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,When he [the scientist] designs his experiments or executes them with devoted attention to the
details he may say to himself. “This is my composition; the pipette is my clarinet”. And the
orchestra may include instruments of the most subtle design. To others, however, his music is as
silent as the music of the spheres. (...) The scientist has in common with the artist only this: that
he can find no better retreat from the world than his work and also no stronger link with the

world than his work.” Max Delbriick
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Abstract

Chronic lymphocytic leukaemia (CLL) is a mature B-cell malignancy with accumulating B-cells in
the peripheral blood and secondary lymphoid tissue. CLL cell proliferation is highly dependent on
B-cell receptor (BCR) signalling and microenvironmental support. BCR pathway-activated genes
are most prominently expressed in CLL cells in lymphatic tissue. Lymphatic tissue is at the same
time the major site of CLL cell proliferation. The crucial signalling node of the BCR pathway is PI3K.
PI3K activity is countered by the inositol phosphatases Phosphatidylinositol 3,4,5-trisphosphate
3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN) and Src homology domain
2-containing inositol-5'-phosphatase 1 (SHIP1). PTEN reverses PI3K activity by enzymatically
converting PIP; to PI(4,5)P,. In contrast, SHIP1 catalyses the removal of another phosphate

residue, thereby degrading PIP; to phosphatidylinositol-3,4-bisphosphate.

Based on the analysis of a developed model to depict interconnections between signalling factors
and to predict beneficial combination treatments, further regulating signalling factors were
included in a panel of BCR stimulation dynamics. Through the present work, the impact of PTEN
and SHIP1 on stimulation-dependent BCR signalling in CLL and on the adhesion capacity of CLL
cells to cells of the microenvironment were investigated. As CLL cells accumulate in two distinct
niches in the patients, the fractions of distinct adhesion capacity were separated in flow cytometry
measurements and microscopically imaged in a modified and CLL-optimised adhesion under flow

assay.

The results of this work indicate that PTEN and SHIP1 control BCR signalling in distinct stimulation
conditions. SHIP1 could be shown to be highly relevant in determining the (re-)adhesion capacity
of peripheral CLL cells. Furthermore, the von-Hippel Lindau factor was observed to regulate the

adhesion of CLL cells and directed future work towards integrins on the CLL cell surface.

Taken together, the present work sheds light on the potential of SHIP1 and related factors as

targets for future combination treatment approaches.






Zusammenfassung

Chronisch lymphatische Leukdmie (CLL) ist ein B-Zell-Malignom differenzierter B-Zellen, bei dem
B-Zellen im peripheren Blut und im sekunddren lymphatischen Gewebe akkumulieren. Die
Proliferation der CLL-Zellen hdngt in hohem Male von der Signaltibertragung durch den B-Zell-
Rezeptor (BCR) und der Mikroumgebung ab. Genexpressionsdaten haben gezeigt, dass der BCR-
Signalweg bei CLL-Zellen im lymphatischen Gewebe, dem Ort der CLL-Zellvermehrung, am
starksten aktiviert ist. Der entscheidende Signalknoten des BCR-Signalwegs ist PI3K. Die PI3K-
Aktivitdt wird durch die Inositol-Phosphatasen Phosphatidylinositol 3,4,5-trisphosphate 3-
phosphatase and dual-specificity protein phosphatase PTEN (PTEN) sowie die Src homology
domain 2-containing inositol-5-phosphatase 1 (SHIP1) gehemmt. Wahrend PTEN die PI3K-
Aktivitat direkt umkehrt, um PI(4,5)P, zu erzeugen, katalysiert SHIP1 die Umwandlung von
PI(3,4,5)Ps in Phosphatidylinositol-3,4-bisphosphat.

Auf der Grundlage der Analyse eines entwickelten Modells zur Darstellung der Interkonnektivitat
zwischen BCR-Signalfaktoren und zur Vorhersage vorteilhafter Kombinationsbehandlungen
wurden weitere regulierende Signalfaktoren in ein Panel der durchflusszytometrischen Analyse
der BCR-Stimulationsdynamik aufgenommen. In der vorliegenden Arbeit wurden die
Auswirkungen von PTEN und SHIP1 auf die stimulationsabhangige BCR-Signalaktivitdt bei CLL und
auf die Adhasionsfahigkeit von CLL-Zellen an Zellen der Mikroumgebung untersucht. Da CLL-Zellen
bei den Patienten in zwei verschiedenen Nischen akkumulieren, wurden die Fraktionen mit
unterschiedlicher Adhdsionskapazitdt in durchflusszytometrischen Messungen getrennt und in

einem modifizierten und fiir CLL optimierten Adhdsionsassay mikroskopisch abgebildet.

Die Ergebnisse dieser Arbeit deuten darauf hin, dass PTEN und SHIP1 die BCR-Signalaktivitat unter
verschiedenen Stimulationsbedingungen kontrollieren. Es konnte gezeigt werden, dass SHIP1 bei
der Bestimmung der (Re-)Adhasionsfahigkeit von peripheren CLL-Zellen von groRer Bedeutung ist.
Darliber hinaus wurde festgestellt, dass der von-Hippel-Lindau-Faktor die Adhasion von CLL-Zellen

reguliert, was kiinftige Arbeiten auf Integrine auf der Oberflache von CLL-Zellen lenkt.

Insgesamt wirft die vorliegende Arbeit ein Licht auf das Potenzial von SHIP1 und verwandten

Faktoren als Ziele fir kiinftige Kombinationstherapieansatze.
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1 Introduction

1.1 Aberrant signalling in cancer

Cancer is a disease of uncontrolled survival and proliferation of the body’s cells. Cancer is defined
by several characteristics that include overproliferation, escaping apoptosis and migration outside
of the respective cellular niche®2. In cells outside of their niches, apoptosis is induced through
homeostatic controls. These homeostatic controls can only be escaped through a malignant
transformation with genetic and epigenetic alterations®. Genetic and epigenetic alterations often
affect signalling pathways that control cellular growth, division, apoptosis, differentiation, and
motility. Altered signalling pathways may also affect non-malignant cells of the tumour
microenvironment (TME), for example pathways that regulate angiogenesis and inflammation3.
The recruitment of inflammatory factors and angiogenesis is controlled by the PI3K/AKT signalling
pathway*> among others. The PI3K/AKT signalling pathway is one of the pathways most frequently
affected by mutations driving cancer progression®. Mutations aberrantly activating the PI3K/AKT
pathway may be present in several genes that include PI3KCA, phosphatases Phosphatase and
tensin homolog deleted on chromosome ten (PTEN), AKT, TSC1, and mTOR’. Several strategies to
inhibit the tumour promoting nodes of PI3K/AKT signalling networks were developed. The PI3K
inhibitor idelalisib and the BTK inhibitor ibrutinib are the most prominent examples of clinically
approved inhibitors while e.g. for BTK two more have been approved by the FDA%°. The recent
advancements in the clinics by applying PI3K/AKT pathway inhibitors have improved clinical
parameters such as overall survival (OS). The current challenges consist of a better understanding
of cancer type specificity, appropriate combination treatments and beneficial patient
stratification. Patient stratification as well as in-depth analysis of the signalling network

interconnections have therefore come into focus of current research32°,

1.2 The tumour microenvironment is a hallmark of cancer

In the next generation of the hallmarks of cancer the TME was considered crucial for tumour
formation®. As the tumour develops in a complex surrounding tissue, three types of cells have
been associated with cancer progression: infiltrating immune cells, angiogenic vascular cells, and

cancer-associated fibroblasts (CAFs)!!. CAFs contribute to the establishment of a tumour-



promoting environment, while normal fibroblasts contribute to tumour suppression!’.. The
tumour-promoting environment also consists of a milieu of chronic inflammation. Chronic
inflammation drives mesenchymal stem cell transition towards CAF formation®3. Stromal
fibroblasts and other tumour-promoting cells of the TME deliver proliferative signals, induce
angiogenesis* and metabolic reprogramming, activate or facilitate migration, and assist in
evading growth suppressors and immune destruction!!. While the immune control of cancer cells
is evaded, CAFs further support the tumour-promoting niche of chronic inflammation through NF-
kB signalling®. The signalling pathways involved in TME interaction have moved into research

focus to find new therapeutic options.

1.3 Chronic Lymphocytic Leukaemia, an exceptional malignancy

CLL is in many respects an exceptional malignancy. CLL cells remain in cell cycle arrest while
circulating in the peripheral blood. The clinical course is highly variable including patients
subgroups that do not require therapy and remain without further symptoms for decades while

other subgroups suffer from rapid progression and high risk?e.

1.3.1 Epidemiology, diagnosis and clinical characteristics

In the Western world, CLL has the highest diagnosis rate among adult leukaemia with an incidence
of 4.1 per 100 000 inhabitants'’. This leukaemia usually affects the elderly, the median age at
diagnosis being 72 years!®, and the initial disease development may occur over a long period of
time!®2. During the disease development, blood count of CD5+ CD19+ B-cells increases as well as
the presence of these cells in secondary lymphoid tissue®. At diagnosis, blood count surpasses 5 x
10%/L CLL cells?* with characteristically small cells in the blood smear. These CLL cells are CD19,
CD20, CD23, and CD5 positive?>24, The disease staging follows the Rai (0, I/1I, and 11I/IV) or Binet
(A, B and C) systems. Both systems group the patients into low, intermediate, and high risk
according to the levels of lymphocytosis, lymphadenopathy, anaemia, and thrombocytopenia®26.
Additional biomarkers of prognostic value include ZAP70, CD38, CD49d which are associated to
poorer outcome?’3°, The most prominent patient stratification is based on the degree of somatic

mutation in the immunoglobulin (Ig) heavy chain gene (IGHV). IGHV unmutated CLL (U-CLL) is

associated with more aggressive CLL and lower overall median survival?”3132 than CLL with >2%
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germline difference IGHV (mutated IGHV, M-CLL). M-CLL also differs from U-CLL in the underlying
genetic lesions, clonal evolution, epigenetic dysregulation and hyperactive signalling pathways>*"
%5, These differences have led to the assumption that U-CLL and M-CLL cells relate to a different
cell type as cell of origin®. The different characteristics of U-CLL and M-CLL cells also span to the

kind of interactions established with the cells of the TME3337,

1.3.2 The development and function of normal B-cells

The B-cell formation is initiated in the bone marrow (BM). In the BM, hematopoietic stem cells
(HSCs) differentiate into common lymphoid progenitor cells®®. The lymphoid progenitor cells
undergo epigenetical changes that lead to differentiation into the B or T cell lineage3*“°. In the B-
cell lineage, a chronologically tightly controlled process of Ig H and L chain loci rearrangements
further transition the pro-B-cells to pre-B-cells*!. In pre-B-cells, a complete and unique B-cell
receptor (BCR) locus is assembled***3. Of the resulting expressed BCRs, 50%-75% are specific to

46,47

self-antigens**>. A self-reactive BCR leads to further receptor editing?®*’, anergy®, induction of

4950 or exclusion from follicular niches®.. Immature B-cells migrate from BM to B-cell

apoptosis
follicles in secondary lymphoid tissue, i.e. lymph nodes (LNs) and spleen. In the lymphoid tissue,
antigen binding leads to B-cell activation. Activated B-cells engage into a coordinated crosstalk
with different cell types to form the germinal center (GC)**°3. Within these GCs, stromal cells
produce gradients of CXCR4 and CXCRS5 that establish the GC light and dark zones®*. In the GC dark
zone, B-cells undergo proliferation at a rate unparalleled in human tissue and diversify the
immunoglobulin variable region (IgV) genes by somatic hypermutation. Together, hypermutation
and proliferation lead to an extreme differentiation of the BCR, thereby generating mutant clones
increasing the antigen recognition repertoire by several magnitudes covering very variable
affinities for the immunizing antigen. The affinity of GC-derived B-cells increases, a phenomenon
called affinity maturation. Affinity maturation is possible through an effective selection process
that excludes inferior or self-reactive IgV mutants in the GC light zone through positive selection
of and thereby proliferative outcompetition by high-affinity BCRs. High-affinity BCR-expressing B-
cells are fast and effectively produced in the specialized GC microenvironment where rapid
movement and close interaction of different cell types is facilitated®>*3, The activated B-cells
undergo several iterative rounds of further mutation and affinity selection and differentiate into
memory B-cells®? or antibody-secreting plasma cells®>*%. These memory B-cells and plasma cells

may also have switched Ig classes, i.e. replacing IgM and IgD with IgA, 1gG or IgE®’. Further BCR



recruitment is not necessary to maintain memory B-cells. Mature B-cells including follicular (B-2)
and marginal zone B-cells in the secondary lymphoid tissue almost exclusively originate from the
GC reaction and belong to the adaptive immune system®®, In the peritoneal and pleural cavities,
described as part of the innate immune system, and independent from T cell interaction, another
type of mature B-cells was found. These so-called B-1 cells are CD5+. The CD5+ non-malignant B-

cells detected in human PB are still poorly understood in terms of their origin and function®.

1.3.3 CLL origin and development

As mentioned in the section 1.3.1, U-CLL and M-CLL appear to develop from different cells of
origin3® which has not been finally resolved as the exact normal B-cell counterpart remains under
controversial debate®® %2, |nitial genetic lesions that result in CLL formation were observed in
HSCs® and in multipotent progenitor cells of CLL patients®. As CLL cells express CD5 on the cell
surface, the hypothesis arose that the B-1 cell lineage harbours the cell of origin®. But the cell of
origin, according to recent findings based on transcriptomics and BCR signalling analysis, may
rather be derived from a marginal zone B-cell®®®. Marginal zone B-cells can express either
mutated or unmutated IGHV. The proportion of IGHV-mutated and —unmutated marginal zone B-
cells differs between immunisation status and different anatomic sites®® reaching 70%-80%
mutated IGHV in the spleen®. In the spleen, the marginal zone is located at the outermost layer
of the white pulp. Outside the white pulp, marginal zone-like tissues exist in tonsil subepithelial
regions, dome regions of Peyer patches, and in the subcapsular part of LNs’°. Marginal zone B-
cells are characterised by IgM"e" IgD'*" expression and respond to bacterial polysaccharides
independently from T cells”>’2, Independent from antigen encounter are also occasional IGHV
mutations and class switch recombinations occurring in marginal zone B-cells’>7%, These CD27+
marginal zone B-cells have also been observed to share a similar gene expression profile with CLL
cells, irrespective of the IGHV mutation status3®®’. The IGHV mutation status was associated to
different DNA methylation patterns. Analysing the DNA methylation patterns, U-CLL cells were
observed to cluster with CD5+ naive B-cells and M-CLL cells with memory B-cells®>. CLL cells may
also derive from a continuum of B-cell developmental stages, another DNA methylation analysis
indicated”. The development of CLL from a non-malignant B-cell occurs through a multistep
process of genetic and epigenetic alterations, clonal selection and expansion, escape from
homeostatic controls, and microenvironmental survival and proliferation signals. A precursor of
CLL is the monoclonal B-cell lymphocytosis that may remain for years before CLL symptoms

develop?. The malignant transformation of CLL appears to be supported by antigen-driven
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selective pressure as both U-CLL and M-CLL express highly restricted and biased BCR repertoires’®"
8 Stereotyped BCRs can be found in approximately one third of CLL patients, reflecting similar
genetic, epigenetic and clinical characteristics’®””7°. Characteristically, U-CLL BCRs show low
affinity and poly-reactivity or self-reactivity while M-CLL BCRs are usually oligo- or mono-reactive,

likely high affine to exogenous antigens®",

1.3.4 Genetic alterations

CLL is a malignancy that sporadically develops in elderly patients. The few patients with familial
predisposition usually bear one or several mutations in over 40 CLL-associated genetic loci. While
these loci are located in open chromatin, their role in CLL pathogenesis is poorly understood® 83,
Using whole-exome and whole-genome sequencing, the genetic landscape of CLL has been
studied extensively. The main genetic alterations, unlike in other cancer entities, do not appear to
be restricted to a small set of driver mutations but span a broad range of genes!¥8+%, |n M-CLL
there are on average slightly more somatic mutations detected than in U-CLL but CLL in general
has a lower mutational burden when compared to solid tumours or other haematological
malignancies®!®8%, The combination of genetic and epigenetic alterations with chromosomal
aberrations, tumour suppressor inactivation, oncogene hyperactivation, and dysregulated miRNA
expression allows further predictive and prognostic patient stratification®'. Patient stratification
has been proposed to follow a hierarchical model based on chromosomal abnormalities.
Cytogenetic alterations are detectable in approximately 80% of CLL patients®. With >50% of CLL
cases, the deletion 13q14.3 displays the most frequent genetic lesion and at the same time
predicts a favourable course of the disease®?’. The 13q14.3 deletion affects the loci of the DLEU2-
mir-15a/16-1 cluster which control apoptosis and genes of the cell cycle control®®®, The second-
most frequent lesion is the deletion 11q. Deletion 11q is present in <20% of CLL patients and
associated to resistance to chemotherapy and overall poor prognosis. The poor prognosis derives
from frequently associated alterations of ataxia telangiectasia mutated (ATM), a crucial factor in
the DNA repair machinery. Loss of a functional DNA damage response through genetic loss or
dysfunction of ATM or TP53 leads to genomic instability®®*°, Another lesion affecting
approximately 15% of CLL patients is trisomy 12. Trisomy 12 is associated with a higher risk of
developing Richter transformation. Richter transformation is the pathogenesis of a high-grade
lymphoma in CLL or small lymphocytic lymphoma®-?2, CLL with trisomy 12 is also more likely to
develop secondary tumours but the full mechanism on how trisomy 12 drives CLL pathogenesis is

still to be resolved®™**. Another prominent lesion is the deletion of 17p, found in <10% of CLL



patients. Deletion 17p involves TP53 inactivation. TP53 inactivation as mentioned before causes
genomic instability92®,

Genomic instability can also be caused by somatic mutations, e.g. again involving TP53 and ATM
pathways. Other pathways commonly affected by somatic mutations in CLL are RNA splicing,
chromatin modification, Notch signalling, inflammatory response, and B-cell activity
pathways¥8489  Some somatic mutations are of prognostic value, e.g. mutations affecting
NOTCH1 or SF3B1%. SF3B1 but also TP53 mutations also serve as predictive markers for disease
progression. During disease progression and after initial treatment success, subclones bearing

such driver mutations expand and require treatment strategy changes>®°.

1.3.5 Treatment

Treatment of CLL is only initiated when an active, symptomatic disease is diagnosed. An early stage
disease without symptoms is monitored without treatment as treatment does not provide any
benefit except for (rapidly) progressing disease®?*. When disease progression or symptoms are
diagnosed, treatment is initiated. Treatment options depend on the age, patient fitness and a set
of prognostic factors®. Younger patients may benefit from allogeneic stem cell transplantation,
the only to-date therapy considered curative but challenged by limited donor availability, graft-
versus-host disease and immunosuppression®®°°, For decades, standard treatment for CLL was the
application of alkylating agents with chlorambucil being the gold standard®!®. Compared to
chlorambucil, treatment with the purine analogue fludarabine resulted in more remissions and
more complete responses (CRs) without improving overall survival (0S)°l, The treatment of
several B-cell malignancies including CLL was significantly improved when, in 1998, CD20-targeting
antibodies became available%1%, CD20 is a membrane protein expressed in mature B-cells where
its function is yet to be investigated though suspected to act as a calcium channel’®. The
combination of anti-CD20 therapy with chemotherapeutics has led to the introduction of
chemoimmunotherapy to CLL treatment improving both OS and progression-free survival (PFS)
and thereby the combination of fludarabine, cyclophosphamide, and rituximab became the new
first-line therapy standard in a large subset of patients>%>. Another subset of patients, including
active disease U-CLL as well as Binet C or Rai lll-IV, benefit from more recently developed BCR
inhibitors as front-line therapy and relapsed or refractory patients in second line®*. The
importance of the BCR in CLL pathogenesis is explained in section 1.3.6. In short, the treatment in
CLL was revolutionised by small molecule inhibitors of BCR signalling pathway kinases!®%, The

most prominent kinases are Bruton’s tyrosine kinase (BTK) and Phosphatidylinositol-3 kinase delta
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(PI3Kd), being inhibited e.g. by the compounds ibrutinib and idelalisib, respectively?”:1%, Another
small molecule inhibitor, venetoclax, targets B-cell lymphoma 2 (BCL-2)% and has been approved
for second-line treatment of relapsed and refractory CLL, showing improved response rates
especially in del(17) patients!!®!!, During the last years, also immunotherapies and immune
checkpoint inhibitors were tested in clinical trials''>1*, While the clinical trials using CAR T cells
against CD19 led to durable remissions!!4, immune checkpoints as single agents failed to improve
therapy outcome!!?, The therapy outcome of combination treatments of immune checkpoint
blockade with kinase inhibitors is investigated currently or has been recently (NCT03331198,
NCT02329847, NCT02332980). In general, the largest efforts in current clinical trials are made to
determine the benefit of fixed duration combination therapies compared to monotherapies
especially in the light of BCR signalling inhibitors, such as BTK inhibitors. BTK and BCL2 inhibitor

double-refractory disease is still in urgent need of alternative therapies.

1.3.6  BCRsignalling

In B-cells, proliferation, selection and differentiation are promoted upon BCR antigen
engagement!®®. The antigen is engaged through specific Ig and Ig-a/lg-b heterodimer that
compose the BCR. BCR binding to the antigen leads to the cytoplasmic phosphorylation of
immunoreceptor tyrosine-based activation motifs of the Ig-a/Ig-b tails!!®. This phosphorylation of
the Ig-a/lg-b tails, BCR oligomerisation and microcluster growth initiate the signalling cascade via
docking and protein phosphorylation of the Spleen tyrosine kinase (SYK)''”*8, Phospholipase C,
gamma 2 (PLCy2) and Phosphoinositide 3-kinase (PI13K)'*°. Phosphorylated SYK, PLCy2, and PI3K

signal to calcium mobilization'®

and membrane localization of Protein kinase B (AKT) and Bruton’s
tyrosine kinase (BTK)#7123, AKT and BTK amplify the signal towards the transcription factors NF-
KB and NFAT!*'% and activate the extracellular signal-related kinases 1 and 2 (ERK1/2)
pathway!?. In CLL cells, the BCR pathway was the most prominently activated in samples from
lymphatic tissue, the site of CLL cell proliferation!?”128, and was associated with poor prognosis'®.
Poor prognosis subgroups are also associated with unmutated IGHV status, thus classified based
on BCR characteristics. As mentioned in section 1.3.3, U-CLL and M-CLL show different levels of
affinity and specificity38%13, The specificity of BCRs is in many cases identical among unrelated
CLL patients!3132 indicating that these stereotype BCRs recognise common antigen(s). It is a

common trait in many malignant cell types that excessive proliferation is linked to hyperactive

PI3K/AKT signalling®. In CLL, the BCR signalling pathway is a central factor in the



pathomechanism?®3313% and has thus become one of the main targets in CLL treatment?06108:135136
CLL treatment has benefited from this approach through the development of new therapeutics
inhibiting BCR-related kinases such as BTK%7:136, P[3K08 LYN37, or SYK*3%139, Successful inhibition
of the BCR leads to LN and spleen shrinkage as well as initial lymphocytosis in the PB. This
lymphocytosis is most likely a result of the mobilisation of CLL cells from the secondary lymphoid

140-142 pespite the great benefit of these kinase inhibitors, resistances and

organs to the periphery
other counter indications still produce challenges for the treatment of CLL**7%4¢, These challenges
can be tackled by different approaches. One approach is the further characterisation of available
inhibitors in terms of optimal sequencing and combination strategies®. Combination strategies
promise great potential as the inhibition of several signalling nodes synergistically silences BCR
signalling and cannot be circumvented in healthy B-cells or CLL cells regardless of IGHV subgroup

145 ‘microenvironmental

(Figure 1), Resistance to treatment may occur through clonal evolution
protection!®® or mutations in the targeted kinase or downstream effector genes#*146, Thus,
alternative strategies are required for refractory CLL cases. Advances in targeting the opponents
of kinases, phosphatases**4®, have raised the interest in these effectors with mainly inhibitory

function.
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Figure 1 The BCR signaling pathway in healthy B-cells as well as U-CLL and M-CLL cells remains stable
with or without BCR kinase inhibitor treatment. The stimulation with crosslinking of a-CD19 and a-
IgM antibodies through biotin-streptavidin interaction resulted in different degrees of BCR pathway
activation between healthy B-cells, U-CLL and M-CLL cells. Different kinase inhibitor combinations
reduced the phosphorylation levels of BCR pathway components beyond additive effects. The graph

was taken and modified from Wolf, Maus, Persicke et al. 2022 originally created by myself:°.

1.3.7 Inositol phosphatases

The central intracellular second messenger molecule in the BCR signalling pathway is
phosphatidylinositol-3,4,5-triphosphate (PIP3). PIP; is released from PI3K by phosphorylating
phosphatidylinositol-4,5-bisphosphate (PI(4,5)P;). P1(4,5)P; is an abundant molecule at the plasma
membrane and locally enriched at the Ig tails in quiescent B-cells****°. In quiescent B-cells there
is no PIP3 detectable. PIP; recruits AKT and BTK to the plasma membrane where phosphorylation

occurs to initiate downstream signalling cascades. This phosphorylation is controlled by the



degradation of PIP3; through inositol phosphatases. The inositol phosphatases PTEN and Src
homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) are activated by membrane
localisation®%*>2, While PTEN and SHIP1 share the common substrate, PIP3, there is ho sequential
or structural homology. PTEN catalyses the dephosphorylation of protein tyrosine residues and
additionally functions as a phosphatidylinositol 3,4,5-triphosphate 3-phosphatase!®3. SHIP1 is an
inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase®®*!>>, Thus,
PTEN directly reverses PI3K activity to generate PI(4,5)P,, while SHIP1 catalyses the conversion of
PIP; to phosphatidylinositol-3,4-bisphosphate (P1(3,4)P,)*®. PI(3,4)P, in contrast to PI(4,5)P is a
dynamic second messenger binding a different set of proteins, thereby recruiting further

downstream effectors®>’.

1.3.7.1 PTEN

PTEN is a bona fide tumour suppressor being deleted or mutated in a manifold of malignant

entities’™® %0 While in many cancer entities, PTEN is one of the most frequently mutated genes,

161

the second most after TP53 considering all cancer types™, some entities are not found to be

associated to a loss of PTEN'®%62 A loss of PTEN generally leads to hyperactivated, constitutive

158

AKT signalling™®. While hyperactivated AKT signalling is crucial in the development of CLL,

mutations in the PTEN locus are observed rarely if at all**>!%3, About 20% of CLL cases though do

show a loss of heterozygosity in the genetic region of the PTEN locus at 10g23.3, while the gene

162

itself is not affected by these mutations'?. Without inactivating mutations, the loss of control of

AKT phosphorylation in CLL cells by PTEN was found to be caused by transcriptional, translational

162-164

and spatial repression . Transcriptional repression has already been linked to poor

prognosisi®®. Independent from PTEN expression levels, its subcellular localisation to the CLL cell
nucleus may induce apoptosis. The induction of apoptosis was also reported to be independent

from the TP53 mutation status'®*

. While PTEN also functions as a protein phosphatase, its tumour
suppressor function is associated to the inositol phosphatase activity, removing the 3’ phosphate
of phosphoinositides'®, thereby antagonising PI3K activity. The phosphatase activity of PTEN is

reversibly inactivated by H,0,'%’.
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1.3.7.2 SHIP1

Another antagonist of PI3K is a 5’-inositol phosphatase: SHIP1. Similar to PTEN, SHIP1 cleaves PIPs,
a messenger molecule in the cell membrane. The cleavage produces phosphatidylinositol
PI(3,4)P,. SHIP1 does not only function through its phosphatase activity. It was shown to function
as scaffold protein interfering with signalling cascades of the MAPK and other pathways®%,
SHIP1 is crucial in B-cell development'’® and together with PTEN, these phosphatases are thought
to cooperatively suppress the malignant transformation of B-cells!’. The suppression of excessive
BCR-mediated activation is achieved through the conversion of PIP; to PI(3,4)P;, thereby
antagonising the membrane localisation of BCR signalling components, e.g. BTK7>173 or AKT"4,

But the role of SHIP1 in the formation and maintenance of malignant B-cells is ambiguous. Both

175,176 177,178

tumour suppressor and pro-proliferative characteristics have been reported.
Counterintuitively, SHIP1 inhibition has also been reported to trigger apoptosis in hematopoietic
cancer cells'’®. The ambiguous role of SHIP appears to be due to the 5’ phosphatase activity as
PI(3,4)P, is capable if not required to enhance AKT phosphorylation and hence activation of the
PI3K/AKT pathway!””178 In another report, SHIP1 was shown to inhibit AKT activation in B-cells*”
and SHIP1 mutations found in leukaemia associated to impaired enzymatic activity led to
increased activation of the PI3K/AKT pathway'’®. SHIP1 has served as target in the pioneering
development of phosphatase activators in therapies of multiple myeloma*®8° inter alia'®'182,
Interestingly, in myeloma cells PTEN but not SHIP1/2 suppresses the PI3K/AKT pathway!®3. The

184

SHIP1 activators are pelorol derivates'* and the most recent generation has entered preclinical

185

evaluation in several B-cell malignancies'®. With this recent preclinical advances, the role of SHIP1

and its targetability in CLL became one focus of this thesis project.

1.3.8 The TME in CLL

In response to infection, normal B-cells interact with the microenvironment. The
microenvironment facilitates antigen presentation, differentiation and maturation, and antibody
secretion!?”18_ Different cell types interact with B-cells, including mesenchymal stromal cells,
endothelial cells, fibroblasts, neutrophils, monocytes, macrophages, dendritic cells, T cells and NK
cells. These different cell types enter a crosstalk with B-cells through adhesion molecules,
endocrine processes, and ligand-receptor interactions. These interactions are not yet fully

elucidated®®” 188, |n CLL, genetic lesions and epigenetic reprogramming predispose malignant B-



cells to increased life spans and proliferation advantage in vivo. In vitro, CLL cells undergo
apoptosis within hours to days. The apoptosis is most likely initiated as pro-survival factors from
the microenvironment are no longer present!®. Factors contributing to CLL survival, proliferation
and migration are cytokines, chemokines, proangiogenic factors, and components of the
extracellular matrix. The survival and proliferation signals provided by the microenvironment can
be mimicked in vitro by co-culture with BM stromal cells!®9%0, These BM stromal cells interact
with CLL cells through adhesion molecules. Adhesion molecule types include integrins, vascular
cell adhesion molecule 1 (VCAM1), VEGF and others®®¥1% Stromal cells also release growth
factors signalling on the CXCR4-CXCL12 axis. This interaction protects CLL cells from spontaneous
as well as drug-induced apoptosis®19119:1%  Though, apoptosis measurements in co-culture
studies have to be considered with care as confounding phagocytosis has recently been
reported!®. The interaction between CLL cells and stromal cells leads to a change in the expression
pattern of both cell types. One such change in expression affects the C-C motif chemokine ligand
3 (CCL3) and 4 (CCL4) that recruit other types of lymphocytes, e.g. T cells?*¥1%°, The region of close
interaction with the microenvironment, the pseudofollicles of secondary lymphoid tissue, were
identified as the site of CLL cell proliferation in vivo'?’?%. CLL cells in lymphoid tissue have an
upregulated expression of BCR-related and NF-kB and NFAT target genes compared to CLL cells in
other tissue, i.e. PB and BM!?. In PB, nurse-like cells could be extracted that protected CLL cells
from spontaneous apoptosis in a similar manner as stromal cells?*?. The interaction of CLL cells to
cells of the microenvironment reshapes the tissue organisation as well as cellular function. T cell
function is affected by IL-10 and TGF-b release as well as PD-L1 surface expression, rendering T

cells incapable of controlling excessive CLL cell proliferation?02-204,

1.4 The impact of shear stress on lymphocytes

Throughout the entire human body, cell surfaces interact with watery extracellular milieu. The
extracellular fluid impacts on the cell surface. The most relevant mechanical impact on the cell
surface is known as shear stress. Shear stress is a mechanical force applied in parallel to the
respective surface. The S| unit for shear stress is Pascal (Pa) while in biological conditions,
dynes/cm? is used with 1Pa=10dyn/cm? Shear stress on the cell surface induces
mechanotransduction processes. These mechanotransduction processes impact on cellular
function and activation by cell morphology modulation, induction of proliferation or

differentiation, altering metabolic pathways and extracellular matrix formation2%2%, Especially in
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the development of endothelial cells in the blood, shear stress plays an important role and is the
highest in the arteries reaching 15 dyn/cm? in physiological conditions or >80 dyn/cm? in

207209 \While the effects of shear stress on endothelial cells are well studied

hypertension patients
in the vascular system?7210, the effects on circulating cells in blood, lymph and intercellular fluid
are not completely elucidated, yet. Between these body fluids, lymphocytes are able to migrate
from one to another?¥2%3, |n these different physiological environments, very different levels of
shear stress apply to the lymphocytes. Different levels of shear stress are also found within the
respective body fluid, e.g. areas of lower or higher shear stress within the LNs?!4%1%, Responsible
for changing levels of shear stress is also the lymph nodal vasomotion. Lymph nodal vasomotion
is regulated through prostanoids?!’. The changing shear stress regulates calcium signalling, ATP
metabolism, and subsequent pathways also affecting the permeability of lymphoid stromal
cells?1>218.219 | aykocytes leaving the lymphoid microenvironment, re-circulating to the blood
stream with high shear stress, in general show a lower level of cellular activation. The lower
activation levels are indicated by the loss of pseudopods and the reduction in integrin surface
expression?2%221, An example of shear stress-dependent integrin surface expression in B-cells is
CD49d. CD49d is an interactor of the vascular cell adhesion molecule 1 (VCAM-1) which is
expressed by endothelial cells??%?23, The upregulation of CD49d is associated to increased

224 and to the escape from apoptosis of CLL cells!912%5, CLL cells

transendothelial migration capacity
are primed for the transendothelial migration under shear stress by increased expression of
CD62L, CXCR4, CD5, and CD69%%*. CD62L is a selectin that tethers the initial adhesion to endothelial
cell walls through its ligand PNAd?*?®. The receptor of stromal cell-derived factor 1, CXCR4, is
responsible for the chemotaxis towards the protective microenvironment??’. In the case of CD69,
upregulation was also observed when cells were brought into close contact with the protective

microenvironment and was found to predict CLL prognosis'?’??8, Thus, CLL cells exhibit

phenotypical differences under shear stress conditions?4229,

1.4.1 CLL and cellular adhesion

Survival and proliferation of B-cells and CLL cells are dependent on the interaction with a
supportive microenvironment. In the microenvironment of the LNs, CLL as the highest rate of

proliferation!?®. The microenvironment can in vitro be mimicked by co-culture with marrow

231 201

stromal cells'®-191230 follicular dendritic cells®®! and nurse-like cells?®l, Without supportive co-

culture, CLL cells undergo spontaneous apoptosis in vitro. In vivo, the development of resistance



to treatment can in part be explained by microenvironmental protection of CLL cells!#3232-234 i
addition to clonal evolution'*1%, The activity of the BCR antagonists PTEN and SHIP1 impact on
B-cell adhesion, motility and migration?**=23%, CLL cell adhesion in lymphoid tissue decreases when
BCR signalling inhibitors are applied. In fact, the treatment success of these inhibitors of BCR
signalling factors is associated with lymphocytosis during the first weeks after initial drug
administration?*®24 |t is thus the BCR signalling that is crucial in the retention of CLL cells in the

supportive microenvironment through the adhesion onto stromal cells?*2.
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2 Aims of thesis

My PhD project aimed to shed light onto the mechanisms and dynamics involved in phosphatase
activity in the BCR signalling. In particular, | measured the quantity and quality of the inhibitory or
modulating effect of PTEN and SHIP1 on key components of the BCR signalling pathway including
the messenger lipid PIPs. Therefore, | performed phospho-flow cytometry analysis of cell lines with
modified phosphatase expression and primary CLL cells. Furthermore, | investigated methods to
measure quantity and quality of CLL cell to stromal cell interactions. This work might result in a
significant impact on ibrutinib or other kinase inhibitor treatment strategies that might include

phosphatase agonists or antagonists.

2.1 Involvement of PTEN and SHIP1 in BCR signalling

The biochemical function of both PTEN and SHIP1 differs in catalysing the removal of phosphate
residues at the positions 3 or 5, respectively. The removal of either phosphate residue renders the
phosphatidyl-inositol molecule to interact with other signalling molecules than uncatalysed PIPs.
While research had focused on the function of the resulting signalling molecules PI(3,4)P, and
PI(4,5)P,, the dynamics of PTEN and SHIP1-catalysed inhibition of stimulated BCR signalling has
not been exhaustively addressed. Here, | shed light on the control of BCR dynamics by these two

phosphatases PTEN and SHIP1.

2.2 BCRssignalling and adhesion of CLL cells to cells of the protective

microenvironment

The adhesion of CLL cells to cells of secondary lymphoid tissue is believed to be crucial for CLL cell
survival and proliferation. The mechanisms of CLL cell retention and re-adherence is not yet
understood. As the recent advancements in targeting CLL cells in their protective niche produced
promising but ultimately short-falling clinical results, the further understanding of molecular
mechanisms causing CLL cells to remain or re-enter the protective lymphoid tissue is necessary in
the search for additional targets in improved treatments. With this project, the hypothesis is

tested that the BCR is tightly interlinked to the adhesive capacity of CLL cells. Furthermore, the
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role of SHIP1 was closely investigated to evaluate its potential as one of the future targets in CLL
therapy. To make future evaluation of molecular mechanisms and targets adequately measurable,
an adhesion under flow assay was optimised and established mimicking the protective lymphoid

tissue niche.



3 Materials and Methods

3.1 Materials

3.1.1 Human Samples

Peripheral blood samples from CLL patients were obtained after informed consent and according
to the guidelines of the University Hospital of UIm Ethics Committee, the Ethics Committee of the
University of Heidelberg, and the Declaration of Helsinki. Patients with CLL were diagnosed
following the World Health Organization (WHO) classification criteria®. Clinical information of the
patients whose cells were analysed in this work are summarised in Table 1. Healthy donor PBMCs
were thankfully received from the Blutbank (bloodbank) of the University Hospital of Heidelberg.

B-cells of healthy control PBMCs were extracted for further experiments.

Table 1 Clinical data of CLL patients and healthy controls.

Patient ID VH status Gender FISH karyotype

B448 mutated (V4-34, male normal
productive; 93,59%)

B510 mutated (V3-23 female 13q deletion
productive: 88,89%)
B342 mutated (V1-3 female 13q deletion
productive;93.6%)
B457 mutated (V4-30.4 female normal
productive: 81,48%)
B505 mutated (V3-7, female 13q deletion
productive; 97,22%)
B480 mutated V3-23; male 13q deletion
productive, 92,16%)
B501 NA male normal
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B454 mutated (V4-34: 13q deletion

91,78%)

unmutated (V3-21, female 13q deletion

productive;100%)

unknown not tested

Healthy controls not tested

3.1.2 Celllines

Table 2 Cell lines

Roecklein, Torok-

Storb?*

Flow assay

Flow cytometry, Drexler, Macleod?*

Western Blot

Fialkow et al.?*’

Flow cytometry Amsterdam

University Medical

Center




3.1.3 Antibodies

Table 3 Flow cytometry antibodies

Name Experiment/ Purpose Supplier Reference
Akt (pS473) Flow cytometry Becton Dickinson 560343
Biotin F(ab’) Goat Stimulation Jackson Immuno 109-066-006
anti-human IgM Research

BTK Flow cytometry Becton Dickinson 558528
BTK (pY551)/ITK Flow cytometry Becton Dickinson 558129
(pY511)

CD19 Flow cytometry Becton Dickinson 560728
CD20 Flow cytometry Becton Dickinson 561171
CD5 Flow cytometry Becton Dickinson 341109
ERK1/2 Flow cytometry Becton Dickinson 562644
(pT202/pY204)

F(ab“) Goat anti- Stimulation Jackson Immuno 109-006-006
human IgG Research

F(ab’) Goat anti- Stimulation Jackson Immuno 109-006-129
human IgM Research

1gG2a, k Isotype Flow cytometry Becton Dickinson 555576
Control

IgG2a, k Isotype Flow cytometry Becton Dickinson 555748
Control

1gG1, k Isotype Flow cytometry Becton Dickinson 555574
Control

IgG2a, k Isotype Flow cytometry Becton Dickinson 560167
Control

1gG1, k Isotype Flow cytometry Becton Dickinson 560373
Control

1gG1, k Isotype Flow cytometry Becton Dickinson 556652
Control

IgG2a, k Isotype Flow cytometry Becton Dickinson 557872
Control

1gG1, k Isotype Flow cytometry Becton Dickinson 558020

Control
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IgM Flow cytometry Becton Dickinson 555782

PTEN Monoclonal Flow cytometry Life Technologies MA515560
Antibody (1B8)

Zap70 (pY319)/Syk Flow cytometry Becton Dickinson 561458
(pY352)

Table 4 Western Blot antibodies

Western Blot Cell Signaling

Technology

3.1.4 Chemicals and other reagents

Table 5 Chemicals and reagents

Miscellanous Sigma Aldrich,

Dulbecco’s Phosphate

Buffered Saline (PBS) Steinheim

Miscellanous

Fetal Bovine Serum Sigma Aldrich,

(FBS)

Steinheim




Gibco L-Glutamine Cell culture Thermo Fisher 25030024
(200 mM) Scientific, Waltham

PKH26 Green Flow assay VWR International SAFSMIDI26

Fluorescent Cell Linker

Plerixafor Flow assay Biozol Diagnostica, APE-A23025-5.1
Eching

3.1.5 Buffers and solutions

Table 6 Buffers and solutions

Biocoll PBMC isolation BS.L6115

Freezing media 90% FBS + 10% DMSO
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Running buffer Western Blot 25 mM TRIS-HCI, NA

192 mM glycine,

1% SDS; pH 8.3

3.1.6 Kits

Table 7 Kits

Echelon Biosciences

PIP3 Mass ELISA Kit Inositol phosphate

assay

PI(4,5)P2 Mass ELISA | Inositol phosphate Echelon Biosciences

Kit assay

3.1.7 Consumables

Table 8 Consumables

Hose clamp Flow assay neolab Migge GmbH, | KL-1423

Heidelberg




Injection port Flow assay IMPROMEDIFORM, MF1542
Lidenscheid
T connector Flow assay IMPROMEDIFORM, MF4701
Lidenscheid
p-Slide 0.8 ibiTreat Flow assay ibidi GmbH, Grafelfing 80196
X100 Spritze 5ML Luer | Flow assay Fisher 11760465
Zentriert Scientific/Terumo,
Ilikirch (France)
Perfusion Set White Flow assay ibidi GmbH, Grafelfing 10963
Elbow Luer Connector | Flow assay ibidi GmbH, Grafelfing = 10802
Male
Cell scraper 237 mm Flow assay, Kisker Biotech 330097
miscellaneous
Einmalspritzen 2 ml Flow assay Fisher 12798
Luer Scientific/Terumo
Spritzenvorsatzfilter Flow assay Neolab Migge 101263153
Cell culture flask TC Cell culture Sarstedt AG 83.3911.502
T75 Suspen.
Electroporation siRNA knock-down Sigma-Aldrich Z706086-50EA
cuvette Chemie, Taufkirchen
LLG-Trockenperlen Flow assay Faust Lab Science NA
3.1.8 Equipment and devices
Table 9 Equipment and devices
Name Experiment/ Purpose Supplier
Zeiss
ibidi pump

BD FACSCanto I

Flow Cytometry Staining

BD (Becton, Dickinson &

Company), Franklin Lakes

BD LSRFortessaTM

Flow Cytometry Staining

BD (Becton, Dickinson &

Company), Franklin Lakes
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Cell Culture Safety Cabinet,

Herasafe KS

Cell culture

Thermo Fisher Scientific,

Waltham

Centrifuge 5810 R

Miscellaneous

Eppendorf, Hamburg

Centrifuge Heraeus Fresco 17

Miscellaneous

Thermo Fisher Scientific,

Waltham

Heracell 150i Incubator Cell culture Thermo Fisher Scientific,
Waltham

Heracell 240i Incubator Cell culture Thermo Fisher Scientific,
Waltham

Mithras plate reader ELISA MITRAS

PIPETMAN L Multichannel
P8x200L, 20-200 pL

Miscellaneous

Gilson, Middleton

Pipettes (2 pL, 20 uL, 100 pL,
200 puL, 1000 uL)

Miscellaneous

Gilson, Middleton

Vi-CELL XR 2.03

Cell counting

Beckman Coulter Inc.,Brea

Vortex Mixer Neolab 7-2020

Miscellaneous

neolab Migge, Heidelberg

Water Bath Julabo SW-20C

Miscellaneous

Julabo, Seelbach




3.1.9 Software

Table 10 Software

Flowlo

Microsoft Excel

Microsoft Word

ibidi flow

Zeiss ZEN

Flow cytometry

analysis

Miscellaneous

Microscopy

BD (Becton,
Dickinson &
Company), Franklin

Lakes

Miscellaneous

Microsoft, Redmond

Microsoft, Redmond

Zeiss Group

X10.0.7
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3.2 Methods

3.2.1 Human tissue processing and conservation

Peripheral blood samples of CLL patients were separated by Ficoll-Paque sedimentation (GE-
Healthcare, GE17-1440-02). The PBMCs were resuspended in heat-inactivated fetal bovine serum
(FBS; Thermo Fisher Scientific, F7524) containing 10% dimethyl sulfoxide (DMSO, Sigma-Aldrich,
D4540) and cryopreserved. Buffy coats from healthy donors were obtained from the German Red
Cross in accordance with the Declaration of Helsinki. These buffy coats from healthy donors were
enriched for CD19-positive cells via negative magnetic enrichment using EasySepTM Human B-cell
Enrichment Kit (Stemcell Technologies, Vancouver, Canada). Samples of isolated PBMCs and
CD19-sorted cells were analysed by flow cytometry using anti-CD5-FITC and anti-CD19-APC
antibodies (BD Biosciences). If not otherwise indicated, all samples were cryopreserved in liquid

nitrogen until further handling.

3.2.2 Cell culture, treatment and siRNA transfection

After thawing, cells were cultured in Roswell Park Memorial Institute (RPMI 1640, Sigma-Aldrich,
R8758) medium with 10% FBS and 1% Penicillin/Streptomycin (1000 U/ml, Life Technologies,

Darmstadt, Germany).

PBMCs were isolated from blood samples by density centrifugation in Biocoll. Primary cells from
PBMCs were either used freshly or after thawing in case stored after isolation from the donors.
After thawing, cells were rolled in RPMI 1640 medium for 2 h for recovery. After recovery or when
used freshly, cells were cultured in RPMI 1640 medium supplemented with anti-IgM and anti-
CD19 30 min prior to fixation. When H,0; (3.3 mM) was added, the stimulation was performed at
28 min, 21 min, 15 min, 10 min, 6 min, and 3 min before fixation. After fixation in 2% PFA, cells

were permeabilised and prepared for flow cytometry as published'® (Figure 2).
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Figure 2 Preparation, measurement and analysis of CLL and B-cells, modified after
Wolf, Maus, Persicke et al. 202210,

3.2.3 Inositol phosphate assay

Cells were harvested and lysed according to the manufacturer’s instructions. The incubation and
reading plates were prepared accordingly. In short, cells were harvested by centrifugation and
mixed and incubated with cold 0.5 M TCA. The collected pellet was further processed at room
temperature and washed with 5% TCA, 1 mM EDTA buffer. The lipids in the lysate were separated
with methanol (MeOH): chloroform (CHCI3) [2:1] (neutral lipids), and with MeOH:CHCI3: 12 N HCI
(80:40:1; acidic lipids). The acidic lipids were phase separated with CHCI3 and 0.1 N HCI, and dried
in a vacuum dryer. For detection, the extracted phosphatidyl inositol (PI)-derivates were brought
into aqueous solution and incubated with the detector protein. Once incubated with the detector
protein, the samples were transferred to the respectively PIPs, PI(3,4)P,, or PI(4,5)P, coated plate.

The signal was measured using a plate reader at 450 nm.
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3.2.4 Flow Cytometry analysis

Single-cell suspensions were treated with equal amounts of pre-warmed 4% paraformaldehyde
solution (PFA) to reach a final concentration of 2% PFA. The PFA was pre-warmed to 37 °C just
before application. After centrifugation at 300 g, cells were resuspended in PBS and washed twice.
The cells were the then permeabilised with -20 °C-cold methanol (MeOH) for 30 min in the dark.
The MeOH was removed by centrifugation and cells washed in FACS buffer. The immunostaining
with antibodies against cytosolic and cell surface proteins (Table 3) was applied in FACS buffer

containing 0.1% sodium azide (NaNs).

3.2.4.1 Data acquisition and analysis

The cells’ fluorescence levels were assessed using the BD LSRFortessa™ (BD Biosciences) flow
cytometer with the running and pre-analysis software FACSDiva™. The full data analysis was done
using the FlowJo X 10.0.7 software (FlowJo). Single staining samples were used to compensate
fluorophore spectral overlaps. The spectral overlap compensation and sample analysis was

controlled with fluorescence minus one (FMQO) controls.

3.2.5 Flow assay

To elucidate the mechanisms involved in CLL and B-cell adhesion, | optimised an adhesion and
shear stress assay to mimic the physiological conditions of the lymphoid tissue. In this assay, a
layer of stromal cells was seeded into a microscopy slide chamber (u slide) and left to adhere for
24 h. The inside of the chamber was coated with collagen or cell culture-optimised agents
(ibiTreat, ibidi GmbH, Martinsried) to facilitate adherence. This slide was connected to tubing of
defined length and diameter. The tubing was itself connected to two reservoirs filled with cell
culture medium (RPMI with 10% FCS and 10 mM HEPES). By applying defined pressure, alternating
to one or the other reservoir, and alternating opening and closing of valves, steady and controlled
shear stress was applied to the layer of stromal cells. Lymphocytes were injected into the system
through an injection port leading onto the layer of stromal cells in the channel slide. After an initial
adhesion phase of 30 min, increasing shear stress was applied over time and during constant

microscopy imaging. Cell adhesion was measured as a function of image area occupied by



lymphocytes and normalised to the initial area occupied before either drug administration or start
of shear stress. Two of these systems could run in parallel imaging. Images were exported to

subsequent data analysis.

3.2.5.1  Staining and cell preparation

Primary CLL cells, healthy B-cells or immortal cells were stained with PKH26 red or PKH26 green
according to manufacturer’s instructions. In short, thawed or fresh cells were washed in PBS,
centrifuged at 400 x g and washed in diluent (Diluent C, Sigma Aldrich) before resuspension in
diluent. The resuspended cells were quickly mixed with equal amounts of 2x staining solution
(4x107®M). The staining procedure was stopped with equal amounts of FCS after 2 min. Before
insertion into the flow chamber, cells were centrifuged and resuspended in RPMI with 10% FCS
media. The cell suspension was injected into the system with syringes through injection ports

directly upstream of the flow chamber.

3.2.5.2 Microscopy and data acquisition

Microscopy images were taken using the Cell Observer® microscope (Zeiss). The microscope was
built into a heating chamber with CO;, supply. Two hours prior to image acquisition, the heating
chamber was warmed up to 37 °C. CO, supply was activated to 5% at the inlet right before image
acquisition. For image acquisition, two chamber slides were mounted onto a plate-holder and 10

parallel positions were selected for imaging in each slide. Images were taken every 5 min.

3.2.6 Statistical analysis

Statistical tests were calculated using the SigmaPlot software (Systat Software). The Mann-
Whitney U test was applied to determine the significance of the differences between two groups,
and one-way analysis of variance (ANOVA) was used for more than two groups. In the case of flow
assay microscopy image quantifications, a linear function was calculated for each shear stress level
and only corresponding levels compared as two groups. For all statistical analyses, the confidence

interval was set to 95% (p-value <0.05) below which the null hypothesis could be rejected.
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4 Results

4.1 BCR stimulation causes long-term changes in downstream factor

phosphorylation

Both CLL cells and PB B-cells respond to BCR stimulation. The BCR stimulation dynamics vary
largely between B-cells and the IGHV-classified subgroups of CLL cells'®2*82%9 To understand the
mechanisms leading to the phenotypical changes between anergic and activated CLL cells, healthy
B-cells, M-CLL and U-CLL cells were subjected to anti-IlgM, anti-CD19 and/or H,0, treatment. The
level of activation was measured by phospho-flow?>° of BCR downstream effectors SYK, AKT, BTK,
PLCy2, and ERK1/2. Additionally, SHIP1 and PTEN expression levels were measured, thereby

complementing the measurements of BCR signalling upon stimulation?48249,

Stimulation effects were tested in B-cell-derived cell lines including malignant origins JEKO-1, PGA-
1, MEC1, and LCL-WEI. The phosphorylation levels of BTK and AKT represented BCR downstream
pathway activation'®!2%-123, phosphorylation levels were assessed by phospho-flow cytometry
(Figure 3A). Considering cell lines as representatives of single biological samples, the statistical
power of cell line-derived signalling measurements was limited but subpopulations of stimulated
cells showed a visible shift in phospho-BTK and phospho-AKT levels (Figure 3A-C). Throughout all
tested cell lines, AKT phosphorylation after 10 min of H,0,-stimulation compared to unstimulated
control was not significant (p=0.1951), while BTK phosphorylation was significantly different
(p=0.0387).
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Figure 3 Intracellular levels of phospho-BTK and phospho-AKT. (A) Representative flow cytometry analysis of pBTK
and pAKT in JEKO-1 cells; (B) pBTK and (C) pAKT levels in malignant or lymphoid B-cell-derived cell lines.

When mapping the levels of SHIP1, PTEN, phospho-BTK, phospho-S6, phospho-ERK1/2, and
phospho-PLCy2 across several time points after stimulation (0 min, 3 min, 6 min, 15 min, 28 min,
120 min, 360 min) in a t-distributed stochastic neighbor embedding (tSNE), thus reducing these
factors to two dimensions, the cell populations clustered into subgroups with similar
phosphorylation and expressions patterns, respectively. Cluster analysis based on single
contributor comparisons revealed that low SHIP1 expression was found in these cell
subpopulations that showed the highest increase in BTK and PLCy2 phosphorylation. PTEN levels
were less variable between subgroups and did not show correlations to stimulation-dependent

phosphorylation levels (Figure 4).

As phosphorylation levels upon stimulation had previous been assessed only in time points up to

28 min!%, the question arose whether stimulation has a longer effect on the BCR signalling
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landscape. Thus, | determined BCR signalling pathway activation levels in primary CLL cells up to
360 min after H,0, treatment. The phosphorylation levels of AKT, BTK, ERK1/2, PLCy2, and SYK
were determined at time points of 3 min, 6 min, 10 min, 15 min, 21 min, 28 min, 120 min, and
360 min in M-CLL patient samples. Four distinct stimulation patterns were applied and normalised
to unstimulated control. AKT, after an initial peak in phosphorylation levels, showed decreased
phosphorylation levels six hours after stimulation. While, as reported?®, initial phosphorylation
patterns of BTK, ERK1/2, PLCy2, and SYK were similar though timely distinct, long-term
phosphorylation levels differed whether increased or decreased compared to the pre-stimulation
levels. BTK showed low but increased, ERK1/2 continuously higher phosphorylation levels six
hours after stimulation, whereas PLCy2 phosphorylation levels returned to the pre-stimulation
levels. SYK phosphorylation levels were seen to depend on stimulation condition, with H,0; only
leading to a decrease in long-term phosphorylation in contrast to anti-lgM and anti-CD19-assisted

stimulation with H,0, that maintained the phosphorylation levels on higher levels (

Figure 5).
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4.2 BCRsignalling is controlled by phosphatases

After observing that signaling intensities correlated with H,0; levels (

Figure 5), the activity of the BCR pathway was sought to be validated. As one of the upstream
events in BCR signaling, PI3K is activated upon BCR and CD19 clustering®. PI3K phosphorylates
PI(4,5)P, into PIP5, the key messenger molecule of the BCR pathway. PTEN is the natural antagonist
of PI3K signaling by reversing the phosphorylation from PIP; to PI(4,5)P;, while SHIP1
dephosphorylates PIP; at position 5, producing PI(3,4)P,. PI(3,4)P, was reported to have crucial
messenger functions in the AKT signaling pathway'”’. To quantitatively measure cellular levels of
these messenger molecules, ELISAs were performed. P1(4,5)P, is the most abundant Plin cells?%2>3
despite subcellular, local membrane cluster concentration differences!®. PI(4,5)P, was thus aimed
to be measured as a normalisation control. As PI(4,5)P, is an abundant, highly conserved
metabolite within the animal kingdom, the specificity of the currently available antibodies is
insufficient and tests on defined PI(4,5)P, concentrations (standard curve) failed to deliver signals
over the required detection range (Figure 6A). PI(3,4)P, and PIPs; could be measured between
1 pmol and 1000 pmol and between 0.01 pmol to 1000 pmol, respectively (Figure 6B,C). As
normalization to PI(4,5)P, was impossible, samples were normalized to the initial cell number.

Interestingly, H,O, stimulation alone did not result in the detection of PIP3 in HG3 cells at any



measured time point and did not significantly elevate PI(3,4)P, levels. Anti-IgM/anti-CD19-assisted
stimulation did result in elevated PI(3,4)P2 (Figure 7A) and PIP3 (Figure 7B) levels as soon as five
minutes after stimulation initiation. Thus, the combined stimulation of H,0, and anti-lgM/anti-

CD19 was able to activate BCR signaling the CLL-derived cell lines.
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4.2.1 Minor correlation found between phosphatase expression and regulation of
targeting miRNAs in CLL

First, transcriptional and translational dysregulation of phosphatases were investigated. MiRNA

4

target site prediction® revealed 16 miRNAs with conserved target motifs inside the PTEN

transcript while only one was detected for the major INPP5D (SHIP1) transcript isoform. Based on

163,255,256 3 selection of miRNAs for expression

previous publications and RNAseq data availability
analysis in CLL was made. The correlation between the expression of these miRNAs with the
expression of phosphatases INPP5D (SHIP1), PTEN, PTPN6 (SHP1) or PTPN11 (SHP2) were
determined (Figure 8A-D). Only one passenger miRNA showed significant negative correlation to
the target phosphatase guide strand, miR-186* to PTPN11 (SHP2). Despite miR-155 being
frequently reported to drive cancer and found to be responsible for SHIP1 downregulation?>7-2%,
the RNAseq data of 56 CLL patients did not reveal a negative correlation. MiR-155 expression in
this patient cohort was highly homogeneous (Figure 8E) while SHIP1 expression followed normal
distribution (Figure 8F).

Secondly, the correlation between SHIP1 and PTEN expression was analysed. No significant co-
expression patterns were found using microarray data (data provided by Johannes Bloehdorn,

University Hospital Ulm). The microarray data indicated that PTEN and SHIP1 are not co-controlled

on transcriptional level.
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4.2.2 SHIP1 and PTEN regulate BCR signalling in distinct patterns

As SHIP1 in contrast to PTEN is not directly inhibited by H,0, treatment®%2%2, | sought to
determine the additional effect of the knock-down of the respective phosphatases on key
signalling components. First, | discovered that SHIP1 levels differed between CLL- and other B-cell-
derived cell lines while PTEN levels appeared to be consistent (Figure 9A). The knock-down
through siRNA electroporation was successful but could not eliminate PTEN levels completely
(Figure 9B). Interestingly, the knock-down of PTEN resulted in reduced electroporation-induced
apoptosis compared to PBS-electroporated control (Figure 9C,D). Measuring phospho-AKT and
phospho-PLCy2 levels before and after the beforementioned H,0;-assisted stimulation in cells
with SHIP1 or PTEN or no knock-down, | determined the impact of these phosphatases on
stimulation-dependent BCR signalling. Treatment of cells with the PI3K inhibitor idelalisib resulted
in decreased AKT and PLCy2 phosphorylation upon stimulation and served as control. The knock-
down of SHIP1 could increase stimulation-induced BCR signalling consistently while PTEN knock-

down had no significant effect on phosphorylation levels (Figure 9E,F).
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Figure 9 SiRNA knock-down of PTEN and SHIP1. (A) B cell-/CLL-derived cell lines exhibit different levels of endogeneous
SHIP1 while PTEN levels did not differ between cell lines (representative image); (B) siRNA could reduce but not
eliminate PTEN protein levels; (C) PGA-1 and (D) MEC-1) CLL cell line viability after PTEN knock-down; (E) MFI Alexa647
PAKT and (F) MFI Alexa488-pPLCy2 in LCL-WEI cells.
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During the last two decades, SHIP1 came into the focus as both tumour suppressor and

oncogene?®

. The research focus has led to the screening for potential inhibitors!”® and
activators!47:148.264.265 The jnhibitor 3AC'”° and the agonist AQX-MN100%8* are well characterised
for the use in experimental practice. AQX-MN100 was reported to reduce CLL cell viability. In the
CLL cell line HG3 the reduction of cell viability could be observed at higher concentrations (Figure
10A). Strikingly, AQX-MN100 was able to reduce phosphorylation levels upon stimulation of
several BCR components that were found independent in the BCR signalling model®. The
inhibition of SHIP1 activity by 3AC led to dose-dependent increased phosphorylation of AKT and
PLCy2. When 3AC was combined with idelalisib, the increase in AKT and PLCy2 phosphorylation
was nearly abolished. The abolished phosphorylation increase indicated that the SHIP1 inhibition
effects were dependent on the PI3K pathway activation. The combination of AQX-MN100 and
idelalisib reduced the AKT and PLCy2 phosphorylation levels to the levels of the unstimulated

normalisation control (Figure 10B).
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Figure 10 SHIP1 activator and inhibitor treatment, (A) Viability measured by 7-AAD and Annexin V staining in
flow cytometry, (B) reative MFls antibodies against of phospho-AKT and phospho-PLCy2 under different
activator and inhibitor treatments: neg ctrl: 0.3% EtOH; 1 — 30 uM AQX-MN100; 2 — 1 uM 3AC; 3 — 5 uM 3AC;
4 —10 uM 3AC; 5 — 10 uM AQX-MN100 + 1 uM idelalisib; 6 — 5 uM 3AC + 1 uM idelalisib; 7 — 1 uM idelalisib.

4.3 CLL cells adhere to stromal cells under shear stress conditions

The BM and lymphoid tissue protect CLL cells from apoptosis and promote CLL proliferation?®.
Whether CLL proliferation is partially driven by leukemic stem cells or B-cell malignancies generally
consist of uniform, mature clones is yet under debate. To shed light onto the re-circulating
capacity of CLL cells, the ability of PB CLL cells to adhere to stromal cells or coated surfaces under

physiological shear stress conditions was tested. Physiological shear stress conditions in a practical



experimental set-up were reached by modifying an available pump system?”:2%8, |n this assay, a
layer of stromal cells was seeded into a microscopy slide chamber. This slide was connected to
tubing of defined length and diameter. PKH26-stained lymphocytes were injected directly onto
the layer of stromal cells in the channel slide. After an initial adhesion phase, increasing shear
stress was applied over time and during constant microscopy imaging. Cell adhesion was
measured as a function of image area occupied by lymphocytes and normalised to the initial area
occupied before either drug administration or start of shear stress. Two of these systems could
run in parallel imaging. Despite its low throughput character, subsequent image analysis was
performed on thousands of time-lapse images delivering high content data and allowed
downstream assays to distinguish between adherent and non-adherent cell populations. In the
system, previously stained stromal cell line HS-5 or human mesenchymal stem cells (hMSCs) were
seeded into microscopy channel slides (p-slides). After adherence and approximately 50%
confluence, differently stained CLL cells were injected into the channel. CLL cells were allowed to
adhere and located in close proximity to HS-5 cells or hMSCs (Figure 11A). The adhesion of CLL
cells to different standard cell culture coatings was tested in comparison to the adhesion onto
stromal cells. Similar as all other tested coatings, standard cell culture coating (ibiTreat®) resulted
in very low attachment of CLL cells under shear stress. CLL cells covered an almost 10-fold larger
area on stromal cells seeded on ibiTreat, compared to the coated, stromal cell-free control (Figure
11B). Thus, a fraction of PB CLL cells had the ability to adhere onto stromal cells while the standard
coating of adherent cell culture did not result in CLL cell retention or re-adherence. The proximity
and the effect of the shear stress on stromal and CLL cells was assed using independent cell

stainings (Figure 11C,D).

The small size (250 mm?) of the channel slides and the technical set-up challenged downstream
approaches with low cell numbers after detachment from the channel slide. An optimised flow
cytometry protocol allowed to compare adherent from non-adherent fractions. Strikingly, in the
CLL cell line HG3, the adherent cell fraction was composed of significantly fewer SHIP1+ cells than
the non-adherent fraction. This difference increased over time under shear stress. Thus, only
SHIP1 low or negative cells were able to remain attached to stromal cells under long and high
exposure to shear stress (Figure 11E). While this observation was not significant in primary CLL
samples, the paired comparisons showed a tendency of samples with larger SHIP1+ fractions to
split into SHIP1+ non-adherent and SHIP1- adherent populations (Figure 11F). The adherent, non-
adherent and not shear stress-challenged cell populations were further observed to express
different levels of PTEN. Strikingly, the adherent cell population expressed the highest PTEN levels.

PTEN levels were lowest in the non-adherent CLL cells. This difference that adherent CLL cells
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express higher PTEN levels was also observed when the BCR signalling was inhibited by the PI3K
inhibitor idelalisib (Figure 12). To summarise, the two phosphatases PTEN and SHIP1 showed
reciprocal expression patterns in adherent versus non-adherent fractions of CLL cells that were

previously extracted from PB.
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Figure 11 CLL cell adhesion under shear stress; (A) CLL cells co-localise with MSCs and remain attached under flow
conditions; (B) CLL cell attachment compared between co-culture with HS-5 cells and mono-culture; (C) staining of CLL
cells for quantification; (D) merge with HS-5 cell staining.
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Figure 12 PTEN levels in CLL populations under flow.

4.4 The BCR signalling is associated to CLL cell adhesion onto stromal cells

To elucidate the mechanisms involved in CLL adhesion, the adherent and non-adherent fractions
of HG-3 cells after six hours of increasing shear stress were separated and stained for phospho-
flow of SYK, AKT and BTK. The phosphorylation levels of SYK, AKT and BTK were increased in the
adherent fraction compared to the non-adherent fraction (Figure 13A). Thus, adherent CLL cells
displayed a higher level of BCR activation. Next, primary CLL cells were pre-treated with anti-IgM
antibodies to stimulate BCR signalling and compared to solvent control (Figure 13B,C).
Interestingly, a larger M-CLL cell fraction adhered to stromal cells under shear stress above
0.15 dyn/cm? when pre-treated with a-IgM (Figure 13B). In contrast, U-CLL cells did not differ in
the number of cells adherent to stromal cells when treated with a-IgM (Figure 13C). During no
shear stress or shear stress below 0.15 dyn/cm?, more CLL cells of both U-CLL and M-CLL
(re-)adhered to stromal cells than detached from stromal cells. This observation was independent
of the a-IgM treatment (Figure 13). U-CLL and M-CLL also differed in the adhesion response to
PI3K inhibition. To test the impact of the PI3K inhibitor idelalisib on CLL adhesion, CLL cells were
injected without prior inhibitor treatment into the pump system. After 20 min of low shear stress,
idelalisib or solvent control was injected into the flow media. For U-CLL cells, PI3K treatment

resulted in a minor reduction in adherent cell numbers (Figure 13D).

Similar to PI3K inhibition, BTK inhibition by ibrutinib resulted in a reduction of adherent cells in
M-CLL (Figure 14A) but caused almost no additional loss of adherence under shear stress in U-CLL

(Figure 14B). The effect of ibrutinib was observable within 20 min after drug application when
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0.2 dyn/cm? shear stress was applied. When high shear stress of 0.8 dyn/cm? was applied, more
cells lost adhesion but a fraction of CLL cells remained attached to stromal cells (Figure 14A,B).
The effect of ibrutinib on CLL adhesion was stronger when the cells were incubated with ibrutinib
before shear stress was applied but after initial co-culture incubation (Figure 14C). To confirm the
reproducibility of observations within and between individual experiments, the correlation of
replicates was determined and compared. Most samples and most technical replicates showed a
strong correlation in the time-resolved change of adherent cell numbers. The correlation between
technical and biological replicates proved the reproducibility of measurements inside the

individual channel slides and between different channel slides (Figure 14D).

SHIP1 is an antagonist of PI3K!”. Inhibitors and activators of SHIP1 have entered clinical research
that also includes B-cell malignancies'’®181254 T test the role of SHIP1 activity in CLL cell adhesion,
the SHIP1 inhibitor 3AC and the SHIP1 agonist AQX-MN100 were tested in the adhesion assay. The
inhibition of SHIP1 by 3AC led to no loss of adherence under shear stress below 0.2 dyn/cm? and
an increased retention of CLL cells on stromal cells under higher shear stress levels (Figure 15A).
The activation of SHIP1 activity by AQX-MN100 reduced the number of CLL cells adherent under
shear stress. The loss of adherence was observed from the lowest shear stress of 0.1 dyn/cm? and
became more pronounced with 0.15 dyn/cm? and 0.2 dyn/cm? while higher shear stress did not
increase the difference in cellular adhesion between treated and untreated samples. After more
than 24 h of high shear stress, less than 10% of initially attached AQX-MN100-treated CLL cells
remained bound to the stromal cells while more than 10% remained attached in the solvent
control. Both control and AQX-MN100 treated conditions led to a continuous loss of adhesion
under high shear stress without detaching all CLL cells in the measured time range. The reduced
cell numbers were also observed in U-CLL samples (Figure 15B). Thus, the BCR in general and SHIP1

in particular impact the ability of CLL cells to adhere onto cells of their microenvironment.
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Figure 13 BCR signalling components affect CLL cell adherence capacity; (A) phosphorylation levels of BCR
components in adherent and non-adherent fractions of CLL; (B) adherent and non-adherent CLL cells were measured
for phosphorylation of BCR signalling pathway components by flow cytometry; (B) M-CLL and (C) U-CLL cells were
treated with anti-IlgM during shear stress application; (D) M-CLL and (E) U-CLL cells were treated with the PI3K inhibitor

idelalisib; the time of the addition of drug is indicated by a red vertical line, increases in shear stress by colour-coded
vertical lines.
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Figure 15 SHIP1 activity determines adherence of M-CLL and U-CLL cells; (A) M-CLL treated with SHIP1 inhibitor
3AC; (B) U-CLL cells treated with SHIP1 agonist.

4.5 VHL bridges BCR signalling to adhesion molecules

To complete the picture of BCR-dependent adhesion of CLL cells onto cells of their
microenvironment, a set of inhibitors and blocking antibodies were used to determine the link
between the intracellular signalling machinery and the surface-bound adhesion-mediating
receptors, integrins or other molecules. First, the role of CXCR4 was investigated. CXCR4 was
reported to mediate CLL-retention in lymphoid tissue?*?. In the co-culture system, in the shear
stress range from 0.5 dyn/cm? to 0.7 dyn/cm? (HG3; Figure 16A) or 0.1 dyn/cm? to 0.3 dyn/cm?
(primary CLL cells; Figure 16B), there was no impact of CXCR4 inhibition observed (Figure 16).
Among the candidates to be involved in CLL cell interaction with the lymphoid microenvironment
was the vHL protein. Three knock-out cell lines were received from Michaela Reichenzeller,
University Hospital of Ulm. The complete knock-out lines D3 and D5 as well as the knock-out of
the long isoform only, D7. Complete (Figure 17A,B) as well as the knock-out of the long isoform
(Figure 17C) reduced the adherence of CLL cells to stromal cells under shear stress. The D3 cell
lines showed an increased ability to adhere onto stromal cells under low shear stress of
0.1 dyn/cm? with a similar adhesion loss under higher shear stress of 0.2 dyn/cm? compared to
wildtype HG3 cells (Figure 17A). The full knock-out cell line D5 had similar adhesion capabilities as
wild type under low shear stress but continued to increase cellular adhesion under higher shear
stress while wild type cells lost adhesion or remained stably attached (Figure 17B). The vHL long
isoform knock-out differed from wild type cells in the reduced loss of adhesion under higher shear

stress (Figure 17C).
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Figure 16 Plerixafor as inhibitor of CXCR4; (A) HG3 cells and (B) primary CLL cells treated with plerixafor.

Allin all, the link between BCR signalling and CLL cell adhesion remains insufficiently characterised
and appeared to be connected to the vHL protein, thus the HIF1a/VEGF pathway. SHIP1 plays an
important role in inhibiting the adhesion of B lymphocytes to cells of the supportive
microenvironment and is reduced and/or inactivated in adherent CLL cells. The established co-
culture adhesion under flow assay could determine the effect of signaling factors and/or (small)

molecules on CLL cell adhesion to cells of the lymphoid or BM microenvironment.
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Figure 17 The impact of vHL on CLL adherence; (A) full knock-out clone D3; (B) full knock-out clone D5; (C) long
isoform knock-out D7.

61






5 Discussion

The dysregulation of signalling pathways was early on identified as a hallmark of cancer®. In cancer,
the cellular response is neither adequate to nor independent of the respective external stimuli.
The phosphorylation of signalling effectors can be hyperactive or hyper-reactive through
dysregulated kinase activity. The serial events following the hyperactive signalling pathway lead
to the translation of oncogenic target genes by the respective transcription factors. In B-cells, the
BCR signalling pathway regulates differentiation, survival, proliferation, and antibody
production!!>2%270 The hyperactive BCR signalling in malignant B-cells through PI3K and AKT
leads to dysregulated expression of NFATC and NF-KB target genes'®'?”2’1 During the last
decade, BCR signalling pathway-targeting therapies have revolutionised CLL treatment%®13¢,
Strikingly, increased lymphocytosis is associated to treatment success?®. This lymphocytosis was
seen to derive from the loss of BCR-dependent adhesion of CLL cells to stromal cells?*. Still, the
link between BCR signalling and adhesion remains poorly understood. In the light of the recent
advancements in targeting SHIP1'812% the antagonist of PI3K signalling’®, SHIP1 might complete

the therapy regimen against BCR-driven CLL.

The role of inositol phosphatases in BCR signalling, CLL pathogenesis and ultimately, in CLL cell
adhesion onto cells of the protective niche was investigated thoroughly in the present work. The
in-depth quantitative and qualitative characterisation of BCR signalling components under
stimulation® paved the way for the analysis of the contribution of SHIP1. SHIP1 negatively
regulated the BCR signalling and likewise SHIP1 activity negatively impacted on CLL cell adhesion.
The complete connection between BCR/SHIP1 and responsible adhesion molecules still has to be

272

drawn. The clinical need for novel therapies*’* should drive further research on CLL adhesion

mechanisms and SHIP1 targeting.

5.1 The BCR is the key activating receptor in CLL

With anti-IgM and H,0, treatment the activation of the BCR signalling could be mimicked in the
cultured CLL cells (Figure 2). The BCR activation caused changes in the phosphorylation landscape
of signalling factors going beyond the presence of H,0, in the cells or culture media or cytosol?”.
The alteration of the phosphorylation landscape indicated that the BCR activation changed the

overall activation state of CLL cells. In healthy B-cells, BCR signalling leads to differentiation,
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supports survival and proliferation, and regulates antibody production!>26%270 |n CLL cells, active
BCR signalling is essential for the malignant pathogenesis'3*13%274 Though, the initial malignant
transformation can rarely be associated with BCR signalling pathway mutations®. The BCR
signalling inhibition reduces the differences in prognosis between IGHV-mutation status-
dependent patient subgroups®*®!¥’. Though in the phospho-flow experiments, the BCR signalling

activity patterns differed between IGHV subgroups®.

When detecting co-dependencies between signalling factors, SHIP1 expression was associated
with lower phosphorylation levels of PLCy2 and BTK. BTK and PLCy2 phosphorylation seemed not
to be dependent on PTEN levels (Figure 4A-D). The observations of co-dependencies between BCR
signalling factors and PTEN and SHIP1 expression was based on H,0; and anti-IlgM stimulation.
The PIP; measurements indicated that H,0, stimulation alone was not causing PIPs levels to rise
(Figure 7). PIP3 levels rose when anti-IlgM was applied to CLL cells. Still, H,0, alone was able to
increase the phosphorylation of BCR signalling factors (Figure 3). Interestingly, a low degree of

sensitivity to H,0>-dependent stimulation had been associated to more aggressive disease?”.

5.2 Both SHIP1 and PTEN control BCR signalling but under different stimulation

states

As mentioned, SHIP1 but not PTEN expression was associated to lower BTK and PLCy2
phosphorylation upon stimulation in single-cell resolved phospho-flow (Figure 4A-D). That
association underlined the role of SHIP1 to antagonise activation-dependent
phosphorylation'’>276277 PTEN but not SHIP1 was reported to be reversibly inhibited by H,0.
Thus, in an H,0,-dependent stimulation, the PTEN inhibition may play an important role in the
control of BCR signalling?”>%’®. The knock-down experiments confirmed the role of PTEN in
constitutive BCR signalling but could not show an effect on stimulatability (Figure 9). Taken into
consideration that knock-down experiments are generally and were also here conducted between
48 h to 72 h post nucleofection?’®, the long-term effects of PTEN deficiency might not have been
observed. PTEN deficiency was reported to be associated with loss of BCR expression. PTEN
upregulation was associated with increased BCR selectivity through IgD BCR formation?°. Thus,
these results indicate the crucial role of PTEN in overall BCR expression and may explain the
underrepresentation of PTEN mutations in CLL compared to other malignant entities'®%%3, The
lack of significant SHIP1 mutations in the genetic CLL landscape might be explained by the crucial

role of its PIP; degradation product PI(3,4)P, in the complete membrane-recruitment and



activation of AKTY”’. Through the degradation of PIPs, SHIP1 regulates the amplitude of BCR
signalling. By overlaying SHIP1 expression in combined pools of stimulated cells, it became evident
that SHIP1 antagonised the activation-dependent phosphorylation (Figure 4). The high variability
in regards to SHIP1 expression between CLL patients and the association of low SHIP1 expression
to worse clinical parameters confirm the regulating role of SHIP1 in BCR signalling (Figure 11

and 281)

. To further investigate the mechanisms of SHIP1 dysfunction or dysregulated expression
in-depth transcriptional analysis will be necessary. The miRNAs that were predicted to target PTEN
or SHIP1 showed neither positive nor negative correlation between the miRNA and phosphatase
transcript quantifications (Figure 8). This missing correlation directs to the findings that PTEN and/

281285 or subcellular localisation®¢

or SHIP1 are regulated on protein level, e.g. by phosphorylation
288 The post-translational modifications of PTEN and SHIP1 are dysregulated in CLL cells and thus,
the role of BCR control is reduced or lost'®*8!, Apart from translational and post-translational
dysregulation, also transcriptional dysfunction at the PTEN locus was found to interfere with BCR
control through loss of PTEN expression'®?. It is thus evident that the dysregulation of PTEN and/or
SHIP1 lead to loss of BCR signalling control, either in constitutive or stimulation-dependent

signalling, respectively.

5.3 CLL cells remain activated during adhesion to cells of the microenvironment

It is widely accepted that the TME plays a crucial role in CLL pathogenesis!®’/188289.2%0  The
microenvironmental conditions can directly impact on treatment outcome. E.g. T-cell dysfunction
was generally observed in CLL?®? but anti-PD-1/anti-PD-L1 treatment was found to not be
beneficial in refractory or relapsed CLL**'. Thus, in refractory or relapsed CLL, an
immunosuppressive TME likely causes the treatment failure?®2. During CLL pathogenesis, a
crosstalk between malignant cells and cells of the microenvironment lead to changes in the cell

187,289,290233  The surface molecule

signalling activity and the surface molecule composition
composition decides about the quality and duration of direct contact between CLL and cells of the
microenvironment. Direct interaction between stromal cells and CLL cells is indispensable for CLL
cell survival and proliferation?*?°>, The survival and proliferation signals are triggered upon
binding of CLL cells to integrins, to the B-cell activating factor (BAFF), and to a proliferation-
inducing ligand (APRIL)*3. Besides, cancer-reprogrammed stromal cells, including endothelial cells

and fibroblasts, co-evolve with CLL. This co-evolution leads to promoting survival and proliferation

and produces a cold TME?®, The spatial organisation, the immune subset functionality within the
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TME and other mechanisms induced or supported by stromal cells influence B-cell malignancy

progression and aggressiveness®**?%,

In the LN, the main TME of CLL, lymphocytes generally enter through afferent lymphatics of
lymphatic endothelial cells or through peripheral circulation along high endothelial venues. The
homing is dependent on integrin and adhesion molecule surface expression as well as chemokines
and chemokine receptor levels?®. Furthermore, the LN stromal cells play an immunomodulatory
role, e.g. by priming T cells?’, BM stromal cells also assist in B-cell differentiation?*®2%, The LN as
TME of CLL is characterised by differential composition and expression patterns compared to
healthy LNs?®3%, |n CLL LNs, e.g. higher ratios of aSMA* mesenchymal cells were detected

300

compared to control LNs*® and the level of angiogenesis, directed by an angiogenic switch in

301 302-304

stromal cells***, has a prognostic value in CLL diagnosis

Also in a CLL mouse model, the co-development of progressive CLL and supporting stromal cells
was described3%, CLL cells secrete extracellular vesicles that change the phenotype of stromal cells

into the cancer-associated fibroblasts phenotype3°®307,

By disrupting the contact between CLL cells and stromal cells, therapeutic options arise, e.g. in
rituximab resistance CLL cases, blocking VLA-4, a crucial CLL cell integrin, restores vulnerability to
treatment!®®. This therapeutic option and others targeting the stroma niche are currently under

investigation196-308-310,

The importance of adhesion in CLL cell survival is underlined by the lymphocytosis upon BCR
inhibition treatment being a positive prognostic marker?%24, As both PTEN and SHIP1 activity
have direct impact on BCR signalling (Figure 9), the question for their function in CLL cell adhesion
arose. The role of PTEN and SHIP1 in the control of leukocyte adhesion and migration was
extensively described for neutrophils. There, SHIP1 expression was found to be associated with
reduced adhesion3!!, In the adhesion under flow experiments, SHIP1 inhibition led to a larger
fraction of CLL cells adhering to stromal cells under shear stress. Thus, SHIP1 activity is present in
at least a fraction of peripheral CLL cells limiting their capacity to home to the lymphoid tissue.
Another fraction of peripheral CLL cells has already regained adhesive capacity and is able to
remain attached on stromal cells even under physiological shear stress. This fraction represents
the CLL cells at the state before migrating from the periphery to the lymphoid tissue. In contrast,
inducing the activity of SHIP1 led to reduced adhesion of CLL cells on stromal cells. This reduced
adhesion indicated that SHIP1 was expressed in the adherent cells but inactive. Thus, not
expression levels but post-translational modifications and localisation regulate SHIP1 activity. This

observation, by using the agonist AQX-MN100, opened the possibility for therapeutical



intervention using SHIP1 as a future target. As the differences in adherent fractions remained
under different shear stress levels, the density of surface adhesion molecules may play an

additional role in determining the adhesive capacity of CLL cell fractions.

5.4 Integrins of the HIF1a/VHL axis mediate adhesion but not CXCR4

Integrins mediate the direct interactions and adhesion between CLL cells and stromal cells. The
subset of B1- and R2-integrins were found to mediate spontaneous and drug-induced apoptosis
evasion by CLL cells through physical contact to endothelial stroma cells'?. Besides integrins,
chemokine receptors were also reported to play a role in lymphocyte adhesion33%, E.g. CCR7
was observed to induce lymphoma cell homing®®. Interestingly, Plerixafor, a CXCR4 inhibitor,

inhibited adhesion in MCL3!® but not in my CLL adhesion model (Figure 16).

Through gene expression profiling comparing mono- and stromal co-cultured CLL cells, VHL was
found downregulated in the stroma co-cultured fraction®*”. As VHL was previously shown to
influence adhesive capacity of cancer cells under selective substrate and surface molecule
compositions3¥32, |nterestingly, VHL and SHIP1 were both reported to be targeted by
miR-1552%9321,

The adhesion experiments indicated that VHL plays an important role in regulating CLL adhesion.
The knock-out of VHL increased the adhesive capacity of HG3 cells to stromal and among HG3
cells. The connection between VHL and SHIP1 needs to be further elucidated by addressing
signalling linking factors and the target integrins and surface molecules as well as influences on

transcriptional patterns.

5.5 SHIP1 as a target in CLL therapy

The development of small molecules targeting phosphatases is still far behind of the multitude of
kinase inhibitors3??32, A SHIP1 inhibitor, 3AC, was first shown to upregulate the
immunoregulatory capacity of myeloid cells'’®. While the adhesion assay indicated SHIP1
activation to be beneficial for CLL treatment through loss of adhesion, SHIP1 inhibition was also
reported to induce apoptosis of cancer or haematological malignant cells'®¥17932% With the sea

sponge extract-derived pelorol, it was first shown that SHIP1 could be enzymatically activated®?’.
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The further synthesis and pre-clinical testing of SHIP1-activating compounds!#”148182 |e(d to first
clinical trials'®325 and further focus on SHIP1 in CLL treatment®®. The current developments are
especially interesting in the light of potential combination treatments to reduce potential paths
of resistance development. Through the scientific analysis of the circuit topology of the BCR
signalling pathway with modelled interconnectivity between the signalling factors, | provided a
tool to understand potential paths for the success of combination treatments®. Thus, SHIP1 is a

promising target to be evaluated in future combination treatments in CLL therapy.

5.6 Conclusion

The described work aimed to comprehensively elaborate the stimulation-dependent regulation of
the BCR signalling pathway by PTEN and SHIP1 and link the activity of PTEN and SHIP1 to the
adhesion capacity of CLL cells. For this reason, an optimised flow assay was set up and adhesion
under shear stress measured in combination with flow cytometry analysis of signalling factors.
The central finding is the involvement of SHIP1 in the inhibition of BCR-dependent adhesion of CLL
cells to cells of the TME. Through distinct PIP; degradation, PTEN and SHIP1 impact on BCR

regulation through different pathways, thereby being responsible for distinct control mechanisms.
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Figure 18 Signalling factors involved in CLL adherence.



Thus, the next steps include the further analysis of surface molecules of adherent and non-
adherent CLL fractions and subsequent inhibition or blocking approaches. The knowledge gained
from this project expands the pool of potential targets (Figure 18) for future combination
treatments, especially in the light of SHIP1 being the first inositol phosphatase targeted by a

biologically active agonist which has already been tested in clinical trials.
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