 2014; McFeeters, 2013; Uusitalo et al., 2019), street
view (Andersson et al., 2018; Haddawy et al., 2019; Su Yin et al., 2021), or drone
imagery (Dias et al., 2018; Haas-Stapleton et al., 2019; Mehra et al., 2016; Passos
et al., 2020; Schenkel et al., 2020). However, these approaches have shortcom-
ings. Remote sensing studies, based on not very-high-resolution (VHR) satellite
imagery, are presumably too coarse to detect small scale features that provide
breeding habitats. Approaches that rely on citizen science, drone imagery, or
street view are hard to transfer to other case studies since the data used is only
available for selected sites or expensive to get. Put differently, most of these ap-
proaches neither derive high resolution proxies with open accessible data, nor use
scalable workĆows to map Aedes Aegypti below 200 meters to consider limited
mosquito Ćight ranges (Louis et al., 2014; Sallam et al., 2017). The application of
object detection models for urban Aedes Aegypti breeding site mapping based on
open accessible satellite imagery is rare. The same applies for the combination of
entomological surveillance data with automatic mapping workĆows in the Ąeld,
although there is a WHO pillar of action called Şscale up and integrate tools and
approaches for global vector controlŤ (WHO, 2017). This paper addresses the
following research gaps:

• Research Gap 1: There is a need for high resolution proxies to enrich
entomological surveillance data of Aedes Aegypti to conduct vector control
with more focus and lower costs.

• Research Gap 2: There is a need for scalable approaches based on
open accessible data to retrieve high resolution proxies for the mapping
of inner-urban Aedes Aegypti distributions.

We analyze how far recent advances in deep learning can help to close these re-
search gaps. We envision that these can be applied to create both, more scalable
and also more precise methods for the mapping of urban Aedes Aegypti abun-
dance to support vector control. From our perspective advances that allow to
capture small Aedes Aegypti breeding containers with low manual labeling effort
are particularly promising. Especially the semi-supervised self-training (SSST) of
object detection networks, as SSST can reach similar prediction performance as
supervised methods but with less manual labels (Chuck Rosenberg et al., 2005).

In this paper, we demonstrate the potential of SSST for the mapping of urban
Aedes Aegypti distributions. We apply deep learning based object detection mod-
els on VHR satellite imagery and design a SSST-based Ąne-tuning algorithm to
map the density of rainwater tanks, a typical Aedes Aegypti breeding spot in urban
areas of the Global South. We evaluate water tank density as a high-resolution
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proxy to model entomological surveillance data originating from mosquito traps.
For our approach, we exclusively use open accessible data. This increases the ap-
plicability of our workĆow for real-world scenarios. More speciĄcally, we address
the two following research questions:

• RQ1: To what extent can semi-supervised self-training outperform super-
vised learning methods with equal labeling effort for water tank detection?

• RQ2: How well does water tank density capture the observed inner-urban
distribution of Aedes Aegypti in the case study?

2 Experimental Design

In order to answer the derived research questions, we propose a novel frame-
work for the semi-automatic mapping of water tanks (cf. Figure 1). Our concept
consists of mainly three parts: Ąrst open accessible input data to increase the
transferability of our experiment, second the supervised and semi-supervised self-
training of water tank detection models to evaluate the usefulness of SSST over
supervised learning to support labor-intensive public health practices like ento-
mological surveillance, and third large-scale water tank predictions to evaluate
the signiĄcance of water tank density as a high resolution proxy to model inner-
urban Aedes Aegypti distributions presumably useful for a more targeted planning
of vector control interventions in the future.

Figure 1: Overview of the proposed framework to support future vector control including the
required open accessible study data (grey), the semi-supervised self-training loop for water tank
detection model Ąne-tuning (red), the evaluation of stated research questions (blue), and the
ground truth evaluation set (green).

2.1 Materials

2.1.1 Study site

We applied the proposed workĆow to the city of Rio de Janeiro, which is one
of the highest effected mega cities for mosquito borne diseases worldwide (Gibson
et al., 2014; Wilson, 2011). The city belongs to the endemic regions for Aedes
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Aegypti transmitted diseases due to its year long tropical climate (Franco dos
Santos et al., 2022). With a population of around 6.75 million people and a high
connectivity to other urban areas in Latin America, the second biggest city of
Brazil has often been a starting point for larger uncontrolled disease outbreaks
(Da Silva Jr. et al., 2002; Luiz Tadeu Moraes Figueiredo, 2004). The proximity
of different types of urban structure, such as favela and other residential areas,
and the topography of the city account for a high variability of possible Aedes
Aegypti breeding sites. This makes the city of Rio de Janeiro an interesting use
case for our proposed method.

2.1.2 Study object

Our study object are water tanks, often used for drinking water storage in the
city of Rio de Janeiro and other Latin American cities. Water tanks are known
to be one of the main breeding spots for Aedes Aegypti (Trewin et al., 2021).
In the city of Rio de Janeiro they are part of vector control measures as well
as entomological surveillance systems (Secretaria de Vigilância em Saúde, 2013).
However, by far the majority of water tanks are not monitored due to the labor
intense process. Since the locations of water tanks in the city of Rio de Janeiro
are not mapped, it was so far not possible to investigate the relationship between
water tank presence and mosquito abundance. Water tanks usually have a radius
of 1 to 2 meters and are objects in the format of a cylinder with a approximated
height of 1.5 meters. They appear dark blue, whereas some older ones might
appear with brighter color due to sun bleaching (cf. Figure 2).

Figure 2: Rainwater tanks for water supply in the city of Rio de Janeiro occurring in high
spatial variability due to different urban structure types like residential areas (bottom left) and
favelas (bottom right).

The urban appearance of water tanks can be strongly correlated with the social
structure of cities as shown by Cunha et. al. (Cunha et al., 2021). As expected
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and further revealed by visual inspection, this was also the case for the city of Rio
de Janeiro, where water tanks appeared more frequently in socially weaker parts
of the city such as favelas due to the lack of piped water access. Thereby, the
close proximity of favelas and other urban structures in the city of Rio de Janeiro
leads presumably to a high spatial variance of water tanks. When observed, water
tanks were primarily located in backyards and on rooftops. Due to their complex
installation and heavy weight, it can be assumed that the position of water tanks
does not vary much over time. All this makes the object detection of water tanks
based on satellite imagery an interesting task to close the targeted research gaps.

2.1.3 Study data

We used three data sets for our approach, namely: satellite imagery, land
use land cover (LULC) maps, and entomological surveillance data (cf. Figure
1). Satellite imagery downloaded from the Microsoft Bing Tile Map Service
(TMS) API (Microsoft, 2022) served as our main input data source. For the high
resolution detection of water tanks we chose the highest available zoom level of
22 with an image resolution of 0.0373 meter per pixel. We retrieved 10,668,699
image patches of 256×256 pixels. In addition, we used administrative LULC data
(Municipality of Rio de Janeiro, 2022) to derive information about the location
and size of different urban structures, which was used to stratify water tank
labeling.

As evaluation data we had access to an entomological surveillance database
from January 2019 until December 2021 provided by the health ministry of Rio de
Janeiro. The purpose of entomological surveillance is to monitor the distribution
and impact of vector control measures. The reliability of this data is highly
affected by the spatial coverage and temporal execution frequency. Examples for
entomological surveillance measurements are mosquito count or index data for
various development stages of Aedes Aegypti: eggs, larvae, pupa, and adult. For
our use case we used data collected with 1,207 ovitraps distributed around the
city (cf. Figure 3). These are traps Ąlled with water of around 20 cm radius used
in the city of Rio de Janeiro for the collection of Aedes Aegypti eggs and larvae.
When mature, the mosquitoes cannot escape these traps. The amount of eggs
and larvae was collected on a monthly basis. As an evaluation indicator for our
proposed method we used the Şmean eggs per trapŤ (MET) rate aggregated over
monthly time steps for Aedes Aegypti.

2.2 Methods

2.2.1 Manual water tank labeling

Since water tank locations were not available in sufficient amount and quality
from open datasets, manual labeling was necessary. We manually labeled 2,000
water tanks in favelas and another 2,000 in residential areas for the training
purpose. Labeling was done in QGIS (QGIS Development Team, 2022). The
strata (favela/residential areas) were derived from the LULC map (Municipality
of Rio de Janeiro, 2022). We labeled another 1,000 water tanks for validation of
the model. Unlike the training labels, the labels for the test data were sampled
across all kind of urban structures to analyze the robustness and generalization
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Figure 3: Sketch of the ovitrap used by the entomological surveillance system (left) and
corresponding locations of the traps in the city of Rio de Janeiro. The color indicates the
Şmean eggs per trapŤ (MET) rate for Aedes Aegypti between January 2019 and December 2021
(right.)

of our object detection model. All manual labels including are provided in the
supplementary material.

2.2.2 Supervised training

We trained a Single Shot Multibox Detection (SSD) Network (Liu et al., 2015)
on the manual water tank labels. The SSD was retrieved from the TensorFlow
Object Detection Model Zoo API (Google, 2022). SSD networks are single-stage
object detector architectures that have been successfully applied for the detection
and mapping of geospatial objects of diverse size and shape. In addition, they offer
a good balance between training time and accuracy when compared to two-stage
object detection networks like Faster R-CNNs as shown in Model Zoo (Google,
2022). The output of an SSD network is a list of predicted features and the
corresponding probability scores.

Figure 4: Single-Stage Object Detection Network consisting of Inception-ResNet-V2 as feature
extractor and multi layer detector with Non-Maximum Suppression layer as used for water tank
detection models. The numbers at the bottom describes the dimension of the raster bands used
at the different stages of the network. The output consists of bounding boxes for detected water
tanks together with a conĄdence scale.

The SSD network we used consists of mainly two parts (see Figure 4). First a
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feature extractor, which is in our case a backbone network with 164 layers, namely
the Inception-ResNet-V2 network, allowing the model to learn deterministic fea-
tures (e.g. colors and shapes) for common object detection tasks (Liu et al.,
2015). Second a multi-layer detector together with a Non-Maximum Suppression
(NMS) layer was used to create multi-scale detection boxes and to calculate the
conĄdence scores of classiĄcation. This was needed for calculating the training
loss. We used a SSD network pre-trained on the Microsoft COCO dataset (Lin
et al., 2014) as the starting point for the model training to reduce training effort.
The initial training process used 4,000 manual water tank labels and 20,000 train-
ing iterations. The corresponding training hyperparameters, also used for later
model Ąne-tuning through semi-supervised self-training, were listed in Table 1.

Table 1: Hyperparameters used for training

Batch Size 24
Learning Rate 0.0004
IoU Threshold 0.5
Optimizer RMSprop
Optimizer Momentum 0.9
Optimizer Decay 0.9
Optimizer Epsilon 0.1

2.2.3 Pseudo water tank labeling

After the initial training process we generated additional pseudo water tank
labels. Therefore, we applied the initially trained supervised model to predict
water tanks in an unlabeled region. The selected region was approximately 15,000
ha and included all urban structure types, not just favelas and residential areas
such as the manual water tank labeling process. Only water tank predictions
with high conĄdence were used as additional pseudo labels to further Ąne-tune
the water tank detection model. In our study, a conĄdence level of 80% was used
as a lower threshold. This resulted in 10,800 additional water tank labels for the
Ąne-tuning of our water tank detection model.

2.2.4 Semi-supervised self-training

The merged label set, combining the manual training labels and the pseudo
labels, was used to Ąne-tune Ąve new instances of our initial supervised model.
The new instances differed in the number of semi-supervised training iterations
in which the model was shown the additional pseudo-labels (cf. Figure 5). For
consistency, all new Ąne-tuned instances were trained for further 20,000 iterations.
This resulted in Ąve water tank detection models, all trained for 40,000 training
iterations using the same number of manual water tank labels. All models were
built upon the same initial supervised water tank detection model used for model
inference and thus pseudo label creation. One of the new instances were Ąne-tuned
without using the pseudo labels. This model was named the base model (BM).
It was trained to evaluate the change in model performance reached through
self-training.
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Figure 5: Overview of trained models, water tank label sets used for training, and correspond-
ing length of training epochs. BM = supervised base model, SSST - semi-supervised self-trained
models.

2.2.5 Evaluation of semi-supervised self-training

Performance between all Ąve water tank detection models was evaluated based
on precision, recall, and their harmonic mean, the F1-score. Precision is deĄned
as the ratio of the true positive objects to all detected objects. Recall describes
the fraction of relevant objects that are successfully retrieved. The performance
indicators were calculated based on the comparison between the intersection of
the bounding boxes of the predictions and of the validation labels. The level of
agreement of the two boxes was based on the Intersection over Union (IoU) value.
The IoU takes values between 0 and 1. For a value of 0 the two boxes do not
overlap at all. For a value of 1 they overlap completely. An IoU Value of 0.5 or
higher for a detected object was considered a true positive. An IoU value lower
than 0.5 as a false positive. In order to measure generalization capabilities of the
models, we compared the change in model performance, in terms of the F1 score,
between test sets from urban structures used in the manual label set and urban
structures not used in the manual label set.

2.2.6 Large-scale predictions

The model with the best F1-score was used to predict water tanks for the
whole metropolitan area of Rio de Janeiro. The prediction used over 10 million
satellite image patches in parallel tasks. For data management we used the map-
proxy API (Omniscale GmbH & Co. KG, 2022). This allowed to store satellite
imagery in subset folder structure. As for the detected water tanks, we pushed
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Figure 6: The Land use land cover (LULC) in the city of Rio de Janeiro with train, test and
semi-supervised self-training (SSST) region and topography in the background.

our predictions on each image patch to a PostGIS database. The database was
then used for a post-processing step of Ąltering predictions by conĄdence scores.

2.2.7 Evaluation of water tank density as entomological proxy for
Aedes Aegypti

To quantitatively evaluate our RQ2 of how well water tank density can cap-
ture the inner-urban distribution of Aedes Aegypti measured by entomological
surveillance data, we ran a negative binomial generalized linear regression model
(GLM) with a log-link function (Hilbe, 2012). The negative binomial GLM was
selected as it allows the model to account for the overdispersion present in the
count data. Corresponding equations are deĄned in Formula 1. As our response
variable we selected the Şmean eggs per trapŤ (MET) rate. As our explanatory
variable we used water tank counts surrounding ovitrap locations in the range of
200 meters which corresponds to the estimated Aedes Aegypti Ćight range. We
used all 1,207 ovitrap locations with information on the MET rate.

METi ∼ NB(µ̂i, θ̂)

E(METi) = µ̂i ∗ (1 − θ̂)/θ̂

Var(METi) = µ̂i ∗ (1 − θ̂)/θ̂2

log(µ̂i) = β̂0 + β̂1 ∗ Watertanki

(1)

3 Results and Discussion

3.1 Comparison of training strategies

The results shown here are the outcome of the developed semi-supervised
self-training approach for the large-scale detection of water tanks in the city of
Rio de Janeiro (cf. Figure 1). The workĆow consisted of three major conĄg-
uration points: First the targeted selection of suitable SSST regions, secondly
the choice of an appropriate conĄdence threshold for pseudo label Ąltering and
thirdly the testing of various ratios of supervised and semi-supervised training
iterations (cf. Figure 5). Sensitivity analysis for changing the Ąrst two conĄgu-
ration points were excluded from this result section. However, these parameters
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were chosen carefully during experimental design to enable model improvements
through self-training. During experimental design, SSST regions for model in-
ference were chosen to be small enough to save computational time, but large
enough to generate a sufficient amount of pseudo labels required to Ąne-tune the
object detection model. In addition, SSST regions were selected to cover all ur-
ban structure types present in the city of Rio de Janeiro to ensure a robust object
detection for large-scale predictions. The conĄdence threshold for the Ąltering of
model inference outcomes and thus for the generation of pseudo labels was chosen
with respect to the model performance of our supervised base model with 20,000
training iterations. The results for the third conĄguration point of the workĆow,
namely the variation of different ratios of supervised to semi-supervised training
iterations, were analyzed in more detail and discussed in the following.

An increasing training time on the merged label set of manual and pseudo
water tank labels continuously improved the F1-score of our object detection
models (Table 2). The best water tank detection model was the model that
used the additional pseudo labels for the longest SSST time (50% of the total
40,000 iteration, SSST-50) with an overall F1-score of 0.84 averaged over all test
labels. This signiĄcant improvement of 22% compared to the supervised base
model indicates a good balance of precision and recall. All SSST models showed
a slightly decrease in recall compared to the supervised base model - i.e the
proportion of correctly detected water tanks to the sum of all true water tanks
decreased. However, this was countered by major improvements in precision, as
the amount of correct water tank predictions on all predictions was higher for all
four SSST models used.

Table 2: Performance metrics of trained water tank detection models. The SSST-
12.5/25/37.5/50 model used the pseudo labels during 12.5/25/37.5/50% of the 40,000 training
iteration respectively.

Models Precision(%) Recall (%) F1 % F1 Improvement

BM 0.59 0.85 0.69 -
SSST-12.5 0.84 0.69 0.76 +10%
SSST-25 0.9 0.7 0.79 +14%

SSST-37.5 0.86 0.78 0.82 +19%
SSST-50 0.86 0.82 0.84 +22%

For the best (SSST-50) model, the relative increase in F1-score (cf. Table
3) was more obvious for urban structure types excluded in the manual label set
(e.g. Commerce and Service, Education and Health, Industry) than for the urban
structure types included in the manual label set (Favela, Residential). The F1-
score improved, however, for all urban structure types. This makes the SSST-50
model more applicable for large-scale predictions than the supervised base model.
These results were consistent with our expectations, namely that SSST models
beneĄt from the additional knowledge collected by the machine itself, leading to
more precise and robust water tank predictions across different urban structures
relevant for large-scale predictions. The trained SSST-50 model is provided in
the supplementary materials of this work.

However, we also identiĄed several limitations in the results. First, not all
urban structure types were used for model evaluation. We focused only on Ąve of
eleven land classes included in the LULC map where we expect human population
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Table 3: Goodness of Ąt indicators for the base model and the best performing SSST model
for different urban structures. The performance was based on independent test data points.

Method
BM SSST-50

Precision(%) Recall(%) F1 Precision(%) Recall(%) F1 % F1 Improvement

Favela 0.63 0.85 0.73 0.87 0.78 0.83 +14%
Residential 0.59 0.86 0.70 0.81 0.82 0.82 +17%
Industry 0.51 0.85 0.64 0.8 0.80 0.8 +25%
Education and Health 0.54 0.93 0.68 0.91 0.91 0.91 +34%
Commerce and Service 0.66 0.76 0.71 0.90 0.78 0.84 +18%

Average weighted by instance 0.59 0.85 0.69 0.86 0.82 0.84 +22%

and thus the largest risk for infections by Aedes Aegypti. The second limitation
results from the manual labeling process. We generated the test set on the basis
of satellite imagery instead of a Ąeld study. Non-visible water tanks underneath
shelters were thus not included in our test labels for model evaluation. However,
we assume that a Ąeld study for the labeling of water tanks would not mitigate
the achieved performance improvement of the semi-supervised self-training ap-
proach. Much more likely, it would have an impact on the absolute performance
metrics, but to the same extent on those of the supervised BM as on those of
the SSST models. The third limitation of our study is the low amount of manual
training labels (4,000) compared to the amount of pseudo labels used for training
(10,800). This implies a relatively high risk of an inappropriate training with po-
tentially incorrect pseudo labels which can accumulate the error in the iterative
self-training process. To reduce such a bias, one could either develop a debiased
self-training algorithm similar to the one proposed by Chen et al. (2022) or apply
co-training of classiĄers originally proposed by Blum and Mitchell (1998).

Figure 7: Example for false negative, true negative, false positive, and true positive water
tank predictions. Water tanks identiĄed by the best performing SSST model are indicated by
green bounding boxes together with the conĄdence of the prediction.
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Further limitations of our study become apparent when visually inspecting raw
prediction images of the SSST-50 model (cf. Figure 7). Common false negative
predictions included water tanks in the shade or partial shade. To minimize the
amount of these false negative predictions one could further Ąne-tune the SSST-
50 model by feeding it with more shaded water tank labels. It is noteworthy that
the number of objects in our study area which appear similar to water tanks was
quite high resulting in high numbers of false positives. While similar objects such
as blue cars and rooftop ventilators were rarely labeled as water tanks by our
models, circular water pools or blue sunshades on beaches were frequently false
positives. The false positive detection of water pools could be solved by applying
a size Ąlter. The detection of blue sunshades on beaches could be eliminated
by applying an automatic land use map based Ąltering. However, these solution
methods would only work to a limited extent. For very small water pools and
blue sunshades not located on beaches this solution method becomes obsolete.
Another solution would be the Ąltering of predictions by conĄdence score as
applied during SSST training.

Further improvements of our models might be achieved by changing param-
eters of our semi-supervised self-training framework. This includes the size of
the areas used for supervised model predictions to generate pseudo labels, the
conĄdence threshold score applied for pseudo label Ąltering, the overall training
time for object detection models, and the corresponding point for conducting the
semi-supervised self-training loop. The training of a two-stage object detector
like Faster-RCNNs as proposed by Cao et al. (2019) could also be an option for
further investigations.

An alternative method for the reduction of manual labelling effort for object
detection could be data augmentation. Data augmentation describes the tech-
nique of increasing the training set by creating slightly modiĄed copies of provided
training samples, for example by changing the rotation of the label (Shorten and
Khoshgoftaar, 2019; van Dyk and Meng, 2001). It is a widely used method es-
pecially applied to avoid overĄtting. However, for our use case of generating
a robust model for large-scale predictions over various urban structure types,
semi-supervised self-training seems to be more suitable. Instead of creating label
copies, self-training can create completely new water tank labels (pseudo label)
that can appear in different shape, color, and with varying shadow coverage. In
addition, it allows to incorporate background features in the training process,
like different rooftop types or water tank densities, not necessarily present in the
limited manual label set used. All these additionally features gathered during
pseudo label generation via self-training are extremely relevant, when trying to
train robust object detector using Convolutional-Neural-Networks (CNNs). Espe-
cially for applying these models on over 10 million satellite image patches covering
all types of urban structures. Semi-supervised self-training can avoid overĄtting
similar to data augmentation (Nartey et al., 2020). Of course, do both methods,
data augmentation and self-training, allow a cost-sensitive creation of additional
labels, which is relevant for our use case to minimize the manual labelling effort
and associated cost and time. However, the capability of learning additionally
background features, not present in the manual label set, is only possible through
self-training in an automatic manner. Nevertheless, self-training requires a rela-
tively high conĄguration effort to be successful compared to data augmentation
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techniques as described in the beginning of this result section.

3.2 Modeling of urban mosquito abundance

City boundary

Neighborhood boundaries

Water tank predictions

Figure 8: Water tanks predicted by the best performing SSST model for the case study region.
For orientation, the administrative boundaries of the neighborhoods are overlaid. The inset map
to the lower left indicates the position of Rio de Janeiro in Brazil.

As a highlight of this work, water tanks predicted by the SSST-50 model
were distributed throughout the whole metropolitan area of Rio de Janeiro with
a high spatial variability (cf. Figure 8). The occurrence of water tanks was
strongly dependent on inhabited areas. Forest areas were almost empty of water
tanks. Water tank density within single neighborhoods also varied strongly. In
addition to Figure 8, we provide a raster layer with a spatial resolution of 200
meters in the supplementary materials of this work. This consists of a raster value
for water tank counts with conĄdence score above 90 percent and is intended to
represent the spatial variance of water tanks at the resolution of an estimated
Aedes Aegypti Ćight range for the whole city of Rio de Janeiro which could be
used for urban mosquito modeling.

Table 4: Coefficients, standard errors, and p-values for negative binomial generalized linear
regression model. Regression coefficients and standard errors are reported at the link scale.
The dispersion parameter θ indicates underdispersion.

Estimate Std. Error p-value

Intercept 1.535 0.709 < 2e − 16

water tank count in 200 meter ovitrap buffer 0.058 0.014 < 2e − 16

θ 0.649 0.027 -

The results of our negative binomial generalized linear regression model (cf.
Table 4) indicated that water tank density was a highly signiĄcant proxy for mod-
eling the Aedes Aegypti MET rate. This was in line with our expectations and
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implicates that water tank density maps can be a useful indicator to enrich ento-
mological surveillance data and thus support future vector control by providing
more continuous and high resolution insights for urban mosquito distributions.
The explained deviance for this regression model was 0.11. It was measured by
CohenŠs pseudo-R2 (Cohen, 2013) (cf. Formula 2) indicating that about 11% of
the deviance in the response are explained by the model. The deviance function
of the negative binomial GLM captured the increasing variance with the mean
that is typical for count data. The dispersion parameter captured thereby how
strong the variance increases with the mean relative to a Poisson GLM, for which
the variance equals the mean. The theta value of 0.649 corresponded to a signiĄ-
cant overdispersion. This can be explained by the large number of zero values in
the entomological dataset, which is why a negative binomial GLM was applied.
Another reason for this is the low number of predictors used to model urban
Aedes Aegypti distribution. However, other potentially relevant predictors have
deliberately not been included in the model, which also explains the low value of
the explained deviance. The addition of further explanatory variables is planned
for follow-up activities.

Cohen′s pseudo R2 = 1 − model deviance
null model deviance

Negative binomial model deviance = 2
∑

(y · log( y
µ

) − (y + k−1)log( y+k−1

µ+k−1
))

(2)

4 Conclusion

The emergence of open-accessible big spatial data in combination with mod-
ern computing technologies has great potential to revolutionize the treatment of
emergent infectious diseases transmitted by Aedes Aegypti. Especially for those
that are missing effective vaccines and are therefore treated mainly by local vector
control, namely dengue, Zika and chikungunya which cause thousands of deaths
each year. In this paper we demonstrated how deep learning based object detec-
tion models in combination with open-accessible satellite imagery can be applied
to extract a Ąne-grained and informative proxy for the urban modelling of Aedes
Aegypti distribution, namely water tanks. Such models are essential to derive
more targeted vector control interventions, allow cost savings in entomological
surveillance, and most importantly a more efficient overall disease control. The
results of this paper indicate that the burden of manual labeling necessary for
large-scale and robust water tank detection can be substantially reduced by the
development of a semi-supervised self-training workĆow without compromising
model accuracy. This increases not only real world applicability of our water
tank detection model, but also its robust transferability to other Aedes Aegypti
endemic cities where water tanks are common mosquito breeding sites. The mea-
sured signiĄcance in the association between water tank density and abundance
of Aedes Aegypti showed the potential of the generated indicator to augment en-
tomological surveillance gaps that occur when limited mosquito Ćight ranges are
considered. The developed urban-speciĄc indicator can thus bring novel insights
into the high spatial variability of urban Aedes Aegypti distributions that can
hardly be explained by commonly used low resolution features for Aedes Aegypti
mapping. However, as the abundance of Aedes Aegypti depends on other pre-
dictors such as climatic conditions, upcoming research will explore the predictive
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power of water tank density in combination with these indicators. With these
combined models for the Ąne-scale mapping of Aedes Aegypti distributions we
hope to reveal hidden patterns not only with regard to urban Aedes Aegypti pop-
ulations, but also for inner-urban pathogen transmission for dengue, Zika, and
chikungunya. With these major contributions of our interdisciplinary research we
hope to create new pathways for the science of computational eco-epidemiology
and provide useful data sets as well as methods to public health authorities es-
pecially in the city of Rio de Janeiro, Brazil.
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Abstract.

IdentiĄcation of Aedes aegypti breeding hotspots is essential for the imple-
mentation of targeted vector control strategies and thus the prevention of several
mosquito-borne diseases worldwide. Training computer vision models on satellite
and street view imagery in the municipality of Rio de Janeiro, we analyzed the
correlation between the density of common breeding grounds and Aedes aegypti
infestation measured by ovitraps on a monthly basis between 2019 to 2022. Our
Ąndings emphasized the signiĄcance (p ≤ 0.05) of micro-habitat proxies gener-
ated through object detection, allowing to explain high spatial variance in urban
abundance of Aedes aegypti immatures. Water tanks, non-mounted car tires,
plastic bags, potted plants, and storm drains positively correlated with Aedes
aegypti egg and larva counts considering a 1,000 m mosquito Ćight range buffer
around 2,700 ovitrap locations, while dumpsters, small trash bins, and large trash
bins exhibited a negative association. This complementary application of satel-
lite and street view imagery opens the pathway for high-resolution interpolation
of entomological surveillance data and has the potential to optimize vector con-
trol strategies. Consequently it supports the mitigation of emerging infectious
diseases transmitted by Aedes aegypti, such as dengue, chikungunya, and Zika,
which cause thousands of deaths each year.

Keywords. Aedes aegypti · Rio de Janeiro · Satellite · Street view · Object
detection · Ovitrap

1 Introduction

The mosquito species Aedes aegypti is responsible for transmitting several
communicable diseases, such as dengue, yellow fever, chikungunya, and Zika
(Wilke et al., 2020). It has become an increasing global threat due to envi-
ronmental changes associated with climate change, urban growth, and resistance
to insecticides (Messina et al., 2019; Semenza et al., 2022). Dengue fever alone
accounted for 390 million infections worldwide in 2020, marking a 30-fold increase
over the last Ąfty years (Ebi and Nealon, 2016; Glassman et al., 2022). For this
reason, numerous attempts have been made to enhance entomological surveil-
lance methods for Aedes aegypti in order to predict patterns of potential disease
outbreaks and conduct more targeted vector control (Louis et al., 2014; Sallam
et al., 2017). However, the bioecology of Aedes aegypti turns the development of
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accurate monitoring techniques into a challenging task. Aedes aegypti is an urban
favouring mosquito that breeds in small artiĄcial water containers such as potted
plants, and trash, which are often of ephemeral nature. This, combined with
the bioecological assumption about a limited Aedes aegypti Ćight range of below
1,000 m without the assistance of wind (David et al., 2009; Honório et al., 2003),
can result in a high spatial variability of abundance. High spatial variability is
challenging to capture with traditional sample-based entomological Ąeld surveys
(Knoblauch et al., 2023). The Ąnancial cost of such labor-intensive surveillance
methods is also substantial, underscoring the urgent need for alternative map-
ping solutions, especially for urban areas of Aedes aegypti-endemic countries in
the Global South where most infections occur (Bhatt et al., 2013).

The increasing availability of openly accessible big spatial data, in combination
with modern computing technologies, can help address these issues (Knoblauch
and Moritz, 2023). Digital techniques enable the large-scale interpolation of
entomological surveillance data at a low Ąnancial cost. This enables the ex-
trapolation of knowledge gathered from entomological sample locations into a
continuous space, considering micro-scale changes in urban circumstances and
the constrained Ćight range of mosquitoes. Consequently, these advancements
could optimize the allocation of vector control resources, including more targeted
spraying of insecticides and educational campaigns on local communities aimed at
eliminating prevalent breeding sites (Boser et al., 2021; Limkittikul et al., 2014;
Runge-Ranzinger et al., 2014; Runge-Ranzinger et al., 2016). The systematic
reviews by Louis et al. (Louis et al., 2014) and Sallam et al. (Sallam et al., 2017)
summarized how satellite imagery and remote sensing techniques have success-
fully been applied in the past to estimate the spatial variance in Aedes aegypti
abundance on both a global and local scale. They provided an extensive overview
of hypothesis-driven indicators and modeling approaches that are instrumental
in generating spatial suitability models for Aedes aegypti. However, both identi-
Ąed a gap in generating and evaluating urban indicators to capture Aedes aegypti
distributions at mosquito Ćight range scale.

In this paper, we therefore propose a workĆow of Ąrst generating high-
resolution proxies to model Aedes aegypti abundance, and second, evaluating
them with entomological surveillance data collected via ovitraps over a time pe-
riod of four years. More precisely, we applied state-of-the-art computer vision
models on satellite and street view imagery to detect common Aedes aegypti
breeding sites. We chose these image datasets for their open accessibility, high
resolution, and georeferencing, enabling a city-wide environmental analysis and
the generation of urban micro-habitat indicators to estimate Aedes aegypti suit-
ability at mosquito Ćight range scale. The joint application of both datasets
promises to generate synergies. While both datasets have individually proven
useful for this area of application in our previous studies (Haddawy et al., 2019;
Knoblauch et al., 2023; Su Yin et al., 2021), their combined usefulness in this
application Ąeld has not yet been investigated, to our knowledge. Therefore, our
speciĄc aim is to evaluate the following research question (RQ) to support future
vector control of Aedes aegypti:

• RQ: Can the detection of Aedes aegypti breeding sites from satellite and
street view imagery create statistically signiĄcant indicators (p ≤ 0.05) for
modeling the abundance of Aedes aegypti immatures, measured by ovitraps,
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considering bioecological assumptions about a limited Aedes Ćight range (≤
1,000 m)?

2 Methods

Our experiment consists mainly of two parts (cf. Figure 1): Ąrst, the detection
of common breeding grounds for Aedes aegypti mosquitoes in urban areas, and
second, the evaluation of container density for inference on urban Aedes aegypti
abundance, considering limited mosquito Ćight range. We applied this workĆow
to the municipality of Rio de Janeiro, an endemic place for Aedes aegypti in
Brazil, which is one of the worldwide hotspots for dengue, chikungunya, and Zika
outbreaks (Gibson et al., 2014; Wilson, 2011).

Figure 1: WorkĆow of evaluating the density of Aedes aegypti breeding container detections
for modeling immature mosquito abundance at Ćight range scale in the city of Rio de Janeiro,
Brazil. The mapping of Aedes aegypti breeding containers was carried out using satellite and
street view imagery by applying and Ąne-tuning single-stage object detection networks (left).
Container densities were calculated within a circular Ćight range buffer of 1,000 m around
ovitrap locations. For the evaluation of the research question, univariate negative binomial
regression models were trained using temporally aggregated egg and larva counts from entomo-
logical surveillance (middle). Entomological surveillance data about immature abundance of
Aedes aegypti was collected by the municipal health ministry of Rio de Janeiro (right). ©2023
Google

2.1 Computer vision models for the detection of Aedes aegypti breed-
ing habitat

The selection of breeding containers in this study was guided by a priori expec-
tations derived from existing literature (Arana-Guardia et al., 2014; Cavalcanti et
al., 2016; Medronho et al., 2009; Paploski et al., 2016; Simard et al., 2005; Souza
et al., 2017; Spiegel et al., 2007; Valença et al., 2013; Vezzani and Schweigmann,
2002), centered around their presumed inĆuence on the abundance of Aedes ae-
gypti immatures. The generation of water tank counts as a micro-habitat proxy
derived from satellite imagery was extensively described in our previous research
study (Knoblauch et al. (2023)). In this previous work, we conceptualized a
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semi-supervised self-training algorithm to minimize the manual labeling effort for
automated water tank detection in urban areas based on satellite imagery. We
used a Single-Stage Object Detection network consisting of Inception-ResNet-V2
as a feature extractor and a multi-layer detector with a Non-Maximum Sup-
pression layer pre-trained on the Microsoft COCO dataset (Lin et al., 2014). We
Ąne-tuned this model using 4,000 manually labeled water tanks along with 10,400
pseudo water tank labels, encompassing various urban structure types, generated
by the model during the training process. In our case, pseudo labels represented
the results of model inference at 20,000 training iterations, applying a conĄdence
threshold of 0.8. In total, the neural network was trained for 40,000 iterations:
20,000 initial iterations using manual labels only and 20,000 subsequent itera-
tions using both manual and pseudo labels, which refers to a semi-supervised
self-training procedure.

In the present study, we additionally Ąne-tuned a multi-class object detector
to map further Aedes aegypti-speciĄc habitats as an extension of prior research.
These habitats include potted plants, large and small trash bins, plastic bags,
non-mounted car tires, water tanks, dumpsters, and storm drains (cf. Figure 2).
To detect these objects, we used street view images retrieved from GoogleŠs Street
View Static API (Google LLC, 2023). A 50 m downloading interval for 360-degree
street view images calculated from the OSM road network was deemed appropri-
ate for the detection of mosquito breeding sites, following the approach used in
other studies (Haddawy et al., 2019; Su Yin et al., 2021). As of August 8th, 2023,
this method yielded a total of 467,605 available street view images, which were
utilized for labeling and city-wide container detection. The timestamps of the
retrieved images ranged from January 2010 until 2023, with a share of 51% for
images taken between 2022 and 2023, 15% from 2021, 19% from 2020 and 15%
from before 2020. The downloaded image resolution was 600x500 pixels. For the
supervised training of our multi-class object detector we manually labeled 7,578
breeding containers on 3,979 images using the graphical image annotation tool
ŚlabelImgŠ (TuzuTa Lin, 2023). To minimize the manual labelling effort we imple-
mented additional data augmentation techniques for instances of the ŚdumpsterŠ
container class, which were observed infrequently within our dataset. We applied
PCA color augmentation, horizontal Ćip and 180 degree rotation. The labelled
dataset was then randomly divided into 80% for training, 10% for validation, and
10% for testing, resulting in 3,152, 454, and 373 image subsets, respectively (cf.
Table 1).

Table 1: Counts of images and labels for instances of Aedes aegypti breeding container detected
in street view imagery, with differentiation between the train, validation, and test sets.

Dataset Images Labels
Instance

Dumpster Large trash bin Small trash bin Non-mounted car tire Plastic bag Potted plant Storm drain Water tank

Train 3,152 5,729 310 428 400 625 757 1,990 606 613

Validation 454 965 69 72 61 87 189 291 97 99

Test 373 884 67 60 57 129 173 197 81 120

Based on the street view imagery we Ąne-tuned a YOLOv5 model, which
was pre-trained on the Microsoft COCO dataset (Lin et al., 2014), speciĄcally
YOLOv5x, known for speed, accuracy, efficiency, adaptive architecture and scale-
invariant detection (cf. Figure 3). The applied model consisted of a CSPNet
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Figure 2: The images depicted identify breeding containers, accompanied by a map illustrating
the coordinates of randomly selected train, test, and validation sets. These sets were chosen
as subsets from a complete dataset of coordinates at 50 m intervals, encompassing the entire
Open Street Map (OSM) road network in the municipality of Rio de Janeiro as of August 8th,
2023. Each train, test, and validation point corresponds to the downloading of Ąve street view
images, capturing a comprehensive 360-degree view at each location. This dataset compilation
facilitated the training of object detection networks speciĄcally tailored to identify Aedes aegypti
breeding containers within the urban landscape. ©2023 Google

enhancing inter-layer information Ćow (Wang et al., 2019), SPPF for multi-scale
object analysis (He et al., 2014), and PAN for parameter aggregation from differ-
ent backbone levels (Liu et al., 2018). During training, we Ątted key parameters,
utilizing AdamW for stability (Loshchilov and Hutter, 2017). In three iterations
of 300 epochs, we optimized the learning rate, adjusting it from 5e−5 to 1e−5, to
enhance the efficiency of the model. Model convergence was reached after 900
epochs applying a patience parameter of 20. An iterative decrease of the focal
loss parameter from 0.5 to 0.2 was implemented to cope with feature imbalance.
Feature imbalance can lead to higher miss-classiĄcation rates for minority class in-
stances (Krawczyk, 2016). The selected hyperparameters for training were listed
in Table A. 1.

2.2 Evaluation metrics for container detection and workĆow of city-
wide prediction

Precision, recall, their harmonic mean, the F1-score, and the mean average
precision at an Intersection over Union (IoU) threshold of 0.5 (mAP@0.5) were
utilized to assess the object detection model performance (cf. Figure 4). Precision
is deĄned as the ratio of the True Positive objects to all detected objects, while
recall describes the fraction of relevant objects that are successfully retrieved.
The performance metrics were computed based on the comparison between the
intersection of the bounding boxes of the predictions and of the validation labels.
This evaluation depended on the IoU value, which ranges between 0 and 1. An
IoU Value of 0.5 or higher for a detected object was considered a True Positive,
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Figure 3: Schematic YOLOv5x architecture applying upsampling for semantic enrichment and
downsampling to augment image resolution. The backbone component shaped feature maps
at various levels of granularity. Subsequently, the neck module merged these feature maps and
forwards them to the prediction head. In this stage, the features were utilized to perform precise
box and class predictions. ©2023 Google

while an IoU value lower than 0.5 indicated a False Positive. Evaluated models
were deployed to map the locations of Aedes aegypti breeding containers across
the whole metropolitan area of Rio de Janeiro. In carrying out this task, street
view images were processed in batches to sequentially predict bounding boxes
and probabilities. Subsequent post-processing steps included non-maximum sup-
pression and thresholding, with the application of a conĄdence score equal to
or above 0.3. For the detection of water tanks in satellite imagery, we utilized
over 10 million patches at zoom level 22 from the Bing Tile Map Service (Mi-
crosoft, 2023). In this case, predictions were processed in parallel tasks. To
organize the data, we employed the mapproxy API (Omniscale GmbH & Co.
K.G. O.T., 2023), facilitating the storage of satellite imagery within a structured
subset folder. Object detections for each image patch were pushed to a Post-
GIS database. The database was then used for a post-processing step to Ąlter
predictions with conĄdence scores of 0.7.

Figure 4: Schematic explanation of evaluation metrics applied to implemented Aedes aegypti
breeding container detection networks.

2.3 Inference on Aedes aegypti immature abundance

To quantitatively evaluate the research question concerning how well the den-
sity of each detected mosquito breeding container can represent the spatial distri-
bution of Aedes aegypti immatures within urban areas, as measured by entomo-
logical surveillance data, we ran univariate negative binomial generalized linear
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regression models (GLMs) employing log-link functions (Hilbe, 2012). The selec-
tion of the negative binomial GLM was motivated by its capacity to account for
the observed overdispersion in the entomological count data. For each of the nine
detected breeding container types, two univariate models were conducted: one
employing the Šmean egg per trapŠ (MET) rate as the response variable (Mean
= 19.8, Standard deviation = 20.12), and the other utilizing the Šmean larva per
trapŠ (MLT) rate as the response variable (Mean = 10.96, Standard deviation =
10.94). The associated mathematical formulations are delineated in Equation 1.
The entomological response variables Yi were averaged over 48 months of ovitrap
surveillance ranging from January 2019 to December 2022. This was performed
to yield robust spatial measurements over time, mitigating potential biases that
could arise from the manual ovitrap collection process.

Yi ∼ NB(µ̂i, θ̂)

E(Yi) = µ̂i ∗ (1 − θ̂)/θ̂

Var(Yi) = µ̂i ∗ (1 − θ̂)/θ̂2

log(µ̂i) = β̂0 + β̂1 ∗ Breeding Container Counti

(1)

This approach led to the creation of two distinct models for each of the nine
detected Aedes aegypti breeding containers. In these models, container density
served as the independent variable, calculated using mosquito Ćight range buffers
of 1,000 m around ovitrap locations. For breeding containers identiĄed through
street view imagery, the counts were further normalized based on the number
of retrieved images within each circular Ćight range buffer. This normalization
accounted for observed variations in street coverage and image availability across
different spatial locations. Our analysis incorporated data from a total of 2,700
ovitrap locations, denoted by i in Equation 1, each providing information on
monthly egg and larva counts. The entomological data was provided upon request
by the health ministry of the city of Rio de Janeiro. To scrutinize the robustness
of our research Ąndings concerning the estimated maximum Ćight ranges of Aedes
aegypti, a sensitivity analysis was conducted by employing alternative buffer sizes
of 250 and 500 m.

3 Results and Discussion

3.1 Evaluation of breeding container detection

The multi-class object detection network trained on street view imagery
achieved an overall F1 score of 0.878, indicating a balanced precision-recall trade-
off (cf. Table 3). When examining speciĄc classes, the breeding container class
ŚdumpsterŠ showed the highest F1 score of 0.950, supported by a precision of
0.946 and a recall of 0.955. Similarly, the Ślarge trash binŠ container type also
has a high precision (0.933) and recall (0.930), contributing to an F1 score of
0.931. Although the Śplastic bagŠ container type demonstrates relatively lower
precision (0.706), its recall (0.792) and F1 score (0.747) remain reasonable. On
the other hand, the Śpotted plantŠ container type achieves a high recall (0.959)
alongside a corresponding F1 score of 0.865. The results for water tank detec-
tion in satellite imagery were extensively described in our previous research work
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(Knoblauch et al. (2023)). In this previous research, the object detection model
yielded a precision score of 0.864, a recall of 0.823, and an F1 score of 0.843 on
independent test datasets.

Table 2: Goodness of Ąt indicators for the YOLOv5 model trained on street view imagery
applying a conĄdence threshold of 0.3. The performance was based on independent test data
points.

Breeding container
YOLOv5

Precision (%) Recall (%) F1 mAP@0.5

Water tank 0.801 0.867 0.833 0.895
Non-mounted car tire 0.876 0.837 0.856 0.901
Storm drain 0.884 0.941 0.912 0.955
Plastic bag 0.706 0.792 0.747 0.79
Potted plant 0.788 0.959 0.865 0.897
Large trash bin 0.933 0.93 0.931 0.959
Small trash bin 0.892 0.947 0.919 0.962
Large trash bin 0.933 0.93 0.931 0.959
Dumpster 0.946 0.955 0.950 0.98

Average weighted by instance 0.853 0.904 0.878 0.917

Interestingly, the ŚdumpsterŠ container class achieved the highest F1 score de-
spite a smaller training set, necessitating augmentation techniques. Being larger
containers with distinct characteristics might aid accurate identiĄcation in dump-
sters. In contrast, the ´plastic bagŠ class recorded the lowest F1 score among all
classes. This could be attributed to the inherent variability in plastic bag at-
tributes like shape, size, and color. From 93,521 citywide coordinates, our model
detected 2,490 dumpsters, 7,927 large trash bins, 6,092 small trash bins, 24,034
non-mounted car tires, 43,334 plastic bags, 54,117 potted plants, 39,807 storm
drains and 5,898 water tanks from street view imagery.

Upon examining the results, we also identiĄed several limitations. Detection
of potted plants behind open fences was challenging as the fenceŠs pattern tex-
ture blends with the potted plant objects, leading to erroneous detection results
(cf. Figure 5). Vehicles parked along streets further complicated detection, po-
tentially obstructing views of breeding containers. In detecting the water tank
from the street view images, we observed that high-rise surroundings ampliĄed
the difficulty of identifying water tanks due to potential occlusions by neigh-
boring structures. Other False Negative examples included sun-bleached water
tanks, closely spaced storm drains, and overlaying containers such as plastic bags,
water tanks, potted plants or non-mounted car tires. True Negative detections
contained for example miscellaneous small containers in garbage heaps, plants
without pots, sealed storm drains, and lattice trash bins. The most occurring
False Positive cases included drainpipes detected as non-mounted car tires, truck
loads detected as dumpsters and larger stones used as road boundaries falsely
detected as either plastic bags or non-mounted car tires. An object class labeled
as Śmiscellaneous small containersŠ, representing for example trash piles, was ex-
cluded during the training phase due to the absence of clear 3D object features
and its varied appearance. These characteristics made it challenging to capture
this potential breeding site using our object detection network for street view im-
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agery. An additional training of scene recognition model could potentially address
these limitations associated with this object class.

In our previous research work on water tank detection in satellite imagery
(Knoblauch et al. (2023)), common False Negative predictions included water
tanks in shaded or partially shaded areas. To mitigate the occurrence of False
Negative predictions, one could enhance the precision of the water tank detec-
tion network by augmenting its training data with additional instances of shaded
water tank labels. It is important to highlight that our study area contained
a substantial number of objects resembling water tanks, leading to a notable
prevalence of False Positives. While our models rarely misclassiĄed similar ob-
jects like blue cars and rooftop ventilators as water tanks, circular water pools
and blue sunshades on beaches consistently resulted in False Positives. Address-
ing the False Positive detections of water pools could involve the implementation
of a size Ąlter, while False Positives associated with blue sunshades on beaches
could be alleviated through the application of an automatic land use map-based
Ąlter. However, it is crucial to recognize that these solutions have inherent limita-
tions. SpeciĄcally, they may not be effective for very small water pools and blue
sunshades not situated on beaches, rendering the proposed methods obsolete.
An alternative approach would involve Ąltering predictions based on conĄdence
scores.

Figure 5: Example for False Negative, True Negative, False Positive, and True Positive breed-
ing container predictions utilizing street view imagery. Detected breeding containers were in-
dicated by bounding boxes, with distinct colors assigned to each container class. These vi-
sual representations were generated based on the conĄdence scores derived from a Ąne-tuned
YOLOv5 model. In the two Ąrst image rows, white and black dashed bounding boxes were
manually added to point to the locations of False Negative (white) and True Negative (black)
examples, respectively, to enhance explanation. ©2023 Google
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As a highlight of the present research work, we created density maps of Aedes
aegypti breeding containers detected over the entire municipal area of Rio de
Janeiro using the combined dataset of satellite and street view imagery (cf. Figure
6). All detected breeding containers exhibited a widespread distribution across
the study region, characterized by substantial spatial variation. Satellite imagery
played a crucial role in detecting breeding containers located in residential back-
yards and on top of buildings, while street view imagery complementary identiĄed
such containers on streets, beneath trees, and within sheltered areas (cf. Table 3).
While the detection of mosquito breeding sites in satellite imagery was limited to
water tanks due to the image resolution of 0.0373 m per pixel (Knoblauch et al.,
2023), street view images enabled the detection of even small breeding containers
like plastic bags. However, satellite imagery has the advantage of providing con-
tinuous spatial coverage. The availability of street view images within the road
network of the municipality of Rio de Janeiro was restricted, especially in narrow
and impassable streets that are common in favelas. Generally, the prevalence of
artiĄcial mosquito breeding containers was strongly linked to inhabited regions,
with forested areas notably lacking such containers.

Figure 6: Large-scale Aedes aegypti breeding site detection from 461,152 street view and
satellite imagery for the metropolitan area of Rio de Janeiro, Brazil. Left map shows location
of retrieved street view images used for 360-degree breeding site detection and right maps
highlights water tank density detected from satellite imagery generated in Knoblauch et al.
(2023).

Table 3: Qualitative attribute comparison of satellite and street view imagery, underscoring
the essential need for a complementary application of these digital sources when mapping Aedes
aegypti breeding sites.

Attribute Street view imagery Satellite imagery

Spatial coverage
Limited coverage deĄned by visited road network. Complete coverage.

Ground-level perspective below shelters and tree canopy. Monitoring of inaccessible backyards and rooftops.

Image resolution Detection of small and large breeding container. Fails at capturing smaller breeding sites.

Open-accessibility
Open-accessibility with monthly downloading limit. Open-accessibility at limited resolution.

Open-source alternatives without limits. Commercial high-resolution alternatives.

Temporal updates Infrequent, non-collective updates of images. Infrequent, collective updates of all images.

Provider
Google (Google LLC, 2023)/ Mapilio (Mapilio, 2023)/
Mapillary (Mapillary, 2023)/ KartaView (KartaView,
2023)/...

Microsoft (Microsoft, 2023)/ NASA (NASA, 2023)/
Copernicus (Copernicus, 2023)/ Planet (Planet, 2023)/...

3.2 Modeling of immature Aedes aegypti infestation

The results of our negative binomial linear regression models (cf. Table 4)
indicated that all detected breeding containers of this study were highly signiĄcant
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(p ≤ 0.05) proxies for modeling urban Aedes aegypti immature abundance while
considering limited mosquito Ćight range below 1,000 m. This was in line with our
expectations and implies that breeding site density maps can be a useful indicator
to enrich entomological surveillance data and thus support future vector control
by providing more continuous and high resolution insights for urban mosquito
distributions.

Table 4: Coefficients, standard errors, and p-values for univariate negative binomial generalized
linear regression models applying a Aedes Ćight range buffer of 1,000 m around 2,700 ovitrap
locations. Regression coefficients and standard errors were reported at the link scale. The
p-value of the intercept was < 2e−16 for all models. (Water tank* = Water tanks detected with
satellite imagery)

Breeding container Response
Intercept Breeding Container Theta Metrics

Estimate Std. Error Estimate Std. Error p-value Estimate Std. Error Pseudo R2 AIC

Water tank*
MET 2.8493 0.0296 0.0026 0.0004 2.03e−09 1.1990 0.0363 0.0123 17645
MLT 2.1046 0.0298 0.0053 0.0004 < 2e−16 1.2937 0.0435 0.0496 14551

Water tank
MET 2.8448 0.0272 0.2580 0.0358 5.49e−13 1.2045 0.0365 0.0172 17634
MLT 2.2253 0.0280 0.3077 0.0369 < 2e−16 1.2505 0.0417 0.0225 14620

Non-mounted car tire
MET 2.9169 0.0230 0.2872 0.0505 1.26e−08 1.1964 0.0362 0.0110 17650
MLT 2.2941 0.0234 0.4027 0.0506 1.78e−15 1.2506 0.0417 0.0223 14620

Storm drain
MET 2.8028 0.0431 0.4343 0.0926 2.7e−06 1.1927 0.0361 0.0082 17657
MLT 2.1101 0.0441 0.6704 0.0945 1.29e−12 1.2431 0.0414 0.0176 14632

Plastic bag
MET 2.8694 0.0316 0.2583 0.0558 3.7e−06 1.1909 0.0360 0.0068 17660
MLT 2.1996 0.0324 0.4223 0.0566 8.44e−14 1.2436 0.0414 0.0179 14631

Potted plant
MET 2.8723 0.0328 0.1870 0.0440 2.11e−05 1.1908 0.0360 0.0067 17661
MLT 2.2224 0.0336 0.2837 0.0454 4.03e−10 1.2369 0.0411 0.0134 14642

Small trash bin
MET 3.1111 0.0245 -1.6963 0.1775 < 2e−16 1.2178 0.0370 0.0276 17607
MLT 2.4966 0.0252 -1.3805 0.1865 1.32e−13 1.2428 0.0414 0.0177 14632

Large trash bin
MET 3.0765 0.0270 -1.0363 0.1953 1.12e−07 1.1958 0.0362 0.0105 17651
MLT 2.4863 0.0278 -1.0553 0.2063 3.13e−07 1.2325 0.0410 0.0102 14650

Dumpster
MET 3.0561 0.0243 -2.4497 0.4461 4e−08 1.1973 0.0363 0.0116 17648
MLT 2.4648 0.0249 -2.4589 0.4636 1.13e−07 1.2340 0.0410 0.0112 14648

Water tanks, non-mounted car tires, storm drains, plastic bags, and potted
plants consistently displayed positive coefficient estimates for both response vari-
ables, whereas the coefficient estimates for small and large trash bins, as well as
dumpsters, consistently demonstrated negativity across both model variations.
These Ąndings aligned with the intuitive understanding that an increased pres-
ence of trash bins of any kind correlates with a reduced prevalence of uncontained
refuse piles, thereby mitigating the potential for additional mosquito breeding
sites. The correlation between the density of plastic bags and all three trash con-
tainer classes was found to be negative, namely -0.1 for the dumpster class, -0.03
for large trash bins, and -0.3 for small trash bins. In addition, small and large
trash bins, as well as dumpsters, are usually closed containers that rarely Ąll with
water when it rains, which underlines their signiĄcance (p ≤ 0.05) and negative
association with entomological data about Aedes aegypti immature abundance.
Furthermore, these containers are regularly emptied by refuse collection services,
ensuring that they often remain dry and unsuitable for mosquito breeding, thus
contributing to mosquito control efforts.

When analyzing the results independently from the response variable, it was
observed that models using water tank density derived from satellite and street
view imagery consistently led to the lowest Akaike information criterion (AIC),
indicating a superior Ąt to the data across both immature abundance stages.
Conversely, models employing the density of potted plants displayed the highest
AIC values in relation to the MET rate, while models utilizing the density of large
trash bins exhibited the highest AIC values in relation to the MLT rate. The ex-
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tent of explained deviance in the regression models pertaining to the MLT rate
generally exhibited higher values compared to those associated with the MET
rate. SpeciĄcally, the MLT model, utilizing water tank density derived from
satellite imagery, achieved the highest explained deviance at 0.05 as quantiĄed
by CohenŠs pseudo-R2 (Cohen, 2013) (cf. Equation 2). This indicates that ap-
proximately 5% of the variance in the response variable is accounted for by the
univariate model.

Cohen′s pseudo R2 = 1 − model deviance
null model deviance

Negative binomial model deviance = 2
∑

(y · log( y
µ

) − (y + k−1)log( y+k−1

µ+k−1
))

(2)

The deviance function of the negative binomial GLM captured the increasing
variance with the mean that is typical for count data. The dispersion parameter
captures how much the variance increases with the mean relative to a Poisson
GLM, where the variance equals the mean. The theta values of all univari-
ate regression models in this study indicated a sustantial overdispersion. This
overdispersion can be attributed to two primary factors. First, the dataset on
entomological observations contained a substantial number of zero values, neces-
sitating the adoption of a negative binomial GLM to account for excess variation.
Second, the limited inclusion of predictors in modeling the urban distribution of
Aedes aegypti also contributed to the observed low value of explained deviance. It
is worth noting that certain potentially relevant predictors have been intention-
ally omitted from the model, further contributing to the constrained explanatory
power. The incorporation of additional explanatory variables is planned for sub-
sequent phases of this research.

The outcomes of the performed sensitivity analysis (cf. Table A. 2), scruti-
nizing different assumed maximum Ćight ranges of Aedes aegypti (250 m, 500 m,
1,000 m), conĄrmed the robustness of the results outlined in Table 4. Similar
to the results for a 1,000 m Aedes aegypti maximum Ćight range, at a maximum
Ćight range of 500 m, all container types exhibited signiĄcant p-values (p ≤ 0.05)
for both egg and larva counts. The same trend was observed for the assumed
maximum Aedes aegypti Ćight range of 250 m, except for the container types
dumpster, storm drain, and water tank detected from satellite imagery. Notably,
the Ąndings concerning water tanks from satellite imagery at 250 m scale show a
slight contrast to our previous Ąndings in Knoblauch et al. (2023), where a dif-
ferent time frame for entomological data was utilized; however, signiĄcance was
detected at a Ćight range scale of 200 m. This divergence of these Ąndings un-
derscores the considerable inĆuence of the selected time period of entomological
surveillance on the validation of such results. The coefficients for small and large
trash bins, as well as the dumpster category, remained negative also at lower
estimated maximum Aedes aegypti Ćight ranges. Intriguingly, the coefficient for
potted plants shifted from positive to negative when simulating a maximum Ćight
range of 250 m for Aedes aegypti. Overall, there was an evident upward trend
in signiĄcance (indicated by a downward trend in p-values) across all container
classes, with larger buffer sizes, representing simulations of larger Ćight ranges,
showing higher signiĄcance levels. Essentially, larger buffer areas augment the
probability of encountering containers, consequently yielding more dependable
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statistical outcomes in our methodology for modeling ovitrap count data with
digital proxies. For a more nuanced understanding of the relationship between
assumed maximum Aedes aegypti Ćight range and signiĄcance values, models
implementing soft constraints could be considered, such as Bayesian models.

The collective Ąndings presented in this study offer a comprehensive overview
and extension of our prior research about urban mosquito mapping (Haddawy
et al., 2019; Knoblauch et al., 2023; Su Yin et al., 2021). For the Ąrst time the
results underscore the practical efficacy of integrating satellite and street view
imagery for identifying mosquito breeding sites in urban areas, emphasizing the
distinctive advantages of each method. A further alternative data source for map-
ping mosquito breeding containers in urban areas could be drone imagery, which
offers both continuous spatial coverage and images in high resolution for small
breeding container detection (Passos et al., 2022; Passos et al., 2023). However, it
is essential to note that generating drone imagery incurs substantial costs and la-
bor, thereby limiting the applicability in diverse global urban settings. A common
limitation across all three data sources is their inability to detect breeding con-
tainers located inside buildings. Consequently, the digital strategies outlined in
this study cannot fully replace on-site entomological surveillance. Instead, our ap-
proach aims to complement manual monitoring efforts by augmenting them with
high-resolution digital information. Citizen Science offers a promising avenue
to address this limitation, fostering public participation, including crowdsourced
mapping, to enhance data collection and monitoring, particularly of indoor breed-
ing sites. The primary challenge in utilizing digital data sources for mosquito
mapping lies in achieving temporal alignment with entomological surveillance for
modeling purposes.

Another challenge associated with digital data sources, such as satellite and
street view imagery, pertains to the potential obsolescence of information and the
insights derived from it. Street view images, in particular, are infrequently up-
dated (Hou and Biljecki, 2022). It is also crucial to consider the transient nature
and shifting locations of identiĄed containers, especially for plastic bags, potted
plants, non-mounted car tires, large trash bins, and dumpsters, which may have
introduced a potential bias to the measured signiĄcance values of these container
classes in our results. Conversely, water tanks, small city trash bins attached to
streetlights, and storm drains are presumed to have relatively stable locations
over time, leading to more reliable results. Furthermore, the calculated container
densities in this study may be inĆuenced by citywide solid waste collections or
vector control campaigns, wherein breeding containers may have been removed
before images were captured. In future studies, investigating the relationship be-
tween image timestamps and such interventions, as well as exploring alternative
data sources (cf. Table 3), could be beneĄcial. Crowd-sourced platforms such as
Mapillary (Mapillary, 2023) and KartaView (KartaView, 2023) may particularly
offer more continuous image updates (Biljecki et al., 2023).

In summary, this study demonstrated the enhanced efficiency in managing
urban diseases such as dengue through the application of digital techniques. The
increasing availability of spatial big data, such as satellite and street view im-
agery, presents a considerable opportunity for obtaining high-resolution indica-
tors for mapping urban mosquito suitability beyond entomological sample points
and allows interpolations without violating biological assumptions about limited
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mosquito Ćight ranges in the future. The proposed approach can be combined
with further urban-speciĄc mosquito proxies for enabling more targeted vector
control. A task that is challenging with entomological surveillance alone. The
proposed method can thus not only reduce surveillance costs but also facilitates
the potential interruption of infection chains at earlier stages of an outbreak than
with conventional methods.
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Appendix

Appendix A

Table A. 1: Hyperparameters used for training. The training and detection processes were
conducted using Google Colab, a cloud computing platform offering 53 GB of Random Access
Memory (RAM), 8 CPU cores, a Tesla V100 GPU, and 150 GB of disk space.

Batch Size 24
Learning Rate 0.0004
IoU Threshold 0.5
Optimizer RMSprop
Optimizer Momentum 0.9
Optimizer Decay 0.9
Optimizer Epsilon 0.1

Table A. 2: Coefficients, standard errors, and p-values for univariate negative binomial gener-
alized linear regression models applying a mosquito Ćight range buffer of 250 and 500 m around
2,700 ovitrap locations. Regression coefficients and standard errors were reported at the link
scale. The p-value of the intercept was < 2e−16 for all models. (Water tank* = Water tanks
detected with satellite imagery)

Breeding container Response Modelled Ćight range
Intercept Breeding Container Theta Metrics

Estimate Std. Error Estimate Std. Error p-value Estimate Std. Error Pseudo R2 AIC

Water tank*
MET

≤250m 2.9734 0.0256 0.0013 0.0018 0.4450 1.1824 0.0357 0.0002 17677.0000
≤500m 2.9655 0.0229 0.0085 0.0047 0.0410 1.1831 0.0358 0.0008 17676.0000

MLT
≤250m 2.3954 0.0261 -0.0001 0.0018 0.9510 1.2172 0.0403 1.304e−6 14675.0000
≤500m 2.3312 0.0234 0.0258 0.0047 3.43e−8 1.2262 0.0407 0.0063 14660.0000

Water tank
MET

≤250m 2.9450 0.0235 0.0839 0.0262 0.0014 1.1874 0.0359 0.0041 17667.0000
≤500m 2.8928 0.0252 0.1785 0.0312 1.05e−08 1.1971 0.0363 0.0116 17648.0000

MLT
≤250m 2.3576 0.0241 0.0759 0.0267 0.0045 1.2219 0.0405 0.0032 14667.0000
≤500m 2.2799 0.0259 0.2182 0.0321 1e−11 1.2411 0.0413 0.0161 14635.0000

Non-mounted car tire
MET

≤250m 2.9732 0.0205 0.0606 0.0223 0.0066 1.1871 0.0359 0.0037 17668.0000
≤500m 2.9599 0.0211 0.1163 0.0311 0.0002 1.1883 0.0360 0.0048 17666.0000

MLT
≤250m 2.3840 0.0210 0.0510 0.0224 0.0229 1.2215 0.0405 0.0028 14668.0000
≤500m 2.3609 0.0215 0.1494 0.0314 1.96e−6 1.2288 0.0408 0.0079 14656.0000

Storm drain
MET

≤250m 2.9883 0.0252 -0.0078 0.0419 0.8530 1.1822 0.0357 1.47e−5 17678.0000
≤500m 2.9069 0.0309 0.1916 0.0583 0.0010 1.1869 0.0359 0.0037 17668.0000

MLT
≤250m 2.4173 0.0259 -0.0655 0.0438 0.1350 1.2186 0.0404 0.0010 14673.0000
≤500m 2.2785 0.0316 0.2797 0.0593 2.44e−6 1.2277 0.0408 0.0072 14657.0000

Plastic bag
MET

≤250m 2.9626 0.0228 0.0565 0.0272 0.0375 1.1844 0.0358 0.0017 17673.0000
≤500m 2.9524 0.0249 0.0754 0.0342 0.0273 1.1842 0.0358 0.0016 17674.0000

MLT
≤250m 2.3757 0.0234 0.0465 0.0282 0.0982 1.2189 0.0404 0.0011 14672.0000
≤500m 2.3381 0.0255 0.1254 0.0346 0.0003 1.2234 0.0406 0.0042 14665.0000

Potted plant
MET

≤250m 3.0241 0.0238 -0.0796 0.0253 0.0016 1.1869 0.0359 0.0037 17668.0000
≤500m 2.9210 0.0270 0.1058 0.0305 0.0005 1.1878 0.0359 0.0043 17667.0000

MLT
≤250m 2.4277 0.0245 -0.0687 0.0262 0.0088 1.2211 0.0405 0.0027 14669.0000
≤500m 2.3076 0.0277 0.1420 0.0314 5.97e−6 1.2277 0.0408 0.0072 14658.0000

Small trash bin
MET

≤250m 3.0202 0.0210 -0.6147 0.0963 1.77 e-10 1.2039 0.0365 0.0164 17636.0000
≤500m 3.0274 0.0227 -0.5604 0.1320 2.18e−5 1.1907 0.0360 0.0067 17661.0000

MLT
≤250m 2.4299 0.0216 -0.6224 0.1005 5.95e−10 1.2415 0.0414 0.0159 14636.0000
≤500m 2.4275 0.0233 -0.4449 0.1383 0.0013 1.2227 0.0406 0.0038 14666.0000

Large trash bin
MET

≤250m 3.0038 0.0211 -0.2511 0.0788 0.0014 1.1872 0.0359 0.0039 17668.0000
≤500m 3.0058 0.0227 -0.2305 0.1155 0.0459 1.1842 0.0358 0.0015 17674.0000

MLT
≤250m 2.4106 0.0216 -0.2168 0.0806 0.0072 1.2212 0.0405 0.0027 14669.0000
≤500m 2.4224 0.0233 -0.3204 0.1192 0.0072 1.2212 0.0405 0.0027 14669.0000

Dumpster
MET

≤250m 2.9850 0.0205 0.0161 0.1230 0.8960 1.1822 0.0357 9.98e−6 17678.0000
≤500m 3.0061 0.0214 -0.6987 0.2279 0.0022 1.1871 0.0359 0.0038 17668.0000

MLT
≤250m 2.3990 0.0210 -0.1589 0.1290 0.2180 1.2185 0.0404 0.0008 14673.0000
≤500m 2.4179 0.0219 -0.8032 0.2349 0.0006 1.2241 0.0406 0.0047 14664.0000
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Urban Aedes aegypti suitability indicators
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Abstract.
Controlling Aedes aegypti stands as the primary strategy in curtailing the

global threat of vector-borne viral infections such as dengue fever, responsible
for around 400 million infections and 40,000 fatalities annually. Effective inter-
ventions necessitate a precise understanding of Ae. aegypti spatiotemporal distri-
bution and behavior, particularly in urban settings where most infections occur.
However, conventionally applied sample-based entomological surveillance systems
often fail to capture the high spatial variability of Ae. aegypti that can arise from
heterogeneous urban landscapes and limited Aedes Ćight range. This study aims
at addressing this challenge by leveraging emerging geospatial big data, including
openly available satellite and street view imagery, to locate common Ae. aegypti
breeding habitats. This data enabled to infer the seasonal suitability for Ae. ae-
gypti eggs and larvae at a spatial resolution of 200 m within the municipality of
Rio de Janeiro. The proposed micro- and macro-habitat indicators for immature
Ae. aegypti explained the distribution of Ae. aegypti ovitrap egg counts by up to
73% and larval counts by up to 75%. Spatiotemporal interpolations of ovitrap
counts, utilizing suitability indicators, provided high-resolution insights into the
spatial variability of urban immature Ae. aegypti that could not be captured
with sample-based surveillance techniques alone. The potential of the proposed
method lies in synergizing entomological Ąeld measurements with digital indica-
tors on urban landscape to guide vector control and address the prevailing spread
of Ae. aegypti-transmitted viruses. Estimating Ae. aegypti distributions con-
sidering habitat size is particularly important for targeting novel vector control
interventions such as Wolbachia.

Keywords. big spatiotemporal data · digital urban landscape · suitability
indicator · immature Aedes aegypti · vector control · Rio de Janeiro
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1 Introduction

The mosquito species Ae. aegypti is the primary vector of yellow fever, dengue
fever, Zika, and chikungunya, causing thousands of deaths each year (Camara et
al., 2016; Honório et al., 2009; World Mosquito Program, 2023). It favors breeding
in artiĄcial water containers commonly encountered near human settlements, such
as water tanks (Trewin et al., 2021), discarded tires (Getachew et al., 2015), and
storm drains (Paploski et al., 2016). Suitable habitat areas for Ae. aegypti will
expand due to global trends such as climate change and increasing urbanization
(Colón-González et al., 2021; Semenza et al., 2022) The WHO has estimated that
by 2080, over 60 percent of the worldŠs population will live in areas that are likely
to be populated by the potential disease vector Ae. aegypti (Ebi and Nealon, 2016;
Messina et al., 2019). Yellow fever stands out among Aedes-borne diseases as the
only one for which effective vaccines are globally available. Currently, there is no
effective vaccine for Zika, but recently vaccines for dengue fever and chikungunya
have been licensed, yet global access and uptake at this stage is low. Therefore,
vector control, involving the process of eliminating vector breeding habitats and
the application of insecticides to maintain mosquito populations at acceptable
level, remains the most effective counter measure (Wilson et al., 2020).

To achieve more efficient and cost-effective vector control in the future, ac-
curate Ae. aegypti suitability maps are essential (Boser et al., 2021; Limkittikul
et al., 2014; Reiter, 2007). However, generating spatially continuous maps of Ae.
aegypti for large metropolitan areas proves to be challenging. The limited Ćight
range, assessed to be below 1 000 m without the assistance of wind (Getis et al.,
2003; Harrington et al., 2005; Honório et al., 2003; Moore and Brown, 2022), and
the heterogeneous urban landscape, which inĆuences the availability of breeding
sites, can lead to high spatial variability in Ae. aegypti abundance (Kache et al.,
2022; Louis et al., 2014; Sallam et al., 2017). Capturing this potential variability
with conventionally applied sample-based entomological surveillance systems is
difficult. In other words, it would require dense coverage of ovitraps or a manual
surveillance system at Aedes habitat size. Nevertheless, the increasing availabil-
ity of extensive geospatial data, such as satellite and street view imagery, can
aid in bridging this gap (Knoblauch and Moritz, 2023; Knoblauch et al., 2023;
Lorenz et al., 2020a; Lorenz et al., 2020b). Particularly noteworthy in this con-
text are indicator-driven interpolation techniques for entomological surveillance
data collected during Ąeld campaigns (Parra et al., 2022).

Extensive research has been conducted on modeling Ae. aegypti abundance
at different life cycle stages (egg, larva, pupa, adult) with various sets of proxies
on different spatiotemporal scales. Among these studies, inference models for
immature Ae. aegypti abundance at the mosquito Ćight range scale have appeared
to exert the most considerable impact on local vector control planning (Louis et
al., 2014; Sallam et al., 2017). These models concentrate on the early stages of a
mosquitoŠs life cycle, enabling more effective intervention, while also considering
the bioecological characteristics of the vector (Boser et al., 2021; Limkittikul
et al., 2014; Liu et al., 2017). Lorenz et al. (2020a) and Bailly et al. (2021)
proposed methods that take into account the limited Ćight range of Ae. aegypti
when modeling its suitability for single neighborhoods in São José do Rio Preto
(Brazil) and Cayenne (French Guiana). Sun et al. (2021) applied a Ćight range
model on a larger scale, covering the entire city of Singapore. This study also
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incorporated temporal features for spatiotemporal larva abundance maps, similar
to the approach by Costa et al. (2015) applied to a small property in the city
of Rio de Janeiro (Brazil). Among the identiĄed research on urban Ae. aegypti
interpolation techniques considering limited mosquito Ćight range, the research
of Portella Ornelas de Melo, Diogo et al. (2012) in Belo Horizonte (Brazil) stands
as the only study employing larval survey and ovitrap data together for species
distribution modeling.

However, as far as our knowledge extends, research that adopts a holistic
approach, encompassing i) the restricted Ćight range of Ae. aegypti, ii) the amal-
gamation of entomological surveillance data from larval surveys and ovitraps, iii)
the integration of temporal dynamics, and iv) the extrapolation of Ae. aegypti
suitability across an entire municipality, is yet to be conducted.

In this paper, we aim to address this research gap by employing a Bayesian
spatiotemporal model to construct seasonal Ae. aegypti suitability maps at the
Aedes Ćight range scale for the municipality of Rio de Janeiro, Brazil. As a pre-
requisite for this, we generated micro- and macrohabitat suitability indicators
for immature Ae. aegypti, capturing, for example, Ae. aegypti breeding con-
tainer density and rainwater accumulation, from openly available geospatial data
sources. The predictive power of these generated suitability indicators was eval-
uated using a negative-binomial GLM alongside monthly egg and larval counts
from ovitraps. The suitability maps for immature Ae. aegypti, built upon ovit-
rap counts and generated indicators, were assessed alongside the seasonal House
and Breteau indices from the Rapid Assay of the Larval Index for Aedes aegypti
(LIRAa) (cf. Figure 1).

2 Material and Methods

Here, we propose a novel framework for the spatiotemporal mapping of im-
mature Ae. aegypti suitability in urban spaces (cf. Figure 1). Our framework
mainly consists of two outputs: (i) suitability indicators for immature Ae. aegypti
and (ii) seasonal suitability maps for immature Ae. aegypti at Aedes Ćight range
scale, generated from suitability indicators and ovitrap counts. We applied the
proposed framework to the Ae. aegypti-endemic municipality of Rio de Janeiro
(Gibson et al., 2014; Wilson, 2011). Recent data from 2023 revealed over 3 mil-
lion dengue fever cases in Brazil, underlining the urgent need to enhance vector
control in major Brazilian cities. We chose the year 2019 as our analysis time
period because it marked the largest dengue fever outbreak in the municipality
of Rio de Janeiro within the last 5 years (Secretario Municipal de Saúde Rio de
Janeiro, 2024b). With its year-round tropical climate (Franco dos Santos et al.,
2022), a population of around 6.75 million people, and high connectivity to other
urban areas in Latin America, the second-largest city in Brazil has often served
as a starting point for larger, uncontrolled disease outbreaks across the Americas,
including dengue fever (Moraes Figueiredo, 2004). The proximity of different
types of urban structures, such as favelas and other residential areas, coupled
with the cityŠs topography, accounts for a high variability of possible Ae. aegypti
breeding sites, making the city of Rio de Janeiro an intriguing use case for our
proposed method. An extended description of the applied entomological surveil-
lance conducted in the municipality of Rio de Janeiro, which was used in our
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study to evaluate the suitability indicators for immature Ae. aegypti, is provided
in Appendix C.

Figure 1: Framework for modeling and evaluating (i) immature Ae. aegypti suitability indi-
cators and (ii) immature Ae. aegypti suitability maps at Aedes Ćight range resolution. Openly
available geodata served as input for our framework. The abbreviation GeoAI refers to geospa-
tial techniques of artiĄcial intelligence. In this study it represents the detection and mapping of
common Ae. aegypti breeding containers from satellite and street view imagery. The abbrevia-
tion BSTM refers to a Bayesian spatiotemporal model. In this study, we Ątted a BSTM with
the integrated nested Laplace approximation (INLA) to generate seasonal suitability maps for
immature Ae. aegypti covering the whole municipality of Rio de Janeiro at Aedes Ćight range
resolution using suitability indicators and ovitrap counts. Entomological surveillance data form
ovitraps and the Rapid Assay of the Larval Index for Ae. aegypti (LIRAa) were applied for
evaluation. MET and MLT stand for the mean egg per trap and mean larva per trap rate
collected monthly via ovitraps. BI and HI represent the Breteau - and House indices collected
during LIRAa.
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2.1 Generation of suitability indicators

Urban suitability indicators for immature Ae. aegypti were selected based on
availability and a priori expectation of factors inĆuencing immature Ae. aegypti
abundance. Spatial as well as spatiotemporal covariates with differing resolu-
tions were retrieved to interpolate entomological surveillance data considering
the limited mosquito Ćight range. The identiĄed locations of common Ae. aegypti
breeding sites were considered as micro-habitat indicators, while those indicators
collected at a coarser spatial scale were classiĄed as macro-habitat indicators (cf.
Figure 2).

In this study, micro-habitat indicators were modeled concerning typical breed-
ing sites of Ae. aegypti, which include artiĄcial water containers such as water
tanks, potted plants, trash bins, unmounted car tires, or dumpsters often found
in close vicinity to human settlements. All these containers can harbor stagnant
water after rainfall, which is highly suitable for Ae. aegypti oviposition and sub-
sequent adult population development. We hypothesized that their spatial distri-
bution and occurrence, in the form of container density, could serve as a reliable
indicator for the abundance of immature Ae. aegypti in urban environments. In
addition to micro-habitat urban suitability indicators, we hypothesized a range of
additional macro-habitat urban suitability indicators for immature Ae. aegypti.
These indicators encompass a broad range of spatiotemporal proxies describ-
ing urban landscape in terms of demography, socio-economy, land use, climate,
weather, green spaces, and water availability. The corresponding hypotheses were
derived from previous literature (cf. Appendix A). An extended description of
the applied methods and the hypothesized spatiotemporal inĆuences of suitability
indicators for the abundance of immature Ae. aegypti can be found in Appendix
B.
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Figure 2: Grouped stack of self-generated urban suitability indicators for immature Ae. ae-
gypti, featuring data sources, methods employed for retrieval, and formulated hypotheses for
evaluation with entomological surveillance data. A more dense collection of proposed indicators
with references for assumed hypothesises and data source is listed in the supplements. Indi-
cators marked with an asterisk (*) represent spatiotemporal factors, while those without an
asterisk (*) were considered to be temporally constant in our case study.
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2.2 Assessment of suitability indicators for immature Ae. aegypti

To quantitatively evaluate how well urban indicators can capture the inner-
urban distribution of immature Ae. aegypti abundance measured by entomological
ovitrap data, we ran a negative-binomial generalized linear regression model (NB-
GLM) with a log-link function (Hilbe, 2012). We ran this model for several
estimated mosquito Ćight range scenarios to additionally test the robustness of
our results. The NB-GLM was selected as it allows the model to account for the
overdispersion present in the applied entomological count data (cf. Appendix C).
Corresponding equations and further explanations were given in Appendix D.

To assess the capability of indicator-driven interpolations of ovitrap counts
to estimate seasonal indices from LIRA, we organized monthly ovitrap data into
quarters that corresponded to the four LIRAa seasons. This grouping was per-
formed using the feature vector of the best-performing Ćight range buffer, iden-
tiĄed through the NB-GLMs. Subsequently, we Ątted a Bayesian spatiotemporal
model with INLA (Rue and Lindgren, 2024), to generate seasonal and spatially
continuous urban suitability maps for immature Ae. aegypti covering the whole
municipality of Rio de Janeiro. A more detailed description of the modeling was
provided in Appendix E.

To quantitatively assess the generated urban suitability maps for immature
Ae. aegypti, we compared the seasonal posterior means of the spatial random
effects with seasonal LIRAa measurements using scatter plots. Additionally, we
calculated the PearsonŠs correlation coefficient and applied locally weighted scat-
terplot smoothing (LOESS) across all seasons. To achieve this, zonal statistics
were performed on LIRAa strata for each of the four seasons (Jan-Mar; Apr-
Jun; Jul-Sep; Oct-Dec) and response variables, respectively. Before calculating
zonal statistics, continuous egg and larva interpolations were clipped using the
urbanization area to avoid false inference and high bias, as interpolations were
created using egg and larval counts from urbanised area only. The results were
then compared with mean values of ovitrap counts from the Ąeld.
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3 Results

3.1 Inference capacity of suitability indicators

The results presented in Table 1 underscore the degree to which hypothesis-
driven urban indicators for Ae. aegypti suitability can capture entomological
surveillance data on immature abundance collected via ovitraps in the munic-
ipality of Rio de Janeiro for the year 2019, given the constraints of a limited
Aedes Ćight range. The CohenŠs explained deviance for NB-GLMs, using the
seasonal mean eggs per trap (S-MET) rate as a response variable, reached up to
0.7253 and varied only marginally (+/- 0.003) for different simulated Ćight range
buffers. Increasing the Ćight range buffer from 50m to 1 000m exhibited similar
patterns for models using the larval count as a response variable. In this case,
the predictive performance of the collected urban indicators was slightly higher,
reaching a CohenŠs pseudo-R2 of 0.7473 at a Ćight range of 200 m. This means
that 74.73% of the deviance in the response is explained by hypothesis-driven ur-
ban indicators for immature Ae. aegypti suitability derived from openly available
geospatial data. The deviance function of the NB-GLM captured the increasing
variance with the mean that is typical for count data. Upon evaluating models
with respect to both designated response variables, the best performance was
observed in association with a Ćight range buffer characterized by a diameter of
200 m.

Table 1: CohenŠs explained deviance for NB-GLMs using seasonal mean eggs per trap (S-MET)
and seasonal mean larva per trap (S-MLT) rates of 2019 as response variables. Urban suitability
indicators for immature Ae. aegypti, employed as explanatory variables, were collected under
various Aedes Ćight range scenarios within different estimated Ćight range buffers around ovitrap
locations. The results indicate that the proposed method allows for modeling on different spatial
scales with consistent performance. The Ćight range scenario with the best performance for
each entomological index was indicated in bold. The 200 m Ćight range scenario exhibited
the highest CohenŠs pseudo-R2 when evaluating the combined results of S-MET and S-MLT.
Ovitrap locations were treated as independent observations, indicating restricted Ae. aegypti
dispersal.

Entomological index Aedes Ćight range scenarios CohenŠs pseudo-R2

S-MET

50m 0.7243
100 m 0.7226
200 m 0.7246
400 m 0.7223

1 000 m 0.7253

S-MLT

50m 0.7468
100 m 0.7444
200 m 0.7473

400 m 0.7443
1 000 m 0.7463

S-MET = seasonal mean egg per trap rate; S-MLT = seasonal mean larva per trap rate
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3.2 Seasonal suitability maps for the municipality of Rio de Janeiro

Figure 3 displays, as a highlight of this work, seasonal suitability maps for
immature Ae. aegypti covering the municipality of Rio de Janeiro. The seasonal
immature Ae. aegypti suitability maps accompany the spatiotemporal trend of
entomological Ąeld measurements is presented in Figure C. 1. While the spatial
variance of predicted immature Ae. aegypti suitability diverges signiĄcantly due
to the small-scale heterogeneity of the urban landscape in the city of Rio de
Janeiro, temporal effects are minimal owing to the year-long (sub)tropical climate
conditions in southeast Brazil.

Figure 4 provides a more detailed insight into the results by illustrating how
our best spatiotemporal model for Ae. aegypti larvae suitability (cf. Table 1)
performs in interpolating entomological Ąeld measurements from ovitrap loca-
tions. SpeciĄcally, it focuses on the exemplary regions of Jacarepaguá (RRJ)
and Galeão (GIG) airports, chosen for their distinct spatial heterogeneity in the
urban landscape, which enables a closer examination of the results at a Ąner
spatial scale. While ovitrap larval counts and interpolated immature Ae. aegypti
suitability remained predominantly low around both airport runways and build-
ings, abundance values were higher in nearby residential regions when examining
measurements from the summer season of January to March 2019. The spatial
heterogeneity observed in immature Ae. aegypti suitability at a small scale, as
depicted in the map, highlights the impracticality of relying solely on the current
state-of-the-art approach of coarse entomological surveillance at ovitrap sample
locations or within large LIRAa strata (cf. Figure C. 1) for targeted vector control
interventions (Flores and OŠNeill, 2018).

Figure 5 depicts the alignment between the generated suitability maps and
spatiotemporal measurements obtained from entomological surveillance (ovitrap;
LIRAa). Using locally estimated scatterplot smoothing (LOESS) analysis, we ob-
served that the predicted suitability values did not consistently align with seasonal
indices derived from LIRAa, regardless of the season (cf. Table 2). Correlation
analysis between predicted suitability and ovitrap Ąeld counts, averaged for each
LIRAa zone over all seasons, reveals correlation coefficients of up to 0.76 for Ae.
aegypti larval count. However, the correlation between suitability predictions
and LIRAa indices remains low, not exceeding a correlation coefficient of 0.08,
as calculated between larva suitability and the LIRAa house index for the year
2019.
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Figure 3: Seasonal suitability maps for Ae. aegypti eggs in 200 m resolution covering the ur-
banized area of the city of Rio de Janeiro for 2019, using a synergetic approach of entomological
surveillance, urban landscape indicators for immature Ae. aegypti and bio-ecological knowledge
on limited Aedes Ćight range. The months spanning from December to April align with the
wet season in the municipality of Rio de Janeiro, while the period from May to November
corresponds to the dry season. Seasonal suitability maps for Ae. aegypti larvae are shown in
Appendix F
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Figure 4: Entomological surveillance measurements from ovitraps and interpolated urban
suitability for Ae. aegypti larvae between January and March 2019 at a 200 m scale around
Jacarepaguá (RRJ) and Galeão (GIG) airport in the city of Rio de Janeiro. ©2024 Google
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Figure 5: PearsonŠs correlation coefficients, scatterplots, and locally estimated scatterplot
smoothing (LOESS) for seasonal measurements of ovitrap, LIRAa and immature Ae. aegypti
suitability aggregated on LIRAa zones for the municipality of Rio de Janeiro in 2019. (BI:
Breteau index, HI: house index).
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Table 2: PearsonŠs correlation coefficients for seasonal measurements of ovitrap, LIRAa and
immature Ae. aegypti suitability aggregated on LIRAa zones for the municipality of Rio de
Janeiro in 2019. The months spanning from December to April align with the wet season in
the municipality of Rio de Janeiro, while the period from May to November corresponds to the
dry season.

Suitability Season Egg (Ovitrap) Larva (Ovitrap) HI (LIRAa) BI (LIRAa)

Egg

JAN-MAR 0.55 0.48 -0.01 -0.01
APR-JUN 0.83 0.74 -0.04 -0.04
JUL-SEP 0.73 0.60 -0.08 -0.09
OCT-DEC 0.81 0.72 0.07 0.07

Larva

JAN-MAR 0.70 0.76 0.08 0.09
APR-JUN 0.71 0.77 -0.01 -0.01
JUL-SEP 0.53 0.66 -0.05 -0.05
OCT-DEC 0.69 0.76 0.10 0.10

4 Discussion

4.1 Enhancing vector control strategies through urban landscape indi-
cators

Entomological surveillance plays a crucial role in guiding vector control strate-
gies aimed at mitigating the transmission of Aedes-borne diseases. However,
traditional sample-based methodologies used in surveillance efforts often fail to
capture the complex spatial dynamics of Ae. aegypti abundance, particularly in
heterogeneous urban environments such as the municipality of Rio de Janeiro.
The high spatial variability in mosquito populations is inĆuenced by factors such
as small habitat size and diverse landscape characteristics, which create varied
breeding opportunities for Ae. aegypti. In large municipal areas, where dengue
fever outbreaks are more frequent and vector control targeting is of paramount
importance due to higher disease incidences, understanding the spatial distribu-
tion of Ae. aegypti becomes essential. Limited public health resources necessitate
a strategic focus on priority areas where Ae. aegypti populations are most con-
centrated to maximize the impact of vector control efforts.

To address the challenge of spatially targeted vector control, we developed
a framework to generate hypothesis-driven urban landscape indicators to model
urban suitability for immature Ae. aegypti. These indicators derived from openly
available geospatial data sources were applied to enrich entomological surveillance
and create continuous urban suitability maps at Aedes habitat size. By integrat-
ing information on landscape characteristics with ovitrap data, our approach
provided valuable insights into the spatial distribution of Ae. aegypti populations
in the municipality of Rio de Janeiro and identiĄed priority areas for intervention
(cf. Figure 3). However, it is important to acknowledge the potential limitations
associated with the use of digital indicators, including data availability, accuracy,
and interpretation. Additional value was particularly generated through the com-
plementary application of both digital indicators and entomological surveillance.
An alternative selection of relevant indicators could potentially further improve
our results. However, limits of the proposed framework will always be given by
the bias in the entomological collection process and due to non-measurable micro-
scale circumstances affecting the entomological count data, applied for indicator
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validation. Despite these challenges, our Ąndings represent a signiĄcant advance-
ment in the Ąeld of vector control targeting and offer valuable guidance for public
health practitioners in the municipality of Rio de Janeiro and policymakers in
their efforts to combat Aedes-borne diseases.

Our studyŠs innovation encompassed (i) the high spatial resolution of im-
mature Ae. aegypti suitability maps, (ii) the incorporation of digital indicators,
including the density of common Ae. aegypti breeding sites to model Ae. ae-
gypti micro-habitats, and (iii) the comprehensive comparison of ovitrap-based
Ąeld counts and suitability interpolations with block-level LIRAa indices collected
across an entire municipal area, accounting for the limited Ćight range of Aedes
mosquitoes. However, the current transferability of our conceptual framework
to other urban areas is constrained by signiĄcant labour-costs, as the generation
of spatiotemporal indicators remains resource-intensive, albeit reliant on openly
available data sources. The choice of urban immature Ae. aegypti suitability
indicators may have also inĆuenced our main Ąndings. Exploring different indi-
cators could yield varied spatial distribution patterns of immature Ae. aegypti
suitability estimates, potentially shaping the outcomes of our analysis.

Future research should investigate the sensitivity of our results to (i) diverse
indicator selections, (ii) entomological surveillance data from multiple years, and
(iii) other case study regions, in order to enhance the understanding of the robust-
ness of our Ąndings. Follow-up activities are planned to build upon our framework
to derive suitability indicators for the secondary vector of dengue Ae. albopictus,
which has been reported in Brazil for almost 30 years, for transmitting yellow
fever virus (YFV), dengue virus (DENV), Zika virus (ZIKV), and chikungunya
virus (CHIKV) (Pancetti et al., 2015; Ricas Rezende et al., 2020). Further re-
search could then also analyze the feature importance of the proposed indicators
across various mosquito species.

4.2 Implications for dengue control in the municipality of Rio de
Janeiro

The ŞBrazilian Guidelines for Prevention and Control of ArbovirusesŤ (Vinhal
Frutuoso and Barbosa Duraes, 2023) advocate for targeted actions, particularly
in large municipalities with more than one million inhabitants, such as the mu-
nicipality of Rio de Janeiro. Between 2013 and 2022, 52% of probable dengue
fever cases in Brazil were concentrated in municipalities with a population equal
to or greater than 100 000. The Brazilian Ministry of Health recommends the
implementation of several key strategies: (i) entomological monitoring using ovi-
traps, (ii) household residual spraying (BRI-Aedes), (iii) the deployment of lar-
vicide spraying stations, (iv) the introduction of mosquitoes carrying Wolbachia,
and (v) the utilization of sterile insect techniques to control Ae. aegypti. These
technologies should be deployed on the basis of an action plan, which requires
intra-municipal risk stratiĄcation, and should always be accompanied by home
visits, depending on the area at risk, and actions to interface with society.

The presented Ąndings in this study aim to align with this official guideline
by proposing urban immature Ae. aegypti suitability indicators (cf. Figure 2)
that can be applied for risk stratiĄcation, as shown in Figure 3. Here, the term
ŞstratiĄcationŤ refers to the classiĄcation of the risk of endemic areas based on
their eco-epidemiological characteristics. This approach aids in identifying areas
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that require distinct approaches to arbovirus control. Risk stratiĄcation serves as
a tool to organize prevention and control activities at the municipal level, whether
in priority or non-priority areas, during periods of low transmission or during the
preparatory phase. By providing a method for assessing the suitability of areas
for Ae. aegypti breeding, the proposed indicators in this study facilitate the
implementation of targeted vector control measures, thereby reducing the impact
of arbovirus epidemics and intensifying control actions in higher-risk areas.

Our results are designed to particularly support vector control efforts in the
municipality of Rio de Janeiro by creating a more accurate action plan that
goes beyond relying solely on sample-based entomological surveillance and basic
hotspot analysis. Instead, we propose a more advanced approach considering the
heterogeneous nature of urban landscapes at the scale of Aedes Ćight range. Our
generated suitability maps (cf. Figure 3) not only pinpoint priority action areas
but also assign priority levels based on Ae. aegypti immature suitability values.
This nuanced approach allows for the tailored selection of interventions, guided
by priority scores alongside a cost-beneĄt analysis, resulting in a more efficient
overall vector control strategy.

For high-priority areas, technical methods such as (i) dissemination stations
containing larvicide, (ii) sterile insect techniques, or (iii) the Wolbachia method
could be relevant to solve structural problems arising from socio-economic in-
equalities in water supply and solid waste collection within the municipality of
Rio de Janeiro. Wolbachia, a naturally occurring bacterium, can be introduced
into mosquito cells to curb the transmission of viruses by Ae. aegypti and in-
Ćuence mating outcomes, thereby aiding its spread and sustainability in natural
mosquito populations. Larvicides have been employed in a rotation scheme in
Brazil since 2012. In this scheme, the products used include Bacillus thuringien-
sis israelensis (BTI), insect growth regulators (IGR) such as juvenile hormone
analogs (JHA) or chitin synthesis inhibitors (CSI), and more recently, Spinosad,
a neurotoxic insecticide (Valle and Aguiar, 2023).

Conversely, in low-priority areas, action may be triggered only upon reaching
a threshold of egg and larva density. Here, potential actions may encompass: (i)
mechanical methods such as the elimination of stagnant water in common breed-
ing site, (ii) the application of the larvicide Temephos to rainwater tanks, or (iii)
launching health education initiatives to engage the community. When target-
ing community-engaged breeding site removal based on the presented suitability
maps, it is vital to consider additional socio-economic gradients. Individuals
from diverse socio-economic backgrounds may prioritize different actions, such
as safety, food security, access to clean water and sanitation facilities, health-
care services, education, and employment opportunities. Besides the tailored
selection of interventions for high and low priority areas, universal vector con-
trol measures should be consistently implemented in all regions throughout the
year. These measures could include house-to-house visits, inspections of strategic
points such as cemeteries, tire repair shops, junkyards, scrap metal or building
materials deposits, and bus garages, as well as household residual spraying for
Aedes mosquitoes (BRI-Aedes).
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5 Conclusion

In this paper, we demonstrated the potential of retrieving immature Ae. ae-
gypti suitability indicators from openly available geodata, to model the urban
likelihood of hosting mature Ae. aegypti populations considering limited Aedes
Ćight range. Such high-resolution maps are essential to (i) inform and opti-
mize targeted vector control interventions such as Wolbachia, (ii) allow cost sav-
ings in entomological surveillance, (iii) reduce environmental pollution, including
mosquito insecticide resistance, and most importantly, (iv) provide more efficient
overall disease control. The proposed synergistic method of integrating entomo-
logical surveillance with bio-ecological knowledge and digital landscape indicators
yielded insights into the high spatial variability of urban immature Ae. aegypti
distributions in the municipality of Rio de Janeiro, which cannot be captured by
sample-based surveillance techniques alone. ScientiĄc advancements were par-
ticularly achieved by this study design in the realm of spatial resolution, while
temporal modeling remained coarse due to the absence of entomological Ąeld
measurements at daily time intervals corresponding to the mosquito life cycle.
Further investigation in other cities embracing the Digital Urban Twin concept,
particularly when coupled with emerging smart trap technologies to enhance the
temporal resolution of suitability inference, appears promising, notwithstanding
the ambiguity surrounding the relationship between adult and larvae abundance.
With this major contribution from our interdisciplinary research, we aim to cre-
ate new pathways for science in computational eco-epidemiology. Additionally,
we seek to provide useful datasets for future research on inner-urban pathogen
transmission dynamics and to support public health authorities in the Ae. ae-
gypti-endemic city of Rio de Janeiro in developing more focused vector control
strategies where scalability in urban settings remains challenging.
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Appendix

Appendix A - Generated suitability indicators for

immature Ae. aegypti

Table A. 1: Collection of proposed urban suitability indicators for immature Ae. aegypti
listed with their assigned category, formulated hypothesis, data source, and summary statistics
for 200-meter ovitrap buffer in the city of Rio de Janeiro.
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Appendix B - Methods for the retrieval of suit-

ability indicators

Appendix B.1 - Micro-habitat indicators

The generation of water tank counts as a micro-habitat indicator derived from
satellite imagery was extensively described in our previous research study for the
municipality of Rio de Janeiro (Knoblauch et al., 2023). In this prior work, we
devised a semi-supervised self-training algorithm to decrease the need for manual
labeling in the automated detection of water tanks within urban areas using satel-
lite imagery. The trained water tank detection model yielded a precision score of
0.864, a recall of 0.823, and an F1 score of 0.843 on independent test datasets.
In addition to the city-wide water tank detection, we derived the density of trash
cans, catch basins, manholes and water valves from the Mapillary API (Mapillary,
2023). For the mapping of potted plants, small and large trash bins, dumpsters,
storm drains, unmounted car tires, and plastic bags, we Ąne-tuned a YOLOv5
model using street view imagery. Applied methods were extensively described
and evaluated in Knoblauch et al. (2024). The trained computer vision model for
multi-class object detection achieved a precision score of 0.853, a recall of 0.904,
and an F1 score of 0.878, weighted by instance average across breeding containers
in independent test datasets. Figure B. 1 illustrates some true positive examples
of container detection generated in our previous studies (Knoblauch et al., 2024;
Knoblauch et al., 2023). The statistical signiĄcance of these novel micro-scale
suitability indicators for immature Ae. aegypti was established in our previous
studies conducted in the municipality of Rio de Janeiro from 2019 to 2022. How-
ever, the signiĄcance was discussed to depend on the timestamp of satellite and
street view imagery, solid waste collection, the ephemeral nature of some breeding
container types, the spatial coverage of street view images limiting the complete-
ness of breeding site detection (Hou and Biljecki, 2022), and interventions for
large-scale breeding site removal.

Figure B. 1: True positive examples of Ae. aegypti breeding site detection applying computer
vision models on satellite and street view imagery to create micro-habitat urban suitability
indicators for immature Ae. aegypti covering the whole municipal area of Rio de Janeiro. The
top-right map illustrates water tank density in the city of Rio de Janeiro, derived from object
detections (Knoblauch et al., 2023). ©2024 Google
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Appendix B.2 - Macro-habitat indicators

The indicators of human population density and building density were se-
lected as macro-habitat proxies of human inĆuence on the Ae. aegypti population,
considering that human activities provide artiĄcial water containers suitable as
breeding habitats (Espinosa et al., 2016; Kamgang et al., 2010; Lindsay et al.,
2017; Tedjou et al., 2019; Wilson-Bahun et al., 2020). The indicators slope and
water Ćow accumulation, deĄned by the Horton-Strahler number, were selected in
consideration of their inĆuence on water accumulation (Cornel et al., 2016). The
water Ćow indicator was generated by applying a D8 approximation algorithm to
5 m elevation data provided upon request by the Urban Data Platform from PP-
GAU UFF (PPGAU UFF, 2023a). The indicator elevation level, including build-
ing heights, was additionally added as a covariate to account for Ae. aegyptiŠs
sensitivity to altitude (Equihua et al., 2017; Liew and Curtis, 2004; Lozano-
Fuentes et al., 2012; Moreno-Madriĳán et al., 2014; Roslan et al., 2022; Roslan
et al., 2013). The indicator local climate zones was selected to consider Ae. ae-
gypti climate-sensitive reproduction and fertility rate (Azevedo et al., 2018; Jesús
Crespo and Rogers, 2021). This indicator - based on urban climate estimates
by Demuzere et al. (2021) - considers ten different urban built-up types (com-
pact highrise, - midrise, - lowrise, open highrise, - midirse, - lowrise, lightweight
lowrise, large lowrise, sparsely built, heavy industry) inĆuencing shadow and heat
accumulation together with seven land cover classes (dense, trees, scattered trees,
bush and scrub, back rock or paved, bare soil or sand, water) in 30 m resolution.
The monthly indicators of air temperature (Chang et al., 2007; Lambrechts et al.,
2011; Misslin et al., 2018; Tsuda and Takagi, 2001), precipitation (Barrera et al.,
2011; Li et al., 1985; Souza et al., 2010; Stewart Ibarra et al., 2013; Valdez et al.,
2018; Vasconcelos et al., 2022; Vasconcelos et al., 2021), and relative humidity
(Costa et al., 2010; Lega et al., 2017; Nasir et al., 2017; Reiskind and Louni-
bos, 2009) were derived from the Alerta system (Centro de Operacoes Rio, 2023).
Therefore, we interpolated 15-minute interval measurements from 33 weather sta-
tions during the study period of 2019 to consider both climate and meteorological
effects on Ae. aegypti populations. Additional urban heat island effects (Araujo
et al., 2015; Oliveira Lemos et al., 2021; Wilk-da-Silva et al., 2018) were retrieved
by Lucena et al. (2015), Peres et al. (2018), and Miranda et al. (2022) including
cloud masking techniques, atmospheric correction and surface emissivity. As a
further proxy to describe the habitat suitability of immature Ae. aegypti in ur-
ban landscape, we calculated the road network density from OpenStreetMap to
consider the barrier effects of roads on mosquito populations (Kaplan et al., 2010;
Regilme et al., 2021). The distance to coastal water bodies was also generated
utilizing OSM to account for additional wind exposure effects with a negative
inĆuence on mosquito activity (Wong and Jim, 2017). The distance and coverage
of urban drain lines were derived from a hydrographic data set (Data.Rio, 2023b)
as an additional urban-speciĄc proxy for immature Ae. aegypti populations. Nor-
malized difference vegetation index (NDVI) (Britos Molinas et al., 2022; Chaves
et al., 2021; Estallo et al., 2018; Estallo et al., 2008; Martín et al., 2022a; Martín
et al., 2022b) and normalized difference water index (NDWI) (Britos Molinas
et al., 2022; Estallo et al., 2018; Estallo et al., 2012; German et al., 2018) were
computed using Sentinel-2 satellite imagery from the European Space Agency to
consider vegetation types and water availability inĆuencing Ae. aegypti especially
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in non-built up areas. An algorithm for cloud masking was applied to calculate
the mean of cloud-free pixels at a 30 m resolution from January 2019 until De-
cember 2019 using the Google Earth Engine. After band calculations, a threshold
of ≥ 0.2 for the NDVI and ≥ 0.3 for the NDWI was applied to avoid false as-
sumptions. On top of this, land cover maps were extracted from DataRioPortal
(Data.Rio, 2023a) to incorporate land use classes (Albrieu-Llinás et al., 2018;
Benitez et al., 2020; Egid et al., 2022; Landau and van Leeuwen, 2012; Lorenz
et al., 2020a; Montagner et al., 2018; Vanwambeke et al., 2007; Westby et al.,
2021; Young et al., 2017; Zahouli et al., 2017) such as the location of favelas
and to calculate the minimum distance from ovitraps to forest areas to consider
forest-speciĄc climate effects such as locally increased humidity (Costa et al.,
2010; Rowley and Graham, 1968). An urban morphological clustering was com-
puted using the momepy python library (Fleischmann, 2019) and official building
footprints provided upon request by the Urban Data Platform from PPGAU UFF
(PPGAU UFF, 2023b). Most recent census statistics for 10,233 strata such as the
amount of collected rubbish (Bonnet et al., 2020; Chumsri et al., 2020; Manrique-
Saide et al., 2008; Maquart et al., 2022; Stewart Ibarra et al., 2014; Whelan et
al., 2020), statistics about waste water management (Burke et al., 2010; Chan
et al., 1971; Martini et al., 2019; Novaes et al., 2022), sanitation (Gomes et al.,
2023), and education level (Menchaca-Armenta et al., 2018; Stefopoulou et al.,
2018) as well as socio-economic indices (Liu-Helmersson et al., 2019; Lorenz et al.,
2020b; Moreno-Madriĳán et al., 2014; Nagao et al., 2003; Vannavong et al., 2017)
were obtained from the IBGE (Instituto Brasileiro de GeograĄa e Estatística),
IPP (Instituto Pereira Passos, Prefeitura do Rio de Janeiro), IPEA (Instituto de
Pesquisa Econômica Aplicada), and the DataRioPortal.
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Appendix C - Entomological surveillance data

Two types of entomological surveillance data were applied for validation in our
study (cf. Figure C. 1). Firstly, ovitrap data, comprising egg and larval counts for
Ae. aegypti, were acquired for the training of the NB-GLM and the exploration
of the Ąrst research question. This dataset was gathered by the municipal health
ministry of Rio de Janeiro, covering 2 698 locations on a monthly basis, from
January to December 2019. Secondly, House and Breteau indices for Ae. aegypti
were extracted from LIRAa (Ministério da Saúde Brazil, 2013), to investigate
the second research question. These indices, collected by the municipal health
ministry of Rio de Janeiro, were based on 250 predeĄned city strata. LIRAa
occurred periodically during February 3-9, 2019; May 5-11, 2019; August 4-10,
2019; and October 13-19, 2019 (Secretario Municipal de Saúde Rio de Janeiro,
2024a). The House index (HI) gauged the number of larva-infested houses relative
to the total number of visited buildings during the survey, while the Breteau index
(BI) represented the number of positive containers per 100 houses inspected. The
municipal health ministry of Rio de Janeiro categorized the house index into three
risk classes: HI <0.9 (minor), 0.9 ≤ HI ≤ 3.9 (signiĄcant), and HI > 3.9 (severe).

The selection of ovitrap data for addressing the Ąrst research question and
LIRAa data for the second research question was based on the spatial coverage
of the entomological measurements. Ovitrap data allowed for an examination of
urban suitability indicators within the vicinity of ovitrap locations, acknowledg-
ing that inferences on mosquito abundance for locations beyond the Ae. aegypti
Ćight range may be invalid. LIRAa data provided a broader assessment to eval-
uate continuous immature Ae. aegypti suitability maps generated from ovitrap
data and suitability indicators together. It is crucial to note that all entomologi-
cal surveillance data was gathered manually, introducing potential biases due to
human error, observer variability, and limitations in sampling frequency and cov-
erage. These biases may lead to inaccuracies in estimating spatial suitability for
Ae. aegypti, as well as errors in temporal trends, impacting the reliability of our
analysis. Additionally, micro-scale factors, such as the positioning of an ovitrap
in shaded or unshaded areas, can impact the observation values. The positioning
of ovitraps was done in a systematic manner, more or less uniformly across the
built-up areas of the municipality of Rio de Janeiro. This positioning resulted in
an average distance between the two closest ovitraps of 330.38m.

During LIRAa, the urban area was divided into 250 strata that represent
homogeneous urban characteristics. According to the study design (Ministério
da Saúde Brazil, 2013), one stratum consisted of 8 000 to 12 000 properties, of
which 20% were inspected following a structured schema. Field agents assessed
the number of eggs and larvae in all water containers present in each household
surveyed. The most prominently affected container types, ranging from water
tanks and ground-level deposits to furniture such as plates and vases, as well as
the class of Ąxed deposits, tires, garbage, and natural plants such as bromeliads,
were also recorded. For each container with mosquito larvae, the agents collected
a sample that was sent to the Vector Laboratory of the Agency for the Control
of Endemic Diseases for larval identiĄcation. Further details regarding the place-
ment of ovitraps and the entomological surveillance in households are currently
lacking in our knowledge, but could potentially be provided by the municipal
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health ministry of Rio de Janeiro upon request.
The substantial spatial disparity observed between ovitrap-based suitability

predictions and LIRAa entomological indices is likely attributed to variations in
collection methodologies. The BI and HI indices, which serve as block-level in-
dicators derived from a manual sampling process, contrast with ovitrap counts
obtained from Ąxed measurement stations purposely designed as breeding sites.
These stations, characterized by water retention and a dark color to attract
mosquitoes, differ signiĄcantly from manual sampling methods. Whereas LI-
RAa indices depend on the active search for breeding sites by health agents,
the ovitrap is ŚsoughtŠ by the mosquito, making ovitrap counts a more sensitive
indicator. Furthermore, the LIRAa indices typically register low values, given
the temporary nature of positive recipients and their limited persistence over
time. Consequently, a comprehensive and representative sample necessitates the
inclusion of numerous properties, considering that the majority may lack posi-
tive recipients. The concentrated distribution of immature counts within LIRAa
zones may have also skewed the comparative results. However, in operational
terms, ovitraps could never replace LIRAa, as it provides additional indices like
the Şcontainer type indexŤ, monitoring infestation levels by container types not
considered in this study.

In addition to the structural components mentioned, the reliability of LIRA
indices relies on human components such as the dedication and expertise of Ąeld
workers, encompassing their comprehension of vector biology and index calcu-
lation methods (Valle and Aguiar, 2023). In a previous study, Ribeiro et al.
documented a high level of coincidence between HI and BI derived from LIRAa
in the municipality of Rio de Janeiro (Ribeiro et al., 2021). However, from a
biological perspective, the BI is expected to be greater than the house index be-
cause the female Aedes spreads the eggs in close locations. Our Ąndings on the
misalignment with ovitrap counts corroborate this assessment of the fragility of
the indicators generated by LIRAa.

Another factor contributing to spatial divergence is that ovitrap-based surveil-
lance overlooks indoor breeding sites. Additionally, ovitrap surveillance concen-
trates on egg and larval counts, whereas LIRAa encompasses infestation by Ae.
aegypti pupae, which exhibit distinct lifespans and lower mortality rates. Compa-
rable Ąndings have been reported by Nascimento et al. (2020), who additionally
observed that ovitraps provide a more rapid information due to heightened sensi-
tivity compared to LIRAa in detecting Ae. aegypti. Getis et al. (2003), indicated
spatial divergence between immature and adult Ae. aegypti populations. As the
life cycle of immature Ae. aegypti, from emergence as 1st instar (L1) larvae to
adulthood, is estimated to be around 8-10 days, varying with humidity and tem-
perature conditions (Center for Disease Control and Prevention, 2024; Hossain
et al., 2022), comparing entomological data from different surveillance techniques
on a seasonal level may be too coarse (Cromwell et al., 2017; Morrison et al.,
2004).
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Figure C. 1: Graphics illustrating that in the tropical, Aedes-endemic municipality of Rio
de Janeiro, spatial variance in Ae. aegypti abundance tends to exceed temporal variance at
seasonal scale. The entomological surveillance data emphasizes high spatial variability in Ae.
aegypti abundance at mosquito habitat scale, which is difficult to capture with the design of the
LIRAa survey. This underscores the identiĄed research gap for continuous suitability maps at
Ćight range resolution considering urban landscape to advance vector control. a - Map of mean
monthly Ae. aegypti larval count per ovitrap and amount of seasons with house index above 0.9
in 2019, indicating signiĄcant risk, as deĄned by LIRAa conducted for the municipality of Rio de
Janeiro; b - Seasonal boxplots of entomological surveillance variables from ovitraps and LIRAa
for the year 2019. The months spanning from December to April align with the wet season in the
municipality of Rio de Janeiro, while the period from May to November corresponds to the dry
season. The small size of the boxes in the ovitrap boxplots (left) and the presence of numerous
outliers towards higher counts indicate a negative binomial distribution, with extreme values
deviating signiĄcantly from the majority of the data points with zero egg and larval counts;
c - Histograms showing the seasonal frequency of applied entomological datasets highlighting
overdispersion for the year 2019.
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D - Evaluation of suitability indicators for imma-

ture Ae. aegypti

The negative-binomial generalized linear regression model (NB-GLM) with a
log-link function was deĄned as follows:

Yi ∼ NB(µ̂i, θ̂)

E(Yi) = µ̂i ∗ (1 − θ̂)/θ̂

Var(Yi) = µ̂i ∗ (1 − θ̂)/θ̂2

log(µ̂i) = β̂0 +
79
∑

j=1

β̂j ∗ PCij

(1)

As our response variable Yi we selected the seasonal mean eggs per trap (S-
MET) and seasonal mean larva per trap (S-MLT) rates for the year 2019. As
explanatory variables, we used all main effects of our self-generated urban indi-
cators for immature Ae. aegypti suitability as listed in Table A. 1. All collected
urban indicators were clipped to the geographical extent of the municipality of
Rio de Janeiro. Using this stack of proxies, zonal statistics were run in different
square buffers of Ćight range size around ovitrap locations to create Ąve different
feature vectors. Based on literature Ąndings, we assumed that the Ćight range
of Ae. aegypti is consistently lower than 1 000 m for the municipality of Rio de
Janeiro (Honório et al., 2003; Moore and Brown, 2022). Therefore, we deĄned
Ćight ranges of 50, 100, 200, 400 and 1 000 m as our Ćight range scenarios. The
aerial coverage of ovitrap buffer regions in built-up areas showed notable variation:
from 1.05% for a 50 m Ćight range buffer to 15.41% for a 200 m buffer, and up to
92.76% for a 1 000 m buffer. The lower percentages for smaller buffers, indicative
of assumptions regarding lower mosquito Ćight ranges, underscore the difficulty in
capturing the high spatial variability of urban immature Ae. aegypti abundance
with sample-based entomological surveillance. To remove collinearity within our
feature vectors we ran a Principal component analysis (PCA). All resulting 79
principal components (PC) were utilized to run the negative-binomial GLMs for
each feature vector. The combination of Ąve different Ćight range buffers and
the two response variables led to 10 different models, which were evaluated using
CohenŠs pseudo R-square (cf. Formula 2).

Cohen′s pseudo R2 = 1 − model deviance
null model deviance

Negative − binomial model deviance = 2
∑

(y · log( y
µ

) − (y + k−1)log( y+k−1

µ+k−1
))

(2)
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Appendix E - Generation of urban suitability

maps for immature Ae. aegypti

We modeled ovitrap egg and larval counts, denoted as the response vari-
able Yit, observed at distinct spatial locations i = 1, ..., 2698 and time periods
t = 1, 2, 3, 4 using a Bayesian spatiotemporal model with a negative-binomial
probability distribution. Given the observed overdispersion in the applied ento-
mological count data (cf. Figure C. 1), we employed a chi-squared test to evaluate
the adequacy of the negative-binomial distribution as a likelihood function. The
model assumes,

Yit ∼ NB(µ̂it, θ̂)

E(Yit) = µ̂it ∗ (1 − θ̂)/θ̂

Var(Yit) = µ̂it ∗ (1 − θ̂)/θ̂2

log(µ̂it) = β̂0 +
79
∑

j=1

β̂j ∗ PCitj + ξ(xi, t)

ξ(xi, t) = aξ(xi, t − 1) + w(xi, t),

(3)

and consists of an intercept β̂0, principal components of spatiotemporal suit-
ability indicators PCitj, and independent and identically distributed spatiotem-
poral random effects ξ(xi, t) that change in time with Ąrst order autoregressive
dynamics (♣a♣ < 1) (Blangiardo and Cameletti, 2015; Lindgren et al., 2011; Zuur
et al., 2017). The modelŠs incorporation of covariates is assumed to enhance
its predictive capability and facilitates a more holistic understanding of the ac-
tors inĆuencing immature Ae. aegypti suitability. The spatial model component
was modeled by INLA using the Euclidean distances between ovitrap locations, a
Matérn covariance function, and stochastic partial differential equations (SPDEs).
Gaussian Markov random Ąelds were built on triangle meshes considering bound-
ary effects that could artiĄcially inĆate variance near the edges of the study area
(cf. Figure E. 1). To map immature Ae. aegypti suitability in continuous space,
the inverse distance weighting (IDW) algorithm was applied to interpolate point
estimates from the mesh nodes to a uniformly distributed raster of 100 000 cells
for each season of 2019, visualized using QGIS (QGIS Association, 2024).

The presented Bayesian modeling results are highly dependent on the selection
of priors, particularly for building the Matérn covariance Ąeld. The most critical
assumptions in our case study were made for the Penalized Complexity (PC)
priors for the parametersŠ range and marginal standard deviation of the Matérn
Ąeld, modeling, among other factors, the extent of mosquito movement in space in
our case study. Besides that, passive dispersal of mosquito eggs and adults, driven
by transport and trade (Bennett et al., 2019; Díaz-Nieto et al., 2016; Eritja et al.,
2017; Guagliardo et al., 2015) was completely neglected in our study. Subsequent
investigations may delve into methodologies for establishing these priors through
more entomological surveillance and bio-ecological Ąeld studies. This would help
eliminate potential bias in immature Ae. aegypti suitability maps and could also
enable Ąne-tuning of the proposed framework for other mosquito species.
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Figure E. 1: Mesh of Delauney triangulations with 157 541 nodes created using R-INLA to
represent the municipality of Rio de Janeiro and build stochastic partial differential equation
(SPDE) for spatial modeling. The red nodes indicate the location of ovitraps.
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Appendix F - Seasonal suitability maps for Ae.

aegypti larvae

Figure F. 1: Seasonal suitability maps for Ae. aegypti larvae in 200m resolution covering the
urbanized area of Rio de Janeiro for 2019, using a complementary approach of entomological
surveillance, urban landscape indicators for immature Ae. aegypti and bio-ecological knowledge
on limited mosquito Ćight range. The months spanning from December to April align with
the wet season in the municipality of Rio de Janeiro, while the period from May to November
corresponds to the dry season.
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Abstract.

Urban mobility analysis using Twitter as a proxy has gained signiĄcant atten-
tion in various application Ąelds; however, long-term validation studies are scarce.
This paper addresses this gap by assessing the reliability of Twitter data for mod-
eling inner-urban mobility dynamics over a 27-month period in the metropolitan
area of Rio de Janeiro, Brazil. The evaluation involves the validation of Twitter-
derived mobility estimates at both temporal and spatial scales, employing over
1.6 × 1011 mobile phone records of around three million users during the non-
stationary mobility period from April 2020 to June 2022, which coincided with
the COVID-19 pandemic. The results highlight the need for caution when using
Twitter for short-term modeling of urban mobility Ćows. Short-term inference can
be inĆuenced by Twitter policy changes and the availability of publicly accessible
tweets. On the other hand, this long-term study demonstrates that employing
multiple mobility metrics simultaneously, analyzing dynamic and static mobil-
ity changes concurrently, and employing robust preprocessing techniques such as
rolling window downsampling can enhance the inference capabilities of Twitter
data. These novel insights gained from a long-term perspective are vital, as Twit-
ter - rebranded to X in 2023 - is extensively used by researchers worldwide to infer
human movement patterns. Since conclusions drawn from studies using Twitter
could be used to inform public policy, emergency response, and urban planning,
evaluating the reliability of this data is of utmost importance.

Keywords. Mobile phone records · Twitter · Human Mobility · Urban · Rio
de Janeiro · COVID-19

Introduction

The substantial increase in the volume of geodata collected worldwide on
human mobility behavior has the potential to yield valuable insights about var-
ious application domains, including urban transportation planning and epidemi-
ology (Barbosa et al., 2018). By leveraging information on human trajectories,
urban planners and policymakers can create more livable, sustainable, and re-
sponsive cities that cater to the needs of their inhabitants. This ranges from
optimizing traffic Ćow and more efficient resource allocation to understanding
infectious disease dynamics (Ruan et al., 2020; Wang et al., 2021a; Wang et al.,
2021b). However, the availability of freely-accessible mobility data sources with
high spatiotemporal resolution is limited, which often hampers quantitative re-
search on unexplained phenomena associated with human movement patterns.
Consequently, researchers have commonly resorted to open-access and georefer-
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enced Twitter data as a proxy for inferring human mobility patterns. Twitter, a
social media platform named X since 2023, enables users to tag their online posts
with geocoordinates. Inferring mobility patterns from this data involves tracking
the successive tweet locations of individuals over time. These locations typically
do not represent trajectories in the conventional sense of semi-continuous paths
but rather a random collection of locations with temporal references. Nonethe-
less, given that not all individuals use Twitter and not all content is posted with
geocoordinates, there exists a concern regarding potential biases in this data and
its inference capabilities for mobility patterns of the general population (Tsou
et al., 2017; Zhao et al., 2021).

In literature, there is a paucity of studies that justify and validate the use of
Twitter as a reliable proxy for mobility patterns, particularly on a small spatial
scale where Twitter data may be extremely sparse. The interest in using Twitter
data for mobility-related urban phenomena, however, is increasingly high, encom-
passing real-time event monitoring for example of traffic congestion and accidents
(Bao et al., 2017; Zia et al., 2022), disaster relief to improve coordination of rescue
efforts (Reynard and Shirgaokar, 2019; Wang and Taylor, 2018), social sensing of
urban land use (Soliman et al., 2017), urban planning (Milusheva et al., 2021),
as well as the early detection and analysis of disease outbreaks (Bisanzio et al.,
2020a; Bisanzio et al., 2020b; Huang et al., 2020a; Huang et al., 2020b). Valida-
tion studies that exist on larger scales have employed survey data (Terroso-Saenz
et al., 2022a; Terroso-Saenz et al., 2022b), census tracts (Petutschnig et al., 2022),
or tourism statistics (Hawelka et al., 2014; Provenzano et al., 2018) for evalua-
tion purposes. At the urban scale similar data sources have been utilized, but
only Ąve validation studies have been conducted to the best of our knowledge.
Kurkcu A. et al. (2016) compared Twitter data with regional household travel
surveys by calculating various mobility metrics, such as the radius of gyration and
origin-destination Ćows, for New York City. However, this study did not examine
temporal mobility trends over longer time periods. Lenormand et al. (2014) per-
formed a comparison of Twitter data, mobile phone records, and census statistics,
assessing spatiotemporal mobility metrics for Barcelona and Madrid. This study
compared datasets from two different time frames, which we consider to have
limited validity particularly during non-stationary periods like pandemics. The
same limitation applies to the studies conducted by Qian et al. (2018), Steiger
et al. (2015), and Osorio-Arjona and García-Palomares (2019), as they used ei-
ther survey or census data from earlier years than when the Twitter data was
collected.

Consolidating aforementioned Ąndings highlights the research gap concerning
long-term validation studies pertaining to inner-urban mobility metrics extracted
from Twitter data. More speciĄcally, this relates to employing a time-overlapping
validation set to assess the accuracy and reliability of Twitter-derived mobility
estimates for urban areas over an extended time period. Given these limita-
tions, this paper introduces a novel urban validation study comparing long-term
mobility dynamics extracted from geolocated tweets with mobile phone records
covering a time frame of 27 months. The research was carried out in the city of
Rio de Janeiro during and after COVID-19-related lockdowns, speciĄcally from
April 6th, 2020 to June 30th, 2022. The second-largest city in Brazil was chosen
due to the availability for mobile phone records and the extended use of Twitter
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in the country, which ranks fourth globally in terms of Twitter usage (Statista,
2023). Furthermore, the metropolitan area of Rio de Janeiro, with its nearly
14 million inhabitants, provided a suitable urban landscape to address research
objectives related to urban science. More speciĄcally, we addressed the following
two research questions (RQs):

• RQ1: To what extent can the method of rolling window downsampling
assist in counteracting the scarcity of daily-geocoded tweet sequences in
cities?

• RQ2: How similar are urban mobility patterns derived from Twitter to
long-term spatiotemporal mobility metrics derived from mobile phone data?

2 Materials and Methods

In order to answer the derived research questions, we propose a consecutive
framework of data processing, modelling, and validation (cf. Figure 1). The pro-
cessing part describes the retrieval and Ąltering of applied datasets as well as the
generation of individual movement trajectories and collective origin-destination
(OD) matrices. In the modelling section, a stack of Ąve representative spatiotem-
poral mobility metrics were calculated. The validation part was divided into two
studies: (1) a dynamic assessment of long-term mobility trends and (2) a static
validation of mobility change detection capabilities.

Figure 1: WorkĆow for the comparison of inner-urban mobility metrics derived from Twitter
and mobile phone records. The quantitative validation study is divided into two parts: (1) a
long-term trend analysis and (2) a validation of TwitterŠs capability for static mobility change
detection.

2.1 Data Processing

2.1.1 Twitter data

Twitter data was derived from the publicly available Twitter API v2 (Twit-
ter, Inc., 2023b) with special terms of use for academic research (Twitter, Inc.,
2023a). The research licence supported the collection of more precise, complete,
and unbiased datasets than the publicly available API for commercial use. API
access policies and privacy concerns can undergo constant change. We treated
all data in accordance with stringent privacy by design guidelines published in
Kounadi et al. (2018) and Kounadi and Resch (2018). During the API request
we speciĄed an API token, start and end timestamps for the period of analysis,
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details regarding the case study region presented as rectangular bounding boxes,
and two parameters to Ąlter retweeted content and tweets lacking geolocation.
Twitter stores geotags implicitly via place IDs. A place ID can be either a point
of interest (POI) such as a bus stop close to a user location, a neighborhood,
a city or a country name. As we are only interested in inner-urban movement
patterns for the city of Rio de Janeiro, tweets with any Śplace_typeŠ larger than a
city were excluded from the API request. This selection resulted in 696235 tweets
for the whole study period of 27 months.

After this initial data retrieval, tweets which were located inside the rectan-
gular bounding boxes but outside of the city boundaries of Rio de Janeiro were
removed. Since we encountered issues with the shape and naming of city districts
within Twitter, tweets with the Śplace_typeŠ tag ŚneighborhoodŠ were addition-
ally Ąltered out. This Ąltering step was applied to prevent possible distortion
of the Twitter data in space and, consequently also resulted in a higher resolu-
tion of geocoded tweets. The Ąnal analysis was therefore conducted on tweets of
Śplace_type = poiŠ only.The ratio of tweets per user exhibited notable heterogene-
ity over time (cf. Figure 2 - top), as indicated by a standard deviation of 20.96.
To address this imbalance, we employed supplementary bot Ąltering technique.
Through a comprehensive examination of tweet distributions across all users, we
identiĄed and Ąltered out tweets originating from potential bot accounts by im-
plementing a maximum daily tweet threshold of 50 and a maximum daily tweet
share threshold of one percent. This was found to be consistent with method-
ologies employed in other twitter studies (Osorio-Arjona and García-Palomares,
2019; Terroso-Saenz et al., 2022b).

Figure 2: Sankey diagram of Twitter Ąltering process (top left); daily geolocated Twitter
stream used for long-term validation study with corresponding number of unique users and
tweet amount per user in the city of Rio de Janeiro (top right); histogram of inter-tweet time for
study period in the city of Rio de Janeiro (bottom left); schematic rolling window downsampling
concept for temporal Twitter signals (bottom right).

After data cleaning 420518 geolocated tweets from 107500 unique users were
used to build individual user movement sequences with the scikit-mobility python
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library (Pappalardo et al., 2022). To address the daily scarcity of geolocated
tweet sequences from individual users (cf. Figure 2 - bottom left), a rolling win-
dow downsampling approach was implemented. This method, contingent upon
the chosen window size, can increase data volume, enabling the calculation of in-
dividual movement trajectories by enhancing the length of tweet sequences from
unique Twitter users (Li, 2008). This method enables the calculation of daily
mobility metrics while effectively smoothing out short-term Ćuctuations and out-
liers, thereby preserving the temporal trend within the dataset. This collective
functionality renders it a suitable approach for deriving daily mobility trend sig-
nals from limited datasets, such as daily geo-tagged tweets from urban areas,
aligning with the necessary objectives of the study. From a practical standpoint,
this method involves aggregating and sequencing tweets accumulated over mul-
tiple days to compute mobility metrics speciĄcally for a single day positioned at
the center of the aggregation window (cf. Figure 2 - bottom right).

However, it is crucial to acknowledge that this method may also entail certain
adverse consequences, such as diminished granularity or analytical precision. To
address this concern, we applied a rolling window downsampling approach using
a grid search across various, uneven window sizes spanning from three to 31 days,
resulting in 15 distinct temporal signals. The optimal choice of these window
sizes to calculate urban mobility metrics was evaluated as described in section
3.2.1. The selection of the range of window sizes employed for the grid search
was predicated on the objective of encompassing around 75 percent of individual
displacements identiĄed in the Twitter data (cf. Figure 2 - bottom left).

Individual human movement trajectories were retrieved from the list of
temporally-ordered tweet locations of single users. The collection of these se-
quences over all users contributed to the generation of collective OD matrices.
During this process each tweet location was matched to one of the 163 neigh-
borhoods present in the city of Rio de Janeiro, characterized by a different ratio
of tweets per capita for the residential population (cf. Figure 3). The scale of
neighborhoods was chosen to align with many census statistics, which could be
potentially relevant for follow-up studies. The geographic matching process re-
sulted in daily OD matrices of shape 163x163 used for the subsequent calculation
of spatiotemporal mobility metrics as explained in section 2.2. To enhance com-
parison capabilities with mobile phone data, OD matrix entries on the diagonal
were set to zero and normalized by the amount of measured movements, which
is equal to the remaining sum of OD matrix entries.
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Figure 3: Ratio of tweets per capita for the residential neighorhood population in the city of
Rio de Janeiro.

2.1.2 Mobile phone data

As a validation set we used anonymized mobile phone records provided by
a large Brazilian telecommunications company. The dataset included individual
antenna connections from approximately three million unique users over a time
period of 27 months. This is equal to an approximated penetration rate of around
45 percent for the population of the city of Rio de Janeiro. The temporal resolu-
tion of the raw data was Ąve minutes. The data was provided at the level of the
antennas (cf. Figure 4 - top right). The mobile phone user is typically connected
to the closest antenna, which is used as a proxy for the position of the user at this
point in time. The number of antennas in our data set varied daily between 1200
and 1250 due to technical failures of some antennas. An antenna connection from
an user was recorded when sending a text message, using mobile internet data,
or making a call. We retrieved and processed the data of 164250 million mobile
phone records via the distributed computing tool Apache Spark as well as the
GPU-accelerated parallel computing framework Dask using the mobilkit python
library (Ubaldi et al., 2021). As a Ąrst cleaning step, we dropped connections
with antennas outside the city boundaries. In order to derive human movement
patterns, we generated a sequence of antenna connections for each user over the
whole time period using a machine with 7 TB of local scratch. To increase the in-
formative power of successive antenna connections for inferring human movement
patterns, we introduced a lower bound (LB) and upper bound (UB) as Ąlters for
the inter event time (IET) between sequential antenna connections from a single
user as proposed by Zhao et al. (2019). As a result, successive antenna connec-
tions between which less than 15 minutes (LB) or more than four hours (UB)
elapsed were not counted as movements (cf. Figure 4 - top left). The introduc-
tion of a LB was justiĄed by the fact that antenna congestion can cause the user
to jump back and forth between antennas without physical moving. A UB was
introduced to avoid the counting of movements that are not necessarily made in
a direct way. The choice of the lower threshold was selected based on Zhao et al.
(2019) and Schlosser et al. (2020). The choice of the upper threshold was in-
spired by Barboza et al. (2021). OD matrices were created based on IET-Ąltered
daily user sequences. The entries in the diagonal of daily OD matrices were set
equal to zero. To ensure comparability with the OD matrices of Twitter data, the
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OD matrices were normalized by the overall amount of movement activity before
being converted from antenna format (1250x1250) to district format (163x163)
using methods from Fabrikant (2017) (cf. Figure 4 - bottom right).

Figure 4: Schematic time line of recorded antenna connections with IET-Ąltering (top left);
resulting antenna to antenna OD matrix Ćows for the Ąrst day of analysis derived from mobile
phone data, where darker color represents larger movements (top right); formula for OD matrix
conversion from antenna to admin level with schematic illustrations of Şantenna to adminŤ
(orange) and Şadmin to antennaŤ (grey) matrix calculation (bottom right); resulting admin to
admin OD matrix heatmap for the Ąrst day of analysis using mobile phone data, where darker
shade of green describes a higher percentage of measured movement in the city (bottom left).

2.2 Mobility metrics

In order to answer our second research question, whether Twitter is a good
proxy for modeling inner-urban human movement patterns, we calculated Ąve
spatiotemporal mobility metrics. These include the (i) total number of move-
ments, (ii) the average movement distance of individuals, (iii) land use activity
metrics, (iv) graph modularity, and (v) the radius of gyration (cf. Figure A. 1).
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Inspired by previous research on human movement patterns (Aletta et al.,
2020; Haas et al., 2020; Hensher et al., 2021; Li et al., 2021; Mützel and Scheiner,
2022; Schlosser et al., 2020), the total number of all movements, denoted as
Mt, (cf. Formula 1), was calculated using daily OD matrices, where ai,j = 0
for i = j (cf. Formula 2). The daily average travel distance over all users U ,
denoted as D̄t, was derived from the number of visited locations nu in the IET-
Ąltered user sequences for each user u (cf. Formula 3). For each movement
from the i-th location visited by user u on day t to the (i + 1)-th location, the
Euclidean distance between each consecutive pair of visited locations by user
u (xu,i, yu,i) was calculated. The geolocations of sequential tweets were used
as location coordinates for Twitter data. For mobile data, the distance between
antennas was utilized. The sum of all tracked paths was then divided by the total
number of considered movements, Mt, to calculate the average travel distance in
kilometers, following the precedent set by other research papers (Abdullah et al.,
2021; Abdullah et al., 2020; Engle et al., 2020; Fatmi, 2020; Gao et al., 2020a;
Gao et al., 2020b; Pardo et al., 2021; Park et al., 2022).

% activity in residential area
t

=
Number of Tweets or Mobile Activity in Residential Areas on day t

Total Number of Tweets or Mobile Activity on day t
× 100% (4)

We calculated land use-dependent activity metrics using land use land cover
maps from the DATA.RIO portal (Municipality of Rio de Janeiro, 2022). These
metrics can provide information about the percentage of Twitter or mobile activ-
ity that can be assigned to a certain land use structure (Aktay et al., 2020; Da
Cavalcante Silva et al., 2021; Hakim et al., 2021; Nanda et al., 2022; Ossimetha
et al., 2021; Paez, 2020; Saha et al., 2020; Saha et al., 2021; Shumway-Cook et al.,
2005; Sulyok and Walker, 2020; Zhu et al., 2020). In our analysis, we measured
the percentage of activity for six types of typical urban land cover categories
(residential, public, leisure, industry, education, commerce) present in the city of
Rio de Janeiro. For the validation of Twitter, only the percentage of activity in
residential areas was used as a representative of this mobility metric type (cf. For-
mula 4). The inclusion of all land use-dependent activity metrics was rejected to
improve clarity and diversify the analyzed mobility metrics in this study. Several
metrics of land use-dependent activity were considered redundant. Residential
areas were chosen as the land class of highest interest as they promised the highest
variability related to lockdown style policies. For calculating land use-dependent
mobility metrics, tweet POI and antenna location were used correspondingly.

The graph modularity, a measure indicating the extent of links within com-
munities compared to links between communities (cf. Figure 5), was calculated
using the Louvain algorithm. Modularity, denoted by Q, is computed as the dif-
ference between the observed fraction of intra-community edges and the expected
fraction if edges were distributed randomly (Blondel et al., 2008). It is deĄned
as follows:

Qt =
1

2mt

∑

ij

(

Aij,t −
ki,tkj,t

2mt

)

δ(ci,t, cj,t) (5)

where Aij is the element in the adjacency matrix representing the connection
between nodes i and j, ki and kj are the degrees of nodes i and j respectively, m
is the total number of edges, and δ(ci, cj) is 1 if nodes i and j belong to the same
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community and 0 otherwise. In our context, nodes represent neighborhoods, and
edge weights represent the sum of traced movements between neighborhoods. The
Louvain algorithm operates on an undirected graph constructed using the origin-
destination (OD) matrices speciĄed beforehand in Formula 2, which were initially
directed to represent one-way movements between origins and destinations and
made undirected by multiplying them with their transposes. This process ensures
that each element Aij of the adjacency matrix represents the total movements
between nodes i and j, accounting for both directions, in contrast to ai,j which
represents one-way movements. The Louvain modularity value ranges from -0.5
to 1, where higher values indicate mobility networks with more inner-community
movements than outer-community movements (Heiler et al., 2020; Newman, 2006;
Yildirimoglu and Kim, 2018).
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The radius of gyration Rg indicates the average radius of movement of a
single user u (cf. Figure 5). We averaged this value over all recorded users U and
calculated it on a daily basis. Analogous to the methodology applied in computing
the average movement distance, we conducted distance calculations between the
Twitter POIs and the antenna location, respectively. Both calculations were run
on the basis of the IET-Ąltered user sequences (Hernando et al., 2021; Kishore
et al., 2020; Liu et al., 2018; Wang and Taylor, 2014). The variables x̄u and ȳu

correspond to the mean of the x-coordinates or y-coordinates of userŠs visited
locations on day t.

Figure 5: Schematic concept of graph modularity and radius of gyration. Graph modularity
is a measure for the strength of the division of a graph into communities, based on the density
of connections within communities compared to connections between communities. The radius
of gyration refers to the average travel distance of an individual measured from the center of
its movement circle, representing the overall distribution of visited places.

2.3 Long-term validation of urban mobility patterns derived from
Twitter

The long-term validation of urban mobility metrics derived from Twitter was
conducted over a non-stationary mobility period of 817 days. This time period
covers the major peaks of the COVID-19 pandemic including subsequent months
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with high to low mobility restrictions implemented by the local state and munic-
ipal government of Rio de Janeiro (Mathieu et al., 2020). The capability of Twit-
ter as a data source to detect long-term mobility change in urban environments
was evaluated using mobile phone records. To justify the utilization of mobile
phone records as a Šground-truthŠ validation set in our case study, we previously
tested spatiotemporal mobility metrics derived from mobile phone data as valid
evaluation sets for modeling real-world human movement behavior at an urban
scale. For this evaluation, we obtained the stringency index for the city of Rio de
Janeiro (cf. Figure 6), which is a globally-standardized indicator of politically-
implemented mobility restrictions affecting human movement behaviour (Mathieu
et al., 2020). It is a widely-used indicator derived from ordinal measurements for
containment, closure policies, and public information campaigns. For the whole
study time period during and after the COVID-19 pandemic, we calculated an
average absolute Pearson correlation coefficient of 0.7 between all mobility met-
rics and the stringency index. The graph modularity mobility metric showed the
highest overall Pearson correlation coefficient of 0.77. The main advantage of
mobile phone records over the stringency index as an assessment dataset for this
case study was the high temporal resolution of mobility measurements on a daily
basis.

Figure 6: Stringency index recording the strictness of lockdown style policies in the city of Rio
de Janeiro and graph modularity measurements derived from mobile phone data (red). On- and
offset time periods indicate manually selected time frames of high to low mobility restrictions
deĄned for static mobility change detection analysis.

The quantitative assessment involved the computation of moving window syn-
chrony among long-term mobility trend signals indicating individual and collec-
tive mobility metrics derived from Twitter and mobile phone data as outlined
in section 2.2. Time series synchrony denotes the extent to which time series
exhibit similar patterns across multiple time steps. Unlike correlation, which
quantiĄes the strength and direction of the linear relationship between time se-
ries, synchrony characterizes the temporal alignment and similarity in temporal
patterns. We approximated the moving window synchrony by calculating the
daily PearsonŠs correlation coefficients applying a window size of 60-days.

Long-term trend signals of calculated daily mobility metrics were generated by
applying a moving average of 28 days and MinMax-Standardization considering
the whole time frame of analysis. Moving average size for trend decomposition was
selected based on visual diagnostics to remove weekly oscillations and outliers that
appear due to technical antenna failures (cf. Figure A. 1). The moving average
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size of 28 days seemed to generate a plausible trade-off signal between long-
term trend and short-term mobility changes. Absolute moving window synchrony
surpassing values of 0.7 was classiĄed as indicating a high level of alignment, while
values below 0.3 were considered to signify a weak tendency to exhibit similar
temporal pattern. Intermediate moving window synchrony values ranging from
0.3 to 0.7 represented moderate alignment of events and changes in our study.

Three on- and offset periods were deĄned based on the stringency index to
evaluate the capability of Twitter to additionally measure static change detection
(cf. Figure 6). Considering implemented mobility restrictions in the city of Rio
de Janeiro, we classiĄed the two-month time periods from April 6th to June 6th in
2020 and 2021 as lockdown style periods (onset) and the time frame from April
6th to June 6th in 2022 as post-lockdown period (offset). With this selection,
our goal was to include time intervals that exhibit diverse levels of human mo-
bility, independent of potential seasonal Ćuctuations, throughout the three years
of analysis. We selected a two-month interval period starting at the beginning of
our analysis to capture both static mobility circumstances and their associated
changes. The outcomes of the static mobility change detection were displayed
through boxplots and compared with weekday/weekend onsets and offsets ex-
tracted from the entire analysis time period. To provide statistical quantiĄcation
for static urban mobility changes, we conducted Mann-Whitney U tests between
on- and offset periods, applying a conĄdence threshold of 0.05.

3 Results and Discussion

3.1 RQ1: Evaluation of rolling window downsampling

Examining the initial time period of analysis spanning from April 2020 to
September 2020 (cf. Figure 7), all computed mobility metrics derived from Twit-
ter exhibited discernible patterns that aligned with our expectations based on the
implemented lockdown measures in the city of Rio de Janeiro. Notably, while the
long-term trend of the graph modularity metrics and the percentage of activity in
residential areas decreased, the long-term trends of average movement distance,
overall movement volume, and the radius of gyration increased.

During the subsequent time period from September 2020 to May 2021, all mo-
bility metrics derived from Twitter, except the percentage of activity in residential
areas, displayed unexpected changes. They all showed a rapid shift starting in
February 2021 dis-aligning our assumptions on more or less constant mobility
behaviour in that time period. Coinciding with this period, there was a sharp
decline in the number of geolocated tweets collected via the public Twitter API
(cf. Figure 2). We hypothesize that this decline was attributed to changes in the
terms of use implemented by Twitter. However, official evidence of regulatory
changes during that speciĄc time period has not been found. Additional experi-
ments using a constant amount of tweets per day, derived by the 98th percentile of
tweet volume in the corresponding rolling window subset, showed a similar shift
in mobility metrics (cf. Figure A. 3). This highlights the robustness of calculated
mobility metrics in the face of daily Ćuctuations in the number of tweets. For
the analysis period subsequent to May 2021, the calculated mobility metrics once
again aligned with our expectations and conĄrmed our knowledge of fewer mobil-
ity restrictions implemented in the city of Rio de Janeiro following the COVID-19
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pandemic.

Figure 7: Standardized inner-urban mobility metrics derived from daily tweet sequences ap-
plying rolling window downsampling (RWDS). Results of 7-day and 27-day rolling windows
(dark blue) are compared with the daily raw and trend signal of Twitter mobility metrics with-
out applying RWDS (light blue). The trend signals are calculated using a moving average of
28 days. Non-standardized mobility metrics derived from Twitter for a 11-day rolling window
size are visualized in Figure A. 2.
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The results also demonstrate that, while a moving average can effectively
eliminate weekly Ćuctuations and data noise, it does not suffice for generating
accurate long-term trends for all considered mobility metrics in this analysis.
However, when combined with the speciĄcally designed rolling window down-
sampling (RWDS) approach, more precise long-term mobility trends can be de-
rived. This effect becomes particularly evident when examining the calculated
graph modularity metrics in our case study, as the modularity values between
the one-day window size signals and the seven- or 27-day rolling window size sig-
nals exhibit larger differences. In contrast, for other calculated mobility metrics,
the impact of RWDS appears to have relatively low signiĄcance and yields ef-
fects comparable to those obtained by calculating a one-day window trend signal.
Supplementary materials provide corresponding results of daily mobility metrics
calculated without applying a moving average (cf. Table A. 3). The inĆuence of
different rolling window sizes is more extensively investigated in the subsequent
section in conjunction with long-term trends derived from mobile phone data.

3.2 RQ2: Validation of long-term urban mobility patterns derived
from Twitter

Long-term validations of urban mobility metrics derived from Twitter are
infrequent, despite the well-established usage of Twitter applications in various
research domains worldwide. However, the outcomes of our comprehensive long-
term validation study emphasize the need for caution when utilizing Twitter
data for urban studies within restricted time frames. Although urban mobility
metrics derived from Twitter may exhibit high correlation values with mobility
metrics computed from mobile phone data during short time periods, long-term
validation with mobile phone data reveals Ćuctuating deviations (cf. Figure 9).
This phenomenon can potentially give rise to erroneous assumptions when relying
solely on Twitter as a reliable source for modeling human movement patterns.

3.2.1 Sensitivity of rolling window size

The results presented earlier in section 3.1 demonstrate that the RWDS method
is a valuable tool for addressing the data scarcity challenge associated with ur-
ban Twitter data and deriving more precise long-term mobility trends. However,
additional Ąndings highlight the signiĄcant dependence of these Ąndings on the
chosen rolling window size (cf. Figure 8). In our experiments we observed the
highest average correlation value between mobility metrics from Twitter and mo-
bile data when using an 11-day rolling window size. Increasing the window size
from one day to three days had the most pronounced effect on the calculated
Pearson correlation values. For window sizes exceeding 11 days, the correlation
values remained consistently high but showed a slight Ćattening. This can be at-
tributed to the loss of high-resolution information resulting from the application
of larger window sizes beyond 11 days. These Ąndings align with our expectations
regarding the functionality of the RWDS method described in section 2.1.1. The
mean movement distance index yielded the highest average Pearson correlation
coefficient among all considered mobility metrics, achieving its peak of 0.48 at
the 11-day rolling window downsampling size (cf. Table A. 1).
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Figure 8: Mean PearsonŠs correlation coefficients calculated over the whole time period of
analysis between mobility metrics derived form Twitter and mobile phone data considering
varying window sizes for RWDS.

3.2.2 Long-term mobility trend:

During the dynamic analysis of the long-term trend of calculated mobility
metrics using moving window synchrony, it becomes evident that the PearsonŠs
correlation coefficients exhibit substantial variations over time for all the cal-
culated mobility signals (cf. Figure 9). We observed the occurrence of short
time periods characterized by both extremely high and extremely low correlation
values. These Ąndings indicate that the informative capacity of mobility met-
rics derived from Twitter exhibits temporal variability and is strongly contingent
upon the chosen time frame for analysis. During the initial phase of the study pe-
riod, when the most stringent mobility restrictions were implemented (cf. Figure
6), we observed high positive correlation values across all metrics simultaneously.
Conversely, we did not observe similar prolonged time periods characterized by
a weak alignment, as indicated by low PearsonŠs correlation coefficients around
zero. Notably, higher moving window correlation values exhibited greater statis-
tical signiĄcance than lower values.

To eliminate the possibility of spurious correlations, all time series were exam-
ined for unit roots using the appropriate version of the Dickey-Fuller test before
calculating Pearson correlation coefficients. The test results indicated that seven
out of ten time series were stationary, allowing for the calculation of Pearson
correlation coefficients. However, the time series for ŞNumber of movementsŤ,
ŞGraph modularityŤ, and Ş% activity in residential areasŤ measured based on
Twitter data, remained non-stationary. Following the ŞStandard sequence of
steps for dealing with non-stationary time seriesŤ as outlined by (Studenmund,
2017), we tested the pairs of Twitter data and mobile phone time series for the
metrics ŞNumber of movementsŤ, ŞGraph modularityŤ, Ş% activity in residential
areasŤ for cointegration using the Engle-Granger test. The Engle-Granger test
results indicated that the time series for the metrics ŞNumber of movementsŤ and
Ş% activity in residential areasŤ were cointegrated at a conĄdence level of 95%,
while the time series for the metric ŞGraph modularityŤ were cointegrated at a
conĄdence level of 90%. According to (Studenmund, 2017), if the variables have
unit roots and are also cointegrated, this allows for the calculation of the Pear-



Part II: Publications 191

son correlation coefficient using the original units, thereby ruling out spurious
correlations.

Figure 9: Long-term mobility metrics derived from Twitter (blue) applying rolling windows
size of 11 days and mobile phone data (red) including moving window synchrony of 60 days
(black), where on- and offset represent time periods of high and low mobility restrictions. The
moving window correlations exhibited statistical signiĄcance, except for transitional phases
between positive and negative synchrony. Non-standardized mobility metrics are visualized in
Figure A. 1 and Figure A. 2. (cf. Figure A. 4 for more detailed visualization).
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3.2.3 Static mobility change detection:

Additional Ąndings from a static change detection analysis reinforce the re-
sults of our long-term trend analysis (cf. Figure 10). While it is evident that
Twitter data does not always accurately capture long-term mobility trends, it
does have the potential to detect signiĄcant (cf. Table A. 2) inner-urban mobil-
ity changes measured by mobile phone data and indicate the correct direction
of the shift. In our case study, this holds true for all the measured variables
except for the percentage of activity in residential areas during the time period
of the second onset. In summary, we conclude that both the Twitter and mobile
phone datasets synchronously detected the shift in inner-urban human movement
behavior between the years 2020, 2021, and 2022, attributable to COVID-19 lock-
down policies. Static mobility changes between weekdays and weekends were not
detected to be signiĄcant (cf. Table A. 2) when testing both datasets, leading to
the conclusion that Twitter can be a useful substitute for mobile phone records
when trying to derive the direction of static inner-urban mobility shifts.

Figure 10: Static urban mobility change detection applying Twitter and mobile phone data.
Comparison between weekday/weekend (top row) and lockdown style/post lockdown style time
periods (bottom row). P-values of applied Mann-Whitney U tests for static urban mobility
change detection are listed in Table A. 2.
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3.3 Limitations

We performed a sensitivity analysis of various window sizes for RWDS.
Thereby, we employed a combination of different modeling techniques. This in-
cluded a dynamic mobility trend analysis and a static mobility change detection.
In addition, we considered a set of Ąve distinct mobility metrics. However, our
Ąndings show certain limitations, primarily stemming from the choice of a 28-day
moving average for trend calculation, a 60-day window synchrony time frame for
analyzing dynamic alignment of trend signals, and the temporal selection of on-
and offsets for static change detection analysis. Furthermore, our results may be
subject to potential biases due to the uneven distribution of Twitter user groups
within the overall population (Li et al., 2013; Malik et al., 2015). We did not
account for the spatial distribution of inferential uncertainty in our analysis ei-
ther, although districts with fewer geocoded tweets can be expected to exhibit a
higher degree of uncertainty (Huang and Carley, 2019; Huang and Wong, 2015).
This particularly affects the graph modularity metrics calculated based on daily
OD matrices. The spatial distortion in the applied datasets is supported by the
low correlation of non-zero OD matrix entries aggregated over the entire anal-
ysis period (cf. Figure 11). Additional results from spatial data exploration,
which highlight these issues, are provided in the supplementary GitHub reposi-
tory (Knoblauch and Gross, 2023).

To address these limitations, several approaches might be applicable: Recent
studies on semantic analysis (Hu et al., 2023; Serere et al., 2023) demonstrate
promising results in deriving geolocalized information from tweet texts of non-
geolocated tweets, which could enhance the Twitter dataset with supplemental
geoinformation. Another approach involves utilizing the locations provided in
user proĄles as a further source of geoinformation. However, it should be noted
that these techniques have limited applicability in the context of inner-urban
mobility studies (Nguyen et al., 2022).

Figure 11: Comparison of temporally aggregated OD matrix entries from Twitter and mobile
phone data without considering zero values. Here an OD matrix entry represents a movement
between two distinct neighborhoods.
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Another aspect of discussion in our long-term validation study pertains to the
disparate spatial and temporal resolutions of the employed datasets. Addition-
ally, the raw Twitter data utilized represents less than one percent of the total
mobile phone records used in this validation study, leading to a substantial imbal-
ance with potential implications on our validation outcomes (Zhao et al., 2021).
Furthermore, certain assumptions were made during the pre-processing stage to
facilitate the generation of our validation signal. These assumptions include the
selection of lower and upper bounds for IET Ąltering and the assumption of a
uniform distribution of cellular activity in space when converting antenna-based
OD matrices into neighborhood-based mobility Ćows. Additionally, we assumed
that the sequential activities of individual users directly represent movements,
disregarding the possibility of detours which may introduce a bias in our results.
However, we believe that the overall impact of these constraints is relatively mi-
nor. We anticipate that conducting supplementary sensitivity analyses on the
model parameters would not alter the main Ąndings of this novel long-term val-
idation study, primarily because all parameters and steps were carefully chosen
and justiĄed, as described in section 2.

4 Conclusion

Our Ąndings demonstrate the effectiveness of employing rolling window down-
sampling as a viable strategy to address the limited availability of geolocated
tweets in urban areas (cf. Figure 7). Our results indicate that Twitter has the
potential to capture short-term changes in mobility at an inner-urban scale (cf.
Figure 10), although long-term disparities were observed when compared to mo-
bility metrics derived from mobile phone data in our case study (cf. Figure 9).
To enhance the reliability of short-term inference from Twitter data on inner-
urban human movement patterns, we propose a combination of multiple analysis
techniques, including dynamic and static mobility change detection, simultane-
ous consideration of various human movement metrics, and sensitivity analysis
for modeling parameters. Implementing these approaches can signiĄcantly mit-
igate the risk of false inference in diverse application domains where Twitter is
commonly utilized as an open-source proxy for deriving human movement pat-
terns.

Considering the increasingly stringent open-access limitations to Twitter data,
this long-term study establishes a foundation for assessing the validity of also up-
coming social media platforms. Voluntarily shared geo-social media data can
be a powerful and promising tool, especially in locations where other mobility
data sources are not openly-accessible or to costly to generate. Since the avail-
ability of data sources signiĄcantly impacts applications, future research should
encompass not only data performance metrics for delineating mobility patterns
but also sustainability in terms of long-lasting and openly accessible APIs. An-
other research option could involve the fusion of data from multiple sources such
as Waze, GDELT, Facebook, Instagram, Reddit, Telegram, YouTube, or Weibo.
The methods developed in this paper could then be transferred to other geo-social
media platforms. Besides that developed methods and generated insights could
always be applied with payment plans for API access offered by Twitter.

By conducting this study, our aim was not only to support researchers in
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effectively utilizing social media data for modeling human movement patterns
but also to gain valuable insights into human mobility within the city of Rio
de Janeiro, Brazil. These Ąndings open up new avenues for future research on
unexplained mobility-driven phenomena in urban science, such as the location of
informal economy (López-García, 2023), accessibility impacts of transport pol-
icy (Pereira, 2019), and inner-urban transmission processes of mosquito-borne
diseases (Ramadona et al., 2019).
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Appendix

Figure A. 1: Not-standardized daily mobility metrics derived from mobile phone data for the
city of Rio de Janeiro.
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Figure A. 2: Not-standardized daily mobility metrics derived from Twitter data for the city
of Rio de Janeiro applying a 11-day rolling window size.

Table A. 1: PearsonŠs correlation coefficients of calculated mobility metric time signals derived
from Twitter and mobile phone data applying a moving average of 28 days. Values for 11 day
rolling window size resulted in the highest average correlation value over all calculated mobility
metrics and are thus highlighted in bold.

Rolling window size
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Number of movements 0.17 0.29 0.32 0.34 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.35 0.35 0.34 0.34 0.33
Mean movement distance 0.23 0.37 0.44 0.47 0.48 0.48 0.48 0.47 0.46 0.46 0.45 0.44 0.43 0.42 0.42 0.41
Graph modularity 0.36 0.40 0.41 0.41 0.40 0.39 0.38 0.38 0.37 0.36 0.36 0.35 0.35 0.36 0.36 0.36
% activity in residential area 0.35 0.32 0.35 0.36 0.37 0.38 0.38 0.38 0.38 0.37 0.37 0.37 0.36 0.36 0.36 0.35
Radius of gyration 0.11 0.20 0.30 0.36 0.39 0.40 0.40 0.40 0.39 0.39 0.38 0.38 0.37 0.36 0.35 0.34

Mean over mobility metrics 0.24 0.31 0.36 0.39 0.40 0.41 0.40 0.40 0.39 0.39 0.38 0.38 0.37 0.37 0.36 0.36
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Figure A. 3: Comparison of mobility metrics calculated with varying and constant amount of
tweets per day. Visualization with and without moving average. The constant amount of tweets
was calculated using the 98th percentile of tweet volume for each window size (one day window:
61 tweets; seven day rolling window: 1115 tweets, 15 day rolling window: 2931 tweets). The
grey box highlights the time period of unexpected shifts in calculated mobility metrics for the
city of Rio de Janeiro.
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Figure A. 4: Comparison of daily mobility metrics derived from Twitter and mobile phone
data for the city of Rio de Janeiro.

Table A. 2: P-values of Mann-Whitney U tests for static urban mobility change detection.

Twitter Mobile phone data
Weekday-Weekend Onset1-Onset2 Onset1-Offset1 Onset2-Offset1 Weekday-Weekend Onset1-Onset2 Onset1-Offset1 Onset2-Offset1

Number of movements 0.96 4.08e−09 3.85e−18 7.80e−22 0.74 3.09e−19 3.07e−19 1.01e−19

Mean movement distance 0.96 4.36e−17 3.85e−18 7.80e−22 0.64 3.09e−19 3.08e−19 7.77e−22

Graph modularity 0.95 2.22e−03 3.85e−18 7.80e−22 0.83 3.09e−19 3.09e−19 7.80e−22

% activity in residential area 0.92 3.85e−18 3.85e−18 7.80e−22 0.71 3.09e−19 3.09e−19 5.44e−07

Radius of gyration 0.92 1.98e−10 3.85e−18 7.80e−22 0.64 3.09e−19 3.08e−19 7.77e−22
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Abstract.

Cities are the hot spots for global dengue transmission. The increasing avail-
ability of human movement data obtained from mobile devices presents a sub-
stantial opportunity to address this prevailing public health challenge. Leveraging
mobile phone data to guide vector control can be relevant for numerous mosquito-
borne diseases, where the inĆuence of human commuting patterns impacts not
only the dissemination of pathogens but also the daytime exposure to vectors.
This study utilizes hourly mobile phone records of approximately 3 million ur-
ban residents and daily dengue case counts at the address level, spanning 8 years
(2015-2022), to evaluate the importance of modeling human-mosquito interac-
tions at an hourly resolution in elucidating sub-neighborhood dengue occurrence
in the municipality of Rio de Janeiro. The Ąndings of this urban study demon-
strate that integrating knowledge of Aedes biting behavior with human movement
patters can signiĄcantly improve inferences on urban dengue occurrence. The in-
clusion of spatial eigenvectors and vulnerability indicators such as healthcare
access, urban centrality measures, and estimates for immunization as predictors,
allowed a further Ąne-tuning of the spatial model. The proposed concept enabled
the explanation of 77% of the deviance in sub-neighborhood DENV infections.
The transfer of these results to optimize vector control in urban settings bears sig-
niĄcant epidemiological implications, presumably leading to lower infection rates
of Aedes-borne diseases in the future. It highlights how increasingly collected
human movement patterns can be utilized to locate zones of potential DENV
transmission, identiĄed not only by mosquito abundance but also connectivity to
high incidence areas considering Aedes peak biting hours. These Ąndings hold
particular signiĄcance given the ongoing projection of global dengue incidence
and urban sprawl.

Keywords. Urban dengue transmission · Daytime exposure · Aedes biting
rates · Human movement · Urban mobility · Spatial eigenvector mapping

1 Introduction

The increasing amount of worldwide collected human movement data has a
large potential to address current public health challenges (Althouse et al., 2015;
Kraemer et al., 2016; Sattenspiel, Lisa and Lloyd, Alun, 2009). Human mobility
patterns, derived from a variety of data sources, such as mobile phone networks
or social media platforms (Lenormand et al., 2014; Yuan and Raubal, 2012),
offer not only the ability to predict the spatial occurrence of infectious diseases
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(Finger et al., 2016; Funk et al., 2010; Kogan et al., 2021; Panigutti et al., 2017)
but also to assess the effectiveness of control interventions (Chowell and Nishiura,
2014; Cohen et al., 2017). This is of particular interest for many vector-borne
diseases, for which labor-intensive vector control remains the most efficacious
countermeasure (Hladish et al., 2020; Lobo et al., 2018; Wilson et al., 2020).
Among them, the mosquito-borne disease dengue fever is the most important,
with a 30-fold increase in incidence over the last 50 years, causing approximately
400 million infections each year (Bhatt et al., 2013).

Figure 1: PearsonŠs correlation coefficients between yearly dengue incidence (Dengue explorer,
2023) and percentage share of population in urban areas (World Bank, 2023) for PAHO (Pan
American Health Organization) countries between 1960 and 2021. This analysis explores the
potential association between urban growth and the increase in global DENV occurrence, rec-
ognizing that correlation does not necessarily imply causation (left). Urban cycle of DENV
transmission, highlighting the role of human movement and limited mosquito Ćight range for
disease occurrence (right).

Urban growth, climate change, and international travel are known key drivers
for this global incline in the dengue virus (DENV) occurrence (cf. Figure 1)
(Messina et al., 2019). DENV transmission dynamics are highly determined by
the interplay of mosquito abundance and connectivity, as deĄned by human move-
ments (Stoddard et al., 2013; Stoddard et al., 2009). A precise understanding
of these risk factors, especially their spatial variation and interaction, is essential
for an efficient allocation of vector control resources and the prevention of DENV
outbreaks world wide (Perkins et al., 2013; Salje et al., 2017; Vanlerberghe et al.,
2017). Modeling human-mosquito interactions however can be a challenging task,
especially at urban scale, where most DENV infections occur and precise knowl-
edge about mosquito abundance as well as hourly human movement patterns is
often missing (Knoblauch et al., 2024b). This research work is part of the ŠLancet
Commission on DengueŠ and aims to study the phenomenon of urban areas as
global hotspots for dengue transmission and prevention.

Another challenging aspect of modeling human-mosquito interaction involves
considering the ecological characteristics of the vector. DENV is a Ćavivirus
transmitted primarily by female mosquitoes of the species Ae. aegypti and Ae. al-
bopictus (Ferreira-de-Lima and Lima-Camara, 2018; Simmons et al., 2012). Both
mosquito species tend to breed in small, artiĄcial water containers often found
in close proximity to human settlements (Banerjee et al., 2015; Getachew et al.,
2015; Morrison et al., 2004; Paploski et al., 2016; Trewin et al., 2021; Vezzani,
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2007; World Health Organization, 2012). Additionally, they exhibit a limited
Ćight range, which is estimated to be below 1 000 m (BomĄm et al., 2020; Har-
rington et al., 2005; Honório et al., 2003; Massad et al., 2017), and a diurnal
biting behavior that mainly covers evening and morning twilights. Incorporating
these ecological vector characteristics into the modeling of urban dengue out-
breaks is imperative in the pursuit of alleviating the global burden of dengue
fever (Kraemer et al., 2018).

In this study, our primary objective is to assess the importance of ecologi-
cal vector characteristics in explaining the spatial distribution of urban dengue
infections. We propose that incorporating human-mosquito interactions on an
hourly basis, while considering the diurnal biting behavior of mosquitoes and
daytime commuting patterns of humans at a sub-neighborhood scale, may signif-
icantly impact our understanding of inner-urban dengue dynamics. To achieve
this, we analyze the sensitivity of inferences related to various assumptions about
hourly human-mosquito interactions. We develop two distinct modeling scenar-
ios: one that neglects existing knowledge about Aedes mosquito twilight activity,
and another that incorporates this knowledge through feature engineering, allow-
ing for a more comprehensive analysis of the intricate dynamics of urban dengue
infections. A low sensitivity to these inferences would suggest that ecological
vector characteristics play a minor role in urban dengue outbreaks. Conversely, a
high sensitivity would underscore the need to carefully account for diurnal biting
behavior and daytime human movements when modeling DENV infections, es-
pecially at a Ąne-grained urban scale. In order to carry out this investigation we
integrate data from previous research on high-resolution urban mosquito mapping
(Knoblauch et al., 2023) and inner-urban human mobility patterns (Knoblauch
et al., 2024a), thereby creating hourly transmission risk maps. Our study fo-
cuses on the municipality of Rio de Janeiro, Brazil, an urban area endemic for
Aedes mosquitoes and experiencing numerous dengue cases annually (Secretaria
Municipal de Saude Rio de Janeiro, 2022). The Ąndings from this research could
signiĄcantly enhance our understanding of urban dengue transmission dynamics
and potentially contribute to the development of more effective control strate-
gies for this disease. More speciĄcally, our investigation focuses on evaluating
the impact of two key factors on model enhancement: (i) the feature engineer-
ing of hourly human-mosquito biting risk and (ii) the incorporation of spatial
eigenvector mapping and vulnerability indicators.

2 Materials and Methods

Here, we propose a novel risk modeling framework integrating ecological char-
acteristics of Ae. aegypti and Ae. albopictus with data-driven insights on inner-
urban human movement Ćows. This framework consists of three main parts (cf.
Figure 2): i) the retrieval of DENV-related proxies capturing the three risk com-
ponents of hazard, exposure, and vulnerability, ii) the daytime feature engineering
of human-mosquito biting risk integrating human movement data with knowledge
of Aedes biting behavior, and iii) the spatial eigenvector mapping (Griffith, 2019)
of urban DENV occurrence using vulnerability indicators.
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Figure 2: WorkĆow for the sub-neighborhood spatial eigenvector mapping of urban DENV
occurrence applying entomological surveillance (left) and call detail records (middle) to model
daytime human-mosquito biting risk for the municipality of Rio de Janeiro in Brazil on an
hourly basis. Voronoi tessellations based on mobile phone antenna locations were employed as
the spatial unit for analysis. In the feature engineering process, the base model assumed a con-
stant human-mosquito interaction throughout the day, while the proposed model accounted for
the Ćuctuating exposure of humans to mosquito bites, considering the twilight biting activity of
Aedes mosquitoes and the hourly commuting patterns of humans. (CDRs: Call detail records;
ORS: OpenRouteService; IGBE: Brazilian Institute of Geography and Statistics; IPEA: Insti-
tute of Applied Economic Research; SMS-RJ: Municipal Health Ministry of Rio de Janeiro).

2.1 Data

All employed datasets, including their sources, spatial resolutions, and pre-
processing procedures, are listed in Table A. 1. In order to evaluate our approach,
we acquired daily counts of DENV cases from 2015 to 2022 with geographical
coordinates corresponding to residential addresses (cf. Figure 3). In adherence to
ethical considerations and following approval by the Research Ethics Committee
(CEP), this dataset underwent anonymization and was made accessible upon
formal request by the municipal health ministry of Rio de Janeiro.
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Figure 3: A 200 m grid displaying statistically signiĄcant hotspots, cold spots, and spa-
tial outliers derived from daily DENV health records collected for the municipality of Rio de
Janeiro between January 2015 and December 2022. Spatial autocorrelation and the identiĄca-
tion of clusters with similar or dissimilar values were assessed using the Anselin Local MoranŠs
I statistic. In this context, ŚHigh-HighŠ clusters represent areas with high DENV occurrence
surrounded by neighboring areas with similarly high occurrence, and ŚLow-LowŠ clusters indi-
cate areas with low occurrence surrounded by low-occurrence neighbors. Areas colored white
indicate the absence of signiĄcant spatial autocorrelation in dengue occurrence.

2.1.1 Hazard

The hazard risk components in this study were modeled using a variety of en-
tomological surveillance data sources, focusing on different stages of the mosquito
lifecycle. These data included mosquito egg and larva counts (cf. Figure A. 1)
as well as indices representing larva and pupa infestation (cf. Figure A. 2). To
model the abundance of immature Ae. aegypti and Ae. albopictus in urban areas,
we used egg and larval counts from the year 2019, collected from 2 698 ovitraps
distributed across the study area. However, since ovitrap counts have limited
spatial validity due to heterogeneous urban landscapes and the restricted Ćight
range of Aedes mosquitoes, a previous study enhanced this dataset by incorpo-
rating high-resolution urban suitability indicators (Knoblauch et al., 2023). This
approach allowed for a continuous approximation of seasonal urban mosquito suit-
ability, considering a limited Ćight range of 200 m. For modeling larvae and pupae
infestation, data from the Larval Infestation Rapid Assay (LIRA) were applied.
These datasets covering the years 2015 to 2022 included seasonal Breteau and
House indices, which were collected for 256 homogeneous street blocks deĄned
by entomologists during survey design. The House index (HI) gauged the num-
ber of infested houses relative to the total visited buildings during LIRA, while
the Breteau index (BI) represented the number of positive containers per 100
houses inspected. All entomological surveillance datasets used in this research
were obtained from the municipal health department of the municipality of Rio
de Janeiro upon request, exclusively for the purpose of this study.
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2.1.2 Exposure

To model the exposure components, we obtained hourly origin-destination
(OD) matrices and corresponding population density maps using anonymized call
detail records provided by a large Brazilian telecommunications company. This
raw dataset comprised individual antenna connections from approximately three
million individual users, representing an estimated 45 percent of the population
of the municipality of Rio de Janeiro. The raw data had a temporal resolution
of Ąve minutes, capturing user connections to 1 359 antennas distributed across
163 neighborhoods. In this study, the collective OD matrices for Voronoi tes-
sellations, delineated by the locations of antennas, were generated based on the
temporal sequences of individual antenna connections spanning from July 2021
to July 2022, encompassing a complete annual cycle of human mobility patterns.
A more extensive description of the applied methods was given by a previous
study (Knoblauch et al., 2024a). Figure 4 illustrates the Ćuctuations in human
population density throughout the day due to commuting dynamics within the
municipality of Rio de Janeiro, where day and night active antennas are deĄned
by their dominant active periods on a daily basis.

Figure 4: Daytime human population density in the municipality of Rio de Janeiro, estimated
by using mobile phone data. Hourly changes in antenna activity behave differently in various
zones of the case study region, as shown for two selected subregions. While the dominant mo-
bility motif in the northwest district involved movement between three locations, the southeast
district exhibited a dominant mobility motif characterized by movement between two locations.

2.1.3 Vulnerability

We hypothesized that the likelihood of an infected individual appearing in offi-
cial health registries is inĆuenced not only by the human-mosquito biting risk but
also by other factors, which were deĄned as vulnerability indicators and consid-
ered to reĄne the precision of estimating the spatial distribution of dengue cases,
especially within an urban setting. The utilized indicators can be classiĄed into
Ąve subgroups: centrality, accessibility, socio-economics, demographics, and level
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of immunization. Centrality indicators were derived from OpenStreetMap (OSM)
using the OpenRouteService API (HeiGIT gGmbH, 2023). Mean road centrality
by average travel time was calculated on a 200m grid using cars as a transporta-
tion medium (cf. Figure A. 3). These measures were hypothesized to estimate
human closeness and interaction, as tested in a previous study (Mahabir et al.,
2012). Accessibility to job opportunities and travel time to the closest healthcare
facilities using active transportation as well as public schools were retrieved from
the Institute for Applied Economic Research (IPEA) on a hexagonal grid of 0.11
km2 (cf. Figure A. 4) (Pereira and Herszenhut, 2023). The same data source was
applied to download a cumulative opportunity measure of the whole population,
indicating the number of opportunities that can be reached within 60 minutes of
travel time, and the socio-economic indicator of average household income per
capita. We hypothesized that all these accessibility and socio-economic indicators
inĆuence the appearance of dengue infections in the official health database. For
instance, we assumed that inhabitants of favelas in Rio de Janeiro with lower
average income and lower accessibility measure are less likely to visit a doctor
with dengue symptoms compared to people of higher social class (Lai et al., 2020;
McMaughan et al., 2020).

Information about the most vulnerable age groups for DENV infections was
included by using population estimates for children below Ąve years and elderly
individuals above 60 years from the Humanitarian Data Exchange (Humanitarian
Data Exchange, 2019). These indicators were included to estimate the severity
of symptoms (Yang et al., 2023) and, thus also the likelihood of visiting a doctor
and being registered in an official health database (cf. Figure A. 5). Additionally,
we retrieved the locations of past DENV infections, including all four DENV
serotypes, hypothesizing that past dengue epidemics serve as a reliable indicator
for modeling immunization levels at the population level (Thai et al., 2011).
However, this immunological vulnerability effect would likely be complex as it is
dependent on the sequence of DENV serotypes causing DENV cases over time as
well as the time intervals between them (Katzelnick et al., 2015). All mentioned
vulnerability components were combined with the daytime models for human-
mosquito biting risk to facilitate spatial eigenvector mapping of urban DENV
occurrence, which is described in the following subsection.

2.2 Methods

2.2.1 Feature engineering of hourly human-mosquito biting risk

In this study, we propose a novel method to model the spatial distribution
of human-mosquito biting risk in urban areas by incorporating ecological charac-
teristics of mosquitoes, speciĄcally focusing on the diurnal biting behavior of Ae.
aegypti and Ae. albopictus. Our method involved integrating local estimates of
mosquito abundance Mi with knowledge about hourly human distribution over
the considered area to derive an aggregate measure of mosquito biting risk Bi for
residents of cell Ci:

Bi =





24
∑

h=1

ω(h)





N
∑

j=1

χi,j(h)Mj







 (1)
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Equation 1 aims to more accurately reĆect mosquito bite risk than estimates
solely based on local mosquito abundance by incorporating two key principles.
First, due to human movement, individual hosts are exposed to different mosquito
populations throughout the day. To capture this for each hour of the day h, we
calculated a weighted sum approximating the contribution of mosquito popula-
tions Mj from all cells Cj to the biting risk of people resident in cell Ci. This sum
reĆects the extent to which the hourly mosquito biting risk originating from the
mosquito population Mj in cell Cj affects individuals residing in cell Ci. To this
end, we estimated χi,j(h), representing the fraction of people present in antenna
tessellation cell Cj during hour h, relative to the total number of residents in
antenna tessellation cell Ci. The calculation of χi,j(h) utilized hourly OD ma-
trices, indicating collective human mobility from cell Ci to cell Cj. Secondly,
considering the daytime variation in mosquito biting behavior, we introduced the
hourly weighting function, denoted as w(h) in our model (cf. Equation 2). It
is well-documented that Ae. aegypti and Ae. albopictus biting behavior occurs
exclusively during daylight hours, with heightened activity observed during twi-
light (Muhammad et al., 2020; Mutebi et al., 2022; Zahid et al., 2023). As such,
we assumed a decrease in mosquito biting activity during midday hours. How-
ever, we posited that this behavior might persist in shaded regions characterized
by elevated humidity and other environmental factors favoring mosquito activity
(Baik et al., 2020; Egid et al., 2022; Wei et al., 2023). Notably, mosquito biting
activity during the night was excluded from our proposed model.

ω(h) =



















3, if h ∈ ¶6, 7, 8, 9, 15, 16, 17, 18♢
2, if h ∈ ¶5, 10, 14, 19♢
1, if h ∈ ¶4, 11, 12, 13, 20♢
0, otherwise

(2)

The proposed feature engineering underwent evaluation employing a quasi-
Poisson generalized linear model (QP-GLM), wherein the target variable Di was
deĄned by overdispersed official dengue case counts aggregated on 1 359 antenna
tessellations between the years 2015 and 2022 (cf. Equation 3). For evaluation,
we calculated CohenŠs pseudo-R2 (cf. Equation 4). The explained deviance for
this regression model was compared to the pseudo-R2 of a base model that did
not consider assumptions related to diurnal Aedes mosquito biting behavior and
hourly human movement (cf. Figure 2). In contrast to the proposed model, the
base model was implemented utilizing identity OD matrices for χi,j(h).

Di ∼ quasi-Poisson(µ̂i, θ̂)
E(Di) = µ̂i

Var(Di) = µ̂i ∗ θ̂, with θ̂ ̸= 1

log(µ̂i) = log(Hi) + β̂0 + β̂1 ∗ Bi

(3)

Cohen′s pseudo R2 = 1 − model deviance
null model deviance

(4)
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2.2.2 Spatial eigenvector mapping incorporating selected vulnerabil-
ity indicators

After evaluating the feature engineering of hourly human-mosquito biting risk,
we expanded our QP-GLM in two aspects: (i) by incorporating vulnerability indi-
cators to model the likelihood of an infected individual being registered in official
health registries, geolocated by residency, and (ii) by integrating spatial eigenvec-
tors to address spatial autocorrelation of residuals. To mitigate multicollinearity
among covariates, we selected vulnerability indicators with low intercorrelation
(≤ 0.7). These two model extensions led to a more comprehensive model for
sub-neighborhood DENV occurrence, considering daytime human-mosquito bit-
ing risk, as explored in our initial research question.

Our second research objective focuses on the enhancement of spatial estimates
of sub-neighborhood DENV occurrence by incorporating spatial eigenvectors and
selected vulnerability indicators. By addressing this question, we aim to assess the
extent to which these additional variables improve the predictive capability and
understanding of DENV transmission dynamics within the urban environment.
Here, vulnerability features were deĄned as variables that inĆuence the appear-
ance and collection process of DENV infections at the urban scale, but not the
human-mosquito biting risk itself. This strategic inclusion allows us to dissect the
nuanced factors contributing to DENV occurrence, beyond solely focusing on the
dynamics of human-mosquito interactions. In this study, these factors included
the location of vulnerable age groups, accessibility to health care facilities, road
network centrality, the socio-economic factor of average income, and estimates on
immunization levels derived from past DENV infections. In contrast to the Ąrst
model deĄned in Equation 3, the year 2022 was selected as the reference year for
predictions, coinciding with the occurrence of the last major DENV outbreak in
the municipality of Rio de Janeiro (cf. Figure B. 1). Consequently, immunization
levels were estimated based on the spatial distribution of past infections recorded
between 2015 and 2021.

The applied spatial eigenvector mapping, originally proposed by Griffith et
al. (2019) (Griffith, 2019), involved the incorporation of additional covariates to
absorb spatial autocorrelation. This ensures unbiased estimators for other pre-
dictors. These covariates, derived from the eigenfunction decomposition of the
spatial weight matrix W , are called spatial eigenvectors. They represent orthog-
onal components that effectively separate and capture information on spatial au-
tocorrelation, similar to principal component analysis. In our study, we employed
daily aggregated OD matrices from July 2021 to July 2022 to illustrate human
connectivity between antenna tessellations, serving as a spatial weight matrix (cf.
Figure 5). This led to the generation of 1 359 spatial eigenvectors, out of which
the ME function from the ŠspatialregŠ R package facilitated the identiĄcation of
a speciĄc subset applying brute-force search (Bivand, 2023; Griffith, 2000) under
consideration of an alpha threshold of 0.05 to mitigate residual autocorrelation.
This selected subset of eigenvectors was integrated as additional covariates into
the QP-GLM (cf. Equation 3).
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Figure 5: Human movement patterns used for spatial eigenvector mapping of DENV occur-
rence in the municipality of Rio de Janeiro. Spatial weights were estimated applying mobile
phone records from July 2021 to July 2022. Thick dark black edges represent high human
connectivity between antenna locations, whereas thin and bright black stripes indicate a lower
amount of human movements.

3 Results

3.1 Evaluating the feature engineering of hourly human-mosquito
biting risk

The results in Table 1 demonstrate how considering mosquito biting hours
and human movement corridors can enhance the accuracy of spatial estimates
for urban DENV occurrence. The proposed feature engineering method outper-
forms the baseline model, which does not consider the daylight activity of Aedes
mosquitoes, and demonstrates a 13.5% increase in the explained deviance within
the response of the QP-GLM. Both models yielded positive and signiĄcant es-
timates for their hazard and exposure combined covariate of human-mosquito
biting risk Bi. The computed global MoranŠs I value for the residuals was 0.59.

Table 1: Coefficients, standard errors, and p-values for QP-GLMs applying two different model
scenarios for human-mosquito interaction, where the base model did not consider any temporal
variation in human-mosquito biting risk and the proposed model incorporated hourly adapting
mosquito activity and human population densities. Regression coefficients and standard errors
are reported at the link scale. The limited explained deviance in both models hints at the
presence of missing latent covariates.

QP-GLM
Intercept Human-mosquito biting risk (Bi) CohenŠs explained deviance

β̂0 σ̂
β̂0

β̂1 σ̂
β̂1

Pr(> ♣z♣) pseudo-R2

Base model (BM) -0.7914 0.2856 2.3228 0.4591 4.78e−7 0.0395
Proposed model (PM) 0.4273 0.0532 4.2866 0.2230 < 2e−16 0.1750

Considering the aforementioned results, it implies that integrating knowledge
of Aedes biting behavior with human movement patterns can also facilitate the
inference of probable transmission sites for reported dengue cases. If this holds
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true, increased mosquito control interventions in these locations would have the
potential to combat Aedes-borne diseases more effectively.

Figure 6: Novel vector control planning map considering daytime mosquito activity and human
movement Ćows for the municipality of Rio de Janeiro. The Ągure illustrates the discrepancy
between DENV occurrence and estimated mosquito abundance at an urban scale. Areas of
dark red color represent target effectiveness zones measured by entomological surveillance. The
black-striped Voronoi tesselations highlight potential danger areas for transmission that might
be underestimated when relying solely on entomological surveillance. The identiĄcation of
these zones relied on hourly-weighted propagated dengue occurrence HP − DENVi, weighted
by biting activity, to reĆect the locations of infected persons during the days denoted as HP −

DENVi =
∑

24

h=1
w(h) ·

(

DENV ·
∏h

j=1
ODj

)

. Within the black-striped Voronoi tessellations,
sub-regions with high mosquito suitability are particularly relevant to guide interventions.

Figure 6 presents, as a highlight of this work, the practical implications of
these research Ąndings for the municipality of Rio de Janeiro. A novel map-
ping approach for vector control intervention was developed, incorporating (i)
the spatial distribution of mosquitoes, as indicated by temporally aggregated
entomological surveillance data, (ii) the spatial dispersal of dengue occurrence,
and (iii) the most likely transmission locations for reported dengue cases, taking
into account daytime Aedes biting behavior. This target effectiveness map marks
regions that were potentially underestimated for vector control planning using
entomological datasets only, while at the same time emphasizing the enduring
importance of areas with high mosquito abundance.

3.2 The role of vulnerability indicators and spatial eigenvector map-
ping in model enhancement

We hypothesized that incorporating vulnerability indicators and spatial eigen-
vectors would further enhance the proposed QP-GLM (cf. Equation 3), which
considers Aedes-human interactions for predicting the spatial occurrence of
dengue in the municipality of Rio de Janeiro. The CohenŠs pseudo-R2 of the
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more extensive QP-GLM considering hourly human-mosquito biting risk was de-
termined to be 0.77, indicating that the extended model was capable of explaining
up to 77 percent of the deviance in dengue occurrence on the sub-neighborhood
level for the municipality of Rio de Janeiro in the year 2022. The computed global
MoranŠs I value for the residuals was 0.07, indicating low spatial autocorrelation.
A QP-GLM with human-mosquito biting risk and vulnerability indicators but
without spatial eigenvectors was not considered, as it yielded a higher overdis-
persion value of 26.85 and a higher global MoranŠs I of 0.2, despite having a
CohenŠs pseudo-R2 of 0.83. This underscores the importance of vulnerability in-
dicators and spatial eigenvector mapping in improving spatial predictions of sub-
neighborhood dengue occurrences, which are georeferenced based on residency.
Additional result on the applied vulnerability indicators and spatial eigenvectors
are listed in the Appendix B (Table B. 1, Figure B. 2).

4 Discussion

In this study, we analyzed the impact of modeling urban DENV occurrence
under consideration of daytime mosquito activity and human movement patterns.
The analysis has shown how urban areas exhibit spatial heterogeneity in numer-
ous factors relevant to infectious disease transmission. The Ąndings contribute to
the understanding of infectious disease dynamics at a sub-neighborhood scale by
highlighting the important role played by daytime mosquito activity and human
movement Ćows in linking observed patterns of DENV incidence to inferred pat-
terns of disease transmission. The inferred degree of spatial variation in urban
DENV occurrence was sensitive to assumptions about daytime mosquito activity.
Spatial discrepancy existed between the dominant location of mosquitoes, the
spatial patterns of human-mosquito interaction points, and disease occurrence
collected by residency. Taking these Ąndings into account, one can conclude
that methodologies that presume consistent human exposure to mosquito bites
throughout the day potentially yield exaggerated and biologically inadequate in-
terpretations regarding the patterns of disease transmission.

4.1 Challenges and opportunities

Additional knowledge about pathogen penetration rates in host and vector
populations would potentially enhance prediction capabilities for urban DENV
occurrence. However, the practical challenges associated with establishing such
virus penetration measurements, e.g. within entomological surveillance systems,
pose signiĄcant obstacles, especially due to the need for appropriate laboratory
infrastructure. The utilization of mobile phone data as as a proxy for human
movement in the present study could have resulted in additional inherent con-
straints. Despite the high penetration rate of the mobile phone provider, mobil-
ity estimates may have been biased due to the exclusion of individuals without
mobile phones or those using different services. To counteract this factor, an im-
provement strategy could involve integrating social media streams. Higher-order
descriptions of movement, such as social network structure, have been shown to
affect transmission dynamics in urban environments (Reiner et al., 2014; Stoddard
et al., 2013; Vazquez-Prokopec et al., 2013). The consideration of the interplay
among disease symptoms, infectiousness, and the mobility of individuals infected
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with DENV seems additionally promising in this context (Perkins et al., 2015;
Perkins et al., 2016; Schaber et al., 2019). This complicates the assumption that
the movement patterns of apparently healthy individuals can adequately repre-
sent the mobility patterns of those involved in transmission (Wesolowski et al.,
2016).

4.2 Future directions

Follow-up activities could connect by examining cross-boundary human move-
ments to out-of-city regions and potentially model on individual human scale
instead of aggregating risk value into areal units. The Ąxed scenario employed
to model the daytime risk of human-mosquito biting could also be extended to
consider seasonal Ćuctuations in sunset and sunrise times. We showed that ap-
proximating residentŠs exposure to different mosquito populations throughout the
city, leveraging human movement Ćows derived from mobile phone data, results
in higher predictive power than focal mosquito abundance alone. This highlights
the importance of considering mechanisms driving human-mosquito interactions
for understanding of mosquito-borne disease occurrence at urban scale. We em-
ployed a relatively basic and temporally static statistical model. Future studies
could leverage similar data for building spatial process-based models of intra-
city transmission dynamics (Kache et al., 2022; Wu et al., 2023). Such models,
although computationally and conceptually challenging, could effectively incorpo-
rate mosquito behavior as well as ecology and capture feedback processes, such as
immunity dynamics and transmission cycles, amongst others. Furthermore, day-
time variation of human host density across the city could be incorporated, poten-
tially impacting local vectorial capacity by modulating mosquito biting behavior
and mosquito-to-host ratio. Implementing this modeling approach would yield
additional insights on the efficacy of prevention and control strategies, thereby en-
hancing our understanding and management of mosquito-borne diseases in urban
environments.

4.3 Conclusion

We reported that modeling hourly human-mosquito interaction, integrating
knowledge of Aedes biting behavior with human commuting patterns, can improve
inference on dengue occurrence in the city of Rio de Janeiro by 13.5% compared
to a model neglecting daytime variation in biting activity and human movement.
Additionally, the inclusion of vulnerability indicators and spatial eigenvectors
improved the accuracy of our model at the sub-neighborhood scale by up to 77%.

These Ąndings hold signiĄcance for all mosquito-borne diseases, underscor-
ing the critical role of accumulating data on human mobility. Such data not
only serves as a cornerstone for pathogen dissemination modeling but also fa-
cilitates a deeper understanding of exposure dynamics to vectors characterized
by diurnal activity Ćuctuations. Future studies could incorporate these results
into vector control planning workĆows, for example by identifying zones of poten-
tial pathogen transmission potentially underestimated by conventionally applied
mosquito abundance maps for targeted control measures. The efficacy of such tar-
geted interventions in mitigating dengue infections warrants evaluation through
Ąeld studies, extending beyond the speciĄc case of Rio de Janeiro.
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Appendix

Appendix A

Table A. 1: List of retrieved covariates for the modeling of urban DENV occurrence in the
municipality of Rio de Janeiro, including information on the spatial resolution, data source and
the required pre-processing step before running zonal statistics on antenna tessellation level.
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Figure A. 1: Seasonal urban suitability for Ae. aegypti eggs (left) and larvae (right) at a 200-
meter resolution within the municipality of Rio de Janeiro for the year 2019, generated in a prior
study (Knoblauch et al., 2023). The analysis employed a complementary approach integrating
entomological surveillance data from ovitraps, ecological knowledge concerning limited mosquito
Ćight range, and urban landscape indicators relevant to infer immature Ae. aegypti suitability.
The blue timescale on the left indicates the wet and dry season.
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Figure A. 2: Entomological surveillance data collected via household survey called
LIRA.Ministério da Saúde Brazil, 2013 Maps display the house index (left) and breteau in-
dex (right) for Ae. aegypti (top) and Ae. albopictus (bottom) averaged over 48 seasonal LIRA
surveys between 2015 and 2022.

Figure A. 3: Normalized centrality of OSM road network measured by travel time in car for
the municipality of Rio de Janeiro.
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Figure A. 4: Healthcare accessibility measured by travel time using an equal modal split of
car, public transport, bicycle and walk for the municipality of Rio de Janeiro.

Figure A. 5: Comparison between the age distribution of DENV-infected individuals, deter-
mined by the time interval between birth and notiĄcation date in the official health system,
and the overall age structure in Rio de Janeiro municipality as per the 2022 census. For the
calculation of the average infection age, official health records from January 2015 to December
2022 were applied. The age structure of infected persons roughly aligns with the general demo-
graphic structure.

Appendix B: SigniĄcance of vulnerability indica-

tors and spatial eigenvectors

Among the applied vulnerability indicators, the socio-economic variable of
average income emerged as the most inĆuential predictor, demonstrating a nega-
tive association (Table B. 1). This suggests that higher average income levels in
the municipality of Rio de Janeiro are associated with a reduced risk of dengue
infections. Conversely, the indicators of the hypothesized vulnerability categories
accessibility and centrality did not exhibit signiĄcant predictive power, contra-
dicting our initial assumptions. The same applied to the density of older individu-
als. However, the density of individuals under Ąve years emerged as a signiĄcant
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predictor in our model, exhibiting a negative estimate, which suggests that a
higher concentration of children was linked to fewer dengue cases. This could po-
tentially be explained by the fact that Ąrst dengue infection per individual have
a higher probability of being clinically mild (Guzman et al., 2016). Addition-
ally, behavioral factors could play a role, as households with young children may
be more vigilant in implementing mosquito control measures, thereby reducing
dengue transmission.

Table B. 1: Coefficients, standard errors, and p-values for the proposed vulnerability indicators
in the extended QP-GLM, which considers hourly human-mosquito biting risk and spatial
eigenvectors in the municipality of Rio de Janeiro. Coefficient estimates and standard errors
are reported at the link scale.

Vulnerability Class Coefficients β̂ σ̂
β̂

Pr(> ♣z♣)

Socio-economic Average household income -6.2719 0.7059 < 2e−16

Accessibility

Travel time to closest healthcare facility -0.1221 0.2665 6.47e−1

Total number of healthcare facilities -1.2820 0.5748 2.59e−2

Travel time to closest public school -0.3676 0.3162 2.45e−1

Total number of public schools 0.1972 0.2977 5.08e−1

Cumulative opportunity measure to access jobs in 60 minutes -0.0901 0.2497 7.18e−1

Total number of formal jobs -4.5421 2.2695 4.55e−2

Centrality Standardized OSM road network centrality by average travel time in car 1.4925 0.6917 3.11e−2

Count of public transport stations 0.0893 0.0538 9.72e−2

Demographics Number of residents between 0 and 5 years old -3.8328 0.7463 3.23e−7

Number of residents older than 60 years 0.1224 0.6864 8.59e−1

Immunization level

Estimated level of immunization (2015) 1.3946 0.4481 1.90e−3

Estimated level of immunization (2016) 1.5296 0.4095 1.95e−4

Estimated level of immunization (2017) 0.4041 0.2507 1.07e−1

Estimated level of immunization (2018) -0.7807 0.4332 7.18e−2

Estimated level of immunization (2019) 1.7539 0.135 7.00e−4

Estimated level of immunization (2020) 0.5402 0.2855 5.87e−2

Estimated level of immunization (2021) 2.9644 0.5117 8.61e−9

In the assessment of the vulnerability class of immunization, our analysis in-
dicated that the calculated signiĄcance values for each year of past infections
depend on the magnitude of the outbreak pattern (cf. Figure B. 1). The years
with minor outbreaks and less spatial variance in DENV occurrence (2017, 2018,
2020) exhibited either no signiĄcant association or marginally statistically signiĄ-
cant association, whereas the major outbreak years with larger spatial variance in
DENV occurrence (2016, 2019) showed lower p-values. The most recent year in
our analysis, 2021, yielded the highest p-value among the hypothesized immuno-
logical vulnerability indicators, despite the occurrence of lower dengue incidence.
Surprisingly, most estimates of this vulnerability category were positive, contrary
to our initial hypothesis about past infections conferring population immunity.
We hypothesized that this is related to the fact that environmental factors facili-
tating transmission are overruling marginal gains in population immunity (under
the assumption that cross-immunity between subsequent serotypes or genotypes
is relevant). The complex immunological interactions between infections with the
four dengue serotypes over time are not further discussed in this context (Sim-
mons et al., 2012). In brief, past infections with a heterologous serotype confer
short-term cross-immunity, while past infections with a homotypic serotype con-
fer long-term immunity to the same serotype. The duration and effect size of
the heterologous cross-immunity and potentially enhancement is dependent on
the time interval between the infections as well as on the speciĄc sequence of
the serotypes and their genotypic similarity (Guzman et al., 2016; Katzelnick et
al., 2015). These complex immunological interactions between dengue serotypes
make it challenging to utilize spatial distribution patterns of dengue cases from
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previous years to model immunity levels. Here we can only show the possible
existence of a confounding factor not accounted for in the model but inĆuential
in driving the spatial distribution of dengue cases at the sub-neighborhood scale.

Figure B. 1: Daily Ćuctuations of DENV case counts and serotype dominance in the munici-
pality of Rio de Janeiro from 2015 to 2022. Larger outbreaks in 2015, 2016, and 2019 co-occur
with dominant serotype switches. Days indicated by white stripes indicate a lack of serotype
tests in the official health database.

It is important to note that the presented results are dependent on the selec-
tion and calculation methods for vulnerability indicators and spatial eigenvectors.
Not all additional variables showed signiĄcance in our model, underscoring the
nuanced impact and selective relevance of certain variables within such broader
predictive frameworks. The signiĄcance of the proposed human-mosquito biting
risk indicator did also diminish in a more extended spatial model. The spatial
eigenvectors (cf. Figure B. 2) effectively absorbed a signiĄcant portion of the spa-
tial autocorrelation present in the residuals of the proposed QP-GLM. They can
be instrumental in formulating additional hypotheses regarding potential missing
covariates or confounding factors for integration into future models. Furthermore,
they can serve as a tool for testing spatially varying regression coefficients.

Figure B. 2: Exemplary spatial eigenvectors derived from the modelŠs spatial weight matrix
illustrating distinct patterns: Spatial eigenvector 2 shows gradual spatial gradients, and spatial
eigenvector 135 depicts localized clustering. These eigenvectors unveil varying spatial structures
within the study area, providing valuable insights into the underlying spatial relationships
inĆuencing the observed phenomena.
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