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Abstract 

Eukaryotic cells precisely regulate gene expression programs in response to 

environmental or cellular stimuli, controlling the timing and output of thousands of genes. 

These transcriptional responses are regulated by a complex network of different molecular 

mechanisms and their spatial and temporal organization. Critical components of this 

regulation include local chromatin states and transcription factor (TF) binding kinetics at 

cis-regulatory elements (CREs) like promoters and enhancers, their long-range 

interactions, and the local enrichment of TFs and transcription machinery into nuclear 

subcompartments. Transcription regulation by TFs has been extensively studied using 

fluorescence microscopy-based assays, while chromatin topology is usually explored 

through next-generation sequencing (NGS) methods. These NGS techniques encompass 

chromosome conformation capture, chromatin immunoprecipitation, and chromatin 

accessibility assays. Data from single-cell chromatin accessibility sequencing (scATAC-

seq) allows to identify CREs in accessible and active states as well as locus-specific TF 

binding activity at single-cell resolution. However, a model of transcription regulation that 

integrates genome-wide data on TF dynamics and chromatin topology is still lacking.  

This thesis aimed to develop such a model of transcription regulation by collectively 

inferring local chromatin states, locus-specific TF binding activity, and global chromatin 

organization from scATAC-seq data. To achieve this, I addressed three specific objectives: 

(i) Advancing the experimental and computational analysis of scATAC-seq, (ii) developing 

a computational framework to dissect molecular mechanisms underlying chromatin co-

accessibility, and (iii) identifying the structure-function relationship between different 

regulatory mechanisms and their transcriptional output. 

In the first part of this thesis, I identified data sparsity as a key challenge in scATAC-seq 

data analysis. To address this, I introduced the TurboATAC protocol, which reduces data 

sparsity by optimizing the transposase reaction efficiency in scATAC-seq. Additionally, I 

developed a method for allele-aware quantification of scATAC-seq data. Together, these 

advances enabled me to distinguish true biological variability between cells from data 

sparsity at individual genomic loci.  

In the second part, I developed the R package RWireX, a computational framework 

designed to resolve different layers of chromatin co-accessibility between multiple 

genomic loci. RWireX differentiates between different co-accessibility features: 

Autonomous links of co-accessibility (ACs) and domains of contiguous co-accessibility 
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(DCs). ACs represent spatial contacts between co-active distal chromatin sites, while DCs 

likely result from local enrichment of TF binding activity in nuclear subcompartments. 

Furthermore, RWireX revealed different types of ACs, driven either by targeted structural 

chromatin loops or by random spatial interactions within dynamic chromatin regions.  

In the third part, I analyzed various human and mouse cellular systems under perturbation 

with RWireX to link genome-wide regulation mechanisms with their functional 

transcriptional output. These analyses revealed that promoters, ACs and DCs regulate 

with distinct transcriptional bursting kinetics. Promoters and DCs primarily regulate burst 

size, leading to a rapid transcriptional response. In contrast, ACs mainly regulate burst 

frequency, revealing slower transcriptional changes. Promoters induce a significantly 

stronger response compared to ACs and DCs. However, ACs and DCs can co-regulate 

multiple genes by either inducing co-expression or alternating patterns of expression in 

single cells. 

Finally, I combined these findings to derive the AC/DC model of transcription regulation, 

which links promoter-mediated regulation, chromatin contacts (via targeted loops or 

stochastic interactions), and local subcompartments with enriched TF binding activity to 

their specific transcriptional effects. With this model, the thesis provides a novel approach 

to explain how mammalian systems precisely regulate the magnitude, direction, and 

temporal hierarchy of transcriptional responses to both external and internal stimuli. 
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Zusammenfassung 

Eukaryotische Zellen regulieren spezifische Genexpressionsprogramme als Reaktion auf 

externe oder interne Stimuli. Dabei steuern sie präzise das Timing und die Aktivität von 

Tausenden von Genen. Diese transkriptionellen Antworten werden durch ein komplexes 

Netzwerk verschiedener molekularer Mechanismen sowie deren räumliche und zeitliche 

Organisation reguliert. Wesentliche Komponenten dieser Regulation umfassen lokale 

Chromatinzustände und die Bindungskinetik von Transkriptionsfaktoren (TFs) an cis-

regulatorische Elemente (CREs) wie Promotoren und Enhancer. Hinzu kommen deren 

räumliche Interaktionen mit anderen, entfernten CREs, sowie die lokale Anreicherung von 

TFs und der Transkriptionsmaschinerie in nukleären Subkompartimenten. Die Regulation 

der Transkription durch TFs wurde mithilfe von fluoreszenzmikroskopischen Experimenten 

intensiv untersucht. Im Gegensatz dazu werden Chromatinzustände und seine 

dreidimensionale Organisation üblicherweise durch Next-Generation-Sequencing (NGS) 

erforscht. Diese NGS-Methoden umfassen die Chromosomen-Konformations-Analyse, 

Chromatin-Immunopräzipitation und Methoden zu Messung der Chromatin-

Zugänglichkeit. Dabei ermöglichen es Daten der Einzelzell-Chromatin-Zugänglich-

keitssequenzierung (scATAC-seq), CREs in zugänglichen und aktiven Zuständen sowie 

die lokusspezifische TF-Bindungsaktivität auf Einzelzellebene zu analysieren. Jedoch fehlt 

bislang ein Modell der Transkriptionsregulation, das genomweite Daten zur lokalen 

Dynamik von TFs, zu Chromatinzuständen sowie seine Organisation integriert. 

Diese Dissertation hatte das Ziel, ein solches Modell der Transkriptionsregulation zu 

entwickeln. Hierfür wurden lokale Chromatinzustände, lokusspezifische TF-

Bindungsaktivität und die globale Chromatinorganisation aus scATAC-seq Daten 

abgeleitet. Ich verfolgte drei konkrete Ziele um dies zu erreichen: (i) Verbesserung der 

experimentellen und computergestützten Analyse von scATAC-seq, (ii) Entwicklung einer 

Methode zur Untersuchung der zugrundeliegenden molekularen Mechanismen von 

Chromatin-Ko-Zugänglichkeit, und (iii) Identifizierung der Struktur-Funktions-Beziehung 

zwischen verschiedenen regulatorischen Mechanismen und ihrem transkriptionellen 

Output. 

Im ersten Teil dieser Dissertation habe ich die hohe Anzahl an Datenlücken als zentrales 

Problem bei der Analyse von scATAC-seq Daten identifiziert. Um diese zu beheben, habe 

ich das TurboATAC-Protokoll eingeführt. Es reduziert fehlende Daten durch die 

Optimierung der Transposase-Reaktionseffizienz von scATAC-seq. Zudem habe ich eine 
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Methode zur Allel-basierten Quantifizierung von scATAC-seq Daten entwickelt. Diese 

neuen Methoden haben mir auf der Ebene einzelner genomischer Loci ermöglicht, wahre 

biologische Variabilität zwischen Zellen von Datenlücken zu unterscheiden. 

Im zweiten Teil habe ich das R-Paket RWireX entwickelt. Die Methode kann verschiedene 

Ebenen der Chromatin-Ko-Zugänglichkeit zwischen mehreren genomischen Loci 

auflösen. Dabei differenziert RWireX zwischen verschiedenen Merkmalen der Ko-

Zugänglichkeit: Autonome Links der Ko-Zugänglichkeit (ACs) und Domänen 

kontinuierlicher Ko-Zugänglichkeit (DCs). ACs repräsentieren räumliche Kontakte 

zwischen ko-aktiven entfernten Chromatin-Loci. DCs entstehen durch die lokale 

Anreicherung von TF-Bindungsaktivität in nukleären Subkompartimenten. Darüber hinaus 

zeigte RWireX verschiedene Typen von ACs, die entweder durch gezielte strukturelle 

Chromatin-Schleifen oder durch zufällige räumliche Interaktionen innerhalb dynamischer 

Chromatinregionen entstehen. 

Im dritten Teil habe ich die Transkription verschiedener humaner und muriner Systeme 

nach externen oder internen Stimuli mit RWireX analysiert. Dadurch verknüpfte ich 

genomweite Regulationsmechanismen mit ihrem funktionellen transkriptionellen Output. 

Diese Analysen ergaben, dass Promotoren, ACs und DCs unterschiedliche Kinetiken des 

transkriptionellen Burstings regulieren. Promotoren und DCs regulieren hauptsächlich die 

Größe eines Bursts und führen zu einer schnellen transkriptionellen Antwort. ACs 

hingegen regulieren primär die Frequenz von Bursts und zeigen langsamere 

Transkriptionsänderungen auf. Des Weiteren induzieren Promotoren eine signifikant 

stärkere Antwort im Vergleich zu ACs und DCs. Dahingegen können ACs und DCs jedoch 

mehrere Gene entweder durch Koexpression oder alternierende Expressionsmuster in 

Einzelzellen ko-regulieren. 

Abschließend kombinierte ich diese Erkenntnisse, um das sogenannte AC/DC-Modell der 

Transkriptionsregulation herzuleiten. Dieses Modell verknüpft die promotorvermittelte 

Regulation, Chromatinkontakte (über gezielte Schleifen oder stochastische Interaktionen) 

und lokale Subkompartimente mit angereicherter TF-Bindungsaktivität mit ihren 

spezifischen transkriptionellen Effekten. Mit diesem Modell bietet diese Dissertation einen 

neuartigen Ansatz, um zu erklären, wie Säugetiersysteme die Stärke, Richtung und 

zeitliche Hierarchie von transkriptionellen Antworten auf externe und interne Stimuli 

präzise regulieren. 
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1. Introduction 

1.1. Eukaryotic transcription and transcription regulation 

1.1.1. Molecular mechanisms and kinetics of transcription 

Establishing diverse gene expression programs with well-defined timing and 

transcriptional output of thousands of genes is a key feature of eukaryotic cells. These 

gene expression programs are often initiated by environmental or cellular stimuli and their 

underlying regulatory mechanisms are multilayered and complex. In eukaryotic cells, 

transcription is inherently stochastic, with genes alternating independently between active 

transcription and inactive states (Rodriguez & Larson, 2020). This process is commonly 

described by the two-state model of transcriptional bursting (Figure 1.1A), where a gene 
switches between transcriptionally active and inactive states based on its specific but 

variable on  and off rates kon and koff (Ko, 1991). The so-called transcriptional bursts occur 

during the active state, defined by a certain synthesis rate ksyn (Ko, 1991) and are often 

characterized by their frequency and size (Raj et al., 2006; Suter et al., 2011; Mahat et al., 

2024). Burst size reflects the number of RNA molecules produced during a single burst 

and derived from ksyn/koff (Ko, 1991). This is mainly determined by the number of RNAP II 

molecules that are recruited to the TSS and subsequently synthesize RNA (Bartman et 

al., 2019). In contrast, burst frequency represents the on rate with which a gene switches 

from the inactive into the active state (Ko, 1991). It is governed by the promoter’s state 

and its affinity for initiating transcription (Bartman et al., 2019). Thus, by regulating 

transcription burst frequency and size, both the overall kinetics as well as the strength of 

transcription at a specific gene can be controlled.  
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Transcription is initiated through a multi-step process in which multiple transcription factors 

(TFs) assemble into the pre-initiation complex (Figure 1.1B) (Malik & Roeder, 2023). This 
complex promotes the recruitment of RNA polymerase II (RNAP II) to the promoter and 

DNA unwinding at the transcription start site (TSS), allowing RNAP II to start RNA 

synthesis (Haberle & Stark, 2018). RNAP II then dissociates from the promoter-bound TFs 

and moves along the gene, entering the elongation phase (Figure 1.1C) (Wang et al., 
2023). During elongation, RNAP II synthesizes RNA, aided by binding of multiple 

elongation factors (Kwak & Lis, 2013). Additionally, histone chaperones and chromatin 

remodeling complexes facilitate the advancement through the chromatin chain (Gamarra 

& Narlikar, 2021). For most protein-coding genes, RNAP II transcribes beyond the poly(A) 

signal, which is recognized by RNA cleavage and polyadenylation factors (Proudfoot, 

2016). These factors cleave the RNA, releasing both the RNA molecule and RNAP II, 

thereby terminating transcription (Figure 1.1D) (Porrua & Libri, 2015). Taken together, the 
transcription of RNA is a highly complex process with a multitude of different molecules 

involved. Consequently, the two key parameters to describe the transcriptional output, 

burst size and frequency, are controlled by a complex network of molecular mechanisms 

and their precisely orchestrated spatial and temporal organization (Fukaya et al., 2016; 

Cramer, 2019). However, the exact molecular mechanisms regulating burst size and 

frequency, respectively, remain unclear (Wang et al., 2019).  

Figure 1.1 Eukaryotic transcription. A Two-state model of transcriptional bursting. Genes switch 
between their active and inactive states by on-rate (kon) and off-rate (koff). In the active state, RNA 
is transcribed at synthesis rate (ksyn). Adapted from Seufert et al. (2024). B Transcription initiation: 
The pre-initiation complex recruits RNA polymerase II (RNAP II) to the transcription start site (TSS) 
and unwinds the DNA, allowing RNAP II to start transcription. After Haberle & Stark (2018).  
C Transcription elongation: RNAP II dissociates from the promoter and synthesizes RNA. 
Elongation factors and chromatin remodeling complexes facilitate the movement along the gene. 
After Wang et al. (2023). D Transcription termination and release: RNAP II mostly transcribes 
beyond the poly(A) signal. The signal is recognized by RNA cleavage and polyadenylation factors, 
which cut the RNA and release both RNA and RNAP II from the DNA. After Porrua & Libri (2015). 
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The following sections will introduce and discuss two different perspectives on 

transcription regulation and their commonly used experimental techniques (Table 1.1). On 
the one hand, the chromatin topology-centric viewpoint focuses on both local chromatin 

states and global chromatin organization. The field commonly applies next-generation 

sequencing methods to investigate genome-wide chromatin topology in the genomic 

coordinate system. On the other hand, the TF-centric viewpoint revolves around soluble 

TFs in the nucleus, their distribution, movement and DNA binding kinetics. Transcription 

regulation by TFs is commonly studied using fluorescence microscopy approaches for 

specific reporters or genes of interest in the spatial nuclear coordinate system. 

Table 1.1 Chromatin topology-centric and TF-centric perspectives on transcription 
regulation. 

 Chromatin topology-centric TF-centric 

Perspective 
Local chromatin states, global 
chromatin organization, and its 
interplay with soluble proteins 
and RNAs 

Soluble TFs, their nuclear 
distribution, and DNA binding 
dynamics 

Coordinate 
system Genomic coordinate Spatial nuclear coordinate 

Experiments Next-generation sequencing Fluorescence microscopy 

Generalizability Genome-wide Reporters / genes of interest 

 

1.1.2. Chromatin topology-centric transcription regulation 

Transcription is regulated by cis-regulatory elements (CREs) throughout the genome, their 

associated active or inactive local chromatin states, and the three-dimensional 

organization of the nucleosome chain (Lim et al., 2010; Grosveld et al., 2021; Wang et al., 

2021). These mechanisms are not independent of proteins, as chromatin is defined as the 

assembly of DNA around nucleosomes, which consist of eight histone proteins each 

(Hubner et al., 2013). This so-called “beads on a string” chain of nucleosomes organizes 

into higher-order chromatin structures in the nucleus (Hubner et al., 2013). In this context, 

loosely packed chromatin is termed euchromatin, leaving the DNA accessible to TFs, the 

transcription machinery, and other co-factors. In contrast, densely packed chromatin is 

referred to as heterochromatin, in which chromatin is in a silenced state and TF binding 

sites are less accessible (Morrison & Thakur, 2021). Although many proteins are involved 
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in the formation and organization of chromatin, this section will focus on CREs and their 

molecular mechanisms in regulating transcription, thereby adopting this chromatin 

topology-centric viewpoint on transcription regulation.  

The regulatory active DNA regions, CREs, are evolutionary conserved, non-coding 

genomic regions that contain multiple binding sites for TFs (Kim & Wysocka, 2023). They 

can be located both close to and far from TSSs (Kim & Wysocka, 2023). TSS-proximal 

CREs are commonly called promoters (Juven-Gershon & Kadonaga, 2010), while TSS-

distal CREs are variously referred to by their function, such as enhancers, silencers, or 

boundary control elements (Bulger & Groudine, 2011). To simplify, in this thesis, I only 

distinguish between promoters and distal CREs. While promoters regulate transcription by 

directly recruiting TFs and the transcription machinery to the TSS (Juven-Gershon & 

Kadonaga, 2010), distal CREs need to interact with promoters and TSSs to exert their 

regulatory effects (Grosveld et al., 2021). Furthermore, transcription co-regulation of 

multiple distal genes has been observed via the formation of so-called transcription 

factories or active chromatin hubs, where multiple gene loci, distal CREs, RNAP II 

molecules and co-factors interact and actively promote simultaneous transcription of 

multiple genes (de Laat & Grosveld, 2003; Papantonis & Cook, 2013). Several models 

have been proposed to explain how the interaction between distal genomic sites occurs, 

including (i) RNAP II tracking, (ii) TF linking, (iii) relocation into spatial proximity forming a 

transcription factory or communicating by diffusion, (iv) transient contact to deposit TFs, 

and (v) stable contact via loop formation (Figure 1.2) (Grosveld et al., 2021; Karr et al., 
2022). However, it remains unclear which exact molecular mechanisms, or a combination 

thereof, are present in eukaryotic nuclei (Ibrahim, 2024). Additionally, it is uncertain 

whether these interactions require direct chromatin contact or if spatial proximity between 

the two sites is sufficient (Friedman et al., 2024). 

The activity of CREs, meaning their potential to exert their regulatory effects on 

transcription, is largely influenced by their local chromatin state (Lim et al., 2010). In this 

context, DNA methylation at the nucleic acid cytosine and various post-translational 

modifications (PTMs) on the N-terminal tail of histone 3 (H3) in nucleosomes help define 

different chromatin states (Jenuwein & Allis, 2001; Greenberg & Bourc'his, 2019). The 

most prominent PTMs include mono- or trimethylation (me1 and me3) and acetylation (ac) 

at lysine residues, namely lysine 4 (K4), lysine 9 (K9), lysine 27 (K27), and lysine 36 (K36) 

on the H3 tails (Figure 1.3A) (Lim et al., 2010). These PTMs influence the direct 
recruitment of proteins to specific chromatin regions and determine the local chromatin 

state, making it either more or less accessible to TFs and the transcription machinery 
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(Figure 1.3B) (Kouzarides, 2007). The complex combinations of PTMs result in specific 
chromatin activity patterns: At promoters, H3K9ac, H3K4me3 and H3K27ac are strong 

indicators of activation (Santos-Rosa et al., 2002; Ernst et al., 2011; Karmodiya et al., 

2012), while the gene bodies of active genes are marked by H3K36me3 (Figure 1.3A, 
right) (Wagner & Carpenter, 2012). In contrast, repressed promoters often display 

H3K27me3, which, along with H3K9me3, is also present at the gene bodies of silenced 

genes (Morey & Helin, 2010). Similar patterns are observed for distal CREs: Active distal 

CREs display H3K4me1 and H3K27ac (Creyghton et al., 2010; Kang et al., 2021), 

whereas repressive marks like H3K9me3 and H3K27me3 predominate at inactive distal 

CREs (Figure 1.3A, left) (Morey & Helin, 2010). Within the nucleus, a multitude of so-
called writers, readers, and erasers constantly modify these chromatin states, leading to 

a highly dynamic chromatin landscape (Gourisankar et al., 2024). Together with many 

other potential PTMs, these epigenetic modifications regulate the local chromatin state, its 

accessibility to proteins, and consequently the activity of CREs (Bernstein et al., 2005). 

In addition to the local chromatin states at CREs, their activity and ability to regulate 

transcription are influenced by the three-dimensional, higher-order chromatin organization 

(Figure 1.3C+D) (Uyehara & Apostolou, 2023). During interphase, chromosomes occupy 

Figure 1.2 Interaction models between promoters and distal CREs. A Tracking model: RNAP 
II starts transcription at the distal CRE either pulling the distal CRE along or leaving it behind, while 
moving toward the promoter. B Linking model: Various TFs oligomerize between the distal CRE 
and promoter, initiating transcription at the promoter. C Proximity model: The distal CRE and 
promoter relocate into spatial proximity. Promoter activation may occur through a dense protein 
core between the sites or TF activation at the distal CRE, followed by diffusion to the promoter.  
D Looping model: A chromatin loop brings the distal CRE and promoter into stable spatial contact, 
enabling complex formation of TFs, co-factors and the transcription machinery. E Kiss-and-run 
model: Transient chromatin contacts transfer TFs from the distal CRE to the promoter. After 
Grosveld et al. (2021) and Karr et al. (2022). 
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distinct territories within the nucleus, where the chromatin of each chromosome is highly 

intermingled (Figure 1.3C) (Hubner et al., 2013). Within these chromosome territories, 
chromatin is organized into A and B compartments (Wang et al., 2021). The A 

compartments, which are euchromatic and generally active, are typically located in the 

nuclear interior. In contrast, B compartments are largely composed of heterochromatin 

and found near the nuclear envelope (Wang et al., 2021). In euchromatic A compartments, 

distal chromatin regions can contact through targeted chromatin loop formation or random 

interactions along the dynamic chromatin chain (Figure 1.3D) (Hubner et al., 2013; Sood 
& Misteli, 2022; Bruckner et al., 2023; Uyehara & Apostolou, 2023). Here, the proteins 

CTCF and cohesin often form targeted structural loops that enhance the likelihood of 

dynamic spatial contacts in between the stably linked chromatin regions (Mach et al., 2022; 

Chan & Rubinstein, 2023), resulting in stochastically interacting domains, termed 

topologically associating domains (TADs) (Dixon et al., 2012; Hansen et al., 2018). 

Moreover, the mediator complex and specific TFs, such as YY1 or NANOG, can mediate 

targeted chromatin contacts (Weintraub et al., 2017; Choi et al., 2022; Ramasamy et al., 

2023). Thus, both targeted and random chromatin contacts shape higher-order chromatin 

organization, intricately regulating transcription by bringing multiple, otherwise distal CREs 

into close spatial proximity (Sood & Misteli, 2022; Uyehara & Apostolou, 2023).  

Figure 1.3 Chromatin state, organization and three-dimensional architecture. A Epigenetic 
histone PTMs determine local chromatin state. Activating (green) and repressive (red) histone 
PTMs at promoters, gene bodies, and distal CREs are shown. After Lim et al. (2010). B Local 
organization of the chromatin fibre into euchromatic and heterochromatic regions. C Nuclear 
chromatin organization into chromosome territories and A/B compartments. D Higher-order 
chromatin conformation, where targeted loops between distal chromatin sites determine 
topologically associating domains (TADs) with random contacts in a dynamic chromatin 
environment. B-D after Wang et al. (2021).    
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1.1.3. TF-centric transcription regulation 

As discussed previously, transcription initiation, elongation and termination are regulated 

by various soluble proteins, such as TFs, RNAP II and co-activators (Porrua & Libri, 2015; 

Haberle & Stark, 2018; Wang et al., 2023). The regulation of transcription by these factors, 

along with other TFs not directly involved in transcription, depends on chromatin, as their 

DNA-binding affinity and nuclear distribution are strongly influenced by the local chromatin 

state and its higher-order organization (Liu et al., 2015; Xin & Rohs, 2018). In this section, 

I will introduce a TF-centric perspective on transcription regulation, primarily focusing on 

the nuclear activity and distribution of TFs and their implications for transcription 

regulation. 

TFs are commonly present at low concentrations in the nucleus (Ferrie et al., 2022). They 

are composed of different protein domains, typically categorized into DNA-binding 

domains (DBDs) and effector domains (EDs) (Trojanowski & Rippe, 2022). The EDs 

regulate transcription through various mechanisms, such as modifying local chromatin 

state by writing or erasing histone PTMs, recruiting other TFs or co-factors through specific 

interactions, or forming weak and nonspecific multivalent interactions with other proteins 

via their intrinsically disordered regions (IDRs) (Garcia et al., 2021; Rippe & Papantonis, 

2022; Soto et al., 2022). To target the ED’s effects to specific CREs, DBDs recognize and 

bind TF-specific DNA motifs that are only 6-12 base pairs (bp) in length (Stormo, 2013). 

In this context, TFs bind to DNA with specific kinetic on and off rates kon and koff with the 

residence time tres in the bound state derived from 1/koff (Figure 1.4A) (Trojanowski & 
Rippe, 2022). The affinity of a TF to a genomic site containing its motif, referred to as a TF 

binding site, is defined by its binding site-specific equilibrium dissociation constant Kd from 

koff/kon (Trojanowski & Rippe, 2022). A high degree of motif overlap with the DNA sequence 

corresponds to a high-affinity binding site with low Kd. Together with the overall TF 

concentration in the nucleus, these constants determine the overall TF occupancy at a 

binding site and thus the TFs impact on transcription regulation (Lu & Lionnet, 2021; Popp 

et al., 2021).  

The generally low nuclear concentrations of TFs raise the question how they efficiently 

locate their target binding sites within the large eukaryotic genomes and nuclei (Jana et 

al., 2021; Mazzocca et al., 2021). Fundamentally, TFs move through the nucleus by 

diffusion, following a so-called “random walk” in three-dimensional space (Figure 1.4B, 
left) (Woringer & Darzacq, 2018). Here, the likelihood of finding a potential binding site 

may be increased by facilitated diffusion, either along the one-dimensional chromatin fibre 
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or as directed by macromolecular crowding (Figure 1.4B, middle) (Berg & von Hippel, 
1985; Esadze & Stivers, 2018). Another mechanism that might reduce TF search times 

involves the previously mentioned IDRs in TF effector domains (Trojanowski & Rippe, 

2022). These IDRs can form nonspecific multivalent interactions with other locally enriched 

chromatin factors, guiding the TF toward its specific DNA motif (Figure 1.4B, right) 
(Brodsky et al., 2020; Chen et al., 2022). Furthermore, recent studies have observed 

nuclear subcompartments with increased concentrations of RNAP II, TFs, and co-factors 

(Rippe & Papantonis, 2021). Various models have been proposed to explain the formation 

of these nuclear subcompartments (Rippe, 2022): (i) Size exclusion from densely packed 

chromatin may confine TFs to specific, less occupied regions of the nucleus (Figure 1.4C) 
(Mazzocca et al., 2023); (ii) local clustering of multiple binding sites for the same TF could 

increase its concentration through simultaneous binding and high residence times (Figure 
1.4D) (Li et al., 2020); and (iii) physicochemical phase separation, driven by multivalent 

Figure 1.4 Principles of TF-mediated transcription regulation. A TF binding kinetics at genomic 
sites with TF-specific binding motifs. TFs bind to and dissociate from their binding site with a specific 
on- and off-rate (kon, koff), determining an individual equilibrium dissociation constant (Kd) for each 
binding site. tres describes the residence time of the TF at the binding site. B Models of TF 
movement through the nucleus. TFs move via diffusion in a random walk. The diffusion can be 
facilitated along the chromatin fibre or by molecular crowding. Multivalent interactions via IDRs 
might guide diffusion. C Local TF enrichment by size exclusion from densely packed surrounding 
chromatin. D Local TF enrichment by simultaneous binding of TFs to a binding site cluster. E Local 
TF enrichment by phase separation into liquid droplets. Adapted from Trojanowski & Rippe (2022).   
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interactions of IDRs in TFs may lead to the formation of liquid droplets above critical 

concentrations (Figure 1.4E) (Hnisz et al., 2017). Regardless of the underlying 
mechanism, the confinement and local increase in TF concentration reduce the TF search 

time for its binding sites and increase binding site occupancy within these 

subcompartments (Kent et al., 2020; Garcia et al., 2021). However, their overall effects on 

transcription regulation beyond this remain controversially discussed (Wei et al., 2020; 

Chong et al., 2022; Trojanowski et al., 2022; Meeussen et al., 2023). 

1.2. Methods to study transcription regulation 

While the nuclear distribution of molecules and TF kinetics are extensively studied using 

fluorescence microscopy-based assays (Hwang et al., 2024), local chromatin state and 

global chromatin organization are commonly investigated with chromosome conformation 

capture or chromatin immunoprecipitation sequencing methods (Table 1.1) (Preissl et al., 
2023; van Mierlo et al., 2023). In the following, I provide a brief overview of various 

microscopy- and sequencing-based methods used to study transcription and its regulation. 

I then focus on single-cell sequencing data of chromatin accessibility, which I employ to 

investigate chromatin topology-centric and TF-centric transcription regulation collectively. 

1.2.1. Fluorescence microscopy 

Fluorescence microscopy techniques can resolve nuclear substructures like chromosome 

territories and nucleoli (Nunes & Moretti, 2017). Additionally, they enable to study the 

spatial distribution and temporal dynamics of transcripts, as well as various regulatory 

components (Hwang et al., 2024). For instance, real-time imaging of single RNA 

molecules, achieved by labeling RNAs of interest using synthetic RNA aptamers, provides 

both spatial resolution of nascent RNAs and direct observation of transcriptional kinetics 

(Bouhedda et al., 2017). Conversely, single-molecule fluorescence in situ hybridization 

(smFISH) techniques applied to fixed cells or tissues lack temporal resolution but allow 

multiplexed detection of the spatial distribution of numerous RNAs (Young et al., 2020). 

To study transcription regulation, methods such as single-particle tracking (SPT) have 

been employed to observe real-time kinetics, spatial movement, and local enrichment of 

multiple nuclear proteins (Dahal et al., 2023). Additionally, SPT facilitates the investigation 

of target-search times and binding kinetics of individual TF molecules (Hwang et al., 2024). 

At the chromatin level, immunofluorescence staining of specific histone PTMs reveals 

chromatin compartmentalization and the dynamics of chromatin remodelers in the 
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deposition or removal of PTMs (Hayashi-Takanaka et al., 2009). Furthermore, advanced 

computational approaches like optical reconstruction of chromatin architecture (ORCA), 

when combined with RNA labeling, can reconstruct 3D chromatin organization and 

transcription in single cells (Mateo et al., 2019).  

However, despite the broad range of information these microscopy techniques provide, 

including nuclear distribution and temporal kinetics in transcription regulation, they are 

often limited by imaging duration, resolution, and noise, as well as the challenge of 

simultaneously observing multiple regulatory factors (Hwang et al., 2024). Moreover, 

imaging data inherently lack information about genomic coordinates, restricting their 

insights to general nuclear observations or locus-specific findings, usually limited to single 

reporters or genes (van Mierlo et al., 2023). 

1.2.2. Next-generation sequencing 

Next-generation sequencing (NGS) provides reliable, fast, and cost-efficient sequence 

information of DNA molecules at high depths (Pettersson et al., 2009). Prior to the 

sequencing reaction, sequencing libraries are generated by fragmenting the DNA and 

attaching primers for sequencing and indices for sample identification in multiplexed 

sequencing runs to each DNA molecule (Hess et al., 2020). These libraries are amplified 

by PCR, which enhances detection sensitivity but impairs quantitative analysis of the 

results (Kivioja et al., 2011). Typically, NGS does not sequence DNA fragments at full 

length (Pettersson et al., 2009). Instead, only 50 to 200 bp from one or both ends of the 

DNA molecule are sequenced, referred to as single-end and paired-end sequencing, 

respectively (Pettersson et al., 2009). The obtained sequence information is stored in one 

or two paired sequencing reads for single-end and paired-end sequencing, respectively, 

which are then computationally mapped to a reference genome to obtain their genomic 

coordinates (Schbath et al., 2012). By applying NGS to specific subsets of DNA molecules, 

a suite of complementary techniques has been developed to study transcription, local 

chromatin state, and global chromatin organization in the context of the genomic 

coordinate system (van Mierlo et al., 2023).  

Among this toolbox to study transcription regulation, in situ cross-linking combined with 

chromosome conformation capture (3C) methods map chromatin contacts (Dekker et al., 

2002; de Wit & de Laat, 2012). The further development of HiC-seq enabled the genome-

wide detection of chromatin contacts, facilitating the study of genome topology and higher-

order chromatin organization, such as A and B compartments or TADs (Lin et al., 2018; 
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van Mierlo et al., 2023). Beyond global chromatin organization, epigenomic assays, such 

as sequencing after bisulfite conversion, chromatin immunoprecipitation sequencing 

(ChIP-seq), and cleavage under targets and tagmentation sequencing (CUT&Tag-seq), 

can map the genomic positions of DNA methylation and various histone PTMs (Fraga & 

Esteller, 2002; Barski et al., 2007; Kaya-Okur et al., 2019). Additionally, ChIP-seq and 

CUT&Tag-seq are used to profile genomic sites of TF binding events (van Mierlo et al., 

2023). Collectively, these epigenomic techniques are employed to define CREs by 

describing local chromatin states. In parallel, genomic regions in generally active 

chromatin states can be identified using assays for accessible chromatin, such as DNase 

hypersensitivity sequencing (DNase HS-seq) or assay for transposase-accessible 

chromatin using sequencing (ATAC-seq) (Song & Crawford, 2010; Buenrostro et al., 

2013). Lastly, RNA sequencing (RNA-seq) methods enable genome-wide, quantitative 

investigation of the entire transcriptome by converting RNA molecules into complementary 

DNA and utilizing unique molecular identifiers (UMIs) (Wang et al., 2009; Kivioja et al., 

2011). 

While these methods provide genome-wide snapshots of transcription and its regulation, 

they lack spatial and temporal resolution (van Mierlo et al., 2023). Furthermore, these 

sequencing approaches typically analyze thousands of cells simultaneously, in so-called 

bulk sequencing, which results in the loss of information regarding single-cell 

heterogeneity and stochasticity in transcription regulation (Preissl et al., 2023). To 

overcome this, single-cell sequencing techniques have been developed to resolve cell-to-

cell differences. During sequencing library preparation, DNA molecules from individual 

cells are barcoded differently by isolating cells into separate reaction chambers (e.g., 

wells, tubes, or droplets) or through combinatorial indexing in iterative split-pool 

approaches (Hess et al., 2020; Preissl et al., 2023). In addition, simultaneous profiling of 

RNA and chromatin topology (including accessibility, epigenomic and 3C assays) from the 

same cell has been developed, allowing for genome-wide investigation of transcription and 

its immediate regulatory features (Baysoy et al., 2023). However, single-cell sequencing 

data tend to be sparse, making it difficult to differentiate between technical noise and 

biological variation among cells (Preissl et al., 2023). Furthermore, the integration of 

information on transcription, local chromatin state and global chromatin organization from 

these various complementary experiments at single-cell resolution is costly, time 

consuming, and computationally challenging.  
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1.2.3. Single-cell sequencing of chromatin accessibility  

Different sequencing assays resolve accessible chromatin regions, such as DNase HS-

seq, ATAC-seq, or sequencing of formaldehyde-assisted isolation of regulatory elements 

(FAIRE-seq) (Song & Crawford, 2010; Simon et al., 2012; Buenrostro et al., 2013). In 

contrast to the other complex and multi-step protocols, ATAC-seq is a simple two-step 

process of adapter insertion by hyperactive transposase 5 (Tn5) and PCR amplification 

(Buenrostro et al., 2013). During ATAC library preparation, the Tn5 binds to regions of 

accessible chromatin, cuts the DNA, and inserts sequencing adapters (Figure 1.5A). 
Following paired-end sequencing of the ATAC library, the genomic positions of these so-

called Tn5 insertions can be inferred from the individual sequencing reads. Additionally, 

the DNA fragments between two paired reads provide information about nucleosome 

positioning, as the fragment sizes indicate the number of nucleosomes between the Tn5 

insertions (Figure 1.5B). The pseudo-bulk distribution of these fragment sizes reveals 
distinct periodic maxima for each number of nucleosomes present. At higher genomic 

resolution, the ATAC-seq signal can also reveal TF binding sites (Figure 1.5C+D). In this 

Figure 1.5 Investigating accessible chromatin with ATAC-seq. Data from human 
lymphoblastoid GM12878 cells is shown. A Experimental approach of ATAC-seq. Transposase 5 
(Tn5) binds to accessible DNA and inserts sequencing adapters. The resulting ATAC sequencing 
library is amplified by PCR. B Distribution of fragment sizes from ATAC-seq. C Genomic signal 
tracks from ATAC-seq and CTCF ChIP-seq at CTCF motif position on chr1. D CTCF footprint from 
ATAC-seq across genome-wide CTCF binding sites. Adapted from Buenrostro et al. (2013). 
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context, DNA-bound TFs protect their binding sites from Tn5 insertion, rendering them 

inaccessible. Simultaneously, TF binding increases accessibility in the regions adjacent to 

the binding site, increasing the likelihood of nearby Tn5 insertions. This results in TF-

specific footprints in the chromatin accessibility signal (Figure 1.5D). (Buenrostro et al., 
2013)  

At lower genomic resolution, the ATAC-seq signal aligns with active histone PTMs, such 

as H3K4me3, H3K9ac, and H3K27ac, at genomic regions corresponding to CREs (Figure 
1.6A+B). In contrast, no chromatin accessibility is detected at CREs marked by repressive 
histone PTMs, such as H3K4me1 (Figure 1.6C). Additionally, non-CRE genomic regions 
show no chromatin accessibility regardless of active histone PTMs like H3K4me1, 

H3K4me3, H3K9ac, and H3K36me3, for example in actively transcribed gene bodies 
(Figure 1.6A+B). (Muckenhuber et al., 2023) Thus, the measurement of chromatin 
accessibility by ATAC-seq can serve as a reliable proxy to identify CREs with active local 

chromatin states, which are generally determined by epigenetic histone PTMs and DNA 

methylation (Jenuwein & Allis, 2001; Greenberg & Bourc'his, 2019), as described in 

Section 1.1.  

Furthermore, the ATAC protocol can be integrated into single-cell sequencing techniques, 

which resolve cell-to-cell differences in chromatin accessibility profiles (Buenrostro et al., 

2015). The combined information in chromatin accessibility – encompassing active local 

chromatin states, nucleosome positioning, and TF binding – is also captured in this data 

from single-cell sequencing of chromatin accessibility (scATAC-seq). However, at the 

single-cell level, chromatin accessibility data is inherently sparse due to the limited number 

of template DNA molecules per genomic position and cell (with only two copies in a diploid 

genome). (Buenrostro et al., 2015) To address this sparsity, advanced bioinformatic 

methods have been developed that exploit artificial pseudo-bulks from single cells for 

genomic feature identification, while maintaining single-cell resolution during quantification 

(Shi et al., 2022). 

The initial computational processing of scATAC-seq data involves several key steps. First, 

sequencing adapters are trimmed from the reads, followed by their filtering based on 

sequencing quality, demultiplexing of the single-cell barcodes, and alignment to the 

reference genome (Shi et al., 2022). Next, the aligned read positions are corrected for the 

Tn5 insertion offset, duplicated reads from PCR are removed, and paired reads are 

identified to infer their intermediate fragments (Buenrostro et al., 2013). The quality of 

scATAC-seq data is assessed using the pseudo-bulk distribution of fragment sizes (Figure 
1.5B), the expected enrichment of reads at TSS compared to non-TSS regions, and the 
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number of unique fragments per cell (Shi et al., 2022). After removing low-quality cell 

barcodes, accessibility in the high-quality cells is quantified to obtain accessibility count 

matrices of genomic features in single cells. Unlike RNA-seq, where sequencing reads are 

typically quantified within well-annotated genes, different genomic features can be used 

for to generate count matrices for ATAC-seq (Figure 1.7A): (i) Genomic tiles of a defined 
size (e. g., 1 kb), (ii) peaks identified from the pseudo-bulk ATAC-seq signal, (iii) annotated 

genes (commonly used to infer so-called gene activity scores from scATAC-seq data), and 

Figure 1.6 Genomic signal tracks from RNA-seq, ATAC-seq, and ChIP-seq of TF binding and 
histone PTMs in mouse embryonic stem cells. Basal transcription in ESCs (0 h IFNβ, black) 
was perturbed by 1 h (1 h IFNβ, red) and 6 h (6 h IFNβ, blue) of IFNβ treatment. Promoters are 
defined as TSS ± 500 bp and marked by dashed boxes. ChIP-seq of IFNβ-induced TFs STAT1 and 
STAT2 and their complex’s “ISRE” binding motifs from Homer database are shown. ChIP-seq of 
most common histone PTMs H3K4me1, H3K4me3, H3K9ac, H3K27ac, H3K36me3, H3K9me3, 
and H3K27me3 are depicted. A Genomic region around Ifi27 gene. RNA: No Ifi27 expression at 0 
h and 1 h IFNβ, strong expression increase at 6 h IFNβ. ATAC: No chromatin accessibility at 0 h 
IFNβ, gradually increased promoter accessibility at 1 h and 6 h IFNβ. STAT1 and STAT2: No TF 
binding at 0 h IFNβ, promoter STAT1 and STAT2 binding at 1 h and 6 h IFNβ. Histone PTMs: 
Depleted H3K4me1 signal at promoter. Increasing H3K4me3 and H3K27ac signal at promoter upon 
IFNβ treatment. Increasing H3K4me1 and H3K36me3 signal in gene body upon IFNβ treatment. B 
Genomic region around Usp18 gene. RNA: No Usp18 expression at 0 h and 1 h IFNβ, strong 
expression increase at 6 h IFNβ. ATAC: No chromatin accessibility at 0 h IFNβ, gradually increased 
promoter accessibility at 1 h and 6 h IFNβ. STAT1 and STAT2: No TF binding at 0 h IFNβ, promoter 
STAT1 and STAT2 binding at 1 h and 6 h IFNβ. Histone PTMs: Depletion of H3K4me1 signal at 
promoter upon IFNβ treatment. Increasing H3K4me3, H3K9ac, and H3K27ac signal at promoter 
upon IFNβ treatment. Increasing H3K4me1, H3K4me3, H3K9ac, and H3K36me3 signal in gene 
body upon IFNβ treatment. C Genomic region around Gbp6 gene. RNA: No Gbp6 expression. 
ATAC: No chromatin accessibility. STAT1 and STAT2: No TF binding. Histone PTMs: Scattered 
promoter H3K4me1 signal at 0 h, 1 h, and 6 h IFNβ. No additional histone PTM signal. Adapted 
from Muckenhuber et al. (2023). 
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(iv) regions of interest from complementary data sets (Shi et al., 2022). These different 

genomic features will result in different accessibility count matrices that strongly impact 

the genomic resolution and viewpoint of further analysis. Additionally, the accessibility 

count matrices can be generated by fragment-based or insertion based quantification of 

scATAC-seq data (Figure 1.7B) (Shi et al., 2022). While fragment-based counting of 
accessibility within these genomic features is recommended by some methods to reduce 

data sparsity in single cells (Stuart et al., 2021; Martens et al., 2024), insertion-based 

counting provides a more direct measure of accessibility without capturing the 

intermediate nucleosome positions within longer fragments (Granja et al., 2021; Miao & 

Kim, 2024). 

After initial processing, the accessibility count matrix obtained from scATAC-seq data is 

used for dimensionality reduction, cell clustering, and subsequent visualization by low-

dimensional embedding of the single cells (Figure 1.7C) (Shi et al., 2022). For the three 
steps, techniques such as latent semantic indexing (LSI), k-means clustering, and uniform 

Figure 1.7 Analysis of scATAC-seq data. A Definition of genomic features to quantify chromatin 
accessibility in single cells. Genomic tiles, peaks from pseudo-bulk ATAC-seq signal, annotated 
genes, and regions of interest (ROIs) from complementary data set are indicated. B Fragment-
based and insertion-based quantification of scATAC-seq data. C UMAP visualization of scATAC-
seq data. Circles indicate cells that are aggregated into metacells. D Chromatin co-accessibility 
analysis identifies simultaneously accessible distal genomic sites. 
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manifold approximation and projection (UMAP) are commonly applied to explore local and 

global patterns among single cells (Cusanovich et al., 2015; Becht et al., 2019). These 

methods enable the identification of cell clusters, containing single cells with similar 

chromatin accessibility profiles (Shi et al., 2022). The underlying cell types or states of 

these cell clusters can be identified using the activity of marker genes, integrating with 

scRNA-seq data, or mapping to an reference cell atlas (Berest & Tangherloni, 2023; 

Lotfollahi et al., 2024). Once cell types, states or clusters are defined, a variety of 

computational tools can be utilized to  explore different features of the scATAC-seq data 

between the different cell groups: Differential accessibility analysis on specific genomic 

features (Zhao et al., 2024), inference of gene regulatory networks and their activity (Badia 

et al., 2023), prediction of higher-order chromatin conformation (Duan et al., 2024), 

genotyping in regions of accessible chromatin (Wiens et al., 2024), or TF footprinting and 

binding predictions (Schep et al., 2017). Many of these methods aggregate similar cells 

into metacells to mitigate data sparsity and allowing for more robust analyses (Persad et 

al., 2023). However, this approach sacrifices the single-cell resolution, potentially losing 

true stochastic variations in accessibility between cells of the same type or state (Figure 
1.7C, black circles). 

In addition to these computational methods that analyze chromatin accessibility at 

individual genomic loci, so-called chromatin co-accessibility methods aim to infer the 

simultaneous accessibility of distal genomic sites along the linear genomic coordinate 

(Figure 1.7D) (Shi et al., 2022). Several methods have been developed to identify co-
accessible regions using different computational approaches and count matrices (Table 
1.2). For instance, RWire calculates Pearson correlation between genomic tiles on 
accessibility counts from single cells (Mallm et al., 2019). In contrast, Cicero identifies co-

accessible peaks by calculating correlation in metacells and applying a distance penalty 

using graphical lasso (Pliner et al., 2018). To address data sparsity and limited cell 

numbers, Cicero aggregates cells into metacells, allowing each cell to contribute to 

multiple metacells with a maximum overlap of 80 % between distinct metacells (Pliner et 

al., 2018). Lastly, ArchR combines aspects of both methods, calculating Pearson 

correlation between peaks using Cicero’s metacell approach (Granja et al., 2021). Despite 

the differences in their genomic and cellular scales (Table 1.2), all methods report 
individual co-accessible links between distal genomic regions as potential regulatory links. 

Indeed, since accessible CREs are considered to be in active local chromatin states 

(Figure 1.6), co-accessible distal sites can be assumed co-active across cells or 
metacells. However, it remains uncertain at the molecular level whether this co-activity 
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implies a direct regulatory interaction, a spatial contact in 3D chromatin organization, or 

simply simultaneous TF binding at distal sites (Shi et al., 2022). 

Table 1.2 Key differences between chromatin co-accessibility methods. Cicero was developed 
by Pliner et al. (2018), RWire by Mallm et al. (2019), and ArchR by Granja et al. (2021). 

 Cicero RWire ArchR 

Genomic 
resolution ATAC peaks Genomic tiles, 

regions of interest ATAC peaks 

Cellular resolution Metacells Single cells Metacells 

Input cell 
population Single cell states Single cell types Multiple cell types 

Co-accessibility 
method 

Correlation with 
graphical lasso 
distance penalty 

Pearson 
correlation 

Pearson 
correlation 

Significance 
assessment Manual cutoff Local background 

model 
Student’s T 
statistics 

 

1.3. Studying transcription regulation upon perturbations  

To investigate transcription regulation, targeted perturbations of transcription in a model 

system provide a comparative analysis of different gene regulatory states. Additionally, 

the regulatory mechanisms can be directly linked to their transcriptional effects. In this 

context, transcription can be perturbed in a cell by various external or internal stimuli. For 

instance, cytokine treatment of cultured cells induces transcriptional responses through 

specific intracellular signaling pathways (Lawrence, 2009; Ivashkiv & Donlin, 2014). This 

external perturbation facilitates the study of time-resolved transcriptional changes upon a 

controlled stimulation time point (Bhatt et al., 2012; Bolen et al., 2014). Similarly, co-culture 

experiments of multiple cell types can externally perturb transcription via cell-cell 

interactions (Shannon et al., 2021). Conversely, transcription can also be perturbed 

through genome editing, which induces a transcriptional response by creating a targeted 

internal stimulus (Doench, 2018). Additionally, naturally occurring genomic perturbations, 

such as those seen in cancer, offer insights into deregulated transcription by comparing 

distinct inter- or intratumor clones, each with specific genomic alterations (McGranahan & 

Swanton, 2017). 
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Overall, these perturbation experiments are powerful tools for investigating transcription 

regulatory mechanisms and linking them to their transcriptional effect. Several criteria can 

be applied to characterize the transcriptional impact of different regulatory mechanisms: 

(i) Direction of regulation (up- or downregulation, or both) 

(ii) Strength of regulation (magnitude of transcriptional change) 

(iii) Response kinetics (fast, slow or persistent transcriptional response) 

(iv) Transcriptional bursting kinetics (modification of burst size, burst frequency, or both) 

(v) Gene co-regulation (single gene, co-induction or alternating induction of multiple 

genes) 

In the following sections, I will outline the model systems and external or internal 

perturbations used in this thesis. 

1.3.1. Interferon beta treatment of mouse cells 

In the first model system, transcription in mouse embryonic stem cells (ESCs) and mouse 

embryonic fibroblasts (MEFs) was externally perturbed using interferon beta (IFNβ) 

treatment. The ESCs and MEFs were genetically identical and offer a model to investigate 

both shared and cell type-specific transcriptional responses. This model highlights the role 

of different epigenetic modifications and thus local chromatin states at CREs in an 

otherwise identical genetic environment. ESCs and MEFs were studied under unperturbed 

conditions, as well as after 1 h and 6 h of IFNβ treatment. This time-course analysis 

allowed exploration of the complex temporal hierarchy of interferon-stimulated gene (ISG) 

expression and its underlying regulatory mechanisms (Bolen et al., 2014). The cellular 

response to interferons (IFNs) is a critical component of innate antiviral immunity and 

inflammatory responses (Ivashkiv & Donlin, 2014; Au-Yeung & Horvath, 2018). The 

molecular pathways involved in intracellular IFNβ signaling are outlined below. 

Type I IFNs, including IFNα and IFNβ, bind to the extracellular domain of the IFNα receptor 

(IFNAR) (Figure 1.8) (Ivashkiv & Donlin, 2014). This binding activates the intracellular 
domains of its subunits IFNAR1 and IFNAR2, which in turn activate Janus kinase 1 (JAK1) 

and tyrosine kinase 2 (TYK2), initiating the JAK-STAT signaling cascade (Stark & Darnell, 

2012). These kinases phosphorylate signal transducer and activator of transcription 

(STAT) transcription factors (Stark & Darnell, 2012) enabling them to dimerize and form 

specific complexes. STAT1 and STAT3 both form homodimers, while STAT2 only pairs 

with STAT1 to form the IFN-stimulated gene factor 3 (ISGF3) complexes, along with IFN-

regulatory factor 9 (IRF9) (Ivashkiv & Donlin, 2014). Once formed, these STAT complexes 
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translocate to the nucleus, where they bind to specific DNA motifs, inducing the expression 

of ISGs (Au-Yeung & Horvath, 2018). ISGF3-driven ISGs are primarily involved in antiviral 

responses, while STAT1 and STAT3 homodimers induce ISGs related to inflammation 

(Schoggins et al., 2011; Rusinova et al., 2013). These tightly regulated ISGs in antiviral 

and inflammatory responses serve as excellent examples for studying different molecular 

mechanisms of transcription upregulation by a defined set of transcription factor 

complexes. 

1.3.2. Tumor necrosis factor alpha treatment of human endothelial 
cells 

In addition to the cytokine perturbation experiments conducted in mouse cells, I studied 

the external perturbation of transcription through tumor necrosis factor alpha (TNFα) 

treatment in human umbilical vein endothelial cells (HUVECs). HUVECs are non-

immortalized, primary human cells and serve as a valuable model system to investigate 

transcriptional regulation in healthy human cells. The transcriptome of HUVECs was 

analyzed in unperturbed condition as well as after TNFα treatment for 30 min and 240 min. 

Figure 1.8 Type I IFN-stimulated gene expression. Type I IFNs bind to the extracellular domain 
of their receptor (IFNAR) and activate the cytoplasmic kinases JAK1 and TYK2. These 
phosphorylate and thereby activate STAT transcription factors. The phosphorylated STATs can 
dimerize into homodimer or heterodimer complexes and translocate to the nucleus. They bind their 
respective DNA motifs and induce antiviral or inflammatory ISGs. After Ivashkiv & Donlin (2014). 
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The TNFα treatment induces a tightly regulated proinflammatory gene expression 

response (Smale, 2010), and the regulatory mechanisms underlying its specific temporal 

kinetics were studied across the multiple treatment time points (Bhatt et al., 2012). Below, 

I outline the intracellular signaling cascade that transmits the external TNFα stimulation 

into a proinflammatory gene expression program. 

At the HUVEC cell membrane, TNFα binds to two distinct receptors, namely TNF receptor 

1 and 2 (TNFR1 and TNFR2), activating the canonical nuclear factor kappa B (NF-κB) 

signaling pathway (Legler et al., 2003; Lawrence, 2009) (Figure 1.9). The intracellular 
domains of both receptors recruit IκB kinase (IKK) via the TNF-receptor-associated factor 

2 (TRAF2), which is activated by the death domain-containing Ser/Thr kinase receptor-

interacting protein (RIP) (Devin et al., 2000). Although TNFα can interact with both 

receptors, it primarily binds to TNFR1 in most cell types to activate NF-κB. This activation 

is mediated through TNFR1-associated death domain protein (TRADD), which facilitates 

the recruitment of downstream factors (Hsu et al., 1995). In addition to mediating NF-κB 

activation, TRADD also plays a role in inducing cell death through apoptosis (Rahman & 

McFadden, 2006). Once in a complex with TRAF2 and RIP, IKK dissociates the inhibitor 

of nuclear factor kappa B (IκBα) from NF-κB. Subsequently, the active transcription factor 

Figure 1.9 Intracellular signaling cascade upon TNFα stimulation. After binding to one of its 
receptors (TNFR1, TNFR2), TNFα activates IKK to dissociate IκBα from NF-κB. Consequently, the 
activated transcription factor NF-κB can translocate to the nucleus, bind to DNA and regulate 
transcription. After Rahman & McFadden (2006). 
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NF-κB translocates to the nucleus, where it binds specific DNA motifs to regulate gene 

expression (Karin & Ben-Neriah, 2000). Ultimately, this results in a tightly controlled 

transcriptional response of proinflammatory genes (Smale, 2010), whose specific temporal 

kinetics (Bhatt et al., 2012) motivated my investigation of their underlying regulatory 

mechanisms. 

1.3.3. TF knock-out in TCL1 mouse models for CLL 

In addition to the previously discussed cytokine-induced transcription perturbations in 

human and mouse cells, I investigated internal transcription perturbation through genome 

editing in the Eμ-T-cell leukemia-1 oncogene (TCL1)-transgenic mouse model for chronic 

lymphocytic leukemia (CLL) (Bresin et al., 2016). This mouse model closely mimics human 

CLL, as the overexpression of TCL1 leads to CLL development and progression (Bresin 

et al., 2016). In this system, transcription was perturbed by double knock-out of the Tbx21 

gene, which encodes the TF T-box expressed in T cells (T-bet). Transcriptomic regulation 

in Tbx21 wild-type and knock-out TCL1 cells were studied and compared. While this model 

does not offer the temporal resolution seen in cytokine stimulation experiments, it serves 

as a suitable framework to examine both the direct and secondary effects of a complete 

loss of the typically highly expressed TF T-bet on transcription and the regulatory 

landscape. In the following, a brief overview of the importance of T-bet in CLL is provided. 

In the context of human CLL, TBX21 expression is significantly higher in malignant B cells 

compared to non-malignant B cells from healthy controls (Figure 1.10A). Consistently, 
elevated T-bet protein levels were observed in CLL samples (Figure 1.10B). Importantly, 
CLL patients with high TBX21 expression levels showed a significantly longer overall 

survival compared to those with low TBX21 expression (Figure 1.10C), suggesting a 
tumor-suppressive role for T-bet. The elevated TBX21 expression was further associated 

with increased ATAC-seq and H3K27ac ChIP-seq signals at both the TBX21 promoter and 

an intronic region in CLL cells (Figure 1.10D). To investigate the driver behind the higher 
TBX21 expression in CLL, long-term cultures of CLL cells were co-cultured with different 

tumor microenvironment cells or treated with various cytokines. Significantly higher TBX21 

expression was observed in CLL cells that were co-cultured with activated autologous T 

cells (Figure 1.10E). Additionally, stimulating CLL peripheral blood mononuclear cells 
(PBMCs) with IFNγ, CpG oligonucleotides, and combinations of these with other cytokines 

led to significant increases in TBX21 expression (Figure 1.10F+G). (Roessner et al., 2024) 
Taken together, the high TBX21 expression observed in CLL cells, its induction by 
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inflammatory signals, and the correlation with longer patient survival motivated us to 

further investigate its role in tumor suppression and transcription regulation.  

  

Figure 1.10 TF T-bet in chronic lymphocytic leukemia. A TBX21 expression in malignant B cells 
from CLL patients (CLL cells) and untransformed B cells from healthy controls (HC B cells). Bulk 
RNA-seq data from 41 CLL patients and 11 age-matched healthy controls (HCs) are shown. P-
values from unpaired t-test are indicated as *, P < 0.05; **, P < 0.01. B T-bet protein levels in CLL 
cells and HC B cells. Flow cytometry data with fluorescence minus one (FMO) controls from 20 
CLL patients and 5 age-matched HCs are shown. P-value from unpaired t-test is indicated as *, P 
< 0.05; **, P < 0.01. C Overall survival of CLL patients with high (TBX21high) and low (TBX21low) 
TBX21 expression in the ICGC cohort. D Genomic signal tracks for ATAC-seq (red), H3K27ac 
ChIP-seq (yellow), and RNA-seq (green) in CLL cells and HC B cells at the TBX21 gene region. 
Median signals from 7 CLL patients and 4 healthy controls are shown. E TBX21 expression in CLL 
cells cultured alone (w/o), co-cultured with CD40L-expressing fibroblasts, and with in vitro-activated 
autologous T cells. Data from 5 replicates per condition are shown. Significant p-values from one-
way ANOVA with Benjamini-Hochberg correction are indicated as *, P < 0.05. F T-bet protein levels 
in CLL PBMCs without stimulation (medium control, w/o), and stimulated with CpG oligos, αIgM, 
IFNγ, and combinations thereof. Flow cytometry data from 7 replicates per condition are shown. G 
Log2FCs of T-bet protein levels in CLL PBMCs under stimulated conditions relative to medium 
controls. Significant p-values from Wilcoxon tests with Benjamini-Hochberg correction are indicated 
as *, P < 0.05; **, P < 0.01; ***, P < 0.001. Adapted from Roessner et al. (2024). 
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1.4. Scope of the thesis 

Eukaryotic transcription is regulated by a complex network of molecular mechanisms and 

their precisely orchestrated temporal and spatial nuclear organization. Today, two largely 

separate research areas study different aspects of transcription regulation: On the one 

hand, chromatin topology-centric transcription regulation primarily uses next-generation 

sequencing methods to study local chromatin states and global chromatin organization. 

On the other hand, TF-centric transcription regulation studies soluble TFs in the nucleus, 

their distribution, and DNA binding kinetics using mostly fluorescence microscopy-based 

approaches. However, an integrated investigation of regulatory mechanisms from both 

fields is currently lacking. Therefore, this thesis aimed to develop a model of transcription 

regulation that integrates genome-wide information on chromatin topology- and TF-

mediated mechanisms using chromatin accessibility sequencing data at single-cell 

resolution. To achieve this, three specific objectives were addressed in this thesis:  

(i) Advancing the experimental and computational analysis of scATAC-seq. 

In the first part of the thesis, I identified data sparsity as the key challenge of scATAC-seq 

data analysis. I aimed to efficiently reduce data sparsity with an improved experimental 

protocol of scATAC-seq. Furthermore, I enhanced computational methods for quantifying 

chromatin accessibility in single cells. These methods were then used to differentiate 

between true biological variation between single cells and data sparsity at individual 

genomic loci.  

(ii) Developing a computational framework to dissect the molecular mechanisms 

underlying chromatin co-accessibility.  

In the second part, I aimed to design a computational framework to resolve different layers 

of chromatin co-accessibility between multiple genomic loci based on the insights gained 

from the previous analyses. I sought to link these layers of chromatin co-accessibility to 

their underlying molecular mechanisms. Additionally, the goal was to make this 

computational framework available to the scientific community as a user-friendly and well-

documented R software package.  

(iii) Identifying the structure-function relationship between different regulatory 

mechanisms and their transcriptional output. 

In the third part of the thesis, I applied the newly developed computational framework 

termed RWireX for chromatin co-accessibility analysis to different mammalian systems 

under perturbation to study genome-wide mechanisms of transcription regulation using 

chromatin co-accessibility. Additionally, my goal was to examine how these chromatin co-
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accessibility features are distributed across the genome in different model systems and 

assess their potential cooperation in forming a multi-layered transcription regulation 

network.  

My thesis successfully addressed these three objectives. By bringing them together, I 

developed a novel model of transcription regulation, which reconciles previously diverging 

observations from chromatin topology- and TF-centric studies into a unified, genome-wide 

framework.
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2. Results 

2.1. Advancing the experimental and computational 
analysis of scATAC-seq 

In this chapter, I address the first aim of this thesis: Advancing the experimental and 

computational analysis of scATAC-seq data. To achieve this, I used single-cell sequencing 

data from MEFs, which were analyzed under perturbation with IFNβ for 6 h (Table 2.1; 
see Section 1.3.1). Additionally, I used a more heterogeneous cell system of primary 
human PBMCs (Table 2.1) to explore the potential of chromatin accessibility in resolving 
different cell types and their specific chromatin footprints. Lastly, I utilized scRNA-seq data 

from patients with acute myeloid leukemia (AML; Table 2.1) to demonstrate how TF 
activity can be studied at single-cell resolution using expression data. 

Table 2.1 Overview of sequencing data sets used for advancing the experimental and 
computational analysis of scATAC-seq. 

Sample Perturbation Sequencing 
type Assay type 

MEF IFNβ treatment Single-cell ATAC, TurboATAC 

PBMC Cell types Single-cell 
ATAC, TurboATAC,  
Multiome (RNA+ATAC), 
Multiome (RNA+TurboATAC) 

AML patient 
samples 

Mutational 
landscape Single-cell RNA 

 

The majority of the presented results were published in Seufert et al. (2023) and Schuster 

et al. (2023). For MEFs, sequencing data acquisition was performed by Markus 
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Muckenhuber (formerly Division of Chromatin Networks, German Cancer Research 

Center, Germany). For PBMCs, sequencing data acquisition was conducted by Katharina 

Bauer and Jan-Philipp Mallm (both Single Cell Open Lab, German Cancer Research 

Center, Germany). My contribution comprised the computational analysis of sequencing 

data from MEFs and PBMCs. For AML patient samples, sequencing data acquisition was 

performed by Linda Schuster (formerly Division of Chromatin Networks, German Cancer 

Research Center, Germany). Computational analysis was conducted in collaboration with 

Linda Schuster, where I supported coding and conceptualization. The analysis of TF 

activity was carried out using my scripts. 

2.1.1. Identifying technical biases in scATAC-seq data 

Utilizing chromatin accessibility as a genome-wide measure of chromatin state has 

enhanced the understanding of chromatin organization and its impact on transcription. 

Investigating chromatin accessibility at single-cell resolution is necessary to resolve the 

transient nature of transcription and chromatin state. However, the analysis of scATAC-

seq data introduces challenges. We acquired two biological replicates of scATAC-seq data 

from MEFs stimulated for 6 h with IFNβ to observe potential technical biases within and 

between samples at single-cell resolution and in pseudo-bulks (computational aggregation 

of single-cell information from one sample). Both replicates were acquired with the same 

protocol for scATAC-seq but varied in cell numbers used for library generation (20,000 

cells for Rep1; 7,500 cells for Rep2).  

Pseudo-bulk chromatin accessibility reveals overall data quality 
The two replicates showed variations in the total number of sequenced read pairs (Table 
2.2). Rep2 had twice as many sequenced read pairs as Rep1. However, the duplication 
rate of Rep1 was higher, and 15 % more read pairs were PCR duplicates that needed to 

be excluded. Consequently, this resulted in similar numbers of unique read pairs for the 

two replicates (less than a 1.3-fold difference). On pseudo-bulk level, the two replicates 

showed similar distributions of fragment sizes (Figure 2.1A). However, the number of 
insertions at TSSs was much lower in Rep1 than Rep2 (Figure 2.1B). 

When examining the data at single-cell resolution, both replicates showed similar numbers 

of empty cell barcodes, identified by low numbers of unique fragments and low TSS 

enrichment scores (grey area in Figure 2.1C, Table 2.3). Rep1 showed a high number of  
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Table 2.2 Sequencing quality metrics of scATAC-seq replicates from 6 h IFNβ-treated MEFs. 

 Rep1 Rep2 

Sequenced read pairs 423,651,840 827,356,762 

Percent mapped read pairs 92.5 92.2 

Percent duplicated read pairs 55.6 70.1 

Percent nucleosome-free fragments 36.5 40.6 

Unique read pairs 188,101,417 247,379,672 

 

cell-containing barcodes, of which 19,114 cells were selected as the high-quality cell 

population for further analysis (red rectangle in Figure 2.1C, left; Table 2.3). Rep2 showed 
a four-fold lower number of cell-containing barcodes than Rep1, of which 5,153 cells were 

selected as the high-quality cell population for further analysis (red rectangle in Figure 
2.1C, right; Table 2.3). For both replicates, high-quality cells were chosen by defining 
minimal cutoffs for number of unique fragments and TSS enrichment score. These cutoffs 

were selected to obtain best possible normal distributions of these two quality criteria in 

the resulting cell populations since the samples contained homogeneous MEFs with no 

expected biological variation in cell size and chromatin state. For Rep1, this resulted in a 

minimal cutoff of 103.1 for the number of unique fragments and 5 for TSS enrichment score. 

For Rep2, minimal cutoffs of 103.8 for number of unique fragments and 5 for TSS 

enrichment score were selected. 

Table 2.3 Quality metrics of scATAC-seq replicates from 6 h IFNβ-treated MEFs. 

 Rep1 Rep2 

Barcode number 76,917 67,933 

High-quality cell number 19,114 5,153 

Singlet number 17,827 4,426 

Mean number of fragments 7,751 35,545 

Mean TSS enrichment score 9.39 14.78 

Mean nucleosome ratio 1.98 2.06 
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Cell number and sequencing depth drive technical biases between samples  
The filtered high-quality cells from Rep1 and Rep2 varied greatly in their numbers of 

unique fragments and TSS enrichment scores (Figures 2.2A+B). Rep1 showed on 
average almost 5-fold fewer unique fragments and 1.6-fold lower TSS enrichment scores 

per cell than Rep2 (Table 2.3). Nucleosome ratios were comparable between the cells of 
the two replicates (Figure 2.2C, Table 2.3). 

Next, cell barcodes containing more than one cell, so-called doublets, were identified and 

filtered out. Doublets were identified by quantifying the number of more than two 

overlapping fragments at a genomic site per cell barcode. Cell barcodes with 

disproportionally high numbers of these polyploid overlaps were considered doublets, as 

healthy MEFs are expected to have a diploid set of chromosomes. The corresponding q- 

value of exceptionally high polyploid overlaps was closely linked to generally high numbers 

of unique fragments in cells (Figure 2.2D). Doublets were identified by significant q-value 

Figure 2.1 Sequencing data quality of scATAC-seq replicates from 6 h IFNβ-treated MEFs. A 
Fragment size distribution. B Number of insertions in 4 kb around TSSs. C TSS enrichment score 
against the number of unique fragments (log10) of cell barcodes in Rep1 (left) and Rep2 (right). 
The color of points reflects the density of cell barcodes. The grey area marks low-quality cell 
barcodes. The red rectangle marks selected high-quality cells. 
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of polyploid overlaps below 0.05. This identified 7 % and 14 % of high-quality cells as 

doublets for Rep1 and Rep2, respectively. Consequently, the doublet filtering resulted in 

17,827 and 4,426 high-quality singlets for Rep1 and Rep2 (Table 2.3). Here, fewer cells 
were lost for Rep1 than for Rep2, although Rep1 contained more cells and therefor a 

higher likelihood of doublets. The lower number of unique fragments per cell in Rep1 

appeared to underestimate the actual doublet probability (Figure 2.2D). 

Low-dimensional embedding reveals technical biases within samples 
In addition to the observed technical biases between samples, technical biases within 

samples were investigated by inspecting the high-quality singlets in low-dimensional 

embeddings. Dimensionality was reduced using iterative LSI, and relevant components 

were assessed by their singular value decomposition (SVD) deviation (Figure 2.3A). SVD 
deviation of iterative LSI components above 10 approached a plateau for both replicates, 

thereby not contributing further information to the single-cell embeddings. Furthermore, 

Figure 2.2 Cell quality of scATAC-seq replicates from 6 h IFNβ-treated MEFs. A Number of 
unique fragments (log10) per cell. B TSS enrichment score per cell. C Nucleosome ratio per cell. 
D Q-value of doublet probability (log10) against the number of unique fragments (log10) of cells in 
Rep1 (left) and Rep2 (right). The color of points reflects the density of cells. 
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correlation of iterative LSI components to the number of unique fragments was assessed 

(Figure 2.3B). For both replicates, the first iterative LSI component showed high 
correlation to sequencing depth above 0.8 and thus was removed. Consequently, iterative 

LSI components 2 to 10 from both replicates were used for low-dimensional embedding 

(Figure 2.3C). Clustering of cells revealed four distinct clusters in both replicates. For both, 
clusters C1 and C2 only contained few cells, while clusters C3 and C4 contained more 

than 98 % of the cell populations (Table 2.4). 

In Rep1, cluster C1 showed lower numbers of unique fragments than clusters C2-4 

(Figures 2.3D, top left; 2.4A), while high TSS enrichment scores were enriched in cluster 
C2 (Figures 2.3D, top middle; 2.4B). Clusters C3 and C4 showed consistent numbers of 
unique fragments, TSS enrichments scores, and nucleosome ratios (Figures 2.3D, top; 
2.4). In Rep2, clusters C1 and C2 showed lower numbers of unique fragments and TSS 

Figure 2.3 Low-dimensional embeddings of scATAC-seq replicates from 6 h IFNβ-treated 
MEFs. A SVD deviation of LSI components for Rep1 (left) and Rep2 (right). B Same as panel A 
showing LSI component correlation to the number of unique fragments. C UMAP embedding of 
Rep1 (top) and Rep2 (bottom). The color of points reflects the k-nearest neighbor cluster. D Same 
as panel C with color of points reflecting the number of unique fragments per cell (left), TSS 
enrichment score (middle) and nucleosome ratio (right). 
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enrichment scores than clusters C3 and C4 (Figures 2.3D, bottom left and middle; 
2.4A+B). Additionally, cluster C2 showed lower nucleosome ratios (Figures 2.3D, bottom 
right; 2.4C). In contrast to Rep1, Rep2 clusters C3 and C4 showed small differences in 
their numbers of unique fragments, but TSS enrichment scores and nucleosome ratios 

were consistent (Figures 2.3D, bottom; 2.4). For both replicates, clusters C1 and C2 were 
removed from further analyses, as the differences in chromatin accessibility patterns were 

predominantly driven by the previously mentioned technical biases within the samples.  

Table 2.4 Cell numbers in clusters of scATAC-seq replicates from 6 h IFNβ-treated MEFs. 

 C1 C2 C3 C4 

Rep1 46 105 11,788 5,888 

Rep2 22 62 2,637 1,705 

 

When assessing the low-dimensional embeddings of Rep1 and Rep2 without the 

technically biased clusters C1 and C2, cluster C3 from both replicates comprised similar 

fractions of cells (Figure 2.3C). Here, Rep1 cluster C3 contained 66 % of all high-quality 
singlets, while Rep2 cluster C3 comprised 60 % of all high-quality singlets (Tables 2.3, 
2.4). Hence, both samples likely captured the same cell subpopulations of MEFs as 

Figure 2.4 Cell quality in clusters of scATAC-seq replicates from 6 h IFNβ-treated MEFs.  
A Number of unique fragments (log10) per cell. B TSS enrichment score per cell. C Nucleosome 
ratio per cell.  
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separated clusters. Notably, Rep2 showed more heterogeneity within clusters in low-

dimensional embedding than Rep1, potentially due to the higher single-cell sequencing 

depth of Rep2. 

In summary, sequencing depth was identified as the key determinant of scATAC-seq data 

quality and strongly biased comparisons between and within samples. Further biases were 

observed by variations in TSS enrichment scores and, to a lesser extent, nucleosome 

ratios. Low single-cell sequencing depths resulted in random non-sequenced accessible 

sites (dropouts), which led to lower TSS enrichment, underestimation of doublets, and less 

detailed low-dimensional embeddings. This observation is also referred to as sparsity of 

scATAC-seq data. 

2.1.2. Reducing sparsity of scATAC-seq data 

Data sparsity is a key challenge in scATAC-seq data analysis, where low data sparsity 

enables detailed analyses at single-cell and high genomic resolution. Several parameters 

determine the degree of data sparsity: (i) sequencing depth, (ii) cell number, (iii) Tn5 

activity, and (iv) Tn5 reaction buffer. High sequencing depth per single cell significantly 

reduces data sparsity and can be achieved by either increasing total sequencing depth or 

decreasing cell number. However, increasing sequencing depth is costly and inflates the 

rate of sequenced PCR duplicates, while decreasing of cell numbers hinders downstream 

analyses. Consequently, we aimed to reduce scATAC-seq data sparsity by optimizing Tn5 

activity and the Tn5 reaction buffer in collaboration with the Single Cell Open Lab at DKFZ. 

High Tn5 activity increases the number of detected accessible sites 
We assessed the relative activities of in-house Tn5 (Tn5-H), 10x Genomics Tn5 (Tn5-

TXG), and Illumina TDE1 enzyme (Tn5-ILMN) by measuring the fragmentation of lambda 

DNA using qPCR. Here, higher concentrations of Tn5-H showed increased fragmentation 

activity (Figure 2.5A). Different versions of Tn5-TXG varied significantly in their activity. 
The highest concentration of in-house Tn5 (Tn5-H100) showed 1.3- to 4-fold higher activity 

than the Tn5-TXGs. Additionally, we tested the effect of different buffer compositions on 

Tn5 activity. We observed significantly lower Tn5-H100 and Tn5-ILMN activity with 

standard Tn5 reaction (Tag) buffer than with the 10x Genomics (TXG) buffer, while the 

effect on Tn5-TXGv2 was not significant (Figure 2.5B). 
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We devised flexible experimental protocols for scATAC-seq and simultaneous Multiome 

scRNA-/scATAC-seq from the same cells that allowed the application of varying Tn5 

preparations (Figure 2.5C). For both protocols, nuclei were isolated and incubated with 
Tn5. The adapter loading of the Tn5 varied for the two protocols. The scATAC protocol 

required blocking of the read 2 adapter phosphorylation with a phosphate-5'-methyl ether 

(phos-ME), while the Multiome-scATAC protocol utilized blocking of the read 1 adapter 

phosphorylation with a phos-ME-phosphorothioate (PTO). Subsequently, library 

generation of scATAC and Multiome-scATAC followed standard protocols. 

Next, we tested Tn5-H100, Tn5-H30 and Tn5-TXGv1.1 in the scATAC protocol using 

MEFs treated with IFNβ for 6 h. While the mapping rate of pseudo-bulk sequencing data 

was highly comparable across scATAC protocols with different Tn5 preparations, the 

duplicate rate and nucleosome-free fragment rate showed strong variations (Table 2.5). 
scATAC Tn5-H samples had higher rates of nucleosome-free fragments, in line with the 

Figure 2.5 TurboATAC protocol for scATAC-seq experiments. A Tn5 activity calculated from 
qPCR measurement of fragmented lambda phage DNA. Comparison of in-house Tn5 at three 
concentrations (relative activity levels from highest to lowest: Tn5-H100, Tn5-H30, Tn5-H6) and 
Tn5 from two versions of 10x Genomics kits (Tn5-TXGv1.1, Tn5-TXGv2). Error bars represent the 
standard deviation from triplicates. P-values from two-sided, unpaired Student’s t-test are indicated 
as *, P> 0.05; **, P < 0.01; ***, P > 0.001. B Same as panel A with Tn5-H100, Tn5-TXGv2 and 
Illumina TDE1 enzyme (Tn5-ILMN) in buffer from 10x Genomics (TXG buffer) and standard Tn5 
reaction buffer (Tag buffer). C Experimental workflow of scATAC-seq as well as Multiome (scATAC-
seq and scRNA-seq). Variable Tn5 preparations can be used. Adapted from Seufert et al. (2023). 
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previously observed higher activity of Tn5-H and consequently higher chromatin 

fragmentation. A lower duplicate rate in the Tn5-H100 sample indicated a higher 

complexity of the constructed ATAC library, resulting in a three-fold increase in unique 

read pairs. However, this was biased by the higher sequencing depth of Tn5-H100 

compared to Tn5-TXGv1.1, which is why down-sampling of Tn5-H100 sequencing reads 

was performed. At comparable sequencing depths, Tn5-H100 showed a two-fold lower 

duplicate rate than Tn5-TXGv1.1 and Tn5-H30, as well as a two-fold higher number of 

unique read pairs (Table 2.5). 

Table 2.5 Sequencing quality metrics of scATAC-seq and scTurboATAC-seq from 6 h IFNβ-
treated MEFs. Adapted from Seufert et al. (2023). 

 Tn5-
TXGv1.1 Tn5-H30 Tn5-H100 

Tn5-H30  
down-
sampled 

Tn5-H100 
down-
sampled 

Sequenced 
read pairs 827,356,762 1,221, 

969,310 
1,304, 
430,940 827,400,971 827,404,289 

Percent 
mapped read 
pairs 

92.2 88.2 87.7 88.2 87.7 

Percent 
duplicated read 
pairs 

70.1 75.8 45.9 68.7 36.0 

Percent 
nucleosome-
free fragments 

40.6 54.5 64.8 54.9 65.7 

Unique read 
pairs 247,379,672 295,716,573 705,697,139 258,976,504 529,538,745 

Cell barcode 
number 67,933 74,384 87,989 - - 

 

At single-cell resolution, the three samples showed similar numbers of cell-containing 

barcodes, identified by high numbers of unique fragments and high TSS enrichment 

scores (white area in Figure 2.6A). Moreover, all samples showed similar numbers of 
high-quality cells (red rectangles in Figure 2.6A). For Tn5-H100, this high-quality cell 
population shifted towards higher numbers of unique fragments and TSS enrichment 

scores (Table 2.6). Furthermore, Tn5-H100 exhibited a second barcode population of 
intermediate numbers of unique fragments below the cell cutoff but TSS enrichment scores 

above the cell cutoff. These barcodes had low fraction of reads in peaks (FRIP) scores of 

approximately 0.3 and were clearly separated from high-quality cells with FRIP scores of 

roughly 0.7 (Figure 2.6B, right). Tn5-TXGv1.1 and Tn5-H30 did not show this second 
barcode population with intermediate numbers of unique fragments and TSS enrichment 

scores but low FRIP scores (Figure 2.6B).  
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Figure 2.6 Quality of scATAC-seq experiments with different Tn5 preparations from 6 h IFNβ-
treated MEFs. A TSS enrichment score against the number of unique fragments (log10) of cell 
barcodes in scATAC with Tn5-TXGv1.1 (left), Tn5-H30 (middle) and Tn5-H100 (right). The color of 
points reflects the density of cell barcodes. The grey area marks low-quality cell barcodes. The red 
rectangle marks selected high-quality cells. B Same as panel A with fraction of reads in peaks 
(FRIP) score against the number of unique fragments (log10). The grey area marks cell barcodes 
with numbers of unique fragments below respective high-quality cell cutoffs and FRIP scores below 
0.5. C Fragment size distribution in scATAC with Tn5-TXGv1.1, Tn5-H30 and Tn5-H100. Adapted 
from Seufert et al. (2023). 
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Table 2.6 Quality metrics of scATAC-seq and scTurboATAC-seq from 6 h IFNβ-treated MEFs. 

 Tn5-TXGv1.1 Tn5-H30 Tn5-H100 

High-quality cell number 5,153 5,809 5,612 

Mean number of unique 
fragments 30,200 31,623 64,565 

Mean TSS enrichment 
score 14.77 20.02 20.94 

Mean nucleosome ratio 1.76 0.91 0.64 

 

The pseudo-bulk distribution of fragment sizes revealed an enrichment of fragments 

without nucleosomes in Tn5-H samples compared to Tn5-TXGv1.1 (Figure 2.6C, Table 
2.6). We selected the Tn5-H100 protocol as our scTurboATAC protocol, as Tn5-H100 
demonstrated the lowest duplicate rate, highest single-cell unique fragment numbers, high 

TSS enrichment, and high FRIP. In the following, the Tn5-TXGv1.1 sample will serve as 

the scATAC-seq reference. 

scTurboATAC reduces data sparsity in MEFs 
Low-dimensional embedding and clustering revealed four distinct clusters for 

scTurboATAC-seq and scATAC-seq data (Figure 2.7A). For scATAC-seq data, clusters 
C1 and C2 contained only a few cells (Figure 2.7A, left) with high apoptosis scores 
(Figure 2.7B, left), while clusters C3 and C4 included more than 98 % of the cell 
population. For scTurboATAC-seq data, cluster C1 only contained few cells (Figure 2.7A, 
right) with high apoptosis scores (Figure 2.7B, right), while clusters C2, C3, and C4 
contained the majority of the cell population. Excluding the clusters with low cell numbers 

and high apoptosis scores, scTurboATAC resolved an additional cluster, likely due to the 

higher number of unique fragments per cell in scTurboATAC-seq data than in scATAC-

seq data (Figure 2.7C). When down-sampling scTurboATAC-seq data to the same 
sequencing depth as scATAC-seq data, the three major cell clusters and the higher 

number of unique fragments per cell persisted (Figure 2.7D+E). This confirmed that higher 
Tn5 activity reduced data sparsity in MEFs, leading to higher resolution in low-dimensional 

embeddings. 
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scTurboATAC reduces data sparsity in primary human PBMCs 
Next, we aimed to test whether scTurboATAC-seq also reduces data sparsity in samples 

of primary cells, rather than cultured cell samples. Therefore, we performed scATAC using 

Tn5-H100 (scTurboATAC-seq) and Tn5-TXGv2 (scATAC-seq) on primary human PBMCs. 

Here, sequencing depth was comparable for the two protocols, with a slightly lower 

mapping rate for scTurboATAC-seq (Table 2.7). As with MEFs, scTurboATAC-seq data 
showed 15 % fewer duplicates, resulting in a 1.5-fold higher number of unique read pairs. 

The rates of nucleosome-free fragments were more comparable between scTurboATAC-

seq and scATAC-seq data than for MEFs. 

scTurboATAC-seq detected a higher number of total barcodes than scATAC-seq, but the 

number of cell-containing barcodes was comparable (grey and white area in Figure 2.8A). 
Moreover, both samples showed similar numbers of high-quality cells (red rectangles in 

Figure 2.8A). The high-quality cell population shifted towards higher TSS enrichment 

Figure 2.7 Data complexity of scATAC-seq and scTurboATAC-seq data from 6 h IFNβ-treated 
MEFs. A UMAP embedding of scATAC (left) and scTurboATAC (right). The color of points reflects 
the k-nearest neighbor cluster. B Module score of apoptosis genes per cell in clusters of scATAC 
(left) and scTurboATAC (right). C Number of unique fragments per 10,000 raw reads (log10) and 
cell for scATAC and scTurboATAC. P-values from two-sided, unpaired Student’s t-test are 
indicated as *, P < 0.05; **, P < 0.01; ***, P < 0.001. D Same as panel A for sub-sampled 
scTurboATAC.  E Same as panel C with the number of unique fragments (log10) per cell for 
scATAC and sub-sampled scTurboATAC. Adapted from Seufert et al. (2023). 
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scores for scATAC-seq data, but scTurboATAC-seq data showed significantly higher 

numbers of unique fragments (Figure 2.8B). Low-dimensional embedding and clustering 
revealed 10 and 14 distinct cell clusters in scATAC-seq and scTurboATAC-seq data, 

respectively (Figure 2.8C). Additionally, scTurboATAC-seq captured significantly more 
accessible peaks per single cell than scATAC-seq (Figure 2.8D). Finally, annotation of 
detected cell clusters to hematopoietic cell types by gene activity scores revealed 

improved detection and resolution by scTurboATAC-seq (Figure 2.8E). In scATAC-seq 
data, classical monocytes and dendritic cells shared one cell cluster (C9), which was 

resolved into separate clusters in scTurboATAC-seq data (classical monocytes in C3; 

dendritic cells in C6; Figures 2.8C+E). Furthermore, scTurboATAC-seq improved the 
detection of progenitor cells and showed a higher resolution of the B cell cluster, 

thrombocyte/granulocyte cluster, and naïve and mature CD8+ T cell clusters (Figure 2.8E). 

Table 2.7 Sequencing quality metrics of scATAC-seq and scTurboATAC-seq from human 
PBMCs. Adapted from Seufert et al. (2023). 

 scATAC scTurboATAC 

Sequenced read pairs 1,466,934,091 1,468,516,560 

Percent mapped read pairs 94.0 90.5 

Percent duplicated read pairs 66.6 52.2 

Percent nucleosome-free 
fragments 50.4 47.5 

Unique read pairs 489,955,986 701,950,916 

High-quality cell number 7,658 8,309 

 

Integration of scTurboATAC into multi-omic assays improves data quality 
Finally, we intended to assess whether the TurboATAC protocol also reduced data sparsity 

of Multiome scATAC-seq data, while preserving similar data quality of the respective 

Multiome scRNA-seq data. Consequently, we tested Tn5-H100, Tn5-H50 and Tn5-TXGv2 

in the Multiome protocol (see Figure 2.5C) using primary human PBMCs. While 
sequencing depth and mapping rate of pseudo-bulk Multiome scATAC-seq data were 

highly comparable across protocols with different Tn5 preparations, the duplicate rate was 

considerably lower for the Tn5-H100 protocol (Table 2.8). This resulted in a higher number 
of unique Multiome-ATAC read pairs for the Tn5-H100 protocol. The corresponding 

Multiome scRNA-seq data showed comparable sequencing depths and duplicate rates. 

However, the mapping rate was approximately 10 % lower for Multiome-RNA from Tn5- 
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H50 and Tn5-H100 protocols. Regardless, the number of unique Multiome-RNA read pairs 

was highly comparable across all protocols with different Tn5 preparations. 

Figure 2.8 Quality of scATAC-seq and scTurboATAC-seq data from human PBMCs. A TSS 
enrichment score against the number of unique fragments (log10) of cell barcodes in scATAC (left) 
and scTurboATAC (right). The color of points reflects the density of cell barcodes. The grey area 
marks low-quality cell barcodes. The red rectangle marks selected high-quality cells. B Number of 
unique fragments per 10,000 raw reads (log10) and cell for scATAC and scTurboATAC. P-values 
from two-sided, unpaired Student’s t-test are indicated as *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
C UMAP embedding of scATAC (left) and scTurboATAC (right). The color of points reflects the k-
nearest neighbor cluster. D Number of accessible peaks per cell from the merged peak set of 
scATAC and scTurboATAC. P-values from two-sided, unpaired Student’s t-test are indicated as *, 
P < 0.05; **, P < 0.01; ***, P < 0.001. E Same as panel C with the color of points reflecting cell type 
annotation by marker gene activity scores. Adapted from Seufert et al. (2023). 
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Table 2.8 Quality metrics of Multiome scRNA-seq and scATAC-seq experiments with 
different Tn5 preparations from human PBMCs. Adapted from Seufert et al. (2023). 

 Tn5-TXGv2 Tn5-H50 Tn5-H100 

Sequenced ATAC read pairs 1,304,897,617 1,431,221,793 1,444,079,941 

Percent mapped ATAC read 
pairs 92.5 91.0 91.2 

Percent duplicated ATAC 
read pairs 68.5 67.2 57.3 

Unique ATAC read pairs 411,042,749 469,440,748 616,622,135 

Sequenced RNA read pairs 714,778,267 644,951,970 716,455,503 

Percent mapped RNA read 
pairs 61.4 53.1 51.8 

Percent duplicated RNA read 
pairs 92.3 91.8 92.2 

Unique RNA read pairs 55,037,926 52,886,061 55,883,529 

Cell number ATAC 4,563 7,405 6,690 

Cell number RNA 4,587 7,916 7,101 

High-quality cell number 
ATAC + RNA 3,620 5,999 5,077 

 

At single-cell resolution, Multiome scATAC-seq data from Tn5-H protocols identified higher 

numbers of cell-containing barcodes (Figures 2.9A+B, Table 2.8). Specifically, Multiome 
scATAC-seq with Tn5-H100 showed numerous cells with high numbers of unique 

fragments but low TSS enrichment scores (grey area in Figure 2.9A, right). These cells 
exhibited high numbers of TSS reads, but their TSS read numbers appeared to plateau at 

high unique fragment numbers (Figure 2.9B, right). Consequently, cell-containing 
barcodes were identified by high numbers of unique fragments and high TSS read 

numbers, rather than TSS enrichment scores (white area in Figure 2.9B, Table 2.8). Cells 
from Multiome scATAC-seq data with Tn5-H100 contained significantly higher numbers of 

unique fragments than those with Tn5-TXGv2 and Tn5-H50 (Figure 2.9C, left). 
Additionally, the Multiome scRNA-seq data from the Tn5-TXGv2 protocol detected nearly 

half the number of cell-containing barcodes compared to the Tn5-H protocols (Table 2.8). 
Nevertheless, all protocols resulted in comparable numbers of Multiome RNA UMI counts 

per single cell (Figure 2.9C, right). Finally, high-quality cells from both Multiome scATAC-
seq and scRNA-seq data were determined, revealing a higher number of multi-omic high-

quality cells for Tn5-H protocols (Table 2.8). We selected the Tn5-H100 protocol as the 
Multiome scTurboATAC-seq protocol, as it showed the lowest pseudo-bulk duplicate rate, 
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Figure 2.9 Quality of Multiome scRNA-seq and scATAC-seq experiments with different Tn5 
preparations from human PBMCs. A TSS enrichment score against the number of unique 
fragments (log10) of cell barcodes in Multiome-scATAC with Tn5-TXGv2 (left), Tn5-H50 (middle) 
and Tn5-H100 (right). The color of points reflects the density of cell barcodes. The grey area marks 
low-quality cell barcodes.  B Same as panel A with the number of reads in TSS (log10) against the 
number of unique fragments (log10). C Number of unique Multiome-scATAC fragments (left) and 
Multiome-scRNA UMI counts (right) per 10,000 raw reads (log10) and cell for Multiome with Tn5-
TXGv2, Tn5-H50 and Tn5-H100. P-values from two-sided, unpaired Student’s t-test are indicated 
as *, P < 0.05; **, P < 0.01; ***, P < 0.001. Adapted from Seufert et al. (2023). 
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highest single-cell unique fragment numbers, and high RNA data quality. The Tn5-TXGv2 

sample was used as the Multiome scATAC reference. 

Low-dimensional embedding and clustering revealed 11 cell clusters for Multiome 

scTurboATAC-seq and 9 clusters for Multiome scATAC-seq data (Figures 2.10A+B, left). 
For Multiome scRNA-seq data, 11 distinct clusters were resolved with both protocols 

(Figures 2.10A+B, middle). Lastly, the co-embedding of Multiome scATAC- and scRNA-
seq resulted in 15 clusters for the TurboATAC protocol and 14 clusters for the standard 

protocol (Figures 2.10A+B, right). Consequently, the reduced data sparsity in the 
Multiome-scTurboATAC protocol resolved more cell clusters in only ATAC and combined 

ATAC+RNA embeddings, while only RNA embedding showed similar resolution than the 

Multiome-scATAC protocol. 

Figure 2.10 Data complexity of Multiome scATAC-seq and Multiome scTurboATAC-seq 
protocols from human PBMCs. A UMAP embedding of Multiome-scTurboATAC (left), 
corresponding Multiome-scRNA (middle) and co-embedding of Multiome-scTurboATAC and -
scRNA (right). The color of points reflects the k-nearest neighbor cluster. B Same as panel A for 
Multiome-scATAC (left), corresponding Multiome-scRNA (middle) and co-embedding of Multiome-
scATAC and -scRNA (right). Adapted from Seufert et al. (2023).  
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In summary, we reduced the sparsity of scATAC-seq data by introducing the TurboATAC 

protocol. The TurboATAC protocol increased library complexity by optimizing Tn5 activity 

and the selected Tn5 reaction buffer. Higher library complexity reduced the duplicate rate 

of sequencing reads, ultimately increasing the detected number of unique fragments per 

single cell. Consequently, the reduced sparsity in scTurboATAC-seq data resolved cell 

clusters at higher resolution for both single-omic and multi-omic protocols.   

2.1.3. Stochasticity of single cell chromatin accessibility 

After reducing scATAC-seq data sparsity, as the most challenging technical bias, I aimed 

to further characterize chromatin accessibility at single cell resolution. As shown before, I 

observed variability in chromatin accessibility between homogeneous cells (see Figure 
2.7A). However, whether this was caused by persisting data sparsity or stochastic 
fluctuations of chromatin accessibility remained uncertain. In the following, I used scATAC- 

and scTurboATAC-seq data from MEFs treated with IFNβ for 6 h to assess whether 

variation in chromatin accessibility between homogeneous single cells was due to 

technical dropouts or reflected true biological variation. 

Peaks of chromatin accessibility were called from the pseudo-bulks of scATAC- and 

scTurboATAC-seq data, separately (Figure 2.11A). Both samples yielded equal numbers 
of approx. 140,000 peaks and similar distributions across promoter, exonic, intronic and 

intergenic regions. For comparison, peaks of chromatin accessibility were called from two 

bulk ATAC replicates of MEFs treated with IFNβ for 6 h (Figure 2.11A). The number of 
total peaks detected was highly variable between the two bulk ATAC replicates. While 

bulkATAC_rep1 resulted in roughly 140,000 peaks and was similar to the single cell peak 

sets, bulkATAC_rep2 yielded almost twice as many peaks (roughly 230,000). Notably, 

both bulk ATAC replicates called comparable numbers of promoter and exonic peaks as 

the single cell samples. However, bulkATAC_rep2 showed much higher numbers of 

intronic and intergenic peaks. When intersecting the genomic positions of single cell and 

bulk peak sets, 60 % of single cell peaks overlapped with bulk peaks and 65 % vice versa.  

To facilitate comparability when assessing peak coverage at single cell resolution, a 

consensus peak set from the two single cell peak sets and the scATAC-H30 peak set (see 

Section 2.1.2) was generated comprising 202,369 peaks of 2 kb each (peak summits 
extended by 1 kb in both directions). Data from scTurboATAC-seq showed significantly 

higher numbers of accessible peaks per cell than scATAC-seq data (Figure 2.11B). The 
number of accessible peaks per cell showed a strong relation to the number of unique 
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fragments per cell (Figure 2.11C). As expected, cells from scATAC-seq data showed less 
accessible peaks per cell due to lower numbers of unique fragments. Data points were 

fitted by linear and logistic regression (Figure 2.11C). The lower residual standard error 
(RSE) of the logistic regression indicated that the best fit of the data was by the logistic 

regression model. Its predicted plateau at approximately 35,000 accessible peaks per cell 

might be underestimated as single cells with sufficiently high numbers of unique fragments 

were missing from the model. 

In summary, pseudo-bulk single-cell data recovered similar numbers of ATAC peaks as 

one of the bulk ATAC replicates. However, only 7.5-15 % of all pseudo-bulk peaks were 

simultaneously detected as accessible in the single cells. A logistic relation between 

accessible peaks per cell and number of unique fragments per cell was observed. This 

indicated that low numbers of accessible peaks per cell were only partially due to data 

sparsity and persisted even at high single cell sequencing depths, showing that not all 

pseudo-bulk peaks were simultaneously accessible in single cells. Consequently, 

chromatin accessibility appeared to be stochastic at single-cell level. 

Figure 2.11 Peak coverage of accessibility signal in bulk ATAC-seq, scATAC-seq and 
scTurboATAC-seq data from 6h IFNβ-treated MEFs. A Number of peaks from pseudo-bulk 
scATAC and scTurboATAC as well as two replicates of bulk ATAC. Peaks are annotated by their 
genomic location. B Number of accessible peaks detected per cell in scATAC and scTurboATAC. 
Merged peak set of scATAC, scATAC Tn5-H30 and scTurboATAC was used. P-value from two-
sided, unpaired Student’s t-test is indicated as *, P < 0.05; **, P < 0.01; ***, P < 0.001. C Number 
of accessible peaks against number of unique fragments of cells from scATAC (blue) and 
scTurboATAC (red). Linear and logistic regression lines across both samples are visualized as 
dashed and black lines, respectively. Residual standard errors (RSEs) of linear and logistic models 
are reported. Adapted from Seufert et al. (2023) and extended.  
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2.1.4. Quantification of scATAC-seq data 

Chromatin accessibility is fundamentally binary, since chromatin can either be accessible 

or inaccessible to Tn5. However, due to the limited resolution of scATAC-seq data, 

chromatin accessibility is typically not analyzed at genomic base pair resolution. Instead, 

it is investigated and quantified in pre-defined regulatory regions, such as annotated 

promoters, enhancers, or data-driven peaks of chromatin accessibility. The quantification 

of Tn5 insertions in these regulatory regions enables to study their activity at single-cell 

resolution. In the following, I compare different methods of quantification and investigate 

to what extent non-binary information is encoded in scATAC-seq data. For this, I used 

again scATAC- and scTurboATAC-seq data from MEFs treated with IFNβ for 6 h to 

additionally assess the impact of data sparsity on quantification of scATAC-seq data. 

Count matrix design resolves variable non-binary information 
Essentially, scATAC-seq data can be quantified by either counting insertions or fragments 

(Figure 2.12A). On the one hand, insertion-based counting quantifies unique sequencing 
reads, which represent individual binding events of Tn5 molecules to accessible chromatin 

and their insertion of sequencing primers into the accessible chromatin regions. On the 

other hand, fragment-based counting quantifies whole fragments between paired 

sequencing reads These provide information on the distance between the two accessible 

sites on the same allele, but lack information on the actual chromatin accessibility state 

between the two sequencing reads. To quantify true accessibility, I created insertion-

based count matrices for binary and continuous quantification of the previously established 

consensus peak set (see Section 2.1.3) in single cells. Binary count matrices quantified 
either no accessibility (0 count) or any accessibility (1 count) in peaks and cells, while 

continuous count matrices differentiated between no accessibility (0 count) and the actual 

number of insertions per peak and cell (> 0 count; Figure 2.12A). Furthermore, I devised 
an allele count matrix, which resolved no accessibility (0 count), mono-allelic accessibility 

(1 count), and bi-allelic accessibility (2 count) in peaks and cells. Here, the number of 

insertions per peak and cell distinguished inaccessibility (0 count) from accessibility (1 and 

2 counts; Figure 2.12A). Additionally, overlapping fragments in peaks and cells 
differentiated mono-allelic (1 count, no overlapping fragments) and bi-allelic accessibility 

(2 count, overlapping fragments). Allele counting was validated using the X chromosome 

as a negative control. Here, X-inactivation theoretically allowed only mono-allelic counts. 

Indeed, all 4,909 peaks on the X chromosome did not show any bi-allelic counts. 
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Figure 2.12 Binary, continuous and allele counting of scATAC-seq and scTurboATAC-seq 
data in peaks from 6 h IFNβ-treated MEFs. Consensus peak set of scATAC, scATAC Tn5-H30, 
and scTurboATAC was used. A Scheme of exemplary fragments in peaks and cells. B Distribution 
of peak counts from binary (left), continuous (middle) and allele (right) counting of scATAC and sc- 
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All count matrices revealed twofold higher accessibility counts for scTurboATAC- than 

scATAC-seq data (Figure 2.12B). Additionally, continuous counting showed more 
accessibility counts above 1 for scTurboATAC- than scATAC-seq data. At single-cell 

resolution, the percentage of high insertion counts exhibited an exponential relationship to 

the total number of unique fragments per cell (Figure 2.12C). The allele count matrices 
showed only a few occurrences of bi-allelic counts (0.11 % in scTurboATAC-seq data; 

0.02 % in scATAC-seq data) (Figure 2.12B, right). The percentage of bi-allelic counts also 
exhibited an exponential relationship to the total number of unique fragments per cell 

(Figure 2.12D). Compared to continuous counting, there were two populations of cells in 
allele counting. The majority showed a moderate increase in bi-allelic counts with 

increasing unique fragment numbers. However, a subset of cells displayed exceptionally 

high bi-allelic counts, following a second, steeper exponential distribution over unique 

fragment numbers for scATAC- as well as scTurboATAC-seq data. 

Chromatin accessibility peaks vary in continuous counts 
At peak level, continuous quantification of chromatin accessibility revealed differences 

between peaks. For both scATAC- and scTurboATAC-seq data, the majority of peaks 

showed high inaccessibility in more than 90 % of cells (Figure 2.13A). The remaining 
peaks were accessible in a higher fraction of cells. Here, accessibility counts of 1 or 2 as 

well as ³3 increased simultaneously. Peaks never exceeded counts of 1 or 2 in more than 

40 % of cells, but ³3 counts were detected in up to 70 % (scATAC-seq) or 100 % 

(scTurboATAC-seq) of cells. Examining the abundance of ³ 3 counts in peaks of different 

genomic annotations revealed two- to fourfold higher fractions of cells with ³3 counts in 

promoter peaks compared to intergenic or gene body peaks (Figure 2.13B). Furthermore, 
the genomic sequence of peaks with high cell fractions of ³ 5 counts showed higher GC 

content (Figure 2.13C). 

Figure 2.12 (continued) TurboATAC. C Percentage of continuous peak counts of 5 or greater 
against number of unique fragments (log10) for cells from scATAC (left) and scTurboATAC (right). 
The color of points reflects the density of cells. D Same as panel C with percentage of bi-allelic 
peak counts.  
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Allele counts reveal sequence-dependent biases in chromatin accessibility 
Differences between peaks were less prominent for allelic quantification of chromatin 

accessibility. As with continuous counting, the majority of peaks showed inaccessibility in 

more than 90 % of cells for both scATAC- and scTurboATAC-seq data (Figure 2.14A). 
Again, the remaining peaks were accessible in a higher fraction of cells. Counts of mono-

allelic accessibility increased in up to 80 % (scATAC-seq) and 100 % (scTurboATAC-seq) 

Figure 2.13 Peak investigation by continuous counts of scATAC-seq and scTurboATAC-seq 
data from 6 h IFNβ-treated MEFs. A Percent of continuous counts of 0 against percent of 
continuous counts of 1 and 2 and percent of continuous counts ³ 3 per peak in scATAC (left) and 
scTurboATAC (right). Hexagons represent the distribution of peaks. The color of hexagons reflects 
the density of peaks. B Percent of continuous counts ³ 3 in peaks at different genomic locations in 
scATAC (left) and scTurboATAC (right). C Percent of continuous counts ³ 5 against GC content of 
peaks in scATAC (left) and scTurboATAC (right). The color of points reflects the density of peaks.  
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of cells. In contrast, counts of bi-allelic accessibility did not exceed 20 %, except for a 

single peak in scTurboATAC-seq data with bi-allelic accessibility detected in more than 90 

% of cells. The peak had a GC content of 0.45 and was located in an intergenic genomic 

region. When examining the relationship between bi-allelic counts per peak and its original 

peak calling scores, the identified peak with exceptionally high bi-allelic counts in 

scTurboATAC-seq data appeared as an upper outlier in peak calling scores with a score 

of 3,453 (Figure 2.14B). The exceptionally high peak calling score and high percentage 
of bi-allelic counts of the specific peak might represent a technical artifact and might 

originate from non-blacklisted repetitive genomic sequences. Regardless, like continuous 

accessibility counts, promoter peaks showed two- to threefold higher fractions of cells with 

bi-allelic accessibility than intergenic or gene body peaks (Figure 2.14C). 

Figure 2.14 Peak investigation by allele counts of scATAC-seq and scTurboATAC-seq data 
from 6 h IFNβ-treated MEFs.  A Percent of allele counts of 0 against percent of mono-allelic counts 
and percent of bi-allelic counts per peak in scATAC (left) and scTurboATAC (right). Hexagons 
represent the distribution of peaks. The color of hexagons reflects the density of peaks.  B Percent 
of bi-allelic counts against peak calling scores of peaks in scTurboATAC. The color of points reflects 
the density of peaks. C Percent of bi-allelic counts in peaks at different genomic locations in 
scTurboATAC. 
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In summary, different quantification methods for chromatin accessibility resulted in highly 

different count matrices, indicating the method’s strong impacts. Less sparsity in 

scTurboATAC-seq data led to higher counts for all methods, indicating improved data 

quality in scTurboATAC-seq for non-binary analyses. Continuous count matrices showed 

a clear enrichment of high counts in promoter peaks compared to intergenic and gene 

body peaks, indicating true biological information encoded in continuous counts. 

Additionally, high counts were associated with high GC content in the underlying peak 

sequences, potentially reflecting Tn5 insertion biases. Allele count matrices detected only 

low levels of bi-allelic counts. This appeared to be partially due to sequencing depth but 

also suggested that stochastic single-cell chromatin accessibility was unlikely to occur 

simultaneously on both alleles. Furthermore, there were two cell populations of lower and 

higher bi-allelic counts, suggesting that allele count matrices might contain additional 

information on cell state or technical factors such as doublets. 

2.1.5. Inferring transcription factor activity at single-cell 
resolution 

TFs play a key role in transcription regulation and varying levels of activity information can 

be obtained from different sequencing assays. Bulk or single-cell ChIP-seq using TF-

specific antibodies can be used to determine the genomic coordinates of sample-specific 

TF binding sites (see Section 1.2.2). Alternatively, TF expression can be obtained from 
bulk or single-cell RNA-seq. In addition, TF activity can be inferred from the expression of 

previously annotated TF target genes. Finally, bulk ATAC-seq enables the inference of so-

called TF footprints at known genomic TF motif positions. At both bulk and single-cell level, 

TF binding activity can be deduced from accessibility levels proximal to these known 

genomic TF motif positions. In the following section, I aimed to provide examples of TF 

activity assessment from scRNA- and scATAC-seq data (see Table 2.1 for overview of 
data sets). I used scRNA-seq data from five AML patients to compare TF expression ‚and 

TF activity, inferred from the expression of annotated TF target genes. Additionally, I used 

scATAC- and scTurboATAC-seq data from MEFs treated with IFNβ for 6 h to compute TF 

footprints at pseudo-bulk level and assess the impact of data sparsity. Finally, I used 

scATAC- and scTurboATAC-seq data from PBMCs to infer TF binding activity at single-

cell resolution. 
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Inferring TF expression and activity from scRNA-seq data 
All five examined AML patients possessed translocations at the genomic region of the 

mixed lineage leukemia (MLL) gene (Schuster et al., 2023). Three patients had 

translocations resulting in a common MLL fusion with MLLT3 and were thus grouped as 

the MLL-MLLT3 patients. Another patient exhibited a frequent fusion of MLL with ELL, 

referred to as the MLL-ELL patient. The final patient had a novel fusion of MLL with an 

enhancer of the messenger RNA decapping 4 gene (EDC4), termed MLL-EDC4 patient. 

In the low-dimensional embedding of the combined scRNA-seq data of all patients, healthy 

cells from all patients clustered together, whereas AML tumor cells formed patient- and 

subclone-specific cell clusters (Figure 2.15A). Clusters of healthy cells from all patients 
were annotated as B cells, erythroblasts, monocytes, natural killer (NK) cells, and T cells 

by marker gene expression (Figure 2.15B). AML tumor cell clusters revealed one distinct 
subclone for patients MLL-MLLT3#1 and MLL-EDC4, and two distinct tumor subclone 

clusters for patients MLL-MLLT3#2, MLL-MLLT3#3 and MLL-ELL (Figure 2.15B). The 
expression of the most differentially expressed genes clearly separated MLL-EDC4 tumor 

cells from all other tumor cells (Figure 2.15C). Similarly, TF activity of the most 
differentially active TFs separated the MLL-EDC4 tumor cell cluster from other patient 

tumor cell clusters (Figure 2.15D). Here, TF activity was inferred from the expression of 
annotated TF target genes. Additionally, MLL-ELL tumor cell clusters exhibited divergent 

TF activities compared to MLL-MLLT3 tumor cells, which was not evident from differential 

expression. Notably, from the most differentially active TFs only MYC and MYB were 

identified as part of the most differentially expressed genes (Figures 2.15C+D, black 
rectangles). 

When comparing the expression and activity of the two exemplary TFs MYC and MYB, no 

direct relationship between TF expression and the expression of their target genes was 

observed. The TF MYC showed slightly higher relative expression in tumor cells of patient 

MLL-EDC4 and particularly lower relative expression in tumor cells of patients MLL-

MLLT3#3 and MLL-ELL (Figure 2.15C, black rectangle). In contrast, its relative activity 
was much higher in tumor cells of patient MLL-EDC4, both high and low in tumor cell 

clusters of patient MLL-ELL, and reduced in all tumor cells of MLL-MLLT3 patients (Figure 
2.15D, black rectangle). Conversely, the TF MYB exhibited slightly higher relative 
expression in tumor cells of patient MLL-EDC4 and subclone clusters 2 of patients MLL-

MLLT3 #2 and #3 (Figure 2.15C, dashed rectangle). Consistently, relative MYB activity 
was higher in the same tumor cell clusters of patient MLL-EDC4 and subclone clusters 2 

of patients MLL-MLLT3 #2 and #3 (Figure 2.15D, dashed rectangle). 
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scTurboATAC-seq enhances the detection of TF binding at pseudo-bulk level 
TF footprints were computed from the pseudo-bulks of scATAC- and scTurboATAC-seq 

data of 6 h IFNβ-stimulated MEFs. Insertions at TF binding motifs and their surrounding 

genomic sequences were averaged across all motif occurrences in ATAC peaks. The 

STAT1 and CCCTC-binding factor (CTCF) footprints showed strongly depleted 

accessibility signal at the motif positions in both scATAC- and scTurboATAC-seq data 

(Figure 2.16), indicating TF binding and thereby protecting the motifs from Tn5 insertions 
during ATAC-seq. Here, the less sparse scTurboATAC-seq data demonstrated slightly 

better enrichment and accessibility imprints at STAT1 and CTCF motifs. Moreover, 

accessibility was moderately increased in the surrounding 50-75 bp of STAT1 motifs, 

suggesting gradual repositioning of nucleosomes to facilitate STAT1 binding (Figure 2.16, 
left). In contrast, CTCF footprints showed increased accessibility in their surrounding 100 

Figure 2.15 TF expression and activity in scRNA-seq data from AML patients. Data of five 
AML patients are shown. A UMAP embedding with the color of points reflecting patient sample.  
B Same as panel A with the color of points reflecting annotated k-nearest neighbor clusters.  
C Single-cell expression of most differentially expressed genes between AML cell clusters.  
D Pseudo-bulk activity of most differentially active TFs between AML cell clusters. TF activity was 
inferred from the expression of annotated TF target genes. Adapted from Schuster et al. (2023). 
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bps, reflecting the removal of one nucleosome to enable CTCF binding (Figure 2.16, 
right).  

Inferring TF binding activity from scTurboATAC-seq data improves the 
resolution of cellular heterogeneity 
Lastly, TF binding activity was computed at single-cell resolution from scATAC- and 

scTurboATAC-seq data of human PBMCs. Low-dimensional embeddings of the B cell 

subpopulations of PBMCs revealed three and four B cell clusters in scTurboATAC- and 

scATAC-seq data, respectively (Figure 2.17A). The integrated low-dimensional 
embedding showed that cluster C1 in scTurboATAC-seq data was not co-embedded with 

any scATAC-seq B cell cluster and therefore not resolved by scATAC-seq data (Figure 
2.17B). TF binding activity was inferred at single-cell resolution to investigate variations in 
B cell state between the detected B cell clusters. Differential TF binding activities between 

the B cell clusters from both scTurboATAC- and scATAC-seq data were observed for 

purine-rich box 1 (PU.1) and IRF complexes, octamer-binding transcription factor 2 

(OCT2) and activating transcription factor 3 (ATF3), among others (Figures 2.17C+D). B 
cell clusters C2 and C3 from scATAC, as well as corresponding clusters C3 and C4 from 

scTurboATAC-seq data, showed the highest relative TF binding activity of PU.1-IRF 

complex (Figures 2.17C+D, left). Conversely, B cell clusters C1 from scATAC- and C2 
from scTurboATAC-seq data showed higher relative OCT2 binding activity than other B 

cell clusters (Figures 2.17C+D, middle).  Furthermore, B cell cluster C1 from 
scTurboATAC-seq data showed higher relative ATF3 binding activity than other 

scTurboATAC- and scATAC-seq B cell clusters (Figures 2.17C+D, right). The analysis of 
TF binding activity revealed a specific B cell state characterized by high ATF3 binding 

activity and low PU.1-IRF and OCT2 binding activities in B cell cluster C1 from 

scTurboATAC-seq data. 

Figure 2.16 TF binding footprints in scATAC-seq and scTurboATAC-seq data from 6 h IFNβ-
treated MEFs. Chromatin accessibility footprints at STAT1 (left) and CTCF binding motifs (right) 
from scATAC and scTurboATAC. Adapted from Seufert et al. (2023).  
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Figure 2.17 B cell heterogeneity in scATAC-seq and scTurboATAC-seq data from human 
PBMCs. A Low-dimensional embeddings of B cells from scATAC (left) and scTurboATAC (right). 
The color of points reflects the k-nearest neighbor cluster. B Integrated low-dimensional embedding 
of B cells split by scATAC (left) and scTurboATAC (right). The color of points reflects the sample-
specific k-nearest neighbor cluster.  C Same as panel A with color of points reflecting relative and 
imputed TF binding activity of PU.1-IRF (left), OCT2 (middle), and ATF3 (right) for scATAC (top) 
and scTurboATAC (bottom). Relative TF binding activity inferred from TF motif accessibility. 
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To conclude, TF activity was studied using different sequencing assays at (pseudo-)bulk 

and single-cell resolution. TF activities varied in the information encoded using (i) the 

measurement of TF expression itself by RNA-seq, (ii) the inference of TF activity from 

measuring expression of annotated TF target genes by RNA-seq, (iii) the measurement of 

TF binding to chromatin by TF-specific ChIP-seq, and (iv) the inference of TF binding to 

accessible chromatin from ATAC-seq. All provided reasonable estimates of TF activity in 

the biological systems studied but showed that they resolve different molecular layers of 

TF activity.  

In summary, in this chapter I identified data sparsity as the key challenge in scATAC-seq 

data analysis (Section 2.1.1) and overcame this challenge by introducing the TurboATAC 
protocol (Section 2.1.2). This allowed me to investigate the stochastic nature of chromatin 
accessibility among single cells (Section 2.1.3) and determine the non-binary information 
content encoded in this data (Section 2.1.4). Lastly, I studied the applicability of inferring 
TF activity from transcription and chromatin accessibility at single-cell resolution (Section 
2.1.5). Overall, this led to an advancement of the experimental as well as computational 
analysis of scATAC-seq data. 

  

Figure 2.17 (continued) D Non-imputed relative TF binding activity of PU.1-IRF (left), OCT2 
(middle), and ATF3 (right) in clusters of scATAC (top) and scTurboATAC (bottom). Relative TF 
binding activity inferred from TF motif accessibility. Adapted from Seufert et al. (2023). 
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2.2. Developing a computational framework to dissect  
the molecular mechanisms underlying chromatin co-
accessibility 
In this chapter, I address the second aim of this thesis: Developing a computational 

framework to compute, visualize and interpret chromatin co-accessibility, ultimately 

dissecting the molecular mechanisms causing chromatin co-accessibility. To achieve this, 

I used scTurboATAC-seq data from HUVECs, since they are primary, non-immortalized 

human cells and thus a suitable model system to study unaltered chromatin and 

transcription. HUVECs were analyzed untreated and upon treatment with TNFα for 30 or 

240 min (Table 2.9). As described in Section 1.3.2, extracellular TNFα can bind to TNF 
receptors in HUVEC cell membranes, intracellularly activating the transcription factor NF-

κB. Consequently, NF-κB translocates to the nucleus, binds to specific DNA motifs, and 

regulates gene expression. For all TNFα treatment time points, data were obtained from 

three independent biological replicates, facilitating an in-depth investigation of chromatin 

co-accessibility and the assessment of reproducibility in the co-accessibility analysis. 

Furthermore, the perturbation of HUVECs by TNFα treatment allowed to study induced 

changes in chromatin co-accessibility. In addition to the scTurboATAC-seq data of 

HUVECs in three biological replicates, I utilized scATAC- and scTurboATAC-seq data of 

6 h IFNβ-treated MEFs from Chapter 2.1 (see Table 2.1, Figure 2.7). This direct 
comparison of scATAC-seq and scTurboATAC-seq data allowed me to investigate the 

impact of data quality on various aspects of co-accessibility analysis. 

Table 2.9 Overview of sequencing data sets used for developing a computational framework 
to dissect the molecular mechanisms underlying chromatin co-accessibility. 

Sample Perturbation Sequencing 
type Assay type 

MEF IFNβ treatment Single-cell ATAC, TurboATAC 

HUVEC TNFα treatment Single-cell TurboATAC 

  Bulk HiC, Histone ChIP (H3K27ac) 

 

Most of the presented results were published in Seufert et al. (2023) and Seufert et al. 

(2024). Acquisition of scTurboATAC-seq data from HUVECs was conducted by Irene 

Gerosa and Sabrina Schumacher (both Division of Chromatin Networks, German Cancer 

Research Center, Germany). Bulk HiC-seq data from HUVECs were obtained from GEO 

(accession number: GSE63525) and computational analysis was conducted by Vassiliki 
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Varamogianni-Mamatsi (Institute of Pathology, University Medical Center Göttingen, 

Göttingen, Germany). Bulk ChIP-seq data from HUVECs were acquired by the labs of 

Argyris Papantonis (Institute of Pathology, University Medical Center Göttingen, 

Göttingen, Germany) and Petros Kolovos (Department of Molecular Biology & Genetics, 

Democritus University of Thrace, Greece). Computational analysis was conducted by 

Panagiotis Liakopoulos (Department of Molecular Biology & Genetics, Democritus 

University of Thrace, Greece). My contribution comprised the computational analysis of 

the scTurboATAC-seq data from HUVECs and the integration of bulk HiC- and ChIP-seq 

data. I conceptualized, developed and applied the co-accessibility analysis framework, 

termed RWireX. It is based on RWire (Mallm et al., 2019) and implemented as an 

extension to the ArchR software package (Granja et al., 2021) building on its existing 

functionalities. Coding and implementation were supported by Anastasiya Vladimirova 

(formerly Division of Chromatin Networks, German Cancer Research Center, Germany). 

2.2.1. Inferring chromatin co-accessibility from scATAC-seq data 
with RWireX 

Computing the co-accessibility of genomic regions has been widely used to infer regulatory 

interactions of distal chromatin sites. However, the understanding of the underlying 

molecular mechanisms leading to these co-accessibility patterns remains limited. Using 

insights gained from Chapter 2.1, I developed a computational framework for co-
accessibility analysis to resolve different layers of co-accessibility (Figure 2.18). The 
framework comprises two workflows: The single cell co-accessibility workflow infers co-

accessible regions from a snapshot of stochastic accessibility changes among uniform 

single cells. In contrast, the metacell co-accessibility workflow identifies broader domains 

of enriched co-accessibility from cell state-dependent accessibility changes of aggregated 

metacells. The design of the RWireX co-accessibility workflows is described in more detail 

below. 

The single cell co-accessibility workflow computes Pearson correlation on continuous 

accessibility count matrices of ATAC peaks and single cells (Figure 2.18, left). It requires 
a homogeneous cell population as input to resolve stochastic co-accessibility changes, 

which would be dominated by cell state variations in heterogeneous cell populations. 

Pearson correlation coefficients are compared against a local background model from 

shuffled count matrices, revealing autonomous links of co-accessibility (ACs). The 

average fraction of accessible cells in the linked peaks of an AC determines the detection 

rate among the single cells. ACs are visualized by loops between the linked ATAC peaks 
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on the genomic coordinate, where the loop color reflects the strength of co-accessibility 

and the loop height indicates the AC’s detection rate. Finally, RWireX computes AC activity 

scores per cell from the multiplied accessibility counts of the AC's start and end peaks. 

The activity scores can be used to identify sets of ACs that are active in the same cells. 

Figure 2.18 RWireX’s co-accessibility workflows using scATAC-seq data. Chromatin 
accessibility is quantified in single cells by continuous insertion-based counts in ATAC peaks or 
genomic tiles (top). The single cell workflow computes Pearson correlation coefficients between 
ATAC peaks across single cells from a homogeneous cell cluster (middle left). It reveals 
autonomous links of co-accessibility (ACs) driven by stochastic accessibility changes between 
single cells (bottom left). The metacell workflow correlates accessibility in genomic tiles across 
metacells, which are formed of cells from multiple cell clusters (middle right). It resolves broad 
domains of increased and contiguous co-accessibility (DCs) driven by accessibility differences 
between cell states (bottom right). Adapted from Seufert et al. (2024).    
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The metacell co-accessibility workflow computes Pearson correlation on continuous 

accessibility count matrices of genomic tiles and metacells from aggregated profiles of 

similar cells (Figure 2.18, right). Metacells are generated by aggregating the chromatin 
accessibility profiles of similar cells from a heterogeneous cell population. The cell diversity 

in the selected population influences the co-accessibility information, such as varying 

accessibility patterns determined by different transcription factor activities among cells. 

Metacell co-accessibility is visualized by heatmap, where the color indicates the strength 

of co-accessibility (positive correlation in red; negative correlation in blue). Here, only half 

of the mirrored metacell co-accessibility matrices are visualized by triangular heatmap and 

the color at the intersection between two genomic regions depicts their co-accessibility. 

Furthermore, the metacell co-accessibility matrices allow the identification of broader co-

accessible domains or patterns, and investigating locally increased co-accessibility 

identifies domains of contiguous co-accessibility (DCs).   

In both co-accessibility workflows, RWireX computes Pearson correlation coefficients 

between continuous accessibility counts of two genomic regions. These Pearson 

correlation coefficients are used as so-called co-accessibility scores to describe the 

degree of co-accessibility between two genomic regions. Pearson correlation was selected 

instead of more complex machine learning-based regression models to maintain 

explainability, computational efficiency and robustness in this exploratory analysis. In other 

use cases, or as our understanding of chromatin co-accessibility improves, more complex 

models might be employed. For example, I applied a more advanced machine learning-

based classification approach to differentiate pancreatic ductal adenocarcinoma from 

chronic pancreatitis based on multi-omic data (Wu et al., 2023). 

To make the computational framework available for the scientific community, I developed 

a software package termed RWireX, which includes both the single cell and metacell co-

accessibility workflows. RWireX is available and maintained on Github 

(https://github.com/RippeLab/RWireX). The Github repository contains the R code, 

installation guidelines, test data, and vignettes for both the single cell and metacell co-

accessibility workflows. The following paragraphs provide further information on critical 

features of RWireX’s co-accessibility workflows. 

Quantification of chromatin accessibility signal 
The methods used to quantify accessibility signals in genomic regions strongly influence 

the information content and count matrix-based downstream analysis of scATAC-seq data, 

as demonstrated in Section 2.1.4 for binary, continuous, and allelic quantification of 
insertions. Consequently, the selected quantification method is a crucial parameter for co-
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accessibility analysis. Using the single cell workflow, I computed co-accessibility scores 

from binary, continuous and allelic count matrices of scTurboATAC-seq data to investigate 

the influence of quantification methods on co-accessibility analysis. Here, co-accessibility 

scores from a binary count matrix ranged between -0.15 and 0.55, while those from a 

continuous count matrix ranged from -0.1 to 1.0 (Figure 2.19A). These values showed 
high concordance (correlation coefficient of 0.79), with a fraction of data points lying on 

the diagonal, indicating high consensus between co-accessibility scores of the two count 

matrices. However, a significant fraction of data points was above the diagonal, showing 

distinctly higher co-accessibility scores from the continuous count matrix. For the allelic 

count matrix, co-accessibility scores ranged from -0.1 to 0.4 and showed high 

concordance (correlation coefficient of 0.79) with co-accessibility scores from the 

continuous count matrix (Figure 2.19B). Again, a fraction of data points precisely followed 

Figure 2.19 Co-accessibility analysis using different peak count matrices of scATAC-seq 
and scTurboATAC-seq data from 6 h IFNβ-treated MEFs. A Co-accessibility scores from 
continuous and binary count matrices of scTurboATAC-seq data. Color of points reflects the 
density. Pearson correlation is annotated. B Same as panel A for allelic and continuous count 
matrices. C Same as panel A for scATAC-seq data. D Same as panel C for allelic and continuous 
count matrices. 
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the diagonal, while the remaining data points showed higher co-accessibility scores for 

continuous counts. 

Co-accessibility scores from binary, continuous, and allelic count matrices of scATAC-seq 

data revealed the same trends of higher scores from continuous count matrices (Figures 
2.19C+D). Notably, lower quality of scATAC-seq data led to higher co-accessibility scores 
from binary and allelic count matrices (values up to 0.8 for both). This was likely due to 

higher false-negative zero counts (drop-outs), which might falsely increase co-

accessibility. Additionally, scATAC-seq data showed a higher correlation of approximately 

0.9 between co-accessibility scores from binary, continuous, and allelic count matrices. 

Consequently, the benefit of continuous quantification was present but less substantial in 

scATAC-seq data of lower quality.  

In summary, the use of different methods for quantification of chromatin accessibility in 

genomic regions influences the results of co-accessibility analysis. Continuous 

quantification generally resulted in higher co-accessibility scores than other methods. 

Additionally, it revealed a fraction of data points with exceptionally higher co-accessibility 

scores. To resolve these specific co-accessible links, continuous quantification is 

essential. The influence of quantification methods is more substantial for higher quality 

data, as shown here and in Section 2.1.4. Consequently, I selected continuous 
quantification of scATAC-seq signal for the design of the co-accessibility workflows. 

Compensation of potential biases between samples 
Previously, single-cell sequencing depth and the resulting level of data sparsity were 

identified as key parameters for assessing the quality of scATAC-seq data (Section 2.1.1). 
To evaluate potential biases from data quality in the co-accessibility analysis, co-

accessibility scores from continuous count matrices of scATAC- and scTurboATAC-seq 

data were compared (Figure 2.20A). Higher quality of scTurboATAC-seq data showed 
higher positive co-accessibility scores and a less pronounced peak at co-accessibility 

scores of zero. Consequently, I reduced biases in the number of cells and the number of 

unique fragments, as a measure of single-cell data sparsity, to facilitate the comparability 

of co-accessibility results between samples. For example, the nine scTurboATAC-seq 

samples from TNFα treatment of HUVECs showed high variability in data sparsity for two 

samples (Figure 2.20B). Additionally, cell numbers of the samples ranged between 1,577 
and 6,152. I randomly selected 1,000 cells from the 240 min TNFα-treated HUVEC Rep1 

sample as a reference, as it showed a considerably narrow distribution of unique 

fragments and was highly comparable to most other samples. Next, I selected 1,000 cells 

from each sample that showed similar numbers of unique fragments compared to the 
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reference cells (Figure 2.20C). This approach resolved differences in cell number and 
reduced variability in the numbers of unique fragments between samples. However, the 

approach was insufficient to compensate for extreme differences in data sparsity. For 

example, experimental issues from cell clogging during the 10x Genomics GEM formation 

occurred for the untreated Rep2 HUVEC sample, causing a distinctly lower cell number 

and higher single-cell sequencing depth. 

Single cell and metacell co-accessibility workflows  
A key feature of RWireX are the two distinct workflows to perform co-accessibility analysis, 

aimed at resolving different layers of variability in the accessibility signal. Variation in 

accessibility signal between cells can originate from various sources: (i) Differences in 

data quality/sparsity between cells (see Section 2.1.1); (ii) varying cell types or cell states,  
e. g. due to cell cycle or apoptosis, resulting in different patterns of accessible genomic 

regions (see Section 2.1.2); (iii) stochastic nature of chromatin accessibility with 
independent fluctuations at each genomic locus (see Sections 2.1.3, 2.1.4); or (iv) 
external or internal perturbations inducing specific intracellular responses, which might 

influence global or locus-specific accessibility. I developed the single cell workflow to 

resolve co-accessibility from stochastic events and the metacell workflow to enrich for co-

Figure 2.20 Bias compensation for single-cell sequencing depth in co-accessibility analysis. 
A Density distribution of co-accessibility scores from continuous count matrices of scATAC- (grey) 
and scTurboATAC-seq (black) data from 6 h IFNβ-stimulated MEFs. Limits of the x-axis are set to 
-0.1 and 0.3. B Number of unique fragments per cell for scTurboATAC-seq data from untreated, 30 
min, and 240 min TNFα-treated HUVECs. C Same as panel B for 1,000 cells per sample selected 
for most similar sequencing depth distribution across samples. 
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accessibility derived from varying cell types or induced by perturbations, while reducing 

co-accessibility from technical biases. 

The RWireX workflows require careful selection of input cells to best facilitate the 

resolution of the intended layers of co-accessibility. For example, single cell accessibility 

profiles from the nine scTurboATAC-seq samples from TNFα treatment of HUVECs 

showed strong differences between treatment time points as well as cell cycle states in 

their low-dimensional embeddings (Figures 2.21A-C). Since the aim of the co-
accessibility analysis was to resolve the effects of TNFα treatment, effects of cell cycle 

states were removed by selecting only cells in the G1 cell cycle state. Additionally, 

differences in data quality of cells between samples were reduced, as described in the 

previous section. For example, in Rep1, this resulted in 1,000 cells per sample with 

accessibility variation mostly driven by treatment time point (Figure 2.21D). Cells were 
aggregated into metacells with similar chromatin accessibility profiles to reduce both 

stochastic accessibility variation and data sparsity (Figure 2.21E). First, an initial cell was 
selected for each metacell, maximizing the distances between initial cells in the low-

dimensional embedding. Next, for each metacell, the closest 9 cells to the initial cell were 

Figure 2.21 Cell populations for co-accessibility analysis of scTurboATAC-seq data from 
untreated, 30 min, and 240 min TNFα-treated HUVECs. A Low-dimensional embedding of cells 
from three biological replicates. Color of cells reflects the treatment time point. B Same as panel A 
with color of cells reflecting biological replicate. C Same as panel A with color of cells reflecting cell 
cycle state. D Same as panel A for 1,000 selected cells per treatment time point of replicate 1. E 
Same as panel D with color of cells reflecting assignment to metacells 1-10. F Same as panel D 
for only 240 min TNFα treatment time point. Adapted from Seufert et al. (2024). 
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selected based on the low-dimensional embedding, consecutively leaving out the already 

aggregated cells from further metacell formation. By this, metacells were formed from 

unique sets of 10 cells each, not using the final 10 % of cells to prevent the forced 

aggregation of dissimilar cells. These metacells from multiple TNFα treatment time points 

were used for the metacell workflow. 

For the single cell workflow, homogeneous cells from a single treatment time point were 

used, selecting only cells in the G1 cell cycle state and selecting 1,000 cells to compensate 

for technical biases (Figure 2.21F). The workflow uses single cells to preserve information 
on stochastic accessibility changes in the snapshot across many cells. Accessibility of the 

single cells is quantified in ATAC peaks of high genomic resolution (1 kb for high-quality 

scTurboATAC-seq data, 2 kb for lower-quality scATAC-seq data), which likely reflect 

individual CREs. The resulting continuous count matrix from the nine scTurboATAC-seq 

samples of TNFα treatment in HUVECs shows accessibility counts between 0 and 52 with 

an inflation of 0 counts (Figure 2.22A). In contrast, accessibility is quantified in genomic 
tiles of lower resolution in the metacell workflow (10 kb for high-quality scTurboATAC-seq 

data, 20 kb for lower-quality scATAC-seq data). The genomic tiles facilitate unbiased 

investigation of broader chromatin regions, potentially also reflecting the chromatin state 

of the regions. The resulting continuous count matrix of genomic tiles shows accessibility 

counts between 0 and 120 for single cells (Figure 2.22B) and 0 and 420 for metacells 
(Figure 2.22C). Genomic tiles and metacells both reduce the number of 0 counts in the 
count matrix. Co-accessibility of two exemplary peaks from the single cell workflow shows 

the high proportion of co-inaccessibility (simultaneous 0 counts at both peaks, Figure 
2.22D) in the stochastic accessibility data. In contrast, lower data sparsity in the metacell 
workflow results in co-accessibility from a wider distribution of accessibility counts (Figure 
2.22E). 

In conclusion, the two co-accessibility workflows enrich for different layers of variability in 

the accessibility signal. They vary in the selection of input cells, where the single cell 

workflow requires homogeneous cells and the metacell workflow requires heterogeneous 

cells, in respect to the variation in cell state or perturbation of interest. The single cell 

workflow uses single cells, while the metacell workflow uses aggregated profiles of multiple 

cells. Finally, the single cell and metacell workflows quantify accessibility in high-resolution 

ATAC peaks and lower resolution genomic tiles, respectively. Consequently, the single 

cell workflow is designed to resolve co-accessibility between specific genomic sites from 
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stochastic accessibility changes, while the metacell workflow enriches for co-accessibility 

in broader genomic regions driven by more global differences in molecular cell states. 

Assessment of background co-accessibility in the single cell workflow 
In the analysis of TNFα treatment in HUVECs, the single cell co-accessibility workflow 

identified 23,269,378 co-accessible links using the ATAC peak set within a 1 Mb window. 

To differentiate true co-accessible links from randomly occurring co-accessibility in the 

background, a local background model was applied. Background co-accessibility was 

computed by shuffling accessibility count matrices per chromosome by cells and ATAC 

peaks, following the single cell workflow (Figure 2.23A). The distributions of background 
co-accessibility scores were very similar across different samples (Figure 2.23B). 
Potential variations in background co-accessibility scores may arise from differences in 

cell numbers or data sparsity within a sample. For all samples, background co-accessibility 

exhibited mean scores of 0.0, with an extended right tail. For each sample, the 99th 

percentile of background co-accessibility scores was used as the lower cutoff for 

identifying true co-accessible links. This resulted in 273,813 to 329,820 co-accessible links 

Figure 2.22 Continuous count matrices of peaks and genomic tiles in scTurboATAC-seq 
data from untreated, 30 min, and 240 min TNFα-treated HUVECs. A Distribution of accessibility 
counts in ATAC peaks and single cells. B Same as panel A for genomic tiles. C Same as panel B 
for metacells. D Co-accessibility of exemplary peaks across single cells from untreated HUVECs 
in replicate 3. Overlaying integers are visualized by jitter plot. E Co-accessibility of exemplary 
genomic tiles across metacells from all treatment time points of replicate 1.  



Results 

 67 

above background co-accessibility per sample, termed autonomous links of co-

accessibility (ACs).  

Detection rate of ACs in the single cell population 
Previously, continuous quantification of scATAC-seq data revealed strong variation in the 

number of accessible cells per ATAC peak (see Section 2.1.4). Consequently, ACs 
exhibited differences not only in their co-accessibility scores, but also in their detection 

rate within the single cell population. The detection rate of an AC among single cells was 

determined by the average fraction of accessible cells at the linked ATAC peaks, referred 

to as percent accessible cells (PAC). PAC indicates the prevalence of an AC among the 

single cells.  

The PAC can serve as an additional confidence measure for ACs, alongside the co-

accessibility score. Single cell co-accessibility analysis of scTurboATAC-seq data from 6 

h IFNβ-stimulated MEFs identified ACs with PAC values above 75, which were not 

detected in the corresponding scATAC-seq data (Figure 2.24A, red rectangles). Higher 
data sparsity in scATAC-seq data increased drop-outs, thereby reducing PAC values. 

Thus, accessibility signals (>0 counts) are more reliable than inaccessibility signals (0 

counts), which could result from true inaccessibility or technical drop-outs, making ACs 

with higher PAC values more reliable. Additionally, the PAC might reflect an additional 

layer of biological information in co-accessibility analysis, as higher PAC values may 

indicate greater AC persistence/stability or higher frequency of AC formation. Single cell 

co-accessibility analysis of scTurboATAC-seq data from TNFα treatment of HUVECs 

Figure 2.23 Assessment of background co-accessibility to filter for true-positive co-
accessible links in the single cell workflow. A Scheme of the approach to compute background 
co-accessibility. Background co-accessibility is determined from continuous accessibility counts in 
peaks and single cells shuffled by cells and peaks. Pearson correlation coefficients of the shuffled 
matrices are computed. B Distribution of background co-accessibility scores in scTurboATAC-seq 
data from untreated, 30 min, and 240 min TNFα-treated HUVECs. The 99th percentiles of 
background co-accessibility scores are marked.  
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revealed a bimodal PAC distribution (Figure 2.24B), where most ACs had PAC values 
either below 25 or above 75. Co-accessibility of ATAC peaks with low PAC values was 

dominated by simultaneous inaccessibility of the two peaks (Figure 2.24C), while co-
accessibility of ATAC peaks with high PAC values was driven by simultaneous 

accessibility (Figure 2.24D). 

Identification of DCs from metacell co-accessibility 
The metacell co-accessibility workflow revealed broader domains of contiguously enriched 

co-accessibility using accessibility in 10 kb tiles within a 2 Mb window in the analysis of 

TNFα treatment in HUVECs (Figure 2.25A). These domains were identified genome-wide 
employing the computational method SpectralTAD, a TAD-calling tool initially designed for 

HiC-seq data (Cresswell et al., 2020). Instead of using chromatin contact count matrices 

Figure 2.24 Detection rate of autonomous links of co-accessibility (ACs) in single cells.  
A Co-accessibility scores and percent accessible cells (PAC) of ACs in scATAC- (left) and 
scTurboATAC-seq (right) data from 6 h IFNβ-treated epithelial-like MEFs. The color of points 
reflects the density of ACs. Density curves of co-accessibility scores and PAC are provided. Dashed 
lines indicate background co-accessibility cutoff on co-accessibility scores and a minimal 5 % cutoff 
on PAC. The red rectangles highlight ACs with high PAC. B PAC distribution of ACs from 
scTurboATAC-seq data from untreated, 30 min, and 240 min TNFα-treated HUVECs. C Co-
accessibility of exemplary ATAC peaks with low PAC from 30 min TNFα-treated HUVECs in 
replicate 2. Overlaying integers are visualized by jitter plot. D Same as panel C for exemplary ATAC 
peaks with high PAC. Adapted from Seufert et al. (2023) and Seufert et al. (2024).  
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from HiC-seq data as intended for SpectralTAD, I applied SpectralTAD to co-accessibility 

matrices from the metacell workflow. To employ SpectralTAD for co-accessibility data, 

only-positive metacell co-accessibility matrices were used, setting all negative co-

accessibility scores to zero. SpectralTAD was run to identify small and large domains, 

separately (Figure 2.25A, black and grey regions). While small domains were defined as 
having a minimal size of 20 kb in a 200 kb window, large domains were defined as at least 

200 kb in size within a 2 Mb window. Domain co-accessibility scores were calculated from 

the average co-accessibility scores within each domain. Most domains showed low 

average co-accessibility scores below 0.1 (Figure 2.25B).  However, some domains 
exhibited high co-accessibility scores of up to 0.8, forming an extended right tail in the 

distribution. To identify domains with exceptionally high local co-accessibility, the 90th 

percentile of domain co-accessibility scores was used as a lower cutoff, computed 

separately for small and large domains. This approach identified approximately 3,500 

small and 1,050 large domains with high local co-accessibility, termed domains of 

contiguous co-accessibility (DCs) (Figure 2.25A, red regions). Across all replicates, about 
80 % of large DCs overlapped with at least one small DC (Figure 2.25C), whereas only 
roughly 45 % of small DCs overlapped with a large DC. 

Figure 2.25 Identification of domains of contiguous co-accessibility (DCs) in metacell co-
accessibility of scTurboATAC-seq data from untreated, 30 min, and 240 min TNFα-treated 
HUVECs. A Metacell co-accessibility in an exemplary region. Small domains (black), large domains 
(grey), and DCs (red) are annotated. B Distribution of average co-accessibility scores in small (blue) 
and large (black) domains from three biological replicates. C Genomic overlap of small and large 
DCs in three biological replicates. 
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In summary, RWireX infers chromatin co-accessibility using two workflows that enrich for 

different layers of variation in chromatin accessibility. The single cell co-accessibility 

workflow identifies autonomous links of co-accessibility from stochastic accessibility 

fluctuations at distant genomic sites, while the metacell co-accessibility workflow resolves 

broad domains of contiguous co-accessibility from cell state-driven accessibility changes. 

The workflows differ in their count matrix design, input cell population, genomic and cellular 

resolution, and the methods applied to identify co-accessibility features. I identified 

limitations in co-accessibility analysis by data sparsity and technical differences between 

samples, and addressed these by reducing data sparsity with the TurboATAC protocol 

and introducing an approach to compensate for technical biases. 

2.2.2. Reproducibility of co-accessibility analyses 

After developing a computational framework for co-accessibility analysis, which resolves 

different layers of accessibility variation in chromatin co-accessibility, I aimed to assess 

the reproducibility of its results. I used three replicates of scTurboATAC-seq data from 

HUVECs to investigate the robustness of ACs from the single cell co-accessibility workflow 

for each separate sample, as well as DCs from the metacell co-accessibility workflow for 

each replicate. 

ACs are reproducible across replicates for TNFα-regulated genes 
Single cell co-accessibility was computed for each scTurboATAC-seq sample from 

HUVECs separately to investigate the reproducibility of ACs. A genomic region around the 

two TNFα-regulated genes KLF10 and GASAL1 was selected as an example to visually 

inspect the reproducibility of ACs (Figure 2.26A), since the two genes showed high 
numbers of ACs at their promoters. Pseudo-bulk chromatin accessibility profiles were 

highly similar between replicates (Figure 2.26A, top). However, differences in ACs were 
detected between replicates (Figure 2.26A, bottom). Especially high variability was 
observed for ACs with PACs below 50 and low co-accessibility scores. In contrast, ACs 

between the genes’ promoters were highly reproducible among all samples, showing 

almost 100 % accessible cells and high co-accessibility scores (around 0.2 for samples 

from untreated and 240 min TNFα treatment time point; above 0.3 for samples from 30 

min TNFα treatment time point). Additionally, ACs between the genes’ promoters and two 

distal H3K27ac peaks were present in 80 % of samples, showing high PAC values 

between 75-100 (Figure 2.26A, bottom: green H3K27ac peaks and blue gene promoters). 
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To quantify the reproducibility of ACs, the proportion of according ACs between two 

samples was determined for all combinations of samples. Here, ACs from two samples 

were classified as consistent if they linked the same two ATAC peaks in both samples, 

irrespective of their co-accessibility scores and PACs. ACs at the ten most differentially 

expressed genes after 30 min of TNFα treatment confirmed the previous visual 

observations of AC reproducibility (Figure 2.26B). Only 14-19 ACs were detected in 
untreated samples, showing overlap below 10 % between replicates (Figure 2.26B, black 
rectangle on bottom left).  However, samples after 30 min of TNFα treatment showed 

strongly increased numbers of ACs (84-107) with approximately 75 % overlap between 

replicates (Figure 2.26B, black rectangle in middle). In samples after 240 min of TNFα 
treatment, the numbers of ACs (41-54) and their overlap between replicates were again 

reduced (Figure 2.26B, black rectangle at top right). When assessing all genome-wide 

Figure 2.26 Reproducibility of ACs from single cell co-accessibility of scTurboATAC-seq 
replicates from untreated, 30 min, and 240 min TNFα-treated HUVECs. A Chromatin 
accessibility and ACs from replicates and time points in an exemplary region of TNFα-regulated 
genes KLF10 and GASAL1. Top: Pseudo-bulk chromatin accessibility tracks; Middle: ATAC peaks 
(black, 1 kb extended), genes (grey), TNFα-regulated genes (blue) and 1 kb regions around their 
TSSs (light blue), H3K27ac peaks from ChIP-seq at 30 min time point (green). Bottom: ACs at 
TNFα-regulated gene promoters. The grayscale and height of loops reflect co-accessibility scores 
and percent accessible cells of ACs. B Comparison of ACs at ten most differential TNFα-regulated 
genes after 30 min of treatment from replicates and time points. The size and color of the dots 
reflect the total number of ACs detected in the reference sample and the percent overlap between 
the samples. C Same as panel B for all genome-wide ACs. Adapted from Seufert et al. (2024). 
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ACs, the overlap between replicates was considerably lower (below 10 %) across all 

treatment time points (Figure 2.26C, black rectangles). The overlap between all samples 
irrespective of treatment time point was equally low. 

ACs showed consistent reproducibility across all three replicates, with the lowest number 

of ACs being present in all three at the same time (Figure 2.27A). ACs detected in at least 
two replicates were used to compile consensus lists of ACs for each treatment time point. 

These consensus ACs showed less differences between treatment time points in the 

exemplary region around the two TNFα-regulated genes KLF10 and GASAL1 shown 

before (Figure 2.27B). The previously observed ACs between the genes’ promoters and 
from promoters to distal H3K27ac peaks were preserved in the consensus list, becoming 

more evident with fewer scattered ACs in the vicinity. Additionally, the consensus ACs 

resolved a distinct increase in co-accessibility scores at the 30 min treatment time point, 

which were reduced again at the 240 min treatment time point. 

DCs are reproducible across replicates 
Metacell co-accessibility was computed for each replicate of TNFα treatment time point 

samples from scTurboATAC-seq separately to investigate the reproducibility of DCs. A 

genomic region around the three TNFα-regulated genes TNFAIP3, WAKMAR2, and 

IFNGR1 was selected as an example to visually inspect the reproducibility of DCs (Figure 
2.28A), since the three genes located in broader domains of locally increased co-

Figure 2.27 Consensus ACs of scTurboATAC-seq replicates from untreated, 30 min, and 240 
min TNFα-treated HUVECs. A Number of reproducible ACs in at least two replicates. B Chromatin 
accessibility and consensus ACs at time points in an exemplary region of TNFα-regulated genes 
KLF10 and GASAL1. Top: Pseudo-bulk chromatin accessibility tracks; Middle: ATAC peaks (black, 
1 kb extended), genes (grey), TNFα-regulated genes (blue) and 1 kb regions around their TSSs 
(light blue), H3K27ac peaks from ChIP-seq at 30 min time point (green). Bottom: ACs at TNFα-
regulated gene promoters. The grayscale and height of loops reflect co-accessibility scores and 
percent accessible cells of ACs. Adapted from Seufert et al. (2024). 
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accessibility scores. Across all three replicates, a domain with strongly enriched co-

accessibility scores was apparent around TNFAIP3 and WAKMAR2. Multiple DCs were 

called in that region for all replicates (Figure 2.28A, red regions). In Rep2 and Rep3, 
comparable DCs were additionally called around IFNGR1, where a small domain of 

enriched co-accessibility scores was visible. The TNFAIP3/WAKMAR2 and IFNGR1 DCs 
were distant but linked by enriched co-accessibility between them in Rep1 and Rep2. 

Additionally, the TNFAIP3/WAKMAR2 DC showed enriched co-accessibility to a 
downstream H3K27ac peak in Rep1 and Rep2. These distal links of the 

TNFAIP3/WAKMAR2 DC were not clearly apparent in Rep3, as it showed generally higher 
co-accessibility with less distinct enrichment in specific regions. This was potentially 
caused by higher variability in data quality between the samples of Rep3 (see Figures 
2.20B+C). These differences between the replicates were confirmed when investigating 
the base pair overlap of their called DCs genome-wide (Figure 2.28B). DCs from Rep1 
and Rep2 showed 60 % overlap, while both showed only 40 % overlap with Rep3. To 

obtain consensus DCs across all replicates, consensus metacell co-accessibility matrices 

from all replicates were computed by averaging the replicate metacell co-accessibility 

Figure 2.28 Reproducibility of DCs from metacell co-accessibility of scTurboATAC-seq 
replicates from untreated, 30 min, and 240 min TNFα-treated HUVECs. A Chromatin co-
accessibility maps and DCs from replicates in an exemplary region of TNFα-regulated genes 
TNFAIP3, IFNGR1 and WAKMAR2. DCs from metacell co-accessibility of replicates (red), 
H3K27ac peaks from ChIP-seq at the 30 min time point (green), genes (grey), TNFα-regulated 
genes (blue) and 1 kb regions around their TSSs (light blue) are indicated. Limits of the color scale 
bars are set to -0.3 and 0.3. B Comparison of genome-wide DCs between replicates and consensus 
from average metacell co-accessibility of replicates. The size and color of the dots reflect the 
percent of base pair overlap between the DCs. Adapted from Seufert et al. (2024).  
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matrices. Afterwards, SpectralTAD was used to newly identify domains from this 

consensus metacell co-accessibility matrix and DCs with exceptionally high co-

accessibility scores were identified. These consensus DCs showed a generally high 

overlap (above 60 %) with all replicates (Figure 2.28B). 

In summary, both ACs and DCs showed high concordance between the replicates of 

HUVEC scTurboATAC-seq data. For ACs, the overlap between replicates was 

exceptionally high at TNFα-regulated genes (approximately 75 %), but less on a genome-

wide scale (below 10 %). The high reproducibility in TNFα-induced chromatin regions 

might indicate that some ACs resolve co-accessibility from targeted molecular processes, 

while others reflect randomly occurring co-accessible events. The presence of these 

random co-accessible events aligns with my previous observations on the stochastic 

nature of chromatin accessibility (see Section 2.1.3). However, investigating the 
underlying molecular processes of ACs might elucidate their varying reproducibility. For 

DCs, the overlap between consensus and replicates was high (above 60 %). Here, 

differences in reproducibility were mostly driven by varying data quality among samples of 

one replicate (see Section 2.1.1). 

2.2.3. Molecular mechanisms driving chromatin co-accessibility 

The previous sections demonstrated that ACs and DCs are fundamentally different 

features of chromatin co-accessibility. However, the underlying molecular mechanisms 

driving these distinct features remain unclear. To investigate the various molecular 

aspects of ACs and DCs and identify their underlying biological processes, I utilized 

scTurboATAC-, bulk HiC-, and bulk H3K27ac ChIP-seq data from HUVECs (see Table 
2.9). Specifically, I analyzed the relationship of ACs and DCs with TADs, representing 
higher-order chromatin structures. The TADs were identified from bulk HiC-seq data of 

untreated HUVECs and reflect regions of high chromatin contact frequencies in the 

unperturbed baseline condition. In HiC-seq data, the contact frequency of two genomic 

regions reflects how often they were found in spatial vicinity within the bulk population of 

cells, where high frequencies suggest that the loci are frequently proximal in 3D space. 

Additionally, for ACs, I examined these chromatin contact frequencies and potential 

differences between ACs with high and low detection rates among the single cells. For 

DCs, I assessed their response to TNFα treatment and local variations in TF binding 

activity. 
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ACs show increased contact frequencies in HiC-seq data 
Chromatin contact frequencies were studied in the exemplary region around the two 

TNFα-regulated genes, KLF10 and GASAL1, which previously showed highly reproducible 

ACs between their promoters and distal H3K27ac peaks (see Figures 2.26A, 2.27B). The 
two genes are located at the opposite boundaries of the same TAD, indicating that their 

associated ACs emerged within a single TAD (Figure 2.29A). When examining the 
location of ACs in relation to TADs genome-wide, most ACs (45-52 %) were found within 

the same TAD (Figure 2.29B). However, significant fractions of ACs crossed TAD 
boundaries (26-33 %) or were located outside of TADs (all 23 %). 

Next, I compared the chromatin contact frequencies of AC-linked ATAC peaks to the 

genome-wide distribution of chromatin contact frequencies (Figure 2.29C). The chromatin 
contact frequencies of AC-linked ATAC peaks showed a bimodal distribution. A fraction of 

Figure 2.29 Chromatin contact frequencies and TADs at ACs from HiC-seq data of 
unstimulated HUVECs. A Chromatin contact map in an exemplary region of TNFα-regulated 
genes KLF10 and GASAL1. The upper limit of the color scale bar is set to 100. B Genomic location 
of ACs in relation to TADs. ACs were classified as within one TAD, across a TAD boundary, and 
without TAD overlap. C Chromatin contacts genome-wide (black) and between AC-linked peaks 
(red). D Chromatin contacts between AC-linked peaks within one TADs, across a TAD boundary, 
and outside of TADs. P-values < 2.22e-16 from Wilcoxon test are indicated by ****. Adapted from 
Seufert et al. (2024). 
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ACs exhibited approximately 50-fold higher contact frequencies compared to the genome-

wide background, while the remaining ACs showed only moderately higher contact 

frequencies. This bimodal distribution coincided with the ACs’ location in relation to TADs 

(Figure 2.29D). ACs within and outside of TADs displayed very high contact frequencies, 
whereas ACs crossing TAD boundaries showed significantly lower contact frequencies. 

Nonetheless, all ACs demonstrated contact frequencies above background, indicating that 

ACs reflect interactions between co-accessible, and thereby co-active, distal chromatin 

sites. 

Frequent and rare ACs originate from different molecular processes 
Previously, the investigation of the detection rate revealed two types of ACs, as 

demonstrated by the bimodal PAC distribution of ACs (see Figure 2.24B). ACs with PAC 
above 75 were considered frequent, while ACs with PAC below 75 were considered rare. 

Chromatin contact frequencies showed different enrichment patterns for these two types 

of ACs (Figure 2.30A). Rare ACs with low PACs exhibited a strong enrichment of 
chromatin contacts in their entire vicinity. In contrast, frequent ACs with high PACs 

displayed enriched chromatin contacts between the linked peaks but depleted chromatin 

contacts beyond the linked peaks. This observation suggested that rare ACs might result 

from stochastic or random interactions of active chromatin sites in a highly dynamic and 

transient chromatin environment with generally high contact frequencies. Conversely, 

frequent ACs potentially originate from architectural chromatin interactions, creating 

diverse chromatin environments of enriched or reduced chromatin interactions between 

and outside their linked peaks. 

To investigate the underlying mechanism of frequent ACs in more detail, single cell and 

metacell co-accessibility were examined in an exemplary region around the four TNFα-

regulated genes GBP1, GBP2, GBP3 and GBP4 (Figure 2.30B), since these GBP genes 
showed multiple frequent ACs (PACs of almost 100) in their surroundings. These frequent 

ACs from single cell co-accessibility analysis occurred between multiple H3K27ac peaks 

surrounding the GBP genes (Figure 2.30B, bottom: H3K27ac peaks in green). 
Furthermore, all of them originated from genomic loci at or near gene promoters. The 

metacell co-accessibility analysis revealed a specific pattern at these frequent ACs 

(Figure 2.30B, top). The AC-linked ATAC peaks showed high metacell co-accessibility 
between them (Figure 2.30B, top: black rectangles), but anti-correlated accessibility with 
all other genomic loci in the region (Figure 2.30B, top: anti-correlated accessibility in blue). 
Chromatin contact frequencies in this region indicated that the origins of these so-called 

blue stripes did not correspond to TAD boundaries (Figure 2.30C, bottom). However, the 
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blue stripes coincided with increased chromatin contact frequencies proximal to TAD 

boundaries, visible as red stripes in the HiC map. Metacell co-accessibility in the extended 

genomic region showed that the blue stripes were not only observed between neighboring 

AC-linked H3K27ac peaks but extended further to subsequent linked H3K27ac peaks 

(Figure 2.30C, top). These findings supported the hypothesis that frequent ACs and their 
related blue stripes reflect architectural chromatin interactions, e.g. chromatin loops. 

Figure 2.30 Chromatin contacts and metacell co-accessibility at rare and frequent ACs.  
A Chromatin contact frequency enrichment at rare (top) and frequent ACs (bottom). Centered, 
scaled, and averaged pileups of ACs from untreated HUVECs are shown. B Metacell co-
accessibility map (top) and single cell co-accessibility consensus ACs (bottom) in an exemplary 
region of TNFα-regulated genes GBP1, GBP2, GBP3, and GBP4. The annotation in the middle 
shows ATAC peaks (black, 1 kb extended), H3K27ac peaks from ChIP-seq after 30 min TNFα 
treatment (green), genes (grey), TNFα-regulated genes (blue), and 1 kb regions around their TSSs 
(light blue). Limits of the metacell co-accessibility color scale bar are set to -0.3 and 0.3. The 
grayscale and height of loops reflect co-accessibility score and percent accessible cells of ACs. C 
Zoom out from panel B with maps of metacell co-accessibility (top) and chromatin contacts 
(bottom). Limits of the co-accessibility color scale bar are set to -0.3 and 0.3. The upper limit of the 
chromatin contact color scale bar is set to 100. Adapted from Seufert et al. (2024).  
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Furthermore, their proximity to TAD boundaries, coincidence with chromatin contact 

stripes, and extension of blue stripes beyond their immediate neighborhood suggested 

that these might represent molecular processes of loop or TAD boundary stacking. 

DCs show significant accessibility changes upon TNFα treatment 
Chromatin contact frequencies were studied in the exemplary region around the three 

TNFα-regulated genes, TNFAIP3, WAKMAR2, and IFNGR1, which previously showed 

highly reproducible DCs across replicates (see Figure 2.28A). The consensus metacell 
co-accessibility, computed by averaging the replicate metacell co-accessibility matrices, 

showed local enrichment of metacell co-accessibility around these genes (Figure 2.31A, 
top). Multiple DCs around TNFAIP3 and WAKMAR2 were identified (Figure 2.31A, red 
regions), while no DC at IFNGR1 was detected. The HiC map indicated that the 

TNFAIP3/WAKMAR2 DC coincided with enriched chromatin contact frequencies in the 

Figure 2.31 Chromatin contacts and accessibility at DCs from scTurboATAC-seq data of 
untreated, 30 min, and 240 min TNFα-treated HUVECs. A Average metacell co-accessibility map 
from replicates and chromatin contact map from HiC-seq data in an exemplary region of TNFα-
regulated genes TNFAIP3, IFNGR1 and WAKMAR2. DCs from average metacell co-accessibility 
(red), H3K27ac peaks from ChIP-seq at the 30 min time point (green), genes (grey), TNFα-
regulated genes (blue) and 1 kb regions around their TSSs (light blue) are indicated. Limits of the 
co-accessibility color scale bar are set to -0.3 and 0.3. The upper limit of the chromatin contact 
color scale bar is set to 100. B Differential accessibility in DCs after TNFα treatment of HUVECs 
across three biological replicates visualized by log2FC and FDR. DCs with FDR below 0.05 are 
considered significant and marked in red (upregulated) and blue (downregulated). Adapted from 
Seufert et al. (2024). 
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same region (Figure 2.31A, bottom). IFNGR1 was linked by a broader region of long-
distance co-accessibility that spanned across a TAD boundary between the three genes. 

Nearly all (95 %) of the 4,885 identified DCs showed significant accessibility changes upon 

TNFα treatment (Figure 2.31B). This indicates regulatory chromatin changes throughout 
the entire DC region rather than specific variations at CREs within the DCs. Accessibility 

was reduced in most DCs (74 % at 30 min; 70 % at 240 min), while only 26 % and 30 % 

showed increased accessibility in response to TNFα treatment. However, the opposite 

pattern was observed for the 683 DCs containing a TNFα-regulated gene: 75 % of these 

showed increased accessibility upon TNFα treatment, suggesting specific activation and 

increased activity of DCs with TNFα-regulated genes. 

DCs are independent TAD sub-structures 
The genome-wide comparison of DCs and TADs showed that DCs have, on average, a 

tenfold smaller genomic size than TADs (Figure 2.32A). Furthermore, the majority of DCs 
(64 %) were within a single TAD, but approximately 35 % of DCs either overlapped with a 

TAD boundary or were located outside of TADs (Figure 2.32B). These observations 
suggest that DCs are TAD-independent structures. To understand how contiguous DC 

form across TAD boundaries, I examined chromatin contact frequencies at TADs with DCs 

inside, DCs across their boundaries, and TADs without DCs (Figure 2.32C). For all 
groups, chromatin contact frequencies were enriched within TADs. However, only TADs, 

with DCs crossing their boundaries, showed enriched chromatin contact frequencies with 

neighboring TADs. In contrast, these frequencies were lower for TADs with DCs inside 

and for TADs without DCs. This suggests that some TAD boundaries allow DCs to extend 

beyond them, increasing their contact frequencies with surrounding regions. 

DCs show local enrichment of TF binding activity 
To investigate the biological mechanisms causing these TAD-independent structures with 

high co-accessibility and TNFα-induced activity changes, I studied the local TF binding 

activity in DCs (Figure 2.33). TF binding can be studied using pseudo-bulks of scATAC-
seq data, as TFs protect their binding motifs from Tn5 insertions, making them 

inaccessible (see Section 2.1.5).   I computed accessibility footprints for TFs that showed 
a genome-wide increase in binding upon TNFα treatment. This comprised 16 TFs from the 

families of NF-κB, IRF, and CCAAT enhancer binding proteins (CEBP), and others. Each 

of these TFs possesses an individual binding motif, which was used to predict all potential 

binding sites of this TF genome-wide. The accessibility footprints were used to infer TF 

binding scores for each binding site individually (Figure 2.33, middle). To investigate local 
differences in TF binding between genomic regions, I compared the TF footprints and 
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scores of binding sites within DCs to those in local and genome-wide non-DC background 

regions (Figure 2.33, right). 

NF-κB/p65 accessibility footprints for binding sites in the previously studied 

TNFAIP3/WAKMAR2 DC (see Figures 2.28A, 2.31A) revealed low accessibility at the 
motif centers and high accessibility in the surrounding regions, indicating high binding 

activity of NF-κB/p65 at all treatment time points (Figure 2.34A, red). Footprints from 
binding sites in the surrounding non-DC regions of the same size showed distinctly less 

NF-κB/p65 binding for all time points (Figure 2.34A, black). In untreated HUVECs, the 
footprints revealed low accessibility at both the motif center and its flanking regions 

indicated little to no NF-κB/p65 binding in the non-DC background. Upon TNFα treatment, 

accessibility increased in the binding site flanking regions of the background, but there 

was no depletion of accessibility at the center. This suggests that NF-κB/p65 molecules in 

the local background of the TNFAIP3/WAKMAR2 DC rarely and briefly bind to its potential 

Figure 2.32 Chromatin contacts and TADs at DCs from HiC-seq data of unstimulated 
HUVECs. A Genomic sizes of DCs and TADs. B Genomic location of DCs in relation to TADs. DCs 
were classified as within one TAD, across a TAD boundary, and without TAD overlap. C Chromatin 
contact frequency enrichment at TADs with DC within (top left), DC across TAD boundary (bottom), 
and without DC (top right). Centered, scaled and averaged pileups of TADs from untreated 
HUVECs are shown. Adapted from Seufert et al. (2024). 
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binding sites, making them generally more accessible. Consequently, potentially low NF-

κB/p65 concentration or binding activity in the background did not saturate TF occupancy 

at the motifs. In contrast, the strongly reduced accessibility at the DC’s motif centers 

indicated high NF-κB/p65 concentration or binding activity, resulting in a saturated TF 

occupancy of the binding sites. Quantifying this with NF-κB/p65 binding scores showed a 

distinct increase in NF-κB/p65 binding in the TNFAIP3/WAKMAR2 DC upon TNFα 

treatment (Figure 2.34B, left). In comparison, NF-κB/p65 binding scores in the genome-
wide non-DC background were lower across all TNFα treatment time points (Figure 
2.34B, right). 

Furthermore, differential TF binding between the TNFAIP3/WAKMAR2 DC and the 

genome-wide non-DC background revealed local differences in TF binding scores at the 

exemplary DC (Figure 2.34C). Across all TNFα treatment time points, NF-κB family TFs 
demonstrated significantly higher binding scores in the TNFAIP3/WAKMAR2 DC than in 

the non-DC background. In contrast, other TFs showed no difference or even lower binding 

scores in the TNFAIP3/WAKMAR2 DC than in the background for untreated HUVECs. PR 

domain zinc finger protein 1 (PRDM1), type 1 interferon response element (T1ISRE), 

CEBP, and PU.1-IRF8 exhibited higher binding scores in TNFAIP3/WAKMAR2 DC upon 

TNFα treatment. Additionally, IRF-BATF (basic leucine zipper ATF-like transcription factor) 

and IRF4 showed higher binding scores in the TNFAIP3/WAKMAR2 DC after 240 min of 

treatment. These findings were consistently reproducible across replicates at all treatment 

time points (Figures 2.34A-C). A meta-analysis of replicates revealed significantly higher 
binding scores of NF-κB/p65 and NF-κB/p65/Rel in the TNFAIP3/WAKMAR2 DC than the 

non-DC background after TNFα treatment (Figure 2.34D). Higher binding scores of 
PRDM1, T1ISRE, and IRF-BATF were also statistically significant, though less strong. 

Figure 2.33 Investigation of local alterations in TF binding at DCs using pseudo-bulks of 
scATAC-seq data. TF binding makes chromatin inaccessible at its binding motifs, while 
simultaneously increasing the probability of Tn5 insertions in its surrounding accessible regions. 
These patterns are called TF footprints, from which TF binding scores can be inferred. Local 
differences in TF binding are identified by comparing TF binding scores in DCs to those in local or 
genome-wide non-DC background regions. Adapted from Seufert et al. (2024).    
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Significantly higher binding scores in DCs than in the non-DC genome-wide background 

were observed in 44 % of the 4,885 DCs for at least one of the studied TFs. The DCs 

displayed varying patterns of locally enriched TFs (Figure 2.35). Some DCs showed 
significantly higher binding scores of a single TF, while others exhibited higher binding 

scores of an entire TF family or multiple families. Additionally, responses to TNFα 

treatment varied: Some DCs showed higher binding scores regardless of treatment time 

Figure 2.34 Local enrichment of TF binding at the TNFAIP3/WAKMAR2 DC from 
scTurboATAC-seq data of untreated, 30 min, and 240 min TNFα-treated HUVECs. A Pseudo-
bulk accessibility footprints at NF-κB/p65 motifs in the TNFAIP3/WAKMAR2 DC (red) and the 
surrounding non-DC regions of the same size (local background; black). Each line shows the 
pseudo-bulk accessibility of one biological replicate in untreated (top), 30 min (middle), and 240 
min (bottom) TNFα-treated HUVECs. B NF-κB/p65 binding scores (log10) of accessible motifs in 
the TNFAIP3/WAKMAR2 DC (left) and genome-wide non-DC regions (genome-wide background; 
right). C Differential TF binding in the TNFAIP3/WAKMAR2 DC vs. the genome-wide background 
in individual replicates. Color scale limits are set to -2 and 2. D Differential TF binding in the 
TNFAIP3/WAKMAR2 DC vs. the genome-wide background visualized by average log2FC and p-
values from meta-analysis of replicates. TFs with absolute log2FC above 1 and FDR below 0.05 
are considered significant. Adapted from Seufert et al. (2024). 
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point, while others exhibited increased or decreased local enrichment in response to TNFα 

treatment. Overall, these results suggest that DCs arise from local differences in TF 

concentration or binding activity, leading to the distinct contiguous co-accessibility patterns 

within broad domains. 

ACs and DCs originate from different molecular processes  
In conclusion, the co-accessibility patterns of ACs and DCs arise from distinct molecular 

mechanism. ACs represent spatial contacts between co-active distal chromatin sites 

(Figure 2.36, left). Here, rare and frequent ACs originate from chromatin contacts induced 
by different biological processes. Rare ACs are likely the result of random interactions 

within dynamic chromatin regions with generally high contact frequencies. In contrast, 

frequent ACs seem to reflect architectural interactions, leading to higher contact 

frequencies of the chromatin within than beyond the AC. These frequent ACs potentially 

arise from targeted chromatin loops or stacking of TAD boundaries. Despite their 

differences, both AC types represent chromatin topology-mediated contacts between 

distal sites. In contrast, DCs are contiguous chromatin regions that function as TAD-

independent structures with TNFα-dependent accessibility changes (Figure 2.36, right). 

Figure 2.35 Local enrichment of TF binding activity in DCs from scTurboATAC-seq data of 
untreated, 30 min, and 240 min TNFα-treated HUVECs. Differential TF binding in DCs vs. the 
genome-wide background in unstimulated and TNFα-stimulated HUVECs. Average log2FC of 
replicates for all DCs with significant local enrichment of TF binding are shown. TFs are grouped 
by family. DCs are clustered by summed family enrichment. Color scale limits are set to 0 and 2. 
Adapted from Seufert et al. (2024). 
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The distinct co-accessibility pattern of DCs likely results from enrichment of TF binding 

activity in local subcompartments or hubs. However, the data does not allow to determine 

whether these nuclear subcompartments are formed by liquid-liquid phase separation of 

TFs and co-factors or by local TF confinement due to chromatin compaction. Nevertheless, 

unlike chromatin-mediated ACs, DCs appear to represent TF-mediated chromatin hubs. 

In summary, in this chapter I designed and developed a computational framework for 

chromatin co-accessibility analysis that resolves different layers of co-accessibility by 

enriching for varying dimensions of accessibility changes (Section 2.2.1). By introducing 
the R software package RWireX, the computational framework was made available to the 

scientific community. Additionally, I identified and addressed experimental and 

computational limitations in co-accessibility analysis by assessing its reproducibility for 

data sets of equal as well as varying quality (Sections 2.2.1, 2.2.2). Finally, I investigated 
the underlying biological mechanisms causing the distinct patterns in co-accessibility, 

which I observed before (Section 2.2.3).  

  

Figure 2.36 Biological mechanisms causing co-accessibility patterns of ACs and DCs. ACs 
resolve contacts of co-accessible, and thereby co-active, distal chromatin sites. They form two 
groups with low and high detection rates, each driven by different molecular mechanisms inducing 
chromatin contact. Rare ACs likely reflect random interactions in dynamic chromatin regions with 
generally high contact frequencies, while frequent ACs represent targeted architectural 
interactions, potentially caused by loops or stacking of TAD boundaries. DCs are TAD-independent 
structures of enriched co-accessibility that exhibit TNFα-induced accessibility changes. These 
structures originate from local alterations in TF concentration or binding activity, which render the 
entire local domain co-accessible. Adapted from Seufert et al. (2024).   
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2.3. Identifying the structure-function relationship 
between regulatory mechanisms and their transcriptional 
output 

In this chapter, I address the third aim of this thesis: Identifying the structure-function 

relationship between regulatory mechanisms and their transcriptional output. By applying 

the computational framework for co-accessibility analysis to various human and mouse 

systems under perturbation (see Section 1.3), I aimed to study genome-wide mechanisms 
of transcription regulation using chromatin co-accessibility. To achieve this, I used three 

different model systems under perturbation: (i) Two mouse cell types, namely ESCs and 

MEFs, untreated and treated with IFNβ, (ii) the TCL1 mouse model for CLL with Tbx21 

wild-type or double knock-out, and (iii) HUVECs untreated and treated with TNFα. The 

perturbation studies enabled me to investigate the regulatory mechanisms underlying 

specifically induced changes in transcription. The broad range of mammalian systems, 

along with internal and external perturbations, allowed me to explore general principles of 

transcription regulation beyond molecular responses linked to specific pathways and 

stimuli, such as cytokine treatment.  

In the first project, I investigated ESCs and MEFs in an unstimulated condition and after 

IFNβ treatment for 1 h and 6 h (see Section 1.3.1), which was published in Muckenhuber 
et al. (2023). Here, I used scRNA-seq and scATAC-seq data to study the gene regulatory 

response to IFNβ treatment (Table 2.10, project 1). The analyses built upon findings from 
bulk RNA- and STAT1/STAT2 ChIP-seq data on IFNβ induced changes in TF binding and 

gene expression. As described in Chapter 2.1, sequencing data acquisition and the 
analysis of bulk and scRNA sequencing from ESCs and MEFs were performed by Markus 

Muckenhuber. My contribution involved the computational analysis of scATAC-seq data 

from ESCs and MEFs. In addition, these results were complemented by my bulk RNA-seq 

data analysis of natural killer (NK) cells co-cultured with non-infected and Hepatitis D virus 

(HDV)-infected hepatocytes (Table 2.10, project 1; Figure 2.37A), which were published 
in Groth et al. (2023). Markus Muckenhuber conducted bulk RNA-seq of NK cell co-

cultures with hepatocytes, for which samples were prepared by Christopher Groth 

(Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience and 

Medical Faculty Mannheim, Heidelberg University, Germany). Differential expression 

analysis of HDV-related bulk RNA-seq data was performed by Carsten Sticht (Medical 
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Faculty Mannheim, Heidelberg University, Germany). My contribution comprised the 

computational preprocessing of the bulk RNA-seq data.  

Table 2.10 Overview of data sets used for identifying the structure-function relationship 
between regulatory mechanisms and their transcriptional output. 

Project Sample Perturbation Method Sequencing assay 

1 ESC IFNβ 
treatment 

Single-cell seq. RNA, ATAC 

Bulk seq. RNA, TF ChIP  
(STAT1, STAT2) 

1 MEF IFNβ 
treatment 

Single-cell seq. RNA, ATAC 

Bulk seq. RNA, TF ChIP  
(STAT1, STAT2) 

1 NK cells HDV 
infection Bulk seq. RNA 

2 TCL1 cells Tbx21  
knock-out 

Single-cell seq. RNA, TurboATAC 

Bulk seq. RNA 

Mass spectrometry 

2 CLL patient 
samples 

High/low 
TBX21 
expression 

Bulk seq. RNA, ATAC 

Mass spectrometry 

Malignancy Bulk seq. RNA 

3 HUVEC TNFα 
treatment 

Single-cell seq. RNA, TurboATAC, 
Nuclear RNA 

Bulk seq. HiC, Histone ChIP 
(H3K27ac) 

Spatial transcriptomics of nuclear RNA 

 

In the second project, I investigated TCL1 mouse models for CLL in wild-type conditions 

(Tbx21+/+) and with Tbx21 double knock-out (Tbx21-/-). The results were published in 

Roessner et al. (2024). As described earlier in Section 1.3.3, the Tbx21 gene encodes 
the transcription factor T-bet, whose knock-out affects the transcription of its specific target 

genes as well as secondary targets. I used scRNA-seq and scTurboATAC-seq data from 

two biological replicates of both TCL1 wild type and Tbx21-/- to study T-bet-dependent 

gene regulation (Table 2.10, project 2). The Tbx21+/+ and Tbx21-/- TCL1 mouse models 
were generated by Philipp Roessner (formerly Division of Molecular Genetics, German 

Cancer Research Center, Heidelberg, Germany). The scRNA-seq and scTurboATAC-seq 

data from TCL1 cells were acquired by Markus Muckenhuber. My contribution comprised 

the computational analysis of these data. The analyses were supported by bulk RNA-seq, 
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bulk ATAC-seq, and mass spectrometry (MS) data of both Tbx21+/+ and Tbx21-/- TCL1 as 

well as CLL patient samples (Table 2.10, project 2). Bulk TCL1 data were generated by 
Philipp Roessner. Computational analyses of bulk sequencing data were conducted by 

Marc Zapatka (Division of Molecular Genetics, German Cancer Research Center, 

Heidelberg, Germany) and Vincente Chapaprieta (Instituto de Investigaciones Biomédicas 

August Pi i Sunyer, Barcelona, Spain). MS data analysis was conducted by Pavle Boskovic 

(Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany).  

In the third project, I studied HUVECs under untreated condition and after treatment with 

TNFα and the presented results were published in Seufert et al. (2024). I used scRNA-seq 

and scTurboATAC-seq data to study the gene regulatory response of primary human cells 

to TNFα treatment (Table 2.10, project 3; see Section 1.3.2). Single-cell sequencing data 
were complemented by bulk HiC-seq and H3K27ac ChIP-seq data, as well as data from 

nuclear RNA obtained through single-nucleus sequencing and multiplexed smFISH 

imaging, implemented via the so-called padFISH protocol. In addition to the previously 

described contributions to the HUVEC data set in Chapter 2.2, experimental work for the 
scRNA-seq data of HUVECs was performed by Irene Gerosa and Sabrina Schumacher. 

Nuclear RNA sequencing in single cells was conducted by Katharina Bauer and Jan-

Philipp Mallm. PadFISH imaging of nuclear RNA and its analysis were performed by Irene 

Gerosa. My contribution was the preprocessing and computational downstream analysis 

of scRNA-seq, scTurboATAC-seq and nuclear RNA-seq data. Furthermore, I integrated 

results from all sequencing and imaging data sets. 

In addition to the three presented projects, I contributed to studying transcription 

deregulation in subclones of multiple myeloma (MM) using my computational framework 

for co-accessibility analysis, published in Poos et al. (2023). The project comprised data 

on 15 patients with relapsed or refractory MM, which were studied at two time points during 

their treatment regime. The aim of the study was to investigate intratumor heterogeneity 

among the multidrug-resistant subclones and identify their underlying regulatory 

mechanisms as potential molecular targets. Here, single cell co-accessibility was 

computed from scATAC-seq data of patient-specific MM subclones. Subclone- or time 

point-specific ACs at genes that encode for known drug resistance proteins were detected 

and coincided with upregulated expression of these genes, potentially contributing to the 

observed drug resistance. The analysis was conducted in collaboration with Alexandra 

Poos (Department of Internal Medicine V, University Hospital Heidelberg and Clinical 

Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, 
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Heidelberg, Germany), where I provided scripts for co-accessibility analysis and visualized 

results. This project is not further shown in this thesis. 

2.3.1. Proximal and distal transcription regulation of IFNβ-
stimulated genes in mouse cells 

In mammalian organisms, IFN signaling is a key component of the antiviral response. It 

precisely regulates the expression of IFNβ-stimulated genes, so-called ISGs, that protect 

host organisms from viral infections. For example, we found that upon HDV infection of 

hepatocytes, IFN gamma (IFNγ) is significantly upregulated in co-cultured NK cells 

(Figures 2.37A+B). Subsequently, the increased IFNγ levels enhance the expression of 
ISGs, such as IFIT5 and ISG20, in NK cells (Figure 2.37C), demonstrating the important 
role of IFN-dependent transcription regulation in the defense against viral infections. 

Similarly, IFNs play a crucial role in the immune response against the Severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), for which we monitored the 

epidemiological spreading in the Rhine-Neckar/Heidelberg region by sequencing in 2021 

(Bundschuh et al., 2024).  

In the following paragraphs, I utilize the comprehensive single-cell and bulk sequencing 

data set from mouse ESCs and MEFs (see Table 2.10, project 1) to examine how IFNβ 
induces transcription of specific target genes. The genetically identical ESCs and MEFs 

provide a model to study both the common and cell type-specific induction of ISG 

expression. Using these ISGs, I aimed to investigate different mechanisms of proximal 

Figure 2.37 NK cell activity is induced by IFNγ after HDV infection. A Scheme of the in-vitro 
co-culture system of peripheral NK cells and HDV-infected hepatocytes. B Fraction of IFNγ 
expressing peripheral NK cells cultured with supernatant from non-infected and HDV-infected 
HepG2-hNTCP cells. P-value from Student’s t-test is indicated as *, P < 0.05; **, P < 0.01; ***, P < 
0.001. C Differential expression between peripheral NK cells in co-culture with non-infected and 
HDV-infected HepG2-hNTCP cells. Differential expression is visualized by log2 fold changes and 
negative log10 p-values. Genes with absolute log2FC above 1 and p-value below 10-2.5 are 
considered significant and marked in red (upregulated) and blue (downregulated). Co-cultures and 
bulk RNA-seq data were prepared by Christopher Groth and Markus Muckenhuber, respectively. 
Differential expression analysis was conducted by Carsten Sticht. Adapted from Groth et al. (2023). 
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and distal transcription regulation and their effects on the transcriptional response to IFNβ. 

Additionally, the comparison of the two cell types allowed me to assess the regulatory 

effects of different epigenetic modifications and consequent chromatin states at CREs in 

an otherwise genetically identical environment. 

IFNβ induces cell type-specific gene expression changes 
To characterize the transcriptional response of ESCs and MEFs to IFNβ treatment, we 

performed differential expression analysis of bulk RNA-seq data between unstimulated 

and 1 h as well as 6 h IFNβ-stimulated ESCs and MEFs. This analysis identified between 

57 to 452 upregulated ISGs per cell type and time point (Figure 2.38A, red). In contrast, 
both cell types showed only a few genes with significantly reduced expression after IFNβ 

treatment. Furthermore, both cell types exhibited a lower expression response after 1 h 

(30 % of ISGs for ESCs, 25 % for MEFs) compared to 6 h of IFNβ treatment. At both time 

points, MEFs showed three- to fourfold more ISGs than ESCs (in total 191 ISGs in ESCs, 

463 in MEFs). Additionally, the magnitude of the expression increase was generally higher 

in MEFs. Among the two cell types, the majority of ISGs detected in ESCs were also 

detected in MEFs (Figure 2.38B, orange), while only 17 % of ISGs were specific to ESCs 
(Figure 2.38B, green). In contrast, 66 % of ISGs were specific to MEFs (Figure 2.38B, 

Figure 2.38 IFN-stimulated genes (ISGs) in ESCs and MEFs after 1 h and 6 h of IFNβ 
treatment from bulk RNA-seq data. Data from four biological replicates of ESCs and two 
biological replicates of MEFs are shown. A Gene expression changes after 1 h (top) and 6 h 
(bottom) of IFNβ stimulation in ESCs (left) and MEFs (right). ISGs with a log2FC ³ 1.5 and adjusted 
p-value < 0.05 are marked in red. B Overlap of ISGs between ESCs and MEFs. ISGs after 1 h 
IFNβ (top), 6 h IFNβ (middle) and both 1 h and 6 h IFNβ (bottom) are shown. Analysis was 
performed by Markus Muckenhuber. Adapted from Muckenhuber et al. (2023). 
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purple). Overall, both ESCs and MEFs show upregulated expression of specific ISGs upon 

IFNβ treatment. Notably, many ISGs were common among the cell types and only few 

ESC-specific ISGs were detected. This suggests that the transcriptional response is 

predominantly regulated by the IFNβ-induced TFs in both cell types, rather than by their 

potentially different chromatin states of the CREs.  

Single cell expression profiles show uniform responses to IFNβ 
Next, we studied gene expression of ESCs and MEFs upon IFNβ stimulation at single-cell 

resolution to determine whether the upregulation of ISG expression was homogeneous 

among the cells. Low-dimensional embedding of scRNA-seq data from ESCs revealed a 

homogeneous distribution of cells for each IFNβ treatment time point (Figure 2.39A, left). 
ESCs treated with IFNβ for 6 h formed a distinct cluster, referred to as C0, which was 

separate from unstimulated and 1 h stimulated ESCs, that were mixed within cluster C1. 

In contrast, the low-dimensional embedding of scRNA-seq data from MEFs showed two 

subpopulations that were distinct across all IFNβ treatment time points (Figure 2.39A, 
right). Within these subpopulations, MEFs were uniformly distributed at each IFNβ 

Figure 2.39 Gene expression response to IFNβ treatment in ESCs and MEFs at single-cell 
resolution from scRNA-seq data. Data from one biological replicate of each ESCs and MEFs are 
shown. A Low-dimensional embedding of ESCs (left) and MEFs (right). Cells are colored according 
to their IFNβ treatment time points. K-nearest neighbor clusters are labeled by number. B Single-
cell expression levels of ISGs Ifit1 and Isg15 in ESCs (top) and MEFs (bottom). C Single-cell UMI 
counts (left) and percent mitochondrial counts (right) for ESC and MEF clusters. Analysis was 
performed by Markus Muckenhuber. Adapted from Muckenhuber et al. (2023). 
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treatment time point. Similar to ESCs, MEFs treated with IFNβ for 6 h (clusters C2 and 

C3) were separate from unstimulated and 1 h stimulated MEFs (clusters C0 and C1). 

Additionally, unstimulated and 1 h stimulated MEFs were distinct within clusters C0 and 

C1, but did not form separate clusters. The more pronounced separation of unstimulated 

and 1 h stimulated MEFs, compared to ESCs, was consistent with the stronger ISG 

induction observed in MEFs after 1 h of IFNβ stimulation in bulk RNA-seq (see Figures 
2.38A+B). Accordingly, the expression of well-characterized ISGs such as Ifit1 and Isg15 
significantly increased in both ESCs and MEFs after 6 h of IFNβ stimulation (Figure 
2.39B). However, MEFs also showed upregulated expression of these ISGs after just 1 h 
of IFNβ stimulation. The increase in expression for both ISGs was stronger in MEFs than 

in ESCs, despite ESCs having generally higher numbers of total and percent mitochondrial 

UMIs, indicating higher data quality for ESCs (Figure 2.39C).  

For MEFs, clusters C4 and C5 were excluded due to their low UMI counts (Figure 2.39C, 
left) and the low number of cells originating from all three IFNβ treatment time points 

(Figure 2.39A, right). Within the remaining MEF clusters, the IFNβ response appeared to 
be overall similar for well-studied ISGs (Figure 2.40A). Minor differences in expression 
were observed for Ifi27 in the unstimulated and 1 h IFNβ-stimulated MEF clusters C0 and 

Figure 2.40 Differences between MEF subpopulations untreated and after 1 h and 6 h of IFNβ 
treatment from scRNA-seq data. Data from one biological replicate of MEFs are shown.  
A Expression levels of ISGs Irf9, Stat1, Ccnd2, Ifi27 and Ccl2 in MEF clusters 0-3. B Low-
dimensional embedding of MEFs. Cells are colored according to their PC2 signal. C KEGG pathway 
enrichment for genes with positive (left) and negative (right) contributions to PC2. The size of the 
points reflects the number of genes in each KEGG pathway, and the color reflects the FDR. 
Analysis was performed by Markus Muckenhuber. Adapted from Muckenhuber et al. (2023).   
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C1. Similarly, Ccl2 showed varying levels of expression in the 6 h IFNβ-stimulated MEF 

clusters C2 and C3. However, for all exemplary ISGs, the upregulated expression in bulk 

RNA-seq data was confirmed for both MEF subpopulations in the scRNA-seq analysis, 

suggesting that the IFNβ stimulation was not driving their separation into distinct clusters 

across all treatment time points. Instead, we observed that the separation of the two MEF 

subpopulations was captured by PC2 (Figure 2.40B). A KEGG pathway analysis of the 
genes that contributed positively to PC2 showed the strongest enrichment in processes 

related to extracellular matrix receptor interaction, while the genes contributing negatively 

to PC2 were significant enriched in processes associated with smooth muscle contraction 

and focal adhesion (Figure 2.40C). This suggested that the two MEF subpopulations 
differed in their states during the epithelial-to-mesenchymal transition. MEF clusters C0 

and C2, showing high PC2 scores, were annotated as “mesenchymal-like MEFs”, while 

clusters C1 and C3, with low PC2 scores, were annotated as “epithelial-like MEFs”. 

STAT1/2 binding at ISG promoters correlates with increased expression  
To investigate the mechanisms regulating increased ISG expression, we investigated 

genome-wide binding sites of the TFs STAT1 and STAT2 using bulk ChIP-seq data of 

ESCs and MEFs. STAT1 and STAT2 peaks were called from the ChIP-seq data of ESCs 

and MEFs at the IFNβ treatment time points separately, indicating STAT1 and STAT2 

binding sites. A subset of these STAT1 and STAT2 binding sites showed significantly 

higher signal after 1 h and 6 h of IFNβ treatment compared to the unstimulated condition. 

Consequently, these binding sites with increased signal were considered IFNβ-induced 

STAT1 and STAT2 binding sites. In ESCs, STAT1 binding was induced at 1,133 genomic 

sites, while only 236 genomic sites showed an increase in STAT2 binding (Figure 2.41A, 
top). Notably, 88 % of these induced STAT2 binding sites also showed simultaneous 

STAT1 binding, indicating co-binding of STAT1 and STAT2. In the following, these co-

bound sites are termed induced STAT1/2 binding sites. In contrast, in MEFs, STAT1 

binding was induced at fewer genomic sites (426), while STAT2 binding was induced at 

more genomic sites (574) compared to ESCs (Figure 2.41A, bottom). Similar to ESCs, a 
high proportion of the induced binding sites in MEFs showed co-binding of STAT1 and 

STAT2 (65 % of STAT1 binding sites and 48 % of STAT2 binding sites). When comparing 

STAT1 and STAT2 binding sites between ESCs and MEFs, most individual STAT1 and 

STAT2 binging sites (96 % and 99 %, respectively) were cell type-specific (Figure 2.41B). 
In contrast, 44 % and 33 % of the induced STAT1/2 binding sites overlapped between 

ESCs and MEFs, respectively.  
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Figure 2.41 STAT1 and STAT2 binding in ESCs and MEFs after 1 h and 6 h of IFNβ treatment 
from bulk ChIP-seq data. Bulk ChIP-seq of STAT1 and STAT2 as well as bulk RNA-seq data from 
four biological replicates of ESCs and two biological replicates of MEFs are shown. A Overlap of 
STAT1 and STAT2 binding sites after 1 h and 6 h of IFNβ treatment in ESCs (top) and MEFs 
(bottom). B Overlap of STAT binding sites between ESCs and MEFs. STAT1 (top), STAT1/2 
(middle) and STAT2 (bottom) binding sites are shown. C Genomic location of STAT1, STAT1/2 
and STAT2 binding sites in MEFs (left) and ESCs (right). D Gene expression after 0 h and 6 h of 
IFNβ stimulation in ESCs (top) and MEFs (bottom) for genes with STAT1, STAT2 and STAT1/2 
peak at the promoter. ISGs are labeled in red. Analysis was performed by Markus Muckenhuber. 
Adapted from Muckenhuber et al. (2023). 
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For both ESCs and MEFs, the genomic locations of the induced STAT1 and STAT2 

binding sites showed a diverse distribution across promoters, gene bodies, and intergenic 

regions (Figure 2.41C, top and bottom). Only a small proportion of induced STAT1 and 
STAT2 binding sites were located in promoter and exonic regions (19-41 %), while the 

majority were found in intronic and intergenic regions (59-81 %). Conversely, approx. 40-

50 % of induced STAT1/2 binding sites in ESCs and MEFs were located at promoters 

(Figure 2.41C, middle). This fraction was even higher for induced STAT1/2 binding sites 
shared between ESCs and MEFs, with 76 % located at gene promoters. 

Next, we investigated the relationship between induced STAT1, STAT2, and STAT1/2 

binding sites at promoters and their respective gene expression changes after 6 h of IFNβ 

treatment. For induced STAT1 binding sites at promoters, only 6 % and 14 % of genes 

showed significantly upregulated expression in ESCs and MEFs, respectively (Figure 
2.41D, left). In contrast, 50 % and 45 % of genes with induced STAT2 binding sites at the 
promoter showed significantly increased gene expression in ESCs and MEFs (Figure 
2.41D, middle). The number of ISGs was even higher for induced STAT1/2 binding sites 
at promoters, where 73 % and 72 % of genes showed significantly higher expression after 

6 h of IFNβ treatment in ESCs and MEFs (Figure 2.41D, right). In summary, the strong 
induction of STAT1, STAT2 and STAT1/2 binding supports the previous observation that 

the common transcriptional response between the cell types is predominantly regulated 

by IFNβ-induced TFs. In this context, simultaneous STAT1/2 binding was the most 

prominent driver of ISG activation in both ESCs and MEFs, particularly through direct 

binding to gene promoters. In contrast, STAT1 and STAT2 binding sites were cell type-

specific and more often found in promoter-distal genomic regions.  

IFNβ treatment increases accessibility at STAT1/2 binding sites 
Simultaneous STAT1/2 binding at promoters was identified as a key activator of ISG 

expression. However, the role of non-promoter STAT1/2 binding sites (accounting for 51-

59 %) in regulating ISG expression remains unclear. To further characterize the chromatin 

state at ISGs and STAT1/2 binding sites, I used scATAC-seq data of unstimulated and 

IFNβ-stimulated ESCs and MEFs. The low-dimensional embedding of chromatin 

accessibility profiles of ESCs revealed a homogeneous distribution of cells (Figure 2.42A, 
left). Furthermore, there was no separation between unstimulated and 6 h IFNβ-stimulated 

ESCs in the low-dimensional embedding, indicating no global changes in chromatin 

accessibility profiles following IFNβ treatment. Similarly, the low-dimensional embedding 

of scATAC-seq data for MEFs showed a homogeneous distribution of cells across all IFNβ 

treatment time points (Figure 2.42A, right). Consistent with the scRNA-seq data for MEFs, 
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the low-dimensional embedding revealed two MEF subpopulations that were present 

across all IFNβ treatment time points (clusters C2 and C3). While there was no distinct 

separation based on treatment condition for either subpopulation, MEFs treated with IFNβ 

for 6 h showed local enrichment within the MEF clusters (Figure 2.42A, right; note the 
increased blue intensity in the top right of clusters C2 and C3). However, it is unclear 

whether this enrichment reflects a biological effect of global changes in chromatin 

accessibility due to IFNβ treatment or is a result of lower numbers of unique fragments in 

the 6 h IFNβ-stimulated MEFs (Figure 2.42B). The MEF subpopulations were classified 
as epithelial-like (cluster C2) and mesenchymal-like (cluster C3) based on integration with 

previously annotated scRNA-seq data (Figure 2.42C). I excluded ESC cluster C1 and 
MEF cluster C1 from further analyses, due to their low UMI counts, low cell numbers, and 

the unassigned MEF subtype (Figures 2.42A+C). 

 

Figure 2.42 Chromatin accessibility in unstimulated and IFNβ-treated ESCs and MEFs at 
single-cell resolution from scATAC-seq data. Data from one biological replicate of each ESCs 
and MEFs are shown. A Low-dimensional embedding of ESCs (left) and MEFs (right). Cells are 
colored according to the IFNβ treatment time point. K-nearest neighbor clusters are labeled by 
number. B Single-cell unique fragment counts per time point for ESCs and MEF clusters. C Low-
dimensional embedding of MEFs. Cells are colored according to their MEF subtypes, derived from 
integrated scRNA-seq data. D Pseudo-bulk ATAC peaks from separate IFNβ treatment time points 
and cell types, as well as the union of merged ATAC peaks. Peaks are annotated by their genomic 
position. E Chromatin accessibility at STAT1/2 binding sites per time point in ESCs (top) and MEFs 
(bottom). Adapted from Muckenhuber et al. (2023).  
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Next, I performed ATAC peak calling on pseudo-bulk samples across cell types and all 

treatment conditions. This identified 231,170 genomic sites with high accessibility signals 

(Figure 2.42D). In contrast, the pseudo-bulks of the individual samples yielded only 
roughly 75,000-140,000 ATAC peaks. The majority of these ATAC peaks were located 

within genes, with around 10 % specifically at gene promoters. In ESCs, 244 ATAC peaks 

(0.1 %) exhibited significantly higher accessibility after 6 h of IFNβ treatment, while only 5 

ATAC peaks (0.002 %) showed significantly decreased accessibility (Table 2.11). In both 
epithelial- and mesenchymal-like MEFs, only 70 and 49 ATAC peaks (0.03 % and 0.02 %) 

demonstrated significantly increased accessibility after 6 h of IFNβ treatment, respectively, 

while no ATAC peaks showed a significant reduction of accessibility. After 1 h of IFNβ 

treatment in MEF subtypes, a more ATAC peaks (0.1 % in epithelial-like and 0.1 % in 

mesenchymal-like MEFs) showed significantly increased accessibility, while only 1 and 4 

ATAC peaks exhibited significantly reduced accessibility, respectively. 

Table 2.11 Differential accessibility analysis of pseudo-bulk ATAC peaks between untreated 
and 1 h or 6 h IFNβ-treated ESCs and MEFs. 

Number of ATAC peaks with ESCs Epithelial- 
like MEFs 

Mesenchymal
-like MEFs 

Increased accessibility at 1 h vs. 0 h - 271 273 

Decreased accessibility at 1 h vs. 0 h - 1 4 

Increased accessibility at 6 h vs. 0 h 244 70 49 

Decreased accessibility at 6 h vs. 0 h 5 0 0 

 

Similar to the scRNA-seq data (see Figure 2.40A), changes in chromatin accessibility in 
response to IFNβ treatment were highly similar between MEF subtypes. The comparison 

between MEFs and ESCs revealed a strong early response in MEFs, whereas ESCs 

exhibited a higher number of significantly differential ATAC peaks after 6 h of IFNβ 

treatment. The overall low number of significantly differential ATAC peaks in both ESCs 

and MEFs suggests that chromatin accessibility changes in response to IFNβ treatment 

were highly specific. This specificity was likely driven by the targeted induction of STAT1/2 

binding events, as pseudo-bulk chromatin accessibility at previously identified induced 

STAT1/2 binding sites specifically increased after IFNβ treatment (Figure 2.42E). 

STAT1/2 activates ISG expression by binding to distal enhancers 
Since the non-promoter STAT1/2 binding events did not induce global alterations in 

chromatin accessibility, the question remained as to how these STAT1/2 co-bound sites 

regulate ISG expression. To address this, I performed single cell co-accessibility analysis 
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between ATAC peaks within 1 Mb windows around STAT1/2 binding sites. For ESCs and 

MEFs, 37 % and 24 % of ISGs had induced STAT1/2 binding sites at their promoters, 

respectively (Figure 2.43A, blue). The chromatin co-accessibility analysis revealed that 
approximately 25 % of ISGs without promoter STAT1/2 binding showed autonomous links 

of co-accessibility (ACs, see Chapter 2.2) between their promoter and a distal STAT1/2 
binding site. The majority of these ISGs (73-86 %) gained their AC between promoter and 

distal STAT1/2 binding site upon IFNβ treatment (Figure 2.43A, green), while a small 
fraction of ISGs lost their AC after IFNβ stimulation (Figure 2.43A, red). The remaining 
ISGs (44-54 %) showed neither a STAT1/2 binding site at their promoter, nor an AC to a 

distal STAT1/2 binding site (Figure 2.43A, grey), suggesting STAT1/2-independent 

Figure 2.43 Distal STAT1/2 regulation of ISG expression in ESCs and MEFs from single cell 
co-accessibility analysis of scATAC-seq data. Data from one biological replicate of ESCs (left), 
epithelial-like (middle) and mesenchymal-like MEFs (right) are shown. A Regulation of ISGs by 
STAT1/2 in the respective cell types. ISGs are categorized successively based on the presence of 
a STAT1/2 binding site at the promoter (blue), gained (green) or lost (red) AC between the promoter 
and a distal STAT1/2 binding site after IFNβ treatment, and other mechanisms of regulation (grey). 
B Overlap of ISG regulation mechanisms by STAT1/2 in the respective cell types. C ISGs with 
gained or lost AC between the promoter and a distal STAT1/2 binding site after IFNβ treatment in 
the respective cell types. ISGs are annotated by the genomic position of the linked site, which is 
classified as either another distal STAT1/2-bound ISG promoter and/or a potential enhancer in 
gene bodies or intergenic regions. Adapted from Muckenhuber et al. (2023).    
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regulation of transcription. Furthermore, roughly 30 % of ISGs showed multiple 

connections to induced STAT1/2 binding sites, involving both proximal and AC-linked 

distal STAT1/2 binding (Figure 2.43B). Notably, most STAT1/2 binding sites (75 %) with 
ACs to distal ISG promoters were located in other gene promoters (Figure 2.43C), with 
only 25 % found in intergenic regions or gene bodies. This suggests that induced STAT1/2 

binding sites can act as potential distal CREs, regardless of their genomic location, 

whether at promoters, coding or non-coding regions. 

One example of ISG regulation by a putative distal CRE is the ISG Uba7 in ESCs. Uba7 

expression is significantly upregulated after 6 h of IFNβ treatment (Figure 2.44A, bottom) 
and does not show induced STAT1/2 binding at its promoter. No ACs were detected prior 

to IFNβ stimulation, but a distinct AC between the Uba7 promoter and a distal STAT1/2 

binding site appeared after 6 h of IFNβ treatment (Figure 2.44A, middle). Simultaneously 
with the formation of the AC, the pseudo-bulk accessibility signal at both the promoter and 

the distal enhancer increased after 6 h of IFNβ stimulation (Figure 2.44A, top). This 
indicates that the increase of Uba7 expression was regulated by an emerging chromatin 

contact between its promoter and a distal CRE with induced STAT1/2 binding. 

Additionally, I investigated another example of ISG regulation by a whole cluster of distal 

CREs at the Ly6 gene cluster in MEFs. Here, the expression of Ly6a, Ly6c1, and Ly6e 

was significantly upregulated after 6 h of IFNβ treatment in both MEF subtypes (Figure 

Figure 2.44 Examples of distal STAT1/2 regulation of ISG expression in ESCs and MEFs from 
single cell co-accessibility analysis of scATAC-seq data. Data from one biological replicate of 
each ESCs and MEFs are shown. A Pseudo-bulk accessibility signal (top), ACs (middle), and gene 
expression (bottom) for the ISG Uba7 in ESCs. The ISG promoter is marked in blue. All ACs from 
STAT1/2 binding sites (green) are shown. Log10 normalized gene expression levels from scRNA-
seq data are shown. B Same as panel A but for the ISGs Ly6a, Ly6c1 and Ly6e in MEFs. scRNA-
seq analysis was performed by Markus Muckenhuber. Adapted from Muckenhuber et al. (2023).  
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2.44B, bottom). Again, no STAT1/2 binding sites were present at the ISG promoters. 
However, three distal STAT1/2 binding sites between Ly6e and Ly6a were induced by 

IFNβ, forming a potential cluster of distal CREs. The pseudo-bulk accessibility revealed 

consistently high accessibility at the Ly6e promoter and low accessibility at the Ly6a and 

Ly6c1 promoters, independent of IFNβ treatment, suggesting that transcription induction 

was not regulated at the promoters directly (Figure 2.44B, top). In contrast, the pseudo-
bulk accessibility at all three STAT1/2 binding sites strongly increased upon IFNβ 

stimulation, which indicated their regulatory activity in the transcriptional response to IFNβ. 

Between these induced STAT1/2 binding sites and the ISG promoters, multiple ACs were 

detected (Figure 2.44B, middle). Most of these ACs changed upon IFNβ stimulation, 
including the formation of new ACs and the loss of existing ones. Notably, epithelial- and 

mesenchymal-like MEFs showed differences in both pseudo-bulk accessibility profiles and 

ACs, indicating regulatory differences between these MEF subtypes.  

Remarkably, the depicted ACs in both ESCs and MEFs exhibited very low PAC values 

(Figures 2.44A+B, middle; note height of loops), which represent the detection rate of an 
AC among the single cells (see Section 2.2.1). This finding was consistent with the 
previously observed PAC distribution of genome-wide ACs in 6 h IFNβ-treated epithelial-

like MEFs, where approximately 90 % of ACs had PAC values below 25 (see Figure 
2.24A, left). As discussed in Section 2.2.1, these low PAC values were likely due to the 
lower data quality of scATAC-seq data compared to scTurboATAC-seq data, with mean 

unique fragments per cell ranging from 103.8 to 104.5 for both ESCs and MEFs (see Figure 
2.42B). In contrast, scTurboATAC-seq data from MEFs had a higher mean of 104.8 unique 
fragments per cell (see Table 2.6), and scTurboATAC-seq data from HUVECs had even 
higher means ranging from 104.8 to 105.3 unique fragments per cell (see Figure 2.20B). 
Consequently, the scATAC-seq data of MEFs and ESCs from this analysis had insufficient 

quality to accurately differentiate between rare and frequent ACs, as was possible before 

with higher-quality data. 

In summary, single cell co-accessibility analysis revealed that non-promoter STAT1/2 

binding events regulate ISG expression through specific long-range chromatin 

interactions, as detected by ACs between ISG promoters and distal STAT1/2 binding sites. 

Additionally, the analysis showed that induced STAT1/2 binding sites can act as potential 

distal CREs, regardless of their genomic location, whether at promoters, coding or non-

coding regions. Interestingly, the regulatory interactions both emerged and disappeared 

upon IFNβ stimulation, suggesting both either activating or repressive effects. 

Furthermore, STAT1/2-independent regulation of transcription was observed for 
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approximately 50 % of ISGs. These ISGs might be regulated by other TFs among the initial 

STAT1/2-induced ISGs, so-called secondary targets of IFNβ. When comparing these 

regulatory mechanisms between ESCs and MEFs, ESCs showed a higher fraction of 

promoter mediated ISG regulation by STAT1/2 compared to MEFs. In contrast, MEFs 

revealed a higher fraction of STAT1/2-independent ISG regulation compared to ESCs. 

These findings align with the observed higher number of MEF-specific ISGs, likely having 

a more diverse secondary response in MEFs than ESCs. 

Proximal and distal ISG regulation varies in strength of expression induction 
After identifying these different mechanisms of distal ISG regulation by induced STAT1/2 

binding sites, we investigated their impact on expression induction. Overall, the mean 

expression increase of ISGs was lower after 1 h of IFNβ treatment (below 0.25) compared 

to their mean expression increase above 0.5 after 6 h (Figure 2.45A), consistent with 
previous observations of less pronounced expression induction after 1 h of IFNβ treatment 

(see Figure 2.38A). For ESCs and both MEF subtypes, ISGs with STAT1/2 promoter 
binding exhibited significantly higher expression induction after 1 h and 6 h of IFNβ 

treatment compared to ISGs with AC-linked distal STAT1/2 binding sites or STAT1/2-

independent regulation (Figure 2.45A, blue vs. all others). Furthermore, ISGs that gained 
an AC to a distal STAT1/2 binding site demonstrated significantly stronger expression 

increases compared to STAT1/2-independent ISGs (Figure 2.45A, green vs. grey). 
Overall, induced STAT/1/2 binding at promoters caused the strongest induction of ISG 

expression, followed by ISGs showing activating chromatin interactions with distal 

STAT1/2 binding sites upon IFNβ stimulation. In contrast, ISGs with both preexisting 

repressive chromatin interactions with distal STAT1/2 binding sites as well as STAT1/2-

independent regulation showed only moderate induction of expression. Notably, only the 

induction of STAT1/2 binding at promoters exhibited a fast upregulation of ISG expression 

at the 1 h IFNβ treatment time point. All other regulatory mechanisms by distal STAT1/2 

binding and STAT1/2 independency showed slower transcriptional responses with 

significant upregulation only at the 6 h IFNβ treatment time point. 

Additionally, I assessed the expression levels under unstimulated conditions for the 

differently regulated ISGs (Figure 2.45B). In ESCs and mesenchymal-like MEFs, ISGs 
with preexisting and subsequently lost ACs between their promoter and a distal STAT1/2 

binding site showed a significantly lower expression compared to ISGs with STAT1/2-

bound promoters. This confirmed that these preexisting ACs, which were lost upon IFNβ 

treatment, repressed the expression of ISGs in the unstimulated condition. The IFNβ-
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induced STAT1/2 binding resolved these ACs and facilitated the upregulation of distal ISG 

expression.  

IFNβ induces domains of increased co-accessibility at ISGs 
Next, I conducted metacell co-accessibility analysis for both ESCs and MEFs to determine 

whether ISGs are additionally regulated by broad domains of increased co-accessibility, 

previously described as DCs that represent nuclear subcompartments with locally 

increased TF binding activity (see Chapter 2.2). Visual inspection of metacell co-
accessibility maps at ISGs revealed only few regions with domains of locally increased co-

accessibility. In general, the co-accessibility scores appeared more variable, with both 

positive and negative co-accessibility scores showing less distinct patterns. This variability 

was likely due to the lower quality of this dataset, as previously discussed for ACs. 

Figure 2.45 ISG expression for varying STAT1/2 regulation mechanisms in ESCs and MEFs 
from bulk RNA-seq data. Bulk RNA-seq data from four biological replicates of ESCs and two 
biological replicates of MEFs are shown. A ISG expression changes after 1 h and 6 h of IFNβ 
treatment in ESCs (left), epithelial-like (middle), and mesenchymal-like MEFs (right). Log2FCs are 
shown for different STAT1/2 regulation mechanisms. Significant p-values from Wilcoxon test are 
indicated as *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. B ISG expression prior to 
IFNβ treatment in ESCs (left), epithelial-like (middle), and mesenchymal-like MEFs (right). TPM 
values are shown for different STAT1/2 regulation mechanisms. Significant p-values from Wilcoxon 
test are indicated as *, P < 0.05; **, P < 0.01. Analysis was performed by Markus Muckenhuber. 
Adapted from Muckenhuber et al. (2023).  
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Nonetheless, I identified two exemplary ISG regions with domains of enriched co-

accessibility, one in ESCs and one in epithelial-like MEFs.  

In ESCs, a broad domain of approximately 400 kb showed enriched co-accessibility 

around three ISGs: Psme1, Psme2, and Irf9 (Figure 2.46A). Within this domain, only one 
STAT1/2 binding site, located at the promoter of Irf9, was induced upon IFNβ treatment. 

This induced STAT1/2 binding site at the Irf9 promoter likely led to a fast expression 

induction, since Irf9 expression was significantly upregulated after both 1 h and 6 h of IFNβ 

treatment in bulk RNA-seq data. However, the single induced STAT1/2 binding site in the 

observed domain of high co-accessibility suggests that the domain was not driven by 

increased local STAT1/2 binding activity. In contrast to Irf9, Psme1 and Psme2 showed 

significantly increased expression only after 6 h of IFNβ treatment, potentially induced by 

the local enrichment of secondary TF targets of IFNβ in the domain at this later time point. 

In epithelial-like MEFs, a domain of approximately 200 kb at the ISG Rnf213 displayed 

enriched co-accessibility (Figure 2.46B). This smaller domain included only the Rnf213 
gene body and roughly 100 kb downstream of the gene. Again, only one IFNβ-induced 

STAT1/2 binding site was present, located at the upstream promoter of Rnf213. In bulk 

RNA-seq data, Rnf213 showed a four-fold increase in expression after 1 h of IFNβ 

treatment, with a further increase by more than ten-fold at the 6 h treatment time point. 

The proximal STAT1/2 binding at the promoter likely caused fast Rnf213 expression 

upregulation, while the subsequent upregulation might have been further accellerated by 

local enrichment of secondary TF targets of IFNβ in the domain at the later treatment time 

point. 

Figure 2.46 Exemplary IFNβ-induced subcompartments at ISGs in ESCs and MEFs from 
metacell co-accessibility analysis of scATAC-seq data. Data from one biological replicate of 
each ESCs and MEFs are shown. A Metacell co-accessibility maps from unstimulated and 6 h 
IFNβ-stimulated ESCs for a cluster of ISGs that includes Psme1, Psme2, and Irf9. Induced 
STAT1/2 binding sites (black), gene annotations (grey), ISGs (blue) and 1 kb regions around ISG 
TSSs (light blue) are annotated. The color scale bar is set between -0.2 and 0.2. B Same as panel 
A for unstimulated, 1 h, and 6 h IFNβ-stimulated epithelial-like MEFs for ISG Rnf213. Adapted from 
Seufert et al. (2024).  
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Overall, the observed domains of locally increased co-accessibility presumably represent 

IFNβ-induced nuclear subcompartments with locally increased TF binding activity (see 

Section 2.2.3). In addition to the previously described regulatory mechanisms via 
STAT1/2 binding to promoters and distal CREs, they reveal an additional mechanism of 

ISG regulation. This additional layer of the IFNβ response is likely mediated by secondary 

TF targets of IFNβ at the 6 h treatment time point, causing an attenuated, STAT1/2-

independent expression induction of ISGs. 

In summary, in this project I studied how IFNβ induces transcription of specific target 

genes, investigating different mechanisms of proximal and distal transcription regulation 

and their varying effects on the transcriptional response to IFNβ. In ESCs and MEFs, IFNβ 

treatment induces the upregulation of common and specific ISGs. This upregulation is 

primarily mediated by the induction of STAT1, STAT2 and STAT1/2 binding sites, rather 

than by global changes in chromatin state. Here, the strongest and fastest expression 

induction was observed for ISGs with STAT1/2 binding sites at their promoters. However, 

most IFNβ-induced STAT1/2 binding sites were at non-promoter regions. Single cell co-

accessibility analysis revealed that many of these binding sites regulate ISG expression 

through long-range chromatin interactions. Additionally, the analysis showed that induced 

STAT1/2 binding sites can act as potential distal CREs, regardless of their genomic 

location at promoters, coding or non-coding regions. Interestingly, the long-range 

chromatin interactions both emerged and disappeared upon IFNβ stimulation. The 

emerging chromatin interactions between ISGs and distal STAT1/2 binding sites showed 

strong upregulation of expression upon IFNβ stimulation and were consequently 

considered to represent activating chromatin interactions. In contrast, disappearing 

chromatin interactions between ISGs and distal STAT1/2 binding sites showed only 

moderate expression increases upon IFNβ stimulation and lower basal expression levels 

under unstimulated condition. This suggests that they represent repressive chromatin 

interactions and that the IFNβ-induced STAT1/2 binding resolved the chromatin interaction 

and facilitated the upregulation of distal ISG expression. Additionally, metacell co-

accessibility analysis identified domains with locally increased co-accessibility following 

IFNβ treatment. Interestingly, these domains did not appear to be driven by increased local 

STAT1/2 activity directly but rather by secondary TF targets of IFNβ at the 6 h treatment 

time point, causing a slower secondary expression induction of ISGs. 
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2.3.2. Transcription factor T-bet dependent regulation of 
malignant B cells in chronic lymphocytic leukemia 

In addition to investigating IFNβ signaling in mouse ESCs and MEFs, I also examined 

transcriptional regulation in the mouse TCL1 cancer model for CLL using chromatin co-

accessibility analysis (see Section 1.3.3). In this model system, transcription was 
perturbed by knocking out the Tbx21 gene, which encodes the TF T-bet. Building on the 

initial characterization of TBX21 expression and T-bet protein levels in human CLL patients 

by others (see Figure 1.10), I explored its role in tumor suppression and transcription 
regulation using scRNA-seq and scTurboATAC-seq data (see Table 2.10, project 2). The 
goal was to determine whether the previously identified AC and DC regulatory 

mechanisms of transcription do not only apply to the transcriptional response to cytokine 

stimulation but also to internal perturbations by TF knock-out in a cancer context. 

T-bet represses cellular proliferation in malignant B cells  
To investigate the molecular mechanisms underlying the tumor-suppressive role of T-bet, 

we acquired scRNA-seq data from TCL1 cells in Tbx21 double knock-out, Tbx21-/-, and 

wild type, Tbx21+/+, conditions. I analyzed the combined data from 2 biological replicates 

for each condition, demonstrating a distinct separation of Tbx21-/- and Tbx21+/+ TCL1 cells 

in their low-dimensional embedding (Figure 2.47A). This indicates generally different 
transcriptomic profiles between Tbx21-/- and Tbx21+/+ TCL1 cells. Furthermore, k-nearest 

neighbor clustering identified 2 major clusters (C0 and C1) that contained more than 95 % 

of the cells (Figure 2.47B). These clusters C0 and C1 represented Tbx21+/+ and Tbx21-/- 
TCL1 cells, respectively. Two additional small clusters (C2 and C3) contained both Tbx21-

/- and Tbx21+/+ TCL1 cells and exhibited lower levels of Cd5, and in the case of C2, lower 

Cd19 expression compared to clusters C0 and C1 (Figures 2.47C+D). The lower 

Figure 2.47 Transcriptomic profiles of Tbx21-/- and Tbx21+/+ TCL1 cells from scRNA-seq data. 
Data from 2 replicates per condition are shown. A Low-dimensional embedding of TCL1 cells, 
colored according to sample. B Same as panel A with coloring according to k-nearest neighbor 
cluster. C Cd5 expression per single cell in k-nearest neighbor clusters. D Same as panel C for 
Cd19 expression. Adapted from Roessner et al. (2024). 
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expression of these malignant B cell markers, typically associated with CLL cells, suggests 

that clusters C2 and C3 likely represent healthy cells. Consequently, clusters C2 and C3 

were excluded from further analyses. 

I inferred cell cycle states of the investigated TCL1 cells, where Tbx21-/- and Tbx21+/+ TCL1 

cells showed notable differences (Figure 2.48A). Approximately 80 % of Tbx21+/+ TCL1 
cells were in the G1 cell cycle phase in both replicates, whereas 40-50 % of Tbx21-/- TCL1 

cells were in either the S or G2/M phases. The higher proportion of cells in synthesis and 

G2/mitotic phases indicates that Tbx21-/- TCL1 cells progress faster through the cell cycle, 

resulting in increased cellular proliferation. We validated this observation using phospho-

specific MS data. The data revealed elevated activity of important regulators of cell cycle 

progression, such as cyclin-dependent kinases (CDKs) and mitogen-activated protein 

kinases (MAPKs), in Tbx21-/- versus Tbx21+/+ TCL1 cells (Figure 2.48B). Finally, we 
measured effects of T-bet levels on cellular proliferation in cultures of CLL-like MEC-1 cell 

lines, where T-bet or green fluorescent protein (GFP, as control) overexpression was 

induced. MEC-1 cells with overexpression of T-bet showed significantly lower proliferation 

rates compared to those overexpressing GFP (Figure 2.48C). Collectively, these findings 
suggest that T-bet plays an important tumor-suppressive role by reducing the cellular 

proliferation of malignant B cells. 

  

Figure 2.48 Characterization of cellular proliferation for Tbx21-/- and Tbx21+/+ TCL1 cells from 
scRNA-seq and phospho-specific MS data. A Proportion of Tbx21-/- and Tbx21+/+ TCL1 cells in 
G1, G2/M, and S cell cycle state. ScRNA-seq data from 2 replicates per condition are shown. B 
Kinase network enriched in Tbx21-/- versus Tbx21+/+ TCL1 cells. Phospho-specific MS data from 8 
replicates per condition are shown. C CellTiter-Glo proliferation assay of MEC-1 cell lines with 
inducible overexpression of TBX21 or GFP. Data from 4 biological replicates, each with 3 technical 
replicates, are shown for each cell line. P-value from unpaired t-test is indicated as *, P < 0.05. MS 
and CellTiter experiments were performed and analyzed by Philipp Roessner and Pavle Boskovic. 
Adapted from Roessner et al. (2024). 
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T-bet is a silencing TF in malignant B cells 
Subsequently, I aimed to study the effects of the TF T-bet on chromatin accessibility using 

scTurboATAC-seq data from Tbx21-/- and Tbx21+/+ TCL1 cells. Similar to the 

corresponding scRNA-seq data, the low-dimensional embedding of single-cell chromatin 

accessibility profiles revealed a clear separation of Tbx21-/- and Tbx21+/+ TCL1 cells 

(Figure 2.49A). Tbx21-/- TCL1 cells were primarily located in k-nearest neighbor clusters 
C2 and C3, while cluster C4 contained most Tbx21+/+ TCL1 cells (Figure 2.49B). In 
addition, three smaller clusters (C1, C5, and C6) contained both Tbx21-/- and Tbx21+/+ 

TCL1 cells and exhibited lower activity scores for Cd5 and Cd19, as computed from the 

chromatin accessibility signal at the genes (Figures 2.49C+D). Consequently, I excluded 
clusters C1, C5, and C6 from further analyses, as they were considered to represent 

healthy cells. 

To investigate T-bet dependent changes in chromatin accessibility profiles in more detail, 

I performed pseudo-bulk analysis of chromatin accessibility from the scTurboATAC-seq 

samples and identified 133,668 ATAC peaks in Tbx21-/- and Tbx21+/+ TCL1 cells. Of these 

putative regulatory regions, 4,772 ATAC peaks showed significantly higher accessibility in 

Figure 2.49 Single-cell chromatin accessibility profiles of Tbx21-/- and Tbx21+/+ TCL1 cells 
from scTurboATAC-seq data. Data from 2 replicates per condition are shown. A Low-dimensional 
embedding of TCL1 cells, colored according to sample. B Same as panel A with coloring according 
to k-nearest neighbor cluster. C Cd5 gene activity scores per single cell in k-nearest neighbor 
clusters. D Same as panel C for Cd19 gene activity scores. Adapted from Roessner et al. (2024). 
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Tbx21-/- compared to Tbx21+/+ TCL1 cells (Figure 2.50A). Conversely, only 879 ATAC 
peaks exhibited reduced accessibility in Tbx21-/- TCL1 cells. Notably, these differentially 

accessible ATAC peaks between Tbx21-/- and Tbx21+/+ TCL1 cells represented only about 

4 % of the total ATAC peaks, suggesting that T-bet does not have a global effect on 

chromatin accessibility. Additionally, we performed differential accessibility analysis 

between TBX21high and TBX21low CLL cells from bulk ATAC-seq of patient samples. For 

the CLL patient samples, this analysis identified 1,312 ATAC peaks with significantly 

higher accessibility and 651 ATAC peaks with significantly lower accessibility in TBX21low 

CLL cells, respectively (Figure 2.50B). These combined findings suggest that higher T-
bet levels predominantly decrease chromatin accessibility at specific sites both in TCL1 

and CLL cells.  

To further investigate the effect of T-bet on these differential ATAC peaks, I analyzed the 

enrichment of TF binding motifs in the differentially accessible ATAC peaks from Tbx21-/- 

and Tbx21+/+ TCL1 cells. This enrichment analysis revealed a consistent enrichment of 

multiple TF binding motifs across replicates (Figure 2.50C). The binding motifs of five TFs, 
associated with enhanced cellular proliferation, such as E2A and members of the PIT-

Figure 2.50 Genome-wide chromatin accessibility response to Tbx21 knock-out in TCL1 
cells from scTurboATAC-seq data. A Differential chromatin accessibility in Tbx21-/- versus 
Tbx21+/+ TCL1 cells from scTurboATAC-seq data. Data from 2 replicates per condition are shown. 
The numbers of significantly differential ATAC peaks with FDR below 0.05 and absolute log2FC 
above 1 are indicated. B Same as panel A for TBX21low versus TBX21high CLL cells from bulk ATAC-
seq data. C TF binding motif enrichment in differentially accessible ATAC peaks between Tbx21-/- 
and Tbx21+/+ TCL1 cells from panel A. The top 25 enriched motifs are shown. D Mean motif 
deviation scores in accessible ATAC peaks between TBX21low versus TBX21high CLL cells with 
unmutated (U-CLL) and mutated (M-CLL) IGHV genes.  Analysis of bulk ATAC-seq of CLL cells 
was performed by Vincente Chapaprieta. Adapted from Roessner et al. (2024).  
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OCT-UNC (POU) family, were enriched in Tbx21-/- TCL1 cells. This observation further 

supports T-bet’s role in inhibiting cell cycle progression and proliferation. Similarly, the 

enrichment analysis of TF binding motifs in the differentially accessible ATAC peaks from 

TBX21high and TBX21low CLL cells demonstrated an almost exclusive enrichment of TF 

binding motifs in TBX21low CLL cells (Figure 2.50D). In this analysis, CLL cells from 
patients with mutated IGHV genes (M-CLL) and unmutated IGHV genes (U-CLL) were 

investigated separately. Notably, only two TFs showed an enrichment of binding motifs in 

TBX21high M-CLL cells, while no TF binding motifs were enriched in TBX21high U-CLL cells. 

Overall, these results suggest that higher T-bet levels decrease chromatin accessibility at 

specific genomic sites, predominantly reducing the accessibility of TF binding motifs 

associated with cell cycle progression and proliferation. 

T-bet regulates transcription by orchestrating long-range chromatin 
interactions 
In the previous section, I examined the effects of T-bet on chromatin accessibility and the 

chromatin binding of other TFs. Next, I aimed to investigate the gene regulatory role of T-

bet and its direct effects on transcription. First, we identified differentially expressed genes 

from bulk RNA-seq data of Tbx21-/- and Tbx21+/+ TCL1 cells, as well as TBX21low and 

TBX21high CLL cells. Additionally, we determined the correlation of T-bet protein levels with 

the levels of other proteins using MS data from the same samples. The comparison of the 

T-bet dependent gene and protein data revealed a higher number of differentially 

expressed genes than correlated proteins in TCL1 Tbx21-/- vs. Tbx21+/+ cells and CLL 

TBX21low vs. TBX21high cells, respectively (Figure 2.51A). Across all datasets, 104 
genes/proteins were commonly differential. Consequently, they were considered T-bet 

dependent with high confidence. This high-confidence set of 104 T-bet associated 

differential genes/proteins will be referred to as differential genes for simplicity. Among the 

differential genes, approximately 50 % exhibited upregulation or downregulation, 

respectively, when T-bet was present (Figure 2.51B). Notably, the expression levels of 
these differential genes distinguished CLL cells from all HC B cell subtypes (Figure 2.51C, 
annotation on top). While some HC B cell subtypes, such as CD5+ B cells or 

IgM+/IgD+/CD27+ B cells, exhibited partially similar expression levels to CLL cells, other 

HC B cell subtypes, such as IgM-only B cells, showed opposite expression levels for all 

differential genes. Overall, this high-confidence set of differential genes was not only 

associated with T-bet but also effectively differentiated malignant B cells from healthy B 

cells. Thus, these differential genes serve as suitable examples for studying T-bet 

dependent mechanisms of transcription regulation. 
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Following, I analyzed T-bet dependent transcription regulation of the differential genes by 

performing single cell co-accessibility analysis of the scTurboATAC-seq data from  

Tbx21-/- and Tbx21+/+ TCL1 cells. To investigate T-bet specific regulation, I predicted 

potential T-bet binding sites within the 133,668 ATAC peaks using the T-bet specific 

binding motif. This analysis identified 23 % of ATAC peaks as containing at least one 

potential T-bet binding site, following referred to as T-bet peaks. When assessing the 

genomic positions of the T-bet peaks relative to the previously identified differential genes, 

only 25 % of the differential genes had a T-bet peak at their promoter (Figure 2.52A, blue). 
However, most of the differential genes (60 %) demonstrated an AC between their 

promoter and a distal T-bet peak in the single cell co-accessibility analysis (Figure 2.52A, 
yellow), indicating that T-bet predominantly regulates transcription via long-range 

chromatin contacts. The remaining 15 % of differential genes showed no link to a T-bet 

peak (Figure 2.52A, grey) and might be regulated, as so-called secondary targets of T-
bet, by other TFs among the differential genes. Interestingly, differential genes with a 

promoter T-bet peak exhibited significantly more promoter ACs upon Tbx21 knock-out 

(Figure 2.52B, right). In contrast, I observed no significant difference in total AC numbers 
for differential genes without a promoter T-bet peak (Figure 2.52B, left). Overall, Tbx21-/- 
TCL1 cells showed more ACs between differential genes and T-bet peaks compared to 

Tbx21+/+ TCL1 cells (170 and 151, respectively) (Figure 2.52C). Notably, only 15 % of 

Figure 2.51 Expression and protein levels of T-bet dependent genes from bulk RNA-seq and 
MS data of TCL1 cells and CLL patient samples. A Overlap of significantly differential genes 
and correlated proteins between Tbx21-/- and Tbx21+/+ TCL1 cells, as well as TBX21high and 
TBX21low CLL cells. Gene expression was measured by bulk RNA-seq, and protein levels by MS. 
B Differential gene expression and T-bet correlated protein levels in Tbx21-/- and Tbx21+/+ TCL1 
cells, as well as TBX21high and TBX21low CLL cells for 104 overlapping differential genes. C Gene 
expression levels of 104 overlapping differential genes in HC B cells and CLL cells. Experiments 
and analysis were performed by Philipp Roessner and colleagues. Adapted from Roessner et al. 
(2024).   
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these ACs were detected in both Tbx21-/- and Tbx21+/+ TCL1 cells, indicating a rewiring of 

ACs upon Tbx21 knock-out. In summary, these findings suggest that T-bet primarily 

regulates transcription through distal chromatin interactions and that its binding to 

chromatin may inhibit the formation of long-range chromatin contacts. 

One example of T-bet dependent transcription regulation is the differential gene Nos1. 

Nos1 exhibited significantly higher expression levels in bulk RNA-seq data of Tbx21-/- 

compared to Tbx21+/+ TCL1 cells (log2FC of 0.26, adjusted p-value of 0.0095; Figure 
2.53A). The genomic annotation of Nos1 indicated three TSSs (Figure 2.53B, red 
annotation), each showing different regulatory mechanisms of T-bet dependent 

transcription repression, as described in the following. TSS1 was inaccessible in both 

Tbx21-/- and Tbx21+/+ TCL1 cells, lacked potential T-bet binding sites, and did not display 

any ACs. Therefore, it was considered inactive in transcription. TSS2 was moderately 

accessible in both Tbx21-/- and Tbx21+/+ TCL1 cells (Figure 2.53B, top). Although there 
were no potential T-bet binding sites proximal to TSS2, its accessibility was significantly 

reduced upon Tbx21 knock-out. The lower accessibility coincided with fewer ACs between 

TSS2 and the surrounding, distal T-bet peaks (Figure 2.53B, bottom). Consequently, the 
higher accessibility and greater number of ACs suggest that T-bet negatively regulates 

transcription of Nos1 at TSS2 via repressive chromatin interactions with distal regulatory 

T-bet peaks. Finally, TSS3 contained a potential T-bet binding site and displayed 

significantly higher accessibility in Tbx21-/- compared to Tbx21+/+ TCL1 cells (Figure 
2.53B, top). Upon Tbx21 knock-out, TSS3 additionally showed an AC with a downstream 

Figure 2.52 Single cell co-accessibility analysis in scTurboATAC-seq data of Tbx21-/- and 
Tbx21+/+ TCL1 cells. A T-bet dependent regulation of 104 differential genes. Genes are 
categorized successively based on the presence of a T-bet peak at the promoter (blue), an AC 
between the promoter and a distal T-bet peak (yellow), and no link to a T-bet peak (grey). B Number 
of ACs at differential gene promoters without (left) and with (right) a T-bet peak. ACs within a 1 Mb 
window are shown. Whiskers represent the standard error of 2 biological replicates. C Overlap of 
ACs from Tbx21-/- and Tbx21+/+ TCL1 cells. Merged ACs from biological replicates between 
differential gene promoters and T-bet peaks in a 100 kb window are shown. Adapted from Roessner 
et al. (2024).  
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ATAC peak (Figure 2.53B, bottom), suggesting that the loss of repressive T-bet binding 
at TSS3 permitted the formation of activating chromatin contacts. 

Secondary targets of T-bet regulate chromatin organization 
Subsequently, I conducted a metacell co-accessibility analysis for Tbx21-/- and Tbx21+/+ 

TCL1 cells to investigate whether T-bet knock-out induces more global, cell state-driven 

patterns in co-accessibility. Visual inspection of the metacell co-accessibility maps at 

differential genes revealed multiple domains with locally increased co-accessibility. One 

example, showing a clearly defined domain of enriched co-accessibility, is the differential 

gene Gimap6 (Figure 2.54A). The domain contained several Gimap genes, including 
Gimap3, Gimap4, Gimap5, and Gimap6. However, only Gimap6 was differentially 

expressed upon Tbx21 knock-out, showing a significantly reduced expression in bulk 

RNA-seq data (log2FC of -0.2 for Tbx21+/+ versus Tbx21-/-, adjusted p-value of 0.033). 

Interestingly, the lower expression under T-bet absence and thus the higher expression 

under T-bet presence contrasted with previous findings regarding the repressive and 

silencing role of T-bet. Further investigation revealed that the reduction in expression 

corresponded with a decrease in chromatin accessibility within the domain of enriched co-

accessibility in Tbx21-/- TCL1 cells, where 3 ATAC peaks exhibited significantly reduced 

Figure 2.53 T-bet dependent transcription regulation of the differential gene Nos1 from 
single cell co-accessibility analysis of scTurboATAC-seq data. A Gene expression from 6 
biological replicates of bulk RNA-seq data per condition. B Pseudo-bulk accessibility signal (top), 
genomic annotation (middle), and ACs (bottom) for the differential gene Nos1. 2 kb regions around 
ATAC peaks (grey), more accessible ATAC peaks in Tbx21+/+ (black), more accessible ATAC 
peaks in Tbx21-/- (blue), potential T-bet binding sites, and gene annotation are shown. 1 kb around 
TSSs of Nos1 are marked in red. Pseudo-bulk accessibility and ACs at Nos1 TSSs from the 
biological replicates were merged. Bulk RNA-seq of TCL1 cells was performed by Philipp Roessner 
and analyzed by Marc Zapatka. Adapted from Roessner et al. (2024).   
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chromatin accessibility. Consequently, the domain of enriched co-accessibility appeared 

to be driven by higher activity in Tbx21+/+ TCL1 cells. Notably, the Gimap6 promoter did 

not contain a potential T-bet binding site and no ACs between the promoter and distal T-

bet peaks were detected. This suggests that the domain formation and expression 

induction in Tbx21+/+ TCL1 cells are not directly mediated by T-bet, but rather its 

upregulated target genes (see Figure 2.50C). 

Interestingly, the metacell co-accessibility maps from the scTurboATAC-seq data of 

Tbx21-/- and Tbx21+/+ TCL1 cells revealed the same blue stripes with high co-accessibility 

scores at their intersections as observed in the HUVEC data previously (see Section 
2.2.3). One example, where these blue stripes extended across an entire 1 Mb region, 
was the differential gene Slc11a1 (Figure 2.54B, top). Slc11a1 was located between the 
blue stripes, and its expression was significantly reduced in Tbx21-/- TCL1 cells (log2FC 

Figure 2.54 Metacell co-accessibility analysis at differential genes between Tbx21-/- and 
Tbx21+/+ TCL1 cells from scTurboATAC-seq data. A Metacell co-accessibility map (top) and 
genomic annotation (bottom) for the differential gene Gimap6. Potential T-bet binding sites (green), 
gene annotations (grey), differential genes (blue) and 1 kb regions around differential gene TSSs 
(light blue) are shown. The color scale bar limits of metacell co-accessibility scores are set to -0.3 
and 0.3. B Metacell co-accessibility map (top), genomic annotation (middle), and ACs for the 
differential gene Slc1a1. ATAC peaks (black), potential T-bet binding sites (green), gene 
annotations (grey), differential genes (blue) and 1 kb regions around differential gene TSSs (light 
blue) are shown. The color scale bar limits of metacell co-accessibility scores are set to -0.3 and 
0.3. A zoom-in view of Slc11a1 ACs is shown. Adapted from Seufert et al. (2024).  
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of -0.3 for Tbx21+/+ versus Tbx21-/-, adjusted p-value of 0.031). Similar to HUVECs, the 

blue stripes coincided with frequent ACs, showing PAC values above 90 (Figure 2.54B, 
bottom). These presumably architectural ACs were present in both Tbx21+/+ and Tbx21-/- 

conditions but were more reproducible and had higher co-accessibility scores for Tbx21-/- 

TCL1 samples. This observation aligned with the previously identified enrichment of CTCF 

and BORIS binding motifs in accessible ATAC peaks of Tbx21-/- TCL1 cells (see Figure 
2.50C), which both are key factors in chromatin loop formation. The presence of these 
structural ACs might therefore alter the chromatin organization of the region, leading to 

reduced transcription of the differential gene Slc11a1. 

In summary, in this project I studied transcriptional regulation in the mouse TCL1 cancer 

model for CLL to determine whether the previously identified principles of transcription 

regulation via promoters or AC- and DC-mediated distal CREs hold true beyond the 

transcriptional response to cytokine stimulation. CLL cells exhibit higher expression and 

protein levels of T-bet compared to healthy B cells. These elevated levels are induced by 

inflammatory signals, such as cytokine stimulation or interaction with activated T cells. 

Along with the longer overall survival observed for CLL patients with high TBX21 

expression, this suggests a tumor-suppressive role for T-bet. This role is primarily driven 

by T-bet’s capacity to repress cell cycle progression and cellular proliferation in malignant 

B cells. Specifically, the TF T-bet exerts its function by decreasing chromatin accessibility 

at specific genomic sites, mainly reducing the accessibility of TF binding motifs associated 

with cell cycle progression and proliferation. Interestingly, T-bet itself primarily regulates 

transcription through distal chromatin interactions, rather than direct binding to gene 

promoters. In this context, its binding to chromatin might repress the formation of long-

range chromatin contacts, orchestrating transcription regulation between distal regulatory 

sites. Additionally, T-bet represses the formation of architectural chromatin loops or 

contacts, likely by indirectly reducing the accessibility of specific sites with CTCF and 

BORIS binding motifs. Secondary TFs induced by T-bet potentially contribute to broader 

domains of enriched co-accessibility, which in turn increased expression of differential 

genes within. Overall, this suggests that T-bet itself functions as a transcriptional silencer 

and represses chromatin contacts and loop formation, while its upregulated target genes 

might also activate transcription, either through direct DNA binding or by promoting 

domains of locally increased TF activity. 
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2.3.3. Molecular mechanisms of TNFα-induced transcriptional co-
regulation in human endothelial cells 

In the next project, I investigated the transcriptional consequences of the previously 

identified AC and DC co-accessibility features in HUVECs (see Chapter 2.2). Specifically, 
I aimed to explore their potential regulatory roles in modulating various transcriptional 

bursting parameters, using both sequencing data and fluorescence microscopy of nuclear 

RNA (Figure 2.55). Additionally, I examined how ACs and DCs, both long-range regulatory 
mechanisms, might co-regulate the transcription of multiple genes. By analyzing the high-

quality scTurboATAC-seq data at different treatment time points, I was able to distinguish 

AC and DC regulatory effects on time and intensity of the transcriptional response to TNFα. 

TNFα induces differential expression of approximately 1,500 genes  
scRNA-seq was performed on three biological replicates of untreated and TNFα-treated 

HUVECs to identify robust transcriptional changes induced by TNFα treatment. The 

transcriptomic profiles of single cells showed strong differences between treatment time 

points (Figure 2.56A) and cell cycle states (Figure 2.56C). In contrast, biological 
replicates revealed only minimal variation in the low-dimensional embedding (Figure 
2.56B). For further analysis, only cells in the G1 cell cycle state were selected (Figure 
2.56D), allowing to specifically resolve TNFα-dependent transcriptional differences. 
Differential gene expression analysis of G1 cells from untreated versus TNFα-treated 

conditions revealed differential expression of 1,499 genes in total (Figure 2.56E), termed 
TNFα-regulated genes (TRGs). After 30 min of TNFα treatment, 386 TRGs were identified, 

with the majority (94 %) showing upregulated expression. In contrast, after 240 min of 

TNFα treatment, 1,280 TRGs were identified, but only 56 % of them exhibited upregulation, 

Figure 2.55 Studying TNFα-induced transcription co-regulation in HUVECs. Data from bulk 
and single-cell sequencing of cellular and nuclear RNA, chromatin accessibility, H3K27ac 
modifications, and chromatin contacts were analyzed. Additionally, fluorescence microscopy of 
nuclear RNA was performed. Adapted from Seufert et al. (2024).  
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indicating a more diversified transcriptional response at this later time point. Notably, in 

the early response to TNFα, only 26 % of TRGs were detected, whereas in the late 

response, 85 % of TRGs were detected. Comparing all TRGs between the different 

treatment time points revealed that only 11 % were differentially expressed at both time 

points, with almost all of these showing upregulated expression in response to TNFα 

(Figure 2.56F, time point annotation on top). Additionally, while the majority of TRGs were 
protein-coding, about 30 % were lncRNAs, which in turn might play a role in regulating the 

Figure 2.56 Transcriptomic profiles of untreated and TNFα-treated HUVECs from scRNA-seq 
data. Data from 3 biological replicates per condition are shown. A Low-dimensional embedding of 
HUVECs, colored by treatment time point. B Same as panel A, colored by biological replicate. C 
Same as panel A, colored by cell cycle state. D Same as panel A for HUVECs only in the G1 cell 
cycle state. E Differential gene expression between untreated and TNFα-treated HUVECs at 30 
min and 240 min. Significantly upregulated genes (log2FC ≥ 1; adjusted p-value < 0.05) are shown 
in red and significantly downregulated genes (log2FC ≤ -1, adjusted p-value < 0.05) are shown in 
blue. F Expression (UMI counts, log10 transformed and scaled) of TNFα-regulated genes (TRGs). 
Gene type and direction of differential regulation after 30 min and 240 min of TNFα treatment are 
annotated. Adapted from Seufert et al. (2024).  
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transcriptional response. Overall, the transcriptomic response of HUVECs to TNFα 

treatment was strong at both time points, showing both sustained and time point-specific 

transcriptional changes. 

TNFα treatment increases the accessibility of specific TF binding sites 
To investigate the regulatory drivers and their impact on chromatin accessibility during the 

transcriptional response to TNFα treatment, I analyzed single-cell chromatin accessibility 

profiles from scTurboATAC-seq data of the same three biological replicates from untreated 

and TNFα-treated HUVECs. Similar to the scRNA-seq data, the chromatin accessibility 

profiles of single cells exhibited strong differences between treatment time points and cell 

cycle states (see Figure 2.21A-C). As a result, only G1 cells were selected for further 
analysis (Figure 2.57A), which showed a clear separation of treatment time points across 
all replicates in low-dimensional embedding. Pseudo-bulk analysis of these G1 cells 

identified 201,329 ATAC peaks, with 9 % located at promoters, 61 % in gene bodies, and 

30 % in intergenic regions (Figure 2.57B). Subsequent analysis of chromatin accessibility 
levels at these ATAC peaks revealed that only 2 % and 3 % were differentially accessible 

after 30 min and 240 min of TNFα treatment, respectively (Figure 2.57C). The vast 
majority of these differential ATAC peaks (94-97 %) gained accessibility upon TNFα 

treatment. Notably, differential ATAC peaks were less frequently located at promoters 

compared to all ATAC peaks (2 % versus 9 %; Figures 2.57B+D). Most differential ATAC 
peaks were found in intronic or intergenic regions (91-93 %), indicating that TNFα primarily 

regulates transcription via regulatory elements at intronic or intergenic sites.  

Next, I calculated TF binding scores from accessibility footprints of accessible TF binding 

sites, which were predicted genome-wide from annotated TF binding motifs (see Figure 
2.33). Differential TF binding analysis revealed increased binding of several TFs after 
TNFα treatment (Figure 2.57E). Notably, members of the NF-κB family showed a strong 
increase in binding scores at both time points (Figure 2.57E). In contrast, binding scores 
of PRDM1, activating transcription factor 4 (ATF4), and members of the IRF and CEBP 

families were enhanced only after 240 min of TNFα treatment (Figure 2.57E, dark blue). 
This highlights the fast and sustained activation of known TNFα-regulated NF-κB 

complexes, while the other TFs likely reflect a secondary and indirect response to TNFα 

treatment. In summary, TNFα treatment increased chromatin accessibility at specific, 

primarily non-promoter sites, suggesting the activation of individual promoter-distal 

regulatory elements rather than a broad reorganization of chromatin conformation. These 

changes were likely mediated by the increased binding activity of known TNFα-responsive 

TFs. 
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TRGs cluster in the genome 
To better understand how the well-defined TRGs are collectively regulated by NF-κB and 

its secondary TFs, I investigated their genomic position in relation to each other, as well 

as with respect to ATAC peaks and TADs. Interestingly, 91 % of all TRGs showed an 

ATAC peak at their promoters (Figure 2.58A, inner circle). However, only 9 % of these 
were differentially accessible upon TNFα treatment (Figure 2.58A, outer circle). This 
suggests that although most TRG promoters are active, differential transcription regulation 

following TNFα treatment is not driven by promoter accessibility itself. Therefore, as other, 

non-proximal regulatory mechanisms are likely responsible for the TNFα-regulated 

transcriptional changes, I further examined the genomic location of TRGs relative to each 

other. In this context, the majority of TRGs (1,008; 67 %) were located within 500 kb of 

another TRG, while the remaining 33 % of TRGs (491) were isolated in the genome 

(Figure 2.58B, edges between TRG data points). If at least two TRGs were located within 
500 kb, they were considered proximal to each other and defined as a TRG cluster. These  

Figure 2.57 Chromatin accessibility profiles of untreated and TNFα-treated HUVECs from 
scTurboATAC-seq data. Data from 3 biological replicates per condition are shown. A Low-
dimensional embedding of HUVECs in the G1 cell cycle state, colored by treatment time point. B 
Genomic location of pseudo-bulk ATAC peaks. C Differential chromatin accessibility between 
untreated and TNFα-treated HUVECs at 30 min and 240 min. Significantly upregulated ATAC 
peaks (log2FC ≥ 1; adjusted p-value < 0.05) are shown in red and significantly downregulated 
ATAC peaks (log2FC ≤ -1, adjusted p-value < 0.05) are shown in blue. D Genomic location of 
differential ATAC peaks after 30 min (left) and 240 min (right) of TNFα treatment. E Differential TF 
binding between untreated and TNFα-treated HUVECs at 30 min and 240 min. The dashed line 
represents the cutoff for upregulated TFs (log2FC ≥ 0.1). Top 10 differential TFs are annotated. 
Adapted from Seufert et al. (2024).   
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Figure 2.58 Genomic location of TNFα-regulated genes (TRGs) from scRNA-seq data.  
A ATAC peaks at TRGs. The inner circle illustrates the position of all ATAC peaks located either at 
the promoter or gene body of a TRG. The outer circle highlights the differential ATAC peaks among 
them. B Genomic proximity of TRGs. Each data point represents one TRG, with shape indicating 
the time point of differential expression and color denoting the direction of regulation. For TRGs 
differentially expressed at both time points, the 30 min results are annotated. Edges are drawn 
between TRG neighbors below 500 kb distance. TRG clusters are highlighted with a grey 
background. C TRG cluster size over TRG number per TRG cluster. The colors of points reflect the 
density of TRG clusters. Density curves of TRG cluster size and TRG number are shown. D Number 
of TRG clusters across different window sizes for defining TRG proximity. 500 kb and 1 Mb are 
marked in red. E Distribution of number of gene clusters detected in 1,499 randomly selected genes 
for 1,000 times. A window size of 500 kb for TRG proximity was used. The number of TRG clusters 
is marked in red. F TRG clusters in relation to TADs. TADs from bulk HiC-seq data of untreated 
HUVECs at 25 kb resolution were used. TRG clusters are classified as all TRGs within the same 
TAD, the majority of TRGs within the same TAD, TRGs distributed across multiple TADs, and no 
TAD overlap of TRGs. Adapted from Seufert et al. (2024).   
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1,008 proximal TRGs formed 356 TRG clusters (Figure 2.58B, grey shapes), which varied 
in the number of TRGs, upregulation or downregulation of transcription upon TNFα 

treatment, and their degree of proximity (ranging from “pearls on a string” to “fully 

interlinked” proximal TRGs). Most TRG clusters contained only two TRGs, but some TRG 

clusters contained as many as nine TRGs (Figure 2.58C, TRG number on the x-axis). The 
sizes of TRG clusters ranged from 100 kb to 3 Mb, with more than 90 % of TRG clusters 

being smaller than 1 Mb (Figure 2.58C, TRG cluster size on the y-axis).  

To identify these TRG clusters, I tested different window sizes for defining TRG proximity 

(Figure 2.58D). For window sizes below 500 kb, the number of identified TRG clusters 
increased as the window size grew, as more TRGs were considered proximal. The number 

of TRG clusters plateaued for window sizes between 500 kb and 1 Mb. For window sizes 

above 1 Mb, the number of TRG cluster decreased, likely due to the merging of previously 

distinct TRG clusters. I selected a window size of 500 kb as it represented the inflection 

point where the number of robustly detected TRG clusters stabilized. Next, I compared 

these TRG clusters with the genomic clustering of random selected genes (Figure 2.58E) 
to determine whether the observed TRG clusters were a significant feature of TNFα-

regulated transcription, or if it simply reflected general gene clustering patterns in the 

genome. For this, I randomly sampled 1,499 genes (matching the number of TRGs) 1,000 

times and calculated the numbers of gene clusters using a 500 kb window for gene 

proximity. The distribution revealed a mean of 300 gene clusters, with a maximum of 348 

gene clusters (Figure 2.58E). The 356 TRG clusters exceeded the third standard deviation 
from the mean of random gene clusters, suggesting that the clustering of TRGs is not 

random but may be important for regulating the TNFα-induced transcriptional response. 

Finally, I explored the relationship between TRG clusters and TADs. For 69 % of TRG 

clusters, all or the majority of TRGs were located within the same TAD (Figure 2.58F). 
Only 20 % of TRG clusters had TRGs distributed across multiple TADs. 

Clustered TRGs are co-expressed in the same cells 
To further investigate whether TRG clusters are functionally relevant in TNFα-regulated 

transcription, I analyzed the co-expression of TRGs in the same cells. Co-expression for 

each pair-wise TRG combination was calculated using Spearman correlation on UMI 

counts across cells (Figure 2.59A). The average Spearman correlation coefficients from 
replicates were used to evaluate co-expression between TRG pairs. Using this approach, 

I computed co-expression of both clustered and isolated TRGs for each TNFα treatment 

time point. For clustered TRGs, only TRG pairs within the same TRG cluster were 

considered. In untreated condition, both clustered and isolated TRGs displayed low levels 
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of co-expression (Figure 2.59B). Upon TNFα treatment, however, co-expression within 
TRG clusters increased, whereas co-expression among isolated TRGs remained 

unchanged. A direct comparison of upregulated TRG co-expression at 30 min and 240 

min of TNFα treatment revealed significantly higher co-expression within clustered TRGs 

compared to isolated TRGs (Figure 2.59C). Notably, the distribution of co-expression 
within TRG clusters exhibited an extended right tail at the 240 min time point and showed 

a bimodal distribution at 30 min. Overall, these findings suggest that higher co-expression 

within TRG clusters indicate at least partial co-regulation of transcription within these 

clusters following TNFα treatment. 

To validate the observed co-expression from scRNA-seq data, we performed padFISH 

imaging of nuclear RNA, an imaging protocol for multiplexed smFISH. The padFISH 

protocol resolves the spatial location of transcription loci, allowing the resolution of allele-

specific co-expression. It enables sequential imaging of multiple RNAs but does not 

provide genome-wide transcriptomic coverage like sequencing techniques. We selected a 

TRG cluster consisting of CXCL1, CXCL2, CXCL3, and CXCL8 to compare spatially 

resolved co-expression from padFISH imaging with cell-average co-expression from 

scRNA-seq data. This so-called CXCL TRG cluster spans approximately 350 kb and 

Figure 2.59 Co-expression of clustered and isolated TRGs in untreated and TNFα-treated 
HUVECs from scRNA-seq data. Data from scRNA-seq of three biological replicates per condition 
are shown.  A Co-expression between two TRGs is computed using Spearman correlation of their 
UMI counts across all cells from one sample. B Co-expression of clustered (left) and isolated (right) 
TRGs at the 0 min, 30 min, and 240 min TNFα treatment time points. Average co-expression of 
replicates is shown per condition. C Co-expression of clustered and isolated TRGs that were 
upregulated at 30 min (left) and 240 min (right) TNFα treatment time points. Average co-expression 
of replicates is shown per condition. P-values from two-sided, unpaired Wilcoxon tests are shown. 
Adapted from Seufert et al. (2024).   
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includes two additional TRGs, CXCL5 and CXCL6, which were only weakly induced by 

TNFα. Following TNFα treatment, RNA molecules from all studied CXCL genes were 

detected throughout the nucleus (Figure 2.60A, top). Most cells contained zero to two loci 
with co-localized RNA molecules from at least two genes, appearing white in the 

microscopy images. These co-localization loci were interpreted as the nuclear positions of 

CXCL TRG clusters, and co-expression at these loci was further analyzed (Figure 2.60A, 
bottom). Different combinations of co-expressed CXCL genes were present at the co-

localization loci. Quantifying these combinations across 120-290 cells per TNFα treatment 

time point and replicate revealed a distinct abundance of co-expression patterns (Figure 
2.60B, dark grey). At both time points, the most frequent co-expression combinations 

Figure 2.60 Co-expression in exemplary TRG cluster with CXCL1, CXCL2, CXCL3, and 
CXCL8 in TNFα-treated HUVECs from scRNA-seq and spatial transcriptomics data. Data from 
padFISH imaging and scRNA-seq of three biological replicates per condition are shown. A 
Exemplary cells from padFISH images of nascent RNA from CXCL1 (cyan), CXCL2 (yellow), 
CXCL3 (blue), and CXCL8 (magenta) at 30 min and 240 min of TNFα treatment. Zoom-ins to co-
expression loci are shown. B Co-expression of CXCL TRGs at 30 min (top) and 240 min (bottom) 
of TNFα treatment. The proportions of CXCL co-expression combinations at co-expression loci 
from padFISH imaging and in cells from scRNA-seq data are shown. The error bars represent the 
standard errors of replicates. C Proportion of CXCL co-expression combinations in padFISH 
imaging over scRNA-seq at 30 min (left) and 240 min (right) of TNFα treatment. Spearman 
correlation is shown. The error bars represent the standard errors of replicates. Image acquisition 
and processing were performed by Irene Gerosa. Adapted from Seufert et al. (2024). 
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included CXCL1/2/3/8, CXCL1/2/3, CXCL1/2/8, CXL2/3/8, and CXCL2/8, while 

combinations lacking CXCL2 expression were less common. The same analysis of 

scRNA-seq data revealed similar co-expression patterns across cells (Figure 2.60B, light 
grey). Furthermore, the proportions of co-expression combinations observed at co-

localization loci and in cells showed high correlation (Spearman correlation coefficients of 

0.83 and 0.79) between the two data types for both TNFα treatment time points (Figure 
2.60C). This suggests that scRNA-seq data, despite lacking spatial subcellular resolution, 
accurately captures the co-expression of multiple genes at the same locus. Consequently, 

these findings support the conclusion that the previously observed higher co-expression 

within TRG clusters is indicative of local molecular mechanisms co-regulating transcription 

upon TNFα treatment. 

TRGs reveal variable AC and DC features 
To investigate these molecular mechanisms underlying transcription co-regulation, I 

performed single cell and metacell co-accessibility analysis on the scTurboATAC-seq data 

using the RWireX framework. The workflow designs, results, reproducibility among 

replicates, and mechanistic interpretations were extensively discussed in Chapter 2.2, 
using TNFα treatment in HUVECs as a model system. To shortly summarize, the single 

cell co-accessibility workflow identified autonomous links of co-accessibility, termed ACs, 

resulting from stochastic accessibility fluctuations in HUVECs of homogeneous cell states. 

The analysis of chromatin contacts from bulk HiC-seq data showed that these ACs 

displayed significantly higher chromatin contacts compared to the genome-wide 

background, suggesting that ACs represent chromatin contacts between active genomic 

regions. In contrast, the metacell co-accessibility workflow identified broad domains of 

contiguous co-accessibility, termed DCs, defined from cell state-driven accessibility 

changes in response to TNFα treatment. These DCs were independent of TADs and 

revealed TNFα-dependent accessibility changes, indicating activation or deactivation 

upon TNFα treatment. Analysis of TF binding activity using pseudo-bulk scTurboATAC-

seq data showed significantly higher TF binding at binding sites in the DCs compared to 

the genome-wide non-DC background, suggesting that DCs are local nuclear 

subcompartments with altered concentrations of specific TFs that create unique 

transcription-regulatory environments. 

Here, I utilized the previously identified ACs and DCs from Chapter 2.2 to study 
transcriptional regulation of TRGs. For the three TNFα treatment conditions, approximately 

27,000 to 35,000 consensus ACs were detected across the biological replicates (Figures 
2.61A, 2.27A). Interestingly, 12 % of these ACs were located at TRGs, with around 45 % 
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of these located at promoters, while the rest were in exonic or intronic regions (Figure 
2.61B). This was a notable enrichment compared to the 9 % of total ATAC peaks located 
at promoters (see Figure 2.57B), indicating a specific regulatory role of these ACs at 
TRGs. For DCs, 4,885 consensus DCs were identified from the averaged metacell co-

accessibility matrices of replicates (Figures 2.61C, 2.28B), with 12 % of DCs also located 
at TRGs, specifically comprising a TRG promoter.  

  

Figure 2.61 AC and DC features of chromatin co-accessibility at TRGs in untreated and 
TNFα-treated HUVECs from scTurboATAC-seq data. A Number of ACs at TRGs and non-TRG 
regions for TNFα treatment time points. Replicate consensus of TNFα treatment time points is 
shown. B Number of ACs at TRG promoters, exons, and introns for TNFα treatment time points. 
Replicate consensus of TNFα treatment time points is shown. C Proportion of DCs at TRG 
promoters and non-TRG promoter regions. Replicate consensus DCs are shown. D Quantification 
of ACs and DCs at TRG promoters per TRG. TRGs are clustered by Ward’s method into 
predominantly AC-driven, DC-driven, AD/DC-driven, and NA groups. Differential TRGs after 30 and 
240 min of TNFα treatment, gene type (protein-coding or lncRNA), and TRG cluster affiliation are 
annotated. E Proportion of AC-driven, DC-driven, AC/DC-driven, and NA TRGs among protein-
coding and lncRNA TRGs (left), early, late and persistently differential TRGs (middle), and 
upregulated, downregulated and mixed regulated TRGs (right). Adapted from Seufert et al. (2024).  
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After quantifying ACs and DCs at TRG promoters, I used these co-accessibility features 

to classify TRGs by their regulatory mechanisms (Figure 2.61D). Hierarchical clustering 
based on the number of ACs and DCs at TRG promoters revealed five distinct TRG 

groups. A large fraction of TRGs (368) were located within DCs but exhibited few or no 

ACs (Figure 2.61D, purple color in “clustering” annotation). Consequently, these TRGs 
were classified as being predominantly DC-driven. In contrast, two other TRG groups, 

comprising 561 TRGs, exhibited high or medium numbers of ACs without DCs (Figure 
2.61D, green color in “clustering” annotation). These TRGs were combinedly classified as 
being predominantly AC-driven. Additionally, some TRGs (87) were located within DCs 

and showed high numbers of ACs (Figure 2.61D, yellow color in “clustering” annotation), 
making them simultaneously driven by both ACs and DCs, termed AC/DC-driven. Lastly, 

a considerable number of TRGs (483) showed neither AC nor DC features and were 

classified as NA (Figures 2.61D, grey color in “clustering” annotation).  

Interestingly, protein-coding TRGs were more frequently AC-driven (41 %) compared to 

DC-driven or NA (23 % and 30 %, respectively), while lncRNA TRGs were more frequently 

DC-driven or NA (29 % and 40 %, respectively; Figures 2.61D, “protein coding” 
annotation; 2.61E, left). This suggests that ACs may represent a more targeted regulation 
of protein-coding TRGs, whereas DCs (and NA) might potentially regulate lncRNAs as 

“by-products” of broader regulatory events. Additionally, early and persistently differential 

TRGs were more often DC- and AC/DC-driven (33-44 % and 7-12 %, respectively), while 

late differential TRGs were predominantly regulated by ACs and NA (40 % and 35 %, 

respectively; Figures 2.61D, “TRG at 30 min” and “TRG at 240 min” annotation; 2.61E, 
middle). Moreover, 31 % of upregulated TRGs were DC-driven, whereas only 14 % of 

downregulated TRGs were DC-driven (Figures 2.61D, “Log2FC 30 min” and “Log2FC 240 
min” annotation; 2.61E, right). In contrast, downregulated TRGs were mainly AC-driven or 
NA (43 % and 40 %, respectively; Figures 2.61D, “Log2FC 30 min” and “Log2FC 240 min” 
annotation; 2.61E, right).  

In summary, the 1,499 TRGs identified from scRNA-seq data demonstrated different 

mechanisms of transcriptional regulation, which were inferred using RWireX’s co-

accessibility workflows on scTurboATAC-seq data. The TRGs were classified into DC-

driven, AC-driven, AC/DC-driven, and NA groups based on their predominant regulatory 

mechanisms. This analysis revealed that DCs are more often involved in early and 

upregulated lncRNA TRG regulation, suggesting a fast but potentially less specific 

regulatory role of DCs. Conversely, ACs are more frequently associated with the regulation 



Results 

 125 

of late and downregulated protein-coding TRGs, indicating a more targeted but slower 

regulatory role. 

AC and DC features classify TRG clusters 
After identifying different groups of TRGs with varying regulatory mechanisms, I aimed to 

investigate how these regulatory TRG groups relate to the previously identified TRG 

clusters in the genome. To achieve this, I calculated AC and DC scores for each TRG 

cluster. These scores reflect the proportion of TRGs in a cluster that were AC+AC/DC-

driven or DC+AC/DC-driven, respectively. The AC and DC scores of TRG clusters were 

not normally distributed, as shown by the significant p-values from the Shapiro-Wilk test 

for normality (Figure 2.62A, histograms). This indicated that TRGs within the same cluster 
were enriched for either AC- or DC-related features, and that both molecular mechanisms 

co-regulate local transcription. When comparing the AC and DC scores with the co-

expression of TRGs in a cluster, AC scores showed a negative correlation with TRG 

cluster co-expression (Figure 2.62B, top). In contrast, DC scores showed a positive 
correlation with co-expression (Figure 2.62B, bottom). Overall, these results suggest that 
ACs and DCs both co-regulate transcription in TRG clusters. Interestingly, while DCs 

promote simultaneous co-expression of TRGs in local clusters, AC-driven TRG clusters 

display alternating expression of their TRGs. 

Next, I used these AC and DC scores of TRG clusters to classify the predominant 

regulatory mechanism within entire clusters. Specifically, I assigned TRG clusters as: (i) 

predominantly AC-driven if AC scores were ≥ 0.5 and DC scores were < 0.5, (ii) 

predominantly DC-driven if AC scores were < 0.5 and DC scores were ≥ 0.5, (iii) 

predominantly AC/DC-driven if both AC and DC scores were ≥ 0.5, and (iv) NA if both AC 

and DC scores were < 0.5 (Figure 2.62A, scatter plot). This classification resulted in 147 
AC-driven (41 %), 86 DC-driven (24 %), 51 AC/DC-driven (14 %), and 72 NA (20 %) TRG 

clusters (Figure 2.62C). AC-driven TRG clusters consisted of at least 50 % AC-driven 
TRGs, with the remaining TRGs mostly NA and rarely DC- or AC/DC-driven TRGs (Figure 
2.62D, top). Similarly, DC-driven TRG clusters contained at least 50 % DC-driven TRGs, 
with the rest primarily being NA, but also some AC-driven or AC/DC-driven TRGs (Figure 
2.62D, second from bottom). Approximately 60 % of AC/DC-driven TRG clusters contained 
mostly AC/DC-driven TRGs, while the rest comprised a 50:50 mix of solely AC-driven and 

DC-driven TRGs, respectively (Figure 2.62D, second from top). AC/DC-driven TRG 
clusters comprised only few NA TRGs. In contrast, NA TRG clusters were composed 

mostly of NA TRGs, with only a few containing AC-, DC-, or AD/DC-driven TRGs (Figure 
2.62D, bottom). 
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Figure 2.62 AC and DC features of chromatin co-accessibility at TRG clusters in untreated 
and TNFα-treated HUVECs from scTurboATAC-seq data. A AC scores and DC scores of TRG 
clusters. Overlaying data points are visualized by jitter plot. The background color represents the 
areas classified as predominantly AC-driven, DC-driven, AD/DC-driven, and NA TRG clusters. 
Histograms of AC scores and DC scores are shown. P-values from Shapiro-Wilk tests are 
indicated. B Co-expression over AC score (top) and DC score (bottom) in TRG clusters. The colors 
of points reflect the density of TRG clusters. Linear regression line and Spearman correlation are 
shown. C Regulatory mechanisms of clustered TRGs. Each data point represents one TRG, where 
color indicates the predominant regulatory mechanism of AC, DC, AC/DC, or NA. Edges between 
TRG neighbors below 500 kb distance are drawn. The background color of TRG clusters reflects 
the predominant regulatory mechanisms of AC, DC, AC/DC, or NA. D Composition of AC-driven 
(top), AC/DC-driven (second from top), DC-driven (second from bottom), and NA (bottom) TRG 
clusters. The proportion of AC-driven, DC-driven, AC/DC-driven, and NA TRGs in the TRG clusters 
is shown. Adapted from Seufert et al. (2024).  
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Having identified TRG clusters regulated by different molecular mechanisms, I next 

examined how these mechanisms govern the expression of multiple TRGs. Therefore, 

examples of different regulatory mechanisms for AC-, DC-, and AC/DC-driven TRG 

clusters are shown in Figure 2.63. The TRG cluster of KLF10 and GASAL1 has been 
previously shown in Chapter 2.2 to showcase AC reproducibility. It is a suitable 
representative of AC-driven TRG clusters, with an AC score of 1.0 and a DC score of 0.0. 

As described previously, ACs between the TRG promoters were detected and present in 

almost all cells (indicated by PAC values above 95), making them frequent ACs (Figure 
2.63A). Additional frequent ACs between the TRG promoters and two distal H3K27ac 
peaks were detected. In the untreated condition, the TRG promoters and a downstream 

H3K27ac peak were linked by these frequent ACs. After 30 min of TNFα treatment, the 

co-accessibility scores of these preexisting ACs increased (from around 0.2 in the 

untreated condition to 0.3 at 30 min). Moreover, frequent ACs connecting the TRG 

promoters to an intermediate H3K27ac peak emerged. This coincided with a significant 

increase in KLF10 and GASAL1 expression at the 30 min treatment time point (KLF10 

log2FC of 3.04; GASAL1 log2FC of 1.3). After 240 min of TNFα treatment, the frequent 

AC between the TRG promoters disappeared, while those with distal H3K27ac peaks 

persisted. Furthermore, the co-accessibility scores of the remaining ACs fell below 0.2, 

aligning with a return of KLF10 and GASAL1 expression to initial levels (no significant 

differential expression for KLF10 and GASAL1 between 0 min and 240 min). Metacell co-

accessibility analysis revealed no DCs in this TRG cluster but showed blue stripes of anti-

correlated accessibility with high co-accessibility at their intersections for the previously 

observed sites of frequent ACs (Figure 2.63B, top). Furthermore, the frequent ACs and 
blue stripes corresponded with increased chromatin contact frequencies from HiC-seq 

data, visible as red stripes extending beyond TAD boundaries (Figure 2.63B, bottom). 
Altogether, these findings suggest that early upregulation of KLF10 and GASAL1 

expression is co-regulated by targeted loop formation between the TRG promoters and 

two distal H3K27ac peaks of potential distal CREs. 

In contrast, the TRG cluster of WAKMAR2 and TNFAIP3 was previously shown in Chapter 
2.2 to illustrate DC reproducibility and its underlying molecular mechanism of local TF 
enrichment. It is a suitable example of DC-driven TRG clusters, as it possesses a DC 

score of 1.0 and an AC score of 0.0. For both WAKMAR2 and TNFAIP3, no ACs were 

detected at their promoters (Figure 2.63C). Their extended genomic region showed only 
a few scattered ACs, that possessed low co-accessibility scores and PAC values. On the 

contrary, metacell co-accessibility revealed multiple DCs around the two TRGs, which 

were in total approximately 200 kb in size and collectively termed the merged WAKMAR2/ 
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Figure 2.63 Examples of AC-driven, DC-driven, and AC/DC-driven TRG clusters in untreated 
and TNFα-treated HUVECs from scTurboATAC-seq data. A Pseudo-bulk chromatin 
accessibility (top) and ACs (bottom) at TNFα treatment time points at AC-driven TRG cluster of 
KLF10 and GASAL1. ATAC peaks (black, 1 kb extended), genes (grey), TRGs (blue) and 1 kb 
regions around their TSSs (light blue), and H3K27ac peaks from ChIP-seq at 30 min time point 
(green) are indicated. Consensus ACs from replicates at TRG promoters are shown. The grayscale 
and height of loops reflect co-accessibility scores and percent accessible cells of ACs.  
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TNFAIP3 DC (Figure 2.63D, top). Accessibility in all these DCs was significantly 
upregulated after 30 min (log2FCs between 0.54-0.6) as well as 240 min (log2FCs 

between 0.55-0.79) of TNFα treatment, which was likely caused by the increased local 

activity of multiple TFs in the merged WAKMAR2/TNFAIP3 DC as shown before (see 

Figure 2.34). This suggested that the increase in accessibility of the merged 
WAKMAR2/TNFAIP3 DC reflects its higher activity upon TNFα treatment. The enhanced 

DC activity coincided with the significantly increased expression of WAKMAR2 (log2FC of 

2.1 at 30 min; log2FC of 2.7 at 240 min) and TNFAIP3 (log2FC of 5.9 at 30min; log2FC of 

4.8 at 240min) at both TNFα treatment time points. Interestingly, the merged 

WAKMAR2/TNFAIP3 DC was connected by high metacell co-accessibility scores to the 

TRG IFNGR1, which was 700 kb upstream of the WAKMAR2 and TNFAIP3 TRG cluster. 

IFNGR1 was located in a roughly 50 kb region of increased metacell co-accessibility, but 

no DC was identified. The region around IFNGR1 showed increased accessibility after 30 

min of TNFα treatment, which further increased after 240 min. Consistently, IFNGR1 

showed significantly increased expression after 240 min of TNFα treatment (not significant 

at 30 min; log2FC of 1.4 at 240 min). Notably, the high metacell co-accessibility between 

the merged WAKMAR2/TNFAIP3 DC and the distal IFNGR1 region spanned across a 

TAD boundary (Figure 2.63D, bottom). Nevertheless, the visually higher metacell co-
accessibility indicates that this distal IFNGR1 region might spatially co-assemble with the 

merged WAKMAR2/TNFAIP3 DC into a combined local subcompartment of increased TF 

activity. These findings indicate that this subcompartment co-regulates the increase in 

expression of the TRG cluster WAKMAR2 and TNFAIP3 as well as the distal TRG 

IFNGR1. 

Lastly, a suitable example for AC/DC-driven TRG clusters was the TRG cluster of 

RANGAP1, ZC3H7B, and TEF, which showed both a high AC score of 0.66 and a high 

DC score of 1.0. In untreated and 30 min TNFα treated HUVECs, multiple frequent ACs 

between promoters of RANGAP1 and TEF were present as well as with distal H3K27ac 

peaks (Figure 2.63E). These ACs disappeared in 240 min TNFα treated HUVECs. 
Simultaneously, expression of all three TRGs increased after 240 min of TNFα treatment 

Figure 2.63 (continued) B Average metacell co-accessibility map from replicates (top) and 
chromatin contact map from HiC-seq data of untreated HUVECs (bottom) at AC-driven TRG cluster 
of KLF10 and GASAL1. DCs from average metacell co-accessibility (red), genes (grey), TRGs 
(blue) and 1 kb regions around their TSSs (light blue), and H3K27ac peaks from ChIP-seq at the 
30 min time point (green) are indicated. Limits of the co-accessibility score color scale bar are set 
to -0.3 and 0.3. The upper limit of the chromatin contact color scale bar is set to 100. C Same as 
panel A for DC-driven TRG cluster of WAKMAR2 and TNFAIP3. All consensus ACs from replicates 
are shown. D Same as panel B for DC-driven TRG cluster of WAKMAR2 and TNFAIP3. E Same 
as panel A for AC/DC-driven TRG cluster of RANGAP1, ZC3H7B, and TEF. F Same as panel E for 
AC/DC-driven TRG cluster of RANGAP1, ZC3H7B, and TEF. Adapted from Seufert et al. (2024). 
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(RANGAP1 log2FC of 1.7; ZC3H7B log2FC of 2.2; TEF log2FC of 1.4), while no significant 

differences were detected at the 30 min TNFα treatment time point. Moreover, three DCs 

at the TRG cluster were detected in metacell co-accessibility (Figure 2.63F, top). All 
showed significantly upregulated accessibility upon TNFα treatment (log2FCs between 

0.19-0.41 at 30 min and 0.16-0.39 at 240 min), indicating increasing activity of the 

subcompartment. Additionally, the metacell co-accessibility map revealed blue stripes of 

anti-correlated accessibility with high co-accessibility at their intersections, that extended 

from beyond the merged RANGAP1/ZC3H7B/TEF DC. Again, the blue stripes coincided 

with red stripes of increased chromatin contact frequencies from HiC-seq data (Figure 
2.63F, bottom). Taken together, these findings suggest that TNFα treatment induces the 
early formation of an activating local subcompartment at these three TRGs. This 

subcompartment does not result in immediate expression induction, as preexisting 

chromatin loops or interactions of the TRG promoters might block their regulation. Upon 

loss of these loops or interactions, the TRGs show late upregulation in expression 

potentially by the local subcompartment. This shows that ACs and DCs are not mutually 

exclusive but might coordinately co-regulate time-specific expression induction at TRG 

clusters. Furthermore, this example shows that DCs can also form in chromatin regions 

with preexisting architectural chromatin loops or interactions. 

AC-, DC- and AC/DC-driven TRGs show varying transcriptional bursting 
kinetics 
Next, I aimed to examine differences in the transcriptional bursting kinetics of AC-driven, 

DC-driven and AC/DC-driven TRGs. To do so, I inferred transcriptional bursting kinetics 

from snap-shots in time of nuclear RNA content in multiple hundred cells (Figure 2.64, 
top). On the one hand, the burst frequency of a gene, described as the on rate (kon) in the 

two-state model of transcription, was computed from the number of nuclei that contained 

intronic RNA of the respective gene (Figure 2.64, bottom). On the other hand, the burst 
size of a gene, described as the ratio of synthesis and off rates (ksyn and koff, respectively), 

was computed from the number of the gene’s intronic RNAs per nucleus. The snap-shots 

of nuclear RNA per cell were acquired either by quantification of intronic RNA from snRNA-

seq data or direct measurement of intronic RNA by padFISH imaging. 

First, I used snRNA-seq data from all TNFα treatment time points to quantify intronic RNAs 

genome-wide. Following, I used these to infer time point-specific burst frequencies and 

burst sizes of AC-driven, DC-driven, and AC/DC-driven TRGs. In untreated HUVECs, 

burst sizes of the three TRG groups were highly similar, showing medians between 2.3 

and 2.7 RNA molecules per burst (Figure 2.65A, density plot on top). In contrast, burst 
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frequencies varied between the TRG groups in the untreated condition (Figure 2.65A, 
density plot on the right). While DC-driven TRGs only showed a median of 1.1 bursts per 

hour, AC-driven and AC/DC-driven TRGs showed medians of 1.7 and 2.2 bursts per hour, 

respectively. Similarly, no differences in burst sizes were present between TRG groups 

after 30 min of TNFα treatment (2.3-2.8 median RNA molecules per burst; Figure 2.65B, 
density plot on top), whereas AC/DC-driven TRGs showed again more than two-fold higher 

burst frequencies than DC-driven TRGs (2.9 and 1.3 median bursts per hour, respectively; 

Figure 2.65B, density plot on the right). After 240 min of TNFα treatment, burst sizes of 
DC-driven and AC/DC-driven TRGs (medians of 4.8 and 4.4 median RNA molecules per 

burst, respectively) were approximately two-fold higher than AC-driven TRGs (2.8 median 

RNA molecules per burst; Figure 2.65C, density plot on top). For burst frequencies, 
AC/DC-driven TRGs showed highest median of 2.2 bursts per hour compared to AC-driven 

and DC-driven TRGs (1.3 and 1.1 median bursts per hour, respectively; Figure 2.65C, 
density plot on the right). To confirm these observations, I performed differential analysis 

of bursting kinetics between the three TRG groups. Indeed, DC-driven TRGs revealed 

significantly higher burst sizes compared to AC-driven TRGs (Figure 2.65D, shape 
outlines). Conversely, AC-driven and AC/DC-driven TRGs revealed significantly higher 

burst frequencies compared to DC-driven TRGs (Figure 2.65D, filled shapes). 
Additionally, AC/DC-driven TRGs showed significantly higher burst frequencies compared 

to the only AC-driven TRGs. 

Figure 2.64 Inference of transcriptional bursting kinetics from transcriptomic snap-shots in 
time of multiple hundred cells. Intronic RNA was quantified in individual nuclei from sequencing 
or imaging data. Burst frequency and burst size were computed after the two-state model of 
transcription. Genes switch between their active and inactive state by on rate (kon) and off rate (koff). 
In active state, RNA is transcribed at synthesis rate (ksyn). These transcripts are again degraded at 
degradation rate (λ). Adapted from Seufert et al. (2024). 
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We validated the transcriptional bursting kinetics inferred from snRNA-seq data for two 

exemplary TRGs using padFISH imaging of intronic transcripts. The TRG NFKBIA showed 

a strong increase in burst frequency upon TNFα treatment in snRNA-seq data, while burst 

size remained comparably low (Figures 2.65A-C, annotation of NFKBIA in scatter plots; 
2.66A+B). Similarly, padFISH imaging detected intronic NFKBIA transcripts in many nuclei 
of the TNFα-treated HUVECs (Figure 2.66A) and the data confirmed burst frequency 
increases and constant burst size of NFKBIA upon TNFα treatment (Figure 2.66B). In 
contrast to NFKBIA, the TRG SELE showed a strong increase in burst size upon TNFα 

Figure 2.65 Transcriptional bursting kinetics of AC-driven, DC-driven, and AC/DC-driven 
TRGs in untreated and TNFα-treated HUVECs from snRNA-seq data. Data of nuclear 
transcripts from snRNA-seq of approximately 300 cells per condition are shown. A Burst frequency 
over burst size of AC-driven (green), DC-driven (purple), and AC/DC-driven (yellow) TRGs in 
untreated HUVECs. Density curves and medians of burst frequency and burst size are shown. 
Exemplary TRGs NFKBIA and SELE are highlighted. B Same as panel A for 30 min TNFα treated 
HUVECs. C Same as panel A for 240 min TNFα treated HUVECs. D Differential bursting kinetics 
between AC-driven TRGs and AC/DC-driven TRGs (circle), DC-driven TRGs and AC-driven TRGs 
(rectangle), as well as DC-driven TRGs and AC/DC-driven TRGs (rhombus). Differential burst 
frequency (filled shapes) and burst size (shape outlines) are shown. The color indicates the TNFα 
treatment time point. The dashed line represents the significance cutoff (p-value < 0.05 from two-
sided Wilcoxon test). Adapted from Seufert et al. (2024). 
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treatment in snRNA-seq data, while burst frequency remained comparably low (Figures 
2.65A-C, annotation of SELE in scatter plots; 2.66C+D). This was confirmed by padFISH 
imaging, which detected intronic SELE transcript in few nuclei but at high abundance 

(Figure 2.66C). This resulted in constant burst frequency and TNFα-induced burst size of 
SELE inferred from padFISH data (Figure 2.66D). Overall, the padFISH data validated 
the previously inferred transcriptional bursting kinetics from snRNA-seq data. Here, DC-

driven TRGs revealed significantly higher burst sizes compared to AC-driven TRGs. Vice 

versa, AC-driven TRGs revealed significantly higher burst frequencies compared to DC-

driven TRGs. Interestingly, AC/DC-driven TRGs showed both increased burst sizes and 

burst frequencies. 

Promoter-mediated regulation of TRGs shows strongest transcriptional 
response 
Lastly, I aimed to investigate the role of promoter-mediated regulation compared to AC- 

and DC-mediated regulation of TRG expression. Only 9 % of TRGs contained a 

differentially accessible ATAC peak upon TNFα treatment at their promoter (see Figure 
2.58A). These TRGs were classified as promoter-regulated. Notably, the majority of 

Figure 2.66 Transcriptional bursting kinetics of NFKBIA and SELE in untreated and TNFα-
treated HUVECs from spatial transcriptomics and snRNA-seq data. Data from 2 biological 
replicates per condition are shown. A padFISH images of nascent RNA from NFKBIA (yellow) in 
untreated (left), 30 min (middle) and 240 min (right) of TNFα treatment. Zoom-ins to exemplary 
cells are shown.  B Burst size (left) and frequency (right) of NFKBIA from padFISH imaging and 
snRNA-seq at TNFα treatment time points. The error bars represent the standard errors of 
replicates. C Same as panel A for SELE in magenta. D Same as panel B for SELE. Image 
acquisition and processing were performed by Irene Gerosa. Adapted from Seufert et al. (2024).  
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promoter-regulated TRGs (81 %) showed additional regulation via ACs and / or DCs 

(Figure 2.67A). The transcriptional response of promoter-regulated TRGs was 
significantly stronger compared to AC-regulated TRGs after 30 min of TNFα treatment 

(Figure 2.67B, left). After 240 min, promoter-regulated TRGs showed a significantly 
stronger transcriptional response compared to all AC-, DC-, and AC/DC-regulated TRGs 

(Figure 2.67B, right). Additionally, DC- and AC/DC-regulated TRGs showed a significantly 
stronger early transcriptional response compared to AC-regulated TRGs (Figure 2.67B, 
left). 

The transcriptional bursting kinetics of promoter-regulated TRGs revealed a strong 

differential regulation via burst size (Figure 2.67C, black). In contrast, promoter-regulated 
TRGs showed only low differences in burst frequency upon TNFα treatment (Figure 
2.67D, black). Promoter-regulated TRGs revealed significantly higher burst size 
differences compared to AC- and DC-regulated TRGs after 30 min of TNFα treatment 

(Figure 2.67C, left). After 240 min, promoter-, DC-, and AC/DC-regulated TRGs showed 

Figure 2.67 Promoter-driven regulation of TRG expression in untreated and TNFα-treated 
HUVECs from scRNA-seq and snRNA-seq data. A Number of TRGs regulated via their 
promoters, ACs, and/or DCs. B Absolute TRG expression changes after 30 min (left) and 240 min 
(right) of TNFα treatment in HUVECs. Log2FCs are shown for TRGs regulated via their promoter, 
ACs, DCs, or both ACs and DCs. Significant p-values from Wilcoxon test are indicated as *, P < 
0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. C Absolute TRG burst size changes after 30 min 
(left) and 240 min (right) of TNFα treatment in HUVECs. Log2FCs are shown for TRGs regulated 
via their promoter, ACs, DCs, or both ACs and DCs. Significant p-values from Wilcoxon test are 
indicated as *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. D Same as panel C for burst 
frequency changes. 
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significantly stronger burst size differences compared to AC-regulated TRGs (Figure 
2.67C, right). For burst frequencies, no TRG regulation group showed exceptionally strong 
differences at any time point (Figure 2.67D). Overall, this suggests that promoter-
regulated TRGs show a fast, yet persistent transcriptional response that is stronger 

compared to AC-, DC-, and AC/DC-driven regulation. Furthermore, promoter-driven TRGs 

are predominantly regulated via burst size, potentially driven by higher promoter 

accessibility to TFs and the transcriptional machinery.  

In summary, in this project I studied how ACs and DCs, both long-range regulatory 

mechanisms, co-regulate the simultaneous transcriptional response of multiple genes to 

TNFα treatment in HUVECs. Additionally, I explored their regulatory effects on 

transcriptional bursting kinetics. In HUVECs, the TNFα treatment induced differential 

expression of specific genes, so-called TNFα-regulated genes. These TRGs clustered 

along the genomic coordinate, forming TRG clusters. TRGs within clusters showed higher 

co-expression across single cells compared to isolated TRGs, which indicates that 

transcription is locally co-regulated by shared molecular mechanisms within TRG clusters 

upon TNFα treatment. On chromatin level, the TNFα treatment induced changes in 

chromatin accessibility only at specific loci, which were driven by increased TF binding 

activity of NF-κB family members and its secondary TF targets. Notably, these differential 

chromatin loci were mainly located in gene body or intergenic regions and less so at the 

promoters of TRGs, suggesting that differential expression is primarily regulated by distal 

CREs and long-range regulatory mechanisms.  

TRGs showed both specific long-range chromatin contacts or interactions, represented by 

ACs, and broader, local subcompartments of increased TF activity, represented by DCs. 

These were used to classify TRGs by their predominant regulatory mechanism into AC-

driven, DC-driven, and AC/DC-driven TRGs. Interestingly, DCs more often regulated 

early-responsive and upregulated long non-coding RNA (lncRNA) TRGs, indicating a fast, 

activating and potentially less specific regulatory role of nuclear subcompartments. In 

contrast, ACs more frequently regulated late-responsive and downregulated protein-

coding TRGs, suggesting a highly specific but slower transcription regulation via specific 

chromatin interactions. The previously identified TRG clusters showed significant 

enrichment for either or both AC and DC features, indicating that both specific chromatin 

interactions and nuclear subcompartments can co-regulate transcription at local TRG 

clusters. In DC-driven TRG clusters, this resulted in simultaneous co-expression of TRGs, 

while AC-driven TRG clusters showed alternating expression of their TRGs. This 

suggested that specific chromatin interactions do not co-regulate transcription by forming 
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multi-way transcription factories, but rather form contacts with on gene at a time causing 

alternating transcriptional bursts between the TRGs. Finally, DC-driven TRGs revealed 

significantly higher burst sizes compared to AC-driven TRGs and vice versa, AC-driven 

TRGs revealed significantly higher burst frequencies compared to DC-driven TRGs. 

Interestingly, AC/DC-driven TRGs showed both, increased burst sizes and burst 

frequencies. This indicated that nuclear subcompartment and specific chromatin contacts 

regulate different steps during the transcriptional bursting. Moreover, promoter-regulated 

TRGs showed a significantly stronger transcriptional response at both the early and late 

time point compared to AC-, and DC-regulated TRGs. They were primarily regulated via 

burst size. These observed differences between promoter-, AC-, and DC-driven regulation 

constitute multi-layered regulatory networks in the nuclei of HUVECs that can tightly 

regulate the temporal complexity and intensity of the transcriptional response to TNFα 

treatment. 

In this chapter, I applied my computational framework for chromatin co-accessibility 

analysis to various mammalian systems under perturbation. Building on the insights from 

the previous chapter on the underlying molecular mechanisms of observed chromatin co-

accessibility features, I was able to study regulatory mechanisms genome-wide and 

evaluate their potential interplay in creating a multi-layered network of transcription 

regulation. Additionally, I assessed their functional impact transcriptional activity. In the 

discussion, I will apply these findings to derive a model of transcription regulation that 

integrates genome-wide and simultaneous information on both chromatin-centric and 

protein-centric transcription regulation. 
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3. Discussion 

In this thesis, a model of transcription regulation was developed that integrates genome-

wide information on chromatin tropology- and TF-mediated mechanisms using chromatin 

accessibility sequencing data at single-cell resolution. I successfully addressed three 

specific objectives: (i) The experimental and computational analysis of scATAC-seq was 

advanced. (ii) I developed a computational framework termed RWireX to dissect molecular 

mechanisms underlying chromatin co-accessibility. (iii) By applying RWireX, I revealed the 

structure-function relationship between different regulatory mechanisms and their 

transcriptional output. In the following sections, I discuss my findings of these three parts. 

Afterwards, I integrate my findings into the AC/DC model of transcription regulation and 

discuss its generalizability and implications for inflammatory response, differentiation and 

cancer. 

3.1. Advancing the experimental and computational 
analysis of scATAC-seq  
TurboATAC protocol reduces data sparsity in scATAC-seq data 
A general challenge in scATAC-seq experiments is to have a large number of cells with 

sufficiently high coverage per cell to characterize their chromatin accessibility landscapes 

(De Rop et al., 2024). I encountered this challenge when comparing two biological 

replicates of IFNβ-treated MEFs: One replicate contained only 5,000 cells with roughly 

35,000 unique ATAC fragments per cell on average (see Section 2.1.1). At the same time, 
the other replicate comprised approximately 20,000 cells but with lower unique ATAC 

fragments of roughly 7,500 per cell on average. The latter replicate displayed significant 

limitations in its downstream analysis of single cells.  
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To reduce scATAC-seq data sparsity, we developed the TurboATAC protocol, which 

enhances coverage by optimizing transposase reaction efficiency in both single- and multi-

omic experiments (see Section 2.1.2). This optimization yielded significantly higher 
numbers of unique fragments per 10,000 sequenced reads and cell compared to the 

commercial 10x Genomics scATAC-seq and Multiome (scRNA-seq and scATAC-seq) 

protocols (see Figures 2.7C, 2.8B, 2.9C). The TurboATAC protocol reduced the number 
of duplicate sequencing reads, likely increasing scATAC library complexity. Thus, our 

TurboATAC protocol reduced data sparsity without increasing sequencing costs, while 

maintaining high cell numbers. 

Moreover, our TurboATAC protocol outperformed other scATAC-seq approaches 

regarding sequencing coverage, since several tested methods performed worse than the 

10x Genomics scATAC-seq v2 protocol (TXGv2) (De Rop et al., 2024). In this 

benchmarking study of single-cell ATAC sequencing protocols, TXGv2 performed best 

with approximately 4,000 unique fragments in peaks at a sequencing depth of 10,000 

reads per cell (see Figure 2A in De Rop et al. (2024)). Together with an average FRIP 

score of around 0.7 in TXGv2 (see Figure 1H in De Rop et al. (2024)), this resulted in 

roughly 5,700 unique fragments per 10,000 reads and cell. In our experiments, TXGv2 

only yielded about 3,200 unique fragments per 10,000 reads and cell, while our 

TurboATAC protocol resulted in approximately 5,600 unique fragments per 10,000 reads 

and cell (Figure 2.8B). This indicates high variability in scATAC-seq coverage between 
data sets for identical protocols, likely due to different experimental set-ups, experimenters 

and model systems. Nevertheless, our TurboATAC protocol demonstrated comparable or 

superior performance to all scATAC-seq protocols tested in the benchmarking study. 

Another recent experimental approach improves the single-cell combinatorial indexing 

(sci)-based scATAC-seq protocol by utilizing the small molecule inhibitor Pitstop 2 

(Mulqueen et al., 2019). The inhibitor increases the ability of Tn5 to enter nuclei, improving 

the efficiency of the ATAC reaction. The improved sci assay resulted in an increased 

library complexity with 90 % of unique reads per cell on average (see Extended Data 

Figure 2A in Mulqueen et al. (2019)). This was significantly higher compared to 43-64 % 

unique reads with the TurboATAC protocol. observed for varying biological systems and 

single-cell sequencing depths (Tables 2.5, 2.7, 2.8). However, single-cell sequencing 
depth strongly influences duplication rate in addition to library complexity (Table 2.5, note 
lower duplication rate for down-sampled scTurboATAC-seq sample). Indeed, single-cell 

sequencing depth was significantly lower for the sci assay with 40,000 unique reads per 

cell (see Figure 1E in Mulqueen et al. (2019)) compared to 130,000 unique reads per cell 
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for our scTurboATAC-seq data (Table 2.6, two times the mean number of unique 
fragments per cell). Moreover, the experimental procedure of the improved sci-based 

assay is more complex to the TurboATAC protocol, as additional treatment and incubation 

steps with the Pitstop 2 inhibitor are necessary. Taken together, enhanced sciATAC-seq 

represents an alternative to the TurboATAC protocol to improve library complexity and 

reduce data sparsity. However, its experimental procedure is more complicated and 

available data do not indicate superior performance. 

Chromatin accessibility is a stochastic event in single cells 
When assessing this sequencing coverage in single cells, the question arises as to what 

the expected coverage of accessible chromatin regions in individual cells is. Initial ATAC-

seq data from bulk experiments of 50,000 cells identified approximately 75,000 peaks, 

highly comparable to those found in DNase HS-seq data sets (Buenrostro et al., 2013). 

More recent bulk ATAC-seq data from IFNβ-stimulated MEFs identified an even higher 

number of peaks, ranging from 140,000 to 230,000 per replicate (Figure 2.11A) 
(Muckenhuber et al., 2023). Pseudo-bulk scATAC-seq data from 10x Genomics and 

TurboATAC protocols yielded comparable peak numbers, with approximately 150,000 

peaks each.  

However, at single-cell resolution, only a fraction of these pseudo-bulk peaks was 

accessible in individual cells. Specifically, only 7.5 % of the pseudo-bulk peaks were 

accessible in individual cells using the 10x Genomic protocol, while TurboATAC detected 

15 % of the peaks per single cell (Figure 2.11B). These findings are consistent with 
previous studies, which reported that only 9.4 % of promoters were accessible in a single 

cell (Buenrostro et al., 2015). Interestingly, the relationship between the number of 

accessible peaks per cell and the unique fragments per cell followed a logistic, rather than 

linear, trend, approaching a plateau at roughly 35,000 accessible peaks per cell (Figure 
2.11C). This indicates a saturation of accessible peaks detected per cell independent of 
single-cell sequencing depth.  

Furthermore, allele-aware quantification of scATAC-seq data revealed that only 0.11 % of 

accessibility counts in TurboATAC data were bi-allelic (Figure 2.12B). Among the single 
cells, bi-allelic accessibility did increase only moderately with the number of unique 

fragments per cell (Figure 2.12D). These data suggest that chromatin accessibility is a 
stochastic process, exhibiting high variability among cells of the same type and state. As 

a result, the lower number of detected peaks in single cells compared to bulk or pseudo-

bulk data likely reflects true biological variation between individual cells rather than purely 

derived from data sparsity. Nevertheless, we found that the sequencing of the 
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scTurboATAC data was not at saturation. Increasing sequencing depth further enhanced 

chromatin accessibility coverage, as seen in the scTurboATAC-seq data from HUVECs 

(Figure 2.20B). 

Quantification and normalization strongly impact analyses of scATAC-seq 
data  
Further analyses of the scATAC-seq data revealed distinct patterns of chromatin 

accessibility signals in pseudo-bulk ATAC peaks across various genomic regions. Peaks 

with high GC content exhibited significantly elevated Tn5 insertion counts per single cell 

(Figure 2.13C), consistent with a global association of GC-rich regions and accessible 
euchromatin (Bouwman et al., 2023). Additionally, promoter peaks displayed higher 

insertion counts per single cell compared to exonic, intronic, and distal peaks (Figure 
2.13B), indicating distinct patterns of accessibility in different genomic regions. Notably, 
bi-allelic accessibility was predominantly observed at promoter peaks (Figure 2.14C). 
These findings suggest that continuous and allelic quantification not only differentiate 

accessible from inaccessible regions in single cells but may also capture varying levels of 

accessibility. This aligns with previous studies that identified meaningful quantitative 

information in scATAC-seq data (Martens et al., 2024; Miao & Kim, 2024). Considering the 

nucleosome positioning information inferred from ATAC-seq data (Figure 1.5B) 
(Buenrostro et al., 2013), higher mono-allelic insertion counts per cell and peak likely 

reflect nucleosome-depleted chromatin regions. In contrast, lower insertion counts might 

indicate loosely packed, nucleosome-containing regions.  

Despite the value of this quantitative information, it is often lost in downstream analysis, 

as most methods utilize binarized counts (Luo et al., 2024). Binarization has also been 

suggested as a normalization technique to reduce technical variation between samples 

(Heumos et al., 2023). However, the results presented here emphasize the need to 

preserve the quantitative information of scATAC-seq data, while reducing technical biases 

across samples and data sets. I selected equal cell numbers with the most comparable 

unique fragment numbers to minimize technical variation across samples within a data set 

(see Section 2.2.1, Compensation of biases between samples). Subsequently, I utilized 
continuous count matrices of these bias-compensated cells from multiple samples. In the 

future, the computational analysis of scATAC-seq data might be further improved by 

developing robust normalization methods that reduce biases among cells, samples, and 

data sets, while preserving the quantitative accessibility information. 
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3.2 Developing a computational framework to dissect  
the molecular mechanisms underlying chromatin co-
accessibility 
Several models have been proposed to explain how distal CREs might interact with 

promoters and TSSs to exert their regulatory effects (Figure 1.2) (Grosveld et al., 2021; 
Karr et al., 2022). On the one hand, targeted chromatin interactions via stable or transient 

chromatin contacts might directly transmit the regulatory TF signal from the distal CRE to 

the promoter (looping and kiss-and-run models). On the other hand, nuclear 

subcompartments, bringing both the promoter and distal CRE in spatial proximity, might 

facilitate fast diffusion of TF signal from the distal CRE to the promoter (proximity model). 

However, it remains unclear which exact molecular mechanisms, or a combination thereof, 

are present in eukaryotic nuclei (Ibrahim, 2024). I applied chromatin co-accessibility 

analysis to study these 3D interactions along the linear genomic coordinate and their 

potential regulatory mechanisms (Figure 1.7D). 

Co-accessibility analysis of scATAC-seq data 
In the past years, several methods have been developed to identify these co-accessible 

regions in single cells along the linear genomic coordinate (Table 1.2). The original 
scATAC-seq analysis by Buenrostro et al. (2015) observed an association between 

chromatin co-accessibility and higher-order chromatin organization. In this study, 

chromatin co-accessibility was inferred by correlating the combined accessibility in 

genomic windows of 25 peaks across single cells. In contrast, chromatin contacts, as 

determined by 3C methods, predicted global chromatin organization (Buenrostro et al., 

2015). In contrast, more recent approaches have predominantly applied co-accessibility 

analysis to link individual CREs with their target promoters (Pliner et al., 2018; Mallm et 

al., 2019; Granja et al., 2021). These methods differ in their genomic and cellular 

resolution, heterogeneity of used cell populations, and the strategies used to calculate co-

accessibility (Table 1.2). All approaches report co-accessible links between distal genomic 
regions as potential regulatory interactions, even though co-accessibility may also arise 

from cell type-specific accessible peaks (Shi et al., 2022).  

Indeed, an association between co-accessible links detected by Cicero and chromatin 

contacts inferred from 3C methods was reported (see Figure 4 in Pliner et al. (2018)). 

Additionally, the authors observed preferential links between promoters and regions 

marked by H3K27ac (see Figure 5 in Pliner et al. (2018)). Mallm et al. (2019) demonstrated 

that co-accessible link rewiring occurred independently of constitutively bound CTCF sites, 
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using the CTCF ChIP-seq signal to indicate chromatin loops mediated via CTCF and 

cohesin (see Figure 5G in Mallm et al. (2019)). In contrast, ArchR reports multiple co-

accessible links, which appear to be dominated by cell type-specific accessible peaks 

rather than their distal interactions (see Figure 3I in Granja et al. (2021)). These findings 

underscore the importance of considering the implications of each method’s design when 

interpreting the resulting co-accessible links (Table 1.2). 

To address this need for a more precise determination of chromatin co-accessibility, I 

developed RWireX, a co-accessibility framework designed to resolve distinct layers of 

variation in single-cell accessibility signals (see Section 2.2.1). RWireX is based on 
RWire, that was initially developed in the Division of Chromatin Networks at the German 

Cancer Research Center in Heidelberg for the analysis of low-throughput scATAC-seq 

data acquired with the Fluidigm C1 microfluidics platform (Mallm et al., 2019). While RWire 

efficiently computes co-accessible links for data sets up to 1,000 cells, the growing scale 

of single-cell data required an extension capable of handling larger datasets. This led to 

the development of RWireX as an extension of ArchR, leveraging ArchR’s functionalities 

for efficiently storing large scATAC-seq data sets and computing Pearson correlations 

across large numbers of cells.  

RWireX offers two different workflows of co-accessibility analysis. On the one hand, the 

single cell co-accessibility workflow implements and extends RWire’s original concept by 

resolving stochastic variation in chromatin accessibility among homogeneous single cells. 

This workflow identifies autonomous links of co-accessibility, termed ACs, against a local 

background model and a lower detection rate threshold. The homogeneous cell population 

and single-cell resolution, applied in the single cell co-accessibility workflow, conceptually 

align with the design of a method for scRNA-seq data that derives stochastic variation in 

gene expression (Grun, 2020).  

On the other hand, RWireX’s metacell co-accessibility workflow captures chromatin 

accessibility variation among metacells from multiple cell types or states, similar to the 

original ArchR workflow. Unlike ArchR’s co-accessibility method, which uses 1 kb ATAC 

peaks, I quantified the accessibility signal in larger 10 kb genomic tiles to resolve more 

global events of co-accessibility, similar to the 25-peak windows used by Buenrostro et al. 

(2015). Additionally, I developed a novel method for metacell aggregation. ArchR applies 

Cicero’s metacell method, which allows each cell to contribute to multiple metacells (Pliner 

et al., 2018). The maximum overlap of 80 % between distinct metacells inflates co-

accessibility scores due to shared accessibility information. To mitigate this issue, my 

method forms unique metacells using fewer, non-overlapping cells with similar chromatin 
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accessibility profiles. This metacell co-accessibility workflow identifies broader patterns of 

depleted or enriched co-accessibility, such as the domains of contiguous co-accessibility, 

termed DCs. I found that the RWireX workflows resolve different layers of co-accessibility, 

likely arising from distinct molecular mechanisms, as discussed in the following sections. 

ACs represent spatial chromatin contacts between active sites 
RWireX’s single cell co-accessibility workflow reveals two types of ACs based on their 

bimodal detection rate distribution across single cells: Frequent ACs, which are detected 

in more than 75 % of cells, and rare ACs, which are detected in fewer than 75 % (Figure 
2.24C). These differences in detection rates likely reflect true variations in the prevalence 
of chromatin interactions, considering the high coverage of the HUVEC scTurboATAC-seq 

data set. It is unclear whether these differences arise from the frequency or stability of 

these chromatin interactions (or both), since scATAC-seq data only captures a snap-shot 

of cellular states. Interestingly, a previous study found that CTCF- and cohesin-mediated 

enhancer-promoter loops are rare and dynamic, with loop stability ranging from 10 to 30 

min (Gabriele et al., 2022). Additionally, Mach et al. (2022) observed that CTCF-anchored 

loops persist for only about 10 min, stabilizing highly dynamic chromatin environments with 

transient and frequent chromatin contacts within. Furthermore, these findings suggest that 

chromatin interactions indeed vary in both frequency and stability. They propose different 

chromatin interactions with structural chromatin loops, which are relatively rare and more 

stable, while other chromatin contacts are more transient and dynamic. This is in line with 

my observation of frequent and rare ACs.  

Both types of ACs show significantly enriched chromatin contacts (Figure 2.29), though 
they exhibit distinct patterns of contact frequencies in their surrounding regions (Figure 
2.30A). Rare ACs show a strong enrichment of chromatin contacts throughout their 
vicinity, suggesting they may emerge from stochastic interactions of active chromatin sites 

in a highly dynamic and transient environment (Figure 3.1, left) (Sood & Misteli, 2022; 
Bruckner et al., 2023). In the context of promoter-distal CRE interaction models, these rare 

ACs may support the “kiss-and-run” model (Figure 1.2E) (Karr et al., 2022). In contrast, 
frequent ACs show enriched chromatin contacts between the linked peaks but depleted 

contacts beyond them (Figure 3.1, right). This pattern indicates that frequent ACs might 
arise from architectural chromatin loops, which create distinct chromatin environments 

with enriched or reduced chromatin interactions within and outside their linked sites (Mach 

et al., 2022; Chan & Rubinstein, 2023). In addition, these frequent ACs may also include 

stable TF-mediated chromatin contacts, as they are observed between promoters of 

actively transcribed genes and distal H3K27ac-marked sites (Figures 2.26, 2.27). These 
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findings are consistent with the looping model of transcription regulation (Figure 1.2D) 
(Karr et al., 2022). 

Furthermore, some frequent ACs were also detected in the metacell co-accessibility 

workflow, identified by the so-called blue stripes of anti-correlated accessibility with high 

co-accessibility at their intersection (Figure 2.30B). These patterns have not been 
reported before in co-accessibility analysis. The blue stripes were located near gene 

promoters and predominantly at H3K27ac-marked sites, extending across multiple 

consecutively linked sites (Figure 2.30C). Remarkably, they coincided with red stripes of 
enriched chromatin contact frequencies in HiC-seq data. A recent study observed similar 

structures using optical reconstruction of chromatin architecture (ORCA) via fluorescence 

microscopy and proposed a loop stacking mechanism, where hubs of multiple CTCF-

cohesin loops form (Hafner et al., 2023). This loop stacking, later shown to regulate 

promoters near the stacked hubs by bringing them into proximity with distal CREs (Hung 

et al., 2024), could explain an additional regulatory transcriptional mechanism of the 

frequent ACs. 

Comparing the single cell co-accessibility results to existing co-accessibility methods 

suggests that frequent ACs correspond to the co-accessible links detected by Cicero, 

which also show enrichment of chromatin contacts and H3K27ac (Pliner et al., 2018). 

However, since Cicero aggregates single cells into metacells, it likely does not capture the 

stochastic and transient interactions represented by rare ACs. Moreover, the co-

accessible links driven by cell type-specific accessible peaks, as reported by ArchR, are 

absent in the homogeneous cell population of the single cell co-accessibility workflow and 

vice versa (Granja et al., 2021). 

Overall, RWireX’s single cell co-accessibility workflow provides genome-wide insights into 

co-accessibility events predominantly driven by chromatin topology. Furthermore, it 

Figure 3.1 ACs resolve different types of chromatin contacts. Rare ACs likely reflect random 
and stochastic chromatin contacts. Frequent ACs potentially arise from targeted chromatin 
interactions, such as architectural chromatin loops or TF-mediated contacts. 
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differentiates between different mechanisms of chromatin contacts. However, further 

investigation is required to understand the molecular mechanisms underlying frequent and 

rare ACs fully. In this context, validation of ACs could be further improved by generating 

corresponding Micro-C sequencing data sets, which detect high-resolution chromatin 

contacts between accessible sites (Hsieh et al., 2015). Additionally, DNA-FISH of AC-

predicted peaks in single cells could explore the variability of AC detection rates (Mota et 

al., 2022). Live-cell imaging as conducted by Gabriele et al. (2022) could clarify whether 

AC stability or frequency drives the observed differences in detection rates. Finally, 

inferring chromatin conformation in single cells from scHiC-seq data or ORCA would 

further reveal the local chromatin structure and its variability at predicted ACs (Mateo et 

al., 2019; Rothorl et al., 2023). 

DCs are nuclear subcompartments of enriched TF binding activity 
RWireX’s metacell co-accessibility workflow identifies DCs, which show significantly 

altered accessibility in HUVECs following TNFα treatment (Figure 2.31B). These DCs 
have not been described before in co-accessibility analysis. I observed that they were 

independent of TADs, while being on average 10 times smaller (Figure 2.32). This 
suggests an additional layer of global chromatin organization independent of TADs and 

A/B compartments (Gholamalamdari et al., 2024). To explore the molecular mechanisms 

underlying these DCs, I assessed their local TF binding activity in the pseudo-bulk 

scTurboATAC-seq data. This analysis revealed significant local enrichment of TF binding 

activity within DCs (Figures 2.34, 2.35), suggesting that higher local concentrations of TFs 
within these nuclear subcompartments facilitate simultaneous, enriched binding to DNA 

(Garcia et al., 2021; Mazzocca et al., 2023; Mukherjee et al., 2024). Although the 

TurboATAC data can predict TF enrichment within individual DCs, it does not reveal the 

molecular mechanisms potentially driving the formation of these nuclear subcompartments 

(Figures 1.4C-E). In the context of promoter-distal CRE interaction models, these DCs 
might support the proximity model, in which nuclear subcompartments surrounding 

promoters and distal CREs facilitate rapid diffusion of TF signals between them (Figure 
1.2C) (Karr et al., 2022). Additionally, a recent study proposed that condensates, distal 
super-enhancers, and gene loci follow a “three-way kissing” model, where all three 

components interact transiently (Du et al., 2024). 

A separate study introduced a variation of bulk ATAC-seq, the so-called assay for 

chromatin-associated condensate sequencing (ACC-seq), where nuclear condensates 

are crosslinked by fixation, limiting Tn5 access to DNA (He et al., 2024). Here, identifying 

genome-wide condensates relies on differential accessibility patterns between three 
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different sequencing experiments of the same sample. He et al. (2024) identify 

condensates by comparing regions that show a signal in normal ATAC-seq and ACC-seq 

with prior 1,6-hexandiol treatment, but no signal in ACC-seq. Similar to DCs identified 

through RWireX, the ATAC-seq data in this study can also predict enriched TFs in these 

condensates. Additionally, the method determines whether a condensate is formed via 

phase separation from the ACC-seq after 1,6-hexandiol treatment. However, the ACC-seq 

approach lacks single-cell resolution and requires three distinct experimental readouts, 

increasing costs and complexity. 

Overall, RWireX’s metacell co-accessibility workflow provides genome-wide insights into 

co-accessible events dependent on the cell type or state, such as co-differential chromatin 

states or simultaneous TF binding. The workflow identifies broader domains of enriched 

co-accessibility, which likely represent nuclear subcompartments. Comparing these 

metacell co-accessibility results with existing co-accessibility methods reveals similarities 

between the broad DCs identified by RWireX and the broader clusters of co-accessible 

links detected by ArchR, which are driven by cell type-specific accessible peaks (Granja 

et al., 2021). However, ArchR treats these as distinct regulatory links, overlooking their 

higher-order organization into local clusters. In contrast, the TAD-independent DCs 

identified by RWireX differ from the findings of Buenrostro et al. (2015), who reported an 

association between chromatin co-accessibility and global chromatin organization. While 

RWireX’s metacell co-accessibility method may not directly infer global chromatin 

organization, it could provide insights into structural loops through the previously 

mentioned blue stripes. However, further studies are needed to validate the connection of 

co-accessibility patterns with nuclear subcompartments and global chromatin organization 

and to understand the molecular mechanisms behind these observations. In this regard, 

simultaneous DNA-FISH of DC-predicted regions and TF immunofluorescence could 

validate nuclear subcompartments at specific loci (Chaumeil et al., 2013; Mota et al., 

2022). Additionally, sequencing-based methods such as region capture Micro-C 

sequencing or ACC-seq could be employed to confirm genome-wide DCs (Goel et al., 

2023; He et al., 2024). 
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3.3 Identifying the structure-function relationship 
between regulatory mechanisms and their transcriptional 
output  
RWireX identifies various mechanisms of distal transcription regulation from scATAC-seq 

data, such as transient and stable chromatin contacts, and nuclear subcompartments 

enriched in TF activity, as discussed in the previous sections. Additionally, proximal 

transcription regulation can be studied through chromatin accessibility at gene promoters. 

However, the distinct impact of these proximal and distal mechanisms on transcription has 

yet to be investigated and compared. In the following section, I discuss their diverse roles 

in transcription regulation across the three studied model systems under perturbation. 

These model systems comprise (i) two genetically identical mouse cell types, namely 

ESCs and MEFs, untreated and treated with IFNβ, (ii) the TCL1 mouse model for CLL with 

transcription factor T-bet wild-type or double knock-out, and (iii) HUVECs untreated and 

treated with TNFα. 

STAT1/2 strongly activates transcription in mouse cells 
The first model system studied here analyzed the upregulation of transcription upon IFNβ 

treatment in ESCs and MEFs (Figure 2.38). The results show that activated STAT TFs 
act as strong transcriptional activators, as a total of 191 and 463 ISGs were identified in 

ESCs and MEFs, respectively. This observation is consistent with previous studies, where 

200 to 1,000 genes were upregulated by IFN treatment in various model systems (Der et 

al., 1998; de Veer et al., 2001; Mostafavi et al., 2016). Notably, ESCs showed a weaker 

response at both time points examined, which aligns with earlier reports on an attenuated 

IFN response in stem cells (Wang et al., 2013; Guo et al., 2015). This also confirms the 

previously described complex temporal hierarchy of ISG expression in this model system 

(Bolen et al., 2014). The transcriptional response was homogeneous at the single-cell level 

in ESCs and MEFs (Figure 2.39). This was in line with a previous study showing a 
homogeneous response to IFNβ treatment among fibroblasts from individual donors, 

although this response varied between donors carrying different genetic variants 

(Kumasaka et al., 2023). 

Simultaneous STAT1 and STAT2 binding at promoters led to the strongest upregulation 

of ISG expression (Figure 2.41D). This co-binding likely represents transcription 
regulation via the ISGF3 complex, formed with IRF9, which primarily controls antiviral ISGs 

(Stark & Darnell, 2012; Ivashkiv & Donlin, 2014; Platanitis et al., 2019). Notably, IFNβ 

treatment did not induce global changes in chromatin accessibility but rather specific 
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increases at STAT1/2 binding sites (Figure 2.42). In the temporal hierarchy of ISG 
expression, simultaneous STAT1 and STAT2 binding at promoters triggered the fastest 

and most persistent expression response in ESCs and MEFs (Figure 2.45A). Supporting 
this, a recent study observed that chromatin accessibility contributes to the temporal 

control of ISG expression following IFNβ or IFNγ treatment in bone marrow-derived 

macrophages (Ravi Sundar Jose Geetha et al., 2024). 

More than 50 % of simultaneous STAT1 and STAT2 binding events occurred at distal 

CREs in intronic or intergenic regions (Figure 2.41C). These distal CREs were linked to 
ISG promoters by ACs (Figure 2.43), suggesting a mechanism of distal regulation via 
distinct chromatin contacts. This observation is consistent with previous reports on 

chromatin reorganization around ISG loci upon expression induction (Platanitis et al., 

2022). I found that distal regulation occurred between ISG promoters and intergenic distal 

CREs and also between ISG promoters themselves (Figure 2.43C). This suggests that 
CREs may exert both proximal and distal regulation simultaneously. This finding is 

supported by previous research showing that ISG promoters can function as enhancers to 

drive ISG expression (Santiago-Algarra et al., 2021).  

Interestingly, distal CREs exhibited two modes of transcription induction upon co-binding 

of STAT1/2: either through a gain of activating ACs or the loss of repressive ACs (Figures 
2.43, 2.45B). A similar mechanism of gene silencing through chromatin contacts with distal 
inhibitory CREs has been observed in mouse erythroblasts (Vermunt et al., 2023). ISGs 

regulated by chromatin contacts with distal CREs exhibited a slower temporal response to 

IFNβ treatment compared to ISGs regulated directly at their promoters (Figure 2.45A). 
Additionally, distal CREs with activating ACs induced a stronger ISG expression response 

than those with repressive ACs. This suggests that activating ACs have a more direct 

effect on transcription induction, while removing inhibitory ACs may require additional TFs 

to fully activate the transcription machinery. 

Furthermore, metacell co-accessibility analysis identified nuclear subcompartments at ISG 

loci following IFNβ treatment in ESCs and MEFs (Figure 2.46), despite the relative data 
sparsity in the scATAC-seq data set of this study. These nuclear subcompartments did not 

exhibit increased local STAT1 and STAT2 binding activity after IFNβ treatment. Instead, 

they may be driven by secondary TF targets at later treatment time points, explaining the 

delayed temporal induction of ISG expression. Consistent with this, phase separation has 

not been reported so far for STAT1 and STAT2. However, STAT3 – another member of 

the same TF family – has been shown to enter and concentrate within mediator 

condensates at super-enhancers via its IDR (Zamudio et al., 2019). STAT3 is associated 
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with different signaling pathways compared to STAT1 and STAT2, primarily involving pro-

survival and oncogenic functions (Wang et al., 2023). However, all STATs contain a 

structurally similar IDR in their transactivation domains (Levy & Darnell, 2002), suggesting 

that STAT1 and STAT2 may also accumulate in preexisting condensates.  

T-bet suppresses transcription and reduces tumor proliferation in CLL 
The second application of the RWireX framework dissected the association of high T-bet 

expression with an increased overall survival in patients with CLL (Figure 1.10) (Roessner 
et al., 2024). In both CLL and the TCL1 mouse model of CLL, the transcription factor T-

bet functions as a transcriptional repressor (Figures 2.50, 2.53). This observation aligns 
with previous studies reporting T-bet as a repressor of gene expression in B and T cells 

(Oestreich & Weinmann, 2012; Stone et al., 2019). Based on a scATAC-seq  

(co-)accessibility analysis, I found that T-bet’s repressive effects are linked to enhanced 

IFN signaling and decreased activity of POU family TFs (Figure 2.50C). Interestingly, IFN 
signaling has been associated with growth arrest in low-risk CLL patients (Tomic et al., 

2011), a group likely to exhibit elevated T-bet activity. Conversely, POU family TFs 

promote cell survival, cell cycle progression and proliferation (Hodson et al., 2016; Lu et 

al., 2019). This suggests that T-bet suppresses tumor growth by enhancing IFN signaling 

while simultaneously reducing POU family activity (Figure 2.48), explaining its tumor-
suppressive role in CLL. 

The knock-out of T-bet in the TCL1 mouse model does not allow for studying the temporal 

hierarchy of transcription regulation in this model system. However, it does enable 

investigation of the diverse molecular mechanisms governing transcription regulation 

following the internal perturbation of a specific TF. I found that knocking out T-bet disrupts 

transcriptional regulation through several proximal and distal mechanisms, including 

promoter regulation, long-range chromatin contacts, and nuclear subcompartment 

formation (Figures 2.52, 2.54). These findings are in line with previous studies suggesting 
that T-bet regulates transcription repression through multiple direct and indirect 

mechanisms (Oestreich & Weinmann, 2012). Notably, T-bet binding itself appears to 

inhibit the formation of chromatin contacts with distal CREs. This disruption affected both 

transient and architectural chromatin contacts, as identified by rare and frequent ACs. 

Additionally, T-bet’s repressive effects were associated with reduced activity of both CTCF 

and BORIS (Figure 2.50C), with BORIS being a paralog of CTCF (Klenova et al., 2002). 
These findings align with prior research showing that T-bet and CTCF jointly regulate 

chromatin accessibility, distal contacts, and broader chromatin reorganization in T cells 

(Sekimata et al., 2009; Liu et al., 2023). However, further validation of these observations 
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is necessary, potentially using 3C-based methods to investigate T-bet-dependent 

chromatin reorganization. 

TNFα induces transcriptional co-regulation of proximal genes in human cells 
Finally, I studied transcription regulation during the TNFα-mediated proinflammatory 

response in HUVECs, applying the RWireX framework for co-accessibility analysis. TNFα 

induced a fast increase in activity of NF-κB family TFs within 30 min of treatment (Figure 
2.57). Subsequently, NF-κB activated secondary TFs, such as PRDM1, ATF4, and 
members of the IRF and CEBP families, which showed higher activity after 240 min of 

TNFα treatment. Notably, early NF-κB activity predominantly led to gene upregulation 

(Figure 2.56). However, at the later time point, both upregulation and downregulation of 
gene expression was present, suggesting that secondary TFs exert more varied regulatory 

effects. These findings are consistent with numerous studies that report NF-κB as an 

activator of gene expression (Liu et al., 2017). In contrast, IRF and CEBP family members 

have been shown to either activate or repress gene expression (Ramji & Foka, 2002; Zhao 

et al., 2015). Moreover, PRDM1 functions as a master transcriptional repressor (Ren et 

al., 1999), while the activating transcription factor 4, ATF4, is primarily known as an 

activator (Neill & Masson, 2023). Overall, these results suggest that the regulatory 

direction, whether gene expression is induced or repressed, is largely determined by the 

specific TF involved. 

These TNFα-regulated genes, referred to as TRGs, were found to cluster within the 

genome (Figure 2.58), hinting at regulatory mechanisms beyond global TF activity that 
co-regulate multiple genes in close proximity. This observation aligns with previous studies 

showing that chromatin reorganization coincides with local co-induction of genes following 

TNFα or interleukin 1 alpha treatment in HUVECs (Diermeier et al., 2014; Weiterer et al., 

2020). TRGs within these clusters exhibited significantly higher co-expression in single 

cells after TNFα treatment compared to isolated TRGs (Figure 2.59). This finding is 
supported by another study that identified local co-expression as a general principle for 

regulating functionally related genes, which share distal regulatory elements (Ribeiro et 

al., 2022). 

In addition to promoter-driven transcriptional regulation, I found that TFs induced by TNFα 

regulate transcription through long-range chromatin contacts with distal CREs, as well as 

the formation of nuclear subcompartments, as shown by co-accessibility analysis using 

RWireX (Figure 2.61). Both ACs and DCs were detected throughout the genome. TRGs 
were regulated by ACs, DCs, or a combination of both (AC/DC). Interestingly, ACs 

exhibited three modes of TRG regulation upon TNFα treatment: pre-existing, emerging, or 
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dissolving contacts. A previous study also demonstrated that pre-existing chromatin 

contacts between promoters and enhancers are associated with strong gene induction 

upon TNFα treatment (Jin et al., 2013). Additionally, emerging chromatin contacts have 

been observed at TNFα-induced genes (Papantonis et al., 2012). Finally, dissolving 

chromatin contacts were involved in both the upregulation and downregulation of TRGs, 

confirming the existence of both activating and inhibitory chromatin interactions.  I had 

previously observed these inhibitory interactions in mouse cells treated with IFNβ, and 

others have also shown them during mouse erythroblast differentiation (Vermunt et al., 

2023). 

Almost all DCs exhibited significantly altered accessibility following TNFα treatment 

(Figure 2.31), suggesting that TNFα induces both emerging and dissolving nuclear 
subcompartments. Notably, around 75 % of DCs associated with TRGs showed increased 

activity, despite most DCs showing reduced activity overall (more than 70 %). While most 

DC-regulated TRGs were upregulated, the reduction of DC activity could readily explain 

the downregulation of some TRGs. This observation aligns with a recent finding on forming 

liquid-liquid phase-separated NF-κB condensates at super-enhancers, which induce 

transcription following anti-IgM stimulation in B cells (Wibisana et al., 2022). Interestingly, 

DCs were more frequently involved in regulating lncRNA TRGs compared to promoter- 

and AC-driven regulation (Figure 2.61). This is consistent with a recent study that 
describes the role of lncRNAs in promoting condensate formation at proximal genes and 

fine-tuning transcriptional activity at these genes (Natarajan et al., 2023). 

The transcriptional changes of TRGs showed varying temporal dynamics for promoter-, 

DC-, AC-, or AC/DC-mediated regulation. Promoter-regulated TRGs exhibited the fastest, 

yet most sustained transcriptional responses (Figure 2.67). Additionally, promoters 
induced the strongest response, showing almost exclusively upregulation. In contrast, 

TRGs regulated by ACs displayed a significantly slower and less strong transcriptional 

response. In contrast, DC- and AC/DC-regulated TRGs responded equally fast but with 

significantly lower transcriptional activity.  

Interestingly, these regulatory mechanisms also influenced varying bursting kinetics of 

TRG transcription (Figures 2.65, 2.67). AC-regulated TRGs displayed higher burst 
frequencies, indicating that transcriptional bursts are initiated when promoters get in 

contact with distal CREs. This finding corroborates earlier reports that enhancer-promoter 

interactions preferentially regulate burst frequency (Larsson et al., 2019; Wang et al., 

2024). Furthermore, Han et al. (2024) used cryo-electron microscopy to reveal the 

molecular mechanism of transcription activation via DNA looping between a promoter and 
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a distal upstream element in bacteria. In contrast, promoter- and DC-regulated TRGs were 

primarily modulated by burst size, suggesting that burst duration and production rate may 

be increased due to higher TF occupancy and RNAP II availability. Accordingly, previous 

studies have shown that TF binding sites at promoters are key determinants of burst size 

(Larsson et al., 2019). Additionally, local confinement of TF mobility caused increased TF 

occupancy at promoters, resulting in prolonged burst duration (Stavreva et al., 2019; Pomp 

et al., 2024). Lastly, I found that AC/DC-driven TRGs exhibited regulation through both 

burst frequency and size, implying that the combination of regulatory mechanisms further 

extends the complexity of transcriptional regulation. Interestingly, a recent study observed 

burst frequency and size increases upon three-way proximity of a gene, distal super-

enhancer and transcriptional condensate (Du et al., 2024). However, the authors conclude 

that burst frequency and size are mainly enhanced by condensate proximity, although 

stating its dependence on distal CREs by cohesin-mediated chromatin loops. 

TRGs in local clusters exhibited enriched co-regulation via AC-, DC-, or AC/DC-mediated 

mechanisms (Figure 2.62). Interestingly, AC-regulated TRG clusters displayed 
anticorrelated expression patterns, which could suggest sequential chromatin contacts 

between a distal CRE and multiple TRG promoters. This finding contradicts previous 

studies that proposed the formation of so-called NF-κB factories where numerous genes 

are co-induced through simultaneous contact with a shared transcription factory 

(Papantonis et al., 2012). In contrast, DCs promoted co-expression in TRG clusters, 

supporting the general assumption that nuclear subcompartments drive the co-induction 

of gene expression (Ryu et al., 2024). Notably, these opposite effects of AC and DC 

regulation on co-expression explain the bi-modal distribution of co-expression in TRG 

clusters (Figure 2.59). 

 

3.4. The AC/DC model of transcription regulation 
In this thesis, I advanced the experimental and computational analysis of scATAC-seq 

data, developed a computational framework to dissect the molecular mechanisms 

underlying chromatin co-accessibility, and identified the structure-function relationship 

between different regulatory mechanisms and their transcriptional output. Building on 

these findings, I propose the AC/DC model of transcription regulation, which integrates 

genome-wide information on chromatin topology-mediated and TF-mediated regulatory 

mechanisms. The AC/DC model describes how a multilayered network of soluble TFs and 
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various regulatory mechanisms at proximal and distal CREs regulates transcription. 

Initially, I outlined five criteria that characterize a transcriptional response to external or 

internal stimuli (Section 1.3). I found that different layers of the regulatory network 
determine varying parameters of transcriptional responses. Additionally, I identified that 

various combinations of TFs and multiple regulatory mechanisms further enhance the 

versatility of transcriptional responses. 

The transcriptional response is shaped by the specific TF involved and the regulatory 

mechanism in action, including regulation via proximal promoters, architectural or 

stochastic chromatin contacts, and nuclear subcompartments (Figure 3.1). The specific 
TF primarily determines whether gene expression is induced or repressed, the so-called 

regulatory direction. The TF’s effect can be mediated through direct promoter binding, 

binding to a distal CRE, or enrichment within a nuclear subcompartment. Importantly, the 

regulatory direction of a TF can be additionally modulated by the dynamics of the 

regulatory mechanism, which can be pre-existing, emerging, or dissolving in response to 

perturbation.  

Beyond the direction of the transcriptional response, the regulatory mechanisms also 

shape the magnitude and temporal hierarchy of the response (Table 3.1). Regulation via 
proximal promoters leads to the strongest, fastest, yet sustained transcriptional response. 

Figure 3.2 Regulatory mechanisms in the AC/DC model of transcription regulation. 
Mechanisms are arranged by their magnitude and temporal hierarchy of the transcriptional of 
response. Induced transcriptional bursting kinetics are indicated. For ACs and DCs, co-regulation 
potential is depicted. 



AC/DC model of transcription regulation 

 154 

Similarly, nuclear subcompartments induce a rapid response, but with a lower magnitude 

of transcriptional change. In contrast, chromatin contacts mediate significantly slower 

transcriptional responses compared to promoters and nuclear subcompartments. 

However, the magnitude of the transcriptional changes is comparable to that of nuclear 

subcompartments.  

Proximal promoters have a limited capacity for co-regulation, only simultaneously inducing 

genes with a shared promoter. However, promoters can also function as distal CREs for 

other genes when additional regulatory mechanisms, such as long-range chromatin 

contacts or nuclear subcompartment formation, are involved. Both chromatin contacts or 

nuclear subcompartments have a high potential for co-regulating transcriptional responses 

across multiple genes. Chromatin contacts induce alternating gene expression, while 

nuclear subcompartments promote simultaneous co-expression. Furthermore, all three 

regulatory mechanisms affect different aspects of transcriptional bursting kinetics. 

Regulation via proximal promoters and nuclear subcompartments primarily modulates 

burst size, while chromatin contacts predominantly influence burst frequency. 

Consequently, various combinations of these regulatory mechanisms can modulate both 

burst size and frequency, further enhancing the flexibility of transcriptional regulation. 

Table 3.1 Regulatory mechanisms in the AC/DC model of transcription regulation. 
Transcriptional response parameters induced by different regulatory mechanisms. 

 Proximal 
promoter 

Distal chromatin 
contact 

Local nuclear 
subcompartment 

Inferred accessibility 
feature 

Differential 
promoter peak AC DC 

Mechanism of 
regulation Burst size Burst frequency Burst size 

Magnitude of 
regulation Strong Medium Medium 

Temporal hierarchy Fast, persistent Slow Fast, persistent 

Co-regulation  
potential Low High (alternating 

expression) 
High (simultaneous 
co-expression) 

 

The AC/DC model depicted above could be extended by incorporating additional 

regulatory layers, such as the presence of RNAP II and the transcription machinery (Malik 

& Roeder, 2023), more detailed local chromatin states (Jenuwein & Allis, 2001), or 

mechanisms of post-transcriptional regulation (Carpenter et al., 2014). Moreover, targeted 

knock-out experiments of TFs, proximal promoters, or distal CREs could further validate 

the identified regulatory layers (Metzner et al., 2024). The role of chromatin contacts and 
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nuclear subcompartments could be confirmed by knocking out critical structural proteins 

such as CTCF or cohesion, disrupting architectural chromatin contacts, or through 1,6-

hexanediol treatment, which perturbs phase-separated condensates. Finally, multiplexed 

fluorescence microscopy approaches combining DNA-FISH, nascent RNA-FISH, and TF 

immunofluorescence could simultaneously map chromatin contacts, nuclear 

subcompartments, and their respective transcriptional outputs at subnuclear resolution in 

single cells (Chaumeil et al., 2013; Kishi et al., 2019; Mota et al., 2022). 

The AC/DC model in inflammation, differentiation, and cancer 
I identified promoter-, AC-, and DC-mediated transcription regulation in all the studied 

model systems, suggesting that the proposed AC/DC model of transcription regulation 

may represent general principles of mammalian transcription regulation. In inflammatory 

signaling, the primary transcriptional responses to external stimuli are often driven by a 

limited number of specific TFs (Lawrence, 2009; Ivashkiv & Donlin, 2014). Furthermore, 

the temporal hierarchy of the transcriptional response is tightly regulated (Bhatt et al., 

2012; Bolen et al., 2014). The AC/DC model addresses this complexity by describing 

different response dynamics for regulatory mechanisms (Table 3.1). I found that these 
temporal characteristics are consistent across the inflammatory stimuli studied, IFNβ and 

TNFα, in both mouse and human primary cells (Muckenhuber et al., 2023; Seufert et al., 

2024). 

The AC/DC model also holds for different stages of mouse cell differentiation, when 

investigating transcription regulation in embryonic stem cells and embryonic fibroblasts at 

various stages of the epithelial-to-mesenchymal transition. Interestingly, while the 

differentiation stages exhibited distinct primary TF responses to external IFNβ 

perturbation, they shared a common set of regulatory mechanisms through proximal 

promoters, long-range chromatin contacts, and nuclear subcompartments. Additionally, 

less differentiated cells demonstrated a lower transcriptional response, suggesting that 

changes in local chromatin states during differentiation potentially influence the likelihood 

of transcriptional responses (Muckenhuber et al., 2023). 

Lastly, the AC/DC model also is applicable to transcription deregulation in cancer, where 

accumulating mutations progressively perturb the transcriptomic profile. In the TCL1 

mouse model for CLL, I found that the transcriptional response to the knock-out of the TF 

T-bet was mediated through proximal promoters, long-range chromatin contacts, and 

nuclear subcompartments (Roessner et al., 2024). We also showed that rewiring 

chromatin contacts during MM subclone evolution enhanced the expression of genes 

encoding known drug-resistance proteins (Poos et al., 2023). Furthermore, all the 
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regulatory mechanisms described, including TF activity, chromatin architecture, enhancer-

promoter chromatin contacts, and nuclear condensates, have been implicated in cancer 

emergence and progression (Vishnoi et al., 2020; Suzuki & Onimaru, 2022; Wang et al., 

2022; Perlman et al., 2024). Cancer is commonly characterized by many genomic 

alterations, making temporal regulatory hierarchies challenging to discern. However, the 

AC/DC model of transcription regulation provides a robust framework for explaining the 

multi-layered deregulation of transcription in cancer. 

 

3.5. Conclusion 
The findings of this thesis provide a novel, integrative approach to transcription regulation, 

bridging two previously separate fields of research: chromatin topology-mediated and TF-

mediated regulation. Through the development and application of new experimental and 

computational methods, I have demonstrated the co-existence and complex yet 

coordinated interplay of these regulatory mechanisms on a genome-wide scale across 

diverse biological systems. The proposed AC/DC model of transcription regulation 

elucidates the regulatory principles of multiple critical elements in transcriptional control: 

regulatory direction, magnitude, temporal hierarchy, and local co-regulation potential. This 

multilayered network comprises information on TFs and various proximal and distal 

regulatory mechanisms. It precisely governs transcriptional responses to external and 

internal stimuli at individual genomic loci.  

The experimental and computational methods developed in this thesis provide new tools 

to enhance genome-wide studies of transcription regulation. The scTurboATAC-seq 

protocol addresses a major challenge in scATAC-seq studies by significantly reducing 

data sparsity without increasing costs, allowing to distinguish biological variation from 

technical noise more reliably. The scTurboATAC-seq data can be leveraged to study 

proximal and distal mechanisms of transcription regulation using my developed co-

accessibility framework RWireX. It resolves the molecular mechanisms underlying 

different layers of co-accessibility, providing a unique tool for analyzing transcriptional 

regulation. The experimental and computational advancements in scATAC-seq analysis 

will empower researchers to explore complex transcriptional landscapes across various 

biological systems. It will enable them to simultaneously investigate both chromatin 

topology and TF activity in a unified framework and comprehensively investigate their 

impact on transcription. 
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My findings from various human and mouse systems upon external or internal 

perturbations suggest that the AC/DC model of transcription regulation is highly versatile. 

It applies for inflammatory transcriptional programs, different stages of cell differentiation, 

and genetic aberrations in cancer across multiple human and mouse model systems. The 

experimental and computational analyses framework could be readily utilized to study 

various biological processes, such as developmental programs, disease progression, or 

drug response in different cell types and organisms. Future work could explore whether 

the discovered principles of transcription regulation can be generally extended to other 

biological systems. Furthermore, pooled genetic perturbation screens using for example 

Perturb-seq or Perturb-ATAC (Dixit et al., 2016; Rubin et al., 2019) could be used to test 

the applicability of the AC/DC model to the transcriptional responses to a multitude of 

different perturbations. These findings might expand the utility of the AC/DC model as a 

general concept of complex transcriptional control dynamics. 

The developed approach could be extended by additional single-cell sequencing data 

sets, such as scChIP-seq of specific TFs or histone modifications (Barcenas-Walls et al., 

2024), scHiC-seq for chromatin contacts and the prediction of chromatin conformation 

(Rothorl et al., 2023), or single-cell global run-on sequencing (GRO-seq) to directly 

measure nascent RNA (Mahat et al., 2024). These additional data could improve the 

comprehensive understanding of the regulatory mechanisms in the AC/DC model, 

providing information on transient and stochastic processes by their single-cell resolution 

snap-shots. Additionally, they might explain the observed specificity of the regulatory 

mechanisms, identifying the distinct molecular environments which determine the locus-

specific regulatory mechanism, such as specific chromatin states, higher-order chromatin 

organization, genomic sequence, or TF availability. Furthermore, integrated spatial omics 

approaches could further elucidate the spatial and temporal interplay of chromatin 

accessibility, TF localization, and transcriptional output (Kishi et al., 2019; Dang et al., 

2023). 

Looking forward, the findings and methodologies presented here hold significant promise 

for applications beyond basic research: The AC/DC model’s capacity to predict 

transcriptional responses upon perturbation could be applied to dissect the transcriptional 

impact of complex mutational profiles in cancer. The improved understanding of these 

deregulated transcriptional profiles might be used for drug discovery, targeting the 

expression of specific TFs or other genes. Additionally, the AC/DC model could be used 

to design targeted manipulation of specific regulatory modules in precision medicine, 

offering opportunities to engineer transcriptional programs for therapeutic purposes. 
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4. Materials and Methods 

4.1. List of data sets 

In this thesis, multiple biological systems with perturbed transcriptional states were 

investigated. Diverse experimental methods were applied to these systems, providing 

comprehensive data sets from single-cell and bulk sequencing, spatial transcriptomics, 

and mass spectrometry. An overview of the data sets used in this thesis and references 

to their respective Results sections is provided in Table 4.1. 

Table 4.1 Overview of data sets used in this thesis. Organism, biological sample, observed 
perturbation of transcription, applied method, number of biological replicates, and respective 
Results section are indicated for all data sets. The number of biological replicates per perturbation 
condition is provided, except for data sets with *, which indicates the number of total samples. 

Organism Sample Perturbation Method Rep. 
num. 

Results 
section 

Mouse MEFs 6 h IFNβ 
treatment 

scATAC-seq 2 2.1.1-5, 
2.2.1 

scTurboATAC-seq 2 2.1.2-5, 
2.2.1 

Bulk ATAC-seq 2 2.1.3 

Human PBMCs Cell types 

scATAC-seq 1* 2.1.2, 
2.1.5 

scTurboATAC-seq 1* 2.1.2, 
2.1.5 

Multiome scRNA-seq + 
scATAC-seq 1* 2.1.2 

Multiome scRNA-seq + 
scTurboATAC-seq 2* 2.1.2 

Human AML 
patients 

Genomic 
aberrations  scRNA-seq 5* 2.1.5 
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Human HUVECs 

0 min, 30 min, 
240 min TNFα 
treatment  

scTurboATAC-seq 3 2.2.1-3, 
2.3.3 

scRNA-seq 3 2.3.3 

snRNA-seq 1 2.3.3 

Spatial transcriptomics 2/3 2.3.3 

30 min TNFα 
treatment 

Bulk ChIP-seq 
H3K27ac 2 2.2.2-3, 

2.3.3 

- Bulk HiC-seq 1 2.2.3, 
2.3.3 

Human NK cells HDV infection, 
no infection Bulk RNA-seq 5 2.3.1 

Mouse 

ESCs 

0 h, 1 h, 6 h 
IFNβ 
treatment 

Bulk RNA-seq 4 2.3.1 

Bulk ChIP-seq  
STAT1 + STAT2 4 2.3.1 

scRNA-seq 1 2.3.1 

0 h, 6 h IFNβ 
treatment scATAC-seq 1 2.3.1 

MEFs 
0 h, 1 h, 6 h 
IFNβ 
treatment 

Bulk RNA-seq 2 2.3.1 

Bulk ChIP-seq  
STAT1 + STAT2 2 2.3.1 

scRNA-seq 1 2.3.1 

scATAC-seq 1 2.3.1 

Mouse 
TCL1 
cells 

Tbx21 knock-
out, Tbx21 
wild type 

scRNA-seq 2 2.3.2 

scTurboATAC-seq 2 2.3.2 

Bulk RNA-seq 6 2.3.2 

Mass spectrometry 8 2.3.2 

 Phospho-specific  
mass spectrometry 8 2.3.2 

Human 
CLL 
patients 

High TBX21 / 
T-bet levels, 
low TBX21 / 
T-bet levels 

Bulk RNA-seq 260* 2.3.2 

Bulk ATAC-seq 99* 2.3.2 

Mass spectrometry 68* 2.3.2 

 Malignant, 
non-malignant Bulk RNA-seq 7/15* 2.3.2 
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4.2. scATAC-seq and scTurboATAC-seq of MEFs and 
PBMCs 

4.2.1. Sequencing data acquisition 

The scTurboATAC protocol was developed by Jan-Philipp Mallm (Single Cell Open Lab, 

German Cancer Research Center, Germany) as described in Seufert et al. (2023). In short, 

purified Tn5 from the EMBL Protein Expression and Purification Core Facility (European 

Molecular Biotechnology Laboratory, Heidelberg, Germany) was used (Hennig et al., 

2018). Tn5 molecules were assembled with one read 1 and read 2 NGS adapter each. 

NGS adapters varied for the single-omic and multi-omic ATAC reactions (Table 4.2). Both 
read 1 and read 2 NGS adapters were annealed to a mosaic end (ME) sequence, 

containing a Phos-ME-phosphorothioate (Phos-ME-PTO) backbone to avoid self-

dimerization. Subsequently, Tn5 was loaded with read 1 and read 2 NGS adapters by 

incubation for 30 min at room temperature. This in-house loaded Tn5 (Tn5-H) was used 

for the TurboATAC protocol. 

Table 4.2 Oligonucleotide sequences of NGS adapters used for Tn5 loading. Modifications are 
indicated as phos, 5′-phosphate; PTO, phosphorothioate backbone indicated by the *; 23ddC, 2′,3′-
dideoxycytidine; ME, mosaic end sequence. Adapted from Seufert et al. (2023). 

 Single-omic ATAC Multi-omic ATAC 

Read 1 5′-TCGTCGGCAGCGTCAGA 
TGTGTATAAGAGACAG-3′ 

5′-[phos]TCGTCGGCAGCGTCA 
GATGTGTATAAGAGACAG-3′ 

Read 2 5′-[phos]GTCTCGTGGGCTCGG 
AGATGTGTATAAGAGACAG-3′ 

5′-GTCTCGTGGGCTCGGAG 
ATGTGTATAAGAGACAG-3′ 

Phos-ME-PTO 5′-[phos]C*T*G*T*C*T*C*T* T*A*T*A*C*A*[23ddC]-3′ 
5′-[phos]C*T*G*T*C*T*C*T*T* 
A*T*A*C*A*C*A*T*C*T-3′ 

 

Different Tn5 preparations were incubated with 10 ng lambda DNA in standard 

tagmentation buffer (Tag buffer) or tagmentation buffer from 10x Genomics (TXG buffer; 

10x Genomics, Pleasanton, USA) for 10 min at 55 °C. Identical volumes of Tn5-H at 

different concentrations, 10x Genomics Tn5 (Tn5-TXG; 10x Genomics, Pleasanton, USA), 

and Illumina TDE1 enzyme (Tn5-ILMN; Illumina, San Diego, USA) were used. 

Tagmentation was stopped and tagmented lambda DNA was measured by qPCR on a 

StepOnePlus machine (Applied Biosystems, Waltham, USA). Ct values were used to 

obtain relative activities of the different Tn5 preparations. 
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Experiments and data acquisition were performed by Jan-Philipp Mallm and Katharina 

Bauer (both Single Cell Open Lab, German Cancer Research Center, Germany) as 

described here and in Seufert et al. (2023). MEFs were cultured and treated with IFNβ as 

described earlier (Muckenhuber et al., 2023). Human PBMCs were isolated and stored 

viably frozen in DMSO containing serum as described earlier (Mallm et al., 2019). Libraries 

were prepared using the Chromium Single Cell ATAC v1.1 kit for MEFs and the Chromium 

Single Cell ATAC v2.0 and Chromium Single Cell Multiome ATAC + Gene Expression v1.0 

kits for PBMCs according to the manufacturer’s protocol (10x Genomics, Pleasanton, 

USA). In each experiment, 10,000 nuclei were used for the Tn5 reaction with standard 10x 

Genomics Tn5 or Tn5-H and loaded on to the Chromium Next GEM Chip H (PN-1000161). 

Library concentrations were measured, and fragment size distributions were determined. 

ATAC libraries were sequenced paired end with 50 bp for read 1 and read 2 each on a 

NovaSeq 6000 system (Illumina, San Diego, USA) with a sequencing depth of at least 25 

k read pairs per nucleus. Single-omic ATAC libraries were sequenced with 8 bp for index 

7 and 16 bp for index 5. Multi-omic ATAC libraries were sequenced with 8 bp for index 7 

and 24 bp for index 5. Multiome RNA libraries were sequenced paired end with 28 bp and 

90 bp for read 1 and read 2 on a NovaSeq 6000 system (Illumina, San Diego, USA). 

Sequencing was conducted by the DKFZ NGS Core Facility (German Cancer Research 

Center, Heidelberg, Germany). 

4.2.2. Analysis of scATAC-seq and scTurboATAC-seq data from 
MEFs 

I performed the analysis of scATAC-seq and scTurboATAC-seq data from 6 h IFNβ-

treated MEFs as described here and for most parts in Seufert et al. (2023). ATAC data 

were processed with Cell Ranger ATAC count (10x Genomics, Pleasanton, USA) using 

the provided mouse mm10 reference. Quality metrics are provided in Tables 2.2 and 2.5. 
Single-cell data was further analyzed with ArchR and visualized using ggplot2 in R. Empty 

barcodes were removed using (i) a minimal threshold for number of unique fragments of 

103.1 for ATAC Rep1 with Tn5-TXGv1.1, 103.8 for ATAC Rep2 with Tn5-TXGv1.1, 103.9 for 

ATAC with Tn5-H30, and 104.3 for ATAC with Tn5-H100, and (ii) a minimal threshold for 

TSS enrichment score of 5 for ATAC replicates with Tn5-TXGv1.1 and 12 for ATAC with 

Tn5-H30 and Tn5-H100. Cell numbers are provided in Table 2.3 and 2.6. Barcodes 
containing multiple cells were removed using Amulet from scDblFinder. Single cells from 

each experiment were embedded in two-dimensional space separately using an 

accessibility count matrix in 500 bp genomic tiles, iterative LSI (default parameters, except 
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clustering resolution of 0.2) and UMAP (default parameters, except LSI components 2-10 

for ATAC replicates with Tn5-TXGv1.1 and 2-12 for ATAC with Tn5-H100, minimal 

distance of points in embedding of 0.5, 30 nearest neighbors). Cell clusters were computed 

by shared nearest neighbor (SNN) modularity optimization (default parameters, except LSI 

components 2-10 for ATAC replicates with Tn5-TXGv1.1 and 2-12 for ATAC with Tn5-

H100, resolution of 0.1). 

ATAC samples with Tn5-H30 and Tn5-H100 were downsampled to equal read numbers 

compared to ATAC Rep1 with Tn5-TXGv1.1 using Cell Ranger ATAC count (10x 

Genomics, Pleasanton, USA) with a subsampling rate of 0.6771 for Tn5-H30 and 0.6343 

for Tn5-H100 (Table 2.5). For downsampled Tn5-H100, empty barcodes were removed 
using (i) a minimal threshold for number of unique fragments of 104.3, and (ii) a minimal 

threshold for TSS enrichment score of 12. This yielded 5,550 cell barcodes for 

downsampled ATAC with Tn5-H100. Barcodes containing multiple cells were removed 

using Amulet from scDblFinder. Single cells were embedded in two-dimensional space 

using an accessibility count matrix in 500 bp genomic tiles, iterative LSI (default 

parameters, except clustering resolution of 0.2) and UMAP (default parameters, except 

LSI components 2-10, minimal distance of points in embedding of 0.5, 30 nearest 

neighbors). Cell clusters were computed by SNN modularity optimization (default 

parameters, except LSI components 2-10, resolution of 0.15). 

Module scores of apoptosis marker gene activities were calculated for each cell and 

(Galluzzi et al., 2018). Cells clusters with high apoptosis module scores were removed 

from further analysis (C1 and C2 from ATAC Rep2 with Tn5-TXGv1.1, C1 from ATAC with 

Tn5-H100). Sample-specific peaks from pseudo-bulk chromatin accessibility data were 

called using MACS2 in ArchR (default parameters, except peak summit extension by 1000 

bp to each side; reproducibility of 1). Sample-specific peak sets from ATAC Rep2 with 

Tn5-TXGv1.1, ATAC with Tn5-H30, and ATAC with Tn5-H100 were merged. Transcription 

factor binding sites in sample-specific peaks were predicted using Homer mm10 motifs 

from chromVARmotifs. TF footprints at genome-wide STAT1 and CTCF binding sites were 

calculated for ATAC Rep2 with Tn5-TXGv1.1 and ATAC with Tn5-H100 using ArchR 

(default parameters, except smoothing window of 5 bp; no Tn5 bias normalization). 

Different accessibility count matrices of single cells in merged peaks were generated for 

ATAC Rep2 with Tn5-TXGv1.1 and ATAC with Tn5-H100. Accessibility signal per single 

cell and ATAC peak was quantified by insertion-based counting using ArchR (no 

binarization, maximum counts of 100). The resulting continuous count matrices were 

binarized to obtain binary counts. Allele counts were inferred using the binary count 
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matrices and overlapping fragments per cell identified by Amulet. Accessible binary counts 

that showed overlapping fragments in the respective cell and peak were assigned as bi-

allelic accessibility (2 count), while accessible binary counts without overlapping fragments 

were considered mono-allelic accessibility (1 count). Ternary plots were generated using 

ggtern. Single cell co-accessibility analysis was performed with RWireX using cells from 

homogeneous clusters C3 and C4 for ATAC Rep2 with Tn5-TXGv1.1 and C2 and C3 for 

ATAC with Tn5-H100. Technical biases from varying numbers of cells in clusters were 

compensated by randomly selecting 1,617 cells each. To compare the impact of counting, 

single cell co-accessibility was computed using binary, continuous, and allele count 

matrices in merged peaks within a 10 kb window using clusters C4 for ATAC Rep2 with 

Tn5-TXGv1.1 and C2 for ATAC with Tn5-H100. To compare ATAC with Tn5-TXGv1.1 to 

Tn5-H100, single cell co-accessibility was computed using binary count matrices in 

merged peaks within a 1 Mb window using clusters C3 for ATAC Rep2 with Tn5-TXGv1.1 

and Tn5-H100. The resulting co-accessible links were filtered removing all links with 

negative co-accessibility scores, below 5 % of accessible cells, and with co-accessibility 

scores below cluster-specific background co-accessibility cutoff. 

4.2.3. Analysis of scATAC-seq and scTurboATAC-seq data from 
PBMCs 

I performed the analysis of scATAC-seq and scTurboATAC-seq data from PBMCs as 

described here and in Seufert et al. (2023). ATAC data were processed with Cell Ranger 

ATAC count (10x Genomics, Pleasanton, USA) using the provided human GRCh38 

reference. Single-cell data was further analyzed with ArchR and visualized using ggplot2 

in R. Empty barcodes were removed using (i) a minimal threshold of 104.1 for ATAC with 

Tn5-TXGv2 and 104.4 for ATAC with Tn5-H100 for number of unique fragments, and (ii) a 

minimal threshold of 10 for ATAC with Tn5-TXGv2 and 8 for ATAC with Tn5-H100 for TSS 

enrichment score. Cell numbers are provided in Table 2.7. Barcodes containing multiple 
cells were removed using Amulet from scDblFinder. Single cells from each experiment 

were embedded in two-dimensional space separately using an accessibility count matrix 

in 500 bp genomic tiles, iterative LSI (default parameters, except clustering resolution of 

0.2) and UMAP (default parameters, except LSI components 2-21, minimal distance of 

points in embedding of 0.5, 30 nearest neighbors). Cell clusters were computed by SNN 

modularity optimization (default parameters, except LSI components 2-21, resolution of 

0.2). 
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Sample-specific peaks from pseudo-bulk chromatin accessibility data were called using 

MACS2 in ArchR (default parameters, except peak summit extension by 1000 bp to each 

side; reproducibility of 1). Sample-specific peak sets were merged. Cell types were 

assigned by module scores from gene activity scores of cell type marker genes (Table 
4.3). B cells from each experiment were embedded in two-dimensional space separately 
using an accessibility count matrix in 500 bp genomic tiles, iterative LSI (default 

parameters, except clustering resolution of 0.2) and UMAP (default parameters, except 

LSI components 2-8, minimal distance of points in embedding of 0.5, 30 nearest 

neighbors). Cell clusters were computed by SNN modularity optimization (default parame- 

Table 4.3 Marker genes of human hematopoietic cell types. Adapted from Seufert et al. (2023). 

Cell type Marker genes Reference 

Basophils ENPP3, CD69, CCR3, 
PTGDR2 

Monaco et al. (2019); Uhlen 
et al. (2019) 

B cells MS4A1, CD79A, CD74, 
CD19 

Uhlen et al. (2019); 
Karlsson et al. (2021) 

Classical monocytes CD14, LYZ, CST3 Uhlen et al. (2019) 

Dentritic cells FCER1A, CST3, CD74 Uhlen et al. (2019) 

Eosinophils EPX, RNASE2, CLC, 
SIGLEC8 Uhlen et al. (2019) 

Erythrocytes HBA2, HBB, HBA1, 
SLC4A1, EPB41 Karlsson et al. (2021) 

Mature CD4+ T cells CD4, IL7R, S100A4, CD3D, 
CD2, IL2, TNF, IL21 Uhlen et al. (2019) 

Mature CD8+ T cells CD8A, GZMB, CD3D, CD2 Uhlen et al. (2019) 

Naïve CD4+ T cells CD4, IL7R, CCR7, CD3D, 
CD34, LEF1 

Terstappen et al. (1992); 
Uhlen et al. (2019) 

Naïve CD8+ T cells CD8A, GZMB, CD3D, 
CD34, LEF1 

Terstappen et al. (1992); 
Uhlen et al. (2019) 

Neutrophils CEACAM8, ITGAM, 
FCGR3B, PTPRC 

Monaco et al. (2019); Uhlen 
et al. (2019) 

NK cells GNLY, NKG7, GZMB, 
NCAM1, FCGR3A 

Uhlen et al. (2019); 
Karlsson et al. (2021) 

Non-classical monocytes FCGR3A, MS4A7 Uhlen et al. (2019) 

Platelets PPBP, ITGA2B, PF4 
Shattil et al. (1985); Poncz 
et al. (1987); Majumdar et 
al. (1991)  

Progenitor cells 
CD34, KIT, PROM1,  
PTPRC (negative marker),  
CD38 (positive marker) 

Terstappen et al. (1992); 
Monaco et al. (2019) 
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ters, except LSI components 2-8, resolution of 0.2). B cells from ATAC with Tn5- TXGv2 

and ATAC with Tn5-H100 were integrated using Harmony (default parameters) and 

combined two-dimensional embedding was computed as for sample-specific embeddings. 

Transcription factor binding sites in sample-specific peaks were predicted using Homer 

hg38 motifs from chromVARmotifs. Transcription factor motif deviations were computed 

within 200 bp windows for top 1000 motifs per transcription factor (defined by highest 

scores) using chromVAR in ArchR. 

4.2.4. Analysis of Multiome scRNA-seq, scATAC-seq and 
scTurboATAC-seq data from PBMCs 

I performed the analysis of Multiome scRNA-seq, scATAC-seq and scTurboATAC-seq 

data from PBMCs as described here and in Seufert et al. (2023). Multiome data were 

processed with Cell Ranger ARC count (10x Genomics, Pleasanton, USA) using the 

provided human GRCh38 reference. Quality metrics from Multiome data are provided in 

Table 2.8. Single-cell data was further analyzed with ArchR for ATAC, Seurat for RNA, 
Signac for combined multi-omic data, and visualized using ggplot2 in R. For ATAC data, 

empty barcodes were removed using (i) a minimal threshold of 103.8 for number of unique 

fragments and (ii) a minimal threshold of 103 for number of reads in TSSs. Cell numbers 

from ATAC data are provided in Table 2.8. Barcodes containing multiple cells were 
removed using Amulet from scDblFinder. High-quality cells were selected using (i) a 

maximal threshold of 0.01 for the ratio of reads in blacklisted genomic regions and (ii) a 

maximal threshold of 3 for nucleosome ratio. Single cells from each experiment were 

embedded in two-dimensional space separately using an accessibility count matrix in 500 

bp genomic tiles, iterative LSI (default parameters, except clustering resolution of 0.2) and 

UMAP (default parameters, except LSI components 2-20, minimal distance of points in 

embedding of 0.5, 30 nearest neighbors). Cell clusters were computed by SNN modularity 

optimization (default parameters, except LSI components 2-20, resolution of 0.3). 

For RNA data, empty barcodes were removed using (i) a minimal threshold for number of 

detected genes of 102, (ii) a minimal threshold for UMI counts of 500, and (iii) a maximal 

threshold for percentage of mitochondrial UMI counts of 40. Cell numbers from RNA data 

are provided in Table 2.8. Barcodes containing multiple cells were removed using Scrublet 
with a cutoff of 0.15 in Python. Single cells from each experiment were embedded in two-

dimensional space separately using SCTransform (default parameters), principle 

component analysis (PCA, default parameters) and UMAP (default parameters, except 

PCs 1-20). Cell clusters were computed by SNN modularity optimization (default 
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parameters, except PCs 1-20, resolution of 0.5). For combined multi-omic data, only high-

quality cells from both ATAC and RNA were used. High-quality cell numbers from 

combined data are provided in Table 2.8. Single cells from each experiment were co-
embedded in two-dimensional space separately using iterative LSI (default parameters, 

except clustering resolution of 0.2, LSI components 2–25) for ATAC, SCTransform (default 

parameters) and PCA (default parameters, except PCs 1–30) for RNA, WNN graph and 

UMAP. Cell clusters were computed by SNN modularity optimization (default parameters, 

except LSI components 2-25, PCs 1-30, resolution of 0.8). 

4.2.5. Data and code availability 

Data of scATAC-seq, scTurboATAC-seq and scRNA-seq from MEFs and PBMCs are 

available at Gene Expression Omnibus (GEO) as described in Table 4.4. Supplementary 
data with intermediate results are available at Seufert et al. (2023). My scripts for the 

computational analyses of scATAC-seq, scTurboATAC-seq and scRNA-seq data from 

MEFs and PBMCs are provided at https://github.com/RippeLab/TurboATAC. Co-

accessibility analysis of scATAC-seq and scTurboATAC-seq data from MEFs was 

conducted with RWireX (v0.2.05, https://github.com/RippeLab/RWire-IFN). 

Table 4.4 Data availability of scATAC-seq, scTurboATAC-seq and scRNA-seq from MEFs 
and PBMCs. Data are available at Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo) as part of the series GSE235506. 

Data set Samples Method GEO ID 

MEF, 6 h IFNβ 
treatment 

Tn5-TXGv1.1 scATAC-seq GSM7504029 

Tn5-H30 scATAC-seq GSM7504030 

Tn5-H100 scTurboATAC-seq GSM7504031 

PBMC 
Tn5-TXGv2 scATAC-seq GSM7504072  

Tn5-H100 scTurboATAC-seq GSM7504073  

PBMC 

Multiome, Tn5-TXG scATAC-seq GSM7504032 

Multiome, Tn5-H50 scATAC-seq GSM7504033 

Multiome, Tn5-H100 scTurboATAC-seq GSM7504034 

Multiome, Tn5-TXG scRNA-seq GSM7504069 

Multiome, Tn5-H50 scRNA-seq GSM7504070 

Multiome, Tn5-H100 scRNA-seq GSM7504071 
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4.2.6. List of applied software packages 

Utilized software for the computational analyses of scATAC-seq, scTurboATAC-seq and 

scRNA-seq data from MEFs and PBMCs is provided in Table 4.5.  

Table 4.5 Software used for the analysis of scATAC-seq, scTurboATAC-seq and scRNA-seq 
data of MEFs and PBMCs. 

Software Version Reference 

ArchR v1.0.3 Granja et al. (2021) 

Cell Ranger ARC v2.0.2 Zheng et al. (2017); 
Satpathy et al. (2019) 

Cell Ranger ATAC v2.1.0 (PBMC); 
v2.0.0 (MEF) Satpathy et al. (2019) 

ChromVAR v1.20.0 Schep et al. (2017) 

ChromVARmotifs v0.2.0 Schep et al. (2017) 

Ggplot2 v3.4.2 Wickham (2016) 

Ggtern v3.4.1 Hamilton & Ferry (2018) 

Harmony v0.1.1 Korsunsky et al. (2019) 

MACS2 v2.1.2 Zhang et al. (2008) 

Pandas v1.4.3 McKinney (2010) 

Python v3.10.4 Python Software 
Foundation (1991) 

R v4.2.2 R Core Team (1993) 

scDblFinder v1.12.0 Thibodeau et al. (2021) 

Scipy v1.8.1 Virtanen et al. (2020) 

Scrublet v0.2.3 Wolock et al. (2019) 

SCTransform v0.3.5 Hafemeister & Satija (2019) 

Seurat v4.3.0 Stuart et al. (2019) 

Signac v1.9.0 Stuart et al. (2021) 
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4.3. scRNA-seq of AML patient samples 

4.3.1. Sequencing data acquisition 

Experiments and data acquisition were performed by Linda Schuster (formerly Division of 

Chromatin Networks, German Cancer Research Center, Germany) as described in 

Schuster et al. (2023). In short, PBMCs and bone marrow mononuclear cells (BMNCs) 

from AML patients were depleted from CD3+ cells and enriched for mononuclear cells as 

described in Stosch et al. (2018). Single-cell RNA libraries were prepared using the 

Chromium Single Cell 3’ v2 kit according to the manufacturer’s protocol using 8,000 cells 

per sample (10x Genomics, Pleasanton, USA). Library fragment sizes were cleaned up 

using SPRI-select beads (Beckman Coulter, Brea, USA). Libraries were sequenced paired 

end with 26 bp and 96 bp for read 1 and read 2 on NovaSeq 6000 and HiSeq 4000 systems 

(Illumina, San Diego, USA). Sequencing was conducted by the DKFZ NGS Core Facility. 

4.3.2. Analysis of scRNA-seq data 

Analysis of scRNA-seq data was performed in collaboration with Linda Schuster as 

described in Schuster et al. (2023), where I supported coding and conceptualization. The 

analysis of TF activity was carried out using my scripts. Briefly, data was processed using 

Cell Ranger count (10x Genomics, Pleasanton, USA) with the provided human GRCh38-

1.20-premrna reference. scRNA-seq data was further analyzed with Seurat in R. Low-

quality cells were removed using (i) minimal and maximal thresholds for number of 

detected genes of 500 and 3,000, respectively; (ii) a maximal threshold for mitochondrial 

UMI counts of 15 %. Predicted cell duplicate barcodes with a doublet score above 0.4 from 

Scrublet in Python were discarded (default parameters, except simulated doublet ratio of 

2, 30 neighbors, expected doublet rate of 0.1). Barcodes containing multiple cells were 

removed using Scrublet with a cutoff of 0.15 in Python. This yielded roughly 17,600 cells 

in total. 

UMI counts were normalized using SCTransform (default parameters) and technical 

biases by total number of UMI counts and percentage of mitochondrial UMI counts per cell 

were regressed out. Samples were integrated using canonical correlation analysis (CCA) 

in Seurat. Single cells from all samples were embedded in two-dimensional space using 

PCA (default parameters, except using top 3,000 variable genes) and UMAP (default 

parameters, except PCs 1-15). Cell clusters were computed by Louvain method on k-
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nearest neighbor (KNN) graph using Seurat (default parameters, except PCs 1-15). Non-

malignant cell types were assigned to cell clusters by expression of cell type marker genes: 

CD3D for T cells and NK cells, MS4A1 for B cells, NKG7 and GNLY for NK cells, HBB for 

Erythroblasts, and CD14 for Monocytes. Cell clusters without cell type marker gene 

expression were assigned as malignant cell clusters. Differential expression analysis was 

performed by Wilcoxon test in Seurat (default parameters, significance threshold: adjusted 

p-value < 0.05, log2 fold change > 0.1). Transcription factor activities were calculated with 

virtual inference of protein-activity by enriched regulons (Viper, default parameters) using 

human regulons of confidence levels A and B from Dorothea. 

4.3.3. List of applied software packages 

Utilized software for the computational analyses of scRNA-seq data of AML patient 

samples is provided in Table 4.6. 

Table 4.6 Software used for the analysis of scRNA-seq data of AML patient samples. 

Software Version Reference 

Cell Ranger v3.1.0 Zheng et al. (2017) 

Dorothea v1.10.0 Garcia-Alonso et al. (2019) 

Pandas v2.0.0 McKinney (2010) 

Python v3.8.16 Python Software Foundation (1991) 

R v4.0.2 R Core Team (1993) 

Scipy v1.9.3 Virtanen et al. (2020) 

Scrublet v0.2.3 Wolock et al. (2019) 

SCTransform v0.4.1 Hafemeister & Satija (2019) 

Seurat v4.0.0 Stuart et al. (2019) 

Viper v1.32.0 Alvarez et al. (2016) 
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4.4. Sequencing and spatial transcriptomics of HUVECs 

4.4.1. Sequencing and imaging data acquisition 

Experiments and data acquisition were performed by Irene Gerosa, Sabrina Schumacher 

(both Division of Chromatin Networks, German Cancer Research Center, Germany), Jan-

Philipp Mallm and Katharina Bauer as described in Seufert et al. (2024). Briefly, HUVECs 

from pooled donors (Lonza, Basel, Switzerland) were starved for 20-24 h before treatment 

with human TNFα for 30 and 240 min. Biological replicates were acquired from different 

aliquots of HUVECs. scRNA libraries were prepared using the Chromium Next GEM Single 

Cell 5’ (dual index) kit v2 with 10,000 cells according to the manufacturer’s protocol (10x 

Genomics, Pleasanton, USA). scTurboATAC libraries were prepared using the Chromium 

Next GEM Single Cell ATAC kit v2 (10x Genomics, Pleasanton, USA) with 10,000 cells 

according to the TurboATAC protocol (Seufert et al., 2023). snRNA libraries were prepared 

using the SMART-seq 2.5 protocol on 384 well plates as described previously in Ghasemi 

et al. (2024). scRNA and scTurboATAC libraries from different treatment conditions were 

separately pooled and sequenced paired-end on a NovaSeq 6000 system (Illumina, San 

Diego, USA) using S4 flow cells. Pooled scRNA libraries were sequenced with 100 bp for 

both read 1 and read 2, while pooled scTurboATAC libraries were sequenced with 50 bp 

for both read 1 and read 2. snRNA libraries were sequenced paired-end with 25 bp and 

50 bp for read 1 and read 2 on a NextSeq 550 system (Illumina, San Diego, USA). Read 

1 contained the UMI sequences at the first eight bp. Sequencing was conducted by the 

DKFZ NGS Core Facility. 

Bulk ChIP libraries were prepared from 15-30 million 30 min TNFα-treated HUVECs with 

IgG control antibody (53017, Active Motif, Carlsbad, USA) and two different H3K27ac 

antibodies (ab4729, Abcam, Cambridge, UK; C15210016, Diagenode, Liège, Belgium) as 

described previously in Kolovos et al. (2016). Bulk ChIP libraries were sequenced single-

end on a HiSeq 2000 system (Illumina, San Diego, USA). 

Spatial transcriptomic images were acquired for untreated, 30 min and 240 min TNFα-

treated HUVECs using the padFISH protocol (Seufert et al., 2024). Probes against nascent 

RNA from intronic regions of CXCL1, CXCL2, CXCL3, CXCL8, NFKBIA, and SELE were 

used. DAPI staining and detection oligonucleotides labeled with Alexa Fluor 488, ATTO 

550, Alexa Fluor 647, and Alexa Fluor 750 were used for fluorescence imaging on an 

Andor Dragonfly 505 spinning disk confocal unit equipped with a Nikon Ti2-E inverted 
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microscope and a Plan Apo 60x/1.40 oil objective or a 100x CFI SR HP Plan Apochromat 

Lambda S silicone immersion objective. 

4.4.2. Analysis of scRNA-seq data 

I performed the analysis of scRNA-seq data from three biological replicates of HUVECs 

as described here and in Seufert et al. (2024). Data were processed with Cell Ranger 

count (10x Genomics, Pleasanton, USA) using the provided human GRCh38-2020-A 

reference (default parameters, except including introns). Quality metrics of scRNA-seq 

data are provided in Table 4.7. Data were further analyzed with Seurat and visualized with 
ggplot2 in R. Empty barcodes were removed using (i) a minimal threshold for number of 

detected genes of 102, (ii) a minimal threshold for UMI counts of 5,000, and (iii) a maximal 

threshold for percentage of mitochondrial UMI counts of 5. Next, cells were removed that 

contained (i) UMI counts above the sample’s mean plus twice the standard deviation and 

(ii) mitochondrial UMI counts above or below the sample’s mean plus or minus thrice the 

standard deviation. High-quality cell numbers are provided in Table 4.7. Samples were 
merged, log normalized, and scaled (default parameters, except regressing out UMI 

counts per cell). Low-dimensional single-cell embedding was computed using PCA 

(default parameters) and UMAP (default parameters, except PCs 1-16). Cell cycle phases 

were inferred per single cell by module scores from the expression of cell cycle marker 

genes (Kowalczyk et al., 2015). Only cells in G1 cell cycle phase were considered for 

further analysis. Low-dimensional embedding of G1 cells was generated using PCA 

(default parameters) and UMAP (default parameters, except PCs 1-20). 

Differential expression analysis was performed on pseudo-bulk per sample between 

untreated and TNFα-treated conditions across all replicates using DESeq2 (default 

parameters, significance threshold: adjusted p-value < 0.05, absolute log2 fold change > 

1). Genomic distances between differentially expressed genes on the same chromosome 

were inferred using GenomicRanges and gUtils with the genome reference arc-GRCh38-

2020-A-2.0.0 (10x Genomics, Pleasanton, USA). Differentially expressed genes within 

500 kb were considered proximal. If at least two differentially expressed genes were 

proximal, they were classified as a differentially expressed gene cluster. Consequently, 

the differentially expressed genes were categorized as clustered or isolated. Gene clusters 

were visualized as network graph using igraph and qgraph. 
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Table 4.7 Quality metrics of scRNA-seq data from three replicates of HUVECs. Adapted from 
Seufert et al. (2024). 

  Sample (TNFα treatment) 
  0 min 30 min 240 min 

R
ep
lic
at
e 
1 

Sequenced read pairs 311,628,705 265,034,290 302,252,205 

Confidently mapped read pairs (%) 82.9 81.1 81.8 

Number of high-quality cells 3,891 3,098 3,121 

UMI counts per cell (median) 27,718 26,934 29,433 

Genes per cell (median) 6,078 5,920 6,017 

Mitochondrial UMI counts  
(%, median) 2 2 2 

R
ep
lic
at
e 
2 

Sequenced read pairs 226,548,223 252,208,026 265,004,092 

Confidently mapped read pairs (%) 85.5 85.6 85.2 

Number of high-quality cells 3,707 4,326 3,164 

UMI counts per cell (median) 21,272 20,112 27,630 

Genes per cell (median) 5,483 5,179 5,969 

Mitochondrial UMI counts  
(%, median) 2 2 2 

R
ep
lic
at
e 
3 

Sequenced read pairs 290,895,239 325,433,791 271,413,583 

Confidently mapped read pairs (%) 80.4 83.5 81.9 

Number of high-quality cells 4,750 5,341 3,822 

UMI counts per cell (median) 20,068 21,511 22,283 

Genes per cell (median) 5,356 5,457 5,439 

Mitochondrial UMI counts  
(%, median) 2 2 2 

 

Simultaneous co-expression of multiple genes in the same cell was inferred from 

Spearman correlation of UMI counts across cells for each sample. Only differentially 

expressed genes with expression in at least 10 % of cells were considered. Spearman 

correlation coefficients of replicates were averaged. Co-expression between all isolated 

differentially expressed genes was compared to co-expression between clustered 

differentially expressed genes within the same cluster. Overall co-expression per cluster 

was calculated by averaging the Spearman correlation coefficients of gene combinations 

within. Additionally, co-expression patterns of CXCL1, CXCL2, CXCL3, and CXCL8 in the 
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CXCL gene cluster were determined for each cell. Active transcription was defined per cell 

that contained at least one UMI count. 

4.4.3. Analysis of scTurboATAC-seq data 

I performed the analysis of scTurboATAC-seq data from three biological replicates of 

HUVECs as described here and in Seufert et al. (2024). Data were processed with Cell 

Ranger ATAC count (10x Genomics, Pleasanton, USA) using the provided human 

GRCh38-2020-A-2.0.0 reference (default parameters). Quality metrics of scTurboATAC-

seq data are provided in Table 4.8. Data were further analyzed with ArchR and visualized 
with ggplot2 in R. Empty barcodes were removed using (i) a minimal threshold for number 

of unique fragments of 104.5 and (ii) a minimal threshold for TSS enrichment score of 7. 

Barcodes containing multiple cells were removed using Amulet with a 5th percentile cutoff 

for significant q-values from scDblFinder. Next, cell outliers were removed that contained 

blacklist ratios above the overall mean plus twice the standard deviation. High-quality cell 

numbers are provided in Table 4.8. Low-dimensional single-cell embedding was 
computed using an accessibility count matrix of 500 bp genomic tiles, iterative LSI (default 

parameters, except seed of 42) and UMAP (default parameters, except LSI components 

2-14, seed of 1). Cell cycle phases were predicted per single cell by integration with 

scRNA-seq samples using ATAC gene activity scores in ArchR (default parameters, 

except constrained integration within corresponding samples). Only cells in G1 cell cycle 

phase were considered for further analysis. Low-dimensional single-cell embedding was 

computed using an accessibility count matrix of 500 bp genomic tiles, iterative LSI (default 

parameters, except seed of 42) and UMAP (default parameters, except LSI components 

2-8, seed of 1).  

Sample-specific peaks from pseudo-bulk chromatin accessibility data were called using 

MACS2 in ArchR (default parameters, except peak summit extension by 500 bp to each 

side; reproducibility of 2). A union ATAC peak set across all samples was generated. 

Differential accessibility analysis for ATAC peaks was performed between untreated and 

TNFα-treated conditions across all replicates using Wilcoxon test in ArchR (default 

parameters, except maximum of 6,000 cells per sample, bias correction by TSS 

enrichment score and number of unique fragments (log10), normalization by number of 

unique fragments; significance threshold: false discovery rate (FDR) < 0.05, absolute log2 

fold change > 1). 
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Table 4.8 Quality metrics of scTurboATAC-seq data from three replicates of HUVECs. 
Adapted from Seufert et al. (2024). 

  Sample (TNFα treatment) 
  0 min 30 min 240 min 

R
ep
lic
at
e 
1 

Sequenced read pairs 2,655,922, 
656 

2,230,005, 
333 

2,428,973, 
921 

Duplicates (%) 61.5 55.2 58.0 

Confidently mapped read pairs (%) 87.3 88.2 88.0 

Number of high-quality cells 4,902 5,202 5,480 

Unique fragments/cell (median) 128,825 134,896 125,893 

TSS enrichment score (median) 10.34 10.43 10.45 

R
ep
lic
at
e 
2 

Sequenced read pairs 2,151,183, 
819 

2,136,266, 
937 

2,387,966, 
429 

Duplicates (%) 61.9 61.2 53.5 

Confidently mapped read pairs (%) 88.2 89.8 88.6 

Number of high-quality cells 2,425 4,424 6,965 

Unique fragments/cell (median) 204,174 141,254 117,490 

TSS enrichment score (median) 9.87 10.51 10.47 

R
ep
lic
at
e 
3 

Sequenced read pairs 2,615,116, 
880 

2,659,573, 
577 

2,032,193, 
581 

Duplicates (%) 59.1 58.6 71.8 

Confidently mapped read pairs (%) 88.1 88.1 92.0 

Number of high-quality cells 5,884 5,645 5,244 

Unique fragments/cell (median) 123,027 131,826 66,069 

TSS enrichment score (median) 13.5 10.81 11.22 

 

Technical biases between samples from varying numbers of cells and unique fragments 

per cell were compensated by selecting 1,000 most similar cells from each sample 

compared to a reference of 1,000 randomly selected cells from the 240 min TNFα-treated 

HUVEC Rep1 sample. Low-dimensional embedding of bias-compensated cells from Rep1 

was generated using an accessibility count matrix of 500 bp genomic tiles, iterative LSI 

(default parameters, except seed of 42) and UMAP (default parameters, except LSI 

components 2-9, seed of 1). Low-dimensional embedding of bias-compensated 240 min 

TNFα-treated cells from Rep1 was generated using an accessibility count matrix of 500 
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bp genomic tiles, iterative LSI (default parameters, except seed of 42) and UMAP (default 

parameters, except LSI components 2-6, seed of 1). 

Single cell co-accessibility analysis was performed with 1,000 bias-compensated cells for 

each sample separately using RWireX. Co-accessibility scores were computed within 1 

Mb using a continuous accessibility count matrix of ATAC peaks and single cells. The 

resulting co-accessible links were filtered removing all links with negative co-accessibility 

scores, percent accessible cells (PAC) below 5, and co-accessibility scores below sample-

specific background co-accessibility cutoffs. The remaining links were considered the 

autonomous links of co-accessibility (ACs). ACs were compared between replicates by 

determining the percent of identical ACs between two samples. Two-replicate consensus 

ACs were obtained for each treatment time point by selecting ACs that were detected in 

at least two replicates. The average co-accessibility scores and PACs of replicates were 

used for consensus ACs. ACs were visualized in exemplary regions by loop tracks with 

genomic annotations and number of unique fragment-normalized pseudo-bulk chromatin 

accessibility tracks using ArchR.  

Metacell co-accessibility analysis was performed with 3,000 bias-compensated cells from 

all treatment time points for each replicate separately using RWireX. Metacells were 

formed from unique sets of 10 cells each, not using the final 10 % of cells to prevent the 

forced aggregation of dissimilar cells. Co-accessibility scores were computed within 2 Mb 

using a continuous accessibility count matrix of 10 kb genomic tiles and metacells. Three-

replicate consensus metacell co-accessibility was computed by averaging co-accessibility 

scores across replicates. Domains were called from only positive replicate and consensus 

co-accessibility score matrices using SpectralTAD (default parameters, except 3 

hierarchical levels, run twice for (i) small domains with minimal domain size of 20 kb, 

window size of 200 kb; (ii) large domains with minimal domain size of 200 kb, window size 

of 2 Mb). Overall co-accessibility scores per domain were calculated by averaging the co-

accessibility scores within the respective domain. The resulting small and large domains 

were filtered separately by lower cutoffs from 90th percentile domain co-accessibility 

scores. The remaining domains were considered the domains of contiguous co-

accessibility (DCs). Replicate and Consensus DCs were compared by determining the 

percent of bp overlap between the DCs. The metacell co-accessibility matrices were 

visualized in exemplary regions with genomic annotation of DCs using plotgardener. 

Differential accessibility analysis for DCs was performed between untreated and TNFα-

treated conditions across all replicates using Wilcoxon test in ArchR (default parameters, 

except maximum of 6,000 cells per sample, bias correction by TSS enrichment score and 
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number of unique fragments (log10), normalization by number of unique fragments; 

significance threshold: FDR < 0.05). 

The overlap of AC-linked ATAC peaks and DCs with differentially expressed genes from 

scRNA-seq data was determined using GenomicRanges. ACs and DCs at TSSs ± 500 bp 

of differentially expressed genes were quantified, deriving so-called AC and DC features. 

The DC feature was binarized, whereas AC features were log10 transformed with a 

pseudo-count of 1. Following, both AC and DC features were min-max normalized. 

Differentially expressed genes were clustered (ward.D clustering, 5 clusters selected) and 

visualized by heatmap using pheatmap. Differentially expressed genes were classified by 

their predominant feature into AC-driven, DC-driven, AC/DC-driven or not assigned (NA) 

genes. Additionally, the differentially expressed genes were classified as promoter-

regulated or non-promoter-regulated genes by presence of a significantly differential 

ATAC peak at any of their TSS ± 500 bp regions. Next, AC score and DC score were 

calculated for each differentially expressed gene cluster as following: 

𝐴𝐶	𝑠𝑐𝑜𝑟𝑒!"#"	%&'()"* =	
𝑁	𝑔𝑒𝑛𝑒𝑠	𝐴𝐶!"#"	%&'()"* +	𝑁	𝑔𝑒𝑛𝑒𝑠	𝐴𝐶/𝐷𝐶!"#"	%&'()"*

𝑁	𝑔𝑒𝑛𝑒𝑠!"#"	%&'()"*
 

𝐷𝐶	𝑠𝑐𝑜𝑟𝑒!"#"	%&'()"* =	
𝑁	𝑔𝑒𝑛𝑒𝑠	𝐷𝐶!"#"	%&'()"* +	𝑁	𝑔𝑒𝑛𝑒𝑠	𝐴𝐶/𝐷𝐶!"#"	%&'()"*

𝑁	𝑔𝑒𝑛𝑒𝑠!"#"	%&'()"*
 

I assigned differentially expressed gene clusters as (i) predominantly AC-driven if AC 

scores were ≥ 0.5 and DC scores were < 0.5, (ii) predominantly DC-driven if AC scores 

were < 0.5 and DC scores were ≥ 0.5, (iii) predominantly AC/DC-driven if both AC scores 

and DC scores were ≥ 0.5, and (iv) NA if both AC scores and DC scores were < 0.5. 

Annotated gene clusters were visualized as network graph using igraph and qgraph. 

Locus-specific TF binding activity scores and TF-bound sites were inferred from pseudo-

bulks of individual scTurboATAC-seq samples and Homer motifs from chromVARmotifs in 

ATAC peaks using Tobias in Python. Number of bound sites per TF were calculated by 

averaging the total bound sites across replicates. Genome-wide differential TF binding 

was identified between untreated and TNFα-treated conditions calculating the log2 fold 

change for number of bound sites per TF (significance threshold: log2 fold change > 0.1). 

TF footprints were visualized per sample in exemplary DC and non-DC regions using 

ArchR (default parameters, except smoothing window of 20, no normalization, maximum 

of 1,000 cells per sample). Differential TF binding between individual DC regions and the 

global non-DC background regions was calculated within each sample for the genome-

wide differential TFs. Average log2 fold change and one-sided Wilcoxon test was used to 
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compare TF binding activity scores in a DC to the global non-DC background. Meta-

analysis with Fisher’s method using poolr and averaging of log2 fold changes was 

performed to integrate results from replicates (significance threshold: combined p-value < 

0.05, log2 fold change > 1). DCs with significantly increased TF binding activity were 

visualized by heatmap (default parameters, except ward.D2 clustering) using pheatmap. 

4.4.4. Analysis of snRNA-seq data 

Processing of snRNA-seq data was performed by Ezgi Sen (Division of Chromatin 

Networks, German Cancer Research Center, Germany), while I performed further 

downstream analysis as described here and in Seufert et al. (2024). Data were processed 

using the nf-core rnaseq pipeline in Nextflow (default parameters, except UMI extraction 

from read 1, read 2 alignment using Star, quantification of UMI counts in exons for genes 

and introns for transcripts using Salmon) with the human GRCh38-2020-A reference from 

Cell Ranger (10x Genomics, Pleasanton, USA). Quality metrics of snRNA-seq data are 

provided in Table 4.9. Data were further analyzed with Seurat and visualized with ggplot2 
in R. Cells were removed that contained (i) less than 102 detected genes from exon 

counting and (ii) more than 5 % of mitochondrial UMI counts from exon counting. Next, 

cells that contained exonic UMI counts above or below the sample’s mean plus or minus 

thrice the standard deviation were removed. High-quality cell numbers are provided in 

Table 4.9. Data was log normalized and scaled (default parameters). Module scores for S 
and G2M cell cycle phases were inferred per cell from the expression of cell cycle marker 

genes (Kowalczyk et al., 2015). Cells with S and G2M module scores below the sample’s  

Table 4.9 Quality metrics of snRNA-seq data of HUVECs. Adapted from Seufert et al. (2024). 

 Sample (TNFα treatment) 
 0 min 30 min 240 min 

Sequenced read pairs 372,894 557,968 208,211 

Confidently mapped read pairs (%) 27.6 20.2 32 

Number of high-quality cells 378 380 376 

Exonic UMI counts/cell (median) 20,730 24,647 11,129 

Exonic genes/cell (median) 8,587 9,594 4,356 

Intronic UMI counts/cell (median) 70,800 87,122 50,333 

Intronic genes/cell (median) 22,362 25,525 13,896 

Mitochondrial RNA UMI counts (%) 0.1 0.06 0.38 
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mean plus the standard deviation were assigned to G1 cell cycle phase. Only cells in G1 

cell cycle phase were considered for further analysis. 

Transcriptional bursting kinetics were inferred following the two-state model of 

transcription as in Mahat et al. (2024). Intronic UMI counts for transcripts of differentially 

expressed genes from scRNA-seq data were used. Only transcripts with the same 

direction of regulation across conditions compared to the scRNA-seq data were used. 

Additionally, transcripts with no intronic UMI counts in 95 % of cells from all samples were 

removed. The capture efficiency per sample was estimated from total UMI counts, 

expecting 20 % of 500,000 mRNA molecules/cell in the nucleus (0.33 for 0 min; 0.36 for 

30 min; 0.21 for 240 min). The transcription time per transcript was estimated from the 

transcript length, assuming a transcription rate of 150 kb/h. Per transcript and sample, the 

average intronic UMI counts above 0 ( 𝚤𝑛𝑡𝑟. 𝑈𝑀𝐼𝑠66666666666666 ) and the number of cells with intronic 

UMI counts above 0 ( 𝑁	𝑡𝑟𝑎𝑛. 𝑐𝑒𝑙𝑙𝑠	) were calculated. Burst size and burst frequency were 

calculated for each transcript and sample as following: 

𝐵𝑢𝑟𝑠𝑡	𝑠𝑖𝑧𝑒)*+#(%*,-),(+/-&" = 1 +	
𝚤𝑛𝑡𝑟. 𝑈𝑀𝐼𝑠66666666666666)*+#(%*,-),(+/-&" − 1
𝐶𝑎𝑝𝑡𝑢𝑟𝑒	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(+/-&"

 

𝐵𝑢𝑟𝑠𝑡	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)*+#(%*,-),(+/-&"

=	
𝑁	𝑡𝑟𝑎𝑛. 𝑐𝑒𝑙𝑙𝑠	(+/-&"/	𝑁	𝑐𝑒𝑙𝑙𝑠(+/-&" 	/	𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒)*+#(%*,-)
min	(𝐵𝑢𝑟𝑠𝑡	𝑠𝑖𝑧𝑒)*+#(%*,-),(+/-&" ∗ 	𝐶𝑎𝑝𝑡𝑢𝑟𝑒	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(+/-&" , 1)	

 

Overall burst size and burst frequency per differentially expressed gene were calculated 

by weighted averages of transcript-level burst sizes and burst frequencies. For comparison 

with padFISH, burst sizes and burst frequencies were scaled from zero to one across 

replicates and both NFKBIA and SELE. 

4.4.5. Analysis of spatial transcriptomics data 

Processing and image analysis were performed by Irene Gerosa, while I performed further 

downstream analysis as described here and in Seufert et al. (2024). Briefly, raw image 

stacks in Imaris format were converted to maximum projected files in TIF format using FIJI. 

Flatfield correction, chromatic aberration correction, and stitching were performed using 

FIJI. Nuclei were segmented based on the 4′,6-Diamidin-2-phenylindol (DAPI) 

fluorescence intensity using Cellpose with a pretrained cyto model (default parameters, 
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except diameter of 150 for 60x and 200 for 100x objectives). Removal of nuclei at image 

borders or with overexposure of padFISH fluorescence intensities was conducted in R.  

For the co-expression analysis, Z projection of CXCL1, CXCL2, CXCL3, and CXCL8 

fluorescence intensity was performed to identify loci with co-expression of at least two 

genes. Gaussian Blur 2.0 was used to filter the Z-projected image in FIJI, which was 

subsequently segmented using ilastik with the pixel classification workflow. Segmented 

co-expression loci were binarized and filtered using Gaussian blur 1.5 in FIJI. Area, mean 

gray value, and center of mass were measured for each co-expression locus across all 

padFISH and DAPI fluorescence intensities using FIJI. Co-expression loci were filtered by 

a minimal fluorescence intensity threshold and assigned to their respective nuclei. The 

sum of CXCL1, CXCL2, CXCL3, and CXCL8 fluorescence intensity per co-expression 

locus was quantified in R. Active or inactive transcription were defined per co-expression 

locus by fluorescence intensity above or below a minimum threshold from the bimodal 

fluorescence intensity distribution per gene and replicate. Only nuclei with one to two co-

expression loci were used for the analysis. Additionally, nuclei with exceptionally big or 

small co-expression loci and high or low fluorescence intensities were removed. Co-

expression patterns were determined at all co-expression loci in R and visualized using 

ggplot2. 

For the transcriptional bursting analysis, the sum of NFKBIA and SELE fluorescence 

intensity per nucleus was quantified in R. Active or inactive transcription were defined per 

nucleus by fluorescence intensity above or below a minimum threshold from the bimodal 

fluorescence intensity distribution per gene and replicate. Transcriptional bursting kinetics 

were inferred with the same model as for snRNA-seq data in R. The transcript detection 

efficiency was previously estimated as 0.35 for padFISH (Rademacher et al., 2024). 

Average transcript lengths per gene were assumed. Burst sizes and frequencies were 

scaled from zero to one across genes and replicates and visualized using ggplot2. 

4.4.6. Analysis of bulk HiC-seq data 

Processing of bulk HiC-seq data was performed and pile-up plots were generated by 

Vassiliki Varamogianni-Mamatsi (Institute of Pathology, University Medical Center 

Göttingen, Göttingen, Germany), while I performed further downstream analysis as 

described here and in Seufert et al. (2024). Bulk Hi-C-seq data of unstimulated HUVECs 

were obtained from Rao et al. (2014). The genomic annotation of the contact matrices was 

converted to the hg38 reference using HiCLift. Arrowhead was used to call TADs on the 
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25 kb contact matrix. Contact frequency enrichment at TADs and between ACs was 

visualized by pile-up plots using coolpup.py. Balanced contact counts were obtained from 

cooler (default parameters, except 64 bin balancing). Downstream analysis was 

conducted in R with visualization by ggplot2. The contact matrix at 10 kb resolution was 

visualized in exemplary regions using plotgardener. Overlap of TADs with ACs, DCs, and 

differentially expressed gene clusters was determined using GenomicRanges. 

Additionally, the overlap of 10 kb HiC bins with ATAC peaks was determined using 

Genomic Ranges to extract the balanced contact counts of AC-linked peaks. 

4.4.7. Analysis of bulk H3K27ac ChIP-seq data 

Processing of bulk H3K27ac ChIP-seq data was performed by Panagiotis Liakopoulos 

(Department of Molecular Biology  and Genetics, Democritus University of Thrace, 

Greece), while I performed further downstream analysis as described here and in Seufert 

et al. (2024). Bulk ChIP-seq data were aligned using Bowtie2 with the human hg38 

reference. Genomic H3K27ac coverage files were obtained using ShortRead. H3K27ac 

peaks were identified as previously described in Stadhouders et al. (2015) using IgG ChIP-

seq signal as background and a significance threshold with FDR below 0.001 and at least 

20 reads per peak. Downstream analysis was conducted in R with visualization by ggplot2. 

H3K27ac peaks from both antibodies were merged. Overlap of merged H3K27ac peaks 

with ATAC peaks, ACs, DCs, and differentially expressed genes was determined using 

GenomicRanges. 

4.4.8. Data and code availability 

Data of scTurboATAC-seq, scRNA-seq, snRNA-seq and bulk ChIP-seq from HUVECs are 

available at GEO as described in Table 4.10. Spatial transcriptomics data from HUVECs 
are available at BioImage Archive (https://www.ebi.ac.uk/bioimage-archive) with the 

accession number S-BIAD1294. Supplementary data with intermediate results are 

available at Seufert et al. (2024). My scripts for the computational analyses of 

scTurboATAC-seq, scRNA-seq, snRNA-seq and spatial transcriptomics data from 

HUVECs are provided at https://doi.org/10.5281/zenodo.13221210. Co-accessibility 

analysis of scTurboATAC-seq data from HUVECs was conducted with RWireX (v1.1.06, 

https://github.com/RippeLab/RWireX). 
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Table 4.10 Data availability of scTurboATAC-seq, scRNA-seq, snRNA-seq and bulk ChIP-seq 
from HUVECs. Data are available at GEO (https://www.ncbi.nlm.nih.gov/geo) as part of the series 
GSE273430. 

Method Samples GEO ID 

scTurboATAC-seq 

HUVEC, replicate 1,  
untreated GSM8428166 

HUVEC, replicate 1,  
30 min TNFα treatment GSM8428167 

HUVEC, replicate 1,  
240 min TNFα treatment GSM8428168 

HUVEC, replicate 2,  
untreated GSM8428169 

HUVEC, replicate 2,  
30 min TNFα treatment GSM8428170 

HUVEC, replicate 2,  
240 min TNFα treatment GSM8428171 

HUVEC, replicate 3,  
untreated GSM8428172 

HUVEC, replicate 3,  
30 min TNFα treatment GSM8428173 

HUVEC, replicate 3,  
240 min TNFα treatment GSM8428174 

scRNA-seq 

HUVEC, replicate 1,  
untreated GSM8428154  

HUVEC, replicate 1,  
30 min TNFα treatment GSM8428155  

HUVEC, replicate 1,  
240 min TNFα treatment GSM8428156 

HUVEC, replicate 2,  
untreated GSM8428157 

HUVEC, replicate 2,  
30 min TNFα treatment GSM8428158 

HUVEC, replicate 2,  
240 min TNFα treatment GSM8428159 

HUVEC, replicate 3,  
untreated GSM8428160 

HUVEC, replicate 3,  
30 min TNFα treatment GSM8428161 

HUVEC, replicate 3,  
240 min TNFα treatment GSM8428162 

snRNA-seq 

HUVEC, untreated GSM8428163 

HUVEC, 30 min TNFα treatment GSM8428164 

HUVEC, 240 min TNFα treatment GSM8428165 
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Bulk ChIP-seq 

HUVEC, 30 min TNFα treatment, 
H3K27ac replicate 1 GSM8449517 

HUVEC, 30 min TNFα treatment, 
H3K27ac replicate 2 GSM8449518 

HUVEC, 30 min TNFα treatment, 
Input GSM8449519 

 

4.4.9. List of applied software packages 

Utilized software for the computational analyses of sequencing and spatial transcriptomics 

data of HUVECs is provided in Table 4.11. 

Table 4.11 Software used for the analysis of sequencing and spatial transcriptomics data of 
HUVECs. Not available software versions are indicated as n.a.. 

Software Version Reference 

ArchR v1.0.3 Granja et al. (2021) 

Arrowhead n.a. Durand et al. (2016) 

Bowtie2 v2.3.3 Langmead & Salzberg (2012) 

Cellpose2 n.a. Pachitariu & Stringer (2022) 

Cell Ranger v7.1.0 Zheng et al. (2017) 

Cell Ranger ATAC v2.1.0 Satpathy et al. (2019) 

ChromVARmotifs v0.2.0 Schep et al. (2017) 

Coolpup.py n.a. Flyamer et al. (2020) 

DESeq2 v1.40.2 Love et al. (2014) 

FIJI v2.14.0 Schindelin et al. (2012) 

GenomicRanges v1.52.0 Lawrence et al. (2013) 

Ggplot2 v3.4.3 Wickham (2016) 

GUtils v0.2.0 Wala & Imielinski (2023) 

HiCLift n.a. Wang & Yue (2023) 

Igraph v1.5.1 Csárdi et al. (2024) 

MACS2 v2.1.2 Zhang et al. (2008) 

Nextflow v22.10.6 Ewels et al. (2020) 

Nf-core rnaseq v3.9.0 Patel et al. (2018) 
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Pheatmap v1.0.12 Kolde (2018) 

Plotgardener v1.6.2 Kramer et al. (2022) 

Poolr v1.1-1 Cinar & Viechtbauer (2022) 

Python v3.10.12 Python Software Foundation (1991) 

Qgraph v1.9.8 Epskamp et al. (2012) 

R v4.3.1 (Seq.) 
v4.3.2 (Imag.) R Core Team (1993) 

scDblFinder v1.14.0 Thibodeau et al. (2021) 

Seurat v4.3.0.1 Stuart et al. (2019) 

ShortRead n.a. Morgan et al. (2009) 

SpectralTAD v1.16.1 Cresswell et al. (2020) 

Tobias v0.15.1 Bentsen et al. (2020) 

 

4.5. Bulk and single cell sequencing of ESCs and MEFs 

4.5.1. Sequencing data acquisition 

Experiments and data acquisition were performed by Markus Muckenhuber as described 

in Muckenhuber et al. (2023). Briefly, mouse 129/Ola ESCs and MEFs were cultured for 

two days before treatment with IFNβ for 1 and 6 h. Biological replicates were acquired 

from different aliquots of ESCs and MEFs. scRNA libraries were prepared using the 

Chromium Single Cell 3’ kit v2.0 (10x Genomics, Pleasanton, USA) according to the 

manufacturer’s protocol. scATAC libraries were prepared using the Chromium Single Cell 

ATAC kit v1.0 (10x Genomics, Pleasanton, USA) according to the manufacturer’s protocol. 

scRNA libraries were sequenced paired-end with 26 bp and 74 bp for read 1 and read 2 

on a HiSeq 4000 system (Illumina, San Diego, USA). scATAC libraries were sequenced 

paired-end with 50 bp for both read 1 and read 2 on a NovaSeq 6000 system (Illumina, 

San Diego, USA). Sequencing was conducted by the DKFZ NGS Core Facility. 

RNA was isolated using the NucleoSpin RNA kit (Macherey-Nagel, Düren, Germany) 

according to the manufacturer’s protocol, except eluting twice with RNase-free water 

within the same tube. rRNAs were removed using the Ribo-Zero rRNA Removal kit 

(Illumina, San Diego, USA) according to the manufacturer’s protocol. Bulk RNA libraries 

were prepared using the NEB Next Ultra II directional RNA library preparation kit (Illumina, 
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San Diego, USA) according to the manufacturer’s protocol. The ATAC reaction was 

conducted using Tn5-ILMN (Illumina, San Diego, USA) in Tag buffer. Tagmented DNA 

was purified using the MinElute PCR Purification kit (Qiagen, Hilden, Germany) and 

amplified by PCR. Next, the bulk ATAC libraries were purified with AMPure beads 

(Beckman Coulter, Brea, USA). Immunoprecipitation was conducted using the ChIP 

enzymatic chromatin IP kit (Cell Signaling Technology, Danvers, USA) according to 

manufacturer’s protocol with antibodies against STAT1 phosphorylated at tyrosine position 

701 (#7640, Cell Signaling Technology, Danvers, USA), STAT2 (#72604, Cell Signaling 

Technology, Danvers, USA), and IgG control (#2729, Cell Signaling Technology, Danvers, 

USA). Bulk ChIP libraries of STAT1 and STAT2 were prepared using the NEB Next Ultra 

II DNA library preparation kit (Illumina, San Diego, USA) according to the manufacturer’s 

protocol. Bulk RNA libraries were sequenced single-end with 50 bp on a HiSeq 4000 

system (Illumina, San Diego, USA). Bulk ATAC libraries were sequenced paired-end with 

50 bp for both read 1 and read 2 on a HiSeq 2000 and 4000 system (Illumina, San Diego, 

USA). Bulk ChIP libraries of STAT1 and STAT2 were sequenced single-end with 50 bp on 

a HiSeq 4000 system (Illumina, San Diego, USA). Sequencing was conducted by the 

DKFZ NGS Core Facility. 

4.5.2. Analysis of bulk sequencing data 

Analysis of bulk sequencing data was performed by Markus Muckenhuber as described in 

Muckenhuber et al. (2023). Briefly, bulk RNA-seq data were mapped to the mouse mm10 

reference and transcript counts were quantified using Star. Transcript counts were 

normalized to TPMs using RSEM. Differential expression analysis was performed between 

untreated and IFNβ-treated conditions across all replicates using DESeq2 (significance 

threshold: p-value < 0.05, log2 fold change > 1.5). Bulk ATAC-seq and STAT1 and STAT2 

ChIP-seq data were mapped to the mouse mm10 reference using Bowtie2. Duplicated 

reads and reads that mapped to mitochondrial and blacklisted regions (Encode Project 

Consortium, 2012) were removed. Bulk ATAC-seq peak calling was performed for each 

replicate separately using MACS2. Bulk STAT1 and STAT2 ChIP-seq peak calling was 

performed across all replicates using MACS2. A consensus peak set was generated by 

intersecting peak sets of all IFNβ treatment conditions. Differential STAT1 and STAT2 

binding analysis for consensus peaks was performed between untreated and IFNβ-treated 

conditions across all replicates using DiffBind (significance threshold: FDR < 0.05, log2 

fold change > 4). Overlap between differential STAT1 and STAT2 peaks was determined 

using GenomicRanges. 
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4.5.3. Analysis of scRNA-seq data 

Analysis of scRNA-seq data was performed by Markus Muckenhuber as described in 

Muckenhuber et al. (2023). In short, data were processed with Cell Ranger count (10x 

Genomics, Pleasanton, USA) using the provided mouse mm10 reference (default 

parameters). Data were further analyzed with Seurat in R. High-quality cells were selected 

by (i) a minimal threshold for percentage of mitochondrial reads of 2.5 % for ESCs and 0.5 

% for MEFs, (ii) a maximal threshold for percentage of mitochondrial reads of 7.5 %, (iii) a 

minimal threshold for number of detected genes of 2,000 for ESCs and 1,250 for MEFs, 

and (iv) a maximal threshold for number of detected genes of 6,500. This resulted in 1,332 

high-quality ESCs for 0 h, 2,085 for 1 h and 4,825 for 6 h of IFNβ stimulation as well as 

9,771 high-quality MEFs for 0 h, 10,186 for 1 h and 7,579 for 6 h of IFNβ stimulation. 

Samples were merged, normalized (log10), and scaled (default parameters). Single cells 

were embedded in two-dimensional space using PCA and UMAP. 

4.5.4. Analysis of scATAC-seq data 

I performed the analysis of scATAC-seq data from ESCs and MEFs as described here and 

in Muckenhuber et al. (2023). Data were processed with Cell Ranger ATAC count (10x 

Genomics, Pleasanton, USA) using the provided mouse mm10 reference (default 

parameters). Quality metrics of scATAC-seq data are provided in Table 4.12. Data were 
further analyzed with ArchR and visualized with ggplot2 in R. High-quality cells were 

selected using (i) a minimal threshold for number of unique fragments of 103.5, (ii) a 

maximal threshold for number of unique fragments of 105, (iii) a minimal threshold for TSS 

enrichment score of 4, and (iv) a maximal threshold for ratio of reads in blacklisted genomic 

regions of 0.0225 for ESCs and 0.016 for MEFs. High-quality cell numbers are provided 

in Table 4.12. Single ESCs and MEFs were embedded in two-dimensional space 
separately using an accessibility count matrix of 500 bp genomic tiles, iterative LSI (default 

parameters, except clustering resolution of 0.2) and UMAP (default parameters, except 

LSI components 1-30 for ESCs and 2-12 for MEFs, minimal distance of points in 

embedding of 0.5, 30 nearest neighbors). MEF subtypes were predicted per single cell by 

integration with scRNA-seq samples using ATAC gene activity scores in ArchR (default 

parameters). Cells in clusters C1 were removed for both ESCs and MEFs.  
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Table 4.12 Quality metrics of scATAC-seq data from ESCs and MEFs. Cell number is the 
number of cell-positive barcodes as defined by Cell Ranger ATAC. High-quality cell number is the 
number of remaining cells after quality filtering. Adapted from Muckenhuber et al. (2023). 

  Sample (IFNβ treatment) 
  0 h 1 h 6 h 

ES
C
s 

Cell number 8,925 - 5,596 

Number of high-quality cells 7,390 - 4,548 

Unique fragments/cell (median) 16,397 - 24,512 

Fraction of reads in peaks (median) 0.65 - 0.65 

M
EF
s 

Cell number 11,656 12,272 19,403 

Number of high-quality cells 8,052 8,395 9,409 

Unique fragments/cell (median) 12,799 12,095 4,816 

Fraction of reads in peaks (median) 0.68 0.64 0.68 

 

Sample-specific peaks from pseudo-bulk chromatin accessibility data were called using 

MACS2 in ArchR (default parameters, except peak summit extension by 1000 bp to each 

side; reproducibility of 1). A union ATAC peak set across all samples was generated. 

Differential accessibility analysis for union ATAC peaks was performed between untreated 

and IFNβ-treated conditions using Wilcoxon test in ArchR (default parameters, except bias 

correction by TSS enrichment score and number of unique fragments (log10); significance 

threshold: FDR ≤ 0.05, absolute log2 fold change ≥ 1). The union ATAC peaks were 

extended by regions of interest (2 kb around the midpoints of STAT1/2 peaks and 

differentially expressed gene TSSs). 

Technical biases between samples from varying numbers of cells and unique fragments 

per cell were compensated by selecting 2,700 most similar cells from each sample or MEF 

subtype compared to a reference of 2,700 randomly selected high-quality cells from the 0 

h IFNβ-treated epithelial-like MEFs (Table 4.13). Single cell co-accessibility analysis was 
performed with 2,700 bias-compensated cells for each sample and MEF subtype 

separately using RWireX. Co-accessibility scores were computed within 1 Mb using a 

continuous accessibility count matrix of extended union ATAC peaks and single cells. The 

resulting co-accessible links were filtered removing all links with negative co-accessibility 

scores, p-values below 0.01, and co-accessibility scores below sample-specific 

background co-accessibility cutoffs. The remaining links were considered the autonomous 

links of co-accessibility (ACs). Only ACs of STAT1/2 peaks were considered. ACs were 
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visualized in exemplary regions by loop tracks with genomic annotations and number of 

unique fragment-normalized pseudo-bulk chromatin accessibility tracks using ArchR. ACs 

between differentially expressed genes and STAT1/2 peaks were quantified and genes 

were classified successively by presence of (i) a STAT1/2 peak at the promoter, (ii) gained 

or (iii) lost AC between the promoter and a distal STAT1/2 peak after IFNβ treatment, and 

(iv) no link to STAT1/2 peak. 

Table 4.13 Cells used for co-accessibility analysis of ESCs and MEFs. Epithelial-like MEF 
subtype is abbreviated as epi-like and mesenchymal-like MEF subtype as mes-like. Adapted from 
Muckenhuber et al. (2023). 

  Sample (IFNβ treatment) 
  0 h 1 h 6 h 

ES
C
s Selected cell number 2,700 - 2,700 

Unique fragments/cell (median) 13,443 - 20,143 

Ep
i-l
ik
e 

M
EF
s Selected cell number 2,700 2,700 2,700 

Unique fragments/cell (median) 13,452 13,463 6,557 

M
es
-li
ke
 

M
EF
s Selected cell number 2,700 2,700 2,700 

Unique fragments/cell (median) 13,454 13,460 10,544 

 

Metacell co-accessibility analysis was performed with 5,400 bias-compensated cells for 

ESCs and 8,100 for MEFs from all treatment time points of ESCs and MEF subtypes 

combined using RWireX. Metacells were formed from unique sets of 10 cells each, not 

using the final 10 % of cells to prevent the forced aggregation of dissimilar cells. Co-

accessibility scores were computed within 2 Mb using a continuous accessibility count 

matrix of 10 kb genomic tiles and metacells. The metacell co-accessibility matrices were 

visualized in exemplary regions with annotated differentially expressed genes and 

STAT1/2 peaks using plotgardener. 

4.5.5. Data and code availability 

Data of scATAC-seq and scRNA-seq from ESCs and MEFs are available at GEO as 

described in Table 4.14. Supplementary data with intermediate results are available at 
Muckenhuber et al. (2023). My scripts for the computational analyses of scATAC-seq data 

from ESCs and MEFs are provided at https://github.com/RippeLab/RWire-IFN. Single cell 

co-accessibility analysis of scATAC-seq data from ESCs and MEFs was conducted with 
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RWireX (v0.2.05, https://github.com/RippeLab/RWire-IFN). Metacell co-accessibility 

analysis of scATAC-seq data from ESCs and MEFs was conducted with RWireX (v1.1.06, 

https://github.com/RippeLab/RWireX). 

Table 4.14 Data availability of scATAC-seq and scRNA-seq from ESCs and MEFs. Data are 
available at GEO (https://www.ncbi.nlm.nih.gov/geo) as part of the series GSE160764. 

Method Samples GEO ID 

scATAC-seq 

ESC, untreated GSM4878888 

ESC, 6 h IFNβ treatment GSM4878889 

MEF, untreated GSM5852360 

MEF, 1 h IFNβ treatment GSM5852361 

MEF, 6 h IFNβ treatment GSM5852362 

scRNA-seq 

ESC, untreated GSM4878890  

ESC, 1 h IFNβ treatment GSM4878891 

ESC, 6 h IFNβ treatment GSM4878892  

MEF, untreated GSM8428156 

MEF, 1 h IFNβ treatment GSM5852363 

MEF, 6 h IFNβ treatment GSM5852364 

HUVEC, replicate 2,  
240 min TNFα treatment GSM5852365 

 

4.5.6. List of applied software packages 

Utilized software for the computational analyses of sequencing data of ESCs and MEFs is 

provided in Table 4.15. 
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Table 4.15 Software used for the analysis of bulk and single-cell sequencing data of ESCs 
and MEFs. 

Software Version Reference 

ArchR v0.9.5 Granja et al. (2021) 

Bowtie2 v2.3.3 Langmead & Salzberg (2012) 

Cell Ranger v3.0.2 Zheng et al. (2017) 

Cell Ranger ATAC v1.1.0 Satpathy et al. (2019) 

DESeq2 v1.24.0 Love et al. (2014) 

DiffBind v2.12.0 Ross-Innes et al. (2012) 

GenomicRanges v1.36.4 Lawrence et al. (2013) 

Ggplot2 v3.3.5 Wickham (2016) 

MACS2 v2.1.2 Zhang et al. (2008) 

Plotgardener v1.6.2 Kramer et al. (2022) 

R v3.6.3 (bulk, scRNA) 
v4.0.2 (scATAC) R Core Team (1993) 

Rsem v1.3.0 Li & Dewey (2011) 

Seurat v4.0.1 Stuart et al. (2019) 

Star v2.5.3a Dobin et al. (2013) 

 

4.6. Bulk RNA-seq of NK cells after co-culture with HDV-
infected hepatocytes 

4.6.1. Sequencing data acquisition 

Experiments and data acquisition were performed by Christopher Groth (Department of 

Immunobiochemistry, Mannheim Institute for Innate Immunoscience and Medical Faculty 

Mannheim, Heidelberg University, Germany) and Markus Muckenhuber as described in 

Groth et al. (2023). Briefly, HepG2 cells overexpressing NTCP (HepG2-hNTCP; Lempp et 

al. (2019)) were cultured in transfection medium with or without HDV for 24 h. HepG2-

hNTCP cells were washed and further cultured for 4 days. Following, HepG2-hNTCP cells 

were either cultured alone for 24 h and supernatant was collected or co-cultured with NK 

cells in a 4:1 ratio for 48 h. IFNγ expression frequency of NK cells treated with supernatant 

from non-infected or HDV-infected HepG2-hNTCP cells for 24h was measured by flow 
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cytometry analysis. NK cells from HepG2-hNTCP cell co-culture were isolated using 

magnetic beads. RNA was isolated using the RNeasy Mini kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s protocol. Bulk RNA libraries were prepared using the 

TruSeq Stranded Total RNA Gold with Ribo-Zero Plus kit according to the manufacturer’s 

protocol (Illumina, San Diego, USA). Libraries were sequenced paired end with 50 bp for 

both read 1 and read 2 on NovaSeq 6000 system (Illumina, San Diego, USA). Sequencing 

was conducted by the DKFZ NGS Core Facility. 

4.6.2. Analysis of bulk RNA-seq data 

I processed bulk RNA-seq data and Carsten Sticht (Medical Faculty Mannheim, 

Heidelberg University, Germany) performed differential expression analysis as described 

here and in Groth et al. (2023). Sequencing reads were aligned with Star (default 

parameters, except sjbdOverhang of 200) using a Star index from the 1000 genomes 

assembly. Duplicate reads were identified using Sambamba and quality control was 

performed with Samtools. Reads 1 and 2 were both used for strand-unspecific 

quantification over exon features from gencode 19 gene models using FeatureCounts 

(default parameters, except quality threshold of 255). Further data analysis was conducted 

with systempipeR and visualized with ggplot2 in R. Count data was normalized using 

voom. Differential expression analysis was performed using limma (default parameters, 

significance threshold: FDR < 0.05). 

4.6.3. List of applied software packages 

Utilized software for the computational analyses of bulk RNA-seq data of NK cells is 

provided in Table 4.16. 

Table 4.16 Software used for the analysis of bulk RNA-seq data of NK cells. Not available 
software versions are indicated as n.a.. 

Software Version Reference 

FeatureCounts n.a. Liao et al. (2014) 

Ggplot2 v2.2.1 Wickham (2016) 

Limma n.a. Ritchie et al. (2015) 

R n.a. R Core Team (1993) 

Sambamba v0.6.5 Tarasov et al. (2015) 
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Samtools v1.6 Danecek et al. (2021) 

Star v2.5.3a Dobin et al. (2013) 

SystempipeR n.a. TW & Girke (2016) 

Voom n.a. Law et al. (2014) 

 

4.7. Sequencing of TCL1 cells and CLL patient samples 

4.7.1. Sequencing data acquisition 

Experiments and data acquisition were performed by Philipp Roessner (formerly Division 

of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany) and 

Markus Muckenhuber as described in Roessner et al. (2024). Briefly, Tbx21-/- and Tbx21+/+ 

TCL1 cells were generated as described previously in Chakraborty et al. (2021) and 

transplanted in immunodeficient NOD scid gamma mice. Peripheral blood was drawn and 

sorted for TCL1 cells using the EasySep mouse pan-B cell isolation kit (Stemcell 

Technologies, Vancouver, Canada). Biological replicates were acquired from TCL1 cell 

transplantations into different mice. scRNA libraries were prepared using the Chromium 

Single Cell Multiome kit v1 (10x Genomics, Pleasanton, USA) according to the 

manufacturer’s protocol. scTurboATAC libraries were prepared using the Chromium 

Single Cell ATAC kit v1.1 (10x Genomics, Pleasanton, USA) according to the TurboATAC 

protocol (Seufert et al., 2023). scRNA libraries were sequenced paired-end with 28 bp and 

90 bp for read 1 and read 2 on a NovaSeq 6000 system (Illumina, San Diego, USA) using 

SP flow cells. scATAC libraries were sequenced paired-end with 50 bp for both read 1 and 

read 2 on a NovaSeq 6000 system (Illumina, San Diego, USA) using S1 flow cells. 

Sequencing was conducted by the DKFZ NGS Core Facility.  

RNA was isolated using the QIAshredder and RNeasy Mini kit (both Qiagen, Hilden, 

Germany) according to the manufacturer’s protocol. Bulk RNA libraries were prepared 

using the TruSeq Stranded mRNA kit (Illumina, San Diego, USA) according to the 

manufacturer’s protocol. Libraries were sequenced paired-end with 51 bp for both read 1 

and read 2 on a NovaSeq 6000 system (Illumina, San Diego, USA). Sequencing was 

conducted by the DKFZ NGS Core Facility.  
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4.7.2. Analysis of bulk sequencing data 

The analysis of bulk RNA-seq data was performed by Marc Zapatka (Division of Molecular 

Genetics, German Cancer Research Center, Heidelberg, Germany), while the analysis of 

bulk ATAC-seq and bulk RNA-seq data from Beekman et al. (2018) was performed by 

Vincente Chapaprieta (Instituto de Investigaciones Biomédicas August Pi i Sunyer, 

Barcelona, Spain) as described in Roessner et al. (2024). In short, bulk RNA-seq data of 

TCL1 samples were mapped to the mouse GRCm38/mm10 reference including the 

Illumina spike-in PhiX174 sequence using Star. Expression was quantified in transcripts 

using Subread. Transcripts with less than 10 counts in total were removed. Differential 

expression analysis was performed between Tbx21-/- and Tbx21+/+ TCL1 samples using 

DESeq2 (significance threshold: FDR < 0.05). Log2 fold changes were obtained using 

apeglm (LFC shrinkage). Sample 804 was identified as outlier from clustering of raw 

counts (rlog transformed). 

Bulk RNA-seq data of 260 CLL patient samples were obtained from Puente et al. (2015) 

and Nadeu et al. (2021). Gene counts were normalized using DESeq2 (variance 

stabilization transformation). Genes with more than 9 counts and more than 0 transcript 

counts per million kb in at least 22 samples were included for further analysis. CLL patient 

samples were classified by their TBX21 expression into TBX21low (bottom quartile, n = 65) 

and TBX21high (top quartile, n = 65) groups. Differential expression analysis was performed 

between TBX21low and TBX21high CLL patient samples using DESeq2 and including 

intermediate cases (n = 130; significance threshold: FDR < 0.05). Effect sizes were 

reduced using apeglm. 

Bulk RNA-seq data of 7 CLL patient samples and 15 non-malignant B cell samples were 

obtained from Beekman et al. (2018). The non-malignant samples contained B cell 

subpopulations from peripheral blood and tonsils, such as naïve B cells, germinal center 

B cells, memory B cells, and plasma cells. Gene counts were normalized using DESeq2 

(variance stabilization transformation). 

Bulk ATAC-seq data of 99 CLL patient samples were obtained from Beekman et al. (2018). 

CLL patient samples were classified by their H3K27ac signal in the TBX21 promoter 

(chr17:47731961-47738364) from paired H3K27ac ChIP-seq data into TBX21low (bottom 

quartile, n = 25) and TBX21high (top quartile, n = 25) groups. ATAC peaks with accessibility 

signal in at least 5 samples from TBX21low and TBX21high groups each were included for 

further analysis. Differential accessibility analysis was performed between TBX21low and 

TBX21high CLL patient samples using DESeq2 (including IGHV mutational status as co-
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factor and 49 intermediate TBX21 cases; significance threshold: FDR < 0.05). Effect sizes 

were reduced using apeglm. TF binding sites in ATAC peaks were annotated using Homer 

motifs from chromVARmotifs. The difference of binding site deviations between TBX21low 

and TBX21high CLL patient samples were calculated for each TF using chromVAR. 

4.7.3. Identification of T-bet dependent genes 

Mass spectrometry data of TCL1 were acquired by Philipp Roessner as described in 

Roessner et al. (2024). Mass spectrometry data of 68 CLL patient samples were obtained 

from Herbst et al. (2022). The analysis of mass spectrometry data was performed by Pavle 

Boskovic (Division of Molecular Genetics, German Cancer Research Center, Heidelberg, 

Germany) as described in Roessner et al. (2024). T-bet protein levels were correlated to 

all other proteins (Pearson and Spearman correlation). P-values were adjusted for multiple 

testing by Benjamini-Hochberg method (significance threshold: adjusted p-value < 0.05). 

Integrated analysis of bulk RNA-seq and mass spectrometry data from TCL1 samples and 

CLL patient samples was performed by Philipp Roessner as described here and in 

Roessner et al. (2024). The overlap between significantly differential genes and 

significantly correlating proteins from both human and murine data sets was determined. 

Not detected or quantified proteins were considered as overlapping with bulk RNA-seq 

data. The overlapping genes of all four data sets were termed T-bet dependent genes. 

4.7.4. Analysis of scRNA-seq data 

I performed the analysis of scRNA-seq data from TCL1 samples as described here and in 

Roessner et al. (2024). Data were processed with Cell Ranger count (10x Genomics, 

Pleasanton, USA) using the provided mouse mm10 reference (default parameters, except 

including introns, ARC-v1 chemistry). Quality metrics of scRNA-seq data are provided in 

Table 4.17. Data were further analyzed with Seurat and visualized with ggplot2 in R. High-
quality barcodes were selected using (i) a minimal and maximal threshold for number of 

detected genes from the 5th and 99th percentiles (140 and 3,491, respectively), (ii) a 

minimal and maximal threshold for UMI counts of 1,000 and 9,244 (99th percentile), and 

(iii) a maximal threshold for percentage of mitochondrial UMI counts of 40 and 50 for 

Tbx21+/+ and Tbx21-/- TCL1 samples, respectively. Barcodes containing multiple cells were 

removed using DoubletFinder (default parameters). High-quality cell numbers are 

provided in Table 4.17. 
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Table 4.17 Quality metrics of scRNA-seq data from TCL1 cells. Barcode number is the number 
of detected cell barcodes by Cell Ranger. High-quality cell number is the number of remaining cells 
after quality filtering. 

  Rep1 Rep2 

Tb
x2
1+
/+
 T
C
L1
 

Barcode number 55,126 55,018 

Number of high-quality cells 2,242 3,824 

UMI counts per cell (median) 4,510 3,244 

Genes per cell (median) 2,004 1,682 

Mitochondrial UMI counts (%, median) 21 16 

Tb
x2
1-
/-  T
C
L1
 

Barcode number 33,224 43,680 

Number of high-quality cells 3,814 3,336 

UMI counts per cell (median) 2,842 3,385 

Genes per cell (median) 1,403 1,615 

Mitochondrial UMI counts (%, median) 28 24 

 

Samples were merged, log normalized, and scaled (default parameters, except regressing 

out number of detected genes per cell). Cell cycle phases were inferred per single cell by 

module scores from the expression of cell cycle marker genes (Kowalczyk et al., 2015). 

Low-dimensional single-cell embedding was computed using scaling (default parameters, 

except regressing out number of detected genes and cell cycle phase per cell), PCA 

(default parameters), and UMAP (default parameters, except PCs 1-17). Cell clusters were 

computed by SNN modularity optimization (default parameters, except PCs 1-17, 

resolution of 0.2). Cd5 and Cd19 marker gene expression was used to identify malignant 

cell clusters. Non-malignant cell clusters were removed from further analysis. 

4.7.5. Analysis of scTurboATAC-seq data 

I performed the analysis of scTurboATAC-seq data from TCL1 samples as described here 

and in Roessner et al. (2024). Data were processed with Cell Ranger ATAC count (10x 

Genomics, Pleasanton, USA) using the provided mouse mm10 reference (default 

parameters). Quality metrics of scATAC-seq data are provided in Table 4.18. Data were 
further analyzed with ArchR and visualized with ggplot2 in R. High-quality cell barcodes 

were selected using (i) a minimal threshold for number of unique fragments of 104.25 and 

(ii) a minimal threshold for TSS enrichment score of 5. High-quality cell numbers are 
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provided in Table 4.18. Samples were merged and a low-dimensional single-cell 
embedding was computed using an accessibility count matrix of 500 bp genomic tiles, 

iterative LSI (default parameters) and UMAP (default parameters, except LSI components 

2, 4-17). Cell clusters were computed by SNN modularity optimization (default parameters, 

except LSI components 2, 4-17; resolution of 0.15). ATAC gene activity scores of Cd5 and 

Cd19 markers were used to identify malignant cell clusters. Non-malignant cell clusters 

were removed from further analysis. 

Table 4.18 Quality metrics of scTurboATAC-seq data from TCL1 cells. Barcode number is the 
number of detected cell barcodes by Cell Ranger. High-quality cell number is the number of 
remaining cells after quality filtering. 

  Rep1 Rep2 

Tb
x2
1+
/+
 T
C
L1
 Barcode number 15,940 31,155 

Number of high-quality cells 1,966 2,569 

Unique fragments/cell (median) 48,977 58,884 

TSS enrichment score (median) 16.16 22.01 

Tb
x2
1-
/-  T
C
L1
 Barcode number 37,616 23,206 

Number of high-quality cells 2,299 2,260 

Unique fragments/cell (median) 54,954 69,183 

TSS enrichment score (median) 24.39 18.9 

 

Sample-specific peaks from pseudo-bulk chromatin accessibility data were called using 

MACS2 in ArchR (default parameters, except peak summit extension by 1,000 bp to each 

side; reproducibility of 1). A union ATAC peak set across all samples was generated. 

Differential accessibility analysis for union ATAC peaks was performed between Tbx21-/- 

and Tbx21+/+ TCL1 cells across all replicates using Wilcoxon test in ArchR (default 

parameters, except a maximum of 4,000 cells per sample, bias correction by TSS 

enrichment score and number of unique fragments (log10), normalization by number of 

unique fragments; significance threshold: FDR ≤ 0.05, absolute log2 fold change ≥ 1). TF 

binding sites in union ATAC peaks were annotated using Homer motifs from 

chromVARmotifs. Union ATAC peaks with T-bet binding sites were termed T-bet peaks. 

Enrichment of TF binding sites in significantly differential accessible ATAC peaks between 

Tbx21-/- and Tbx21+/+ TCL1 were determined by hypergeometric test in ArchR (significance 

threshold: FDR ≤ 0.1, log2 fold change ≥ 0.5). 
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Cell barcodes containing multiple cells were removed using Amulet from scDblFinder. 

Technical biases between samples from varying numbers of cells and unique fragments 

per cell were compensated by selecting 1,000 most similar cells from each sample 

compared to a reference of 1,000 randomly selected high-quality cells from the Tbx21-/- 

TCL1 Rep1 sample. Single cell co-accessibility analysis was performed with 1,000 bias-

compensated cells for each sample separately using RWireX. Co-accessibility scores 

were computed within 1 Mb using a continuous accessibility count matrix of union ATAC 

peaks and single cells. The resulting co-accessible links were filtered removing all links 

with negative co-accessibility scores, percent accessible cells (PAC) below 5, and co-

accessibility scores below sample-specific background co-accessibility cutoffs. The 

remaining links were considered the autonomous links of co-accessibility (ACs). Only ACs 

of union ATAC peaks at T-bet dependent gene promoters were considered. ACs from 

biological replicates were merged and visualized in exemplary regions by loop tracks with 

genomic annotations and number of unique fragment-normalized pseudo-bulk chromatin 

accessibility tracks using ArchR. ACs between T-bet dependent genes and T-bet peaks 

were quantified and genes were classified successively by presence of (i) a T-bet peak at 

the promoter, (ii) AC between the promoter and a distal T-bet peak, and (iii) no link to T-

bet peak. 

Metacell co-accessibility analysis was performed with 4,000 bias-compensated cells from 

all Tbx21-/- and Tbx21+/+ TCL1 samples combined using RWireX. Metacells were formed 

from unique sets of 10 cells each, not using the final 10 % of cells to prevent the forced 

aggregation of dissimilar cells. Co-accessibility scores were computed within 2 Mb using 

a continuous accessibility count matrix of 10 kb genomic tiles and metacells. The metacell 

co-accessibility matrices were visualized in exemplary regions with annotated T-bet 

dependent genes and T-bet motifs using plotgardener.  

4.7.6. Data and code availability 

Data of scTurboATAC-seq and scRNA-seq from TCL1 cells are available at GEO as 

described in Table 4.19. Supplementary data with intermediate results are available at 
Roessner et al. (2024). Single cell co-accessibility analysis of scTurboATAC-seq data from 

TCL1 cells was conducted with RWireX (v0.2.05, https://github.com/RippeLab/RWire-

IFN). Metacell co-accessibility analysis of scTurboATAC-seq data from TCL1 cells was 

conducted with RWireX (v1.1.06, https://github.com/RippeLab/RWireX).  
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Table 4.19 Data availability of scTurboATAC-seq and scRNA-seq from TCL1 cells. Data are 
available at GEO (https://www.ncbi.nlm.nih.gov/geo) as part of the series GSE234226. 

Method Samples GEO ID 

scTurboATAC-seq 

TCL1, Tbx21+/+, replicate 1 GSM7457615 

TCL1, Tbx21+/+, replicate 2 GSM7457616 

TCL1, Tbx21-/-, replicate 1 GSM7457617 

TCL1, Tbx21-/-, replicate 2 GSM7457618 

scRNA-seq 

TCL1, Tbx21+/+, replicate 1 GSM7457619 

TCL1, Tbx21+/+, replicate 2 GSM7457620 

TCL1, Tbx21-/-, replicate 1 GSM7457621 

TCL1, Tbx21-/-, replicate 2 GSM7457622 

 

4.7.7. List of applied software packages 

Utilized software for the computational analyses of sequencing data of TCL1 samples and 

CLL patient samples is provided in Table 4.20. 

Table 4.20 Software used for the analysis of sequencing data of TCL1 cells and CLL patient 
samples. Not available software versions are indicated as n.a.. 

Software Version Reference 

Apeglm n.a. Zhu et al. (2019) 

ArchR v1.0.3 Granja et al. (2021) 

Cell Ranger v5.0.0 Zheng et al. (2017) 

Cell Ranger ATAC v2.0.0 Satpathy et al. (2019) 

ChromVar v1.18.0 Schep et al. (2017) 

ChromVarMotifs v0.2.0 Schep et al. (2017) 

DESeq2 v1.24.0 Love et al. (2014) 

DoubletFinder v2.0.3 McGinnis et al. (2019) 
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Ggplot2 v3.3.6 (bulk data) 
v3.4.0 (sc data) Wickham (2016) 

MACS2 v2.1.2 Zhang et al. (2008) 

Plotgardener v1.6.2 Kramer et al. (2022) 

R v4.1.3 R Core Team (1993) 

scDblFinder v1.12.0 Germain et al. (2021) 

Seurat v4.2.0 Stuart et al. (2019) 

Star v2.5.3a Dobin et al. (2013) 

Subread v1.5.1 Liao et al. (2013) 

          

4.8. Thesis writing 

The thesis was written in Microsoft Word. Microsoft Word and ChatGPT were used to 

correct grammar and spelling, suggest synonyms for repetitive words, and simplify 

complex and long sentences.
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