
INAUGURAL – DISSERTATION

zur
Erlangung der Doktorwürde

der
Gesamtfakultät für Mathematik, Ingenieur- und

Naturwissenschaften
der

Ruprecht – Karls – Universität
Heidelberg

vorgelegt von
Le, Thi Kim Tuyen, M.Sc.

aus Ben Tre, Vietnam

Tag der mündlichen Prüfung: .

Printed and/or published with the support of
the German Academic Exchange Service (DAAD)

Accelerated Programming for
Data Analysis and Processing

Betreuer: Prof. Dr. Artur Andrzejak Heidelberg University

Abstract

In the past decade, data science has made remarkable progress, evidenced by the proliferation
of data-driven strategies, the rapid growth of data science-related jobs, and the expansion of
university curricula in this field. Consequently, data strengthens its role as a paramount asset
for organizations. Nonetheless, along with great benefits come nontrivial challenges.

Particularly, (1) many domain experts, who are proficient in their respective fields but lack
programming skills, face difficulties in learning and utilizing numerous data science tool-kits.
In addition, (2) data science practitioners invest substantial effort in adapting implementations
when switching between platforms or programming languages. Furthermore, (3) transitioning
from “small” to “big” datasets often requires additional work, including the deployment of
complex data structures, adoption of new libraries, and potential re-implementation.

This dissertation targets resolving these three issues while expediting scripting for developers.
We utilized low-code techniques and Machine Learning (ML)-based approaches to accelerate
programming tasks. Additionally, we deployed multiple libraries with domain-specific operations
to simplify implementation tasks when transitioning across platforms. Moreover, within these
libraries, we standardized Application Programming Interfaces for both sequential and parallel
processing, enabling users to seamlessly switch between those two with ease. Accordingly, this
doctoral project emphasizes both research contributions and practical applications.

In practical terms, we developed a Visual Studio Code extension called NLDSL to support
the development and utilization of Domain Specific Languages (DSLs), particularly for data
analysis and processing. This extension simplifies scripting tasks for end-users and developers
by harnessing the benefits of natural language-like DSLs. Users can readily reuse customized
DSLs through shared DSL templates. Specifically, these DSLs employ unified grammars for both
sequential and parallel operations to address scalability concerns. The extension has received
positive feedback from the community, underscoring the need for such extension types.

Our research contributions primarily focus on accelerating programming with ML code
generation techniques and enriching the above libraries for reproduction via published source
code and data. We conceived and evaluated an ensemble of code recommenders, named Extended
Network, to illustrate the enhanced accuracy achieved by the ensemble-like architecture. Besides,
we deployed a refined evaluation method, CT3, to reveal valuable insights while comparing code
completion approaches, a task often hindered by classical aggregated evaluation. Finally, we
proposed One-shot Correction, a procedure to integrate user feedback into generative Artificial
Intelligence models without explicit re-training, facilitating in-depth analysis of unexpected
outcomes. The effectiveness of these methods was demonstrated through our empirical studies.

v

Zusammenfassung

Im vergangenen Jahrzehnt hat die Disziplin Data Science bemerkenswerte Fortschritte gemacht,
was sich in der Verbreitung datengetriebener Strategien sowie dem raschen Wachstum von
Arbeitsplätzen und der Erweiterung universitärer Lehrpläne in diesem Bereich äußert. Folglich
festigt sich die Position von Daten als eines der wichtigsten Güter von Organisationen. Allerdings
gehen mit umfangreichem Nutzen auch erhebliche Herausforderungen einher.

Insbesondere (1) werden viele Fachkräfte, die in ihrem jeweiligen Bereich Experten sind,
denen aber Programmierkenntnisse fehlen, mit Schwierigkeiten beim Erlernen und Nutzen
zahlreicher Data Science Toolkits konfrontiert. Zusätzlich (2) investieren Data Science
Anwender substanzielle Anstrengungen in die Adaption von Implementierungen beim Wechsel
zwischen Plattformen oder Programmiersprachen. Weiterhin (3) erfordert der Übergang von
„kleinen“ zu „großen“ Datensätzen oft zusätzliche Arbeit, inklusive des Einsatzes komplexer
Datenstrukturen, der Nutzung neuer Bibliotheken und potentieller Neuimplementierung.

Diese Dissertation zielt darauf ab, diese drei Probleme zu lösen und gleichzeitig das
Erstellen von Skripten für Entwickler zu erleichtern. Wir nutzen Low-Code-Techniken und auf
Machine Learning (ML) basierende Ansätze, um Programmieraufgaben zu beschleunigen. Des
Weiteren haben wir mehrere Bibliotheken mit domänenspezifischen Operationen entwickelt, um
Implementierungsaufgaben beim Übergang zwischen Plattformen zu vereinfachen. Innerhalb
dieser Bibliotheken haben wir darüber hinaus Programmierschnittstellen sowohl für sequentielle
als auch parallele Prozessierung standardisiert, um Nutzern den nahtlosen und einfachen Wechsel
zwischen beiden zu ermöglichen. Diese Doktorarbeit fokussiert sich auf Beiträge zur Forschung
sowie praktische Anwendungen.

Im praktischen Bereich haben wir eine Visual Studio Code Erweiterung namens NLDSL
bereitgestellt, um die Entwicklung und Nutzung von Domain Specific Languages (DSLs),
insbesondere für die Datenanalyse und –verarbeitung, zu unterstützen. Diese Erweiterung
vereinfacht Skripting-Aufgaben für Endanwender und Entwickler, indem sie die Vorteile von
DSLs, die der natürlichen Sprache nahe sind, nutzt. Durch gemeinsam genutzte DSL-Vorlagen
können Benutzer angepasste DSLs problemlos wiederverwenden. Insbesondere nutzen diese
DSLs vereinheitlichte Grammatiken für sowohl sequentielle als auch parallele Operationen,
um Skalierbarkeitsprobleme zu adressieren. Die Erweiterung hat in der Community positive
Resonanz erhalten, was die Notwendigkeit solcher Erweiterungen betont.

Unsere Forschungsbeiträge fokussieren sich hauptsächlich auf die Beschleunigung der
Programmierung mit ML-Techniken zur Code-Generierung und die Anreicherung der oben
genannten Bibliotheken zur Reproduktion über veröffentlichte Quellcodes und Daten. Wir haben

vii

ein Ensemble von Code-Empfehlern namens Extended Network konzipiert und evaluiert, um die
Verbesserung der Genauigkeit durch die Ensemble-Architektur zu veranschaulichen. Außerdem
haben wir eine verfeinerte Evaluierungsmethode, CT3, implementiert, um wertvolle Einblicke
beim Vergleich von Ansätzen zur Code-Vervollständigung zu gewinnen, eine durch klassische
aggregierte Evaluation oft beeinträchtigte Aufgabe. Abschließend haben wir One-shot Correction
eingebracht, ein Verfahren zur Integration von Benutzer-Feedback in generative AI-Modelle ohne
explizites Neu-Training, um eine eingehende Analyse unerwarteter Ergebnisse zu ermöglichen.
Die Effektivität dieser Methoden wurde durch unsere empirischen Studien demonstriert.

viii

Acknowledgements

Accomplishing a Doctoral degree rewards one not only with knowledge and precious experience in
solving scientific problems, but also with effective methods in handling obstacles throughout the
entire journey. This dissertation is a culmination of the efforts and support of many individuals,
and I am sincerely thankful to each and every one of them.

First and foremost, I would like to express my deepest gratitude to my supervisor, Prof. Dr.
Artur Andrzejak, for his enthusiasm, timely support, and endless patience through the whole
itinerary. His essential guidance, immense knowledge, and plentiful experience have encouraged
me at all time during my research. I have also acquired substantial insights from him, which
helped me advance both professionally and personally.

My genuine appreciation extends to the German Academic Exchange Service (i.e. Deutscher
Akademischer Austauschdienst, DAAD) for funding my research. Their comprehensive support
allowed me to focus on my study without the burden of financial constraints. Furthermore,
workshops and academic events organized by DAAD also offered me priceless opportunities to
connect and exchange knowledge with other scholarship holders.

I am grateful to my colleagues at the Artificial Intelligence for Programming (AIP) group.
Their contributions in developing ideas and providing technical support facilitated the project
development. In particular, I thank Kevin Kiefer for deploying the core function of the NLDSL
extension, developing the Cosy repository to explore Transformers with TensorFlow, and for
enthusiastically explaining technical concepts to me. I thank Patrick Weber, Philipp Walz,
Jona Neef, and Dennis Pfleger for contributing useful features to the NLDSL extension. I
thank Tim Waibel for his responsibility and constructive discussions while designing enhanced
features for the NLDSL extension. I thank Christopher Höllriegl for his expert teamwork
while fixing bugs of the NLDSL extension with me. I extend my thanks to Max Eric Henry
Schumacher and Gabriel Rashidi for their hard work and for intensive discussions while
preparing our publications for the Extended Network and CT3 approaches. I thank Guayong
Weng, Niklas Loeser, and Lennart Stöpler for their delightful discussions during our weekly
meetings in the last year of my PhD progress. I thank Min Xue for offering me a joyful company
in the office, particularly after an extended period of working alone due to the Covid-19 situation.

My special thanks go to Dr. Mohammadreza Ghanavati, a former Doctoral student
in our group, for promptly assisting me in upgrading the group’s website, as well as for his
valuable advice from pursuing a PhD to securing employment. I also would like to express my
sincere thanks to Dr. Anja Kleebaum, graduated from the Software Engineering group, who
worked near my office and generously shared her thesis with me upon knowing I was writing my

ix

dissertation. The LaTeX configurations utilized in her thesis provided significant inspiration for
formatting my own dissertation.

I am genuinely thankful for the modern amenities, kindly support, and useful courses organized
by the Heidelberg University. With access to both hardware and software necessary for my
research, I was well-equipped to pursue my studies. The courses conducted by the Graduate
Academy of the university served as helpful supplementary sources for my individual Doctoral
project. Additionally, their workshops focusing on soft skills have been highly beneficial in aiding
me to effectively convey my methodologies, both verbally and textually. I am also grateful to
Ms. Stephanie Köhl from the Doctoral Office for her enthusiastic support in managing my
doctoral application and for her practical information on preparing my dissertation.

Ultimately, I express my heartfelt gratitude to my families and friends for their unconditional
love, never-ending support, and persistent encouragement. Their reassurance strengthened my
determination in pursuing this academic degree. Specifically, my earnest thanks to my partner,
Mr. Lars Ritter, for his tremendous understanding, tireless proofreading, and incalculable
effort in comforting me with his flavorful cuisine whenever I encounter difficulties. My sincerest
thanks to Mr. Ritter’s family for their incredibly warm welcome, genuine care, and heartfelt
support, which have made me feel like a cherished member of the family, significantly easing my
life in Germany. Finally, my deepest appreciation to my parents for their wholehearted care,
constant encouragement, and unwavering support throughout my journey, despite being almost
ten thousand kilometers away from them. They are the best parents anyone could ask for.

x

Antoine de Saint Exupéry wrote:

Grown-ups love numbers.
When you tell them that you have made a new friend, they never ask you any questions about

essential matters. They never say to you “What does his voice sound like? What are his favorite
games? Does he collect butterflies?”. Instead, they ask you: “How old is he? How many brothers
does he have? How much does he weigh? How much money does his father make?”. Only from these
numbers do they think they know anything about him.

If I say to the grown-ups, “I saw a beautiful house made of pink-coloured bricks, with geraniums in
the windows and doves on the roof”, they will not be able to picture the house at all. You have to say,
“I saw a house worth 100,000 francs”. Then they’ll exclaim, “Oh, how nice!”.

—The Little Prince, Saint-Exupéry, 2016

These words constantly crossed my mind as I conducted my research.

Contents

Abstract v

Zusammenfassung vii

Acknowledgements ix

List of Figures xix

List of Tables xxiii

List of Listings xxv

I Preliminaries 1

1. Introduction 3
1.1. Motivation . 3
1.2. Research Goals . 4
1.3. Research Strategy . 5
1.4. Core Research Questions . 7
1.5. Contributions . 8
1.6. Publications . 10
1.7. Structure of the Dissertation . 12

2. Background and Related Work 15
2.1. Facilitating Data Analysis and Processing in Low-code Manner 15

2.1.1. Low-code and No-code Development . 16
2.1.2. Domain-Specific Languages . 19
2.1.3. Low-code Tool-kits for Data Analysis and Processing 24

2.2. Advancing Programming with Machine Learning-based Approaches 27
2.2.1. Application Fields . 27
2.2.2. The Naturalness Hypothesis . 30
2.2.3. Traditional Machine Learning Methods for Code Generation 31
2.2.4. Deep Learning Techniques for Source Code 35

xiii

Contents

2.3. Transformers and Beyond . 42
2.3.1. Vanilla Transformer . 42
2.3.2. Successors of the Transformer Model . 49

2.4. Summary . 51

II Practical Contributions 53

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice 55
3.1. Introduction . 55
3.2. Python-based (vanilla) NLDSL Tool . 57

3.2.1. Tool Architecture . 58
3.2.2. DSL Structure . 58
3.2.3. Core Functionalities . 59

3.3. NLDSL Visual Studio Code Extension . 64
3.3.1. DSL Development . 65
3.3.2. Code Completion-related Features . 68
3.3.3. Utilities . 72

3.4. Dissemination . 73
3.4.1. Managing CI and CD Pipelines on Azure . 74
3.4.2. Build Instructions in YAML Files . 75

3.5. Discussion . 76
3.5.1. Preliminary Evaluation . 76
3.5.2. Potential Enhancements . 80
3.5.3. Response to CRQ1 . 81

3.6. Summary . 82

III Research Contributions 85

4. Extended Network:
Improving Code Recommendations by Combining Neural and Classical ML Approaches 87
4.1. Introduction . 87
4.2. Background and Related Work . 89

4.2.1. The Naturalness Hypothesis . 89
4.2.2. Typical Machine Learning Models for Code Completion 89
4.2.3. PHOG and Pointer Mixture Network . 90

4.3. Extended Network . 91
4.3.1. The Core Idea . 91
4.3.2. An Illustrative Model for the Extended Network Architecture 93
4.3.3. Component Selection in the Extended Network Model 94

xiv

Contents

4.4. Evaluation . 96
4.4.1. Experimental Setup . 96
4.4.2. Experimental Results . 99
4.4.3. Response to CRQ2 . 103

4.5. Summary . 103

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches 105
5.1. Introduction . 105
5.2. Background and Related Work . 109

5.2.1. Machine Learning for Code Completion . 111
5.2.2. Aggregated and Refined Metrics for Evaluation 112
5.2.3. Out-of-Vocabulary Issue . 115

5.3. Code Token Type Taxonomy . 115
5.3.1. General Workflow . 115
5.3.2. CT3 Schema for Python . 118
5.3.3. Open Vocabulary for Transformers . 123

5.4. Evaluation . 124
5.4.1. Research Questions . 124
5.4.2. Experimental Setup . 124
5.4.3. Evaluation Results . 127

5.5. Discussion . 132
5.5.1. CT3 Challenges . 133
5.5.2. Threats to Validity . 133
5.5.3. Response to CRQ3 . 134

5.6. Auxiliary Experiments . 134
5.6.1. Length Distribution of Terminal Tokens in Python150k 135
5.6.2. Length Threshold for Open Vocabulary Building 135
5.6.3. Length Threshold for Input Data File Creation in Open Vocabulary Case 137
5.6.4. Window Size for Input Data File Creation in Open Vocabulary Case . . . 139

5.7. Summary . 140

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques 141
6.1. Introduction . 142
6.2. Background and Related Work . 144

6.2.1. Generative Artificial Intelligence for Code 144
6.2.2. Interactive Programming . 145
6.2.3. Decomposition in Problem Solving . 145
6.2.4. Chunking in Natural Language Processing 146

6.3. One-shot Correction . 146
6.3.1. General Workflow . 146

xv

Contents

6.3.2. Query Chunking . 148
6.3.3. Sub-snippets Retrieving/Generating . 149
6.3.4. Code Building . 151

6.4. Experiments . 155
6.4.1. Research Questions . 155
6.4.2. Experimental Setup . 156
6.4.3. Evaluation Metrics . 160

6.5. Evaluation Results . 160
6.5.1. Evaluation Results by Difficulty Level . 160
6.5.2. Ablation Study . 165
6.5.3. LLM Involvement . 168

6.6. Discussion . 171
6.6.1. Threats to Validity . 171
6.6.2. Challenges and Potential Enhancements . 172
6.6.3. Response to CRQ4 . 173

6.7. One-shot Correction GUI . 174
6.7.1. An Overview of the One-shot Correction GUI 174
6.7.2. A Demo of Main Features . 175

6.8. Summary . 180

IV Conclusions 181

7. Summary 183

8. Future Work 187
8.1. Improvements for Proposed Approaches . 187
8.2. Potential Future Research Directions . 188

8.2.1. Code to Code Translation . 188
8.2.2. Knowledge-enhanced Large Language Models 188
8.2.3. Addressing Transformers’ Shortcomings . 189

V References 191

List of Acronyms 193

Bibliography 195

xvi

Contents

VI Appendix 213

A. Data Science-related Jobs:
A Glimpse of The Past Decade A1
A.1. The Rise of Data Science-related Jobs . A1
A.2. Time Allocation for a Data Scientist . A2
A.3. Technical and Analytical Know-how Problem . A3

B. Artificial Neural Network:
Fundamental Concepts and Techniques B1
B.1. Overview of Artificial Neural Networks . B1
B.2. Feed-forward and Recurrent Neural Network . B2
B.3. Problems with Recurrent Neural Networks . B3
B.4. Long Short-Term Memory . B4
B.5. Word Embedding . B5
B.6. Variants of the Attention Mechanism . B6

xvii

List of Figures

1.1. Interactive construction of programs/workflows with the accelerated program-
ming (AP) tool targeted in this dissertation. 5

2.1. UML class diagram* of Java code used to create an internal DSL (Sanaulla, 2013). 21
2.2. Underlying concept of low-code approaches for data analysis and processing,

adapted from Figure 1 of Makonin et al. (2016). 25
2.3. A simple example of generating code token sequences with n-gram models. 30
2.4. A CFG for binary expressions with four operations (a), alongside a parse tree (b),

and an AST (c) of an example expression (Stanford, 2015; Pingali, 2023). 32
2.5. An example illustrating the difference in employing PHOG and PCFG for code

completion, adapted from Figure 1 of Bielik et al. (2016). 34
2.6. Abstract representation of the encoder-decoder architecture through time steps

with an illustrative example. 36
2.7. Abstract representation of the attention mechanism decoding at time step t,

adapted from Figure 1 of Bahdanau et al. (2015) and Figure 4 of Weng (2018). . 37
2.8. An example of using Pointer Network in plantar convex hull problem, adapted

from Figure 1(b) of Vinyals et al. (2015). 39
2.9. Predicting a next code token with Pointer Mixture Network at time step t,

adapted from Figure 3 of Li et al. (2018). 40
2.10. Transformer at an abstract-level view when generating an output sequence (a)

and when being trained for predicting target output word touti (b), adapted
from Alammar (2018a) and Figure 1 of Vaswani et al. (2017). 42

2.11. A deeper look at encoder and decoder layers of Transformer, adapted from Figure
1 of Vaswani et al. (2017). 43

2.12. Architecture inside the multi-head attention of Transformer, adapted from Figure
2 of Vaswani et al. (2017). 45

2.13. Utilizations of multi-head attention in Transformer architecture. 46

3.1. Architecture of NLDSL tool, adapted from Figure 1 of Andrzejak et al. (2019a). . 58
3.2. Grammar of evaluation DSL, adapted from Figure 2 of Andrzejak et al. (2019a). 58
3.3. Code completion at operation level with NLDSL takes place at the beginning of

the pipeline (a), and after an initialization operation (b). 60
3.4. Code completion at statement level with NLDSL. 60

xix

List of Figures

3.5. Code completion at operation level after defining a new DSL function. 64
3.6. An overview of advanced features delivered with NLDSL extension. 64
3.7. An example of Excel template for DSL creation with NLDSL. 66
3.8. NLDSL menu in VSCode after adding a new DSL named example_dsl. 66
3.9. Column names completion with type provider in NLDSL*. 69
3.10. Path completion supported by NLDSL. 70
3.11. Setting target code and initializing libraries with NLDSL. 70
3.12. Recalling DSL grammar for apply operation while editing with NLDSL. 71
3.13. General steps for disseminating the NLDSL extension with Azure Pipelines. . . . 74
3.14. Workflow of activating CI and CD pipelines while releasing new extension features. 74
3.15. Tasks specified in YAML files for CI pipelines. 75
3.16. Statistics on installation numbers of three variants of NLDSL extension over time. 78

4.1. Flowchart displaying the component selection in the Extended Network during
prediction, adapted from Figure 3.4 of Schumacher (2019). 92

4.2. An example of generating a label for terminal T and writing it to the terminal
corpus tcorpus, adapted from Figure 3.6 of Schumacher (2019). 94

5.1. An example for evaluating a code snippet using aggregated accuracy. 106
5.2. An example for evaluating a code snippet using refined accuracy. 107
5.3. Implementation and usage of Code Token Type Taxonomy (CT3). 116
5.4. Frequency intervals for determining frequency labels of code tokens with CT3,

adapted from Figure 4.3 of Rashidi (2021). 123
5.5. Comparing the accuracy of the closed and open vocabulary models for the syntax

type dimension (a) and its token types distribution (b). 129
5.6. Comparing the accuracy of the closed and open vocabulary models for the origin

dimension (a) and its token types distribution (b). 130
5.7. Comparing the accuracy of the closed and open vocabulary models for the length

dimension (a) and its token types distribution (b). 130
5.8. Comparing the accuracy of the closed and open vocabulary models for the fre-

quency dimension (a) and its token types distribution (b). 131
5.9. Top-15 common terminal token lengths in the Python150k dataset for the training

100k dataset (a) and the evaluation 50k dataset (b). 135
5.10. Top-15 common token lengths in the Python150k dataset (a) – (b) and the

JavaScript150k dataset (c) – (d). 138

6.1. A simple scenario of interactive programming, highlighting the issue of utilizing
user feedback across sessions. 143

6.2. One-shot correction workflow for NL-to-Code translation models, exemplified
with an illustrative example. 147

6.3. A dependency graph generated by spaCy. 148
6.4. Flowchart of retrieving/generating sub-snippets for an NL chunk. 149

xx

List of Figures

6.5. An example of building code from sub-snippets*. 151
6.6. CodeBLEU scores by difficulty level on all test cases (left), on correct test cases

(middle) and on incorrect test cases (right) of the chunking methodology. 161
6.7. CodeBLEU scores by complexity level for our CodeGenC model. 166
6.8. Correct outcome ratio for specific cases. 168
6.9. Correct outcome ratio for certain cases with GPT35Prompt taken into account. . 170
6.10. General scenario of using the One-shot Correction GUI. 174
6.11. Searching the example input query for the first time. 176
6.12. Recommended steps to customize the displayed code snippet. 177
6.13. Saving the correction and inquiring the same query again. 178
6.14. Activating the highlight matching feature. 178
6.15. Generating code snippet for the same input query after manipulating queries in

the correction data-store. 179

A.1. Interest over time* of data science-related jobs from 2013 to 2023 via Google Trends. A2
A.2. Summary of surveys from multiple sources from 2016 to 2022** on the question

“How do data scientists spend their time?”. A3

B.1. An example of ANN with two hidden layers. B1
B.2. The flow of information in an RNN handling a sequence of inputs with length

seqlen, adapted from Figure 5.2 of Kelleher (2019). B3
B.3. Unrolling the RNN architecture depicted in Figure B.2 through time, adapted

from Figure 5.3 of Kelleher (2019). B3
B.4. The flow of information within an LSTM cell at time step t, adapted from Figure

5.4 of Kelleher (2019). The input and output layers are omitted. B4

xxi

List of Tables

1.1. A mapping from chapters to target problems and core research questions (CRQs). 12
1.2. A summary of predefined icons used in the dissertation. 14

2.1. A survey of how data scientists spend their time (Anaconda, 2022). 22
2.2. The formal definition of Context-Free Grammar (Jurafsky et al., 2008). 31

3.1. Contributors in developing and disseminating the NLDSL extension. 83

4.1. Encoding labels in the terminal corpus of the Extended Network model. 97
4.2. Experiment configuration for the Extended Network model. 98
4.3. Accuracy on the test-set of a single layer Extended Network model, without

dropout, trained for 7 epochs on train-test split, vocabulary size of 1k. 99
4.4. Accuracies for a single layer Extended Network model and a two-layer model across

different values of dropout, vocabulary size of 1k. 100
4.5. Accuracy of the two-layer Extended Network model (20% dropout), compared to

state-of-the-art probabilistic language models and the original Pointer Mixture
Network. 100

4.6. Accuracies of components in the Extended Network model*, including predictions
for nodes without values (i.e. labeled as EmptY). 101

4.7. Accuracies of components in the Extended Network model*, excluding predictions
for nodes without values (i.e. labeled as EmptY). 102

5.1. State-of-the-art of code completion models, primarily from 2018 to 2021. 109
5.2. Criteria for a refined evaluation. 113
5.3. CT3 and related works in supporting refined evaluations. 113
5.4. CT3 schema proposed for Python. 116
5.5. An example of CT3 data for code tokens in the Python150k dataset. 117
5.6. An example of a combination log of CT3-data and prediction results for code

tokens in the Python50k dataset. 118
5.7. Explanation and examples for Syntax Type dimension of CT3. 120
5.8. Explanation and examples for Context dimension of CT3. 122
5.9. Experiment configuration for CT3. 127
5.10. Aggregated accuracy of closed and open vocabulary models. 127
5.11. Exploration of length thresholds for Python100k dataset’s open vocabulary building.136

xxiii

List of Tables

5.12. Investigation of length thresholds for Python150k dataset’s input data file creation.137
5.13. Examination of window sizes for Python150k dataset’s input data file creation. . 140

6.1. Examples of refining sub-snippets for a non-last NL chunk with 2 -NNs. 152
6.2. Experiment configuration for One-shot Correction. 159
6.3. Definitions for difficulty levels (diff.). 161
6.4. CodeBLEU by difficulty level (diff.) across all approaches. 162
6.5. Examples of CodeGenE overlooks or gets confused by extra information. 163
6.6. Definitions for complexity levels (comp.). 166
6.7. CodeBLEU by complexity level across all test cases for CodeGenE model. 167
6.8. Correct outcome ratio and CodeBLEU for each model. 167
6.9. Correct outcome ratio and CodeBLEU for each model over test cases with multi-

chunk queries and non-empty correction data-store. 170
6.10. 1 -NN of the input query at the beginning. 176
6.11. 1 -NN of the input query after updating the correction data-store. 179

B.1. Meaning of data parameters in Figure B.4. B5
B.2. Variants of attention architectures in Bahdanau et al. (2015) and Luong et al.

(2015). B6

xxiv

List of Listings

2.1. Creating a graph with the internal DSL, i.e. methods from classes GraphBuilder
and EdgeBuilder. 21

2.2. Creating a graph without the internal DSL, i.e. excluding classes GraphBuilder
and EdgeBuilder. 21

2.3. SQL query. 22
2.4. NLDSL statement. 22
2.5. Translating NL to Python code with GitHub Copilot (v1.155.0) in VSCode. . . . 28
2.6. Generating explanation for the code snippet in Listing 2.5 (lines 3 – 6) with

GitHub Copilot (v1.155.0) and Copilot Chat (v0.11.1) in VSCode. Just a part of
the text is presented for demonstration purpose. 29

2.7. Completing Python code with GitHub Copilot (v1.155.0) in VSCode. 29

3.1. An example of a DSL statement for Pandas. 56
3.2. Grammar for the left-hand side of definition DSL statements in EBNF, adapted

from Andrzejak et al. (2019a). 59
3.3. Specifying target code as pandas for translating subsequent DSL statements into

Pandas code. 61
3.4. Dataframe inspection with Pandas DSL. 61
3.5. Data preprocessing with Pandas DSL. 62
3.6. Documentation defined for DSL operation group by, adapted from the source

code of vanilla NLDSL (Andrzejak et al., 2019a). 62
3.7. Expression rule for DSL operation group by, adapted from the source code of

vanilla NLDSL (Andrzejak et al., 2019a). 63
3.8. Defining a new DSL operation via internal function. 63
3.9. Definition for the DSL operation group by in tx format. 65
3.10. Basic Deep Learning tasks with TensorFlow DSL*. 67
3.11. Documentation defined for DSL operations group by and apply in NLDSL ex-

tension v0.5.0. 68
3.12. Usages of group by and apply operations with adjusted grammars. 68
3.13. Specifying a CSV file for type provider feature. 69
3.14. Initializing relevant libraries for spark target code in NLDSL extension. 70
3.15. Configuration of auto-imported libraries for each target code. 71
3.16. Handlers registered for did_change event in NLDSL. 72

xxv

List of Listings

3.17. Synchronization indicator with NLDSL. 73
3.18. Setting up a standalone Python interpreter for the Linux-NLDSL extension. . . . 76

5.1. An example code snippet for extracting syntax type information. 119
5.2. An example code snippet for extracting context information. 121

6.1. Message for translating NL query/chunk to Python code using GPT-3.5-Turbo-
0301. 157

6.2. Message for translating NL query/chunk to Python code using GPT-3.5-Turbo-
0301 with correction information combined in input queries. 158

6.3. Prompt template for translating NL query to Python code using GPT-3.5-Turbo-
0125 and our chunking strategy as task descriptions. 169

6.4. Relevant fields of the configuration file on handling the state of the correction
data-store and refining code token types. 175

xxvi

Part I

Preliminaries

1

Chapter 1Introduction

This dissertation aims to address the challenge of supporting researchers and practitioners in
effective programming of data analysis and processing tasks. The first chapter introduces our
motivation (Section 1.1), research goals (Section 1.2), and the corresponding research strategy
(Section 1.3). Subsequently, core research questions derived from the strategy are described in
Section 1.4. Contributions of this thesis and our publications are presented in Sections 1.5 and
1.6, respectively. Finally, the structure for the rest of the manuscript is outlined in Section 1.7.

1.1 Motivation

In the past decade (2013 – 2023), data has become one of the most valuable properties of any
organizations due to the speedy development of technologies and the exponential growth of data
volume (Provost et al., 2013; Alharthi et al., 2017). A statistic published by Taylor (2023)
reveals that the amount of created, consumed, and stored data worldwide is expected to reach
120 Zettabytes1 by 2023, exceeding the volume in 2013 by a factor of 13.3.

This data explosion leads to an urgent demand of agile and effective data analysis to extract
meaningful insights for diverse enterprises, which is also known as data-driven decision making
(Anderson, 2015; Tabesh et al., 2019; Mikalef et al., 2021; Acciarini et al., 2023). Consequently,
data science, a combination of multiple disciplines including math and statistics, specialized
programming, advanced analytics, Artifical Intelligence (AI), and Machine Learning (ML)2, has
captured intensifying attention in recent years.

However, the accelerated progress of data science has unveiled not only a myriad of chances
but also unneglectable challenges. Notably, most end-users struggle with learning and using a
diversity of data science tool-kits due to the technical and analytical know-how problem (BARC,
2015; Knime, 2023). As a result, facilitating data analysis and processing for domain experts,
who are proficient in specific domains (e.g. natural science, engineering, etc.) but have little
programming experience, is a significant challenge in data science.

Andrzejak et al. (2019b) pointed out three common problems encountered by data scientists
and practitioners at the intersection of data science and software engineering. These issues are
(i) programming barrier , (ii) reuse problem , and (iii) scalability problem , subsequently
elaborated as follows:

Programming barrier . Typically, data scientists must engage a substantial amount of
programming languages (e.g. Python, R, SQL), frameworks (e.g. Pandas, NumPy, Scikit-learn),

11 Zettabyte is 1012 Gigabytes or 270 Bytes.
2What is data science, https://www.ibm.com/topics/data-science, (Accessed: 02 November 2023).

3

https://www.ibm.com/topics/data-science

1. Introduction

and tools (e.g. Tableau3 and SAS4) for various data types such as text, time-series data, and
still images (CrowdFlower, 2015; FigureEight, 2018; Appen, 2019; Anaconda, 2022). A project-
specific analysis pipeline can involve numerous programming languages, frameworks, and tools,
which require a certain knowledge from end-users. Furthermore, each language or tool-kit usually
comes with its own Application Programming Interfaces (APIs) and implicates a considerable
effort to find and to understand the suitable functions or components from available libraries. All
these combined significantly prolong a project’s duration and inflate its budget, while hindering
data scientists and practitioners in processing data faster and more efficient.

Reuse problem . With the wide adoption of ML in data science, a majority of the effort
from data scientist and practitioners is dedicated to adjusting code of well-known algorithms and
techniques to specific requirements of a project and its datasets. This necessitates high-quality
reusable libraries. Additionally, deploying ML models across different programming languages
also broadens this problem. Recent surveys published by Anaconda (2020; 2021; 2022) reveal
the top five roadblocks of respondents when moving their models to a production environment,
including the barriers of re-coding ML models from Python/R to another language, and vice
versa. Reusable libraries that can efficiently switch between languages would be a promising
direction to tackle this issue.

Scalability problem . In 2018, 52.18% respondents of a survey conducted by Anaconda
(2018) confirmed that they did not use any technologies for scaling out their data science.
This is no longer feasible with the explosion of data. Ensuring scalability is now critical and
considered as one of the obstacles preventing organizations from successfully integrating ML
models into their software development life-cycle (Knime, 2023). However, scaling algorithms
and software pipelines for large datasets and millions of users in a cost-effective and time-saving
way can be challenging. It involves more complex data structures, libraries, and in some cases
even re-implementation (Andrzejak et al., 2019b). Therefore, a seamless transformation between
sequential and parallel processing scripts for data scientists and practitioners would be beneficial
under these circumstances.

In this dissertation, we aim to mitigate the three aforementioned problems by proposing a set
of approaches and prototypical tools. These solutions target to enable the creation of software
pipelines for scalable data analysis and processing, in an interactive, user-friendly way.

1.2 Research Goals

The purpose of our research project is to effectively and efficiently address the programming
barrier , reuse problem and scalability problem described above. A conceptual goal
to tackle the programming barrier is to develop effective methods for intelligent code rec-
ommendations for scripting data analysis workflows. The scalability problem is mitigated
by developing a common API and (for selected cases) Domain-Specific Languages (DSLs). In
this way, users can write the same code for “small data” and “big data” scenarios. The project

3Business intelligence and analytics software, https://www.tableau.com/.
4Statistical Analysis Software, https://www.sas.com/en_us/home.html.

(Accessed: 22 November 2023).

4

https://www.tableau.com/
https://www.sas.com/en_us/home.html

1.3. Research Strategy

focuses on research contributions but also devotes itself to the practical side through prototypical
tools and some libraries. The latter provide partial solutions to the reuse problem .

Particularly, this dissertation attempts to deliver three following complementary components
for scalable data integration, processing and analysis with consideration of software reuse:

(A) A set of methodologies for accelerated development of flexible software pipelines. This
will address assistance for users with little programming experience but also facilitate
development of pipelines by experts.

(B) A collection of libraries with functions/algorithms for multiple domains of data analysis
and processing, as well as tools for creating further analogue libraries.

(C) Support for scalable processing of data via an approach to access sequential or parallel
version of algorithms under a uniform API and via massively-parallel implementations of
suitable functions from (B).

The next subsection discusses these components in detail alongside our strategy to alleviate
the three target problems.

1.3 Research Strategy

A possible application for the components mentioned in Section 1.2 involves interactive creation
of programs or workflows, as depicted in Figure 1.1. While users explore data, 1 an accelerated
programming (AP) tool suggests them most likely procedures for data transformations or
aggregations. The latter are selected by ML methods (component A) based on previous data ex-
plorations, encoded knowledge of domain experts5, and a set of user-defined functions extracted
from the component B. Furthermore, the sequence of operations is presented in form of an easily
interpretable language, such as Domain-Specific Language (DSL) or Natural Language (NL).

Domain

knowledge &

defined functions

Correction &

historical

data-store

“Small”/”Big”

dataset
AP tool

User

suggesting functions in DSL/NL

selecting/adjusting functions

displaying transformation/aggregation results on data

IDEs

translating

DSL/NL to PLs

Figure 1.1: Interactive construction of programs/workflows with the accelerated programming
(AP) tool targeted in this dissertation.

During data exploration, 2 users select and possibly adjust a suitable operation, which
will be recorded in a data-store for future reference. Subsequently, 3 the chosen operation is

5Users who excel in specific domains but have little programming experience.

5

1. Introduction

translated to a General-purpose Programming Language (GPL) such as Python or R, and 4

the results of this operation are readily performed on a dataset via Integrated Development
Environments (IDEs). This gives immediate feedback in terms of correctness of the suggested
functions and creates hints for further steps. In other words, the AP tool should be fully
integrated into IDEs. Ultimately, another essential feature of such AP tools is that they can
be executed in a distributed way (e.g. with Apache Spark6 as back-ends) to handle very large
datasets while require minimum effort from users (component C).

We anticipate that the above concept can be particularly effective in reducing the programming
effort for data scientists and practitioners in their big data analysis tasks, specifically as follows:

Mitigating programming barrier by harnessing (i) advanced code recommendation
methods, (ii) “high-level programming”, and (iii) a data-centric development environment.

Code recommendation methods support users in selecting the next step of processing by
proposing most likely code fragments or macros given one or more “hints”. ML and AI techniques
are exploited to suggest more complex programs. The overall effect is that less experienced users
do not need to know/learn available processing operations and can “try out” until the desired
result is achieved.

Besides, the “high-level programming” is enabled via libraries of domain-specific operations,
represented as embedded DSLs, which integrate seamlessly into the underlying programming
language (e.g. Python). Each library will capture essential high-level operations in a respective
domain (e.g. data exploration with Pandas/Spark, model creation with TensorFlow/PyTorch).

Finally, a data-centric development environment assists automatic preview of the effects of
each coding step on data. This approach can aid users with program comprehension (under-
standing what the code is performing on the data) and program verification (checking whether
each operation yields expected results). In our project, we leverage modern IDEs for this feature.

Alleviating reuse problem by creating multiple libraries of domain-specific operations
and macros to facilitate accelerated programming of software pipelines in these domains.

The domains covered in this dissertation include: (i) extraction and integration of data from
heterogeneous databases, (ii) building, training, and evaluating standard ML models, and (iii)
evaluating ML models in a refined manner to gain insights for improvements. Libraries of the two
former domains can also be created and extended through a supplementary wizard to facilitate
the progress. This wizard supports users in forming their own domain-specific operations based
on predefined samples.

Tackling scalability problem by (i) unifying APIs for sequential and massively-
parallel processing, and (ii) implementing selected approaches from the aforementioned
domains of reuse problem in a scalable fashion.

The first target is achieved by enhancing the base language (Python or R) and libraries with
6Unified engine for large-scale data analytics, https://spark.apache.org/, (Accessed: 04 December 2023).

6

https://spark.apache.org/

1.4. Core Research Questions

an embedded DSL for processing data frames (i.e. table-like data structures) or relational tables.
There is a dual implementation for these operations, namely sequential and massively-parallel
(under Apache Spark). Users are then able to switch between both modes without changing the
DSL commands of these operations.

The second target is accomplished by implementing selected suitable algorithms and functions
from the last domain considered in the reuse problem as massively-parallel versions. These
implementations should provide identical or similar APIs as for sequential versions. This will
ensure scalability of specialized algorithms, which might be difficult to implement or inefficient
in the proposed embedded DSL.

Methodologies and techniques proposed for addressing the programming barrier , reuse
problem , and scalability problem are integrated into approaches detailed in Chapters 3 – 6.
Each chapter focuses on specific parts of the problems, as summarized in Section 1.7. The next
section presents our core research questions, which are extracted from the discussed strategy.

1.4 Core Research Questions

Given the considered research goals and strategy, our work is conducted by defining and exploring
the following core research questions (CRQs):

CRQ1. Do embedded external Domain-Specific Languages (DSLs) offer benefits
for implementing data analysis tasks?

DSLs, the foundation of low-code development, are specialized languages that yield substantial
gains in conveying business logic and ease of use compared to GPLs in their domain of application
(Mernik et al., 2005). To answer this question, we first identify the obstacles which practitioners
face while fulfilling their data analysis tasks, and then validate if these barriers can be mitigated
using DSLs. Particularly, we divided this research question into sub-problems as follows:

• Determining the hurdles in data analysis tasks,

• Investigating DSLs and analyzing their advantages and challenges in deployment,

• Employing DSLs to accelerate programming in data analysis tasks with low-code manner.

The first two points are clarified in Chapter 2 with supplementary information from Appendix
A. Meanwhile, Chapter 3 unveils solutions for the last point. We published a Visual Studio Code
extension based on our proposed external DSL that has a custom syntax and is embedded into
source code of GPLs as comment statements – hence the term “embedded external DSLs”7.

The response to this question serves as our contribution to the practical side of the doctoral
project. The remaining CRQs are dedicated to the research aspect.

CRQ2. Do ensembles of Machine Learning (ML)-based recommenders improve
the accuracy for code completion approaches?

7See Section 2.1.2 for the definition and examples of external DSLs.

7

1. Introduction

Ensemble methods are considered as the state-of-the-art solution for many ML challenges,
since they improve predictive performance of a single model by training multiple models and
combining their predictions (Sagi et al., 2018). We address this question by leveraging this
concept and evaluating an ensemble-like ML-based model for code completion in comparison to
its components, i.e. single models of classical and neural ML approaches. Description of the
model and our evaluation results are presented in Chapter 4.

CRQ3. Do traditional aggregated evaluation methods reveal useful information
for comparing and characterizing code completion approaches?

Given that ensemble-like methods can enhance the prediction accuracy of single models, it is
important to analyze the effect of each component within the ensemble on specific cases, and
to thereby find hints for further improvements. However, this information is usually omitted
in the results obtained by traditional aggregated evaluation methods, which combine results
over all types of code tokens. We tackle this question by proposing a methodology for refined
evaluation, breaking down the performance of a model into each category of code token types.
Chapter 5 demonstrates the methodology and its advantage in comparing and characterizing
code completion approaches.

CRQ4. Can user feedback enhance Natural Language (NL) to code models
without explicit re-training?

NL to code translation is a prominent approach in facilitating programming. Despite this
method gathering significant attention in recent years, users still encounter some specific prob-
lems in attaining their desired target code. Additionally, feedback from users is considered as a
valuable resource but has been overlooked by current Artifical Intelligence (AI) models.

We answer this question by introducing a methodology for integrating user feedback into NL
to code models without further re-training. The latter is ensured by incorporating a correction
data-store into the code generation process. The utility of our method is illustrated by comparing
the code generated solely by an AI code generator model to the code produced when embedding
user feedback into the AI model. Chapter 6 discusses the concept and evaluation in detail.

1.5 Contributions

This dissertation makes the following contributions:

An extension facilitating the usage and development of embedded external
Domain-Specific Languages (DSLs)

We developed a Visual Studio Code extension named NLDSL8 to illustrate the practical
application of our research strategy (Section 1.3). The extension supports data analysis in
Python with customized DSLs for common operations. The DSL lines are integrated directly

8Visual Studio Marketplace for NLDSL extension on three different operating systems, https://marketplace.
visualstudio.com/publishers/PVS-IfI-Heidelberg-University-Germany, (Accessed: 07 December 2023).

8

https://marketplace.visualstudio.com/publishers/PVS-IfI-Heidelberg-University-Germany
https://marketplace.visualstudio.com/publishers/PVS-IfI-Heidelberg-University-Germany

1.5. Contributions

into Python code as comments and then translated to Python during editing. Consequently,
users can work with diverse data analysis libraries with a small set of DSL commands.

In addition, the extension is implemented with Language Server Protocol (LSP)9 to reduce
the effort in expanding to other programming languages (e.g. R) and editors (e.g. JupyterLab,
PyCharm). The current version of the extension (i.e. NLDSL v0.5.0) covers essential functions
for Pandas data analysis library and Apache Spark framework for large-scale data processing.
TensorFlow and PyTorch support is included, but still in an alpha state. This contribution is
also the answer for our first core research question (CRQ1). Details about the extension are
presented in Chapter 3.

Extensive evaluation and analyses illustrating the leverage of ensemble-like
methods in code completion for dynamically typed languages

To substantiate the advantage of ensemble-like methods in augmenting ML code completion
models (CRQ2), we conducted comprehensive evaluation and analyses of the Extended Network
model, a Python code completion model. Max Eric Henry Schumacher, a Bachelor student in our
research group, proposed this model as a combination of neural and classical ML approaches,
namely Pointer-Mixture Network (Li et al., 2018) and Probabilistic Higher Order Grammar
(Bielik et al., 2016).

Particularly, we (i) assessed the accuracy of the model with different settings of relevant hyper-
parameters and (ii) investigated the performance of each component under multiple dimensions
to understand its respective strengths. The Extended Network model achieves improvements in
accuracy over each of its stand-alone models, which demonstrates the potential of ensemble-like
methods for code completion and recommendation in dynamically typed languages. Chapter 4
introduces the model, our evaluation setup and analysis results in detail.

A methodology for refined evaluation of ML-based code completion approaches

We proposed a methodology called Code Token Type Taxonomy (CT3) which breaks down
the accuracy of a code completion model into various dimensions of code token types. Each
dimension is a relevant attribute of code token that plays a significant role in code completion
demand (e.g. syntax type, origin, or frequency). Every token type in a dimension is identified
by analyzing the Abstract Syntax Tree (AST) of the code snippet.

CT3 offers additional analysis beyond traditional evaluation results, specifically highlighting
the impact of each component in a completion model. This information subsequently facilitates
insights into model challenges. To demonstrate the utility of our approach, we conducted an
empirical study on a Transformer-based code completion approach with two variants, closed
versus open vocabulary. The refined evaluation reveals intriguing results with better accuracy
of the latter variant on multiple token types.

Furthermore, to consolidate the novelty of our methodology and to give an overview of the
research progress in code completion from 2018 to 2021, we review the state-of-the-art of ML-

9Language Server Protocol, https://microsoft.github.io/language-server-protocol/, (Accessed: 07 De-
cember 2023).

9

https://microsoft.github.io/language-server-protocol/

1. Introduction

based approaches in this field. The summary emphasizes the challenge of comparing between
models without explicitly re-evaluating them, due to the differences on numerous aspects such
as input representations, used datasets, and evaluation metrics. This leads to a demand for a
set of standardized benchmarks for code completion approaches.

Chapter 5 discusses our methodology in detail. Besides, the obtained evaluation results are
used as our response to the third core research question (CRQ3). Ultimately, to facilitate the
reproducibility, all the related datasets and source code of our proposed approach have been
made accessible to the community.

An approach to integrate user feedback into code generation models without
explicit re-training

To tackle the last core research question (CRQ4), we proposed a methodology named One-
shot Correction to integrate user feedback into generative AI models without re-training, while
supporting thorough analysis of unexpected outcomes (Chapter 6). The former is achieved
by (i) an additional correction data-store to accumulate feedback from users, (ii) k-Nearest
Neighbor approach to retrieve the correction information across sessions, and (iii) decomposition
techniques to divide code generation into sub-problems. As a result, the provenance of translated
code is audited and therefore enables the latter, i.e. intensive inspection of incorrect outcomes.

We employed a prototype of One-shot Correction and conducted an extensive comparison be-
tween code produced by GPT-3.510 and by our prototype to illustrate the utility of the proposed
method. Additionally, to exhibit the benefit of using One-shot Correction in customizing and
verifying suggested code snippets, we developed a preliminary Graphical User Interface (GUI)
that translates an NL input query to Python code, using the proposed concept. All the source
code, utilized test suites, and evaluation results are made publicly available.

1.6 Publications

This doctoral project comprises the following practical and research publications:

1. A Visual Studio Code extension named NLDSL

On the practical side of the project, we deployed the NLDSL extension on 13 July 2020 and
keep maintaining it since then. As mentioned in Section 1.5, the extension generates code com-
pletions for external DSLs and translates DSL commands to executable code snippets. Further
insights regarding the design, dissemination, and preliminary evaluation of the extension, along
with an answer to the first core research question (CRQ1) are discussed in Chapter 3. Besides,
details of contributors are outlined in Section 3.6 of that chapter.

For the research contributions, we published the following papers:

2. Schumacher, M.E.H., Le, K.T., and Andrzejak, A. (2020). “Improving Code Recommen-
dations by Combining Neural and Classical Machine Learning Approaches”, in Proceedings

10Models from OpenAI, https://platform.openai.com/docs/models/gpt-3-5, (Accessed: 08 December 2023).

10

https://platform.openai.com/docs/models/gpt-3-5

1.6. Publications

of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, pp.
476-482, DOI: https://doi.org/10.1145/3387940.3391489.

This paper demonstrates the potential of ensemble-like methods for code completion and
recommendation tasks in dynamically typed languages. A thorough evaluation of the Extended
Network model is illustrated and explained in the paper. The model is proposed based on
approaches of classical and neural ML. Overall, the model is able to (moderately) surpass its
components. Chapter 4 reiterates the evaluation from this paper and discusses the results related
to addressing the second core research question (CRQ2).

Contribution of authors: Schumacher, M.E.H. proposed the Extended Network model.
Schumacher, M.E.H. and Le, K.T. wrote the manuscript, performed model evaluation, and ana-
lyzed the results with support from Andrzejak, A. All authors discussed the results. Andrzejak,
A. supervised the project.

3. Le, K.T., Rashidi, G., and Andrzejak, A. (2021). “A Methodology for Refined Evaluation
of ML-based Code Completion Approaches”. In KDD Workshop on Programming Language
Processing (PLP).

4. Le, K.T., Rashidi, G., and Andrzejak, A. (2023). “A Methodology for Refined Evaluation
of Neural Code Completion Approaches”. In Special Issue on Programming Language
Processing, Data Mining and Knowledge Discovery, 37(1), pp. 167–204, DOI: https:
//doi.org/10.1007/s10618-022-00866-9.

Paper (4) is the journal version of paper (3). Both papers present a methodology named Code
Token Type Taxonomy (CT3), which is proposed for a refined evaluation of ML-based code
completion models. The utility of the proposed methodology is demonstrated by performing an
empirical study on a Transformer-based code completion approach.

The journal version enhances paper (3) by surveying state-of-the-art ML-based code com-
pletion models (from 2018 to 2021) and modifying the CT3 schema to support distinguishing
between definitions and usages of identifiers. Information of additional experiments related to
utilized thresholds is also provided. Chapter 5 rehashes the CT3 methodology in the journal
version while exploring the findings relevant to tackling the third core research question (CRQ3).

Contribution of authors: Le, K.T. wrote the manuscript (3) with support from Rashidi,
G., and Andrzejak, A., performed the empirical study on the Transformer-based model, analyzed
the results, conducted the state-of-the-art survey, modified the CT3 schema, deployed additional
experiments, updated the results, and subsequently completed the manuscript for the journal
version (4). Rashidi, G. developed the original CT3 schema. All authors discussed the results.
Andrzejak, A. supervised the project.

5. Le, K.T. and Andrzejak, A. (2024). “Rethinking AI Code Generation: A One-shot Cor-
rection Approach Based on User Feedback”. In Automated Software Engineering, 31(60),
DOI: https://doi.org/10.1007/s10515-024-00451-y.

11

https://doi.org/10.1145/3387940.3391489
https://doi.org/10.1007/s10618-022-00866-9
https://doi.org/10.1007/s10618-022-00866-9
https://doi.org/10.1007/s10515-024-00451-y

1. Introduction

This work introduces a methodology named One-shot Correction to incorporate user feedback
into generative AI models without re-training. The method also enables thorough examination
of unexpected results through straightforward approaches and facilitates insights for potential
improvements. Additionally, a preliminary GUI application was developed to demonstrate the
utility of our approaches in simplifying customization and assessment of suggested code for
users. Chapter 6 restates this paper’s content and includes a response to the final core research
question (CRQ4).

Contribution of authors: Le, K.T. proposed the One-shot Correction methodology with
support from Andrzejak, A., implemented the method, conducted extensive evaluation and
ablation study, analyzed the results, developed the GUI, and wrote the manuscript. All authors
discussed the results. Andrzejak, A. supervised the project.

1.7 Structure of the Dissertation

The dissertation is organized into chapters, sections and subsections, adhering a specific format.

Content Distribution

The dissertation is structured in five parts and 8 main chapters. Part I (Chapters 1–2) introduces
the thesis, alongside the knowledge background and related work. Part II (Chapter 3) presents
the practical side of the thesis while Part III (Chapters 4–6) describes the research contributions.
Part IV (Chapters 7–8) concludes the thesis and discusses potential future work. Ultimately, we
group the lists of acronyms and references in Part V. Furthermore, supplementary information
that complements the background knowledge can be found in Appendices A and B.

Table 1.1 exhibits a mapping of chapters, target problems (Section 1.1), and core research
questions (Section 1.4) addressed in the dissertation.

Table 1.1: A mapping from chapters to target problems and core research questions (CRQs).

Chapter(s)
Tackled problems Resolved

CRQsProgramming
barrier

Reuse
problem

Scalability
problem

1, 2 − − − −

3 CRQ1
4 CRQ2
5 CRQ3
6 CRQ4

7, 8 − − − −

− The chapters only provide introductions/conclusions for the issues/questions.
The issue is the primary objective of the chapter.
Methods presented in the chapter provide a part of the solution for the issue.
The issue it not the main concern of the chapter.

12

1.7. Structure of the Dissertation

Specifically, each chapter conveys content as follows:

• Chapter 2 provides background knowledge and related work on two aspects central to
our research: facilitating programming in data analysis tasks through low-code/no-code
development and expediting programming with ML-based methods. Additionally, this
chapter includes a dedicated section on the Transformer architecture, pivotal in numerous
recent generative AI models.

• Chapter 3 outlines practical contributions to the dissertation, focusing on accelerating
programming through low-code approaches by aiding DSL development. It includes an
introduction to the vanilla NLDSL tool and a detailed discussion of enhancements to the
NLDSL extension, as well as our dissemination strategy.

• Chapter 4 introduces and assesses Extended Network model, an ensemble-like model
designed to enable code recommendation in dynamically typed languages. Motivation,
related work, the concept with an illustrative model, and a comprehensive evaluation for
the proposed ensemble-like architecture are respectively discussed in this chapter.

• Chapter 5 demonstrates utility of CT3 methodology for refined evaluation of ML-based
code completion approaches. Similar to Chapter 4, this chapter also presents motivation,
background, the methodology, and evaluation results of the approach.

• Chapter 6 illustrates the One-shot Correction methodology to integrate user feedback into
generative AI models without retraining. The evaluation results highlight the ability of
the proposed method in enabling thorough examination on unexpected outcomes. The
preliminary GUI application is also revealed in this chapter.

• Ultimately, Chapter 7 summarizes our contributions, followed by potential further research
directions delineated in Chapter 8.

Formatting Convention

To aid readers in quickly grasping the ideas of each chapter, in addition to headings, we employed
a formatting convention for content structuring within a section as follows:

Color box type 1:

Texts in this layout deliver important points or findings, which will be further clarified in
the immediately following paragraph(s).

Color box type 2:

This configuration is utilized for key contents of a section, namely core research
questions, contributions, and responses to the research questions.

Unlike the first type of color box, which is always placed before the detailed explanation, the
second type can be positioned either at the start (i.e. presenting core research questions or

13

1. Introduction

contributions) or at the end of a section (i.e. recapping responses to a research question defined
within a chapter or a core research question of the dissertation).

Additionally, multiple predefined icons are integrated throughout the dissertation to highlight
corresponding concepts or to categorize relevant ideas. These icons are intended to expedite
readers in skimming the text. Table 1.2 provides a concise overview of the utilized icons.

Table 1.2: A summary of predefined icons used in the dissertation.

Purpose Icon Meaning

Concept labeling Programming barrier
Reuse problem
Scalability problem

Information marking Advantage
Disadvantage
Outlook or suggestion for the above disadvantage
Notable tool-kit
Application field

14

Chapter 2Background and Related Work

Although data science-related jobs are considered among the most rapidly-growing worldwide,
data scientists still devote more than a third of their time to data cleansing and preparation.
Moreover, researchers and practitioners must engage a plethora of Programming Languages
(PLs) and data science tool-kits, including the impediment of transitioning between languages
during model deployment (more details in Appendix A).

Our work targets to accelerate the code-centric tasks of these jobs, for both data scientists and
practitioners. We pursue this objective through two directions, partitioning the contributions of
our work into practical and research sides, namely: (i) facilitating data analysis and processing
tasks in low-code manner and (ii) advancing programming with Machine Learning (ML)-based
approaches. Before delving into our individual contributions, this chapter provides background
knowledge and relevant works, serving as foundation for our proposed methodologies.

Particularly, Section 2.1 introduces an overview of low-code and no-code methods, discusses
advantages and challenges of Domain-Specific Languages (DSLs) in accelerating programming,
and highlights prominent data analysis and processing tool-kits that employ these techniques.
Subsequently, Section 2.2 outlines well-known Machine Learning (ML)-based approaches for
augmenting general programming tasks. Furthermore, due to the importance of Transformer
model, the power behind numerous notable generative AI models in recent years, we dedicate
Section 2.3 to presenting the model’s architecture and reviewing its successors. Ultimately, we
end this chapter by a brief summary in Section 2.4.

2.1 Facilitating Data Analysis and Processing in Low-code Manner

As mentioned above, data analysis tasks involve multiple tool-kits and programming languages.
This requires specialized skill-sets, including the ability to code for data analysts. However, with
the increasing significance of data, the need for broader access to data analysis and processing
beyond specialists emerges as a pressing concern.

Consequently, low-code to no-code applications are deployed to enable users of all experience
levels to analyze data with minimal coding skills (Karl, 2023). This section firstly highlights
the pros and cons of low-code and no-code approaches, then introduces the backbone of these
techniques, Domain-Specific Languages (DSLs). Ultimately, well-known tool-kits in low-code or
no-code fashion for data analysis and processing tasks are outlined to conclude the section.

15

2. Background and Related Work

2.1.1 Low-code and No-code Development

Forrester1 presented the term “low-code” to the public in 2014, referring to “platforms that enable
rapid application delivery with a minimum of hand-coding, and quick setup and deployment, for
systems of engagement” (Richardson et al., 2014; Luo et al., 2021). Despite the longstanding
presence of the idea, the market of these platform-based development approaches has only begun
to grow exponentially in recent years (Luo et al., 2021; Elshan et al., 2023; Hirzel, 2023).

An Overview of Low-code and No-code Development

Low-code: Low effort of coding in general-purpose programming languages (e.g. Python).

There are various names adopted to refer to such techniques, such as Low-code Development
(Luo et al., 2021), Low-code Programming (Hirzel, 2023), Low-code Platform, Low-code Devel-
opment Platform, and Low-code Application Platform (Bock et al., 2021; Elshan et al., 2023).
Regarding the terms used, the conceptual goal is to allow users to develop applications with
less coding effort by minimizing the use of GPLs and instead utilizing alternative means such
as Graphical User Interface (GUI) or Natural Languages (NLs) (Luo et al., 2021; Elshan et al.,
2023; Hirzel, 2023).

Notable examples of Low-code Application Platforms comprise OutSystems2, Mendix3,
and Microsoft Power Apps4. Prominent advanced low-code features supported by these tools
involve AI-augmented development, third-party Continuous Integration (CI) and Continuous
Deployment (CD), on-premises deployments, multiexperience development, and publishing a
custom AI model (Vincent et al., 2022). However, each product has its own strengths and
constraints which should be thoroughly considered before deploying. Discussing these platforms
in detail is beyond the scope of this dissertation.

Unlike low-code, no-code requires no coding experience from users and therefore is more
suitable for end-users than professional developers.

While Luo et al. (2021) and Bock et al. (2021) considered these terms as synonyms, Hirzel
(2023) and Elshan et al. (2023) argued that there is a slight difference between these develop-
ment approaches. In the second view, no-code possesses significant overlap with low-code while
requiring zero handwritten code in a general-purpose programming language (Hirzel, 2023). The
latter is accomplished through GUIs, enabling users to manipulate input and output by selecting
and arranging (or by drag and drop in some applications), configuring, and connecting elements
from built-in program libraries or third-party plugins (Elshan et al., 2023).

Examples of no-code platforms include website builder tools, such as Shopify5, Wix6,
1A research and advisory company, https://www.forrester.com.
2Low-code Development Platform, https://www.outsystems.com/.
3Low-code Platform, https://www.mendix.com/.
4Build Apps with AI, https://www.microsoft.com/en-us/power-platform/products/power-apps.
5Commerce platform, https://www.shopify.com/.
6Website builder, https://www.wix.com/.

(Accessed: 02 January, 2024).

16

https://www.forrester.com
https://www.outsystems.com/
https://www.mendix.com/
https://www.microsoft.com/en-us/power-platform/products/power-apps
https://www.shopify.com/
https://www.wix.com/

2.1. Facilitating Data Analysis and Processing in Low-code Manner

and WordPress7. On these platforms, users can drag and drop provided components to
build their websites with minimal knowledge of web development. Features of the websites can
be expanded by installing third-party plugins, for instance Search Engine Optimization (SEO)
plugins for commerce sites. Users can also write small scripts to customize some components in
their websites (considered as low-code cases).

However, supported elements in no-code platforms are restricted to complex features of back-
end applications and not designed for professional developers. This arises from the predefined
construction of these elements and the lack of accompanying scripting languages (Hirzel, 2023;
Elshan et al., 2023). Additionally, Luo et al. (2021) indicated in their surveys that low-code and
even no-code techniques do not exclude the use of GPLs, particularly for complicated issues.
Therefore, we consider no-code as a sub-domain of low-code and cover its concept
in the following when using the term “low-code”.

Low-code Development Usage: Who and Where

Hirzel (2023) pointed out that users of low-code range from professional developers to so-called
citizen developers. The latter are users with little or no formal programming skills but tend to
have more extensive domain knowledge. Domain experts in explicit disciplines such medicine,
chemistry, and engineering become citizen developers with the aid from low-code approaches.
These platforms concurrently amplify professional developers’ productivity by expediting tedious
procedures, allowing them to concentrate on advanced tasks.

Studies published by Luo et al. (2021), Johannessen et al. (2021), and Di Ruscio et al. (2022)
reveal that low-code techniques were employed on various application types (e.g. mobile, web)
across multiple application domains (e.g. E-Commerce, Business Process Management, and
Social Media). Specifically, low-code brings the most benefits for repetitive and time-consuming
tasks, facilitating faster completion for developers. Besides, low-code is also suitable for rule-
based operations with minor exceptions, given its limitation in customization (Hirzel, 2023).

Benefits, Limitations and Outlook of Low-code Development

A survey conducted by Luo et al. (2021) highlights various advantages and disadvantages
of low-code approaches, cited by developers through online communities. Other studies from
Elshan et al. (2023), Hirzel (2023), and Martinez et al. (2023) reaffirm the points. Besides, these
authors also provided their perspectives on mitigating the identified issues.

Low-code serves as a shared language, enhancing communication between professional
and citizen developers by providing common perspectives.

Apart from the target to minimize coding effort, low-code platforms can accelerate
development, and in some cases, reduce organizational costs. This is attributed to the fact
that less technically savvy employees are enabled to implement their application ideas, alleviating
the workload and demand for programming experts. Besides, most low-code applications come

7Web content management system, https://wordpress.com/, (Accessed: 02 January, 2024).

17

https://wordpress.com/

2. Background and Related Work

with GUIs to offer a newbie-friendly and easy way for citizen developers to get familiar with
the apps, compared to learning a new general-purpose programming language (Luo et al., 2021).

Notably, both Hirzel (2023) and Elshan et al. (2023) agree that low-code techniques can be
utilized to communicate among users, specifically to mitigate the tension between professional
developers and domain experts. For instance, end-users or domain experts might use low-
code tools to illustrate their desired operations, while professional developers explain existing
functions or propose a new feature in a user-friendly way through these tools.

Significant drawbacks of low-code platforms include the dependency on vendors (i.e.
vendor lock-in) and the lack of source code access.

Low-code applications not only offer undeniable rewards but also entail inherent shortcomings.
Respondents from the surveys of Luo et al. (2021), Elshan et al. (2023), and Martinez et al. (2023)
emphasized the reliance on specific vendor’s environments while using low-code applications,
or so-called vendor lock-in. Users are bound to the utilized platform, obligating them to accept
vendor-imposed changes, such as price escalation or service termination.

A contributing factor to the above drawback is the retention of users’ source code by most
low-code platform vendors (Elshan et al., 2023). In other words, users are hindered while
transitioning between platforms. Besides, no access to source code also causes restrictions in
maintenance and debugging capabilities, impeding experienced developers from performing
their tasks (Luo et al., 2021).

Furthermore, low-code is less powerful than traditional programming due to the lack of
customization, particularly for complicated components. In addition, while low-code platforms
may reduce the need for professional developers, they encounter the issue of raising licensing
costs with increased number of users (Luo et al., 2021; Martinez et al., 2023).

Ultimately, by exploring prominent techniques of low-code, Hirzel (2023) identified further
weaknesses. For instance, although Programming by Natural Language (PBNL) enables users
to communicate with applications through NL, the generated programs from these NL queries
are often wrong due to the ambiguity of NL.

Leveraging Artifical Intelligence (AI) and exposing Domain-Specific Languages (DSLs),
the cornerstone of low-code techniques, can address the previously outlined disadvantages.

To prevent or alleviate the aforementioned problems, developers are recommended to carefully
assess a low-code platform before integrating it into their business. For example, open-source
platforms might mitigate the concerns related to vendor lock-in and missing source code access.
Meanwhile, ensuring that the platform provides sufficient implementation units with flexibility
might lessen the issue of lacking customization (Luo et al., 2021).

Besides, AI can be used to enhance low-code techniques, e.g. by deploying Large Language
Models (LLMs) in processing NL and generating prominent code snippets (Hirzel, 2023; Cai et
al., 2023). More details about these advancements are presented in Section 2.2. Notably, Hirzel
(2023) also underlined in his study that most low-code techniques inherently correlated with

18

2.1. Facilitating Data Analysis and Processing in Low-code Manner

DSLs, i.e. programming languages tailored to specific domains (Mernik et al., 2005). However,
these associated DSLs are not always accessible to users. Hirzel argued that by exposing DSLs
for low-code, users can test, audit, and share them across applications, tackling the obstacles of
vendor lock-in and transition between platforms.

It is worth noting that the viewpoints given by Elshan et al. (2023) and Martinez et al.
(2023) mostly focus on the business side and therefore are excluded from this discussion. The
concept, benefit, and limitation of low-code consolidate our motivation behind the published
NLDSL extension (Chapter 3). In the next subsection, we introduce an overview of DSLs, their
advantages and challenges, serving as background for this contribution.

2.1.2 Domain-Specific Languages

Domain-Specific Languages (DSLs) serve as the backbone of low-code techniques, sharing the
goal of expanding opportunities for domain experts to express and implement their requirements.
Traditionally, domain experts with specific knowledge must describe their needs to developers,
who encode the domain knowledge in GPLs like Python or Java. This process results in cryptic
scripts that are challenging for domain experts. Besides, implementing individual requirements is
error-prone and laborious. Moreover, the resulting code obscures the core knowledge, preventing
domain experts from recovering the original business logic (JetBrains, 2017).

Additionally, communication between domain experts and developers is acknowledged as the
most challenging aspect of software projects and a prevalent cause of project failure (Fowler,
2010). Consequently, this issue underscores the need for a specialized programming language
with a higher level of abstraction than GPLs, facilitating better understanding and utilization
by domain experts. DSLs fulfill this requirement.

It is worth noting that DSL is not a recent research concept. Indeed, in the 1980s, DSLs were
referred by various names such as special purpose, task-specific, application or little languages
(Mernik et al., 2005). These names already convey the essential properties of such languages.

An Overview of DSLs

DSL: A highly abstracted programming language tailored for a particular domain.

It is important to firstly clarify that we avoid using “expressiveness” in the definition as
proposed by Mernik et al. (2005) and Fowler (2010) due to their distinct interpretations. Mernik
et al. (2005) associated the word with the state of showing thoughts8, i.e. the ease of conveying
business logic in this case, asserting that GPLs are less expressive than DSLs. Meanwhile, Fowler
(2010) referred to the breadth of capabilities supported by a language (Felleisen, 1990), placing
GPLs above DSLs in “expressiveness”. The latter is shaped by GPLs’ adaptability across diverse
problems, solutions, or businesses, whereas DSLs offer essential features within their domains.

Inspired by Fowler (2010) and to minimize ambiguity, we adjust the definition for the four
key elements of a DSL as follows:

8Cambridge’s definition of “expressiveness”, https://dictionary.cambridge.org/dictionary/english/
expressiveness, (Accessed: 07 January 2024).

19

https://dictionary.cambridge.org/dictionary/english/expressiveness
https://dictionary.cambridge.org/dictionary/english/expressiveness

2. Background and Related Work

• Computer programming language. A DSL is indeed a programming language, designed in
an ease of use manner for humans. Although Mernik et al. (2005) and Managoli (2020)
noted that DSLs can be non-executable, Fowler (2010) argued for their executability. This
dissertation targets DSLs of the latter case.

• Language nature. A DSL is a language where fluency arises not only from individual
expressions but also from their composability.

• High level of abstraction. As mentioned above, a DSL is expected to provide higher ab-
straction level than GPLs, aiding domain experts in comprehending and implementing the
code written in this language.

• Domain focus. Unlike GPLs, DSLs address problems in a specific field of expertise, e.g.
HyperText Markup Language (HTML) and Cascading Style Sheets (CSS) for web appli-
cation, Structured Query Language (SQL) for database queries, or Extensible Markup
Language (XML) for markup languages (Mernik et al., 2005; Managoli, 2020).

There are two types of DSLs: internal and external DSLs, distinguished by their underlying
parsing mechanisms.

Particularly, internal and external DSLs are classified based on the differences between two
following language types, according to Fowler (2010) and Managoli (2020):

• DSL script: The language used for writing or presenting a DSL.

• Host language: The GPL in which the DSL is processed and executed.

Internal DSLs. An internal DSL is a special way of using GPLs, creating the impression
of a custom language within the host language through libraries written in that host language
(Fowler, 2010; Korz et al., 2023). DSL script and the host language are identical in this case.
Therefore, internal DSLs is also known as embedded DSLs (Kosar et al., 2008; Managoli, 2020).

To exemplify an instance of internal DSLs, Sanaulla (2013) followed the guidelines of Fowler
(2010) and implemented his DSL in Java using Method Chaining. For simplicity, we use an
Unified Modeling Language (UML) class diagram to depict his code in Figure 2.1. Listing 2.1
demonstrates the code for graph creation using the implemented DSL, while Listing 2.2 displays
the code without utilizing the DSL, achieving the same task.

Initially, three classes Graph, Edge, and Vertex (Figure 2.1) are created as basic elements. A
graph can encompass multiple edges and vertices, with each edge being defined by two vertices
and a specific weight. Without further implementation, a graph can be constructed using these
three classes as illustrated in Listing 2.2.

The internal DSL of Sanaulla is implemented via two additional classes, namely GraphBuilder
and EdgeBuilder. Methods provided by these classes (e.g. method edge of class GraphBuilder,
methods from, to, and weight of class EdgeBuilder) facilitate graph building in a concise way,
chaining methods one after another, as represented in Listing 2.1. Fowler (2010) called the DSL

20

2.1. Facilitating Data Analysis and Processing in Low-code Manner

Figure 2.1: UML class diagram* of Java code used to create an internal DSL (Sanaulla, 2013).

* The class diagram was created using IntelliJ IDEA Ultimate.

1 Graph()
2 .edge()
3 .from("a")
4 .to("b")
5 .weight(10.0)
6 .edge()
7 .from("b")
8 .to("c")
9 .weight(20.0)

10 .edge()
11 .from("d")
12 .to("e")
13 .weight(50.5)
14 ...
15

Listing 2.1: Creating a graph with the internal
DSL, i.e. methods from classes
GraphBuilder and EdgeBuilder.

1Vertex vA = Vertex("a");
2Vertex vB = Vertex("b");
3Vertex vC = Vertex("c");
4...
5Edge abEdge = Edge(vA, vB, 10.0);
6Edge bcEdge = Edge(vA, vB, 20.0);
7...
8Graph sampleGraph = Graph();
9
10sampleGraph.addVertice(vA);
11sampleGraph.addVertice(vB);
12...
13sampleGraph.addEdge(abEdge);
14sampleGraph.addEdge(bcEdge);
15...

Listing 2.2: Creating a graph without the in-
ternal DSL, i.e. excluding classes
GraphBuilder and EdgeBuilder.

21

2. Background and Related Work

designed in this such case as fluent interface, resulting from its English-like readability. We
prefer to the code of Sanaulla (2013) for the detailed implementation.

External DSLs. In contrast to internal DSLs, the language used to present an external DSL
(i.e. DSL script) and its host language are clearly distinguishable. An external DSL usually has
a custom syntax or adopts a syntax from another language. Popular examples of such external
DSLs are regular expressions, SQL and XML (Fowler, 2010).

For instance, referencing the time allocation survey conducted by Anaconda (2022) illustrated
in Table 2.1, users can use external DSLs to identify the first three tasks occupying more than
20% of data scientists’ working time. Listing 2.3 and 2.4 display the corresponding commands
written in SQL and in our NLDSL (Chapter 3), respectively.

Table 2.1: A survey of how data scientists
spend their time (Anaconda, 2022).

Tasks Duration(%)*

Data prep. & clean. 38
Model selecting 9
Model training 9
Model deploying 9
Data visualization 13
Reporting & presentation 16
Other 7

* Due to rounding, the total is not 100%.

Question: Which three tasks consume more
than 20% of data scientists’ working time?

1SELECT TOP 3 tasks
2FROM table_survey
3WHERE duration > 20;

Listing 2.3: SQL query.

1on df_survey | select rows df_survey. ↩
↪ duration > 20 | select columns ↩
↪ "tasks" | head 3

Listing 2.4: NLDSL statement.

Both SQL and NLDSL employ distinct syntaxes. Queries in SQL are separated by semicolons
and can span one or multiple lines. In contrast, NLDSL breaks a one-line statement into opera-
tions connected by vertical dashes. Additionally, Python serves as the host language for NLDSL,
while SQL can be processed and executed by various host languages, depending on its version.
For example, C/C++ is utilized for MySQL (Pachev, 2007).

In contrast to internal DSLs, which necessitate knowledge of the implementing language,
external DSLs are more suitable to reduce programming complexity for domain experts. As a
result, we deploy a tool utilizing our proposed external DSL, primarily for data analysis and
processing tasks, to illustrate our practical contribution in Chapter 3.

DSL Usage: Who and Where

Developers and domain experts can leverage DSLs to fulfill specific objectives. For instance,
in web construction, DSLs such as HTML and CSS find application for both developers and
domain experts (Fowler, 2010). However, in contrast to approaches like low-code or no-code,
DSLs still operate as programming languages, necessitating domain experts to possess a certain
level of proficiency in the languages involved. For developers, several DSLs can also generate
corresponding scripts in GPLs for them (Córdoba-Sánchez et al., 2016; Andrzejak et al., 2019a;
Dejanović et al., 2021; Korz et al., 2023).

22

2.1. Facilitating Data Analysis and Processing in Low-code Manner

Applications of DSLs span across diverse domains, ranging from programming (Córdoba-
Sánchez et al., 2016), data analysis (Andrzejak et al., 2019a; Korz et al., 2023), smart contract
(Wöhrer et al., 2020), robotics (Dhouib et al., 2012) to life science (Lakin et al., 2020) and even
psychology in social science (Dejanović et al., 2021). Despite varying research fields, these DSLs
collectively aim to address specific issues within their respective domains. However, developing
DSLs poses certain challenges, constituting inherent limitations of these languages.

Benefits and Limitations of DSLs

Endowed with the aforementioned design attributes, DSLs offer numerous advantages for
developers and domain experts. However, their benefits also come with associated costs.

DSLs can facilitate the reuse of software artifacts, while advancing communication among
developers and domain experts.

Similar to low-code, DSLs make software development more sufficient by multiple means.
Firstly, the clarity delivered by DSLs improves code readability, understanding, error identifi-
cation, and modification, thereby enhancing development productivity. Moreover, the restricted
scope and structure of DSLs make incorrect usage more challenging (Fowler, 2010).

Secondly, DSLs expedite the reuse of software artifacts, such as source code and designs.
Prominent instances involve internal DSLs, implemented as APIs within their host languages
(Mernik et al., 2005) and external DSLs capable of generating GPLs for users. It is important
to recall here that the reuse problem is one of the key focuses of this dissertation.

Ultimately, through clear and precise language, DSLs establish a shared understanding for
both domain experts and developers, hence alleviating the inherent communication challenges
between these users (Fowler, 2010; Andrzejak et al., 2019a). DSLs enable developers to create an
environment where domain experts can express requirements in an intuitive manner, preserving
business logic without burdening experts with intricate implementation details (JetBrains, 2017).

DSL development is challenging, requiring expertise in both domain knowledge and
language development.

Mernik et al. (2005) and Alves (2023) emphasized that developing DSLs expects substantial
effort and thorough consideration of various factors from business to technical aspects, such as
user community size, training, support, and maintenance overheads. Besides, constructing a
functional DSL demands expertise in both domain knowledge and language development, a skill
set found in only a limited number of individuals.

Additionally, drawbacks for each type of DSL are also underlined by Fowler (2010) and Korz et
al. (2023). Internal DSLs are constrained by the host language, resulting in inflexible syntaxes
and support. Meanwhile, external DSLs offer diverse syntaxes but involve high development
costs, spanning from parsers to code generators or compilers. Moreover, external DSLs might
encounter challenges in efficiently communicating with other languages used in a project.

23

2. Background and Related Work

Language Workbenches for DSLs

Language workbenches: Software engineering tools that streamline the creation and
modification of programming languages through advanced editors, significantly reducing
the development cost.

Fowler (2010) introduced the term language workbenches specifically for DSLs. This term
refers to tools that assist users in defining and editing DSLs, making it more feasible for domain
experts to write their own DSLs. Campagne (2014) and Erdweg et al. (2015) extended the
definition to computer languages in general.

Language workbenches typically support users in defining three following aspects of a DSL
environment (Fowler, 2010):

• The language schema (e.g. data structure) of the DSL.

• The editing environment, i.e. the editor, where users can write and modify the DSL,
including textual editor and projectional editor. While the former assists modification
with text only, the latter expands its format to diagrams, tables, or forms.

• The functionality of the DSL script, often involving code generation.

Notable language workbenches for DSLs include Spoofax (Kats et al., 2010), MPS (Campagne,
2014), Xtext (Bettini, 2016), and textX (Dejanović et al., 2017). MPS uniquely features a
projectional editor, while textX is specifically employed for Python-based DSL creation, distinct
from the Java-centric approach of the other tools. Additionally, all these tools facilitate the
generation of DSLs into corresponding GPLs (e.g. Java or Python).

Erdweg et al. (2015) defined a feature model outlining essential characteristics of a language
workbench and systematically evaluated ten prominent tools by using them to develop a new
questionnaire DSL. The study found that all utilized language workbenches met the fundamental
criteria for rendering and executing the new DSL. Furthermore, the authors observed a marked
improvement compared to manual implementation.

In summary, DSLs with language workbenches and low-code approaches provide unequivocal
benefits in enhancing the capabilities of domain experts, enabling task accomplishment without
extensive technical expertise. In the next subsection, we give an overview of notable low-code
tool-kits deployed for expediting data analysis and processing tasks.

2.1.3 Low-code Tool-kits for Data Analysis and Processing

Multiple low-code research directions have emerged to accelerate and automate data analysis and
processing tasks while enhancing intuitiveness. Theses fields include mixed-initiative approaches
(Makonin et al., 2016), predictive interaction strategies (Heer et al., 2015), data processing
based on input-output examples (Gulwani, 2011), and a fusion of live programming with GUIs
and DSLs (DeLine, 2021). The shared foundational concept of these methods is illustrated in
Figure 2.2. The notion encompasses 1 a predictive system learning user intention for guiding

24

2.1. Facilitating Data Analysis and Processing in Low-code Manner

potential subsequent data handling steps, 2 human analytical reasoning in selecting appropriate
actions, and 3 a real-time data visualization interface responding to user-initiated changes.

Month Month data scientistdata analystdata engineerhuman resource

2013-01 2013 3 9 2 72

2014-01 2014 5 11 2 75

2015-01 2015 8 14 3 70

2016-01 2016 12 15 3 70

2017-01 2017 16 18 5 67

2018-01 2018 21 24 7 62

2018-12 2018 21 24 7 49

2020-01 2020 30 36 12 62

2021-01 2021 28 34 12 53

2022-01 2022 41 65 26 65

2023-01 2023 45 91 30 63

Human

analytical

reasoning

Predictive system Visual interface

su

g
g
estio

n

Figure 2.2: Underlying concept of low-code approaches for data analysis and processing, adapted
from Figure 1 of Makonin et al. (2016).

Data Wrangling Tool-kits in Research

A majority of researchers sought to tackle the data transformation challenge, commonly
referred to as data wrangling. In this case, the predictive system of the data wrangling
tool recommends suitable actions to handle diverse data formats from various sources and
standardize the data for compatibility with further analysis tools (Raza et al., 2017).

One prevalent approach for suggesting potential operations is based on a set of implemented
ones. Notable tools in this domain include Wrangler Trifacta (Kandel et al., 2011), NLDSL
(Andrzejak et al., 2019a), and Virtual DSL (Korz et al., 2023). While Wrangler Trifacta
facilitates interaction through a data table with a range of possible actions, the other two tools
incorporate DSLs into source code files. This enables users to utilize and define their own
functions, seamlessly transitioning between DSLs and GPLs. Detailed discussion on NLDSL is
presented in Chapter 3.

Another strategy for prompting next possible steps involves utilizing input-output examples,
where users provide pairs of input data and corresponding target output. This enables the
predictive system to learn user intention from these examples and apply similar actions to the
remaining data. FlashFill (Gulwani, 2011), a popular example featured in Microsoft Excel,
employs this method. While WREX (Drosos et al., 2020) and FlashFill++ (Cambronero
et al., 2023) adhere to a similar principle, Raza et al. (2017) adjusted the underlying concept
and proposed a predictive program synthesis technique. This procedure infers data extraction
actions based solely on input examples, exempting users from the obligation to explicitly specify
their purpose.

Notably, AI can be used to augment the predictive system. Petricek et al. (2022) pointed
out that employing an AI assistant framework for semi-automated data wrangling, guided by
users, would streamline data processing tasks compared to manual or fully automatic tools.

25

2. Background and Related Work

Furthermore, Jaimovitch-López et al. (2023) exploited data wrangling using GPT-3 DaVinci,
a generative AI model, with other tools such as FlashFill and Wrangler Trifacta, obtaining
competitive results.

Ultimately, Shrestha et al. (2021) developed Unravel, a low-code tool designed to assist data
scientists in detailed code comprehension and exploration. Instead of predicting next actions,
the underlying system of the tool dissects data wrangling code into multiple transformations.
Users can inspect, enable/disable each transformation, or rearrange the order via drag-and-drop.
This leverages the design pattern known as fluent interface, where the code represents a single
chain of various operations on a data table (similar to the example in Listing 2.1).

Data Preparation Tool-kits in Industry

In industry, low-code data preparation and analytics tools provide device-agnostic and
platform-independent support. These tools reach beyond the analysis and processing tasks,
toward advanced features such as report generation and cloud-based collaboration.

Dearmer (2023), Agadumo (2023), and Haan (2024) revealed recent top data preparation and
analytics tools, highlighting key features of each tool. They also pointed out that selecting
the appropriate tool involves comprehensive assessment of multiple factors such as ease of use,
supported features, compatibility, collaboration, scalability, and last but not least pricing.

For instance, Microsoft Power BI9 (i.e. Business Intelligence) is recommended for small
organizations, whereas SAP Analytics Cloud10 might be cost-prohibitive for small-scale
enterprises. Besides, while most tools support both desktop and mobile applications, some, such
as Alteryx11 (powered by Trifacta), Altair Monarch12, KNIME13, and Datameer14,
primarily focus on desktop users.

In addition, these tools offer different low-code methods to process data. Alteryx, KNIME,
Datameer, and Tableau15 enable users to define preparation workflows through a chain of
built-in components. Meanwhile, Microsoft Power BI, SAP Analytics Cloud, and Altair Monarch
communicate business insights through interactive data visualizations (e.g. charts and graphs).

Notably, all these tools increasingly integrate AI into their systems, utilizing it for tasks such
as discovering data patterns, generating reports, and automating repetitive content creation
tasks. An exemplar in this domain is DataGPT16, introduced in October 2023 as the first
conversational AI data analytics software (Rubin, 2023). Powered by GPT-4, a generative AI
model developed by OpenAI, DataGPT uniquely engages with users through English dialogues,
exempting them from programming tasks.

9Data visualization software, https://www.microsoft.com/en-us/power-platform/products/power-bi.
10All-in-one cloud product, https://www.sap.com/products/technology-platform/cloud-analytics.html.
11Data science and analytics automation platform, https://www.alteryx.com/.
12Self-service data preparation solution, https://altair.com/monarch.
13Open source platform, https://www.knime.com/.
14Data transformation platform, https://www.datameer.com/.
15BI and analytics software, https://www.tableau.com/.
16Personal AI data assistant, https://datagpt.com/.

(Accessed: 24 January 2024).

26

https://www.microsoft.com/en-us/power-platform/products/power-bi
https://www.sap.com/products/technology-platform/cloud-analytics.html
https://www.alteryx.com/
https://altair.com/monarch
https://www.knime.com/
https://www.datameer.com/
https://www.tableau.com/
https://datagpt.com/

2.2. Advancing Programming with Machine Learning-based Approaches

Ultimately, it is worth mentioning that deploying the aforementioned products for a large user
base can be pricey, as many of them calculate billing per user. Some tools offer free basic plans
with limitations, like Klipfolio17 and Zoho Analytics18, or are heavily reliant on specific
platforms, such as Google Analytics19.

In general, the proliferation of data preparation/wrangling tools in both industry and research
have demonstrated the importance of data processing tasks and the success of the low-code
concept. Martinez et al. (2023) affirmed the significant benefits of low-code in transforming data
into information. However, these rewards come with inevitable costs (Section 2.1.1) and at the
end, users still need programming knowledge to accomplish complicated features (Luo et al.,
2021). In this case, accelerating programming tasks would be beneficial for both domain experts
and developers. The next section discusses ML-based approaches for this purpose.

2.2 Advancing Programming with Machine Learning-based Approaches

Programming is a crucial phase in both the software development and data science life cycles.
While low-code approaches enhance accessibility for a diverse range of users, from professional
developers to domain experts (details in Section 2.1.1), modern IDEs facilitate the process while
minimizing potential errors for developers. Essential features of an IDE include code editing,
compiling, debugging, syntax highlighting (which uses different colors for keywords and relevant
code tokens), linting to underline syntactic errors, and auto-completion based on built-in libraries
(RedHat, 2019; Dehaerne et al., 2022).

However, many IDEs, without reliance on particular plugins, lack support for complicated
tasks such as predicting subsequent code tokens from prior code or implementing functions from
NL descriptions. To meet the rising demand for accelerating scripting to non-programming
experts, various research directions have emerged, fueled by the rapid evolution of ML and
technologies (Dehaerne et al., 2022; Yang et al., 2023; Sharma et al., 2024).

This section offers a concise overview on application domains of ML-based approaches for
source code. It then summarizes the naturalness hypothesis, a key concept inspiring the advance-
ment of ML models for code. Subsequently, popular traditional ML techniques and well-known
deep learning methods for code-related tasks are outlined.

2.2.1 Application Fields

Numerous surveys have been conducted to exploit the abundance of studies in the domain of
ML for source code (Allamanis et al., 2018; Le et al., 2020; Dehaerne et al., 2022; Yang et al.,
2023; Sharma et al., 2024). Despite varied focuses and grouping methods, these surveys still
share some overlapping application categories. In this dissertation, we mainly discuss research
fields related to our work and briefly mention the remaining.
17Self-service BI, https://www.klipfolio.com/.
18BI platform, https://www.zoho.com/analytics/.
19Web analytics service, https://marketingplatform.google.com/about/analytics/.

(Accessed: 24 January 2024).

27

https://www.klipfolio.com/
https://www.zoho.com/analytics/
https://marketingplatform.google.com/about/analytics/

2. Background and Related Work

Among a plethora of application types in ML for source code domain, NL to code
models and code completion approaches are our core interests.

Particularly, Dehaerne et al. (2022) classified ML-based code generation studies into three
paradigms: description-to-code, code-to-description, and code-to-code, each encompassing one
to multiple application types.

Description-to-code indicates approaches that synthesize code from non-code inputs, with
NL to code techniques occupying the majority (Dehaerne et al., 2022; Wang et al., 2023b).

Other categories involve producing scripts from input-output examples and converting
images/sketched GUIs to code (Souza Baulé et al., 2020; Dehaerne et al., 2022).

Notable models and tools of the NL to code domain include TranX (Yin et al., 2018), CodeT5
(Wang et al., 2021c), GitHub Copilot20, and Tabnine21. Listing 2.5 displays an example of
translating NL comments to Python code using GitHub Copilot (v1.155.0) in Visual Studio
Code (VSCode). The first two lines are requirements or description specified by users while the
subsequent lines are code statements generated by Copilot.

1 # increase every element in the list of salaries by 1000
2 # and print the new list
3 salaries = [1000, 2000, 3000, 4000, 5000]
4 for i in range(len(salaries)):
5 salaries[i] += 1000
6 print(salaries)

Listing 2.5: Translating NL to Python code with GitHub Copilot (v1.155.0) in VSCode.

produced by GitHub Copilot

Code-to-description is also known as documentation generation or code summarization.
These studies target to generate understandable NL description of a code snippet. Prominent
models of this research direction comprise PLBART (Ahmad et al., 2021), CodeBERT (Feng
et al., 2020), GitHub Copilot, and GPT-3.5 & 422, which power Copilot Chat23.

Listing 2.6 represents some first lines of an explanation generated by GitHub Copilot (v1.155.0)
and Copilot Chat (v0.11.1) in VSCode for the code snippet in Listing 2.5 (lines 3 – 6). The
content is created by right clicking on the chosen code lines and selecting the options “Copilot”
then “Explain This”. For simplicity, Listing 2.6 displays solely a part of the explanation.

Code-to-code applications transform code from one form to another. Categories in this
paradigm include automatically repairing buggy programs, translating across PLs, refac-
toring code to a more coherent format in the same PL, and suggesting next code tokens from
previously typed tokens, i.e. code completion.

Specifically, multiple studies have investigated the code completion field and yielded positive
results, such as PHOG (Bielik et al., 2016), Pointer Network (Vinyals et al., 2015), IntelliCode
20AI developer tool, https://github.com/features/copilot.
21AI coding assistant, https://www.tabnine.com/.
22OpenAI models, https://platform.openai.com/docs/models.
23Copilot update, https://github.blog/changelog/2023-11-30-github-copilot-november-30th-update/.

(Accessed: 29 January 2024).

28

https://github.com/features/copilot
https://www.tabnine.com/
https://platform.openai.com/docs/models
https://github.blog/changelog/2023-11-30-github-copilot-november-30th-update/

2.2. Advancing Programming with Machine Learning-based Approaches

1 The active selection is a Python script that increases each value in the salaries ↩
↪ list by 1000.

2 Here’s a step-by-step breakdown:
3 * A list named salaries is defined with five integer values: 1000, 2000, 3000, 4000, ↩

↪ and 5000. These values represent salaries.
4 * A for loop is initiated with i as the loop variable. The range() function [...]

Listing 2.6: Generating explanation for the code snippet in Listing 2.5 (lines 3 – 6) with GitHub
Copilot (v1.155.0) and Copilot Chat (v0.11.1) in VSCode. Just a part of the text is
presented for demonstration purpose.

Compose (Svyatkovskiy et al., 2020), Codex24 (Chen et al., 2021), GitHub Copilot, and Tabnine.
Listing 2.7 illustrates code completion using GitHub Copilot (v1.155.0) in VSCode. Namely,
users implement a function for drawing a bar chart from provided data while Copilot predicts
the code tokens on Line 6, from right after plt.bar til the end of the line.

1 import matplotlib.pyplot as plt
2 def generate_chart(xdata, ydata, xlabel, ylabel, labels, title):
3 plt.figure(figsize=(10, 5))
4 for i in range(len(ydata)):
5 # the cursor is placed right after "bar" when activating code completion feature
6 plt.bar(xdata, ydata[i], label=labels[i])

Listing 2.7: Completing Python code with GitHub Copilot (v1.155.0) in VSCode.

Other noteworthy application fields encompass code clone detection and vulnerability
analysis (Sharma et al., 2024). The former seeks to identify duplicate code blocks and can be
applied to various scenarios, such as detecting similar mobile applications or revealing license
violations (Sajnani, 2016). Meanwhile, the latter focuses on identifying potential security issues
in software products, which have severe impact on information safety (Zeng et al., 2020).

In this dissertation, we prioritize approaches that expedite programming for both domain
experts and practitioners in data analysis and processing tasks. Whereas other application types
are more developer-oriented, code completion and NL to code align best with our target users.
Besides, cross-PL translation offers a promising direction to address the multi-PL roadblock for
practitioners (details in Appendix A.3) and will be discussed as our future work (Chapter 8).

Despite distinct purposes, the mentioned applications share underlying techniques, ranging
from traditional methods such as Decision Tree, k-Nearest Neighbor (KNN), Random Forests,
and Reinforcement Learning, to advanced techniques like Deep Learning (DL) with Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM), Convolutional Neural Network
(CNN), Graph Neural Network (GNN), and Gated Recurrent Unit (GRU) (Dehaerne et al.,
2022; Sharma et al., 2024). The following subsections outline notable techniques and models,
primarily in the code completion and NL to code domains. But firstly, we summarize the
naturalness hypothesis, a pivotal concept driving the advancement of ML for source code.

24The power behind GitHub Copilot.

29

2. Background and Related Work

2.2.2 The Naturalness Hypothesis

Hindle et al. (2016)25 introduced the naturalness hypothesis for software:

Programming languages, in theory, are complex, flexible and powerful, but, “natural”
programs, the ones that real people actually write, are mostly simple and rather repetitive;
thus they have usefully predictable statistical properties that can be captured in statistical
language models and leveraged for software engineering tasks.

In other words, software can be considered as a form of human communication, making it
possible to leverage techniques of Natural Language Processing (NLP) for code generation.

Hindle et al. (2016) utilized n-gram language models to illustrate their thesis. Typically, a
language model assigns probabilities to code programs, considering source code sc as a sequence
of code tokens t1t2...ti...tn, where each code token follows others with a specific probability.
Therefore, the probability of the source code sc can be calculated based on the product of a
series of conditional probabilities:

p(sc) = p(t1)p(t2∣t1)p(t3∣t1t2)...p(tn∣t1...tn−1) (2.1)

Using n-gram models, the existence of token tn is determined exclusively by a fixed-size window
of (n−1) preceding tokens. For instance, 3-gram models estimate the likelihood of tokens ti−2ti−1

followed by ti:
p(ti∣t1...ti−1) ≃ p(ti∣ti−2ti−1) (2.2)

p(ti∣ti−2ti−1) =
count(ti−2ti−1ti)
count(ti−2ti−1∗)

(2.3)

where ∗ is a wildcard, representing any tokens in the source code sc. Figure 2.3 demonstrates
an example of obtaining token sequences from code statement plt.figure(figsize=(10,5))
with unigram (n = 1), bigram (n = 2), and trigram (n = 3) models.

unigrams: plt, ., figure, (, figsize, =, (, 10…n = 1

bigrams:n = 2

plt . figure (figsize = (10 , 5))

plt., .figure, figure(, (figsize…plt . figure (figsize = (10 , 5))

n = 3 plt . figure (figsize = (10 , 5)) trigrams: plt.figure, .figure(,

figure(figsize, (figsize= , …

Figure 2.3: A simple example of generating code token sequences with n-gram models.

Despite the inherent data sparsity issue of n-gram models, which can be addressed by some
smoothing techniques (Chen et al., 1999), Hindle et al. (2016) still could demonstrate that n-
gram models can effectively capture the local regularities in code corpora and utilized this model
to enhance the built-in suggestion engine of Eclipse IDE.

The naturalness hypothesis has yielded numerous ML studies for code with positive results
such as Mikolov et al. (2013c), Bielik et al. (2016), Li et al. (2018), Svyatkovskiy et al. (2020),
25The original version of this paper was published in ICSE’12, noted by the authors.

30

2.2. Advancing Programming with Machine Learning-based Approaches

Kim et al. (2021), and other methodologies presented in Chapters 4–6. Both conventional ML
and DL methods discussed in the subsections below derive insights from this hypothesis.

2.2.3 Traditional Machine Learning Methods for Code Generation

Traditional ML, a subset of AI, employs various disciplines (e.g. statistics, probability theory) to
tackle cognitive tasks like object detection or NL translation. Its techniques involve manual data
feature extraction and hence are best suited for data with well-defined structures. Additionally,
most of ML methods handle data with a shallow structure, characterized by at most one hidden
layer (Janiesch et al., 2021; Wang et al., 2021a).

Prominent classical ML approaches for code generation draw inspiration from probabilistic
language models, aiming to capture both semantic and syntactic information in code.

Addressing the Lack of Semantic Representation

Despite the promising attempt made by Hindle et al. (2016) to analyze syntactic regularities in
natural code, their study overlooked important semantic and structural information inherent in
code statements, such as data types, token types, and relationships between tokens. The n-gram
models used in their experiments focused solely on syntactic aspects, neglecting these critical
semantic elements. Consequently, various methods have been explored to address this problem.

Parse trees with Context-Free Grammar. A notable method for encoding structural
details involves parse trees generated by a Context-Free Grammar (CFG), a widely applied
technique in NLP. The CFG technique is originally designed for modeling constituent structure
(e.g. noun phrases) in natural languages (Jurafsky et al., 2008). We recall the formal definition
of CFG here for future reference. A CFG, denoted as G, is defined by a tuple (N, Σ, R, S), as
described in Table 2.2.

Table 2.2: The formal definition of Context-Free Grammar (Jurafsky et al., 2008).
Parameter Meaning

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)

R a set of rules or productions, each of the form A→ β,
where A is a non-terminal symbol,

β is a string of symbols from the infinite set of strings (Σ ∪N)∗

S a designated start symbol and a member of N

Due to the mentioned regularities in software, CFG can be employed for code statements to
generate the corresponding parse trees. For instance, Figure 2.4 displays a possible CFG for
binary arithmetic expressions with four operations: addition, subtraction, multiplication, and
division (Figure 2.4(a)), along with a parse tree for the expression 2∗(4+5) (Figure 2.4(b)). This
CFG includes two productions with E as the starting symbol, where E and Op are non-terminal
symbols, and the rest are terminal symbols.

31

2. Background and Related Work

CFG

E → int | E Op E | (E)

Op → + | - | * | /

Example: 2*(4+5)

Parse tree

2

*

+

4 5

AST

(a)

(b) (c)

E

E EOp

int(2) * ()E

E EOp

int(4) int(5)+

Figure 2.4: A CFG for binary expressions with four operations (a), alongside a parse tree (b),
and an AST (c) of an example expression (Stanford, 2015; Pingali, 2023).

Semantic annotations. Nguyen et al. (2013) overcame the semantic representation issue by
modeling regularities on semantic annotations (i.e. sememes) instead of textual representation
of code token (i.e. lexemes). In their study, each token is annotated with its data type and
semantic role. For instance, annotation of a code token named str with the role variable and
data type String is VAR[String].

Abstract Syntax Trees. Another popular form to convey structural information of code is
Abstract Syntax Tree (AST), a condensed representation of a parse tree that is more suitable for
later compiler stages due to the elimination of unnecessary intermediate nodes (Pingali, 2023).
Figure 2.4(c) illustrates an AST for the expression 2 ∗ (4 + 5) with the operators (∗ and +)
exhibited as internal nodes, in contrast to non-terminal symbol E in the parse tree of Figure
2.4(b). In practice, an AST is encoded in a programming language with node types, as shown
in Figure 2.5(b).

Taking the advantage of the naturalness hypothesis of code, (Bielik et al., 2016) deployed
the n-gram technique on ASTs and demonstrated that n-gram models with ASTs are more
precise than n-gram modeling on the lexicalized representation of the program (i.e. the syntactic
representation). Furthermore, AST serves as a widely adopted input form in various DL methods
for code completion (details in Section 5.2).

By integrating semantic information into data representation, several probabilistic language
models become applicable to code-related tasks. Two prominent models for code generation are
outlined below, serving as the starting points for Chapter 4.

Probabilistic Context Free Grammars

While CFG excels in parsing, its effectiveness diminishes in assessing program correctness (Bielik
et al., 2016). Probabilistic Context Free Grammars (PCFG) is an augmentation of CFG, slightly
modifying the formal definition by assigning a probability p to each production A→ β:

A→ β [p] (2.4)

where p is a number between 0 and 1, expressing the probability of generating β given the
existence of non-terminal A, i.e. p(β∣A). Additionally, probabilities of all possible expansions of
a non-terminal should sum up to one (Jurafsky et al., 2008).

32

2.2. Advancing Programming with Machine Learning-based Approaches

p(β∣A) = p(A→ β) = p(A→ β∣A) (2.5)

= count(A→ β)
count(A)

(2.6)

∑
β

p(A→ β) = 1 (2.7)

PCFG finds application in various language modeling functions, such as speech recognition,
machine translation, spelling correction, and augmentative communication (Jurafsky et al.,
2008). Gvero et al. (2015) pioneered the use of PCFG in code synthesis, handling queries
with mixed English and Java to generate Java code expressions. In addition, Bielik et al. (2016)
applied PCFG for code completion in JavaScript. However, Bielik et al. also revealed that
the combination of the n-gram technique and ASTs (mentioned above) outperforms PCFG in
recommending both non-terminals and terminal AST nodes.

Probabilistic Higher Order Grammar

While n-gram models focus only on (n − 1) previous tokens, the production rules of PCFG are
calculated solely based on the non-terminal nodes without incorporating information about the
nodes themselves. Consequently, code tokens suggested by these techniques might be undesirable
(Bielik et al., 2016). Probabilistic Higher Order Grammar (PHOG) overcomes these problems,
generalizing PCFG by conditioning the production rules not only on a static parent non-terminal
but also on a dynamically obtained context through navigation in an AST.

Formal definition. PHOG builds upon CFG and PCFG. Initially, the authors introduced
Higher Order Grammar (HOG), a generalization of CFG that integrate a context γ into the
production rules A→ β, creating a new rule:

A[γ]→ β (2.8)

A HOG is defined by the tuple (N, Σ, R, S, C, f)26, where N , Σ, R, and S are described as
in Table 2.2. C is the contextual conditioning set where γ ∈ C, and f is the mapping function
between all possible (partial) ASTs of a program and the corresponding conditioning set C.

Function f is implemented using programs in a DSL named TCOND, instructing traversal
actions (e.g. up, down, left, right) while accumulating node-related information such as type,
value, and position in an AST. The optimal f is determined by selecting the TCOND function
with the minimum cost, considering factors such as log-probability from trained models and the
number of instructions. For a detailed explanation of TCOND and its learning phase, we refer
to the original paper of Bielik et al. (2016). Figure 2.5(b) illustrates an example of function f .

After determining the optimal function f , γ is the result from applying f to an AST starting
at the current prediction point, forming a sequence of observations. Each observation in this
sequence can be a non-terminal from N , a terminal from Σ, or a natural number from N.

γ ∈ C = (N ∪Σ ∪N)∗ (2.9)

26We substitute f for p in the original paper to prevent confusion with the CFG definition.

33

2. Background and Related Work

Similar to PCFG, which introduces probabilities to each production rule of CFG, PHOG also
assigns probabilities to each rule in HOG (Equation 2.10). Consequently, for a given context γ,
the probabilities of available rules at a non-terminal sum to one.

A[γ]→ β [p] (2.10)

p(A[γ]→ β) = count(A[γ]→ β)
count(A[γ])

(2.11)

∑
β

p(A[γ]→ β) = 1 (2.12)

Illustrative example. Figure 2.5 presents a comparative example, highlighting the main
distinction between PHOG and PCFG. The code snippet in Figure 2.5(a) is firstly parsed into
the AST shown in Figure 2.5(b). To predict the next code token, depicted as ? in Figures 2.5(a)
and (b), PCFG and PHOG assess all possible production rules with the non-terminal Property
in the left-hand side, as illustrated in Figure 2.5(c). Unlike PCFG, PHOG incorporates the
context γ, determined by function f displayed under the AST in Figure 2.5(b).

…{

…

return defer.promise;

}

…

…{

…(…{

…

defer.reject(error);

});

…

return defer.?

}

(a)

ReturnStatement

MemberExpression

Identifier:defer

Property:promise

CallExpression

MemberExpression

Identifier:defer

Property:reject

Identifier:error

ReturnStatement

MemberExpression

Identifier:defer

Property:?

(b)

&

f =PrevDFS PrevNodeContext

NextDFS WriteValue

Rule: A → [p]

Example:

Property → x [0.005]

Property → y [0.003]

Property → notify [0.002]

Property → promise [0.001]

Rule: A []→ [p]

Example: = context = promise

Property[promise] → promise [0.67]

Property[promise] → notify [0.12]

Property[promise] → resolve [0.11]

Property[promise] → reject [0.03]

PHOG

PCFG

(c)

Figure 2.5: An example illustrating the difference in employing PHOG and PCFG for code
completion, adapted from Figure 1 of Bielik et al. (2016).

In this example, the function f consists of four instructions: 1 PrevDFS shifts the current
position to the previous node in Depth-First Search (DFS) traversal order, 2 PrevNodeContext
identifies the previous node where the parent and grandparent share the same type and value,
3 NextDFS moves to the next node in the DFS order, and 4 WriteValue adds the value of
the visited node to the accumulated context. The terminal node promise represents the context
obtained by applying f to the AST.

Bielik et al. (2016) demonstrated superior performance of PHOG over both PCFG and n-gram
on AST for predicting non-terminal and terminal AST nodes. Due to its effectiveness among
traditional ML approaches, we adopted PHOG as a component in our proposed ensemble model
for code completion, discussed in Chapter 4.

34

2.2. Advancing Programming with Machine Learning-based Approaches

2.2.4 Deep Learning Techniques for Source Code

Deep Learning (DL), or Deep Neural Networks, is a subset of ML, targeting to mimic the learning
process of the human brain through neural networks. In contrast to the conventional ML, DL
can automatically discover feature representations from raw input data with minimal human
effort, making it more adept at handling unstructured data. Furthermore, neural networks of
DL models typically consist of more than one hidden layer (Janiesch et al., 2021).

DL techniques for code generation leverage the power of Artificial Neural Networks and
attention mechanism, embedding programs into vectors of numbers, with Transformer
emerging as a game changer.

Artificial Neural Networks (ANNs) comprises processing elements called neurons or
nodes, arranged in layers including an input layer, an output layer, and one or more hidden
layers (Svozil et al., 1997). Numerous neural network-based models have been exploited for
code-related tasks, such as Seq2seq (Sutskever et al., 2014), attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015), Pointer Network (Vinyals et al., 2015), Pointer Mixture Network
(Li et al., 2018), and Transformer (Vaswani et al., 2017).

These models share the underlying neural network architectures, like Feed-forward Neural
Network (FFNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM).
In short, FFNN is the most classical ANN with fully connected layers, transmitting information
in one direction (forward) only (Abiodun et al., 2018). Meanwhile, RNN is a feed back ANN,
designated for sequential data processing. Ultimately, LSTM, a type of RNN, aims to mitigate
the vanishing gradient problem in RNN through gate units (Kelleher, 2019). A summary for
these architectures and fundamental concepts of ANNs is provided in Appendices B.1–B.4.

Word embedding. Inputs of ANNs are vectors of numbers, requiring the conversion of text
into number vectors when applying ANNs on source code. Word embedding technique (Mikolov
et al., 2013b) is commonly employed for this purpose. Its central idea relies on the fact that
words with similar surrounding words possess analogous meanings, which can be represented by
the proximity of their vectors in space (further details in Appendix B.5).

Among various neural networks for NLP and source code, we present below an overview of
models directly or semi-directly relevant to our work, particularly to our proposed methodologies
in subsequent chapters.

Sequence-to-sequence (Seq2seq) Model

Seq2seq (Sutskever et al., 2014) is a widely adopted DL technique in NLP, particularly for
machine translation (Kelleher, 2019). The model’s architecture comprises two interconnected
LSTM networks, known as encoder and decoder. The first LSTM processes an input sequence
word-by-word to generate a vector representation, which is then utilized by the second LSTM
to produce the output sequence. Figure 2.6 displays an abstraction of the encoder-decoder
architecture with an illustrative example of translating a German sentence to English. In this
depiction, enci and decj denote the ith and jth states of the encoder and decoder, respectively.

35

2. Background and Related Work

enc1 enc2 enc3 enc4 dec1 dec2 dec3 dec4

Zahlen lieben <EOS>Erwachsene

<EOS>e4e1 e2 e3

Encoding phase

Decoding phase

1 2 3 4 5 6 7 8

Grown-ups love numbers

Time step:

Figure 2.6: Abstract representation of the encoder-decoder architecture through time steps with
an illustrative example.

Input words are handled by the model in reverse order to enhance performance and improve
outcomes, as suggested by the authors. During the encoding phase, each word is processed by
the encoder (i.e. the first LSTM) at every time step, generating a hidden state ei, which is
propagated forward to later time steps. The encoder completes processing upon encountering
the end-of-sentence symbol, <EOS>. The resulting hidden state, i.e. vector e4 in Figure 2.6,
represents the input sentence.

In the subsequent phase, the vector representation e4 serves as the initial input for the decoder
(i.e. the second LSTM). The decoder is trained to sequentially generate each word of the output
sentence. Each obtained word is subsequently fed back into the decoder as an input for the next
time step. The decoding process terminates upon producing the <EOS> symbol.

Hidden state bottleneck. The encoder-decoder concept has formed the groundwork for
numerous advanced language models (Yang et al., 2023). However, the original architecture
faces a bottleneck as it must compress all information of an input sequence into a fixed-length
vector (Bahdanau et al., 2015). This potentially hinders the model in coping with long sentences
beyond the training corpus lengths. The next techniques were proposed to tackle this challenge.

Attention Mechanism

Bahdanau et al. (2015) introduced an extension for the encoder-decoder architecture called
attention mechanism, which directs the model’s focus to specific words at each time step rather
than the entire input sentence. This enhances the model’s memorization capacity and facilitates
additional paths for back-propagation (Li et al., 2018). Figure 2.7 presents the high-level
overview of the attention mechanism when predicting the output word outt at time step t27.

Distinctions compared to the Seq2seq model. The attention mechanism incorporates
not only the last hidden state from the encoder but also previously generated hidden states.
Particularly, given seqlen is the length of the input sequence, instead of forwarding to the
decoder only the last hidden state eseqlen (or e4 in Figure 2.6), all the preceding encoder hidden
states e1, e2, e3, ..., eseqlen−1 are also forwarded.
27For a step-by-step visual explanation of the attention mechanism, we prefer to a GitHub page of Alammar

(2018b).

36

2.2. Advancing Programming with Machine Learning-based Approaches

𝑒1

𝑒1

e1

𝑒2

𝑒2

e2

𝑒3

𝑒3

e3 eseqlen

𝑒𝑠𝑒𝑞𝑙𝑒𝑛

𝑒𝑠𝑒𝑞𝑙𝑒𝑛
…

+
at time step tct

𝛼1
𝑡 𝛼2

𝑡 𝛼3
𝑡 𝛼𝑠𝑒𝑞𝑙𝑒𝑛

𝑡

dtdt-1… …

outt-1 outt

Vector addition

Data flow at time step t

+

Data flow in the decoder,

not directly related to

time step t

Data flow in the

bi-directional encoder

Decoder

Attention layer

Encoder

in1 in2 in3 inseqlen

Figure 2.7: Abstract representation of the attention mechanism decoding at time step t, adapted
from Figure 1 of Bahdanau et al. (2015) and Figure 4 of Weng (2018).

Additionally, Bahdanau et al. (2015) utilized a bidirectional RNN for the encoder, unlike the
unidirectional approach in the classical Seq2seq model. This enables the encoder to capture
information from both preceding and following words of the current word. The forward RNN
processes the input sequence in order, while the backward RNN reads the sequence in reverse.
Consequently, an encoder hidden state ei is determined by concatenating the forward hidden
state Ð→ei and the backward hidden state ←Ðei of the input word ini, i.e. ei = [Ð→ei

⊺;←Ðei
⊺].

Moreover, at time step t, the decoder with attention mechanism predicts the output word outt

using a context vector ct, derived from all encoder hidden states ei, the preceding decoder hidden
state dt−1, and the previously generated output word outt−1. The decoder’s current hidden state
dt is computed from dt−1, outt−1, and ct according to Equation 2.13. The activation function
f in this equation is employed by a gated hidden unit, similarly to LSTM units described in
Appendix B.4. Formulas related to function f are omitted to streamline subsequent discussions.

dt = f(dt−1, outt−1, ct) (2.13)

Key formulas. In general, the context ct is a weighted sum of all encoder hidden states ei:

ct =
seqlen

∑
i=1

αt
iei (2.14)

αt
i = softmaxi(score(dt−1, ei)) =

exp(score(dt−1, ei))
∑seqlen

k=1 exp(score(dt−1, ek))
(2.15)

score(dt−1, ei) = A(dt−1, ei) = v⊺A tanh(WAdt−1 +UAei) (2.16)

where the attention weight αt at time step t is computed using a softmax function applied to
a vector of attention scores, represented as score(dt−1, ei) with i ∈ [1, seqlen]. Each score is
obtained from an alignment model on dt−1 and ei, i.e. A(dt−1, ei), assessing the correspondence
between the input around position i and the output at time step t. Bahdanau et al. (2015)

37

2. Background and Related Work

parameterized the alignment model A as a FFNN, jointly trained with all the other components
of the system. In addition, vA ∈ Rn, WA ∈ Rn×n, and UA ∈ Rn×2n are trainable parameters, where
n is the number of hidden units or the size of the hidden state (n = 1,000).

Variants of the attention mechanism. Various prominent methods have leveraged the
proposed attention concept under different names, such as global attention (Luong et al., 2015),
content-based attention in Pointer Network (Vinyals et al., 2015), context attention in Pointer
Mixture Network (Li et al., 2018), and additive attention in Transformer (Vaswani et al., 2017).
Besides, these methods slightly adjust attention scores and/or final output computation.

For instance, Luong et al. (2015) and Vinyals et al. (2015) simplified the vanilla attention
mechanism by concatenating the context vector ct and decoder hidden state dt, in contrast
to the deep output and maxout hidden layer approach by Bahdanau et al. (2015). Li et al.
(2018) deployed attention as a pointer mechanism, while Vaswani et al. (2017) applied scaled
dot-product attention rather than additive attention as proposed by Bahdanau et al. (2015).
More distinctions between the vanilla attention mechanism and its variants proposed by Luong
et al. (2015) are analyzed in Appendix B.6.

Pointer Network

Vinyals et al. (2015) introduced Pointer Network, utilizing the alignment model from Bahdanau
et al. (2015) for content-based attention. This method addresses problems with discrete outputs
corresponding to positions in the input sequence, such as finding planar convex hulls28 and
solving the traveling salesman problem29.

Content-based attention. Their work was motivated by the constraint that output words
in Seq2seq models, regardless of the presence of an attention mechanism, are determined by
probabilities among words in a predefined dictionary (also called vocabulary). Consequently,
training the model requires separate iterations for each dictionary size. This restricts the direct
application of Seq2seq with attention to combinatorial problems, where the output dictionary
size varies with the input sequence length.

Particularly, rather than integrating encoder hidden states into a context vector at each time
step in the decoding phase, Vinyals et al. (2015) used attention as a pointer to select an element
in the input sequence as the output, hence the name pointer network. Figure 2.8 shows an
example of using Pointer Network to identify a planar convex hull.

Instead of generating a new output, the decoder chooses between input elements as the output
via a pointer vector. Upon reaching the last item of the input sequence, a special symbol ⇒
initiates the generation mode. The output of the current time step, in addition to hidden
states, becomes input for the decoder at the subsequent time step. The process concludes upon
encountering the symbol ⇐.

28The convex hull of a point set is the minimal convex polygon covering all points. Traversing the boundary
of the convex polygon in a clockwise direction always entails making left turns, https://people.computing.
clemson.edu/~goddard/texts/algor/A1.pdf, (Accessed: 15 February, 2024).

29Determining the minimum-cost route for a salesman to visit all cities in a given list. Each city is visited only
once (Hoffman et al., 2013).

38

https://people.computing.clemson.edu/~goddard/texts/algor/A1.pdf
https://people.computing.clemson.edu/~goddard/texts/algor/A1.pdf

2.2. Advancing Programming with Machine Learning-based Approaches

(x1, y1)

(x2, y2)

(x4, y4)

(x3, y3)

decenc enc enc enc dec dec dec

(x1, y1) (x2, y2) (x4, y4)(x3, y3)

enc

(x1, y1) (x4, y4) (x2, y2)

dec

(x1, y1)

1

4

2

1

Figure 2.8: An example of using Pointer Network in plantar convex hull problem, adapted from
Figure 1(b) of Vinyals et al. (2015).

Mathematical definition. In coordination with equations used by Bahdanau et al. (2015),
the pointer mechanism proposed by Vinyals et al. (2015) can be formally defined as follows30:

ut
i = score(dt, ei) = v⊺A tanh(WAdt +UAei) (2.17)

ptnt = (ut
1, ut

2, ..., ut
seqlen) (2.18)

p(outt∣out<t, inseq) = p(idxt∣idx<t, inseq) = softmax(ptnt) (2.19)

where vA ∈ Rn, WA ∈ Rn×n, and UA ∈ Rn×n are trainable parameters with n being the size of
the hidden state (n = 512). idxt signifies the index of the selected input element at time step t,
with idx<t representing all previously referenced indices. inseq denotes the input sequence, and
seqlen indicates the input length.

At time step t, the decoder estimates a score ut
i for each encoder hidden states ei, similarly

to the mechanism of Bahdanau et al. (2015). Notably, Vinyals et al. (2015) utilized decoder
hidden state dt instead of dt−1 for score calculation (Equation 2.17). Subsequently, the pointer
vector ptnt is constructed from the set of all computed attention scores.

In this case, predicting an output is equivalent to determining the index of the most suit-
able element in the input sequence, given all previously chosen indices and the input sequence
(Equation 2.19). Consequently, this objective is achieved by applying the softmax function to
ptnt, yielding a probability distribution over the input dictionary. In other words, the output
dictionary depends on the length of the input sequence.

Pointer Mixture Network

Leveraging the power of LSTM, attention mechanism, and Pointer Network, Li et al. (2018)
introduced a code completion model named Pointer Mixture Network for dynamically-typed
PLs (e.g. Python and JavaScript). They aimed to tackle two main problems: (i) predicting
next code token for dynamically-typed languages, and (ii) mitigating the unknown word or
Out-of-Vocabulary (OOV) problem.
30We rename some parameters to make them consistent with preceding equations.

39

2. Background and Related Work

Unknown word issue. Neural language models normally generate output words based on
a probability distribution across words in a predefined vocabulary (i.e. dictionary). However,
computing this high-dimensional softmax can be computationally intensive. To mitigate this,
the vocabulary typically includes only the K most frequent words in the corpus, with all others
treated as OOV words (Li et al., 2018), represented by a special token (e.g. <UNKNOWN>). This
issue is even more severe in source code due to the flexibility in naming identifiers by developers.

Global RNN and local pointer. Li et al. (2018) utilized an RNN with attention, named
global RNN component, to generate code tokens from a sequence of prior tokens. To address the
OOV problem, they deployed a Pointer Network, named local pointer component, to select an
input item as the output word. This approach capitalizes on the local repetition patterns during
programming of developers and the copy mechanism of the Pointer Network. Consequently, the
model can predict the next code token by either generating it from the global vocabulary or
pointing to an item in the input sequence (for OOV cases). Figure 2.9 illustrates the generating
phase (i.e. decoding) of Pointer Mixture Network at time step t.

LSTM LSTM LSTM LSTM… …

…

Module:EMPTY Assign:EMPTY Print:EMPTY… NameLoad:number

Pointer

distribution

Embeddings

Flattened AST

Attention window

S

 ;

Output distribution

RNN distribution

(1-st)

ht-L ht-L+1 ht-1 ht
;

st

Local pointer

Global RNN

Vector multiplication

Vector concatenation

Learned switcher

Type embedding

;

Value embedding

parent

S
…lt

yt

wt

𝛼1
𝑡 𝛼2

𝑡 𝛼𝐿
𝑡

Figure 2.9: Predicting a next code token with Pointer Mixture Network at time step t, adapted
from Figure 3 of Li et al. (2018).

Attention window. Instead of considering all previous tokens, the authors restricted the
local context to an L-size range, named context window or attention window Mt. At time step t,
the attention weight αt and context vector ct are calculated using preceding L hidden states
Mt = [ht−L, ht−L+1..., ht−1], following the attention mechanism discussed above.

score = v⊺ tanh(W mMt + (W hht)1⊺L) (2.20)

αt = softmax(score) (2.21)

ct =Mtα
⊺
t (2.22)

where v⊺ ∈ Rn, W m ∈ Rn×n, and W h ∈ Rn×n are trainable parameters with n denoting the size of
the hidden state or dimension of ht (n = 1,500). Besides, 1L is an L-dimensional vector of ones.

40

2.2. Advancing Programming with Machine Learning-based Approaches

It is worth noting that the three equations above are alternative representations of Equations
2.14 to 2.16, using matrix computations.

Source code as flattened ASTs. To capture structural information, each code snippet is
converted into an AST, which is subsequently flattened to form a sequence of code tokens. Type
and value of an AST node are separated by colon, as demonstrated in the bottom of Figure 2.9.
Consequently, each prediction entails two tasks: predicting the next node type and suggesting
the next node value.

Parent attention. To integrate the parent-child relationship among AST nodes (indicated
by dashed lines beneath the flattened AST in Figure 2.9), the authors introduced a parent
attention for code completion. At time step t, the model identifies the parent node within the
attention window and retrieves its hidden state pt, providing supplementary context information
for subsequent output computation. The vector pt is not displayed in Figure 2.9.

General workflow. Li et al. (2018) trained an embedding vector for each type and value of
AST nodes before feeding them to the model. Utilizing the attention weight αt (also serving
as pointer distribution lt), the global RNN and local pointer components derive their outputs
accordingly. The former concatenates the current hidden state ht and other context vectors, i.e.
ct and pt, before computing the RNN distribution wt (related formulas are omitted for brevity).
Meanwhile, the latter operates similarly to the mechanism in Pointer Network.

The final result is a weighted concatenation of outputs generated by the two components
above. At each prediction time step, a switcher S is learned based on the context information
(ht; ct), guiding component selection. Consequently, the output distribution yt is computed as
yt = [stwt; (1− st)lt] with st ∈ [0, 1]. Given the promising results of Pointer Mixture Network, it
was incorporated as a component in our code completion approach, detailed in Chapter 4.

Transformer - An Overview

Introduced by Vaswani et al. (2017), Transformer model revolutionized sequence transduction
(i.e. sequence-to-sequence) models, attributed to its effectiveness and capacity for enabling
parallelization during training, which is particularly beneficial for handling large corpora with
lengthy input sequences. The Transformer model not only outperforms state-of-the-art models,
whose architectures are based on complex recurrent or convolutional neural networks, but also
significantly reduces the training time, attributed to its parallelizable nature.

Specifically, Transformer represents a pivotal shift by replacing recurrent structures with a
multi-head self-attention mechanism to capture global dependencies between input and output.
This model has catalyzed advancements in machine translation, code generation, NL under-
standing and other related disciplines (Yang et al., 2023). Notable derivatives of the Transformer
architecture include BERT (Devlin et al., 2018), GPT (Radford et al., 2018), Codex (Chen et al.,
2021), GitHub Copilot and ChatGPT.

Given its widespread adoption and relevance to our research, the subsequent section of this
chapter focuses on elucidating the Transformer architecture and delineating noteworthy models
derived from it for code-centric tasks.

41

2. Background and Related Work

2.3 Transformers and Beyond

The Transformer’s architecture comprises encoder and decoder components, diverging from
aforementioned approaches by exclusively relying on attention mechanisms (Vaswani et al.,
2017). This design choice empowers the Transformer model to overcome critical challenges
inherent in RNNs, such as long range dependencies, vanishing and exploding gradient problems
(described in Appendix B.3), large number of training steps, and sequential computation due to
RNN architecture (Poupart, 2019). Before outlining notable successors of the Transformer, we
summarize key architectural aspects that facilitate its effectiveness and enable parallelization.

2.3.1 Vanilla Transformer

Vaswani et al. (2017) proposed the Transformer model as stacks of N = 6 identical self-attention
and point-wise fully connected layers for both encoder and decoder. This approach mirrors the
concept of stacking multiple RNN hidden layers on top of each other, where the output sequence
of one layer feeds into the subsequent layer (Graves et al., 2013; Pascanu et al., 2013), enabling
deep neural networks in space and resulting in more intricate representations.

Abstract-level Architecture

Figure 2.10(a) provides an overview of the Transformer’s architecture.

Enc. layer

Enc. layer

Enc. layer

Enc. layer

Enc. layer

Enc. layer

Dec. layer

Dec. layer

Dec. layer

Dec. layer

Dec. layer

Dec. layer

[in1, in2, …, inn]

[out1, out2, …, outm]

Input

embedding

N = 6

Generating one output symbol at a time

(a)
[in1, in2, …, inn]

Output probabilities

Input

embedding

N = 6

[tout1, tout2, …, touti-1]

Target output

embedding

Trained to predict target output touti

Enc. layer

Enc. layer

Enc. layer

Enc. layer

Enc. layer

Enc. layer

Dec. layer

Dec. layer

Dec. layer

Dec. layer

Dec. layer

Dec. layer

(b)

Figure 2.10: Transformer at an abstract-level view when generating an output sequence (a)
and when being trained for predicting target output word touti (b), adapted from
Alammar (2018a) and Figure 1 of Vaswani et al. (2017).

Specifically, input sequences are converted into numerical vectors through learned embeddings
before traversing the network. The input embedding links exclusively to the bottom encoder
layer. Output of each encoder layer serves as input to the layer above it. Subsequently, output of
the top encoder layer is distributed to all layers in the decoder stack, transmitting input sequence

42

2.3. Transformers and Beyond

information. Finally, the top decoder layer generates output symbols sequentially, similarly to
the Seq2seq architecture (Alammar, 2018a).

To train the model, both input and target output sequences are embedded before being
handled by the bottom layers of the encoder and decoder, respectively (Vaswani et al., 2017).
Figure 2.10(b) illustrates the data flow while training the Transformer model to predict the next
target output touti. Here, Transformer employs a technique known as teacher forcing to mimic
the recurrent concept of RNNs, feeding the previous target output as input to the next state.

The underlying idea involves an assumption that at training phase, all preceding generated
output words are correct and the model is trained to predict the next word based on this
information. Therefore, to predict the next target output touti, previous target outputs (up
to touti−1) are provided31. By deploying the teacher forcing technique, Transformer eliminates
recurrences, facilitating parallelization in the training process and substantially accelerating
training time (Poupart, 2019).

Encoder and Decoder Stacks

Figure 2.11 displays a closer look at the architectures inside each encoder and decoder layer.

Enc. layer

Multi-head

attention

Position-wise

feed-forward

Add & norm

Add & norm

Masked

multi-head

attention

Position-wise

feed-forward

Add & norm

Add & norm

Multi-head

attention

Add & norm

Dec. layer

Only from the

top enc. layer

Figure 2.11: A deeper look at encoder and decoder layers of Transformer, adapted from Figure
1 of Vaswani et al. (2017).

Encoder. Each encoder layer encompasses two sub-layers: a multi-head self-attention and
a position-wise fully connected FFNN, referred to as Multi-layer Perceptron (MLP) in other
studies, such as Meng et al. (2022). Each sub-layer is encapsulated by a residual connection,
followed by layer normalization to reduce the required number of training iterations (Poupart,
2019). Further details on these sub-layers are discussed below.

Decoder. In addition to the two sub-layers in each encoder layer, each decoder layer incor-
porates a third sub-layer, facilitating multi-head attention over the output of the encoder stack
31This explains the note “shifted right” in Figure 1 of Vaswani et al. (2017).

43

2. Background and Related Work

and acting as a reference to the input sequence during prediction (Vaswani et al., 2017). It is
worth noting again that the connection from the encoder to the decoder stack occurs between
the top (i.e. the last) encoder layer and each decoder layer.

Vaswani et al. (2017) also utilized residual connections and layer normalization for decoder
sub-layers. Specifically, the bottom sub-layer is modified to a masked multi-head attention to
omit the influence of subsequent symbols on the prediction. In order words, symbols following
the prediction point are regarded as not yet generated and should be excluded during prediction.

Scaled Dot-product Attention

Before delving into multi-head attention, the significant sub-layer of encoder and decoder layers,
we firstly summarize its core strategy, i.e. scaled dot-product attention.

Self-attention. Leveraging the concept of attention mechanism, the Transformer model
employs self-attention to integrate positional relationships between symbols within a sequence
into its representation (Vaswani et al., 2017). In essence, the vector representing a symbol in a
sequence encapsulates information from other related symbols within the sequence.

To do this, each symbol in the sequence is associated with a key-value pair, with the current
considered symbol serving as a query, where key, value, and query are all vectors. The objective
is to identify all compatible keys with the query and retrieve their associated values, similarly to
a database retrieval process (Poupart, 2019). The final output vector is computed as a weighted
sum of the values, with the weight assigned to each value determined by the compatibility
between the query and its corresponding key (Vaswani et al., 2017).

Mathematical expression. Given an input sequence x = (x1, x2, ..., xseqlen) ∈ Rseqlen×dx ,
adapting self-attention yields a new representation z = (z1, z2, ..., zseqlen) ∈ Rseqlen×dz , where dx

and dz are the dimensions of xi and zi, respectively. Each element zi is calculated using the
following equations, according to Shaw et al. (2018) and Penke (2022):

zi =
seqlen

∑
j=1

αij(xjW V) (2.23)

αij = softmaxj(score(xi, xj)) =
exp(score(xi, xj))

∑seqlen
k=1 exp(score(xi, xk))

(2.24)

score(xi, xj) =
(xiW

Q)(xjW K)⊺
√

dz

(2.25)

where W Q, W K , W V ∈ Rdx×dz are parameter matrices. xiW
Q ∈ R1×dz represents the query, while

xjW K and xjW V ∈ R1×dz with j ∈ [1, .., seqlen] form the key-value pairs.
These equations resemble those employed in vanilla attention (Equations 2.14–2.16), with the

distinction that Vaswani et al. (2017) utilized dot-product attention (Equation 2.25) instead of
additive attention. This choice is justified by the faster and more space-efficient nature of dot-
product attention. Notably, 1√

dz
acts as a scaling factor, ensuring that the dot product remains

within a specific range, thereby preventing the softmax function from producing excessively
small values. The name scaled dot-product attention is coined based on these described decisions.

44

2.3. Transformers and Beyond

Consequently, in practice, Equations 2.23–2.25 are executed via matrix multiplications to
enhance efficiency, as follows:

z = Attention(Q, K, V) = softmax(QK⊺√
dk

)V (2.26)

where queries, keys of dimension dk, and values of dimension dv are respectively packed into
matrices Q ∈ Rseqlen×dk , K ∈ Rseqlen×dk , and V ∈ Rseqlen×dv . Originally, dk and dv have the same
value as dz. However, to improve computational performance, Vaswani et al. (2017) introduced
the concept of multi-head attention, significantly reducing the values of dk and dv (discussed
below). In their experiments, dx = dz = dmodel = 512.

Multi-head Attention

Figure 2.12 displays the multi-head attention architecture in the Transformer model. Rather
than executing a single attention operation of dimension dmodel, Vaswani et al. (2017) projected
the queries Q, keys K, and values V linearly h times to dimensions dk, dk, and dv respectively
by using distinct learned linear projections.

Multi-head

attention

Scaled dot-product

attention

Linear Linear Linear

Concat

Linear

V K Q

h = # of heads

Figure 2.12: Architecture inside the multi-head attention of Transformer, adapted from Figure
2 of Vaswani et al. (2017).

Here, h is the number of heads and dk as well as dv are typically smaller than dmodel. In simpler
words, these linear layers simply change the space in which the queries, keys, or values reside.
The objective is to iteratively apply the scaled dot-product attention with diverse parameter
values, yielding multiple representation subspaces at various positions.

The projected queries, keys, and values are then concurrently employed to compute their
scaled dot-product attention. This technique not only boosts the parallel processing capability
of the model but also enables the generation of more complex representations (Poupart, 2019).
Subsequently, the dv-dimensional output values from all the subspaces are concatenated and
linearly projected to create the dmodel-dimensional output (top two layers in Figure 2.12).

Equation 2.26 for calculating the attention is adjusted to incorporate the multi-head concept
as follows (Vaswani et al., 2017):

45

2. Background and Related Work

MultiHead(Q, K, V) = Concat(head1, ..., headh)W O (2.27)
headi = Attention(QW Q

i , KW K
i , V W V

i) (2.28)

where W Q
i ∈ R

dmodel×dk , W K
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv , and W O ∈ Rhdv×dmodel are trainable
parameters. In their study, Vaswani et al. (2017) configured h = 8 parallel attention layers (i.e.
8 heads) and dk = dv = dmodel/h = 64.

Applications of Multi-head Attention in the Transformer Model

The multi-head attention technique was leveraged in the vanilla Transformer model in three
ways: encoder self-attention, decoder self-attention (masked), and encoder-decoder attention,
as depicted in Figure 2.13.

Enc. layer 𝑖 > 1 Dec. layer 𝑗 > 1

Enc. self-
(multi-head)

attention

Position-wise

feed-forward

Add & norm

Add & norm

Dec. self-
(masked multi-head)

attention

Position-wise

feed-forward

Add & norm

Add & norm

Enc.-dec.
(multi-head)

attention

Add & norm

Only from the

top enc. layer

(𝑖 = 𝑁)

Output of

enc. layer 𝑖 − 1
Output of

dec. layer 𝑗 − 1

𝐸𝑖−1
𝑄

𝐸𝑖−1
𝐾 𝐸𝑖−1

𝑉 𝐷𝑗−1
𝑄

𝐷𝑗−1
𝐾 𝐷𝑗−1

𝑉

𝐷′𝑗−1
𝑄

𝐸𝑁
𝐾 𝐸𝑁

𝑉

Figure 2.13: Utilizations of multi-head attention in Transformer architecture.

Encoder self-attention. The encoder self-attention sub-layers function similarly to the
multi-head attention, with queries, keys, and values sourced from the previous encoder layer.
These sub-layers empower each position in the encoder to attend to all positions in the preceding
layer. In Figure 2.13, encoder layer i (with i > 1) receives the output of encoder layer i − 1 as
input, including EQ

i−1, EK
i−1, and EV

i−1.
Decoder self-attention. Meanwhile, each decoder layer’s inputs encompass the previous

decoder layer’s output and the encoder’s output. The masked self-attention sub-layers handle
the former, preventing connections beyond the prediction point. These sub-layers allow each
position in the decoder to attend solely to preceding positions and the current one. Equation 2.26
can be modified to form the masked attention as follows (Poupart, 2019):

MaskedAttention(Q, K, V) = softmax(QK⊺ +M√
dk

)V (2.29)

46

2.3. Transformers and Beyond

where M ∈ Rseqlen×seqlen is a matrix of 0’s and −∞’s. Illegal connections are masked out by
setting the values of relevant items in matrix M to −∞. In Figure 2.13, the inputs to decoder
layer j > 1 from preceding layer j − 1 are denoted as DQ

j−1, DK
j−1, and DV

j−1.
Encoder-decoder attention. Finally, keys and values from the encoder’s output, together

with queries from the prior decoder layer compose the inputs for the second attention unit in
each decoder layer, so called encoder-decoder attention. Here, every position in the decoder
can attend to all positions in the input sequence, analogous to the encoder-decoder attention
mechanism in Seq2seq models (described in Section 2.2.4). In Figure 2.13, EK

N , and EV
N indicate

the keys and values from the encoder (or the top encoder layer), while D′Qj−1 represents the
masked and normalized queries from the previous decoder layer.

Residual Connections and Layer Normalization

As mentioned above, Vaswani et al. (2017) stacked N = 6 identical layers for both encoder
and decoder to increase network depth, which can cause degradation and gradient dependency
issues during training. To address this, the authors implemented residual connections around
each sub-layer (self-attention and position-wise feed-forward), followed by layer normalization
to facilitate the training process. These residual connections and normalization sub-layers are
displayed as “Add & norm” in Figures 2.11 and 2.13).

Residual learning. The residual connections in the Transformer model were inspired by
the study of He et al. (2016), where the authors addressed the degradation problem in deep
networks, using a deep residual learning framework. In particular, He et al. (2016) observed that
as network depth increases, accuracy initially saturates but then declines rapidly. However, this
degradation occurs independently of overfitting, with deeper models exhibiting higher training
error upon further layer additions.

To tackle this obstacle, He et al. (2016) hypothesized that optimizing the residual mapping is
easier than optimizing the original one. For instance, given H(x) as an underlying mapping to
be fit by stacked layers, with x as the input to the first layer, He et al. (2016) explicitly let the
stacked layers approximate a residual function F(x) =H(x)−x, instead of directly approximating
H(x). The original function thus becomes F(x)+x. In the context of the Transformer model, a
sub-layer with a residual connection modifies the output as x + Sublayer(x), where Sublayer(x)
designates the function performed by the sub-layer itself (Vaswani et al., 2017).

Layer normalization. Another challenge in training deep neural networks is “covariate
shift”, where gradients for a layer’s weights depend heavily on the outputs of the previous layer,
hindering convergence. To mitigate this dependency and speed-up the training process, Ba et al.
(2016) introduced layer normalization, re-scaling the output of each layer to a uniform scale,
hence stabilizing the hidden state dynamics. Particularly, for every vector yl = (yl

1, yl
2, ..., yl

d) at
layer l, the layer normalization is derived from mean and variance as follows (Ba et al., 2016;
Xiong et al., 2020):

LayerNorm(yl) = gl

σl
(yl − µl) + bl (2.30)

where gl and bl are gain and bias parameters of dimension d, while µl and σl signify the mean

47

2. Background and Related Work

and standard deviation of elements in vector yl, formulated as follows:

µl = 1
d

d

∑
k=1

yl
k (2.31)

σl =

¿
ÁÁÁÀ1

d

d

∑
k=1
(yl

k − µl)2 (2.32)

Combining residual learning and layer normalization in the Transformer model, given vector
al

i for i ∈ [1..seqlen] and l ∈ [1...N] as the dmodel-dimensional output right after a self-attention
sub-layer, the output after the “Add & norm” step of this sub-layer is determined as follows:

h̄l
i = LayerNorm(hl−1

i + al
i) (2.33)

where hl−1
i is the output of the preceding layer l−1. The normalized vector h̄l

i is computed using
Equations 2.30–2.32, substituting yl with hl−1

i + al
i and d with dmodel.

Position-wise Feed-Forward Network or Multi-layer Perceptron

The second main type of sub-layers in each encoder or decoder Transformer layer is the position-
wise FFNN, hereafter referred to as Multi-layer Perceptron (MLP). This layer is applied to each
position separately and identically, consisting of two linear transformations with a Rectified
Linear Unit (ReLU) activation in between (Vaswani et al., 2017).

Mathematical expression. Given h̄l
i with i ∈ [1..seqlen] and l ∈ [1...N] from Equation 2.33

as the normalized output at position i and layer l of a self-attention sub-layer, the output ml
i of

the subsequent MLP sub-layer is obtained as follows:

ml
i = FFN(h̄l

i) = ReLU(h̄l
iW

l
1 + bl

1)W l
2 + bl

2 (2.34)

=max(0, h̄l
iW

l
1 + bl

1)W l
2 + bl

2 (2.35)

where W l
1 ∈ Rdmodel×dff and W l

2 ∈ Rdff×dmodel are the weight matrices; bl
1 ∈ Rdff and bl

2 ∈ Rdmodel

are the bias vectors. The input and output dimensionality is dmodel = 512, while the MLP inner-
layer has dff = 2048 hidden units. In addition, the linear transformations are consistent across
positions but vary between layers, making this sub-layer equivalent to two convolutional layers
with kernel size 1.

The significance of MLP sub-layers in the Transformer model. Notably, according
to Geva et al. (2021), self-attention sub-layers constitute solely one-third of parameters in the
Transformer model (4d2

model per layer), with the remainder allocated to MLP sub-layers (8d2
model

per layer). This distribution highlights the significant role of MLP sub-layers in the architecture
of the Transformer model.

Specifically, comparing Equations 2.26 and 2.34 without bias vectors reveals that FFN(⋅) and
Attention(⋅) are structurally similar, differing primarily in their activation functions (ReLU vs.
softmax). Geva et al. (2021) thus suggested that the input to FFN(⋅) can be interpreted as a
query vector, with the two linear transformations of FFN(⋅) acting as keys and values.

48

2.3. Transformers and Beyond

In other words, the MLP sub-layers can be viewed as key-value memories of the Transformer
model. Building upon this perspective, Dai et al. (2022) and Meng et al. (2022) elucidated
the decisive role of these sub-layers in storing factual knowledge. The authors edited specific
factual knowledge in pretrained Transformers, without any fine-tuning, by directly adjusting
feed-forward weights while minimizing the impact on other knowledge. We refer to their original
papers for the detailed studies.

Positional Encoding

To ensure that the Transformer model captures the input sequence order, positional encoding
of each token is incorporated32. These encodings, with the same dimension dmodel as the input
embeddings, are added to the input embeddings before network processing. Namely, Vaswani
et al. (2017) used sine and cosine functions to calculate the positional encoding for position pos

at each element k ∈ [0..dmodel/2] of dimension dmodel as follows:

PE(pos,2k) = sin(pos/100002k/dmodel) (2.36)

PE(pos,2k+1) = cos(pos/100002k/dmodel) (2.37)

There are various methods for positional encodings, such as learned positional encodings or
concatenating positional and input embeddings instead of addition (Poupart, 2019). We refer
to the original paper of Vaswani et al. (2017) for further details.

Ultimately, for comprehensive explanations of Transformer with illustrative examples, we
refer to sources provided by Alammar (2018a), Doshi (2021), and Poupart (2019). The next
subsection outlines notable models, derived from the Transformer architecture.

2.3.2 Successors of the Transformer Model

Transformer revolutionized sequence transduction models, setting a new state-of-the-art with
its unique architecture. In particular, the parallelization capabilities are advantageous for large-
scale corpus applications, aiding in the development of a category for DL models known as Large
Language Models (LLMs)33.

In recent years, Transformer derivatives have proliferated, divided into three groups: encoder-
decoder, encoder-only, and decoder-only (Yang et al., 2023). The latter two types signify models
that solely utilize either the encoder or decoder component of the Transformer model. Given our
focus on code completion and NL to code translation tasks, we highlight prominent decoder-only
models below and briefly touch upon encoder-only variants.

Decoder-only Models

GPT series. A year after the release of Transformer, OpenAI introduced Generative Pre-
trained Transformer (GPT), a decoder-only model designed for language understanding tasks
32We omit this component in Figure 2.10 for simplicity.
33Large Language Models explained, https://www.nvidia.com/en-us/glossary/large-language-models/,

(Accessed: 20 February, 2024).

49

https://www.nvidia.com/en-us/glossary/large-language-models/

2. Background and Related Work

(Radford et al., 2018). The model employs a semi-supervised approach, merging unsupervised
pre-training with supervised fine-tuning.

During the training phase, the model is initially pre-trained on unlabeled data by predicting
the subsequent word in a sequence based on preceding words (Yang et al., 2023). This process
allows the model to learn initial parameter values for the neural network. These parameters are
then fine-tuned for a target task using a corresponding supervised objective with labeled data.

Radford et al. (2018) showed that pre-training on a diverse corpus substantially enhances the
model’s acquisition of world knowledge, leading to improved performance on subsequent target
tasks. Importantly, these target tasks do not need to align with the domain of the unlabeled
corpus. Later versions of GPT have achieved remarkable results, being applied across diverse
language understanding tasks, with later models aiming to surpass their predecessors in terms
of parameter count and training set size (refer to OpenAI website for the details).

Advancements and challenges. Decoder-only models have rapidly advanced, dominating
the evolution of LLMs with notable achievements (Yang et al., 2023). Outstanding models
include GPT-2 to GPT-4, Codex (Chen et al., 2021), and ChatGPT from OpenAI, LaMDA
from Google (Thoppilan et al., 2022), and LLaMA from Meta (Touvron et al., 2023a). ChatGPT
gained significant attention upon its release by OpenAI34, while LLaMA attracted interest by
claiming the superiority of LLaMA-13B over GPT-3 (175B) across most benchmarks (Touvron
et al., 2023a). Here, 13B and 175B are numbers of parameters in the neural networks.

However, the advent of GPT-3 has led to a preference among LLMs for closed-source models,
posing challenges for academic researchers in conducting experiments (Yang et al., 2023). While
Meta contributes notably to open-source LLMs, their LLaMA 2 model (Touvron et al., 2023b)
supports a context window35 of up to 4, 096 tokens, half that of GPT-4 (8, 192 tokens36), thereby
limiting its capacity to lengthy sequences.

Furthermore, the constraint on prompt length remains a significant issue, particularly as
prompts become longer (Jiang et al., 2023b). Ultimately, the demand for explainability in
LLMs persists as a prominent yet challenging issue (Bird et al., 2022; Anaconda, 2023).

Encoder-only Models

BERT model. Exploiting the advantage of semi-supervised approach, Devlin et al. (2018)
proposed a language representation model, called Bidirectional Encoder Representations from
Transformers (BERT). Unlike GPT, BERT adopts only the encoder side of Transformer, aiming
to demonstrate that pre-trained representations diminish the necessity for task-specific archi-
tectures. Fine-tuning with an additional output layer enables BERT to achieve state-of-the-art
performance across various tasks such as answering questions and language inference.

Specifically, BERT employs two pre-training tasks. The first one involves utilizing Masked
Language Model (MLM) to predict randomly masked words in a sentence based on surrounding
34A record of ChatGPT, https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-

user-base-analyst-note-2023-02-01/.
35Number of tokens an LLM can consider at a time.
36GPT-4 and GPT-4 Turbo, https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo.

(Accessed: 20 February, 2024).

50

https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

2.4. Summary

context, producing bidirectional representations. This differs from GPT’s left-to-right approach.
The second task is next sentence prediction, developed to capture the relationship between two
sentences (Devlin et al., 2018).

Fading dominance. Several models, fueled by BERT, have emerged for code-centric tasks,
including code completion with RoBERTa (Ciniselli et al., 2021b), code clone detection (Sharma
et al., 2022), and NL code search or code documentation generation with CodeBERT (Feng et al.,
2020). However, following the rapid proliferation of encoder-only models catalyzed by BERT,
this domain has progressively receded, outclassed by decoder-only models (Yang et al., 2023).

Given the substantial impact of Transformer on the domain of ML for source code, our studies
presented in Chapters 5 and 6 focus on enhancing specific aspects of Transformer-based models.
The subsequent section summarizes and concludes this chapter.

2.4 Summary

This chapter provides background knowledge and related work, forming a foundation for our
proposed methodologies in subsequent chapters. Key highlights include:

Low-code and no-code techniques exhibit their effectiveness in expanding opportunities
for domain experts to accomplish their data analysis and processing tasks with minimal to no
programming effort. Besides certain benefits, these methods come with inherent limitations,
such as vendor lock-in, restricted access to source code for cross-platform sharing, and limited
customization. The practical side of our work aims to mitigate these issues, targeting both
researchers and practitioners.

External DSLs. Despite requiring some scripting knowledge, DSLs, the backbone of low-
code and no-code techniques, demonstrate the superiority in conveying business logic and ease
of use, compared to GPLs. While internal DSLs, i.e. a special way of using GPLs, require
relevant knowledge of the implementing language, external DSLs are more suitable for domain
experts, attributed to the separation of DSL scripts and underlying GPLs (i.e. host languages).
Accordingly, external DSLs align with our objectives and serve as the groundwork for our
deployed tool in Chapter 3.

ML-based approaches. In terms of research contributions, ML-based methods have
emerged as the right direction for our work with numerous models exploited for code-related
tasks. Particularly, methods for code completion and NL to code translation are our primary
concerns. These approaches share the foundational concept known as the naturalness hypothesis,
which leverages the repetitiveness in GPLs to apply NLP techniques to source code.

Tailored ML models. Before the widespread adoption of GPT, PHOG and Pointer Mixture
Network excelled beyond traditional ML and DL models, respectively. Consequently, these two
models are integrated into our proposed model in Chapter 4. Our later studies are influenced
by Transformer and its successor, GPT. Therefore, this chapter features a specialized section
dedicated to analyzing the Transformer architecture, setting the stage for comprehending our
work in Chapters 5 and 6.

The next four chapters delve into our contributions in this dissertation.

51

Part II

Practical Contributions

53

Chapter 3NLDSL Extension
Accelerating Programming for Data Analysis Tasks
with Low-code Approaches in Practice

Domain-Specific Languages (DSLs), or highly abstracted programming languages tailored for
specific application domains, are key foundations of low-code development. These languages
demonstrate their success in facilitating collaboration between domain experts and developers
in various fields, including data science. However, developing and maintaining DSLs requires
substantial effort and expertise in both domain knowledge and language development.

In this chapter, we present Natural Language to Domain Specific Language (NLDSL), a Visual
Studio Code (VSCode) extension aimed at addressing the above challenges in constrained DSLs
that model pipelines of operations. Building upon a tool of our research group, introduced by
Andrzejak et al. (2019a), this extension is freely accessible on the Visual Studio Marketplace,
representing our practical contributions to this dissertation.

Section 3.1 reiterates our motivation, while Section 3.2 summarizes the design of the vanilla
NLDSL tool. The enhancements introduced in the NLDSL extension, in contrast to the base
version, are detailed in Section 3.3. Subsequently, Section 3.4 outlines key aspects of dissemi-
nating the VSCode extension. In addition, preliminary evaluation, potential enhancements, and
our response to the first core research question (CRQ1) are discussed in Section 3.5. Ultimately,
we conclude the chapter in Section 3.6.

3.1 Introduction

Low-code techniques are widely-adopted across domains, attributed to their ability to simplify
scripting tasks for domain specialists with limited programming proficiency (Luo et al., 2021;
Johannessen et al., 2021; Di Ruscio et al., 2022; Hirzel, 2023). However, users of low-code
tool-kits usually encounter problems including lack of customization and dependency on specific
vendor’s environment (so called vendor lock-in), leading to potential difficulties in transitioning
between platforms (Luo et al., 2021; Elshan et al., 2023; Martinez et al., 2023). Furthermore,
certain low-code tool-kits pose challenges for developers in terms of maintenance and debugging
(refer to Section 2.1.1 of Chapter 2 for further details).

Facilitating DSL development. The backbone of low-code techniques lies in DSLs. These
highly abstracted GPLs designed for specific domains not only boost development efficiency and
facilitate software artifact reuse but also act as shared languages among domain experts and
developers, alleviating communication hurdles between these user groups (Fowler, 2010; Mernik

55

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

et al., 2005; Andrzejak et al., 2019a). However, DSL development is challenging and demands
significant effort, expertise, and comprehensive consideration of factors ranging from business
to technical aspects (Mernik et al., 2005; Alves, 2023). For more details on DSLs and their
attributes, we refer to Section 2.1.2 of Chapter 2.

To mitigate the aforementioned issues of low-code and DSLs while targeting both domain
experts and developers, facilitating development for DSLs is a promising approach. Hirzel (2023)
highlighted that exposing DSLs for low-code allows users to test, audit, and share them across
applications, thereby overcoming vendor lock-in and facilitating platform transitions. Moreover,
enabling users to customize and integrate tailored DSLs in a low-code fashion can lessen the
issue of limited customization in low-code tool-kits.

Python-based NLDSL, a tool developed by Andrzejak et al. (2019a) in our research group,
demonstrates positive outcomes for the above approach. Besides, software solutions employing
pipelines of operations are common in modern data processing and analysis libraries, indicating
a broad spectrum of potential applications for pipeline-oriented DSLs. The proposed structure
of DSLs in vanilla NLDSL leverages this concept, where each statement encompasses a chain or
pipeline of operations.

In particular, the syntax description and implementation of DSL operations in this tool are
integrated into annotated and concise Python functions, streamlining extension and maintenance
for developers. To support domain experts in customizing their DSLs, vanilla NLDSL provides
a mechanism to define statements at DSL level, serving as first-class1 DSL entities.

Additionally, vanilla NLDSL supports code completion for DSL tokens, based on predefined
syntaxes, within IDEs that implement Microsoft’s Language Server Protocol (LSP). Moreover,
DSL statements are embedded into GPLs as comments and translated to such GPLs during
editing. Listing 3.1 presents an example of DSL designed for Pandas, where the first line contains
the DSL statement, prefixed with ##, and the second line displays the generated Python code.

1 ## on data | select columns 'Country/Region', 'Confirmed' | head 10 | show
2 print(data[['Country/Region', 'Confirmed']].head(10))

Listing 3.1: An example of a DSL statement for Pandas.
Selecting columns Country/Region and Confirmed of the dataframe data and printing the first ten rows.

Contributions of this work. We leveraged the promising results of the vanilla NLDSL tool
and released it as a free VSCode extension in 2020, receiving encouraging responses from the
community. Furthermore, we have augmented the tool with advanced features, additional Deep
Learning (DL)-related DSLs, and a wizard for user-defined DSL development. This extension
is being continually expanded with contributions from our practicum and Bachelor students.
Prominent advancement of the published extension, compared to the vanilla NLDSL, include:

• A wizard for DSL development. We created a DSL development wizard that enables
users to design their own DSLs using an Excel template and import these DSLs into the

1First-class values in a programming language are those that can be passed as parameters, returned from
functions, or assigned to variables (Scott, 2000).

56

3.2. Python-based (vanilla) NLDSL Tool

extension. Users can conveniently share their DSLs by sharing the utilized Excel file. This
feature represents a significant addition compared to the original NLDSL.

• Deep learning DSLs. The initial release of NLDSL (v0.1.0) included DSLs for Pandas and
PySpark, encompassing key processing steps from widely-used tutorials. The latest version
(v0.5.0) of NLDSL extends its capabilities to incorporate alpha-stage DSLs for PyTorch
and TensorFlow. These new DSLs cover fundamental DL tasks, including model creation,
training, and evaluation.

• Additional features for code completion. In addition to the standard code recommendation
based on predefined DSL syntaxes in vanilla NLDSL, we have introduced supplementary
features: type provider and path completion for Comma-separated Values (CSV) files,
library initialization via declaration of target code (e.g. Pandas or PySpark), and DSL
grammar recall during editing. Details on these features are provided in Section 3.3.2.

• DSL grammar adjustment. We adjusted some DSL grammars to handle complex test
cases, including the independent support for group by and apply operations in Pandas
and PySpark DSLs. This modification allows users to specify arguments for the apply
operation, a departure from the original version.

• Common handling. To facilitate developers in maintaining the extension, we restructured
the underlying workflow. Each additional feature is now managed by a handler, with its
settings centralized in a common location.

• Syntax highlighting. To improve DSL statement readability, we color-coded parameters and
predefined functions within DSL statements instead of maintaining a uniform comment
color, as shown in Listing 3.1. Additionally, we introduced a synchronization indicator to
highlight discrepancies between a DSL statement and its generated code line. This feature
is newly implemented in NLDSL compared to its initial version.

Notably, in addition to overcoming the programming barrier through DSL utilization,
NLDSL enables users to seamlessly switch between sequential and parallel data processing
modes, by adapting a unified structure for Pandas and PySpark DSLs, thereby mitigating the
scalability problem . Similarly, DSLs for PyTorch and TensorFlow share a common grammar,
facilitating smooth platform transitions for users without necessitating re-coding, alleviating the
reuse problem (as defined in Chapter 1, Section 1.1). We outline key aspects in the design of
the vanilla NLDSL in Section 3.2 before exploring the deployed extension in subsequent sections.

3.2 Python-based (vanilla) NLDSL Tool

This section provides an overview of the architecture and supported DSL structure of the vanilla
NLDSL, along with its core features. This serves as a foundation for comprehending the advanced
features introduced in the NLDSL VSCode extension. Further implementation details of the
vanilla NLDSL can be found in the original paper of Andrzejak et al. (2019a).

57

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

3.2.1 Tool Architecture

The NLDSL tool comprises two primary components: (i) NLDSL.lib, a library accelerating
development of pipeline-oriented DSLs, and (ii) NLDSL.edit, an environment enabling DSL
editing and in-IDE code generation. Figure 3.1 depicts the architecture of the NLDSL tool.

p
yg

ls DSL-based

Language Server

Library for

Developing DSLs

textX

LSP

Generic Code

Recommender
Customized DSLsLSP

NLDSL.edit NLDSL.lib

IDEs

Figure 3.1: Architecture of NLDSL tool, adapted from Figure 1 of Andrzejak et al. (2019a).

The Python-based library NLDSL.lib utilizes the language workbench2 textX (Dejanović et
al., 2017) for low-level DSL parsing. NLDSL.lib can also operate independently of NLDSL.edit,
generating Python code from customized DSL files through an integrated compiler. Section 3.2.3
explains in detail the customization of DSLs as inputs for NLDSL.lib.

Meanwhile, NLDSL.edit employs NLDSL.lib and pygls3, a pythonic generic implementation
of the LSP, to offer code completion for LSP-supported IDEs. Upon receiving a request of code
completion from a DSL line (starting with ##), the DSL-based Language Server is activated
accordingly. Otherwise, if the request originates from a code line, it is directly forwarded to a
generic code recommender (indicated by the dashed rectangle in Figure 3.1).

3.2.2 DSL Structure

As reviewed in Section 3.1, the vanilla NLDSL supports external DSLs, modeling pipelines
of operations. This is attributed to the advantages of external DSLs over internal DSLs in
exempting users from direct interaction with GPLs, simplifying scripting tasks (further details
in Section 2.1.2 of Chapter 2). Additionally, supported DSLs are incorporated into GPLs as
comments, hence the term embedded external DSLs (as mentioned in Chapter 1, Section 1.4).

Particularly, NLDSL assists two types of external DSLs: evaluation and definition DSL state-
ments. The former denotes statements translatable into executable code (e.g. Python), while the
latter provides an ad-hoc method to extend DSLs using internal functions. Figure 3.2 illustrates
the grammar for the evaluation statements.

|

##

Identifier

DSL_Function

=

Init_Op Intermed_Op|

Final_Op

Figure 3.2: Grammar of evaluation DSL, adapted from Figure 2 of Andrzejak et al. (2019a).
2Language workbenches facilitate the creation and modification of PLs, as discussed further in Section 2.1.2.
3A generic Language Server framework, https://pypi.org/project/pygls/, (Accessed: 26 February 2024).

58

https://pypi.org/project/pygls/

3.2. Python-based (vanilla) NLDSL Tool

Evaluation statements. The statement begins with ##, indicating a comment line in Python
(for other languages such as Java, it would be double forward slashes //). Subsequently, an
optional assignment (Identifier =) is followed by an expansion involving two cases. The first
case entails a function call to an internal DSL function (DSL_Function), specified by a definition
statement. The second case comprises a pipeline of operations, delimited by the pipe symbol (|),
including a mandatory initialization operation (Init_Op), an arbitrary number of intermediate
operations (Intermed_Op), and an optional final operation (Final_Op).

Each operation type can be defined and implemented by a specific DSL. The initialization
operation designates an object or data for processing. For illustrative purposes, Andrzejak et al.
(2019a) utilized "on <Identifier>" as an Init_Op to indicate the input object or variable for
the pipeline. The first line of Listing 3.1 provides an example of an evaluation DSL statement.

Definition statements empower end-users to extend DSLs by creating new DSL functions
using existing operations, resembling parameterized functions at the DSL level. A definition
encompasses a declaration followed by the equal symbol (=) and a sequence of existing DSL
operations or functions on the right-hand side. Listing 3.2 outlines the grammar for the left-
hand side of the definition statements using Extended Backus-Naur Form (EBNF).

1 lhs ::= "#$" name (keyword | var | expr | varlist)*;
2 varlist ::= "$" identifier* "[" (keyword | var)+ "]";
3 var ::= "$" identifier;
4 expr ::= "!" identifier;

Listing 3.2: Grammar for the left-hand side of definition DSL statements in EBNF, adapted
from Andrzejak et al. (2019a).

A declaration statement starts with #$, followed by the function name and zero to multiple
expansions. Each expansion can be a DSL keyword, variable, expression, or variable list, as
detailed in Listing 3.2. An example for this type of DSL statements with its usage scenario is
presented in Section 3.2.3, alongside core features of the vanilla NLDSL tool.

3.2.3 Core Functionalities

Andrzejak et al. (2019a) proposed the initial version of the NLDSL tool with three key features:
(i) DSL code completion (at operation and statement levels), (ii) data inspection and prepro-
cessing with Pandas and PySpark DSLs, and (iii) customization of DSLs through expression
rules for developers and via internal functions for end-users.

DSL Code Completion

To enable the code completion feature for DSL statements, the key combination Ctrl + space
should be pressed on a DSL line (starting with ##). The vanilla NLDSL supports two types
of code completion: at the DSL operation and DSL statement levels. The former suggests
appropriate DSL operations based on the typed tokens, while the latter translates valid DSL
statements into executable code.

59

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

Operation completion. As typical modern IDEs, the DSL-based Language Server (Figure
3.1) generates a list of potential DSL operations, accompanied by documentation, examples, and
grammar definition for each operation upon activation. After selecting an operation, extension
is achieved by appending the pipe symbol (|) and repeating the process. Figure 3.3 illustrates
the recommendation lists provided by the DSL-based Language Server. The returned list is
dynamically adjusted based on the entered operations.

(a) (b)

Figure 3.3: Code completion at operation level with NLDSL takes place at the beginning of the
pipeline (a), and after an initialization operation (b).

Statement completion. Once a valid DSL statement is formed, it can be translated into
executable code by selecting the option marked with the symbol upfront. A DSL statement
is considered valid when it conforms to a predefined grammar. Alternatively, the statements
can be expanded further by choosing other options. Figure 3.4 depicts a Python code generated
for a DSL statement describing a Pandas dataframe named data.

Figure 3.4: Code completion at statement level with NLDSL.

DSLs for Pandas and PySpark

Pandas and PySpark (built on Apache Spark) are well-known libraries for data analysis. While
PySpark (or Spark in general) excels with large-scale datasets owing to its distributed computing
ability, Pandas is preferable for smaller, tabular datasets (Zaman, 2023). By offering a unified set
of DSL functions for both libraries, Andrzejak et al. (2019a) allow users to seamlessly transition
between sequential and parallel processing scripts without needing to understand the underlying
mechanisms, thereby mitigating the scalability problem (defined in Chapter 1, Section 1.1).

Specifying target code. To begin using the designed DSL for data manipulation, users
must designate the target code, which indicates the code to which DSL statements will be

60

3.2. Python-based (vanilla) NLDSL Tool

translated. The vanilla NLDSL offers two options: pandas and spark, corresponding to Pandas
and PySpark, respectively. Listing 3.3 demonstrates specifying the target code for Pandas.

1 ## target code = pandas

Listing 3.3: Specifying target code as pandas for translating subsequent DSL statements into
Pandas code.

Data inspection. Subsequently, three options for specifying a dataframe include: “create
dataframe from” to create a dataframe from a variable, “load from” to import a CSV file into
a dataframe, and “on” to reference a previously defined variable. Listing 3.4 presents a set of
DSL commands and corresponding code lines for data inspection with Pandas, after loading a
CSV file into a dataframe named data (the first three lines). Regular comment lines (beginning
with # instead of ##) are provided solely for explanatory purposes.

1 # Loading the csv file into dataframe 'data'
2 ## data = load from 'covid_19_data.csv' as csv
3 data = pandas.read_csv('covid_19_data.csv')
4
5 # Describing the dataframe content
6 ## on data | describe | show
7 print(data.describe())
8
9 # Selecting columns 'Country/Region' and 'Confirmed' of the dataframe 'data', and ↩

↪ printing the first 10 rows
10 ## on data | select columns 'Country/Region', 'Confirmed' | head 10 | show
11 print(data[['Country/Region', 'Confirmed']].head(10))
12
13 # Grouping rows of the dataframe 'data' by the column 'Country/Region', summing and ↩

↪ then sorting by 'Confirmed'
14 ## on data | group by 'Country/Region' apply sum | sort by 'Confirmed' descending | ↩

↪ show
15 print(data.groupby(['Country/Region']).sum().sort_values(['Confirmed'], axis= ↩

↪ 'index', ascending=[False]))

Listing 3.4: Dataframe inspection with Pandas DSL.

Particularly, to inspect a dataframe using Pandas DSL, users can describe the dataframe (lines
5–7) or select and print specific columns/rows (lines 9–11). Additionally, users can perform
complex operations such as grouping and sorting (lines 13–15).

In terms of exploring dataframes with PySpark DSL, the DSL statements are identical but
the generated PySpark code lines differ slightly from those for Pandas. For simplicity, we omit
PySpark code in this section. Additional test cases for all supported DSL (version v0.5.0) are
available on our group’s website (AIP Group, 2022b).

Data preprocessing. NLDSL also delivers operations for commonly used data manipulation
tasks. Listing 3.5 exhibits the utilization of Pandas DSL to append a new column named Active
to the dataframe data.

61

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

1 # Appending to dataframe 'data' a new column 'Active' which is derived from ' ↩
↪ Confirmed', 'Deaths' and 'Recovered'

2 ## on data | append column data.Confirmed - data.Deaths - data.Recovered as 'Active'
3 data.assign(**{'Active': data.apply(lambda row: row.Confirmed - row.Deaths - row. ↩

↪ Recovered, axis=1).values})

Listing 3.5: Data preprocessing with Pandas DSL.

DSL Customization

For the last group of core features, vanilla NLDSL offers two mechanisms to extend defined
DSLs: through expression rules for developers and via internal DSL functions for end-users.

Extending DSLs with expression rules. Developers can enhance and manage DSLs
using expression rules, involving three steps: (i) defining the grammar and associated details
of the DSL operation, (ii) establishing the expression rule for translating DSL statements into
executable code, and (iii) registering the expression rule with the NLDSL tool.

Step 1. Grammar documentation. NLDSL allows specification of examples, grammar,
arguments, and type for a DSL operation/function via a predefined structured string, instead of a
conventional doc string. Listing 3.6 represents the string documentation for the operation group
by, which is displayed alongside the function name during operation-level code completion.

1 GROUP_BY_DOC = """Group a DataFrame and apply an aggregation.
2 Examples:
3 1. ## x = on df | group by df.col1 apply min
4 2. ## x = on df | group by df.col1, df.col2 apply mean
5 Grammar:
6 group by $columns[$col] apply $aggregation
7 aggregation := { min, max, sum, avg, mean, count }
8 Args:
9 columns (varlist): A list of column names.

10 aggregation (variable): The aggregation operation to be performed.
11 Type:
12 Operation
13 """

Listing 3.6: Documentation defined for DSL operation group by, adapted from the source code
of vanilla NLDSL (Andrzejak et al., 2019a).

Here, $columns[$col] and $aggregation in the Grammar section are two arguments, further
specified in the Args part. Namely, $columns[$col] is a list of variables (or list of columns in
this case), while $aggregation is a variable with a value defined in a finite set (Line 7). Notably,
the Type field at the bottom of the string indicates the operation type, such as “Initialization”
for Init_Op or “Operation” for Intermed_Op and Final_Op (depicted in Figure 3.1).

Step 2. Expression rule definition. Given the specified documentation, developers can
establish the expression/translation rule for the DSL operation using a concise Python function,

62

3.2. Python-based (vanilla) NLDSL Tool

decorated with the term “@grammar”. This decorator serves as a parser for the DSL operation,
utilizing the grammar outlined in the documentation string. The first four lines of Listing 3.7
display the expression rule definition for the group by operation.

1 @grammar(docs.GROUP_BY_DOC)
2 def group_by(code, args):
3 cols = list_to_string(args["columns"])
4 return code + ".groupby({}).{}()".format(cols, args["aggregation"])
5
6 # Registering the expression rule above
7 PandasCodeGenerator.register_function(group_by)

Listing 3.7: Expression rule for DSL operation group by, adapted from the source code of vanilla
NLDSL (Andrzejak et al., 2019a).

The code argument denotes the generated code from preceding pipeline operations. Mean-
while, args is a dictionary containing arguments parsed from the DSL operation based on the
defined grammar. Particularly, args["columns"] provides a list of columns specified in the
DSL operation, and args["aggregation"] returns the token following the keyword “apply”,
indicating the selected aggregation function.

It is worth noting that by this definition, the group by DSL operation is always followed by
a non-argument apply operation, which may not always align with developer preferences. We
addressed this issue in the current version of the NLDSL extension (details in Section 3.3.1).

Step 3. Rule registration. In the final step, developers must register the defined expression
rule with the NLDSL tool, as depicted in the last line of Listing 3.7. Here, PandasCodeGenerator
is a class tailored for Pandas DSL, inherited from the CodeGenerator class within the NLDSL.lib
component, which lays the foundation for code generation functionalities.

Extending DSLs via internal functions. Ultimately, end-users (and also developers) can
extend DSLs by defining a new DSL function as a pipeline of existing DSL operations, using the
definition statement described in Section 3.2.2. The newly defined function can then be utilized
as a DSL operation. Listing 3.8 demonstrates an example of using definition statement to create
a new DSL function named div columns (Line 2).

1 # Defining a new function named div columns
2 #$ div columns $col1 $col2 as $res = append column $col1 / $col2 as $res
3
4 # Using 'div columns' to calculate 'deathsRatio' from 'Deaths' and 'Confirmed'
5 ## on data | div columns data.Deaths data.Confirmed as 'deathsRatio'
6 data.assign(**{'deathsRatio': data.apply(lambda row: row.Deaths / row.Confirmed, ↩

↪ axis=1).values})

Listing 3.8: Defining a new DSL operation via internal function.

The div columns function divides two dataframe columns and assigns the result to a specified
column ($res), which is then appended to the dataframe. This implementation utilizes the

63

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

existing append column operation. Line 5 shows the usage of the newly defined function, while
Line 6 presents the corresponding Pandas code. Notably, upon definition, the new function
div columns is also included in the recommendation list of the DSL-based Language Server, as
depicted in Figure 3.5.

Figure 3.5: Code completion at operation level after defining a new DSL function.

However, this approach encounters three primary challenges: (i) the necessity for users to grasp
and become accustomed to existing DSL grammars, (ii) challenges for end-users in implementing
a new DSL that may not leverage existing DSL operations, and (iii) the inability to utilize
newly defined DSL functions across multiple Python files without re-declaration. To address
these concerns, we developed a wizard to streamline the creation of new DSLs using an Excel
template, fostering DSL sharing across files and among users. The next section delves into the
detailed enhancements made to the NLDSL tool.

3.3 NLDSL Visual Studio Code Extension

Constructed upon the foundation of the vanilla NLDSL, the deployed NLDSL VSCode extension
inherits core functionalities (discussed in Section 3.2.3), supplemented with advanced features.
This section outlines these enhancements in three categories: DSL development (Section 3.3.1),
code completion-related features (Section 3.3.2), and utilities (Section 3.3.3). Advanced features
in each category are delineated in Figure 3.6.

Common Handling

Pandas & PySpark

DSLs
DSL Customization DSL Code Completion

DSL Grammar

Adjustment

TensorFlow & PyTorch

DSLs

DSL Development

Wizard

Excel & tx

Templates
Type Provider & Path

Completion

Library Initialization

Syntax Highlighting

Utilities

Code Completion-related

DSL Development

Vanilla NLDSL

Category:

In-editor Documentation

Figure 3.6: An overview of advanced features delivered with NLDSL extension.

64

3.3. NLDSL Visual Studio Code Extension

3.3.1 DSL Development

The NLDSL extension augments its predecessor, i.e. the (vanilla) NLDSL tool, in facilitating
DSL development through various means. Firstly, the extension introduces a wizard for users
to create and share DSLs across Python files and users, surpassing the constraints of the base
tool. Secondly, two new DSLs (in alpha state) for commonly used DL tasks are incorporated.
Ultimately, adjustments to DSL grammars are made to accommodate more complex test cases.

DSL Development Wizard

The DSL wizard is developed within the Bachelor thesis of Waibel (2021) in our research group.
Essentially, the wizard enables end-users to manage DSLs in a manner resembling how developers
use expression rules (addressed in Section 3.2.3), but without directly accessing the extension’s
source code. Specifically, the wizard facilitates creation of new DSLs from templates, integration
of (defined and shared) DSLs into the extension, and removal of DSLs when needed.

Excel and tx templates. Initially, Pfleger (2020) introduced the utilization of tx files as
templates for DSL generation within our NLDSL extension. These tx files are then processed
by textX to generate the corresponding DSLs. Listing 3.9 exhibits the definition of the DSL
operation group by in tx format.

1 FuncModel-Operation-2
2 func: "group_by"
3 grammar: "group by $columns[$col] apply $aggregation"
4 args: "aggregation:min,max,sum,avg,mean,count"
5 syntax: ".groupBy($).$()"
6 type: "Operation"

Listing 3.9: Definition for the DSL operation group by in tx format.

Here, FuncModel-Operation-2 serves as a unique identifier to differentiate it from other func-
tions/operations registered within the extension. The fields func, grammar, args, syntax, and
type represent the function name, DSL grammar, argument constraints, syntax for translating
DSL to executable code, and operation type, respectively. These attributes align with those
discussed in Section 3.2.3.

To assist users in adapting to the structure of tx files and adhering to the defined constraints
for each field, Waibel (2021) introduced an Excel template mirroring the tx file structure.
This template includes predefined fields with corresponding selectable values in drop-down lists.
Figure 3.7 depicts a portion of this Excel template used for defining PySpark DSL. For simplicity,
we solely magnify relevant values in the figure.

Namely, values of columns func, grammar, args, syntax, and type within the Excel file
correspond to those defined in the tx file for the group by operation (Listing 3.9). The values
in the type column, representing operation types, are pre-specified and presented as a drop-
down list upon selection (not shown in Figure 3.7). Detailed instructions and examples for DSL
creation are provided on our group’s website (AIP Group, 2022a).

65

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

group_by

group by $columns[$col]

apply $aggregation

aggregation:min,max,

sum,avg,mean,count
.groupBy($).$()

Operation

func [,] grammar [,] args [,] syntax [,] type [,]

CodeGenerator:Spark Language (file ending):py import nldsl as:nl

Rule Type func [,] env [,] grammar [,] args [,] code [,] syntax type expRule name mappings [,] types [,]

ExpRule SparkExpr ["and -> &","or ->|"… in -> UNARY_FUNCTION

FuncModel expr_only !expr Function SparkExpr

FuncModel re_test_dsl
another test

$dataframe

print

($dataframe)
Initialization

FuncModel on_dataframe on $dataframe Initialization

FuncModel group_by group by $columns[$…
aggregation

:min,max…
.groupBy($).$()Operation

Figure 3.7: An example of Excel template for DSL creation with NLDSL.

DSL integration and removal. Users can incorporate a customized DSL into the extension
via the NLDSL menu, accessed through the side panel of VSCode by clicking on the DSL icon.
Figure 3.8 displays the NLDSL menu after adding a DSL named example_dsl. In the list of
DSLs, global refers to built-in DSLs, while extern denotes user-created or shared DSLs.

Figure 3.8: NLDSL menu in VSCode after adding a new DSL named example_dsl.

If users select an Excel file as the input template, the wizard will convert the Excel file into a
tx file, which is subsequently processed by textX. Upon successfully integrating the new DSL,
generated files, such as configuration files and Python files, which contain documentation strings
and expression rules, are organized within a DSL folder. Alternatively, users can add a DSL by
specifying the path to the DSL folder. Similarly, removing a DSL can also be performed through
the NLDSL menu. This action will not delete the corresponding DSL folder.

It is important to note that users are not required to perceive the internal procedure of creating
and managing DSLs. They simply need to utilize the Excel or tx template and remember the
paths to their DSL folders. We believe this greatly simplifies DSL development for end-users.

Deep Learning DSLs

To enrich the built-in DSLs shipped with the extension, we supplemented two additional DSLs
tailored for PyTorch and TensorFlow frameworks, facilitating standard DL operations. These

66

3.3. NLDSL Visual Studio Code Extension

DSLs are implemented by our practicum students, Philipp Walz and Jona Neef (Walz et al.,
2020). An illustration of TensorFlow DSL usage for basic DL tasks is depicted in Listing 3.10.

1 # Creating a sequential model with one flatten layer and one dense layer
2 ## create model myModel | model type feed_forward | add layer flatten | add layer ↩

↪ fully connected 36864 128 none
3 myModel = tf.keras.models.Sequential([
4 tf.keras.layers.Flatten(),
5 tf.keras.layers.Dense(128)
6])
7
8 # Compiling the model with optimizer adam
9 ## on myModel | compile | optimizer adam

10 myModel.compile(optimizer='adam')
11
12 # Training the model with the train set mnist_train in 10 epoches
13 ## on myModel | train | using mnist_train data with labels | epochs 10
14 myModel.fit(mnist_train[0], mnist_train[1], epochs=10)
15
16 # Evaluate the model with the test set mnist_test
17 ## on myModel | evaluate | using mnist_test data with labels
18 myModel.evaluate(mnist_test[0], mnist_test[1])

Listing 3.10: Basic Deep Learning tasks with TensorFlow DSL*.

* DSL statements within the NLDSL extension incorporate syntax highlighting (explained later), contrasting with
the uniform comment color observed in Section 3.2.

Users define a DL model within the first six lines by specifying the model type (e.g.
feed_forward) and adding specific layers (e.g. flatten and fully connected). Here, 36864,
128, and none denote the input shape, output shape, and the softmax function, respectively.
Following model creation, users can compile it (lines 8–10), train it on a designated train set
(lines 12–14), and evaluate its performance on a target test set (lines 16–18).

The PyTorch DSL grammar closely resembles that of TensorFlow DSL, facilitating smooth
transition between platforms for end-users. However, these operations are still in the alpha stage.
Additional examples of TensorFlow and PyTorch usage are accessible via test cases provided on
our group’s website (AIP Group, 2022b).

DSL Grammar Adjustment

We modified predefined DSL grammars, such as group by and apply, to accommodate complex
test cases. In vanilla NLDSL, as detailed in Section 3.2.3, the apply operation invariably
follows the group by operation. Moreover, identifying arguments for the apply operation is not
feasible, which may not always align with developers’ preferences. To address this, we separated
the grammar of these operations, redefining the apply operation with optional arguments.

Listing 3.11 outlines the updated documentation strings for these operations. The corre-
sponding expression rules are omitted for simplicity. With the revised grammar, Listing 3.12
illustrates the application of group by and apply operations in the data inspection task, which
is previously outlined in lines 13–15 of Listing 3.4. Users can now determine columns for each
apply operation, along with the resulting column name.

67

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

1 GROUP_BY_DOC = """Group a DataFrame and apply an aggregation.
2 Examples:
3 1. ## x = on df | group by df.col1
4 2. ## x = on df | group by df.col1, df.col2
5 Grammar:
6 group by $columns[$col]
7 Args:
8 columns (varlist): A list of column names.
9 Type:

10 Operation
11 """
12
13 APPLY_DOC = """ Apply aggregation function(s) on column(s).
14 Examples:
15 1. ## on data | apply sum on df.col1 as "newColumn"
16 2. ## on data | apply sum on df.col1 as "newColumn1", mean on df.col2 as " ↩

↪ newColumn2"
17 Grammar:
18 apply $aggregations[$aggregation on $col as $new_col]
19 aggregation := { min, max, sum, mean, count }
20 Args:
21 aggregations (varlist): A list of performed aggregations on columns.
22 Type:
23 Operation
24 """

Listing 3.11: Documentation defined for DSL operations group by and apply in NLDSL
extension v0.5.0.

1 # Grouping rows of the dataframe 'data' by the column 'Country/Region', summing
'Deaths' and then sorting by the column 'Last Update' descending

2
3 ## on data | group by 'Country/Region', 'Last Update' | apply sum on 'Deaths' as ↩

↪ 'DeathsSummed' | sort by 'Last Update' descending | show
4
5 print(data.groupby(['Country/Region', 'Last Update']).agg({'Deaths' : 'sum'}).rename ↩

↪ (columns={'Deaths' : 'DeathsSummed'}).sort_values(['Last Update'], axis= ↩
↪ 'index', ascending=[False]))

Listing 3.12: Usages of group by and apply operations with adjusted grammars.

3.3.2 Code Completion-related Features

Besides the fundamental code completion at operation and statement levels (explained in Section
3.2.3), the NLDSL VSCode extension offers additional features, augmenting the code completion
mechanism. These supplements involve type provider and path completion for CSV files, library
initialization through target code declaration, and in-editor documentation.

Type Provider and Path Completion

As CSV files are commonly used in data analysis, recognizing file structure and providing relevant
information would benefit end-users. Weber (2020), in his Bachelor thesis at our research group,

68

3.3. NLDSL Visual Studio Code Extension

developed type provider to recommend column names when handling CSV files, implemented
path completion to suggest paths of available CSV files within the project folder, and introduced
syntax highlighting to enhance readability (discussed later in Section 3.3.3).

Type provider. The idea behind this feature involves extracting structural information from
a CSV file, including column names, row values, and column types, to construct metadata. The
metadata is then used to form a key-value dictionary representing supported options of the type
provider. For instance, keys like columns or col contain the column names extracted from the
CSV file. These keys also align with arguments defined in DSL grammar (e.g. $columns for the
select columns operation).

Subsequently, based on the ongoing operation, relevant values are injected into the extension’s
completion results before presenting the recommendation list to users via the language server. To
enable this functionality, users must initially specify the desired CSV file using a DSL statement
prefixed with #!, as demonstrated in Listing 3.13.

1 # Specifying CSV file 'data/covid_19_data.csv' for the type provider
2 #! name 'data', type 'csv', path 'data/covid_19_data.csv'

Listing 3.13: Specifying a CSV file for type provider feature.

Here, name denotes the dataframe’s identifier for subsequent data processing. The terms type
and path specify the file’s format (e.g. 'csv') and its location, respectively. After setting the
metadata for the type provider, NLDSL can suggest column names from the specified CSV file.
Figure 3.9 illustrates the recommended column names for the select columns operation upon
activating the type provider.

Figure 3.9: Column names completion with type provider in NLDSL*.

* The load from operation differs slightly from that in Listing 3.4 due to adjustments in the DSL grammar.

69

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

Path completion. Using the same concept, paths to all files within the project directory
are gathered and stored in the aforementioned key-value dictionary with the key named path.
This list of file paths is then integrated into the completion results when the $path argument
is expected next in the DSL operation. Figure 3.10 demonstrates path completion for the load
from operation.

Figure 3.10: Path completion supported by NLDSL.

Library Initialization

The next supplemented feature involves automatically importing specific Python libraries to
ensure the executability of code translated from DSL statements. For certain cases like Pandas
or TensorFlow DSLs, the import statements can be inferred (i.e. “import pandas” or “import
tensorflow”). However, each target code often requires particular libraries and sometimes
instantiation (e.g. PySpark DSL), which might be unfamiliar to end-users.

To tackle this issue, we introduced a DSL function, “set target code” (Figure 3.11(a)),
facilitating users in specifying their target code. Moreover, upon selecting the completion option
“initialize libs” after defining the target code (Figure 3.11(b)), relevant libraries will be
automatically imported. Listing 3.14 displays examples of generated codes importing relevant
libraries for PySpark and PyTorch.

(a) (b)

Figure 3.11: Setting target code and initializing libraries with NLDSL.

1 ## target code = spark
2 from pyspark.sql import SparkSession
3 from pyspark.sql.functions import *
4 spark = SparkSession.builder.appName("Spark Example").getOrCreate()
5
6 ## target code = pytorch
7 import torch as pyTorch
8 import torchvision

Listing 3.14: Initializing relevant libraries for spark target code in NLDSL extension.

70

3.3. NLDSL Visual Studio Code Extension

Specifically, users can customize the libraries for each target code using a JavaScript Object
Notation (JSON) configuration file shipped with the extension. Listing 3.15 illustrates a portion
of this configuration file. Furthermore, in the current version of the NLDSL extension (v0.5.0),
we enhanced the underlying mechanism to enable users to specify multiple target codes within a
Python file, as depicted in Listing 3.14. This eliminates unnecessary file switches due to changes
in target codes, a feature lacking in the original NLDSL tool.

1 "auto_import": {
2 "pandas": "\nimport pandas as pd\n",
3 "spark": "\nfrom pyspark.sql import SparkSession\nfrom pyspark.sql.functions ↩

↪ import *\n\nspark = SparkSession.builder.appName(\"Spark Example\"). ↩
↪ getOrCreate()\n",

4 "pytorch": "\nimport torch as pyTorch\nimport torchvision\n",
5 "tensorflow": "\nimport tensorflow as tf\n"
6 }

Listing 3.15: Configuration of auto-imported libraries for each target code.

In-editor Documentation

Finally, to complement the code completion aspect, we implemented an in-editor documentation
feature. Despite the DSL development wizard (Section 3.3.1) assisting users in creating DSLs
without directly engaging with the extension’s source code, users still need to remember the
grammar of defined DSLs. Hence, we deployed a completion option called “Help on current
command”, accessible at the bottom of the completion list, to aid in recalling DSL grammar for
the current command during editing. Figure 3.12 presents the case for the apply operation.

Figure 3.12: Recalling DSL grammar for apply operation while editing with NLDSL.

The current command’s documentation is obtained by comparing keywords of the incomplete
operation (from the pipe symbol to just before the cursor) with defined DSL grammars. For
simplicity, the documentation string of the first operation in the search results is retrieved.

71

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

3.3.3 Utilities

The last category of advanced features introduced to the NLDSL extension, compared to the
vanilla tool, includes common handling and syntax highlighting. The former facilitates extension
maintenance for developers, while the latter improves readability and user experience.

Common Handling

We redesigned the extension’s workflow to centralize control over additional features such as
type provider, path completion, and synchronization indicator (discussed later). These features
are managed through handlers, registered via a JSON configuration file. This approach enables
developers to integrate new features into the extension by adding the corresponding handler to
the configuration file, without altering the extension’s source code.

Apart from code completion, the common handling procedure currently supports four event
types: did_open, did_change, did_save, and did_close, signifying user actions of open-
ing, modifying, saving, and closing a Python file, respectively. Furthermore, lines within the
Python file are categorized into three groups: code for code lines, dsl for DSL statements, and
directive for DSL directives. In the current version (v0.5.0), DSL directives specify CSV files
for the type provider feature, identified by lines starting with #!.

For each line type within an event, corresponding handlers are designated in the configuration
file. Listing 3.16 outlines the handlers registered for the did_change event (lines 9–23), namely
type_provider_handler and syncer_handler.

1 "handlers": {
2 "syncer_handler": {...},
3 "type_provider_handler": {
4 "module": "nldsl_plugin.TypeProvider.type_provider_handler",
5 "class": "TypeProviderHandler",
6 "sub_config": {...}
7 }
8 },
9 "did_change": {

10 "code_dsl": {
11 "syncer_handler": {
12 "instance": "syncer_handler",
13 "functions": ["did_change"]
14 }
15 },
16 "directive": {
17 "syncer_handler": {...},
18 "type_provider_handler": {
19 "instance": "type_provider_handler",
20 "functions": ["did_change"]
21 }
22 }
23 }

Listing 3.16: Handlers registered for did_change event in NLDSL.

Here, code_dsl denotes that the handler is utilized for both code and dsl line types. Besides,

72

3.4. Dissemination

instance refers to an instance of the handler class defined previously (lines 1–8), while the
field functions determines the names of functions to be performed with the handler. When
the NLDSL extension is activated, all handler classes identified in the configuration file are
instantiated and registered for the four aforementioned events. Depending on the event and
encountered line type, the handlers execute associated functions to process the code/DSL line.

Syntax Highlighting

Weber (2020), in his Bachelor thesis, improved DSL readability through syntax coloring and
introduced a synchronization indicator to detect mismatches between DSL lines and code lines.
We integrated this work into the extension, which has been available since version 0.1.6.

Syntax coloring. The syntax coloring feature operates on the client side of the language
server, implemented in TypeScript. End-users can customize color rules seamlessly via a JSON
configuration file provided with the extension. In the current version (v0.5.0), colors are deter-
mined by the VSCode theme (e.g. light or dark), token types (e.g. keyword, string, or number),
and DSL operation type (e.g. initialization or normal operation). Examples of colored DSL
statements are illustrated through listings and figures in Section 3.3.

Synchronization indicator. An inherent issue with NLDSL (v0.5.0) is that updating the
DSL statement may not automatically update the corresponding code line if it has already been
generated, potentially resulting in incorrect execution results. To mitigate this, we integrated a
synchronization indicator into the extension to alert users when these two lines are out of sync.

This indicator leverages the diagnostic publishing feature of the language server implemented
with pygls. Upon encountering an event (e.g. did_open or did_change), a warning diagnostic
(severity = 2) is created if there is a mismatch between a DSL statement and its related code
line. These two lines are in sync if the code line aligns with the code translated from the DSL
statement to the specified target language. Listing 3.17 exhibits an example of unsync cases.

1 # Loading a csv file without headers into dataframe 'data'
2

:::::::
data

::
=
:::::::::::

load from
:::::::::::::::::::::::::::::::::::::
'data/covid_19_data_no_header.csv'

:::::::::::::::::::::::
as csv_without_header

3
::::::
data =

::
pd.read_csv('data/covid_19_data.csv')

Listing 3.17: Synchronization indicator with NLDSL.

We anticipate that the robust foundation of the vanilla NLDSL tool, combined with enhance-
ments in the VSCode extension, will augment DSL development and usage for both end-users
and developers. The next section outlines our dissemination strategy to make the extension
more accessible to users.

3.4 Dissemination

The NLDSL VSCode extension is deployed and managed through Microsoft Azure Pipelines.
We utilized Continuous Integration (CI) and Continuous Deployment (CD) pipelines to build
and publish multiple versions of the extensions, respectively. This is attributed to the parallel
job support, across diverse Operating System (OS) images, on Azure.

73

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

The extension is delivered on VSCode Marketplace in three versions for Windows, Linux and
macOS4. These versions share the extension’s source code but differ in the configuration files,
i.e. YAML files, which define necessary steps in building the extension. Notably, a standalone
Python interpreter is included with the extension, allowing users to utilize NLDSL without
installing Python on their devices.

Figure 3.13 depicts an overview of our steps for implementing the dissemination, entailing
repository and Azure account setup, YAML file creation, CI pipeline configuration, and CD
pipeline design. This section describes our approach to manage CI and CD pipelines, followed
by detailed build instructions specified in YAML files. Comprehensive guidance for publishing
a VSCode extension can be found in Azure’s documentation5.

Creating

YAML files

Configuring

CI pipelines

Designing

CD pipelines

Setting up a repo

& Azure account

Figure 3.13: General steps for disseminating the NLDSL extension with Azure Pipelines.

3.4.1 Managing CI and CD Pipelines on Azure

Microsoft (2023) proposes two methods for utilizing CI and CD pipelines. The first approach
involves setting up a single YAML file for both pipeline types, automatically triggering the
CD pipelines immediately after the CI ones. Alternatively, developers can use the classic Azure
DevOps web portal for manual activation. We have adopted the latter for our NLDSL extension.

Particularly, we established CI pipelines using predefined YAML files, acquired built artifacts,
and subsequently defined CD pipelines to consume and deploy these artifacts. This enables
testing of artifacts before the deployment, particularly for features involving user interaction,
such as the DSL development wizard. Figure 3.14 displays the workflow triggered during the
release of new extension features.

Updating

features

Submitting

source code

Running CI

pipelines

Obtaining

artifacts

Activating

CD pipelines

Deployed

extension

Testing

artifacts

Figure 3.14: Workflow of activating CI and CD pipelines while releasing new extension features.

After updating new features, developers submit source code to the repository, prompting CI
pipelines to build their artifacts. These artifacts can be downloaded from the Azure DevOps
web portal and manually tested with VSCode. Subsequently, the CD pipelines are activated to
publish the tested artifacts, making the extension available on the Marketplace for users.

4Visual Studio Marketplace for NLDSL extension on three different operating systems, https://marketplace.
visualstudio.com/publishers/PVS-IfI-Heidelberg-University-Germany.

5Azure Pipelines documentation, https://learn.microsoft.com/en-us/azure/devops/pipelines.
(Access: 05 March 2024).

74

https://marketplace.visualstudio.com/publishers/PVS-IfI-Heidelberg-University-Germany
https://marketplace.visualstudio.com/publishers/PVS-IfI-Heidelberg-University-Germany
https://learn.microsoft.com/en-us/azure/devops/pipelines

3.4. Dissemination

Given that managing CI and CD pipelines is conducted through Azure web interface with
predefined options, the primary task is to specify necessary steps in the YAML file for generating
CI artifacts. The next subsection delves into build instructions designated in the YAML file.

3.4.2 Build Instructions in YAML Files

In CI/CD, Yet Another Markup Language (YAML) files serve as configuration files defining jobs,
stages, and steps for application or service building, testing, and deployment. These files enable
developers to specify dependencies, environment variables, and other parameters essential for
pipeline execution6.

We employed three YAML files to configure CI pipelines for three variants of the extension,
separately. While these files differ in OS images and scripting languages used for crawling the
Python interpreter (e.g. PowerShell for Windows, Bash for Linux and macOS), they share the
common tasks as demonstrated in Figure 3.15.

Setting

OS image &

Python version

Fetching Python

interpreter & installing

dependencies

Installing

npm on the

OS image

Retrieving

extension

version

Selecting &

publishing

pipeline artifacts

Generating

VSIX

package

Figure 3.15: Tasks specified in YAML files for CI pipelines.

Following the configuration of the target OS image and Python version (e.g. windows-latest
and Python 3.7 for Windows), a standalone Python interpreter is fetched into a directory bundled
with the extension, along with the installation of relevant dependencies. Subsequently, Node
Package Manager (npm) is installed on the OS image to mange the packing process.

The version of the extension is then retrieved and used during the generation of the VSIX
package. This package is a .vsix file containing one or multiple Visual Studio extensions and
the accompanying metadata utilized by Visual Studio for classification and installation of the
extensions (Microsoft, 2022). Ultimately, the resulting VSIX package and extension version
(stored in a text file) are moved to a staging directory (Build.ArtifactStagingDirectory)
and published as a pipeline artifact for later use in the CD pipelines.

It is worth mentioning again that we performed the testing phase, on both the extension’s
source code and the obtained .vsix files, independent to the setting in the YAML files. This
arises from the necessity of user interaction in some features of our extension, such as the DSL
development wizard.

Particularly, Listing 3.18 outlines general steps to construct a Python interpreter for the Linux
version of the extension. Typically, we downloaded a Python build standalone file, extracted
it to the target folder, rename the folder based on the select OS image, and installed relevant
extension repositories. Similar scripts for Windows and macOS follow analogous principles but
vary in commands used. For simplicity, these scripts are excluded from our discussion.

6What is YAML?, https://www.jetbrains.com/teamcity/ci-cd-guide/faq/yaml/, (Access: 05 March 2024).

75

https://www.jetbrains.com/teamcity/ci-cd-guide/faq/yaml/

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

1 echo "Download Python build standalone"
2 wget "link-to-build-standalone-file" -O python-linux.tar.zst
3 echo "Extract python tar.zst file"
4 sudo apt install zstd
5 zstd -d python-linux.tar.zst
6 tar -xvf python-linux.tar
7 rm python-linux.tar.zst
8 rm python-linux.tar
9 echo "Rename folder python to Linux"

10 mv python Linux
11 echo "Install relevant repos"
12 cd Linux/install/bin
13 ./python3 -m pip install git+https://relevant-repo-links

Listing 3.18: Setting up a standalone Python interpreter for the Linux-NLDSL extension.

Our extension’s source code, the aforementioned YAML files, and three scripts for fetching
Python interpreters are openly accessible through the repository specified on the extension’s
Marketplace web page (mentioned above). The subsequent section presents our preliminary
evaluation for the extension and potential enhancements for future versions.

3.5 Discussion

A thorough evaluation of our extension requires a carefully designed user study with a sufficient
participant pool. However, constrained by time and the scope of our research, we defer this
analysis to future work and instead concentrate on evaluating the efficacy of utilizing the NLDSL
extension for fundamental data science tasks. This section presents our preliminary assessment
of the extension and offers potential recommendations for future enhancements. The section
concludes with our response to the CRQ1, specified in Section 1.4 of Chapter 1.

3.5.1 Preliminary Evaluation

We conducted a preliminary assessment of the NLDSL extension across several dimensions,
including (i) its assistance for developers in creating DSLs and the coverage in basic data science
tasks of supported DSLs, (ii) community reaction measured by installation numbers via VSCode,
and (iii) an analysis of the extension’s strengths and weaknesses.

Evaluation of the Core Libraries, Supported DSLs, and Advanced Features

The deployed NLDSL extension empowers developers in defining DSLs through concise
Python functions, with delivered DSLs capable of covering most essential data exploration
and preprocessing tasks. In addition, its advanced features execute in approximately one
second on notebooks with moderate computational capability.

76

3.5. Discussion

Core libraries. In particular, developers can construct and manage DSLs using terse doc
strings (e.g. Listing 3.6) and concise Python functions defining expression rules of translating
DSL operations to target languages (e.g. Listing 3.7). For instance, the Python files detailing
expression rules for Pandas and PySpark DSLs consist of 175 and 200 lines of code (LOC)
respectively, excluding blank and comment lines. The documentation file, which can be shared
between these two DSLs due to their identical sets of operations, contains 267 non-empty lines.

For end-users, a DSL command pipeline generates one to multiple lines of Python code (e.g.
library initialization). Furthermore, these DSL operations are not only designed in a natural-like
language, enhancing comprehension for end-users, but also slightly reduce the average number
of characters required for typing, compared to the corresponding Python code.

As an illustration, in our Pandas DSL test cases (AIP Group, 2022b), the average length of a
DSL pipeline is 59.5 characters, while the average length of corresponding Python code is 63.7
characters (i.e. a 6.6% decrease). For PySpark DSL, these values are 58.4 and 61.3 characters,
respectively, resulting in a 4.7% decrease.

Supported DSLs. Besides, Andrzejak et al. (2019a) assessed that the original DSLs for
Pandas and PySpark cover 12 out of 14 (85.8%) of Pandas processing steps and 14 out of 16
(87.5%) of PySpark processing steps from a popular DataCamp tutorial for Apache Spark7. The
current Pandas and PySpark DSLs have been evolved on the basis of the original versions, while
maintaining the same coverage. Besides, although TensorFlow and PyTorch DSLs are in the
alpha stage, they already support fundamental DL tasks such as dataset loading, model creation,
training, and evaluation. Test cases for each predefined DSL are available on our group’s website
(AIP Group, 2022b).

DSL development wizard. For the advanced features of the NLDSL extension, Waibel
(2021) demonstrated in his thesis that with 22 DSL operations defined for PySpark, the DSL
development wizard can generate necessary files implementing the DSL from an Excel template
in less than one second on an i5 4x1.6GHz notebook. The runtime naturally increases as the
number of defined operations in the Excel file grows (e.g. around 10 seconds for 100 operations),
primarily due to accessing and converting the Excel file to a tx file. However, it is important to
note that this transformation is performed only once, independent of the DSL usage.

Type provider. Additionally, Weber (2020) found that generating metadata for the type
provider feature from a CSV file with 31 columns, 10,000 rows, and an approximate size of 1MB
takes around 1.67 seconds on an i7 4x2.7GHz processor. To reduce this processing time, users
can set a row threshold in the extension’s configuration file, allowing a sample of the CSV file
to be handled instead of the entire file.

Syntax highlighting. Ultimately, Weber (2020) also estimated that coloring 1,000 DSL lines
takes around 200 milliseconds. For the synchronization indicator, the NLDSL extension checks
only the line that triggered the did_change event and disregards preceding lines, thus saving
time compared to examining all existing lines within the file. For instance, in a Python file with
200 DSL lines and one unsynchronized case, the detection time is approximately 14 milliseconds.

7Apache Spark Tutorial: ML with PySpark, https://www.datacamp.com/community/tutorials/apache-
spark-tutorial-machine-learning, (Accessed: 08 March 2024).

77

https://www.datacamp.com/community/tutorials/apache-spark-tutorial-machine-learning
https://www.datacamp.com/community/tutorials/apache-spark-tutorial-machine-learning

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

It is worth highlighting that the computers used in the above evaluation were modest compared
to current high-end configurations8. The preliminary evaluation results demonstrate acceptable
performance of the NLDSL extension on supported features. However, a proper evaluation
should include comparisons with similar extensions and consideration of user feedback regarding
the extension’s utility. The former is currently challenging due to the unique attributes of our
extension, but we intend to address the latter in future project work.

Statistics on Dissemination

After nearly four years of deployment, our NLDSL extension has received encouraging
community feedback, as indicated by installation numbers.

Over 17k installations. Figure 3.16 depicts a stacked area chart illustrating installation
trends for different variants of the NLDSL extension, sourced from VSCode Marketplace reports,
spanning from July 2020 to July 2024. As of 11 July 2024, the extension has accumulated a
total of 17,300 installations, with 9,699 on Windows, 3,829 on macOS, and 3,772 on Linux.

0

4000

8000

12000

16000

20000

07/2020 01/2021 07/2021 01/2022 07/2022 01/2023 07/2023 01/2024 07/2024

In
st

al
la

ti
o
n
 n

u
m

b
er

s

Timeline

Linux

macOS

Windows

Figure 3.16: Statistics on installation numbers of three variants of NLDSL extension over time.

Furthermore, over the last 90 days as of 11 July 2024, the Windows variant recorded 503
installations, while the macOS and Linux variants reached 183 and 212 installations, respectively.
Overall, installation numbers have shown a gradual increase over the years, with the Windows
variant being the most favored. Additionally, total installations on macOS slightly surpass those
on Linux. While these figures may not rival those of extensions published by major corporations,
they remain encouraging for our project.

Listed in the top-3 search results. Moreover, our NLDSL stands out among extensions
available on the VSCode Marketplace for its unique support of DSL usage and development.
Meanwhile, other extensions primarily focus on assisting a single specific DSL, such as C4 DSL9,

8Fastest CPU of 2024, https://www.techradar.com/pro/fastest-cpus-of-year.
9Deployed by Systemticks, https://marketplace.visualstudio.com/items?itemName=systemticks.c4-dsl-

extension.
(Accessed: 09 March 2024).

78

https://www.techradar.com/pro/fastest-cpus-of-year
https://marketplace.visualstudio.com/items?itemName=systemticks.c4-dsl-extension
https://marketplace.visualstudio.com/items?itemName=systemticks.c4-dsl-extension

3.5. Discussion

Structurizr DSL10, and Asset Management Engine DSL11. Finally, when searching for extensions
using terms like “Data analysis DSL” and “DSL development” on the Marketplace, our extension
consistently appears within the top-3 results, regardless of sorting by relevance or trending.

Strength and Weakness of the NLDSL Extension

Although the NLDSL extension resolves certain deficiencies of low-code approaches (e.g. lack
of customization and vendor lock-in), it exhibits both advantages and disadvantages,
indicating areas for refinement.

The NLDSL extension facilitates usage and development of DSLs for both developers
and end-users, tackling the issues of programming barrier , reuse , and scalability
(defined in Section 1.1 of Chapter 1).

DSL usage. As detailed in Sections 3.2 and 3.3, the extension enables the use of DSLs
directly within GPL files as comments, mitigating complexities associated with tool switching.
Furthermore, it offers code completion at both DSL operation and statement levels to aid
users in constructing the DSL pipeline and translating commands into executable code.

Advanced features including type provider and path completion enhance code completion
by supplying column names, dataframe names from CSV files, and file locations within the
project directory. Moreover, in-editor documentation provides access to DSL grammars
during editing, and library initialization supports users to import and initialize relevant libraries
by specifying the target language (i.e. target code). These completion features, combined with
the natural-like language of the DSLs, aim to address the programming barrier for end-users.

Additionally, among delivered DSLs of the NLDSL extension, the Pandas and PySpark
DSLs employ identical operation sets, allowing seamless transitioning between sequential and
parallel processing modes. Similarly, TensorFlow and PyTorch DSLs share common gram-
mars, enabling users to switch between platforms effortlessly. This concept targets to alleviate
the challenge of scalability .

DSL development. Furthermore, with NLDSL, developers can create and manage DSLs
using documentation strings and short Python functions, while end-users can utilize internal
functions or a wizard with Excel or tx templates, independently of the extension’s source code.

In addition, users can share their designed DSLs by distributing the specified template files,
lessening the reuse problem .

Ultimately, feature control in the extension is centralized to configuration files, assist-
ing developers in implementing new features or maintaining existing ones. Syntax coloring
and synchronization indicators are also deployed to enhance the readability of DSL commands.
However, there is still room for improvement.
10Deployed by GFR Software, https://marketplace.visualstudio.com/items?itemName=gfrsoftware.

structurizr-dsl-abacus-extension.
11Deployed by Nova Energy Consulting, https://marketplace.visualstudio.com/items?itemName=nova-

energy-consulting.amedsl-lang.
(Accessed: 09 March 2024).

79

https://marketplace.visualstudio.com/items?itemName=gfrsoftware.structurizr-dsl-abacus-extension
https://marketplace.visualstudio.com/items?itemName=gfrsoftware.structurizr-dsl-abacus-extension
https://marketplace.visualstudio.com/items?itemName=nova-energy-consulting.amedsl-lang
https://marketplace.visualstudio.com/items?itemName=nova-energy-consulting.amedsl-lang

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

Extension configuration remains constrained to JSON files, while creating complex DSLs
with the Excel template might encounter certain challenges.

The NLDSL extension provides configuration options through various JSON files. For ex-
ample, file handlers.json is used to specify handlers for events and features, while files
coloring_data.json and coloring_colors_light.json (or coloring_colors_dark.json for
VSCode dark theme) are employed to adjust syntax coloring. To update these files effectively,
users should understand the file structures and value constraints, potentially adding complexity
to the extension usage.

Additionally, the Excel template serves as an initial design for the DSL development wizard.
Complex DSLs with numerous operations and lengthy expression rules could hinder users’

ability to quickly grasp the DSL overview as the Excel file expands. Furthermore, users
can only validate the functionality of their defined DSLs after creation and integration into the
extension (Waibel, 2021). This might prolong the process of DSL customization.

In the following subsection, we delineate possible upgrades to address the aforementioned
limitations and augment the extension with further advanced features.

3.5.2 Potential Enhancements

Future work for the NLDSL extension encompasses various aspects, spanning from editor
functionality, DSL utilization, code completion to user experience.

Enriching editor functionality. Firstly, utilizing a more user-friendly display, such as
VSCode’s setting editor12, could effectively address the JSON configuration file issue mentioned
above. Besides, the current extension allows users to edit DSLs textually, which might be less
preferable than modifying them using tables, diagrams, or forms with a projectional editor
(Fowler, 2010). A promising development involves a hybrid editor integrating textual and
projectional editing. For instance, Korz et al. (2023) proposed augmenting a textual code editor
with embedded textual or graphical GUIs for code segments. The latter demonstrates its benefit
in displaying mathematical formulas.

Enhancing DSL accessibility. Next, the NLDSL extension could adopt a web platform
or server for users to exchange customized DSLs, enabling upload, sharing, and download within
the community. In addition, to mitigate the issue of Excel templates expanding with complex
DSLs, other templates combining a tx file and a GUI within VSCode could be explored. No-
tably, these templates should integrate a checker to validate grammar of expression rules before
integrating the DSL.

Improving code completion. Subsequently, despite the feature of in-editor documentation
in recalling DSL grammar during editing, users still need to select this option from the recom-
mendation list and filter relevant information from the displayed documentation. A potential

12User and workspace settings, https://code.visualstudio.com/docs/getstarted/settings, (Accessed: 10
March 2024).

80

https://code.visualstudio.com/docs/getstarted/settings

3.5. Discussion

enhancement could comprise a phantom recommendation, automatically generating complete
DSL grammars with hinted parameters to indicate places for parameter names.

For instance, “select columns <col names> ” could be suggested to prompt users to input
column names after the “select columns” keyword. This feature should complement type
provider and path completion features. Notably, leveraging LLMs to enhance code completion
for the NLDSL extension requires a sufficient amount of training or fine tuning data, which
might currently be unattainable due to the novelty of the proposed DSLs.

Expanding IDE and GPL Support. Alternatively, an enhancement could be extending
the extension to IDEs supporting Microsoft’s LSP, such as JupyterLab and PyCharm, given
that the extension was developed with a DSL-based Language Server. Additionally, adapting
our concept to other GPLs like JavaScript and R is also feasible.

Increasing automation. Another potential improvement is to automatically update the
executable code when users modify the DSL pipeline, or vice versa. This would reduce the
occurrences of unsynchronized cases arising from user editing mistakes.

Incorporating user feedback. Last but not least, user perspectives play a vital role in the
iterative process of application development. Therefore, conducting surveys to gather user
input is essential for enhancing the extension with practical features.

3.5.3 Response to CRQ1

The first core research question (CRQ1), outlined in Section 1.4 of Chapter 1, focuses on the
benefits of embedded external DSLs in implementing data analysis tasks. The results from the
preliminary evaluation above consolidate our response to this question. Particularly, building
upon the acknowledged advantages of DSLs in accelerating programming (analyzed in Section
2.1.2), our concern shifts towards streamlining DSL development for both developers and end-
users, a challenge addressed by our proposed NLDSL extension.

The preliminary evaluation (Section 3.5.1) emphasizes the advantages of the NLDSL extension
in enhancing the utilization and development of DSLs for end-users and developers, with features
processed in an acceptable duration (approximately one second or less). Moreover, the extension
has achieved positive reaction from the community. Certain shortcomings of the extension can
be tackled technically with future work, as outlined in Section 3.5.2.

In summary, the NLDSL extension exemplifies the effectiveness of embedding external DSLs
into GPLs as comments to facilitate programming for both domain experts and practitioners.
Designed DSLs shipped with the extension cover fundamental data analysis, data processing,
and DL tasks. Furthermore, advanced features of the extension also demonstrate the ability to
simplify DSL development across various domains. Consequently, we can respond to the first
core research question as follows:

A-CRQ1. The embedded external DSLs exhibit high potential in expediting
programming for data analysis tasks and beyond.

81

3. NLDSL Extension:
Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice

3.6 Summary

In this chapter, we described NLDSL, a VSCode extension aimed at facilitating DSL utiliza-
tion and development for both end-users and developers. The extension is freely available on
the VSCode Marketplace, with versions for Windows, macOS, and Linux. Our preliminary
evaluation of the extension’s core libraries highlights their strength to empower developers and
end-users to define DSLs through concise Python functions and dedicated wizards with Excel
and tx templates, respectively.

Additionally, processing times for enhanced functionalities of the extension are estimated to
be roughly one second or less on notebooks with average computing resources, thus expanding
the extension’s applicability. Specifically, dissemination statistics underscore positive response
from the community, spurring further developments, such as editor functionality enrichment,
DSL accessibility enhancement, and user feedback integration.

Besides, through the utilization of DSLs along with unique designs and advanced features, the
NLDSL extension helps mitigate the challenges of programming barrier , reuse problem ,
and scalability problem . These are the primary issues targeted in this dissertation, as outlined
in Chapter 1, Section 1.1. Furthermore, the extension illustrates the efficacy of embedded
external DSLs in accelerating programming, addressing the first core research question (CRQ1),
specified in Chapter 1, Section 1.4. This is also a representation of our practical contributions
to the dissertation.

Ultimately, the NLDSL extension entails work from our practicum and Bachelor students.
Table 3.1 details the features and tasks involved in the process of developing and distributing the
extension, along with the corresponding contributors. The subsequent three chapters delineate
the outcomes of our research contributions.

82

3.6. Summary

Table 3.1: Contributors in developing and disseminating the NLDSL extension.
Features/Tasks Section(s) Contributors Source(s)

Vanilla NLDSL 3.2.3

Oliver Wenz,
Oliver Schmitt,
Kevin Kiefer,
Diego Elias Costa,
Artur Andrzejak

Andrzejak et al. (2019a),
Wenz (2019),
Schmitt (2019)

Type provider,
Syntax highlighting

3.3.2
3.3.3 Patrick Weber Weber (2020)

Deep learning DSLs 3.3.1 Philipp Walz,
Jona Neef Walz et al. (2020)

DSL development wizard 3.3.1 Tim Waibel,
Dennis Pfleger

Waibel (2021),
Pfleger (2020)

Library initialization,
In-editor documentation,
Common handling,
Feature integration,
Dissemination

3.3.2
3.3.2
3.3.3
-
3.4

Kim Tuyen Le This dissertation

DSL grammar adjustment,
Extension testing,
Bug fixing,
Documentation

3.3.1
-
-
-

Kim Tuyen Le,
Christopher Höllriegl

This dissertation
AIP Group (2022b)
-
-

Extension testing,
Project supervision - Artur Andrzejak -

83

Part III

Research Contributions

85

Chapter 4Extended Network
Improving Code Recommendations by Combining
Neural and Classical ML Approaches

Our first work on the research side focuses on code recommendation systems, which target
to expedite scripting tasks and development of large-scale software projects. Widely adopted
features of these systems include code completion and next token prediction provided by modern
Integrated Development Environments (IDEs). However, dynamic languages like Python present
a notable challenge for these systems due to the scarcity of type information during editing.

Various Machine Learning (ML) approaches have been proposed to address this challenge.
Particularly, the Probabilistic Higher Order Grammar (PHOG) technique suggested by Bielik
et al. (2016) utilizes a grammar-based approach with a classical ML schema to leverage local
context. Meanwhile, Li et al. (2018) tackled the dynamic typing issue by employing Deep
Learning (DL), specifically a Recurrent Neural Network (RNN) coupled with a Pointer Network.

In this chapter, we quantitatively compare these two approaches using a large corpus of
GitHub Python files. We also introduce an ensemble approach named Extended Network, where
a neural network determines the schema used for each prediction. The exemplified Extended
Network model slightly outperforms its individual components. Our comprehensive evaluation
and analysis demonstrate the potential of ensemble-like methods for code completion and
recommendation in dynamically typed languages.

Section 4.1 discusses our motivation in this study, while Section 4.2 provides a summary of
background knowledge and related work. The Extended Network architecture and its model are
described in Section 4.3. We evaluate the proposed approach and answer to the second core
research question (CRQ2) in Section 4.4. Finally, the chapter is concluded by Section 4.5.

This chapter is based on our peer-reviewed publication (Schumacher et al., 2020).

4.1 Introduction

Code recommendation systems for software engineering aim to speed up the development
of large software projects (Robillard et al., 2010). A specific type of these systems is exhibited
by the well-known features in IDEs: code completion and next token prediction (Allamanis
et al., 2018). In large software projects, these features are particularly useful for identifying the
applicable function from numerous options, navigating code, and learning new libraries, as they
provide information on available functions, methods, or attributes (Schumacher, 2019).

87

4. Extended Network:
Improving Code Recommendations by Combining Neural and Classical ML Approaches

However, these code recommendation systems can only suggest an approximation of user’s
next inputs in a text editor. This is attributed to the necessity of simplifying assumptions about
human behavior and the vast number of possible inputs, which makes accurate code prediction
difficult (Schumacher, 2019). Furthermore, unlike text in Natural Language Processing (NLP),
a code recommender must infer both value and object type of the code token that the user
intends to define next.

Challenges of dynamically typed languages. Meanwhile, multiple models proposed for
code completion struggle to predict the specific value of a code token, whereas merely identifying
the token type is less challenging (Liu et al., 2017; Raychev et al., 2016; Li et al., 2018; Bielik
et al., 2016). In these studies, the syntax of a programming language can enhance prediction
accuracy by narrowing down the search space of possible token types (Schumacher, 2019). ML
techniques can be trained to understand this syntax, aiding in the prediction of the next token
type, i.e. non-terminal nodes in Abstract Syntax Trees (ASTs).

Nevertheless, most intelligent code completion approaches depend on type information, that
is only available at compile time, limiting their applicability to dynamically typed languages
such as JavaScript or Python (Liu et al., 2017). As a result, providing code completion in these
languages is challenging due to the absence of type information during programming. With
dynamically typed languages gaining popularity, there is an increasing need for intelligent code
completion tailored to these languages (Schumacher, 2019).

Notable approaches. Additionally, the emergence of large code repositories, often referred
to as Big Code (e.g. GitHub), has spurred the adoption of DL and probabilistic language models
for code analysis (Allamanis et al., 2018). Although RNNs have been widely used in predicting
subsequent code tokens, they face certain problems. Notably, the computational complexity of
evaluating the softmax function utilized in RNNs can become significant, escalating with the
size of the global vocabulary (Li et al., 2018; Schumacher, 2019).

One strategy frequently employed to tackle this issue involves constraining the range of the
vocabulary used. However, this method gives rise to another obstacle: Out-of-Vocabulary (OOV)
words that are unforeseeable by RNNs (Li et al., 2018). To address this matter, Li et al. (2018)
proposed the Pointer Mixture Network model, which utilizes Pointer Networks (Vinyals et al.,
2015) to predict OOV words. Nonetheless, even with this model, the ability to predict OOV
words remains limited to the current context (Schumacher, 2019).

Another promising direction for code recommendation challenges is adapting statistical models
like Probabilistic Higher Order Grammar (PHOG), as presented by Bielik et al. (2016). This
model incorporates production rules derived from a context-sensitive grammar, offering flexibility
in accommodating varied vocabulary sizes and addressing long-range dependencies.

Contributions of this work. Given the advantages of the aforementioned methods and
the established efficacy of ensemble learning (Sagi et al., 2018), we proposed an ensemble-like
architecture that integrates neural and classical ML approaches to mitigate the weaknesses of
individual models. To demonstrate the usability of our proposed architecture, we combined a
Pointer Mixture Network and PHOG to predict terminal values of AST nodes. Our contributions
in this work are as follows:

88

4.2. Background and Related Work

• An Extended Network architecture incorporating neural and classical ML models with a
selection mechanism. The architecture is exemplified through a combination of Pointer
Mixture Network and PHOG for predicting next code tokens. Furthermore, we featured
an enhanced RNN architecture with multiple Long Short-Term Memory (LSTM) layers
and dropout. This model was implemented by Schumacher (2019) in his Bachelor’s thesis
conducted within our research group.

• An extensive comparison to evaluate the accuracy of the proposed model across various
settings of relevant parameters. In addition, the performance of individual components is
examined to ascertain their respective strengths.

Notably, our work in this chapter employs code completion approaches to primarily address
the programming barrier (discussed in Chapter 1, Section 1.1), serving as our answer to the
second core research question (CRQ2), specified in Section 1.4 of Chapter 1.

4.2 Background and Related Work

As detailed in Chapter 2, Section 2.2, the advancement of ML models for code is driven by the
naturalness hypothesis, which views code completion through a natural language lens. Besides,
NLP can be defined as the convergence of Artifical Intelligence (AI) and linguistics (Nadkarni
et al., 2011; Schumacher, 2019). This section delineates background information and related
work, laying the groundwork for our proposed model in the subsequent section.

4.2.1 The Naturalness Hypothesis

According to Allamanis et al. (2018), software can be considered as a form of interaction akin to
human language. This hypothesis enables the application of software corpora in a similar manner
to Natural Language (NL) corpora. Extensive research has been conducted to further investigate
this resemblance, revealing the predictability of code. Notably, studies utilizing n-grams (Hindle
et al., 2016; Tu et al., 2014) have highlighted the naturalness and repetitiveness of code (more
details in Chapter 2, Section 2.2.2). Additionally, various ML and DL models rooted in NLP
have shown effectiveness in handling code (Liu et al., 2017; Raychev et al., 2016; Li et al., 2018;
Mikolov et al., 2013c).

4.2.2 Typical Machine Learning Models for Code Completion

In the context of code completion, ML techniques are applied by interpreting code tokens as NL
and representing program code using ASTs. The task of code completion is then formulated
as predicting the subsequent node in the AST given a certain input or a part of the AST
(Schumacher, 2019). Various typical neural network architectures such as RNN, LSTM and
word embedding technique (Mikolov et al., 2013c; Mikolov et al., 2013a) have been deployed to
tackle this problem. Moreover, the efficacy of these neural networks is notably enhanced as the
volume of available data for training and testing increases (Allamanis et al., 2018).

89

4. Extended Network:
Improving Code Recommendations by Combining Neural and Classical ML Approaches

Leveraging this benefit of large corpora, Liu et al. (2017) presented an LSTM architecture
designed to acquire code completions by analyzing a substantial dataset of dynamically typed
JavaScript code. Their model stands as a competitor to existing probabilistic code models,
such as decision trees (Raychev et al., 2016; Schumacher, 2019). Nevertheless, conventional
neural approaches encounter challenges related to capturing long-range dependencies and dealing
with the OOV issue (Li et al., 2018). Further details of neural network architectures for code
completion are discussed in Section 2.2.4 of Chapter 2.

4.2.3 PHOG and Pointer Mixture Network

Among various ML and DL approaches explored for code completion (outlined in Sections 2.2.3
and 2.2.4 of Chapter 2), Probabilistic Higher Order Grammar (PHOG) introduced by Bielik
et al. (2016) and Pointer Mixture Network proposed by Li et al. (2018) are particularly suitable
for our ensemble-like architecture.

PHOG draws inspiration from its predecessor models such as Probabilistic Context Free
Grammars (PCFG) and n-gram (Jurafsky et al., 2008; Gvero et al., 2015; Hindle et al., 2016). In
particular, PHOG extends the capabilities of PCFG by conditioning not only on the parent non-
terminal node but also by dynamically constructing contextual information through traversal of
the AST (Bielik et al., 2016; Schumacher, 2019).

Contrary to PCFG and n-gram models, PHOG adaptively generates program representations
based on the obtained contextual information. This flexible program representation makes
PHOG applicable to any programming language featuring ASTs. As a result, while PCFG and
n-gram models are oriented toward specific domains, limiting their generalizability, PHOG offers
broader applicability (Schumacher, 2019). More insights on these models are provided in Section
2.2.3 of Chapter 2.

While PHOG represents classical ML methods for code, Pointer Mixture Network adopts
DL techniques, particularly LSTM architecture and neural attention, for code completion.
Specifically, Pointer Mixture Network integrates an attentional-LSTM with a Pointer Network
to address long-range dependencies and OOV words (Li et al., 2018).

The general concept of attentional-LSTM targets to mitigate the limitations posed by storing
information within a single fixed-length vector in RNNs (i.e. the hidden state bottleneck) and to
effectively capture long-range dependencies. The attention mechanism (Bahdanau et al., 2015)
was proposed for this purpose, employing a weighted sum of both past and current hidden state
vectors. This mechanism enables information propagation across extended time intervals.

Particularly, the attentional-LSTM of Li et al. (2018) comprises two forms of attention: context
attention and parent attention. The context attention mechanism operates within a fixed-sized
context window, while the parent attention is a distinct type of context attention tailored for
ASTs. The latter form incorporates the hidden state from the parent node of the currently
processed node into the attentional layer (Schumacher, 2019).

Subsequently, based on the localness of software premise (Tu et al., 2014), which suggests that
source code tends to repeat locally, Li et al. (2018) adapted Pointer Networks (Vinyals et al.,
2015) to handle the issue of static output vocabularies. Essentially, a Pointer Network functions

90

4.3. Extended Network

by pointing to a token within the input sequence to predict the next token. Further details on
the Pointer Mixture Network and its groundwork are clarified in Chapter 2, Section 2.2.4.

4.3 Extended Network

This section presents our Extended Network approach and its exemplified model, which was
developed by Schumacher (2019) through his Bachelor study conducted in our research group.

4.3.1 The Core Idea

Our Extended Network aims to enhance code modeling and prediction by combining neural and
probabilistic language models into an ensemble-like architecture. In addition, we employed a
dynamic selection mechanism to identify suitable components used for each prediction based on
their capabilities. By this way, deficiencies in one component are balanced out by the strengths
of others, fostering more accurate predictions.

Schumacher (2019) established two prerequisites for constructing an instance of the Extended
Network: a foundational neural network model and clear criteria for component selection. The
ensemble model’s output layer includes the neural network’s output-dimensions, representing
words from the vocabulary, and additional output-dimensions, one for each probabilistic model.
These extra dimensions convey the estimated probability of the corresponding probabilistic
language model generating a fitting prediction for the provided input.

Formal Definition

To formally define the output of the Extended Network, let y signify the output layer of a given
neural network:

y = f(Wx + b) (4.1)

with f being an activation function, while W ∈ Rn×m and b ∈ Rn are trainable parameters
(Schumacher, 2019). The output of the neural network y ∈ Rn is a probability distribution over
n potential outputs, while x ∈ Rm denotes m-dimensional embedding of an input code token.

The Extended Network incorporates a set of probabilistic language models known as gi (where
i ranges from 1 to k) into the above neural network. This integration expands the output-
dimensions of the neural network, yielding an extended output layer, referred to as y′ ∈ Rn+k.
To obtain y′, we adjusted the dimensions of parameters W and b. Subsequently, the output of
the Extended Network is then computed as follows:

y′ = f(W ′x + b′) (4.2)

where W ′ ∈ R(n+k)×m and b′ ∈ Rn+k are trainable parameters and the activation function f

remains unchanged.
Besides, instead of solely providing a probability distribution across the predefined vocabulary,

the Extended Network additionally assigns a probability to each probabilistic language model,
indicating the likelihood of model gi (i ∈ [1, ..., k]) producing accurate predictions. We labeled

91

4. Extended Network:
Improving Code Recommendations by Combining Neural and Classical ML Approaches

the outcomes y′n+1, ..., y′n+k generated by probabilistic language models as special_IDs. These
outputs individually function as distinct identifiers for their respective probabilistic language
models (Schumacher, 2019).

Component Selection Procedure

Given an instance of the Extended Network architecture encompassing a neural network and k

single probabilistic or statistical language models, the output can be either a vocabulary word
or a special_ID from a statistical model. Figure 4.1 depicts the model selection mechanism
in this case. Namely, if the value of argmax(y′) from the computed probability distribution y′

aligns with a special_ID, the output is derived from the relevant statistical model; otherwise,
it is determined by argmax(y′) as usual.

Neural Network

component receives input

LSTM LSTM LSTM…

… …

𝑦1
′ 𝑦𝑛

′

𝑦𝑛+𝑘
′𝑦𝑛+1

′

Compute probability

distribution 𝑦′

… …

𝑦1
′ 𝑦𝑛

′

𝑦𝑛+𝑘
′𝑦𝑛+1

′

Use prediction from

statistical model

Is

𝑎𝑟𝑔𝑚𝑎𝑥 𝑦′

a special_ID?

… …

𝑦1
′ 𝑦𝑛

′

𝑦𝑛+𝑘
′𝑦𝑛+1

′

Use 𝑎𝑟𝑔𝑚𝑎𝑥 from the

probability distribution 𝑦′

yes

no

Figure 4.1: Flowchart displaying the component selection in the Extended Network during pre-
diction, adapted from Figure 3.4 of Schumacher (2019).

The process of learning when to engage the neural network component or alternative ones
within the Extended Network involves creating unique deterministic labels. These labels are
formed from a selection of either vocabulary words or designated special_IDs. Schumacher
(2019) developed a hierarchical structure wherein a series of conditions C = {c0, ..., ck} is
sequentially evaluated to identify these labels.

Particularly, condition c0 is dedicated to the neural network component, while condition ci is
associated with probabilistic language models gi for i ∈ [1, ..., k]. Upon fulfilling a condition, the
matching label of this condition is assigned to the related special_ID or word. This hierarchical
method facilitates the generation of deterministic labels while giving precedence to individual
components based on the order in which conditions C are assessed.

Consequently, the composition and sequence of conditions C play a crucial role in shaping
the performance of the Extended Network. However, there is no universal approach to formulate
these conditions, as their effectiveness is closely tied to the specific application of the Extended
Network (Schumacher, 2019). The following subsections demonstrate the utility of our proposed
ensemble-like architecture using a model that comprises Pointer Mixture Network as the neural
network component and PHOG as the statistical model.

92

4.3. Extended Network

4.3.2 An Illustrative Model for the Extended Network Architecture

To exemplify our proposed architecture, we designed an ensemble model for recommending
next code tokens (i.e. terminal values of AST nodes) in Python programs. This model targets
to mitigate the OOV occurrences that are unpredictable with long-range dependencies. As
discussed in Section 4.2.3, we utilized Pointer Mixture Network (Li et al., 2018) and PHOG
(Bielik et al., 2016) as components of the model. Hereafter, the phrase “Extended Network”
denotes the proposed concept, while “Extended Network model” refers to the illustrative model.

Improving Pointer Mixture Network with PHOG

Essentially, the Pointer Mixture Network consists of an RNN, implemented as an attentional-
LSTM, and a Pointer Network. When the RNN component fails to forecast OOV words, the
prediction is typically handled by the pointer component. However, this approach by Li et al.
(2018) experiences obstacles with long-range dependencies.

These challenges stem from the authors’ utilization of a fixed-size attention window of previous
hidden states for both components, as detailed in Section 2.2.4 of Chapter 2. This configuration
confines the RNN to attending only to preceding information within the window and restricts
the pointer component to referencing input words within the same range. Consequently, neither
component can predict OOV words beyond the attention window (Schumacher, 2019).

We addressed this issue by adopting the PHOG model. One of its key advantages is that
it establishes the vocabulary space based solely on the unique words presented in the training
data. This characteristic enables the model to be unrestricted by vocabulary size and reduces
challenges associated with long-range dependencies (Schumacher, 2019).

Additionally, PHOG incorporates TCOND, a Domain-Specific Language (DSL) tailored for
navigating AST structures and collecting information during traversal (outlined in Section 2.2.3
of Chapter 2). By leveraging TCOND, the model can gather contextual information without
being constrained by word positions within the AST, hence alleviating the problem posed by
the attention window.

Prediction Strategy

As delineated in the component selection procedure (Section 4.3.1), output of the Extended
Network can be a vocabulary word or a special_ID. The latter reveals the necessity of inspecting
suggestions from the relevant probabilistic language model. In our Extended Network model,
outputs are derived from either Pointer Mixture Network or PHOG. Therefore, we labeled the
special_ID in this context as hog_ID.

More precisely, the Extended Network model offers three output options: (i) from the RNN
component, (ii) from the Pointer Network, and (iii) from PHOG. The model learns to choose
the appropriate option for each prediction. To facilitate this process, an additional output-
dimension for the hog_ID was incorporated into the output layer of the RNN component. A set
of conditions was then established to guide this learning process. Given the significance of the
condition set, we dedicate the following subsection to explain the conditioning process in detail.

93

4. Extended Network:
Improving Code Recommendations by Combining Neural and Classical ML Approaches

4.3.3 Component Selection in the Extended Network Model

Inspired by the Pointer Mixture Network, we trained the Extended Network model to select
suitable component for each prediction. Particularly, every next node value in an AST is assigned
a deterministic label, specifying the component used for predicting this node value. These labels
are obtained by assessing individual values against a set of predefined conditions.

Furthermore, we compiled these deterministic labels into a file, forming a terminal corpus
(named tcorpus), where each line represents labels for one AST in the dataset. This corpus
serves as the ground truth for the network during the learning process. Detailed explanations
regarding the condition set and the creation of the terminal corpus are provided below.

Conditioning the Extended Network Model

As outlined in Section 4.3.2, the Extended Network model encompasses an RNN, a Pointer
Network, and a PHOG component, attaining output words from the vocabulary, the attention
window, and PHOG’s prediction, respectively. Schumacher (2019) defined a set of conditions in
hierarchical order to determine the activation of each component for predicting an AST node.

Overall strategy. Fundamentally, if the node value corresponds to an entry in the terminal
dictionary, which is a dictionary of vocabulary word and ID pairs, then the RNN component is
utilized. Otherwise, if the value resides within the attention window, the Pointer Network com-
ponent is chosen. Alternatively, recommendations from the PHOG component are considered.
However, if none of the components successfully predict the value, the node value is treated as
unknown, denoted by unk_ID.

Encoding labels. In particular, we annotated the terminal dictionary as tdict, where
tdict[value] returns the matching ID of the terminal value (i.e. ID of the vocabulary word).
Consequently, labels for node values are encoded using (i) tdict[value], (ii) location indices
from the attention window, (iii) hog_ID, or (iv) unk_ID, implying the usage of RNN, attention
window, PHOG, or neither of the components, respectively. Figure 4.2 illustrates the procedure
applied to terminal T with value foo and type Str.

T =

{"type":"Str",

"value":"foo"} Is "foo"

in tdict?

Write tdict["foo"]

to tcorpus

Is "foo"

in attention

window ?

Write location of

"foo" in the window

to tcorpus

Is "foo"

a PHOG

prediction?

Write hog_ID

to tcorpus

Write unk_ID

to tcorpus

yes

no

yes yes

no no

RNN Pointer Network Statistical modelActivated component:

Figure 4.2: An example of generating a label for terminal T and writing it to the terminal corpus
tcorpus, adapted from Figure 3.6 of Schumacher (2019).

Namely, if the node value foo is in the terminal dictionary tdict, its ID (i.e. tdict["foo"])
is appended to the current line of the terminal corpus (tcorpus), indicating the utilization of

94

4.3. Extended Network

the RNN component. Conversely, if the value foo is absent from tdict but is located in the
attention window, its position within the window is noted in the ongoing line of tcorpus. This
scenario signifies that the Pointer Network component is selected for prediction.

However, if neither of the preceding cases is valid, then PHOG’s suggestion is evaluated. If
the output from PHOG aligns with the node value, the hog_ID is added to tcorpus, confirming
PHOG as the chosen predictor. Finally, when none of the components yield the considered value
(foo), an unk_ID is assigned as the label of the node value.

Creating Terminal Corpus

The encoding process described above is applied to each node within an AST and across all ASTs
in the dataset, forming the terminal corpus tcorpus. Algorithm 4.1, developed by Schumacher
(2019) and based on the approach of Li et al. (2018), displays this construction. The PROCESS
function takes as inputs a file of ASTs asts_file, a PHOG’s predictions hog_file, a terminal
dictionary tdict containing the n most frequent words (with n as the vocabulary size), and the
attention window size attn_size.

Algorithm 4.1 Creating the terminal corpus, adapted from Algorithm 1 of Schumacher (2019)
Input: ASTs (asts_file), PHOG’s predictions (hog_file), terminal dictionary (tdict), atten-

tion window size (attn_size)
Output: terminal corpus

1: function Process(asts_file, hog_file, tdict, attn_size)
2: tcorpus← []
3: for ast, hog_pred in asts_file, hog_file do
4: tline← []
5: attn_queue← deque(attn_size)
6: for node, hog_node in ast, hog_pred do
7: if “value” in node.keys then
8: dict_value← node[“value”]
9: if dict_value in tdict then

10: tline.append(tdict[dict_value])
11: attn_queue.append(“NormaL”)
12: else
13: if dict_value in attn_queue then
14: attn_loc← get_loc(attn_queue, dict_value)
15: tline.append(attn_loc)
16: else if dict_value == hog_node[“value”] then
17: tline.append(hog_ID)
18: else
19: tline.append(unk_ID)
20: attn_queue.append(dict_value)
21: else
22: attn_queue.append(“EmptY ”)
23: tline.append(tdict[“EmptY ”])
24: tcorpus.append(tline)
25: return tcorpus

95

4. Extended Network:
Improving Code Recommendations by Combining Neural and Classical ML Approaches

Here, the hog_file is a JavaScript Object Notation (JSON) file, collecting predictions made
by a trained PHOG for every AST in the training and testing datasets. The structure of
hog_file mirrors how AST nodes are organized in these datasets. In particular, each line in
this file corresponds to an AST and is formatted as a separate JSON object. Within each object,
recommendations for value and type are provided for every node present in the AST.

Overall, for each AST, we create a line called tline, where the value of each terminal node is
converted to an identifier from the terminal dictionary tdict (lines 9–11), an index denoting its
position within the attention window (lines 13–15), or the hog_ID (lines 16–17). If the Extended
Network model is unable to predict the current terminal value, unk_ID is appended to the tline
(line 19). The final output, tcorpus, is a collection of lines, with each line pertaining to the
terminal labels of an individual AST.

In our implementation, each label is encoded by an unique integer. Additionally, non-terminal
nodes without value fields have their values designated as EmptY (lines 22–23). Furthermore, we
employed attn_queue as a deque object (line 5), with a maximum length bound to attn_size, to
store values in the attention window. Entries in this deque comprise NormaL for terminal values
in tdict, the terminal value itself, and EmptY for non-terminal nodes. The unconventional
capitalization prevents conflicts with other node values.

Predicting Unknown Words

We designed the Extended Network model to consistently generate a prediction by excluding
unk_ID as a valid choice. As a result, any predictions of unk_ID are deemed incorrect, prompting
the model to steer clear of such predictions. While it is technically possible to choose the PHOG
component each time an unk_ID label appears, irrespective of its accuracy, this method could
overly bias the Extended Network model towards favoring predictions of hog_ID.

Specifically, our model prioritizes the PHOG component when its prediction is accurate rather
than uncertain. In addition, even though the RNN component may not always yield the correct
outcome, it can produce results closely resembling the correct one. In contrast, due to the lack
of a similarity metric for PHOG’s predictions, assessing the proximity of an incorrect PHOG
prediction to the true label is challenging. Consequently, when PHOG fails to offer a correct
answer, the output of the RNN component takes precedence (Schumacher, 2019).

4.4 Evaluation

This section details our experimental setup and results, followed by our response to the second
core research question (CRQ2), defined in Chapter 1, Section 1.4.

4.4.1 Experimental Setup

We leveraged the Python150k dataset provided by ETH-Zürich1 in our experiments due to its
widespread use in code completion context (Bielik et al., 2016; Liu et al., 2017; Li et al., 2018).

1SRILAB, https://www.sri.inf.ethz.ch/py150, (Accessed: 13 March 2024).

96

https://www.sri.inf.ethz.ch/py150

4.4. Evaluation

This dataset contains 150,000 Python scripts from GitHub repositories. To ensure uniqueness,
duplicate entries, including forks, were eliminated. Moreover, only repositories with permissive
and non-viral licenses, such as MIT, Apache, or BSD were included. Besides, each Python script
was parsed into AST format utilizing the parser in Python 2.7 (Raychev et al., 2016).

Dataset Splitting

Initially, the whole dataset was divided into 100,000 ASTs for training purposes and 50,000
ASTs for testing. Subsequently, for parameter tuning and model development, we continued
partitioning the training dataset into training and development subsets. In particular, from the
100,000 training ASTs, 90,000 were designated for training and 10,000 for development, with
the evaluation set (50,000 ASTs) left unchanged.

Applying this specific training-development split for parameter tuning helps maintain the
integrity of the testing dataset and enables compatible comparisons with other models trained
on the Python150k dataset. This approach also allows us to measure accuracy on previously
unseen data since the testing dataset was reserved solely for the final evaluation of our model,
and no parameters were adjusted using this testing dataset (Schumacher, 2019).

Data Preprocessing

In the Extended Network model, target values are derived by shifting the input sequence (i.e.
flattened AST) forward one time step. For instance, given an input sequence in0...int at time step
t, the target sequence is in1...int+1. Furthermore, as outlined in Section 4.3.3, we constructed a
terminal corpus of encoded labels to condition the model on selecting the appropriate component
for every prediction task. This corpus was created for both train-dev and train-test splits,
accommodating vocabulary sizes of 1,000 and 10,000 words. Table 4.1 shows the rules for
assigning unique integers to each label.

Table 4.1: Encoding labels in the terminal corpus of the Extended Network model.
Label Integer value

EmptY 0
tdict_start_idx 1
tdict_end_idx tdict_size − 1
unk_ID tdict_size
hog_ID tdict_size + 1
eof_ID tdict_size + 2
attn_start_idx tdict_size + 3
attn_end_idx attn_start_idx + attn_size

Particularly, the value 0 is reserved for the label EmptY, while integers from 1 to tdict_size−1
are allocated to the terminal dictionary tdict, where tdict_size is the dictionary size. The
values for unk_ID and hog_ID follow the last index of the terminal dictionary tdict_end_idx.
The end-of-file identifier eof_ID, used as padding, is calculated next. Finally, indices within

97

4. Extended Network:
Improving Code Recommendations by Combining Neural and Classical ML Approaches

the attention window are computed subsequently and constrained to the range of the attention
window size attn_size, as described in the last two rows of Table 4.1.

Experiment Configuration

Our Extended Network model integrates Pointer Mixture Network and PHOG. Therefore, we
adapted hyperparameters from Li et al. (2018) for the former component. For the latter, the
PHOG model developed by Bielik et al. (2016) was employed and trained on the training dataset
(either from the train-dev or train-test split). Table 4.2 summarizes our main configuration.

Table 4.2: Experiment configuration for the Extended Network model.
Parameter Value

LSTM unrolling length 50
Attention window size 50
Hidden unit size 1,500
Optimizer Adam
Number of epochs 8

In particular, the LSTM within the Pointer Mixture Network of our Extended Network model
was configured with specific hyperparameters: an unrolling length of 50, an attention window
of size 50, and a hidden unit size of 1,500. Besides, to optimize the model during training,
we utilized the cross entropy loss function along with stochastic gradient descent and the Adam
optimizer (Kingma et al., 2015).

Additionally, to address potential gradient issues, a clipping threshold of 5 was applied to
prevent gradients from exploding, as recommended by Li et al. (2018). Training sessions were
capped at a maximum of 8 epochs, starting with a learning rate of 0.001 and applying a decay
rate of 0.6 after each epoch (Schumacher, 2019).

Evaluation Strategy

We performed three main sets of experiments: (i) training a single-layer Extended Network model
without dropout, (ii) increasing the number of layers to two and adjusting dropout rates, and (iii)
utilizing the train-test split to train the most promising models from (i) and (ii) on vocabulary
sizes of 1k and 10k. Evaluation metrics were the same among all experiments. Notably, for
the second experiment, we measured accuracies on the training and development datasets and
observed the differences between both sets.

In addition, we conducted two further analyses. The first one compares the performance of
individual components within the proposed model, while the second one investigates the impact
of AST nodes without values on each component’s performance. These analyses examined four
different aspects of every component: (1) predictive ability, (2) selection likelihood as a predictor,
(3) accuracy when chosen, and (4) independent performance. Calculation details and results are
elaborated in the next subsection.

98

4.4. Evaluation

4.4.2 Experimental Results

This subsection reveals our evaluation results, beginning with the main experiments and followed
by the aforementioned two analyses.

Evaluation Results for the Three Sets of Experiments

Finding 1. The Extended Network model slightly outperforms its components and can be
further enhanced by adding an extra LSTM layer with a 20% dropout rate.

Single layer Extended Network model. In our first experiment, we omitted the use of
dropout and multi-layers to exclusively evaluate the influence of the Extended Network model on
accuracy. This approach ensures a fair comparison with the Pointer Mixture Network, as multi-
layers and dropout are likely to enhance its performance as well, thereby potentially diminishing
the benefit gained from implementing an Extended Network model (Schumacher, 2019).

After training the Pointer Mixture Network for 7 epochs on the designated train-test split,
we successfully replicated the findings of Li et al. (2018). At this point, the Extended Network
model exhibited an accuracy enhancement of 0.6% on the test-set and 1.9% on the train-set,
outperforming the Pointer Mixture Network. Specifically, Table 4.3 demonstrates the improved
performance of the Extended Network model in predicting next node values, surpassing both the
Pointer Mixture Network and PHOG models.

Table 4.3: Accuracy on the test-set of a single layer Extended Network model, without dropout,
trained for 7 epochs on train-test split, vocabulary size of 1k.

Model Accuracy on test dataset

PHOG 63.8%
Pointer Mixture Network 66.4%

Extended Network model (ours) 67.0%

Two-layer Extended Network model with dropout rates. The above experiment also
highlighted a notable difference in accuracy between the training and testing datasets, showing a
margin of over 4%. This disparity prompted us to adopt the dropout technique for the underlying
LSTM network, inspired by the work of Gal et al. (2016). The objective was to enhance the
generalization capability of the Extended Network model and thereby improve its accuracy on
the test dataset (Schumacher, 2019).

To determine the optimal dropout rate, we employed the train-dev split and configurations
outlined in Table 4.4. Moreover, we augmented the network depth by introducing a second layer
to the LSTM. As a result, incorporating a dropout rate of 20% and an additional layer achieved
the highest development accuracy (67.0%) and reduced the training-development accuracy gap
from 3.3% to 1.5%. Notably, the training accuracy remained consistent at the 20% dropout
rate, regardless of whether a single- or two-layer LSTM was applied, indicating that adding the
second layer did not cause over-fitting.

99

4. Extended Network:
Improving Code Recommendations by Combining Neural and Classical ML Approaches

Table 4.4: Accuracies for a single layer Extended Network model and a two-layer model across
different values of dropout, vocabulary size of 1k.

of layers Dropout percentage Dev-set accuracy Train-set accuracy

Single layer 0 % 66.6 % 69.9%
20 % 66.7 % 68.5%
40 % 66.3 % 67.6%

Two layers 15 % 66.7 % 68.1%
20 % 67.0 % 68.5%
30 % 66.5 % 67.6%

Two-layer Extended Network model (with dropout) on two vocabulary sizes. In
our final experiment, we utilized the two-layer Extended Network model with a 20% dropout rate
and the original train-test split of the Python150k dataset. Table 4.5 presents the outcomes of
the Extended Network model for vocabulary sizes of 1,000 and 10,000 words. In this experiment,
we compared accuracies of our model with probabilistic language models like PHOG (Bielik
et al., 2016) and decision trees (Raychev et al., 2016), alongside the neural model of Pointer
Mixture Network (Li et al., 2018).

The results illustrated that under the current settings, our Extended Network model reached
peak performance with a 10k vocabulary, slightly outperforming the decision tree method and
two components of the model by margins ranging from 0.1% to 5.5%. It is worth mentioning that
training the Extended Network model on an NVIDIA Tesla V100 GPU required approximately
1.5 hours per epoch with a 1k vocabulary and 8 hours per epoch with a 10k vocabulary.

Table 4.5: Accuracy of the two-layer Extended Network model (20% dropout), compared to state-
of-the-art probabilistic language models and the original Pointer Mixture Network.

Model Accuracy on test dataset

PHOG 63.8%
Decision Trees 69.2%

1k vocab 10k vocab
Pointer Mixture Network 66.4% 68.9%

Extended Network model (ours) 67.5% 69.3%

Component Comparison

To understand the impact of individual components in the implemented Extended Network
model, we conducted a supplementary analysis using the same model configuration as prior
experiments. The performance of each component was evaluated throughout several aspects.
Besides, we examined recommended values of these components on the evaluation dataset (i.e.
50,000 ASTs) with a vocabulary size of 10k. Furthermore, our investigation particularly targets
value prediction, namely, forecasting terminal values within AST nodes.

100

4.4. Evaluation

Finding 2. RNN is the predominant component in the Extended Network model, although
this outcome could be affected by the presence of EmptY tokens in the training and testing
datasets, as clarified in the subsequent analysis.

Table 4.6 displays the accuracy of each component within the Extended Network model. The
final three columns correspond to the RNN (i.e. LSTM-based), Pointer Network (i.e. attention
mechanism), and PHOG components integrated into the model. Meanwhile, the first column
comprises four distinct criteria assessed on every component.

Table 4.6: Accuracies of components in the Extended Network model*, including predictions for
nodes without values (i.e. labeled as EmptY).

Aspect RNN Pointer Network PHOG

Able to predict 84.2% 5.4% 100%
Used as a predictor 91.5% 1.1% 7.4%

Used and correct 54.1% 0.2% 0.4%
Correct own predictions 59.1% 20.2% 5.4%

* Vocabulary size is 10,000. These components were evaluated on a test-set of 50,000 ASTs.

Firstly, the “Able to predict” row indicates the proportion of instances where a component
could potentially make predictions. For instance, if the target token is absent from the terminal
dictionary tdict, the RNN cannot make any predictions. It is worth noting that PHOG is
unaffected by these restrictions and can always make predictions, hence 100% in this case.

The “Used as predictor” row signifies the utilization rate of each component for predictions.
It also portrays the distribution of the component selection procedure, illustrated in Figure 4.1.
Generally, RNN is the most frequently used component, with the others selected roughly in
accordance with their accuracy. The prevalence of the RNN component might be attributed to
its specialization in predicting EmptY tokens, which are frequently encountered in the dataset.
Details of this matter are discussed through our second analysis below.

Meanwhile, the “Used and correct” row shows the percentage of correct predictions made by
each component when selected. Overall, the RNN component demonstrates the highest accuracy
in prediction, whereas the pure Pointer Network and PHOG have minimal impact.

Ultimately, the “Correct own predictions” row reveals how accurately each component
performs when used individually. The percentages represent the proportion of correct predictions
made by each component relative to its total predictions. Notably, the RNN component achieves
an accuracy of nearly 60% for its own predictions. Nevertheless, this figure might be misleading
due to the prediction of EmptY token (explained below). Conversely, PHOG exhibits the lowest
precision, with approximately 5% of correct predictions.

Impact of AST Nodes without Values

As previously outlined, our second analysis inspects the influence of AST nodes without values
on the performance of components within the Extended Network model.

101

4. Extended Network:
Improving Code Recommendations by Combining Neural and Classical ML Approaches

Finding 3. The prediction accuracy of the RNN component decreases markedly without
considering EmptY nodes in the testing dataset.

EmptY nodes. A large portion of nodes within ASTs in the dataset, and generally in typical
Python source code, lack assigned values. These nodes often correspond to non-terminal nodes
or terminal nodes characterized by fixed keywords (e.g. as). Following Li et al. (2018), we
treated all nodes exhibiting this property as a special value in the terminal dictionary tdict.
This special case is denoted as EmptY in Section 4.3.3, or as EMPTY in Figure 4 of Li et al. (2018).

Predicting EmptY nodes is exclusively allocated to the RNN component. Essentially, value
suggestions for these nodes should entail subsequent invocation of a separate prediction model
to determine the type of these AST nodes and, if applicable, propose a unique representation
for completing the node in the source code, as discussed by Li et al. (2018).

Issues arising from EmptY nodes. However, training and evaluating models using the value
EmptY presents challenges. Primarily, a significant portion of AST nodes (47.6% of over 29, 9
million predictions) are EmptY nodes, potentially biasing the RNN model towards this specific
value during training. Besides, predicting this value might be comparatively easier than others,
as the context of AST nodes without values might provide hints of “not present” for other node
values. For example, encountering the keyword as shortly after with is quite probable.

In general, including the predictions of this special value in the evaluation significantly boosts
the accuracy values, which we also observed in our experiments. In our main evaluation, we
followed the approach of prior studies (Li et al., 2018; Bielik et al., 2016) and included predictions
of the EmptY nodes in order to provide comparable results. However, we did not consider such an
evaluation a realistic one, since it might not correspond to a perceived user experience. In fact,
other state-of-the-art works (Brockschmidt et al., 2019; Alon et al., 2020a) report much lower
accuracy values for code completion, e.g. accuracy@5 of 24.83% for Java (Alon et al., 2020a).

Additional outcomes without EmptY nodes. Consequently, we supplied complementary
results of an evaluation with all AST nodes, but omitting the special value EmptY. It is worth
mentioning that such nodes are still used in the training, and so the presented results might be
worse than in a setting where they are not considered at all. Table 4.7 displays the results in
this scenario, with column and row names having the same meaning as those in Table 4.6 above.

Table 4.7: Accuracies of components in the Extended Network model*, excluding predictions for
nodes without values (i.e. labeled as EmptY).

Aspect RNN Pointer Network PHOG

Able to predict 70.0% 10.3% 100%
Used as a predictor 84.3% 2.0% 13.7%

Used and correct 18.8% 0.4% 0.7%
Correct own predictions 22.3% 20.7% 5.6%

* Vocabulary size is 10,000. These components were evaluated on a test-set of 50,000 ASTs.

The accuracy of the RNN component declines significantly when selected, from 54.1% to
18.8%. This indicates that the higher accuracy reported for this component in Table 4.6 is

102

4.5. Summary

primarily due to correct predictions of EmptY values. Conversely, the individual performances
of the PHOG model and the Pointer Network remain largely unmodified.

Despite the reduced accuracy of the RNN component, it is still the preferred choice, with an
invocation rate of 84.3%, likely due to the training process with EmptY values. This dominance
significantly affects the overall performance of the Extended Network model, decreasing it from
54.7% (with EmptY values) to 20.0% (without EmptY values) in the “Used and correct” case.

4.4.3 Response to CRQ2

Our second core research question (CRQ2), outlined in Chapter 1, Section 1.4, investigates
whether ensembles of ML-based predictors enhance code completion accuracy. Even though
the exemplified Extended Network model only modestly outperforms its individual components,
i.e. Pointer Mixture Network and PHOG (refer to Finding 1, Tables 4.3 and 4.5), the results
still underscores the advantage of an ensemble model over its constituents, hence addressing the
posed core research question.

A-CRQ2. Ensembles of ML-based code completion models improve accuracy
for individual components, with overall performance impacted by ensemble size,
model selection mechanism, and underlying neural network architecture.

4.5 Summary

This chapter presents an ensemble approach for predicting next tokens in dynamically typed
languages, directly tackling the programming barrier (defined in Chapter 1, Section 1.1). For
illustration, we proposed an Extended Network model, encompassing Pointer Mixture Network
and PHOG components.

The evaluation results demonstrate the improved accuracy of the proposed model, compared
to its standalone components. These results also serve as a response to the second core research
question (CRQ2), specified in Chapter 1, Section 1.4. In addition, the performance can be
further enhanced by adding an extra layer to the underlying neural network, emphasizing the
significance of a well-designed architecture for the Extended Network model.

Here, we refer to the term “Extended Network” as an ensemble-like architecture, adaptable
to accommodate diverse models and future methodologies as ensemble components. Potential
extensions include various forms of n-gram models (such as cached or nested n-gram models)
and decision trees. Promising directions for future research involve expanding ensemble sizes,
optimizing model hierarchies, and fine-tuning underlying neural network architectures.

Nevertheless, while the component comparison reveals the effect of each component on the
Extended Network model, it remains unclear how these components perform on specific prediction
cases, such as keywords, parameters, or function names. Each of these cases holds varying
importance in practical code completion for developers. This is attributed to the evaluation
metric utilized in the experiments, which aggregates results across all types of code tokens. The
following chapter introduces our methodology proposed to overcome this limitation.

103

Chapter 5Code Token Type Taxonomy
A Methodology for Refined Evaluation of ML-based
Code Completion Approaches

Code completion has become an indispensable feature of modern Integrated Development En-
vironments (IDEs). In recent years, many approaches have been proposed to tackle this task.
However, it is hard to compare between the models without explicitly re-evaluating them due
to the differences of used benchmarks (e.g. datasets and evaluation metrics).

Additionally, almost all of these works report the accuracy of the code completion models as
aggregated metrics averaged over all types of code tokens. Such evaluations make it difficult to
assess the potential improvements for particularly relevant token types (i.e. method or variable
names), and blur the differences between the performance of the methods.

This chapter introduces a methodology called Code Token Type Taxonomy (CT3) to address
the issue of using aggregated metrics. Namely, we identified multiple dimensions relevant for
code prediction (e.g. syntax type, context, length), partitioned the tokens into meaningful types
along each dimension, and computed individual accuracies by type. We illustrated the utility of
this methodology by comparing the code completion accuracy of a Transformer-based model in
two variants: with closed, and with open vocabulary.

Our findings show that the refined evaluation provides a more detailed view on disparities and
identifies areas requiring additional investigation. Besides, our review of the state-of-the-art of
Machine Learning (ML)-based code completion models indicates the necessity for standardized
benchmarks in this domain. Furthermore, we observed that the open vocabulary model exhibits
notably higher accuracy for pertinent code token types, such as variable usage and literals.

Section 5.1 explains our motivation with illustrative examples, while Section 5.2 presents
background information and related work. Our approach is detailed in Section 5.3, and the
experimental evaluation is discussed in Section 5.4. In Section 5.5, we outline the challenges
of developing CT3 schema for Python, threats to validity, and our response to the third core
research question (CRQ3). Additional statistics and results of tuning experiments are delineated
in Section 5.6. Finally, we conclude the chapter in Section 5.7.

This chapter is based on our peer-reviewed publication (Le et al., 2023).

5.1 Introduction

Code completion is a widely used feature of modern IDEs, where the most likely next token is
offered based on the code already present up to the cursor position (Kim et al., 2021). This

105

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

feature not only helps developers to save typing effort, but also assists them in learning new
libraries, as it offers information about available functions or attributes.

ML approaches for code completion are leading the field, and in particular the Transformer
models excel here by outperforming the Recurrent Neural Networks (RNNs). Multiple state-of-
the-art solutions are using Transformers with variations of the code representation and/or the
attention mechanisms (Kim et al., 2021; Liu et al., 2020; Svyatkovskiy et al., 2020).

Traditional evaluation metrics. A majority of the proposed code prediction approaches
use aggregated metrics (i.e. averaged over all types of code tokens) to evaluate their accuracy
(Li et al., 2018; Wang et al., 2021b; Chirkova et al., 2021). This eliminates valuable information
about the improvements for relevant code token types.

Consequently, approach comparison or weakness identification in a method becomes more
challenging when using aggregated metrics. A typical case of this elimination of information is
the prediction results for variables and function/method calls contributing to the overall score
together with less demanding but predictable tokens like keywords and standard libraries.

Example of refined accuracy versus aggregated accuracy. Figure 5.2 illustrates an
example of detailed evaluation gained by using refined accuracy, in comparison to the traditional
method of using aggregated accuracy (Figure 5.1). We employed a code snippet from the
Python150k dataset1 and omitted long strings for simplicity. The prediction results are obtained
from the experiments in Chapter 4.

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

Correct predictions 11/20

Incorrect predictions 9/20

(a)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

Correct predictions 11/20

Incorrect predictions 9/20

(b)

Figure 5.1: An example for evaluating a code snippet using aggregated accuracy.

The incorrect predictions are highlighted in these figures by double-dashed-underlines. Various
colors are also deployed as an additional discrimination. Statistics of correct and incorrect
predictions are also presented in Figures 5.1(b) and 5.2(d). Since we only use a small code
snippet as an example to demonstrate the advantage of the refined accuracy, the following
interpretations are conjectures. The valid evaluation for the utilized completion model should
be conducted on a proper dataset.

In general, while using aggregated accuracy, there are no hints for developers about where
to improve the accuracy or to inspect the drawbacks of the used method. Meanwhile, using
refined accuracy gives a more detailed view at the completion results for multiple dimensions
(i.e. aspects of code token properties). Concrete examples are as follows:

Refined accuracy – token purpose. Firstly, considering the code tokens based on their
purpose, we identified five token types for the code snippet as displayed in Figure 5.2(a): (i)

1SRILAB, https://www.sri.inf.ethz.ch/py150, (Accessed: 14 March 2024).

106

https://www.sri.inf.ethz.ch/py150

5.1. Introduction

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

Token type Correct pred. Incorrect pred.

attribute

argument definition

variable usage

method definition

method call

1/2

2/5

7/9

1/2

0/2

1/2

3/5

2/9

1/2

2/2

short/medium token (len 10)

long token (len 10)

9/15

2/5

6/15

3/5

high frequent token (self) 5/6 1/6

(a)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

Token type Correct pred. Incorrect pred.

attribute

argument definition

variable usage

method definition

method call

1/2

2/5

7/9

1/2

0/2

1/2

3/5

2/9

1/2

2/2

short/medium token (len 10)

long token (len 10)

9/15

2/5

6/15

3/5

high frequent token (self) 5/6 1/6

(b)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

Token type Correct pred. Incorrect pred.

attribute

argument definition

variable usage

method definition

method call

1/2

2/5

7/9

1/2

0/2

1/2

3/5

2/9

1/2

2/2

short/medium token (len 10)

long token (len 10)

9/15

2/5

6/15

3/5

high frequent token (self) 5/6 1/6
(c)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

class TestServer(object):
 def __init__(self, application):
 self.application = application
 self.server = self.make_server(application)

 def get(self, *args, **kwargs):
 return self.request('get', *args, **kwargs)

Token type Correct pred. Incorrect pred.

attribute

argument definition

variable usage

method definition

method call

1/2

2/5

7/9

1/2

0/2

1/2

3/5

2/9

1/2

2/2

short/medium token (len 10)

long token (len 10)

9/15

2/5

6/15

3/5

high frequent token (self) 5/6 1/6

(d)

Figure 5.2: An example for evaluating a code snippet using refined accuracy.

attribute tokens in bold, (ii) variable usages in italics, (iii) method calls in bold and italics,
(iv) argument definitions beginning with a ♥, and similarly (v) method definitions with a ♦.

The statistics in Figure 5.2(d) show that nine out of 20 predicted tokens are variable usages
and seven of those are suggested correctly. This can be considered as an advantage of the used
completion model, since predicting usages of identifiers in general is significant for developers,
according to Hellendoorn et al. (2019). However, the prediction of the other four token types
still needs to be improved, especially for method call with no true completions.

Refined accuracy – token length. The next dimension analyzed in the example is token
length. We considered code tokens with less than 11 characters as short or medium tokens and
format them in bold and italics in Figure 5.2(b). The rest of the predicted code tokens are
long tokens and marked as italics. The analysis results in Figure 5.2(d) reveal that more than
80% of the correct predictions belong to short/medium tokens, which slightly help reducing the
typing effort of developers in this example.

Refined accuracy – token frequency. Eventually, we inspected the frequency of code
tokens based on their number of repetitions in the example. The highly frequent tokens in
Figure 5.2(c) (i.e. self) are highlighted in bold. Figure 5.2(d) shows that nearly half of the
total correct predictions are high frequent tokens (5 out of 11 predictions), which is one of the
easy cases of code completion. Other token frequency values are excluded for simplicity.

In conclusion, the above analysis brings valuable information, which cannot be obtained while
using aggregated accuracy. This analysis leads to the idea of focusing on method calls and long-
frequent tokens for improving the completion model, since predictions of other code token types
already have acceptable accuracies. This example highlights how aggregated metrics hinder
evaluation and development by omitting crucial information.

Refined evaluation. To our knowledge, only few previous works consider token categories
and evaluate the metrics (e.g. mean reciprocal rank, error rate) per category, such as Bielik
et al. (2016) and Kim et al. (2021). However, the token subdivision (e.g. attribute access,

107

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

numeric constant, string, variable/module name, and expression) in these works is rather crude,
since they only focus on some cases of the token purposes and disregard other dimensions (e.g.
length and frequency). Besides, it is difficult to apply their taxonomy to other works without
re-implementation (further details in Section 5.2.2).

Contributions of this work. We aimed to provide more refined types of code tokens which
can be used for evaluating existing and future code completion approaches with minimum effort.
Our contributions in this work are as follows:

• State-of-the-art of ML-based code completion models. We reviewed these approaches
(mostly from 2018 to 2021), not only to substantiate the usage of aggregated metrics
but also to give an overview of the current research progress in this field. Despite of us-
ing the same modeling methods (e.g. Transformers) for the code completion task, it is
still hard to compare between models without explicitly re-evaluating them. This is due
to the differences on input representations (e.g. sequences of tokens or Abstract Syntax
Trees), the employed datasets, evaluation metrics (e.g. accuracy, MRR), and the scope of
prediction (e.g. next n code token or block of code).

• Code Token Type Taxonomy. To obtain a refined evaluation of code completion accuracy,
we introduced a methodology called Code Token Type Taxonomy (CT3) by proposing
multiple dimensions for identifying code token types. For each dimension, we proposed the
types by analyzing the Abstract Syntax Tree (AST) and the relationships between tokens
in the AST. CT3 can be used for a comprehensive comparison between approaches, to
gain a detailed view of the impact of each component in a prediction model, and to identify
model challenges. The original version of the CT3 schema was developed by Rashidi (2021)
in his Bachelor’s thesis conducted within our research group.

• Empirical study. We illustrated the utility of this methodology by conducting an empirical
study on the Python150k dataset of a Transformer-based code completion approach. We
compared the impact of using closed vocabulary versus open vocabulary (Karampatsis
et al., 2020), and found significantly better accuracy of the latter for relevant token types.

• Source code and data. To facilitate reproducibility and reuse of our methodology, we
published the Python150k dataset with pre-computed token types2 according to CT3.
The scripts of our experiments and CT3 source code3 are also available.

Besides the main concern of enhancing code completion evaluation, which directly addresses
the programming barrier , our published source code and data facilitate assessment on
alternative code completion approaches, thereby alleviating the reuse problem . Furthermore,
the implementation of CT3 functions in parallel partially resolves the scalability problem .
These issues are defined in Chapter 1, Section 1.1. Ultimately, the outcomes of this chapter
respond to the third core research question (CRQ3), specified in Section 1.4 of Chapter 1.

2Code token type data, https://doi.org/10.5281/zenodo.5733013.
3GitLab repository, https://gitlab.com/pvs-hd/published-code/code-token-type-taxonomy

(Accessed: 14 March 2024).

108

https://doi.org/10.5281/zenodo.5733013
https://gitlab.com/pvs-hd/published-code/code-token-type-taxonomy

5.2. Background and Related Work

5.2 Background and Related Work

In this section, we present the state-of-the-art of code completion, followed by an overview of
the usage of aggregated and refined metrics for evaluating code completion models in previous
research. We end the section with a brief introduction to the Out-of-Vocabulary (OOV) issue
and its current possible solutions.

Table 5.1 summarizes the notable works in code completion mostly from 2018 to 2021. We
divided the prediction level (the fourth column of the table) into: (i) token, the possible next
token, (ii) tokens, the next n tokens up to the end of the code line, (iii) code line, the entire code
line, (iv) construct, specific code constructs, e.g. an if condition, and (v) block, code blocks,
e.g. a for loop or an entire function.

Besides, the programming languages used in datasets are documented in the “Dataset” column
(except for the widespread datasets Python150k and JavaScript150k4). We refer to the original
papers for more details. The column “Eval. ter. & non-ter.” shows how authors handled
the results on terminal and non-terminal nodes in ASTs, which is only applicable when the
representation of input data is AST-related forms.

The table is sorted by year and grouped into three parts: recent methods (from RNN to
Codex), popular tools (from Kite to GitHub Copilot), and two potential solutions for the OOV
issue (the last two rows). Due to space constraints, citations are omitted from the table and
presented in the following subsections. Additional details, such as evaluation results and handling
of node types and values in ASTs, are included in an online version of the table5.

Table 5.1: State-of-the-art of code completion models, primarily from 2018 to 2021.

Tool name
Modeling
method

Year
Pred.
level

Dataset Eval. metrics
Input
form

Eval. ter.
& non-ter.‡

RNNs
RNNs,
n-gram

2014 code line Java MRR, accuracy
seqs.

tokens
N/A

n-gram n-gram 2016 token C, Java
perplexity,

cross-entropy
seqs.

tokens
N/A

PHOG PCFG 2016 token
JavaScript

150k

error rate,
log-probability,

categories

AST
nodes

separated
results

Pointer
Mixture
Network*

RNNs,
Pointer
Network

2017 token
Python150k,
JavaScript

150k
accuracy

AST
nodes

separated
results

CodeGRU* GRU 2020
token,
tokens

Java MRR, accuracy
seqs.

tokens† N/A

continued . . .

4SRILAB, https://www.sri.inf.ethz.ch/js150.
5SOA Code Completion, https://doi.org/10.5281/zenodo.5739285.

(Accessed: 15 March 2024).

109

https://www.sri.inf.ethz.ch/js150
https://doi.org/10.5281/zenodo.5739285

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

. . . continued

Tool name
Modeling
method

Year
Pred.
level

Dataset Eval. metrics
Input
form

Eval. ter.
& non-ter.‡

Structural
Language
Modeling*

LSTM, copy
mechanism

2020 construct Java, C#
accuracy,
tree@k

AST
paths

integrated
results

Extended
Network
model

PHOG,
Pointer
Mixture
Network

2020 token Python150k accuracy
AST
nodes

terminal
only

IntelliCode
Compose* Transformers 2020 tokens

Python, C#,
JavaScript,
TypeScript

perplexity,
ROUGE-L,
Levenshtein

seqs.
tokens

N/A

Feeding
Trees to
Transformers*

Transformers 2021 token

Python150k,
Facebook
internal

repositories

MRR,
categories

AST
nodes,
seqs.

tokens

integrated &
separated

results, local
Beam search

CCAG GNN 2021 token
Python50k,
JavaScript

150k
accuracy

AST
graph

separated
results

Transformers
for Source
Code*

Transformers 2021 token

Python
150k**,

JavaScript
150k

MRR
AST
nodes

separated
results

BERT for
Code
Completion

RoBERTa 2021
tokens,

construct,
block

Java,
Android

BLEU,
Levenshtein,

perfect
prediction,

semantic equiv.

seqs.
tokens

N/A

Transformers
for Code
Completion

Transformers 2021
tokens,

construct,
block

Java,
Android

BLEU,
Levenshtein,

perfect
prediction

seqs.
tokens

N/A

Codex* GPT-3 2021 block
Python,
APPS

pass@k
doc-

strings
N/A

Kite GPT-2 2017 tokens
TabNine GPT-2 2019 tokens
GitHub
Copilot

Codex 2021 block

Byte-pair
Encoding for
OOV*

BPE 2020 token
Java, C,
Python

MRR, cross
entropy

seqs.
tokens

N/A

continued . . .

110

5.2. Background and Related Work

. . . continued

Tool name
Modeling
method

Year
Pred.
level

Dataset Eval. metrics
Input
form

Eval. ter.
& non-ter.‡

Anonymi-
zation for
OOV*

Transformers 2020 token

Python
150k**,

JavaScript
150k**

MRR
AST
nodes

integrated
results

* Source code is available.
** The redistributable version of the Python150k or JavaScript150k dataset.
† Each identifier is replaced by its datatype.
‡ Evaluation results on terminal and non-terminal nodes.

5.2.1 Machine Learning for Code Completion

ML adoption. State-of-the-art approaches for code completions or general code predictions
utilize ML-based techniques (Le et al., 2020). Methods include RNNs (Raychev et al., 2014),
n-gram language models (Hindle et al., 2016), context-aware Gated Recurrent Unit (GRU) by
Hussain et al. (2020) or context-aware Convolutional Neural Network (CNN) of Hussain et al.
(2021), Probabilistic Higher Order Grammar (PHOG) from Bielik et al. (2016), Pointer Mixture
Network (Li et al., 2018), and Structural Language Modeling (Alon et al., 2020b), or hybrid
approaches as our Extended Network (Chapter 4).

The emergence of Transformers. Recent works such as IntelliCode Compose (Svy-
atkovskiy et al., 2020), Feeding Trees to Transformers (Kim et al., 2021; Liu et al., 2020)
use Transformer models (Vaswani et al., 2017), which outperform RNNs. One of the reasons is
that Transformers better capture the long-range dependencies.

There are several empirical studies on the capabilities of ML-based code completion models,
which use Transformers and its variants for experiments, including Transformers for Source Code
(Chirkova et al., 2021), BERT for Code Completion (Ciniselli et al., 2021b) and Transformers
for Code Completion (Ciniselli et al., 2021a). Further details on Transformers are discussed in
Chapter 2, Section 2.3.

Generative Pre-trained Transformer 2 and 3 (GPT-2 and GPT-3) are also well-known
methods in this domain. Kite6 and Tabnine7, which are based on GPT-2, are noteworthy tools
supporting code completion for multiple programming languages. Chen et al. (2021) proposed
a model named Codex based on GPT-3 for generating Python functions from docstrings. They
also introduced a tool named GitHub Copilot8.

There are also other works that focus on other modeling methods rather than Transformers.
Wang et al. (2021b) proposed a model named CCAG based on Graph Neural Network (GNN)
to fully capture the sequential and repetitive patterns of code, together with the structural

6Kite stopped supporting since November 2022, https://www.kite.com/.
7AI coding assistant, https://www.tabnine.com/.
8AI developer tool, https://github.com/features/copilot/.

(Accessed: 15 March 2024).

111

https://www.kite.com/
https://www.tabnine.com/
https://github.com/features/copilot/

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

information on ASTs. The evaluation results show that CCAG outperforms state-of-the-art
approaches, including Transformers.

A need for standardized benchmarks. In general, ML-based models for code completion
have recently attracted a lot of attention. However, it is still hard to fairly compare between the
models, since many approaches use proprietary evaluation benchmarks. Two models are com-
parable if they at least use the same evaluation metrics and datasets. For instance, considering
the models using the accuracy metric and the Python150k dataset, we narrow down the list of
models in Table 5.1 to Pointer Mixture Network, Extended Network model, and CCAG.

These models have the same prediction level, a similar form of input data and the same way
of separating results for terminal and non-terminal nodes. Still, Extended Network model and
CCAG can not be compared to each other as they use different experimental setups and various
sizes of test datasets. The two remaining comparisons are presented explicitly in papers of the
authors by re-evaluating all models. Hence, there should be a set of standardized benchmarks
for code completion models to make the models comparable with a reasonable effort.

5.2.2 Aggregated and Refined Metrics for Evaluation

Table 5.1 discloses that almost all prediction results use aggregated metrics to evaluate the
accuracy (i.e. averaging over all code token types). Exceptions are Kim et al. (2021) and Bielik
et al. (2016) providing a rough analysis, which is indicated by value categories in column
“Eval. Metrics” of Table 5.1. However, their evaluations only focus on some general values of
code token purposes.

Criteria for a Refined Evaluation

Hellendoorn et al. (2019) revealed in their study that there are large differences which code
completions are relevant when considering the point of view of developers versus the distributions
in synthetic datasets of completions. Their results and insights inspired us to determine criteria
for a refined evaluation in code completion. Table 5.2 presents the criteria together with their
corresponding motivations.

For example, instead of punctuation-like tokens, identifier token type represents code com-
pletions most relevant for developers (Hellendoorn et al., 2019). This finding motivated us to
analyze syntax type information of code tokens in prediction results. Moreover, based on our
experimental observation (presented in Section 5.4.3), it is hard to predict the identifier names
in the declaration due to the arbitrariness of identifiers.

However, only a small portion of code tokens in the dataset is categorized as this syntax type.
In other words, distinguishing between definition and usage of identifiers is essential. Therefore,
values of the dimension syntax type should cover not only token purposes but also support
dividing between definition and usage of identifiers.

Additionally, the importance of local context, typing effort, origin, and rare completions (i.e.
long and infrequent tokens) is also highlighted by Hellendoorn et al. (2019). Their insights
motivated the criteria of our context, length, origin, and frequency dimensions, respectively,

112

5.2. Background and Related Work

Table 5.2: Criteria for a refined evaluation.
Dimension Criteria for values of the dimension Motivation

Syntax
Type

Covering relevant code token types with a
sufficient level of details

Identifier token type is the most
demanded completion for developers

Supporting the division between definition
and usage of identifiers

Distinguishing between definition and
usage of identifiers is essential*

Context Maximizing the detail regarding the
surrounding structures of a code token.

Local context plays a large role in
code completion accuracy

Origin
Indicating the location where the token is
defined, i.e. from the same file, from
external/standard/built-in libraries

Method invocations within the same
project is the most prominent
sub-category in datasets

Length Reflecting the length of a code token in
comparison with other tokens in a dataset

The longer the code token, the higher
the likelihood of completion request.

Frequency Expressing the frequency of occurrence of
a code token in an AST

Rare and difficult completions (i.e.
long and not so frequent code tokens)
are vital under the view of developers

* This result is derived from our experimental observation (details in Section 5.4.3), while the others are findings of
Hellendoorn et al. (2019).

as expressed in Table 5.2. Analyzing completion results with aggregated metrics apparently
dissatisfies these criteria.

Refined Evaluation in Previous Studies

To clarify that none of the prior works provide evaluations with a sufficient level of details,
Table 5.3 presents a qualitative comparison between the methods of Kim et al. (2021), Bielik
et al. (2016), and our methodology based on the defined criteria. We considered one more
criterion on the implementation of these approaches (last column of Table 5.3). Namely, the
refined evaluation should be implemented in a way that token types data can be combined with
completion logs obtained from prediction models, with a reasonable effort.

Table 5.3: CT3 and related works in supporting refined evaluations.
Evaluation
methodology Dimensions Versatility across

completion models*

Syntax Type Context Origin Length Frequency
Bielik et al. (2016)
Kim et al. (2021)
CT3 (ours)

The criterion is not supported.
The methodology considers some values in the dimension but does not meet all criteria of the dimension.
The criterion is accomplished fundamentally.

* With a reasonable effort.

Bielik et al. only considered some specific values in the dimension syntax type (e.g. identifier,

113

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

property, and number). They lacked a refined categorization for identifiers, such as function,
variable, and class, as well as the separation between definition and usage of identifiers. Besides,
the authors implemented an individual predictor for each token type, which makes it hard to
apply their evaluation approach to other prediction models.

Meanwhile, Kim et al. provided subcategories for identifiers (i.e. attribute access, vari-
able/module name, and function parameter name). However, the subdivision is rather crude
and still leaves out several important types, e.g. function/method definition, class definition,
and imported library. The published source code from their paper9 shows that the authors
might group attribute, class usage, and method usage into the attribute category. Similarly,
variable/module name might contain variable, class usage, and function usage.

Grouping different code token purposes into one group might omit crucial information because
of the diverse effect of various code token types on the efficiency of completion models (further
details in Section 5.4.3). In addition, the authors also examined some values in the dimension
context but still ignored some essential contexts, e.g. in-class-definition or in-function-definition.
Other dimensions (i.e. origin, length, and frequency) are not supported in their methodology.

Ultimately, the authors provided scripts to identify token IDs for each of their token types,
which can be applied to other completion models. However, their short Python scripts comprise
119 LOC and consider only two categories, i.e. dimension syntax type with four values and
dimension context with six values. In addition, these values are derived directly from value or
type of a target node in an AST, regardless of whether the node is a terminal or non-terminal.

CT3. We proposed a methodology to effectively evaluate code completion models and assure
all the mentioned criteria. Our prototypical implementation for Python covers 18 values for
syntax type dimension, 16 values for context dimension, four values for origin dimension, and
dimensions length and frequency both contain three distinct values. The syntax type dimension
comprises significant token types as well as a subdivision of definition and usage of identifiers.

Additionally, we constructed our implementation in an extendable way, in terms of number
of dimensions, number of values of each dimension, and independence of prediction models.
Furthermore, values between dimensions can be combined to create an even more complicated
code token type (e.g. determining usages of imported libraries requires both dimensions syntax
type and origin, discussed in Section 5.5).

Furthermore, we provided a sophisticated analysis for each value of dimensions, by considering
not only the target node but also its neighbors and ancestors along the path to the root node
in ASTs. We separated terminal and non-terminal nodes, since we only evaluated code tokens
that developers will receive from a completion model (i.e. values of terminal nodes).

Finally, we published pre-computed data of token types, which can be utilized with comple-
tion logs created from various prediction models considering ASTs as input data. The refined
evaluation results obtained from our proposed methodology might facilitate comparison and
improvement of prediction models for relevant cases. A detailed explanation with examples for
the proposed approach is presented in Section 5.3.

9We only compare the implementation of model trav_trans and our implementation for CT3 since both methods
consider ASTs as input data.

114

5.3. Code Token Type Taxonomy

5.2.3 Out-of-Vocabulary Issue

An important aspect of the prediction approaches is code representation. While some works use
as input a sequence of AST nodes linearized by a tree traversal (Bielik et al., 2016; Li et al., 2018;
Schumacher et al., 2020), more recent approaches attempt to capture the high-level structural
representation (Alon et al., 2020b; Kim et al., 2021). Besides, Chirkova et al. (2021) indicated
that only syntactic information is needed to make meaningful predictions.

Another crucial factor of code representation is capturing the code identifiers. Even with
coding conventions, identifiers defined by software developers can at times be overly diverse and
complex. As a result, prediction models might be trained with an exceedingly large and sparse
vocabulary. Furthermore, if the size of the vocabulary is limited, rare words in the training set
have a low possibility to contribute to the vocabulary and therefore are hard to be predicted.
This is also known as the Out-of-Vocabulary (OOV) issue.

With the original method, the vocabulary of a prediction model is constructed on a fixed
set of tokens, commonly based on the frequency of tokens in the dataset, which creates the
OOV issue. Karampatsis et al. (2020) suggested encoding tokens with an open vocabulary via
Byte-Pair Encoding (BPE), which is considered as a prominent solution for this problem.

While only few works use the open vocabulary model, e.g. Svyatkovskiy et al. (2020), the
results of our work show that open vocabulary can significantly improve the accuracy of relevant
token types. Besides, Kim et al. (2021) also mentioned open vocabulary as one of directions to
enhance their research works in future.

Alternatively, Chirkova et al. (2020) introduced another approach to deal with the OOV issue
by anonymizing all the OOV tokens with special placeholders. However, since these approaches
use different types of input representation and datasets, the comparison of their efficiency needs
further investigation and is out of scope of our work.

5.3 Code Token Type Taxonomy

This section first presents our proposed methodology – Code Token Type Taxonomy (CT3) – for
a refined evaluation, followed by our approach of using open vocabulary to alleviate the OOV
issue and to demonstrate the utility of CT3.

5.3.1 General Workflow

Figure 5.3 illustrates the implementation and usage of CT3.
Determination of CT3 schema. Initially, given a programming language, we identified

relevant code token properties for effective code completions. This gives rise to multiple dimen-
sions (i.e. criteria for partitioning) and the token types within each dimension (i.e. a complete
subdivision of all tokens into types). Table 5.4 shows such a schema for Python. Subsequently,
a static code analyzer is implemented.

Construction of CT3-enhanced dataset. Given a dataset (e.g. Python150k), the CT3
code analyzer assigns to each code token a type for each dimension. Table 5.5 displays an example

115

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

Implement code analyzer

Apply CT3 on a dataset

CT3: schema

and analyzer

CT3-enhanced

dataset

Accuracies per

token type

(for each

dimension)

Partition logs and calculate accuracies

Logs of

completions

from a model

Relevant

dimensions and

types of tokens

Figure 5.3: Implementation and usage of Code Token Type Taxonomy (CT3).

Table 5.4: CT3 schema proposed for Python.
Syntax Type Context Origin Length Frequency

arg_def in_arithmetic_op from_builtin long high_frequent
attribute in_assign from_extlib medium low_frequent
class_def in_bool_op from_infile short medium_frequent
class_usg in_class_def from_stdlib
const_num in_comparison
const_str in_else
exception in_except
func_def in_for
func_usg in_func_def
imp_alias in_if
imp_lib in_parameter
imp_sublib in_raise
keyword in_return
method_def in_try
method_usg in_while
var_def in_with
var_usg
unknown

of CT3 information for code tokens in the Python150k dataset. Values of the dimensions Syntax
Type, Origin, Length, and Frequency are illustrated by their indices in the lists of possible values
(list index starts with 1, Table 5.4).

Notably, a special value −1 is used to indicate that the code token is a non-terminal node or

116

5.3. Code Token Type Taxonomy

Table 5.5: An example of CT3 data for code tokens in the Python150k dataset.
Token Syntax Type Context Origin Length Frequency ASTIdx NodeIdx

ImportFrom −1 −1 −1 −1 −1 0 1
django.utils.translation 11 [0] 2 1 1 0 2
alias −1 −1 −1 −1 −1 0 3
ugettext_lazy 12 [0] 2 1 1 0 4
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ClassDef −1 −1 −1 −1 −1 0 11
NetworkProfileTab 3 [(4,1)] 3 1 1 0 12
bases −1 −1 −1 −1 −1 0 13
AttributeLoad −1 −1 −1 −1 −1 0 14
NameLoad −1 −1 −1 −1 −1 0 15
tabs 4 [(4,1),(11,1)] 2 2 1 0 16
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

its token type is not under our consideration. The values of the Context dimension are displayed
as a list of tuples (context_index, quantity), which is exemplified later on. The value −1 is
also used to denote the context value of non-terminal nodes. However, if a terminal node does
not belong to any context we are focusing on (outlined in Table 5.4), then its context value will
be [0]. Besides, we also recorded the indices of nodes in an AST and the AST indices in a
dataset (for easily tracking back to original code files).

For instance, the code token ClassDef is a non-terminal node so its token types are −1 for all
dimensions. Meanwhile, the token tabs is a terminal node and a base class in a class definition
(i.e. class NetworkProfileTab(tabs)). Its token types are: 4/class_usg for Syntax Type,
2/from_extlib for Origin, 2/medium for Length, and 1/high_frequent for Frequency. Ultimately,
the value [(4,1),(11,1)] of the Context dimension illustrates that tabs is in the context of
in_class_def once and in_parameter once. Further details of the CT3-data and the storage
formats are presented in our published dataset10.

Combination of code completion log and CT3-data. Following the workflow depicted
in Figure 5.3, the CT3-enhanced data is merged with logs of code completions generated by a
prediction model (middle section of Figure 5.3). The resulting log file includes CT3-data for
each code token along with prediction information. An illustration of such a log file is provided
in Table 5.6. The outcomes are derived from Transformer-based models employing closed and
open vocabularies.

For example, the token tabs is predicted correctly in both closed and open vocabulary cases
while only the first part of the django.utils.translation token can be predicted by the
open vocabulary variant. Two special symbols <UNKNOWN> and <ENDTOKEN> are used to indicate
tokens that cannot be encoded by the closed/open vocabulary models and to mark the end of
sequences of subtokens, respectively. More details of encoding code tokens using closed and open
vocabulary with Transformer-based models are discussed in Section 5.4.2.

The example in Table 5.6 also shows that CT3-data can be combined with any completion
logs, as long as they can specify the order of evaluated code tokens in the dataset11. This makes
our methodology more flexible than other related works, as mentioned in Section 5.2.2.
10Code token type data, https://doi.org/10.5281/zenodo.5733013, (Accessed: 15 March 2024).
11In our experiments, we assigned to each code token a unique ID and used it as a key to map the CT3-data to

the completion log.

117

https://doi.org/10.5281/zenodo.5733013

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

Table 5.6: An example of a combination log of CT3-data and prediction results for code tokens
in the Python50k dataset.

Closed vocabulary case Open vocabulary case Syntax
Type Context Origin Len. Freq. AST

Idx
Node
IdxTrue symbol Predicted

symbol True subtokens Predicted
subtokens

ImportFrom Expr [‘ImportFrom’,
‘<ENDTOKEN>’]

[‘Expr’,
‘<ENDTOKEN>’]

−1 −1 −1 −1 −1 0 1

django.utils.
translation

__future__ [‘django’, ‘.’,
‘utils’, ‘.’,
‘translation’,
‘<ENDTOKEN>’]

[‘django’, ‘.’,
‘db’,
‘<ENDTOKEN>’]

11 [0] 2 1 1 0 2

alias alias [‘alias’,
‘<ENDTOKEN>’]

[‘alias’,
‘<ENDTOKEN>’]

−1 −1 −1 −1 −1 0 3

ugettext_lazy ugettext_lazy [‘ugettext_lazy’,
‘<ENDTOKEN>’]

[‘ugettext_lazy’,
‘<ENDTOKEN>’]

12 [0] 2 1 1 0 4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ClassDef ImportFrom [‘ClassDef’,
‘<ENDTOKEN>’]

[‘ImportFrom’,
‘<ENDTOKEN>’]

−1 −1 −1 −1 −1 0 11

<UNKNOWN> User [‘Network’,
‘Profile’,
‘Tab’,
‘<ENDTOKEN>’]

[‘Tab’,
‘<ENDTOKEN>’]

3 [(4,1)] 3 1 1 0 12

bases bases [‘bases’,
‘<ENDTOKEN>’]

[‘bases’,
‘<ENDTOKEN>’]

−1 −1 −1 −1 −1 0 13

AttributeLoad AttributeLoad [‘AttributeLoad’,
‘<ENDTOKEN>’]

[‘AttributeLoad’,
‘<ENDTOKEN>’]

−1 −1 −1 −1 −1 0 14

NameLoad NameLoad [‘NameLoad’,
‘<ENDTOKEN>’]

[‘NameLoad’,
‘<ENDTOKEN>’]

−1 −1 −1 −1 −1 0 15

tabs tabs [‘tabs’,
‘<ENDTOKEN>’]

[‘tabs’,
‘<ENDTOKEN>’]

4 [(4,1),
(11,1)]

2 2 1 0 16

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Predicted symbol is obtained with closed vocabulary.
Predicted subtokens are generated with open vocabulary.

Calculation of accuracies per token type. In the final step of the workflow, the log
is partitioned according to the types per dimension. Next, the desired evaluation metric (e.g.
accuracy) is computed for each type of dimensions. Examples for this step are discussed in Sec-
tion 5.4.3. Our prototypical implementation for Python analyses the AST and the relationships
between its nodes. It is worth to recall that we consider only terminal (leaf) nodes in the AST.

5.3.2 CT3 Schema for Python

This subsection explores the CT3 schema tailored for Python, as exhibited in Table 5.4.

Syntax Type Dimension

The syntax type dimension refers to the syntactic category of a token in the source code. Values
of this dimension (i.e. first column in Table 5.4) can be generalized for various programming
languages and offer information regarding the code token’s purpose. The majority of these
values describe identifiers since predicting them is the most relevant function of code completion
in practice (Hellendoorn et al., 2019).

Syntax type values are derived based on the syntactic information on the source code and the
patterns in ASTs. The difficulty of identifying these token types varies greatly. Simpler types

118

5.3. Code Token Type Taxonomy

mostly depend on conditions of identifying AST node types. Complex types are aggregations of
conditions which identify feature-specific AST patterns. We defined 18 labels for this dimension,
outlined as follows:

The arg_def token type refers to code tokens which are arguments in definitions of functions
or methods. These code tokens can be regular arguments, keyword arguments, or *args and
**kwargs in Python. Code tokens which are attributes of packages or classes have attribute as
their syntax type.

Definitions and usages of classes are represented by class_def and class_usg token types,
respectively; analogously for functions, methods, and variables (i.e. func_def and func_usg,
method_def and method_usg, var_def and var_usg, respectively). While the token types
func_usg and method_usg indicate function and method calls, the type class_usg expresses
usages of defined classes, e.g. a class instantiation or a class being used as an inheritance pa-
rameter. The var_usg comprises usages of defined variables, declared arguments, imported
libraries, and function keywords in function/method calls.

In the code snippet in Listing 5.1, the tokens get_info and std_id in line 1 are identified
as func_def and arg_def types. While the variables student (line 2), s_name (line 3), and
s_class (line 4) are classified as the var_def token type, the std_id (line 2) and student
(line 3) variables are grouped into the var_usg type. The tokens Student and StudentClass
are labeled as the class_usg type. Ultimately, the attribute token type is used to denote the
remaining tokens, i.e. profile and name in line 3 as well as info and name in line 4.

1 def get_info(std_id):
2 student = Student(std_id)
3 s_name = student.profile.name
4 s_class = StudentClass.info.name

Listing 5.1: An example code snippet for extracting syntax type information.

The syntax type dimension also contains numeric and literal constants (const_num and
const_str token types) and keywords defined for the target programming language (keyword
type). Code tokens referring to exceptions defined in try/catch blocks are assigned to the
exception token type, which covers all built-in exceptions.

Ultimately, token types imp_lib, imp_sublib, and imp_alias are used to identify imported
libraries, imported sublibraries, and their aliases, respectively. The 18th value of the dimension
(i.e. unknown) indicates tokens which can not be categorized in other values. Most of these
tokens are empty lists of parameters. These lists are still presented in ASTs but don’t affect the
code completion accuracy. Table 5.7 summarizes the explanation and examples for each label of
the syntax type dimension, with the target code token highlighted in every example.

Context Dimension

The contextual information describes the surrounding code structures (e.g. loop body, condition
expression) in which the token is found. The context values (i.e. second column in Table 5.4)

119

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

Table 5.7: Explanation and examples for Syntax Type dimension of CT3.
Type Explanation Example for each type

arg_def A definition of an argument in a function or a
method definition

def a_func(arg1,arg2="value",
*args ,**kwargs)

attribute An attribute of a package or a class AClass.attribute1.attribute2

class_def A class definition class Aclass

class_usg A usage of a class class AnotherClass(BaseClassUsage)
a_var = ClassUage ()
Lib.ClassUsage ()
a_var = ClassUsage .an_attribute
results = ClassUsage .a_method()

const_num A numeric constant a_var = 10

const_str A literal constant a_var = "a string "

exception An exception value except AnException :

func_def A function definition def a_func (...):

func_usg A function call (only for functions defined within
the same file)

results = func_usg (...)

imp_alias An alias of an imported library import a_lib as an_alias

imp_lib An imported library import a_lib

imp_sublib An imported sublibrary from a_lib import a_sublib

keyword A keyword of the target programming language a_var = True

method_def A method definition def a_method (...):

method_usg A method call (including function calls from
imported libraries)

AClass.method_usg (...)

var_def A variable definition, including local variables
(except the ones in lamda functions, if/else
statements and loops) and global variables

a_var = "a variable"
global a_glob_var

var_usg A usage of a defined variable a_var += 1
results = a_func(a_var)
results = a_var[idx]
results = a_var .func_call()
std_name = student .name
results = a_func(var1, kw_var =var2)

unknown The remaining cases Empty list of parameters

aim to reflect the local context, which plays a large role in code completions (Hellendoorn et al.,
2019). We proposed 16 values corresponding to different levels of code structure.

The values in_arithmetic_op, in_assign, in_bool_op, and in_comparison indicate code to-
kens found in arithmetic, assignment, boolean, and comparison operations, respectively. Code
tokens located in class or function/method definitions are represented by the context values
in_class_def or in_func_def . The parameters used in these definitions, as well as in func-
tion/method calls, are assigned to the in_parameter value.

Code tokens being used in if or else statements are labeled with the in_if or in_else values;
analogously for in_try, in_except, and in_raise. The values in_for and in_while refer to the
tokens occurring in loop structures (i.e. for and while). Finally, in_return expresses tokens in
return statements, while in_with indicates code tokens within with statements.

120

5.3. Code Token Type Taxonomy

Since the code structures represented by these context values can be nested in some cases,
we recorded in how many contexts of a given value each code token is included. Listing 5.2
illustrates the token var_example (line 7) which is in the context of in_class_def, in_func_def,
in_if, in_for (twice), in_try, in_parameter, and in_arithmetic_op. Comprehensive examples
for each context value are provided in Table 5.8. For simplicity, we outlined common code token
positions in these examples, as all tokens within the scope share identical contextual values.

1 class ClassDef():
2 def func_def(self, ...):
3 if ... :
4 for i in ...:
5 for j in ...:
6 try:
7 a_func(var_example + ...)
8 except ... :
9 ...

10 else:
11 ...

Listing 5.2: An example code snippet for extracting context information.

Origin Dimension

The origin labels (i.e. third column in Table 5.4) indicate the location where an identifier or a
keyword is defined. A code token’s origin can provide valuable information about its purpose and
importance. While built-in code tokens (e.g. keywords or methods available without importing)
are frequently used and have a rather general purpose, code tokens originating from within the
same file serve a specific purpose which is closely related to the task the code solves.

The from_builtin label represents built-in code tokens, which do not require an explicit import
such as keywords (e.g. True/False). Tokens categorized as from_extlib originate from external
(non-standard) libraries or packages. Identifiers defined in the same file have from_infile as their
origin label. Ultimately, the from_stdlib label refers to identifiers defined in standard libraries.

The above labels are obtained by analyzing the import commands in each AST. Built-in
code tokens are those within a predefined Python keyword set. Tokens from within the file are
determined by exclusion, as these tokens are neither built-in nor from the standard library or
an external library.

Besides, code tokens appearing as attributes of a particular library are categorized according
to the origin information on the library. For example, considering the code line 4 in Listing 5.1,
if the token StudentClass is assigned to the from_infile label, then the info and name tokens
also have from_infile as their origin label.

Length Dimension

Values of the length dimension denotes the number of characters in a code token. This dimension
is motivated by the fact that long code tokens benefit more from code completions than short
ones, since they save more typing effort (Hellendoorn et al., 2019). The length also correlates

121

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

Table 5.8: Explanation and examples for Context dimension of CT3.
Value The code token in ... Example for a specific token

in_arithmetic_op an arithmetic operation result = token + 10

in_assign an assign operation token = value

in_bool_op a boolean operation token != another_value

in_class_def a class definition def AClass:
token = "a string"

in_comparison a comparison operation token < 50

in_else an else statement else:
token = value

in_except an exception block except ValueError:
token = "another string"

in_for a for loop for token in an_array: ...
for i in range(5):

token = value

in_func_def a function definition def a_func(...):
token = value

in_if an if statement if token != 1: ...
if a_var > 1:

token = value

in_parameter a parameter list in function/method definitions and calls,
or in class definitions/instantiations

in_raise a raise statement raise token

in_return a return statement return token

in_try a try statement try:
token = value

in_while a while loop while token > 0: ...
while a_var < 100:

token = value

in_with a with statement with open(file, "a") as token :

with the importance of a code token. Short tokens usually hold temporary values (e.g. i as a
loop counter), which are less significant.

Code tokens are categorized as short if containing up to 3 characters, medium for 4 to 10
characters, and long for lengths exceeding 10 characters. These thresholds are determined from
statistical analysis of terminal lengths within the Python150k dataset (described in Section
5.6.1). Approximately 19.7% of terminal tokens in the dataset are 4 characters long, with this
proportion decreasing notably for longer lengths. Moreover, among the top-15 most common
terminal token lengths in the dataset, the majority fall within the 4 to 10 character range.

Frequency Dimension

Finally, frequency labels refers to a code token’s frequency, relative to the frequency distribution
of all code tokens within each individual AST. We used three values here: low, medium, and
high, based on intervals explained in Figure 5.4. On one hand, long and frequent code tokens are

122

5.3. Code Token Type Taxonomy

likely to be significant. On the other hand, while short code tokens can be frequent, in general
they carry insignificant (e.g. temporary) values.

low_interval medium_interval high_interval

min_freq

boundary1

mean_freq

boundary2

max_freq

Figure 5.4: Frequency intervals for determining frequency labels of code tokens with CT3,
adapted from Figure 4.3 of Rashidi (2021).

The three intervals specifying the frequency of occurrence as low, medium, and high are
adjusted based on the min, mean, and max values of the frequency distribution of all tokens
within the AST. Equations 5.1a to 5.1e show the calculation for these intervals. Except the
high_interval, which is a closed interval, the low_interval and medium_interval are half-open
intervals (i.e. the higher endpoints are not included, Equations 5.1c and 5.1d).

boundary1 =
mean_freq −min_freq

2
(5.1a)

boundary2 =
max_freq −mean_freq

2
(5.1b)

low_interval = [min_freq, boundary1) (5.1c)

medium_interval = [boundary1, boundary2) (5.1d)

high_interval = [boundary2, max_freq]. (5.1e)

5.3.3 Open Vocabulary for Transformers

Since Transformers recently gained a lot of attention with promising results on the code com-
pletion task (Svyatkovskiy et al., 2020; Kim et al., 2021; Chirkova et al., 2021; Ciniselli et al.,
2021a), we chose Transformer-based models as representative models for the state-of-the-art.

Besides other common issues of code recommendation, the OOV issue, which is mainly caused
by the arbitrariness of identifiers, is considered as one of the most persistent concerns. Several
research works tried to address this problem and the open vocabulary approach seems to be
a promising one (mentioned in Section 5.2.3). A prediction model with an open vocabulary is
supposed to alleviate the OOV issue in the original model (i.e. with a closed vocabulary).

To evaluate how using open vocabulary enhances the original Transformers, or in general, to
evaluate whether CT3 is beneficial for improving code completion models, we performed two
steps. Firstly, we implemented a Transformer-based code completion approach in two variants:
with a closed vocabulary model (i.e. Transformer learns on a fixed set of strings), and with
an open vocabulary model using BPE as suggested by Karampatsis et al. (2020). In the latter
version, each token can be encoded by several subtokens (potentially even letters). Secondly,
we evaluated the results using aggregated accuracy and CT3-data to observe what additional
information we can gain by utilizing CT3.

It is essential to indicate that the open vocabulary model uses greedy search for finding the
next possible subtoken. We assume that a prediction is correct in this model if all subtokens of

123

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

the original token are suggested accurately. This leads to the circumstance that the accuracy
after training (which just focuses on the next subtoken in the sequence) is typically higher than
the accuracy gained from the evaluation step (reiterated in Section 5.6.3).

5.4 Evaluation

5.4.1 Research Questions

In our evaluation, we addressed the following two research questions:
RQ1: Does the refined evaluation reveal useful information for comparing and

characterizing code completion approaches? To answer this question, we conducted an
experiment of code completions with a Transformer-based model. We compared two variants
of the model, i.e. closed and open vocabulary, and investigate whether the refined evaluation
reveals more information about each variant and thus facilitates their comparison. Notably, the
findings of this question also respond to our third core research question (CRQ3), specified in
Section 1.4 of Chapter 1.

RQ2: Does the open vocabulary model improve the prediction accuracy compared
to the closed vocabulary model? The utility of the open vocabulary model is assessed by
comparing the completions provided by the two models for each code token and calculating
accuracies for each model over all tokens. The answer to this question also verifies the advantage
of using the open vocabulary model in addressing the OOV issue.

5.4.2 Experimental Setup

Transformer Adoption

We conducted the experiments using Python150k and JavaScript150k datasets. The model is
fitted on the original training sets (i.e. 100k each). We used Python 3.7.9, TensorFlow 2.3.0,
and an open source Cosy12 implementing Transformer for code completion.

Instead of translating between two sequences of tokens in different languages as the vanilla
Transformer (Vaswani et al., 2017), our task was to predict the most likely next token based on
previous tokens. Therefore, the Transformer model used in our experiments features the same
architecture as an encoder of the vanilla Transformer, i.e. a stack of identical layers where each
layer has two sub-layers.

We employed six layers and six heads like other related works (Kim et al., 2021; Chirkova
et al., 2021; Ciniselli et al., 2021b; Ciniselli et al., 2021a). Since these related works used various
values for embedding size (e.g. 256, 300, and 384), we chose 300-dimensional embedding, which
is the commonly used embedding size of Word2Vec model (Mikolov et al., 2013b). Additionally,
we selected 300 as the size of hidden layers (i.e. hidden units).

Our experiments include main and tuning experiments. The former focus on emphasizing the
benefits of refined evaluations by using the proposed methodology in comparison of completion
12GitLab repository, https://gitlab.com/Einhornstyle/cosy, (Accessed: 16 March 2024).

124

https://gitlab.com/Einhornstyle/cosy

5.4. Evaluation

results, obtained from the closed and open vocabulary models. The latter experiments assess
effects of some parameters (e.g. token length and window size) on prediction accuracies. To avoid
distraction from the main experiments and their results, the tuning experiments are introduced
last in the chapter, Section 5.6).

Data Preprocessing

The code token and subtoken sequences are generated by traversing ASTs in Depth-First Search
(DFS) order. We eliminated all white spaces, tabs and new lines to reduce noise before collecting
tokens for building encoders and creating input files for our Transformer model. Each type or
value in the ASTs is represented as an AST node.

Closed and Open Vocabulary Construction

There are special cases that require special values and be reserved in the vocabulary. We
utilized <UNKNOWN> token to indicate tokens that cannot be encoded by the vocabulary. The
token <PADDING> is used to fill up the data windows in data files (explained below).

Besides, the token <ENDTOKEN> is utilized for marking the end point of a sequence of subtokens
and therefore can only be applicable for the open vocabulary case. In other words, if n is the
vocabulary size, which is a hyperparameter defined before building the vocabulary, then n − 2
and n− 3 are the number of tokens/subtokens in the closed and open vocabularies, respectively.

The closed vocabulary is assembled based on the frequency of code tokens in the training
dataset. The vocabulary size (e.g. 10,000) determines the number of most frequent tokens being
selected for the vocabulary after subtracting the two special tokens as mentioned above. In
this way, rare and/or very long tokens hardly contribute to the vocabulary. Hence, a length
threshold for building closed vocabulary is not necessary.

For the open vocabulary built by BPE approach, we deployed HuggingFace Tokenizers13.
All tokens in the training dataset are pre-tokenized to build a set of unique words. Frequency of
each word is then calculated based on its occurrence in the training set. The open vocabulary
first encompasses all characters in the set of unique words and then being expanded by merge
rules. Two characters in the vocabulary are combined if their merged character has the highest
frequency, compared to the other combinations. The process keeps going until the vocabulary
achieves the desired size.

All tokens participate in forming the open vocabulary, which leads to the risk of increasing
noise due to very long and rare tokens. To address this issue, we experimented with several
thresholds of token length, including unlimited length down to 200, 100, and 50 (detailed in
Section 5.6.2). The obtained results show that limiting token length to 50 can create a BPE
vocabulary which contains all single letters and a minimum number of missing non-terminal
types, which are rarely used.

13Fast state-of-the-art tokenizers, https://huggingface.co/docs/tokenizers/python/latest/index.html,
(Accessed: 16 March 2024).

125

https://huggingface.co/docs/tokenizers/python/latest/index.html

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

Input Data File Creation

To create input data for Transformer models, i.e. sequences of tokens/subtokens, we traversed
ASTs in the dataset in DFS order. Similarly to building the vocabulary, rare and/or long tokens
are most likely encoded as <UNKNOWN> token while using a closed vocabulary Consequently, a
length threshold is again not needed for this case.

For the open vocabulary case, we performed additional experiments on the effect of token
length on prediction accuracy (further details in Section 5.6.3). The experimental results show
that there should be a threshold for token length when creating data files (e.g. tfrecord files if
using TensorFlow).

Particularly, there are 0.9% of tokens in the Python dataset that are longer than 30 characters.
This applies to 0.3% of tokens in the JavaScript dataset. Together with other reasons (e.g.
length distribution, accuracy after training, as presented in Section 5.6.3), we considered 30 as
the length threshold for creating our tfrecord files.

Challenges of big ASTs. Theoretically, vanilla Transformer models can handle arbitrarily
long input sequences. However, in practice, all the input data fed to the model should have the
same length with <PADDING> tokens added according to the certain lengths of the input sequences
(Vaswani et al., 2017). Furthermore, determining the length for the input data involves various
factors, such as the length of ASTs and memory capacity. Since ASTs in the datasets are diverse
and some can be exceedingly large, it is infeasible to set a value sufficiently high to embed any
AST of any length, especially with the limitation of memory.

Sliding window. To integrate large ASTs into the input data, we adapted the same technique
as Kim et al. (2021), which splits the large ASTs into smaller chunks with a sliding window while
keeping the overlaps between windows to preserve the context. Each window is defined by a
window_size (i.e. number of tokens/subtokens within the window) and a step_size of the sliding
window. To ensure all windows have the same size, the <PADDING> tokens are used to pad the
last windows of the sequences.

We utilized the same experimental setup as Kim et al. (2021) for our closed vocabulary case
with a window_size of 1,000 and a step_size fixed to 500. However, these values need to be
adjusted for the open vocabulary case to prevent dropping contextual information in the window,
since the sequences of subtokens (i.e. with open vocabulary) can be much longer than the original
sequences of code tokens (i.e. with closed vocabulary). After performing several experiments
(specified in Section 5.6.4), we selected 2,000 and 1,000 for the window_size and step_size of
the open vocabulary case, respectively.

Experiment Configuration

Table 5.9 presents the settings used for the conducted experiments. The model is trained
and evaluated on one GPU (GeForce RTX 2080 Ti or TITAN Xp). The preprocessing and
training processes take days14 while the evaluation for each token prediction with the closed and
14It took 20 hours vs. two days for preprocessing and training data on the Python vs. JavaScript datasets with

the closed vocabulary, respectively; 1.5 days vs. 4.5 days for the open vocabulary case on the two sets in the
same order.

126

5.4. Evaluation

open vocabulary models requires around two weeks (Python dataset) to more than one month
(JavaScript dataset) to finish.

Table 5.9: Experiment configuration for CT3.
Parameter Value

vocabulary_size 10,000
(window_size, step_size) for closed vocabulary (1,000, 500)
(window_size, step_size) for open vocabulary (2,000, 1,000)
batch_size 8
Number of epochs 10
max_len_encoder 50
max_len_data 30
Optimizer Adam

5.4.3 Evaluation Results

Refined versus Aggregated Evaluation

The first line of Table 5.10 compares the aggregated accuracy results of the closed and open
vocabulary models on the Python50k dataset. The refined evaluation conducted on this dataset
is presented in part (a) of Figures 5.5 to 5.8 for the dimensions syntax type, origin, length, and
frequency, respectively. The analysis for the context dimension is similar to other dimensions
and omitted in this study.

Notably, in Figures 5.5 to 5.8, we utilized the value non_leaf to refer to code tokens that
are non-terminal nodes or terminal nodes with token length greater than 30 (due to the length
threshold for creating input data files, Section 5.4.2). In part (a) of the mentioned figures, the
bars present accuracies while the line shows the relative fraction of a token type over all tokens
(i.e. value_frac). The pie charts in part (b) of these figures are another representation of the
lines in part (a).

Table 5.10: Aggregated accuracy of closed and open vocabulary models.
Dataset c_acc. o_acc. c_oov_o_true* oov_c+ oov_o++

Python50k 0.68 0.72 1.35M 5.0M 0.41M
JavaScript50k15 0.71 0.75 1.9M 6.76M 0.4M

c/o denotes closed versus open vocabulary model, acc. is accuracy.
The accuracies obtained while comparing both models side by side for each token.
* Number of tokens marked as OOV under closed vocabulary model yet correctly predicted by the open one.
+ Total number of tokens encoded as OOV with closed vocabulary.
++ Total number of tokens encoded as OOV with open vocabulary. In this case, it is also the number of tokens in
the dataset that are longer than the threshold of token length (i.e. 30).

15Due to time constraints, solely more than 71% of code tokens in the JavaScript50k dataset were assessed.
However, together with the results obtained from evaluating the Python50k dataset, this amount of data is
still sufficient to confirm the conclusion of our work.

127

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

Finding 1. Both metric types show the superiority of the open vocabulary model over
the closed one. However, the aggregated metric demonstrates only marginal improvement,
while the refined metric reveals significant disparities in certain token types.

The aggregated metric indicates that the open vocabulary model increases the prediction accu-
racy on Python50k dataset by only 5.88% (first and second columns of Table 5.10). Meanwhile,
the refined evaluation clearly reveals that the open vocabulary model outperforms the closed
vocabulary model in every dimension of CT3, with improvements ranging up to 2.03 times.

One of the reasons that aggregated metrics display only a moderate improvement is the token
type non_leaf (i.e. internal AST nodes and long token terminal nodes), since it makes up more
than half of test instances, but does not benefit much from the open vocabulary model. Detailed
advantages of the open vocabulary model over the closed one are analyzed for each dimension
as follows:

Finding 2. In terms of syntax type, the open vocabulary model exhibits higher accuracy
compared to the closed one across most token types. Besides, the refined evaluation unveils
greater difficulty in predicting definition token types than usage token types.

Figure 5.5(a) shows that for the dimension syntax type, the open vocabulary model achieves a
higher accuracy for all token types, excluding the exception, imp_lib, and keyword types. There
is a significant improvement for the class_usg type (95.2%). The accuracies of the types var_usg
and const_str, which are two of the most relevant completions in practice, increased by 28.6%
and 40.1%, respectively.

Other notable enhancements are achieved for the labels attribute (40.2%), func_usg (22.5%),
and method_usg (22.3%). Both closed and open vocabulary models perform quite well for
tokens categorized as keyword type. However, for this type, the closed vocabulary model slightly
outperforms the open vocabulary model by 1.2%. For simplicity, the unknown type (0.1% of all
tokens) is left out from the bar chart.

The refined evaluation in Figure 5.5(a) also illustrates that it is much harder to predict
definition than usage token types. The most impressive evidence for this is the great disparity
of accuracy between the func_def and func_usg types. Their accuracies differ by a factor of 7.4
(closed vocabulary model) and 7.8 (open vocabulary model) in favor of the usage token type.
The differences of accuracy between code completion for definition and usage of types related
to class, method, and variable are also remarkable.

Apart from the non-leaf label in Figure 5.5(b), the top-5 most frequent values of the syntax
type dimension consist of var_usg, const_str, keyword, attribute, and method_usg. For instance,
27.3% of terminal tokens or 9.2% of all code tokens are categorized as the usages of variables,
arguments, libraries and function keywords (i.e. var_usg). This statistic also emphasizes the
importance of predicting already defined identifiers in practice.

In conclusion, the above analysis can inspire the right approaches to improve accuracy, which
can not be derived from the aggregated evaluation. The interpretation for the remaining dimen-
sions works similarly.

128

5.4. Evaluation

0.0 0.2 0.4 0.6 0.8
Accuracy

arg def
attribute

class def
class usg

const num
const str

exception
func def
func usg
imp alias

imp lib
imp sublib

keyword
method def
method usg

var def
var usg

non-leaf

Dimension “syntax type”

accuracy closed

accuracy open

value frac

(a)

non-leaf

66.3% 3.3%

4.4%

3.8%
2.9%

var usg

9.2%

Dimension “syntax type”

non-leaf - 66.3%

arg def - 1.1%

attribute - 3.3%

class def - 0.2%

class usg - 1.3%

const num - 2.0%

const str - 4.4%

exception - 0.1%

func def - 0.2%

func usg - 1.3%

imp alias - 0.0%

imp lib - 0.5%

imp sublib - 0.5%

keyword - 3.8%

method def - 0.7%

method usg - 2.9%

var def - 2.1%

var usg - 9.2%

unknown - 0.1%

(b)

Figure 5.5: Comparing the accuracy of the closed and open vocabulary models for the syntax
type dimension (a) and its token types distribution (b).

Finding 3. Concerning token origin, the open vocabulary model excels over the closed
model in predicting tokens originating from the same file, which constitute the majority of
terminal tokens. In addition, suggesting tokens from the same or other source files is harder
than suggesting tokens from the built-in and standard libraries of the target language.

Figure 5.6(a) shows that the open vocabulary model outperforms the closed one in most of
values of the dimension origin. The closed vocabulary model just slightly increases the accuracy
of the open one for values from_builtin and from_stdlib by 0.8% and 0.6%, respectively. The
notable point is the result for the from_infile value.

Even though 72.7% of terminal tokens are located in the same file (Figure 5.6(b)), the accuracy
of suggesting these tokens is deficient when using the closed vocabulary model (ca. 38.6%). A
possible reason for this is the source code file (from_infile), as well as the external libraries
(from_extlib), containing an immense variety of tokens defined by developers, which causes the
OOV issue in the closed vocabulary model.

129

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

0.0 0.2 0.4 0.6 0.8
Accuracy

from builtin

from extlib

from infile

from stdlib

non-leaf

Dimension “origin”

accuracy closed
accuracy open

value frac

(a)

non-leaf
66.3%

from builtin
3.9% from extlib4.2%

from infile

24.5%

from stdlib

1.1%

Dimension “origin”

(b)

Figure 5.6: Comparing the accuracy of the closed and open vocabulary models for the origin
dimension (a) and its token types distribution (b).

The open vocabulary model improves the prediction accuracies for the labels from_infile and
from_extlib by 28.6% and 40.3%, respectively. However, these accuracies are still lower than
the ones for the from_builtin and from_stdlib labels. This reflects the fact that it is harder to
recommend tokens from the same file or from other source files than tokens from the built-in
and standard libraries of the target programming language.

Finding 4. On the aspect of token length, the open vocabulary model significantly exceeds
the rival model on long terminal tokens, despite the modest accuracy of this token type.

The refined evaluation for the length dimension is displayed in Figure 5.7(a). For longer code
tokens, the difference between the accuracies of the open and closed vocabulary model increases.
Although the overall accuracy for long tokens is not high (ca. 32.8%), the improvement by a
factor of 3.03 is still impressive. This finding is crucial, as long code tokens are likely to be
requested for code completion (Hellendoorn et al., 2019).

0.0 0.2 0.4 0.6 0.8
Accuracy

long

medium

short

non-leaf

Dimension “length”

accuracy closed
accuracy open

value frac

(a)

non-leaf
66.3% long

6.7%

medium
20.1%

short

6.9%

Dimension “length”

(b)

Figure 5.7: Comparing the accuracy of the closed and open vocabulary models for the length
dimension (a) and its token types distribution (b).

The tokens tagged with the medium label make up the largest fraction of terminal tokens in
this dimension (Figure 5.7(b)). In this case, the closed vocabulary model is outperformed by the

130

5.4. Evaluation

open vocabulary model with a margin of 15.7%. For short code tokens, the accuracy difference
is not substantial.

Finding 5. The open vocabulary model consistently outshines its competitor in token
frequency across all labels. The analysis results also reaffirm the difficulty of predicting
low frequency tokens.

The open vocabulary model also surpasses the closed one for all values of the frequency
dimension (Figure 5.8(a)). The low frequency tokens not only constitute a notable fraction of
the terminal tokens (Figure 5.8(b)), but are also quite difficult to predict when using the closed
vocabulary model. The increased accuracy for these tokens (44.1%), together with the above
analysis results, emphasizes the advantage of using the open vocabulary model instead of the
traditional closed one.

0.0 0.2 0.4 0.6 0.8
Accuracy

high

low

medium

non-leaf

Dimension “frequency”

accuracy closed
accuracy open

value frac

(a)

non-leaf
66.3% high

10.4%

low
12.6%

medium

10.7%

Dimension “frequency”

(b)

Figure 5.8: Comparing the accuracy of the closed and open vocabulary models for the frequency
dimension (a) and its token types distribution (b).

Finding 6. Results of the refined evaluation also highlight that predicting non-terminal and
lengthy tokens significantly influences the aggregated accuracy, diminishing the advantage
of the open vocabulary model when using this conventional metric.

As indicated in parts (b) of Figure 5.5 to 5.8, the non-leaf value makes up the majority of
tokens in the dataset (66.3%), which leads to the challenge that improving accuracy in other
values does not have much effect on the aggregated results. In other words, the prediction of non-
terminal and very long tokens dominates the aggregated accuracy and obscure the preeminence
of the open vocabulary model.

The thorough comparison between traditional aggregated and refined metrics in evaluating
prediction outcomes yields valuable insights into addressing the first research question introduced
in Section 5.4.1 of this chapter.

A-RQ1. The refined evaluation exceeds its competitor in providing detailed
information on completion models, guiding further improvements.

131

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

Open versus Closed Vocabulary

Finding 7. The open vocabulary model outclasses the closed vocabulary model in terms of
performance across most dimensions and token types, while mitigating the OOV issue.

As analyzed above, the charts in Figure 5.5 to 5.8 reveal that the open vocabulary model
enhances the prediction accuracy of the Transformer-based model across most dimensions and
values of CT3. Instances where the closed vocabulary model performs slightly better than the
open one exhibit insignificant differences (0.6% to 1.2%), except for the label imp_lib (20.3%),
which captures only 0.5% tokens of the whole dataset or 1.5% of terminal tokens.

The difference in accuracies between the two models is particularly impressive for the usages of
identifiers (e.g. classes or variables), tokens from in-file or external libraries, and low frequency
long tokens. These token types are closely related to the OOV issue, which is caused by the
arbitrariness of identifiers.

The refined evaluation results confirm the expectation that the open vocabulary model can
alleviate the OOV issue in the traditional approaches. To complement this point, we counted the
number of OOV tokens encountered when using the closed vocabulary model and determined
how many of these tokens can still be recommended correctly by the open vocabulary model.
We also calculated the number of tokens encoded as OOV with the open vocabulary to compare
with the statistic of the closed one.

It is worth noting that, in the open vocabulary scenario, the count of OOV tokens is equivalent
to the number of excluded tokens, i.e. those exceeding the length threshold. This is due to the
absence of tokens shorter than the length threshold encoded as OOV with the open vocabulary.
The last three columns of Table 5.10 presents our calculation.

The open vocabulary model accurately predicts 27.0% and 28.1% of OOV tokens in the
Python50k and JavaScript50k datasets, respectively. Moreover, the open vocabulary decreases
the number of tokens encoded as OOV with the closed vocabulary by factors of 12.2 and 16.9
for the Python and JavaScript datasets, respectively. This again confirms the advantage of the
open vocabulary approach.

The above analysis also answers the second research question specified in Section 5.4.1.

A-RQ2. The open vocabulary model demonstrates superiority in predicting
identifier usages, tokens from local files or external libraries, and infrequent
long tokens, compared to the closed model.

5.5 Discussion

This section outlines challenges encountered in developing the CT3 approach, threats to validity,
and reaffirms our response to the third core research question (CRQ3), introduced in Section
1.4 of Chapter 1.

132

5.5. Discussion

5.5.1 CT3 Challenges

The first and most important step of constructing CT3 methodology is to determine dimensions
and possible values for each dimension. In this subsection, we discuss two challenges occurred
while conducting the CT3 schema for Python.

Identifying differences among token usages. Considering the syntax type dimension, the
main purpose is to separate between various token types, as well as their definitions and usages
(e.g. definition and usage of function and method). While the prediction of token definitions
is harder to achieve, it is also less crucial than the prediction of token usages. In other words,
distinguishing between the usages of different token types is important.

However, for some token types, it is hard to accomplish this distinction. One example for this
is the usages of imported libraries, defined variables and declared arguments all being treated
as variable usages in Python. In these cases, the analysis can be simplified based on interests of
developers. For instance, a token can be considered as an imported library usage if it is identified
as a var_usg in the syntax type dimension and its origin value is from_extlib or from_stdlib.

Determining definitions of local variables. We assumed that local variables are defined
by assignments in ASTs and only the first assignment of each variable within a scope (i.e. file,
class, method or function) is captured. The definition of local variables inside lamda functions,
if/else blocks or loops might be obtained by slightly modifying the AST parser.

Overcoming these obstacles will optimize the CT3 schema, which is beyond the scope of our
work, and therefore will be investigated in future work. Besides, the effect of these challenges
on the evaluation result is negligible since the current schema still provides fundamental and
essential dimensions of code token types (e.g. definitions and usages of identifiers, token length,
and token origin).

Moreover, analyzing other token types based on the ASTs is straightforward and can be
applied to other programming languages with minimum effort (e.g. adjusting the types of nodes
in ASTs between languages). We already published the scripts for conducting CT3 schema for
Python, which support user adding/modifying dimensions and values in each dimension easily.

5.5.2 Threats to Validity

There are several threats to validity of our work. We analyze them as follows:
Training corpus. We employed the original train-test split of Python150k and JavaScript150k

datasets to easily compare with the state-of-the-art. However, Chirkova et al. (2021) suggested
that the datasets should be redistributed and deduplicated to avoid data leaks. We also observed
that the datasets are quite noisy with a lot of empty or long tokens and auto-generated files.
These characteristics might affect the semantics of the prediction. It also underlines a need for
a set of standardized benchmarks for code completion.

Language specificity. The utility of CT3 methodology is only evaluated for Python. The
code token types are obtained by analyzing ASTs and the relationship between tokens, which
is slightly different for each programming language. However, the dimensions of CT3 are deter-
mined by the demands of developers for code completion in practice.

133

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

Particularly, predicting identifiers over punctuation and distinguishing between definitions
and usages of identifiers motivate the syntax type dimension, while saving typing effort prompts
the length dimension. Perceiving the importance of local context/information in the predictions
derives origin and context dimensions. Ultimately, suggesting rare and difficult completions as
vital cases for real world efficacy inspires the frequency dimension.

These interests are applied for every programming language. Furthermore, most of the values
identified for the dimensions of CT3 are critical elements, which are shared among programming
languages. Accordingly, we expect that our results will generalize to other languages.

Model comparison. We selected a Transformer-based model in two variants (i.e. with
open and with closed vocabulary) as representative ML-based models for this work due to the
dominance of Transformers in comparison to other models. Besides, Transformers also achieve
notable results on other tasks, such as classification (Kanade et al., 2020), vulnerability/code
clone detection (Ding et al., 2021), and Natural Language to code (Ahmad et al., 2021) with
leading tools GitHub Copilot and AlphaCode16.

With the rapid development of Transformers, it is unlikely that previously known models can
surpass this model. We assume that a comparison between other approaches (e.g. Transformers
versus GNN) using CT3 would further confirm the advantages of our proposed methodology.

Out-of-Vocabulary (OOV) issue. Handling the OOV issue by BPE is not the main focus
in this work and is only used to demonstrate the proficiency of CT3 in supporting a refined
evaluation. In the paper of Chirkova et al. (2020), the authors mention that splitting tokens
into subtokens makes it hard to apply structure-aware models. But our results show that the
open vocabulary model constructed with BPE outperforms the closed one in every category of
token types. However, the efficiency of solutions for the OOV issue needs further investigation
and is out of scope of this work.

5.5.3 Response to CRQ3

The third core research question (CRQ3), outlined in Chapter 1, Section 1.4, targets to compare
traditional aggregated evaluation methods with refined strategies in revealing insights into code
completion approaches. The extensive analysis with the first six findings summarized in Section
5.4.3, alongside the discussion above clarify our answer for this matter.

A-CRQ3. Traditional aggregated evaluation lacks depth in comparing code
completion model performance, whereas the refined evaluation addresses this
deficiency, offering valuable viewpoints for potential advancements.

5.6 Auxiliary Experiments

This section presents our additional statistics and results of tuning experiments to clarify some
values and thresholds chosen for the main experiments described above.

16AlphaCode attention visualization, https://alphacode.deepmind.com/, (Accessed: 17 March 2024).

134

https://alphacode.deepmind.com/

5.6. Auxiliary Experiments

5.6.1 Length Distribution of Terminal Tokens in Python150k

While preprocessing the code tokens in the dataset, we recorded their length distribution to
identify thresholds for the three values in the length dimension of the CT3 schema used for
Python (i.e. short, medium, and long). Figure 5.9 displays the top-15 common terminal token
lengths in the Python150k dataset.

4 8 5 1 6 3 7 14 10 9 2 11 12 13 15
Token length

6.92

3.06
2.74

0.5

M
ill

io
ns

of
to

ke
ns

Top-15 terminal token lengths in Python100k

(a) – Approx. 35M terminal tokens in total

4 8 5 6 1 3 7 14 10 2 9 11 12 13 15
Token length

3.37

1.51
1.34

0.24
M

ill
io

ns
of

to
ke

ns

Top-15 terminal token lengths in Python50k

(b) – Approx. 17M terminal tokens in total

Figure 5.9: Top-15 common terminal token lengths in the Python150k dataset for the training
100k dataset (a) and the evaluation 50k dataset (b).

Approximately 19.7% of terminal tokens in both training and evaluation datasets are 4 char-
acters long, with longer lengths representing a small fraction. Figure 5.9 illustrates that the
majority of tokens range between 4 and 10 characters. Moreover, the training and evaluation
datasets contain nearly 4k and 3k different lengths, respectively. Consequently, longer terminal
tokens are less frequent in the dataset, reducing their predictability.

Moreover, since typing effort plays an important role in the code completion task (Hellendoorn
et al., 2019), we preferred to focus on the code tokens that can help with (i) saving typing effort
as well as (ii) covering a large part of the dataset. Based on these criteria and the analysis above,
we chose 4 and 10 as the thresholds for the length dimension of CT3 schema (for Python). Figure
5.7(b) emphasizes that medium-length tokens (i.e. 4 ≤ token_length ≤ 10) indeed account for
nearly 60% of the terminal tokens in the dataset.

5.6.2 Length Threshold for Open Vocabulary Building

As mentioned in Section 5.4.2, building an open vocabulary can be disturbed by very long
tokens. For this reason, we investigated several values of token length while using HuggingFace
Tokenizers to build the open vocabulary on the Python100k dataset (i.e. training set).

Selection Criteria

Table 5.11 summarizes the obtained results under three criteria: (i) the presence of single letters
in the vocabulary (second column), (ii) number of missing non-terminal types (third column),

135

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

and (iii) how the code tokens are encoded by considering the maximum length, most frequent
length, and average length of generated sequences of subtokens, and the number of included
tokens encoded as OOV in the training dataset (the last four columns of the table, respectively).
Here, included tokens are those with lengths below the threshold.

Table 5.11: Exploration of length thresholds for Python100k dataset’s open vocabulary building.

Max
length

Presence of
single letters

No. of absent
non-terminal

types*

Max
seq. length

of subtokens

Most freq.
seq. length

of subtokens

Average
seq. length

of subtokens

No. of
included OOV

tokens**

unlimited ✓ 67 193 2 2.44 0
200 ✓ 64 193 2 2.43 0
100 ✓ 63 96 2 2.37 0
50 ✓ 63 30 2 2.24 0

* The total number of non-terminal types is 154.
** Tokens that satisfy the length threshold but are encoded as OOV.

Firstly, since each code token is encoded by several subtokens with the main purpose of
addressing the OOV issue, the learned vocabulary should contain all single letters17 (in both
uppercase and lowercase) to make sure that code tokens can possibly be encoded.

Secondly, non-terminal tokens in the training dataset are included while building the vocab-
ulary and training the completion model. In addition, types of non-terminal tokens are more
frequent than values of terminal tokens. As a result, we expected that the learned vocabulary
also covers these non-terminal types at an acceptable rate.

Ultimately, we assumed that a code token is predicted properly in the open vocabulary case if
all of its subtokens are suggested correctly. Consequently, the shorter the sequence of subtokens,
the higher the probability for a correct prediction. Moreover, the learned vocabulary should
reduce the number of OOV tokens in the dataset after encoding.

Considered Length Thresholds

For Python100k dataset. Since our main purpose in this work is to propose the methodology
for a refined evaluation and to illustrate the utility of the proposed approach, finding optimal
values for all the thresholds is beyond this work. Therefore, we only experimented with token
lengths from unlimited down to 50, which is higher than the threshold for creating data files in
Section 5.6.3 to make sure that long tokens have less subtokens.

While the open vocabulary learned by all the thresholds covers single letters and produces zero
included tokens as OOV, limiting the length to 50 brings acceptable results with 63 non-terminal
types missing, alongside the smallest maximum and average lengths of subtoken sequences,
compared to other thresholds in Table 5.11. Besides, we examined the missing types of non-
terminal tokens and most of them are rarely used, e.g. CompareLtLtLt, CompareLtLtEEqLtLtLt,
or AugAssignLShift.

For JavaScript100k dataset. We assume that the token lengths in the JavaScript dataset
follow the same trend to the ones in the Python set. Hence, we analyzed the JavaScript100k
17In our experiments, we mostly focused on English letters.

136

5.6. Auxiliary Experiments

dataset using the above criteria while limiting the token lengths to 50. The result verifies
our inference through the obtained vocabulary with only one missing non-terminal type, the
maximum length of subtoken sequences of 31 and an average token length of 2.17. As expected,
there are no included tokens encoded as OOV while using the built open vocabulary. Accordingly,
we chose 50 as the length threshold for building the open vocabulary in both datasets.

5.6.3 Length Threshold for Input Data File Creation in Open Vocabulary Case

Token Length Distribution

For the code completion task, the quality of input data is an essential factor, since very long
tokens might increase noise while training the models. To minimize this risk, we eliminated
very long tokens from the dataset before creating data files and considered them as <UNKNOWN>
tokens after the preprocessing step. We again studied the length distribution of code tokens in
Python and JavaScript datasets considering both non-terminal18 and terminal tokens to identify
the threshold for very long tokens.

Figure 5.10 presents the top-15 of the most common token lengths in the Python and
JavaScript datasets for both training and evaluation sets. Most code tokens in the Python150k
dataset have a length of 4 characters and the tokens with lengths between 4 and 10 make up more
than 60% of the dataset. The thresholds 4 and 14 can be applied similarly to the JavaScript150k
dataset where the most common length is 10. In other words, code tokens longer than 10 for
Python and 14 for JavaScript occur less and less in the dataset.

Considered Length Thresholds

For Python150k dataset. To determine the acceptable-longest-length for the code tokens in
our experiments, we tested several lengths from 200 down to 30 for code tokens in the Python150k
dataset first and got the results in Table 5.12. If the allowed maximum length of code tokens
is 200, only 0.1% of code tokens have a length above the threshold. Similarly, reducing the
threshold down to 100 and 30 brings 0.2% and 0.9% of code tokens that longer than the max
length, respectively.

Table 5.12: Investigation of length thresholds for Python150k dataset’s input data file creation.
Max length Portion of excluded tokens* Accuracy after training**

200 0.1% 0.8179
100 0.2% 0.8255
30 0.9% 0.8363

* Excluded tokens are tokens having lengths longer than the max length.
** The model was trained on Python100k dataset for 10 epochs.

However, after training the model for 10 epochs, limiting the max length to 30 achieves the
highest accuracy for the 10th epoch, among other values. This means the model might be
18Non-terminal tokens are also fed to the completion models.

137

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

4 8 3 9 13 6 5 7 1 14 11 2 10 12 15
Token length

23.11

16.91

9.44

0.5

M
ill

io
ns

of
to

ke
ns

Top-15 token lengths in Python100k

(a) – Approx. 95M tokens in total

4 8 3 9 13 6 5 7 1 14 11 2 10 12 15
Token length

11.26

8.27

4.57

0.24

M
ill

io
ns

of
to

ke
ns

Top-15 token lengths in Python50k

(b) – Approx. 46M tokens in total

10 8 16 14 13 1 19 4 5 6 3 11 18 2 7
Token length

39.6

32.71
28.87

6.62

M
ill

io
ns

of
to

ke
ns

Top-15 token lengths in JavaScript100k

(c) – Approx. 269M tokens in total

10 8 16 14 13 1 19 4 5 6 3 11 18 2 7
Token length

18.87

15.82
13.87

3.2

M
ill

io
ns

of
to

ke
ns

Top-15 token lengths in JavaScript50k

(d) – Approx. 128M tokens in total

Figure 5.10: Top-15 common token lengths in the Python150k dataset (a) – (b) and the
JavaScript150k dataset (c) – (d).

affected by noise created from the long tokens. Besides, discarding 0.9% of code tokens by
excluding them from the dataset does not affect the evaluation much. Therefore, we chose 30
as the length threshold for creating data files in the Python dataset.

For JavaScript150k dataset. Since the most common length of tokens in the JavaScript150k
dataset is longer than the one in the Python150k dataset, we predicted the threshold for the
JavaScript dataset to be higher. However, only 0.3% of code tokens in the JavaScript150k
dataset have a length longer than 30. Furthermore, in this case the accuracy after training is
0.8642, which is sufficiently high. Accordingly, we still selected 30 as the length threshold for
creating data files in the JavaScript150k dataset.

Here, the post-training accuracy, notably in the open vocabulary case, surpasses that attained
during evaluation. Namely, with a fixed length threshold of 30, training on the Python100k
dataset yields an accuracy of 0.83, which decreases to 0.72 during evaluation, as depicted in Table
5.10. This results from TensorFlow Keras achieves the former accuracy by solely considering the
correctness of the next subtoken prediction during training, whereas the latter accuracy employs
a stricter rule, i.e. all subtokens of the original token to be predicted correctly.

138

5.6. Auxiliary Experiments

5.6.4 Window Size for Input Data File Creation in Open Vocabulary Case

Selection Criteria

As mentioned in Section 5.4.2, we chose 1,000 and 500 as the window_size and step_size, respec-
tively, for creating input data with the closed vocabulary in both the Python and JavaScript
datasets. Table 5.13 presents our experimental results to determine these two values for the
open vocabulary case, taking into account the following factors:

• The value of step_size is inferred as half of window_size for the sake of simplicity.

• Each token is encoded to at least two subtokens (i.e. the token itself and the mark symbol
<ENDTOKEN>). As a result, to prevent omitting information, the window used to incorporate
sequences of subtokens (i.e. with open vocabulary) should be larger than the one used for
sequences of tokens (i.e. with closed vocabulary).

• The window_size value needs to be constrained due to the limited capacity of our GPUs.

• batch_size, i.e. the number of data windows grouped in a batch, also affects the training
process. We established a batch_size threshold for each considered size of the window,
since values higher than the threshold exceed the capacity of our GPUs.

• Another important element is the Estimated Time of Arrival (ETA), which is the estimated
time that the model needs to complete one epoch (i.e. one training iteration). In other
words, the training time can be measured by multiplying ETA with the number of epochs.
We expected our model to be trained in an acceptable duration of one to two days.

• Ultimately, the accuracy obtained after training should be sufficiently high in an adequate
amount of time (e.g. two days). Besides, as mentioned at the end of Section 5.6.3, the
accuracy declines in the evaluation step since all subtokens of a token must be predicted
correctly to form a proper prediction in the open vocabulary case.

Considered Window Sizes

For Python150k dataset. We investigated three different sizes for the window (i.e. 5k,
3k, and 2k) with corresponding values of epoch and batch_size. Table 5.13 shows that setting
window_size to 5k makes training per epoch faster than the case of window_size 3k due to the
reduced batch_size. However, the accuracy after training of both sizes 5k and 3k are just half
of the one obtained by the window_size 2k with the same number of epochs.

For the size of 3k, the accuracy improves after performing 10 more epochs but still lower
than the one from size 2k. Moreover, the ETA values for the window_size 3k are pretty high.
Consequently, 2k is the most suitable size for the window based on the above criteria and in
comparison to the other values. The step_size is then adjusted to 1k accordingly.

For JavaScript150k dataset. We applied the same value to the window_size used for the
open vocabulary in the JavaScript150k dataset, since the maximum, most frequent, and average

139

5. Code Token Type Taxonomy:
A Methodology for Refined Evaluation of ML-based Code Completion Approaches

Table 5.13: Examination of window sizes for Python150k dataset’s input data file creation.
Window size No. of epochs Batch size* Acc. after training ETA (h:mm)

5k 10 1 0.4468 5:18
3k 10 4 0.4469 6:48
3k 20 4 0.5243 8:01
2k 10 8 0.8363 3:54

* The highest value of batch_size that our GPUs can handle.

lengths of sequences of subtokens in both datasets are considerably close (mentioned in Section
5.6.2) and they have the same setup for the closed vocabulary case.

5.7 Summary

This chapter introduces our proposed methodology called Code Token Type Taxonomy (CT3)
for a refined evaluation and comparison of code completion models. Our empirical study shows
that CT3 effectively characterizes and compares the accuracy of various approaches. Besides,
we found that the open vocabulary method notably improves the accuracy of Transformer-based
models in code completion tasks, especially regarding the usage of defined variables and literals.

We also compared the state-of-the-art of ML-based code completion approaches. The overview
shows that there is a demand for a set of standardized benchmarks for a rigid and reproducible
comparison of prediction models. We published the CT3 information19 and the analyzer source
code20 for the Python150k dataset. Potential further work includes extending the CT3 method to
other programming languages and datasets, as well as implementing specialized code predictors
according to the proposed CT3 schema.

The proposed methodology also addresses the programming barrier , reuse problem , and
scalability problem outlined in Chapter 1, Section 1.1. Particularly, our refined evaluation
highlights its advantages in offering insights to improve code completion models, tackling the
programming barrier . Moreover, our published source code and data enable examination
of other code completion approaches, mitigating the reuse problem . Ultimately, the parallel
implementation of CT3 functions partially resolves the scalability problem .

Additionally, the comprehensive analyses obtained from the refined evaluation respond to our
third core research question (CRQ3), specified in Section 1.4 of Chapter 1. We anticipate that
employing this refined evaluation will yield in-depth examinations on the benefits introduced
by individual components within ensembles of code completion models, such as the Extended
Network presented in Chapter 4.

In the upcoming chapter, our focus shifts from suggesting next code tokens, as featured in
this and the preceding chapters, to simplifying programming tasks with NLP techniques. Our
next approach involves translating NL into code snippets, while enhancing the interpretability
of ML model behaviors.

19Code token type data, https://doi.org/10.5281/zenodo.5733013.
20GitLab repository, https://gitlab.com/pvs-hd/published-code/code-token-type-taxonomy.

(Accessed: 18 March 2024).

140

https://doi.org/10.5281/zenodo.5733013
https://gitlab.com/pvs-hd/published-code/code-token-type-taxonomy

Chapter 6One-shot Correction
Enhancing Code Generation Models through
User Feedback and Decomposition Techniques

For our final research contribution, we targeted to improve Artifical Intelligence (AI) models
for code generation. Exemplified by GitHub Copilot and TabNine, code generation continues
to be an integral feature of modern Integrated Development Environments (IDEs) and receives
significant attention. This feature operates at various levels such as generating next code tokens,
completing functions, and converting Natural Language (NL) to code. However, code generation
may shift code writing tasks towards code reviewing, which involves modification from users.

Nevertheless, despite the advantages of feedback from users, their responses remain transient
and lack persistence across interaction sessions. This stems from the inherent characteristics of
generative AI models, which require explicit re-training for new data integration. Moreover, the
non-deterministic and unpredictable nature of AI-powered models limits thorough examination
of their unforeseen behaviors.

We proposed a methodology named One-shot Correction to mitigate these issues in NL to
code translation models with no extra re-training. We utilized decomposition techniques to break
down code translation into sub-problems. The final code is constructed using code snippets of
each query chunk, extracted from user feedback or derived from a generative model as needed.

Our evaluation indicates comparable or improved performance compared to other models.
Furthermore, the methodology offers straightforward and interpretable approaches, which enable
in-depth analysis of unexpected results and facilitate insights for potential enhancements. We
also illustrated that user feedback can substantially improve code translation models without
re-training. Ultimately, we developed a preliminary Graphical User Interface (GUI) application
to demonstrate the utility of our methodology in simplifying customization and assessment of
suggested code for users.

Section 6.1 outlines our motivation and contributions in this work, while Section 6.2 provides
an overview of the background and related work. Our methodology is described in Section 6.3.
Section 6.4 presents our experiments in detail, followed by the evaluation results being analyzed
in Section 6.5. We discuss threats to validity, potential enhancements, and our answer to the last
core research question (CRQ4) in Section 6.6. Additionally, our GUI application is introduced
in Section 6.7. Finally, we conclude the chapter in Section 6.8.

This chapter is based on our peer-reviewed publication (Le et al., 2024).

141

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

6.1 Introduction

The widespread adoption of generative AI models has facilitated NL-related tasks (Gozalo-
Brizuela et al., 2023). Consequently, the integration of NL-to-Code translation has become a
sought-after feature in many code-centric tools (Xu et al., 2022). Notable examples include
GitHub Copilot1, TabNine2, Amazon CodeWhisperer3 and ChatGPT4.

Benefits and shortcomings of generative AI models. There are divergent opinions
regarding the advantages and security of these AI tools, specifically GitHub Copilot. Various
studies and surveys have shown the benefits of Copilot in assisting developers (Bird et al., 2022;
Vaithilingam et al., 2022; Dakhel et al., 2023). However, other empirical studies (Imai, 2022)
reveal that Copilot results in higher productivity but with lower quality of code.

Particularly, concerns have been raised about Copilot recommending code that relies on non-
existing helper functions or undefined variables (Nguyen et al., 2022). Several studies focus on
the vulnerability and security of code generation tools (Pearce et al., 2022; Asare et al., 2022),
as well as the uncertainty surrounding the licensing of generated code (Bird et al., 2022).

Notably, a study of Bird et al. (2022) reveals that developers devote more time to reviewing
AI-generated code than writing it. This emphasizes the demand of aiding developers in better
understanding and evaluating the generated code, which is constrained by the unpredictable
behavior of AI models. Furthermore, the validation of the code’s origin is essential, but currently
limited to a single IDE development session.

Omission of user feedback. Although generative AI tools have advanced rapidly, users do
not always obtain the desired code outcomes. One of the primary factors is the quality of the
prompt, which involves NL features such as implication, association, and ambiguity (Reynolds et
al., 2021). Interactive programming has captured considerable attention as one of the prominent
approaches to tackle these issues of NL (Shin et al., 2021; Heyman et al., 2021; Schlegel et al.,
2019; Elgohary et al., 2021; Su et al., 2018; Cai et al., 2023).

This concept encompasses users engaging with models in an iterative manner through low-
code approaches, until they attain the expected result. However, despite the leverage of user
feedback, its persistence is confined to a single conversational session (Bird et al., 2022). This
limitation arises from the inherent properties of generative AI models, which require explicit
re-training to integrate new data or feedback from users.

Figure 6.1 illustrates a simple scenario of interactive programming, underlining the issue
of recalling cross-session user feedback in a current generative AI model. In Figure 6.1(a),
users initially submit the NL query “Function adds two numbers” and receive a Python code
representing the add function. Subsequently, users request to rename the function from add to
sum and proceed with further unrelated queries. After several inquiries in a new session, users
once again input the same query, “Function adds two numbers”. The question arises as whether
the model should return to users the function with the name add or sum.

1AI developer tool, https://github.com/features/copilot.
2AI coding assistant, https://www.tabnine.com/.
3AI-powered productivity tool, https://aws.amazon.com/codewhisperer/.
4AI chatbot, https://openai.com/blog/chatgpt.

(Accessed: 19 March 2024).

142

https://github.com/features/copilot
https://www.tabnine.com/
https://aws.amazon.com/codewhisperer/
https://openai.com/blog/chatgpt

6.1. Introduction

Function adds two numbers

def add(a, b):
return a + b

Edit function name of the generated code to “sum”

Function adds two numbers

…

def add(a, b):
return a + b

def sum(a, b):
return a + bor

<starting a new session>

…

Users NL-to-Code

Model

(a) General scenario

Give me a Python function

that adds two numbers

def add_numbers(num1, num2):
result = num1 + num2
return result

Can you change the function

name to "cal_sum“?

Give me a Python function

that adds two numbers

Session 1

Session 2

def cal_sum(num1, num2):
result = num1 + num2
return result

def add_numbers(num1, num2):
result = num1 + num2
return result

…
(b) Applying the scenario to ChatGPT (GPT-3.5)

Figure 6.1: A simple scenario of interactive programming, highlighting the issue of utilizing user
feedback across sessions.

We applied this scenario to ChatGPT, one of the recent prominent tools, and obtained the
results as illustrated in Figure 6.1(b). Even though the user has corrected the function name in
Session 1 (i.e. add_numbers to cal_sum), ChatGPT still returns the original code snippet (i.e.
function named add_numbers) in Session 2. In practice, the repetitive user modifications (e.g.
renaming, restructuring) of generated code can be inefficient and frustrating.

Contributions of this work. To address the aforementioned challenges, we proposed a
methodology to develop a user-feedback-driven NL-to-Code model. This method requires no
additional re-training. We aimed to provide interpretable, straightforward approaches to enable
comprehension of code provenance and facilitate thorough analysis of unexpected results. Our
contributions in this work are as follows:

• A One-shot Correction methodology. We introduced an approach to integrate user feedback
into generative AI models without re-training while supporting intensive inspection of
incorrect outcomes. An additional memory for user feedback and k-Nearest Neighbor
(KNN) methods are employed to accumulate and retrieve correction information across
sessions. To tackle the code’s origin issue, we adopted the techniques from decomposition
in problem solving. Each natural language query is divided into segments and the final
code snippet is constructed from sub-snippets attained for each segment. The NL-to-code
translation of each query chunk is performed through either the additional memory or a
generative AI model.

143

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

• A prototype and an extensive comparison. To illustrate the utility of our methodology, we
deployed a prototype of One-shot Correction based on GPT-3.5-Turbo-0301 model5 and
conduct an extensive comparison between the code generated by GPT-3.5-Turbo-0301 and
our prototype. The evaluation results justify the concept of our methodology and provide
insights into the behavior of all models when combined with user feedback.

• A Graphical User Interface application. We developed a preliminary GUI to exhibit the
benefit of using One-shot Correction in customizing and interpreting the generated code
snippets. Users can convert an NL query to a Python function, modify identifier names in
the produced code snippet, and preserve the correction information for future reference.

• Source code and data. To facilitate reproducibility and reuse of our methodology, we
published our source code, along with test suites and evaluation results6.

Notably, we adopted the CT3 schema from Chapter 5 and tailored it for this study. Similar
to Chapter 5, this chapter primarily targets the programming barrier and partially addresses
the reuse problem through our published source code and data. Additionally, the evaluation
results obtained from our methodology answer to the final core research question (CRQ4),
defined in Chapter 1, Section 1.4.

6.2 Background and Related Work

6.2.1 Generative Artificial Intelligence for Code

Generative AI models are capable of producing novel content across various formats, including
text, image, video, or audio (Gozalo-Brizuela et al., 2023). In the context of code generation,
generative AI leverages the naturalness hypothesis (Hindle et al., 2016; Sun et al., 2022; Weisz
et al., 2022), which posits that software can be viewed as a form of human communication
(further details in Section 2.2.2 of Chapter 2). Consequently, techniques applicable to NL can
also be employed for code generation.

Various approaches, spanning from probabilistic (Bielik et al., 2016; Li et al., 2018) to Machine
Learning (Kim et al., 2021; Svyatkovskiy et al., 2020), or ensembles of models (e.g. the Extended
Network in Chapter 4), have been proposed to validate this hypothesis. Transformer (Vaswani
et al., 2017) has emerged as the dominant architecture, serving as the foundation for notable
models like PLBART (Ahmad et al., 2021), CodeBERT (Feng et al., 2020), Codex (Chen et al.,
2021), AlphaCode (Li et al., 2022), and GPT-3.55.

These models support a wide range of code-related tasks, including code summarization, code
translation across programming languages (Ahmad et al., 2021), code documentation generation
(Feng et al., 2020), code auto-completion based on comments or existing code (Chen et al., 2021;
Ahmad et al., 2021), and are even able to challenge humans in programming competitions (Li
et al., 2022).

5Models from OpenAI, https://platform.openai.com/docs/models/gpt-3-5.
6GitLab repository, https://gitlab.com/pvs-hd/published-code/one-shot-correction-ase.

(Accessed: 19 March 2024).

144

https://platform.openai.com/docs/models/gpt-3-5
https://gitlab.com/pvs-hd/published-code/one-shot-correction-ase

6.2. Background and Related Work

Several methods have been proposed to enhance generative AI models. These approaches
involve expanding input queries with contextual information, such as code token types (Izadi
et al., 2022), preceding task queries and code outputs (Nijkamp et al., 2022). Other methods
entail integrating a supplemental retriever (Lu et al., 2022; Parvez et al., 2021) or incorporating
an additional memory component (Wu et al., 2022; Fan et al., 2021; Khandelwal et al., 2020).

However, these approaches either require training or overlook the potential of leveraging user
feedback as a valuable resource. Moreover, the non-deterministic and unpredictable nature of
the underlying AI model restricts in-depth analysis of unexpected behaviors (Bird et al., 2022).

6.2.2 Interactive Programming

The quality of the NL prompt significantly impacts the accuracy of NL translation models
(Reynolds et al., 2021). Various techniques have been proposed to address the ambiguity of NL
and bridge the gap between NL and programming languages. These methods include heuristic
methods, semantic parsing (Shin et al., 2021), and interactive programming. The latter has
gained notable attention as a prominent approach (Heyman et al., 2021).

Methods supporting user interaction comprise binary validation of target results (Iyer et al.,
2017), multiple-choice questions (Gür et al., 2018), selection from a list of options (Schlegel
et al., 2019), decomposition and modification of sub-components using predefined values (Su
et al., 2018), feedback through NL queries (Elgohary et al., 2021), and workflow updates instead
of direct result modification (Cai et al., 2023). Although user feedback has been shown to be
advantageous in these studies, its persistence is limited to a single interaction session.

6.2.3 Decomposition in Problem Solving

Our methodology draws inspiration from a widely known heuristic in problem solving, which
involves the decomposition of the problem into manageable sub-problems (Egidi, 2006). This
approach is valuable in software development (Charitsis et al., 2022), and particularly in working
with generative AI models (Barke et al., 2023).

Recent studies target to enable the decomposition ability of AI models by enhancing the
prompt with a series of intermediate NL reasoning steps, namely chain-of-thought (Wei et al.,
2022), tree of thoughts (Yao et al., 2024), and plan-and-solve prompting (Wang et al., 2023a).
However, due to the unpredictable nature of AI models, it remains challenging to determine
which steps described in the prompt contribute to unexpected results.

In addition, users commonly gain proficiency in a new programming language by initially
acquainting themselves with basic functions and progressively advancing towards more intricate
features (Carpenter, 2021). Ordinarily, after decomposing a problem, users leverage acquired
knowledge to resolve familiar sub-problems, and reserve the search for novel solutions solely for
unfamiliar sub-problems. Our methodology aims to reflect this learning process on NL-to-Code
translation models.

Particularly, we considered user feedback as knowledge that the translation model needs to
remember following each interaction. When encountering a new NL query, the model is expected

145

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

to identify the portions of the query that have been resolved and distinguish them from the
segments that necessitate code generation. The resulting composition of sub-knowledge allows
for in-depth analysis of which phrases in the query lead to unexpected answers.

6.2.4 Chunking in Natural Language Processing

Shallow parsing, or chunking, involves dividing text into non-overlapping groups of syntactically
or semantically related words (Abney, 1992). It is widely used in Natural Language Processing
(NLP) for various types of chunks, such as named entities, noun phrases, and verbal groups
(Zhang et al., 2002).

A reliable text chunker is essential for extracting relevant information from unstructured
text, enabling detailed analysis in subsequent processing tasks. Different techniques, including
grammar-based methods, statistical models, and ML-based approaches, have been developed
for chunking tasks (Ramshaw et al., 1999; Mohapatra et al., 2021). These approaches utilize
features such as part-of-speech tags or grammar templates for training.

The speedy development of Large Language Models (LLMs) has spawned a substantial amount
of NLP libraries that cover a diverse array of tasks beyond chunking. Prominent libraries in
this domain include NLTK7, CoreNLP8, scikit-learn9, and spaCy10. We employed spaCy for
chunking NL queries in our experiments.

6.3 One-shot Correction

This section presents a thorough explanation of our methodology, including an overview of the
One-shot Correction workflow, and descriptions of each primary component within the workflow.

6.3.1 General Workflow

Main Components

Figure 6.2 presents the general workflow of One-shot Correction methodology for NL-to-Code
translation models with an illustrative example. Our methodology incorporates three main
components: (i) a correction data-store, (ii) an NL-to-Code generator, and (iii) a code builder.

The correction data-store collects user feedback paired with corresponding NL queries. Mean-
while, the NL-to-Code generator is a code translation model that takes NL queries as inputs and
produces code snippets. The code builder is the key component designed to integrate correction
information with the code generator model without requiring an additional model re-training.

7Natural Language Toolkit, https://www.nltk.org/.
8Stanford NLP Group, https://stanfordnlp.github.io/CoreNLP/.
9Machine Learning in Python, https://scikit-learn.org/.

10Industrial-strength Natural Language Processing, https://spacy.io/.
(Accessed: 19 March 2024).

146

https://www.nltk.org/
https://stanfordnlp.github.io/CoreNLP/
https://scikit-learn.org/
https://spacy.io/

6.3. One-shot Correction

Code Builder

NL-to-Code

Generator
Correction

Data-store (DS)

“add two numbers,

and then

print the result”

NL query

add two

numbers

print the

result

Query

chunking

Sub-snippets

retrieving/

generating

Code

building

return num_1 +
num_2

add two

numbers

print the

result

print(result)

add two

numbers,

and then

print the

result

Is query

in DS?

result = num_1 +
num_2

print(result)

yes

no

Users

Update generated code if necessary

add two numbers, and

then print the result

Figure 6.2: One-shot correction workflow for NL-to-Code translation models, exemplified with
an illustrative example.

Overall Workflow

For existing queries. With each NL query, the code builder initially checks if the query
already occurs in the correction data-store. If it does, the code that was previously corrected by
users in past conversations is retrieved and directly returned to the users. If it is the first time
users inquire about this NL query, the query undergoes several processing steps before the final
code snippet is assembled.

For new queries. Initially, in the Query chunking step, the query is decomposed to various
chunks, with each chunk representing a single task or action. Subsequently, the code builder
searches for potential code snippets associated with each NL chunk by accessing the correction
data-store or utilizing the NL-to-Code generator (if the chunk has no similar stored queries).
We call this step Sub-snippets retrieving/generating.

Finally, in the Code building step, all the obtained code snippets are utilized to construct the
final snippet before providing a reply to the user. If users make modifications to the generated
code, the correction information is once again stored in the correction data-store before the next
query is requested.

Illustrative example. We demonstrate here the result of each step using a typical example
in Python. Assuming that the NL query is “add two numbers, and then print the result” and
no prior modifications have been made by users, the query is decomposed into two chunks: “add
two numbers” and “print the result”.

In the subsequent step, the code builder retrieves the code snippet return num_1 + num_2
from the NL-to-Code generator for the chunk “add two numbers” since this chunk is not present
in the correction data-store. Meanwhile, the snippet for the chunk “print the result”, i.e.
print(result), is fetched from the data-store, supposing it was corrected by users in past
conversations. Ultimately, in the Code building step, the two code snippets are combined to
generate the response, as shown in Figure 6.2.

147

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

To illustrate the applicability of our approach to different NL-to-Code translation models,
we utilized existing NL-to-Code models instead of developing a new one. For simplicity, the
correction data-store is structured as a dictionary, with the keys representing the embedding
values of NL queries and the corresponding values indicating the corrected code. Further expla-
nation on the NL-to-Code generator and the correction data-store employed in our experiments
is presented in Section 6.4.2. The following subsections delve into a comprehensive analysis of
each main phase in the code builder component.

6.3.2 Query Chunking

As mentioned in Section 6.2.4, text chunking entails grouping adjacent tokens in unstructured
text into phrases based on their part-of-speech (POS) tags. In our methodology, we targeted
NL queries representing pipelines of actions, where each main verb in a query indicates a task
in the target code. This format resembles the DSL pipeline described in Chapter 3. Therefore,
our objective in this phase is to identify non-overlapping verb-noun chunks within a query.

We used rule-based method and dependency graph to determine main verbs and construct
the chunk for each verb. There are two types of main verbs considered in our methodology: (i)
verbs with the POS value VERB (e.g. print the result, calculate the average), and (ii) auxiliary
verbs (AUX) that are not immediately followed by other verbs (e.g. are inputs, is odd or even).
Supplementary verbs do not form their own chunks (e.g. using Counter).

Figure 6.3 depicts a dependency graph generated by spaCy for the query “add two numbers,
and then print the result”. The main verbs in this query are add and print. The dependency
graph reveals that all the main verbs are interconnected, while other words (e.g. NOUN, ADV)
associate with their corresponding verbs. Thus, the main verb functions as the root node of its
verb-phrase tree. By applying this rule to analyze the dependency graph, two verb-noun-phrases
are extracted, namely “add two numbers” and “print the result”. Punctuation and conjunction
between main verbs are omitted in this analysis.

add

VERB

two

NUM

numbers,

NOUN

and

CCONJ

then

ADV

print

VERB

the

DET

result

NOUN

nummod

dobj

cc

advmod

conj

det

dobj

Figure 6.3: A dependency graph generated by spaCy.

It is worth highlighting the potential benefits of employing LLMs, such as GPT-3.5, in this
phase. Nonetheless, our objective is to ensure the transparency of the model and the ease of
comprehension for developers throughout all steps. Additionally, our evaluation results indicate
that even a less complex model, when incorporated as an additional component, can already
improve the efficiency of the NL-to-Code model.

148

6.3. One-shot Correction

6.3.3 Sub-snippets Retrieving/Generating

In our methodology, NL chunks are considered as atomic NL queries that represent a single
primary task or action. The sub-snippets retrieval and generation process for an NL chunk is
displayed in Figure 6.4.

Correction

Data-store (DS)

NL chunk Is chunk in

DS?

Code

building

yes

no

Extract snippets

from chunk’s KNNs

Sub-snippets

retrieving/generating

Does chunk

have KNNs?

yes

no

NL-to-Code

Generator

Query

chunking

Figure 6.4: Flowchart of retrieving/generating sub-snippets for an NL chunk.

Firstly, if the NL chunk exists in the correction data-store, the related code snippets are
retrieved and transferred to the Code building step. If the NL chunk is not present in the
data-store, the k-Nearest Neighbors (KNNs) of the chunk are computed under a predetermined
threshold (refer to Section 6.4.2).

Code snippets from the KNNs are extracted and forwarded to the Code building step. How-
ever, if there are no nearest neighbors of the NL chunk, the NL-to-Code generator is activated
to generate code for the chunk and proceed to the subsequent step. Further details on code
generation for NL queries or NL chunks are provided in Section 6.4.2.

Extracting Sub-snippets for an NL Chunk

In case the NL chunk has a similar NL query in the correction data-store (i.e. a nearest neighbor),
the sub-snippets of the NL chunk are determined based on the sub-snippets of the phrase in
the NL query that is most similar to it. Algorithm 6.1 outlines the process of extracting code
snippet for an NL chunk from the corresponding code of a similar NL query.

Initially, the NL chunk is compared to the similar NL query to identify the most similar
phrase, denoted as simi_chunk (line 2). We used the (cosine) similarity feature provided
by spaCy to assess the correlation between the NL chunk and each chunk in the similar query,
subject to a predefined threshold (specified in Section 6.4.2). Additionally, each chunk in the
similar query is mapped to sub-snippets in the target code of the query, using the function
named MAP_NL_CODE (line 3). The associated sub-snippets of simi_chunk are then extracted
and assigned as sub-snippets for the NL chunk (line 5).

149

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

Algorithm 6.1 Extracting sub-snippet for an NL chunk from a similar query
Input: NL chunk (nlc), similar query (sq), target code of similar query (sc)
Output: sub-snippets of NL chunk

1: function extract_sub_snippets(nlc, sq, sc)
2: simi_chunk ← compare_chunk_query(nlc, sq)
3: chunk_code← map_nl_code(sq, sc)
4: if simi_chunk in chunk_code then
5: return chunk_code[simi_chunk]
6: else
7: return None

Mapping NL Chunks and Sub-snippets

Algorithm 6.2 represents the pseudo code for the MAP_NL_CODE function. We employed a rule-
based approach to establish mappings between chunks in an NL query and sub-snippets in
the correlative target code. Before constructing the mapping, the target code is divided into
sub-snippets by analyzing its AST structure (line 3).

Algorithm 6.2 Mapping chunks in a query and its target code
Input: NL query (sq), target code (sc)
Output: a dictionary mapping each chunk in the NL query to sub-snippets in the target code

1: function map_nl_code(sq, sc)
2: mapping ← dict()
3: sub_snippets← extract_sub_snippets(sc)
4: query_chunks← extract_chunks(sq)
5: for sub_snippet in sub_snippets do
6: snippet_expl ← explain_code(sub_snippet)
7: simi_chunks← list()
8: for chunk in query_chunks do
9: is_simi, score← check_simi(chunk, snippet_expl)

10: if is_simi then
11: simi_chunks.append(chunk, simi_score)
12: sort_desc_score(simi_chunks)
13: mapping[simi_chunks[0]]← sub_snippet

14: return mapping

We utilized tree-sitter parser11 to obtain the AST of the target code. Sub-snippets within the
target code consist of statements under the root_node (e.g. import statements) and child state-
ments of function_definition. For simplicity, we required that each NL query is translated
to code snippets wrapped in a function_definition and necessary import statements.

Subsequently, the NL query is decomposed into verb-noun chunks (line 4) following the method
described in Section 6.3.2. To estimate the analogy between sub-snippets and verb-noun phrases,
we developed a straightforward code explanation approach (line 6) that translates programming
language operations and abbreviations into NL.

Afterwards, the explanation of the considered sub-snippet is compared to each verb-noun
11Parser generator tool, https://tree-sitter.github.io/tree-sitter/, (Accessed: 19 March 2024).

150

https://tree-sitter.github.io/tree-sitter/

6.3. One-shot Correction

phrase, utilizing the (cosine) similarity function from spaCy (lines 7–11). The phrase with
the highest similarity score is mapped to the current sub-snippet (line 13).

It is worth mentioning again that LLMs might be used for these NLP-related tasks. However,
as we emphasized above, our goal is to investigate whether an NL-to-Code model can be enhanced
by a less sophisticated method. Hence, a rule-based approach is a well-suited for this purpose.

6.3.4 Code Building

In this step, the final code is constructed by combining sub-snippets corresponding to each verb-
noun phrase in the NL query. The inputs for this step include the NL query and the mapping
between each phrase in the query and its respective sub-snippets. The final code encompasses
sub-snippets enclosed within a function_definition and any required import statements.

This step comprises four sub-steps: (1) determining the order of sub-snippets, (2) refining
sub-snippets for each verb-noun phrase, (3) renaming identifiers in all sub-snippets to ensure
data-flow, i.e. naming progression from definitions to usages of identifiers in a code snippet,
which is referred from semantic data-flow of Ren et al. (2020), and (4) identifying parameters for
the final function. Figure 6.5 demonstrates an example of code construction from sub-snippets,
using the example described in Figure 6.2.

[“return num_1 + num_2”,
“return a + b”]

[“print(result)”,
“print('result =', result)”]

refining sub-

snippets

stmt_0 = num_1 + num_2

print(result)

result = num_1 + num_2

print(result)

renaming

identifiers

params: num_1, num_2

result = num_1 + num_2
print(result)

identifying

params

add two numbers, and

then print the result

arranging

sub-snippets

Figure 6.5: An example of building code from sub-snippets*.

* Assuming that each NL chunk retrieves 2 -Nearest Neighbors from the correction data-store, resulting in two
potential sub-snippets for each chunk.

Determining Sub-snippet Order

Sub-snippets are sorted according to the verb-noun phrase order in the NL query, which corre-
sponds to the order of related verbs in the dependency graph. The arrangement is determined
by analyzing the relationship between verbs in the graph. As a result, sub-snippets associated
with the root verb12 are given priority. In Figure 6.3, the verb add precedes the verb print
due to a conj dependency from add to print. Therefore, sub-snippets of the verb add (i.e.
12Verb with dependency label marked as ROOT.

151

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

return num_1 + num_2 and return a + b) are placed before sub-snippets of the verb print
(i.e. print(result) and print(‘result = ’, result)) at the end of this sub-step (leftmost
rectangles of second row in Figure 6.5).

Refining Sub-snippets

Relevant sub-snippets of each NL chunk are modified based on a set of rules. To illustrate the
utility of our methodology, we initially employed three rules for sub-snippet refinement: (i) no
starting return statements, (ii) reducing plural statements, and (iii) refining between return

statements. These rules aim to minimize grammatical errors when combining sub-snippets.
(i) No starting return statements. This rule prioritizes non-return statements for non-

last NL chunks. By default, each NL chunk is corresponded to a list of potential sub-snippets
and the first item (i.e. sub-snippet(s) extracted from the top-1 nearest neighbor) has highest
priority. This is the output from the step Sub-snippets retrieving/generating in Section 6.3.3.
The preference is maintained if the current NL chunk occupies the last position in the list of
chunks achieved from the preceding sub-step (i.e. sub-snippets ordering).

Conversely, if the current NL chunk is a non-last chunk, return statements will have lower
ranking than others. This is due to the fact that a return statement in the majority of program-
ming languages will cancel other subsequent statements of the same level (e.g. same indent)
within a scope (e.g. try statement). However, in case the non-last chunk correlates to return
statements only, the first return statement is selected and converted into an assignment. The
left operand is named using stmt followed by the index of the current NL chunk.

Table 6.1 displays four typical cases of refining sub-snippets for a non-last NL chunk with
examples of the chunk “add two numbers”. In the example depicted in Figure 6.5, “add two
number” possesses the top position in the ordered list and has potential sub-snippets starting
with the keyword return solely. Hence, the statement selected for this chunk is refined as
stmt_0 = num_1 + num_2.

Table 6.1: Examples of refining sub-snippets for a non-last NL chunk with 2 -NNs.
Non-last NL chunk: “add two numbers”, chunk_idx = 0

Case Potential sub-snippets Refined sub-snippet(s)

No starting return
statements

1. sum = num_1 + num_2
return sum

2. result = a + b
return result

sum = num_1 + num_2
return sum

The return statement is not
the first statement

1. result = a + b
return result

2. return num_1 + num_2

result = a + b
return result

The return statement is the
first statement

1. return num_1 + num_2
2. result = a + b

return result

result = a + b
return result

There are only return
statements in the list

1. return num_1 + num_2
2. return a + b stmt_0 = num_1 + num_2

152

6.3. One-shot Correction

(ii) Reducing plural statements. The second rule targets to omit redundant sub-snippets
of a verb-noun phrase. For simplicity, we implemented a preliminary prototype of this rule based
on the direct object of the verb in an NL chunk. Nearly identical sub-snippets will be reduced if
the direct object is a singular noun (i.e. spaCy tag_ is NN). Contrarily, sub-snippets of the NL
chunk are left unchanged if the direct object is a plural noun (i.e. spaCy tag_ is NNS).

For instance, assuming that the following analogous sub-snippets are obtained for the NL
chunk “get an integer input from user”:

num_1 = int(input("Number 1: "))
num_2 = int(input("Number 2: "))

Since the direct object of the verb get is a singular noun (i.e. input13), only the first sub-
snippet from the list of highly similar sub-snippets is preserved for building the final code, i.e.
num_1 = int(input("Number 1: ")).

It should be emphasized that this is an initial prototype of this rule to exhibit the concept of
our approach. The reducing condition can get more complex when the plural noun is described
with a specific quantity. In Figure 6.5, both of the chunks “add two numbers” and “print the
result” have only one sub-snippet for each chunk, as a result from rule (i). Therefore, the rule
(ii) has no effect on these sub-snippets.

(iii) Refining between return statements. The last rule in our primary rule set ensures
that a return statement should be placed after other statements of the same level in the final
assembled code. Namely, a non-last NL chunk should contribute non-return statement(s) to the
final code. Otherwise, depending on the expression after keyword return, the return statement
will be omitted or transformed to an assignment statement, using same technique in rule (i).

The latter case (i.e. modifying the return statement) happens when the part following the
keyword return creates new values (e.g. return a + b, return abs(num), or return a[i]).
Alternatively, the former case arises if the after-return part is an identifier (e.g. return sum) or
a list of identifiers (e.g. return a, b).

In the example exhibited in Figure 6.5, the sub-snippets of NL chunks remain unmodified
after employing rule (iii). This is because there is no return statements left in the sub-snippets
list after applying rule (i) and (ii). It is essential to mention that return statements nested in
other code structures (e.g. if, for) are not affected by rules (i) and (iii) since the considered
sub-snippets are statements right under the root_node of an AST and direct child statements
of function_definition, as outlined in Section 6.3.3.

Furthermore, our primary rule set is adaptable and can be expanded for intricate cases (e.g.
conditional and loop statements). We developed a configuration file to gather all the settings
used in our experiments (presented in Section 6.7.1, Listing 6.4) and to conveniently select/de-
select each of the refinement rules before running an experiment.

Renaming Identifiers

In this sub-step, the propagation of names within the sub-snippets is determined by analyzing
code token types in the refined sub-snippets. We simplified the process by assuming that an
13Determined by spaCy dependency dobj.

153

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

identifier defined in a given statement should be utilized directly in the following statement.
The inspection of sub-snippets is performed from the last sub-snippet to the first one. The
underlying concept is to substitute the definitions of identifiers in the current sub-snippet with
the undefined identifiers in the sub-snippet below it. Pseudo code for our algorithm is provided
in Algorithm 6.3.

Algorithm 6.3 Renaming identifiers in sub-snippets
Input: List of sorted sub-snippets (sub_snippets)
Output: Sub-snippets with consistent names for identifiers

1: function rename_identifiers(sub_snippets)
2: last_stmts← sub_snippets[−1]
3: last_id_defs, last_id_usgs← get_id_defs_usgs(last_stmts)
4: undef_ids← last_id_usgs − last_id_defs
5: for stmts in reversed(sub_snippets)[1 ∶] do
6: id_defs, id_usgs← get_id_defs_usgs(stmts)
7: replace_id_defs(undef_ids, id_defs, id_usgs)
8: update_undef_ids(undef_ids, id_defs, id_usgs)

The list of undefined identifiers is initialized by taking the set difference between the identifier
usages and the identifier definitions in the last statement (lines 2–4). We adopted tree-sitter and
our proposed method CT3 (described in Chapter 5) to analyze token types of each token within
the sub-snippets. Identifier definitions encompass variable definitions, argument definitions, and
imported libraries, while identifier usages include the utilization of all the specified definitions.

Identifier definitions (id_defs) and usages (id_usgs) of each sub-snippet are determined in
reversed order of sub-snippets using the same method (line 6). Subsequently, identifier definitions
of the current sub-snippet are replaced by the undefined identifiers computed previously (line
7). The REPLACE_ID_DEFS function also considers identifier usages to handle cases where the
current sub-snippet lacks identifier definitions for the one directly below it. In these cases,
identifier usages of the sub-snippet are treated as identifier definitions. Finally, the list of
undefined identifiers is updated to exclude the replacement (line 8)

In Figure 6.5, the list of undefined identifiers of the last statement (print(result)) comprises
only the token result. Meanwhile, stmt_0 is the only identifier definition in the preceding
statement. Accordingly, after the renaming sub-step, stmt_0 is supplanted by result.

Identifying Parameters for the Final Code

In the last sub-step, a list of parameters for the final function is assembled from undefined
identifiers that are unsubstitutable by any identifier definitions/usages. In Figure 6.5, the tokens
num_1 and num_2 remain as parameters of the resulting function due to the absence of appropriate
identifier definitions for them within the sub-snippets.

Our methodology adheres to the principles of simplicity, interpretability, and the ability to
investigate unexpected outcomes, which is not feasible with AI models. Moreover, the method-
ology’s composability facilitates a stronger analogy between the generated code and target code
with increased correction information.

154

6.4. Experiments

Given the novelty of our approach, we aimed to illustrate the utility of the method and to
highlight the main contributions. Therefore, even though our predefined rules are preliminary,
they still adequately support the proposed concept. In the subsequent sections, we present
our experiments and evaluation results, demonstrating how the inclusion of a relatively simple
additional component can already bring benefit to a code translation model.

6.4 Experiments

In this section, we firstly reiterate our objective through two research questions. A detailed
description of our experimental setup is then provided to ensure reproducibility. Finally, we
present evaluation metrics used in our experiments.

6.4.1 Research Questions

We addressed the following two research questions:
RQ1: Does an interpretable, non-AI methodology enhance generative AI models?

We investigated this question by proposing a rule-based methodology on NL-to-Code translation
that incorporates code derived from user feedback with selectively generated code from an AI
model (only as needed). Our methodology requires no explicit re-training. We conducted
experiments on NL-to-Python code translation and used GPT-3.5-Turbo-0301 model developed
by OpenAI as the generative AI model.

Models for comparison. To ensure a fair evaluation in the absence of existing comparable
methods, we introduced an additional method that integrates correction information directly
into input queries. This approach is based on the premise that GPT-3 series models tend to
yield more accurate results with increased input information.

The extended input technique and our proposed methodology function similarly when the
query exists in the correction data-store, as the correction information is retrieved and returned
to users. However, these models differ in their response when there are similar queries in the
correction data-store.

While the extended input approach simply expands the input query with information from
the similar queries, our chunking methodology first decomposes the query into chunks, gathers
appropriate code snippets for each chunk by examining the correction data-store or activating
the NL-to-Code generator, and then constructs the final code using the collected code snippets.

In summary, our main evaluation comprises three variants: (i) CodeGen – code generation
without correction information, (ii) CodeGenE – code generation with correction information
integrated through extended input queries, and (iii) CodeGenC – code generation with correc-
tion information incorporated using our chunking methodology. The CodeGen model serves as
the baseline. Additionally, to inspect LLM performance with our chunking strategy embedded
within prompts as task descriptions, we conducted an additional experiment using GPT3.5 to
directly generate code with the integrated chunking instruction, referred as GPT35Prompt.

RQ2: Does user feedback improve NL-to-Code models without explicit re-
training? To address this question, we performed an ablation study to assess the influence

155

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

of user feedback on generated code. We compared the code generated solely by the code gener-
ator to the code produced when integrating the generator with various states of the correction
data-store (defined in Section 6.4.2). This comparison allows us to determine if incorporating
user feedback offers benefits to code translation models without re-training and which state of
the data-store would offer the greatest advantage. Additionally, the answer of this question also
resolves our final core research question (CRQ4), specified in Chapter 1, Section 1.4.

6.4.2 Experimental Setup

We performed experiments on translating NL to Python code, using available APIs and libraries
as follows:

Test Cases and Scenarios

For the evaluation, we assessed the methodology using a range of NL queries, varying from
basic to complex. To simplify the query chunking process, we assumed that each chunk in
the query describes a single task, and the chunks are separated by comma or the term “, and
then”. While acknowledging potential artificiality in triple or more-chunk queries, our proposed
structure addresses NLP ambiguity as an intermediate form between NL and Domain Specific
Language. It involves an inevitable trade-off between flexibility and efficiency.

Test case collection. Due to the unavailability of a suitable test suite or benchmark tailored
to our specific requirements, we developed a new test suite encompassing queries with one to
three chunks along with their corresponding target code. We extracted single-chunk queries
from online Python examples14. For multi-chunk queries, we utilized ChatGPT, a well-known
model trained on an immense dataset, to form the queries.

Although ChatGPT’s responses might lean toward its own biases, they remain closer to human
intent and are more objective than our self-composed queries. For instance, we used the following
inquiry for creating double-chunk queries, specifically related to dataframe:

Query: You’re a Python developer, give me examples of translating natural language
queries to Python, involving dataframe. Each query contains two different tasks that are
basic functions in Python and separated by comma or “, and then”

Subsequently, GitHub Copilot is employed to generate the target code for each query. GitHub
Copilot is powered by Codex model15, a descendant of GPT-3, which was trained on both NL
and billions of lines of code. Hence, code generated by GitHub Copilot can serve as a reasonable
reference. We thoroughly validated and modified (when necessary) each target code to ensure
its validity and executability16.

Scenario construction. For each NL query or chunk, there are five possible states of the
correction data-store: (1) empty data-store, (2) identical query in the data-store, (3) non-empty

14Programiz, https://www.programiz.com/python-programming/examples.
15OpenAI Codex, https://openai.com/blog/openai-codex.

(Accessed: 19 March 2024).
16To ensure code generation exclusively based on the NL query, the IDE displays only one Python file.

156

https://www.programiz.com/python-programming/examples
https://openai.com/blog/openai-codex

6.4. Experiments

data-store without similar queries for the inquiry, (4) similar single-chunk queries in the data-
store, and (5) similar multi-chunk queries in the data-store. Accordingly, each single-chunk query
involves five scenarios, while each multi-chunk query can associate up to (1+4n) scenarios, where
n represents the number of chunks in the query.

The test suite should cover all the states of the correction data-store and yield sufficient
results to analyze the behavior of all models, targeting to highlight the utility of the proposed
method. For this reason, we gathered 47 single-chunk queries, nine double-chunk queries, and
three triple-chunk queries as main inquiries, alongside 55 single-chunk queries, 20 double-chunk
queries, and 14 triple-chunk queries dedicated as similar queries in the correction data-store.
These queries cover 401 cases across five states of the correction data-store. Furthermore, each
query chunk is guaranteed to have at least one similar single-chunk query.

Accordingly, each test scenario includes: (i) the correction data-store, (ii) NL query, (iii) target
code, (iv) code generated by the NL-to-Code generator only, (v) code obtained with extended
input queries, and (vi) code constructed by our chunking methodology.

Correction Data-store

For simplicity, we used a correction data-store dictionary where the keys depict tuples of em-
bedding values of the NL query, and the values correspond to code corrected by users. Given
the varying data-store states for each query, we created a data-store containing all collected NL
queries and their target code, and provided a snapshot of the data-store for each test scenario.

Code Generator

We utilized a substitution of Codex model, GPT-3.5-Turbo-030117, for NL to Python code
translation. Due to the replacement of the CodeCompletion feature in the Codex model with
ChatCompletion in GPT-3.5-Turbo-0301, queries for translating NL to code are formalized as
messages between system and users.

To obtain Python code from an NL query with GPT-3.5-Turbo-0301 solely (i.e. CodeGen
model), we structured the messages between system and user as demonstrated in Listing 6.1.

1 messages=[
2 {"role": "system", "content": "You are a helpful assistant"},
3 {"role": "user", "content": "Translate the below query to Python code with the ↩

↪ following constraints:
4 1. Return only Python code, no explanation, no python mark
5 2. All names in the Python code must be separated by underscores
6 Query:
7 Function <the NL query/chunk here>"},
8]

Listing 6.1: Message for translating NL query/chunk to Python code using GPT-3.5-Turbo-0301.

17OpenAI discontinues supporting Codex from March 23, 2023. A newer model, GPT-3.5-Turbo-0613, was
released on 27 June 2023.

157

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

The response should exclude both code explanations and Python marks (e.g. '''python)
to facilitate the extraction of code snippet. Furthermore, all variable names in the generated
Python code should adhere to snake_case convention to enhance the mapping between NL
chunks and code snippets.

As GPT-3.5-Turbo-0301 model generally gives less attention to system messages18, to extend
input queries for the CodeGenE model, we integrated the correction information to user mes-
sages, as illustrated in Listing 6.2. We refer to the documentation from OpenAI for detailed
explanation of each field in the messages.

1 messages=[
2 {"role": "system", "content": "You are a helpful assistant"},
3 {"role": "user", "content": "Translate the below query to Python code with the ↩

↪ following constraints:
4 1. Return only Python code, no explanation, no python mark
5 2. All names in the Python code must be separated by underscores
6 Examples:
7 <Similar queries and their target code here>
8 Query:
9 Function <the NL query/chunk here>"},

10]

Listing 6.2: Message for translating NL query/chunk to Python code using GPT-3.5-Turbo-0301
with correction information combined in input queries.

Similar queries and their corrected code snippets from the correction data-store are provided
as examples for the NL query and displayed in sequential order. Alternative prompting methods
for user messages might impact the generated response (mentioned in Section 6.2.3). However,
comparing these prompting methods is beyond the scope of this work.

Additionally, OpenAI models exhibit non-deterministic behavior, resulting in varying outputs
for identical inputs. This poses certain challenges for our evaluation process, particularly when
triggering the model multiple times with the same input due to the dynamic state of the cor-
rection data-store in the test scenarios. To address this issue, we adopted a dictionary-based
method to accumulate and store the code generated by GPT-3.5-Turbo-0301. The dictionary
uses embedding values of inquiries as keys, enabling retrieval of the corresponding generated
code when an identical prompt is submitted.

Natural Language Embedding and KNNs

We employed another model from OpenAI, Text-Embedding-ADA-00219, to embed NL queries.
KNNs for each query are extracted using cosine similarity under a predefined threshold (identified
in the Experiment Configuration). The accompanying function is developed by OpenAI as well.
18How to format inputs to ChatGPT models, https://github.com/openai/openai-cookbook/blob/main/

examples/How_to_format_inputs_to_ChatGPT_models.ipynb.
19Embeddings with OpenAI, https://platform.openai.com/docs/guides/embeddings.

(Accessed: 19 March 2024).

158

https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
https://platform.openai.com/docs/guides/embeddings

6.4. Experiments

Experiment Configuration

Table 6.2 displays the configurations for our conducted experiments.

Table 6.2: Experiment configuration for One-shot Correction.
Parameter Value

Code generator (GPT-3.5-Turbo-0301)

temperature 0.9
max_tokens 200
top_p 0.9
n 1
frequency_penalty 0.5
presence_penalty 1.5

Correction data-store

knn 2
cosine_threshold_single 0.15
cosine_threshold_multi 0.2

NL-code mapping

spaCy_model en_core_web_md
query_simi_threshold 0.5
nl_code_simi_threshold 0.5
reduce_simi_snippets_threshold 0.9

Code generator. Hyperparameters for generating Python code from NL queries using the
model GPT-3.5-Turbo-0301 are outlined in the top part of the table. Specifically, a temperature
of 0.9 and a top_p value of 0.9 are set to encourage the model’s creativity when multiple responses
are required (n > 1).

A frequency_penalty of 0.5 is assigned to penalize the frequent occurrence of repeated
identifiers in code snippets, while a presence_penalty of 1.5 is used to prompt the model to
generate a novel response each time for the same query. For simplicity, in our experiments, we
considered a single response per query (n = 1). Further information on each hyperparameter is
explained in the OpenAI documentation20.

Correction data-store. Subsequently, queries of the correction data-store undergo KNN
examination using cosine similarity thresholds of 0.15 and 0.2 for single and multi-chunk queries,
respectively. Each inquiry obtains two nearest neighbors (knn = 2).

NL-code mapping. Ultimately, settings for obtaining sub-snippets and building the final
code are specified at the bottom of Table 6.2. The spaCy model en_core_web_md is utilized, and
another cosine similarity threshold of 0.5 is set for comparing the resemblance between chunks
or a chunk and its sub-snippets. A threshold of 0.9 is employed to determine mostly identical
sub-snippets for the second rule in the rule set of refining sub-snippets (Section 6.3.4).

In addition, we omitted stop words and lemmatized verbs to their base form before calculating
the similarity. The thresholds in Table 6.2 are adjusted to ensure that the final code snippet is
constructed successfully in a majority of test cases. As mentioned in Section 6.3.4, we gathered
setting values to a configuration file to easily fine-tune all the parameters, rules, and options.
20Chat completion, https://platform.openai.com/docs/api-reference/chat, (Accessed: 19 March 2024).

159

https://platform.openai.com/docs/api-reference/chat

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

6.4.3 Evaluation Metrics

Inspired by the study of Su et al. (2018), we assumed that users modify the generated result in
the following order: (i) restructuring the code if necessary (i.e. adding, re-arranging, or removing
statements), (ii) renaming identifiers and updating strings to align with the NL query. Based
on this assumption, we evaluate the code obtained by different approaches using the following
criteria in the descending order of priority:

1. Code validity and executability,

2. Syntax similarity between the attained snippet and the target code,

3. Data-flow correlation among the obtained results,

4. Analogy of identifier names in the code snippets.

To ensure the first criterion, we manually evaluated each test case for its correctness. The
remaining criteria are assessed using CodeBLEU (Ren et al., 2020) with hyperparameters
(α, β, γ, δ) representing ngram match, weighted ngram match, syntax match, and data-flow
match, respectively. While ngram match and weighted ngram match are targeted for the last cri-
terion, syntax match depicts the syntax similarity and data-flow match exhibits the equivalence
of data-flow.

Ren et al. (2020) recommended using the value set (0.1, 0.1, 0.4, 0.4) as γ and δ have a stronger
correlation with human evaluation scores. Based on the order of modifying generated code and
our criteria for the evaluation, we adjusted the value set to (0.1, 0.1, 0.5, 0.3). Our evaluation
results show that both of the value sets follow the same trend with minimum differences. Section
6.5 presents the statistics with the amended value set (i.e. 0.1, 0.1, 0.5, 0.3). We refer to our
published data21 for the outcomes of the other value set.

6.5 Evaluation Results

In this section, we present and analyze our evaluation results to address the two research ques-
tions from Section 6.4.1. We conclude this section by assessing the performance of an LLM with
our chunking strategy outlined in the NL text prompt as task descriptions.

6.5.1 Evaluation Results by Difficulty Level

To analyze the evaluation results, we utilized the correction data-store states defined in Section
6.4.2 to determine the difficulty level for each test case and classify the results based on these
levels. Each difficulty level indicates the degree of challenge in achieving the target code. The
levels range from 0 to 4, representing a spectrum that includes low, medium-low, medium,
medium-high, and high difficulty. Table 6.3 presents the definition of these levels.
21GitLab repository, https://gitlab.com/pvs-hd/published-code/one-shot-correction-ase. (Accessed: 19

March 2024).

160

https://gitlab.com/pvs-hd/published-code/one-shot-correction-ase

6.5. Evaluation Results

Table 6.3: Definitions for difficulty levels (diff.).
Diff. Meaning

0 The NL query is present in the correction data-store (corrt.ds)
1 Single-chunk NL query with relevant single-chunk queries in the corrt.ds
2 (i) Single-chunk NL query with associated multi-chunk queries in the corrt.ds, or

(ii) Each chunk in the multi-chunk NL query similar to single-chunk queries in the
corrt.ds

3 Each chunk in the multi-chunk NL query resembles multi-chunk queries in the
corrt.ds

4 (i) Empty corrt.ds, or
(ii) No matching queries in the corrt.ds

For instance, difficulty level-2 involves two sub-scenarios: (i) single-chunk NL query linked to
multi-chunk queries in the data-store, or (ii) a multi-chunk NL query where each chunk resembles
single-chunk queries in the data-store. Meanwhile, difficulty level-3 indicates that each chunk in
the multi-chunk NL query is related to queries with multi-chunk in the data-store. Ultimately,
difficulty level-4 represents two sub-cases: (i) empty correction data-store, and (ii) no matching
queries in the data-store.

Figure 6.6 presents the patterns of CodeBLEU score by difficulty level for the three models
discussed in Section 6.4.1. The scores were computed for three sets: (i) all test cases (Figure
6.6(a)), (ii) correct chunking cases (Figure 6.6(b)), and (iii) incorrect chunking cases22 (Figure
6.6(c)). The corresponding CodeBLEU scores are provided in Table 6.4.

0 1 2 3 4
Difficulty Level

(a)

40

60

80

100

C
od

eB
L

E
U

All Test Cases

0 1 2 3 4
Difficulty Level

(b)

Correct Chunking Cases (88.3%)

0 1 2 3 4
Difficulty Level

(c)

Incorrect Chunking Cases (11.7%)

CodeGen
CodeGenE
CodeGenC (ours)

Figure 6.6: CodeBLEU scores by difficulty level on all test cases (left), on correct test cases
(middle) and on incorrect test cases (right) of the chunking methodology.

Overall Evaluation

Finding 1. Our One-shot Correction methodology generally achieves analogous or superior
results compared to other approaches.

22There are no incorrect chunking results at difficulty level-0.

161

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

Table 6.4: CodeBLEU by difficulty level (diff.) across all approaches.

Diff. All Test Cases Corrt. Chunking Cases Incorrt. Chunking Cases
CG CG’E CG’C CG CG’E CG’C CG CG’E CG’C

0 45.8 99.9 99.9 45.8 99.9 99.9 _ _ _
1 47.6 85.4 89.1 48.7 86.5 91.1 33.3 71.2 65.3
2 54.5 70.9 70.0 54.0 71.0 74.7 55.1 69.1 50.8
3 56.5 63.6 68.4 55.5 61.5 68.3 61.2 72.9 64.7
4 46.8 47.4 45.7 47.0 47.6 46.0 42.4 42.4 40.0

Avg. 50.2 73.4 74.6 50.2 73.3 76.0 48.0 63.9 55.2

Corrt. Chunking Cases means our method yields correct results,
Incorrt. Chunking Cases indicates our method returns incorrect results,
CG = CodeGen; CG’E = CodeGenE; CG’C = CodeGenC (ours).

CodeGenC demonstrates average improvements of 1.6% and 48.6% over CodeGenE and Code-
Gen (i.e. the baseline model), respectively. Particularly, on test cases of medium-high difficulty
level, CodeGenC outperforms CodeGen by 21.1%, whereas CodeGenE improves the baseline
performance by 12.5% (Table 6.4, columns 2–4, diff.3).

The models CodeGenC and CodeGenE exhibit similar trends in their CodeBLEU scores with
a rapid downward transition from difficulty levels 0 to 4, representing the shift from code gen-
eration with correction information to code generation without (Figure 6.6(a)). Both models
significantly outperform the baseline model by a factor of 2.2 at difficulty level-0, where the
NL query exists in the correction data-store (Table 6.4, columns 2–4). Their performance then
converges to the baseline’s at difficulty level-4.

In contrast, the standalone code generator (i.e. CodeGen) results in slight improvements
from difficulty levels 0 to 3 but a decline at difficulty level-4 (Figure 6.6(a)). Overall, the
CodeGen performs worse than other models, except at difficulty level-4, where it slightly exceeds
CodeGenC by 2.4% and lags behind CodeGenE by 1.3% (Table 6.4, columns 2–4).

To gain insights into the behavior of CodeGenE and CodeGenC models, and understand the
factors contributing to performance differences, we conducted a detailed analysis primarily for
difficulty levels 1 to 3 on correct and incorrect chunking cases.

Evaluation on Correct Chunking Cases

Finding 2. CodeGenE may omit or become perplexed by additional information.

Difficulty level-1. Our CodeGenC model obtains accurate results on 88.3% of all test
cases and consistently outperforms other models across difficulty levels 1 to 3 (Figure 6.6(b)).
Particularly, in the case of medium-low difficulty, where the single-chunk input NL query is
similar to single-chunk queries in the correction data-store, CodeGenC surpasses CodeGen by a
factor of 1.9 and slightly improves upon CodeGenE by 5.3% (Table 6.4, columns 5–7, diff.1).

The latter improvement stems from CodeGenE occasionally omitting the syntax or identifier
names of similar queries. The first four rows of Table 6.5 present an example for this situation.

162

6.5. Evaluation Results

The target code contains an assignment followed by a return, and utilizes variable names like
df and input_file. While CodeGenE disregards this information, CodeGenC integrates the
suggested syntax and identifier names from the similar query successfully.

Table 6.5: Examples of CodeGenE overlooks or gets confused by extra information.
Example 1:
CodeGenE
omits
syntax and
identifier
names
of a
similar
query

NL query : read data from a CSV file with pandas
Similar query : retrieve data from a CSV file

Target code

import pandas as pd
def read_csv(input_file):

df = pd.read_csv(input_file)
return df

CodeGenE
import pandas as pd
def read_data_from_csv_with_pandas(csv_file):

return pd.read_csv(csv_file)

CodeGenC

import pandas as pd
def read_data(input_file):

df = pd.read_csv(input_file)
return df

Example 2:
CodeGenE
gets
confused
by extra
information
from a
similar
query

NL query : convert kilometers to miles
Similar query : get a number as kilometers from users, and then convert

kilometers to miles

Target code
def km_to_miles(km):

miles = km * 0.621371
return miles

CodeGenE

def convert_kilometers_to_miles():
kilometers = float(input("Kilometers: "))
miles = kilometers * 0.621371
return miles

CodeGenC
def convert_kilometers(km):

miles = km * 0.621371
return miles

Example 3:
CodeGenE
encounters
partial
correction
information
for some
chunks
in the
NL query

NL query : add two numbers which are two integer inputs from users,
and then print the result

Similar query : add two numbers, and then print the result

Target code

def add_numbers():
num_1 = int(input("Enter the first number: "))
num_2 = int(input("Enter the second number: "))
result = num_1 + num_2
print(result)"

CodeGenE
def add_two_integers(user_input_1, user_input_2):

result = int(user_input_1) + int(user_input_2)
print(result)

CodeGenC

def add_two_numbers_print_result():
num_1 = int(input("Enter the first integer: "))
num_2 = int(input("Enter the second integer: "))
result = num_1 + num_2
print(result)

163

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

Difficulty level-2 expresses cases where the single-chunk NL query is associated with multi-
chunk queries in the data-store, or each chunk of the multi-chunk query resembles single-chunk
queries in the data-store. At this level our model persistently excels over CodeGen by a factor
of 1.4 and achieves a slight advantage over CodeGenE by 5.2% (Table 6.4, columns 5–7).

The latter increment is attributed to CodeGenE model getting confused by extra information
from similar queries. Table 6.5, rows 5–8 illustrate an example of this case. While CodeGenC
achieves identical syntax and variable names, code generated by CodeGenE includes a redundant
statement (i.e. kilometers = float(input("Kilometers: "))) due to the additional chunk
from the similar query (i.e. “get a number as kilometers from users”).

Difficulty level-3. Notably, at the medium-high difficulty level, where each chunk in the
multi-chunk NL query is similar to multi-chunk queries in the data-store, CodeGenC shows a
23.1% increase over CodeGen and exhibits an 11% improvement upon CodeGenE. The latter
discrepancy arises due to additional information from similar queries applying to only some
chunks in the input NL query.

The bottom part of Table 6.5 provides an example for this instance. The similar query “add
two numbers, and then print the result” provides information that pertains to only the first
and third chunks in the input query, which causes missing code lines in the snippet produced
by CodeGenE. Meanwhile, CodeGenC overcomes this issue since it derives the final code from
sub-snippets of each chunk in the NL query.

Evaluation on Incorrect Chunking Cases

Finding 3. Our rule-based methodology underperforms compared to CodeGenE model in
pure NLP tasks but facilitates in-depth analysis of inaccurate outcomes.

Difficulty level-1. Around one tenth of all test cases are classified as inaccurate chunking
results. On these test cases, our model outperforms the baseline model by an average of 15%,
but lags behind the CodeGenE model across difficulty levels (Figure 6.6(c)). At difficulty level-1,
CodeGenC surpasses CodeGen by a factor of 2.0, while experiencing an 8.3% decrease compared
to CodeGenE (Table 6.4, columns 8–10). This reduction results from three following factors.

Firstly, the naming convention for functions used by CodeGenC, where function names are
extracted from verbs and direct nouns in the NL query, might not always align with developer
preferences. In addition, the comparison between queries using cosine similarity occasionally
validates similar queries with unexpected KNN order. Lastly, for simplicity, our model currently
does not handle auto-detection of specific values from similar queries (e.g. two queries are similar
but have different values of numbers or strings).

In contrast, CodeGenE, which is derived from a LLM GPT-3.5-Turbo-0301, acquires inherent
advantages in pure NLP tasks. Additionally, CodeGenE benefits from the target code obtained
through GitHub Copilot, a predecessor of GPT-3.5-Turbo-0301.

Difficulty levels 2 and 3. Analogously, the decrease of CodeGenC compared to CodeGenE
at difficulty level-2 (by 26.5%) and level-3 (by 11.2%) is also related to NLP challenges. Tasks in
these two levels include finding correct KNNs, accurately extracting the most similar chunks from

164

6.5. Evaluation Results

similar queries, and properly mapping NL chunks to their relevant code snippets. CodeGenC
relies on rule-based approaches in performing these tasks, which faces limitations in NLP.

Difficulty level-4. Ultimately, at the high difficulty level, CodeGenC slightly underperforms
compared to the other models with a 5.7% reduction, primarily due to the discussed naming
convention for functions. It is worth noting that this intensive inspection on incorrect cases is
restricted with CodeGen and CodeGenE models because of their unpredictable property.

Overall, our model, CodeGenC, demonstrates competitive performance compared to other
models, despite the challenges encountered in NLP tasks. In contrast to generative AI models,
our methodology offers straightforward and interpretable approaches for generating the final
code, enabling thorough analysis of unexpected results and facilitating insights for potential
improvements. Additionally, utilizing the explicit mapping between generated code snippets
and NL chunks in a graphical user interface can simplify assessment of suggested code for users
(further details in Section 6.7).

The extensive analysis of evaluation results on the entire test case dataset, spanning various
difficulty levels, provides valuable information to answer the first research question introduced
in Section 6.4.1.

A-RQ1. The rule-based methodology for NL-to-Code translation with user
feedback enhances the generative AI model with comparable performance.
Furthermore, the method enables thorough examination of unexpected results
through its interpretable and straightforward approaches.

6.5.2 Ablation Study

We continued analyzing the evaluation results under two aspects (i) complexity level and (ii)
correct outcome ratio to examine the advantages of integrating user feedback.

Complexity Level

To study the significance of user feedback and the influence of each state of the correction data-
store on generated code, we categorized the test results by complexity level. Each level describes
the components required to attain the final code. These levels, ranging from 0 to 4, represent
a spectrum from low to high complexity, determined by the states of the correction data-store
(presented in Section 6.4.2).

For example, on test cases of low complexity, the NL query exists in the correction data-store,
requiring only the data-store component to obtain the final code. Complexity levels 1 and 2
represent situations where the code generator is activated due to an empty correction data-store
or no matching queries in the data-store, respectively. Further details for each complexity level
are provided in Table 6.6.

Finding 4. The correction data-store provides significant benefits when (i) the NL query is
present in the data-store or (ii) each chunk in the NL query closely resembles single-chunk
queries in the data-store.

165

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

Table 6.6: Definitions for complexity levels (comp.).
Comp. Meaning

0 NL query in the correction data-store (corrt.ds), only the data-store is needed
1 Empty corrt.ds, NL-to-Code generator is activated
2 Non-empty corrt.ds but no matching queries, NL-to-Code generator is triggered
3 Some chunks in the NL query have similar single-chunk queries in the corrt.ds,

NL-to-Code generator is prompted for chunks having no similar queries
4 Analogous to (3) but the similar queries are multi-chunk queries, which involves

mapping NL chunk and code snippets

User feedback with CodeGenC. Figure 6.7 depicts the CodeBLEU scores of our chunking
methodology (i.e. CodeGenC model) by complexity level, divided into three groups: (i) all test
cases, (ii) correct chunking cases, and (iii) incorrect chunking cases.

0 1 2 3 4
Complexity Level

0

20

40

60

80

100

C
od

eB
L

E
U

CodeGenC (ours)

mean of all test cases
all test cases

correct chunking cases
incorrect chunking cases

Figure 6.7: CodeBLEU scores by complexity level for our CodeGenC model.

The evaluation results demonstrate a near-perfect score of 99.9 at the low complexity level,
indicating the presence of the NL query in the correction data-store. However, at the medium-low
and medium complexity levels, the test cases occupy the lowest scores, regardless of correctness,
with decrements of 34.8% and 26% compared to the average score across all test cases. This
decline is attributed to the absence of user feedback for the NL query in the data-store.

Additionally, the results of medium-high complexity test cases slightly surpass the ones from
high complexity by 11.4%. This can be explained by the increased complexity associated with
generating the final code at the high level. For test cases at medium-high level, CodeGenC
utilizes various components including the correction data-store, similarity validation between
queries, and, if necessary, the NL-to-Code generator to attain the final code. Meanwhile, the high
complexity cases require an additional component, namely the NL-Code mapping, to construct
the code by identifying suitable code sub-snippets for each chunk in the query.

User feedback with CodeGenE. To assess the influence of user feedback on the CodeGenE
model, we compared CodeBLEU scores of CodeGenE across complexity levels for all test cases

166

6.5. Evaluation Results

(Table 6.7). The outcomes align with the analysis of CodeGenC model discussed earlier. Namely,
complexity levels 1 and 2 encounter the lowest scores, with decrements of 32.7% and 25.4% from
the average, respectively. Test cases with low complexity persistently achieve almost the perfect
score. In addition, results of complexity levels 3 and 4 both exceed the average with increments
of 10.7% and 2%, respectively.

Table 6.7: CodeBLEU by complexity level across
all test cases for CodeGenE model.

Complexity
level

CodeGenE
(all test cases)

0 99.9
1 46.3
2 51.3
3 76.2
4 70.2

Avg. 68.8

Table 6.8: Correct outcome ratio and
CodeBLEU for each model.

Model Correct
outcomes

Code
BLEU

CodeGen 92.5% 50.5
CodeGenE 90.0% 69.2
CodeGenC

(ours)
88.3% 69.4

Finally, despite targeting to mimic the structure and identifier names of the corrected code in
constructing the resulting code, the validity of the generated code is also an important metric.
Therefore, we inspected the achieved codes by their executed output, as outlined below.

Correct Outcome Ratio

As mentioned in Section 6.5.1, for simplicity, CodeGenC composes function name based on the
input NL query instead of using LLMs as CodeGen and CodeGenE. Consequently, utilizing exact
match or accuracy is improper for the evaluation. Alternatively, we manually examined each
obtained code snippet and validate if it yields correct output after executing. The percentage
of accurate outputs over all test cases forms the correct outcome ratio.

Finding 5. Information from user feedback can navigate the generative model to resemble
the corrected code while improving some specific cases, which are previously considered as
inaccurate outcomes.

Table 6.8 displays the ratios of all models alongside their CodeBLEU scores. Overall, CodeGen
acquires highest percentage but the disparities between models are insignificant. Particularly,
CodeGen exceeds CodeGenE and CodeGenC by 2.5% and 4.2%, respectively. In contrast,
CodeGen attains the lowest CodeBLEU score, lacking behind CodeGenE and CodeGenC by
27.0% and 27.7%, respectively. In other words, the standalone AI code generator model might
yield the correct output but its generated code lacks substantial alignment with user suggestions.

Specifically, Table 6.8 reveals minimal differences between CodeGenE and CodeGenC when
aggregating CodeBLEU scores across all test cases. Nevertheless, at particular difficulty and

167

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

complexity levels (discussed above), CodeGenC remarkably outperforms CodeGenE, underscor-
ing the importance of our refined evaluation in such instances.

Additionally, Figure 6.8 presents further analysis on the correct outcomes. When CodeGenC
obtains accurate results from constructed code snippets, CodeGen and CodeGenE still encounter
5.4% and 9.3% of inaccurate outcomes, respectively. Notably, whereas CodeGen produces incor-
rect outcomes, CodeGenE and CodeGenC rectify 60% and 63.3% of these cases, turning them
into correct ones, respectively.

CodeGen CodeGenE
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

When CodeGenC (ours)
yields correct outcomes

CodeGenE CodeGenC (ours)

When CodeGen (GPT-3.5)
yields incorrect outcomes

incorrect outcomes
correct outcomes

Figure 6.8: Correct outcome ratio for specific cases.

In simpler terms, generative models with extra information from user feedback can improve
some cases that are original incorrect outcomes. The evaluation results unequivocally indicate
the advantages of user feedback for NL-to-Code translation model, even in the absence of explicit
re-training. The last two findings address our second research question outlined in Section 6.4.1.

A-RQ2. User feedback can bring benefits to code translation models without
explicit re-training.

Ultimately, even though prompting technique is not our main focus, it is essential to assess
whether an LLM, with our chunking strategy integrated into the prompt, can perform better
than our proposed model. The next subsection addresses this matter and reveals the results.

6.5.3 LLM Involvement

Primary goal reiteration. It is worth emphasizing again that besides the goal of integrating
user feedback into generative AI models without extra re-training, we aimed to ensure model
interpretability throughout all steps for developers (recalled from Sections 6.3.2 and 6.3.3). The
latter also enables thorough analysis of incorrect outcomes. In addition, we targeted to explore
the potential enhancement of an NL-to-Code model through a simplified approach. Hence, we
refrained from using complex LLMs for query decomposition and chunk-to-sub-snippet mapping,
and only employed them for code generation.

168

6.5. Evaluation Results

Furthermore, given that prompting techniques can influence the result quality in generative AI
models (mentioned in Section 6.1), our approach is to assist users with standard, straightforward
prompts, delegating strategy planning and reasoning to the underlying mechanism. Moreover,
most of generative AI models impose constraints on prompt length or context window size (i.e.
number of tokens processed simultaneously), restricting the integration of historical corrections.

LLM with chunking instruction. However, to complement our preceding evaluation,
we conducted an extra experiment utilizing GPT-3.5-Turbo-012523 for translating NL queries to
Python, incorporating our decomposition strategy as task descriptions. This experiment inspects
the effectiveness of the employed models in analyzing query chunks and NL-code mapping.
Consequently, we only considered scenarios with multi-chunk queries and non-empty correction
data-store from the collected test cases (i.e. 39.4% of the total cases).

Listing 6.3 displays the query template utilized in this experiment. Queries from the correction
data-store, serving as user-approved cases, are appended following the input NL query. The
chunking strategy is outlined from lines 5 to 9. We denoted the model utilizing GPT-3.5 alongside
our chunking strategy as GPT35Prompt.

1 Generate one Python function for the below NL query:
2 "Function <the NL query here>"
3 Given that users have approved the following NL queries with their target codes:
4 "<Similar queries and their target code here>"
5 To generate the Python code, do the following steps:
6 1. Divide the NL query into chunks of verb-noun phrases,
7 2. Find similar queries from the list of approved queries,
8 3. Find code snippet for each phrase in the input by either extracting it from ↩

↪ the similar queries or generating it, but don’t use functions from the ↩
↪ similar queries,

9 4. Combine the collected code snippets to form the final code.
10 You must return only the Python code in one function, no explanation, no python mark ↩

↪ .

Listing 6.3: Prompt template for translating NL query to Python code using GPT-3.5-Turbo-
0125 and our chunking strategy as task descriptions.

Result assessment. Table 6.9 illustrates the correct outcome ratios and CodeBLEU scores of
all models across test cases featuring multi-chunk queries and non-empty correction data-store.
The results reveal that GPT35Prompt underperforms other models in terms of correct outcome
ratio, lacking behind CodeGen, CodeGenE, and CodeGenC by 20.9%, 14.5%, and 14.6%, re-
spectively. Besides, GPT35Prompt only surpasses CodeGen by 10.9% in terms of CodeBLEU
score, while lagging behind CodeGenE and CodeGenC by 8.5% and 10.3%, respectively.

Further analysis, as depicted in Figure 6.9, confirms the inferior performance of GPT35Prompt
compared to other models. Specifically, while CodeGenC (our approach) achieves correct
outcomes, CodeGen, GPT35Prompt, and CodeGenE still encounter 8.6%, 29.3%, and 16.4%
of incorrect outcomes, respectively. In cases where CodeGen produces incorrect results,
GPT35Prompt, CodeGenE, and CodeGenC rectify 56.2%, 68.7%, and 75% of these instances.
23At the time of our experiment, OpenAI stopped supporting for the model GPT-3.5-Turbo-0301. GPT-3.5-

Turbo-0125 is purported to exhibit greater accuracy in responding to requested formats, https://platform.
openai.com/docs/models/gpt-3-5-turbo, (Accessed: 24 March 2024).

169

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

Table 6.9: Correct outcome ratio and CodeBLEU for each model over test cases with multi-
chunk queries and non-empty correction data-store.

Model Correct outcomes CodeBLEU

CodeGen 89.9% 57.1
GPT35Prompt 69.0% 63.3

CodeGenE 83.5% 69.2
CodeGenC (ours) 88.6% 70.6

CodeGen GPT35Prompt CodeGenE
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

When CodeGenC (ours)
yields correct outcomes

GPT35Prompt CodeGenE CodeGenC (ours)

When CodeGen (GPT-3.5)
yields incorrect outcomes

incorrect outcomes
correct outcomes

Figure 6.9: Correct outcome ratio for certain cases with GPT35Prompt taken into account.

Brief analysis. While the underlying LLMs of GPT35Prompt and CodeGenE are slightly
different (GPT-3.5-Turbo-0301 versus GPT-3.5-Turbo-0125), they employ distinct prompting
templates, leading to notable disparities in generating accurate final codes. This underscores the
significance of prompting techniques in result quality. However, comparing prompting techniques
is beyond the scope of our study.

We briefly examined the failed cases of GPT35Prompt and discovered that GPT35Prompt
also experiences the similar shortcomings as CodeGenE (e.g. overlooking or becoming confused
by additional information, as shown in Table 6.5). Additionally, 55.1% of the incorrect out-
comes stem from GPT35Prompt generating code that uses functions defined in queries from
the correction data-store, without including these function definitions into the final code. Even
after adjusting the prompt template in Listing 6.3 to explicitly address this issue24, the incorrect
outcomes persist.

It is worth noting here that we considered NL-to-Code generation individually for each query.
The corrected codes refer to preceding corrections but are not available to users at the moment
of executing the prompts. An enhancement for this matter is discussed in Section 6.6.2. For
simplicity, we excluded the analysis of GPT35Prompt results based on individual difficulty and
complexity levels.

Ultimately, we anticipate that advanced prompting techniques, such as chain-of-thought (Wei
et al., 2022) and tree of thoughts (Yao et al., 2024), could improve the LLM outcomes. Nonethe-
less, despite detailed strategy descriptions, the inherent black-box nature of LLMs still hinders
24By extending step 3 in the description with the guidance “If you use functions defined in the similar

queries, you must add these function definitions into the final code”.

170

6.6. Discussion

thorough analysis of unexpected results, making it challenging to pinpoint which step in the
strategy description causes the failed cases.

6.6 Discussion

In this section, we discuss threats to validity of our experiments, as well as challenges and
potential enhancements for our methodology. We conclude the section with our response to the
final core research question, specified in Chapter 1 , Section 1.4.

6.6.1 Threats to Validity

We analyzed threats to validity of our work as follows:
Test suite. A custom test suite was developed for the experiments due to the absence of

a suitable existing test suite. Though our dataset is not as extensive as those for AI model
training, it sufficiently demonstrates our methodology’s utility. However, the inclusion of an
official benchmark would enhance the effectiveness of the proposed approach.

In future work, we intend to incorporate more complex test cases, probably by refining Q&As
from programming forums. Furthermore, the lack of probability logs from Codex model in the
response of ChatCompletion feature (GPT-3.5-Turbo-0301) raises questions about the likelihood
of the code returned in the first response being the most probable one.

Language specificity. The algorithm for mapping NL chunks and code snippets in the
Code building step is currently implemented exclusively for Python. However, the identification
of code token types is based on AST analysis and token relationships, which vary slightly across
programming languages.

Besides, the algorithm focuses on critical token types shared among programming languages,
such as variable definition and usage. Determining these token types in other languages (e.g.
Java) is even less complicated than for Python due to Python’s dynamic typing. Therefore, we
anticipate that our results will be applicable to other programming languages. Additionally, it
is worth mentioning that the parser used in the Query chunking step is specifically for English
language. Nonetheless, multilingual NLP is outside the scope of this work.

Model comparison. Our experiments employed GPT-3.5-Turbo-0301 model, which has
demonstrated significant advancements in NLP tasks. However, being a beta version and subject
to frequent updates, minor adjustments may be necessary to accommodate changes in its APIs.
Furthermore, due to the lack of directly comparable models, we compared our methodology with
extended input queries on GPT-3.5-Turbo-0301. We assume that comparing other approaches
that utilize the chunking method would further validate the concept of our methodology.

Evaluation metrics. Besides manually examining the validity of generated code, we adopted
CodeBLEU as an evaluation metric due to its popularity in code generation models. Although
ChrF has been proposed as an alternative (Evtikhiev et al., 2023), it does not fully consider the
specifics of working with source code. As our experiments prioritize the syntax of the generated
code (as discussed in Section 6.4.3), CodeBLEU with the mentioned settings remains suitable
for our purposes.

171

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

6.6.2 Challenges and Potential Enhancements

Given the novelty of our proposed methodology, we outline below challenges while developing
the approach, alongside potential improvements which can make our concept applicable to more
intricate use cases.

Scalability Support

Multi-users and large datasets. To illustrate the utility of our methodology, we collected user
feedback in a dictionary with embedding values of the input queries as keys and the corrected
code snippets as corresponding values. Subsequently, similar queries of each input are retrieved
using KNN technique, by comparing similarity between the input and all existing queries in
the data-store. This simple setup serves its purpose in exhibiting the advantages of integrating
user feedback into generative AI models without re-training. However, adapting this method to
multi-user systems and large datasets necessitates upgrading the correction data-store structure.

Particularly, users usually refer to their own naming patterns (while aligning to coding con-
vention) for identifiers, requiring the separation of correction information stored for individual
users or only shared within user groups. Furthermore, a function generated from an input query
can be adopted multiple times at different locations within a program, each with distinct sets
of variable names. Consequently, various versions of function customization should be stored
instead of employing a single record for each query and overriding previous corrections.

Dynamic Sparse Distributed Memory. The presence of numerous users can result in
data expansion, necessitating scalability features in the correction data-store architecture. To
address this, a potential solution is employing Dynamic Sparse Distributed Memory (DSDM)
introduced by Pourcel et al. (2022), an extension of Sparse Distributed Memory (Kanerva, 1992).

DSDM begins with an empty memory space and incrementally adds new address nodes based
on input patterns, dynamic write radius, and current memory space state. Query content is
retrieved from specific memory nodes using a softmin function that considers the distance
between the query and other query addresses. Integrating DSDM into the One-shot Correction
approach may enhance the correction data-store’s capacity, mitigating scalability challenges.

Flexible Rule Selection for Code Building

Even though we deployed a configuration file (outlined later in Listing 6.4) to centrally manage
rules for refining sub-snippets, the inclusion of rules for renaming identifiers, determining pa-
rameters for the final code, and handling multi-input queries would be beneficial. Moreover, a
flexible selection mechanism for these rules should be employed based on the input query and
corrected codes from similar queries.

Identifier renaming. For instance, when renaming identifiers within combined sub-snippets
by prioritizing the last statement (Section 6.3.4), situations arise where the final code snippet
lacks desired names, compared to the corrected code. This occurs because desired names initially
appear atop the statement list but are subsequently replaced by identifier names in statements
below. Consequently, a flexible activation of renaming rules (top-down or bottom-up) should be

172

6.6. Discussion

determined based on the positions of chunks in the input query receiving similar queries from
the correction data-store.

Furthermore, to exemplify the proposed chunking concept, we simplified the renaming process
by assuming that identifiers defined in one statement are directly utilized in the subsequent
statement. A potential enhancement to diminish this assumption involves (i) preserving the
data-flow of each variable in every code snippet, (ii) analyzing the purpose of each variable
definition and usage, and (iii) bridging the data-flow gap between code snippets. These steps
may require NL chunks, their associated code snippets, and the input query as inputs, suggesting
the consideration of a more intricate rule or approach.

Parameter determination. Additionally, as we targeted generating final codes comprising
code snippets enclosed within a function definition with requisite import statements, the current
parameter identification rule for the final function suffices to illustrate the method’s concept.
However, in case the input query requests multiple functions or omits this requirement, the rule
should be adjusted accordingly, which is technically feasible by identifying the scope of variables
besides their definitions and usages.

Multiple input queries. Ultimately, our proposed approach addresses NL-to-Code cases
individually, as depicted with a GUI in Section 6.7. However, when applying this method to a
code file containing existing NL queries and their relevant code snippets, or when dealing with
inputs featuring multiple NL queries, consideration should be given to previously generated code
when constructing the outcomes.

In such instances, a rule should prioritize suggested code snippets using functions defined
from prior queries over code snippets that redefine these functions. Preceding queries and their
codes can be directly injected into the input query, forming a multi-turn programming pipeline,
similarly to the study described by Nijkamp et al. (2022).

6.6.3 Response to CRQ4

As delineated in Chapter 1, Section 1.4, our final core research question (CRQ4) delves into
leveraging user feedback to refine NL to code models without explicit re-training, a challenge
posed by the inherent characteristics of generative AI models. The comprehensive exploration
detailed in Section 6.5, accompanied by five corresponding findings, together with the discussion
above furnish sufficient evidence to address the last core research question as follows:

A-CRQ4. User feedback not only enhances NL to code models without extra
re-training, but also enables auditing of code provenance, facilitating in-depth
analysis of unexpected model outcomes.

173

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

6.7 One-shot Correction GUI

In this section, we introduce our preliminary GUI25 built on the One-shot Correction method.
The GUI exhibits the practicality of our proposed concept in simplifying code customization
and assessment for users. Main features of the GUI are demonstrated at the end of this section.

6.7.1 An Overview of the One-shot Correction GUI

We drew inspiration from the work of Su et al. (2018) on building an application with fine-grained
user interaction for code modification. With each code token in a returned code, we determined
its token type and a list of alternative values, which are extracted from other suggested codes
for the same token type. Figure 6.10 presents the general scenario of using the GUI.

(1)

(2.2)

(3)

(5)

########### one-shot results ###########

def get_string_replace_spaces_pr...

######## extending input results #######

def replace_space_with_underscor...

pure generative AI results

def replace_spaces_with_undersco...

get_string_replace_spaces_print_result

replace_spaces_with_underscores

(2.1)

def replace_spaces_with_underscores():
input_string = str(input(“Your string: “))
if input_string:

result = input_string.replace(“ “, “_”)
print(result)

else:
print(“Please input a non-empty string!”)

(4)

def get_string_replace_spaces_pr...

e.g. “new_value“

get_string_repl

Figure 6.10: General scenario of using the One-shot Correction GUI.

General scenario. After initiating a search with an input NL query, users can perform the
following actions: (1) choose displayed code from a list of returned code snippets, (2.1) select
a code token under Suggested code by clicking on it and (2.2) change its value from the list of
substitute values, (3) type a new value for the code token if the preferred value is not on the
list in step (2.2), (4) directly modify the code if restructuring is necessary, and (5) save the
modification for subsequent inquiries.

Model selection. By default, user modification is integrated with both options, GPT-3.5
and One-shot Correction, which are corresponding to the CodeGenE and CodeGenC models
mentioned in previous sections. Deselecting these options results in the code snippet using
solely the CodeGen model (i.e. without user feedback). Besides, for each code token, we also
provided its token type as an extra information for users.

Utility features. Notably, the highlight matching option associates input query chunks with
sub-snippet(s) of the displayed code in the One-shot Correction case. For other cases (i.e.
standalone code generator and extending input), the whole input query and its code are marked
25The GUI was developed using CustomTkinter, https://customtkinter.tomschimansky.com/, (Accessed: 19

March 2024).

174

https://customtkinter.tomschimansky.com/

6.7. One-shot Correction GUI

without separation (illustrated later in Section 6.7.2). We expect that this explicit mapping can
facilitate users in comprehending and validating the generated code.

Additionally, by modifying the configuration file (partially presented in Listing 6.4), users can
manipulate the state of the correction data-store (line 8), filter important code token types (lines
9–11), and adjust hyperparameters used in each model (lines 2–5). We published these setting
values together with our source code26.

1 ...
2 "embedding": {...},
3 "nl2code": {...},
4 "correction_ds": {...},
5 "nl2code_with_correction": {...},
6 "gui": {
7 ...
8 "corrt_ds": ["all"],
9 "token_types": {

10 "syntax_types":["arg_def", "attribute", "class_def", "class_usg", "const_float", ↩
↪ "const_int", "const_str", "exception", "func_def", "func_usg", "imp_alias", ↩
↪ "imp_lib", "imp_sublib", "keyword", "method_def", "method_usg", "var_def", " ↩
↪ var_usg", "znknown"],

11 "filter": [true, true, true, true, true, true, true, true, true, true, true, ↩
↪ true, true, true, true, true, true, true, true]},

12 ...
13 }
14 ...

Listing 6.4: Relevant fields of the configuration file on handling the state of the correction data-
store and refining code token types.

For instance, possible values for corrt_ds involve "all" (all gathered queries), "all_x" (a
collection of all x-chunk queries, x ∈ [1, 2, 3]), "all_x_excl" (all x-chunk queries excluding
the current target query), and "task_x_y" (the x-chunk query with index y). An example
of code generation with two different states of the correction data-store is demonstrated in the
subsection below. Furthermore, to prefer specific token types, users can simply enable or disable
the corresponding flag of the token type (Listing 6.4, line 11). These types are determined based
on our CT3 schema, discussed in Chapter 5.

6.7.2 A Demo of Main Features

We introduces below some test cases adapting the One-shot Correction GUI for (i) generating
code snippets, (ii) customizing the achieved code by modifying identifier values or code structure,
(iii) validating the obtained code with NL-code mapping, and (iv) manipulating correction data-
store for exploring the underlying generation models.

Code Generation

By clicking the Search button, code snippet(s) of the corresponding input NL query will be
retrieved/produced. There are two options to combine user correction with the final results,
26GitLab repository, https://gitlab.com/pvs-hd/published-code/one-shot-correction-ase, (Accessed: 19

March 2024).

175

https://gitlab.com/pvs-hd/published-code/one-shot-correction-ase

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

namely integrating with (i) GPT-3.5 and (ii) One-shot Correction. These options are equiva-
lent to the aforementioned CodeGenE and CodeGenC models. When both of the options are
unselected, the original CodeGen model will be activated.

Assuming that the input query is “get a string from user, replace all spaces in the string with
underscores, print the result”. Table 6.10 presents the first nearest neighbor (1 -NN) retrieved
from the correction data-store for each chunk of the input query. The resulting code snippet
after triggering the search feature with both selected options GPT-3.5 and One-shot Correction
is displayed in Figure 6.11.

Table 6.10: 1 -NN of the input query at the beginning.

Chunk 1 -NN from the
correction data-store Code snippet of the 1 -NN

get a string from user get an input from users
def get_input():

input_user = input("Number: ")
return input_user

replace all spaces in the
string with underscores

replace all spaces in a
string with underscores

def replace_spaces(text):
replaced = text.replace(" ", "_")
return replaced

print the result print the result def print_result(result):
print(result)

(a) Top-1 suggested code.

(b) List of recommended code snippets.

Figure 6.11: Searching the example input query for the first time.

Specifically, the top-1 code snippet (in this case, code generated with the One-shot Correction
option) is shown in Figure 6.11(a) while the list of attained snippets (grouped by models) is
exhibited in Figure 6.11(b). Notably, since handling specific numbers or strings is beyond the
scope of our work (mentioned in Section 6.5.1), the string utilized in line 2 of the suggested code
(i.e. "Number: ") needs to be refined to suit the input query.

Code Customization

To update the code snippet for the input query, users can perform the following steps:

176

6.7. One-shot Correction GUI

1. Changing suggested code. By browsing items in the list of recommended snippets (i.e.
Top suggestions, Figure 6.11(b)), users can inspect code generated by each model and
choose suitable code structure alongside identifier names.

2. Choosing alternative values. Subsequently, users can customize the displayed code by
selecting substitute values of each code token. Figure 6.12(a) presents the screen capture
of the GUI right after clicking on the function code token. Relevant fields of the code token
(i.e. current value, alternative values, and token type) are highlighted briefly to capture
user attention. Consequently, users can choose another value for the function name from
the list (Figure 6.12(b)).

(a) Clicking on a code token to retrieve relevant information.

(b) List of alternative values. (c) Inputting a new token value.

(d) Directly modifying the code snippet.

Figure 6.12: Recommended steps to customize the displayed code snippet.

3. Inputting a new token value. In case there is no preferred value in the replacement
list, users can type a new value for the code token and click the check button next to the
text input field or simply enter to apply the new value (Figure 6.12(c)).

4. Modifying directly. Ultimately, users can also write their own code if the current code
structure does not fit their requirements or expectation (Figure 6.12(d)).

5. Saving the correction. In the end, users should save their feedback for future reference.
For instance, given that a user updated the name of the function displayed in Figure
6.12(a) to replace_spaces_with_underscores, modified the string from "Number: " to
"Your string: ", and changed the variable text to user_string, Figure 6.13 reveals
the suggested code on the second time of submitting the same input query.

177

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

(a) Saving the correction information. (b) Inquiring the same input query after saving.

Figure 6.13: Saving the correction and inquiring the same query again.

NL-code Mapping

We developed the feature of highlighting NL-code mapping to illustrate the utility of our pro-
posed approach in simplifying code assessment for users. Particularly, by activating the switch
highlight matching of the GUI, users can inspect the correlation between each chunk in the input
query and its code snippets constructed by the One-shot Correction method (Figure 6.14(a)).
This feature does not work for results obtained using the two remaining methods due to their
lack of decomposition information (Figure 6.14(b)).

(a) Code built and edited with the One-shot Correction technique.

(b) Code generated by extending input query with user feedback.

Figure 6.14: Activating the highlight matching feature.

Manipulating the Correction Data-store for Testing

Queries in the correction data-store can be manually managed through the configuration file
(represented in Listing 6.4) by specifying the query indices (details in Section 6.7.1). This
feature is utilized when users prefer to find the suggested code of the same input query with
various states of the correction data-store. For example, given the above input query, assuming

178

6.7. One-shot Correction GUI

that the correction data-store now contains only one query, “get a string input from user”, as
depicted in Table 6.11.

Table 6.11: 1 -NN of the input query after updating the correction data-store.

Chunk 1 -NN from the
correction data-store Code snippet of the 1 -NN

get a string from user get a string input
from user

def get_string_input():
input_string = str(input("Please

enter your string: "))
return input_string

replace all spaces in the
string with underscores None None

print the result None None

While there is no preceding modification for the input query, the code snippet constructed
by the One-shot Correction method (i.e. CodeGenC model) is slightly updated as illustrated
in Figure 6.15(a). Notably, the structure of the code snippet generated by extending the input
query (i.e. CodeGenE model) is significantly changed to two separated functions followed by
two code lines, as shown in Figure 6.15(b) .

(a) Code constructed with the One-shot Correction technique.

(b) Code generated by extending input query with user feedback.

Figure 6.15: Generating code snippet for the same input query after manipulating queries in the
correction data-store.

We utilized the same technique to produce diverse states of the correction data-store for each
input query in the experimental evaluation, discussed in Section 6.4.2.

179

6. One-shot Correction:
Enhancing Code Generation Models through User Feedback and Decomposition Techniques

6.8 Summary

In this dissertation’s final contribution, we proposed a methodology named One-shot Correction
to incorporate user feedback into generative AI models without re-training. Evaluation results
illustrate competitive performance compared to other models, despite challenges in NLP tasks.
Our methodology enables thorough examination of unexpected results through straightforward
approaches and facilitates insights for potential improvements.

Besides, we demonstrated that user feedback significantly enhances code translation models
without re-training, addressing the last core research question (CRQ4) defined in Section 1.4 of
Chapter 1. We published the test suite used in our experiments, evaluation results, and source
code of the methodology27.

Furthermore, a preliminary GUI with fine-grained user interaction in code customization was
also implemented to sketch the utility of our proposed approach in practice. Further work
encompasses extending the method to other programming languages and large datasets, which
includes upgrading the correction data-store structure for scalability (e.g. using Dynamic Sparse
Distributed Memory). Moreover, exploring flexible rule selection at each step in the methodology
for complex inquiries is a promising direction.

Ultimately, this chapter concludes our array of methodologies for tackling the programming
barrier and contributes to enriching libraries for code generation tasks via published source
code and experimental data. The latter mitigates the reuse problem specified in Chapter 1,
Section 1.1. In the subsequent chapters, we wrap up the dissertation and outline potential future
research directions aligned with our work.

27GitLab repository, https://gitlab.com/pvs-hd/published-code/one-shot-correction-ase, (Accessed: 21
March 2024).

180

https://gitlab.com/pvs-hd/published-code/one-shot-correction-ase

Part IV

Conclusions

181

Chapter 7Summary

Driven by the rapid advancement of data science, characterized by the proliferation of diverse
tool-kits, platforms, and programming languages, we target to accelerate scripting tasks for both
domain experts and developers. This chapter reiterates our research objectives and strategy,
recalling our contributions throughout the dissertation.

Research objectives. Our purpose is to resolve three main problems, namely programming
barrier , reuse problem and scalability problem . The programming barrier occurs
when domain experts have to learn a myriad of data analysis tools before using them. The reuse
problem arises when users adjust implementations of well-known algorithms and techniques
across platforms and programming languages. Finally, the scalability problem emerges when
users transition between small and large datasets, which necessitates the deployment of complex
data structures, new libraries, and potentially re-implementation.

Research strategy. In particular, the programming barrier is tackled through harnessing
the benefits of Domain-Specific Languages (DSLs) and advanced methods of code completion.
Specifically, low-code techniques and ML-based approaches are employed to ease this problem.
Meanwhile, the reuse problem is alleviated by facilitating creation and utilization of multiple
libraries containing domain-specific operations. Lastly, the scalability problem is handled by
unifying APIs for sequential and massively-parallel processing. Additionally, certain functions
in the libraries mentioned in the reuse problem are also implemented in a scalable fashion.

Contributions. Aligned with our objectives and strategy, our work emphasizes both practical
applications and research contributions. The practical applications include releasing a VSCode
extension called NLDSL, along with prototypical tools, and libraries. Our research contributions
comprise a code recommendation architecture named Extended Network, a refined evaluation
methodology known as Code Token Type Taxonomy (CT3), and a user feedback-driven code
generation approach referred to as One-shot Correction. These contributions were designated
to answer the following core research questions, respectively:

• CRQ1. Do embedded external DSLs offer benefits for implementing data analysis tasks?

• CRQ2. Do ensembles of ML-based recommenders improve the accuracy for code comple-
tion approaches?

• CRQ3. Do traditional aggregated evaluation methods reveal useful information for com-
paring and characterizing code completion approaches?

• CRQ4. Can user feedback enhance NL to code models without explicit re-training?

183

7. Summary

NLDSL Extension

While DSLs exhibit their utility in programming facilitation, developing such languages presents
challenges to developers and end-users due to the need for expertise in both programming and
domain knowledge. Consequently, the matter in CRQ1 shifts to streamlining DSL development
for end-users and developers. Chapter 3 introduces NLDSL, our VSCode extension designed for
this purpose. The NLDSL extension is freely accessible on the VSCode Marketplace, with three
versions for Windows, macOS, and Linux.

Core functionalities of the extension involve DSL customization and development via various
means. For instance, a DSL development wizard enables users to create new DSLs from Excel
or tx templates and to manage DSLs directly within VSCode. Customized DSLs can be easily
shared by distributing modified templates. The extension also includes predefined DSLs tailored
for Pandas, PySpark, TensorFlow, and PyTorch.

In addition, the NLDSL extension provides code completion support for DSL operations (i.e.
suggesting next DSL tokens) and statements (i.e. translating DSLs to programming languages).
Notably, advanced features, such as type provider, path completion, in-editor documentation,
and library initialization, enhance the usability for code completion tasks.

Our preliminary evaluation on the extension’s features highlights their capability in assisting
developers and end-users to define DSLs using average computing resources. Moreover, statistics
from disseminating the extension reveal positive response from the community (more than 17k

installations and counting).
The NLDSL extension mitigates the programming barrier by leveraging the advantages

of DSLs. Meanwhile, DSL development features, specifically the developed wizard, contribute
to address the reuse problem . Furthermore, the scalability problem is lessened by aligning
DSL grammars for both sequential and parallel data processing (e.g. Pandas and PySpark), and
for ML operations across platforms (e.g. TensorFlow and PyTorch).

Extended Network

Our first research contribution focuses primarily on dealing with the programming barrier
through code recommendation models. To tackle CRQ2, we proposed an ensemble approach
for predicting next code tokens in dynamically typed languages, elaborated in Chapter 4. For
illustrating the approach, we introduced a model named Extended Network model, adopting
classical and neural ML models, namely Probabilistic Higher Order Grammar (PHOG) and
Pointer Mixture Network, respectively.

This combination stems from the effectiveness of the Pointer Mixture Network in predicting
subsequent code tokens for dynamically typed languages, while reducing Out-of-Vocabulary
(OOV) suggestions. However, the Pointer Mixture Network is limited in its ability to predict
OOV words beyond the current context. Meanwhile, PHOG operates as a probabilistic model for
code recommendation, utilizing production rules from a context-sensitive grammar with minimal
constraints on vocabulary size and long-range dependencies. We employed PHOG to handle the
cases where the Pointer Mixture Network fails to predict OOV words.

184

Our evaluation results show the enhanced accuracy of the Extended Network model compared
to its individual components. Further performance improvements are achievable by augmenting
the neural network with an additional layer. Here, the term “Extended Network” refers to an
adaptable ensemble-like architecture capable of integrating various models and future method-
ologies as ensemble components.

We also conducted an ablation study on the Extended Network model to assess the effect
of its components, which are RNN and Pointer Network (from Pointer Mixture Network), and
PHOG. This study reveals the dominance of the RNN component compared to others. However,
the performance of these components on specific prediction cases like keywords, parameters, or
function names remains unclear, prompting our second research contribution.

Code Token Type Taxonomy

Given the diverse demands of code completion across token types, influenced by preferences
of developers, evaluating the impact of each code completion model (e.g. within ensemble-like
architectures) on specific cases would provide insights for further refinement. Our CRQ3 and
Chapter 5 are dedicated to this concern. Initially, we compared the state-of-the-art of ML-based
code completion approaches, highlighting the prevalence of conventional aggregated evaluation
methods among these models.

Subsequently, we proposed a refined evaluation methodology known as Code Token Type
Taxonomy (CT3). It first identifies multiple dimensions for code prediction (e.g. syntax type,
origin, length), categorizing code tokens into meaningful types along each dimension. Evaluation
metrics are then computed for each type, facilitating in-depth examination on performance
of code completion models. To illustrate the utility of this approach, we compared the code
completion accuracy of a Transformer-based model in two variations: with closed and open
vocabulary, using both aggregated and refined evaluations.

Our empirical study indicates that CT3 effectively characterizes and compares the accuracy
of different approaches, in contrast to traditional aggregated evaluation. Furthermore, results
from the refined evaluation reveal that an open vocabulary notably increases the accuracy of
the Transformer-based model in code completion tasks, particularly in handling usage of defined
variables and literals. Besides, our review of state-of-the-art ML-based models underscores the
need for standardized benchmarks in the code completion domain.

Regarding the aforementioned three main issues, CT3 offers valuable insights for improving
code completion models through extensive result analysis, directly targeting the programming
barrier . Moreover, the reuse problem is alleviated by our published source code and data,
enabling reproducibility and experimentation with alternative models. Finally, the scalability
problem is partially resolved through the parallel implementation of CT3 functions.

One-shot Correction

In our final research contribution, we shifted our focus from suggesting next code tokens to
simplifying programming with Natural Language Processing (NLP) techniques, particularly in

185

7. Summary

NL to code models. Motivated by the omission of user feedback in widely adopted generative AI
models, we introduced a methodology for incorporating user feedback into these models without
re-training, addressing the last core research question, CRQ4. We referred to our approach as
One-shot Correction and detailed it in Chapter 6.

Essentially, we employed decomposition techniques to segment code translation problem into
sub-problems. The final code is assembled using code snippets from each query chunk, sourced
from user feedback or generated by an NL to code model. In this work, user feedback is stored in
a correction data-store, associating input queries with their corrected code snippets. The KNN
technique is then used to find similar queries for each query chunk. For demonstration purposes,
we implemented a prototype comprising an NL to code model, a data-store for collecting user
corrections, and a core component for code assembly.

Our evaluation results showcase competitive performance of One-shot Correction compared
to other models, despite the encounter of challenges in NLP tasks. The proposed methodology
also enables thorough investigation of unexpected results through straightforward approaches
and promotes insights for possible enhancements. In addition, we clarified that user feedback
significantly strengthens code translation models without re-training.

Ultimately, similar to the prior research contributions, this methodology also directly tackles
the programming barrier while broadening libraries for code generation tasks, mitigating the
reuse problem . In the following chapter, we briefly discuss potential improvements for our
proposed approaches and outline future research directions aligned with this dissertation work.

186

Chapter 8Future Work

This chapter concludes the dissertation by outlining suggested enhancements for our proposed
methodologies and delineating future research directions in alignment with our work.

8.1 Improvements for Proposed Approaches

Before delving into future research directions, we recall possible refinements for our contributions,
discussed in Chapters 3–6.

NLDSL extension. Firstly, although the NLDSL extension exhibits its utility in resolving
certain shortcomings of low-code approaches (e.g. lack of customization and vendor lock-in),
there is still room for development. For example, integrating a user-friendly setting page into
IDEs would facilitate parameter setup for users. Furthermore, a centralized forum for users to
share customized DSLs would improve DSL accessibility.

Additionally, enhancing the code completion feature by suggesting DSL grammars alongside
subsequent DSL tokens would be beneficial, reducing the necessity to memorize DSL grammars.
Moreover, a user perspective survey should be conducted to gather insights for future practical
features. Further suggestions are provided in Chapter 3, Section 3.5.2.

Extended Network. For our second contribution (detailed in Chapter 4), the Extended
Network model is adaptable to integrate diverse models ranging from classical to neural ML-
based approaches. Therefore, potential extensions encompass various n-gram models for classical
methods and enhanced code completion models (e.g. Transformer-based architectures) for neural
networks. Besides, expanding ensemble sizes, optimizing model hierarchies (i.e. model selection
mechanism), and fine-tuning neural network architectures are also promising directions.

Code Token Type Taxonomy. Subsequently, despite the possibility to employ our refined
evaluation (presented in Chapter 5) on various Python datasets, developing the methodology to
include other programming languages would reinforce its versatility. Furthermore, information
of code token types retrieved from our CT3 could provide valuable hints for code completion.
Consequently, an implementation of specialized code predictors that incorporate these hints may
improve the outcomes.

One-shot Correction. Ultimately, even though our proposed One-shot Correction strategy
effectively integrates user feedback into generative AI models without re-training, extending the
approach on large datasets and multi-user systems would further demonstrate its utility. This
involves upgrading the underlying structure of the correction data-store to efficiently handle
query-correction pairs for numerous users and corrections. Dynamic Sparse Distributed Memory
could serve as a viable solution for this purpose.

187

8. Future Work

Additionally, lessening assumptions in code building should be considered. Particularly, rules
for identifier renaming, parameter determination and input query format should be refined to
adapt more intricate use cases. Finally, adopting a flexible rule selection mechanism based on
input queries and contextual factors would be advantageous. Further details are outlined in
Chapter 6, Section 6.6.2.

8.2 Potential Future Research Directions

Besides our core interests on low-code techniques, code completion approaches, and NL to code
models (as mentioned in Chapter 2), there are alternative directions to tackle the challenges
posed by data science-related tasks. Furthermore, the remarkable development of AI and ML
also fosters new approaches and models, which are presented below as potential augmentations
aligning with our work.

8.2.1 Code to Code Translation

Anaconda surveys from 2020 to 2022 reveal that practitioners in data science encounter the
roadblock of switching between Programming Languages (PLs) when moving their data science
models to production environments (detailed in Appendix A.3). Code-to-code translation or
cross-PL translation could be a possible research direction for this matter, as noted in Section
2.2.1 of Chapter 2.

Code-to-code translation involves converting code from one PL to another while retaining as
many original features as possible (Dehaerne et al., 2022). Traditionally, these tools tokenize
the input source code and generate a corresponding AST, subsequently utilizing handcrafted
rewrite rules for the translation step. Nevertheless, creating these rules is laborious and demands
expertise in both the source and target languages (Roziere et al., 2020).

Multiple approaches have been explored to address this challenge, ranging from supervised
models like tree-to-tree neural networks (Chen et al., 2018), unsupervised models such as
TransCoder (Roziere et al., 2020) and kNN-ECD (Xue et al., 2023), to recent Large Language
Models (LLMs) like CodeGen (Nijkamp et al., 2022), StarCoder (Li et al., 2023b), GPT-4 from
OpenAI, and Llama 2 (Touvron et al., 2023b).

A recent study of Pan et al. (2024) highlights the current limitations in reliably utilizing LLMs
for automating code translation. Various bug types were unveiled, such as syntactic, semantic,
dependency, and data-related bugs. The study identifies the major challenge of fitting source
language code into the constrained context window of LLMs. Pan et al. also proposed potential
advancements for LLMs in code translation, including (i) integrating auxiliary information like
inter-file dependencies, variable declarations, and function signatures; (ii) creating prompts that
build upon each other; and (iii) fine-tuning LLMs to target specific translation bugs.

8.2.2 Knowledge-enhanced Large Language Models

LLMs show promise for various downstream NLP tasks, yet they face constraints in accessing
current information and accurately manipulating knowledge, resulting in fact hallucination.

188

8.2. Potential Future Research Directions

These limitations impede performance on knowledge-centric tasks (Lewis et al., 2020; Schick
et al., 2024). Diverse techniques have been proposed to resolve this challenge. We outline some
notable ones as follows:

Retrieval-augmented code generation. Initially, Lewis et al. (2020) introduced Retrieval-
Augmented Generation (RAG) for NLP tasks, which comprises a combination of pre-trained
parametic and non-parametic (i.e. retrieval-based) memories. This concept has been extended
to source code, as exemplified by Parvez et al. (2021), Lu et al. (2022), and Choi et al. (2023).
Further improvements, suggested by Zhao et al. (2023), include retrieval-augmented multimodal
reasoning, building a multimodal knowledge index, and pre-training multimodal retrieval instead
of fine-tuning pre-trained models.

Prompting techniques. Subsequently, motivated by the potential of LLMs in in-context
few-shot learning via prompting (Brown et al., 2020), various prompting techniques have been
applied to enhance the reasoning ability of LLMs. Prominent methods encompass plan-and-
solve prompting (Wang et al., 2023a), chain-of-thought (Wei et al., 2022), tree of thoughts
(Yao et al., 2024), everything of thoughts (Ding et al., 2023), and Multistage Bug Fixer (Weng
et al., 2023). The latter adapted tree of thoughts for automated program repair. Specifically,
to deal with the challenge of lengthy prompts, which exceed LLM constraints, Jiang et al.
(2023b) presented LLMLingua, a compression method shortening these prompts while preserving
semantic integrity.

External tool utilization. An alternative strategy to enhance LLMs involves guiding their
handling of external tools (e.g. search engines, web browsers, or Python interpreters). This
approach has been investigated in several studies, such as internet-augmented (Komeili et al.,
2022) and Toolformer (Schick et al., 2024), with benchmarks like UltraTool (Huang et al., 2024),
MINT (Wang et al., 2023c), and API-Bank (Li et al., 2023a).

In line with this trend, OpenAI (2023) has integrated function calling into their API updates
since GPT-4-0613 and GPT-3.5-turbo-0613 models. Notably, Wu (2024) announced Devin,
which is claimed as “the world’s first fully autonomous AI software engineer”. Devin provides
essential developer tools such as a shell, a code editor, and a browser within a sandboxed compute
environment. Testing on a subset of SWE-bench dataset (Jimenez et al., 2023) demonstrates
Devin’s superior performance over GPT-4 and SWE-Llama-13B (i.e. fine-tuned CodeLlama for
SWE-bench). We expect that this direction will gain increased attention in the near future.

8.2.3 Addressing Transformers’ Shortcomings

Transformers with their self-attention mechanism represent a significant advancement for LLMs,
yet encounter certain drawbacks. Apart from the challenge of incorporating new data without
re-training, as detailed in Chapter 6, we outline below further limitations of Transformers and
corresponding prominent solutions.

Model size and computational cost. To begin with, increasing the scale of Transformers
or LLMs offers various advantages (Wei et al., 2022). However, such scaling typically entails
larger model sizes, leading to increased computational costs and inference latency. As a result,
achieving a balance between high performance and efficiency is an essential direction. In this

189

8. Future Work

context, the approach of Mistral 7B (Jiang et al., 2023a) and its successor, Mixtral 8x7B (Jiang
et al., 2024), is a noteworthy consideration.

Mistral utilizes grouped-query attention and sliding window attention for accelerated inference
and reduced cost. Meanwhile, Mixtral, resembling Mistral’s architecture, replaces feed-forward
blocks with sparse mixture-of-experts layers. This strategy increases model parameters while
managing costs and latency by using only a subset of parameters per token. Mixtral outperforms
Llama 2 70B across mathematics, code generation, and multilingual benchmarks.

Inference on long sequences. Additionally, although Transformers excel in accelerating
the training process, they face a challenge when predicting long sequences. This problem arises
from the need to recalculate attention for the entire sequence to generate subsequent tokens
(Grootendorst, 2024). Consequently, Transformers suffer from inefficient inference for sequences
exceeding ten thousand tokens (Gu et al., 2023).

An alternative method for handling long-range dependencies is Linear State-Space Layer
(LSSL), presented by Gu et al. (2021b), which integrates the strengths of RNN, CNN, and
Continuous-time models, based on State Space Model (SSM). While LSSL theoretically tackles
long-range dependencies, practical implementation is hindered by prohibitive computational and
memory demands. Gu et al. (2021a) later introduced Structured State Space sequence model
(S4) as an augmentation to LSSL, establishing a state-of-the-art for attention-free models with
fast generation ability.

Nevertheless, S4 is restricted in efficiently selecting data based on input (i.e. focusing on or
ignoring specific inputs). Gu et al. (2023) then proposed Mamba, a selective state space model, to
address this limitation through a selection mechanism. Mamba is claimed as the first linear-time
sequence model achieving Transformer-level performance, with rapid training and inference (5x
higher throughput than Transformers). Furthermore, Mamba can support real data sequences
up to a million tokens in length.

Continual learning. Ultimately, Transformers, like many Deep Learning (DL) models,
experience the issue of catastrophic forgetting during continual learning, where old memories are
overwritten by new ones as learning progresses sequentially (Pourcel et al., 2022). An intriguing
solution suggested by Shen et al. (2023) preserves associations between representation neurons
and output classes in a class-incremental learning framework. Shen et al. demonstrated the
method through their FlyModel, an associative continual learning algorithm.

This algorithm draws inspiration from odor-behavior associations of fruit flies, with a two-
layer neural circuit, namely sparse coding and perception-like associative learning. Sparse coding
activates distinct neuron populations for different odors, reducing memory interference, while
associative learning selectively adjusts synapses between odor-activated neurons and associated
output neurons to prevent overwriting unrelated memory. The FlyModel surpasses other neural-
inspired algorithms in mitigating catastrophic forgetting. However, applying this approach to
Transformers or other DL models requires further investigation.

190

Part V

References

191

List of Acronyms

AI Artifical Intelligence . 3

ANN Artificial Neural Network . 35

API Application Programming Interface . 4

AST Abstract Syntax Tree . 9

BPE Byte-Pair Encoding . 115

CD Continuous Deployment . 16

CFG Context-Free Grammar . 31

CI Continuous Integration . 16

CNN Convolutional Neural Network . 29

CSS Cascading Style Sheets . 20

CSV Comma-separated Values . 57

CT3 Code Token Type Taxonomy . 9

DFS Depth-First Search . 34

DL Deep Learning . 29

DSL Domain-Specific Language . 4

EBNF Extended Backus-Naur Form . 59

FFNN Feed-forward Neural Network . 35

GNN Graph Neural Network . 29

GPL General-purpose Programming Language . 6

GRU Gated Recurrent Unit . 29

GUI Graphical User Interface . 10

193

8. Future Work

HOG Higher Order Grammar . 33

HTML HyperText Markup Language . 20

IDE Integrated Development Environment . 6

JSON JavaScript Object Notation . 71

KNN k-Nearest Neighbor . 29

LLM Large Language Model . 18

LSP Language Server Protocol . 9

LSTM Long Short-Term Memory . 29

ML Machine Learning . 3

MLM Masked Language Model . 50

MLP Multi-layer Perceptron . 43

NL Natural Language . 5

NLDSL Natural Language to Domain Specific Language . 55

NLP Natural Language Processing . 30

OOV Out-of-Vocabulary . 39

OS Operating System . 73

PBNL Programming by Natural Language . 18

PCFG Probabilistic Context Free Grammars . 32

PHOG Probabilistic Higher Order Grammar . 33

PL Programming Language . 15

RNN Recurrent Neural Network . 29

SQL Structured Query Language . 20

UML Unified Modeling Language . 20

VSCode Visual Studio Code . 28

XML Extensible Markup Language . 20

YAML Yet Another Markup Language . 75

194

Bibliography

3Blue1Brown (2017). Neural Networks. url: https://www.youtube.com/playlist?list=
PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi. (Accessed: 05 February 2024).

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., and Arshad, H.
(2018). “State-of-the-art in artificial neural network applications: A survey”. In: Heliyon 4.11.

Abney, S. P. (1992). “Parsing by chunks”. In: Principle-based parsing: Computation and Psy-
cholinguistics, pp. 257–278.

Acciarini, C., Cappa, F., Boccardelli, P., and Oriani, R. (2023). “How can organizations leverage
big data to innovate their business models? A systematic literature review”. In: Technovation
123, p. 102713.

Agadumo, J. (2023). Top 10 Data Preparation Tools Revolutionizing the Analytics Landscape
in 2023. url: https://www.datameer.com/blog/top- 10- data- preparation- tools-
revolutionizing-the-analytics-landscape-in-2023/. (Accessed: 22 January 2024).

Ahmad, W. U., Chakraborty, S., Ray, B., and Chang, K.-W. (2021). “Unified pre-training for
program understanding and generation”. In: arXiv preprint arXiv:2103.06333.

AIP Group (2022a). AIP Webpage for DSLs Creation with NLDSL Visual Studio Code Extension.
url: https://aip.ifi.uni-heidelberg.de/software/nldsl/custom-dsl-creation.
(Accessed: 01 March 2024).

AIP Group (2022b). AIP Webpage for NLDSL Visual Studio Code Extension. url: https:
//aip.ifi.uni-heidelberg.de/software/nldsl. (Accessed: 01 March 2024).

Alammar, J. (2018a). The Illustrated Transformer. url: https : / / jalammar . github . io /
illustrated-transformer/. (Accessed: 12 February 2024).

Alammar, J. (2018b). Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq
Models With Attention). url: https : / / jalammar . github . io / visualizing - neural -
machine- translation- mechanics- of- seq2seq- models- with- attention/. (Accessed:
12 February 2024).

Alharthi, A., Krotov, V., and Bowman, M. (2017). “Addressing barriers to big data”. In: Business
Horizons 60.3, pp. 285–292.

Allamanis, M., Barr, E. T., Devanbu, P., and Sutton, C. (2018). “A Survey of Machine Learning
for Big Code and Naturalness”. In: ACM Comput. Surv. 51.4, 81:1–81:37. doi: 10.1145/
3212695. url: http://doi.acm.org/10.1145/3212695.

Alon, U., Sadaka, R., Levy, O., and Yahav, E. (2020a). “Structural Language Models of Code”.
In: arXiv:1910.00577. url: http://arxiv.org/abs/1910.00577 (visited on February 28,
2020).

195

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.datameer.com/blog/top-10-data-preparation-tools-revolutionizing-the-analytics-landscape-in-2023/
https://www.datameer.com/blog/top-10-data-preparation-tools-revolutionizing-the-analytics-landscape-in-2023/
https://aip.ifi.uni-heidelberg.de/software/nldsl/custom-dsl-creation
https://aip.ifi.uni-heidelberg.de/software/nldsl
https://aip.ifi.uni-heidelberg.de/software/nldsl
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
http://doi.acm.org/10.1145/3212695
http://arxiv.org/abs/1910.00577

Bibliography

Alon, U., Sadaka, R., Levy, O., and Yahav, E. (2020b). “Structural language models of code”.
In: International conference on machine learning. tex.organization: PMLR, 245–256.

Alves, I. R. (2023). Making your life easier with domain-specific languages (DSLs). url: https:
/ / medium . com / wearewaes / making - your - life - easier - with - domain - specific -
languages-dsl-1838d351d35. (Accessed: 10 January 2024).

Ammirato, S., Felicetti, A. M., Linzalone, R., Corvello, V., and Kumar, S. (2023). “Still our
most important asset: A systematic review on human resource management in the midst of
the fourth industrial revolution”. In: Journal of Innovation & Knowledge 8.3, p. 100403.

Anaconda (2018). State of Data Science Report. url: https://know.anaconda.com/rs/387-
XNW-688/images/2018-06-Anaconda-State-of-data-science-report.pdf. (Accessed: 17
November 2023).

Anaconda (2020). State of Data Science: Moving from hype toward maturity. url: https://
know.anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-Final.pdf.
(Accessed: 17 November 2023).

Anaconda (2021). State of Data Science: On the path to impact. url: https://know.anaconda.
com/rs/387-XNW-688/images/Anaconda-2021-SODS-Report-Final.pdf. (Accessed: 17
November 2023).

Anaconda (2022). State of Data Science: Paving the way for innovation. url: https://www.
anaconda.com/resources/whitepapers/state- of- data- science- report- 2022. (Ac-
cessed: 17 November 2023).

Anaconda (2023). State of Data Science: AI takes center stage. url: https://www.anaconda.
com/state-of-data-science-report-2023. (Accessed: 17 November 2023).

Anderson, B. M. (2021). These Are the Fastest-Growing Jobs Around the World. url: https:
//www.linkedin.com/business/talent/blog/talent-strategy/jobs-on-the-rise-
list. (Accessed: 17 November 2023).

Anderson, C. (2015). Creating a data-driven organization: Practical advice from the trenches.
O’Reilly Media, Inc.

Andrzejak, A., Kiefer, K., Costa, D. E., and Wenz, O. (2019a). “Agile construction of data science
DSLs (tool demo)”. In: Proceedings of the 18th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, pp. 27–33.

Andrzejak, A., Wenz, O., and Costa, D. (2019b). “One DSL to Rule Them All: IDE-Assisted
Code Generation for Agile Data Analysis”. In: arXiv preprint arXiv:1904.09818. doi: https:
//doi.org/10.48550/arXiv.1904.09818.

Appen (2019). The State of AI and Machine Learning. url: https://visit.appen.com/WC-
2019-State-of- AI- Report-LP.html?utm_source=Web&utm_medium=ResourceCenter.
(Accessed: 20 November 2023).

Asare, O., Nagappan, M., and Asokan, N (2022). “Is github’s copilot as bad as humans at
introducing vulnerabilities in code?” In: arXiv preprint arXiv:2204.04741.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). “Layer normalization”. In: arXiv preprint
arXiv:1607.06450.

196

https://medium.com/wearewaes/making-your-life-easier-with-domain-specific-languages-dsl-1838d351d35
https://medium.com/wearewaes/making-your-life-easier-with-domain-specific-languages-dsl-1838d351d35
https://medium.com/wearewaes/making-your-life-easier-with-domain-specific-languages-dsl-1838d351d35
https://know.anaconda.com/rs/387-XNW-688/images/2018-06-Anaconda-State-of-data-science-report.pdf
https://know.anaconda.com/rs/387-XNW-688/images/2018-06-Anaconda-State-of-data-science-report.pdf
https://know.anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-Final.pdf
https://know.anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-Final.pdf
https://know.anaconda.com/rs/387-XNW-688/images/Anaconda-2021-SODS-Report-Final.pdf
https://know.anaconda.com/rs/387-XNW-688/images/Anaconda-2021-SODS-Report-Final.pdf
https://www.anaconda.com/resources/whitepapers/state-of-data-science-report-2022
https://www.anaconda.com/resources/whitepapers/state-of-data-science-report-2022
https://www.anaconda.com/state-of-data-science-report-2023
https://www.anaconda.com/state-of-data-science-report-2023
https://www.linkedin.com/business/talent/blog/talent-strategy/jobs-on-the-rise-list
https://www.linkedin.com/business/talent/blog/talent-strategy/jobs-on-the-rise-list
https://www.linkedin.com/business/talent/blog/talent-strategy/jobs-on-the-rise-list
https://doi.org/https://doi.org/10.48550/arXiv.1904.09818
https://doi.org/https://doi.org/10.48550/arXiv.1904.09818
https://visit.appen.com/WC-2019-State-of-AI-Report-LP.html?utm_source=Web&utm_medium=ResourceCenter
https://visit.appen.com/WC-2019-State-of-AI-Report-LP.html?utm_source=Web&utm_medium=ResourceCenter

Bibliography

Bahdanau, D., Cho, K., and Bengio, Y. (2015). “Neural Machine Translation by Jointly Learning
to Align and Translate”. In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. url: http://
arxiv.org/abs/1409.0473.

BARC (2015). Insufficient Skills Are Curbing the Big Data Boom. url: https://bi-survey.
com/challenges-big-data-analytics. (Accessed: 21 November 2023).

Barke, S., James, M. B., and Polikarpova, N. (2023). “Grounded copilot: How programmers
interact with code-generating models”. In: Proceedings of the ACM on Programming Languages
7.OOPSLA1, pp. 85–111.

Bayer, J. S. (2015). “Learning sequence representations”. PhD thesis. Technische Universität
München.

Bengio, Y., Ducharme, R., and Vincent, P. (2000). “A neural probabilistic language model”. In:
Advances in neural information processing systems 13.

Bengio, Y., Goodfellow, I., and Courville, A. (2017). Deep learning. Vol. 1. MIT press Cambridge,
MA, USA.

Bettini, L. (2016). Implementing domain-specific languages with Xtext and Xtend. Packt Pub-
lishing Ltd.

Bielik, P., Raychev, V., and Vechev, M. (2016). “PHOG: Probabilistic Model for Code”. In:
Proceedings of The 33rd International Conference on Machine Learning. Vol. 48. Proceedings
of Machine Learning Research. New York, New York, USA: PMLR, pp. 2933–2942. url:
http://proceedings.mlr.press/v48/bielik16.html.

Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk, T., and Gazit,
I. (2022). “Taking Flight with Copilot: Early insights and opportunities of AI-powered pair-
programming tools”. In: Queue 20.6, pp. 35–57.

Bock, A. C. and Frank, U. (2021). “Low-code platform”. In: Business & Information Systems
Engineering 63, pp. 733–740.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polozov, O. (2019). “Generative Code
Modeling with Graphs”. In: International Conference on Learning Representations (ICLR
2019). url: http://arxiv.org/abs/1805.08490.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). “Language models are few-shot learners”. In:
Advances in neural information processing systems 33, pp. 1877–1901.

Cai, Y., Mao, S., Wu, W., Wang, Z., Liang, Y., Ge, T., Wu, C., You, W., Song, T., Xia,
Y., et al. (2023). “Low-code LLM: Visual Programming over LLMs”. In: arXiv preprint
arXiv:2304.08103.

Cambronero, J., Gulwani, S., Le, V., Perelman, D., Radhakrishna, A., Simon, C., and Tiwari,
A. (2023). “FlashFill++: Scaling programming by example by cutting to the chase”. In: Pro-
ceedings of the ACM on Programming Languages 7.POPL, pp. 952–981.

Campagne, F. (2014). The MPS language workbench: volume I. Vol. 1. Fabien Campagne.

197

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://bi-survey.com/challenges-big-data-analytics
https://bi-survey.com/challenges-big-data-analytics
http://proceedings.mlr.press/v48/bielik16.html
http://arxiv.org/abs/1805.08490

Bibliography

Carpenter, A. (2021). 7 Tips to Help You Learn a New Programming Language Fast. url:
https://www.codecademy.com/resources/blog/how-to-learn-a-new-programming-
language-fast/. (Accessed: 22 June 2023).

Charitsis, C., Piech, C., and Mitchell, J. C. (2022). “Using nlp to quantify program decomposition
in cs1”. In: Proceedings of the Ninth ACM Conference on Learning@ Scale, pp. 113–120.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda, Y.,
Joseph, N., Brockman, G., et al. (2021). “Evaluating large language models trained on code”.
In: arXiv preprint arXiv:2107.03374.

Chen, S. F. and Goodman, J. (1999). “An empirical study of smoothing techniques for language
modeling”. In: Computer Speech & Language 13.4, pp. 359–394.

Chen, X., Liu, C., and Song, D. (2018). “Tree-to-tree neural networks for program translation”.
In: Advances in neural information processing systems 31.

Chirkova, N. and Troshin, S. (2020). “A simple approach for handling out-of-vocabulary identi-
fiers in deep learning for source code”. In: arXiv preprint arXiv:2010.12663.

Chirkova, N. and Troshin, S. (2021). “Empirical study of transformers for source code”. In:
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 703–715.

Choi, Y., Na, C., Kim, H., and Lee, J.-H. (2023). “READSUM: Retrieval-Augmented Adaptive
Transformer for Source Code Summarization”. In: IEEE Access.

Ciniselli, M., Cooper, N., Pascarella, L., Mastropaolo, A., Aghajani, E., Poshyvanyk, D., Di
Penta, M., and Bavota, G. (2021a). “An Empirical Study on the Usage of Transformer Models
for Code Completion”. In: IEEE Transactions on Software Engineering.

Ciniselli, M., Cooper, N., Pascarella, L., Poshyvanyk, D., Di Penta, M., and Bavota, G.
(2021b). “An Empirical Study on the Usage of BERT Models for Code Completion”. In:
2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR),
pp. 108–119. doi: 10.1109/MSR52588.2021.00024.

Córdoba-Sánchez, I. and De Lara, J. (2016). “Ann: A domain-specific language for the effective
design and validation of Java annotations”. In: Computer Languages, Systems & Structures
45, pp. 164–190.

CrowdFlower (2015). Data Scientist Report. url: https://visit.figure-eight.com/2015-
data-scientist-report. (Accessed: 17 November 2023).

CrowdFlower (2016). Data Science Report. url: https://visit.figure-eight.com/rs/416-
ZBE- 142/images/CrowdFlower_DataScienceReport_2016.pdf. (Accessed: 17 November
2023).

CrowdFlower (2017). Data Scientist Report. url: https://visit.figure-eight.com/rs/416-
ZBE-142/images/CrowdFlower_DataScienceReport.pdf. (Accessed: 17 November 2023).

Dai, D., Dong, L., Hao, Y., Sui, Z., Chang, B., and Wei, F. (2022). “Knowledge Neurons in
Pretrained Transformers”. In: Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8493–8502.

198

https://www.codecademy.com/resources/blog/how-to-learn-a-new-programming-language-fast/
https://www.codecademy.com/resources/blog/how-to-learn-a-new-programming-language-fast/
https://doi.org/10.1109/MSR52588.2021.00024
https://visit.figure-eight.com/2015-data-scientist-report
https://visit.figure-eight.com/2015-data-scientist-report
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport.pdf

Bibliography

Dakhel, A. M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M. C., and Jiang, Z. M. J.
(2023). “Github copilot ai pair programmer: Asset or liability?” In: Journal of Systems and
Software 203, p. 111734.

Databricks (2023). State of Data + AI. url: https://www.databricks.com/discover/state-
of-data-ai. (Accessed: 22 November 2023).

Davenport, T. H. and Patil, D. (2012). Data Scientist: The Sexiest Job of the 21st Century. url:
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century.
(Accessed: 31 October 2023).

Davenport, T. H. and Patil, D. (2022). Is Data Scientist Still the Sexiest Job of the 21st Century?
url: https://hbr.org/2022/07/is-data-scientist-still-the-sexiest-job-of-the-
21st-century. (Accessed: 31 October 2023).

Dearmer, A. (2023). Top 12 Data Preparation Tools. url: https://www.integrate.io/blog/
top-data-preparation-tools/. (Accessed: 22 January 2024).

Dehaerne, E., Dey, B., Halder, S., De Gendt, S., and Meert, W. (2022). “Code generation using
machine learning: A systematic review”. In: IEEE Access 10, pp. 82434 –82455.

Dejanović, I., Dejanović, M., Vidaković, J., and Nikolić, S. (2021). “PyFlies: A Domain-Specific
Language for Designing Experiments in Psychology”. In: Applied Sciences 11.17, p. 7823.

Dejanović, I., Vaderna, R., Milosavljević, G., and Vuković, Ž. (2017). “Textx: a python tool for
domain-specific languages implementation”. In: Knowledge-based systems 115, pp. 1–4.

DeLine, R. A. (2021). “Glinda: Supporting data science with live programming, GUIs and a
Domain-specific Language”. In: Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, pp. 1–11.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). “BERT: Pre-training of deep
bidirectional transformers for language understanding”. In: arXiv preprint arXiv:1810.04805.

Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., and Ziane, M. (2012). “Robotml, a domain-
specific language to design, simulate and deploy robotic applications”. In: Simulation, Mod-
eling, and Programming for Autonomous Robots: Third International Conference, SIMPAR
2012, Tsukuba, Japan, November 5-8, 2012. Proceedings 3. Springer, pp. 149–160.

Di Ruscio, D., Kolovos, D., Lara, J. de, Pierantonio, A., Tisi, M., and Wimmer, M. (2022). “Low-
code development and model-driven engineering: Two sides of the same coin?” In: Software
and Systems Modeling 21.2, pp. 437–446.

Ding, R., Zhang, C., Wang, L., Xu, Y., Ma, M., Zhang, W., Qin, S., Rajmohan, S., Lin, Q., and
Zhang, D. (2023). “Everything of thoughts: Defying the law of penrose triangle for thought
generation”. In: arXiv preprint arXiv:2311.04254.

Ding, Y., Buratti, L., Pujar, S., Morari, A., Ray, B., and Chakraborty, S. (2021). “Contrastive
Learning for Source Code with Structural and Functional Properties”. In: arXiv preprint
arXiv:2110.03868.

Doshi, K. (2021). Transformers Explained Visually (Part 3): Multi-head Attention, deep dive.
url: https://towardsdatascience.com/transformers-explained-visually-part-3-
multi-head-attention-deep-dive-1c1ff1024853. (Accessed: 12 February 2024).

199

https://www.databricks.com/discover/state-of-data-ai
https://www.databricks.com/discover/state-of-data-ai
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2022/07/is-data-scientist-still-the-sexiest-job-of-the-21st-century
https://hbr.org/2022/07/is-data-scientist-still-the-sexiest-job-of-the-21st-century
https://www.integrate.io/blog/top-data-preparation-tools/
https://www.integrate.io/blog/top-data-preparation-tools/
https://towardsdatascience.com/transformers-explained-visually-part-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visually-part-3-multi-head-attention-deep-dive-1c1ff1024853

Bibliography

Drosos, I., Barik, T., Guo, P. J., DeLine, R., and Gulwani, S. (2020). “Wrex: A unified
programming-by-example interaction for synthesizing readable code for data scientists”. In:
Proceedings of the 2020 CHI conference on human factors in computing systems, pp. 1–12.

Egidi, M. (2006). “Decomposition patterns in problem solving”. In: Contributions to Economic
Analysis 280, pp. 15–46.

Elgohary, A., Meek, C., Richardson, M., Fourney, A., Ramos, G., and Awadallah, A. H. (2021).
“NL-EDIT: Correcting semantic parse errors through natural language interaction”. In: arXiv
preprint arXiv:2103.14540.

Elshan, E., Dickhaut, E., and Ebel, P. A. (2023). “An investigation of why low code platforms
provide answers and new challenges”. In: Proceedings of the 56th Hawaii International Con-
ference on System Sciences, pp. 6159–6168.

Erdweg, S., Van Der Storm, T., Völter, M., Tratt, L., Bosman, R., Cook, W. R., Gerritsen, A.,
Hulshout, A., Kelly, S., Loh, A., et al. (2015). “Evaluating and comparing language work-
benches: Existing results and benchmarks for the future”. In: Computer Languages, Systems
& Structures 44, pp. 24–47.

Evtikhiev, M., Bogomolov, E., Sokolov, Y., and Bryksin, T. (2023). “Out of the bleu: how should
we assess quality of the code generation models?” In: Journal of Systems and Software 203,
p. 111741.

Fan, A., Gardent, C., Braud, C., and Bordes, A. (2021). “Augmenting transformers with KNN-
based composite memory for dialog”. In: Transactions of the Association for Computational
Linguistics 9, pp. 82–99.

Felleisen, M. (1990). “On the expressive power of programming languages”. In: European Sym-
posium on Programming. Springer, pp. 134–151.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D.,
et al. (2020). “Codebert: A pre-trained model for programming and natural languages”. In:
arXiv preprint arXiv:2002.08155.

FigureEight (2018). Data Scientist Report. url: https://visit.figure-eight.com/rs/416-
ZBE-142/images/Data-Scientist-Report.pdf. (Accessed: 20 November 2023).

Foote, K. D. (2021). A Brief History of Data Science. url: https://www.dataversity.net/
brief-history-data-science/. (Accessed: 18 December 2023).

Fowler, M. (2010). Domain-Specific languages. Addison-Wesley Professional.
Gafner, J. (2023). Best Jobs of 2023. url: https://www.indeed.com/career-advice/news/

best-jobs-of-2023. (Accessed: 31 October 2023).
Gal, Y. and Ghahramani, Z. (2016). “A Theoretically Grounded Application of Dropout in

Recurrent Neural Networks”. In: Advances in Neural Information Processing Systems 29.
Curran Associates, Inc., pp. 1019–1027. url: http://papers.nips.cc/paper/6241- a-
theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.
pdf.

Geva, M., Schuster, R., Berant, J., and Levy, O. (2021). “Transformer Feed-Forward Layers
Are Key-Value Memories”. In: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 5484–5495.

200

https://visit.figure-eight.com/rs/416-ZBE-142/images/Data-Scientist-Report.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/Data-Scientist-Report.pdf
https://www.dataversity.net/brief-history-data-science/
https://www.dataversity.net/brief-history-data-science/
https://www.indeed.com/career-advice/news/best-jobs-of-2023
https://www.indeed.com/career-advice/news/best-jobs-of-2023
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf

Bibliography

Gozalo-Brizuela, R. and Garrido-Merchan, E. C. (2023). “ChatGPT is not all you need. A State
of the Art Review of large Generative AI models”. In: arXiv preprint arXiv:2301.04655.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). “Speech recognition with deep recurrent
neural networks”. In: 2013 IEEE international conference on acoustics, speech and signal
processing. Ieee, pp. 6645–6649.

Grootendorst, M. (2024). A Visual Guide to Mamba and State Space Models. url: https:
//newsletter.maartengrootendorst.com/p/a- visual- guide- to- mamba- and- state.
(Accessed: 31 March 2024).

Gu, A. and Dao, T. (2023). “Mamba: Linear-time sequence modeling with selective state spaces”.
In: arXiv preprint arXiv:2312.00752.

Gu, A., Goel, K., and Ré, C. (2021a). “Efficiently modeling long sequences with structured state
spaces”. In: arXiv preprint arXiv:2111.00396.

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra, A., and Ré, C. (2021b). “Combin-
ing recurrent, convolutional, and continuous-time models with linear state space layers”. In:
Advances in neural information processing systems 34, pp. 572–585.

Gulwani, S. (2011). “Automating string processing in spreadsheets using input-output exam-
ples”. In: ACM Sigplan Notices 46.1, pp. 317–330.

Gür, I., Yavuz, S., Su, Y., and Yan, X. (2018). “Dialsql: Dialogue based structured query gen-
eration”. In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1339–1349.

Gvero, T. and Kuncak, V. (2015). “Synthesizing Java expressions from free-form queries”. In:
Proceedings of the 2015 acm sigplan international conference on object-oriented programming,
systems, languages, and applications, pp. 416–432.

Haan, K. (2024). The Best Data Analytics Tools Of 2024. url: https://www.forbes.com/
advisor/business/software/best-data-analytics-tools/. (Accessed: 11 January 2024).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–
778.

Heer, J., Hellerstein, J. M., and Kandel, S. (2015). “Predictive Interaction for Data Transfor-
mation.” In: CIDR.

Hellendoorn, V. J., Proksch, S., Gall, H. C., and Bacchelli, A. (2019). “When code comple-
tion fails: A case study on real-world completions”. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, pp. 960–970.

Heyman, G., Huysegems, R., Justen, P., and Van Cutsem, T. (2021). “Natural language-guided
programming”. In: Proceedings of the 2021 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, pp. 39–55.

Hilgers, L. (2022). The Fastest-Growing Jobs Around the World. url: https://www.linkedin.
com/business/talent/blog/talent- strategy/fastest- growing- jobs- global. (Ac-
cessed: 17 November 2023).

201

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
https://www.forbes.com/advisor/business/software/best-data-analytics-tools/
https://www.forbes.com/advisor/business/software/best-data-analytics-tools/
https://www.linkedin.com/business/talent/blog/talent-strategy/fastest-growing-jobs-global
https://www.linkedin.com/business/talent/blog/talent-strategy/fastest-growing-jobs-global

Bibliography

Hilgers, L. (2023). The Fastest-Growing Jobs Around the World in 2023. url: https://www.
linkedin.com/business/talent/blog/talent-acquisition/fastest-growing-jobs-
2023. (Accessed: 17 November 2023).

Hindle, A., Barr, E. T., Gabel, M., Su, Z., and Devanbu, P. (2016). “On the naturalness of
software”. In: Communications of the ACM 59.5, pp. 122–131.

Hirzel, M. (2023). “Low-code programming models”. In: Communications of the ACM 66.10,
pp. 76–85.

Hochreiter, S. and Schmidhuber, J. (1997). “Long Short-Term Memory”. In: Neural Computation
9.8, pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735. url: https://doi.org/10.1162/
neco.1997.9.8.1735.

Hoffman, K. L., Padberg, M., Rinaldi, G., et al. (2013). “Traveling salesman problem”. In:
Encyclopedia of operations research and management science 1, pp. 1573–1578.

Huang, S., Zhong, W., Lu, J., Zhu, Q., Gao, J., Liu, W., Hou, Y., Zeng, X., Wang, Y., Shang,
L., et al. (2024). “Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool
Utilization in Real-World Complex Scenarios”. In: arXiv preprint arXiv:2401.17167.

Hussain, Y., Huang, Z., and Zhou, Y. (2021). “Improving source code suggestion with code
embedding and enhanced convolutional long short-term memory”. In: IET Software 15.3,
pp. 199–213.

Hussain, Y., Huang, Z., Zhou, Y., and Wang, S. (2020). “CodeGRU: Context-aware deep learning
with gated recurrent unit for source code modeling”. In: Information and Software Technology
125, p. 106309.

Imai, S. (2022). “Is GitHub copilot a substitute for human pair-programming? An empirical
study”. In: Proceedings of the ACM/IEEE 44th International Conference on Software Engi-
neering: Companion Proceedings, pp. 319–321.

Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., and Zettlemoyer, L. (2017). “Learning a
neural semantic parser from user feedback”. In: arXiv preprint arXiv:1704.08760.

Izadi, M., Gismondi, R., and Gousios, G. (2022). “Codefill: Multi-token code completion by
jointly learning from structure and naming sequences”. In: Proceedings of the 44th Interna-
tional Conference on Software Engineering. ISBN: 978-1-4503-9221-1. New York, NY, USA:
Association for Computing Machinery, pp. 401–412. doi: 10.1145/3510003.3510172. url:
https://doi.org/10.1145/3510003.3510172.

Jaimovitch-López, G., Ferri, C., Hernández-Orallo, J., Martínez-Plumed, F., and Ramírez-
Quintana, M. J. (2023). “Can language models automate data wrangling?” In: Machine Learn-
ing 112.6, pp. 2053–2082.

Janiesch, C., Zschech, P., and Heinrich, K. (2021). “Machine learning and deep learning”. In:
Electronic Markets 31.3, pp. 685–695.

JetBrains (2017). Voice Menu - a concrete example of MPS. url: https : / / youtu . be /
pVIywLXDuRo?si=UT2oDcJyryjFwPHV. (Accessed: 07 January 2024).

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. d. l., Bressand,
F., Lengyel, G., Lample, G., Saulnier, L., et al. (2023a). “Mistral 7B”. In: arXiv preprint
arXiv:2310.06825.

202

https://www.linkedin.com/business/talent/blog/talent-acquisition/fastest-growing-jobs-2023
https://www.linkedin.com/business/talent/blog/talent-acquisition/fastest-growing-jobs-2023
https://www.linkedin.com/business/talent/blog/talent-acquisition/fastest-growing-jobs-2023
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3510003.3510172
https://doi.org/10.1145/3510003.3510172
https://youtu.be/pVIywLXDuRo?si=UT2oDcJyryjFwPHV
https://youtu.be/pVIywLXDuRo?si=UT2oDcJyryjFwPHV

Bibliography

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot, D. S.,
Casas, D. d. l., Hanna, E. B., Bressand, F., et al. (2024). “Mixtral of experts”. In: arXiv
preprint arXiv:2401.04088.

Jiang, H., Wu, Q., Lin, C.-Y., Yang, Y., and Qiu, L. (2023b). “Llmlingua: Compressing prompts
for accelerated inference of large language models”. In: arXiv preprint arXiv:2310.05736.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press, O., and Narasimhan, K. R. (2023).
“SWE-bench: Can Language Models Resolve Real-world Github Issues?” In: The Twelfth
International Conference on Learning Representations.

Johannessen, C. and Davenport, T. (2021). When Low-Code/No-Code Development Works - and
When It Doesn’t. url: https://hbr.org/2021/06/when-low-code-no-code-development-
works-and-when-it-doesnt. (Accessed: 02 January 2024).

Jurafsky, D. and Martin, J. H. (2008). “Speech and Language Processing: An introduction to
speech recognition, computational linguistics and natural language processing”. In: Upper
Saddle River, NJ: Prentice Hall.

Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K. (2020). “Learning and evaluating contex-
tual embedding of source code”. In: International Conference on Machine Learning. PMLR,
pp. 5110–5121.

Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J. (2011). “Wrangler: Interactive visual spec-
ification of data transformation scripts”. In: Proceedings of the sigchi conference on human
factors in computing systems, pp. 3363–3372.

Kanerva, P. (1992). Sparse distributed memory and related models. Tech. rep.
Karampatsis, R.-M., Babii, H., Robbes, R., Sutton, C., and Janes, A. (2020). “Big code!= big vo-

cabulary: Open-vocabulary models for source code”. In: 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE, pp. 1073–1085.

Karl, T. (2023). The Power of No-Code and Low-Code Data Analysis Tools in Building a Data-
Driven Decision-Making Culture. url: https://www.newhorizons.com/resources/blog/
no-code-low-code-data-analysis-tools. (Accessed: 21 December 2023).

Kats, L. C. and Visser, E. (2010). “The Spoofax language workbench: rules for declarative
specification of languages and IDEs”. In: Proceedings of the ACM international conference on
Object oriented programming systems languages and applications, pp. 444–463.

Kelleher, J. D. (2019). Deep learning. MIT press.
Khandelwal, U., Fan, A., Jurafsky, D., Zettlemoyer, L., and Lewis, M. (2020). “Nearest neighbor

machine translation”. In: arXiv preprint arXiv:2010.00710.
Kim, S., Zhao, J., Tian, Y., and Chandra, S. (2021). “Code prediction by feeding trees to

transformers”. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, pp. 150–162.

Kingma, D. P. and Ba, J. (2015). “Adam: A Method for Stochastic Optimization”. In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings. url: http://arxiv.org/abs/1412.6980.

203

https://hbr.org/2021/06/when-low-code-no-code-development-works-and-when-it-doesnt
https://hbr.org/2021/06/when-low-code-no-code-development-works-and-when-it-doesnt
https://www.newhorizons.com/resources/blog/no-code-low-code-data-analysis-tools
https://www.newhorizons.com/resources/blog/no-code-low-code-data-analysis-tools
http://arxiv.org/abs/1412.6980

Bibliography

Knime (2023). Decoding the Data Universe: State of Data Science and Machine Learning. url:
https://info.knime.com/state-of-data-science-and-machine-learning. (Accessed:
21 November 2023).

Komeili, M., Shuster, K., and Weston, J. (2022). “Internet-Augmented Dialogue Generation”.
In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 8460–8478.

Korz, N. and Andrzejak, A. (2023). “Virtual Domain Specific Languages via Embedded Pro-
jectional Editing”. In: Proceedings of the 22nd ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, pp. 122–137.

Kosar, T., Martı, P. E., Barrientos, P. A., Mernik, M., et al. (2008). “A preliminary study on
various implementation approaches of domain-specific language”. In: Information and software
technology 50.5, pp. 390–405.

Lakin, M. R. and Phillips, A. (2020). “Domain-specific programming languages for computa-
tional nucleic acid systems”. In: ACS Synthetic Biology 9.7, pp. 1499–1513.

Le, K. T. and Andrzejak, A. (2024). “Rethinking AI Code Generation: A One-shot Correction
Approach Based on User Feedback”. In: Automated Software Engineering 31.60. doi: 10.
1007/s10515-024-00451-y.

Le, K. T., Rashidi, G., and Andrzejak, A. (2023). “A methodology for refined evaluation of neural
code completion approaches”. In: Data Mining and Knowledge Discovery 37.1, pp. 167–204.
doi: 10.1007/s10618-022-00866-9.

Le, T. H. M., Chen, H., and Babar, M. A. (2020). “Deep learning for source code modeling and
generation: Models, applications, and challenges”. In: ACM Computing Surveys (CSUR) 53.3,
pp. 1–38.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M.,
Yih, W.-t., Rocktäschel, T., et al. (2020). “Retrieval-augmented generation for knowledge-
intensive nlp tasks”. In: Advances in Neural Information Processing Systems 33, pp. 9459–
9474.

Li, J., Wang, Y., Lyu, M. R., and King, I. (2018). “Code Completion with Neural Attention
and Pointer Networks”. In: Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. ISBN: 978-0-
9992411-2-7. ijcai.org, pp. 4159–4165. doi: 10.24963/ijcai.2018/578. url: https://doi.
org/10.24963/ijcai.2018/578.

Li, M., Zhao, Y., Yu, B., Song, F., Li, H., Yu, H., Li, Z., Huang, F., and Li, Y. (2023a). “API-
Bank: A Comprehensive Benchmark for Tool-Augmented LLMs”. In: Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 3102–3116.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C.,
Li, J., Chim, J., et al. (2023b). “Starcoder: may the source be with you!” In: arXiv preprint
arXiv:2305.06161.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J.,
Gimeno, F., Dal Lago, A., et al. (2022). “Competition-level code generation with alphacode”.
In: Science 378.6624, pp. 1092–1097.

204

https://info.knime.com/state-of-data-science-and-machine-learning
https://doi.org/10.1007/s10515-024-00451-y
https://doi.org/10.1007/s10515-024-00451-y
https://doi.org/10.1007/s10618-022-00866-9
https://doi.org/10.24963/ijcai.2018/578
https://doi.org/10.24963/ijcai.2018/578
https://doi.org/10.24963/ijcai.2018/578

Bibliography

Liu, C., Wang, X., Shin, R., Gonzalez, J. E., and Song, D. (2017). Neural Code Completion.
url: https://openreview.net/forum?id=rJbPBt9lg.

Liu, F., Li, G., Zhao, Y., and Jin, Z. (2020). “Multi-task Learning based Pre-trained Language
Model for Code Completion”. In: 2020 35th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, pp. 473–485.

Lu, S., Duan, N., Han, H., Guo, D., Hwang, S.-w., and Svyatkovskiy, A. (2022). “ReACC: A
retrieval-augmented code completion framework”. In: arXiv preprint arXiv:2203.07722.

Luo, Y., Liang, P., Wang, C., Shahin, M., and Zhan, J. (2021). “Characteristics and challenges of
low-code development: the practitioners’ perspective”. In: Proceedings of the 15th ACM/IEEE
international symposium on empirical software engineering and measurement (ESEM), pp. 1–
11.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). “Effective Approaches to Attention-based
Neural Machine Translation”. In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Ed. by L. Màrquez, C. Callison-Burch, and J. Su. Lisbon,
Portugal: Association for Computational Linguistics, pp. 1412–1421. doi: 10.18653/v1/D15-
1166. url: https://aclanthology.org/D15-1166.

Makonin, S., McVeigh, D., Stuerzlinger, W., Tran, K., and Popowich, F. (2016). “Mixed-initiative
for big data: The intersection of human+ visual analytics+ prediction”. In: 2016 49th Hawaii
international conference on system sciences (HICSS). IEEE, pp. 1427–1436.

Managoli, G. (2020). What developers need to know about domain-specific languages. url: https:
//opensource.com/article/20/2/domain-specific-languages. (Accessed: 07 January
2024).

Martinez, E. and Pfister, L. (2023). “Benefits and limitations of using low-code development
to support digitalization in the construction industry”. In: Automation in Construction 152,
p. 104909.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. (2022). “Locating and editing factual as-
sociations in GPT”. In: Advances in Neural Information Processing Systems 35, pp. 17359–
17372.

Mernik, M., Heering, J., and Sloane, A. M. (2005). “When and how to develop domain-specific
languages”. In: ACM computing surveys (CSUR) 37.4, pp. 316–344.

Microsoft (2022). Anatomy of a Visual Studio extension. url: https://learn.microsoft.com/
en-us/visualstudio/extensibility/vsix/get-started/extension-anatomy. (Accessed:
06 March 2024).

Microsoft (2023). Use Azure Pipelines. url: https://learn.microsoft.com/en-us/azure/
devops/pipelines/get-started/pipelines-get-started. (Accessed: 06 March 2024).

Mikalef, P., Wetering, R. van de, and Krogstie, J. (2021). “Building dynamic capabilities by
leveraging big data analytics: The role of organizational inertia”. In: Information & Manage-
ment 58.6, p. 103412.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). “Efficient estimation of word repre-
sentations in vector space”. In: arXiv preprint arXiv:1301.3781.

205

https://openreview.net/forum?id=rJbPBt9lg
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://aclanthology.org/D15-1166
https://opensource.com/article/20/2/domain-specific-languages
https://opensource.com/article/20/2/domain-specific-languages
https://learn.microsoft.com/en-us/visualstudio/extensibility/vsix/get-started/extension-anatomy
https://learn.microsoft.com/en-us/visualstudio/extensibility/vsix/get-started/extension-anatomy
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-started
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-started

Bibliography

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). “Distributed represen-
tations of words and phrases and their compositionality”. In: Advances in neural information
processing systems 26.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013c). “Linguistic regularities in continuous space word
representations”. In: Proceedings of the 2013 conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Atlanta, Georgia:
Association for Computational Linguistics, pp. 746–751.

Mohapatra, N., Sarraf, N., et al. (2021). “Domain based chunking”. In: International Journal
on Natural Language Computing (IJNLC) Vol 10.

Nadkarni, P. M., Ohno-Machado, L., and Chapman, W. W. (2011). “Natural language pro-
cessing: an introduction”. In: Journal of the American Medical Informatics Association 18.5,
pp. 544–551. doi: 10.1136/amiajnl-2011-000464. eprint: http://oup.prod.sis.lan/
jamia/article-pdf/18/5/544/5962687/18-5-544.pdf. url: https://doi.org/10.1136/
amiajnl-2011-000464.

Nguyen, N. and Nadi, S. (2022). “An empirical evaluation of GitHub copilot’s code suggestions”.
In: Proceedings of the 19th International Conference on Mining Software Repositories, pp. 1–5.

Nguyen, T. T., Nguyen, A. T., Nguyen, H. A., and Nguyen, T. N. (2013). “A statistical semantic
language model for source code”. In: Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pp. 532–542.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S., and Xiong, C.
(2022). “Codegen: An open large language model for code with multi-turn program synthesis”.
In: arXiv preprint arXiv:2203.13474.

OpenAI (2023). Function calling and other API updates. url: https://openai.com/blog/
function-calling-and-other-api-updates. (Accessed: 31 March 2024).

Pachev, A. (2007). Understanding MySQL Internals. O’Reilly Media, Inc.
Pan, R., Ibrahimzada, A. R., Krishna, R., Sankar, D., Wassi, L. P., Merler, M., Sobolev, B.,

Pavuluri, R., Sinha, S., and Jabbarvand, R. (2024). “Lost in translation: A study of bugs
introduced by large language models while translating code”. In: 2024 IEEE/ACM 46th In-
ternational Conference on Software Engineering (ICSE). IEEE Computer Society, pp. 866–
866.

Parvez, M. R., Ahmad, W. U., Chakraborty, S., Ray, B., and Chang, K.-W. (2021). “Retrieval
augmented code generation and summarization”. In: arXiv preprint arXiv:2108.11601.

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013). “How to construct deep recurrent
neural networks”. In: arXiv preprint arXiv:1312.6026.

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., and Karri, R. (2022). “Asleep at the keyboard?
assessing the security of github copilot’s code contributions”. In: 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, pp. 754–768.

Penke, C. (2022). A mathematician’s introduction to transformers and large language models.
url: https://x-dev.pages.jsc.fz-juelich.de/2022/07/13/transformers-matmul.
html. (Accessed: 29 June 2024).

206

https://doi.org/10.1136/amiajnl-2011-000464
http://oup.prod.sis.lan/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf
http://oup.prod.sis.lan/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1136/amiajnl-2011-000464
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates
https://x-dev.pages.jsc.fz-juelich.de/2022/07/13/transformers-matmul.html
https://x-dev.pages.jsc.fz-juelich.de/2022/07/13/transformers-matmul.html

Bibliography

Petricek, T., Den Burg, G. J. van, Nazábal, A., Ceritli, T., Jiménez-Ruiz, E., and Williams,
C. K. (2022). “AI Assistants: A Framework for Semi-Automated Data Wrangling”. In: IEEE
Transactions on Knowledge and Data Engineering.

Pfleger, D. (2020). “Building a wizard to support developers in generating new DSLs using the
NLDSL framework”. BA thesis. Heidelberg University, Germany.

Pingali, K. (2023). Introduction to Parsing (adapted from CS 164 at Berkeley). url: https:
//www.cs.utexas.edu/~pingali/CS380C/2023/lectures/parsing/parsingIntro.pdf.
(Accessed: 01 February 2024).

Poupart, P. (2019). CS480/680 Lecture 19: Attention and Transformer Networks. url: https:
//www.youtube.com/watch?v=OyFJWRnt_AY. (Accessed: 18 February 2024).

Pourcel, J., Vu, N.-S., and French, R. M. (2022). “Online task-free continual learning with
dynamic sparse distributed memory”. In: European Conference on Computer Vision. Springer,
pp. 739–756.

Press, G. (2013). A Very Short History Of Data Science. url: https://www.forbes.com/
sites/gilpress/2013/05/28/a-very-short-history-of-data-science/. (Accessed: 18
December 2023).

Provost, F. and Fawcett, T. (2013). “Data science and its relationship to big data and data-driven
decision making”. In: Big data 1.1, pp. 51–59.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). “Improving language un-
derstanding by generative pre-training”. In: OpenAI.

Rahman, M. M., Watanobe, Y., and Nakamura, K. (2020). “A neural network based intelligent
support model for program code completion”. In: Scientific Programming 2020, pp. 1–18.

Ramshaw, L. A. and Marcus, M. P. (1999). “Text chunking using transformation-based learning”.
In: Natural language processing using very large corpora, pp. 157–176.

Rashidi, G. (2021). “Code Token Type Taxonomy for Transformer-Based Code Completion”.
BA thesis. Heidelberg University, Germany.

Raychev, V., Bielik, P., and Vechev, M. (2016). “Probabilistic Model for Code with Decision
Trees”. In: Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOPSLA 2016. ISBN: 978-1-
4503-4444-9. Amsterdam, Netherlands: ACM, pp. 731–747. doi: 10.1145/2983990.2984041.
url: http://doi.acm.org/10.1145/2983990.2984041.

Raychev, V., Vechev, M., and Yahav, E. (2014). “Code completion with statistical language
models”. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 419–428.

Raza, M. and Gulwani, S. (2017). “Automated data extraction using predictive program syn-
thesis”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. 1.

RedHat (2019). What is an IDE? url: https://www.redhat.com/en/topics/middleware/
what-is-ide. (Accessed: 27 January 2024).

Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., Sundaresan, N., Zhou, M., Blanco, A., and
Ma, S. (2020). “Codebleu: a method for automatic evaluation of code synthesis”. In: arXiv
preprint arXiv:2009.10297.

207

https://www.cs.utexas.edu/~pingali/CS380C/2023/lectures/parsing/parsingIntro.pdf
https://www.cs.utexas.edu/~pingali/CS380C/2023/lectures/parsing/parsingIntro.pdf
https://www.youtube.com/watch?v=OyFJWRnt_AY
https://www.youtube.com/watch?v=OyFJWRnt_AY
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://doi.org/10.1145/2983990.2984041
http://doi.acm.org/10.1145/2983990.2984041
https://www.redhat.com/en/topics/middleware/what-is-ide
https://www.redhat.com/en/topics/middleware/what-is-ide

Bibliography

Reynolds, L. and McDonell, K. (2021). “Prompt programming for large language models: Beyond
the few-shot paradigm”. In: Extended Abstracts of the 2021 CHI Conference on Human Factors
in Computing Systems, pp. 1–7.

Richardson, C., Rymer, J. R., Mines, C., Cullen, A., and Whittaker, D. (2014). “New devel-
opment platforms emerge for customer-facing applications”. In: Forrester: Cambridge, MA,
USA 15.

Robillard, M., Walker, R., and Zimmermann, T. (2010). “Recommendation Systems for Software
Engineering”. In: IEEE Software 27.4, pp. 80–86. doi: 10.1109/MS.2009.161.

Roziere, B., Lachaux, M.-A., Chanussot, L., and Lample, G. (2020). “Unsupervised transla-
tion of programming languages”. In: Advances in neural information processing systems 33,
pp. 20601–20611.

Rubin, J. (2023). DataGPT Launches out of Stealth to Help Users Talk Directly to Their Data
Using Everyday Language. url: https://datagpt.com/blog/datagpt- launches/. (Ac-
cessed: 23 January 2024).

Sagi, O. and Rokach, L. (2018). “Ensemble learning: A survey”. In: Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 8.4, e1249.

Saint-Exupéry, A. d. (2016). The Little Prince. Trans. by M. Herbert and Cillero & de Motta.
ISBN: 978-3-7306-0420-5. Anaconda Verlag.

Sajnani, H. (2016). Large-scale code clone detection. University of California, Irvine.
Sanaulla, M. (2013). Creating Internal DSLs in Java and Java 8. url: https://dzone.com/

articles/creating-internal-dsls-java. (Accessed: 07 January 2024).
Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Hambro, E., Zettlemoyer, L.,

Cancedda, N., and Scialom, T. (2024). “Toolformer: Language models can teach themselves
to use tools”. In: Advances in Neural Information Processing Systems 36.

Schlegel, V., Lang, B., Handschuh, S., and Freitas, A. (2019). “Vajra: step-by-step programming
with natural language”. In: Proceedings of the 24th International Conference on Intelligent
User Interfaces, pp. 30–39.

Schmitt, O. (2019). “Development of a Code Fragment Recommender System using the Lan-
guage Server Protocol in the Context of Data Analysis with Python”. BA thesis. Heidelberg
University, Germany.

Schumacher, M. E. H. (2019). “Combining Deep Learning and Probabilistic Models for Intelli-
gent Code Completion in Dynamically Typed Languages”. BA thesis. Heidelberg University,
Germany.

Schumacher, M. E. H., Le, K. T., and Andrzejak, A. (2020). “Improving code recommenda-
tions by combining neural and classical machine learning approaches”. In: Proceedings of the
IEEE/ACM 42nd international conference on software engineering workshops, pp. 476–482.
doi: 10.1145/3387940.3391489.

Scott, M. (2000). Programming language pragmatics. Morgan Kaufmann.
Sharma, R., Chen, F., Fard, F., and Lo, D. (2022). “An exploratory study on code attention

in BERT”. In: Proceedings of the 30th IEEE/ACM International Conference on Program
Comprehension, pp. 437–448.

208

https://doi.org/10.1109/MS.2009.161
https://datagpt.com/blog/datagpt-launches/
https://dzone.com/articles/creating-internal-dsls-java
https://dzone.com/articles/creating-internal-dsls-java
https://doi.org/10.1145/3387940.3391489

Bibliography

Sharma, S., Sharma, S., and Athaiya, A. (2020). “Activation functions in neural networks”.
In: International Journal of Engineering Applied Sciences and Technology (IJEAST 4.12,
pp. 310–316.

Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats, I., Moazen, H., and Sarro, F. (2024).
“A survey on machine learning techniques applied to source code”. In: Journal of Systems and
Software 209, p. 111934.

Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). “Self-attention with relative position represen-
tations”. In: arXiv preprint arXiv:1803.02155.

Shen, Y., Dasgupta, S., and Navlakha, S. (2023). “Reducing Catastrophic Forgetting With As-
sociative Learning: A Lesson From Fruit Flies”. In: Neural Computation 35.11, pp. 1797–
1819.

Shin, J. and Nam, J. (2021). “A survey of automatic code generation from natural language”.
In: Journal of Information Processing Systems 17.3, pp. 537–555.

Shrestha, N., Barik, T., and Parnin, C. (2021). “Unravel: A fluent code explorer for data wran-
gling”. In: The 34th Annual ACM Symposium on User Interface Software and Technology,
pp. 198–207.

Souza Baulé, D. de, Wangenheim, C. G. von, Wangenheim, A. von, and Hauck, J. C. (2020).
“Recent Progress in Automated Code Generation from GUI Images Using Machine Learning
Techniques.” In: J. Univers. Comput. Sci. 26.9, pp. 1095–1127.

Stanford (2015). Context-Free Grammars. Mathematical Foundations of Computing Course.
url: https://web.stanford.edu/class/archive/cs/cs103/cs103.1164/fall1516/
lectures/20/Slides20.pdf. (Accessed: 01 February 2024).

Su, Y., Hassan Awadallah, A., Wang, M., and White, R. W. (2018). “Natural language interfaces
with fine-grained user interaction: A case study on web APIs”. In: The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval, pp. 855–864.

Sun, J., Liao, Q. V., Muller, M., Agarwal, M., Houde, S., Talamadupula, K., and Weisz, J. D.
(2022). “Investigating explainability of generative AI for code through scenario-based design”.
In: 27th International Conference on Intelligent User Interfaces, pp. 212–228.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence learning with neural
networks”. In: Advances in neural information processing systems 27.

Svozil, D., Kvasnicka, V., and Pospichal, J. (1997). “Introduction to multi-layer feed-forward
neural networks”. In: Chemometrics and intelligent laboratory systems 39.1, pp. 43–62.

Svyatkovskiy, A., Deng, S. K., Fu, S., and Sundaresan, N. (2020). “Intellicode compose: Code
generation using transformer”. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pp. 1433–1443.

Svyatkovskiy, A., Zhao, Y., Fu, S., and Sundaresan, N. (2019). “Pythia: Ai-assisted code comple-
tion system”. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2727–2735.

Tabesh, P., Mousavidin, E., and Hasani, S. (2019). “Implementing big data strategies: A man-
agerial perspective”. In: Business Horizons 62.3, pp. 347–358.

209

https://web.stanford.edu/class/archive/cs/cs103/cs103.1164/fall1516/lectures/20/Slides20.pdf
https://web.stanford.edu/class/archive/cs/cs103/cs103.1164/fall1516/lectures/20/Slides20.pdf

Bibliography

Taylor, P. (2023). Amount of data created, consumed, and stored 2010-2020, with forecasts to
2025. url: https://www.statista.com/statistics/871513/worldwide-data-created.
(Accessed: 03 November 2023).

TheDataScientist (2023). Why Do Most Data Science Learners Fail? url: https://thedatascientist.
com/the-data-scientist-march-newsletter-why-do-most-data-science-learners-
fail-heres-a-free-call-with-an-expert-to-help-guide-you/. (Accessed: 19 Decem-
ber 2023).

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A.,
Bos, T., Baker, L., Du, Y., et al. (2022). “Lamda: Language models for dialog applications”.
In: arXiv preprint arXiv:2201.08239.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., et al. (2023a). “Llama: Open and efficient foundation
language models”. In: arXiv preprint arXiv:2302.13971.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra,
S., Bhargava, P., Bhosale, S., et al. (2023b). “Llama 2: Open foundation and fine-tuned chat
models”. In: arXiv preprint arXiv:2307.09288.

Tu, Z., Su, Z., and Devanbu, P. (2014). “On the Localness of Software”. In: Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.
FSE 2014. ISBN: 978-1-4503-3056-5. Hong Kong, China: ACM, pp. 269–280. doi: 10.1145/
2635868.2635875. url: http://doi.acm.org/10.1145/2635868.2635875.

Vaithilingam, P., Zhang, T., and Glassman, E. L. (2022). “Expectation vs. experience: Evaluating
the usability of code generation tools powered by large language models”. In: Chi conference
on human factors in computing systems extended abstracts, pp. 1–7.

Van Der Aalst, W. (2016). Data science in action. Springer.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and

Polosukhin, I. (2017). “Attention is all you need”. In: Advances in neural information process-
ing systems 30.

Vincent, P., Iijima, K., Leow, A., West, M., and Matvitskyy, O. (2022). Gartner Magic Quad-
rant for Enterprise Low-Code Application Platforms. url: https://www.gartner.com/en/
documents/4022825. (Accessed: 02 January 2024).

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). “Pointer Networks”. In: Advances in Neural
Information Processing Systems 28. Curran Associates, Inc., pp. 2692–2700. url: http://
papers.nips.cc/paper/5866-pointer-networks.pdf.

Waibel, T. (2021). “Improving a tool for using Domain Specific Languages (NLDSL)”. BA thesis.
Heidelberg University, Germany.

Walz, P. and Neef, J. (2020). DeepDSL. Heidelberg University, Germany.
Wang, L., Xu, W., Lan, Y., Hu, Z., Lan, Y., Lee, R. K.-W., and Lim, E.-P. (2023a). “Plan-and-

solve prompting: Improving zero-shot chain-of-thought reasoning by large language models”.
In: arXiv preprint arXiv:2305.04091.

210

https://www.statista.com/statistics/871513/worldwide-data-created
https://thedatascientist.com/the-data-scientist-march-newsletter-why-do-most-data-science-learners-fail-heres-a-free-call-with-an-expert-to-help-guide-you/
https://thedatascientist.com/the-data-scientist-march-newsletter-why-do-most-data-science-learners-fail-heres-a-free-call-with-an-expert-to-help-guide-you/
https://thedatascientist.com/the-data-scientist-march-newsletter-why-do-most-data-science-learners-fail-heres-a-free-call-with-an-expert-to-help-guide-you/
https://doi.org/10.1145/2635868.2635875
https://doi.org/10.1145/2635868.2635875
http://doi.acm.org/10.1145/2635868.2635875
https://www.gartner.com/en/documents/4022825
https://www.gartner.com/en/documents/4022825
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf

Bibliography

Wang, P., Fan, E., and Wang, P. (2021a). “Comparative analysis of image classification algo-
rithms based on traditional machine learning and deep learning”. In: Pattern Recognition
Letters 141, pp. 61–67.

Wang, S., Geng, M., Lin, B., Sun, Z., Wen, M., Liu, Y., Li, L., Bissyandé, T. F., and Mao, X.
(2023b). “Natural Language to Code: How Far Are We?” In: Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 375–387.

Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H., and Ji, H. (2023c). “MINT: Evalu-
ating LLMs in Multi-turn Interaction with Tools and Language Feedback”. In: The Twelfth
International Conference on Learning Representations.

Wang, Y. and Li, H. (2021b). “Code completion by modeling flattened abstract syntax trees
as graphs”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 16,
pp. 14015–14023.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. (2021c). “CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation”. In: arXiv preprint
arXiv:2109.00859.

Weber, P. (2020). “Enhancing IDE Support for DSL Programming”. BA thesis. Heidelberg
University, Germany.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al.
(2022). “Chain-of-thought prompting elicits reasoning in large language models”. In: Advances
in Neural Information Processing Systems 35, pp. 24824–24837.

Weisz, J. D., Muller, M., Ross, S. I., Martinez, F., Houde, S., Agarwal, M., Talamadupula, K.,
and Richards, J. T. (2022). “Better together? An evaluation of AI-supported code translation”.
In: 27th International Conference on Intelligent User Interfaces, pp. 369–391.

Wells, R. (2023). The Future Of Work: 5 High-Demand Jobs In 2023. url: https://www.
forbes.com/sites/rachelwells/2023/09/18/the-future-of-work-5-high-demand-
jobs-in-2023. (Accessed: 31 October 2023).

Weng, G. and Andrzejak, A. (2023). “Automatic Bug Fixing via Deliberate Problem Solving
with Large Language Models”. In: 2023 IEEE 34th International Symposium on Software
Reliability Engineering Workshops (ISSREW). IEEE, pp. 34–36.

Weng, L. (2018). Attention? Attention! url: https://lilianweng.github.io/posts/2018-
06-24-attention/. (Accessed: 12 February 2024).

Wenz, O. (2019). “An IDE-supported DSL for Data Science”. BA thesis. Heidelberg University,
Germany.

Wöhrer, M. and Zdun, U. (2020). “Domain specific language for smart contract development”.
In: 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE,
pp. 1–9.

Wu, S. (2024). Introducing Devin, the first AI software engineer. url: https://www.cognition-
labs.com/introducing-devin. (Accessed: 30 March 2024).

Wu, Y., Rabe, M. N., Hutchins, D., and Szegedy, C. (2022). “Memorizing transformers”. In:
arXiv preprint arXiv:2203.08913.

211

https://www.forbes.com/sites/rachelwells/2023/09/18/the-future-of-work-5-high-demand-jobs-in-2023
https://www.forbes.com/sites/rachelwells/2023/09/18/the-future-of-work-5-high-demand-jobs-in-2023
https://www.forbes.com/sites/rachelwells/2023/09/18/the-future-of-work-5-high-demand-jobs-in-2023
https://lilianweng.github.io/posts/2018-06-24-attention/
https://lilianweng.github.io/posts/2018-06-24-attention/
https://www.cognition-labs.com/introducing-devin
https://www.cognition-labs.com/introducing-devin

Bibliography

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang, L., and
Liu, T. (2020). “On layer normalization in the transformer architecture”. In: International
Conference on Machine Learning. PMLR, pp. 10524–10533.

Xu, F. F., Vasilescu, B., and Neubig, G. (2022). “In-IDE code generation from natural language:
Promise and challenges”. In: ACM Transactions on Software Engineering and Methodology
(TOSEM) 31.2, pp. 1–47.

Xue, M., Andrzejak, A., and Leuther, M. (2023). “An interpretable error correction method for
enhancing code-to-code translation”. In: The Twelfth International Conference on Learning
Representations.

Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Yin, B., and Hu, X. (2023). “Har-
nessing the power of llms in practice: A survey on chatgpt and beyond”. In: arXiv preprint
arXiv:2304.13712.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., and Narasimhan, K. (2024). “Tree
of thoughts: Deliberate problem solving with large language models”. In: Advances in Neural
Information Processing Systems 36.

Yin, P. and Neubig, G. (2018). “Tranx: A transition-based neural abstract syntax parser for
semantic parsing and code generation”. In: arXiv preprint arXiv:1810.02720.

Zaman, A. U. (2023). Pandas vs PySpark..! url: https://medium.com/geekculture/pandas-
vs-pyspark-fe110c266e5c. (Accessed: 22 April 2024).

Zeng, P., Lin, G., Pan, L., Tai, Y., and Zhang, J. (2020). “Software vulnerability analysis and
discovery using deep learning techniques: A survey”. In: IEEE Access 8, pp. 197158–197172.

Zhang, T., Damerau, F., and Johnson, D. (2002). “Text chunking based on a generalization of
Winnow.” In: Journal of Machine Learning Research 2.4.

Zhao, R., Chen, H., Wang, W., Jiao, F., Do, X. L., Qin, C., Ding, B., Guo, X., Li, M., Li, X.,
et al. (2023). “Retrieving multimodal information for augmented generation: A survey”. In:
arXiv preprint arXiv:2303.10868.

212

https://medium.com/geekculture/pandas-vs-pyspark-fe110c266e5c
https://medium.com/geekculture/pandas-vs-pyspark-fe110c266e5c

Part VI

Appendix

213

Appendix AData Science-related Jobs
A Glimpse of The Past Decade

The term “Data Science” emerged in the early 1960s when scientists observed the advancement
of mathematical statistics with the aid from computers (Press, 2013; Foote, 2021). Throughout
the years, data science continued to evolve and became one of the fastest growing fields across
every industry1. To supplement our motivation mentioned in Chapter 1, this appendix presents
a quick overview of jobs related to data science over the last ten years. Besides, relevant obstacles
that data scientists and practitioners face while accomplishing their tasks are also discussed.

A.1 The Rise of Data Science-related Jobs

Data science-related jobs are considered among the most rapidly-growing worldwide.

In the book Data Science in Action, Wil Van Der Aalst identified 12 main ingredients of
data science, from statistics and algorithms to data mining, machine learning, visualization, and
ethics (Van Der Aalst, 2016). He also pointed out that it is difficult to combine all different
skills needed in a single person, i.e. a unicorn data scientist. Therefore, it is unsurprising that
data scientist was appraised as the sexiest job2 in 2012 (Davenport et al., 2012).

Ten years later, data scientist retains its place in the list of high-demand occupations together
with a variety of other data science-related jobs (Davenport et al., 2022; Wells, 2023; Gafner,
2023). A series of Jobs on the Rise reports published by LinkedIn unveils a consistent presence
of data science positions in the past three years (Anderson, 2021; Hilgers, 2022; Hilgers, 2023).
Additionally, a brief analysis of search interest in data science professions also augments this
job trend. To illustrate the ascent of these jobs over the past decade, we compare them with a
pivotal role, human resource, which remains essential irrespective of the pace of technological
advancement (Ammirato et al., 2023).

Figure A.1 presents the Google Trends3 of the four search terms data scientist, data analyst,
data engineer4, and human resource from 2013 to 2023. It is intriguing to observe that the trends
of data scientist, data analyst, and human resource gradually converge over the years from 2013
to 2022 in the favor of the human resource search term. The notable shift occurred in July of

1What is data science, https://www.ibm.com/topics/data-science.
2The term is utilized by Thomas H. Davenport and DJ Patil to emphasize the high demand of the job.
3Google Trends, https://trends.google.com/trends/explore.
4Job titles are obtained from a study program of University of Adelaide, Australia, https://online.adelaide.

edu.au/blog/data-scientist-vs-data-analyst-vs-data-engineer.
(Accessed: 03 November 2023).

A1

https://www.ibm.com/topics/data-science
https://trends.google.com/trends/explore
https://online.adelaide.edu.au/blog/data-scientist-vs-data-analyst-vs-data-engineer
https://online.adelaide.edu.au/blog/data-scientist-vs-data-analyst-vs-data-engineer

A. Data Science-related Jobs:
A Glimpse of The Past Decade

0

20

40

60

80

100

2013 2015 2017 2019 2021 2023

In
te

re
st

 o
v
er

 t
im

e

Year

data scientist data analyst data engineer human resource

Figure A.1: Interest over time* of data science-related jobs from 2013 to 2023 via Google Trends.

* The numbers exhibit search interest relative to the highest point on the chart for the given region and time.

2023 when the term data analyst reached the peak popularity of the period and surpassed all the
remaining keywords. This finding reaffirms that data science has achieved extensive recognition.

Nevertheless, the accelerated development of data science has unveiled not only a myriad of
opportunities but also unneglectable challenges. Multiple surveys have been conducted to gain
deeper insights into this fast-growing discipline. In the subsequent sections, we summarize the
main obstacles which foster the inspiration for this dissertation.

A.2 Time Allocation for a Data Scientist

Data scientists generally allocate a significant portion of their time to data cleansing and
preparation, a practice that remains accurate until recently.

CrowdFlower published their first Data Scientist Report in 2015, pointing out that cleaning
and organizing data is the most time-consuming task and also the least interesting part of data
scientists’ jobs, cited by two-thirds of their survey respondents (CrowdFlower, 2015). To further
clarify this issue in recent years, Figure A.2 epitomizes reports published from various sources
in the 2016–2022 period for the question “How do data scientists spend their time?”.

Overall, data scientists are dedicating reduced amounts of time on data cleaning and prepa-
ration over the years. However, these tasks still account for over one-third of their time as
estimated in the 2022 survey (Anaconda, 2022). Specifically, until 2016, data scientists devoted
nearly 80% of their time for preprocessing and preparing data, namely 60% for cleaning and
organizing data and 19% for collecting data sets (CrowdFlower, 2016).

These portions in total were then significantly decreased to more than a half (i.e. 51%) as
reported in CrowdFlower (2017). While the surveys published in 2018 left out the considering
question (FigureEight, 2018; Anaconda, 2018), a report distributed by Appen (2019)5 addressed
a similar inquiry, which reveals 73.5% of their technical respondents spend 25% or more of their
time on managing, cleaning, and/or labeling data. Ultimately, statistics disclosed in 2020–2022

5CrowdFlower is the former name for both FigureEight and Appen.

A2

A.3. Technical and Analytical Know-how Problem

51%

Other

Refining

algorithms

Mining data

for patterns

Building and

modeling data

Preparing

data*

60%

19%

Other

Refining

algorithms

Mining data for

patterns

Building training

sets

Collecting data

sets

Cleaning &

organizing data

2016

(CrowdFlower)

2017

(CrowdFlower)
2018-2019 2020

(Anaconda)

2021

(Anaconda)

2022

(Anaconda)

Tasks related to data cleansing and preparation

26%

19%

Data

visualization

Deploying

models

Model training

and scoring

Model selection

Data loading

Data cleansing 17%

22%

Reporting and

presentation

Data visualization

Deploying models

Model training

Model selection

Data preparation

Data cleansing 16%

22%

Other

Reporting and

presentation
Data

visualization
Deploying

models
Model training

Model selection

Data preparation

Data cleansing

Figure A.2: Summary of surveys from multiple sources from 2016 to 2022** on the question
“How do data scientists spend their time?”.

* The authors grouped collecting, labeling, cleaning and organizing data into one task.
** Surveys published in 2018 and 2019 do not cover the exact considering question.

present a slight decline of time consumed for tasks related to data cleaning and preparation,
from 45% to 39% and 38%, respectively (Anaconda, 2020; Anaconda, 2021; Anaconda, 2022).

By 2023, although surveys released in this year did not cover the exact same questionnaire,
participants still reaffirmed the trend. Namely, data preparation and data cleaning are the two
most time consuming tasks (Anaconda, 2023), and also the second most regular and challenging
steps in the data science lifecycle, with data access being the first one (Knime, 2023).

In other words, lessening time for preparing data would boost performance of data scientists
in their more interesting tasks, e.g. mining data for patterns, building and modeling data, and
refining algorithms (CrowdFlower, 2017). However, surveys over the past decade also uncovered
numerous programming languages and data science tool-kits that impede data scientists in
efficiently accomplishing their tasks (BARC, 2015; Knime, 2023). The following section briefly
discusses these typical obstacles.

A.3 Technical and Analytical Know-how Problem

Researchers and practitioners must engage a plethora of programming languages and data
science tool-kits.

Microsoft Excel was formerly reported as the most commonly used tool among data scien-
tists, along with 47 other programming languages and tools, such as Python, R, Tableau6,
and SAS7 (CrowdFlower, 2015). However, from 2016 to 2023, Python has gradually overtaken
this position, becoming the most popular programming language of data science (Databricks,
2023). Notably, a report of Anaconda (2018) illustrates that Matplotlib (i.e. a plotting library
for Python) was the most used visualization tool cited by 74.82% of respondents, while Excel

6Business intelligence and analytics software, https://www.tableau.com/.
7Statistical Analysis Software, https://www.sas.com/en_us/home.html.

(Accessed: 22 November, 2023)

A3

https://www.tableau.com/
https://www.sas.com/en_us/home.html

A. Data Science-related Jobs:
A Glimpse of The Past Decade

belongs to the Other category (9.39%), alongside Microsoft Power BI8, TIBCO Spotfire9,
Qlik10, and Altair11.
Additionally, surveys released since 2018 observed a proliferation of Machine Learning (ML)

frameworks, including Pandas, NumPy, Scikit-learn, and around 25 other frameworks, such as
TensorFlow, PyTorch, and Seaborn (FigureEight, 2018; Appen, 2019). Recent reports on data
science from Anaconda (2020; 2021; 2022) consider six to 14 popular programming languages
used by data scientists, researchers, students, and professionals.

These numbers reiterate the rapid evolution of the data science field, where new tools and
techniques continuously emerge. Data scientists and practitioners must keep pace with the latest
developments and acquire new skills for effective task completion (TheDataScientist, 2023).

Practitioners face the roadblock of switching between programming languages when moving
their data science models to production environments.

In 2020, Anaconda highlighted that the competitive advantage in data science stems from
deploying ML models and other outputs. However, transitioning to production poses challenges
beyond the control of data professionals (Anaconda, 2020). Notably, 17% of data scientists, 27%
of developers, and 11% of system administrators faced the roadblock of re-coding models from
Python/R to another language.

The surveys published by Anaconda two years later unveiled similar trends, with the ratio
reaching 26% of total respondents in 2022 (Anaconda, 2021; Anaconda, 2022). Additionally,
re-coding models from another language to Python/R is also added to their top-10 obstacles. In
other words, this roadblock results in the need of facilitating translation from one programming
language to another with minimum effort for end-users.

8Data visualization software, https://www.microsoft.com/en-us/power-platform/products/power-bi.
9Analytics platform, https://www.spotfire.com/.

10Business analytics platform, https://www.qlik.com/us/.
11Software and cloud solutions for simulation, Internet of Things, high performance computing, data analytics,

and artificial intelligence, https://altair.com/company.
(Accessed: 22 November, 2023).

A4

https://www.microsoft.com/en-us/power-platform/products/power-bi
https://www.spotfire.com/
https://www.qlik.com/us/
https://altair.com/company

Appendix BArtificial Neural Network
Fundamental Concepts and Techniques

This appendix provides fundamental concepts and techniques of neural networks, establishing
the foundation for comprehending the underlying architectures of models discussed in Chapter
2, Section 2.2.4. For further explanation of neural networks and related techniques, we refer
to Deep Learning (DL) books such as Bengio et al. (2017), Kelleher (2019) or videos from
3Blue1Brown (2017) for visual effects.

B.1 Overview of Artificial Neural Networks

Neural networks or Artificial Neural Networks (ANNs) encompass processing elements known as
neurons or nodes, arranged in layers. A standard ANN comprises one input layer, one or more
hidden layers (at least two in DL networks), and one output layer, mimicking the structure of
the human brain (Svozil et al., 1997). Figure B.1 illustrates an ANN architecture with two
hidden layers.

Input layer Hidden layers Output layer

…

…

…

(a)

wij
xj xi

bj
bi

(b)

A connection from neuron xj to neuron xi

Neuron or node

Connection or synapse

Data input/output

w Weight coefficient

b Bias value of a neuron

…

Figure B.1: An example of ANN with two hidden layers.

Typically, each neuron in the network receives input signals, processes them, and emits an
output signal. Neurons in one layer are linked to at least one neuron in the next layer via
connections, also known as synapses. Each connection is assigned a weight coefficient, a real
number representing its significance in the network (Svozil et al., 1997).

The output signal of a neuron, known as its activation value, indicates the activated level of
the neuron in influencing the network’s output. The neuron convert input signals (e.g. numeric
values) into an activation level by multiplying each input value by a weight w, summing the

B1

B. Artificial Neural Network:
Fundamental Concepts and Techniques

results, and then passing the weighted sum plus the neuron’s bias value b through an activation
function f . Considering neuron xi and all neurons xj connected to it in Figure B.1(b), the
output value of xi is defined by Equations B.1 and B.2.

xi = f(zi) (B.1)

zi = (∑
j

wij ∗ xj) + bi (B.2)

It is worth mentioning that most activation functions in ANNs are nonlinear, facilitating the
learning of nonlinear mappings between inputs and outputs, capturing complex relationships
inherent in real-world data. Commonly utilized functions include sigmoid, tanh, ReLU, and
softmax (Sharma et al., 2020). Additionally, the progress of learning or training a neural
network involves weight coefficient adjustments to fulfill specific conditions, such as minimizing
output deviation from target output in supervised learning, or attaining the desired number of
data clusters in unsupervised learning (Svozil et al., 1997; Kelleher, 2019).

B.2 Feed-forward and Recurrent Neural Network

Feed-forward Neural Network (FFNN) is one of the most popular and classical neural net-
works, which does not allow feedback between layers and transmits information in one direction
only, hence the name feed-forward (Svozil et al., 1997). Besides, FFNNs are fully connected,
with each neuron receiving all activation values from all neurons in the preceding layer (Abiodun
et al., 2018). FFNNs are employed in multiple tasks such as classification and clustering. The
ANN displayed in Figure B.1 is also a FFNN.

Recurrent Neural Network (RNN) is another prominent ANN architecture, designed for
sequential data processing. RNN is a feedback neural network with an input layer, a context
layer or a hidden layer with a memory buffer, and an output layer. The hidden layer of an RNN
extends over time, with connections feeding into the subsequent time steps rather than the next
layer as in FFNN (Kelleher, 2019). Figure B.2 illustrates the flow of information in an RNN
through time steps, given that seqlen is the length of the input sequence.

At time step t, each neuron in the hidden layer receives input from the input layer and the
memory buffer. Activation values generated by these neurons are forwarded to the output layer
and concurrently stored in the memory buffer, overwriting the previous values (time step t+0.5).
At the subsequent time step (t+1), a new input from the sequence is fetched, restarting the whole
process. The memory buffer solely retains information calculated by the hidden layer without
processing it. In other words, there are no weight coefficients on connections from hidden layer
to memory buffer. However, weight coefficients still exist on other network connections.

With this architecture, the depth of an RNN correlates with the length of the input sequence
(Kelleher, 2019). Figure B.3 shows the unrolled representation of the RNN architecture through
time, where h0 denotes the initial state of the memory buffer, and h1, h2, ..., hseqlen indicate the
hidden layer at each time step t.

B2

B.3. Problems with Recurrent Neural Networks

Time step t

Input layer

Hidden layer Output layer

Time step (t + 0.5)

Memory

buffer

inputt

Input layer

Hidden layer Output layer

Memory

buffer

inputt

t [1, 2, …, seqlen]
Data flow on connections

with weight coefficients

Data flow on connections

without weight coefficients

Figure B.2: The flow of information in an RNN handling a sequence of inputs with length
seqlen, adapted from Figure 5.2 of Kelleher (2019).

h1h0

Input layer:

Output layer:

out1

in1

h2

out2

in2

ht

outt

int

…
hseqlen

outseqlen

inseqlen

…

Data input/output A set of connections between layers

Figure B.3: Unrolling the RNN architecture depicted in Figure B.2 through time, adapted from
Figure 5.3 of Kelleher (2019).

B.3 Problems with Recurrent Neural Networks

RNNs encounter two widely-known issues when training the neural networks, namely vanishing
and exploding gradient.

Vanishing gradient problem. Despite the capability in processing sequential data, RNNs
face the problem of vanishing gradients, hindering their effectiveness with long sequences. This
challenge arises from RNNs being trained using the backpropagation algorithm (Svozil et al.,
1997), feeding backward the error, i.e. the disparity between generated output and target output,
across the entire network to adjust weight coefficients.

This backpropagation involves iteratively multiplying the error by the same set of weight
coefficients through all states of the hidden layer (i.e. weights from the memory buffer to the
hidden layer). Consequently, if these weights are less than 1, the error gradient diminishes
exponentially concerning the input sequence length, leading to its vanishment. Additionally,

B3

B. Artificial Neural Network:
Fundamental Concepts and Techniques

updates to weight coefficients in the early states (e.g. t = 1) of the hidden layer are insignificant,
thus prolonging model training process (Kelleher, 2019).

Exploding gradient problem. Exploding gradients arise from initial weight coefficients
exceeding 1, leading to amplified values during forward or backpropagation. In RNNs, large
weights can cause unstable networks or chaos, where activation levels in forward propagation
are extremely sensitive to small perturbations of the input (Equation B.2).

Furthermore, excessive weight coefficients may drive activation functions towards saturation
(e.g. reaching 0 or 1 with the sigmoid function), resulting in gradient loss through saturated
units. A possible solution to alleviate the exploding gradient problem is gradient clipping, where
gradient values are bounded by thresholds prior to a gradient descent step (Bengio et al., 2017).

B.4 Long Short-Term Memory

Long Short-Term Memory (LSTM), introduced by Hochreiter et al. (1997), enhances RNNs by
mitigating the vanishing gradient problem through the elimination of repetitive multiplication
of same weight coefficients. Each core processing unit of LSTM, named cell, comprises three
gates: (i) forget gate, (ii) input gate, and (iii) output gate. These gates regulate the flow of
activation values within the cell over time. Each gate consists of layers of standard neurons,
with one neuron per activation value in the cell state (Kelleher, 2019). Figure B.4 demonstrates
the flow of information within an LSTM cell, with explanations of data parameters provided in
Table B.1. The input and output layers are excluded in the diagram.

+

Forget gate Input gate Output gate

inct outct

htht-1

T

T

ctct-1

zt

Vector multiplication

Vector addition

Data flow

Input/output vector

+

Sigmoid activations

T Tanh activations

Figure B.4: The flow of information within an LSTM cell at time step t, adapted from Figure
5.4 of Kelleher (2019). The input and output layers are omitted.

At time step t, input of the cell inct from the input layer and the preceding hidden state ht−1

are concatenated to create vector zt, which is then injected into each gate of the LSTM cell. The
forget gate determines which elements of the cell state ct−1 should be forgotten at time step t,
based on the input zt. This operation involves element-wise multiplication between ct−1 and the
sigmoid vector σ(zt). Elements of σ(zt) approaching 0 indicate corresponding values in ct−1 to
be forgotten, whereas values close to 1 indicate retention.

Subsequently, the input gate controls the updating of activation values within the cell at time
step t by firstly utilizing the sigmoid vector σ(zt) to select which elements of ct−1 should be

B4

B.5. Word Embedding

Table B.1: Meaning of data parameters in Figure B.4.
Parameter Meaning

ct, ct−1 vector (of activation values) of the cell state at time step t and the
preceding time step

ht, ht−1 vector of hidden layer state at time step t and the preceding time step
inct, outct vectors of input and output values of the cell at time step t

zt concatenated vector from inct and ht−1

σ(zt) sigmoid vector with values in range (0, 1)
T (zt) tanh vector with values in range (−1, 1)

updated, similarly to the forget gate. Secondly, the tanh vector T (zt) is employed to calculate
the update values to be incorporated into the cell state. The product of vectors σ(zt) and T (zt)
denotes the update values for specific elements in ct−1. Consequently, the activation values of
the cell state at time step t can be adjusted, i.e., ct = ct−1 + (σ(zt) × T (zt)).

Ultimately, the output gate decides which activation values in the cell state ct contribute to
the cell’s output value, denoted as outct. The cell state ct undergoes processing through a tanh
layer (composed of neurons utilizing the tanh activation function) to derive candidate values.
Subsequently, the tanh vector T (zt) is multiplied by the sigmoid vector σ(zt) to filter relevant
elements. The resultant vector (outct) is propagated to the output layer, while also becoming
the hidden layer state ht of time step t (Kelleher, 2019).

Here, the structure of LSTM alleviates the vanishing gradient problem by refraining from
exponentially fast decaying factors in the error gradient after applying the backpropagation
algorithm (Bayer, 2015). For simplicity, relevant equations are omitted in our discussion.

LSTM architecture is particularly suitable for NLP (Kelleher, 2019). This neural network
is deployed in various code completion models, including those encoding Abstract Syntax Tree
(AST) paths (Svyatkovskiy et al., 2019; Alon et al., 2020b) or in combination with attention
mechanism (Li et al., 2018; Rahman et al., 2020).

B.5 Word Embedding

To enable neural networks for NL or source code processing, transformation of words or code
tokens into numerical vectors is essential. Tomas Mikolov proposed notable methods for this
conversion. Namely, instead of utilizing n-gram models, which lack inherent relationships to
one another, or sparse vectors obtained by one-hot encoding, Mikolov et al. (2013c) investigated
a dense vector representation for words that preserves both syntactic and semantic properties.
These vectors are so called word embeddings.

The underlying concept is that words that have analogous context, i.e. surrounding words,
would have similar meanings (Kelleher, 2019). Consequently, such words exhibit proximity in
vector space, as determined by vector offset, often measured via cosine distance. For instance, the
operation vector(King) - vector(Man) + vector(Woman) yields a vector closely resembling
vector(Queen), exemplifying this phenomenon.

B5

B. Artificial Neural Network:
Fundamental Concepts and Techniques

Mikolov et al. (2013c) employed an RNN architecture to derive word vector representations,
implicitly learned by the input layer weights. Each word is encoded using 1-of-N coding (i.e.
one-hot encoding), with the output layer generating a probability distribution across words. The
dimensionality of both input and output vectors corresponds to the vocabulary size.

In their subsequent publication, Mikolov et al. (2013a) introduced two models for Word2Vec
transformation, drawing inspiration from a probabilistic FFNN language model (Bengio et al.,
2000): Continuous Bag-of-Words (CBOW) and Continuous Skip-gram. While CBOW learns
the representation of a word by predicting the word, given its context, Continuous Skip-gram
gains the representation by predicting the context, given the word itself.

B.6 Variants of the Attention Mechanism

Originally proposed by Bahdanau et al. (2015), the attention mechanism aims to address the
hidden state bottleneck problem (i.e. all information is compressed into a fixed-size vector)
in Seq2seq models (details in Section 2.2.4 of Chapter 2). Luong et al. (2015) simplified and
generalized the attention architecture under several aspects, as summarized in Table B.2.

Table B.2: Variants of attention architectures in Bahdanau et al. (2015) and Luong et al. (2015).
Aspect By Bahdanau et al. (2015) By Luong et al. (2015)

Architecture bidirectional encoder with
unidirectional decoder

stacking LSTM for both encoder
and decoder

Computation path dt−1 → αt
i → ct → dt → outt dt → αt

i → ct → atnt → outt

where atnt = tanh(WC[ct; dt])
is the attention hidden state

Decoder hidden
state dt

computed by a gated hidden
unit from dt−1, outt−1, and ct

obtained from the decoder at
time step t

Attention score additive: v⊺A tanh(WAdt−1 +UAei) concat*: v⊺A tanh(WA[dt; ei])

Output word outt using deep output with a maxout
hidden layer on dt, outt−1, and ct

applying softmax on atnt

* This score function is utilized for global attention. Besides concat, Luong et al. (2015) considered two
alternatives, including dot-product and general.
WC is a learnable parameter, other symbols are explained in Section 2.2.4 of Chapter 2.

For instance, to calculate the output word outt, Luong et al. (2015) simply concatenated the
decoder hidden state dt and the context vector ct to create an attention hidden state atnt. The
softmax value of atnt determines the output word at time step t. In addition, Luong et al.
(2015) used stacking LSTM, instead of bidirectional RNN, for the encoder and an unidirectional
RNN for the decoder, in contrast to Bahdanau et al. (2015).

Furthermore, Luong et al. (2015) categorized their approach into global attention, which
attends to all source words, and local attention, which considers only a subset of source words
at a time. The former (global attention) aligns with the concept proposed by Bahdanau et al.
(2015), as all encoder hidden states are used to derive the context vector. Consequently, the
context vector varies in length, matching the number of time steps to process the input sequence.

B6

B.6. Variants of the Attention Mechanism

In the latter (local attention), Luong et al. (2015) determine an aligned position pt for each
output word at time step t. The context vector is computed as a weighted average over the set
of encoder hidden states within the window [pt −D, pt +D], where D is empirically determined.
While these two attention types differ in how the context vector ct is constructed, they share
subsequent steps, involving transforming ct into the attention hidden state atnt and predicting
the output word outt, as outlined in Table B.2.

B7

The end of this manuscript is reached here.
We hope that our work brought you useful insights.

Thank you for your time.

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	I Preliminaries
	1 Introduction
	1.1 Motivation
	1.2 Research Goals
	1.3 Research Strategy
	1.4 Core Research Questions
	1.5 Contributions
	1.6 Publications
	1.7 Structure of the Dissertation

	2 Background and Related Work
	2.1 Facilitating Data Analysis and Processing in Low-code Manner
	2.1.1 Low-code and No-code Development
	2.1.2 Domain-Specific Languages
	2.1.3 Low-code Tool-kits for Data Analysis and Processing

	2.2 Advancing Programming with Machine Learning-based Approaches
	2.2.1 Application Fields
	2.2.2 The Naturalness Hypothesis
	2.2.3 Traditional Machine Learning Methods for Code Generation
	2.2.4 Deep Learning Techniques for Source Code

	2.3 Transformers and Beyond
	2.3.1 Vanilla Transformer
	2.3.2 Successors of the Transformer Model

	2.4 Summary

	II Practical Contributions
	3 NLDSL Extension: Accelerating Programming for Data Analysis Tasks with Low-code Approaches in Practice
	3.1 Introduction
	3.2 Python-based (vanilla) NLDSL Tool
	3.2.1 Tool Architecture
	3.2.2 DSL Structure
	3.2.3 Core Functionalities

	3.3 NLDSL Visual Studio Code Extension
	3.3.1 DSL Development
	3.3.2 Code Completion-related Features
	3.3.3 Utilities

	3.4 Dissemination
	3.4.1 Managing CI and CD Pipelines on Azure
	3.4.2 Build Instructions in YAML Files

	3.5 Discussion
	3.5.1 Preliminary Evaluation
	3.5.2 Potential Enhancements
	3.5.3 Response to CRQ1

	3.6 Summary

	III Research Contributions
	4 Extended Network: Improving Code Recommendations by Combining Neural and Classical ML Approaches
	4.1 Introduction
	4.2 Background and Related Work
	4.2.1 The Naturalness Hypothesis
	4.2.2 Typical Machine Learning Models for Code Completion
	4.2.3 PHOG and Pointer Mixture Network

	4.3 Extended Network
	4.3.1 The Core Idea
	4.3.2 An Illustrative Model for the Extended Network Architecture
	4.3.3 Component Selection in the Extended Network Model

	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 Experimental Results
	4.4.3 Response to CRQ2

	4.5 Summary

	5 Code Token Type Taxonomy: A Methodology for Refined Evaluation of ML-based Code Completion Approaches
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Machine Learning for Code Completion
	5.2.2 Aggregated and Refined Metrics for Evaluation
	5.2.3 Out-of-Vocabulary Issue

	5.3 Code Token Type Taxonomy
	5.3.1 General Workflow
	5.3.2 CT3 Schema for Python
	5.3.3 Open Vocabulary for Transformers

	5.4 Evaluation
	5.4.1 Research Questions
	5.4.2 Experimental Setup
	5.4.3 Evaluation Results

	5.5 Discussion
	5.5.1 CT3 Challenges
	5.5.2 Threats to Validity
	5.5.3 Response to CRQ3

	5.6 Auxiliary Experiments
	5.6.1 Length Distribution of Terminal Tokens in Python150k
	5.6.2 Length Threshold for Open Vocabulary Building
	5.6.3 Length Threshold for Input Data File Creation in Open Vocabulary Case
	5.6.4 Window Size for Input Data File Creation in Open Vocabulary Case

	5.7 Summary

	6 One-shot Correction: Enhancing Code Generation Models through User Feedback and Decomposition Techniques
	6.1 Introduction
	6.2 Background and Related Work
	6.2.1 Generative Artificial Intelligence for Code
	6.2.2 Interactive Programming
	6.2.3 Decomposition in Problem Solving
	6.2.4 Chunking in Natural Language Processing

	6.3 One-shot Correction
	6.3.1 General Workflow
	6.3.2 Query Chunking
	6.3.3 Sub-snippets Retrieving/Generating
	6.3.4 Code Building

	6.4 Experiments
	6.4.1 Research Questions
	6.4.2 Experimental Setup
	6.4.3 Evaluation Metrics

	6.5 Evaluation Results
	6.5.1 Evaluation Results by Difficulty Level
	6.5.2 Ablation Study
	6.5.3 LLM Involvement

	6.6 Discussion
	6.6.1 Threats to Validity
	6.6.2 Challenges and Potential Enhancements
	6.6.3 Response to CRQ4

	6.7 One-shot Correction GUI
	6.7.1 An Overview of the One-shot Correction GUI
	6.7.2 A Demo of Main Features

	6.8 Summary

	IV Conclusions
	7 Summary
	8 Future Work
	8.1 Improvements for Proposed Approaches
	8.2 Potential Future Research Directions
	8.2.1 Code to Code Translation
	8.2.2 Knowledge-enhanced Large Language Models
	8.2.3 Addressing Transformers' Shortcomings

	V References
	List of Acronyms
	Bibliography

	VI Appendix
	A Data Science-related Jobs: A Glimpse of The Past Decade
	A.1 The Rise of Data Science-related Jobs
	A.2 Time Allocation for a Data Scientist
	A.3 Technical and Analytical Know-how Problem

	B Artificial Neural Network: Fundamental Concepts and Techniques
	B.1 Overview of Artificial Neural Networks
	B.2 Feed-forward and Recurrent Neural Network
	B.3 Problems with Recurrent Neural Networks
	B.4 Long Short-Term Memory
	B.5 Word Embedding
	B.6 Variants of the Attention Mechanism

