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II Abstract 

Surgical resection followed by adjuvant radio-chemotherapy remains the mainstay of 

glioma management. However, the clinical benefit is highly limited. Therefore, there is 

an urgent clinical need to develop and improve novel therapeutic options. Various types 

of immunotherapies are emerging as promising new options for the treatment of gliomas, 

but their efficacy, when applied as monotherapy or in combination with standard-of-care 

treatment, remains low due to the highly immunosuppressive tumor microenvironment 

(TME) of gliomas. Thus, it is crucial to combine immunotherapies with other therapies, 

such as radiotherapy, that can favorably modulate the TME. However, in clinical trials, 

standard-of-care radiotherapy regimens have failed to show a benefit in combination with 

immunotherapies. To determine the optimal dosage and schedule that induces a potent 

immune response and modulates the TME, this study aimed to investigate the effect of 

different dosages and fractionations on the tumor immune microenvironment in a 

preclinical glioma model. In this study, I demonstrate that a single application of a 

medium-high dosage of 5 Gy induced the strongest T cell, NK cell, and type I IFN 

response, the highest expression of Cxcl10 and genes related to antigen presentation, 

and the lowest levels of inhibitory immune checkpoints among all tested dosages and 

fractionation schemes. Additionally, I identified Lgals1 expression as a marker of 

activated CD8+ T cells, though the functional role of Lgals1 in CD8+ T cells and its 

potential implications for cellular immunotherapies are currently being further 

investigated in ongoing research. Lastly, I identified a novel perivascular T cell niche 

(PVTN), in which brain-infiltrating T cells and macrophages accumulate in the brains of 

tumor-bearing mice and glioma patients. Preliminary data on the migration behavior of T 

cells suggests that these cells are detained in the niche. Understanding the cellular 

composition, cellular crosstalk, migration behavior, and underlying mechanisms of T cell 

entrapment could lead to the development of novel therapeutic strategies that release T 

cells from the niche, allowing them to migrate to the tumor and exert their anti-tumoral 

functions. 
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III Zusammenfassung 

Die chirurgische Resektion in Kombination mit adjuvanter Strahlen- und Chemotherapie 

gilt nach wie vor als Standardtherapie zur Behandlung von Gliomen. Allerdings sind die 

klinischen Erfolge sehr begrenzt, weshalb es einer dringenden Entwicklung neuer 

Therapieansätze bedarf. Immuntherapien bringen neue Hoffnung für die Behandlung 

von Gliompatienten. Im Gegensatz zu anderen soliden Tumorerkrankungen sind die 

bisherigen klinischen Erfolge jedoch auch hier leider begrenzt. Es wird vermutet, dass 

das immunsuppressive Tumormikromilieu im Gehirn die durch Immuntherapien 

ausgelösten Immunantworten unterdrückt. Daher ist die Kombination mit weiteren 

Therapien, die das Tumormikromilieu positiv beeinflussen können, essentiell für den 

Erfolg von Immuntherapien gegen Hirntumoren. Strahlentherapie hat theoretisch das 

Potenzial, das Tumormikromilieu positiv zu beeinflussen, doch in klinischen Studien mit 

dem Standardbehandlungsschema blieben die therapeutischen Erfolge aus. Deshalb ist 

es notwendig, die optimale Dosis und zeitliche Abfolge der Strahlentherapie zu ermitteln, 

um die Kombination mit Immuntherapien zu verbessern. Im Rahmen dieser Dissertation 

wurden daher mehrere Strahlungsdosen und Fraktionierungen sowie deren Einfluss auf 

Immunzellen im Tumormikromilieu in einem präklinischen Gliommodell untersucht. 

Dabei konnte ich zeigen, dass die einmalige Gabe einer mittelhohen Dosis von 5 Gy die 

beste T- und NK-Zell-Immunantwort unter allen getesteten Gruppen ausgelöst hat. 

Zudem konnte ich zeitlich aufzeigen, dass die durch 5 Gy ausgelöste Antwort noch 

mindestens sieben Tage nach der Behandlung anhielt. Zusätzlich konnte ich die 

Expression von Lgals1 als Marker für aktivierte CD8+ T Zellen identifizieren. Die 

funktionelle Rolle von Lgals1 und der potenzielle therapeutische Nutzen eines Knockouts 

werden jedoch in laufenden Experimenten weiter untersucht. Darüber hinaus konnte ich 

eine zuvor unbeschriebene perivaskuläre T-Zell-Nische im Gehirn von tumortragenden 

Mäusen und Gliompatienten identifizieren. Der Ursprung der T Zellen in dieser Nische 

ist zwar noch ungeklärt, aber die ersten Ergebnisse deuten darauf hin, dass die T Zellen 

in der Nische gefangen sind und nicht in der Lage sind, zum Tumor zu migrieren. Weitere 

Untersuchungen sollen die zugrundeliegenden Mechanismen entschlüsseln, um neue 

therapeutische Ansätze zu entwickeln, die es den T-Zellen ermöglichen, die Nische zu 

verlassen. Dies wird ein entscheidender Schritt zur Verbesserung von Immuntherapien 

zur Behandlung von Hirntumoren sein.
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1 Introduction 

1.1 Gliomas  

Primary brain tumors are tumors which originate in the brain, while secondary brain 

tumors arise from metastases outside of the brain (Weller et al., 2024). Gliomas account 

for approximately 26% of all primary brain tumors and are responsible for the most 

deaths (Ostrom et al., 2023). They are a heterogenous group of brain tumors which 

develop from glial cells such as astrocytes, oligodendrocytes and ependymal cells 

(Lehman, 2008; Liu et al., 2011). Glial cells are supportive cells in the central nervous 

system (CNS) and play an essential role in CNS development, maintaining homeostasis, 

as well as protecting and supporting neurons in the brain (Allen & Lyons, 2018). Gliomas 

can occur in different parts of the CNS and are further classified by the 2021 WHO 

classifications based on the cell type they originate from as well as histological and 

genetic features. The 2021 WHO classifications separate gliomas into two categories: 

adult-type diffuse gliomas and pediatric-type diffuse gliomas (Louis et al., 2021). An 

overview and the criteria for the diagnosis of adult-type diffuse gliomas can be found in 

Figure 1 (Byun & Park, 2022).  

With approximately 55% of all gliomas, glioblastomas are the most common type of 

glioma (G.-M. Wang et al., 2022). The incidence rate of gliomas varies according to 

various factors such as glioma subtype, sex, age and even ethnicity. But overall, the 

incidence rate per 100,000 population is 3.23 for glioblastoma, ranges from 0.42 to 0.46 

for astrocytoma, and ranges from 0.11 to 0.22 for oligodendroglioma. (Pellerino et al., 

2022). The distribution of incidence between male and female varies with age and glioma 

subtype, but overall, males have a 30-50% higher incidence for gliomas over females 

(G.-M. Wang et al., 2022). Gliomas can occur at any age, but the age group with the 

highest incidence with 20% of all cases is 60-69 years old, while with 5.1% the age group 

with the lowest incidence is 10-19 years (G.-M. Wang et al., 2022). The factors causing 

the development of gliomas are still largely unknown, but a combination of genetic 

predisposition and environmental and lifestyle factors is believed to play a role (Ostrom 

et al., 2019). The only validated environmental factor identified to increase the risk of 

brain tumors is the exposure to ionizing irradiation, especially during childhood 

(Braganza et al., 2012; Ostrom et al., 2019). 

Gliomas are usually only diagnosed after patients present themselves with neurological 

symptoms such as seizures, headaches, cognitive problems, change in personality or 

motor impairments (Peeters et al., 2020; Snyder et al., 1993). The diagnosis is then 
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performed by magnetic resonance imaging (MRI). However, the final diagnosis of the 

glioma subtype can only be confirmed by pathological tissue analysis if a biopsy was 

taken or surgical resection was performed (Weller et al., 2020). After surgical resection, 

standard-of-care continues with an adjuvant radio-chemotherapy (Weller et al., 2020). 

The success of the current standard-of-care is highly limited and results in an overall 

survival of only 9.2 months among glioblastoma patients (Brown et al., 2022). However, 

emerging immunotherapeutic approaches, which include immune checkpoint inhibitors, 

therapeutic vaccinations, nanoparticle-mediated delivery of immune modulators, and 

cellular therapies such as T cell receptor (TCR) or chimeric antigen receptor (CAR) 

transgenic T cells, have shown encouraging advancements as potential future 

treatments (Aslan et al., 2020; Cloughesy et al., 2019; Kilian et al., 2022; Krämer et al., 

2024; Platten et al., 2021; Schumacher et al., 2014; Turco et al., 2023). 

 

 

Figure 1: Overview of the 2021 WHO classification of adult-type diffuse gliomas.  

H3-altered (midline) gliomas are not displayed. With permission adapted from Byun & Park (Byun & Park, 

2022). 

 

1.2 The immune landscape of the brain and gliomas 

For the longest time, the brain has been thought to be a fully immune-privileged organ in 

order to protect itself from inflammation or other peripheral threats. However, the 

advancements in neuroimmunology research in the recent decades have shed light on 
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the interactions between the (peripheral) immune system and the brain (Engelhardt et 

al., 2017). In healthy humans and mice, the brain is indeed partially immune-privileged. 

The brain protects itself from peripheral immune cells and other potential threats through 

several physical barriers such as the blood-brain barrier (BBB) (Engelhardt et al., 2017). 

The BBB is formed by tight junctions between brain endothelial cells, pericytes and 

astrocytes, and controls the migration of cells and influx of other factors to the brain 

(Kadry et al., 2020). At the same time, during neuroinflammation, traumatic brain injury, 

autoimmune diseases and cancer, the BBB is often compromised and thereby allows 

peripheral immune cells to enter the brain (Kadry et al., 2020). Classically, immune cells 

transmigrate from the blood stream into the brain by passing through the BBB (Marchetti 

& Engelhardt, 2020). However, recent studies have proposed alternative routes for 

immune cell migration to the brain via direct connections between the dura and the brain 

(Smyth et al., 2024). It also has recently been shown that the skull holds a reservoir of 

tumor-reactive T cells that are able to infiltrate the brain (Dobersalske et al., 2024). 

Another physical barrier is the blood-cerebrospinal fluid (B-CSF) barrier. This barrier is 

composed of the choroid plexus epithelium in the ventricles and the arachnoid barrier in 

the meninges (Solar et al., 2020). The arachnoid barrier forms between the dura mater 

and the subarachnoid space. The epithelium in the ventricles produces the majority of 

cerebrospinal fluid (CSF), but also the intracellular and interstitial fluid of the brain 

parenchyma drains into the CSF (Wichmann et al., 2022). The drainage of these fluids 

happens through the glymphatic system, which is crucial for the transport of debris and 

antigens out of the brain and drains into the lymphatic system (Iliff et al., 2012; Johnston 

et al., 2004).  

Although, the mechanisms of priming an immune response to the brain are still 

incompletely understood, it has been shown that when injecting tracers into the brain or 

the CSF, they will drain to cervical lymph nodes (Eide et al., 2018). In preclinical glioma 

models it has also been shown that dendritic cells can prime immune responses against 

brain tumors by trafficking antigens from the tumor to cervical lymph nodes (Bowman-

Kirigin et al., 2023). Thereby, these studies suggest that adaptive immune responses in 

the brain are primed in the periphery at cervical lymph nodes. Still, cervical lymph nodes 

might not be the exclusive location of priming adaptive immune responses in the CNS. 

In a study by Rustenhoven et al., antigen presenting cells at the dural sinuses have been 

shown to capture CNS-derived antigens from the CSF and to present them to patrolling 

T cells in the dural meninges (Rustenhoven et al., 2021).  Furthermore, the presence of 

tertiary lymphoid structures (TLS) in human and murine gliomas has been reported and 

suggested as additional location of T cell priming (van de Walle et al., 2021; Luuk van 
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Hooren et al., 2021). Nevertheless, further studies are needed to comprehensively 

understand the complex dynamics of priming immune responses against tumors in the 

brain. 

In the healthy brain, microglia are the main immune cell in the brain and provide CNS 

immune surveillance (Li & Barres, 2018), but in the choroid plexus, meninges and CSF 

also T cells, natural killer (NK) cells, B cells, neutrophils, dendritic cells (DCs) and various 

other immune cells are patrolling and surveilling the environment (Croese et al., 2021). 

Depending on the anatomical region, microglia constitute up to 16.6% of all cells in the 

human brain and up to 12% of all cells in the mouse brain (Bachiller et al., 2018). They 

derive from yolk-sac derived progenitor cells during embryonic development and their 

population is not replenished by peripheral hematopoietic stem cells (Ginhoux et al., 

2010; Gomez Perdiguero et al., 2014). Like their peripheral counterparts, microglia are 

highly plastic cells and have the ability to change their functional capacities depending 

on the external or internal threats such as inflammation, infection or tumors (Li & Barres, 

2018; Yabo et al., 2024). In the healthy brain, they rather maintain an 

immunosuppressive phenotype to support tissue maintenance and repair (Gomez-Nicola 

& Perry, 2015). But, they can alter their secretion of cytokines and chemokines, 

morphology, phagocytic capacity, antigen presentation machinery and even proliferation 

in order to react to the possible threats (Bachiller et al., 2018). 

The tumor microenvironment (TME) of gliomas is predominantly populated by myeloid 

cells. Studies have shown that more than 50% of the cells in gliomas can be of the 

myeloid lineage (Hambardzumyan et al., 2015; Morantz et al., 1979; Rossi et al., 1987). 

But during tumor development, also peripheral monocytes, macrophages, neutrophils, 

basophils, and dendritic cells infiltrate the CNS, yet many of the myeloid cell infiltrating 

the brain are adapting an immunosuppressive phenotype (Friedrich et al., 2023). 

Immunosuppressive regulatory T cells (Tregs) are also recruited to the tumor 

microenvironment (Sayour et al., 2015). Altogether, these cells generate an 

immunosuppressive milieu by secreting anti-inflammatory cytokines such as 

transforming growth factor beta (TGF-β), interleukin 10 (IL-10), expressing other factors 

such as Arginase1 (Arg1), indoleamine 2,3 dioxygenase (IDO), or immune checkpoints 

such as CTLA-4 and PD-L1 (Lin et al., 2024; Zhai et al., 2021; Zhang et al., 2016). That’s 

why the treatment-naïve TME of gliomas is considered “immunologically cold” and highly 

immunosuppressive (Lin et al., 2024). At the same time, also effector CD4+ and CD8+ 

T cells, as well as NK and B cells infiltrate the tumor microenvironment. However, the 

effectiveness of the mounted responses is overshadowed by the immunosuppressive 

environment and results in tumor immune evasion (Gangoso et al., 2021; Lin et al., 
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2024). Another factor that makes it difficult to mount adaptive immune responses against 

the tumor, is the relatively low mutational burden and the resulting low amount of 

neoantigens in the majority of gliomas (Sha et al., 2020). Overall, it is therefore crucial 

for the success of immunotherapy to modulate the tumor and its microenvironment to a 

more immunogenic and a less immunosuppressive state. 

 

1.3 Immunotherapies for brain tumors 

Emerging immunotherapeutic approaches bring new hope for improving the survival of 

glioma patients. They can be categorized into three main categories: therapeutic 

vaccines, antibodies such as immune checkpoint inhibitors, and cellular therapies such 

as TCR- or CAR-transgenic T or NK cells (Montoya et al., 2020). All three aim to stimulate 

or provide a potent immune response that is specific to the tumor. In solid tumors outside 

the brain they have already shown substantial success and some have been 

implemented as first-line treatment in the standard-of-care (Boydell et al., 2023). 

However, for gliomas no immunotherapeutic modality has been so far approved, due to 

the early stage some of the therapies are still in, or due to limited success in clinical trials 

(Lim et al., 2022; Omuro et al., 2023). Here I aim to give a short overview of the current 

immunotherapeutic approaches that are in development for the treatment of gliomas.  

Several therapeutic vaccines against gliomas have been in preclinical and clinical 

development and show promising results. Vaccine platforms in development include 

mRNA vaccines, peptide vaccines, and DC vaccines, that utilize the adoptive transfer of 

mRNA or peptide loaded DCs (Xiong et al., 2024). Some approaches aim at fully 

personalizing the vaccine based on the patient’s specific transcriptomic profile, while 

other approaches rather target mutations that are common in certain subtypes of gliomas 

such as  isocitrate dehydrogenase 1 (IDH1) (R132H) or histone H3(K27M) (Grassl et al., 

2023; Latzer et al., 2024; Platten et al., 2021; Schumacher et al., 2014). In many clinical 

trials, the vaccination is combined with checkpoint inhibitors to overcome the 

immunosuppressive tumor microenvironment. Checkpoint inhibitors are not personalized 

and have systemic effects on immune cells. They are antibodies that block inhibitory 

immune checkpoints such as PD-1, PD-L1 and CTLA-4 on immune cells and/or tumor 

cells. They have also been tested as single modality against gliomas with promising 

preclinical results (Aslan et al., 2020; Reardon et al., 2016), but failed to demonstrate 

success in clinical trials (Reardon et al., 2020; Reardon et al., 2017). Only one study, 

which applied checkpoint inhibitors as a neoadjuvant therapy in glioblastoma, showed a 

significantly better survival compared to patients that received the therapy in an adjuvant 
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fashion (Cloughesy et al., 2019). CAR receptors are artificial receptors that are able to 

specifically target single epitopes that are expressed on the surface of tumor cells. 

Classically, T cells are genetically equipped with these receptors, but also studies 

utilizing NK cells and even macrophages have been proposed and are under clinical 

development (Ehrend et al., 2024; Lei et al., 2024; Murakami et al., 2018). CAR receptors 

bring the problem that targets need to be identified that are uniquely expressed or 

overexpressed on the surface of tumor cells alone and not on healthy cells to limit off-

tumor toxicity (Hou et al., 2021). Still, several potential targets have been identified for 

gliomas, such as GD2, IL13Ra2, or EGFRvIII, and are currently undergoing clinical trials 

and demonstrated first promising results (Brown et al., 2016; Brown et al., 2015; Kilian 

et al., 2021; Majzner et al., 2022; Sampson et al., 2014). However, only targeting one 

target on the surface of tumor cells can lead to immunoediting and subsequent immune 

evasion of heterogenous tumors and is a major limitation of CAR T cell therapy for solid 

tumors in general (Luksik et al., 2023). TCR-transgenic cellular products have the 

advantage that they can also target intracellular targets, as the peptide antigens that are 

targeted by TCR-transgenic T cells, are processed inside the tumor cell and presented 

on MHC molecules (Kilian et al., 2021). The antigens targeted by TCR-transgenic T cells 

are usually mutation-derived neoantigens and are therefore specific to the tumor cells 

which lowers the risk for off-target toxicity (Boschert et al., 2024; Kilian et al., 2021; Kilian 

et al., 2022). As these TCRs are highly personalized, identification of reactive TCRs and 

their targets in patients can be very difficult, as well as time and cost-intensive. Novel 

advancements in machine-learning algorithms can help to predict and identify 

neoantigens and reactive TCRs and speed up and simplify the process of development 

(Cai et al., 2022; Tan et al., 2024). A few glioma-specific TCRs have been identified 

against mutations like IDH1(R132H), H3(K27M), capicua transcriptional repressor (CIC) 

CIC(R215W/Q) or the tumor-associated antigen neuroligin 4 X-linked (NLGN4X) and 

some might soon undergo clinical trials (Boschert et al., 2024; Kilian et al., 2022; Krämer 

et al., 2024; Platten et al., 2021). 

Overall, immunotherapies are providing a promising future for the treatment of glioma 

patients, but more research is needed to improve their overall efficacy. The limited 

access to the brain, tumor heterogeneity and the immunosuppressive environment seem 

to be the main challenges (Akhavan et al., 2019). Therefore, immunotherapies could 

highly benefit from combinatorial therapies, that modulate the TME and access to the 

brain. Radiotherapy holds such potential for combination with immunotherapies 

(Akhavan et al., 2019). The combination of radiotherapy with immunotherapies and the 
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effects on the immune system will therefore be further described in the following two 

chapters. 

 

1.4 Radiotherapy and its effect on the tumor microenvironment 

Radiotherapy for the treatment of gliomas and other types of brain tumors has been long 

implemented into the management of patients. Radiotherapy is usually given as adjuvant 

therapy together with the chemotherapeutic Temozolomide (TMZ) after surgery (Stupp 

et al., 2005). If a tumor is inoperable, radiotherapy and chemotherapy might be used as 

primary care. The primary goal is the control of tumor growth without causing 

neurotoxicity (Weller et al., 2020). The dosage and fractionation of irradiation is 

determined based on multiple factors including glioma subtype, age of the patient, 

prognosis, the assessment of functional impairment of the patient by Karnofsky 

Performance Scale (KPS) and the tumor volume left after surgery (Weller et al., 2020). 

The common total dosage patients receive is between 50 and 60 Gy administered in 

daily fractions of 1.8-2 Gy (Stupp et al., 2005; Weller et al., 2020). Early clinical trials 

comparing total dosages of 45 Gy and 59.4 Gy in low grade gliomas saw no significant 

differences in patient outcome (Karim et al., 1996). Dose-escalation trials using total 

dosages of up to 80 Gy and hypofractionated dosages of up to 8.5 Gy per fraction 

showed enhanced patient benefit only when used alone, but not in combination with TMZ 

(Singh et al., 2021). At the same time, a study using preclinical glioma models GL261 

and CT-2A showed that the timing between fractionations did made significant 

differences (McKelvey et al., 2022). In this study, McKelvey et al. compared two groups 

of mice both treated with 20 Gy. One group received 10 fractions with 2 Gy daily for ten 

days with only a two-day break after five fractions and the other group received 4 

fractions with 5 Gy every third day. The mice treated with the 4 fractions of 5 Gy every 

third day, not only showed an increase in survival by ~125% compared to the other 

group, but also showed decreased tumor cell proliferation, increased DNA damage and 

a higher immune infiltration, while showing no signs of increased radiotoxicity (McKelvey 

et al., 2022). Concluding these clinical and preclinical studies, the overall dosage does 

not seem to matter, but the timing between fractionations might be an important factor in 

increasing therapeutic efficacy and in inducing potent immune responses. Yet, no study 

so far has investigated the influence of different dosages of radiotherapy on the entire 

tumor immune microenvironment (TIME) in gliomas. 

Radiotherapy can directly influence tumor cells by inducing various processes and can 

modulate the entire tumor microenvironment (Awada et al., 2023).  Ionizing radiation 
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energy causes DNA damage by inducing single-strand and double-strand breaks in DNA 

strands and alterations in DNA bases (Lomax et al., 2013). Another rather indirect 

mechanism of DNA damage can occur by irradiation-induced free radicals inside cells. 

Radiation reacts with water molecules inside cells, which results in the production of 

reactive oxygen species (ROS). These ROS can cause oxidative damage to bases and 

the sugar-phosphate backbone which can lead to strand breaks and base modifications 

(Dizdaroglu & Jaruga, 2012). Especially when such strand breaks and base damage 

occur within a short distance, often referred to as clustered DNA damage, they are 

difficult to be repaired by DNA repair mechanisms and often leads to cell death 

(Goodhead, 1994; Sutherland et al., 2000; Sutherland et al., 2002). Radiation-induced 

cell death is often referred to as immunogenic cell death due to the release of tumor-

associated antigens (TAA) and damage-associate molecular patterns (DAMPs) 

(Gameiro et al., 2014; Liu et al., 2023). DAMPs can include cellular compartments such 

as calreticulin (CRT), free nucleic acids, adenosine triphosphate (ATP), heat shock 

proteins (HSP) and high mobility group box 1 (HMGB1) (See Figure 2) (Awada et al., 

2023; Panaretakis et al., 2009). These signals are sensed by pattern recognition 

receptors (PRRs) on antigen presenting cells such as macrophages, microglia and 

dendritic cells in the tumor microenvironment and initiate the clearance of dying tumor 

cells (Lauber et al., 2012; Yamazaki et al., 2014). These cells then trigger an adaptive 

immune response by lymphocytes through the presentation of antigens and co-

stimulation in lymphoid organs such as the cervical lymph nodes or at other suggested 

sites of potential immune cell priming of the brain as described above (see 1.2). In 

addition, the genomic instability caused by irradiation-induced DNA damage and 

mislocation of nucleic acids into the cytosol of cells can trigger type I IFN responses 

through activation of nucleic acid sensing PRRs pathways such as the retinoic acid 

inducible gene I (RIG-I), toll-like receptors (TLR) or the cGAS-STING pathway. These 

pathways can be triggered within tumor cells themselves or in immune cells such as 

macrophages or dendritic cells through uptake of tumor cell debris or during 

phagocytosis of tumor cells (Deng et al., 2014; Goubau et al., 2014; Haroun et al., 2023). 

The whole cascade that results in type I IFN expression usually takes several hours and 

peaks usually at 48-72h after irradiation (Burnette et al., 2011; Feng et al., 2020). Type I 

IFN responses are known to induce many interferon-stimulated genes (ISGs) and many 

other immune stimulatory pathways, such as the upregulation of MHC molecules  or the 

expression of the major T cell chemoattractant CXCL10 in tumor, stromal and immune 

cells (Buttmann et al., 2007; Ignarro et al., 2022; Makuch et al., 2022; Yu et al., 2022). 

In experiments with a systemic knockout of the type I IFN receptor 1 (IFNAR1) in mice, 

it has been shown that the immune-dependent efficacy of radiotherapy relies on the 
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induction of type I IFN (Burnette et al., 2011). STING activation and type I IFN induction 

have been shown to be essential for dendritic cell-mediated initiation of T cell-mediated 

tumor rejections by promoting their ability to cross-prime CD8+ T cells (Burnette et al., 

2011; Deng et al., 2014; Diamond et al., 2011). Regulation of the type I IFN response 

after radiotherapy can occur through the expression of the DNA exonuclease Trex1, 

which degrades DNA in the cytosol and dampens thereby STING-mediated expression 

of type I IFNs (Vanpouille-Box et al., 2017). Although, it has also been shown that 

radiation-induced oxidative DNA damage can induce resistance to Trex1-mediated DNA 

degradation (Gehrke et al., 2013). Depending on timing, duration and strength, type I 

IFN responses might not always be beneficial for anti-tumor immunity. Other reports also 

suggest mechanism of immune suppression and resistance induced by type I IFN (J. 

Chen et al., 2019; Jacquelot et al., 2019). Overall, irradiation and the following 

downstream events of immunogenic cell death, release and presentation of tumor 

antigens and T cell priming, initiate the classical immunity cycle as described by Mellman 

et al. and leads to an increased infiltration of antigen-specific T cells and anti-tumoral 

responses (see Figure 2) (Mellman et al., 2023). Natural Killer (NK) cells are another 

major immune cell which are capable of direct killing of tumor cells through antigen-

independent mechanisms. Radiotherapy has been shown to induce NK cell responses 

with increased infiltration into, and cytotoxicity against, solid tumors (Canter et al., 2017; 

Walle et al., 2022). One study demonstrated that natural-killer group 2 member D ligands 

(NKG2DL), a group of ligands initiating NK cell killing through the receptor NKG2D, were 

upregulated on murine and human glioma cells following radiotherapy and led to NK cell 

driven anti-tumor responses in vivo (Weiss, Schneider, et al., 2018). However, the 

majority of studies investigating direct and indirect effects on NK cells have not been 

performed in the context of brain tumors and thereby the effects of radiotherapy on NK 

cells and their response in the brain remain largely unclear. Radiotherapy also induces 

the recruitment of macrophages to the tumor through the induction of expression of 

cytokines and chemokines such as IL-6 and CCL2 (Morganti et al., 2014). Unfortunately, 

the TME of gliomas favors the polarization towards a rather immunosuppressive anti-

inflammatory phenotype. At the same time, M2-like anti-inflammatory macrophages are 

also more radioresistant compared to pro-inflammatory macrophages in glioblastomas 

(Leblond et al., 2017). However, we have recently shown that type I IFN secreted by 

melanoma brain metastases reprograms macrophages towards a beneficial pro-

inflammatory phenotype that correlated with improved survival (Gellert et al., 2024). 

Microglia on the other hand have been shown to become more activated and potent in 

priming immune responses following radiation (Monje et al., 2002; Voshart, Klaver, et al., 

2024; Voshart, Oshima, et al., 2024).  However, an overshooting of microglia activation 
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has been shown to be responsible for the long-term cognitive decline observed in 

patients and mice treated with radiotherapy (Acharya et al., 2016; Feng et al., 2016; 

Voshart, Oshima, et al., 2024). Overall, the direct and indirect effects of radiotherapy on 

myeloid cells in the brain are highly complex, incompletely understood and may vary 

based on location of the tumor, dosage and timing of radiation, and the heterogeneity of 

the tumor microenvironment (Beach et al., 2022; Betlazar et al., 2016; Hohsfield et al., 

2020).  

Irradiation also causes the increased expression of adhesion molecules on endothelial 

cells, which supports the recruitment of immune cells to the tumor (Hallahan et al., 1996; 

Himburg et al., 2016). Irradiation-induced modulations in endothelial cells may also lead 

to alterations in the integrity of the vasculature, making it more permeable for cells to 

pass through endothelial barriers (Guipaud et al., 2018; Sharma et al., 2013). At the 

same time, too high dosages of radiotherapy can also lead to the apoptosis of endothelial 

cells, which may lead the breakdown of the BBB or even the complete loss of vasculature 

(Li et al., 2003; Wijerathne et al., 2021).  

Despite all positive effects, radiotherapy can also induce further immunosuppressive 

mechanisms. Immune cells, especially lymphocytes, can be highly sensitive to radiation 

and can be depleted (Venkatesulu et al., 2018; Yovino & Grossman, 2012). At the same 

time, regulatory T cells (Tregs) are less radiosensitive compared to other lymphocytes and 

might escape radiation-induced depletion at lower dosages (Persa et al., 2015; Qu et al., 

2010). Through the expression of the immune-checkpoint CTLA-4 or through secretion 

of immunosuppressive cytokines and factors such as IL-10, TGF-β and IDO, Tregs can 

facilitate an immunosuppressive TME and dampen cytotoxic T and NK cell responses 

(Awada et al., 2023; Schmidt et al., 2012). Another immunosuppressive mechanism 

triggered by radiotherapy is the recruitment of myeloid-derived suppressor cells and 

tumor-associated macrophages to the TME (Beach et al., 2022; Liang et al., 2017). 

Together with the brain-resident microglia, these anti-inflammatory myeloid cells also 

secrete immunosuppressive cytokines as well as IDO and arginase 1 (Arg1), which can 

interfere with T cell-mediated anti-tumor responses and can drive radiation resistance 

(Kang et al., 2020; Liang et al., 2017). Hypoxia, which is a common feature of 

glioblastomas, also drives the polarization of myeloid cells towards an 

immunosuppressive and anti-inflammatory phenotype. Radiotherapy can also induce 

hypoxic regions in gliomas through the destruction of blood vessels as mentioned above 

(Li et al., 2003; Wijerathne et al., 2021). Through the expression of type I and II interferon 

in the post-irradiated TME, the expression of the immune-checkpoint programmed death-

ligand 1 (PD-L1) on antigen presenting cells, but also on tumor cells, can be significantly 
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enhanced (Sato et al., 2019; N. H. Wang et al., 2022). This highlights that radiotherapy 

can benefit from the combination with immune checkpoint inhibitors.  

To summarize, radiotherapy is able to modulate the tumor microenvironment and triggers 

potent anti-tumor immune responses. Evidence provides a strong rationale for 

combinatorial regimens with immunotherapies. However, further studies are needed to 

evaluate the best dosage and timing for optimal combinatorial efficacy. Nevertheless, 

many of these studies have not been performed in glioma models, but in subcutaneous 

models or orthotopic models of other organs. Due to the unique environment of the brain, 

immune cells in brain tumors might behave differently compared to peripheral solid 

tumors. Therefore, there is an unmet need to comprehensively characterize the immune 

response to different dosages of radiotherapy in the brain.  

 

Figure 2: Overview of events in the tumor microenvironment of irradiated solid tumors. 

Irradiation-induced immunogenic cell death of tumor cells leads to the release of DAMPs, 
neoantigens and inflammatory cytokines which triggers the activation of antigen presenting cells 
and priming of T cells and results in antitumoral T cell responses. With permission adapted from 
Awada et al. (Awada et al., 2023). 
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1.5 Radio- and immunotherapy combinations 

The immunogenic modulation of the tumor microenvironment and recruitment of T cells 

make radiotherapy, in theory, an ideal partner for combinations with immunotherapies. 

Various preclinical studies in murine glioma models have already been performed to 

confirm an enhanced therapeutic effect of radio- and immunotherapy combinations. Zeng 

et al. showed that the combination of a PD-1 checkpoint inhibitor in combination with 

stereotactic radiation induced long-term survival in mice with the preclinical glioma model 

GL261. At the same time, mice treated only with anti PD-1 or radiotherapy alone only 

showed a minimal response and no significant increase in median survival (Zeng et al., 

2013). They also showed a significant increase in CD8+ T cell infiltration and decreased 

numbers of regulatory T cells in the combined group (Zeng et al., 2013). Similarly, Kim 

et al. and Belcaid et al. also showed effective combination of radiotherapy with various 

other checkpoint inhibitor combinations with anti PD-1, CTLA-4, TIM-3 and 4-1BB which 

led to increased long-term survival and reduced tumor growth in mice (Belcaid et al., 

2014; Kim et al., 2017). Also, studies combining therapeutic vaccinations and 

radiotherapy have been performed on preclinical glioma models and showed significant 

benefits of the combination (Newcomb et al., 2006; Tran et al., 2020). Even cellular 

therapies such as CAR T cells against preclinical glioma models benefited from the 

combination with radiotherapy (Weiss, Weller, et al., 2018).   

At the same time, clinical studies fail to demonstrate this combinatorial effect. The large 

CheckMate-498 randomized phase III trial, in which standard-of-care radiotherapy was 

combined with the anti-PD1 checkpoint inhibitor Nivolumab, in patients with 

unmethylated newly diagnosed glioblastoma, failed to demonstrate a significant benefit 

in overall survival compared to the patients treated with standard radio-chemotherapy 

(Omuro et al., 2023). CheckMate-548, another phase III clinical trial for methylated newly 

diagnosed glioblastoma, compared the efficacy of standard-of-care radiotherapy with 

temozolomide with or without Nivolumab (Lim et al., 2022). Also this trial failed to 

demonstrate improved survival in patients treated with the combination (Lim et al., 2022). 

Moreover, a meta-analysis of nine phase II and III clinical trials showed no statistically 

significant increase in overall survival nor progression free survival in patients with newly 

diagnosed glioblastoma treated with the combination of radio-chemotherapy and 

immunotherapy (Lara-Velazquez et al., 2021). The reasons behind this failure in clinical 

trials might be multifactorial. A major difference between preclinical and clinical studies 

is the use of Temozolomide. While most preclinical studies focus on the pure combination 

of radiotherapy and immunotherapy, clinical studies utilize the standard-of-care 

treatment protocols which combine radiotherapy with Temozolomide (Lim et al., 2022; 
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Omuro et al., 2023; Stupp et al., 2005). However, the effects of Temozolomide on the 

immune response in gliomas and especially in combination with radiotherapy and 

immunotherapy are not well understood. Another major difference is the dosage and 

fractionation used in these studies. The above-mentioned preclinical studies make use 

of a single dose of 4-10 Gy, while standard-of-care radiotherapy in above mentioned 

clinical trials followed the Stupp protocol of 30x 2 Gy (Belcaid et al., 2014; Kim et al., 

2017; Lim et al., 2022; Omuro et al., 2023; Stupp et al., 2005; Zeng et al., 2013). It has 

been shown that the standard-of-care radio-chemotherapy of 30x 2 Gy and TMZ induced 

a immunosuppressive tumor microenvironment rather than modulating it towards a 

favorable milieu for a potent and sustainable immune response (Grossman et al., 2011). 

Therefore, the sequential timing and dosage of administering radiotherapy for the 

combination with immunotherapy might be crucial for efficacy. As it is known that 

radiation also kills immune cells, if fractions are delivered in too close sequential 

proximity to each other, the following fractions might diminish the triggered immune 

response and thus dampen the immune-driven therapeutic effect. It might therefore be 

beneficial to modify the dosage and decrease the frequency of radiotherapy and apply 

hypofractionated regimens in combination with immunotherapy. Thus, further studies are 

needed to investigate the longitudinal effect of different dosages of radiotherapy on 

immune cells, in order to determine, not only the best dosage, but potentially also the 

ideal timing from which the immune response takes the best benefit. I therefore aimed 

to address this issue in this dissertation by investigating the longitudinal tumor immune 

microenvironment of a preclinical glioma model after radiotherapy with different dosages 

and fractionations. 
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1.6 Aims of this study 

Since the combination of immunotherapies with radiotherapies only showed limited 

clinical efficacy, I aimed to decipher possible reasons behind the failure of these trials. 

In order to optimize radiotherapy dosage and timing, I aimed to investigate how immune 

cells behave after radiotherapy in a dose- and time-dependent manner (Part 1).  

Additionally, I have discovered a novel perivascular T cell niche, which I aimed to 

comprehensively characterize in terms of structure, cellular composition and 

development (Part 2). 

Overall, the following aims were addressed in this dissertation: 

• Investigate the effect of different dosages of radiotherapy on immune cells in the 
brain tumor microenvironment 

• Determine the optimal irradiation dosage for stimulating successful anti-tumor 
immune responses in the tumor microenvironment of gliomas 

• Investigate the development, cellular composition and structure of perivascular T 
cell niches. 
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2 Material and methods 

2.1 Material 

2.1.1 Antibodies 

Table 1: Antibodies and dyes used for flow cytometry. 

Target Conjugate Ref# Company 

CD11b PE-Dazzle 101256 BioLegend 

CD16/CD32 block unconjugated  14-0161-86 Invitrogen 

CD3 FITC 100204 BioLegend 

CD3 BV510 100234 BioLegend 

CD31 BV785 102435 BioLegend 

CD4 BV421 100438 BioLegend 

CD45 BV510 103138 BioLegend 

CD8 AF700 100730 BioLegend 

Donkey anti-goat AF488 A32814 Invitrogen 

Galectin-1 unconjugated AF1245 Bio-Techne 

Live/Dead Fixable Viability Dye eFluor780 65-0865-18 Invitrogen 

 

Table 2: Antibodies used for cell hashing. 

Antibody Barcode sequence Ref# Company 

TotalSeq™-C0301  ACCCACCAGTAAGAC 155861 BioLegend 

TotalSeq™-C0302 GGTCGAGAGCATTCA 155863 BioLegend 

TotalSeq™-C0303 CTTGCCGCATGTCAT 155865 BioLegend 

TotalSeq™-C0304 AAAGCATTCTTCACG 155867 BioLegend 

TotalSeq™-C0305 CTTTGTCTTTGTGAG 155869 BioLegend 

TotalSeq™-C0306 TATGCTGCCACGGTA 155871 BioLegend 

TotalSeq™-C0307 GAGTCTGCCAGTATC 155873 BioLegend 

TotalSeq™-C0308 TATAGAACGCCAGGC 155875 BioLegend 

TotalSeq™-C0309 TGCCTATGAAACAAG 155877 BioLegend 

TotalSeq™-C0310 CCGATTGTAACAGAC 155879 BioLegend 

 

 

 



                                                                                                                                                                     
   Material and methods 

16 
 

Table 3: In vivo antibodies. 

Target Clone Ref# Company 

InVivoMAb anti-mouse CD4 YTS 191 BE0119 Bio X Cell 

InVivoMAb anti-mouse CD8α YTS 169.4 BE0117 Bio X Cell 

InVivoMAb rat IgG2b isotype control, anti-

keyhole limpet hemocyanin 

LTF-2 BE0090 Bio X Cell 

 

Table 4: Primary antibodies used for immunofluorescence confocal and light sheet 
microscopy. 

Target Host 

species 

Target 

species 

Conjugate Ref# Company 

B220 - mouse FITC 130110845 Miltenyi Biotec 

CD3 rabbit mouse/human - A0452 Dako 

CD3 mouse human - M7254 Dako 

CD31 rat mouse - 550274 BD Pharmingen 

CD31 rat mouse AF647 102516 BioLegend 

CD31 goat human - AF3628 Bio-Techne 

DARC sheep mouse - AF6695 Bio-Techne 

Iba1 goat mouse - 011-27991 Fujifilm Wako 

Iba1 rabbit mouse/human - 019-19741 Fujifilm Wako 

 

Table 5: Secondary antibodies used for immunofluorescence confocal and light sheet 
microscopy. 

Host species Target species Conjugate Ref# Company 

donkey goat AF647 A21447 Invitrogen 

donkey mouse AF488 A21202 Invitrogen 

donkey rabbit AF546 A10040 Invitrogen 

donkey rat AF647 A78947 Invitrogen 

donkey sheep AF488 A11015 Invitrogen 

donkey goat AF488 A32814 Invitrogen 

donkey rabbit AF488 A21206 Invitrogen 

goat rabbit AF633 A21070 Invitrogen 

goat rat AF546 A11081 Invitrogen 

goat  rabbit AF546 A11010 Invitrogen 
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2.1.2 Chemicals, reagents and others 

Table 6: Overview of used plasmids. 

Plasmid Ref# Company 

LeGo-G2 25917 Addgene 

pLC-ZsGreen-P2A-Puro 124302 Addgene 

 

Table 7: Overview of used chemicals and other reagents. 

Item Ref# Company 

1-step fix lyse solution 00-5333-57 Invitrogen 

Accutase® A6964-100ML Sigma-Aldrich 

ACK lysis buffer A1049201 Gibco 

Benzyl alcohol 108006 Sigma-Aldrich 

Benzyl benzoate B6630 Sigma-Aldrich 

BSA T844.2 Carl Roth 

CC1 buffer 05279801001 Roche 

DMEM D6429-500ml Sigma-Aldrich 

Donkey serum S2170 Biowest 

EDTA (0.5 M) AM9260G Invitrogen 

Ethanol 9065.4 Carl Roth 

FBS Superior 20041 Sigma-Aldrich 

Fluoromount G™ 00-4959-52 Invitrogen 

HBSS H6648-500mL Sigma-Aldrich 

HEPES H0887-100ml Sigma-Aldrich 

IL-2 130-120-662 Miltenyi Biotec 

InVivoPure pH 7.0 Dilution Buffer IP0070 Bio X Cell 

L-Glutamine 25030-024 Gibco 

Liberase™ 5401119001 Roche 

Non-essential amino acids M7145-100ml Sigma-Aldrich 

Normal goat serum 5425S Cell Signaling Technologies 

OneComp eBeads™ 01-1111-42 Invitrogen 

PBS L0615-500 Sigma-Aldrich or Capricorn 

Penicillin-Streptomycin 15140122 Gibco 

Percoll® GE17-0891-01 Cytiva 

PFA (4%) sc281692 ChemCruz 

Puromycin P8833 Sigma-Aldrich 
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RPMI-1640 P04-18500 Pan Biotech 

Sodium pyruvate 11360-070 Gibco 

Sucrose 84097-1kg Sigma-Aldrich 

Tissue-Tek® O.C.T. Compound 14291 Sakura Finetek USA, Inc. 

TRITC-Dextran 52194 Sigma-Aldrich 

Triton-X100 648466-50ml Merck Millipore 

Trypsin-EDTA (0.25%) 20100 ThermoFisher Scientific 

Xylol 4436.1 Carl Roth 

 

Table 8: Overview of used animal medications. 

Product name  Active substance Company 

Antisedan ® Atipamezolhydrochloride Orion Pharma 

Dorbene ® vet Medetomidinhydrochloride Zoetis Deutschland 

Flumazenil Kabi Flumazenil Fresenius Kabi 

Ketabel Ketamin Bela-pharm 

Midazolam-ratiopharm ® Midazolam Ratiopharm 

Rimadyl ® Carprofen Zoetis Deutschland 

Rompun ® Xylazinhydrochloride Bayer Animal Health 

 

 

2.1.3 Other items 

Table 9: Overview of various used items. 

Item Ref# Company 

Ethilon sutures EH7761H Ethicon 

Glass window - In-house production 

Hamilton syringe 701 SN 80308 Hamilton 

LS columns 130-042-401 Miltenyi Biotec 

Superfrost™ Plus adhesion 

microscope slides  

J1800AMNZ Epredia 

Titan ring - In-house production 
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2.1.4 Kits 

Table 10: Overview of used kits 

Kit Ref# Company 

CD8a+ T Cell Isolation Kit, mouse 130-104-075 Miltenyi Biotec 

Chromium Next GEM Single Cell 5' Kit v2 1000265 10x Genomics 

eBioscience™ Intracellular Fixation & 

Permeabilization Buffer Set 

88-8824-00 Invitrogen 

Pan T Cell Isolation Kit II, mouse 130-095-130 Miltenyi Biotec 

T Cell Activation/Expansion Kit, mouse 130-093-627 Miltenyi Biotec 

 

2.1.5 Instruments 

Table 11: Overview of used instruments. 

Instrument name Application Company 

10x Chromium 

controller 

scRNA seq. 10x Genomics 

4200 Tapestation scRNA seq. quality control Agilent 

BD Aria II FACS BD Biosciences 

BD Fusion  FACS BD Biosciences 

BioSpec 3 Tesla  MRI imaging Bruker BioSpin 

BioSpec 94/20 USR MRI imaging Bruker BioSpin 

C170i Incubator  Cell culture Eppendorf 

Cryostat CM3050S Sectioning of tissue Leica 

Electric drill Stereotactic tumor cell injection Foredom 

Gammacell40 Irradiation Best Theratronics 

LSM 7MP Multiphoton laser scanning microscopy Zeiss 

LSM700 Confocal microscopy Zeiss 

Mastercycler X50s PCR cycler; scRNA seq. preparation Eppendorf 

Multirad225 Irradiation Precision X-Ray 

Stereotactic injector Stereotactic tumor cell injection Stoelting 

Ultramicroscope II Light sheet fluorescence microscopy Miltenyi Biotec 

ZE5 Flow cytometry analysis BioRad 
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2.2 Methods 

2.2.1 Mice 

6-10 weeks old female Specific and Opportunistic Pathogen Free (SOPF) C57BL/6J 

mice were purchased from Janvier Labs, France. Lck-Cre x LSL-tdTomato (B6.Tg(Lck‐

cre)548Jxm x Gt(ROSA)26Sortm14(CAG‐tdTomato)Hze) mice for in vivo multiphoton laser 

scanning microscopy were bred and provided by the group of Prof. Dr. Frank Winkler 

(CCU Neuro-oncology, German Cancer Research Center). 

All animal experiments were performed at the animal facilities of the German Cancer 

Research Center, Heidelberg, Germany. All experiments were reviewed and approved 

by the responsible local governmental authorities (Regierungspräsidium Karlsruhe). 

 

2.2.2 Cell lines 

The murine glioma cell line GL261 was kindly provided by Dr. David Reuss (Department 

of Neuropathology, University Hospital Heidelberg) and the murine glioma cell line CT-

2A was obtained from Sigma-Aldrich.  

GL261 GFP cell line was generated by lentiviral transduction with the LeGO-G2 vector 

(Plasmid #25917; Addgene). After transduction, GFP positive cells were sorted using 

fluorescence activated cell sorting (FACS) and cultured in normal medium. 

GL261 ZsGreen cell line was generated by lentiviral transduction with the pLC-ZsGreen-

P2A-Puro vector (Plasmid #124302; Addgene). After transduction, cells were selected 

for successful transduction by adding 10 µg/ml puromycin to the culture media.  

All cell lines were cultured in cell culture treated flasks in Dulbeccos’ modified Eagle’s 

medium (DMEM) supplemented with 10 % fetal bovine serum (FBS) and 100 U/ml 

penicillin and 100 µg/ml streptomycin at 37 °C and 5 % CO2.  

 

2.2.3 Human samples 

Anonymized human FFPE sections and tissue pieces of glioma patients for the detection 

of perivascular T cell niches were provided by the Department of Neuropathology, 

University Hospital Heidelberg and the Department of Neurosurgery, University Hospital 

Mannheim. Samples were covered under 2017-589N-MA and 2018-614N-MA ethical 

approvals. 
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2.2.4 Stereotactic tumor cell injection 

Cell lines were detached using Accutase® at a confluency of 50-70 %. Cells were 

counted using a hemocytometer and cell number was adjusted to 25.000 cells/µl in sterile 

PBS. Mice were anesthetized using ketamine (100 mg/kg) and xylazin (10 mg/kg), the 

skin was opened using a scalpel and a hole was drilled into the skull using an electric 

drill (coordinates: 2 mm right lateral of the bregma and 1 mm anterior to the coronal 

suture). 50.000 cells in a total volume of 2 µl were injected in a depth of 3 mm below the 

dural surface at a rate of 1 µl/minute using a Hamilton micro-syringe mounted in a fine-

step stereotactic device (Stoelting). After injection, the skin was stitched using surgical 

self-absorbing sutures. As analgesic, mice received two subcutaneous injections with 10 

mg/kg Carprofen as well as 48 h of 10 mg/kg/day Carprofen in their drinking water. 

For multiphoton laser scanning microscopy mice with an implanted titan ring and cranial 

window were fixated by fixing the titan ring into a custom adaptor on the stereotactic 

device. The glass window was removed and 25.000 GL261 GFP cells were injected in 

an angle of 45 degrees and 0.3-1 mm depth. After injection, a new glass window was 

glued into the titan ring (see also 2.2.16).  

 

2.2.5 Irradiation of mice and cell lines 

Mice were anesthetized by subcutaneous injection using an antagonizable anesthesia 

with Medetomidin (0,5 mg/kg) and Midazolam (5 mg/kg). Mice were irradiated with 2, 5 

or 8 Gy using a Multirad225 (Precision X-Ray) device. Only the tumor-bearing brain 

hemisphere was irradiated. The rest of the body was protected by a custom-made lead 

shielding. After the irradiation, mice were given the antagonist consisting of Atipamezol 

(2,5 mg/kg) and Flumazenil (0,5 mg/kg) to wake them up from anesthesia. Cell lines and 

primary T cells were irradiated with 2, 5 or 8 Gy using GammaCell40 (Best Theratronics) 

or MultiRad225 (Precision X-Ray) device. After each irradiation, the media was 

exchanged.  

 

2.2.6 Magnetic resonance imaging (MRI) 

MRI was performed by the staff of the small animal imaging core facility at DKFZ using 

a BioSpec 3 Tesla (Bruker BioSpin) with ParaVision software 360 V1.1 or at the 

Radiology Department, University Clinic Heidelberg using a BioSpec 94/20 USR (Bruker 

BioSpin). For imaging, mice were anesthetized with Isoflurane inhalable narcosis. For 

lesion detection, T2 weighted imaging was performed using a T2_TurboRARE 
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sequence: TE = 48 ms, TR = 3350 ms, FOV 20x20 mm, slice thickness 1.0 mm, averages 

= 3, Scan Time 3 m 21 s, echo spacing 12 ms, rare factor 8, slices 20, image size 

192x192. Tumor volume was determined by manual segmentation using Bruker 

ParaVision software 6.0.1 or 3D slicer 4.1 (Kilian et al., 2022). 

 

2.2.7 In vivo T cell depletion 

In order to deplete T cells in vivo, mice were injected with 1000 µg anti-CD4 and 500 µg 

anti-CD8a in vivo depletion antibodies (Bio X Cell). Control mice received 1500 µg rat 

IgG2b isotype control antibody (Bio X Cell). The injection with antibodies was repeated 

every 3-4 days for up to three times. In order to confirm the depletion, 48 hours after the 

first injection, blood was taken by puncturing the Vena facialis using a blood lancet. Blood 

was collected in EDTA-coated tubes and blood was stained for CD45, CD3, CD4, CD8 

and CD11b. Using the 1-step Fix/Lyse solution (Invitrogen) cells were fixated and red 

blood cells lysed. After a final wash, cells were resuspended in FACS buffer and 

subsequently analyzed using flow cytometry. 

 

2.2.8 Tumor harvest and processing 

Mice were anesthetized with ketamine/xylazine and were cardially perfused using 30 ml 

PBS and tumor-bearing brains were resected. The tumor-bearing hemisphere was 

mechanically dissected using a scalpel and subsequently enzymatically digested in 

HBSS containing 50 µg/ml Liberase™ (Roche) for 30 minutes at 37°C. Next, the tissue 

was meshed through a 100 µm and 70 µm cell strainer (Miltenyi Biotec) to obtained 

single-cell suspensions. Myelin was removed by a 30 % continuous Percoll® (Cytiva) 

gradient. 

 

2.2.9 T cell isolation and culture 

In order to isolate T cells, spleens and lymph nodes (LN) from C57BL/6J were surgically 

resected. Spleens and LNs were then mashed through 70 µm strainer and flushed with 

PBS to obtain single-cell suspensions. The cell suspension was spanned down and the 

cell pellet was resuspended in 5 ml ACK lysis buffer (Gibco) to lyse red blood cells. After 

lysis the falcon is filled with 45 ml PBS and then filtered through a 70 µm strainer again. 

Cells were then counted and further used for magnetic activated cell sorting (MACS) 

using the Pan T cell isolation kit or CD8+ T cell isolation kit (both Miltenyi Biotec). Cells 

were stained with antibody cocktails and microbeads according to manufacturer’s 
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protocol and then loaded onto LS columns (Miltenyi Biotec) mounted on the 

QuadroMACS separator (Miltenyi Biotec). As both kits are a negative selection, the flow 

through contains the untouched and unstained T cells which are then further used for 

experiments. 

Isolated T cells are then cultured in T cell proliferation media (RPMI-1640 media + 10% 

FBS, 1% P/S, 50 µM β-mercaptoethanol, 2 mM L-Glutamine, 25 mM HEPES, 1 mM 

sodium pyruvate, 0.1 mM non-essential amino acids and 50 U/ml IL-2). For activation of 

T cells, cells were activated using the “T Cell Activation/Expansion Kit” (Miltenyi Biotec) 

according to manufacturer’s protocol.  

 

2.2.10 Flow cytometry analysis and fluorescence activated cell sorting 

After tissue processing or after harvest of cells from in vitro cultivation, cells were 

resuspended in 200 µl PBS and transferred to 96-well U-bottom plates. Unspecific 

binding of antibodies was blocked by incubation with anti-CD16/CD32 antibody mix 

(Invitrogen) and extracellular targets were subsequently stained using antibodies, listed 

in table 2.1.1, for 30-45 minutes at 4°C. Intracellular targets were stained after fixation 

and permeabilization using the IC fixation buffer kit (Invitrogen) for 45 minutes at 4°C. As 

control, fluorescence minus one (FMO) samples were generated. Stained cells were 

analyzed on a ZE5 flow cytometer (BioRad). For data analysis, FlowJo (version 10.8.1) 

software was used. 

For sorting CD45+ immune cells, only extracellular staining using CD45-BV510 

(BioLegend) and Fixable Viability Dye AF780 (Invitrogen) was performed. Cells were 

sorted using BD Aria Fusion or BD Aria II (both BD Biosciences) sorters with a 100 µm 

nozzle. Sorted cells were collected in BSA-coated 1,5 ml Eppendorf tubes and further 

processed for single-cell RNA-seq. 

 

2.2.11 Cell hashing 

Prior to FACS, samples subject to single-cell RNA sequencing, were stained with 

TotalSeq™-C hashing antibodies #1-10 (BioLegend). Hashing antibodies label all cells 

with a DNA-barcode sequence, which allows for the pooling of samples. Each sample 

from each group was assigned to two hashing antibodies. Then, four samples from 

different treatment groups were pooled and loaded onto Chromium Next GEM K Chips 

(10x Genomics) (see below). 
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2.2.12 Single-cell RNA sequencing and analysis 

Hashed and sorted CD45+ cells were loaded on Chromium Next GEM Chip K 

microfluidics chips (10x Genomics) according to manufacturer’s protocol. The further 

processing and library preparations were also performed according to manufacturer’s 

protocol. Sequencing was performed by the core facility for next generation sequencing 

at DKFZ using NovaSeq 6000 (Illumina). Sequencing data was processed using 10x 

Genomics cell ranger platform (version 6.0) by Julius Michel. The data was aligned to 

the GRCm38 reference genome with all default settings. The resulting files were further 

processed and analyzed using Seurat package (version 4.3.0) and further specialized 

packages as described below on R (version 4.2.0) by Clara Tejido Dierssen (Stuart et 

al., 2019). The analysis and interpretation of data was performed together with Clara 

Tejido Dierssen.  

Cells with unique feature counts over 4000 or less than 500, as well as cells with more 

than 10 % mitochondrial counts, were excluded from downstream analysis. Genes 

detected in fewer than three cells were excluded from downstream analysis. Doublet 

scores were generated using the scDblFinder package (version 1.10.0) (Germain et al., 

2022).  Cells labeled as “doublet” were not used for downstream analysis. Cells were 

classified as Hashtag positive singlets, doublets or unassigned cells using the 

HTODemux command to demultiplex cells and assign to the correct mice based on their 

hashtags (Stoeckius et al., 2018). In order to eliminate biases from different samples, 

batch correction was performed using the Harmony package (version 1.1.0) (Korsunsky 

et al., 2019). Annotation of cell clusters was performed using SingleR (version 1.10.0) 

with the “MouseRNAseqData” as a reference dataset from the celldex package (version 

1.6.0) (Aran et al., 2019). The annotation was then further refined and corrected by 

manual curation of the differential gene expression of individual cell clusters. The data 

was divided into two subsets to separate myeloid and lymphoid cells. The clustering 

resolution was 1.4 and 0.9 for myeloid and lymphoid subsets, respectively. The 

enrichment of specific gene signatures was assessed by calculating UCell scores for 

each cell using the UCell package (version 2.2.0) (Andreatta & Carmona, 2021). To infer 

pseudotime trajectories of CD8 T cells, the monocle3 package (version 1.3.4) was 

utilized (Trapnell et al., 2014). Cells were ordered in pseudotime with the root node set 

in the “Naive CD8 T cells” cluster. The cell-to-cell interaction analysis was conducted 

using the CellChat package (version 1.6.1) (Jin et al., 2021). Plots were generated using 

Seurat package (version 4.3.0), the SCpubr package (version 2.0.2) and ggplot2 (version 

3.5.1) (Blanco-Carmona, 2022). 
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2.2.13 Immunofluorescence imaging 

Murine brains were resected as a whole and fixed in 4 % PFA in PBS for 24 hours at 

4°C. Brains were then transferred into 30 % (w/v) Sucrose in PBS until full perfusion is 

reached and brains sink down. In order to freeze brains, they were transferred into a 

Tissue-Tek® O.C.T. compound (Sakura Finetek) filled mold and then placed on dry ice 

until completely frozen. For storage, frozen brains were stored at -80°C. 5-10 µm thick 

sections were then made by cutting frozen tissue-blocks at the cryostat cryotome 

CM3050S (Leica) and placed on Superfrost™Plus adhesion microscope slides 

(Epredia). For long-term storage, sections were stored at -80°C. For staining, frozen 

sections were thawed at room temperature for 5-10 minutes. Afterwards, slides were 

washed for 5 minutes in PBS, followed by 3 washes with washing buffer (0.1 % (v/v) 

Triton X-100 in PBS). Sections were then blocked with blocking buffer (washing buffer + 

4 % (v/v) serum of secondary antibody host species (goat or donkey)) for 1 hour at RT. 

After blocking, sections were stained with primary antibodies (diluted 1:100-1:400 in 

blocking buffer) overnight at 4°C inside a humid chamber tray. The next day, samples 

were washed three times with washing buffer and then stained with secondary antibodies 

(diluted 1:200 in blocking buffer) for one hour at RT. After staining, samples were washed 

again three times with washing buffer and then mounted with DAPI-containing 

Fluoromount-G (Invitrogen) and cover slips. Stained samples were then stored at 4°C in 

the dark until imaging.  

Human FFPE sections were warmed for 1 hour at 60°C, incubated two times with xylol 

and were rehydrated by serial incubation with 100 %, 96 %, 70 %, 50 % and 0 % ethanol 

in H2O. Antigen retrieval was performed by steaming slides in CC1 retrieval buffer for 30 

minutes. Afterwards, slides were processed, blocked and stained as described above. 

Imaging was performed at a Zeiss LSM700 confocal laser-scanning microscope (Zeiss). 

Image processing and analysis was performed on ZEN 3.4 blue edition software (Zeiss) 

and ImageJ version 1.53k. 

 

2.2.14 Tissue clearing and staining 

Mice were anesthetized as described above and subsequent cardial perfusion was first 

done with 20 ml PBS and then with 20 ml 4 % PFA in PBS for fixation. Brains were 

resected and further fixed for 24 hours in 4 % PFA in PBS at 4°C. Human tissue samples 

were fixed in 4 % PFA in PBS for 24 to 48 hours. After fixation, murine brains and human 

tissue samples were stored in PBS until further processing. Clearing of samples was 

subsequently performed by Berin Boztepe (Department of Neuroradiology, Heidelberg 
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University Hospital) according to iDISCO protocol (Renier et al., 2014). During the 

iDISCO protocol, brains were stained with anti-CD3 (Dako) in order to stain T cells and 

anti-CD31 (BioLegend/Bio-Techne) to stain for endothelial cells. Subsequently, 

fluorescently-labeled secondary antibodies were used to target the anti-CD3 primary 

antibody. Cleared and stained brains where then stored at 4°C in the dark until imaging 

at a light sheet fluorescence microscope. 

 

2.2.15 Light sheet fluorescence microscopy 

Cleared and stained brains were fixated inside the light sheet fluorescence microscope 

Ultramicroscope II (Miltenyi Biotec) and submerged in benzyl alcohol, benzyl benzoate 

(BABB) medium. The brain was imaged at 4x magnification using the MI Plan 4x DC57 

objective. Images were taken at a step size of 5 µm with a light sheet thickness of 3.78 

µm. Images were processed using Fiji software (version 1.53q) and 3D reconstruction of 

images was done using Imaris software (version 8.0.2) (Oxford Instruments). 

 

2.2.16 In vivo multiphoton laser scanning microscopy 

Multiphoton laser scanning microscopy was performed together with the group of Prof. 

Dr. Frank Winkler (CCU Neuro-oncology, DKFZ & Department of Neurology, University 

Hospital Heidelberg). In order to allow the live imaging of the brain, mice subject to 

imaging received a window implant. In order to insert the implant, mice were anesthetized 

and the skull and dura mater were surgically removed. Then, a titan ring was glued to 

the skull and the glass window was glued into the ring to seal the hole. Mice are then 

treated with Carprofen as analgesic and are left for 14 days to allow proper healing and 

adaption to the cranial window. After this period, the glass was removed to allow the 

orthotopic injection of syngeneic tumor cells (see 2.2.4) into the brain. After injection, a 

new glass window was glued into the titan ring. For imaging, mice were anesthetized 

with inhalation of Isoflurane and then imaged on a Zeiss LSM 7MP 

microscope equipped with a Chameleon Ultra II or a Discovery NX laser and a 20x/1.0 

W‐Plan‐Apochromat objective. In order to visualize the vasculature, mice were 

intravenously injected with 100 µl of 5 mg/ml of tetramethylrhodamine‐isothiocyanate‐

dextran (TRITC‐Dextran) prior to imaging. To image endogenous T cells in perivascular 

niches, cranial windows were implanted into Lck-Cre x LSL-tdTomato mice in which all 

T cell express tdTomato. In order to locate niches inside and outside of the tumor, GL261 

GFP expressing cells were used in these experiments (see 2.2.2).  
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2.2.17 Statistics 

Statistical analysis was performed using GraphPad Prism (version 8.0.1 and version 

10.3.0) or for single-cell RNA seq. analysis by R (version 4.2.0). Significance was tested 

by unpaired t-test analysis, one-way ANOVA with subsequent Tukey test, or in the case 

of symptom-free survival experiments by Log-rank (Mantel-Cox) test. For the interactome 

analysis, the significance was assessed by a one-sided permutation test. Significance 

was defined as P-value ≤ 0.05. Significance is displayed as * = P-value ≤ 0.05; ** = P-

value ≤ 0.005; *** = P-value ≤ 0.0005; **** = P-value ≤ 0.0001; ns = not significant. If no 

star (*) is displayed, the difference is not statistically significant or the individual P-values 

are directly displayed in the respective graph. 

 

2.2.18 Illustrations 

All figures were made using Affinity Designer 2 (version 2.4.0). Illustrations were made 

using BioRender.com. 
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3 Results 

3.1 Part 1: Dose- and time-dependent immune cell dynamics in an 

irradiated glioma model 

In this first part, I aimed to investigate how different dosages of radiotherapy influence 

the immune cell-mediated therapeutic effect in a preclinical glioma model. Additionally, I 

aimed to assess how immune cell dynamics and interactions in the brain are influenced 

by different dosages of radiotherapy. The overall aim was to identify the dosage that 

induces the most potent immune response to be utilized in combinatorial therapies.  

3.1.1 Different dosages of radiotherapy and their impact on survival of preclinical 

glioma models 

Here, I aimed at investigating the overall clinical response of the preclinical glioma model 

GL261 to different dosages of radiotherapy and the contribution of the adaptive immune 

response, specifically the induced response by T cells. Therefore, I orthotopically 

injected GL261 cells into C57BL/6J mice and subjected them to different dosages of 

radiotherapy and evaluated their symptom-free survival (Figure 3a). I chose to irradiate 

with a low dosage (2 Gy), a medium dosage (5 Gy), another medium high but fractionated 

dosage (3x 2 Gy) on three consecutive days and a high dosage (8 Gy). In order to assess 

the importance of the T cell response for prolonged survival after radiotherapy, mice were 

either treated with anti-CD4/anti-CD8a depletion antibodies or with isotype control 

antibodies. Due to the large number of mice (n = 120), this experiment had to be split in 

two rounds. Yet, the comparability and consistency between the two experiments was 

confirmed by comparing the untreated isotype control mice from both experiments 

(Supplementary Figure 1a). The successful depletion of T cells was confirmed by flow 

cytometry of blood samples from T cell depleted and isotype control mice 

(Supplementary Figure 1b-c). Untreated mice showed a median survival of 18 days, 

while irradiated mice showed a median survival of 20 (2 Gy), 26.5 (5 Gy), 25 (3x 2 Gy) 

and 35 days (8 Gy), respectively (Figure 3b-c). Overall, the symptom-free survival was 

significantly prolonged by all dosages with a survival benefit of 2 (2 Gy), 8.5 (5 Gy), 7.0 

(3x 2 Gy) and 17 days (8 Gy) (Figure 3b-c & Supplementary Figure 1d). When comparing 

isotype control treated mice with T cell depleted mice without irradiation, an endogenous 

T cell response against GL261 can be observed, which accounts for a survival benefit of 

only 2 days (Supplementary Figure 1e). In order to assess the T cell-mediated survival 

benefit after radiotherapy, irradiated T cell depleted mice were compared with isotype 

control treated mice. This revealed that the survival benefit of 2 Gy was 100.0% T cell-

mediated, while the T cell-mediated survival benefit of 5, 3x 2 and 8 Gy was 88.24%, 
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85.24% and 70.59%, respectively (Figure 3d-h & Supplementary Figure 1f-h). 

Interestingly, although not statistically significant, the single dose of 5 Gy seemed to 

outperform a higher dosage of 6 Gy fractionated by 3x 2 Gy in terms of median survival, 

survival benefit and T cell-mediated survival benefit (Figure 3c-h & Supplementary Figure 

1d, f). 
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Figure 3: The dose- and T cell-dependent survival after radiotherapy.  

(a) Schematic overview of performed survival experiments with GL261. Single dosages were 
applied on day 9. Mice treated with 3x 2Gy were treated on day 9, 10 and 11. (b) Symptom-free 
survival of C57BL/6J mice after receiving 2, 3x 2, 5, or 8 Gy radiotherapy displayed in a Kaplan-
Meier curve. (c) Median survival of all experimental groups displayed in days. (d-g) Kaplan-Meier 
curve of symptom-free survival after 2 Gy (d), 5 Gy (e), 3x 2 Gy (f) or 8 Gy (g) radiotherapy +/- 
pan T cell depletion with anti-CD4 and anti-CD8 depletion antibodies. Non-T cell-depleted mice 
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received isotype control antibodies. (h) The overall survival benefit compared to untreated control 
mice in days (x-axis) displayed together with the T cell-mediated survival benefit (dot size) of all 
irradiated groups. All statistics were performed by Log-rank (Mantel-Cox) test. Individual P-values 
are displayed in the graph.  

 

3.1.2 The longitudinal immune landscape of irradiated gliomas 

In order to assess the longitudinal immune cell dynamics after different dosages of 

radiotherapy, I performed single-cell RNA sequencing of immune cells from untreated 

and 2, 5, 3x 2 and 8 Gy irradiated mice. For this, mice were orthotopically injected with 

GL261 cells on day 0 and on day 8 the tumor growth was confirmed by MRI (Figure 4a). 

On day 10, mice were irradiated with a single dose of 2, 5 or 8 Gy. Mice that received 3x 

2 Gy also received additional dosages of 2 Gy on day 11 and 12. On day 13 (day 3 after 

initial irradiation) and on day 17 (day 7 after initial irradiation), mice were sacrificed, 

tumors resected and CD45+ immune cells were FACS sorted and subsequently single-

cell RNA sequencing was performed. In order to increase the resolution on individual cell 

subtypes, immune cells of the myeloid and lymphoid lineage were identified 

(Supplementary Figure 2a-b) and further subclustered in two separate uniform manifold 

approximation and projections (UMAPs) (Figure 4b-c). On average, of all cells, myeloid 

cells made up for >85% on day 3 and >75% on day 7 (Supplementary Figure 2b). 

Lymphoid and myeloid cell clusters were annotated based on expression of cell-type 

specific markers and their abundancy was assessed among the different treatment 

groups and two timepoints (Figure 4b-e). In total, in the lymphoid lineage 21 clusters 

were identified and included activated CD4 T cells, memory CD4 T cells, exhausted CD4 

T cells, T regulatory cells, proliferating T regulatory cells, naïve CD8 T cells, early 

activated CD8 T cells, proliferating CD8 T cells, IFN-stimulated CD8 T cells, cytotoxic 

CD8 T cells, memory CD8 T cells, exhausted CD8 T cells, gamma delta (gd) T cells, 

MAIT T cells, proliferating cells, NKT cells, NK cells, Ccl5 NK cells, Xcl1 NK cells, B cells 

and plasma cells (Figure 4b,d). Within the myeloid lineage, also 21 cell clusters were 

identified and included macrophages 1-4, M2-like macrophages, border-associated 

macrophages, IFN-stimulated macrophages, microglia, Plxna4 microglia, microglia-like 

cells, dendritic cells (DCs) 1-3, Ccr7 DCs, plasmacytoid DCs 1-2, Ly6d- plasmacytoid 

DCs, neutrophils, mast cells, basophils and as small contamination also neurons (Figure 

4c, e). 
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Figure 4: The tumor immune microenvironment of GL261. 

(a) Experimental overview of performed irradiation experiments with 2, 3x 2, 5 and 8 Gy and 
subsequent FACS sorting for CD45+ immune cells and single-cell RNA sequencing on day 3 and 
day 7 after first treatment. n = 4 per group and per timepoint. (b) Uniform Manifold Approximation 
and Projection (UMAP) dimension reduction displaying all lymphoid cells and defined clusters in 
the TME of GL261. (c) UMAP of all myeloid cells and defined cluster in the TME of GL261. (d-e) 
Proportions of individual lymphoid (d) and myeloid (e) cell clusters on day 3 and day 7 in the 
individual treatment groups. Bioinformatic processing with Clara Tejido Dierssen. 

 

Interestingly, after medium (5 and 3x 2 Gy) and high (8 Gy) dosages, a depletion of the 

T cell clusters cytotoxic CD8 T cells, proliferating CD8 T cells, proliferating cells, 

exhausted CD4 and CD8 T cells, and activated CD4 T cells was observed on day 3 after 

irradiation compared to untreated and low-dose treatment with 2 Gy (Figure 4d & 5a-b). 
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However, these clusters returned on day 7 after irradiation, indicating a depletion after 

treatment and replenishment with new cells at the later timepoint. In order to confirm the 

irradiation- and dosage-dependent T cell depletion, I irradiated T cells with 2, 5 and 8 Gy 

in vitro. In vitro, T cells showed a dose-dependent and significant reduction in viability 

already 24h after irradiation (Figure 5c). Meanwhile, other cell populations such as 

memory CD4 and CD8 T cells, NK cells and NKT cells seemed resistant to this depletion 

independently of the dosage. Comparing the cell composition between day 3 and day 7, 

certain cell clusters only appeared on day 7 but not on day 3 independently of the 

treatment. In the lymphoid compartment, these were Ccl5+ NK cells, Xcl1+ NK cells, 

IFN-stimulated CD8 T cells and early-activated CD8 T cells (Figure 4d & Figure 5a, d). 

Among the myeloid cells only the cluster Macrophages 3 appeared at day 7, but not day 

3 (Figure 4e & Supplementary Figure 3a-b). At the same time, cluster Macrophages 2 

only appeared on day 3, but was not observed on day 7. Overall, all other myeloid 

clusters showed no change in abundancy after different dosages of irradiation or time 

(Figure 4e & Supplementary Figure 3a-b). 

In summary, I demonstrate time-dependent immune cell compositions of the tumor 

microenvironment independently of treatment. Irradiation with medium and high dosages 

lead to cluster-specific T cell depletion early after irradiation, but the depleted cells were 

replenished with newly infiltrating cells four days later. As there were no dosage-

dependent changes in myeloid cluster abundancies, myeloid cells seem to be more 

radio-resistant than lymphoid cells. 
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Figure 5: Overview and abundancies of lymphoid cell clusters. 

(a) UMAP of all groups at day 3 and 7. (b) Frequency (Freq.) of selected lymphoid cell clusters 
that are affected by medium and high dosages at day 3 and 7 in the different treatment groups. 
(c) Viability of T cell 24h after different dosages of irradiation tested by staining with fixable viability 
dye and flow cytometry measurement. Percentage of all viability-dye negative cells among all 
CD3+ T cells. Statistics performed by unpaired t-test. Significance was defined as P-value ≤ 0.0 . 
(d) Frequency of selected lymphoid cell clusters that are not present at day 3 but at day 7 in the 
different treatment groups. Bioinformatic processing with Clara Tejido Dierssen. 
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3.1.3 Immune signatures of different dosages of radiotherapy 

In order to identify which dosage is inducing the best immune response, various 

literature-curated gene expression signatures were applied to cell clusters, in order to 

identify differences between the treatment groups at day 3 and day 7 after irradiation. At 

day 3, the T cell and NK cell response signatures were significantly enriched in both 3x 

2 Gy and 5 Gy treatment groups (Figure 6a-b, e-f). However, both signatures only 

sustained their enrichment in the 5 Gy group at day 7 (Figure 6c-d, g-h). At the same 

time, the 8 Gy treated group demonstrated a significant downregulation of both response 

signatures compared to the lower dosages and even compared to the untreated group, 

both at day 3 and day 7 (Figure 6a-h). Next, I looked at the expression of inhibitory 

immune checkpoints on the cytotoxic CD8 T cell population. This revealed no significant 

differences among groups at day 3, but a significant downregulation in the 5 Gy treated 

group compared to untreated or 3x 2 Gy (Figure 6i-l). Overall, this indicates that both 

medium dosages induced a strong T cell and NK cell response, which was only sustained 

until day 7 in the 5 Gy group compared to the other regimen. A reason for the sustained 

response in the single-dose treated group could be the downregulation of immune 

checkpoints after 5 Gy and upregulation after 3x 2Gy. Altogether, 5 Gy irradiation is 

associated with the highest and most sustained expression of T and NK cell response 

signatures while reducing exhaustion of cytotoxic T cells at the late time point, indicating 

a favorable modulation of these cells in the TME. 
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Figure 6: Gene signatures of T and NK cell responses. 

(a) Heatmap of the T cell response signature and the average expression of genes in lymphoid 
cells at day 3. (b) Enrichment of the T cell response signature in lymphoid cells at day 3. (c) 
Heatmap of the T cell response signature and the average expression of genes in lymphoid cells 
at day 7. (d) Enrichment of the T cell response signature in lymphoid cells at day 7. (e) Heatmap 
of the NK cell response signature and the average expression of genes in lymphoid cells at day 
3. (f) Enrichment of the NK cell response signature in lymphoid cells at day 3. (g) Heatmap of the 
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NK cell response signature and the average expression of genes in lymphoid cells at day 7. (h) 
Enrichment of the NK cell response signature in lymphoid cells at day 7. (i) Heatmap of the 
immune checkpoint signature and the average expression of genes in the cytotoxic CD8 T cell 
cluster at day 3. (j) Enrichment of the immune checkpoint signature in the cytotoxic CD8 T cells 
cluster at day 3. (k) Heatmap of the immune checkpoint signature and the average expression of 
genes in the cytotoxic CD8 T cell cluster at day 7. (l) Enrichment of the immune checkpoint 
signature in the cytotoxic CD8 T cells cluster at day 7. Statistical analysis in all enrichment plots 
was performed by one-way ANOVA with subsequent Tukey test. Significance was defined as P-
value ≤ 0.0 . Significance is displayed as     P-value ≤ 0.0 ;      P-value ≤ 0.00 ;       P-value 
≤ 0.0005; **** = P-value ≤ 0.0001. ns   not significant. Not all statistics are displayed in the 
enrichment plots. Bioinformatic processing with Clara Tejido Dierssen.  

 

As irradiation is well-known for inducing type I IFN responses and since several studies 

have shown that a type I IFN response is crucial for a successful anti-tumor (T cell) 

response (Burnette et al., 2011; Deng et al., 2014; Diamond et al., 2011) , a type I IFN 

response signature was applied in order to evaluate the type I IFN response induction in 

lymphoid and myeloid cells in the different treatment groups. In lymphoid cells, at day 3, 

in all groups except for 2 Gy, a significant upregulation of the IFN response can be 

observed in comparison to the untreated group (Figure 7a-d). Yet, no dose-dependency 

could be observed as the medium high dosages of 3x 2 Gy and 5 Gy showed the highest 

enrichment, while 8 Gy demonstrated a significantly lower expression compared to 3x 2 

Gy and 5 Gy. However, only in the 5 Gy treated group, a strong enrichment was observed 

at day 7 (Figure 7c-d). Among myeloid cells, the picture looked similar, with the highest 

enrichment in 3x 2 Gy and 5 Gy at day 3 and the highest enrichment in the 5 Gy treated 

group at day 7 (Figure 7e-g). Especially at day 7, in both myeloid and lymphoid cells, the 

major interferon stimulatory genes 15 (Isg15) and 20 (Isg20), as well as important 

signaling transducers of the type I IFN signaling pathway, such as signal transducer and 

activator of transcription 1 (Stat1) and 2 (Stat2), as well as interferon regulatory factor 7 

(Irf7), which is responsible for inducing type I IFN expression, are most expressed in the 

5 Gy treated group (Figure 7c, g). At the same time, the major T and NK cell 

chemoattractant C-X-C motif chemokine ligand 10 (Cxcl10) is most expressed in the 5 

Gy group both in lymphoid and myeloid cells (Figure 7a, c, e, g). Microglia, macrophages 

and dendritic cells are among the most abundant cell types expressing Cxcl10. In all 

three cell types, Cxcl10 was most expressed after 5Gy irradiation at day 7 (Figure 7i). 

This hints towards an enhanced induction of T and NK cell recruitment into the TME. 

Again, in line with activation and exhaustion signatures in T and NK cells, these data 

indicate the highest and most sustained induction of the type I IFN response after 5 Gy 

irradiation. 
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Figure 7: Type I IFN signature expression in lymphoid and myeloid cells. 

(a) Heatmap of the type I IFN response signature and the average expression of genes in 
lymphoid cells at day 3. (b) Enrichment of the type I IFN response signature in lymphoid cells at 
day 3. (c) Heatmap of the type I IFN response signature and the average expression of genes in 
lymphoid cells at day 7. (d) Enrichment of the type I IFN response signature in lymphoid cells at 
day 7. (e) Heatmap of the type I IFN response signature and the average expression of genes in 
myeloid cells at day 3. (f) Enrichment of the type I IFN response signature in myeloid cells at day 
3. (g) Heatmap of the type I IFN response signature and the average expression of genes in 
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myeloid cells at day 7. (h) Enrichment of the type I IFN response signature in myeloid cells at day 
7. (i) Expression of Cxcl10 in microglia, macrophages and dendritic cells. Bars display the mean 
expression level. Cells without expression are not displayed. Statistical test was performed 
individually by timepoint with one-way ANOVA and subsequent Tukey test.  Significance was 
defined as P-value ≤ 0.05. Significance is displayed as * = P-value ≤ 0.05; ** = P-value ≤ 0.005; 
*** = P-value ≤ 0.0005; **** = P-value ≤ 0.0001. Only significant differences are displayed. 
Bioinformatic processing with Clara Tejido Dierssen.  

 

Next, I aimed to investigate the influence of the different treatment groups on antigen 

processing and presentation. Therefore, an antigen presentation signature, comprised 

of major histocompatibility (MHC) genes, as well as genes playing a role in antigen 

processing and loading, was applied to all myeloid cells and the dominant professional 

antigen presenting cell (APC) types in the glioma TME, namely dendritic cells, microglia 

and macrophages. Among all myeloid cells, at day 3, the 2 Gy treated group showed a 

significant upregulation of the signature compared to the untreated group, while 3x 2 Gy 

showed a significant downregulation and no significant changes in 5 Gy and 8 Gy 

compared to untreated were detected (Supplementary Figure 4a-b). At day 7, 2 Gy, 3x 

2 Gy and 8 Gy showed a significant downregulation compared to the untreated group, 

while 5 Gy showed no significant difference (Supplementary Figure 4c-d). On a cell type 

specific level, in dendritic cells, the signature was significantly upregulated at day 3 in 2 

Gy, 3x 2 Gy, and 5 Gy compared to the untreated group (Figure 8a-b). At day 7 on the 

other hand, 2 Gy, 3x 2 Gy and 8 Gy showed a significantly lower enrichment compared 

to UT (Figure 8c-d). Only 5 Gy maintained an upregulated enrichment compared to UT 

and all other treatment groups (Figure 8a-d). In Microglia, the highest enrichment was 

observed in the untreated group at day 3, but at day 7, the enrichment also significantly 

increased in the 5 Gy treated group compared to the other treatment groups, but no 

significant difference was observed between 5 Gy and the untreated group (Figure 8e-

h). In macrophages the enrichment was highest in UT and 2 Gy at day 3 and only slightly 

increased in 3x 2Gy and 5 Gy at day 7, but was still lower than UT and 2 Gy 

(Supplementary Figure 4e-h). Taken together, irradiation seemed to have a rather 

negative impact on antigen presentation in all myeloid cells except for DCs at the early 

time point. The 5 Gy treated group demonstrated a superior antigen processing and 

presentation signature, in all APCs at day 7 after treatment, among all irradiated groups. 

Dendritic cells and microglia seem to play a major role for the antigen presentation after 

5 Gy. Meanwhile, 8 Gy showed a highly negative impact on antigen presentation in all 

myeloid cell types. 
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Figure 8: Antigen presentation signature in DCs and microglia. 

(a) Heatmap of the antigen presentation signature and the average expression of genes in all 
dendritic cells at day 3. (b) Enrichment of the type antigen presentation signature in all dendritic 
cells at day 3. (c) Heatmap of the antigen presentation signature and the average expression of 
genes in dendritic cells at day 7. (d) Enrichment of the antigen presentation signature in all 
dendritic cells at day 7. (e) Heatmap of the antigen presentation signature and the average 
expression of genes in all microglia at day 3. (f) Enrichment of antigen presentation signature in 
all microglia at day 3. (g) Heatmap of the antigen presentation signature and the average 
expression of genes in all microglia at day 7. (h) Enrichment of the antigen presentation signature 
in all microglia at day 7. Statistical analysis was performed with one-way ANOVA and subsequent 
Tukey test.  Significance was defined as P-value ≤ 0.05. Significance is displayed as * = P-value 
≤ 0.05; ** = P-value ≤ 0.005; *** = P-value ≤ 0.0005; **** = P-value ≤ 0.0001; ns = not significant. 
Bioinformatic processing with Clara Tejido Dierssen. 

 

In conclusion, both treatment groups applying medium dosages of 3x 2 Gy (6 Gy total) 

and 5 Gy were associated with strong T cell and NK cell response signatures, as well as 

type I IFN signatures and enhanced antigen presentation, as well as reduced exhaustion. 

However, these signatures were only sustained until the later timepoint in the single 
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dosage 5 Gy treatment group. Meanwhile, the application of 8 Gy induced rather 

negative effects by showing significantly lower T, NK and type I IFN responses as well 

as lower antigen presentation. Taken together, the single application of 5 Gy seems to 

be the superior dosage among the tested treatments in inducing anti-tumoral immune 

responses and shaping a favorable tumor microenvironment. 

 

3.1.4 The irradiation-specific immune cell interactome  

Next, I aimed at investigating how radiotherapy influences the cellular interaction within 

the tumor immune microenvironment and which interactions are crucial for mounting a 

successful anti-tumoral immune response induced or facilitated by irradiation. Therefore, 

the probability of cell to cell interaction in the untreated and 5 Gy treated group was 

evaluated and compared using the CellChat package (Jin et al., 2021). This analysis was 

only performed on the 5 Gy treated group, as the previous results indicated superiority 

over the other dosages (Figure 3-8). The complete immune interactomes of the untreated 

and 5 Gy treated group were compared and only those predicted interacting receptor-

ligand pairs that were significantly upregulated or exclusively present in the 5 Gy treated 

group were filtered out and are presented (Figure 9a-d). At day 3 and day 7, 11 and 34 

interacting receptor-ligand pairs, respectively, were detected to be either upregulated or 

exclusively present in the 5 Gy treated group solely at the respective timepoint (Figure 

9a). 47 interacting receptor-ligand pairs were detected to be upregulated or exclusively 

present in the 5 Gy group both at day 3 and day 7 (Figure 9a). At day 3, lymphotoxin 

alpha (Lta) and various other cytokines and chemokines, such as IL-15 (Il15), CSF1 

(Csf1), IL-4 (Il4), and CXCL2 (Cxcl2) with their respective receptors were among the 

exclusive interactions in the 5 Gy treated group (Figure 9b & Supplementary Figure 5a-

c). Additionally, various other receptor ligand pairs interacting at day 3 in the 5 Gy treated 

group are related to cell-cell adhesion such as Cadherin 1 (Cdh1; E-Cadherin) with 

integrin subunit alpha 1 (Itga1) and beta 1 (Itgb1), intercellular adhesion molecule 1 

(Icam1) with integrin subunit alpha M (Itgam) and beta 2 (Itgb2) or laminin subunit 

gamma 1 (Lamc1) with integrin subunit alpha 2 (Itga2) and Itgb1 (Figure 9b & 

Supplementary Figure 5a-c). The day 7 exclusive interacting partners are in majority 

related to MHC interaction with lymphocytes such as Cd8b1, Cd8a or Cd4 with various 

MHC class I and II genes, but also again various pairs related to cell-cell adhesion 

(Figure 9c & Supplementary Figure 5a-c). Interestingly, the receptor-ligand pair with the 

highest probability of interaction to be exclusive to the 5 Gy group at day 7, in NK cells 

and Cd4 T cells, was interferon gamma (Ifng) with its receptors interferon gamma 

receptor 1 (Ifngr1) and 2 (Ifngr2) (Figure 9c & Supplementary Figure 5a-c). Among the 
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interactions that were significantly upregulated or exclusive in the 5 Gy treated group at 

both timepoints, were especially chemokines such as CC motif chemokine ligands 2-8 

and 12 (Ccl2, Ccl3, Ccl4, Ccl5, Ccl6, Ccl7, Ccl8, Ccl12) but also many cell-cell adhesion 

pairs, with Lamc1 and Cd44 showing the highest probability (Figure 9d & Supplementary 

Figure 5a-c).  

 

 

Figure 9: The irradiation-specific immune interactome.  

(a) The number of predicted exclusive or significantly upregulated receptor-ligand interactions in 
the 5 Gy treated group compared to untreated at exclusively day 3 (11), exclusively day 7 (34), 
or both days (47). (b) Receptor-ligand pairs and their probability of interaction, which are 
exclusively only in the 5 Gy treated group or significantly upregulated compared to the untreated 
group at day 3. (c) Receptor-ligand pairs and their probability of interaction, which are exclusively 
only in the 5 Gy treated group or significantly upregulated compared to the untreated group at day 
7. (d) Receptor-ligand pairs and their probability of interaction, which are exclusively only in the 5 
Gy treated group or significantly upregulated compared to the untreated group on both days. Only 
statistically significant (P-value ≤ 0.05) interactions were included. Statistical testing was 
performed by a one-sided permutation test. Bioinformatic processing with Clara Tejido Dierssen. 

 

Next, as some of the exclusive or upregulated genes in the 5 Gy treated group, Ifng and 

the cell adhesion molecules Thy1, Pecam1 and Icam1 were evaluated on their predicted 

interacting cell types within the tumor immune microenvironment in the untreated and 5 

Gy treated groups. Interestingly, Ifng signaling from CD4 T cells and NK cells to various 

myeloid cells such as macrophages, microglia and DCs was exclusive to the 5 Gy treated 
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group (Figure 10a & Supplementary Figure 5a, c). Thy1 expressed on various lymphoid 

cells, including CD4, CD8, and gamma delta T cells, interacted with various myeloid 

populations and its interactions were significantly enhanced in the 5 Gy treated group 

(Figure 9c & 10b). Exclusively in the 5 Gy treated group, Thy1 expressed by NKT cells 

also interacted with the same populations (Figure 9c & 10b). The Pecam1 interactions 

were upregulated in the 5 Gy treated group and interactions that included Tregs, 

proliferating cells and mast cells were exclusively detected in the irradiated group (Figure 

10c). Icam1 interaction was exclusively derived from microglia and the number of 

interacting cell types increased in the 5 Gy treated group (Figure 10d). In summary, 

radiotherapy enhances Ifng mediated signaling via CD4 T cells and NK cells and the 

upregulation of interactions with cell adhesion molecules may suggest a higher migration 

of cells within the TME.  
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Figure 10: Cell-cell interactions of selected genes. 

Chord plots displaying the CellChatDB predicted cell to cell interactions among immune cells in 

the TME of GL261 of Ifng (a), Thy1 (b), Pecam1 (c) and Icam1 (d). Bioinformatic processing with 

Clara Tejido Dierssen. 
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3.1.5 Galectin-1 is expressed by activated CD8+ T cells and is potentially 

regulated by radiotherapy 

As one of the longitudinally most differentially expressed genes in CD8+ T cells in all 

irradiated groups (Supplementary Figure 6), Lgals1 (Galectin-1) expression was further 

assessed in all cell types. This revealed that Galectin-1 was predominantly expressed in 

cytotoxic CD8 T cells, type I IFN stimulated CD8 T cells, early-activated CD8 T cells and 

proliferating CD8 T cells compared to all other cell types (Figure 11a-b). As comparison, 

other galectins expressed in immune cells, such as Lgals3, were predominantly 

expressed in myeloid cells such as M2-like macrophages and IFN-stimulated 

macrophages and comparably low expressed in cytotoxic CD8 T cells (Supplementary 

Figure 7a).  Lgals9 was only low or not at all expressed in any cell type, but highest in 

myeloid cells such as IFN-simulated macrophages or microglia (Supplementary Figure 

7b).  Next, the trajectory of Lgals1 expression among all CD8 T cell populations was 

evaluated based on pseudotime trajectory. The root node was set to naïve CD8 T cells, 

and based on pseudotime, the trajectory progressed to early activated CD8 T cells, 

followed by IFN-stimulated CD8 T cells, cytotoxic CD8 T cells, proliferating CD8 T cells, 

memory CD8 T cells and exhausted CD8 T cells in the named order (Figure 11c-e). 

Interestingly, the expression of Lgals1 correlated with the activation status of the CD8 T 

cells, with the peak of expression in activated CD8 clusters, such as cytotoxic CD8 T 

cells, and a downregulation once exhaustion or the memory phenotype is reached along 

the trajectory (Figure 11e). To confirm Lgals1 expression is upregulated upon activation, 

CD8 T cells were activated in vitro using CD3/CD28 microbeads and Galectin-1 

expression was measured by flow cytometry. Upon activation, CD8 T cells significantly 

upregulated Galectin-1 expression, which peaked at 48 hours post-activation (Figure 11f-

g). This indicates that Lgals1/Galectin-1 expression could serve as robust surrogate 

marker for activated CD8 T cells in vivo and in vitro. Next, the impact of irradiation on 

Lgals1 expression was evaluated among the different treatment groups. Due to the 

depletion of cytotoxic CD8 T cells at day 3 in the groups treated with 3x 2 Gy, 5 Gy and 

8 Gy, it was not possible to properly evaluate Lgals1 levels in these groups (Figure 11h-

i). Yet, in the 2 Gy treated group a downregulation in the average expression of Lgals1 

was observed at day 3 compared to untreated control (Figure 11h-i). At day 7, an overall 

increase in Lgals1 expression was observed in the untreated and 2 Gy treated groups 

compared to day 3 (Figure 11h-i). At the same time, a significant dose-dependent 

downregulation of Lgals1 expression with increasing irradiation dosage was observed at 

day 7 (Figure 11h-i).  
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Figure 11: Galectin-1 dynamics in CD8+ T cells. 
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(a) Overview of average Lgals1 expression among all cell types in the different treatment groups 
at day 3 and day 7. Grey boxes indicate no detectable Lgals1 expression. (b) Lymphoid UMAP 
displaying Lgals1 expression density across cell populations. (c-d) Pseudotime trajectory analysis 
among CD8 T cells based on expression of Lgals1 and the root node set to naïve CD8 T cells. 
(e) Expression level of Lgals1 across CD8 T cells along the pseudotime trajectory. (f) Flow 
cytometry analysis of Galectin-1 expression of activated CD8 T cells and non-activated control 
CD8 T cells 48h post-activation. (g) Flow cytometry analysis of Galectin-1 expression in activated 
CD8 T cells over time (24-72h post-irradiation). Statistical test performed in f and g by unpaired 
t-test. (h) Pseudotime analysis and expression of Lgals1 among treatment groups. (i) Expression 
levels of Lgals1 in cytotoxic CD8 T cells among treatment groups and timepoints. Bars indicate 
the median expression level. Significance was defined as P-value ≤ 0.0 . Significance is 
displayed as * = P-value ≤ 0.0 ;      P-value ≤ 0.00 ;       P-value ≤ 0.000 ;        P-value ≤ 
0.0001. Bioinformatic processing with Clara Tejido Dierssen.  
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3.2 Part 2: Perivascular T cell niches (PVTNs) in gliomas 

In this second part, I am reporting the discovery of so far undescribed perivascular T cell 

niches in the brain and investigated their cellular composition, structure and migration of 

T cells into and out of the niche. In addition, I investigated the tumor-antigen uptake by 

endothelial cells (ECs) for their potential role in PVTN development. 

 

3.2.1 T cells develop perivascular niches around CD31+ blood vessels 

In order to assess the infiltration of T cells in untreated and irradiated gliomas, I 

performed immunofluorescence imaging of CD3+ T cells on fixed-frozen sections of 

GL261-bearing mouse brains. During imaging, I observed that CD3+ T cells tightly 

accumulate in high numbers at certain positions within the tumor, but also outside of the 

tumor (Figure 12a-b). These T cells always form these accumulations around CD31+ 

blood vessels, thereby forming what I termed the perivascular T cell niche (PVTN). 

PVTNs outside of the tumor seem more organized in their structure, while intratumoral 

PVTNs appear more dissociated or diffuse, which is likely due to the overall remodeled 

tissue environment within the tumor (Figure 12a-b). Even though, the number of intact 

vessels decreases with irradiation (Supplementary Figure 8a-b), the number of 

intratumoral PVTNs significantly increased after treatment with 1x 5 Gy irradiation 

(Figure 12c). Interestingly, extratumoral PVTNs can not only be found in the very near 

proximity to the tumor but also at distant sites and at the meninges (Supplementary 

Figure 9a-b). In order to confirm that the phenomenon of PVTNs is not only specific to 

mice, I performed CD3 and CD31 immunofluorescence stainings on FFPE-fixated tumor 

sections of glioma patients and was able to confirm the existence of PVTNs in humans 

(Figure 12d). 
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Figure 12: Discovery of perivascular T cell niches (PVTNs) in gliomas.  

Representative example images of PVTNs outside (a) or inside (b) of GL261 tumors by 
immunofluorescence (IF) staining with anti-CD3 (yellow), anti-CD31 (magenta) and DAPI (blue) 
and subsequent laser scanning confocal microscopy. (c) Quantification of intratumoral PVTNs in 
untreated or 1x 5 Gy irradiated GL261 tumors 72 and 96 hours after treatment (13 and 14 days 
after tumor inoculation) from IF images. Statistical test performed by unpaired t-test. (d) 
Representative example images of PVTNs in human glioma patient samples by IF staining with 
anti-CD3 (red), anti-CD31 (green) and DAPI (blue) and subsequent laser scanning confocal 
microscopy. 

 

Next, I wanted to investigate whether other immune cells infiltrate or surround PVTNs. I 

therefore stained for the CD45 isoform B220 as a B cell marker, but was not able to 

confirm relevant numbers of B cells in or around the niches (data not shown). Next, in 

order to stain for myeloid cells, I stained for Ionized calcium-binding adaptor molecule 1 

(Iba1) as a marker for macrophages and microglia. In both murine and human samples, 

Iba+ macrophages/microglia were detected to cluster within PVTNs (Figure 13a-d). Even 

in dense niches, these Iba1+ cells would be found between the CD3+ T cells. The 

location of the PVTN did not influence the occurrence of Iba+ cells within the niche as 

they were detected both in PVTNs at the tumor (Figure 13a) and at the meninges (Figure 

13b). However, whether these cells are macrophages or microglia, whether they are 
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newly infiltrated or tissue-resident cells, still needs to be determined. Also, their 

phenotype as well as their functional role within the niche remains unknown. 

 

Figure 13: Myeloid cells in PVTNs. 

Evaluation of myeloid cell localization in and around PVTNs. Representative images of PVTNs 
and their cellular composition with CD3+ T cells (yellow), Iba+ Macrophages/Microglia (cyan), 
CD31+ ECs (magenta) and DAPI (blue) by immunofluorescence staining and subsequent 
confocal laser scanning microscopy in (a) murine samples near the GL261 tumor, (b) murine 
samples at the meninges, (c-d) human glioma samples at unknown location. Mouse samples 
were fixed-frozen (day 13 past tumor cell injection). Human samples were FFPE fixed. Scale bars 
20 µm.  

 

3.2.2 Identity of endothelial vessel phenotype in PVTNs 

Furthermore, I aimed to identify the vessel type of endothelial vessels contributing in 

PVTNs. High endothelial venules (HEV) are a type of blood vessels known to be involved 

in lymphocyte trafficking and T cell entry into solid tumors outside of the brain and into 

lymph nodes (Blanchard & Girard, 2021; Martinet et al., 2012). One of the well-

established markers for HEVs is the Duffy antigen receptor for chemokines (DARC) 

(Thiriot et al., 2017). I therefore stained for DARC on murine sections of GL261 in order 

CD3 Iba1 CD31 DAPI

CD3 Iba1 CD31 DAPI CD3 Iba1 CD31 DAPI

CD3 Iba1 CD31 DAPIa

m
o
u
s
e

h
u
m
a
n

b

c d



                                                                                                                                                                     
   Results 

51 
 

to investigate whether the vessels in PVTNs are HEV-like vessels. And indeed, all 

PVTNs, both at the tumor and the meninges, were found to be around CD31+ DARC+ 

vessels (Figure 14a-b). All PVTNs were found to be around CD31+ DARC+ HEV-like 

vessels, but not all HEV-like vessels were surrounded by PVTNs. Only at the meninges 

also CD31+ DARC- vessels were observed to be present within large PVTNs, but were 

always alongside or between CD31+ DARC+ HEV-like vessels (Figure 14b). 

 

 

Figure 14: Identification of PVTN vessels. 

Representative immunofluorescences images of PVTNs with CD31+ (magenta) and DARC+ 
(cyan) vessels and surrounding CD3+ T cells (yellow) taken by confocal laser scanning 
microscopy. (a) PVTNs in or near GL261 tumor and (b) PVTN at the meninges of a GL261-bearing 
mouse. Day 13 past tumor cell injection. Scale bars 20 µm. 

 

3.2.3 3D structure and size of PVTNs 

In order to assess the size and structure of PVTNs, tissue clearing with subsequent light 

sheet fluorescence microscopy was performed on brains of tumor-bearing mice and 

human brain tumor samples. Tissue clearing makes the brain transparent and 

subsequent staining with fluorescently labeled antibodies enables the use of a light sheet 

fluorescence microscope to image the entire brain with the markers of interest layer by 

layer. Using advanced imaging software, such as Imaris (version 8.0.2), the generated 

single layer images can be stitched together to a 3D image of the imaged area. This 

allowed us to investigate the 3D structure and course of vessels and PVTNs in the brain 

and the tumor. After clearing and light sheet fluorescence microscopy of the preclinical 

murine glioma models GL261 and CT-2A, I could show that PVTNs can extend along 

entire vessels starting from the meninges all the way to and around the tumor (Figure 

15a-b & Supplementary Figure 10b). In the contralateral hemisphere, although in 
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relatively low numbers and with seemingly lower CD3+ T cell density, PVTNs can also 

be observed (Supplementary Figure 10a). In untreated mice, a low infiltration of T cells 

into the tumor can be observed. At the same time, seemingly more T cells are present in 

PVTNs outside of the tumor than T cells inside the tumor (Figure 15a). In mice irradiated 

with 1x 5 Gy on the other hand, a high number of T cells and PVTNs can be observed 

inside the tumor, while extratumoral PVTNs demonstrate a seemingly lower T cell density 

(Figure 15b). However, quantification of this data will be needed for making quantitative 

statements on the density of T cells and PVTNs in untreated and irradiated tumors. 

In order to also assess the 3D structure of PVTNs in human glioma patients, freshly 

resected glioma samples were obtained and subsequently fixed, cleared, stained and 

imaged with a light sheet fluorescence microscope. PVTNs were also found in these 

samples and extend around CD31+ vessels (Supplementary Figure 11a-b). In the 

samples analyzed, PVTNs were only locally observed and did not extend along entire 

vessels which is in line with my observation of intratumoral PVTNs within murine tumors, 

but not with extratumoral PVTNs. However, the original localization of the tissue piece 

analyzed within the original tumor or peritumoral tissue was not available.  
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Figure 15: 3D structure of PVTNs. 

3D reconstruction of images taken by light sheet fluorescence microscopy of cleared brains of a 
(a) untreated and (b) 1x 5 Gy treated mouse bearing GL261 tumors on day 13 past tumor cell 
injection and day 3 past irradiation. CD3+ T cells (green) and CD31+ vessels (red). 

 

3.2.4 In vivo T cell migration and development of PVTNs 

Next, I wanted to investigate the migration behavior of T cells into and out of PVTNs, in 

order to assess their ability to transmigrate towards or into the tumor. Together with our 

collaborators Dr. Matthia Karreman and Calvin Thommek (both DKFZ and Department 

of Neurology, University Hospital Heidelberg), we performed multiphoton laser scanning 

imaging of PVTNs in order to track T cell migration in a longitudinal fashion. Starting from 

day 5 after orthotopic tumor injection of GL261-GFP cells, first PVTNs were detectable 

(Figure 16a). Interestingly, when the same PVTN was imaged on day 5 and day 7 after 
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tumor injection, an increase in size was observed (Figure 16a). This indicates that PVTNs 

develop over time and grow in size, which also indicates that more T cells might be 

migrating into the niche than out of the niche. In order to investigate whether T cells are 

trapped inside of PVTNs, at day 10 after tumor injection, a PVTN outside of the tumor 

was live imaged over a time frame of up to one hour. T cells within the niche did not 

move, while T cells outside of the niche moved around freely in the tissue, indicating an 

entrapment of T cells within PVTNs (Figure 16b). 

 

Figure 16: Niche development and T cell migration behavior. 

Live in vivo multiphoton laser scanning microscopy of PVTNs in GL261 GFP bearing Lck-Cre x 
LSL tdTomato mice. (a) Live imaging for 20 minutes at day 5 and day 7 past tumor cell injection. 
tdTomato+ endogenous T cells (red) in an early stage of a PVTNs in close proximity to the GL261 
GFP+ tumor (green). Vessels were stained by i.v. injection of TRITC-labeled dextran prior to 
imaging. (b) Live imaging of a PVTN and tracking of tdTomato+ T cells (red) over a timeframe of 
approximately 60 minutes at day 10 after tumor cell injection. The PVTN was located distant to 
the tumor (green; not visible). Scale bars 50 µm. Experiments performed together with Calvin 
Thommek, DKFZ. 

 

3.2.5 Brain endothelial cells are capable to take up tumor antigens 

If T cells are trapped within PVTNs, it is vital for the improvement and success of 

immunotherapies to decipher the underlying mechanism that hinder T cells from their 

successful migration into the tumor. In autoimmune diseases of the CNS, such as MS, it 

has been shown that presentation of auto-antigens by endothelial cells (ECs) trapped T 

cells at the blood-brain barrier, which ultimately resulted in the breakdown of the BBB 
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(Aydin et al., 2023). I therefore wanted to investigate, whether endothelial cells in the 

brain are capable of taking up and presenting tumor antigens. As surrogate antigen, I 

utilized the fluorescent protein ZsGreen which remains stable even after being taken up 

by antigen presenting cells (Yi et al., 2022). ZsGreen is also multiple times brighter than 

other commonly used fluorescent proteins such as GFP, which allows for the detection 

even at low levels (Nakamura et al., 2013; Yi et al., 2022). Expression of ZsGreen as 

surrogate antigen in our preclinical glioma model GL261, allows tracking of tumor-

derived antigens in non-malignant cells. GL261 ZsGreen and GL261 control cells were 

orthotopically implanted into C57BL/6J mice and after 14 days, the antigen uptake in 

CD31+ ECs in the tumor-bearing hemisphere was analyzed by flow cytometry (Figure 

17a). This revealed, that on average, ~33% of CD31+ ECs were ZsGreen positive in 

GL261 ZsGreen+ tumor-bearing mice (Figure 17a-b). At the same time, the amount of 

ZsGreen+ ECs decreased after irradiation with 1x 5 Gy, which could be explained with 

the general reduction of vessels after irradiation (Figure 17c & Supplementary Figure 8a-

b). In order to confirm the antigen uptake by CD31+ endothelial cells, I additionally 

performed immunofluorescence staining of brains bearing ZsGreen expressing GL261 

tumors, which confirmed the uptake of ZsGreen in vessels outside of the tumor (Figure 

17d) and also in PVTNs (Figure 17e). In summary, I provide evidence that endothelial 

cells are able to take up tumor antigens in the brain. However, whether the endothelial 

cells are also capable of presenting these antigens needs to be further investigated.  
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Figure 17: Assessment of tumor-antigen uptake by endothelial cells. 

(a) Flow cytometry analysis of ZsGreen uptake in CD45- CD31+ endothelial cells in GL261 (left) 
and GL261 ZsGreen (right) tumor-bearing brain hemispheres 13 days after tumor cell injection. 
(b-c) Quantification of ZsGreen uptake by CD45- CD31+ endothelial cells in GL261 and GL261 
ZsGreen tumor-bearing hemispheres (c) in untreated and irradiated mice by flow cytometry on 
day 13 after tumor cell injection (3 days after irradiation). Statistical analysis performed by 
unpaired t-test. (d-e) Confocal laser scanning microscopy of GL261 ZsGreen bearing tumor 
hemispheres and immunofluorescence staining of CD31+ ECs (magenta), ZsGreen (green), 
CD3+ T cells (yellow) and DAPI (blue) on day 13 after tumor cell injection. (d) Demonstration of 
ZsGreen uptake by ECs distant to the tumor. (e) ZsGreen+ ECs in PVTNs outside of the tumor. 
Scale bars 20 µm. 
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4 Discussion 

4.1 Radiotherapy modulates the tumor immune microenvironment 

Radiotherapy and its potential to favorably modulate the tumor microenvironment is a 

promising combination partner for immunotherapeutic approaches targeting solid 

tumors. While preclinical studies show a strong combinatorial benefit (Belcaid et al., 

2014; Kim et al., 2017; Zeng et al., 2013), large clinical trials combining standard-of-care 

radiotherapy with immunotherapies failed to show significant benefits in gliomas (Lara-

Velazquez et al., 2021; Lim et al., 2022; Omuro et al., 2023).  The direct and indirect 

effects of radiotherapy on immune cells were not comprehensively evaluated in these 

clinical trials and the mechanisms behind the lack of efficiency remain elusive. It is 

difficult to investigate the effects on immune cells in the glioma tumor microenvironment 

of patients, as radiotherapy is always applied as adjuvant therapy after surgical resection 

and no tissue shortly after irradiation is available for analysis. Therefore, further 

preclinical research is needed to understand the underlying immune cell dynamics after 

irradiation and improve radiotherapy dosage and regimens that would support 

immunotherapies in the most efficient way. Here, I provided insights on how different 

dosages and fractionations of localized radiotherapy affect immune cells in the tumor 

microenvironment of a preclinical glioma model. I investigated the influence of a low 

dosage (2 Gy), two medium high dosages (5 and 6 Gy total), one of which was 

fractionated (3x 2 Gy), and a high dosage (8 Gy). While there was a dose-dependent 

response observable and 8Gy showed the overall highest survival benefit, 8 Gy also 

demonstrated the lowest percentage in terms of T cell-mediated survival benefit. At the 

same time, 8 Gy also showed the lowest enrichment in all applied immune signatures, 

with low T and NK cells responses, low antigen presentation and a low type I IFN 

response. The downregulation of the immune response compared to the untreated and 

other treatment groups, indicates negative effects of too high dosages on immune 

responses in the brain. Although completely T cell-mediated, low dosage irradiation with 

2 Gy showed only a small survival benefit of 2 days and also only low enrichment in 

immune signatures. Despite the overall higher total dosage of 6 Gy compared to 5 Gy, 

the fractionation of 3x 2 Gy performed worse than the single application of 5 Gy. 5 Gy 

induced and sustained a strong T cell, NK cell and type I IFN response signature until 

day 7. Overall, the single application of 5 Gy has been shown to be the superior dose 

among all tested dosages in regards to T cell and NK cell responses, type I IFN response, 

expression of chemokines, low expression of inhibiting immune checkpoints on cytotoxic 

CD8 T cells and also in antigen processing and presentation.  
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Other preclinical studies investigating different dosages and fractionations have been 

performed. However, most of these studies were performed in subcutaneous flank 

tumors models of other entities and some results may be contradicting. A study using 

the colon carcinoma model MCA38, demonstrated that the fractionation of 3x 8 Gy in 

combination with anti-CTLA-4 checkpoint inhibition, induced a better response compared 

to a single application of 20 Gy (Dewan et al., 2009). Yet, another study using the B16-

F0 melanoma model, demonstrated a better immune activation after a single application 

of 15 Gy compared to 3x 5 Gy (Lugade et al., 2005). In the glioma models GL261 and 

CT-2A, an interesting study was performed to compare a regimen of 10x 2 Gy, which 

supposedly models the Stupp protocol, with a hypofractionated regimen of 4x 5 Gy 

applied every third day. The authors demonstrated that both regimens induced similar 

levels of radiotherapy-mediated DNA damage and cell death, but the 4x 5 Gy regimen 

resulted in a significantly better median survival (McKelvey et al., 2022). A phase I clinical 

trial in melanoma and metastatic renal cell carcinoma assessed the use of one, two or 

three applications of 20 Gy in combination with IL-2. Although a low number of patients 

was assessed, their data suggests a higher percentage of complete response (CR) in 

the cohorts treated with only one or two applications of 20 Gy (Seung et al., 2012). High 

dosages of 1x 25 Gy or 15x 4 Gy (total 60 Gy) have been shown to induce a pro-

tumorigenic phenotype in macrophages (Tsai et al., 2007), while low dosages have 

shown to induce a pro-inflammatory phenotype in macrophages (Klug et al., 2013). 

Dosages above 10 Gy have been shown to induce significant vascular damage which 

resulted in impaired T cell recruitment to the tumor (Park et al., 2012). Taken together, 

the existing preclinical data of different dosages and fractionations can be contradictory 

and seems dependent on the model. Due to the unique environment of the brain, the 

relevance of findings in subcutaneous models for the translation into gliomas is 

debatable. Another inherent limitation, that makes the comparison with other findings 

difficult, is the seemingly arbitrary decision on used dosages in other studies. Still, the 

preexisting data and the data provided by this study suggest better tumor 

microenvironment modulation properties of low to medium high dosages. The better 

performance of the single dosage or hypofractionated regimens compared to the 

conventional fractionated applications puts the currently used Stupp protocol, which 

utilizes the daily application of 2 Gy for 30 days, in question as suitable combination 

partner for immunotherapy (McKelvey et al., 2022; Stupp et al., 2005). However, due to 

the unavailability of samples, little to no evidence has been provided on the tumor 

microenvironmental changes in glioma patients following the treatment with the Stupp 

protocol, but the failure to provide a combinatorial effect with this regimen hints towards 

an unfavorable modulation of the TME (Lim et al., 2022; Omuro et al., 2023). Additionally, 
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studies which longitudinally monitored peripheral immune cells in glioma patients treated 

with the Stupp protocol, showed induced immune suppression by a significant und 

durable decrease in T , NK and B cell numbers during and after the treatment for up to 

48 weeks, which was also correlated with poor outcome (Campian et al., 2017; 

Grossman et al., 2011; Saeed et al., 2024). However, in about 42 % of patients with 

concurrent glioma and multiple sclerosis, standard-of-care radiotherapy led to increased 

inflammatory activity and progression of multiple sclerosis lesions, indicating a radiation-

induced pro-inflammatory response (Sahm et al., 2023).  

Furthermore, the potential effects of TMZ are not considered in this, and most other 

preclinical studies, as those studies often only evaluate radiotherapy alone in 

combination with immunotherapy. However, the larger phase III clinical trials that 

evaluated the combination of radiotherapy and immunotherapy, which did not meet their 

endpoints, also included the application of TMZ according to the Stupp protocol (Lim et 

al., 2022; Omuro et al., 2023). TMZ has been shown to also induce immunogenic cell 

death in tumor cells, but since it is applied systemically, it can also have detrimental 

effects on the entire (peripheral) immune system by inducing long-lasting systemic 

lymphopenia (Di Ianni et al., 2021; Mathios et al., 2016). This would again question the 

use of the Stupp protocol as a suitable combination partner for immunotherapeutic 

approaches.  

I demonstrated T cell depletion by medium and high dosages at the early timepoint, but 

a replenishment with new T cells already four days later. This local depletion can have 

the advantage that exhausted and unspecific bystander T cells are depleted from the 

TME and are replaced by a fresh pool of activated antigen-specific T cells. 

Lymphodepletion, through the application of a chemotherapeutic agent, has been shown 

to be crucial for the success of cellular immunotherapies such as CAR T cell therapy 

(Lickefett et al., 2023). Lymphodepletion led to enhanced CAR T cell expansion and 

persistence and was crucial for a therapeutic response to cell therapy in preclinical 

glioma models (Sampson et al., 2014; Suryadevara et al., 2018). This data suggests that 

radiotherapy-induced lymphodepletion could redundantize chemically induced 

lymphodepletion when combined with cellular therapies, but this needs further 

investigation. 

Next to the T cell-driven anti-tumor response, my data also suggests a strong NK cell 

response after the treatment with 5 Gy. NK cells have been shown to populate gliomas, 

and are crucial for control of tumor cells with downregulated or absent expression of 

MHC class I (Burster et al., 2021). Yet, the immunosuppressive TME of treatment-naïve 
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gliomas dampens their functionality (Kozlowska et al., 2016). Radiotherapy has been 

shown to induce NK cell responses against solid tumors (Canter et al., 2017; Walle et 

al., 2022) and human and murine glioma cells have been shown to upregulate NK cell 

ligands, such as NKG2DL, which initiated NK cell mediated killing (Weiss, Schneider, et 

al., 2018).  The here presented data shows a significant and sustained upregulation of 

the NK cell receptors Ncr1 (NKp46), Klrc2 (NKG2C) and Klrk1 (NKG2D) after the 

treatment with 5 Gy. These receptors are essential for the engagement and recognition 

of tumor cells by NK cells (Meza Guzman et al., 2020). In combination with the 

expression of markers of cytotoxic activity, such as granzymes (Gzma & Gzmb), perforin 

(Prf1) and interferon gamma (Ifng), this provides evidence for a strong NK cell response. 

By utilizing NK cell depleting antibodies, we will assess role of NK cells in tumor control 

after radiotherapy in future investigations. 

This study focused solely on ionizing irradiation using X-rays. The potential differential 

effects on the tumor microenvironment, and in particular immune cells, by different types 

of radiation are so far poorly investigated. In clinical practice for the management of 

gliomas, external beam radiation therapy (EBRT) using photon-based radiation like X-

rays or gamma rays is commonly used (Koka et al., 2022). EBRT, that utilizes charged 

particles like protons, helium ions or carbon ions, is an emerging field due to their 

increased accuracy (Fernandez-Gonzalo et al., 2017). However, the differential impact 

on immune cells and the entire tumor microenvironment induced by photons like X-rays 

and charged particles like protons or carbon ions remains largely unexplored and should 

be considered in future studies. Some recent studies suggest that radiotherapy using 

charged particles has higher immune modularity effects compared to photons (Ando et 

al., 2013; Imadome et al., 2008), while others reported comparable effects (Gameiro et 

al., 2016). In a model of pulmonary metastases, the combination of carbon ion 

radiotherapy in combination with a DC immunotherapy led to the suppression of lung 

metastases, while the combination with photon radiotherapy showed no synergistic 

effects (Ando et al., 2013). Another study using carbon ion radiotherapy reported 

enhanced immunogenicity and beneficial effects in combination with CTLA-4 checkpoint 

inhibitors in subcutaneous tumor models (Hartmann et al., 2022; Hartmann et al., 2020). 

Another emerging approach is FLASH radiotherapy (FLASH-RT). FLASH-RT utilizes 

ultra-high-dosages that are applied within milliseconds (Matuszak et al., 2022). With 

current technical possibilities, FLASH-RT primarily uses very high energy electrons 

(VHEE) or protons (Matuszak et al., 2022). FLASH-RT has been praised for its reduced 

off-target toxicity, while providing similar effects on tumor control and the immune 

response (Favaudon et al., 2014; Liljedahl et al., 2022).  A recent study comparing 
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FLASH-RT with conventional radiotherapy in murine models of lung adenocarcinoma 

and glioma, concluded no differential effects on the immune response, but a higher 

immune-independent delay of tumor growth after FLASH-RT (Almeida et al., 2024). 

Another study in rat glioma came to the same conclusion, but additionally showed that 

FLASH-RT had neuroprotective properties compared to conventional radiotherapy (Iturri 

et al., 2023). Yet, another study using a murine model of diffuse midline glioma, showed 

similar clinical results comparing FLASH-RT with conventional RT, but demonstrated a 

higher type I IFN response in the conventionally treated mice (Padilla et al., 2024). In 

conclusion, all different types of radiotherapy possess the ability to modulate the tumor 

microenvironment and all might be suitable for the combination with immunotherapies. 

But the underlying mechanism influencing the responses might be multifactorial. 

Therefore, the optimal dosage, fractionation and timing of individual approaches need to 

be evaluated for each individual entity, to account for the underlying heterogeneity and 

differential responses. 

While this study focused solely on immune cells, a comprehensive characterization on 

the direct and indirect effects on tumor cells, vasculature as well as other cell types in 

the brain such as astrocytes and neurons, should be performed. Future research should 

also consider the underlying heterogeneity among different tumor types and patients. 

The differential mutational profile and load, varying extracellular matrix, vascularization, 

hypoxic regions, cellular composition and overall location of the tumor might significantly 

influence the response to radio- and immunotherapy. Therefore, reliable predictive 

markers need to be identified to tailor the optimal personalized therapy for each individual 

patient or patient group to maximize the clinical outcome. Still, the here presented results 

provide valuable insights into the immune response following radiotherapy in gliomas 

and will potentially help to shape and improve future radiotherapy and immunotherapy 

combinatorial trials.  

 

4.2 The role of Lgals1 expression in activated CD8+ T cells 

By differential gene expression and pseudotime trajectory analysis of CD8+ T cells, 

Lgals1 (Galectin-1) expression was identified as specific marker of activated cytotoxic 

CD8+ T cells. Radiotherapy differentially regulated the expression of Lgals1 in a dosage-

dependent manner. However, the mechanisms behind this regulation are unknown and 

need to be further investigated. The overall function of Galectin-1, which is a beta-

galactoside-binding lectin, is still subject to investigation as not all binding partners are 

yet known either (Yu et al., 2023). This is also the reason why no interactome analysis 
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on Lgals1 could be performed, as the underlying databases used by cell interaction 

algorithms lack the information on known Lgals1 receptor-ligand pairs. Lgals1 can also 

be highly expressed in glioma cells and endothelial cells and has been shown to induce 

an immunosuppressive tumor microenvironment or T cell exclusion (Q. Chen et al., 2019; 

Corapi et al., 2018; Verschuere et al., 2014). The function of Lgals1 expression in 

activated CD8+ T cells remains incompletely understood, but studies suggest rather 

regulatory effects of Galectin-1 on T cell functionality. A study by Sharanek et al. 

demonstrated that Lgals1 transcription is regulated by signal transducer and activator of 

transcription 3 (STAT3) (Sharanek et al., 2021). STAT3 is crucial for many cytokine 

signaling pathways and in CD8+ T cells, it plays a crucial role in developing memory 

phenotypes (Hillmer et al., 2016). Some older studies on the effects of Galectin-1 on 

CD8+ T cells suggest that Galectin-1 regulates the proliferation, modulates TCR binding, 

negatively regulates subsequent effector activity and induces T cell apoptosis (Liu et al., 

2009; Perillo et al., 1995; Vespa et al., 1999).  Therefore, activated CD8+ T cells might 

express Lgals1 during activation as an autocrine regulatory mechanism to prevent 

overshooting or chronic immune activity, or to transition into a memory phenotype. If 

Galectin-1 serves as inhibitory regulator of T cell activation, Lgals1 knockout (KO) in T 

cells used for cellular immunotherapies might provide a beneficial modification to 

enhance the proliferation and activity or to prevent exhaustion. In ongoing work, I 

therefore investigate CRISPR/Cas9-mediated KOs of Lgals1 in wildtype and OT-1 TCR 

transgenic T cells and its impact on their phenotype in vitro and in vivo. Furthermore, I 

aim to evaluate Lgals1 KO OT1 TCR transgenic T cells for adoptive cell transfer (ACT) 

in preclinical glioma models such as GL261 OVA and CT-2A OVA. We aim to investigate 

how Lgals1 KO influences the migration of T cells into the brain and their ability to sustain 

anti-tumoral responses and memory compared to unmodified control cells. Uncovering 

the functional role of Galectin-1 in activated CD8+ T cells could lead to the improvement 

of cellular immunotherapies for enhanced therapeutic efficacy in patients with gliomas 

and other solid tumors.  

 

4.3 T cells form perivascular niches in the brain 

The priming and migration of T cells that infiltrate into the brain and especially into the 

glioma tumor microenvironment has been a prominent topic in neuroimmunology. Yet, 

the unique anatomical features, environment and location of the brain still make it difficult 

to understand the complex immune dynamics within this organ. It has been well 

established that one of the locations of T cell priming for responses to the brain are 
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cervical lymph nodes, where soluble antigens drain via the CSF, but also dendritic cells 

migrate from the brain to these lymph nodes to present CNS antigens (Laaker et al., 

2023). Once primed, peripheral T cells still have to overcome potential barriers such as 

the BBB. Even though the BBB is often compromised in gliomas (Kadry et al., 2020), the 

treatment naïve tumor microenvironment is still comparably low infiltrated with T cells 

(Luce et al., 2024). Recent studies suggest additional possible locations of T cell priming 

and routes of homing to the brain. One study demonstrated a hub of tumor-reactive T 

cells in the skull of glioma patients that are able to infiltrate the brain (Dobersalske et al., 

2024). Another study demonstrated that antigens in the CSF were also shown to be 

presented to CSF-patrolling T cells at the outside of the dural sinus (Rustenhoven et al., 

2021). The outside of bridging veins connecting the dura with the brain have been shown 

to serve as migration paths for immune cells (Smyth et al., 2024). It has also recently 

been reported that in the healthy choroid plexus a population of cDC1 dendritic cells and 

CD8+ T cells are present, and upon local injection with TLR-agonist lipopolysaccharide 

(LPS), an increase in CD8+ T cell infiltration into the choroid plexus was observed (Xu 

et al., 2024). In Alzheimer’s disease and multiple sclerosis, clonally expanded 

populations of T cells can be found within the CSF (Gate et al., 2020; Gottlieb et al., 

2024).  Overall the CSF has been shown to be a major T cell trafficking route in the CNS 

in health and disease (Strazielle et al., 2016). Still, the overall dynamics of T cell priming 

and migration paths for responses against gliomas are incompletely understood. 

Here, I have shown a so far unknown perivascular T cell niche, which develops already 

within 5-7 days after tumor formation. Within this niche, T cells appear to be potentially 

detained from further migration into the tumor. However, the mechanism of entrapment 

remains unexplored and will be subject of my further research. I have shown that apart 

from T cells, the niche is also highly populated with macrophages and/or microglia. 

However, their functional relevance in niche development or maintenance remains 

elusive. Macrophages are highly plastic cells which can obtain either an 

immunosuppressive or immune stimulatory phenotype depending on their environment 

(Shapouri-Moghaddam et al., 2018). If they are immune stimulatory, these myeloid cells 

would have the potential to present antigens to T cells and prime them. In this case, 

PVTNs would serve as a so far unknown hub of T cell priming in the brain. This would 

be supported by observations made in perivascular spaces of multiple sclerosis patients, 

in which activated and proliferative T cells were observed alongside antigen-presenting 

macrophages (Fabriek et al., 2005; Fransen et al., 2020; Smolders et al., 2020). 

However, others have reported that perivascular macrophages in murine glioma and 

brain metastases models obtain an anti-inflammatory phenotype and form perivascular 
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cuffs that limit T cell infiltration (Sun et al., 2023). Interestingly, upon treatment with 

immune checkpoint inhibitors, perivascular cuffs in brain metastases were resolved and 

immune cells migrated into the tumor (Sun et al., 2023). It has also yet to be explored 

what kind of T cells are populating PVTNs. Whether they are cytotoxic T cells, T helper 

or regulatory T cells, and whether they are tumor-specific or rather unspecific bystander 

T cells will be important to understand the dynamics within the niche.  Next, I will explore 

the complete cellular composition and phenotype of all cells within and surrounding the 

niche by spatial transcriptomics. By applying spatial TCR sequencing we will be able to 

identify the T cells specificity as well as clonality, which will provide insights on local 

priming and expansion (Engblom et al., 2023). Additionally, spatial transcriptomics will 

also allow us to evaluate cell to cell interactions of neighboring cells and will provide 

clues to help decipher the potential mechanism of T cell entrapment. Once potential 

candidate genes are identified, we will functionally evaluate each candidate and its role 

in niche formation. Literature and my results already provide one potential mechanism 

of T cell entrapment at the endothelial wall. Aydin et al. have shown that in experimental 

autoimmune encephalitis (EAE), a preclinical model used for multiple sclerosis research, 

endothelial cells presented autoantigens to CD8+ T cells which led to their entrapment 

and subsequently to the destruction of the BBB (Aydin et al., 2023). As part of this 

dissertation, I have shown that endothelial cells are also capable to uptake tumor 

antigens inside the tumor, but also at distant sites outside of the tumor. Even though I 

have shown that also endothelial cells in PVTNs take up antigens, I did not provide proof 

for their presentation so far. I will further investigate the role of tumor antigen presentation 

by endothelial cells for the development of the perivascular niche. For this, I am currently 

in the process of generating a VE-cadherin-CreERT2 Tap1floxed/floxed transgenic mouse. In 

this mouse, the antigen presentation of endothelial cells can be specifically deactivated 

upon treatment with tamoxifen, which leads to the Cre recombinase-mediated knockout 

of the transporter associated with antigen processing 1 (Tap1) gene, which is crucial for 

MHC antigen loading and MHC complex assembly (Kelly et al., 1992; Spies et al., 1992). 

Using this model, we will evaluate the role of antigen presentation and co-stimulation by 

endothelial cells in niche formation and entrapment of T cells in the perivascular space. 

The presentation of antigen, but the possible absence of the necessary co-stimulatory 

signals, that are lacking on endothelial cells, might lead to T cell anergy and thereby 

induce their inactivation and reduce their potential to further migrate (Crespo et al., 

2013). 

Another potential mechanism might not lie within the niche, but rather within the 

surrounding microenvironment of the niche. The surrounding environment, which is likely 
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comprised of pericytes, microglia, astrocytes and neurons, might provide a physical 

barrier which blocks the further transmigration of T cells and other immune cells. It has 

been shown that a desmoplastic stroma highly limits the T cell migration and can exclude 

T cells from entering the tumor microenvironment (Xiao et al., 2023). Perivascular 

fibroblast-like cells and pericytes in the brain might render the extracellular matrix 

unfavorably for T cell transmigration (Dinevska et al., 2023; Zarodniuk et al., 2023). The 

cellular composition of the niche-surrounding microenvironment will be analyzed by 

spatial transcriptomics (see above). 

Another open question to investigate, is the route of influx of T cells into PVTNs. The 

obvious answer to this question would be through the HEV-like blood vessels that they 

are surrounding. However, during intravital multiphoton laser scanning imaging, the 

transmigration of T cells through the vessel wall was only rarely observed. Also, in 

ongoing preliminary work, in which I intravenously injected fluorescently-labeled T cells 

into the blood stream, labeled T cells were not observed to infiltrate into PVTNs (data not 

shown). This opens up the hypothesis that T cells make use of an alternative route by 

which they enter the niche. I am proposing that T cells in the CSF might enter from the 

meningeal subarachnoid space through the Virchow-Robin perivascular spaces into the 

niche. This theory would be supported by the observation, I made with light sheet 

fluorescence microscopy and 3D reconstruction of niches, which showed that niches can 

extend from the distant meninges to the tumor and would serve as explanation why large 

PVTNs can be observed at the meninges. T cells might migrate along vessels like a 

street as shown by Smyth et al., which demonstrated that immune cells were migrating 

along the outside of vessels from the dura to the brain and vice versa (Smyth et al., 

2024). The opening that the Virchow-Robin space provides at the interface of the 

meninges, would allow T cells to enter the brain and move along a path with potentially 

the lowest resistance. T cells would also not need to overcome the migration-limiting 

BBB. It has also been shown that interstitial and cerebrospinal fluids would drain along 

vessels out of the brain (Ma et al., 2017; Smyth et al., 2024). These fluids potentially also 

contain chemokines (Lok et al., 2014; Pashenkov et al., 2003) that are draining from the 

tumor microenvironment which would provide a hypothesis why T cells would enter the 

Virchow-Robin space in the first place. Additionally, I have shown that vessels inside 

PVTNs are expressing the Duffy antigen receptor for chemokines (DARC), a receptor 

which a variety of chemokines bind to unspecifically, which serves as presentation tool 

for chemokines to line the vessel (Novitzky-Basso & Rot, 2012; Thiriot et al., 2017). I will 

evaluate this alternative route by injecting fluorescently-labeled T cells into the CSF via 

the cisterna magna and cerebral ventricle, methods which are currently being 
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established in our lab. The migration of these T cells will then be tracked longitudinally 

using intravital multiphoton laser scanning microscopy and light sheet fluorescence 

microscopy, which could provide novel insights into the route of T cell migration into the 

brain. Furthermore, the applied spatial transcriptomics will potentially reveal the 

necessary chemokine receptors which facilitate the migration of T cells into the niche. 

By blocking these receptors, further functional mechanisms can be evaluated. Overall, 

these investigations will provide novel insights into the migration behavior and routes of 

T cells and would have a substantial impact on the understanding of immune cell 

dynamics in the brain. 

Tertiary lymphoid structures (TLS) have been reported in preclinical glioma models and 

glioma patients and are suggested as possible location of local T cell priming (van de 

Walle et al., 2021; L. van Hooren et al., 2021). They share characteristics with PVTNs, 

but whether PVTNs are a developmental stage of TLS or whether they are an 

independently forming structure needs to be further investigated. The reported TLS are 

also formed around HEV-like vessels, but besides T cells also contain high numbers of 

B cells, or depending on the developmental stage even specialized T and B cell zones 

similar to those found in secondary lymphoid organs (van de Walle et al., 2021). 

However, in PVTNs, no significant numbers of B cells were observed, which would lead 

to the conclusion that they are not TLS or TLS-like structures. 

Radiotherapy with 1x 5 Gy induced the formation of intratumoral PVTNs, but no 

difference in the number of extratumoral PVTNs was observed. This correlates with the 

increased infiltration of T cells after radiotherapy. Furthermore, it appears that after 

radiotherapy the T cell density in extratumoral PVTNs is lower, indicating a possible 

breakdown or leakage of the niche. The release of T cells from the niche after 

radiotherapy could serve as a possible mechanism of radiotherapy-induced immune 

responses and T cell infiltration into the tumor microenvironment. However, a major 

limitation is our ability to accurately quantify the obtained 3D images from light sheet 

fluorescence microscopy at this point. Collaborators are working on accurate machine 

learning algorithms that are capable to quantify PVTNs, T cell numbers and T cell density 

in these large datasets of 100 gigabytes and more per image. This will allow us to 

accurately investigate and quantify the influence of radiotherapy and other therapies on 

PVTNs. Understanding the potential mechanisms of T cell entrapment in PVTNs and 

developing therapeutic options that allows T cells to leave PVTNs towards the tumor will 

be crucial for successful anti-tumor immune responses and immunotherapies for glioma 

patients.  
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4.4 Conclusions and outlook 

In summary, I have demonstrated that a single medium dose of 5 Gy photon radiotherapy 

led to the most beneficial T cell-mediated survival and overall higher pro-inflammatory 

modulation of the tumor microenvironment compared to other tested dosages and 

fractionations. Based on the here provided results, 5 Gy would be the recommended 

dosage to be used in future combinatorial studies. The sustained response seven days 

after treatment suggests that repeated applications of radiotherapy should be made in a 

hypofractionated fashion with >7 days apart from each other, to not deplete the ongoing 

responses. The optimal timing of applying immunotherapies such as peptide 

vaccinations, checkpoint inhibitors or adoptive cell therapy with TCR-transgenic T cells, 

in between the applications of radiotherapy, will be investigated in future studies. This 

will become crucial for translating radio- and immunotherapy combinations into the 

clinical management for glioma patients. Additionally, Lgals1 expression was identified 

as marker for activated CD8+ T cells in the brain, hence the functional role of Lgals1 in 

T cells and the potential therapeutic implications of a Lgals1 knockout are investigated 

in ongoing work. Furthermore, I have discovered the formation of perivascular T cell 

niches (PVTNs) in the context of gliomas. Further investigations will focus on the origin 

of T cells and their migration behavior within PVTNs. Additionally, the cellular 

composition and crosstalk within the niche will be investigated in order to understand the 

mechanism behind niche formation and potential T cell entrapment. Understanding the 

functional relevance of this niche in T cell entrapment and the tumor-directed migration 

and anti-tumoral response by T cells, will be crucial for the understanding T cell dynamics 

in the brain and will be crucial for the successful advancement of immunotherapeutic 

strategies against brain tumors. 
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6 Supplementary data 

 

Supplementary Figure 1: Symptom-free survival after radiotherapy. 

(a) Kaplan-Meier curve of symptom-free survival in mice from two individual experiments to test 
the reproducibility and comparability of performed experiments. (b) Flow cytometry analysis of 
blood samples from isotype of anti-CD4/anti-CD8 treated mice to check for successful T cell 
depletion. (c) Quantification of flow cytometry analysis. Statistical test performed by unpaired t-
test. (d) Survival benefit in days of mice treated with 2, 3x 2, 5, or 8 Gy irradiation. (e) Kaplan-
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Meier curve of symptom-free survival in untreated mice with or without T cell depletion to 
demonstrate the endogenous T cell response. (f) T cell-mediated survival benefit (in %) of the 
total survival benefit. (g) Kaplan-Meier curve of symptom-free survival and (h) median survival in 
all T cell-depleted groups. Statistical analysis on all symptom-free survival was performed by Log-
rank (Mantel-Cox) test. 

 

 

 

Supplementary Figure 2: Overview of the lymphoid and myeloid populations. 

(a) UMAP of all cells divided in lymphoid and myeloid cells. (b) Proportion (in %) of the lymphoid 
and myeloid population among all cells at day 3 and day 7 within the different treatment groups. 
Bioinformatic processing by Clara Tejido Dierssen. 



                                                                                                                                                                     
   Supplementary data 

89 
 

 

 

Supplementary Figure 3: Overview and abundancies of myeloid cell clusters. 

(a) UMAP of all treatment groups at day 3 and 7. (b) Frequency (Freq.) of selected myeloid cell 
clusters at day 3 and 7 in the different treatment groups. Bioinformatic processing by Clara Tejido 
Dierssen. 
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Supplementary Figure 4: Antigen presentation signature in all myeloid cells and 
macrophages. 

(a) Heatmap of the antigen presentation signature and the average expression of genes in all 
myeloid cells at day 3. (b) Enrichment of the type antigen presentation signature in all myeloid 
cells at day 3. (c) Heatmap of the antigen presentation signature and the average expression of 
genes in myeloid cells at day 7. (d) Enrichment of the antigen presentation signature in all myeloid 
cells at day 7. (e) Heatmap of the antigen presentation signature and the average expression of 
genes in all macrophages at day 3. (f) Enrichment of antigen presentation signature in all 
macrophages at day 3. (g) Heatmap of the antigen presentation signature and the average 
expression of genes in all macrophages at day 7. (h) Enrichment of the antigen presentation 
signature in all macrophages at day 7. Statistical analysis was performed with one-way ANOVA 
and subsequent Tukey test.  Significance was defined as P-value ≤ 0.05. Significance is displayed 
as * = P-value ≤ 0.05; ** = P-value ≤ 0.005; *** = P-value ≤ 0.0005; **** = P-value ≤ 0.0001; ns = 
not significant. Bioinformatic processing by Clara Tejido Dierssen. 
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Supplementary Figure 5: The irradiation-specific interactome in T and NK cells. 

Receptor-ligand pairs and their probability of interaction, which are exclusively only in the 5 Gy 
treated group or significantly upregulated compared to the untreated group at day 3, day 7 or on 
both timepoints in (a) CD4 T cells, (b) CD8 T cells and (c) NK cells. Only statistically significant 
(P-value ≤ 0.05) interactions were included. Statistical testing was performed by one-sided 
permutation test. Bioinformatic processing by Clara Tejido Dierssen. 
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Supplementary Figure 6: Differential gene expression in CD8+ T cells over time.  

(a) Volcano plots of differentially expressed genes in CD8+ T cells between on day 7 compared 
to day 3 in all treatment groups. Annotated are the top 15 up- and downregulated genes. Green 
dots genes over the threshold of >0.5 avg. log2 fold change (FC).  
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Supplementary Figure 7: Overview of Lgals3 and Lgals9 expression. 

Average expression of (a) Lgals3 and (b) Lgals9 in all cell types in the different treatment groups 
at day 3 and day 7. (c) Expression level of Lgals1, Lgals3 and Lgals9 in CD8 T cell clusters along 
their pseudotime trajectory. Bioinformatic processing by Clara Tejido Dierssen. 
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Supplementary Figure 8: CD31+ vessels and T cells in untreated and irradiated tumors. 

(a) Immunofluorescence staining and confocal laser scanning microscopy of CD3+ T cells 
(yellow), CD31+ ECs (magenta) and DAPI (blue) in untreated (top) and 1x 5 Gy irradiated tumors 
(bottom) 72h after treatment. Scale bars 100 µm. (b) Quantification of CD31+ vessels 
(counts/mm2). (c) Quantification of CD3+ T cells (counts/mm2). Statistical analysis performed by 
unpaired t-test and each timepoint. 
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Supplementary Figure 9: Overview of PVTN localization tumor-bearing hemispheres. 

(a) Exemplary tile-scans of GL261 tumor-bearing brain hemispheres. PVTNs are circled with 
white dotted lines and are located intratumoral, extratumoral and extratumoral at the meninges. 
The approximate outline of the tumor mass is marked by the green dotted line. (b) Exemplary 
images and close-ups of PVTNs next to the tumor (bottom) and at the meninges (right). All images 

CD3 CD31 DAPIa

b CD3 CD31 DAPI

CD3 CD31 DAPI
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were taken of samples excised on day 13 after tumor cell injection. All images were taken using 
a 20x magnification on a confocal laser scanning microscope.  

 

Supplementary Figure 10: 3D structure of PVTNs in the contralateral hemisphere and in 
CT-2A tumors. 

(a) 3D reconstruction of images taken by light sheet fluorescence microscopy of cleared brains 
(a) showing the contralateral non-tumor-bearing hemisphere of an untreated mice bearing a 
GL261 tumor. CD3+ T cells (green) and CD31+ vessels (red). (b) showing the tumor-bearing 
hemisphere of an untreated mouse injected with the glioma model CT-2A. CD3+ T cells (yellow) 
and CD31+ vessels (red). Both brains were excised on day 13 after tumor injection. Scale bars 
200 µm. 
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Supplementary Figure 11: 3D structure of PVTNs in human glioma patients. 

(a-b) 3D reconstruction of images taken by light sheet fluorescence microscopy of cleared human 
tumor samples from glioma patients. Localization within the brain or tumor/healthy tissue are 
unknown. CD3+ T cells (green) and CD31+ vessels (red). Scale bars bottom left 100 µm (a) and 
20 µm (b). 

 

 

 

 


