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Abstract

The exponential growth of unstructured textual data has emphasised the need for Information
Extraction (IE) to transform raw text into actionable knowledge. IE involves automatically
identifying and categorising relevant entities, relationships, and events within large text corpora. The
ability to extract pertinent information from vast and complex datasets automatically and
accurately has profound implications, from advancing personalised medicine and clinical research to
enhancing the efficiency of information flow in news and media outlets. Pre-annotations generated
by IE systems help alleviate the labour-intensive workload of data annotators by automating the
initial labelling of entities, relationships, and events. This automation reduces the need for manual
identification, allowing annotators to focus on verifying and refining the pre-annotated data, which
significantly speeds up the annotation process.
Supervised learning is one of the primary IE approaches that involve using labelled datasets to
train models. Thus, there are considerable efforts by domain experts to curate gold-standard
datasets. However, real-world data frequently inherit class imbalance, which remains a significant
challenge in IE, where more frequent majority classes often overshadow minority classes that
represent rare but critical entities. This imbalance leads to degraded performance, particularly in
recognising and extracting under-represented classes.
Current literature offers several approaches to mitigate class imbalance, such as undersampling, over-
sampling, and static weighting loss. However, these methods have notable drawbacks. Oversampling
can lead to over-fitting while undersampling risks discarding valuable data. Fixed weighting loss
schemes require extensive manual hyper-parameter tuning, which is time-consuming and often fails
to adapt to the unique characteristics of a dataset. These approaches do not address the core issue:
the need for the model to adaptively learn from the natural class distribution without biasing its
performance towards majority classes.
In response to these limitations, this thesis introduces the Weighted Loss Trainer (WeLT), a novel
adaptive loss function designed to address class imbalance. WeLT adjusts class weights based on the
relative frequency of each class within the dataset, ensuring that misclassifications of minority classes
are penalised more heavily. This approach allows the model to remain sensitive to minority classes
without requiring extensive manual tuning or compromising data integrity.
Evaluations conducted on gold-standard datasets, including biomedical and newswire datasets,
focused on Named Entity Recognition (NER) and Joint Named Entity Recognition and Relation
Extraction (JNERE). Specifically, WeLT was tested on two JNERE paradigms: (a) span-based and
(b) table-filling approaches. Additionally, the impact of WeLT NER on Named Entity Linking was
compared to vanilla NER methods that neglect class imbalance. Our experiments demonstrate that
WeLT effectively addresses class imbalance issues, outperforming traditional fine-tuning approaches
and proving advantages over existing weighting loss schemes.
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Zusammenfassung

Die exponentielle Zunahme unstrukturierter Textdaten steigert die Notwendigkeit von Infor-
mationsextraktion (IE), also von Techniken, unstrukturierte, menschenlesbare Texte in besser
verwertbares Wissen umzuwandeln. IE umfasst das automatische Identifizieren und Kategori-
sieren relevanter Entitäten, Beziehungen und Ereignisse in großen Textkorpora. Die Fähigkeit,
automatisch und präzise relevante Informationen aus umfangreichen und komplexen Datensätzen
zu extrahieren, hat breite Anwendungsmöglichkeiten: Sie reichen von der personalisierten
Medizin und klinischer Forschung bis hin zur Effizienzsteigerung im Informationsfluss von
Nachrichten- und Medienportalen. Von IE-Systemen generierte Annotations-Vorschläge tragen
dazu bei, die Belastung von Datenannotatoren zu verringern, indem sie die Kennzeichnung
von Entitäten, Beziehungen und Ereignissen automatisieren. Diese Automatisierung reduziert
die Notwendigkeit manueller Identifikation und ermöglicht es den Annotatoren, sich auf das
Überprüfen und Verfeinern der vorher annotierten Daten zu konzentrieren, sowie auf das Erkennen
komplexer Relationen. Dies hat das Potential, den Prozess der Datenkuratierung erheblich zu
beschleunigen. Überwachtes Lernen ist einer der wichtigsten Ansätze zur IE, der die Nutzung
von bereits annotierten Datensätzen zur Modellentwicklung beinhaltet. Daher gibt es beträchtliche
Bemühungen von Fachexperten, Standard-Datensätze zu erstellen. Jedoch weisen reale Daten häufig
eine Ungleichverteilung der Daten auf, die in der IE eine große Herausforderung darstellt, da häufig
vorkommende Klassen (Mehrheitsklassen) die Minderheitsklassen, die seltene, aber eigentlich
interessante Entitäten repräsentieren, oft überlagern. Diese Ungleichverteilung führt zu Leistungs-
einbußen, insbesondere bei der Erkennung und Extraktion unterrepräsentierter Klassen. Die
aktuelle Literatur bietet mehrere Ansätze zur Behandlung von Klassenungleichheit, darunter
Undersampling, Oversampling und statische Gewichtung der Verlustfunktion. Diese Methoden
haben jedoch erhebliche Nachteile: Oversampling kann zu Overfitting, also einem Verlust der
Generalisierungsfähigkeiten des Modells führen, während beim Undersampling potentiell wertvolle
Daten aus der Trainingsmenge gestrichen werden. Feste Verlustgewichtungsschemata erfordern
eine umfassende manuelle Einstellung der Hyperparameter, die zeitaufwendig ist und häufig nicht
in der Lage ist, sich an die spezifischen Merkmale eines Datensatzes anzupassen. Diese Ansätze
adressieren nicht das Kernproblem: Das Erfordernis, dass das Modell adaptiv aus der natürlichen
Klassenverteilung lernt, ohne seine Leistung rein auf Mehrheitsklassen auszurichten. Als Antwort
auf diese Einschränkungen führt diese Dissertation den Weighted Loss Trainer (WeLT) ein,
eine neuartige adaptive Verlustfunktion zur Bewältigung von Klassenungleichverteilung. WeLT
passt Klassengewichtungen basierend auf der relativen Häufigkeit jeder Klasse im Datensatz an
und stellt sicher, dass Fehlklassifikationen von Minderheitsklassen beim Lernen stärker gewichtet
werden. Dieser Ansatz ermöglicht es dem Modell, empfindlich gegenüber Minderheitsklassen
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zu bleiben, ohne umfangreiche manuelle Anpassungen oder den Verlust von Datenintegrität zu
erfordern.
Evaluierungen, die im Rahmen dieser Dissertation auf Standard-Datensätzen – darunter bio-
medizinische und Nachrichten-Korpora – durchgeführt wurden, konzentrierten sich auf die
Erkennung benannter Entitäten (NER) und die gleichzeitige Erkennung benannter Entitäten und
Relationsextraktion (Joint Named Entity and Relation Extraction, JNERE). Konkret wurde WeLT
in zwei JNERE-Ansätzen getestet: (a) Span-basierte und (b) tabellenfüllende Ansätze. Darüber
hinaus wurde die Auswirkung von WeLT NER auf die Verknüpfung benannter Entitäten mit
der von herkömmlichen NER-Methoden verglichen, die die Klassenungleichverteilung unberück-
sichtigt lassen. Unsere Experimente zeigen, dass WeLT das Problem der Klassenungleichverteilung
effektiv angeht und herkömmliche Fine-Tuning-Ansätze übertrifft und gegenüber bestehenden
Verlustgewichtungsschemata Vorteile bietet.
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1 Introduction

Picture a bustling biomedical research lab where scientists are under pressure to complete a literature
survey on a very rare disease named as Arboleda-Tham Syndrome (ARTHS), also known as “KAT6A
Syndrome”. A researcher has been tasked with sifting through a vast amount of scientific papers and
clinical reports via PubMed,1 as shown in Figure 1.1, to identify and extract critical information; such
as the rare gene “KAT6A”, novel treatment approaches, and specific patient outcomes. The goal
is to find complementary studies that can validate or enhance their own groundbreaking research
on this rare disease. Despite the use of advanced information extraction tools, the researcher often
encounters significant frustration. These tools frequently miss vital details, especially when dealing
with obscure entities like specific rare gene variants or unique case studies that are infrequently
mentioned.

Figure 1.1: PubMed search results for the query “KAT6A Syndrome” show that the highest number of articles
published in a single year is 11. The screenshot was taken on 28.08.2024.

1PubMed: https://pubmed.ncbi.nlm.nih.gov/, last accessed: 28.08.2024.
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1 Introduction

Now, put yourself in the position of a university hospital’s medical data curator. New research
is released every day, contributing to the extensive body of biomedical literature. Ensuring that
these studies are appropriately annotated with relevant entities such as gene names, illnesses, and
drug interactions is the curator’s responsibility. However, this work is tedious due to the sheer
number of data, particularly when dealing with uncommon diseases or therapies that are scattered
over hundreds of documents (Tasci et al., 2022; Yang et al., 2020a). Common entities are usually
prioritised over uncommon but important ones, which may be under-annotated or even overlooked
by automated systems designed to help this process. Consequently, the resulting database may
lack crucial connections, potentially impeding researchers who rely on this information to advance
patient care.
Last but not least, consider a reporter looking into an unidentified fraud gang who hopes to
find trends by contrasting the present case with earlier news stories. Information on key players,
the sites of fraudulent activity, and any common strategies or linkages to the fraud gang must
be gathered and examined by the journalist. The journalist sifts through a variety of government
records, investigative papers, and newswire articles to find clues that could connect the current scam
to previous instances. However, many fraudulent activities are difficult for current information
extraction technologies to detect because they are obscure or have not received much attention (Wei
et al., 2013; Tomar et al., 2021; Ahmed and Saini, 2023). As a result, the reporter must manually
sort through a substantial number of stories, assembling disparate pieces of information to locate
significant similarities that can help clarify the present fraud case.
Across all these scenarios, one issue is consistently apparent, whether it’s a rare disease in biomedical
research, a niche genetic disorder, or an obscure legal precedent, entities that appear less frequently
in the data are often under-represented in the models designed to identify them (Song et al., 2021;
Henning et al., 2023). This imbalance not only skews the results but also places a heavy burden
on human annotators and curators, who must manually correct and complete the annotations,
resulting in an incredibly time-consuming and labour-intensive process.

1.1 Motivation

What if there were a way to ease the burden of the class imbalance problem in information
extraction? Imagine leveraging pre-annotations machine-generated predictions of entity and
relation labels to assist human annotators in a semantic annotation2 tool, as shown in Figure 1.2.
By providing an initial set of annotations specifically designed to account for class imbalance,
these systems would enable curators and researchers to focus on refining and correcting the
pre-annotations rather than starting from scratch.

2Semantic annotation tool INCEpTION: https://inception-project.github.io/, last accessed: 28.08.2024.
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1.1 Motivation

Figure 1.2: Pre-annotations generated by WeLT, as discussed in Section 3.4 (highlighted in yellow) and further
elaborated on subsequent chapters, are reviewed by data curator Olga Krebs (highlighted in
blue). Using the Active Learning feature in the semantic annotation tool INCEpTION (Klie et al.,
2018), the data curator can accept or reject these annotations.

This approach would not only speed up the annotation process but also help ensure that rare and
crucial entities receive the attention they deserve, reducing the risk of important information being
overlooked.
Consider again the scientist in biomedical research, the medical data curator at university hospital,
and the legal journalist. Each of these professionals could benefit immensely from a more balanced
and efficient information extraction system. By developing innovative methods to address class
imbalance in Named Entity Recognition (NER) and Relation Extraction (RE) and by integrating
pre-annotations to streamline the work of human annotators, we can create tools that enable data
curators to focus on missed annotations, enhancing overall accuracy, reliability, and the ability to
capture the full spectrum of essential information in these critical fields.
Despite the significant advancements in Deep Learning (DL) methods, particularly with pre-trained
language models (PLMs) and the power of transfer learning for fine-tuning models to specific
downstream tasks, standard fine-tuning approaches (Devlin et al., 2019; Liu et al., 2019b; Clark
et al., 2020), also known as vanilla fine-tuning approaches assume that training data is balanced,
meaning that all classes are represented equally. However, in real-world applications, especially in
the biomedical domains (Dogan et al., 2014; Li et al., 2016; Krallinger et al., 2015; Smith et al., 2008;
Luo et al., 2022a; Gerner et al., 2010; Gurulingappa et al., 2012) and newswire domains (Roth
and Yih, 2004), datasets are often highly skewed, as discussed later in Section 2.2, which may
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1 Introduction

negatively impact overall prediction performance. Some attempts have been made to address the
class imbalance problem through data-level approaches such as sampling or augmentation (Shi et al.,
2022; Henning et al., 2023); yet studies show that PLMs, despite their power, tend to re-learn
removed concepts (Lo et al., 2024).

This thesis focuses on exploring cost-sensitive learning solutions to address the problem of class
imbalance by fairly adjusting class weights during fine-tuning. The objective is not to develop a
specialised cost-sensitive approach tailored to a specific domain, but rather to create a method
sufficiently generalisable to be adapted to various information extraction tasks. Unlike previous
approaches (Lin et al., 2017; Cui et al., 2019), we avoid the need for manual hyper-parameter
tuning. Instead, our cost-sensitive approach is data-driven, adjusting class weights based on the
natural distribution of classes within the dataset. By utilising pre-annotations generated from
this approach, we aim to enhance the accuracy and efficiency of information extraction systems,
ultimately reducing the workload for human annotators and improving the comprehensiveness of
biomedical databases. The outcomes of this research have the potential to significantly impact any
domain where accurate and complete information extraction is crucial, whether in journalism, law,
environmental science, or beyond.

The following section summarises our contributions in developing a cost-sensitive information
extraction approach to mitigate class imbalance, and provides an overview of the thesis structure.

1.2 Contributions

We have already outlined several issues and challenges in the field of information extraction that
are pertinent to this thesis. At this stage, we aim to provide a more structured summary of the
contributions of this work and set clear expectations for readers:

1. We investigate a series of limitations in existing information extraction research, with a
particular focus on biomedical named entity recognition and linking, span-based joint entity
and relation extraction, and table-filling joint entity and relation extraction. Our findings
highlight three main limitations. First, the widely adopted vanilla fine-tuning paradigm for
language models (LMs) in downstream tasks (Radford et al., 2019; Devlin et al., 2019; Raffel
et al., 2020) is far from ideal. Fine-tuning can predispose pre-trained models to over-fitting
and issues with out-of-distribution (OOD) data, particularly due to the large model size and
the relatively small size of domain-specific datasets (Zhao et al., 2019; Radiya-Dixit and Wang,
2020; Guo et al., 2021; Gordon et al., 2020; Zaken et al., 2022). In class imbalance scenarios,
fine-tuned models are especially prone to over-fitting under-represented classes due to their
limited representation (ValizadehAslani et al., 2022).
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Secondly, OOD samples that are data not encountered during training (Zhang et al., 2021a),
typically have a different distribution than the training data, leading to a distribution
shift. These OOD samples are critical for testing the generalization ability of new
approaches. Research by Kumar et al. (2022b) demonstrates that fine-tuning can distort
pre-trained features, resulting in poor OOD accuracy (Kumar et al., 2022a).

Thirdly, even when employing specialized class-balanced techniques such as re-sampling,
models still tend to overfit (He and Garcia, 2009; Buda et al., 2017; Horn and Perona, 2017).

2. Concerning class imbalance, existing research primarily focuses on three paradigms: data-level
approaches, such as resampling and augmentation, algorithm-level re-weighting, which
adjusts the loss function to account for class distribution, and hybrid approaches, combining
both data-level and algorithmic methods. Data-level techniques may reduce generalisation
performance on unseen data and increase memory and computational costs due to duplicated
examples (Lee et al., 2022). Algorithm-level methods can lead to over-fitting, complex
hyper-parameter tuning, and limited sensitivity to imbalance. Additionally, they often
focus solely on inverse class frequency weighting, overlooking its broader impact on
the dataset. Hybrid approaches inherit these issues while also adding complexity and
computational demands. Motivated by the empirical findings and theoretical insights, we
introduce Weighted Loss Trainer (WeLT), a novel adaptive loss function. WeLT addresses
the limitations of previous weighting by adjusting class weights based on the complement
of each class’s relative frequency. Consequently, the majority classes (i.e., classes with a higher
number of samples) receive less weight, while minority classes (i.e., classes with fewer samples)
are assigned more weight.

3. We introduce a cost-sensitive fine-tuning approach based on WeLT. We investigate the impact
of the WeLT cost-sensitive approach by fine-tuning eight biomedical gold-standard datasets
for named entity recognition and linking tasks. Extensive evaluations are conducted against
vanilla fine-tuning and other weighting schemes. Furthermore, we extend the application
of the WeLT fine-tuning approach to complex nested named entities that exist within the
boundaries of other entities, forming a hierarchical structure. In addition to overlapping
named entities that share common spans, where parts of one entity can be part of another
entity. Our empirical analysis demonstrates the benefits of addressing the class imbalance
problem through WeLT.

4. We also explore span-based joint extraction models, which have shown significant advance-
ments in both entity and relation extraction, such as SpERT (Eberts and Ulges, 2020). These
models treat text spans as candidate entities and span pairs as candidate relationship tuples,
achieving state-of-the-art results. However, span-based models face challenges, particularly
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in managing a substantial number of non-entity spans and irrelevant span pairs during
joint extraction tasks, which can significantly impair model performance. Beyond the
inherent class imbalance in datasets, these models also encounter additional imbalance due
to strong negative sampling (Xue and Lu, 2023). To address these limitations, we propose
WeLT-SpERT, a WeLT span-based joint entity and relation extraction approach. We develop
four WeLT-SpERT joint loss functions to tackle both class imbalance and strong negative
sampling, comparing WeLT-SpERT with original span-based approaches.

5. In addition to the challenges posed by strong negative sampling in span-based extraction
models, we have identified further limitations, particularly lack of boundary supervision
and sole BERT encoding dependency. To address these issues, Jianquan Ouyang (2022)
introduced the ASpERT model, which employs an attentional contribution degree
algorithm combined with a multilayer perceptron and a softmax-based span classification
framework. Although ASpERT offers improvements over traditional span-based models, it
still relies on the strong negative sampling approach. Inspired by ASpERT’s advancements, we
propose WeLT-ASpERT, which incorporates three WeLT joint loss functions adapted from
ASpERT’s enhanced methodology. We evaluate WeLT-ASpERT’s ability to mitigate class
imbalance and reduce the impact of strong negative sampling, comparing its performance
with that of the original ASpERT model.

6. In addition to span-based joint extraction models, table-filling approaches (i.e., matrix-like
table to simultaneously identify both entities and their relations in a single framework)
have impressive performance (Ma et al., 2020). Although, such approaches cannot handle
nested overlapping entities relying on token-level tagging schemes. However, recently Ma
et al. (2022) propose TablERT-CNN, a joint named entity and relation extraction model by
stacking convolutional neural networks. TablERT-CNN outperforms traditional span-based
models and does not adapt the strong negative sampling. However, TablERT-CNN relies
on filling the entity labels based on conventional token-labelling schemes and directed
relation labels. Thus, TablERT-CNN inherits the usual class imbalance problem. Hence, we
present WeLT-TablERT-CNN, which incorporates three WeLT joint loss functions adapted
from TablERT’s enhanced methodology. We investigate the impact of addressing the class
imbalance problem on the table-filling joint extraction model and compare it to the original
model.

7. Finally, we evaluate the WeLT-based information extraction models alongside other weighting
schemes, noting that they are smaller in size and have fewer training parameters compared to
large language models (LLMs).
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1.3 Structure

The remainder of this work is organised as follows. In Chapter 2, we begin with a formal
introduction to the task of information extraction, with a particular emphasis on biomedical
applications. This chapter also addresses the highly skewed gold-standard datasets fine-tuned
for various downstream tasks and the different types of transformer-based language models. In
Chapter 3, we examine the significant limitations of existing biomedical pre-trained language
models and the shortcomings of conventional fine-tuning approaches. We discuss current paradigms
aimed at addressing class imbalance and their associated limitations. To address these challenges,
we propose the WeLT approach, a cost-sensitive fine-tuning method for biomedical named entity
recognition. We compare WeLT with conventional and other existing weighting schemes and extend
our investigation to assess the impact of WeLT-recognised entities on the subsequent task of entity
linking. Building on the success of WeLT in these tasks, Chapter 4 explores its performance on
overlapping (often nested) entities, adapting it for both biomedical and newswire applications. We
also examine the adaptation of WeLT joint loss functions within span-based models, highlighting the
limitations of strong negative sampling in these models. In Chapter 5, we identify further limitations
in existing span-based approaches related to span classification and adapt WeLT to an enhanced
span-based model that continues to employ strong negative sampling. Additionally, in Chapter 6 we
explore an alternative joint extraction model that incorporates a table-filling approach and propose a
WeLT-based table-filling model. Additionally, we conduct an extensive evaluation of all WeLT-based
models developed in Chapters 4 to 6, comparing them to other pre-trained language models with a
particular focus on large language models. Finally, in Chapter 7, we summarise the findings, discuss
remaining open questions, and suggest potential directions for future research.
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2 Background

Information Extraction (IE) is a fundamental process in the field of Natural Language Processing
(NLP), aimed at automatically identifying structured information from unstructured or semi-
structured text data (Hobbs, 2002). The extracted information typically includes predefined types
of data, such as named entities (e.g., organizations, people, occupations), relationships between these
entities, and other relevant events or facts (Jiang, 2012). IE serves as a foundational requirement
for a wide range of downstream tasks, such as question answering, information retrieval, and
content summarization. Typically, IE tasks consist of Named Entity Recognition (NER), Relation
Extraction (RE), and Event Extraction (EE).
In this thesis, we focus on NER and RE, particularly in the context of biomedical applications.
However, we also explore a general domain application, identifying entities and their corresponding
relations from newspaper articles. This chapter presents several foundational concepts and task
contexts essential to this thesis, particularly for extracting information from biomedical documents.
Structure. Section 2.1 introduces basic concepts of biomedical natural language processing and
information extraction. We present biomedical named entity recognition, and normalization. We
highlight the biomedical relation extraction task and its distinctive characteristics. In addition,
we review various paradigms for joint entity and relation extraction. Section 2.2 discusses the
gold-standard biomedical datasets and evaluation metrics, focusing on named entity and joint
entity-relation extraction datasets. Section 2.3 reviews different transformer-based language models,
with an emphasis on recent large language models (LLMs) and fine-tuning approaches. Finally, in
Section 2.4, we provide a summary and discussion.

2.1 Biomedical Natural Language Processing

Biomedical Natural Language Processing (BioNLP) refers to the application of NLP techniques to
biomedical texts, often from scientific literature. BioNLP aims to extract, understand, and analyse
information from unstructured texts, which is critical for tasks in biomedical research and healthcare
management. BioNLP methods include techniques such as Biomedical Named Entity Recognition
(BioNER) and Biomedical Relation Extraction (BioRE). BioNER identifies and classifies entities
like chemicals and diseases, while BioRE focuses on relationships, such as drug-disease associations
or protein-protein interactions (Perera et al., 2020).
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BioNLP shared tasks bring together experts to develop and evaluate algorithms for various
biomedical text mining challenges, providing gold-standard datasets and evaluation metrics to foster
collaboration and competition. Examples include the following:

• BioCreative is a series of challenges focusing on information extraction and text mining in
biological and biomedical domains. BioCreative has facilitated advancements in biomedical
annotation, entity normalization, relation extraction, and text classification (Smith et al.,
2008). BioCreative datasets cover biomedical entities (e.g., genes, proteins, diseases, and
chemicals) contributing to tools and resources in the biomedical text mining commu-
nity. BioCreative I addressed tasks such as gene mention tagging and gene normalization (Ki-
noshita et al., 2005; Yeh et al., 2005). BioCreative II-VII expanded the tasks to include
protein-protein interaction extraction, chemical-disease relation extraction, and COVID-19
literature analysis (Krallinger et al., 2008; Leaman et al., 2023).

• BioNLP Shared Tasks (BioNLP-ST) are organized by the University of Tokyo in 2009,
BioNLP-ST primarily focuses on tasks like BioNER, BioRE, event extraction, and text clas-
sification. Participants propose methods to extract structured information from biomedical
literature using annotated corpora and evaluation metrics (Kim and Pyysalo, 2013). BioNLP
Shared Task 2009 focused on event extraction and gene expression events (Kim et al.,
2009). BioNLP Shared Tasks 2021-2023 addressed challenges like medical video question
answering and summarization of biomedical research articles (Goldsack et al., 2023; Gupta
and Demner-Fushman, 2022).

BioNLP techniques and shared tasks collectively contribute to the development of advanced
models and benchmarks for the extraction of structured information from unstructured biomedical
texts. Through initiatives like BioCreative and BioNLP-ST, the research community continues to
push the boundaries of biomedical text mining and information extraction.

2.1.1 Biomedical Named Entity Recognition and Linking

BioNER is one of the tasks in BioNLP that focuses on recognising and classifying specific entities
or concepts within biomedical textual data. These various entities typically include genes, proteins,
diseases, drugs, species, and other relevant terms. BioNER’s primary goal is to automatically
extract and classify these entities from unstructured biomedical text data, such as scientific articles,
clinical notes, or biomedical patents. By identifying and categorising these entities, BioNER
facilitates various downstream biomedical applications including relation extraction, literature
mining, information retrieval, and clinical decision support. BioNER systems typically employ
machine and deep learning and NLP techniques to recognise and classify biomedical entities. These
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techniques may involve the use of annotated datasets for training supervised learning models, which
learn to predict the entity type of each token in a given text.
Figure 2.1 depicts a simple example of recognising and classifying chemical and disease entities (Eriks-
son and Saldeen, 1989). This snippet is part of BioCreative V Chemical Disease Relation corpus
(BC5CDR)’s training data.

Figure 2.1: A simple chemical and disease BioNER example. This is part of the training data of BC5CDR for
chemical-disease relationships (Li et al., 2016).

BioNER can be mathematically formulated as follows:
Let d represent a document consisting of n tokens, T := [t1, t2, . . . , tn], where each token ti

corresponds to a subword unit, word, or punctuation mark, depending on the tokenisation strategy
as later discussed in Section 2.3. Each token ti belongs to a predefined set of biomedical entity types
or categories E := {e1, e2, . . . , ec}, where c denotes the total number of entity types.
The objective of BioNER is to assign an entity type ei to each token ti in d based on its semantic
meaning and context within the document.1 In other words, this is a sequence labelling problem,
where each token is labelled with its corresponding entity type. Due to the nature of biomedical
text, which often contains overlapping entities (frequently nested ones) (Wang et al., 2022), we
distinguish between different categories of named entities as follows:

• Single-label entities: each token is assigned a single category from the predefined set of
categories E. This is also referred to as flat named entities. For instance, as illustrated in
Figure 2.1, the token “angiotensin” is labelled as “chemical”, and the tokens “intravascular
coagulation” are labelled as “disease”.

1The glossary provides the notations used throughout the thesis.
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• Multi-label entities: a token may belong to multiple categories simultaneously. This occurs
when a token represents multiple concepts or entities in the same context. For example, in
a document discussing drug interactions, the token “aspirin” might be labelled with both
“drug” and “treatment”. This is valid since aspirin is commonly used as a treatment for
conditions like headaches, while also being classified as a “drug” due to its pharmacological
properties.

• Nested entities: these occur when one entity is contained within another. Nested entities
are hierarchically structured and involve overlapping spans, where the contained entity
shares part of its text span with the containing entity. For instance, Figure 2.2 shows nested
entities (Lee et al., 1995): “B2 subunit promoter region”, where “B2 subunit” is tagged as
“protein”, “promoter region” is tagged as “DNA”, and “B2 subunit promoter region” is also
tagged as “DNA”.

Figure 2.2: A simple example of nested named entities.

• Overlapping entities: these occur when two named entities overlap without one being
completely contained within the other. For example, in the sentence, “President Barack
Obama visited the White House”, “President” is a position entity, “Barack Obama” is a person
entity and “White House” is a location entity. There exist an overlap between the position
“President” and the person “Barack Obama” without one being fully contained within the
other. Thus, the overlap exists without a nested structure.

The objective of nested entity recognition (NestedNER) is to assign an entity type ei to each token
ti in d based on its semantic meaning and context within the document while handling nested
structures. Let A represent the set of all possible annotations in the document d, where each
annotation a ∈ A is represented as a tuple (starta , enda , typea) indicating the start and end
positions of the annotation and its corresponding entity type typea ∈ E. The goal of NestedNER
is to find the optimal set of annotationsA that maximizes some objective function f (A) subject to
the constraint that no two annotations inA can overlap or be nested within each other and that
continuous text spans are restricted by a length threshold ε.
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NestedNER can be mathematically formulated as follows:

max
A

f (A) subject to:

∀a1, a2 ∈ A, (a1 is nested in a2 or vice versa),

∀a ∈ A, length(a) ≤ ε,

(2.1)

where the condition a1 is nested in a2 or vice versa is defined as:

(
starta2 ≤ starta1 and enda1 ≤ enda2

)
or

(
starta1 ≤ starta2 and enda2 ≤ enda1

)
.

The overlapping entities (OverlapNER) are constrained such that the annotations can share
common text spans without one annotation being fully contained within another. OverlapNER
can be mathematically formulated as:

max
A

f (A) subject to:

∀a1, a2 ∈ A, a1 overlaps with a2,

∀a ∈ A, length(a) ≤ ε,

(2.2)

where the condition a1 overlaps with a2 is defined as:

starta1 < enda2 and starta2 < enda1 ,

and neither is nested within the other:

¬
(
starta2 ≤ starta1 and enda1 ≤ enda2

)
and ¬

(
starta1 ≤ starta2 and enda2 ≤ enda1

)
.

In summary, the difference between NestedNER and OverlapNER lies in how annotations are
spatially related, both constrained by the text span length threshold ε:

• nested entities refer to cases where one annotation is fully contained within another.

• overlapping entities occur when annotations share parts of their spans but are not fully
contained within one another.

Biomedical named entity linking (BioNEL) maps named entities to standardised identifiers or
concepts (Ruas et al., 2020). Particularly, BioNEL involves linking named entities mentioned in
biomedical texts to relevant concepts or entities in knowledge bases or ontologies.
BioNEL is also known as entity normalisation and this enhances interoperability and facilitates
the integration of information from different biomedical resources. There are various biomedical
knowledge bases, for instance, the following:
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• Comparative Toxicogenomics Database (CTD Taxonomy): organises chemicals, genes,
diseases, and species based on their associations with toxicological and pharmacological
effects (Wiegers et al., 2009).

• Medical Subject Headings (MeSH): a controlled vocabulary and ontology developed by
the National Library of Medicine (NLM) for indexing biomedical information. MeSH
encompasses hierarchically structured concepts related to diseases, chemicals, anatomy, drugs,
and medical procedures (Lipscomb, 2000).

• Online Mendelian Inheritance in Man (OMIM): a database that contains human genes and
genetic disorders. It is a widely used resource in genomics and medical genetics research. Thus,
OMIM provides valuable insights into the molecular mechanisms underlying inherited
disorders (Hamosh et al., 2002).

• Medical Dictionary for Regulatory Activities (MEDIC): is an enriched resource as a result
of merging CTD taxonomy with OMIM terms, synonyms, and identifiers (Davis et al.,
2012). MEDIC allows practitioners to explore associated CTD data at different levels for
meta-analysis. MEDIC is updated monthly, and the latest version can only be downloaded.

• Unified Medical Language System Semantic Network (UMLS): is a network of concepts
and relationships that provide a semantic framework for linking and integrating biomedical
terminologies and ontologies. UMLS encompasses various biomedical semantic types such
as diseases, chemicals, genes, and anatomical structures along with relationships between
them (Bodenreider, 2004).

2.1.2 Biomedical Relation Extraction

Biomedical Relation Extraction (BioRE) focuses on identifying and extracting relationships
between various types of entities mentioned in textual data. As discussed in Section 2.1.1, entities
typically include genes, proteins, chemicals, diseases, drugs, and other biomedical concepts. The goal
of BioRE is to automatically identify and extract meaningful associations or interactions between
these entities from unstructured text data, such as scientific articles or biomedical literature. This
process helps in uncovering new associations between genes, proteins, and diseases, contributing
to biological understanding and discovery. Additionally, BioRE provides clinicians with relevant
information about potential interactions between genes, diseases, and treatments, supporting
clinical decision-making.
BioRE can be mathematically formulated as follows:
Let R represent a set of relations between entities in the document d. Each relation r j ∈ R can be
defined as a tuple (eh, et, ri), where eh and et ∈ E are the identified head and tail entities, respectively
in d, and ri is the relation between them.
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The objective of BioRE is to extract relations between entities in the document d based on their
semantic meaning and context. In other words, BioRE aims to identify and classify relationships
between pairs of entities within the document. This task can be represented as a classification
problem, where the goal is to predict the relation label ri for each pair of entities (eh, et) in d.
For example, consider the sentence: “Having at least one APOE e4 gene doubles or triples the risk
of getting Alzheimer’s disease”. In this case, BioRE would automatically identify that:

• “APOE e4” is a gene and “Alzheimer’s” is a disease.

• The relationship is gene-related disease, meaning that patients with at least one “APOE e4”
gene are more likely to develop “Alzheimer’s disease”.

This is a simple example, but with the rapid growth of biomedical literature, developing robust
BioRE frameworks is crucial. Overall, BioRE plays a significant role in leveraging the vast amount
of biomedical text available to extract valuable knowledge and insights for biomedical research and
healthcare applications.
In general, relationships in BioRE can be binary or n-ary. Specifically, BioRE can involve either
binary or n-ary relationships, depending on the complexity of interactions among entities. N-ary
biomedical relationships involve interactions between three or more entities, often representing
more complex biological phenomena. For example, metabolic pathways include multiple enzymatic
reactions that convert substrates into products. The pathway “glycolysis” involves several enzymatic
reactions that convert glucose into pyruvate.
Furthermore, the direction of relation types can be symmetrical or asymmetrical. In symmetrical
relations, the relationship between entities remains the same regardless of their order. For instance,
in protein-protein interaction (PPI) networks, if protein A interacts with “protein B”, it’s likely
that “protein B” also interacts with “protein A”. Hence, PPI relations are typically symmetrical,
and the same relation label can be assigned to pairs of entities regardless of their order. In contrast,
asymmetrical relations depend on the direction of the interaction, making the order of entities
significant.

Figure 2.3: An asymmetrical chemical-induced-disease relation example (Li et al., 2016). This snippet is part
of BC5CDR training data.

Figure 2.3 illustrates an asymmetrical chemical-induced-disease relationship, where the head entity
is a chemical and the tail entity is a disease.
There are two types of relation extraction models as follows:
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• Intra-sentence relationships: these involve connections between entities or concepts within
the same sentence. Such relationships may include subject-verb relationships, noun-modifier
relationships, or other grammatical and semantic connections. For example, in the sentence
“Mutation in the BRCA1 gene is associated with an increased risk of breast cancer”, an intra-
sentence relationship is identified between the gene “BRCA1” and the disease “breast cancer”.

• Inter-sentence relationships: these relationships often require understanding the context
and content of multiple sentences to establish connections between entities. They may involve
references or mentions of the same entity in different parts of the text. For example, consider
the following sentences: Sentence (1) “Patient A is male and was diagnosed with diabetes. ”
Sentence (2) “He started taking insulin injections. ” The inter-sentence relationship connects
“Patient A” from Sentence (1) with “He” from Sentence (2), indicating that “Patient A” is the
person who started taking insulin injections.

Figure 2.4: A simple inter-sentence and intra-sentence relation example. This snippet is part of BC5CDR for
chemical-induced-disease relationships.

Figure 2.4 provides a simple example of inter-sentence and intra-sentence chemical-induced-disease
(CID) relations. This example is part of the BC5CDR training data (KOZEL et al., 1995). The figure
include the following:

• four sentences, one chemical entity “Angiotensin-converting enzyme (ACE)”, and four
diseases: “acute or chronic urticaria”, “angio-oedema”, “hyperparameterspertension”, and
“congestive heart failure”.

• sentence (3) (i.e., denoted by S3 as shown in the figure) illustrates an intra-sentence
relationship between “ACE inhibitors” and “acute bouts of angio-oedema”.
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To infer the inter-sentence relationship between “angiotensin-converting enzyme inhibitor (ACE)”
and “urticaria”, consider Sentence (1), which suggests that adverse drug reactions cause urticaria
and angioedema. According to Sentence (3), the use of ACE inhibitors can cause acute
angioedema. Therefore, it can be inferred that ACE inhibitors are also a cause of urticaria. In
BC5CDR, there is a CID relationship between “angiotensin-converting enzyme inhibitor (ACE)”
and “urticaria”. Inter-sentence relation extraction requires logical inference across multiple
sentences, which is beyond the scope of sentence-level relation extraction models.
Most existing benchmark BioRE datasets primarily focus on binary relationship types at the
sentence level, with a few exceptions. According to Qian et al. (2022), only BC5CDR and the
Gene Disease Associations (GDA) datasets include some inter-sentence relationships (Wu et al.,
2019). BC5CDR contains approximately 27.4 % of its training data as inter-sentence relationships,
while GDA has around 16.3 %. Due to the limited availability of gold-standard datasets, this thesis
focuses on binary asymmetric sentence-level relations, excluding n-ary and inter-sentence relations.

2.1.3 Joint Entity and Relation Extraction

Initially, NER and RE were treated as separate tasks. In this approach, entity pairs are extracted first
and then fed into the relation extraction model. Consequently, any errors in entity classification can
lead to incorrect or missed relation extraction. To address these limitations, various joint entity and
relation extraction (JNERE) models have been proposed. JNERE aims to simultaneously extract
entities and their corresponding semantic relations, thereby enhancing information interaction
between both tasks and reducing the high dependency of RE on the results of NER.
Figure 2.5 illustrates that JNERE can be categorized into three main paradigms:

• Tagging and span classification: the token tagging strategy treats joint extraction as a
sequence labelling task. Each token is labelled according to schemes such as IOB or its
variant BILOU. For details on these tagging schemes, refer to Sections 2.2.1 and 2.2.3. These
models generate fixed-size semantic representations for token-level labels and use them to
create relation semantic representations (Katiyar and Cardie, 2017; Ye et al., 2019; Bekoulis
et al., 2018). For instance, Zhao et al. (2020) proposed a deep neural architecture that
captures fine-grained token-level interactions. However, this approach is limited by the
inability to handle nested or overlapping entities due to its token tagging strategy. Span-based
approaches were introduced to address this issue by performing a detailed search on all
possible spans. Other studies focus on span classification to support JNERE, predicting
entities based on all possible enumerated spans and filtering named entities accordingly (Lai
et al., 2021; Wan et al., 2021). Luan et al. (2018) introduced a multitask learning framework
that predicts entity types from all possible named entity spans and then extracts relations
from these recognized spans. The Dynamic Graph IE (DyGIE) model by Luan et al.
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(2019) extends this by adding graph propagation to capture interactions between different
spans. An enhanced version, DYGIE++, was proposed by Wadden et al. (2019), replacing
the bidirectional long short-term memory (LSTM) encoder with BERT. Simpler models that
omit graph propagation are discussed in Chapters 4 and 5.

Figure 2.5: A hierarchical representation of JNERE state-of-the-art (SOTA) approaches that address the class
imbalance problem. The ⋆ denotes models comparable to the proposed JNERE-WeLT models
discussed in Chapters 4– 6.

• Table-filling: this approach frames NER and RE as a table-filling problem. A two-
dimensional (2D table) is constructed where each entry captures the interaction between
two entities within a sentence. NER is treated as a sequence labelling problem and assigned
diagonally in the table using one of the tagging schemes mentioned earlier. Relation
labels are placed in the off-diagonal entries (Miwa and Sasaki, 2014). A drawback of this
method is its reliance on a single encoder for both tasks, limiting its ability to fully exploit
the table structure. To address this, Wang and Lu (2020) designed separate encoders for
entities and relations, using pairwise self-attention weights by BERT to capture word-word
interactions for the relation encoder. Further variants of table-filling approaches are discussed
in Chapter 6.

• Sequence-to-Sequence (Seq2Seq): this model retains sentence features from unstructured
text as input and decodes the entity-relation triples sequentially. The Seq2Seq approach
mimics the human annotation process, where annotators first read the sentence, infer
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semantic meaning, and then sequentially highlight entity-relation pairs (Sutskever et al.,
2014). One powerful Seq2Seq baseline is CopyRE, which uses a copy mechanism in the
decoder to avoid out-of-vocabulary issues (Gu et al., 2016). However, CopyRE has the
following drawbacks: entity copying can be unstable due to reliance on an unnatural mask
to differentiate between head and tail entities, and it struggles with multi-token entities as the
copy-based decoder points only to the last token. To address these issues, Zeng et al. (2020)
proposed CopyMTL, a multi-task learning model with an improved architecture for entity
copying that adds a sequence labelling task to the CopyRE encoder.

2.2 Biomedical Gold-Standard Datasets and Evaluation Metrics

Biomedical gold-standard datasets for BioNER are crucial for training and evaluation. These
datasets consist of annotated biomedical texts where named entities such as genes, proteins, diseases,
and chemicals are labelled. The datasets are annotated by domain experts and serve as benchmarks
for evaluating the performance of BioNER systems. Evaluation metrics are used to assess the
performance of BioNER systems on gold-standard datasets. Common evaluation metrics for
BioNER include precision, recall, and F1-score.
Section 2.2.1 presents the BioNER gold-standard datasets, standard tagging scheme, their statistics,
and imbalance ratio. In Section 2.2.2, we highlight different evaluation scripts for both the
BioNER and the BioNEL. Section 2.2.3 highlights the JNERE datasets, tagging scheme and their
statistics. Finally, we present evaluation scripts tailored to JNERE in section 2.2.4.

2.2.1 Named Entity Recognition Datasets

Annotators and curators in the biomedical domain play a crucial role in advancing research in
biomedical text mining tasks, especially BioNER. Domain experts annotate and curate biomedical
texts, marking entities like diseases, chemicals, genes, proteins, and species. This text annotation
is primarily a manual process that involves reading through texts, identifying relevant entities,
and labelling them accordingly. This process can be tedious and time-consuming, especially when
dealing with large volumes of text or complex entity types. These annotations serve as gold standards
for training and evaluating BioNER models. Thus, domain experts follow standardized annotation
guidelines. These guidelines ensure consistency across annotations, facilitating the development of
reliable BioNER models and are essential for training models that generalize well to unseen data.
The commonly used tagging scheme for BioNER is the Inside–outside–beginning (IOB)
format (Shen and Sarkar, 2005). It consists of three classes as follows:

• the B tag represents the beginning or first token of a biomedical entity.

• the I tag denotes the continuation of the first token as an inside biomedical entity.
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• the O tag represents a token that is not part of a biomedical entity.

Thus B and I classes are the positive samples while the O class is the negative sample. Figure 2.6
depicts an IOB example for disease entities. In addition, these entities are linked to their
corresponding MeSH IDs.

Figure 2.6: A simple disease BioNER and BioNEL example using IOB tagging scheme and corresponding
MeSH IDs, respectively.

We provide the detailed description, statistics, and class frequencies of the used gold-standard
BioNER datasets as follows:

• NCBI Disease: the American National Institutes of health released the National Centre for
biotechnology information (NCBI) disease corpus to promote disease NER research (Dogan
et al., 2014). The public release of the NCBI disease corpus contains 6,892 disease mentions,
which are mapped to 790 unique disease concepts.

• BC5CDR-Disease and BC5CDR-Chemical: the BioCreative V chemical disease relation
(CDR) corpus was created for the Chemical Disease Relation (CDR) Task (Li et al., 2016). It
consists of human annotations of all chemicals, diseases, and their interactions in 1,500
PubMed articles.

• BC4CHEMD: the BioCreative IV chemical and drug (BC4CHEMD) named entity
recognition task corpus (Krallinger et al., 2015). It contains 10,000 abstracts annotated for
mentions of chemical and drug names.

• BC2GM: the BioCreative II gene mention task corpus (Smith et al., 2008). BC2GM consists
of 20,000 sentences from biomedical publication abstracts, annotated genes, and proteins.

• BioRED: the biomedical relation extraction dataset (BioRED) corpus was created for
multiple biomedical relations. BioRED consists of human annotations of all different
biomedical entities and their interactions in 600 PubMed abstracts (Luo et al., 2022a). In this
thesis, we only focus on BioRED-Disease and BioRED-Chemical for chemical and disease
instances respectively.

20



2.2 Biomedical Gold-Standard Datasets and Evaluation Metrics

• Linnaeus: this corpus has 153 PubMed full-text documents for 4,077 species annota-
tions (Gerner et al., 2010).

Table 2.1 presents the statistics of each dataset including the number of sentences for training,
development, and test data.

Dataset num_training num_validation num_test
NCBI (Dogan et al., 2014) 5,433 924 941
BC5CDR-Disease (Li et al., 2016) 4,561 4,582 4,798
BC5CDR-Chemical (Li et al., 2016) 4,561 4,582 4,798
BC4CHEMD (Krallinger et al., 2015) 30,683 30,640 26,365
BC2GM (Smith et al., 2008) 12,575 2520 5,039
BioRED-Chemical (Luo et al., 2022a) 4,432 1,140 1,108
BioRED-Disease (Luo et al., 2022a) 4,432 1,140 1,108
Linnaeus (Gerner et al., 2010) 11,936 4,079 7,143

Table 2.1: Number of sentences in biomedical ground-truth datasets for training, development, and test data.

Table 2.2 shows the imbalanced nature of BioNER corpora for multiple entity types, including
chemical, disease, gene, and species entities. Based on the statistics in Table 2.2, the biomedical

Dataset O B I
NCBI (Dogan et al., 2014) 74.44 12.67 12.89
BC5CDR-Disease (Li et al., 2016) 93.99 3.54 2.47
BC5CDR-Chemical (Li et al., 2016) 93.99 4.40 1.61
BC4CHEMD (Krallinger et al., 2015) 92.69 3.30 4.01
BC2GM (Smith et al., 2008) 89.50 4.28 6.22
BioRED-Chemical (Luo et al., 2022a) 96.72 2.34 0.94
BioRED-Disease (Luo et al., 2022a) 94.78 3.00 2.22
Linnaeus (Gerner et al., 2010) 98.84 0.75 0.41

Table 2.2: Class distribution percentage for biomedical ground-truth training datasets.

ground-truth training datasets are highly skewed. With such high class imbalance, BioNER may be
biased towards the O class, thus, they often misclassify entities (B and I classes).

2.2.2 Named Entity Recognition Evaluation Metrics

BioNER evaluation involves the assessment of identifying and classifying biomedical named entities
in text data. As a supervised learning approach, the predicted entities are compared against the gold-
standard datasets, also referred to as the ground truth. Thus, in the context of NER, the metrics of
precision, recall, and F1 score are used to evaluate how well an NER system can identify and classify
named entities in a given text.
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Originally, the concepts of precision and recall are generally attributed to Cyril W. Cleverdon, who
led the Cranfield experiments in the 1960s, one of the earliest systematic studies in information
retrieval (Cleverdon, 1997). The F1 score is a combination of precision and recall into a single
metric, which is the harmonic mean of precision and recall. The idea behind the F1 score was to
provide a balanced measure when precision and recall are of equal importance. The F1 score and
related F-measures were first formally introduced by David Lewis and others in the context of text
classification and information retrieval (Lewis, 1995).

Biomedical predicted labels can be evaluated at both the entity-level and token-level to assess the
performance of NER systems in identifying biomedical named entities. Entity-level metrics evaluate
the performance at the level of entire entities. Thus, entity-level metrics provide an assessment of
BioNER’s prediction model to correctly identify complete entities in the text, and partial matches
are not considered. In other words, this means that the model’s predictions are evaluated based on
whether they correctly identify entire entities as a whole. In contrast, token-level metrics assess the
performance at the level of individual tokens allowing partial matches. Consequently, the model’s
predictions are evaluated based on whether each token in the sequence is correctly predicted as part
of an entity. If there is any overlap between predicted and true entities, they are considered a match.

In this thesis, to maintain consistency with previous studies that use micro-averaging evaluation,
we adopt the entity-level evaluation approach. A high entity-level precision reveals that the model
accurately identifies and classifies named entities with minimal false positives. Entity-level recall
computes the proportion of correctly identified entities out of all true entities in the dataset. Thus,
recall captures the model’s ability to identify all relevant entities in the text including those that
may be missed by the model. Finally, the entity-level F1 score is the harmonic mean of entity-level
precision and recall.

We present the mathematical equations for the entity-level micro-averaging evaluation metrics used
in BioNER as follows:

• In micro-averaged precision Pmicro, the true positives (TP), false positives (FP), and false
negatives (FN) across all entity classes are aggregated before computing precision. Pmicro is
mathematically defined as:

Pmicro :=
∑c

i=1 T Pi∑c
i=1(T Pi + FPi)

(2.3)

where:

– T Pi is the number of true positive entities for class i,

– FPi is the number of false positive entities for class i, and

– c is the total number of entity classes.
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• In micro-averaged recall Rmicro, the true positives (TP), and false negatives (FN) across all
entity classes are aggregated before computing recall. Rmicro is mathematically defined as:

Rmicro :=
∑c

i=1 T Pi∑c
i=1(T Pi + FNi)

(2.4)

where FNi is the number of false negative entities for class i.

• The micro-averaged F1 score F1micro is the harmonic mean of micro-averaged precision and
micro-averaged recall. F1micro is mathematically defined as:

F1micro := 2 ×
Pmicro × Rmicro

Pmicro + Rmicro
(2.5)

There are various tools and libraries available for NER evaluation, including seqeval (Nakayama,
2018), which provides functions for calculating precision, recall, and F1 scores for NER tasks based
on gold standard annotations. seqeval has two modes: default and strict. In the default mode, correct
entity labels require an exact boundary match over the surface string, regardless of the type, as shown
in Example 2.1.

Example 2.1. (Example of seqeval default evaluation)
Given a disease entity, “Breast Cancer”. The ground-truth labels are as follows: Breast is tagged as
“B-Disease” and Cancer is labelled as “I-Disease”. If the predicted labels are “B-Disease” for Breast
and “B-Disease” for Cancer, it will be a true positive for both cases using seqeval’s default mode.

Lee et al. (2020b) assessed BioBERT for BioNER based on entity-level exact matches using
seqeval which outputs micro-averaged F1 score. For a fair comparison, we follow BioBERT’s
evaluation. However, we also use additional evaluation scripts:

• The FairEval is one of the latest metrics on which Ortmann argues that the traditional
evaluation metric causes double penalties for close-to-correct annotations (Ortmann,
2022). Therefore, Ortmann developed FairEval, which ensures that every error is counted
once. FairEval also provides more fine-grained metrics for error analysis, as it outputs true
positives and separates boundary errors from false positives and false negatives.

• We use the BioCreative VII NLM track’s official evaluation script2 on the experiments
that tested the impact of WeLT’s recognized entities on biomedical entity linking (Leaman
et al., 2023). This script measures the precision, recall, and F-score measures in a strict and
approximate evaluation setting. The strict mode requires that the start and end offsets match

2BioCreative VII’s evaluation script: https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/BC7T2-evaluation_
v3.zip, last accessed: 01.08.2024.
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exactly with the correct entity type, while approximate only requires that they overlap having
the identical entity type.

2.2.3 Joint Named Entity and Relation Extraction Datasets

In Chapters 4 and 5, we evaluate span-based JNERE on Adverse Drug Events (ADE) (Gurulingappa
et al., 2012) as a biomedical dataset and CoNLL04 (Roth and Yih, 2004) as a general domain one as
presented in Table 2.3. In addition, in Chapter 6, we include a third dataset which is SciERC (Luan
et al., 2018) derived from artificial intelligence papers.

We provide the detailed description, statistics, and class frequencies of the used gold-standard
JNERE datasets as follows :

Dataset ADE CoNLL04 SCiERC
Entity types 2 4 6
Relation types 1 5 7
Sentences 4,272 1,441 2,687
Training sentences (10-fold) 1,153 1,861
Test sentences (10-fold) 288 551

Table 2.3: Statistics of CoNLL04 and ADE datasets for joint entity and relation extraction.

• ADE: this dataset is extracted from medical reports with a description of adverse
effects arising from prescribed drugs. ADE consists of 4,272 sentences with 6,821
relations (Gurulingappa et al., 2012). To be consistent with previous studies, we conduct a
10-fold cross-validation. ADE encompasses two entity types “Adverse-Effect” and “Drug”
and a single relationship which is “ Adverse-Effect” as presented in Table 2.4.

RelationType Number of Relations Entity Type Number of Entities
Adverse-Effect 6,821(100.00 %) Adverse-Effect 5,776 (53.29 %)
Total 6,821 Drug 5,063 (46.71 %)

Total 10,839

Table 2.4: ADE’s entities and relation statistical class distribution as pre-processed by (Eberts and Ulges,
2020).

Figure 2.7 illustrates a sentence from the ADE dataset with two entity spans, e1 and e2

(positive entity samples), and one relation r1 (positive relation sample):
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Figure 2.7: An example of adverse drug events. “Hair Loss” and “Paroxetine treatment” are two pre-defined
entity types, while “Adverse-effect” is a pre-defined relation type. This snippet is part of the ADE
dataset (Gurulingappa et al., 2012).

• CoNLL04: this dataset is extracted from news articles. CoNLL04’s training data consists
of 1,153 sentences and 288 sentences for test data (Roth and Yih, 2004). CoNLL04 has
the following four entity types (a) “Location”, (b) “Organization”, (c) “People”, and (d)
“Other”. CoNLL04 has five relations as follows: (a) Works for: denoted as Work_ f or,
(b) Lives in: denoted as Live_in, (c) Kills: denoted as Kill, (d) Located in: denoted as
Located_in, and (e) Organization based in: as Organization_Based_In as presented in
Table 2.5.

RelationType Number of Relations Entity Type Number of Entities
Work_for 401 (19.6 %) Location 1,968 (36.8 %)
Live_in 521 (25.4 %) Organization 984 (18.4 %)
Kill 268 (13.1 %) People 1,691(31.6 %)
Located_in 406 (19.8 %) Other 706(13.2 %)
Organization_Based_In 452 (22.1 %) Total 5,349
Total 2,048

Table 2.5: CoNLL04’s entities and relations statistical class distribution as pre-processed by (Eberts and
Ulges, 2020).

• SciERC: this dataset is derived from 500 abstracts of AI papers. SCiERC’s training data
consists of 1,861 sentences, 275 sentences in development dataset and 551 sentences from test
data (Luan et al., 2018). The training datasets contain 6,281 entities and 3,606 relations. In
Section 6.3, we give further details about the statistical class distributions of BILOU tags for
NER and directed relation labels for RE.

In Chapter 6, we evaluate JNERE as a token-level in table filling context. For this, ADE, CoNLL04
and SciERC are converted into BILOU tagging scheme. As previously discussed in Section 2.2.1,
the common tagging scheme is IOB. However, the BILOU is another variant that has two new tags
“L-” and “U-”. The “L-” represents the last /final multi-token entity. The “U-” shows a single-token
entity.
Figure 2.8 depicts the differences between both schemes as follows: “Resistance” is the last token in
the disease entity, thus it is labelled as “L-Disease”, and “Metformin” is a single-token and labelled
as “U-Drug”.
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Figure 2.8: Disease and drug sequence-level tagging example using IOB and BILOU schemes.

2.2.4 Joint Named Entity and Relation Evaluation Metrics

For the span-based JNERE evaluation, we assess the performance in terms of entity recognition only,
relation extraction without considering entity types, and relation extraction without considering
entity types. However, for a fair comparison, we follow the baseline’s evaluation method on which
a correct entity has the right span and entity label and a correct relation has the right relation type
and both related entities are correct as previously mentioned. We measure precision, recall, and F1
score for both tasks.
To be consistent with previous studies, we report both micro-averaged and macro-averaged for
CoNLL04 and macro-averaged values for the ADE dataset. In section 2.2.2, we only evaluated
BioNER using default micro-averaged evaluation. For this, we show the main differences between
micro and macro-averaged evaluation as follows:

• Micro-averaged evaluation: it considers all predictions and instances in the dataset as a
whole. Thus, it treats the dataset as a single entity and therefore, it calculates metrics based
on overall true positives, false positives, and false negative counts. It provides a measure of
overall performance across all classes, with more weight given to higher-frequency classes.

• Macro-averaged evaluation: it aggregates performance metrics by taking each class
independently into account as shown below. Thus, it calculates metrics separately for each
class and afterwards averages the results across all classes giving equal importance to each class
regardless of its frequency.

We present the mathematical equations for the macro-averaging evaluation metrics as follows:

• Macro-averaged precision Pmacro is calculated by first computing the precision for each class
independently and then taking the average across all classes. Pmacro is mathematically defined
as:

Pmacro :=
1
c

c∑
i=1

Pi (2.6)
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where:
Pi =

T Pi

T Pi + FPi
(2.7)

– c is the total number of entity classes,

– T Pi is the number of true positive entities for class i, and

– FPi is the number of false positive entities for class i.

• Macro-averaged recall Rmacro is calculated similarly, where the recall for each class is computed
and then averaged. Rmacro is mathematically defined as:

Rmacro :=
1
c

c∑
i=1

Ri (2.8)

where:
Ri =

T Pi

T Pi + FNi
(2.9)

where FNi is the number of false negative entities for class i.

• The macro-averaged F1 score F1macro is then calculated as the average of the F1 scores for each
class. F1macro is mathematically defined as:

F1macro :=
1
c

c∑
i=1

F1i (2.10)

where:
F1i = 2 ×

Pi × Ri

Pi + Ri
(2.11)

In summary, micro-averaged evaluation focuses on the overall performance across all classes and
is influenced by class distribution, giving more weight to the most frequent classes. By treating
each class equally, macro-averaged evaluation provides a more balanced assessment of model
performance, offering deeper insights into how well the model performs on individual classes,
especially those that are underrepresented in the dataset. This makes it a valuable metric for scenarios
where performance on minority classes is important.

2.3 Transformer-based Language Models

In this section, we review and categorize early transformer-based pre-trained language models
(PLMs) based on their neural architectures: encoder-only, decoder-only and encoder-decoder
models.
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1) Encoder-only PLMs: as the name is self-descriptive, the encoder only models consist of an encoder
network. At each stage, the attention layers access all the words in the initial sentence. Encoder-only
models process the entire input sequence simultaneously levering the self-attention mechanism to
build a contextualized representation of the input.
Originally, encoder-only PLMs were developed for language understanding tasks such as text
classification on which these models predict a class label for input text. One of the earliest
encoder-only models is Bidirectional encoder representations from transformers (BERT) and its
variants (e.g., RoBERTa, ALBERT and XLM).
BERT remains a foundational model in the field of natural language processing (NLP). BERT
proved to be a significant advancement in the field of NLP in various tasks such as language
understanding, sentiment analysis and question answering. Devlin et al. (2019) developed BERT,
which is built upon the transformer architecture (Vaswani et al., 2017). Transformers employ
self-attention mechanisms to weigh the importance of different words in a sentence when encoding
or decoding sequences of data.
As shown in Figure 2.9, BERT consists of three modules: an embedding module that converts
input text into a sequence of embedding vectors, a stack of transformer encoders that converts
embedding vectors into a contextual representation vectors, and a fully connected layer that converts
the representation vectors to one-hot vectors. BERT is designed to understand the context of a
word by considering both right and left context simultaneously, unlike previous NLP models
which process words in a unidirectional manner (either left-to-right or right-to-left). Thus, this
bidirectional approach allows BERT to capture richer semantic meaning from the surrounding
words. BERT comprises multiple layers of transformer encoders.

Figure 2.9: BERT’s pre-training and fine-tuning procedures’ illustration. Image taken from Devlin et al.
(2019).

BERT tokenizes input text into subword units using WordPiece (WP). WP tokenization process
iteratively matches the longest subword unit from the vocabulary to substrings of words in
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the input text. If a word is not present in the vocabulary, it is broken down into individual
subword units. Thus, BERT handles out-of-vocabulary words and captures fine-grained linguistic
information.
BERT is pre-trained on vast amounts of unlabelled text data such as Wikipedia articles in multiple
languages, book corpora and various web pages and articles. Hence, BERT is exposed to a wide range
of linguistic patterns, writing domains and styles. This unsupervised training of BERT has two main
objectives: masked language modelling (MLM) and next sentence prediction (NSP). For the MLM
task, around 15 % of words in each input sentence are masked and BERT is trained to predict them
based on the context provided by the surrounding words. Regarding NSP, BERT predicts whether
a given pair of sentences appear consecutively in the original text or not.
During pre-training BERT learns bidirectional contextualized representations of words and
sentences by optimizing MLM’s objective, which includes predicting masked tokens within
the input sequences. These pre-trained representations capture semantic information about the
relationships between tokens in the input text.
Afterwards, BERT can be fine-tuned on specific downstream tasks using labelled data by leveraging
the learned contextualized representations during pre-training to predict the class labels of tokens
in the input sequences. Task-specific layers are added on top of the pre-trained model and the
entire network is trained on the labelled task-specific data. BERT adjusts the parameters based on
labelled examples to minimize a task-specific loss function, such as cross-entropy loss for single-label
scenarios and binary cross-entropy loss for multi-label scenarios. Hence, BERT fine-tunes the model
in a supervised learning setup.
RoBERTa is another variant of BERT that significantly improves the robustness of BERT using
a set of model design choices and training strategies (Liu et al., 2019b). For instance, modifying
a few key hyperparameters, removing the next-sentence pre-training objective and training with
larger mini-batches and learning rates. ALBERT applies two parameter-reduction techniques as
follows: factorized embedding parametrization and cross-layer sharing leading to lower memory
consumption and increase the training speed of BERT (Lan et al., 2020).
ELECTRA (short for efficiently learning an encoder that classifies token replacements accurately),
is another variant of encoder-only PLM architecture. Clark et al. (2020) designed ELECTRA
by introducing a novel training objective, known as the “replaced token detection” task. Instead
of using MLM as in BERT, ELECTRA replaces a subset of tokens in the input with
plausible alternatives and trains a discriminator to distinguish between the original and replaced
tokens. ELECTRA has two main components: generator and discriminator. Replaced tokens are
produced by the generator and the discriminator is trained to distinguish between the original
tokens and generated replacements. Both the generator and discriminator are jointly trained using
adversarial learning. The generator aims to fool the discriminator and the discriminator’s objective
is to accurately classify the tokens. ELECTRA employs the same transformer architecture as
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BERT. However, it modifies the training objective and introduces a generator-discriminator setup
to improve efficiency and effectiveness. Consequently, ELECTRA’s replaced token objective is
computationally more efficient than BERT’s masked language model. This allows larger batch sizes
during training and ELECTRA has demonstrated competitive performance and achieved SOTA
results on various NLP benchmarks.
Cross-lingual language model (XLMs) adapted BERT to cross-lingual language models using two
approaches: unsupervised method which relies on monolingual data and supervised method that
leverages parallel data with novel cross-lingual language model objective (Conneau and Lample,
2019). As depicted in Figure 2.10, the MLM objective is similar to BERT but with continuous
streams of text as opposed to sentence pairs. The translation language modelling objective extends
MLM to pairs of parallel sentences. XLMs are considered to be one of the SOTA results on
cross-lingual classification, supervised and unsupervised machine translation.

Figure 2.10: Cross-lingual language model pre-training. Image taken from Conneau and Lample (2019).

2) Decoder-only PLMs: comprised solely of a decoder stack. These models are also known as auto-
regressive models. The pre-training of these models is usually formulated as predicting the next word
in the sequence. Decoder-only models are best suited for tasks involving text generation. OpenAI
developed two of the most popular decoder-only PLMs, namely GPT-1 (Radford, 2018) and
GPT-2 (Radford et al., 2019). GPT-1 and GPT-2 models lay the foundation for more powerful
large language models (LLMs), as discussed later in Section 2.3.1. The evolution of GPT-1, equipped
with 117 million parameters, paved the way for subsequent GPT models with modified architecture
and improved performance on various language tasks. GPT-1 achieved good performance on
various corpora of unlabelled text in a self-supervised learning fashion, followed by discriminative
fine-tuning on downstream tasks. GPT-2, with a model size of one and a half billion parameters,
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demonstrated that language models are capable of performing various NLP tasks without explicit
supervision, having been trained on large web text datasets (i.e., millions of webpages). GPT-2 is a
modified version of GPT-1 with several changes as follows: normalization layer is moved to each
sub-block’s input, an additional normalization layer is added after the final self-attention block,
the vocabulary is expanded to 50,257, context size is increased from 512 to 1,024 tokens, and
initialization is modified to consider the accumulation on the residual path and to scale the weights
of residual layers. GPT-2 was able to generate text that was not only coherent but also contextually
relevant, raising the bar for automated text generation. However, the advancements of GPT-2 also
sparked many discussions about the potential misuse of the technology(e.g., generation of fake and
misleading content).
3) Encoder-Decoder PLMs: these models consist of both an encoder and a decoder stack. The
encoder typically captures the input sequence’s context, and the decoder generates the output
sequence based on this context. These are designed as unified models that perform both natural
language understanding and generation tasks. The Text-to-Text Transfer Transformer (T5) is
developed as a sequence-to-sequence generation model for various NLP tasks (Rohanian et al.,
2024). A multilingual version of T5, named mT5, is pre-trained on a new Common Crawl-based
dataset consisting of text in 101 languages (Xue et al., 2021). BART is a denoising auto-encoder for
pre-training sequence-to-sequence models (Lewis et al., 2020). BART is pre-trained by corrupting
text with an arbitrary noising function; afterwards, the model learns to reconstruct the original
text. Song et al. (2019) proposed MAsked Sequence to Sequence Pre-training (MASS). MASS
adopts the encoder-decoder framework to reconstruct a sentence fragment given the remaining part
of the sentence. The MASS encoder takes a sentence with randomly masked fragments as input,
and the MASS decoder predicts the masked fragment. Thus, MASS jointly trains the encoder and
decoder for language embedding and generation, respectively.

2.3.1 Language Models

With the evolution of medium to very large language models, we highlight various types of LMs. For
this, in this section, we follow the same LM categorizations as proposed by Minaee et al. (2024), as
depicted in Figure 2.11. LMs can be categorized based on parameters, originality, availability and
type.
LMs vary in the number of training parameters. Typically, a small LM has less than or equal to
one billion parameters. A medium LM has between one to ten billion parameters (exclusive), and a
large LM includes between ten billion to 100 billion training parameters (exclusive). Finally, a very
large LM has more than 100 billion training parameters. Original LMs are trained from scratch
as foundation models. Fine-tuned LMs are those fine-tuned on different datasets using an original
model. Some LMs are public, with weights shared publicly, while others are private.
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Figure 2.11: Overview of the different perspectives on LM categorizations. Image taken from Minaee et al.
(2024).

Finally, LMs can be classified as follows: foundation models, which are pre-trained without
instruction or chat fine-tuning; instruction-based models, pre-trained with only instruction
fine-tuning; and chat-based models, pre-trained with both instruction and chat fine-tuning.

The latest GPT models including GPT-3 and GPT-4 have made remarkable strides and
gained considerable attention from the research community (Kalyan, 2024). One of the special
characteristics of GPT models is the exponential growth of their parameters. GPT-3 and GPT-4
feature around 175 billion and 170 trillion parameters, respectively (Koubaa, 2023). In contrast,
GPT-2 has 1.75 billion parameters. Such models with this training parameter magnitude are
commonly referred to as LLMs. The enhancement of LLMs is achieved via reinforcement learning
with human feedback in the loop, thereby aligning text generation with human preferences. For
example, GPT-3.5 builds upon the foundation of GPT-3 using reinforcement learning techniques
leading to significantly improved performance in natural language understanding.

The launch of ChatGPT, a chatbot using GPT-3.5 and GPT-4 has marked a milestone in generative
artificial intelligence. For instance, GPT-4 passed over 20 academic exams including the Uniform
Bar Exam, SAT Evidence-based Reading and Writing and Medical Knowledge Self-Assessment
Program (OpenAI, 2023).

In this section, we focus on discussing various transformer-based LLMs that contain tens to
hundreds of billions of training parameters. LLMs are not only large in model size but also exhibit
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improved language understanding and greater generation abilities than smaller language models, as
discussed in Section 2.3.

Figure 2.12: Summary of LLMs developed by OpenAI, Meta and Google. Image taken from Minaee et al.
(2024).

As shown in Figure 2.12, the main LLMs are categorised as follows: GPT presented by OpenAI,
Meta Llama, formerly known as LLaMa, presented by Meta, and PaLM presented by Google:

• Generative Pre-trained Transformers (GPT): they are decoder-only transformer-based
language models. Early GPT including GPT-1 and GPT-2 are open-source models. Recent
models such as GPT-3 and GPT-4 are close-source models that are accessed via application
programming interface (APIs). GPT-1 and GPT-2 have been discussed in Section 2.3. We
review other recent GPTs:

– GPT-3: Brown et al. (2020) proposed GPT-3 as a pre-trained autoregressive language
model with 175 billion parameters. GPT-3 exhibits emergent ability of in-context
learning (ICL). ICL is also known as few-shot learning for LLMs. ICL enables
generalizing and adapting to new tasks by providing examples within the prompt. ICL
leverages the model’s pre-existing knowledge and its ability to understand the context to
infer generating appropriate responses (Dong et al., 2022). Thus, GPT-3 is applied to
to various downstream tasks without further fine-tuning or gradient updates. GPT-3
demonstrated strong performance on many NLP taks such as translation, question-
answering and others that require on-the-fly reasoning.

– WebGPT: Nakano et al. (2021) fine-tuned GPT-3 to answer open-ended questions
using a text-based web browser. WebGPT facilitates users to search and navigate
the web. WebGPT is trained in three followsing steps: mimicking human browsing
behaviours using human demonstration data, learned reward function to predict
human preferences and refined to optimize the reward function via reinforcement
learning and rejection sampling.
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– InstructGPT: Ouyang et al. (2022) proposed to align language models with user
intent on various range of tasks by fine-tuning with human feedback as depicted
in Figure 2.13. The authors collected tailored datasets by submitting set of labeller-
written prompts through OpenAI API. Afterwards, the authors fine-tuned GPT-3
on their collected dataset. In addition, a dataset of human-ranked model outputs is
collected to additionally fine-tune the model via reinforcement learning. As shown in
Figure 2.13, the authors applied “ Reinforcement Learning from Human Feedback
” (RLHF) (Ouyang et al., 2022). InstructGPT models exhibit improvements in
truthfulness and reductions in toxic output generation.

Figure 2.13: Overview of InstructGPT methods including (1) supervised fine-tuning, (2) reward model and
(3) reinforcement learning via proximal policy optimization (PPO). The authors stated that blue
arrows indicate that the data is used to train the model and boxes A-D in step (2) are sample from
the proposed model that are ranked by labellers. Image taken from Ouyang et al. (2022).

– ChatGPT3: the launch of Chat Generative Pre-trained Transformer (ChatGPT)
by OpenAI was in November 2022 as a chatbot that enables users to have
open conversation with wide range of tasks. For instance, question-answering, text
summarization, general information seeking and many more. Initially, ChatGPT was
powered by GPT-3.5. GPT-3.5 is trained to follow an instruction as a prompt and
generate response accordingly.

– CODEX: in March 2023, OpenAI released CODEX, a general-purpose programming
model that is able to parse natural language and generate code accordingly (Chen et al.,
2021). CODEX is a fine-tuned version of GPT-3 for programming applications on code
corpora collected from GitHub.

3Introducing ChatGPT: https://openai.com/index/chatgpt/, last accessed: 01.08.2024.
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– GPT-4: OpenAI (2023) released GPT-4 as multi model LLM. GPT-4 was pre-
trained to predict next tokens on large text corpora and then fine-tuned with
RLHF. GPT-4 enables users to ask in form of free text and images and GPT-4 generate
responses accordingly. Although, GPT-4 is still less capable then humans in real-world
applications. However, GPT-4 exhibits a human-level performance on professional and
academic benchmarks.

• Large Language Model Meta AI (Meta Llama): they are collection of open-source foundation
language models released by Meta. Since Meta shares the model weights to the research
community under a non-commercial license, Meta Llama grows rapidly. Such open-source
models that are developed by researchers compete with closed-source ones tailored to various
applications:

– Touvron et al. (2023a) released the first set of LLaMa models ranging from seven
billion to 65 billion parameters which are pre-trained on trillions of tokens from
publicly available datasets. LLaMa adapted the transformer architecture of GPT-3
and added minor architectural amendments as follows: used root-mean-squared layer
normalization instead of standard layer-normalization, used the Swish-Gated Linear
Unit (SwiGLU) activation function instead of Rectified Linear Unit (ReLU), and
utilized rotary positional embeddings instead of absolute positional embedding. One
of the released models “LLaMA-13B” outperforms GPT-3 with 175 billion training
parameters on most benchmarks.

– Meta and Microsoft released “LLaMA-2” collection that include foundation language
models and chat models fine-tuned on dialogue datasets named as “LLaMA-2
Chat” (Touvron et al., 2023b). LLaMA-2 Chat was pre-trained on publicly available
online data, then initial version of the model is fine-tuned in a supervised fashion. Sub-
sequently, the model is refined iteratively using RLHF, PPO and rejection sampling.

– Alpaca4: is fine-tuned from Meta’s LLaMA 7B model on 52K instruction-following
demonstrations generated in the style of self-instruct using OpenAI’s text-davinci-
003. Alpaca is a smaller and cost-effective for training than GPT-3.5. Alpaca is mainly
applied for academic research and performs as good as GPT-3.5.

– Vicuna-13B5: the Vicuna team presented a 13B chat model that fine-tuned LLaMA on
user-shard conversations collected from ShareGPT.6 Vicuna-13B has relative limited
computational demand for model training since the training cost is around three
hundred dollars.

4Stanford Alpaca: https://crfm.stanford.edu/2023/03/13/alpaca.html, last accessed: 01.08.2024.
5Vicuna: An Open-Source Chatbot https://lmsys.org/blog/2023-03-30-vicuna/, last accessed: 01.08.2024.
6ShareGPT: https://sharegpt.com/, last accessed: 01.08.2024.
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– Mistral-7B: Jiang et al. (2023) proposed a seven billion training parameters language
model. Mistral-7B leverages grouped-query attention with a fast interface. Mistral-7B
is coupled with sliding window attention to effectively handle sequences of arbitrary
length with a reduced inference cost. Results show that Mistral-7B outperforms
LLaMA-2-13B across all evaluated benchmarks. Moreover, Mistral-7B outperforms
LLaMA-34B in reasoning, mathematics and code generation.

There are many more emerging LLaMA models such as Gorilla (Patil et al., 2023),
Giraffe (Pal et al., 2023), Vigogne Huang (2023), Tulu 65B (Wang et al., 2023), Long
LLaMA (Tworkowski et al., 2023) and Beluga2 (Mahan et al., 2023).

• Pathways Language Models (PaLM): Google developed the first PaLM model in April 2022
and remained private until March 2023 (Chowdhery et al., 2023). PaLM model is pre-trained
on high quality text corpus consisting of 780 billion tokens from a wide range of natural
language tasks and use cases. PaLM is a 540 billion parameter transformer-based LLM. With
the evolution of the first PaLM model, there are various PaLM-based models built upon:

– PaLM-2: Anil et al. (2023b) proposed a better compute-efficient LLM with multi-
lingual and reasoning capabilities than the predecessor PaLM. PaLM-2 exhibits an
improved performance on downstream tasks across different model sizes with faster and
more efficient interface than PaLM.

– Med-PaLM: a domain-specific PaLM designed to provide high quality answers to
clinical questions (Singhal et al., 2022). Med-PaLM is fine-tuned on PaLM using
instruction prompt tuning. Med-PaLM is a parameter-efficient approach for aligning
LLMs to new domains using a few exemplars. Singhal et al. (2023) proposed Med-PaLM
2 and improved MedPaLM via medical domain fine-tuning and ensemble prompting.

– U-PaLM: Tay et al. (2023) proposed three models of 8, 62 and 540 billions training
parameters. U-PaLM is trained on PaLM and has reported 2x computational saving
rate. Flan-PaLN is instruction-fined-tuned on U-PaLM (Chung et al., 2022). Flan-
PaLM’s fine-tuning is performed using larger number of tasks, model sizes and chain-
of-thought data. The fine-tuning data includes 473 datasets and 1,836 tasks including
146 different types. Results show that Flan-PaLM outperforms instruction-following
models.

• Additional uncategorised LLMs: besides the previously mentioned three categories of LLMs,
we briefly highlight other popular LLMs. While we acknowledge that it is challenging to keep
track of the continuously emerging LLMs, we have endeavoured to report the most popular
and significant ones:
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– Retrieval Enhanced Transformer(RETRO): Borgeaud et al. (2022) designed an
enhanced auto-regressive language models by conditioning on document chunks. These
document chunks are retrieved from a large corpus based on local similarity with
preceding tokens. RETRO combines a frozen BERT retriever as differentiable encoder
and a chunked cross-attention mechanism.

– Galactica: an LLM that can store, combine and reason scientific knowledge (Taylor
et al., 2022). The authors trained Galactica on large scientific corpus of papers,
knowledge bases, reference material and many other resources. Galactica performed well
on mathematical reasoning tasks.

– BLOOM: Scao et al. (2022) presented BLOOM, a 176 billion parameter open-access
LM designed and built by collaboration of hundreds of researchers. BLOOM is trained
on 46 natural and 13 programming languages.

– FLAN: Figure 2.14 illustrates the comparison between pre-train fine-tuning approach,
prompting and FLAN instruction tuning Wei et al. (2022). The authors improved the
zero-shot learning abilities of LMs via instruction tuning. The authors utilized a 137
billion training parameter pre-trained language model and instruction tune it over 60
NLP datasets verbalized via natural language instruction templates. The results reveal
that instructions improve zero-shot performance on unseen tasks.

Figure 2.14: Overview of FLAN instruction tuning compared to pre-train fine-tuning and prompting
approaches. Image taken from Wei et al. (2022).

– PaLM-2: Anil et al. (2023b) proposed a compute-efficient LLM. PaLM-2 has better
multi-lingual and reasoning capabilities than it’s predecessor PaLM. The results reveal
that PaLM-2 improves the model performance on downstream tasks across different
model sizes. Besides, PaLM-2’s outperformance, it exhibits faster and more efficient
inference than PaLM.

– Gemini: Anil et al. (2023a) introduced a new family of multimodal models. Gemini
exhibits promising capabilities across audio, image, video and text understanding.
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Additionally, there are other LLMs designed for efficient development frameworks, such as,
Megatron-Turing NLG (Smith et al., 2022), LongFormer (Beltagy et al., 2020), Gorilla (Patil
et al., 2023), PAL (Gao et al., 2023), Claude 3.5 Sonnet,7 OPT-IML (Iyer et al., 2022),
MeTaLM (Hao et al., 2022) , Dromedary (Sun et al., 2023), FuseLLM-7B (Wan et al., 2024),
TinyLlama-1.1B (Zhang et al., 2024), LLaMA-Pro-8B (Wu et al., 2024), Zephyr (Tunstall
et al., 2023) and many more.

2.3.2 Fine-tuning

Fine-tuning LM is the process of adapting a pre-trained model to a specific task and/or domain. Fine-
tuning helps to improve the model’s performance on tasks via specialized dataset. We categorize the
fine-tuning into the following techniques:

• Supervised Fine-tuning (SFT) : follows a standard approach to adapt pre-trained models
to tailored tasks. SFT adapts pre-trained models by further training them on new labelled
datasets via supervised learning techniques (Arase and Tsujii, 2019; Zhou and Srikumar,
2022; Mosbach et al., 2021). Later, we further discuss the vanilla fine-tuning approach to
biomedical applications in Section 3.2.3.

• Instruction Fine-tuning (IFT) : is also known as prompt-based fine-tuning. IFT is one of
the recent adaption of SFT that is mainly applied to LLMs. IFT focuses on teaching LLMs
to follow instructions to perform various tasks without explicit task-specific architecture
amendments or separate training for each task. IFT is different than SFT as it enables the usage
of diverse set of instructions or prompts, covering multiple tasks within the same training
process (Zhang et al., 2023b).

• Parameter-Efficient Fine-tuning (PEFT) : evolved with emergence of LLMs. PEFT is designed
to adapt large pre-trained model to specific downstream tasks while minimizing additional
new parameters or amending only a fraction of the existing model (Han et al., 2024). PEFT
aims to utilize most of the pre-trained knowledge, reduce computational costs and alleviate
the potential risk of over-fitting when the dataset is small. One of the earliest PEFT strategy
is Low-rank adaption of large language models (LoRA) (Xu et al., 2024). LoRA introduces
low-rank matrices that are multiplied with the weight matrices of certain layers during forward
and backward passes. LoRA learns task-specific modifications without the changing the
original weights directly. Thus, LoRA reduces the number of additional new parameters.

Directly applying the general-domain advancements in NLP such as BERT and ELECTRA in
biomedical text mining tasks often yields unsatisfactory results. This is due to the word distribution
7Claude 3.5 Sonnet: https://www.anthropic.com/news/claude-3-5-sonnet, last accessed: 01.08.2024.
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shift from general domain corpora to the biomedical domain (Beltagy et al., 2019; Lee et al., 2020b;
Gu et al., 2022). We discuss the adaptation of general-domain pre-trained language models to the
biomedical domain later in Section 3.2.

2.4 Summary

In summary, this chapter provides the main foundations and concepts that are directly related to
the thesis’s main contributions. We introduce the basic concepts of BioNLP. We have discussed
the significance of various downstream tasks like BioNER and BioRE that facilitate the process of
information extraction from unstructured textual text.
In Section 2.1, we highlighted the two most popular BioNLP shared tasks on which biomedical
domain experts and computer scientists collaborate to provide the community with gold-standard
datasets. We introduced the BioNER concept and discussed different biomedical entity types in
Section 2.1.1. We also presented the main differences between single-label, multi-label, and nested
entities. In addition, we briefly provided some insights about the entity linking task and the most
commonly used biomedical knowledge bases.
In Section 2.1.2, we discussed the concept of relation extraction whether binary or n-ary ones. In
addition, we presented the intra-sentence and inter-sentence relations. We have clearly identified the
scope in terms of entity and relation types that we are addressing in this thesis. Furthermore, we have
presented the main advantages of joint entity and relation extraction and the three existing tailored
paradigms in Section 2.1.3. Moreover, we have provided detailed descriptions, statistical data, and
class frequencies for the BioNER and JNERE gold-standard datasets. Finally, we have presented the
evaluation schemes and metrics for both tasks as well.
As discussed in Section 2.2, the biomedical gold-standard datasets are grossly imbalanced, especially
NER ones. For this purpose, Chapter 3 discusses the biases in the vanilla fine-tuning approach. In
addition, we present our weighted loss trainer that addresses the class imbalance problem.
Finally, we highlight different types of general-domain specific transformer-based language models
in Section 2.3. In addition, we recap the recent advances in large language models up to the time of
writing this thesis in Section 2.3.1. However, given the rapid pace of developments in this field, it is
challenging to remain fully up-to-date. In Chapter 3, we discuss the adapted large language model
to biomedical applications.
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The core theme of this thesis focuses on addressing the class imbalance problem on recognising
named entities and relations. Despite the significant advancements made by various pre-trained
language models, traditional fine-tuning approaches do not effectively mitigate the class imbalance
problem. The vanilla fine-tuning method uses the standard loss function which typically treats
all classes equally and does not account for differences in class distribution. Thus, such models
are often biased towards majority classes and struggle to classify minority classes. Therefore, this
is problematic in real-world applications with highly skewed datasets. In addition, traditional
fine-tuning may use evaluation metrics such as precision, recall, or accuracy. This might not
adequately reflect a model’s performance with imbalanced gold-standard datasets. In this case, if
the model has a high accuracy, this may be misleading, as the model primarily predicts majority
classes. To this end, in this chapter, we investigate the impact of applying a cost-sensitive fine-tuning
approach to deal with biomedical imbalanced gold-standard datasets.
Fine-tuning biomedical pre-trained language models (BioPLMs) such as BioBERT has become
a widespread practice dominating leader-boards across various natural language processing
tasks. Despite major advancements and wide usage, recent work report fine-tuning instabilities
for general-domain NLP tasks (Devlin et al., 2019). Besides, Lee et al. (2020a) report that small
training datasets (i.e., less than 10,000 examples) are one of the potential reasons for fine-tuning
instabilities. However, we argue that prevailing fine-tuning approaches for NER train BioPLMs on
targeted datasets without considering class distributions. This is critical especially for most of the
biomedical entities are under-represented as illustrated in Table 2.2. Consequently, the disparities
between misclassification errors for different class labels are significant; making them crucial factors
to consider. Thus, the error costs for rare classes in a trainer’s loss function should be higher. As
previously mentioned, most of the real-world biomedical datasets are highly imbalanced (Akkasi
et al., 2018). Nevertheless, the impact of class imbalance before fine-tuning biomedical datasets is
often not explored, especially not for NER. A few studies point out the positive impact of handling
the class imbalance before fine-tuning (ValizadehAslani et al., 2022). Additionally, the authors state
that fine-tuning BioPLMs on highly skewed datasets negatively affect the overall performance.
As discussed in Section 2.2.1, since these gold-standard biomedical datasets are curated by domain
experts, we avoid using traditional resampling approaches as,

• removing the majority class examples leads to possible information loss, and
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• duplicating the minority class examples may lead to poor performance of language
models (Lee et al., 2022) and also places a burden on computational resources.

Therefore, we investigate the impact of handling the class imbalances while fine-tuning. We present
a Weighted Loss Trainer (WeLT) that addresses the class imbalance problem by introducing
coefficients that penalize majority classes and give higher weights to the rare ones.

Contributions. In this chapter, we make the following contributions:

• We propose WeLT, a class-balanced re-weighting scheme that modifies a trainer’s loss
functions for fine-tuning models.

• We compare WeLT to a vanilla fine-tuning approach and existing cost-sensitive class weighting
methods (Suri, 2022; Cui et al., 2019). We conducted experiments on several transformers
such as BERT and ELECTRA using BioBERT’s entity-level evaluation script.

• We release the code1 for the WeLT fine-tuning approach for BioNER, along with the
hyperparameters needed to reproduce our research results. Besides, we release all the
fine-tuned models2 on the Hugging Face Hub (Wolf et al., 2020).

• We adapt WeLT to fine-tune BioNER models and investigate the impact of addressing the
class imbalance on BioNEL. Hence, we compare WeLT recognised entities against vanilla
recognized entities on the performance of BioNEL. We conduct our fine-tuning experiments
on mixed-domain and domain-specific BERT models.

• We additionally evaluate WeLT using BioCreative VII NLM-Chem evaluation script (Lea-
man et al., 2023), assessing BioNER and BioNEL, respectively. We report both approximate
and strict mode results. However, our main findings for BioNER are based on the strict mode,
on which a correctly recognised entity has the right exact span, and entity type.

• We release the additional code3 of BioNER’s impact on BioNEL experiments.

Structure. We first discuss the biomedical information extraction pipeline. Furthermore, we
present relevant downstream application examples in Section 3.1. In Section 3.2, we provide
an overview of related work on biomedical named entity recognition, with a primary focus
on pre-trained language models and traditional fine-tuning approaches. In Section 3.3, we
introduce the concept of the class imbalance problem and explore various existing approaches. In
Section 3.3.2, we delineate the main trade-offs between existing approaches highlighting the
1WeLT code: https://github.com/mobashgr/WeLT, last accessed: 01.08.2024.
2Fine-tuned models at Hugging Face Hub: https://huggingface.co/mobashgr, last accessed: 01.08.2024.
3Recognised WeLT entities code: https://github.com/mobashgr/WeLT-impact-on-BioNEL, last accessed: 30.10.2024.
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research gaps. Building upon this background, we then justify the need for a custom cost-sensitive
approach for BioNER models and present WeLT in Section 3.4. In Section 3.6, we evaluate the
impact of recognised entities from WeLT on another biomedical entity linking and compare it to
the recognised entities from vanilla models. Finally, the summary and discussion are presented in
Section 3.7.

References. Parts of this chapter are based on the peer-reviewed publications:

• Ghadeer Mobasher, Wolfgang Müller, Olga Krebs, and Michael Gertz. 2023. WeLT:
Improving biomedical fine-tuned pre-trained language models with cost-sensitive learning. In
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks,
pages 427–438, Toronto, Canada. Association for Computational Linguistics

• Robert Leaman, Rezarta Islamaj, Virginia Adams, Mohammed Alliheedi, João Rafael
Almeida, Rui Antunes, Robert Bevan, Yung-Chun Chang, Arslan Erdengasileng, Matthew
Hodgskiss, Ryuki Ida, Hyunjae Kim, Keqiao Li, Robert E. Mercer, Lukrécia Mertová,
Ghadeer Mobasher, Hoo-Chang Shin, Mujeen Sung, Tomoki Tsujimura, Wen-Chao Yeh, and
Zhiyong Lu. 2023. Chemical identification and indexing in full-text articles: an overview of
the NLM-Chem track at BioCreative VII. Database J. Biol. Databases Curation, 2023

3.1 Biomedical Information Extraction

Biomedical information extraction (BioIE) from unstructured text involves extracting relevant
information from text sources such as scientific articles, clinical notes, and biomedical litera-
ture. BioIE typically involves several steps:

1. Text pre-processing in which text data are tokenized by breaking down the text into smaller
units (i.e., usually words and subwords). Tokenization helps to convert raw text into a format
suitable for computational analysis and allows algorithms to understand its structure and
meaning. Afterwards, there are further preprocessing steps, such as lowercasing, removing
punctuation, special characters, and stop words.

2. NER aims to locate and classify biomedical entities like chemicals, diseases, genes, and
proteins. For instance, “glucose” is recognised as a chemical entity.

3. NEL links the identified entities to biomedical knowledge bases like MeSH IDs as discussed in
Section 2.1.1. The annotation of text with concepts from these knowledge bases can facilitate
interoperability and data integration across different sources.
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4. RE extracts relations or associations between identified entities. For example, this involves
identifying which “drug” is used to treat a particular “disease” or which “gene” is associated
with a “specific disorder”.

Figure 3.1 depicts the BioIE pipeline that is composed of three stages:

• BioNER: the identified entities are classified based on pre-defined categories. For example,
“ angiotensin” and “ captopril ” are recognised as chemical entities. “Pulmonary and renal
insufficiency” and “intravascular coagulation ” are classified as disease entities.

• BioNEL: on which the identified entities are linked to MeSH IDs or other relevant knowledge
bases as discussed in Section 2.1.1. For instance, “ captopril ” is linked to the MeSH ID
D002216.4

• BioRE: the extracted chemical-induced disease relationships (CID) tuple is (tranexamic acid
(AMCA) , CID , intravascular coagulation). Since “CID” is an asymmetrical relationship, the
entity head is the chemical entity “tranexamic acid (AMCA)” and the entity tail is the disease
“intravascular coagulation”.

Figure 3.1: A biomedical information extraction example encompassing BioNER, BioNEL and BioRE (Eriks-
son and Saldeen, 1989). This snippet is part of the training data of BC5CDR for chemical-induced-
disease relationship.

3.2 Biomedical Pre-trained Language Models

Directly applying the state-of-the-art NLP encoder-only, decoder-only and encoder-decoder
approaches to BioNLP offers several limitations. Typically, encoder-only models such as BERT
4captopril MeSH descriptor data: https://meshb.nlm.nih.gov/record/ui?ui=D002216, last accessed: 01.08.2024.
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are trained and tested on datasets containing general domain texts (e.g., Wikipedia). In addition,
the word distributions of general and biomedical corpora are different (Habibi et al., 2017; Lee
et al., 2020b). Thus, motivated by the success of general-domain language models as discussed in
Section 2.3, several studies adapted language models like BERT and ELECTRA.
Lee et al. (2020b) proposed BioBERT as the first biomedical encoder-only model trained on
large-scale unlabelled free text available from PubMed abstracts (PubMed)5 and PubMed Central
(PMC)6 full-text articles. PubMed is a free resource containing over 30 million citations and
abstracts of biomedical literature. PMC has open access to over five million full-text biomedical
and life science research articles. BioBERT is tailored to biomedical text processing tasks and
bioinformatics tasks. As shown in Figure 3.2, BioBERT is initialized via BERT’s weights that are
pre-trained on English general domain corpora. BioBERT is developed based on further pre-training
of general BERT on biomedical texts.

Figure 3.2: Mixed BioBERT’s pre-training procedure initialized by BERT’s weight using biomedical corpora
including PubMed & PMC. BioBERT can be fine-tuned to various tasks. Image taken from (Lee
et al., 2020b).

In contrast, BioELECTRA adapts ELECTRA; however, it is pre-trained from scratch in the
biomedical domain using PubMed abstracts and PMC full-text articles (Kanakarajan et al.,
2021). BioELECTRA leverages the same replaced token detection objective and generator-
discriminator architecture as ELECTRA but is pre-trained on biomedical text data to capture
domain-specific knowledge and terminology as shown in Figure 3.3.
Overall, while BioBERT has been a remarkable advancement in BioNLP, the evolution of other
encoder-only variants and advancements on transformer models have further expanded the
capabilities and applications of biomedical transformer models, paving the way for innovative
solutions in biomedical research. Recently, decoder-only and encoder-decoder models have
emerged, significantly shaping BioNLP research.

5PubMed: https://pubmed.ncbi.nlm.nih.gov/, last accessed: 01.08.2024.
6PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/, last accessed: 01.08.2024.
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Figure 3.3: Illustration of BioELECTRA’s model fine-tuning. Image taken from (Kanakarajan et al., 2021).

In Section 3.2.1, we categorise different variants of BioPLMs based on the model architecture,
similarly to Section 2.3. For encoder-only models, we focus on those using WP tokenisation
and categorise them according to the pre-training approach, including continual/mixed and
from-scratch training. We also give particular attention to various compact biomedical BERT
models. In Section 3.2.2, we review BioNER scores achieved by various language models and
provide justifications for continuing to refine encoder-based models. Additionally, we present the
standard loss functions for both single-label and multi-label scenarios in Section 3.2.3. Finally, the
summary and open issues are discussed in Section 3.2.4.

3.2.1 State-of-the-Art in BioNER

The rapid growth of biomedical literature poses a challenge to manual curation and knowledge
discovery. BioNLP has emerged as one of the potent solutions facilitating automatic information
extraction. Recently, Large Language Models (LLMs) have emerged and have impressive perfor-
mance on general domain applications. However, there remains a critical gap in the effectiveness of
LLMs in BioNLP tasks, specifically BioNER as discussed later in Section 3.2.2.
BioNER’s technical contributions enable advanced applications in literature mining, clinical
decision support, drug discovery and further improvements in healthcare and biomedical sciences
as highlighted in Section 2.1.1.
The state-of-the-art BioNER systems typically leverage deep learning architectures such as
transformer-based models. BioBERT is the first biomedical encoder-only transformer-based
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model. BioBERT is pre-trained on large-scale biomedical corpora. BioBERT afterwards is fine-tuned
on BioNER datasets to capture domain-specific knowledge and terminology effectively.
Biomedical language models have adopted its architecture and can be categorised into (1) encoder-
based, masked language models using the encoder from the transformer architecture such as BERT
family including BioBERT (Lee et al., 2020b) and PubMedBERT (Peng et al., 2019), (2) decoder-
based, generative language models using the decoder from the transformer architecture such as the
GPT family including BioMedLM (Bolton et al., 2024) and BioGPT (Luo et al., 2022b), and (3)
encoder-decoder-based, using both encoders and decoders such as Scifive (Phan et al., 2021) and
BioBART (Yuan et al., 2022). BioNLP studies fine-tuned those language models and demonstrated
that they achieved state-of-the-art performance in various BioNLP applications (Peng et al., 2019;
Gu et al., 2022; Beltagy et al., 2019).

3.2.1.1 Encoder-only Models

The success of BioBERT has spurred the development of numerous variants, each aiming to
address specific challenges for distinct biomedical applications. These variants are driven by
the need to improve in performance, efficiency and adaptability in BioNLP. The evolution of
BioBERT variants involves innovations in pre-training strategies, model architectures and training
methodologies. Researchers explore techniques such as continual pre-training with different
training objectives, domain-specific pre-training and compact lightweight versions. In this section,
we delve into the details of different biomedical variants of BERT and ELECTRA fine-tuned for
BioNER, highlighting their pre-training strategies and key characteristics:
Mixed/continual pre-training: involves training the model using both general and in-domain
corpora. In continual pre-training, the model is initially pre-trained over general domain text such
as books and Wikipedia. Afterwards, the model is further trained on biomedical domain-specific
corpora such as PubMed and PMC full-text articles (Kalyan et al., 2022). A couple of BioPLMs are
based on continual pre-training approaches:

• BioBERT is initialized with general BERT weights and then the model is further pre-trained
on in-domain corpora.

• BlueBERT (Peng et al., 2019) is based on the BERT-base mode with additional pre-training
in the biomedical domain from PubMed (Fiorini et al., 2018) and MIMIC-III clinical
notes (Johnson et al., 2016).

Domain-specific pre-training (DSPT) models involve training from scratch on biomedical text
data to capture specialized knowledge and terminology.
As previously mentioned, BioBERT and other mixed-domain PLMs continue pre-training based on
the general domain vocabulary. The main drawback of this pre-training approach is the splitting of
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biomedical words into several subwords, which obstructs the model learning during pre-training as
well as fine-tuning. Moreover, the length of the input sequence also increases due to the splitting of
in-domain words into several subwords. DSPT allows the model to have in-domain vocabulary. In
the biomedical domain, PubMed and PMC full-text articles are the in-domain vocabulary. The
following BioPLMs are trained from scratch:

• PubMedBERT is the first biomedical pre-trained language model that is trained from
scratch. Gu et al. (2022) proposed PubMedBERT and pre-trained it on unlabelled biomedical
corpora such as PubMed and PMC full-text articles as shown in Figure 3.4. The results
show that PubMedBERT’s pre-training approach outperforms continual pre-training of
generic language models in various BioNLP tasks such as NER, relation extraction, sentence
similarity, document classification and question answering.

Figure 3.4: The top image illustrates mixed-domain pre-training paradigm and bottom image depicts domain-
specific pre-training from scratch. Image taken from (Gu et al., 2022).

• BioELECTRA adapts ELECTRA pre-trained from scratch on biomedical unlabelled
data including PubMed and PMC full-text articles. The results show that pre-training
from scratch with biomedical domain text enables the model to learn better contextual
representations. Kanakarajan et al. (2021) note that the pre-trained domain-specific model
performs better than a model that is pre-trained on both general and biomedical text with
initial weights from general domain corpora.
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• SciBERT is proposed by Beltagy et al. (2019) in which the model leverages unsupervised
pre-training on large multi-domain corpora of computer science and biomedicine scientific
publications. Thus, from the perspective of biomedical applications, SciBERT still adopts
the mixed-domain pre-training approach, as computer science articles are out-domain
vocabulary.

Compact Biomedical BERT and ELECTRA: are lightweight versions of biomedical ELECTRA
and BERT designed to reduce the computational resources required for training and inference while
maintaining reasonable performance levels. Compact lightweight versions prioritize efficiency and
scalability, making them suitable for deployment in resource-constrained environments or on-edge
devices for BioNER applications. The following variants achieve efficiency by reducing model size,
pruning parameters, or employing knowledge distillation techniques.

• Bio-ELECTRA and Bio-ELECTRA++ are two small ELECTRA models that are eight
times smaller than BERT and BioBERT (Ozyurt, 2020). The author presented a compact
BioELECTRA that is trained from scratch on PubMed and BioELECTRA++, which is a
further pre-trained version of Bio-ELECTRA trained on PMC full-text articles. The author
reported that small domain-specific language representation models achieve comparable or
even better downstream performance on various BioNLP tasks compared to BERT which
has eight time more parameters.

• Compact biomedical transformers are lightweight models proposed by (Rohanian et al.,
2023). The authors pre-train three general-domain compact models, DistillBERT (Sanh et al.,
2019), TinyBERT (Jiao et al., 2020), and MobileBERT (Sun et al., 2020). The authors
applied two distillation techniques:

– first, distilled versions of BioBERT result in three compact models: (1) DistilBioBERT,
inspired by knowledge distillation techniques from a larger BERT model into
a smaller efficient version while preserving the performance, (2) TinyBioBERT,
which compresses the BERT model to reduce the model’s size and computational
requirements by applying knowledge distillation and pruning techniques, and (3)
CompactBioBERT, a combined distillation approach of DistilBERT and TinyBERT,
and

– the second approach involves additional pre-training of a compact model on biomedical
corpora via PubMed using continual learning, resulting in three models: the first two
models are BioDistilBERT, BioTinyBERT, which are different variants of DistilBERT
and TinyBERT, respectively. BioTinyBERT compresses the BERT model to reduce the
model’s size and computational requirements by applying knowledge distillation and
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pruning techniques. Lastly, BioMobileBERT optimizes BERT models by reducing the
model’s width/hidden size.

• Bioformer reduces the model size by 60 % compared to BERTBASE that has 110M trainable
parameters and the hidden embedding size is 768. Fang et al. (2023) pre-trained two
Bioformer versions from scratch on PubMed and PMC full-text articles. “Bioformer8L”
is a pre-trained model with eight transformer layers and the hidden embedding size is
512. “Bioformer16L” has 16 transformer layers and the hidden embedding size is 384.

3.2.1.2 Decoder-only Models

GPT models have demonstrated significant abilities on generation tasks, however directly applying
general-domain GPT models have demonstrated poor performance when directly applying them
to biomedical domain (Moradi et al., 2021; Gutierrez et al., 2022; Luo et al., 2022b). To this end,
several domain-specific generative per-trained transformer-based language models for biomedical
text generation and mining:

• BioGPT: is a generative pre-trained language model tailored to biomedical text genera-
tion (Luo et al., 2022b). BioGPT adopts the GPT-2 model (Radford et al., 2019) as its
backbone. BioGPT is pre-trained from scratch on PubMed abstracts and the vocabulary
is constructed via byte pair encoding to segment the words in the corpus into word
pieces and learn the collected in-domain corpus. Luo et al. (2022b) evaluated BioGPT on
three downstream tasks as follows: relation extraction, question answering, and document
classification. Several non-published attempts7,8,9 fine-tuned BioGPT on BioNER tasks. The
results show that the best F1 score is 72.55 % on the NCBI Disease dataset, while the SOTA
F1 score is 89.86 %, achieved by PubMedBERT, which is also a much smaller language model.

• Curie-FineTuned: Bousselham et al. (2024) fine-tuned GPT-3 using biomedical datasets. The
authors chose to utilize “Curie” with 6.7 billion parameters. The results show that the
Curie-FineTuned model achieves a lower BioNER performance on the BC5CDR dataset,
with an F1 score of 75.02 %, compared to the SOTA F1 score of 91.9 % achieved using the
PubMedBERT model as an encoder (Zhang et al., 2023a).

• Taiyi-LLM: Luo et al. (2023a) proposed Taiyi as a bilingual fine-tuned LLM model for
biomedical NLP tasks. The authors utilized QLoRa (Dettmers et al., 2023) to fine-tune

7Fine-tuned version of BioGPT on the NCBI dataset conducted by Helin Wang: https://huggingface.co/westbrook/
bio_gpt_ner, last accessed: 01.08.2024.

8Fine-tuned version of BioGPT on the NCBI dataset conducted by Timothy Lee: https://huggingface.co/timlee14/
biogpt-finetuned-ner, last accessed: 01.08.2024.

9Fine-tuned version of BioGPT on the NCBI dataset conducted by Anna Favaro: https://huggingface.co/annafavaro/
BIO_GPT_NER_FINETUNED_NEW_2, last accessed: 01.08.2024.
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a general domain LLM, Qwen-7B-base (Bai et al., 2023) on medical data. Taiyi had been
assessed on several BioNLP tasks on English and Chinese datasets. For the BioNER task, Taiyi
had been fine-tuned on BC5CDR-Chemical, BC5CDR-Disease, BC4CHEMD and NCBI
datasets.

The results show that Taiyi did not achieve SOTA F1 scores on any of the BioNER
datasets. For example, the SOTA F1 score for BC5CDR-Chemical is 93.50 %, while Taiyi
scored 80.20 %. A similar pattern is observed with BC5CDR-Disease, where BioBERTBASE

v1.1 attained the SOTA F1 score of 87.15 %, and Taiyi scored 69.10 %. Additionally,
PubMedBERT achieved the SOTA F1 score of 89.86 % on the NCBI dataset, while Taiyi
scored 73.10 %. Finally, BioBERTLARGE v1.1 achieved the SOTA F1 score of 92.67 % on the
BC4CHEMD dataset, with Taiyi scoring 79.90 %.

• iNERD: Deußer et al. (2023) presented informed named entity recognition decoding
(iNERD), which leverages the language understanding capabilities of GPT models. The
authors evaluated five generative language models on eight NER datasets. For their experi-
mental setup, they utilized the following decoder-only models: GPT2-XL with 1.5 billion
parameters (Radford et al., 2019), BioMedLM with 2.7 billion parameters (Bolton et al.,
2024), RedPajama with 3 billion parameters,10 Falcon with 7 billion parameters (Almazrouei
et al., 2023), Llama with 7 billion and 13 billion parameter versions (Touvron et al., 2023a),
and Llama-2 with 7 billion parameters (Touvron et al., 2023b).

The results on NCBI dataset show that iNERD+GPT2-XL scored 83.79 %, iNERD+BioMedLM

scored 86.37 %, iNERD+RedPajama scored 85.75 %, iNERD+Llama-7b scored 80.81 %, and
iNERD+Llama-13b scored 85.07 %. However, PubMedBERT, with 110 million parameters,
achieved the highest score of 89.86 %.

• There are various zero-shot and one-shot experiments that evaluated GPT-3.5 and GPT-4 as
follows:

– Chen et al. (2023) evaluated GPT-3.5-turbo-0301 and GPT-4-0314 for BioNLP
tasks. Additionally, the authors fine-tuned PubMedBERT for BioNER and BioRE
tasks and compared its performance against GPT-3.5 and GPT-4 in zero-shot and
one-shot settings. For the BioNER task, the authors fine-tuned BC5CDR-Chemical
and NCBI as evaluation datasets for chemicals and diseases mentioned in biomedical
literature. For the BioRE task, they fine-tuned ChemProt for chemical-protein inter-
actions (Islamaj Doğan et al., 2019) and DDI2013 for drug-drug interactions (Segura-
Bedmar et al., 2013).

10RedPajama is an open-source initiative that provides a large-scale, high-quality dataset and pre-trained language
models: https://www.together.ai/blog/redpajama, last accessed: 01.08.2024.
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Due to the high costs of GPT-4, the authors randomly sampled 180 sentences with
entities and 20 sentences without entities from each BioNER test set. The same
approach was applied to the BioRE datasets, where 180 sentences with positive
relation types and 20 with negative instances were sampled. The results reveal
that GPT models significantly underperformed in extractive and classification tasks
compared to fine-tuned PubMedBERT models, with performance gaps ranging from
approximately 10 % to nearly 30 %. Specifically, PubMedBERT achieved the highest
score for BC5CDR-Chemical (93.50 %), while GPT-3.5 and GPT-4, in zero-shot and
one-shot settings, scored between 68.36 % and 82.43 %. A similar trend was observed
for the NCBI dataset, where PubMedBERT achieved the highest score (89.86 %), while
GPT-3.5 and GPT-4 scored between 38.02 % and 58.39 %.

The same pattern applied to the BioRE task. PubMedBERT achieved the best scores
for ChemProt and DDI2013 (78.32 % and 80.23 %, respectively), while GPT-3.5 and
GPT-4 scored between 57.43 % and 66.82 % for ChemProt, and between 33.49 % and
63.25 % for DDI2013.

– Gutierrez et al. (2022) observed that using GPT-3 for BioNER performs worse than
smaller, fine-tuned pre-trained language models. Monajatipoor et al. (2024) explored
the use of LLMs for BioNER by applying various prompting techniques. The authors
discussed the significant role of in-context learning and the impact of input-output
format on GPT-3.5-turbo and GPT-4. The results reveal that BioClinicalRoBERTa
achieved the best performance among all other generative pre-trained transformer
models.

– Feng et al. (2024) evaluated five LLMs, including Flan-T5-XXL (Chung et al., 2022),
Azure-based GPT-3.5-Turbo, GPT-4,11 Zephyr-7B-Beta (Tunstall et al., 2023), and fine-
tuned MedLLaMA-13B on medical text data sources (Wu et al., 2023), across various
BioNLP downstream tasks. Regarding the BioNER task, the authors adopted various
prompting strategies, including short and long, zero-shot; short and long, random few-
shot; and short and long, semantically similar few-shot. The authors did not evaluate
the performance of these five language models on the full gold-standard datasets.

For the BC5CDR-Chemical dataset: Flan-T5-XXL scored between 49.74 % and
66.98 %, GPT-3.5-Turbo scored between 59.09 % and 66.41 %, GPT-4 scored between
75.06 % and 78.23 %, MedLLaMA-13B scored between 24.55 % and 55.15 %, and
Zephyr-7B-Beta scored between 53.16 % and 59.34 %. However, PubMedBERT
achieved 93.50 % as the SOTA highest score.

11Azure OpenAI Service models: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models,
last accessed: 01.08.2024.
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For the BC5CDR-Disease dataset: Flan-T5-XXL scored between 34.29 % and 54.67 %,
GPT-3.5-Turbo scored between 41.50 % and 48.98 %, GPT-4 scored between 55.52 %
and 63.93 %, MedLLaMA-13B scored between 11.23 % and 33.94 %, and Zephyr-
7B-Beta scored between 30.84 % and 38.26 %. However, BioBERTBASE v1.1 achieved
87.15 % as the SOTA highest score.

Regarding the NCBI dataset: Flan-T5-XXL scored between 27.58 % and 56.10 %, GPT-
3.5-Turbo scored between 47.19 % and 55.72 %, GPT-4 scored between 58.95 % and
70.59 %, MedLLaMA-13B scored between 13.44 % and 45.88 %, and Zephyr-7B-Beta
scored between 30.64 % and 42.56 %. However, PubMedBERT achieved 89.86 % as the
SOTA highest score.

– Rohanian et al. (2024) proposed instruction tuning for biomedical language pro-
cessing. The authors have utilised two general LLMs: Llama2-Med-7B, and Llama2-
Med-13B. These instruction-based models were trained on 200,000 instruction-
focused samples. The results show that on the NCBI dataset, Llama2-MedTuned-7B
scored 87.18 % and Llama2-MedTuned-13B scored 85.69 %. However, PubMedBERT
achieved 89.86 % as the SOTA highest score.

Regarding the BC5CDR-Disease dataset: Llama2-MedTuned-7b scored 83.92 % and
Llama2-MedTuned-13b scored 85.46 %. However, BioBERTBASE v1.1 achieved 87.15 %
as the SOTA highest score. For the BC2GM dataset, Llama2-MedTuned-7b scored
76.46 %, and Llama2-MedTuned-13b scored 79.12 %. However, BioBERTLARGE v1.1
achieved 85.01 % as the SOTA highest score. Unlike the three aforementioned datasets,
Llama2-MedTuned-13b and Llama2-MedTuned-7b surpassed the SOTA highest score
on BC5CDR-Chemical dataset, with F1-scores of 94.51 % and 93.88 %, respectively,
while PubMedBERT achieved a lower F1-score of 93.50 %. Based on the reported
studies, this is the only exception, and encoder-only models still hold the highest SOTA
F1 score for most of the gold-standard BioNER datasets, despite having only 110 million
parameters.

Finally, Tian et al. (2023) conducted an extensive literature survey on ChatGPT and LLMs in
biomedicine and health, summarizing the performance of different LLMs on BioNER datasets. The
authors concluded that LLMs struggle to surpass encoder-only fine-tuned models. The authors also
noted that while ChatGPT and various LLMs recognise entities that sound plausible, these do not
always match the gold-standard entities.
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3.2.1.3 Encoder-Decoder Models

With the emergence of T5 trained on colossal clean crawled corpus (C4) and availability of
biomedical datasets, Phan et al. (2021) were motivated to introduce a T5-based model tailored to
biomedical domain and other encoder-decoder models are developed:

• SciFive: this is a sequence-to-sequence encoder-decoder architecture (Vaswani et al., 2017)
based on the T5 framework (Raffel et al., 2020). Phan et al. (2021) trained SciFive on two
biomedical datasets: unlabeled PubMed abstracts and PMC full-text articles. SciFive adapts
the original structure and parameters of T5. The authors tested different variants of SciFive
on various BioNLP tasks.

For BioNER, the highest score achieved by a SciFive variant is 89.39 % on the NCBI disease
dataset. However, the highest SOTA score remains 89.86 %, achieved by PubMedBERT. Re-
garding the BC5CDR-Disease dataset, the highest score of a SciFive variant is 87.62 %,
surpassing the highest SOTA score of 87.15 %, also achieved by BioBERTBASE v1.1. A SciFive
variant scored 94.76 % on the BC5CDR-Chemical dataset, surpassing the SOTA score of
93.50 %, achieved by PubMedBERT. For the BC4CHEMD dataset, a SciFive variant scored
92.36 %, while the highest SOTA score is 92.67 %, achieved by BioBERTLARGE v1.1. A similar
pattern applies to the BC2GM dataset, where the highest score for a SciFive variant is 84.29 %,
while the SOTA score of 85.01 % is also held by BioBERTLARGE v1.1.

• ClinicalT5: Lu et al. (2022) introduced ClinicalT5, a T5-based text-to-text transformer
model pre-trained on clinical text. The authors trained different variants of ClinicalT5 using
textual notes from MIMIC-III dataset, a publicly available health-related database (Johnson
et al., 2016). ClinicalT5 has been evaluated across various clinical NLP and BioNLP tasks.

For BioNER, the highest score achieved by a ClinicalT5 variant on the NCBI disease dataset
is 87.92 %, while the highest SOTA score remains 89.86 %, achieved by PubMedBERT.

• BioBART: Yuan et al. (2022) introduced BioBART, a generative language model that adapts
BART to the biomedical domain. BioBART was pre-trained on PubMed abstracts and
evaluated on various clinical NLP and BioNLP tasks. However, BioBART has not been
assessed on the commonly used BioNER datasets, as discussed in Section 2.2.1. Despite this,
the fine-tuned datasets evaluated for NER did not surpass the SOTA results, as reported by
the authors.

3.2.2 Choice of Language Models

We have presented different biomedical language PLMs in Sections 3.2.1.1 to 3.2.1.3. The encoder-
based models continue to exhibit state-of-the-art BioNER F1 scores. Although our experiments were
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conducted prior to the emergence of decoder-based models and LLMs, as noted in the preceding
sections, the majority of the highest scores were still achieved by encoder-based models, with only
occasional outperformance by decoder-only and encoder-decoder models.

Moreover, the usage of LLMs in biomedical and healthcare applications poses significant challenges
and risks. For example, LLMs tend to hallucinate (Tian et al., 2023). The usage of LLMs by
healthcare professionals in decision-making requires full verification of the generated information
by LLMs. In addition, recent studies show that LLMs may amplify biases inherited from
historical data (Shah et al., 2020; OpenAI, 2023). This is problematic in the biomedical field,
where biased outputs could negatively impact the quality of patient care and lead to harmful
consequences (Obermeyer et al., 2019; Sourlos et al., 2022). Furthermore, concerns around privacy
persist, as some of the data used to train LLMs may contain sensitive personal information. As
observed by Huang et al. (2022), generative pre-trained transformer models may inadvertently leak
personal information. For instance, OpenAI has reported that GPT-4 has the capacity to identify
individuals, along with their associated personal data such as phone numbers and geographic
locations.

Beyond these technical concerns, the use of LLMs in medical contexts raises pressing legal and ethical
issues (Sallam, 2023; Li et al., 2024). We argue that current evaluations of LLMs remain insufficient,
particularly in contrast to traditional NLP tasks like NER and RE, which can be assessed through
automatic metrics, such as F1 scores. In contrast, expert evaluations of LLM-generated free-text
outputs are considered the gold standard, but these are labour-intensive and lack scalability. As
an alternative, efforts have been made to develop less expert-dependent evaluation methods. One
common approach involves converting tasks into multiple-choice questions, such as in MedQA,
PubMedQA, and MedMCQA (Tian et al., 2023), where LLM performance is evaluated based on
the accuracy of generated answers. However, this method is limited, as the predefined answer choices
often fail to reflect the complexity of real-world biomedical queries. Another approach involves
comparing LLM-generated responses against reference summaries or answers using automatic
evaluation metrics. Lexical overlap metrics such as recall-oriented understudy for gisting evaluation
(ROUGE) (Lin, 2004) and bilingual evaluation understudy score (BLEU) (Papineni et al., 2002)
can be employed, alongside semantic similarity metrics like BERTscore (Zhang et al., 2020),
BARTscore (Yuan et al., 2021), and GPT score (Fu et al., 2024).

In light of these considerations, it is crucial to continue refining encoder-based models, particularly
in addressing class imbalance, to maintain the high standards of accuracy required in biomedical
applications.
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3.2.3 Vanilla Fine-tuning Approaches

Transfer learning via fine-tuning PLMs involves leveraging knowledge learnt from one task or
domain to improve the performance of another related task or different domain. Fine-tuning
involves taking a pre-trained model that has been trained on a large corpus of text data
using unsupervised learning objectives and train it on a task-specific dataset using supervised
learning (Devlin et al., 2019). This process allows the model to adapt its learned representations
to better suit the requirements of a specific downstream task, such as text classification, token
classification, or question answering. Fine-tuned PLMs for BioNER have emerged as powerful tools
in biomedical text mining and NLP tasks.
With the power of transfer learning, general domain pre-trained models can be fine-tuned on
biomedical textual data to achieve better performance in identifying and categorizing entities such
as genes, proteins, diseases, drugs and other biomedical concepts (Lee et al., 2020b; Kanakarajan
et al., 2021).

Figure 3.5: Vanilla fine-tuning approach on BioNER targeted datasets.

Table 2.1 presents the biomedical gold-standard datasets. These dataset contain unstructured text
annotated by domain experts with entity labels indicating the presence and type of biomedical
entities within the text. Examples of gold-standard datasets include the NCBI Disease Corpus,
Linnaeus and the BioCreative datasets.
Generally, a loss function measures how well the model’s predictions match the ground-truth
values in the training data (Luo et al., 2023b). In other words, it quantifies the discrepancies
between the model’s predicted outputs and the actual target values. Thus, during learning, the
model adjusts its parameters to minimize the loss, leading to more accurate predictions. In the
context of NER, the loss function serves the main goal by measuring the error between the model’s
predicted entity labels and the true ones in the training data (Mosbach et al., 2021). Figure 3.5
depicts a vanilla fine-tuning approach for BioNER. The vanilla model is typically trained with
standard loss functions. Hence, each token in the input text is treated equally, if all the training
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examples have the same loss costs, regardless of their importance or rarity (Mobasher et al., 2023).

In the context of NER, standard loss functions can be categorised as follows:

• Token-level that operate at the level of individual tokens in the input text. This is suitable
for tasks where the main objective is to classify each token independently, regardless of the
relationship between tokens. Thus, they may struggle to handle entity boundaries.

• Entity-level that evaluate the model’s performance at the level of entire named entities as the
unit of evaluation. Since the main goal of NER tasks is to correctly identify and categorise
entire named entities, in this thesis we evaluate our models using entity-F1 loss by calculating
the F1 score at the entity level. This ensures accurate measurement of the overlap between
predicted entity spans and the true spans in the dataset.

Before discussing the different standard loss functions, we highlight the main differences between
the single-label and multi-label scenarios in the context of NER as presented in Section 2.1.1. In the
single-label cases, each entity is classified into a single label. In other words, single-labelled entities
do not belong to multiple categories simultaneously. Multi-labelled entities can be associated with
multiple labels, reflecting the diverse characteristics that entities may exhibit. For instance, multi-
labelled entities may include nested or overlapping entities (Sajid et al., 2023).
In a single-label scenario, cross-entropy loss denoted by CE is applied. For the multi-label scenario,
binary cross-entropy loss denoted by BCE is utilized.
Equation 3.1 defines the CE loss based on the predicted probabilities and ground-truth labels, as
follows:

CE := −
c∑

j=1

y j log p j (3.1)

where c denotes the total number of classes in the classification problem. y j is the true label indicator
for class j. Thus, y j is 1 if class j is the correct class for the given sample, 0 otherwise. Similarly, p j

represent the predicted probability assigned to class j by the classification model.
Equation 3.2 is the binary cross-entropy loss function denoted by BCE. Since it is a binary
classification, c is equal to 2. The BCE loss is computed by summing over both classes. For each class,
it calculates the negative logarithm of the predicted probability for the true class label ( yi log p j ) and
the negative class ( 1 − yi ) log( 1 − p j ).

BCE := −
c∑

j=1

[
y j log p j + (1 − y j) log(1 − p j)

]
(3.2)

CE is used for problems with multiple classes, and its formulation extends to scenarios with more
than two classes. BCE is only tailored to binary classification tasks with two classes, also known
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as the positive and negative classes. Regarding multi-label classification, the absence or presence of
each label is treated as a separate binary classification task. This means that for each label, the model
predicts the probability of it being absent (0) or present (1) independently of the other labels.

3.2.4 Summary and Open Issues

Leveraging different pre-training strategies contributes to advancing BioNER capabilities and
applications in biomedical research, healthcare and other related domains. Various BioPLMs
have been proposed, for instance, continual or mixed-domain PLMs such as BioBERT and
BlueBERT. In addition, domain-specific models such as PubMedBERT and BioELECTRA and
compact lightweight BERTs like BioTinyBERT. Vanilla fine-tuned BioPLMs models for BioNER
are state-of-the-art; however, they encounter various technical limitations in addressing the class
imbalance problem:

• Standard loss function bias: the cross-entropy loss and binary cross-entropy loss are
calculated based on the entire dataset during fine-tuning. This is problematic in imbalanced
datasets, as the loss function can be dominated by the majority classes. Thus, the model
focuses more on optimizing majority classes while neglecting minority classes. This is
troublesome because biomedical gold-standard datasets mostly contain limited instances of
under-represented entities magnifying data sparsity issues. Thus, vanilla fine-tuned models
may not adequately address this issue, leading to insufficient learning of discriminative
features for these rare entities.

• Overfitting to majority classes: vanilla fine-tuned models are prone to overfitting on the
majority classes, especially when the training data is highly skewed towards specific entity
types (Aghajanyan et al., 2021; Yuan et al., 2023; ValizadehAslani et al., 2022). The vanilla
fine-tuned model may learn to memorize frequent patterns associated with the majority
entities, leading to poor generalization and performance on minority classes in unseen data.

In conclusion, while vanilla fine-tuning has successfully adapted pre-trained language models for
BioNER tasks, it falls short in addressing the class imbalance problem inherent in biomedical
datasets, as presented in Table 2.2. In Section 3.3, we discuss the class imbalance issue in detail and
review state-of-the-art approaches aimed at addressing it, while also highlighting their limitations.

3.3 Class Imbalance

The class imbalance problem typically occurs when there are more instances of certain classes than
others. For example, consider a medical diagnosis system that classifies patients into one of several
disease categories based on clinical data. In this scenario, the majority of the cases belong to common

58



3.3 Class Imbalance

conditions such as the common cold, which may have 5,000 instances, and influenza, with 1,000
instances. However, more severe or rare conditions, such as pneumonia, tuberculosis, or rare genetic
disorders, are significantly under-represented, with only 500, 200, and 10 instances, respectively.
In this context, classes with the most data are called majority classes, while those with fewer
examples constitute minority classes. For instance, domain experts may focus on annotating
concepts related to specific aspects, such as symptoms or drugs used for therapy in full-text
articles. Henning et al. (2023) reported that some rare entity types might have fewer than ten
tokens across the corpus, leading to an extreme imbalance compared to the overall distribution of
tokens (Johnson and Khoshgoftaar, 2019; Henning et al., 2023). This imbalance can result in biased
classifiers, where models perform well on majority classes, but may struggle to classify minority ones.

Let the training dataset td consist of n token samples, and let c be the total number of distinct
entity classes, where n j represents the number of samples in class j. The total number of samples is
denoted by:

n :=
c∑

j=1

n j (3.3)

Class imbalance can be described by comparing the class frequencies n j with the frequencies
of other classes in the dataset, particularly the frequency of the majority class, denoted as
max(n1, n2, . . . , nc). The imbalance for each class j is measured using the imbalance ratio (IR),
which compares the number of instances of class j to the size of the most frequent class in the dataset.
For a multi-class dataset, the imbalance IR j for class j is defined as:

IR j :=
max(n1, n2, . . . , nc)

n j
(3.4)

for j ∈ {1, 2, . . . , c}

where:

• max(n1, n2, . . . , nc) is the number of samples in the majority class,

• n j is the number of samples in class j, and

• c is the total number of classes.

If IR j > 1, then class j is considered a minority class. A higher imbalance ratio indicates a greater
level of imbalance. Additionally, the class distribution can be expressed as a vector pr of relative
frequencies:

pr := (pr1, pr2, . . . , prc) (3.5)
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where each pr j is the proportion of samples in class j with respect to the total class frequency nk

(i.e., the total number of samples in the dataset):

pr j :=
n j

nk
(3.6)

In a perfectly balanced dataset, all the classes have an equal number of samples. Therefore, the
relative frequencies pr j for each class j will be equal, such that each class has a relative frequency

denoted by pr j :=
(
1
c

)
.

3.3.1 State-of-the-Art in Class Imbalance

Figure 3.6: A hierarchical representation of the state-of-the-art approaches that address the class imbalance
problem. The⋆ specifies comparable weighting schemes to WeLT as discussed in Section 3.4.4.4.
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Most of the NLP SOTA approaches that address the class imbalance are adapted from the computer
vision tasks. In this section, we categorise the SOTA into three types: data-level, algorithm-level, and
hybrid, as depicted in Figure 3.6.

3.3.1.1 Data-level Approaches

In this section, we focus on data-level approaches that address class imbalance within the
context of NER tasks. We categorise these approaches into two types: re-sampling, and data
augmentation. Several resampling approaches are adopted to tackle class imbalance that include the
oversampling of minority instances, undersampling by removing major classes, or a combination of
both.
Sampling approaches can be executed repeatedly during training and can also be done randomly,
such as random oversampling (ROS) and random undersampling (RUS) (Mikolov et al.,
2013). Masko and Hensman (2015) propose balancing the training data with ROS of image
data. The experimental results show that applying ROS can be effective in addressing the class
imbalance.
In the biomedical domain, Akkasi et al. (2018) investigated the class imbalance problem in
biomedical datasets. The authors proposed a balanced undersampling approach for sequence data
and enhanced classification performance by systematically removing negative samples from training
data.
Class-aware sampling (CAS) addresses class imbalance during training by ensuring sufficient
exposure to minority entities. CAS is achieved by dynamically adjusting the sampling ratios for
different classes to increase instances of minority entities.
Shu et al. (2023) proposed a novel meta-model with class-aware sample weighting (CMW-Net).
CMW-Net adaptively extracts an explicit sample weighing scheme directly from training data.
Performance-based sampling (PAS) adjusts the sampling strategy based on the model’s performance
in handling difficult cases. PAS aims to enhance the robustness and accuracy of the model by
emphasizing challenging instances.
Strategies such as hard negative mining, misclassification-aware sampling, or uncertainty sampling
fall under the umbrella of performance-based sampling. The authors proposed sentence resampling
for NER based on the importance of each training sentence (Wang and Wang, 2022). The authors
consider the count of entity tokens, the rareness of entity types and the density of tokens labelled as
an entity as important factors for resampling functions.
Data augmentation aims to diversify the training dataset by generating new instances, achieved
through introducing variations to existing data while preserving underlying patterns and
semantics. In the current work context, we specifically focus on text augmentation. Textual
data augmentation can be achieved through simple string-based manipulations such as synonym
replacement, random insertion, deletion, or swap. Back translation is a textual data augmentation
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method involving the creation of variations in sentence structure and paraphrasing while
maintaining the original meaning.
Wei and Zou (2019) presented easy data augmentation (EDA), which utilizes dictionary-based
synonym replacements, random swap, insertion and deletion. Juuti et al. (2020) generate
new minority class instances using EDA. The authors also employ embedding-based synonym
replacement to generate new minority instances for English binary text classification. Zhang et al.
(2022) proposed attention-based text augmentation to address the class imbalance in long-tailed
multi-label settings.

3.3.1.2 Algorithm-level Approaches

Cost-sensitive learning refers to the adaptation of predictive models to address the class imbalance
by assigning varying costs or weights to classes. The goal of cost-sensitive learning is to mitigate
the impact of under-represented classes allowing these predictive models to pay more attention
to minority classes. Elkan (2001) proposed one of the earliest cost-sensitive approaches. Elkan
introduced a factor that can be multiplied by a certain threshold, resulting in higher weights for
the misclassification of minority classes.
Algorithmic approaches focus on designing new loss functions and adapting threshold adjust-
ment. For example, focal loss (FL) is proposed to mitigate class imbalance in object detection by
reformulating the standard CE in Equation 3.1. FL down-weights easily classified examples (Lin
et al., 2017). Since FL is tailored to object detection tasks, there are various hard samples such as
small objects, crowded scenes and noisy low-quality data. Thus, FL does not only solve the class
imbalance problem but also classifies hard samples that pose challenges to correctly detect and
localize objects. Nemoto et al. (2018) utilised FL for the image classification task for rare building
changes. The results show that FL improves related to class imbalance and over-fitting. Cao et al.
(2019) designed label-distribution-aware margin loss that optimizes the standard CE by minimizing
a margin-based generalization bound.
Khan et al. (2018) introduced an effective cost-sensitive deep learning approach (CoSen CNN) that
jointly learns class misclassification and network weight parameter costs during training. CoSen
CNN is used to modify the output of the CNN’s last layer by giving higher importance to
samples with high costs. CoSen CNN is evaluated against the baseline CNN, various sampling and
cost-sensitive approaches. Buda et al. (2017) adjusted CNN output thresholds to improve overall
performance. The chosen threshold is based on dividing the network outputs for each class by
the estimated prior probability, thus reducing the likelihood of misclassifying examples from the
minority classes. This approach surpasses the baseline CNN for various image classification tasks.
In the context of NER, the weights are adjusted based on the distribution of entity types in the
datasets. This adjustment aims to penalize misclassification in minority classes. The weighted cross-
entropy loss function is a common practice in the development of cost-sensitive learning in NER.
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As previously mentioned in Section 3.2.4, the fine-tuned models use the standard cross-entropy
loss for single-label and multi-label scenarios as defined in Equations 3.1 and 3.2, respectively. The
usage of such standard loss functions is problematic in the context of imbalanced datasets since
these functions assume that all the classes contribute equally to the overall loss. This does not
reflect the reality that certain classes have significantly fewer instances than others. Therefore, various
hyperparameters or custom loss functions are adopted to address the class imbalance problem for
single and multi-label scenarios.

Single-label Scenarios

In single-label multi-class classification scenarios, a common strategy to mitigate the effects of
imbalanced class distributions involves the use of a modified loss function, namely the weighted
cross-entropy loss12 (WCE). In WCE, weights are assigned to enable the model to prioritise learning
from under-represented classes. The WCE loss facilitates the assignment of distinct weights to each
individual class. In the context of single-label multi-class classification, this entails assigning weights
to each class independently, thereby tailoring the learning emphasis for each distinct class in the
classification task.

Equation 3.7 defines the WCE loss function:

WCE := −
c∑

j=1

α jy j log p j (3.7)

where c represents the total number of classes in the classification problem, and y j denotes true label
for class j. The variable p j refers to the predicted probability assigned to class j by the classification
model. The weight assigned to each class is represented by (α j), a positive scalar that influences
the model’s learning process. Higher values of α j signal the model to prioritise learning from the
corresponding class during training.

The assignment of weights α j is typically approached through either manual specification or via
equation-based methods.

Domain experts manually assign specific weights to each class, which makes this approach more
subjective and context-dependent. For example, Tayyar Madabushi et al. (2019) fine-tuned BERT
for sentence-level propaganda classification. The authors utilised WCE and manually set α j values
of four and one for the minority and majority classes, respectively. These values were determined
through hyperparameter search, and the experiments demonstrated the importance of addressing
the class imbalance problem.

12Cross-entropy Loss: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html, last accessed:
01.08.2024.
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In contrast, the equation-based assignment involves calculating instance-specific class weights,
which are designed to reflect class frequencies. Several methods have been proposed to define
instance-specific class weights, including (1) the inverse of the number of samples (INS), (2) the
inverse of the square root of the number of samples (ISNS), and (3) the effective number of samples
(ENS).
Equation 3.8 defines the weighted cross-entropy loss denoted as INS, where specific weights are
defined based on the inverse of the actual occurrences of class j.

INS := −
c∑

j=1

1
n j

( y j log p j ) (3.8)

where:

• INS is computed as the negative summation of the product of the inverse of class occurrences
1
n j

,

• y j is the ground truth indicator,

• the logarithm of the predicted probability log p j for each class j, and

• j ranges from 1 to c

The term
1
n j

in Equation 3.8 introduces a higher penalty for classes with lower occurrences, making

INS particularly sensitive to the accuracy of predictions for minority classes. In other words, INS
imposes a strong penalty for misclassification of minority classes.

Equation 3.9 specifies the ISNS loss function. ISNS is a weighted cross-entropy loss that

incorporates the scaling factor
1
√n j

, which is based on the square root of class occurrences. This

term adjusts the misclassification penalty for less frequent classes, making it more proportional to
their occurrences.

IS NS := −
c∑

j=1

1
√n j

( y j log p j ) (3.9)

The inclusion of the square root term provides a softer penalty for minority classes compared to
INS, thereby offering a more balanced approach.
In summary, while both INS and ISNS share the objective of addressing class imbalance, they differ
in their weighting mechanisms and their approach to balancing precision and recall:

• INS tends to improve recall by reducing the impact of false negatives but may lower precision
due to reduced penalties for false positives.
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• ISNS aims to balance precision and recall more effectively, mitigating the precision challenges
typically observed with INS.

To this end, INS tends to prioritise recall at the expense of precision, whereas ISNS offers a more
refined approach that seeks a balance between these two performance metrics.

Equation 3.10 defines the ENS loss function. ENS is a weighted cross-entropy loss function that

specifies class weights based on the inverse of the effective number of samples
1 − β

1 − β n j
.

ENS := −
c∑

j=1

1 − β
1 − β n j

( y j log p j ) (3.10)

where β ∈ [0, 1] is a hyperparameter and n j represents the frequency of class j. The weighting factor
1 − β

1 − β n j
is designed to adjust the contribution of each class to the overall loss. By introducing the

hyperparameter β, researchers can tailor the weighting strategy to the specific requirements of the
classification task (Cui et al., 2019).
ENS serves as an interpolation between the INS and ISNS weighting schemes. The following
observations illustrate the relationship between ENS, INS, and ISNS:

• When β is set to 1, ENS behaves similarly to INS.

• When β is set to 0.5, ENS resembles ISNS.

Suri (2022) fine-tuned various transformer-based pre-trained models, including BERT, DistilBERT,
ALBERT, and RoBERTa, for a patronising and condescending language detection task. Suri
encountered challenges related to the class imbalance problem, thus, the authors explored different
weighting schemes, including INS, ISNS, and ENS. The experimental results demonstrated the
effectiveness of these schemes in addressing class imbalance. The results reveal that ENS outperforms
other weighting scheme methods (Suri, 2022). Similarly, Li and Xiao (2020) developed a hybrid
model combining two BERT models and a feature-based logistic regression model for propaganda
techniques classification. Due to the skewed class distribution in the propaganda dataset, they
modified the BERT cost function by employing weighted cross-entropy loss based on the reciprocal
frequency of the classes. The proposed cost-weighted learning approaches effectively mitigated the
class imbalance problem. Divyanth et al. (2022) proposed DeepARRNet, a deep learning model
trained on a pea root image dataset to detect the rare disease “Aphanomyces root rot”. The dataset
exhibited class imbalance, and the authors employed two commonly used weighting schemes, INS
and ISNS. The findings indicated that both weighting schemes outperformed the vanilla model,
with INS yielding better results than ISNS.
In summary, all three weighting schemes share the common goal of addressing class imbalance in
classification tasks, but they differ in their specific weighting formulations:
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• INS assigns weights as the inverse of class frequencies, as specified in Equation 3.8. This
approach enhances recall by reducing the effect of false negatives, though potentially at the
expense of precision.

• ISNS incorporates a square root scaling of class frequencies, as defined in Equation 3.9. This
method aims to balance precision and recall more effectively by introducing a softer penalty
for majority classes.

• ENS introduces the hyperparameter β to modulate class weights, as defined in Equation 3.10,
allowing for a more nuanced adjustment of class contributions. The influence of majority
classes depends on the chosen value of β.

The selection of INS, ISNS, or ENS should be based on the degree of class imbalance in the dataset
as defined in Equation 3.4, the desired trade-off between precision and recall, and the level of control
required over the weighting mechanism.

Multi-Label Scenarios

In multi-label scenarios, each instance can belong to several classes simultaneously and the task is
to predict the presence or absence of each class independently. Thus, weighted binary cross-entropy
(WBCE) can be tailored to multi-label scenarios by treating each class prediction as a separate binary
classification problem. WBCE computes the weighted sum of binary cross-entropy losses for both
classes: one for the positive class ( yi log p j ), and one for the negative class (( 1 − yi ) log( 1 − p j )).

WBCE := −
c∑

j=1

α j

[
y j log p j + ( 1 − y j ) log( 1 − p j )

]
(3.11)

Equation 3.11 defines the WBCE loss function. WBCE’s loss is calculated based on the binary
cross-entropy between the predicted probabilities and the true labels, with the option to apply
class-specific weights (α j). WBCE is applied to binary classification tasks when there are only two
classes. The weights α j allow adjusting the importance of each class in the overall loss and mostly
the weights are manually assigned.

Equation 3.12 denotes the Focal Loss function for multi-label classification FLMultiLabel.

FLMultiLabel := −
c∑

j=1

[
y j (1 − p j ) β log p j + (1 − y j) p j

β log(1 − p j)
]

(3.12)

FLMultiLabel’s loss defines a hyperparameterβ∈ [0, 5]. This hyperparameter controls the rate at which
easy examples are down-weighted relative to hard examples. This equation allows addressing class
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imbalance and emphasizing hard-to-classify examples through the focal parameter β. Higher values
ofβ lead to more aggressive down-weighting of easy examples, while lower values place less emphasis.
Recent work addresses class imbalance when applying BERT for sentence classification. For
example, Tayyar Madabushi et al. (2019) applied cost-weighting for a binary classification problem
on which the exact weight is related to the dissimilarity of training, development and test datasets.

3.3.1.3 Hybrid Approaches

Hybrid methods integrate one or more approaches, levering the strengths of each approach. For
instance, Huang et al. (2016) introduced the quintuplet sampling method, which generates
discriminative representations using the large margin local embedding (LMLE) and a novel
triple-header hinge loss function. LMLE effectively learns representations from imbalanced data
and has achieved state-of-the-art results on benchmark image datasets. Building on this, Huang
et al. (2020) proposed an improved version known as cluster-based large-margin local embedding
(CLMLE), which combines LMLE with a k-nearest cluster algorithm. CLMLE outperforms
existing methods in highly imbalanced face recognition and attribute prediction tasks.
Pouyanfar et al. (2018) proposed a dynamic sampling method for imbalanced image data, which
involves oversampling minority classes and undersampling majority classes. This dynamic sampling
approach surpasses traditional hybrids of oversampling and undersampling techniques. Ando and
Huang (2017) developed a deep oversampling framework that extends synthetic oversampling
techniques to the deep feature space obtained from conventional neural networks. Buda et al. (2017)
compared RUS and ROS across various imbalanced image datasets. Dong et al. (2019) addressed
class imbalance in computer vision applications by combining hard sample mining with a novel loss
function.
We report several recent hybrid approaches as follows:

• Yang et al. (2020b) introduced a hybrid siamese CNN extremely imbalanced multi-label text
classification.

• Yang et al. (2022) developed a hybrid sampling approach that combines oversampling and
undersampling strategies to enhance data preprocessing effects.

• Elyan et al. (2021) designed a hybrid ensemble classifier framework that applies density-based
undersampling and cost-effective methods for imbalanced data. This framework combines
undersampling of negative class samples with oversampling to alleviate class imbalance.

• Groccia et al. (2023) proposed a cost-sensitive and data-sampling approach to early prediction
of cardiovascular event risk. The results demonstrated that integrating cost-sensitive models
with over-sampling and under-sampling techniques is effective.
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• Singh et al. (2023) introduced a method called batch-balanced loss (BBFL) that addresses class
imbalance in disease classification datasets. BBFL applies batch-balancing to equalize model
learning across class samples and incorporates FL as a custom loss function to emphasize hard
samples in the learning gradient.

3.3.2 Summary and Open Issues

Class imbalance presents a significant challenge that may adversely affect overall model perfor-
mance. In biomedical texts, biomedical entities are frequently under-represented, which can lead to
biased models. To address this issue, several approaches have been developed, including data-level,
algorithm-level, and hybrid methods. Each of these approaches carries its own set of trade-offs:

• Data-Level approaches: these methods involve manipulating the dataset to mitigate class
imbalance. While they are valuable, data-level approaches alone may not fully address issues
associated with under-represented entities. Notable limitations include:

– overfitting: generating synthetic instances for minority classes without considering their
quality and diversity can lead to overfitting. This results in reduced generalisation
performance on unseen data, as the model may learn false correlations and noise (Gesi
and Ahmed, 2024),

– information loss: instances of the majority class, which constitute the bulk of the
training data, contain valuable linguistic patterns. Removing these instances may limit
the model’s ability to capture the full spectrum of linguistic variations within the
majority class, thereby affecting its performance on real-world text data,

– PLM’s historical memory: PLMs exhibit a robust historical memory of linguistic
patterns derived from extensive datasets. However, class imbalance in fine-tuning data
may present challenges, as PLMs might prioritise learning from majority classes and
consequently overlook less frequent entities (Zhu et al., 2020), and

– impact of data de-duplication: over-sampling may degrade model quality through data
duplication, which increases memory requirements and computational costs during
training (Lee et al., 2022).

• Algorithm-Level approaches: these methods involve modifying the training algorithm or
introducing custom loss functions to handle class imbalance. Although techniques like INS,
ISNS, and ENS provide several solutions, they come with trade-offs:

– risk of overfitting: weighting schemes such as INS are highly sensitive to class imbalance,
as they assign higher weights to minority classes. While this can help the model to focus
on less frequent classes, it may lead to overfitting on these classes. As a result, the model
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may prioritize minimizing loss for minority classes at the expense of the overall dataset
performance,

– limited sensitivity to class imbalance: the ISNS provides a softer penalty compared to
INS, but it may still under-weight minority classes, particularly in datasets with many
classes or skewed distributions, and

– complexity in hyperparameter tuning: the ENS involves a hyperparameter β that
controls weighting based on the effective number of samples. This requires careful
experimentation and optimization, as an inappropriate β value can lead to underfitting
or overfitting, affecting the balance between emphasis on minority classes and overall
class distribution.

• Hybrid Approaches: these combine multiple techniques from both data-level and algorithm-
level methods, aiming to leverage their strengths. However, hybrid approaches introduce
additional trade-offs:

– increased complexity: combining multiple techniques can complicate the management
of interactions and fine-tuning, making the process challenging and time-consuming,

– high computational resources: hybrid methods often require more computational
resources due to the need for training multiple models and performing ensemble
techniques, which can be infeasible in resource-constrained environments, and

– interpretation complexity: the involvement of multiple techniques makes interpreting
the resulting model’s behaviour more complex. Moreover, understanding how each
approach contributes to the overall performance of the model often requires advanced
analysis.

In summary, while state-of-the-art methods for mitigating class imbalance, including data-level,
algorithm-level, and hybrid approaches, have made notable progress, substantial room for
improvement remains. These approaches often face trade-offs, such as overfitting, underfitting,
computational complexity, and sensitivity to noisy or imbalanced data.
In Section 3.4, we introduce the proposed WeLT approach. WeLT addresses the aforementioned
limitations by offering a simple, flexible, and effective solution for cost-sensitive fine-tuning in real-
world scenarios.

3.4 A Cost-sensitive Fine-tuning Approach

In contrast to state-of-the-art methods that rely on fixed weighting schemes or manually tuned
hyperparameters, WeLT offers a more adaptive, and data-driven solution. WeLT addresses class
imbalance by adjusting the weight of each class based on its complement relative frequency within
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the dataset. The WeLT approach consists of two main steps: first, the weighted loss is computed
for each class, proportional to its representation in the training data; second, the class weights are
normalised to ensure balanced training.
Unlike the vanilla fine-tuning approach discussed in Section 3.2.3, WeLT represents a cost-sensitive
fine-tuning strategy specifically designed to tackle the class imbalance problem, as illustrated in
Figure 3.7.

Figure 3.7: WeLT: A class-balanced re-weighting loss function for fine-tuning BioNER classifiers (Mobasher
et al., 2023).

We present the WeLT approach in Section 3.4.1 and provide examples of re-scaled weights
applied to real-world data. Section 3.4.4 details the experimental setup used to evaluate WeLT for
BioNER, with results discussed in Section 3.4.5. Our findings demonstrate that addressing class
imbalance leads to superior performance, as WeLT consistently outperforms all vanilla fine-tuned
models. Furthermore, WeLT shows advantages over other existing weighting schemes in most
experiments, with a comprehensive error analysis in Section 3.4.6. Section 3.6 examines the
impact of incorporating balanced biomedical entities using WeLT in BioNEL. Results indicate that
leveraging these entities in BioNEL improves performance compared to vanilla models. Finally,
Section 3.7 provides an overall summary, highlighting the benefits of WeLT and discussing potential
extensions.

3.4.1 WeLT Fine-tuning Approach

WeLT offers a flexible and adaptive solution by dynamically adjusting class weights based on dataset
characteristics. It provides a softer penalty for the misclassification of minority classes via the
normalisation of re-scaled class weights. This normalisation prevents overfitting to minority classes
while addressing class imbalance effectively. WeLT aims to enhance the model’s generalisation and
reliability in real-world scenarios.
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We define WeLT as the weighted cross-entropy loss function in Equation 3.13. WeLT adjusts the
class weights based on the normalised complement of each class’s relative frequency. Consequently,
majority classes receive lower re-scaled weights, while minority classes are assigned higher re-scaled
weights.

WeLT := −
c∑

j=1

σ

(
1 −

n j∑c
k=1 nk

)
y j log p j (3.13)

Where Equation 3.14 defines the Softmax function as part of Equation 3.13:

σ

(
1 −

n j∑c
k=1 nk

)
:=

e
1−

n j∑c
k=1 nk

∑c
l=1 e

1−
nl∑c

k=1 nk

(3.14)

where:

• c is the total number of classes i.e., the cardinality or the size of E , where c = | E |, j is the
index representing each class,

• σ denotes the softmax function, which is applied to the computed weights to normalise them
into a probability distribution, as defined in Equation 3.14,

• n j is the number of samples in the dataset belonging to class j,

• 1 −
n j∑c

k=1 nk
computes the complement of the relative frequency of class j compared to the

overall frequency of all classes, and

• y j is a binary indicator of whether the true label is class j. p j is the predicted probability that
the input belongs to class j.

WeLT integrates the softmax-normalised weights based on the complement of each class’s relative
frequency into the weighted cross-entropy loss function. For under-represented classes, the
weighting factor is higher. This ensures that minority classes have a greater influence on the overall
loss computation, while majority classes have lower weighting factors, reducing their impact.
In early experiments, applying re-scaled class weights without normalisation led to no significant
improvements. This was attributed to strong penalties applied to majority classes, causing the model
to be overly sensitive to minority classes. To resolve this issue, we normalised the re-scaled weights,
ensuring that the sum of the weights remains balanced across all classes. The normalised complement
of relative frequency is thus a more effective strategy, reducing overfitting and enabling the model to
generalise well across all classes.
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As highlighted in Section 2.2.1, based on the context of our work with the IOB tagging scheme,
O is the majority class while B and I are the minority classes. Figure 3.8 illustrates the technical
implementation of WeLT cost-sensitive fine-tuning approach.

Figure 3.8: An example illustrating the calculation of normalized re-scaled class weights in WeLT.

Once the rescaled class weights are computed, they are converted to tensors and then afterwards
are normalized as defined in Equation 3.13. To implement our customized WeLT Trainer, we
extended the Trainer class. The Trainer class is utilised for training pyTorch models via Hugging
Face Transformers13 and override the compute_loss function that uses standard cross-entropy
loss and define the weighted cross-entropy loss. Finally, these weights are passed into the WeLT

13Trainer Class: https://huggingface.co/docs/transformers/main/main_classes/trainer, last accessed: 01.08.2024.
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Trainer’s compute_loss function to ensure the model penalizes misclassifications more heavily for
under-represented classes, leading to better overall performance on imbalanced datasets.

3.4.2 WeLT’s Application Example

We present a generic method for calculating the re-scaled class weights for the IOB tags without
requiring additional hyperparameter search factors, as defined in Equation 3.13. We illustrate the
calculation of WeLT’s loss function based on the NCBI dataset. Let tdNCBI be the training data
with three classes, thus c = 3. Let no, nb, and ni represent the number of instances per class for the
O, B, and I classes, respectively. The three-class instances are as follows:

• no = 4,262,718

• nb = 389,892

• ni = 1,215,981

Hence, the total classes frequency is denoted by nk = 5,868,591. The tailored WeLT equation for
the NCBI dataset is defined as:

WeLT := −
3∑

j=1

σ

(
1 −

n j∑3
k=1 nk

)
y j log p j

We illustrate the complement relative class frequencies compared to the average frequency of all
classes, expressed as rco, rcb, and rci for co, cb, and ci, respectively:

• rco := 1 −
no

nk
= 1 −

4,262,718

5,868,591
≈ 0.274

• rcb := 1 −
nb

nk
= 1 −

389,892

5,868,591
≈ 0.934

• rci := 1 −
ni

nk
= 1 −

1,215,981

5,868,591
≈ 0.793

The softmax-normalised values and the exponentials of the given values are as follows:

• e0.274 ≈ 1.315

• e0.934 ≈ 2.542

• e0.793 ≈ 2.209
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The sum of these exponentials is 1.315+2.542+2.209 ≈ 6.066. Letαo,αb, andαi be the softmax-
normalised values for classes co, cb, and ci, respectively. They are as follows:

• αo ≈
1.315

6.066
≈ 0.217

• αb ≈
2.542

6.066
≈ 0.419

• αi ≈
2.209

6.066
≈ 0.364

3.4.3 WeLT vs. Others

Vanilla fine-tuned trainers use cross-entropy loss and binary cross-entropy loss, as defined in Equa-
tions 3.1 and 3.2, respectively, to minimise the training error by assuming that individual samples
and classes are equally important (i.e., all the class frequencies are sufficiently balanced). Since
biomedical gold standard training datasets are highly imbalanced, we use the weighted cross-entropy
loss. WeLT’s normalised re-scaled class weights are passed to the weighted cross-entropy loss
function, as specified in Equation 3.13, after extending the class trainer and overriding the
compute_loss function (Paszke et al., 2017).
Subsequently, the models are fine-tuned using WeLT with the same exact training cost as the
vanilla fine-tuned approach. Despite the great efforts of existing weighting schemes, they still have
limitations, as mentioned in Section 3.3.2.
To bridge this research gap, WeLT seeks to offer tailored and complementary solutions, including
the following:

• adaptivity to various class imbalances: WeLT presents a tailored approach that considers both
class imbalance and the dataset’s specific characteristics. WeLT offers fair weight adjustments
that are computed equally for all classes in the dataset. Thus, allowing for dynamic adaptation
to different class distributions. This adaptability ensures improved performance across
various datasets and imbalance scenarios,

• better weighting scheme: WeLT integrates the softmax-normalised weights based on the
complement of each class’s relative frequency. Instead of relying solely on existing class-
specific weighting schemes such as INS and ISNS, WeLT leverages the overall dataset’s
distribution to tailor the weighting scheme dynamically,

• balanced emphasis on classes: WeLT finds a compromise between mitigating class imbalance
and maintaining performance across all classes. This is achieved by effectively prioritising
minority classes while minimising the impact on majority ones via the softmax normalisation
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step. Thus, WeLT ensures that all classes receive adequate attention during training, reflecting
the real-world dataset’s overall class distribution, and

• a simple yet effective solution: WeLT presents a simplified weighting scheme by directly
incorporating softmax normalised re-scaled class weights without the additional need
for hyperparameters. This saves additional costs associated with determining the best
hyperparameter values, such as the β in ENS.

In summary, WeLT provides an easy adaptable approach that can accommodate datasets with
diverse levels of imbalance, as discussed later in the following section. This adaptability is crucial
in real-world scenarios where biomedical datasets exhibit high degrees of imbalance across different
classes. Additionally, WeLT offers a simple weighting scheme, as it does not require additional
calculations and hyperparameter tuning for each individual class as illustrated in Figure 3.8.
In the following section, we conduct several experiments to evaluate WeLT’s performance and
compare it against the vanilla trainer and other weighting schemes.

3.4.4 Evaluating WeLT on BioNER

We demonstrate the performance of WeLT’s loss function through various experiments on eight
biomedical gold-standard datasets focusing on the BioNER task. We evaluate WeLT on both
mixed-domain and domain-specific BERT and ELECTRA models. We compare WeLT to their
corresponding vanilla fine-tuning approach and three existing weighting schemes. We assess the
behaviour of WeLT when being fine-tuned while dealing with different dataset sizes and a variety
of class distributions. In addition to the experimental analysis, we further share the implementation
details and evaluation metrics.

3.4.4.1 Evaluation Datasets and Metrics

As mentioned in Section 2.2.2, we have fine-tuned eight gold-standard datasets including various
entity types such as disease, chemical, genes and species. In addition, we added the latest BioRED
dataset after further pre-processing steps as follows: (1) filtering of the human-annotated chemical
and disease entities, (2) and the conversion of BioC XML format (Comeau et al., 2013) to the IOB
tagging scheme to be consistent with datasets in the format of BioBERT-PyTorch using bconv.14

For a fair comparison, we have evaluated WeLT’s fine-tuning approach with the same evaluation
script as BioBERT. We report the entity-level micro-averaged precision, recall and F1 scores as
highlighted in Section 2.2.2. We additionally evaluate the annotation quality for species entities on
the Linnaeus dataset. Hence, we used two sequence labelling metrics: seqeval, and FairEval.

14bconv: Python library for converting between BioNLP formats: https://github.com/lfurrer/bconv, last accessed:
01.08.2024.
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3.4.4.2 Baselines

Due to the nature of our work that investigates the impact of addressing the class imbalance before
fine-tuning, we do not compete with the state-of-the-art BioNER baselines. However, we compare
the vanilla fine-tuning approach to WeLT and three existing weighting schemes using the same
hyperparameters. We report the hyperparameter settings to reproduce our results in the Appendix
(see Tables 1- 8).

3.4.4.3 Experimental and Implementation Settings

In this section, we report the comparable weighting schemes in Section 3.4.4.4. Our experiments
include six different fine-tuning approaches and they are compared to WeLT’s approach. We
investigate the impact of addressing the class imbalance problem on general-domain and domain-
specific pre-trained language models as highlighted later in Section 3.4.4.5 on the eight biomedical
gold-standard datasets. All the experiments were carried out using a single Tesla P40 GPUs with
24GB memory.

3.4.4.4 Comparable Weighting Schemes

We choose the comparable weighting schemes for the single-label scenario, as discussed in Section
3.3.1.2. Therefore, we compare WeLT with the vanilla fine-tuned approach. In addition, we evaluate
WeLT alongside other weighting schemes: INS, ISNS, and ENS, as defined in Equations 3.8, 3.9,
and 3.10, respectively. Regarding the ENS approach, we use different values for β, representing a
lower bound, median, and upper bound, as follows: 0.3, 0.5, and 0.9, respectively.

3.4.4.5 General and Domain-specific Language Models

We investigate the effectiveness of addressing the class imbalance problem using both general and
domain-specific pre-trained language models as outlined in 3.2.1. Moreover, we evaluated the
performance of different transformer architectures such as BERT and ELECTRA.
We adapted the BioBERT (Lee et al., 2020b) PyTorch NER code to develop WeLT. In our
experiments, we used the following five pre-trained model variants: BioBERT, BlueBERT,
PubMedBERT, SciBERT, and BioELECTRA.

3.4.4.6 Fine-tuning and Hyper-parameter Settings

For a fair comparison, we used the same hyperparameters for fine-tuning the BioNER models. For
more details on the hyperparameters, see the Appendix (Tables 1-8).
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3.4.5 Results and Discussion

We present the results of seven fine-tuning experiments, which include:

• INS, as defined in Equation 3.8.

• ISNS, as defined in Equation 3.9.

• ENS, as defined in Equation 3.10, applying three values for β: β = 0.3, β = 0.5, and β = 0.9.

• The vanilla fine-tuning approach, as defined in Equation 3.1.

• The WeLT fine-tuning approach, as defined in Equation 3.13 and illustrated in Figure 3.8.

Thus, we have 280 experimental results, as presented in Tables (3.1 to 3.8). We extensively report the
results based on the following three criteria:

• Class imbalance percentage: regarding the class distribution percentage, as presented in
Table 2.2, the Linnaeus dataset is the most highly skewed dataset, and NCBI is the least
imbalanced one. WeLT achieves the highest score for the experiments related to Linnaeus,
as presented in Table 3.1, except for the fine-tuned BioBERT, achieving the second-best score.

Model Metrics INS ISNS ENS (θ = 0.3) ENS (θ = 0.5) ENS (θ = 0.9) Vanilla WeLT(ours)

BioBERT
P 92.52 90.10 89.32 91.81 92.17 91.81 91.21
R 78.57 83.87 86.39 85.34 86.25 85.34 86.25
F1 84.98 86.88 87.83 88.46 89.11 88.46 88.66

PubMedBERT
P 88.49 85.47 85.31 85.63 85.15 85.63 86.98
R 79.41 77.59 76.62 79.48 80.87 79.48 80.66
F1 83.70 81.34 80.73 82.44 82.96 82.44 83.70

BlueBERT
P 91.23 91.10 90.73 91.15 90.24 90.97 91.35
R 50.87 64.34 65.59 64.41 64.54 85.83 86.25
F1 65.32 75.41 76.14 75.47 75.26 88.33 88.72

SciBERT
P 88.43 91.41 91.02 90.51 90.65 90.51 92.44
R 46.96 62.38 65.80 64.61 66.36 64.61 66.57
F1 61.34 74.16 76.38 75.40 76.63 75.40 77.40

BioELECTRA
P 79.07 82.38 80.56 82.82 82.39 82.82 84.15
R 70.41 75.71 79.83 81.08 81.99 81.08 82.62
F1 74.49 78.90 80.19 81.94 82.19 81.94 83.38

Table 3.1: The Linnaeus fine-tuning scores comparing WeLT with three weighting schemes and the vanilla
fine-tuning approach. Precision (P), Recall (R) and F1-score (F1) are the evaluation metrics. The
best scores are shown in bold, and the second-best ones are underlined.

Similarly, WeLT achieves the best score for all experiments using NCBI, except for BlueBERT,
as presented in Table 3.2.

• Size of training datasets: according to the statistics presented in Table 2.1, the BioRED
dataset is the smallest dataset.
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Model Metrics INS ISNS ENS (θ = 0.3) ENS (θ = 0.5) ENS (θ = 0.9) Vanilla WeLT(ours)

BioBERT
P 85.75 85.41 86.74 85.23 85.33 86.12 86.87
R 87.81 88.43 88.64 87.81 87.91 87.91 88.95
F1 86.77 86.89 87.68 86.50 86.60 87.01 87.90

PubMedBERT
P 80.73 81.36 79.70 79.68 81.58 79.68 82.45
R 77.70 80.52 79.79 80.10 80.31 80.10 79.79
F1 79.19 80.94 79.75 79.89 80.94 79.89 81.10

BlueBERT
P 86.76 86.47 86.52 86.17 86.36 86.17 86.40
R 88.75 89.27 90.31 88.95 91.04 88.95 90.00
F1 87.74 87.85 88.37 87.54 88.64 87.54 88.16

SciBERT
P 86.38 85.77 84.96 85.95 86.73 85.95 86.34
R 88.54 89.16 88.33 89.27 88.54 89.27 89.58
F1 87.44 87.43 86.61 87.58 87.62 87.58 87.93

BioELECTRA
P 86.55 87.26 85.74 85.65 85.65 85.65 87.66
R 83.85 87.81 88.33 88.33 88.33 88.33 88.85
F1 85.18 87.53 87.01 86.97 86.97 86.97 88.25

Table 3.2: The NCBI fine-tuning scores comparing WeLT with three weighting schemes and the vanilla fine-
tuning approach. Precision (P), Recall (R) and F1-score (F1) are the evaluation metrics. The best
scores are shown in bold, and the second-best ones are underlined.

WeLT achieves the best performance in fine-tuning experiments, except for PubMedBERT on
BioRED-Disease, as presented in Table 3.3. A similar trend is observed for BioRED-Chemical
in Table 3.4, except for BioBERT and BlueBERT.

Model Metrics INS ISNS ENS (θ = 0.3) ENS (θ = 0.5) ENS (θ = 0.9) Vanilla WeLT(ours)

BioBERT
P 84.38 84.46 83.91 81.52 84.03 81.52 83.79
R 84.57 85.66 86.21 84.46 84.68 84.46 86.54
F1 84.48 85.06 85.05 82.96 84.35 82.96 85.14

PubMedBERT
P 58.57 66.77 71.77 68.92 69.79 68.92 67.95
R 43.32 64.87 68.70 65.75 67.50 65.75 67.50
F1 49.81 65.81 70.20 67.30 68.63 67.30 67.72

BlueBERT
P 65.56 68.88 67.16 65.10 66.56 65.10 69.32
R 56.67 64.44 68.27 66.95 68.38 66.95 66.52
F1 60.79 66.59 67.71 66.01 67.45 66.01 67.89

SciBERT
P 68.98 73.75 71.91 71.68 72.33 69.29 72.34
R 60.83 66.41 64.98 68.70 67.50 68.16 67.83
F1 64.65 69.89 68.27 70.16 69.83 68.72 70.01

BioELECTRA
P 83.88 85.54 83.97 84.02 83.97 84.02 84.95
R 85.44 87.41 88.29 88.07 88.29 88.07 89.60
F1 84.66 86.47 86.08 86.00 86.08 86.00 87.22

Table 3.3: The BioRed-Disease fine-tuning scores comparing WeLT with three weighting schemes and
the vanilla fine-tuning approach. Precision (P), Recall (R) and F1-score (F1) are the evaluation
metrics. The best scores are shown in bold, and the second-best ones are underlined.

On the other hand, BC4CHEMD is the largest dataset. WeLT achieves the second-best score
in all experiments, as presented in Table 3.5, except for BioBERT.
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Model Metrics INS ISNS ENS (θ = 0.3) ENS (θ = 0.5) ENS (θ = 0.9) Vanilla WeLT(ours)

BioBERT
P 87.93 88.73 90.56 88.37 89.54 85.00 88.57
R 80.77 84.11 87.18 87.31 86.91 84.77 86.91
F1 84.20 86.36 88.84 87.84 88.21 84.89 87.73

PubMedBERT
P 89.03 88.30 88.72 89.55 89.04 89.55 90.57
R 82.37 87.71 86.11 85.84 85.71 85.84 85.98
F 85.57 88.01 87.39 87.66 87.34 87.66 88.21

BlueBERT
P 86.63 87.18 87.29 89.05 88.36 86.42 88.80
R 86.51 88.11 90.78 90.12 88.25 90.12 88.91
F1 86.57 87.64 89.00 89.58 88.30 88.23 88.85

SciBERT
P 73.86 80.88 79.84 82.37 81.60 82.53 81.48
R 49.79 58.74 67.69 66.75 63.95 64.35 67.55
F1 59.48 68.05 73.26 73.74 71.70 72.31 73.86

BioELECTRA
P 89.64 86.27 88.11 61.55 85.97 61.55 89.43
R 77.43 85.58 84.11 53.00 86.78 53.00 84.77
F1 83.09 85.92 86.06 56.95 86.37 56.95 87.04

Table 3.4: The BioRed-Chemical fine-tuning scores comparing WeLT with three weighting schemes and
the vanilla fine-tuning approach. Precision (P), Recall (R) and F1-score (F1) are the evaluation
metrics. The best scores are shown in bold, and the second-best ones are underlined.

Model Metrics INS ISNS ENS (θ = 0.3) ENS (θ = 0.5) ENS (θ = 0.9) Vanilla WeLT(ours)

BioBERT
P 92.49 91.97 91.84 91.78 91.48 91.78 91.70
R 88.14 89.80 90.54 90.21 90.93 90.21 90.45
F1 90.26 90.88 91.18 90.99 91.20 90.99 91.07

PubMedBERT
P 91.69 81.36 91.21 90.75 90.06 90.75 91.36
R 85.59 80.52 88.63 88.43 88.87 88.43 88.38
F1 88.54 80.94 89.90 89.57 89.46 89.57 89.84

BlueBERT
P 89.55 89.21 89.07 88.67 88.88 88.67 89.22
R 82.81 84.62 85.68 85.85 85.85 85.85 85.46
F1 86.05 86.85 87.34 87.24 87.34 87.24 87.30

SciBERT
P 81.17 80.18 80.05 80.20 80.90 79.71 79.71
R 68.13 72.88 75.03 74.43 73.67 74.35 74.99
F1 74.08 76.36 77.46 77.21 77.12 76.93 77.28

BioELECTRA
P 93.19 92.71 92.87 92.57 92.70 92.57 93.01
R 89.80 91.02 91.70 91.85 92.00 91.85 91.61
F1 91.46 91.86 92.28 92.21 92.35 92.21 92.30

Table 3.5: The BC4Chem fine-tuning scores comparing WeLT with three weighting schemes and the vanilla
fine-tuning approach. Precision (P), Recall (R) and F1-score (F1) are the evaluation metrics. The
best scores are shown in bold, and the second-best ones are underlined.

• Pre-training approach: WeLT achieves the best score in the BC5CDR-Chemical exper-
iments, as presented in Table 3.6, except for fine-tuning SciBERT, where it achieves the
second-best score for PubMedBERT.
The BC5CDR-Disease experiments, as presented in Table 3.7, indicate that WeLT achieves
the best score in all experiments, except for fine-tuning SciBERT, and the second-best score
for BioBERT.
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Model Metrics INS ISNS ENS (θ = 0.3) ENS (θ = 0.5) ENS (θ = 0.9) Vanilla WeLT(ours)

BioBERT
P 93.39 92.59 92.56 93.09 92.79 92.71 92.83
R 90.64 92.94 92.72 92.88 93.31 92.92 93.63
F1 91.99 92.77 92.64 92.99 93.05 92.82 93.23

PubMedBERT
P 93.39 92.59 92.32 92.83 92.79 79.68 93.31
R 90.64 92.94 89.74 90.99 89.93 80.10 91.19
F1 91.99 92.77 91.01 91.90 91.34 79.89 92.24

BlueBERT
P 89.45 88.10 86.72 86.28 86.98 86.28 87.68
R 73.53 79.62 80.94 81.65 81.16 81.65 80.68
F1 80.71 83.65 83.73 83.90 83.97 83.90 84.04

SciBERT
P 87.95 89.28 88.82 90.03 89.51 87.01 89.22
R 79.62 81.89 82.95 83.93 83.67 84.62 83.06
F1 83.58 85.43 85.78 86.88 86.49 85.80 86.03

BioELECTRA
P 95.11 94.66 94.28 94.00 94.28 94.00 94.07
R 91.92 93.92 94.33 94.26 94.33 94.26 94.65
F1 93.49 94.29 94.30 94.13 94.30 94.13 94.36

Table 3.6: The BC5CDR-Chemical fine-tuning scores comparing WeLT with three weighting schemes and
the vanilla fine-tuning approach. Precision (P), Recall (R) and F1-score (F1) are the evaluation
metrics. The best scores are shown in bold, and the second-best ones are underlined.

Model Metrics INS ISNS ENS (θ = 0.3) ENS (θ = 0.5) ENS (θ = 0.9) Vanilla WeLT(ours)

BioBERT
P 85.13 84.14 85.14 84.70 84.91 84.70 85.61
R 85.03 86.25 86.18 86.12 85.37 86.12 85.53
F1 85.08 85.18 85.66 85.40 85.14 85.40 85.57

PubMedBERT
P 78.05 79.05 80.22 79.32 79.99 79.32 80.67
R 74.68 77.28 77.41 78.05 77.89 78.05 77.28
F1 76.33 78.15 78.79 78.68 78.92 78.68 78.94

BlueBERT
P 77.13 77.39 76.97 77.00 75.72 77.00 78.12
R 70.32 75.15 76.76 77.19 76.92 77.19 76.67
F1 73.57 76.26 76.86 77.09 76.31 77.09 77.38

SciBERT
P 79.45 78.50 79.45 78.49 79.04 78.49 79.19
R 69.75 74.95 76.58 76.74 77.35 76.74 76.55
F1 74.28 76.68 77.99 77.60 78.19 77.60 77.85

BioELECTRA
P 86.35 86.97 85.83 85.15 85.62 85.15 87.58
R 86.55 87.20 87.81 87.74 89.01 87.74 87.68
F1 86.45 87.08 86.81 86.42 87.28 86.42 87.63

Table 3.7: The BC5CDR-Disease fine-tuning scores comparing WeLT with three weighting schemes and
the vanilla fine-tuning approach. Precision (P), Recall (R) and F1-score (F1) are the evaluation
metrics. The best scores are shown in bold, and the second-best ones are underlined.
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Finally, the BC2GM experiments, as presented in Table 3.8, indicate that WeLT achieved the
best scores, except when fine-tuning SciBERT, where it achieved the second-best score.

Model Metrics INS ISNS ENS (θ = 0.3) ENS (θ = 0.5) ENS (θ = 0.9) Vanilla WeLT(ours)

BioBERT
P 83.09 82.89 82.95 82.62 82.57 82.62 83.34
R 82.43 82.51 83.35 83.44 83.47 83.44 83.30
F1 82.76 82.70 83.15 83.03 83.02 83.03 83.32

PubMedBERT
P 84.72 84.32 74.27 73.74 73.66 83.47 83.99
R 83.46 84.60 73.96 74.30 73.80 84.90 85.48
F1 84.08 84.46 74.11 74.02 73.73 84.18 84.73

BlueBERT
P 83.66 83.63 83.96 83.92 83.36 83.92 84.56
R 82.67 83.60 84.42 84.14 84.45 84.14 83.93
F1 83.16 83.61 84.19 84.03 83.90 84.03 84.24

SciBERT
P 72.31 72.96 73.15 72.55 73.61 72.98 73.05
R 71.60 73.09 75.08 75.35 75.77 74.86 75.35
F1 71.95 73.02 74.10 73.92 74.68 73.90 74.18

BioELECTRA
P 83.89 83.28 83.34 83.25 83.47 83.25 83.73
R 83.58 84.77 85.13 84.79 85.05 84.79 85.29
F1 83.74 84.02 84.23 84.01 84.25 84.01 84.50

Table 3.8: The BC2GM-Gene fine-tuning scores comparing WeLT with three weighting schemes and the
vanilla fine-tuning approach. Precision (P), Recall (R) and F1-score (F1) are the evaluation
metrics. The best scores are shown in bold, and the second-best ones are underlined.

We highlight the special patterns in the experimental results and provide insights into the successful
and unsuccessful cases related to the performance of WeLT:

• Fine-tuning WeLT on the largest dataset, BC4CHEMD, achieved the second-best score in
all experiments except for fine-tuning BioBERT. Based on our observations, ENS variants
demonstrated the best performance. We believe that considering the overall class distribution
for calculating the re-scaled weights may degrade performance. Further investigations should
incorporate data size as an additional factor. Despite the superior performance of ENS
variants, we note that adding extra hyperparameters in ENS is problematic and costly due
to the unknown appropriate β factor.

• WeLT achieved the best fine-tuning scores for Linnaeus as the highly skewed dataset in all
experiments, except for fine-tuned BioBERT. We believe that the calculation of new re-scaled
weights positively impacts performance. Other weighting schemes focus solely on the number
of class samples, rather than the overall class distribution.

• Fine-tuning BioELECTRA using WeLT resulted in the best scores except for
BC4CHEMD. BioELECTRA is a biomedical version of ELECTRA, which employs
a more efficient pre-training strategy known as “replaced token detection.” Unlike BERT
models, which mask out a small subset of tokens, ELECTRA learns from all input tokens. It
uses an additional neural network designed to trick the model by replacing random tokens
with fake tokens.
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• Regarding fine-tuning PubMedBERT as a domain-specific pre-trained language model,
WeLT achieved the best score for the following four datasets: Linnaeus, BioRED-Chemical,
BC5CDR-Disease, and BC2GM. ENS variants performed the best for the BioRED-Disease
dataset. For the other three datasets, WeLT achieved the second-best score. We believe that
WeLT and various ENS variants should be considered when fine-tuning PubMedBERT. The
same considerations apply to SciBERT experiments.

3.4.6 Error Analysis

Despite the positive impact of addressing class imbalance on overall performance and sequence
labelling evaluation, as presented in Table 3.9, we still observed various types of BioNER mismatches
during the error analysis.
As a proof-of-concept, we evaluated the tagging quality outputs of each fine-tuning approach on
the Linnaeus dataset. We report F1-scores using seqeval with strict mode and FairEval with fair
mode. WeLT achieved the best score for fine-tuning BlueBERT, SciBERT, and BioELECTRA
models, and the second-best score for BioBERT and PubMedBERT.

Model Metrics INS ISNS ENS (θ = 0.3) ENS (θ = 0.5) ENS (θ = 0.9) Vanilla WeLT

BioBERT
Seqeval 85.01 86.88 87.86 88.49 89.15 88.49 88.70
FairEval 86.76 88.37 89.16 89.72 90.08 89.72 89.92

PubMedBERT
Seqeval 82.04 84.89 86.79 88.79 86.98 84.89 86.45
FairEval 84.36 86.62 88.17 89.19 88.17 86.62 88.18

BlueBERT
Seqeval 65.56 75.42 76.14 76.14 76.14 88.33 88.73
FairEval 66.33 76.25 76.52 76.52 76.52 89.58 89.74

SciBERT
Seqeval 61.35 74.16 76.39 75.41 76.63 75.41 77.40
FairEval 63.02 74.83 76.84 76.06 76.85 76.06 77.55

BioELECTRA
Seqeval 74.49 78.91 80.20 81.95 82.20 81.95 83.38
FairEval 78.27 81.32 82.21 84.06 84.33 84.06 85.64

Table 3.9: Sequence labelling evaluation F1-scores for species entities in Linnaeus using seqeval with strict
mode and FairEval with fair mode. The best scores are in bold and the second-best scores are
underlined.

The observed mismatches occur due to the following three types of errors:

• type-1: An entity predicted by the NER model but not annotated in the gold-standard
datasets. For instance, “S” is detected by BioPLMs as an abbreviation for “Sulphur”, but it
was not annotated by human experts in the BC5CDR gold standard dataset,

• type-2: An entity annotated in the gold-standard datasets but not predicted by the NER
model. The main issue behind such misclassification is abbreviated entities. For example,
“PAN”, an abbreviation for “Peroxyacetyl nitrate”, is not recognised as a chemical entity, and
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• type-3: An entity correctly predicted but with overlapping span errors. For example,
BioPLMs recognise two chemical entities separately, such as “amphotericin B-” and
“sodium deoxycholate”, while the gold-standard annotation is “amphotericin B-sodium
deoxycholate”.

We believe that the first two types of mismatch errors require knowledge enrichment and the use
of active learning approaches to address semantic annotation issues. The third type of error can
be mitigated by enhancing the post-processing method to better merge tokens that are part of a
recognised entity.

3.5 Study Limitations

The scope of this study was limited to investigating WeLT’s approach on a single downstream
task, BioNER, within a domain-specific context. Additionally, we did not explore the behaviour
of WeLT on other downstream tasks, such as entity linking and relation extraction. Furthermore,
we focused exclusively on English biomedical medium-sized datasets due to the limited availability
of gold-standard datasets. This includes the Biomedical Language Understanding Evaluation
benchmark (BLUE) (Peng et al., 2019), which contains only two biomedical and one clinical NER
datasets. In addition, WeLT’s weighting scheme primarily focuses on class frequencies within the
dataset, but it does not specifically address the rarity of tokens, which may affect the handling of
infrequent tokens.

Our results do not exhibit strong statistical significance, with the highest F1-score improvement
achieved by WeLT being approximately 1.19 % and the lowest improvement around 0.02 %. This
level of improvement aligns with trends observed in previous BioNER research (Li et al., 2020;
Shi et al., 2022; Archana and Prakash, 2024; Nemoto et al., 2024). For instance, PubMedBERT, a
domain-specific PLM trained from scratch, demonstrates a highest F1-score improvement of 1.7 %
and a lowest improvement of 0.48 %. Similarly, BioBERT with continual pre-training shows an
F1-score improvement of 0.62 %. These comparisons suggest that the observed improvements are
within a typical range for state-of-the-art models in this domain.

Notwithstanding these limitations, the study suggests that addressing class imbalance during
fine-tuning offers advantages over vanilla fine-tuning. WeLT is a simple yet effective approach with
no additional training costs, unlike the ENS method, which requires tuning three different β
values for fair comparison. We believe WeLT can be easily applied to general domain, highly skewed
datasets, as its cost-sensitive fine-tuning approach promotes immediate integration into any tailored
information extraction pipeline.

83



3 Weighted Loss Trainer

3.6 Impact of Recognised WeLT Entities on BioNEL

Given the limitations of WeLT’s study discussed above, we collaborated with Pedro Ruas and
Francisco M. Couto during a secondment at the LASIGE Faculty of Sciences, University of
Lisbon, to investigate the impact of WeLT-recognised entities on the BioNEL task. We explore
the effectiveness of handling class imbalance in BioNER and its impact on BioNEL, using a strict
evaluation script that requires both a matching boundary and correct entity type for accurate
recognition.

Figure 3.9: Joint BioNER and BioNEL pipeline. Block (a) highlights the WeLT fine-tuning approach, while
block (b) shows BioNEL using REEL-NILINKER to link recognised chemical and disease
entities.

We investigate the impact of WeLT-recognised entities on BioNEL by evaluating the overall
performance of BioNER and BioNEL using the BioCreative evaluation script.15 We compare
WeLT’s performance with vanilla fine-tuning approaches. The experimental results demonstrate
that WeLT’s handling of class imbalance outperforms vanilla models in BioNER. Additionally, the
entities recognised by WeLT enhance BioNEL performance in most cases.

15BioCreative evaluation script: https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track, last accessed: 01.08.2024.
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3.6 Impact of Recognised WeLT Entities on BioNEL

Beyond overall performance assessment, we evaluate annotation quality for chemical and disease
entities. Sequence labelling using seqeval16 and FairEval17 indicates that WeLT improves tagging
quality.

3.6.1 Utilising WeLT-Recognised Entities for BioNEL

Building on WeLT’s success in addressing class imbalance for BioNER (Mobasher et al., 2023),
we aimed to extend its impact to BioNEL. Although BioNEL models typically use ground-truth
recognised entities, we hypothesise that WeLT’s improvements in BioNER can reduce entity
misclassification, thereby enhancing BioNEL performance. To explore this, we adopted REEL-
NILINKER, proposed by Pedro Ruas and Francisco M. Couto, which partially links biomedical
entities to knowledge base concepts such as CTD-Chemical and MEDIC (Ruas and Couto,
2022). Figure 3.9 illustrates the joint extraction pipeline for BioNER and BioNEL using WeLT,
adapted from REEL-NILINKER.

3.6.2 Experiments Overview

In this section, we present the ground-truth datasets, preprocessing steps, implementation settings,
and evaluation metrics.

3.6.2.1 Evaluation Data

The following gold-standard datasets were used for training and evaluating both the vanilla and
WeLT models: BC5CDR (Chemical and Disease), BioRED, and the NCBI Disease corpus. The
knowledge bases used are MEDIC (Davis et al., 2020)18 and CTD-Chemical Vocabulary (Davis
et al., 2020)19

We conducted fine-tuning experiments using mixed-domain and domain-specific PLMs. Specifi-
cally, we fine-tuned BioBERT on NCBI and BC5CDR-Disease, and PubMedBERT (Gu et al.,
2022) on BC5CDR-Chemical and BioRED.

3.6.2.2 Baselines

Given that our work investigates the impact of addressing class imbalance before fine-tuning, we do
not compete with state-of-the-art BioNER baselines. Instead, we compare the vanilla fine-tuning
approach with WeLT.

16seqeval evaluation script: https://github.com/chakki-works/seqeval, last accessed: 01.08.2024.
17FairEval evaluation script: https://github.com/katrinortmann/FairEval, last accessed: 01.08.2024.
18MEDIC version: 2022-06-30.
19CTD-Chemical vocabulary version: 2022-06-30.
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3.6.2.3 Experimental and Implementation Settings

We used the BioBERT-PyTorch20 implementation for vanilla fine-tuning and WeLT21 for the WeLT
cost-sensitive fine-tuning approach. For the BioRED dataset, we filtered out chemical and disease
entities.
We utilised the official evaluation script of BioCreative VII Track 2 for BioNER (span evaluation)
and BioNEL (identifier evaluation). Strict and approximate evaluation models were used for both
vanilla and WeLT fine-tuned models. Besides assessing the overall performance of WeLT and
traditional models, we also evaluated the annotation quality for chemical and disease entities using
seqeval and FairEval metrics adapted for WeLT.

3.6.2.4 Fine-tuning and Hyper-parameter Settings

For a fair comparison, we used identical hyperparameters for fine-tuning BioNER models, as
detailed in the Appendix (see Table 9). We fine-tuned BioBERT on both NCBI and BC5CDR-
Disease, and PubMedBERT on BC5CDR-Chemical and BioRED (Chemical and Disease).

3.6.3 Results and Discussion

The results of the BioNER evaluation are presented in Table 3.10.

Strict Approx.
Type Dataset Metrics Vanilla WeLT Vanilla WeLT

Disease

BC5CDR
P 82.14 82.45 91.66 91.96
R 80.84 81.28 92.14 92.78
F1 81.49 81.86 91.90 92.37

NCBI Disease
P 85.10 85.67 91.94 92.53
R 88.72 89.04 95.74 95.85
F1 86.87 87.32 93.80 94.16

BioRED
P 84.41 85.44 94.06 94.71
R 86.80 86.37 95.09 95.42
F1 85.59 85.90 94.57 95.07

Chemical

BC5CDR
P 93.53 93.33 97.11 96.54
R 87.62 89.01 90.62 91.68
F1 90.48 91.12 93.75 94.04

BioRED
P 87.93 88.41 91.01 91.72
R 90.85 92.04 93.90 95.89
F1 89.37 90.19 92.43 93.76

Table 3.10: Strict and approximate evaluation results of WeLT against the corresponding vanilla fine-tuned
trainer for BioNER. The metrics are Precision (P), Recall (R), and F1-score (F1). The best scores
are in bold.

20BioBERT-PyTorch code: https://github.com/dmis-lab/biobert-pytorch, last accessed: 01.08.2024.
21WeLT code: https://github.com/mobashgr/WeLT, last accessed: 01.08.2024.
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3.6 Impact of Recognised WeLT Entities on BioNEL

The models using WeLT marginally surpassed the vanilla trainer, as expressed by the F1-score
on five gold-standard datasets for strict and approximate criteria. Our results demonstrate that
WeLT achieves higher recall while maintaining high precision for all experiments except for the
BioRED disease dataset and the BC5CDR chemical dataset, where there is a degradation in recall
performance and precision score, respectively.

We assessed the tagging quality outputs from the vanilla and WeLT models on three datasets as
proof of concept, reporting only F1 scores. Additionally, we evaluated the overall performance of
BioNER and BioNEL on the previously mentioned five datasets. The F1-score results of sequence
labelling evaluation for BC5CDR (chemical and disease entities) and BioRED (chemical entities)
are presented in Table 3.11. The results show better sequence labelling quality from WeLT on all
three datasets, with the least improvement being 0.59 % and the highest improvement being 1.3 %.

Label Dataset Metrics Vanilla WeLT

Disease BC5CDR seqeval 83.04 84.34
FairEval 87.16 87.45

Chemical
BC5CDR seqeval 90.53 91.33

FairEval 91.67 92.35

BioRED seqeval 89.93 90.52
FairEval 90.94 91.71

Table 3.11: Sequence labelling evaluation F1-score for disease and chemical entities using seqeval with strict
mode and FairEval with fair mode. The best scores are in bold.

Strict Approx.
Type Dataset Metrics Vanilla WeLT Vanilla WeLT

Disease

BC5CDR
P 74.83 75.00 75.75 75.86
R 77.87 77.87 80.76 80.65
F1 76.32 76.41 76.62 76.66

NCBI Disease
P 64.90 64.31 67.69 67.40
R 72.36 73.29 78.24 78.80
F1 68.43 68.51 71.03 71.25

BioRED
P 71.97 73.00 74.54 76.27
R 72.38 71.51 77.63 76.96
F1 72.17 72.25 74.39 74.94

Chemical

BC5CDR
P 86.12 85.91 86.59 86.68
R 86.48 87.03 87.16 87.96
F1 86.30 86.46 85.92 86.40

BioRED
P 74.60 73.47 72.58 70.23
R 83.33 81.08 78.16 75.52
F1 78.72 77.09 73.74 71.36

Table 3.12: Strict and approximate evaluation results of WeLT against the corresponding vanilla fine-tuned
trainer for BioNEL. The metrics are Precision (P), Recall (R), and F1-score (F1). The best scores
are in bold.
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The results of the BioNEL evaluation are presented in Table 3.12. The recognised entities from
WeLT slightly improved the BioNEL results for four datasets. For instance, in the BC5CDR
document (3323599), part of the recognised disease entities from WeLT were “focal segmental
glomerular sclerosis” and “FSGS”. This improved the BioNEL by linking them to the correct
identifier “MESH: D005923”. We also observed that the incorrectly recognised entities by the vanilla
fine-tuning approach led to incorrect normalisation. For example, incorrectly recognised entities
from the vanilla fine-tuning approach (“glomerular sclerosis” and “FSGS”) led to incorrect entity
linking to “MESH: D007674” and “MESH: C565831”, respectively.

3.6.4 Study Limitations

The scope of this study was limited to evaluating the impact of recognised entities from WeLT
and comparing them with the vanilla ones used as input for BioNEL. Our investigation focused
only on chemical and disease entities. For the BioNEL task, our collaborators used recent
versions of vocabularies that do not fully encompass annotations present in the BC5CDR and
NCBI datasets. In addition, our collaborators used the reported version of the MEDIC and
CTD-Chemical vocabularies, and older versions are not available.
Despite these limitations, the study suggests that recognised entities from WeLT have a positive
impact on BioNEL. Thus, addressing the class imbalance not only enhances BioNER’s performance
but also demonstrates advantages in BioNEL. We believe that WeLT has been evaluated on various
evaluation scripts, including entity-level F1 score adapted from BioBERT using the default seqeval
mode. Additionally, the BioCreative’s evaluation script uses strict and relaxed modes in which a
correct entity has the right span and type. Thus, we suggest that the proposed joint BioNER via
WeLT and BioNEL using REEL-NILINKER can be adapted to various domains for both tasks
with a class imbalance problem.

3.7 Summary and Discussion

In summary, we addressed the class imbalance challenges in BioNER, including rare entities
and data annotation difficulties. Despite advancements in BioPLMs and fine-tuning techniques,
we highlighted the limitations of traditional fine-tuning methods, particularly their bias towards
majority classes in Section 3.2.3. The detailed trade-offs of vanilla models, such as the use of standard
loss functions and the risk of overfitting to majority classes, were identified in Section 3.2.4. In
Section 3.3.2, we reviewed different strategies for addressing class imbalance, including data-level,
algorithm-level, and hybrid approaches, underlining their respective trade-offs and the complexities
of mitigating class imbalance in BioNER using BioPLMs.
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Given these trade-offs and the limitations of traditional methods, WeLT offers a novel approach
to addressing class imbalance in BioNER by dynamically adjusting class weights based on their
complement relative frequency in the dataset.
We believe that WeLT addresses several limitations of traditional approaches, offering a more robust
and effective BioNER pipeline for the following reasons:

• WeLT adjusts class weights dynamically based on the normalised complement of each class’s
relative frequency, allowing the loss function to be more sensitive to minority classes. Unlike
data-level approaches, such as oversampling or undersampling, which can lead to overfitting
or information loss, WeLT focuses on learning from minority classes without introducing
noise or reducing model quality. The method penalises misclassification of majority classes
and assigns greater importance to rare ones, effectively reducing bias towards majority classes
and enhancing the model’s ability to predict instances from minority classes, which represent
rare events in real-world scenarios.

• WeLT mitigates overfitting by preventing the model from memorising frequent patterns
associated with majority entities. By assigning higher weights to minority classes, it encourages
the model to learn discriminative features for rare entities, leading to better generalisation
performance on unseen data.

• WeLT enhances the fine-tuning process by incorporating class imbalance directly into the
training objective, ensuring the model is trained to prioritise correct classification across both
majority and minority classes, resulting in more balanced and accurate predictions.

• Unlike hyperparameter-based approaches that combine multiple techniques, WeLT simplifies
the process by directly modifying the fine-tuning procedure. This reduces computational
complexity and avoids conflicts between different methods, making it easier to implement
and interpret.

• WeLT offers an adaptive and dynamic solution, unlike traditional fixed-weighting schemes or
hyperparameters. This adaptability enables WeLT to handle varying degrees of class imbalance
across different datasets, domains, and tasks, resulting in improved performance.

In conclusion, WeLT overcomes the limitations of traditional methods by improving model
performance, reducing bias, and ensuring equitable learning across all classes. We evaluated
WeLT using five different BioPLMs, including general-domain and domain-specific pre-trained
models. Our experiments encompassed 280 runs (eight datasets, five BioPLMs, and seven
fine-tuning approaches). We comprehensively assessed WeLT’s performance compared to other
fine-tuning methods and conducted thorough error analyses. While we focused on BioNER, we
also explored the impact of WeLT-recognised entities on the BioNEL task, demonstrating the clear
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advantages of WeLT over existing weighting schemes and traditional fine-tuning methods.

Although our primary focus has been on addressing class imbalance in the biomedical domain for
BioNER and BioNEL tasks, we are inspired to apply WeLT to broader domains, particularly for joint
named entity recognition and relation extraction, by tackling the significantly imbalanced negative
sampling problem discussed in Chapter 4.
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Relation Extraction Using WeLT

Biomedical gold-standard datasets are naturally highly skewed; as discussed in Chapter 3. Thus,
vanilla fine-tuned models using BioPLMs are often biased and tend to misclassify named
entities. To address this issue, WeLT is proposed as a cost-sensitive fine-tuning approach. We
evaluated WeLT’s performance on flat BioNER (i.e., where entity spans are assumed non-
overlapping, and the entities in the text do not exhibit hierarchical or embedded structures)
and BioNEL. The results demonstrate the effectiveness of this approach in addressing the class
imbalance problem. Consequently, we were motivated to explore the performance of WeLT on other
downstream tasks, such as RE and joint entity and relation extraction (JNERE). Furthermore, we
sought to apply WeLT to a broader range of applications beyond the biomedical domain.
As discussed in Section 2.1.3, one of the JNERE models is a span-based approach. Span-
based approaches are inherently well-suited for handling overlapping entities (often nested). We
highlighted the differences between various types of NER in Section 2.1.1. Here, we briefly recap
the concept: overlapping entities occur when two or more named entities share part of the same
token span but are not strictly contained within one another.

Example 4.1. (Overlapping Entities)
Given the sentence “British Prime Minister Keir Starmer visited London,” there are two named
entities:

• “British Prime Minister” as a position entity.

• “Keir Starmer” as a person entity.

Here, “British Prime Minister” represents the position held by “Keir Starmer”, resulting in a direct
overlap between the title and the individual. This overlap does not imply that either entity is fully
contained within the other; rather, both entities coexist within the same span. Thus, “Keir Starmer” is
recognised as a specific instance of the title “British Prime Minister.”

Conversely, nested entities occur when one named entity is entirely contained within another. Un-
like overlapping entities, nested entities exhibit a clear hierarchical relationship, where the inner
entity exists within the boundaries of the outer entity.
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Example 4.2. (Nested Entities)
Given the sentence “The Prime Minister of the United Kingdom, Keir Starmer, spoke today”, there are
three named entities:

• “Prime Minister of the United Kingdom” is a position entity.

• “United Kingdom” is a location entity.

• “Keir Starmer” is a person entity.

The entity “United Kingdom” is nested within the entity “Prime Minister of the United Kingdom”,
as the former is entirely contained within the span of the latter.

Since JNERE directly predicts entity spans, it can capture the full extent of overlapping entities
(often nested) without relying on sequential labelling schemes like IOB or BILOU tags. By jointly
modelling entity spans and relations, span-based approaches are better suited to identifying nested
entities (Li et al., 2021) and their relationships by leveraging the contextual information provided
by both entities and relations. Therefore, we focus on span-based JNERE models that address
overlapping entities (often nested). We argue that JNERE models offer several advantages over
traditional separate pipelines due to:

• End-to-End Coherence: JNERE pipeline supports seamless end-to-end coherence in
information extraction by integrating NER and RE tasks. This approach allows the
pipeline to directly extract entities and their corresponding relationships from the text
without requiring separate processing stages or intermediate representations. The integration
of NER and RE tasks promotes the incorporation of both semantic and syntactic
information. Constraints on entity types and relation patterns are jointly enforced during
training and inference, enhancing the overall quality of information extraction. As a result,
JNERE benefits from shared contextual information, where recognised entities provide
valuable context for relation extraction and vice versa.

• Reduced Error Propagation and Improved Efficiency: JNERE mitigates error propa-
gation by allowing errors to be corrected jointly, in contrast to separate pipelines, where
errors from NER may propagate to RE. For instance, if NER misclassifies entities, RE may
extract incorrect relationships based on incorrectly predicted entity boundaries. Additionally,
joint learning contributes to computational efficiency gains compared to separate sequential
pipelines. The joint model leverages shared computations, potentially reducing inference time
and resource consumption.

Span-based Entity and Relation Transformer (SpERT) is one of the state-of-the-art methods in span-
based JNERE (Eberts and Ulges, 2020). Despite significant advancements in span-based JNERE,
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SpERT introduces an additional imbalance problem by sampling too many negative entities and
relations during training. This issue arises due to SpERT’s negative sampling strategy, which does
not consider the dataset’s class distribution.

Figure 4.1: An example of span-based joint extraction. “PER” and “ORG” are two pre-defined entity types,
and “KILL” is a pre-defined relation type.×Not-entity and×Not-relation denote non-entity and
non-relation, respectively. This snippet is part of the CoNLL04 dataset (Roth and Yih, 2004).

Example 4.3. (Negative samples added by SpERT)
Figure 4.1 illustrates an example of span-based joint extraction. SpERT recognises the following entities
as positive samples:

• “Warren Commission” is an organisation entity.

• “Oswald” is a person entity.

• “Kennedy” is a person entity.

Later in Section 4.2.4, we discuss SpERT’s negative sampling strategies in detail. Briefly, SpERT adds
random negative samples within the sentence as non-entity samples, such as “found”. Similarly,
for relations, SpERT extracts the relation tuple (Kennedy, KILL, Oswald) and generates non-relation
samples, such as (Oswald, Not-relation, Warren Commission).

Paradoxically, SpERT demonstrates that strong within-sentence negative samples are crucial for
model training. However, two distinct issues arise during SpERT’s training process:

• Imbalanced data distribution: class frequencies within the datasets are skewed, resulting in
majority and minority classes. In this study, we evaluate our model on the biomedical ADE
dataset and the general domain CoNLL04 corpus. ADE is a relatively balanced dataset, as
presented in Table 2.4, whereas CoNLL04 is a skewed dataset, as presented in Table 2.5.

• Grossly imbalanced negative samples: SpERT introduces negative samples, including (a)
“non-entity” (i.e., none entities) and (b) “non-relation” (i.e., none relations). We elaborate on
this issue in Section 4.3.

To address the aforementioned issues, we propose a modified joint training loss function using
WeLT to balance the disparity between positive and negative entities and relations. SpERT employs
shallow classifiers for both NER and RE tasks (Eberts and Ulges, 2020). By addressing the
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imbalanced data distribution and negative sample issues, while retaining critical negative examples,
we aim to enhance model performance. Hence, we introduce WeLT-SpERT, which narrows the
gap between the class distribution of standard imbalanced datasets and SpERT’s negative samples
by incorporating a re-scaled joint loss function for entities and relations. Experimental results
on the CoNLL04 and ADE datasets demonstrate that WeLT-SpERT variants have marginal
improvements over original span-based baselines, with extensive analyses validating the effectiveness
of our approach.

In summary, our contributions in this chapter are as follows:

• We present cost-sensitive span and relation classification approaches to address the data
distribution gap between positive and negative samples in SpERT, proposing novel joint loss
functions using WeLT.

• We investigate several WeLT loss functions to assess their impact on overall performance:

– Applying only cost-sensitive span classification, referred to as “SpERT-NER”.

– Applying only cost-sensitive relation classification using weight and pos_weight

parameters in the binary cross-entropy loss function, referred to as “SpERT-RE” and
“SpERT-pos-weight”.

– Combining both cost-sensitive span and relation classification, referred to as
“SpERT-NERE”.

• We conduct extensive experiments to evaluate WeLT-SpERT variants on two publicly
available datasets, CoNLL04 and ADE. Our results demonstrate the modest performance
of WeLT-SpERT variants compared to SpERT for both NER and JNERE tasks.

• We release the code1 and share the hyperparameters necessary to reproduce our research
results.

Structure. In Section 4.1, we provide an overview of related work on JNERE models, with a
primary focus on span-based approaches. Subsequently, in Section 4.2, we discuss the SpERT model
in detail, outlining the main trade-offs of this approach and identifying research gaps. Building
upon this background, we present cost-sensitive SpERT using WeLT in Section 4.3. In Section 4.4,
we describe the experimental settings and present the results. Finally, in Section 4.5, we provide a
summary and discussion.

1WeLT-SpERT code: https://github.com/mobashgr/WeLT-SpERT, last accessed: 03.09.2024.
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4.1 Related Work

4.1 Related Work

A paradigm shift has occurred in the field of JNERE, moving from token tagging schemes to
span classification. Span-based approaches are preferred as they handle overlapping entities (often
nested) within a sentence more effectively. Unlike token tagging schemes, which often struggle
with these complexities, span-based models better utilise the global features of named entities,
including dependencies between entities, and ensure semantic and syntactic coherence between
these entities (Bin Ji, 2023). For instance, the relationship between two entities, such as a person’s
name and their occupation, can provide additional cues to accurately classify both entities and
their relations. Typically, span-based JNERE approaches consider spans and span pairs as potential
entities and relations, respectively. Consequently, a span-level classification model performs an
exhaustive search over all spans, enabling it to manage complex structures where entities and
relations may overlap or be nested (Eberts and Ulges, 2020).
Span-based models excel in distinguishing between different levels of nesting and accurately
extracting entities within their contexts, leading to more precise extraction of nested entities
compared to traditional frameworks. These approaches are effective at handling overlapping entities
without the need for complex post-processing steps, unlike sequential labelling schemes (Yu et al.,
2022).
Text spans are continuous segments of text, with their length restricted by a threshold ε (Dixit and
Al-Onaizan, 2019; Luan et al., 2019). For a sentence with n tokens, let all possible spans be denoted
by s = (a, b), where a and b are the indices of the span’s start and end tokens, respectively.

Example 4.4. (Span Enumeration)
Given the sentence “Breast cancer is treated using chemotherapy.”, the span length is expressed as ls, and
ε = 3. We denote all possible spans as follows:

spans =


ls = 1 “Breast”, “cancer”, “is”, “treated”, “using”, “chemotherapy”, “.”

ls = 2 “Breast cancer”, “cancer is”, “is treated”, “treated using”, “using chemotherapy”, “chemotherapy .”

ls = 3 “Breast cancer is”, “cancer is treated”, “is treated using”, “treated using chemotherapy”, “using chemotherapy.”

Thus, for the given text and the ε value, we formulate its spans as follows:

s = [ta, ta+1, . . . , tb]

subject to 1 ≤ a ≤ b ≤ n and (b − a + 1) ≤ ε

It is worth mentioning that N-grams are contiguous sequences of n tokens from a given text in which
the length of the n-grams is fixed. For instance, a 2-gram (bigram) always consists of exactly two
consecutive items. While both N-grams and text spans involve continuous text segments, N-grams
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are a specific type of text span with a fixed length, whereas text spans can have varying lengths up to
a specified threshold.

Example 4.5. (Difference between N-grams and text spans)
Given the sentence “Natural language processing”, the 2-grams (bigrams) and the possible text spans
for ε = 3 are:

• “Natural language”.

• “language processing”.

• ls = 1: “Natural”, “language”, “processing”.

• ls = 2: “Natural language”, “language processing”.

• ls = 3: “Natural language processing”.

As illustrated in Example 4.5, N-grams are a specific type of text span with a fixed length, while text
spans offer more flexibility in segment length within a defined range.
In Section 2.1.3, we discussed three JNERE paradigms. Here, we focus specifically on span-based
approaches. Dixit and Al-Onaizan (2019) introduced the use of PLMs in span-based joint
models using embeddings from language models. Zhong and Chen (2021) proposed a span-based
joint model using a lighter version of BERT, known as ALBERT. Ji et al. (2020) presented a
span-based joint extraction framework with attention-based semantic representations, employing
multi-label perception attention to enrich span representations. Yu et al. (2020) introduced a
span-based JNERE model by decomposing the problem into multiple labelling tasks. The authors
tagged all head entities and then extracted the tail entities and relations, using bidirectional long
short-term memory (Bi-LSTM) to predict span boundaries. Shen et al. (2021) proposed the
trigger-sense memory flow framework, incorporating a memory module to retain learned category
representations in NER and RE tasks. The authors designed a multi-level memory flow attention
mechanism to enhance bidirectional interaction between entity recognition and relation extraction.
Wei et al. (2021) proposed a Bi-LSTM model that captures bidirectional semantic dependencies by
assigning different weights to various parts-of-speech features. In addition, the attention mechanism
is used for entity and relation extraction. Ye et al. (2022) introduced packed levitated markers, which
consider the interrelation between spans and span pairs by packing markers in the encoder using a
neighbourhood-based strategy to model entity boundary information more effectively. Zhu et al.
presented a span-based JNERE model with multi-level lexical attention on context features (ER-
LAC). ER-LAC uses multi-granularity lexical features to enhance the span semantic representation,
employing a transformer classifier to capture internal connections between span pairs and improve
relational classification performance.
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Despite achieving state-of-the-art results for entity and relation extraction, span-based JNERE
models depend heavily on the quality of entity span enumerations. Most models enumerate
numerous inaccurate entity spans, known as negative samples, which lead to severe class imbalance
problems and high computational complexity. This often results in significant false-positive errors
during inference.

Given a sentence with n tokens, the total number of possible spans, denoted as ps, is given by: ps =
ε (2n − ε + 1)

2
.

For a span i (1 ≤ i ≤ ps), its start and end tokens are indexed by start(i) = a and end(i) = b,
respectively, where 1 ≤ a ≤ b ≤ n. Additionally, the span length ls must satisfy the constraint
(b − a + 1) ≤ ε. For example, if a sentence has 50 tokens and the span length threshold ε = 10,
then a total of 455 spans will be generated. Let’s assume that this sentence has two positive entity
samples and the maximum random negative entity samples are set to 100. In that case, there are 100
negative samples, i.e., min(453, 100). Consequently, the pairwise combination of spans generates
4950 negative relation samples, highlighting the severe disparity between positive and negative
samples. Previous span-based models have not adequately addressed the impact of negative samples
on model performance.

Few studies have attempted to address the imbalance problem in span-based JNERE models:

• Ji et al. (2020) adopted a sampling strategy that assigns a higher weight to the binary
cross-entropy loss of relation classification and a lower weight to the cross-entropy loss of
span classification. They used fixed scaling factors of 0.4 for span classification and 0.6 for
relation classification to maintain a more balanced data distribution.

• Tang et al. (2022) proposed a boundary assembling model to address the imbalance caused by
numerous inaccurate entity spans. The proposed model integrates boundary detection, span
classification, and relation extraction into an end-to-end framework, demonstrating superior
performance compared to state-of-the-art models. They used a weighted sum objective with
hyperparameters in the range [0, 1] for these tasks.

• Bin Ji (2023) introduced a two-phase paradigm that classifies entities and relations in the first
phase and predicts their types in the second phase. They enhanced this model with global
features, combining entity types and distances to reduce the gap between negative entities
and pre-defined ones.

To the best of our knowledge, no model that uses weight re-scaling without hyperparameter tuning
has yet been developed to address the class imbalance problems in span-based JNER.
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4.2 SpERT Approach

In this section, we present the SpERT model, which comprises the three following modules as
illustrated in Figure 4.2: span classification, span filtering, and relation classification. Given an
input sentence, the fine-tuned BERT generates token and contextualised vector representations. The
“span classification” layer enumerates all possible spans by combining the outputs from fine-tuned
BERT and applying width constraints to characterise these spans. Subsequently, the spans are
classified and filtered, preparing them for the final layer, which performs relation classification and
completes the JNERE task. To train the classifier efficiently, SpERT uses negative samples and
employs a joint loss function, as further explained in the following sections.

Figure 4.2: Architecture of SpERT (Eberts and Ulges, 2020). SpERT processes a token sequence through
fine-tuned BERT and performs the JNERE task in three stages: (a) spans within the sentence are
classified into entity types (shown for three samples in the red block: s1, s2, and s3), (b) non-entity
spans added due to negative sampling are filtered (e.g., s1), and (c) entity pairs (e.g., s2 and s3) are
combined with their context (brown blocks) and classified into relations.

Figure 4.2 provides a bottom-up view of the SpERT model. The bottom layer shows the vector
representation layer that uses fine-tuned BERT to extract contextual information (as illustrated in
the brown blocks). The input sentence undergoes byte pair encoding (BPE) (Sennrich et al., 2016),
splitting it into a sequence of n tokens. BPE encoding breaks uncommon words (e.g., “Surprisingly”)
into common subwords (e.g., “Surprising” and “ly”), thus constraining the vocabulary and
effectively handling out-of-vocabulary (OOV) and rare words.

The BPE tokens are processed through BERT, resulting in a sequence of embeddings ES of length
n + 1:

ES := [e1, e2, . . . , en, e[CLS ]]
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where e[CLS ] is the special classifier token representing the overall sentence context. Each embedding
vector e j ∈ R

dl , where dl denotes the embedding dimension.

4.2.1 Span Classification

SpERT’s span classifier takes a candidate span as input. Let s := (e j, e j+1, . . . , e j+k) denote a span,
where e j specifies the j-th token embedding. The span classifier maps the span s to the predefined
set of entity types E. It maps the span s to a class from E ∪ {none}, where none denotes spans
that do not encompass entities. The model detects entities among all token subsequences or spans
within the input sentence. Each candidate span is classified into an entity type or labelled as “none”
if it does not constitute an entity.

SpERT’s span classifier consists of three parts, as shown in “step (a)” in Figure 4.2:

1. The span classifier takes the BERT embeddings of the span and combines them using a fusion
function f via max-pooling:

f (e j, e j+1, . . . , e j+k)

This aggregates the representations of individual tokens in a sequence to produce a single
contextualised sentence representation.

2. For each span width k + 1, there is a dedicated width embedding wk+1 lookup, as shown
in Figure 4.2 (illustrated in the blue embedding matrix). The width embedding encodes
information about the length of the span being considered. For instance, the span width of a
person’s name might differ from that of an organisation’s name. Including width embeddings
helps the model capture characteristics and learn to associate certain span widths with specific
entity types. Moreover, width embeddings provide prior knowledge about the likelihood of
different span widths representing valid entities. For example, very long spans are less likely
to represent entities and may indicate noise or irrelevant text. By incorporating this prior
knowledge, SpERT can make more informed decisions during span classification.

Equation 4.1 describes the span representation:

e(s) := f (e j, e j+1, . . . , e j+k) ◦ wk+1 (4.1)

where e(s) specifies the embedding of span s, f denotes the fusion function that combines
embeddings (e j, e j+1, . . . , e j+k) of tokens within the span, wk+1 denotes the width embedding
obtained from a dedicated embedding matrix for span width k + 1, and ◦ denotes
concatenation.
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3. The classifier token in Figure 4.2 (illustrated in the green block) represents the overall context
of the sentence. For instance, contextual keywords such as “passing by” or “heading to” can
strongly indicate the entity class “location”. Thus, the final input to the span classifier is:

xs := e(s) ◦ e[CLS ] (4.2)

where xs specifies the final input to the span classifier, e(s) denotes the span representation
obtained from the fusion of token embeddings within the span and the width embedding,
and e[CLS ] denotes the classifier token representing the overall sentence context.

The final input is fed into a Softmax classifier to predict the posterior probability distribution
over each entity class (including “none”) as defined in Equation 4.3:

ŷs := σ(W s · xs + bs) (4.3)

where:

• ŷs specifies the predicted posterior probability distribution over each entity class
(including the “none” class) for the span s,

• σ is the Softmax activation function that computes the probabilities of each class,
ensuring that the probabilities sum to 1,

• W s expresses the weight matrix of the Softmax classifier,

• xs denotes the input vector representing the span obtained from the concatenation of
the span representation e(s) as specified in Equation 4.2 and the classifier token e[CLS ],

• bs specifies the bias vector of the Softmax classifier.

4.2.2 Span Filtering

“Step (b)” in Figure 4.2 illustrates the span filtering process. By examining the highest-scored class,
the span classifier’s output (as specified in Equation 4.3) determines which class each span belongs
to. The spans assigned to the “none” class are filtered out, resulting in a set of spans S that are
considered entities belonging to the set of predefined categories E. The authors stated that spans
longer than ten tokens are pre-filtered to limit the computational cost of span classification (Eberts
and Ulges, 2020).
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4.2.3 Relation Classification

Finally, once the “none” entities are filtered out, the relation classifier processes each candidate
pair. For instance, this applies to “s2” and “s3” in Figure 4.2.

The input to SpERT’s relation classifier consists of two components:

1. The two entity candidates (e.g., s1 and s2) after being fused with BERT embeddings using
Equation 4.1. For example, this results in e(s1) and e(s2).

2. The localised context between the two entity candidates. In other words, the span ranges from
the end of the first entity to the start of the second one, as depicted by the “brown blocks”
in Figure 4.2. The BERT embeddings in this context are combined by max-pooling to obtain
the context representation. For instance, c(s1, s2) denotes the context representation. The
authors set c(s1, s2) = 0 in cases where s1 and s2 overlap.

Both input representations are concatenated and passed through a single-layer classifier, which
outputs scores indicating the likelihood of each relation being present between the two
entities. Since relations may be asymmetric, both (s1, s2) and (s2, s1) pairs need to be classified. Thus,
two input representations xr

1 and xr
2 are generated:

xr
1 := e(s1) ◦ c(s1, s2) ◦ e(s2)

xr
2 := e(s2) ◦ c(s1, s2) ◦ e(s1)

Both xr
1 and xr

2 are passed through a single-layer classifier:

ŷr
1/2 := γ

(
Wr · xr

1/2 + br
)

(4.4)

where:

• γ denotes a sigmoid function. A high response in the sigmoid layer indicates that the
corresponding relation holds between s1 and s2, and

• Wr is the weight matrix for the relation classification layer, and br is the bias term for the
relation classification layer.

Given a confidence threshold α, any relation with a score ≥ α is considered activated. The authors
set the relation filtering threshold to 0.4 (Eberts and Ulges, 2020). If no relation is activated, the
sentence is assumed to express no known relation between the two entities.
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4.2.4 Negative Sampling Strategy

Negative sampling is vital for providing the model with both positive and negative examples during
training. This enables the model to learn to distinguish between true entities and relations versus
non-entities and non-relations effectively, thus reducing false positives.
SpERT’s negative sampling is performed on each sentence di in the training dataset in a single BERT
pass. The authors set a fixed number of negative samples randomly from sentence di to be labelled as
“none”. The negative samples are combined with positive ones existing in the dataset td, including
(a) candidate spans and (b) candidate entity pairs. Let ne represent a fixed number of random non-
entity spans as negative samples, and let nr denote the negative relation samples from positive entity
pairs.
The training samples are applied in learning the span and relation classifiers, and negative samples
ne and nr are selected as follows:

• For the span classifier: SpERT utilises all labelled entities Sgt as positive entity samples, plus
a fixed number ne of random non-entity spans as negative samples, such as those “found” in
Figure 4.1.

• For the relation classifier: SpERT uses ground truth relations as positive samples and picks nr

negative samples from those entity pairs S gt × S gt that are not labelled with any relation. For
instance, (Oswald, Not-relation, Warren Commission) as depicted in Figure 4.1.

Eberts and Ulges found that the optimal value for both ne and nr is 100.

4.2.5 Joint Loss for JNERE

SpERT applies a supervised training strategy with sentences annotated with named entities and
relations. The joint loss function for entity and relation classification is:

L := Ls +Lr (4.5)

where:

• Ls is the loss of the span classifier using the cross-entropy loss function, and

• Lr is the loss of the relation classifier using the binary cross-entropy loss.

Ls andLr are averaged over each batch’s samples. The authors explicitly mentioned that “no class
weights are applied”. Each sentence is run only once through BERT in a single pass. Hence, multiple
positive and negative samples pass through a single shallow linear layer for the entity and relation
classifiers respectively, which speeds up the training process.
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4.3 Cost-Sensitive SpERT Using WeLT

SpERT is one of the state-of-the-art models for span-based JNERE approaches. Eberts and Ulges
proposed a robust negative sampling strategy, as discussed above. The authors set fixed non-entity
spans as negative samples in the ADE and CoNLL04 datasets, resulting in the following outcomes:

• Figures 4.4 and 4.6 depict the class distributions and negative samples (“non-entities”) in the
ADE and CoNLL04 datasets, respectively.

• Similarly, additional negative samples (“non-relations”) were added due to SpERT’s negative
sampling strategy, as shown in Figures 4.5 and 4.8 for the ADE and CoNLL04 datasets,
respectively.

These negative samples are crucial for SpERT’s training, as evidenced by the ablation studies
conducted by the authors. However, we argue that this strong negative sampling strategy negatively
impacts the overall performance. To address this issue, we propose a cost-sensitive version of
SpERT, named WeLT-SpERT, which utilises WeLT’s loss function to balance span and relation
classification, as illustrated in Figure 4.3.

We emphasise the key differences in WeLT-SpERT’s span and relation classifiers, along with the
modified joint loss function.

Figure 4.3: Overview of the WeLT-SpERT model for JNERE. The WeLT components represent our
contributions to the span and relation classifiers. Image adopted from (Eberts and Ulges, 2020).

4.3.1 WeLT Span Classifier

For the span classification step, the input sentences are tokenised and processed through a fine-tuned
BERT model to obtain the contextualised token embeddings, as discussed in Section 4.2. For each
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possible subsequence of tokens within the input sequence, a span representation is generated
by concatenating the embeddings of the start and end tokens of the span, along with a learned
width embedding representing the length of the span in a similar fashion to that defined in
Equation 4.1. The span representation is then passed through the span classifier, which outputs a
probability distribution over the possible entity classes, including none, as defined in Equations 4.2
and 4.3.

To train the span classifier, SpERT uses a standard cross-entropy loss function. In contrast, SpERT-
NER employs a weighted cross-entropy loss to mitigate class imbalance for span classification:

Ls
SpERT-NER := −

1

ns

ns∑
i=1

c∑
j=1

σ

1 − n j∑c
k=1 nk

 yi, j log ŷs
i, j (4.6)

where:

• ns: is the number of spans,

• c: is the number of entity classes and none entities,

• n j: is the number of instances that belong to class j,

• σ

1 − n j∑c
k=1 nk

: is the rescaled weight for class j using the WeLT approach via the Softmax

functionσ,

• yi, j: is the binary indicator (0 or 1) indicating if class label j is the correct classification for
sample i,

• ŷs
i : is the predicted probability of span i being of class j, as calculated in Equation 4.3.

By incorporating class-specific weights, the WeLT span classifier becomes more sensitive to minority
classes and considers the distribution of none entities, improving detection and classification
performance for these classes.

4.3.2 WeLT Relation Classifier

Once the entity spans are classified, they are paired to form potential relations. For each pair of spans,
a relation representation is constructed by concatenating their respective embeddings. Then, this
concatenated representation is fed into one of the WeLT relation classifiers, and final relations are
determined based on rescaled weight scores.
To train the relation classifier, SpERT uses a standard binary cross-entropy loss function, while
SpERT-RE and SpERT-pos-weight employ a weighted binary cross-entropy loss to address class
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imbalance.

First, we demonstrate the calculation of rescaled relation weights denoted by wr, and then present
the two WeLT relation classifiers’ losses:

wr :=
r∑

j=1

nhead j + ntail j∑e
i=1 ni

·
nr∑r
j=1 n j

(4.7)

where:

• r: is the total number of relation classes,

• nhead j : is the number of instances where the entity appears as the head of the relation,

• ntail j : is the number of instances where the entity appears as the tail of the relation,

• · : specifies a multiplication operation,

•
∑e

i=1 ni: is the total number of entities,

• nr: is the number of instances of the relation class indexed by j, and

•
∑r

j=1 n j: is the total number of relation instances.

This weight wr considers both the frequency of entity pairs involved in the relations and the
frequency of the relation class itself. The idea is to combine the contribution from the two entities’
arguments with the relative frequency of the relation class to derive a comprehensive weight for each
relation. For example, to calculate the wr of a work relationship: if a person works at an organisation,
we sum the total frequencies of the person entity and the organisation entity over the total entity
frequencies, multiplied by the frequency of the work relationship over the total relation frequencies.

Finally, we normalise the weights wr for all relation classes so that they sum to 1, maintaining a
probabilistic interpretation via the Softmax functionσ:

σ(wr) :=
ewr∑r

k=1 ewk

We present two weighted binary cross-entropy loss2 using the pos-weight and weight parameters.

The pos_weight parameter applies a weighting factor to the positive class in the loss function,
thus adjusting the contribution of the positive class in binary classification. The weight parameter
2Binary cross-entropy losses: https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html, last

accessed: 03.09.2024.
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assigns individual weights to each sample.

We first define the WeLT weighted binary cross-entropy loss using pos_weight denoted by
Lr

SpERT-pos-weight :

Lr
SpERT-pos-weight := −

1

ns

ns∑
i=1

( yi log (ŷr
i ) · σ(wr) + (1 − yi) log(1 − ŷr

i )) (4.8)

We present the WeLT weighted binary cross-entropy loss using weight denoted byLr
SpERT-RE :

Lr
SpERT-RE := −

1

ns

ns∑
i=1

σ(wr) · ( yi log (ŷr
i ) + (1 − yi) log(1 − ŷr

i )) (4.9)

where:

• ns: number of spans,

• σ(wr): is the normalised rescaled relation weights as calculated in Equation 4.7,

• yi: is the true label for the i-th sample (1 for positive relation, 0 for negative), and

• ŷr
i : is the predicted probability of the relation for the i-th sample as calculated in Equation

4.4.

4.3.3 WeLT-SpERT’s Dummy Example

We provide a step-by-step example to demonstrate the calculation of re-scaled class weights used
in the span and relation classifiers. A dummy dataset is employed to illustrate the process. The
dummy dataset has four entities denoted by E = {e1, e2, e3, e4} and three relations denoted by
R = {r1, r2, r3}. First, we present the steps for the calculations of entity class weights, followed by
the relation class weights.

4.3.3.1 Calculating Entity Class Weights

We specify the frequencies of the entities as follows:

• e1 = 100,

• e2 = 4940,
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• e3 = 333,

• e4 = 500.

The weight we j of each entity e j ∈ E is computed via Equation 4.6, hence:

we j := 1 −
n j∑c

k=1 nk

The total entity frequency is:
∑c

k=1 nk = 100 + 4940 + 333 + 500 = 5873. Thus, the complement
of each entity’s relative frequency is as follows:

we1 = 1 −
100

5873
≈ 0.9830

we2 = 1 −
4940

5873
≈ 0.1587

we3 = 1 −
333

5873
≈ 0.9433

we4 = 1 −
500

5873
≈ 0.9149

Finally, these entity weights are normalised via Softmax. For this, the sum of the exponentiated
weights is:

c∑
k=1

ewek ≈ 8.9086

The normalised class weights are as follows:

σ(we1) =
2.6726

8.9086
≈ 0.2998

σ(we2) =
1.1719

8.9086
≈ 0.1315

σ(we3) =
2.5681

8.9086
≈ 0.2882

σ(we4) =
2.4960

8.9086
≈ 0.2805

4.3.3.2 Calculating Relation Class Weights

We specify the frequencies of the relations as follows:
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• r1 = 100,

• r2 = 20,

• r3 = 300.

We present the entity arguments for each relation:

• (e3, e4, r1),

• (e1, e2, r2),

• (e3, e3, r3).

The weight wr of each relation r j ∈ R is computed via Equation 4.3.2, hence:

wr =
nhead + ntail∑e

i=1 ni
·

nr∑r
j=1 n j

The total relation frequency is:
∑R

j=1 n j = 100 + 20 + 300 = 420. Thus, the relation weights are as
follows:

wr1 =

333 + 500

5873

 ·
(
100
420

)
≈ 0.0338

wr2 =

100 + 4940

5873

 ·
(

20
420

)
≈ 0.0409

wr3 =

333 + 333

5873

 ·
(
300
420

)
≈ 0.0810

Finally, these relation weights are normalised via Softmax. The sum of the exponentiated weights is:

r∑
k=1

ewrk ≈ 3.1604

The normalised relation weights are as follows:

σ(wr1) =
1.0344

3.1604
≈ 0.3272

σ(wr2) =
1.0417

3.1604
≈ 0.3295
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σ(wr3) =
1.0843

3.1604
≈ 0.3433

Using the dummy dataset, we have demonstrated the process of calculating and normalising weights
for entities and relations using the Softmax function. These weights are part of the span and relation
classifier loss functions, as discussed in the following section.

4.3.4 WeLT Joint Loss Functions

In the previous section, we introduced cost-sensitive WeLT span and relation classifiers. The aim is
to examine the effect of (1) balancing entity classes, (2) relation classes, and (3) both combined.
We propose four variations of the WeLT-SpERT models with customised loss functions to handle
the class imbalance. These loss functions assign higher weights to minority classes, ensuring better
performance across underrepresented categories.
Below, we outline four joint loss functions, each consisting of two core components: one for entity
classification and one for relation extraction. Each variant employs its distinct joint loss function,
described as follows:

• Variant 1: also known as “SpERT-NER” using the WeLT’s span classifier (Equation 4.6) and
SpERT’s relation classifier (Equation 4.4), the joint loss function is defined as:

LSpERT-NER := Ls
SpERT-NER +L

r (4.10)

• Variant 2: also known as “SpERT-NERE” using the WeLT’s span classifier (Equation 4.6) and
the WeLT’s relation classifier (Equation 4.9), the joint loss function is defined as:

LSpERT-NERE := Ls
SpERT-NER +L

r
SpERT-RE (4.11)

• Variant 3: also known as “SpERT-pos-weight” using SpERT’s span classifier (Equation 4.3)
and the WeLT’s relation classifier with the pos_weight parameter (Equation 4.8), the joint loss
function is defined as:

LSpERT-pos-weight := Ls +Lr
SpERT-pos-weight (4.12)

• Variant 4: also known as “SpERT-RE” using SpERT’s span classifier (Equation 4.3) and the
WeLT’s relation classifier with the weight parameter (Equation 4.9), the joint loss function is
defined as:

LSpERT-RE := Ls +Lr
SpERT-RE (4.13)
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The WeLT-SpERT incorporates a weighted loss training mechanism that adjusts the loss function
based on the frequency of classes, including none samples, thereby ensuring that the minority classes
receive more focus during training. Hence, this strategy is absent in the original SpERT model. In the
following section, we evaluate the four WeLT-SpERT variants and compare them with the original
SpERT model.
To summarise, the primary difference between SpERT and the WeLT-SpERT variants lies in the
handling of class imbalance, which is prevalent in real-world datasets for JNERE, including the none
entities and relations added by SpERT.

4.4 Evaluating WeLT-SpERT

In this section, we conduct extensive experiments to investigate the impact of mitigating class
imbalance using four different WeLT joint loss functions, as presented in Section 4.3.4, and compare
them to SpERT. All experiments were performed using a single Tesla P40 GPU with 24 GB of
memory. The hyperparameters used are reported in the Appendix (see Table 10), following SpERT’s
experimental settings for a fair comparison.
The evaluation is conducted on two publicly available datasets: (a) ADE and (b) CoNLL04, as
discussed in Section 2.2.3. The statistical class distributions of entities and relations for ADE and
CoNLL04 are presented in Table 2.4 and Table 2.5, respectively. The authors used the training and
development datasets for training SpERT.3

Figure 4.4 depicts the distribution of ADE’s two predefined entities and the non-entities added
by SpERT. Figure 4.5 shows the frequency of the sole relation in the ADE relations distribution,
including the predefined category and the non-relations added by SpERT.
Additionally, Figure 4.6 illustrates the distribution of the four predefined entities in CoNLL04,
along with the non-entities added by SpERT. Figure 4.7 illustrates the occurrences of each relation
argument type such as “Live_in” relationship with 421 instance that has people and location
as entity arguments. Figure 4.8 displays the distribution of the five predefined relations and the
non-relations added by SpERT.

In this section, we focus only on evaluating the WeLT-SpERT variants against the original SpERT
model. However, in Chapter 7, we provide an extensive comparison to other state-of-the-art
models. Hence, our primary baseline in this context is SpERT.
We evaluate the WeLT-SpERT variant models on both entity recognition and relation extraction
using the same evaluation strategy as SpERT to ensure a fair comparison:

3SpERT code: https://github.com/lavis-nlp/spert?tab=readme-ov-file#reproduction-of-experimental-results,
last accessed: 03.09.2024.
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Figure 4.4: Frequency of entities in the ADE training dataset. “Adverse-drug event” and “Drug” are
predefined entity types. “None” represents non-entities added by SpERT.

Figure 4.5: Frequency of relations in the ADE training dataset. “Adverse-drug” is the predefined relation type
representing the Adverse-drug events. “None” represents non-relations added by SpERT.
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Figure 4.6: Frequency of entities in the CoNLL04 training and development dataset. “Location”, “Organi-
zation”, “People”, and “Other” are predefined entity types. “None” represents non-entities added
by SpERT.

Figure 4.7: Occurrences of each relation and its corresponding entity arguments in CoNLL04.
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Figure 4.8: Frequency of relations in the CoNLL04 training and development dataset. “Kill”, “Live_in”,
“Located_In”, “OrgBased_In”, and “Work_for” are predefined relation types. “None” represents
non-relations added by SpERT.

• A correct entity is considered only if the predicted span and type match the ground truth. For
example, suppose the ground truth contains the entity (London, Location) with the span [0,

6]. If the model predicts (London, Organisation) or (London, Location) but with a span of
[1, 7], the entity would be considered incorrect. The predicted span (London, Location)

with the exact span [0, 6] is the only valid prediction.

• A correct relation is considered valid if it has the correct type and both associated entities
are correctly identified (i.e., following the first criterion). For example, if the ground truth
relation is ((London, Location), Located_In, (UK, Location)), the model must predict the
correct relation type Located_In and identify both entities (London, Location) and (UK,

Location) with their exact spans and types. If one of the entities is incorrectly identified or
has a mismatch in span or type, the predicted relation will not be considered correct.

We report macro-averaged precision, recall, and F1 scores for both the CoNLL04 and ADE
datasets, as discussed in Section 2.2.4. For ADE, the F1-score is averaged over 10-fold cross-
validation. Additionally, we report micro-averaged precision, recall, and F1 scores for the CoNLL04
dataset, as stated in Section 2.2.2.
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4.4.1 Evaluation Results

We report the average results over five runs for each dataset. Table 4.1 presents the macro-average
scores for both datasets. This table also encompasses two types of evaluations related to the ADE
dataset, one version containing 120 instances of relations with overlapping entities and another
version without overlapping entities.

Entity Relation
Dataset Model Precision Recall F1 Precision Recall F1

CoNLL04

SpERT Eberts and Ulges (2020) 85.78 86.84 86.25 74.75 71.52 72.87
SpERT-NER 84.92 87.10 85.95 71.19 73.02 71.89
SpERT-NERE 86.07 89.46 87.70 64.26 74.44 68.77
SpERT-pos-weight 85.37 87.65 86.49 76.65 70.99 73.56
SpERT-RE 87.49 87.16 87.28 72.79 72.87 72.72

ADE

SpERT Eberts and Ulges (2020) 88.99 89.59 89.28 77.77 79.96 78.84
SpERT-NER 90.11 93.53 91.79 80.75 88.67 84.53
SpERT-NERE 92.13 92.60 92.37 83.82 86.60 85.19
SpERT-pos-weight 91.18 92.70 91.93 82.00 86.19 84.04
SpERT-RE 90.50 93.22 91.84 81.28 87.57 84.31

ADE (without overlapping)

SpERT Eberts and Ulges (2020) 89.26 89.26 89.25 78.09 80.43 79.24
SpERT-NER 92.15 92.26 92.20 83.49 85.61 84.54
SpERT-NERE 91.47 91.92 91.69 83.31 85.90 84.58
SpERT-pos-weight 92.28 92.22 92.25 84.60 86.04 85.31
SpERT-RE 91.99 92.66 92.32 84.35 87.45 85.87

Table 4.1: Macro-average F1-scores comparison between SpERT and the proposed WeLT-SpERT variants on
the CoNLL04 and ADE datasets. The best scores are shown in bold, and the second-best ones are
underlined.

We outline notable patterns observed in the macro-averaged results, as described below:

• Performance on CoNLL04:

– For NER, SpERT-NERE achieves the best recall (89.46 %) and the best F1-score
(87.70 %), indicating that it outperforms both the baseline SpERT (86.25 %) and the
other WeLT-SpERT variant models in terms of overall performance. SpERT-RE obtains
the highest precision (87.49 %) and competitive F1-score (87.28 %).

– For RE, SpERT-pos-weight achieves the best precision (76.65 %) and F1-score (73.56 %),
marginally outperforming SpERT (72.87 %) and SpERT-RE (72.72 %). This shows
that the pos-weight variant offers an improvement in relation extraction.
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• Performance on ADE:

– For NER, SpERT-NERE performs the best in terms of both precision (92.13 %) and F1-
score (92.37 %), showing modest improvement over the baseline SpERT (89.28 %). This
indicates the advantages of the NERE variant in handling the ADE dataset.

– For RE, SpERT-NERE also performs the best in terms of F1-score (85.19 %), with
the highest precision (83.82 %), which surpasses SpERT (78.84 %). The model
demonstrates a robust capability in relation extraction for this dataset.

• Performance on ADE (without overlapping):

– For NER, SpERT-pos-weight achieves the highest precision (92.28 %) and an almost
identical F1-score (92.25 %) to SpERT-RE (92.32 %), indicating competitive perfor-
mance across these models, while SpERT lags behind (89.25 %).

– For RE, SpERT-RE excels with the best precision (84.35 %) and F1-score (85.87 %),
surpassing (79.24 %) and the other WeLT-SpERT variants. This shows that SpERT-RE
is particularly effective in this specific dataset configuration.

• Key Observations:

– SpERT-NERE performs the best in the CoNLL04 dataset for NER, while SpERT-pos-
weight excels in RE.

– SpERT-NERE is particularly strong for entity extraction in both the ADE and ADE
(without overlapping) datasets, showing improvements in precision and F1-scores.

– SpERT-RE offers strong performance for both entity and relation extraction in the
ADE (without overlapping) dataset, achieving the highest scores overall.

– SpERT, as the baseline, generally performs lower than all the proposed variants, showing
that each WeLT-SpERT variant contributes to performance improvement across both
entity and relation extraction tasks.

The proposed models (WeLT-SpERT variants) exhibit modest performance compared to the
baseline model. Each variant shows particular strengths in different datasets and tasks, with SpERT-
NERE excelling in entity extraction and SpERT-RE performing best in relation extraction. In Table
4.2, we present the CoNLL04’s micro-average F1 score results.

We identify specific trends related to the micro-averaged outcomes, as outlined below:

• Performance on Entity Extraction:

– SpERT achieves an F1-score of 88.94 %, with a recall of 89.64 %, serving as the baseline.
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Entity Relation
Dataset Model Precision Recall F1 Precision Recall F1

CoNLL04

SpERT Eberts and Ulges (2020) 88.25 89.64 88.94 73.04 70.00 71.47
SpERT-NER 87.22 89.81 88.49 69.20 71.33 70.25
SpERT-NERE 88.34 91.29 89.79 63.56 72.75 67.85
SpERT-pos-weight 87.64 89.99 88.80 75.38 69.67 72.41
SpERT-RE 89.59 90.08 89.83 71.73 71.56 71.65

Table 4.2: Micro-average F1-scores comparison between SpERT and the proposed WeLT-SpERT vari-
ants. The best scores are highlighted in bold, while the second-best are underlined.

– SpERT-NERE demonstrates the highest recall (91.29 %) and the best F1-score
(89.79 %), slightly surpassing the baseline and all other proposed variants. This indicates
that SpERT-NERE is particularly effective in entity extraction, achieving positive
performance overall.

– SpERT-RE shows the highest precision (89.59 %) and a competitive F1-score (89.83 %),
placing it just behind SpERT-NERE in overall entity extraction performance.

• Performance on Relation Extraction:

– SpERT achieves an F1-score of 71.47 %, providing the baseline for comparison.

– SpERT-pos-weight performs best with an F1-score of 72.41 % and the highest precision
(75.38 %). This shows that the pos-weight variant offers modest improvements in
relation extraction over SpERT.

– SpERT-RE also shows positive performance with an F1-score of 71.65 % as the second-
best F1 score, achieving a good balance between precision (71.73 %) and recall (71.56 %).

• Key Observations:

– SpERT-NERE outperforms all other models in entity extraction, with the highest recall
and F1-score, making it particularly effective in handling this task.

– SpERT-pos-weight demonstrates the best performance in relation extraction, with the
highest precision and F1-score, outperforming SpERT and other variants.

– The SpERT-RE variant offers a balanced performance across both entity and relation
extraction, achieving strong results for both tasks.

Overall, the evaluation of the WeLT-SpERT variants against the baseline SpERT model shows
modest improvements in both NER and RE across the CoNLL04 and ADE datasets. The
SpERT-NERE model achieves the highest F1 scores for both tasks, underscoring the advantages of
addressing the class imbalance. There are marginal improvements in precision and recall, particularly
in relation extraction for the ADE dataset, where gains range from 1 % to 3 %.
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4.4.2 Error Analysis

We highlight descriptions of incorrect predictions from the SpERT-NERE to delineate future
directions for improvements in Table 4.3. Among the predicted results of the proposed model on
the CoNLL04 test set, we randomly sampled 100 error instances and categorised them into multiple
predefined error categories as follows:

• Entity recognition errors occur when our model fails to correctly identify named entities,
leading to false positives (i.e., misclassification of a non-entity as an entity) or false negatives
(i.e., failure to identify a valid entity).

• Span-level errors arise when our model correctly recognises an entity, but the span boundary
is incorrect (i.e., the start and end points), resulting in partial recognition errors.

• Relation extraction errors occur when our model incorrectly predicts a relationship
between identified entities, including false positives (i.e., misclassification of a non-relation
as a relation) or false negatives (i.e., missing a valid relationship).

• Joint training errors stem from the interaction between both tasks (entity recognition and
relation extraction), where errors may propagate. Typically, a misclassified entity or span
error can lead to incorrect relation predictions.

We provide an overview of some example error cases from Table 4.3:

• (a) NER misclassification: in this example, our model failed to classify the entity “Judith
C.Toth” as a people entity, although it correctly predicted the relationship.

• (b) Incorrect NE span: the model incorrectly identifies “Ernest Tidwell” instead of “G.Ernest
Tidwell”. This type of span-level error arises from incorrect delineation of multi-token entity
boundaries.

• (c) Incorrect relation: the model incorrectly predicts a “Located_In” relation between “Sabine
Pass” and “Port Arthur”.

• (d) Logical error: the model incorrectly assigns a “Live_In” relation between “Eduard A.
Shevardnadze” and “China” instead of the correct relation with “Soviet”.

• (e) Lack of syntactic information: the model incorrectly predicts an additional “Live_In”
relation between “Gerald Baliles” and “New Hampshire”.

• (f) Lack of knowledge: the entity “Organization of the Oppressed on Earth” is not recognised
as an organisation entity.
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(a) NER misclassification
Sentence [Judith C.Toth]PEOP says she returned for a fourth term in [Maryland]LOC ’s [House of

Delegates]ORG because she couldn’t find a better job.
Ground-Truth [Judith C.Toth]PEOP ([House of Delegates]ORG,OrgBased_In,[Maryland]LOC)
Prediction [Judith C.Toth] ([House of Delegates]ORG,OrgBased_In,[Maryland]LOC)

(b) Incorrect NE span
Sentence The “poison pill,” ruled illegal in November by [U.S.]LOC District [G.Ernest

Tidwell]PEOP , would become effective after a shareholder had acquired 10 percent of
the outstanding stock.

Ground-Truth ([G.Ernest Tidwell]PEOP,Live_In,[U.S.]LOC)
Prediction ([Ernest Tidwell]PEOP,Live_In,[U.S.]LOC)

(c) Incorrect relation
Sentence [Port Arthur]LOC Mayor [Malcolm Grant]PEOP asked the 800 residents of [Sabine

Pass]LOC to evacuate the coastal community just west of the [Louisiana] LOC line, citing
the likelihood of high water closing the only highway between the town and [Port
Arthur]LOC .

Ground-Truth ([Malcolm Grant]PEOP,Live_In,[Port Arthur]LOC) ([Malcolm Grant]PEOP,Live_In,[Port
Arthur]LOC)

Prediction ([Malcolm Grant]PEOP,Live_In,[Port Arthur]LOC) ([Sabine Pass]LOC ,Located_In,[Port
Arthur]LOC) ([Malcolm Grant]PEOP,Live_In,[Port Arthur]LOC)

(d) Logical error
Sentence [Soviet]LOC Foreign [Eduard A.Shevardnadze]PEOP is to visit [China]LOC next month to

pave the way for the first Chinese - Soviet summit in 30 years, Chinese television reported
Monday.

Ground-Truth ([Eduard A.Shevardnadze]PEOP,Live_In,[Soviet]LOC)
Prediction ([Eduard A.Shevardnadze]PEOP,Live_In,[Soviet]LOC) ([Eduard

A.Shevardnadze]PEOP,Live_In,[China]LOC)
(e) Lack of syntactic information

Sentence “He is the same easy - going, soft - spoken, self - effacing man we knew as governor of
[New Hampshire]LOC” , said [Virginia]LOC Gov. [Gerald Baliles]PEOP, a Democrat.

Ground-Truth ([Gerald Baliles]PEOP,Live_In,[Virginia]LOC)[New Hampshire]LOC

Prediction ([Gerald Baliles]PEOP,Live_In,[Virginia]LOC) ([Gerald Baliles]PEOP,Live_In,[New
Hampshire]LOC)

(f) Lack of knowledge
Sentence Text of the statement issued by the [Organization of the Oppressed on Earth]ORG

claiming [U.S.]LOC Marine Lt.[William R.Higgins]PEOP was hanged.
Ground-Truth [Organization of the Oppressed on Earth]ORG ([William

R.Higgins]PEOP,Live_In,[U.S.]LOC)
Prediction [Organization of the Oppressed on Earth] ([William R.Higgins]PEOP,Live_In,[U.S.]LOC)

(g) Propagated error
Sentence An art exhibit at the [Hakawati Theatre]ORG in Arab east [Jerusalem]LOC was a series of

portraits of Palestinians killed in the rebellion.
Ground-Truth ([Hakawati Theatre]ORG,OrgBased_In,[Jerusalem]LOC)
Prediction ([Hakawati Theatre]LOC ,Located_In,[Jerusalem]LOC)

Table 4.3: Common error cases of SpERT-NERE on the CoNLL04’s test set. The red colour expresses error
cases.
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• (g) Propagated error: the entity “Hakawati Theatre” is misclassified as a location rather than
an organisation, leading to an incorrect relation prediction.

In summary, these error cases highlight various challenges in the JNERE task, including span-level
accuracy, contextual understanding, syntactic parsing, logical consistency, and the incorporation of
domain-specific knowledge. Addressing these issues requires a multifaceted approach that includes
improvements in contextual embeddings, syntactic parsing, and knowledge integration to enhance
the overall performance of the WeLT-SpERT model.

4.5 Summary and Discussion

The WeLT-SpERT models are cost-sensitive span-based JNERE models designed to address the
challenge of overlapping entities. We compared the baseline SpERT model with four WeLT-SpERT
variants, focusing on macro-averaged and micro-averaged precision, recall, and F1 scores across the
CoNLL04 and ADE datasets, including a non-overlapping ADE variant.
Key patterns observed in the experimental results for both datasets include:

• CoNLL04 Dataset: WeLT-SpERT variants demonstrated modest improvements over the
baseline SpERT model, except for SpERT-NER. Notable findings regarding F1 scores are:

– SpERT-NER: rescaling entity classes using the WeLT joint loss function resulted in
lower NER and RE performance. For micro-averaged NER, the F1 score was 88.49 %,
slightly lower than SpERT. Despite a higher recall (89.81 %), precision dropped to
87.22 %, causing a decline in overall performance. The RE F1 score (70.25 %) also
decreased, primarily due to a reduction in precision (69.20 %), although recall increased
(71.33 %). The macro-averaged F1 scores followed similar patterns, with lower scores for
both NER (85.95 %) and RE (71.89 %).

– SpERT-RE: rescaling relation classes using the weight parameter led to higher F1
scores in most cases. The best micro-averaged NER F1 score was 89.83 %, slightly
surpassing SpERT’s 88.94 %. RE performance also improved, with an F1 score of
71.65 %. However, macro-averaged scores showed a minor reduction in RE F1 score
(72.72 %).

– SpERT-pos-weight: rescaling relation classes using the pos_weight parameter improved
RE performance. The micro-averaged NER F1 score was 88.80 %, slightly lower than
SpERT, but the RE F1 score (72.41 %) marginally exceeded SpERT’s 71.47 %. Macro-
averaged scores showed slight improvements in NER (86.49 %) and RE (73.56 %) F1
scores.
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– SpERT-NERE: rescaling both entity and relation classes resulted in mixed out-
comes. The micro-averaged NER F1 score (89.79 %) was the second-best, but the RE
F1 score (67.85 %) decreased compared to SpERT. Macro-averaged NER F1 (87.70 %)
showed the best improvement, while the RE F1 score (68.77 %) declined.

• ADE Dataset with Overlapping Entities: observations regarding F1 scores include:

– SpERT-NER: achieved an improvement in NER F1 score (91.79 %), marginally
surpassing SpERT (89.28 %). The RE F1 score was 84.53 %, reflecting an enhancement
in relation extraction.

– SpERT-NERE: exhibited the highest NER F1 score (92.37 %) and RE F1 score of
85.19 %, suggesting that integrating relation extraction enhances overall performance.

– SpERT-pos-weight and SpERT-RE: both variants achieved competitive NER F1 scores
(91.93 % and 91.84 %, respectively), and maintained strong RE performance (84.04 %
and 84.31 %, respectively).

• ADE Dataset without Overlapping Entities: similar patterns emerged regarding F1 scores:

– SpERT-NER: achieved an improved NER F1 score (92.20 %), slightly surpassing
SpERT (89.25 %). The RE F1 score was 84.54 %, compared to SpERT’s 79.24 %.

– SpERT-NERE: achieved RE F1 score of 84.58 % confirming the benefit of combining
entity and relation extraction.

– SpERT-RE: demonstrated the highest NER F1 score (92.32 %) and the best RE F1 score
(85.87 %).

– SpERT-pos-weight: achieved NER F1 score of 92.25 % and RE F1 score of 85.31 %.

In summary, the WeLT-SpERT variants show modest improvements over the baseline SpERT
model, particularly in handling class imbalance in NER and RE tasks. The SpERT-NER variant
primarily enhances recall, reflecting improved entity detection. Balancing relation classes using
SpERT-RE improves precision, reducing false positives in relation extraction. The pos_weight

parameter in SpERT-pos-weight leads to balanced gains in both precision and F1 scores for relations.
Finally, balancing both classifiers in SpERT-NERE results in the highest overall F1 scores,
demonstrating that simultaneous balancing of NER and RE is an effective strategy for improving
overall model performance.
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SpERT is considered one of the state-of-the-art models for JNERE approaches, as discussed in
Chapter 4. However, we addressed its key limitations related to the “non-entities and relations”
added through SpERT’s strong negative sampling strategy. While the negative sampling approach
plays an important role in SpERT’s training, we argue that it negatively impacts the overall
performance of JNERE. This is primarily due to the class imbalance among predefined categories
and the data distribution gap between these categories and non-entities caused by SpERT’s sampling
strategy. To address this deficiency, we incorporated WeLT’s loss function for the span classifier and
introduced a novel weighting scheme for the relation classifier, as detailed in Section 4.3.

We are aware that there are various key limitations related to SpERT other than the strong negative
sampling strategy, as outlined in Section 4.2.4. Some of these trade-offs are specifically related to the
span classifier:

• Lack of boundary supervision: SpERT’s classifier does not provide explicit boundary
supervision for entity spans. Instead, it relies on width embeddings learned through
back-propagation to determine span lengths, as highlighted in Section 4.2. This approach can
lead to incorrect span extractions that are semantically similar to the correct ones, ultimately
degrading performance. For example, if the correct entity is “geometric estimation problem”,
SpERT might extract both “geometric estimation problem” and “selection of geometric
estimation problem”, which negatively impacts model accuracy (Jianquan Ouyang, 2022).

• Sole BERT encoding dependency: SpERT’s span classifier is based on a fully connected
layer, which makes it heavily reliant on BERT encodings. Consequently, SpERT’s architec-
ture struggles with handling complex datasets that involve relations between diverse entity
types. As discussed in Section 2.2.3, for example, SciERC’s relations connect pairs of entities
that can vary significantly in type, such as methods, tasks, materials, or metrics. This diversity
adds complexity to relation extraction, as the model must accurately distinguish between
different argument types. Moreover, scientific texts often include specialized terminologies,
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further complicating the identification of accurate relationships between different entity
types.

To this end, Jianquan Ouyang (2022) proposed a refined version of the SpERT model, titled
“Attention and Span-based Entity and Relation Transformer” (ASpERT). ASpERT addressed
SpERT’s span classifier issues as follows:

• Attention weight mechanism: ASpERT introduces attention mechanisms that enhance
boundary supervision by utilizing attention weights. ASpERT more accurately determines
the start and end of entity spans, addressing the boundary supervision issue that SpERT faces.

• Enhanced span filtering: ASpERT’s filtering process is refined to better classify spans
into predefined entity types or non-entities. The authors utilized a “Multi-layer perceptron”
(MLP) to output the probabilities of each entity class, selecting the highest predicted
probability.

Typically, ASpERT addresses the main issues of SpERT by providing improved boundary
supervision through better attention mechanisms as illustrated in Figure 5.1.

Figure 5.1: Architecture of ASpERT (Jianquan Ouyang, 2022). ASpERT is built upon the SpERT
model (Eberts and Ulges, 2020), with key enhancements in the span classifier, as shown in the
orange blocks, including (a) the attentional contribution algorithm and (b) the MLP.

ASpERT reduces the dependency on BERT encoding, and enhancing the integration of span
and contextual information for more accurate entity and relation extraction. Despite ASpERT’s
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superior performance, it still adopts the negative sampling strategy and inherits the significantly
imbalanced negative samples from SpERT. The data distribution between predefined categories and
non-entities and relations remains highly skewed. As stated in Section 4.2.5, random non-entity
spans and non-relations are added as negative samples per sentence. Given the modest improvements
of WeLT-SpERT variants over the original SpERT, we are motivated to investigate the impact of
addressing the class imbalance problem using WeLT, while incorporating ASpERT’s approach for
JNERE.
To this end, we propose a modified joint training loss using WeLT to balance the gap between
positive and negative entities and relations. We present WeLT-ASpERT, which utilizes an
enhanced ASpERT span classifier with an attention-weighting mechanism and improved span
filtering. Although ASpERT enhances the classification of spans into entity types or non-entities,
we believe there is still room for improvement, as the strong negative sampling strategy degrades
ASpERT’s performance. Experimental results on the CoNLL04 and ADE datasets demonstrate
that WeLT-ASpERT models marginally outperform the span-based baselines, including SpERT and
ASpERT. We conduct extensive analyses that validate the effectiveness of the proposed approach.

In summary, our contributions in this chapter are as follows:

• We present cost-sensitive attention and span-based entity and relation classification ap-
proaches to address the data distribution gap between positive and negative samples in
ASpERT, and we propose a novel joint loss function using WeLT.

• We investigate several WeLT loss functions on the overall performance:

– Applying cost-sensitive span-based attention classification, referred to as “ASpERT-
NER”.

– Applying cost-sensitive span-based attention for relation classification using weight

parameter in the binary cross-entropy loss function, titled “ASpERT-RE”.

– Combining both cost-sensitive span-based attention and relation classification, named
“ASpERT-NERE”.

• We conduct extensive experiments to evaluate WeLT-ASpERT variants on CoNLL04 and
ADE datasets. Our results demonstrate the modest performance of the WeLT-ASpERT
variants over SpERT and ASpERT for NER and JNERE tasks.

• We publicly release the code1 and share hyperparameters to reproduce our research results.

1WeLT-ASpERT code: https://github.com/mobashgr/WeLT-ASpERT, last accessed: 06.09.2024.
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Structure. In Section 5.1, we provide a detailed illustration of the ASpERT model and discuss its
drawbacks. Section 5.2 introduces our cost-sensitive ASpERT models and the proposed WeLT joint
loss functions. In Section 5.3, we present the experimental settings and results. Finally, in Section 5.4,
we provide a summary and discussion.

5.1 JNERE with Attention Weight Mechanism

ASpERT addresses SpERT’s limitations by incorporating advanced techniques for both entity and
relation extraction. The core advancements lie in the integration of BERT-based embeddings with
a novel approach for span and relation classification.

5.1.1 Span Classifier

ASpERT’s span classifier builds upon SpERT’s, as discussed in Section 4.2.1, but is designed to
improve the identification and classification of entities in a given text. Key innovations include the
use of the multi-layer perceptron and the integration of attentional contributions from BERT’s
attention heads, whereas SpERT relies solely on a linear layer for span classification. ASpERT’s span
classifier consists of the following components:

• Token embeddings: derived from BERT, these embeddings provide contextual information
for each token in the input sequence.

• Max-pooling layer: applied to the embeddings of tokens within each candidate span to
generate a fixed-size span embedding.

• Width embedding: encodes the length of the candidate span, providing additional
contextual cues.

• Attentional contribution algorithm: aggregates attention information across all layers and
heads of BERT, enriching the token embeddings with enhanced contextual information.

• MLP: replaces the simpler linear classifier used in SpERT, allowing the model to capture more
complex patterns in the span embeddings.

• Softmax layer: classifies the spans into predefined entity categories.

Following the same strategy as SpERT’s span classifier, candidate spans are generated from the token
embeddings. Each span s is represented by max-pooling the embeddings of its constituent tokens.
For a span s with tokens [e j, e j+1, . . . , e j+k], the span embedding e (s) is computed as follows:

e (s) := fl ( e j, e j+1, . . . , e j+k) ◦ wk (5.1)
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where:

• fl ( e j, e j+1, . . . , e j+k) specifies the token embeddings for the span combined using a max-
pooling fusion function fl,

• wk is the width embedding that encodes the span’s length, as illustrated in the blue embedding
matrix in Figure 5.1, and

• ◦ denotes the concatenation operator.

ASpERT proposes an attentional contribution degree algorithm. The mask score masks is defined
as a vector whose dimensionality corresponds to the number of tokens in the input sentence di. If
the sentence contains n tokens, then the mask score can be represented as follows:

masks ∈ R
n

where n is the total number of tokens in the sentence. Each entry in the vector masks(ti) corresponds
to the score associated with the token ti in the sentence. Consequently, the dimensionality of the
mask score vector reflects the number of tokens, thereby allowing for element-wise operations
during subsequent processing in the model.
First, the mask score masks for entity and non-entity spans is acquired via Algorithm 5.1. This
algorithm calculates the mask score for each entity in the sentence. Entities within the span s are
assigned a mask score of −∞, effectively excluding them from further consideration, while entities
outside the span are assigned a score of 0.

Algorithm 5.1 Mask score of entity sample
Input: Sentence: di ; Entity span: s := ( e j+1, . . . , e j+k)
Output: The mask score of the entity sample, masks

1: for all ti such that ti ∈ di do ▷ Loop at each token in the sentence
2: if ti ∈ s then ▷Check if the token is part of the entity span
3: masks(ti)← −∞ ▷Assign −∞ to the mask score if the token is part of the entity span
4: else
5: masks(ti)← 0 ▷Assign 0 to the mask score if the token is not part of the entity span
6: end if
7: end for

return masks ▷Return the final mask score

The time complexity of Algorithm 5.1, which computes the mask score of an entity sample, is O(n),
where n is the number of tokens in the input sentence di. This complexity arises from the single
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loop that iterates through each token in the sentence, performing constant-time operations for each
token. The same applies for Algorithm 5.2 that is discussed below.
Algorithm 5.2 then computes the attentional contribution degree fa(s) for an entity sample based
on the attention scores obtained from the BERT model. This algorithm filters the attention
head information with low attention to the candidate span based on a contribution threshold
Θ. Jianquan Ouyang (2022) set the contribution threshold to 0.5.
The attentional contribution degree fa(s) is obtained by mean-pooling the attention head
information from the token dimensions of context and the entity’s token dimension.

Algorithm 5.2 Attentional Contribution Degree
Input: Entity span: s := (e j+1, . . . , e j+k) ; Mask score of the entity span: masks ; BERT model

pre-trained with domain-specific datasets: Ms ; Contribution degree threshold:Θ ; Mean value
from the token dimension of the context and the token dimension of the entity, MeanPooling.

Output: The attentional contribution degree, fa(s) ;
1: As′ ← Ms[attentions] ▷ Extract attention weights from BERT model Ms

2: As ← As′ + masks ▷Add mask score masks to attention weights
3: Atemp ← As ▷ Store modified attention weights in Atemp for further processing
4: for all a, b such that a ∈ As , b ∈ Atemp do ▷ Iterate over all elements in As and Atemp

5: if a > Θ then ▷Check if attention value exceeds thresholdΘ
6: b← 1 ▷ Set corresponding value in Atemp to 1 if threshold is exceeded
7: else
8: b← 0 ▷ Set corresponding value in Atemp to 0 if threshold is not exceeded
9: end if

10: end for
11: As ← As · Atemp ▷ Element-wise multiplication of As with updated Atemp

12: fa(s)← MeanPooling(As) ▷Compute attentional contribution degree using mean pooling
return fa(s) ▷Return final attentional contribution degree fa(s)

Thus, ASpERT’s span representation shows improvements over SpERT’s span representation (see
Equation 4.1):

e (s) := fl ( e j, e j+1, . . . , e j+k) ◦ fa ( e j, e j+1, . . . , e j+k) ◦ wk (5.2)

Thus, ASpERT’s final input to the novel span classifier is defined as follows:

xs := e (s) ◦ e[CLS ] (5.3)

where:

• xs specifies the final input to the span classifier,

• e(s) denotes the span representation obtained from the fusion of token embeddings within
the span, the width embedding, and the attentional contribution degree, and
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5.1 JNERE with Attention Weight Mechanism

• e[CLS] denotes the classifier token representing the overall sentence context.

Finally, the concatenated embedding xs is passed through an MLP and a Softmax layer for
classification. The result of this operation is then passed through the Rectified Linear Unit (ReLU)
activation function as follows:

ys′ := ReLU(W s
1 · x

s + bs
1), (5.4)

where:

• xs specifies the concatenated embedding as computed in Equation 5.3,

• this concatenated embedding is multiplied by a weight matrix W s
1 ∈ R

(2dl+nw+da)×m, and then
a bias term bs

1 ∈ R
(2dl+nw+da) is added to it,

• dl is the dimension of BERT’s last hidden layer,

• nw is the dimension of wk,

• da is the number of BERT’s attention heads,

• and m is the number of hidden layer units of the MLP.

Hence, this input is fed into a Softmax classifier:

ŷs := Softmax(W s
2 · y

s′ + bs
2), (5.5)

where:

• ŷs is the entity probability,

• ys′ is computed based on Equation 5.4, and multiplied by another weight matrix W s
2 ∈ R

m×c

originates from the output layer of the model. W s
2 is part of the trainable weight matrices,

• c is the number of entity classes (including none), and

• a bias term bs
2 ∈ R

m is added to it.

In summary, ASpERT employs an attentional mechanism to weigh the importance of different
tokens in the context of a candidate span. ASpERT addresses the limitations of SpERT by enhancing
boundary supervision and employing an attention mechanism to better capture contextual
information, resulting in slight performance gains on JNERE, ranging from 0.20 % to 1.39 % across
different datasets.
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5 Attention Weight Mechanism JNERE Using WeLT

5.1.2 Span Filtering

ASpERT adopts the same filtering scheme for the “none” class as SpERT (see Section 4.2.2), where
spans longer than ten tokens are pre-filtered. Additionally, based on the highest-scored class, the
output of the novel span classifier (as defined in Equation 5.5) estimates which class each span
belongs to. The spans assigned to the “none” class are filtered out, leaving behind a set of spans,
denoted as S , that are considered entities belonging to the set E of predefined categories.

5.1.3 Relation Classification

ASpERT’s relation classifier adopts the same approach as SpERT, with additional enhancements
incorporating attentional contributions and refined embeddings via Algorithms 5.1 and 5.2. In
summary, after filtering out “none” entities, the relation classifier processes each candidate pair (e.g.,
“Entity 1” and “Entity 2” in Figure 5.1).
The input to ASpERT’s relation classifier consists of two components:

1. Two entity candidates, fused with BERT’s width embeddings, leveraging attentional
contributions and refined embeddings using Equation 5.3. For example, these are represented
as e(s1) and e(s2).

2. The localised context between the two entity candidates, given the span ranging from the end
of “Entity 1” and the beginning of “Entity 2” as shown in the grey block named “Localized
Context” in Figure 5.1. If the both entities overlap, this context is empty.

Both input representations are concatenated and passed through a single-layer classifier, which
outputs scores indicating the likelihood of a relation between the two entities. Since relations can be
asymmetric, both (s1, s2) and (s2, s1) pairs are classified. As a result, two input representations, xr

1

and xr
2, are generated as follows:

xr
1 := e(s1) ◦ c(s1, s2) ◦ e(s2),

xr
2 := e(s2) ◦ c(s1, s2) ◦ e(s1)

Both xr
1 and xr

2 are passed through a single-layer classifier:

ŷr
1/2 := γ

(
Wr · xr

1/2 + br
)
, (5.6)

where:

• γ denotes the sigmoid function. A high response from the sigmoid layer indicates that a
relation holds between s1 and s2,
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5.1 JNERE with Attention Weight Mechanism

• Wr is the weight matrix for the relation classification layer, and

• br is the bias term.

Given a confidence threshold α, any relation with a score ≥ α is considered activated. Jian-
quan Ouyang (2022) set the same relation filtering threshold α as SpERT, which is 0.4. If no
relation is activated, the sentence is assumed to express no known relation between the two
entities. The input feature vectors for the relation classifier, xr

1/2, are constructed by concatenating
the representations of the asymmetric relations xr

1 and xr
2.

5.1.4 Negative Sampling Strategy

Despite ASpERT’s enhancements in boundary supervision through attention weights, which lead
to more precise span extraction, and better integration of span and contextual information via the
MLP for span classification, ASpERT still follows SpERT’s negative sampling strategy. Similar to
SpERT, negative sampling is performed on each sentence di in the training dataset td. The authors
set a fixed number of random negative samples from each sentence di, labelled as “none”. These
negative samples are combined with the positive ones in the dataset, which include candidate spans
and candidate entity pairs. The fixed values for ne (i.e., non-entity spans) and nr (i.e., negative relation
samples) are both set to 150.

5.1.5 ASpERT Loss Functions

ASpERT applies a supervised training strategy on sentences annotated with named entities and
relations. The joint loss function for entity and relation classification is defined as:

L := λLs +Lr, (5.7)

where:

• λ is the weight for the joint loss function,

• Ls is the loss of the span classifier ŷs (as specified in Equation 5.5) using the cross-entropy loss
function,

• andLr is the loss of the relation classifier ŷr
1/2 (as specified in Equation 5.6) using the binary

cross-entropy loss function. BothLs andLr are averaged over each batch’s samples.

Jianquan Ouyang (2022) mentioned using a weighted loss function but did not specify the value
of λ. However, upon reviewing the ASpERT’s public repository,2 we found that λ is set to
2ASpERT code: https://github.com/holire/AspERT, last accessed: 01.08.2024.

129

https://github.com/holire/AspERT


5 Attention Weight Mechanism JNERE Using WeLT

0.6. Interestingly, the weighted loss function was not used in the actual implementation as indicated
in their code.3 Therefore, we used the standard joint loss function for both the ASpERT’s span and
relation classifiers.

5.1.6 Impact of the Novel Span Classifier

Jianquan Ouyang (2022) conducted two ablation studies to assess the benefits of the attentional
contribution algorithm (ACD) and evaluate the performance of the proposed novel span
classifier. The key findings are as follows:

• Effects of ACD: the authors compared the full ASpERT model, which includes the ACD
algorithm, with a variant that excluded it. The results showed that the full ASpERT model has
a slight improvement compared to the variant without ACD. The ACD algorithm improved
relation classification accuracy by enhancing focus on word-to-word relationships, thereby
reducing the impact of noisy or irrelevant data on relation predictions. Specifically, ASpERT’s
F1 score increased by 0.48 % for entity classification and by 1.46 % for relation classification
with the inclusion of ACD.

• Impact of using the MLP for entity extraction: the authors evaluated two models: the full
ASpERT model and a variant where the MLP structure was replaced with a fully connected
layer. The results indicated that removing the MLP reduced the model’s ability to capture
span boundary information, leading to a slight decrease in the F1 score by approximately
0.74 %.

5.2 Cost-sensitive ASpERT using WeLT

Despite the improvements introduced in ASpERT, including enhanced feature embedding by
concatenating attention head information from each layer with the final hidden layer using the ACD
algorithm, as well as the integration of MLP and Softmax span classification, ASpERT still employs
the same negative sampling strategy discussed in Section 5.1.4.
While ASpERT has demonstrated improved performance over SpERT on benchmark datasets (as
detailed in Section 5.1.6), we argue that the inclusion of random non-entity spans and relations may
degrade overall performance.
Although these negative samples are integral to ASpERT’s training, as demonstrated in ablation
studies, they contribute to imbalanced data distributions. Specifically, there is an imbalance between
positive samples (i.e., predefined categories, which may themselves be imbalanced) and negative

3Weighted loss function of ASpERT: https://github.com/holire/AspERT/blob/main/aspert/loss.py#L33, last accessed:
01.08.2024.
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5.2 Cost-sensitive ASpERT using WeLT

samples (i.e., those introduced by ASpERT). To address this, we propose a cost-sensitive version
of ASpERT using WeLT’s loss function, referred to as “WeLT-ASpERT”, to balance the span and
relation classification tasks. Hence, WeLT-ASpERT modifies ASpERT to incorporate cost-sensitive
learning.

Figure 5.2: Overview of the WeLT-ASpERT model for JNERE. Image adopted from (Jianquan Ouyang,
2022).

In the following sections, we detail the differences in the span and relation classifiers, as well as the
changes made to the joint loss function.

5.2.1 WeLT Span Classifier

As shown in Figure 5.2, the input sentences are tokenized and processed through a fine-tuned
BERT model to obtain contextualized token embeddings. A span representation is generated for
each possible subsequence of tokens within the input sequence. This representation is formed
by concatenating the embeddings of the start and end tokens of the span, along with a learned
width embedding that encodes the length of the span. Rather than relying solely on the last hidden
layer, attention head information from each transformer layer is aggregated. The ACD algorithm is
applied to weigh the contributions of each layer. The final feature representation is a weighted sum
of these layers, incorporating the attentional contribution scores.
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5 Attention Weight Mechanism JNERE Using WeLT

Once the feature embedding is complete, the span classification proceeds through the following
steps:

1. Span Extraction: potential entity spans are extracted from the input text. Each span is
characterized by its start and end positions, which form the basis for subsequent classification.

2. MLP Structure: an MLP processes the span features. The MLP consists of several fully
connected layers with non-linear activation functions, enabling the learning of complex
patterns and interactions within the data.

3. Softmax Classification: the output layer of the MLP is a Softmax classifier that assigns
probability scores to each possible span label. This probabilistic approach allows the model
to handle multiple classes and provides a measure of confidence in its predictions.

4. Classification Output: the final output includes the predicted entity types, including the
“none” class, and their corresponding spans. This structured output is critical for accurate
entity and relation extraction in downstream tasks.

To train the span classifier, ASpERT uses a standard cross-entropy loss function. In contrast,
“ASpERT-NER” employs a weighted cross-entropy loss to mitigate class imbalance for span
classification:

Ls
ASpERT-NER := −

1

ns

ns∑
i=1

c∑
j=1

σ

1 − n j∑c
k=1 nk

 yi, j log ŷs
i, j (5.8)

where:

• ns: the number of spans,

• c: the number of entity classes (including “none”),

• n j: the number of instances belonging to class j,

• σ

1 − n j∑c
k=1 nk

: the re-scaled weight for class j using the WeLT approach withσ as a Softmax

function,

• yi, j: a binary indicator (0 or 1) if class label j is the correct classification for sample i, and

• ŷs
i : the predicted probability of span i belonging to class j, as calculated in Equation 5.5.

By incorporating class-specific weights, the WeLT span classifier becomes more sensitive to minority
classes, particularly in balancing the distribution of “none” entities. This improves detection and
classification performance for under-represented classes.
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5.2 Cost-sensitive ASpERT using WeLT

5.2.2 WeLT Relation Classifier

Once the entity spans are classified, they are paired to form potential relations. For each pair of
spans, a relation representation is constructed by concatenating their respective embeddings. This
concatenated representation is then fed into the WeLT relation classifier, where final relations are
determined based on rescaled weight scores.
In contrast to ASpERT, which uses a standard binary cross-entropy loss function for relation
classification, “ASpERT-RE” employs a weighted binary cross-entropy loss to address class
imbalance. The calculation of rescaled relation weights and the loss function of the WeLT relation
classifier are described below.
First, we compute the rescaled relation weights wr, defined as follows:

wr :=
r∑

j=1

nhead j + ntail j∑e
i=1 ni

·
nr∑r
j=1 n j

(5.9)

where:

• r: total number of relation classes,

• nhead j : number of instances where the entity appears as the head of the relation,

• ntail j : number of instances where the entity appears as the tail of the relation,

• ·: denotes multiplication,

•
∑e

i=1 ni: total number of entities,

• nr: number of instances of relation class r, and

•
∑r

j=1 n j: total number of relation instances.

The weight wr accounts for the frequency of entity pairs involved in the relations and the frequency
of the relation class itself. By combining the contributions from the head and tail entities with
the relative frequency of the relation class, we derive a comprehensive weight for each relation. We
normalize these weights wr using the Softmax functionσ to ensure a probabilistic interpretation:

σ(wr) :=
ewr∑r

k=1 ewk

In Section 4.3.3, we illustrated the calculation of rescaled relation weights using a dummy
example. We now present a binary cross-entropy loss function denoted byLr

ASpERT-RE using weight
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parameter to scale the overall loss for each sample, allowing for instance-specific adjustments based
on rescaled relation weights:

Lr
ASpERT-RE := −

1

ns

ns∑
i=1

σ(wr) ·
(
yi log(ŷr

i ) + (1 − yi) log(1 − ŷr
i )

)
(5.10)

where:

• ns: number of spans,

• σ(wr): normalized rescaled relation weights as calculated in Equation 5.9,

• yi: true label for the i-th sample (1 for positive relation, 0 for negative), and

• ŷr
i : predicted probability of the relation for the i-th sample, as calculated in Equation 5.6.

5.2.3 WeLT Joint Loss Functions

In the previous section, we introduced cost-sensitive WeLT span and relation classifiers. The aim is
to examine the effect of (1) balancing entity classes, (2 ) relation classes, and (3) both combined.
We propose three variations of the WeLT-ASpERT models with customised loss functions to
handle the class imbalance. These loss functions assign higher weights to minority classes, ensuring
better performance across underrepresented categories.

Below, we outline three joint loss functions, each consisting of two core components: one for entity
classification and one for relation extraction. Each variant employs its distinct joint loss function,
described as follows:

• Variant 1: also known as “ASpERT-NER” that utilises the WeLT span classifier from
Equation 5.8 and ASpERT’s relation classifier from Equation 5.6. This joint loss function
re-scales named entity classes while maintaining the standard loss function for relation
extraction (RE). Thus, the joint loss is formulated as:

LASpERT-NER := Ls
ASpERT-NER +L

r (5.11)

• Variant 2: also known as “ASpERT-RE” that combines ASpERT’s span classifier from
Equation 5.5 with the WeLT relation classifier using the weight parameter from Equa-
tion 5.10. Unlike Variant 1, this joint loss function re-scales relation classes only, using the
standard loss function for NER. The joint loss is defined as:

LASpERT-RE := Ls +Lr
ASpERT-RE (5.12)
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• Variant 3: also known as “ASpERT-NERE” that incorporates both the WeLT span classifier
from Equation 5.8 and the WeLT relation classifier from Equation 5.10, re-scaling both entity
and relation classes. The joint loss function is formulated as:

LASpERT-NERE := Ls
ASpERT-NER +L

r
ASpERT-RE (5.13)

In summary, the primary distinction between ASpERT and WeLT-ASpERT models lies in their
approach to handling class imbalance. WeLT-ASpERT introduces a weighted loss mechanism that
adjusts for class frequencies, including non-entities and relations, aiming to enhance the detection
and classification of minority classes compared to the original ASpERT model. Additionally, this
approach differs from the earlier work in Chapter 4, as WeLT joint loss functions are applied to
ASpERT, which benefits from improved span boundary handling via the ACD algorithm and MLP-
Softmax span classification.

5.3 Evaluating WeLT-ASpERT

In this section, we follow the experimental setup outlined in Section 4.4, with a few exceptions
discussed below. We fine-tuned the WeLT-ASpERT models to investigate the impact of addressing
class imbalance using the three different WeLT joint loss functions presented in Section 5.2.3, and
compared them against the SpERT and ASpERT models.
The evaluation was conducted on two publicly available datasets: ADE and CoNLL04, as
introduced in Section 2.2.3. The statistical class distributions of entities and relations for the ADE
and CoNLL04 datasets are presented in Table 2.4 and Table 2.5, respectively.
For hyperparameters, we used settings reported in the Appendix (see Table 11), following ASpERT’s
experimental setup to ensure a fair comparison. As previously mentioned, this work differs from the
earlier WeLT-SpERT models in Chapter 4. Below, we outline the key distinctions in model training
between ASpERT and the previous SpERT approach:

• The authors of ASpERT used different values for ne and nr, setting both to 150, while in the
SpERT model these values were set to 100. Jianquan Ouyang (2022) employed fixed non-
entity spans and non-relations as negative samples in the ADE and CoNLL04 datasets.

• Unlike SpERT, which was trained using both the training and development datasets,
ASpERT was trained only on the training dataset. Consequently,

– Figures 5.3 and 5.5 illustrate the class distributions and non-entity spans added by
ASpERT for ADE and CoNLL04, respectively.
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– Similarly, SpERT’s negative sampling strategy introduces additional non-relations, as
depicted in Figures 5.4 and 5.6 for the ADE and CoNLL04 datasets. Figure 5.4 shows
the frequency of the sole relation type and the added “none” relations.

Figure 5.3: Frequency of entities in ADE’s training dataset. The “Adverse-drug event” and “Drug” are
predefined entity types, while “None” refers to non-entities added by ASpERT.

• In the ASpERT model, the authors increased the batch size, varying it from four to
ten. However, due to computational constraints, we retained SpERT’s original batch size,
setting it to two.

• The ASpERT model introduced configurations for the span classifier’s MLP size, MLP
dropout, and contribution threshold, which were not applied in the SpERT architecture.

• The ASpERT model was fine-tuned using BioBERT for ADE, whereas SpERT was
fine-tuned using BERT.

Figure 5.5 presents the distribution of four predefined entity types along with “none” entities for
the CoNLL04 dataset.
Figure 5.6 shows the frequencies of the five pre-defined relations and “none” relations added by
ASpERT.
Based on the calculation of relation weights wr in Equation 5.9, we are interested to know the
entity arguments of each relation. For instance, Figure 5.7 illustrates the occurrences of each relation
argument type such as “Live_in” relationship with 330 instance that has people and location as
entity arguments.
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Figure 5.4: Frequency of relations in the ADE training dataset. “Adverse-drug” represents the predefined
relation type for adverse drug events, while “None” refers to non-relations added by ASpERT.

Figure 5.5: Frequency of entities in CoNLL04’s training dataset. “Location”, “Organization”, “People”, and
“Other” are predefined entity types, while “None” refers to non-entities added by ASpERT.
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Figure 5.6: Frequency of relations in CoNLL04’s training dataset. “Kill”, “Live_in”, “Located_In”, “Org-
Based_In”, and “Work_for” are predefined relation types, while “None” refers to non-relations
added by ASpERT.

Figure 5.7: Occurrences of each relation and its corresponding entity arguments in CoNLL04.
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Due to differences in hyperparameters, Jianquan Ouyang (2022) trained SpERT from scratch
and reported different results compared to those in the original SpERT paper (Eberts and Ulges,
2020). We evaluate our WeLT-ASpERT models against both SpERT and ASpERT models.
Since ASpERT employed the same evaluation strategy as SpERT, we adopt this approach to evaluate
the WeLT-ASpERT variants:

• An entity prediction is considered correct only if the predicted span and type exactly match
the ground truth. For example, if the ground truth contains the entity (London, Location)

with the span [0, 6], and the model predicts (London, Organization) or (London, Location)

but with a span [1, 7], the prediction is considered incorrect. Only the prediction (London,

Location) with span [0, 6] is valid.

• A relation prediction is correct if it has the correct type and both associated entities are
correctly identified. For example, if the ground truth relation is ((London, Location),

Located_In, (UK, Location)), the model must predict the correct relation type Located_In

and correctly identify both entities (London, Location) and (UK, Location) with their exact
spans and types. If one of the entities is incorrectly identified or has a span/type mismatch,
the predicted relation is incorrect.

We report macro-averaged precision, recall, and F1 scores for both the ADE and CoNLL04
datasets, as described in Section 2.2.4. For ADE, the F1 score is averaged over 10-fold cross-
validation. Additionally, we report micro-averaged precision, recall, and F1 scores for the CoNLL04
dataset, as stated in Section 2.2.2.

5.3.1 Evaluation Results

Entity Relation
Dataset Model Precision Recall F1 Precision Recall F1

CoNLL04

SpERT (Eberts and Ulges, 2020) 84.75 85.86 85.26 72.11 69.24 70.41
ASpERT (Jianquan Ouyang, 2022) 86.57 85.49 85.97 74.92 69.01 71.66
ASpERT-NER 84.18 86.93 85.46 71.31 74.96 72.72
ASpERT-NERE 83.94 84.03 83.92 68.19 71.61 69.66
ASpERT-RE 85.15 81.89 83.32 70.89 68.94 69.53

ADE

SpERT (Eberts and Ulges, 2020) 90.10 91.74 90.91 79.70 83.29 81.84
ASpERT (Jianquan Ouyang, 2022) 90.96 91.87 91.41 81.65 83.92 82.76
ASpERT-NER 90.38 91.85 91.11 77.22 83.14 80.34
ASpERT-NERE 90.38 91.85 91.11 77.72 83.14 80.34
ASpERT-RE 91.55 92.12 91.83 80.95 84.01 82.45

Table 5.1: Macro-average F1-scores comparison between SpERT and ASpERT with the proposed WeLT-
ASpERT(⋆) models on the CoNLL04 and ADE datasets. The best scores are shown in bold, and
the second-best ones are underlined.
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We report the average results over five runs for each dataset. Table 5.1 presents the macro-average
scores for CoNLL04 and ADE datasets. We highlight special patterns related to macro-averaged
results as follows:

• Performance on CoNLL04:

– For NER, the model ASpERT-NER achieves the highest recall (86.93 %), while
ASpERT provides the best precision (86.57 %). The highest overall F1-score is achieved
by ASpERT (85.97 %), with ASpERT-NER close behind (85.46 %). This indicates a
potential trade-off between precision and recall in entity extraction.

– For RE, ASpERT-NER achieves the best recall (74.96 %), but its F1-score is (72.72 %)
only marginally higher than ASpERT (71.66 %). Here, ASpERT-RE shows the lowest
performance.

• Performance on ADE:

– For NER, ASpERT-RE marginally outperforms both baselines and other WeLT
variants, achieving the highest F1-score (91.83 %), as well as the best precision and recall.

– For RE, ASpERT performs slightly better than ASpERT-RE in terms of F1-score
(82.76 % vs. 82.45 %).

• Key Observations:

– ASpERT-NER performs well in tasks requiring high recall, particularly in the
CoNLL04 dataset, while ASpERT achieves better precision.

– ASpERT-RE demonstrates modest performance in both entity and relation extraction
tasks in the ADE dataset, excelling in F1-scores and precision.

– ASpERT-NERE generally underperforms relative to the other variants, suggesting that
balancing both entities and relations may not provide significant advantages in this
context.

In summary, the results show that the proposed models (ASpERT-NER and ASpERT-RE) achieve
slightly competitive or modest performance compared to the baseline models in both datasets.
In Table 5.2, we present the micro-average scores for both datasets. We observe distinctive patterns
in the micro-averaged results, which are outlined as follows:

• Performance on CoNLL04:

– For NER, ASpERT-NER achieves the best recall (90.08 %), while ASpERT has the
highest precision (89.03 %) and the best F1-score (88.77 %). ASpERT-NER closely falls
behind with F1-score of (88.36 %), showing that it performs well in terms of recall but
slightly lower in precision compared to ASpERT.
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Entity Relation
Dataset Model Precision Recall F1 Precision Recall F1

CoNLL04

SpERT (Eberts and Ulges, 2020) 87.64 89.03 88.32 70.72 67.58 69.11
ASpERT (Jianquan Ouyang, 2022) 89.03 88.53 88.77 73.62 67.39 70.36
ASpERT-NER 86.71 90.08 88.36 69.13 73.22 71.12
ASpERT-NERE 86.87 88.13 87.49 67.24 68.80 68.01
ASpERT-RE 87.83 86.45 87.13 70.06 66.18 68.07

ADE

SpERT (Eberts and Ulges, 2020) 89.83 91.40 90.60 79.70 83.29 81.45
ASpERT (Jianquan Ouyang, 2022) 90.68 91.56 91.12 81.65 83.92 82.76
ASpERT-NER 90.00 91.57 90.78 77.72 83.14 80.34
ASpERT-NERE 90.00 91.57 90.78 77.72 83.14 80.34
ASpERT-RE 91.34 91.84 91.59 80.95 84.01 82.45

Table 5.2: Micro-average F1-scores comparison between SpERT and ASpERT with the proposed WeLT-
ASpERT(⋆) models on the CoNLL04 and ADE datasets. The best scores are shown in bold, and
the second-best ones are underlined.

– For RE, ASpERT-NER demonstrates the best recall (73.22 %) and F1-score (71.12 %),
marginally outperforming both ASpERT (70.36 %) and SpERT (69.11 %). This
indicates an advantage of the proposed model in the relation extraction task for this
dataset.

• Performance on ADE:

– For NER, ASpERT-RE outperforms all models with the highest precision (91.34 %),
recall (91.84 %), and F1-score (91.59 %). This shows the modest performance of the
proposed model in this dataset.

– For RE, ASpERT achieves the best F1-score (82.76 %), closely followed by ASpERT-
RE (82.45 %). However, ASpERT-RE has a slightly lower recall (80.95 %) compared to
ASpERT, but it slightly excels in precision (84.01 %).

• Key Observations:

– ASpERT-NER performs relatively well in recall for entity extraction on CoNLL04 and
has the best F1-score for relations.

– ASpERT-RE excels in entity extraction for the ADE dataset, achieving the highest scores
in all metrics. It also shows competitive performance in relation extraction.

– ASpERT maintains strong precision for both datasets, particularly in relation
extraction, where it achieves the best F1-scores for the ADE dataset.

– ASpERT-NERE generally performs slightly below the other variations, suggesting that
combining NER and RE tasks does not provide a significant improvement in micro-
averaged performance.
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The proposed models (ASpERT-NER and ASpERT-RE) exhibit slightly competitive or superior
performance compared to the baseline models in both datasets. The results suggest that JNERE
benefit from WeLT-ASpERT variant models showing particular strengths in precision and
F1-scores, depending on the task and dataset.

In summary, the WeLT-ASpERT variants demonstrate marginal improvements and comparable
performance to the baseline models across both datasets. Specifically, enhancements are more
pronounced in the ADE dataset, where the ASpERT-RE model shows slight advantages in both
entity recognition and relation extraction tasks. These results suggest that incorporating WeLT
loss functions is less effective in ASpERT models compared to SpERT models. We believe this is
attributable to the positive impact of the novel span classifier in ASpERT.

5.3.2 Error Analysis

We highlight descriptions of incorrect predictions from the ASpERT-NER to delineate future
directions for improvements in Table 5.3. We were interested to use the exact sampled 100 error
instances to compare the errors generated by ASpERT-NER with SpERT-NERE as previously
highlighted in Table 4.3. We categorised generated errors into multiple predefined error categories
as follows:

• Entity recognition errors occur when our model fails to correctly identify named entities,
leading to false positives (i.e., misclassification of a non-entity as an entity) or false negatives
(i.e., failure to identify a valid entity).

• Relation extraction errors occur when our model incorrectly predicts a relationship
between identified entities, including false positives (i.e., misclassification of a non-relation
as a relation) or false negatives (i.e., missing a valid relationship).

• Joint training errors stem from the interaction between both tasks (entity recognition and
relation extraction), where errors may propagate. Typically, a misclassified entity or span error
can lead to incorrect relation predictions.

The following examples illustrate the error cases and highlight the common errors and differences
between ASpERT-NER and SpERT-NERE:

• NER misclassification: In this example, the model failed to classify the entity “Organization
of the Oppressed on Earth” as an organization. Instead, “Earth” was falsely recognised as a
location entity, leading to the omission of a “Live_In” relation. In contrast, SpERT-NERE
correctly classified the relation but misclassified the entity “Organization of the Oppressed on
Earth”.
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(a) NER misclassification + missing relations
Sentence Text of the statement issued by the [Organization of the Oppressed on Earth]ORG

claiming [U.S.]LOC Marine Lt.[William R. Higgins]PEOP was hanged.
Ground-Truth [Organization of the Oppressed on Earth]ORG ([William R. Higgins]PEOP,Live_In,[U.

S.]LOC)
Prediction [Earth]LOC [U. S.]LOC [William R. Higgins]PEOP

(b) Missing entities and relations
Sentence The “poison pill,” ruled illegal in November by [U. S.]LOC District [G. Ernest

Tidwell]PEOP, would become effective after a shareholder had acquired 10 percent of the
outstanding stock.

Ground-Truth ([G. Ernest Tidwell]PEOP,Live_In,[U. S.]LOC)
Prediction ([ ])

(c) Incorrect relations
Sentence [Port Arthur]LOC Mayor [Malcolm Grant]PEOP asked the 800 residents of [Sabine

Pass]LOC to evacuate the coastal community just west of the [Louisiana] LOC line, citing
the likelihood of high water closing the only highway between the town and [Port
Arthur]LOC .

Ground-Truth ([Malcolm Grant]PEOP,Live_In,[Port Arthur]LOC) ([Malcolm Grant]PEOP,Live_In,[Port
Arthur]LOC)

Prediction ([Malcolm Grant]PEOP,Live_In,[Port Arthur]LOC) ([Malcolm
Grant]PEOP,Live_In,[Sabine Pass]LOC) ([Sabine Pass]LOC ,Located_In,[Port Arthur]LOC)

(d) Missing relations
Sentence [Judith C. Toth]PEOP says she returned for a fourth term in [Maryland]LOC ’s [House of

Delegates]ORG because she couldn’t find a better job.
Ground-Truth [Judith C. Toth]PEOP ([House of Delegates]ORG,OrgBased_In,[Maryland]LOC)
Prediction [Judith C. Toth]PEOP ([ ])

(e) Logical error
Sentence [Soviet]LOC Foreign [Eduard A. Shevardnadze]PEOP is to visit [China]LOC next month to

pave the way for the first Chinese - Soviet summit in 30 years, Chinese television reported
Monday.

Ground-Truth ([Eduard A. Shevardnadze]PEOP,Live_In,[Soviet]LOC)
Prediction ([Eduard A. Shevardnadze]PEOP,Live_In,[Soviet]LOC) ([Eduard A.

Shevardnadze]PEOP,Live_In,[China]LOC)
(f) Propagated error

Sentence An art exhibit at the [Hakawati Theatre]ORG in Arab east [Jerusalem]LOC was a series of
portraits of Palestinians killed in the rebellion.

Ground-Truth ([Hakawati Theatre]ORG,OrgBased_In,[Jerusalem]LOC)
Prediction ([Hakawati Theatre]LOC ,Located_In,[Jerusalem]LOC)

Correct predictions
Sentence “He is the same easy-going, soft-spoken, self-effacing man we knew as governor of [New

Hampshire]LOC”, said [Virginia]LOC Gov. [Gerald Baliles]PEOP, a Democrat.
Ground-Truth ([Gerald Baliles]PEOP,Live_In,[Virginia]LOC) [New Hampshire]LOC

Prediction ([Gerald Baliles]PEOP,Live_In,[Virginia]LOC) [New Hampshire]LOC

Table 5.3: Common error cases of the ASpERT-NER on the CoNLL04’s test set. The red colour expresses
error cases and blue colour illustrates the ASpERT-NER improvements over the SpERT-NERE.
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• Missing entities and relations: The model entirely failed to recognise the entities and relations
in error (b). However, SpERT-NERE also encountered issues with incorrect named entity
spans.

• Incorrect relation extraction: The model incorrectly predicted a “Live_In” relation between
“Malcolm Grant” and “Sabine Pass”. Additionally, it misidentified a “Located_In” relation
between “Sabine Pass” and “Port Arthur”, while missing a “Live_In” relation between
“Malcolm Grant” and “Port Arthur” at position 38 in the sentence.

• Missing relations: The model missed the “OrgBased_In” relation between “House of
Delegates” and “Maryland”. However, it correctly identified “Judith C. Toth”, unlike
SpERT-NERE.

• Logical error: This common error occurred in both models, which incorrectly assigned
a “Live_In” relation between “Eduard A. Shevardnadze” and “China”, when the correct
relation is with “Soviet”.

• Propagated error: This common error involves both models misclassifying “Hakawati
Theatre” as a location rather than an organization, leading to incorrect relation predictions.

It is noteworthy that no incorrect named entity spans were observed. However, there were additional
missing entities and relations. For instance, error (e) in Table 4.3 was correctly predicted by ASpERT-
NER, as shown in the last rows of Table 5.3.

5.4 Summary and Discussion

The WeLT-ASpERT models are the cost-sensitive versions of the ASpERT model. We compare the
performance of WeLT-ASpERT and ASpERT, focusing on precision, recall, and F1 scores across the
CoNLL04 and ADE datasets.
Key patterns observed in the experimental macro-averaged results include:

CoNLL04 Dataset

– For NER, ASpERT achieves the highest precision (86.57 %), outperforming all
other models. ASpERT-NER excels in recall (86.93 %), slightly surpassing ASpERT
(85.49 %). ASpERT maintains the highest F1 score (85.97 %), closely followed by
ASpERT-NER (85.46 %).

– For RE, ASpERT-NER leads in recall (74.96 %), significantly outperforming ASpERT
(69.01 %). The best F1 score is achieved by ASpERT-NER (72.72 %), marginally edging
out ASpERT (71.66 %).
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ADE Dataset:

– For NER, ASpERT-RE achieves the highest precision (91.55 %), slightly outperforming
ASpERT (90.96 %). Both also lead in recall (92.12 %), slightly ahead of ASpERT
(91.87 %), and achieve the best F1 score (91.83 %), marginally surpassing ASpERT
(91.41 %) and SpERT (90.91 %).

– For RE, ASpERT achieves the highest precision (81.65 %), closely followed by ASpERT-
RE (80.95 %). ASpERT-RE leads in recall (84.01 %), marginally surpassing ASpERT
(83.92 %). ASpERT maintains the highest F1 score (82.76 %), with ASpERT-RE close
behind (82.45 %).

Overall, the WeLT-ASpERT models show modest competitive performance with the same training
costs as the original ASpERT model, particularly on the ADE dataset, where they consistently
marginally outperform ASpERT and SpERT. In RE, ASpERT-RE achieves small gains in precision,
but these come with a slight reduction in recall, impacting the overall F1 score. On the ADE dataset,
WeLT-ASpERT models perform similarly to ASpERT, with minimal differences in F1 scores.
In summary, the WeLT-ASpERT models, particularly ASpERT-NER and ASpERT-RE, exhibit
modest competitive and sometimes superior performance compared to the baselines. Slight
improvements by WeLT-ASpERT variants are most noticeable in the ADE dataset, while ASpERT
remains the best choice for NER in CoNLL04.

Study Limitations

Throughout Chapters 4 and 5, we were constrained to examining WeLT’s span-based approach
on English JNERE datasets. Nevertheless, we assert that the proposed approach can be seamlessly
adapted to other languages. The study was limited to using BERTBASE and BioBERT as encoders. To
balance the relation classifier, the evaluation was restricted to datasets containing relations with
specific pairs of entity types. Future research will extend the assessment to more complex datasets,
such as SciERC, which include relations among multiple possible pairs of entity types.
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Chapters 3 to 5 show WeLT’s advantages on addressing the class imbalance problem in the
grossly skewed general-domain and biomedical real-world applications. The results show the
modest improvements of WeLT, as weighted loss trainer with cost-sensitive fine-tuning on various
downstream tasks: single-label BioNER, impact of recognised named entities by the WeLT-based
model on BioNEL, and nested and overlapping NER. We only focused on span-based JNERE
models including SpERT and ASpERT. Hence, in this chapter, we investigate the performance of
WeLT on a table-filling JNERE approach utilizing the BILOU tagging scheme that inherits the class
imbalance problem.
As mentioned in Section 2.1.3, some of the JNERE approaches are cast as a table-filling
approach. Typically, a two-dimensional table is constructed where each entry captures the relation
between two individual words within a sentence.
As shown in Figure 6.1, NER is regarded as a sequence labelling problem. Thus, a label is assigned
to a word based on its relative position to the corresponding named entity and type.

Figure 6.1: A basic example of table-filling strategy as proposed by Miwa and Sasaki (2014). This image is taken
from (Ma et al., 2020).⊥ denotes a non-relation label.

Miwa and Sasaki (2014) proposed one of the earliest table-filling approaches that modelled JNERE
using a table representation. A key trade-off of this approach is that it does not tackle the issue
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of nested or overlapping entities. Furthermore, these methods do not adopt the strong negative
sampling techniques discussed in Chapters 4 and 5.
Recently, Ma et al. (2022) presented a refined table-filling approach referred to as TablERT-
CNN. Such table-filling approaches annotate entity labels using the BILOU tagging scheme, along
with directed relation labels. As a result, these tagging schemes inherit the class imbalance problem,
with “O” tags constituting one of the majority classes. Thus, fine-tuning TablERT-CNN naively on
training data without considering class distributions results in a biased model.
To address the class imbalance issue, a modified joint training loss using WeLT is proposed to
mitigate the class imbalance problem in table-filling approaches. One of the latest promising
methods is TablERT-CNN (Ma et al., 2022), which introduces a novel approach to JNERE by
stacking CNNs on BERT. Therefore, WeLT-TablERT-CNN is proposed to specifically tackle the
class imbalance problem in training datasets. Experimental results on the CoNLL04, ADE, and
SciERC datasets demonstrate that the proposed model marginally outperforms the table-filling
baselines.

In summary, our contributions in this chapter are as follows:

• We present cost-sensitive named entity and relation classification approaches to balance the
data distribution gap between majority and minority classes in TablERT-CNN. Thus, we
propose a novel joint loss function using WeLT.

• We investigate several WeLT loss functions on the overall performance:

– Applying only cost-sensitive NER classification, named “TablERT-CNN-NER”.

– Applying only cost-sensitive RE classification using weight parameter in the cross-
entropy loss function, referred to as “TablERT-CNN-RE”.

– Combining both cost-sensitive NER and RE classification termed “TablERT-CNN-
NERE”.

• Extensive experiments where conducted to evaluate WeLT-TablERT-CNN variants on
CoNLL04, ADE and SCiERC datasets. The results show the marginal outperformance of
the WeLT-TablERT-CNN variants over TablERT-CNN for JNERE tasks.

• We release the code1 and share hyperparameters to reproduce our research results.

Structure. Section 6.1 provides an overview of related work on JNERE models, with a primary
focus on table-filling approaches. Subsequently, in Section 6.2, we discuss the TablERT-CNN
model in detail and delineate the main trade-offs of this approach, identifying the research

1WeLT-TablERT-CNN code: https://github.com/mobashgr/WeLT-TablERT-CNN, last accessed: 01.08.2024.
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gaps. Building upon this background, we then justify the need for cost-sensitive TablERT-CNN
using WeLT in Section 6.3. In Section 6.4, we highlight the experimental settings and present our
results. Finally, a chapter’s summary and discussion are presented in Section 6.5.

6.1 Related Work

Earlier studies have designed sophisticated features to encode contexts and long-range dependencies
between named entities and relations. For instance, Miwa and Sasaki (2014) applied hand-crafted
syntactic features such as the shortest path between two words in a syntactic tree. Miwa and Sasaki
proposed a table-filling approach on which the entry at row i and column j of the table corresponds
to the pair of i-th and j-th word of the input sentence, as illustrated in Figure 6.1.
Zhang et al. (2017) extracted syntactic information using pre-trained syntactic parser en-
coder. Gupta et al. (2016) proposed an enhanced table-filling approach by adapting recurrent
neural networks to fill table’s cells in a pre-defined sequential order. Miwa and Bansal (2016)
proposed a bidirectional tree-structured and sequential LSTM-RNNs to represent entities and
relations. Several studies explored the deep contextualized word representations to address the
sequential labelling problem. Straková et al. (2019) proposed two neural network architectures for
nested named entities. Their work shows that contextualized representations improve the accuracy
of information extraction.
Liu et al. (2019a) designed an enhanced deep transition architecture utilizing the global
context. Their results demonstrate improvements on entity extraction and chunking tasks due
to contextualized word embeddings. Tran and Kavuluru (2019) proposed novel CNNs utilizing
the table-filling approach. Recently, efforts have been made to incorporate BERT into table-
filling framework. Wang and Lu (2020) designed two separate encoders for named entities and
relations. They leveraged the attention weights from BERT’s relation encoder to capture word-word
interactions. Ren et al. (2021) proposed a global feature-oriented triple extraction model using a
transformer-based approach to capture global information through iterative processes.
Later in Chapter 7, we review various LLMs for NER and RE and compare their performance
against the proposed WeLT-based models, as discussed in Chapters 4 to 6.

Table-filling by Contextualized Representations

TablERT is an enhanced table-filling approach that utilizes BERT’s contextualized representations
initialized with pre-trained weights (Ma et al., 2020). TablERT represents entity mentions and
encodes long-range dependencies among entities to simplify feature engineering via BERT’s
pre-trained weights. The authors utilized a tensor dot product to fill in the relation labels cells in
the table simultaneously, unlike former table-filling approaches (Miwa and Sasaki, 2014).
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TablERT is formally defined as an n × n upper triangular matrix Y , as shown in Figure 6.2. The
diagonal element Yi,i represents the named entity label for the word wi, which is part of the
predefined set of named entities E, following the BILOU scheme (see Section 2.2.3), as illustrated
in Figure 2.8. Thus, Yi,i ∈ E for 1 ≤ i ≤ n.

Figure 6.2: An example of TablERT table-filling strategy taken from (Ma et al., 2020). ⊥ denotes a
non-relation label.

An off-diagonal element Yi, j ∈ R (1 ≤ i < j ≤ n) specifies a directed relation label between words
wi and w j. TablERT utilizes the upper triangular part of the table to represent the directed relation
labels R. Thus, TablERT maps a sequence of words [w1,w2, ...,wn] to the upper triangular matrix
Y .

Example 6.1. (TablERT Demonstration)
Given the following sentence, “Johanson Smith lives in London” as depicted in Figure 6.2. The named
entity labels are added in the diagonal tabular cells. Thus, the named entities are denoted as Yi,i and
defined as: “Johanson” in Y1,1 is labelled as (B-PER), “Smith” in Y2,2 is labelled as (L-PER), and
“London” in Y5,5 is labelled as (U-LOC). The other words that do not correspond to pre-defined entity
types are labelled as (O).
Each word within an entity span is annotated with a corresponding relation label added in the off-
diagonal tabular cells in Yi, j. Consequently, “Johanson Smith” is labelled as a (Person) and there exists
a relation −−−−−→LiveIn added to both “Johanson” in Y1,5 and “Smith” in Y2,5. ⊥ indicates a non-relation
label.
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Ma et al. (2022) designed separate prediction models for NER and RE. The authors sequentially
assign a label to each word via features at the current and previous time-steps. Concerning RE,
they concatenate word embeddings with their corresponding entity label embeddings as relation
embeddings. Hence, the relation scores of each word pair are computed based on a matrix
multiplication of the linearly transformed relation embeddings. In addition, Ma et al. (2022)
adopted hyper-parameter tuned weight losses to balance the NER and RE training. The authors
modified the joint loss functions by adding two hyperparameters λ(ent) and λ(rel) for entity and
relation losses, respectively. The authors trained TablERT with various λ(ent) and λ(ent) from 0.1 to
0.9 so that their sum is equal to 1. The F1 scores of predicted results on the CoNLL04 test data
show that adjusting weights did not have a significant impact on the overall performance. However,
they observed that increasing λ(ent) leads to improved NER F1 score and the same applies with high
λ(rel) for the highest strict RE F1 score. In general, Ma et al. (2022) observed that downscaling λ(rel)

worsened the results, and the authors suggested that this is due to complexity of the RE task over
NER. Thus, they recommended that λ(rel) should be greater than λ(ent) during training.

TablERT results reveal a promising performance. However, it also introduces some limitations:

• TablERT employs two separate prediction models for NER and RE, which limits its ability
to capture the full range of interactions between entities and relations across the table cells.

• TablERT predicts relation labels for pairs of entities independently, without accounting
for potential dependencies or relationships between labels assigned to adjacent or nearby
table cells. While it processes all relations in parallel (predicting them simultaneously), this
approach overlooks possible correlations between neighbouring entity pairs, which could
capture useful dependencies.

To this end, Ma et al. (2022) proposed an extension of TablERT that incorporates local
dependencies along with the contextualized representations of BERT, referred as “TablERT-
CNN”. The following section discusses the adoption of two-dimensional convolutional neural
networks (2D-CNNs) to the output of BERT.

6.2 Table Labelling Using CNNs

TablERT-CNN considers each table as a two-dimensional image (2D image), and each cell as a pixel,
transforming the JNERE task into a table-labelling problem at the cell level. By applying 2D-CNNs
to the output of BERT, TablERT-CNN is able to implicitly perceive local information and label
dependencies from neighbouring cells. Figure 6.3 depicts an overview of TablERT-CNN under the
setting in which the prediction model contains only a single CNN layer.
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Figure 6.3: An example of the TablERT-CNN with a single CNN layer table-filling strategy taken from (Ma
et al., 2022). The right side represents the table-filling representation. The entire table illustrates
the features and the upper triangular part to represent the labels.

Similar to TablERT’s approach, TablERT-CNN uses the upper triangular part of the table to
represent both entity and relation labels. In the following sections, we present the TablERT’s
approach based on: table representation, word embeddings, prediction model, and joint loss
function.

6.2.1 Table Representation

Ma et al. (2020) defined a matrix Y∈Rnw×nw where nw is the number of words in the sentence. Using
the upper triangular part to represent the label space of NER and RE, a diagonal entry Yi,i indicates
the entity label of word wi and off-diagonal entry Yi, j ( j > i) represents the relation label of word
pair (wi,w j). The NER labels are annotated using the BILOU tagging scheme (see Section 2.2.3),
and each relation with a directed hard-encoded relation label.

6.2.2 Word Embeddings

TablERT-CNN obtains word embeddings from BERT’s contextualised representations. The
embedding ei for a word wi, which is split into subwords [start(i), . . . , end(i)] and computed via
Equation 6.1. The word embedding process is typically employed when subword tokenisation is
applied (e.g., WordPiece tokenisation in the case of BERT).

ei := max(xl
start(i), . . . , x

l
end(i)) (6.1)

where:

• xl ∈ Rdemb is the output of the BERT model,
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• l is the layer index,

• demb is the dimension size, and

• max is the max-pooling function.

6.2.3 Prediction Model

TablERT-CNN adopts a 2D-CNN, capturing the local dependencies among neighbouring
cells. The 2D table is treated as an image and each table cell is considered to be a pixel. The 2D-CNN
encodes the representation of each cell, as depicted in Figure 6.3. For each word pair (wi,w j), word
embeddings ei, e j are concatenated, and the bottom layer H(0) ∈ Rnw×nw×2demb is constructed as
defined in Equation 6.2.

H(0)
i, j := [ei ◦ e j] (6.2)

where:

• ◦ denotes the concatenation of two vectors, and

• the dimension of the vector representation for each cell in layer l as dl.

The output of the first 2D-CNN layer H(1) is computed based on the output of the bottom layer
H(0).
For the NER task, TablERT-CNN linearly transforms the representations of the diagonal cells at
the last layer L to compute the entity label distribution of each word (wi):

Pθ(Ŷi,i) := softmax(W · H(L)
i,i + b) (6.3)

where P is the estimated probability function, θ denotes the model parameters, W ∈ R|E|×|R| denotes
the trainable weight matrix and b ∈ R|E| represents the bias vector.
Concerning the RE task, the last layer of the 2D-CNN is employed as a convolutional
classifier. Hence, for each word pair (wi,w j) where i , j, the relation label Pθ(Ŷi, j) is computed
using Equation 6.4:

Pθ(Ŷi, j) := softmax(H(L)
i, j ) (6.4)

where L is the last layer, thus the output dimension is identical to the relation labels dL := |R|.

6.2.4 Training and Prediction

The training objective function is defined as the sum of cross-entropy losses for NER as defined in
Equation 6.5 and RE in Equation 6.6. The main objective is to minimize the total loss to update the
model parameters θ.
Given the ground-truth label matrix Y ∈ Rnw×nw , the losses are computed as:
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• For the entity label prediction of each word wi, TablERT-CNN selects the highest probability
from Pθ(Ŷi,i). Otherwise, the entity type label for the last word is selected as a final prediction
in case of a conflict.

LNER := −
∑

1≤i≤nw

log Pθ(Ŷi,i = Yi,i) (6.5)

• Regarding the prediction of the relation label for each entity pair (si, s j), the last words of
both entity spans si and s j are selected. For instance, if the last words of the entity spans si

and s j are indexed as end(i) and end( j), respectively, the predicted relation label for the entity
pair (si, s j) is determined by the label with the highest probability from Pθ(Ŷend(i),end( j)).

LRE := −
∑

1≤i≤nw
i< j≤nw

log Pθ(Ŷi, j = Yi, j) (6.6)

Thus, the total loss for the JNERE task in TablERT-CNN is defined as:

LTablERT-CNN := LNER +LRE (6.7)

6.3 Cost-sensitive TablERT-CNN Using WeLT

TablERT-CNN is a JNERE approach that stacks CNNs on BERT. The table representations
model the entities and relations, casting the entity and relation extraction as a table-labelling
problem. TablERT-CNN does not utilize the strong negative sampling as in previous models such
as SpERT (Eberts and Ulges, 2020) and ASpERT (Jianquan Ouyang, 2022).
However, as shown in Figure 6.3, the table is filled with BILOU entity labels in the diagonal cells and
relation directed labels (i.e., right and left). As previously mentioned, the BILOU tagging scheme
exhibits inherent imbalance issues:

• The (O) tag appear far more frequently than others. Most words in a text are not part of
named entities, leading to a high prevalence of the (O) tag.

• The (B), (I), (L), and (U) tags are much less frequent because they only apply to words that
are part of named entities. Moreover, within named entities, the distribution of these tags can
vary. For instance, the unit label (U), which denotes single-token entities, may appear more
frequently in texts with a higher occurrence of such entities, while labels like (I) and (L) are
more common in texts with longer, multi-token entities.

Figures 6.4, 6.5, and 6.6 depict the BILOU entity label values of CoNLL04’s, ADE’s and SciERC’s,
respectively. There are common patterns in these three figures: (O) tags are the majority class, and

154



6.3 Cost-sensitive TablERT-CNN Using WeLT

(U) tags are one of the minority classes with an exception of “U-Loc” in CoNLL04’s dataset, “U-
drug” in ADE’s dataset and “U-generic” in SciERC’s dataset.

Figure 6.4: Frequency of entities in CoNLL04’s training dataset. The “O” tags are not part of the pre-defined
entity types.

Figure 6.5: Frequency of entities in ADE’s training dataset. The “O” tags are not part of the pre-defined entity
types.

Since ADE has only one relationship and lacks ’none’ relations, addressing relation class imbalance
is not applicable in this case. Hence, Figures 6.7 and 6.8 show the values of relation distribution
respectively.
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Figure 6.6: Frequency of entities in SciERC’s training dataset. The “O” tags are not part of the pre-defined
entity types.

Figure 6.7: Frequency of directed relations in CoNLL04’s training dataset. “L-” and “R-” mean left and right
direction, respectively.
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In CoNLL04’s dataset, the “Kill” relationship is considered to be one of the minority classes and
the “Live” relationship is one of the majority classes. For the SciERC’s dataset, the “Feature-of”
relationship is one of the minority classes and the “Used-for” relationship is one of the majority
classes.

Figure 6.8: Frequency of directed relations’ in SciERC’s training dataset.“L-” and “R-” mean left and right
direction, respectively.

Consequently, the entity and relation labels in TablERT-CNN are imbalanced. Thus, we argue
that training TablERT-CNN naively without addressing the class imbalance may degrade the
performance. Thus, this may result in a biased model towards the more frequent tags like “O”. To
this end, the WeLT-TablERT-CNN is proposed as a cost-sensitive version of TablERT-CNN. We
present three joint loss functions to address the class imbalance by (1) only rescaling the entity labels,
(2) only rescaling the relation labels, and (3) both entity and relation labels. The following sections
present three loss functions and provide the joint loss functions accordingly.

6.3.1 WeLT Span Classifier

Given a sentence with number of words nw, a matrix Y is constructed accordingly. The diagonal
entries Yi,i represent the BILOU entity labels and off-diagonal entries Yi, j such that ( j > i ) are
relation labels between words wi and w j.
The word embeddings are obtained from the BERT model, in which each word wi is composed
of the subwords and the embedding ei is computed by max-pooling the BERT outputs of the
subwords. Furthermore, a 2D-CNN is applied to the constructed matrix to capture the local
dependencies among neighbouring cells.
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For NER, TablERT-CNN uses a standard cross-entropy loss function. In contrast, “TablERT-
CNN-NER” employs a weighted cross-entropy loss to mitigate the class imbalance.
First, we present the rescaled entities as defined in Equation 6.8:

we :=
c∑

x=1

σ

1 − nx∑c
k=1 nk

 (6.8)

where:

• we: denotes the rescaled entity weights,

• σ: is the Softmax function,

• c: represents the total number of entity classes, and

• nx: represents the number of instances that belong to class x.

Equation 6.9 represents the loss of WeLT entity classifier:

Ls
TablERT-CNN-NER := −

∑
1≤i≤nw

we log Pθ(Ŷi,i = Yi,i) (6.9)

where:

• nw: denotes the number of words in the input sentence,

• we: as defined in Equation 6.8,

• c: is the number of entity classes (including “O” class),

• nx: is the number of instances that belong to class x, and

• Ŷi,i: is the predicted probability of entity label of each word wi as calculated in Equation 6.3.

By incorporating class-specific weights, the WeLT NER classifier becomes more sensitive to minority
classes and assigns lower weights to “O” tags, penalizing the majority classes.

6.3.2 WeLT Relation Classifier

After the entity spans are classified, they are paired to form potential relations. For each pair of spans,
a relation representation is constructed by concatenating their respective embedding. Then, this
concatenated representation is fed into a WeLT relation classifier, and finally relations are determined
based on rescaled weight scores.
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TablERT-CNN uses a standard cross-entropy loss function to train the relation classifier. In
contrast, “TablERT-CNN-RE” employs a weighted cross-entropy loss to address the class
imbalance.
Equation 6.10 defines the calculation of rescaled relation weights:

wr :=
cr∑

y=1

σ

1 − ny∑cr
k=1 nk

 (6.10)

where:

• wr: denotes the rescaled relation weights,

• σ: is the softmax function,

• cr: is the total number of relation classes, and

• ny: is the number of instances that belong to class y.

Equation 6.11 represents the WeLT relation classifier’s loss using the weight parameter scaling the
overall loss for each individual sample, allowing for instance-specific adjustments:

Lr
TablERT-CNN-RE := −

∑
1≤i≤nw
i< j≤nw

wr log Pθ(Ŷi, j = Yi, j) (6.11)

where:

• nw: is the number of words in the input sentence,

• wr: as defined in Equation 6.10, and

• Ŷi, j: the predicted relation label for the entity pair (si, s j), determined as the label with the
highest probability, as defined in Equation 6.4.

6.3.3 WeLT Joint Loss Functions

In Sections 6.3.1 and 6.3.2, we introduced cost-sensitive WeLT span and relation classifiers. The
objective here is to examine the effects of balancing entity classes, relation classes, and their
combination. We present three variants of the WeLT-TablERT-CNN approach, each comprising
two core components: one for entity classification and one for relation extraction.
Each variant employs a distinct joint loss function, which is described as follows:
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• Variant 1: also known as “TablERT-CNN-NER” using WeLT’s NER classifier as defined in
Equation 6.9 and TablERT-CNN’s relation classifier as defined in Equation 6.6. Hence, the
joint loss function is defined as:

LTablERT-CNN-NER := Ls
TablERT-CNN-NER +L

RE (6.12)

• Variant 2: also known as “TablERT-CNN-NERE” that combines WeLT’s span classifier as
specified in Equation 6.9 and relation classifier as defined in Equation 6.11, thus the joint loss
function is defined as:

LWeLT−TablERT-CNN-NERE := Ls
TablERT-CNN-NER +L

r
TablERT-CNN-RE (6.13)

• Variant 3: also known as “TablERT-CNN-RE” using TablERT-CNN’s span classifier as
specified in Equation 6.5 and WeLT’s relation classifier using weight parameter as defined in
Equation 6.11, thus the joint loss function is defined as:

LTablERT-CNN-RE := LNER +Lr
TablERT-CNN-RE (6.14)

In summary, the primary difference between TablERT-CNN and WeLT-TablERT-CNN variants
lies in the handling of class imbalance in TablERT-CNN that fills in entity labels using the
BILOU tagging scheme and hard-coded directed relation labels. WeLT-TablERT-CNN incorporates
a weighted loss training mechanism that adjusts the loss function based on the frequency of classes
including “O ” class, thus ensuring that minority classes receive more focus during training. This
strategy is absent in the original TablERT-CNN model.

6.4 Evaluating WeLT-TablERT-CNN

This section describes experiments conducted to investigate the effectiveness of addressing the class
imbalance problem at the token-tagging level. The experiments utilise a table-filling approach with
three different WeLT joint loss functions, as presented in Section 6.3. The results are compared to
the baselines including TablERT and TablERT-CNN. All the experiments were carried out using
a single Tesla P40 GPUs with 24GB memory. The hyperparameters are reported in the Appendix
(see Table 12). TablERT-CNN’s experimental settings have been adopted. The experiments were
conducted on three public gold-standard datasets CoNLL04, ADE, and SciERC.
Since the labels are filled in the table as a token-labelling strategy on which named entities are
tagged using the BILOU scheme as discussed in Section 2.2.3, we included SciERC avoiding
the complications we had in Chapters 4 and 5 for balancing the relation classifier. Due to
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the characteristics of the ADE dataset, which contains only one relation, we applied only the
WeLT-NER joint loss function. Since TablERT-CNN does not adopt the strong negative samples,
there are no non-relations. Hence, it is infeasible to balance relations in this case.

The WeLT-TablERT-CNN variant models are evaluated on both entity recognition and relation
extraction with the same TablERT-CNN’s evaluation strategy for a fair comparison:

• A correct entity is only considered if the predicted span and type match the ground-truth. For
example, if the ground truth contains the entity (London, Location) with the span [0, 6],
and the model predicts (London, Organization) or (London, Location) but with a span [1,

7], the prediction is considered incorrect. Only the prediction (London, Location) with span
[0, 6] is valid.

• In relaxed relation settings (RE), a correct relation is considered with the right predicted
relation label and spans of both entities. For example, suppose the ground truth relation
is (Located_In, (London, Location), (UK, Location)). In the relaxed setting, a correct
relation is considered when the model predicts the correct relation label Located_In

and identifies the spans of both entities (London, Position) and (UK, Location). Minor
inaccuracies in entity types do not affect the correctness of the predicted relation, provided
that the relation label and entity spans are correct.

• In the strict relation (RE+) context, the same considerations apply as in the relaxed relation
context, with the additional requirement of identifying the correct entity types. For instance,
if the ground truth relation is (Located_In, (London, Location), (UK, Location)), the
model must predict both the correct relation type Located_In and accurately identify the
entities (London, Location) and (UK, Location) with their exact spans and types. Any
mismatch in entity spans or types renders the predicted relation incorrect.

We report micro-averaged F1 scores for the CoNLL04 and SciERC datasets, as stated in
Section 2.2.2. In addition, we present the macro-averaged F1 scores for ADE and SciERC datasets,
as discussed in Section 2.2.4. For ADE, the F1-score is averaged over 10-fold cross-validation. For
SciERC, we only report the F1-score for relaxed relation which is in line with previous work (Luan
et al., 2019; Wadden et al., 2019; Eberts and Ulges, 2020).

6.4.1 Evaluation Results

Table 6.1 presents the micro-average F1 score results of the CoNLL04 dataset. In addition to the
macro-average F1 scores of ADE and SciERC datasets. We report the average results over five runs
for each dataset.
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Dataset Model Encoder NER RE RE+

CoNLL04 ∆

TablERT (Ma et al., 2020) BERTBASE 90.2 72.8 72.6
TablERT (Ma et al., 2020) BERTLARGE 90.5 73.8 73.8
TablERT-CNN (Ma et al., 2022) BERTBASE 90.5 73.2 73.2
TablERT-CNN-NER BERTBASE 90.4 73.3 73.1
TablERT-CNN-NERE BERTBASE 90.8 73.6 73.4
TablERT-CNN-RE BERTBASE 90.9 72.12 71.9

ADE ▲ TablERT (Ma et al., 2020) BERTBASE 89.9 80.6 80.6
TablERT-CNN (Ma et al., 2022) BERTBASE 89.7 80.5 80.5
TablERT-CNN-NER BERTBASE 91.7 85.7 85.7

SciERC (BERT) ▲ TablERT-CNN (Ma et al., 2022) BERTBASE 67.2 41.3 -
TablERT-CNN-NER BERTBASE 63.2 38.9 -
TablERT-CNN-NERE BERTBASE 66.2 42.6 -
TablERT-CNN-RE BERTBASE 67.0 41.4 -

SciERC (SciBERT) ▲ TablERT-CNN (Ma et al., 2022) SciBERT 68.6 44.7 -
TablERT-CNN-NER SciBERT 65.4 43.5 -
TablERT-CNN-NERE SciBERT 68.5 45.2 -
TablERT-CNN-RE SciBERT 68.6 46.6 -

SciERC (BERT) ∆ TablERT-CNN (Ma et al., 2022) BERTBASE 66.8 45.7 -
TablERT-CNN-NER BERTBASE 63.2 44.1 -
TablERT-CNN-NERE BERTBASE 65.9 45.8 -
TablERT-CNN-RE BERTBASE 67.2 44.9 -

SciERC (SciBERT) ∆ TablERT-CNN (Ma et al., 2022) SciBERT 68.6 48.7 -
TablERT-CNN-NER SciBERT 65.2 47.3 -
TablERT-CNN-NERE SciBERT 67.8 48.2 -
TablERT-CNN-RE SciBERT 68.6 48.9 -

Table 6.1: Comparison between existing methods and the proposed WeLT-TablERT-CNN(⋆) model on the
CONLL04, ADE and SciERC datasets. The symbols ∆ and ▲ represent evaluation using micro
and macro average F1 values, respectively. The best scores are shown in bold, and the second-best
ones are underlined.
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We report the results based on the dataset level, entity recognition and two relation extraction
evaluation (i.e., RE and RE+):

• For the CoNLL04 dataset, the TablERT model with BERTLARGE achieved the best scores
in RE and RE+, with F1 scores of 73.8 % in both evaluations. The second-best performance
was from the TablERT-CNN-NERE variant, which achieved 73.6 % in RE and 73.4 % in
RE+. TablERT-CNN-RE achieved the highest NER score of 90.9 % , marginally surpassing
all other models.

• For the ADE dataset, the proposed TablERT-CNN-NER variant achieved the highest scores
across all metrics, with significant improvements in NER (91.7 %), RE (85.7 %), and RE+
(85.7 %). The second-best model was the original TablERT with BERTBASE, obtaining 89.9 %
in NER and 80.6 % in both RE and RE+.

• For the SciERC dataset evaluated with BERTBASE macro evaluation, the baseline TablERT-
CNN achieved the best NER score of 67.2 % closely followed by the second-best performance
was from TablERT-CNN-RE-weight with 67.0 % as an F1 score. TablERT-CNN-NERE
slightly outperformed others in RE with a score of 42.6 % and TablERT-CNN-RE-weight
achieved the second-best score with 41.4 %. Regarding the results of SciERC that are
fine-tuned using SciBERT, in general they are improvements with respect to the models
fine-tuned using BERTBASE. TablERT-CNN-RE model has the highest RE score of 46.6 %
and TablERT-CNN-NERE has the second-best score (45.2 %). Regarding the NER score,
TablERT-CNN and TablERT-CNN-RE have the highest score of 68.8 % and TablERT-
CNN-NERE has the second-best score (68.5 %).

• For the SciERC dataset evaluated with BERTBASE micro evaluation, the baseline TablERT-
CNN model achieves a competitive F1 score of 66.8 %. The TablERT-CNN-RE model
exhibits a marginal improvement, reaching an F1 score of 67.2 %. This slight enhancement
suggests that the incorporation of re-weighting strategies for relations can indirectly benefit
NER performance. Regarding the RE task, the TablERT-CNN-NERE model marginally
leads with an F1 score of 45.8 %, slightly outperforming the baseline’s 45.7 %. When utilizing
the SciBERT encoder, the TablERT-CNN and TablERT-CNN-RE achieve a notable F1 score
of 68.6 % for NER tasks. The TablERT-CNN-RE model closely outperforms all others,
achieving an F1 score of 48.9 %. The baseline model achieved the second-best score with an
F1 score of 48.7 % also performs well.

It is worth noting that the TablERT model with BERTLARGE, which has larger number of
trainable parameters (345M), achieved the best scores in RE and RE+ for the CoNLL04
dataset. However, the second-best scores, particularly in NER for the CoNLL04 dataset and
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across evaluations for the ADE and SciERC datasets, were achieved by models with the proposed
WeLT-TablERT-CNN variants with lower trainable parameters (110M), demonstrating efficient
performance improvements without the necessity for larger models.
In summary, the analysis across datasets and models shows that the proposed WeLT-TablERT-CNN
variants generally offer modest improvements over the baseline TablERT-CNN, particularly in
the ADE dataset and specific configurations within the SciERC dataset. Additionally, the use of
domain-specific encoders, such as SciBERT, enhances performance, especially for scientific text
processing. Moreover, the WeLT re-weighting mechanisms for balancing entities and relations
consistently improve performance, with some exceptions, such as relation predictions in CoNLL04
and the macro-average evaluation of entity recognition in SciERC using BERT as the encoder, where
the baseline remains the best choice.

6.4.2 Error Analysis

We outline descriptions of incorrect predictions from the TablERT-CNN-NERE to delineate
future directions for improvements. We unified the same error cases as in Tables 4.3
and 5.3 to compare WeLT-TablERT-CNN with the SpERT-NERE and the ASpERT-NER,
respectively. Unlike the previous two error analyses in Sections 4.4.2 and 5.3.2, we only observed
two missing entities and six correct predictions on the CoNLL04’s test data. Regarding the missing
entities, the proposed model failed to classify “Organization of the Oppressed on Earth” as an
organization entity in the first sentence. Similarly, in the second sentence, it misclassified “China”
by failing to recognise it as a location entity.

We highlight the correct predictions in a sequential order as presented in Table 6.2 by the TablERT-
CNN-NERE model in contrast to the SpERT-NERE and the ASpERT-NER models:

• Unlike the SpERT-NERE model that lacks syntactic information for a wrong relation
prediction as ([Gerald Baliles]PEOP,Live_In,[New Hampshire]LOC), the proposed model
correctly predicts Live_In relationship.

• In contrast to the SpERT-NERE that missed classifying “Judith C. Toth”
and the ASpERT-NER that missed predicting the relation ([House of
Delegates]ORG,OrgBased_In,[Maryland]LOC), the proposed model correctly predicts
entities and relations.

• The SpERT-NERE model had an incorrect entity span for “G. Ernest Tidwell” and missing
entities and relations by the ASpERT-NER. In contrast, the proposed model matches the
ground-truth.
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Missing Entities
Sentence Text of the statement issued by the [Organization of the Oppressed on Earth]ORG

claiming [U. S.]LOC Marine Lt. [William R. Higgins]PEOP was hanged.
Ground-Truth [Organization of the Oppressed on Earth]ORG ([William R. Higgins]PEOP,Live_In,[U.

S.]LOC)
Prediction ([William R. Higgins]PEOP,Live_In,[U. S.]LOC) [Organization of the Oppressed on

Earth]
Sentence [Soviet]LOC Foreign [Eduard A. Shevardnadze]PEOP is to visit [China]LOC next month to

pave the way for the first Chinese - Soviet summit in 30 years, Chinese television reported
Monday.

Ground-Truth ([Eduard A. Shevardnadze]PEOP,Live_In,[Soviet]LOC)
Prediction ([Eduard A. Shevardnadze]PEOP,Live_In,[Soviet]LOC [China])

Correct predictions
Sentence “He is the same easy-going, soft-spoken, self-effacing man we knew as governor of [New

Hampshire]LOC”, said [Virginia]LOC Gov. [Gerald Baliles]PEOP, a Democrat.
Ground-Truth ([Gerald Baliles]PEOP,Live_In,[Virginia]LOC) [New Hampshire]LOC

Prediction ([Gerald Baliles]PEOP,Live_In,[Virginia]LOC)
Sentence [Judith C. Toth]PEOP says she returned for a fourth term in [Maryland]LOC ’s [House of

Delegates]ORG because she couldn’t find a better job.
Ground-Truth [Judith C. Toth]PEOP ([House of Delegates]ORG,OrgBased_In,[Maryland]LOC)
Prediction [Judith C. Toth]PEOP ([House of Delegates]ORG,OrgBased_In,[Maryland]LOC)
Sentence The “poison pill,” ruled illegal in November by [U. S.]LOC District [G. Ernest

Tidwell]PEOP, would become effective after a shareholder had acquired 10 percent of the
outstanding stock.

Ground-Truth ([G. Ernest Tidwell]PEOP,Live_In,[U. S.]LOC)
Prediction ([G. Ernest Tidwell]PEOP,Live_In,[U. S.]LOC)
Sentence [Port Arthur]LOC Mayor [Malcolm Grant]PEOP asked the 800 residents of [Sabine

Pass]LOC to evacuate the coastal community just west of the [Louisiana] LOC line, citing
the likelihood of high water closing the only highway between the town and [Port
Arthur]LOC .

Ground-Truth ([Malcolm Grant]PEOP,Live_In,[Port Arthur]LOC) ([Malcolm Grant]PEOP,Live_In,[Port
Arthur]LOC)

Prediction ([Malcolm Grant]PEOP,Live_In,[Port Arthur]LOC) ([Malcolm Grant]PEOP,Live_In,[Port
Arthur]LOC)

Sentence An art exhibit at the [Hakawati Theatre]ORG in Arab east [Jerusalem]LOC was a series of
portraits of Palestinians killed in the rebellion.

Ground-Truth ([Hakawati Theatre]ORG,OrgBased_In,[Jerusalem]LOC)
Prediction ([Hakawati Theatre]ORG,OrgBased_In,[Jerusalem]LOC)

Table 6.2: Common error cases of the TablERT-CNN-NERE on the CoNLL04’s test set. The red colour
expresses error cases and blue colour illustrates WeLT-TablERT-CNN improvements over the
SpERT-NERE and the ASpERT-NER models.
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• Incorrect relations, such as ([Sabine Pass]LOC , Located_In, [Port Arthur]LOC) and ([Malcolm
Grant]PEOP, Live_In, [Sabine Pass]LOC), are predicted by both SpERT-NERE and ASpERT-
NER models. However, the TablERT-CNN-NERE model correctly predicts these relations.

• Propagated errors, such as misclassifying “Hakawati Theatre” as a location instead of
an organisation, lead to incorrect relation predictions in both models. In contrast, the
TablERT-CNN-NERE model correctly identifies the entities and their relations.

It is noteworthy that no incorrect NE spans, NER misclassifications, incorrect relations, syntactic
errors, logical errors, or propagated errors were observed in the TablERT-CNN-NERE model.

6.5 Summary and Discussion

We propose WeLT-TablERT-CNN approach, a cost-sensitive JNERE with 2D CNNs as a
table-filling problem. This method is adapted from TablERT-CNN (Ma et al., 2022) that represents
each table cell as pixel and each table as a 2D image. Although TablERT-CNN does not apply the
strong sampling strategy as proposed by SpERT (Eberts and Ulges, 2020), the table-filling approach
adopts the token-level labels for NER and directed relation labels which are imbalanced as discussed
in Section 6.4. To this end, three different joint loss functions using WeLT were proposed as
presented in Section 6.3. Experiments conducted on CoNLL04, ADE, and SciERC demonstrated
that modest performance of the WeLT-TablERT-CNN variants compared to the two baselines:
TablERT, and TablERT-CNN. The results prove the advantages of addressing the class problem.
The common patterns based on the experimental results for the three datasets are as follows:

• For the CoNLL04 dataset, the WeLT-TablERT-CNN variants show modest performance
improvements. The TablERT-CNN-NERE variant achieves the second-best scores in RE
(73.6 %) and RE+ (73.4 %), closely trailing the TablERT model with BERTLARGE, which
has the best scores in these metrics with F1 scores of (73.8 %) for both RE and RE+. The
highest NER score is achieved by the TablERT-CNN-RE variant (90.9 %), surpassing all other
models.

• In the ADE dataset, the TablERT-CNN-NER model outperformed all other models across
all metrics, achieving scores of 91.7 % in NER and 85.7 % in RE and RE+. Compared to the
baselines TablERT and TablERT-CNN, it achieved a higher performance by 1.8 % in NER
and by 5.1 % in RE and RE+, highlighting the effectiveness of WeLT.

• For the SciERC dataset, the results indicate that the WeLT-TablERT-CNN variants provide
competitive performance. Using BERTBASE, the WeLT-Tab-NER-RE variant achieves the
highest RE score (42.6 %). When using SciBERT, the TablERT-CNN-RE model attains
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the highest RE score (46.6 %), while the NER scores are closely matched between the
TablERT-CNN and TablERT-CNN-RE models.

The WeLT-TablERT-CNN variant models exhibit modest performance across various datasets
and evaluation metrics, validating the effectiveness of the proposed modifications. While using
TablERT with BERTLARGE achieves the highest scores in CoNLL04’s RE and RE+ tasks, the WeLT
variants provide competitive results with fewer parameters, offering an advantage in computational
efficiency.
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With the rapid growth of unstructured text from diverse sources such as scientific articles and news,
information extraction has become critically important for transforming this vast and disorganised
data into structured and actionable insights. Named Entity Recognition (NER) and Relation
Extraction (RE) are key components of information extraction. NER facilitates the structuring
of data by categorising key pieces of information, while RE adds another layer of understanding
by connecting entities with meaningful relationships. Therefore, developing a robust information
extraction pipeline is essential for constructing applications such as knowledge graphs, information
retrieval systems, and natural language understanding systems.
Class imbalance is a common issue in supervised learning, where certain classes (i.e., categories of
data) are under-represented in the training data compared to other classes. This imbalance may
degrade the performance on the under-represented classes, as the model may become biased towards
predicting the majority classes, which it encounters more frequently. In this work, we have sought
to address the class imbalance problem in supervised learning. In this concluding chapter, we briefly
reiterate our contributions in Section 7.1, along with a discussion of potential future work in
Section 7.2.

7.1 Key Insights

First, we highlighted the need for a highly accurate and robust information extraction pipeline to
process large volumes of unstructured data described in Chapter 1. Continuously improving the
automation of entity identification and relationship extraction is important, as converting unstruc-
tured data into structured formats enables better search, analysis, and decision-making. Moreover,
effective information extraction significantly eases the tedious work of data annotators and curators
by providing pre-annotated data, thereby reducing the amount of manual effort required. This
allows annotators to focus on refining the extracted entities and their relationships, rather than
starting from scratch, enabling them to concentrate on more complex, high-value aspects of the
annotation and curation process, ultimately leading to more efficient, scalable, and higher-quality
data management.
In Chapter 2, we introduced the fundamental concepts of information extraction, focusing
on the practical requirements of named entity recognition and relation extraction. We have
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devoted considerable effort to establish the essential foundations and providing the necessary
background. Additionally, we highlight different types of named entities and the distinctive charac-
teristics of relationships. Beyond presenting a formal model of information extraction, we reviewed
the various paradigms of joint named entity recognition and relation extraction. Furthermore, we
explored several gold-standard datasets that exhibit class imbalance, which is one of the central
challenges in NER and RE. The research community has made significant efforts to develop
gold-standard datasets to facilitate the creation of supervised prediction models, yet these real-world
datasets are often highly skewed. We also examined the conventional evaluation metrics used for
relevant information extraction tasks. As we conclude the motivating chapters, we consider the
evolution of pre-trained language models, noting that standard fine-tuning approaches may struggle
to identify and extract under-represented entities and relationships.
In Chapter 3, we explored the state-of-the-art in flat biomedical named entity recognition, focusing
particularly on pre-trained language models. Based on leading performance scores, we selected
encoder-only models as the best-performing approach. Despite their high scores, vanilla fine-tuning
often overlooks the potential for improvement of class distribution imbalances in biomedical
datasets. Given the highly imbalanced nature of gold-standard datasets in this field, we emphasise
the potential need to address these imbalances to improve model performance. We highlighted
three state-of-the-art approaches to address class imbalance: data-level, algorithmic-level, and hybrid
methods. We argue that traditional data sampling techniques are insufficient, as duplicating training
data tends to degrade language model performance (Lee et al., 2022). To address these challenges,
we propose a cost-sensitive approach that modifies the loss function in encoder-only models. As
our first contribution, we introduce a new loss function, the Weighted Loss Trainer (WeLT). WeLT
incorporates coefficients that re-scale class weights based on the inverse relative frequencies of the
classes. Unlike other existing loss functions, such as those based on the inverse number of samples
or the effective number of samples, WeLT is the first loss function to re-scale class weights according
to their frequency within the overall class distribution.

7.1.1 WeLT’s Application

We evaluate the performance of our proposed cost-sensitive fine-tuning approach, applying WeLT
to various downstream tasks and domain applications. Our efforts led to:

• Single-label biomedical named entity recognition: we evaluated the impact of addressing class
imbalance via WeLT, comparing it against three existing weighting schemes across eight
biomedical datasets in Chapter 3. In this study, we fine-tuned 280 models, including vanilla
fine-tuning, and two weighting schemes: inverse number of samples and inverse square root
of the number of samples. Additionally, we tested the effective number of samples, applying
lower, median, and upper bounds of hyperparameters for a fair comparison. Our results
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demonstrate the positive effect of addressing class imbalance, with WeLT and comparable
weighting schemes consistently outperforming vanilla fine-tuning, which neglects class
distribution.

• Impact of WeLT-recognised entities on biomedical entity linking: as an extension of our work
in Chapter 3, we investigated the effect of re-scaled class weights on entity recognition via
WeLT. In collaboration with Pedro Ruas and Francisco M. Couto during a secondment at
LASIGE, University of Lisbon, we evaluated WeLT-recognised entities and compared them
to vanilla fine-tuning results. Our findings show that addressing the class imbalance problem
in named entity recognition positively enhances the overall performance of the named entity
linking task.

• Overlapping and nested named entity recognition: building on the success of WeLT in flat or
single-label biomedical named entity recognition and linking, we extended our cost-sensitive
approach to other biomedical datasets and non-biomedical domains. We aimed to explore
the impact of addressing class imbalance on additional downstream tasks. In Chapters 4
and 5, we adapted the original span classifiers proposed by Eberts and Ulges (2020) and
Jianquan Ouyang (2022), respectively, by incorporating WeLT’s weighted cross-entropy
loss to address class imbalance. Our experiments show that WeLT-based span classifiers
outperform the original models. This improvement was observed on general domain datasets
such as CoNLL04 from newswire articles, as well as on biomedical datasets with overlapping
entities, such as the ADE dataset.

• Joint named entity recognition and relation extraction: after successfully applying WeLT to flat,
nested, and overlapping named entities, as well as testing it on biomedical entity linking, we
were motivated to extend WeLT to relation extraction tasks. Throughout Chapters 4 to 6, we
proposed different variants of relation classifiers that address class imbalance by introducing
various WeLT-based joint loss functions using two distinct paradigms:

– Span-based: in Chapter 4, we tackled the class imbalance problem in the SpERT
model (Eberts and Ulges, 2020). In this context, the imbalance arises not only from the
class distribution but also from SpERT’s strong negative sampling strategy that adds
non-entities and relations. To address this imbalance problem, we adapted SpERT by
incorporating the WeLT loss function for the span classifier to recognise entities, as
introduced in Chapter 3. For the relation classifier, we designed a new loss function
that accounts for both the frequency of entity pairs and the frequency of the relation
class itself. We compared four different loss functions against the original SpERT. Our
results demonstrate that re-scaling class weights for both named entities and relations
via WeLT leads to superior performance compared to the original SpERT model.
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Jianquan Ouyang (2022) addressed certain limitations of SpERT’s span classifier,
proposing the ASpERT model. ASpERT introduces attention mechanisms that
enhance boundary supervision and utilises a multi-layer perceptron to improve span
filtering. While ASpERT outperforms SpERT, it still relies on the same negative sam-
pling strategy. Therefore, in Chapter 5, we applied WeLT loss functions to ASpERT. For
a fair comparison, we used the same experimental settings and hyperparameters
reported for ASpERT. Our results show that the best-performing model incorporates
WeLT-re-scaled entities, proving that WeLT loss functions effectively mitigate class
imbalance and enhance overall performance in joint entity and relation extraction.

– Table-filling: we applied our WeLT approach to tackle class imbalance in span-based
joint named entity and relation extraction models, demonstrating its effectiveness in
improving overall model performance. Recently, significant efforts have focused on
the table-filling approach. For instance, Ma et al. (2022) proposed TablERT-CNN,
a model that jointly extracts entities and relations using stacked convolutional neural
networks. TablERT-CNN treats named entity recognition as a sequential labelling
task using the BILOU tagging scheme, but it does not account for overlapping
entities. Despite this limitation, TablERT-CNN outperforms SpERT by removing
strong negative sampling.

Building on the success of WeLT in Chapter 3 for flat named entity recognition as
a sequence-labelling task, we extended our method to TablERT-CNN. We proposed
three WeLT-based loss functions that re-scale class weights to balance entities, relations,
or both in Chapter 6. We used the same experimental settings as TablERT-CNN
and included an additional dataset, SciERC, which contains scientific texts from the
computer science domain with complex class distributions and relationships involving
multiple entity arguments. Our results showed that the proposed WeLT approach
achieved relative improvements over the original TablERT-CNN. However, in some
cases, addressing class imbalance did not have the expected positive impact, revealing a
bottleneck and leaving room for further exploration in future work.

In the following section, we present an extensive evaluation of our proposed JNERE WeLT-based
models, comparing them with other PLMs, including recent LLMs.

7.1.2 Performance of WeLT-Based Models Against Comparable Models

In this comparative analysis, we evaluate the performance of the proposed WeLT-based models
developed in Chapters 4 to 6 against a diverse set of models, as discussed in Sections 2.3 and 3.2.1,
including encoder-only, encoder-decoder, and decoder-only architectures, as follows:
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• Deeper Task-Specificity (Crone, 2020): this novel neural architecture introduces additional
task-specific bidirectional recurrent neural network (BiRNN) layers for both NER and RE
tasks. The model allows for deeper task-specificity by tuning the number of shared and task-
specific layers independently for different datasets.

• REBEL (Huguet Cabot and Navigli, 2021): an auto-regressive sequence-to-sequence
model. The authors employ BART-large (Lewis et al., 2020) as the base model and utilise
various encoder models, such as bert-base-cased, albert-xxlarge-v1, and scibert-scivocab-
uncased.

• PFN (Yan et al., 2021): a partition filter network that encodes task-specific features in joint
entity and relation extraction. This model uses a partition filter encoder to generate these
task-specific features jointly.

• Boundary Assembling (Tang et al., 2022): this model integrates entity boundary detection,
span classification, and relation extraction into an end-to-end framework. It employs albert-
xxlarge-v2 as the encoder and assembles entity boundaries to enumerate entity spans.

• SpERT.MT (Xue and Lu, 2023): a multi-task learning model that incorporates the
intersection over union concept. It introduces positional information into the entity classifier
for span boundary detection and integrates entity logits into the embedded representation of
entity pairs.

• Table-Sequence (Wang and Lu, 2020): a novel approach using two encoders as follows: one
for tables and another for sequences that assist each other in the representation learning
process.

• Translation between Augmented Natural Languages (TANL) (Paolini et al., 2021): a unified
text-to-text approach for structured prediction, functioning as a translation task between
augmented natural languages.

• Flan T5 (Large) (Chung et al., 2022): a large language model trained using instruction fine-
tuning, utilising chain-of-thoughts (CoT) generations produced by the T5 model.

• FlanT5+GPT-3-generated CoT (Wadhwa et al., 2023): a fully supervised, fine-tuned T5
model that incorporates chain-of-thoughts style explanations generated by GPT-3.

• In-Context GPT-3 (Brown et al., 2020): an autoregressive language model with 175 billion
parameters, trained using in-context learning.

• GPT-3.5 distilled (Gu et al., 2023): a significantly smaller variant of GPT-3.5, employing the
PubMedBERT model. This model is 1,000 times smaller than the original GPT-3.5.
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• Multi-turn QA (Li et al., 2019a): this approach applies BERT as the core model in a question-
answering setting, where entity- and relation-specific questions guide the model to identify
head and tail entities.

• Two-Phase Paradigm Bin Ji (2023): this approach reduces the gap between negative entities
and other predefined entities, as well as between relations. It incorporates a gated mechanism
for effectively fusing various semantic representations.

• PURE Zhong and Chen (2021): a simple yet effective model for end-to-end relation
extraction, employing two encoders as follows: one for entity extraction and another for
relation extraction.

• SpERT.PL Santosh et al. (2021): a deep neural model that leverages part-of-speech
information and entity logits to boost classification performance.

The analysis of NER and RE results across various models, particularly the proposed WeLT models,
is outlined below. The discussion focuses on F1 scores. Additionally, model sizes, expressed in terms
of the number of training parameters, are considered as a critical factor in evaluating the trade-off
between performance and computational efficiency.
Regarding the CoNLL04 dataset, the macro-averaged F1 scores are presented in Table 7.1. The
SpERT-NERE model attained the highest NER F1 score of 87.70 %, slightly surpassing Table-
Sequence, which achieved an F1 score of 86.90 %. The SpERT-pos-weight model followed closely
with an NER F1 score of 86.49 %. In terms of RE, Boundary Assembling achieved the highest
F1 score of 76.70 %, with REBEL following closely with an F1 score of 76.65 %. On the other
hand, SpERT-pos-weight falls behind, with an F1 score of 73.56 %. It is worth mentioning that the
WeLT-SpERT models use 102M training parameters, which is significantly fewer than the 235M
parameters required by Boundary Assembling, the 223M required by Table-Sequence and the 760M
required by REBEL. This demonstrates that the WeLT models can deliver competitive NER and RE
results while being much more computationally efficient.

NER RE
Method Encoder Parameters Precision Recall F1 Precision Recall F1
SpERT Eberts and Ulges (2020) BERTBASE 102 M 85.78 86.84 86.25 74.75 71.52 72.87
ASpERT Jianquan Ouyang (2022) BERTBASE 102 M 86.57 85.49 85.97 74.92 69.01 71.66
REBEL Huguet Cabot and Navigli (2021) BART 760 M - - - - - 76.65
Table-Sequence Wang and Lu (2020) ALBERTXXLARGEv1 223 M - - 86.90 - - 75.40
Boundary Assembling Tang et al. (2022) ALBERTXXLARGEv2 235 M 88.50 85.40 86.80 77.50 76.30 76.70

SpERT-NERE BERTBASE 102 M 86.07 89.46 87.70 64.26 74.44 68.77
SpERT-pos-weight BERTBASE 102 M 85.37 87.65 86.49 76.65 70.99 73.56

Table 7.1: Comparison of macro-averaged CoNLL04 test scores between various language models and
WeLT-based models. The best F1 scores are in bold, with the second-best underlined. For training
parameters, the largest are in bold and the smallest are underlined.
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7 Conclusions and Future Work

Regarding the CoNLL04 dataset, the micro-averaged F1 scores are presented in Table 7.2. The
TablERT-CNN-RE model achieved the highest NER F1 score of 90.90 %, and TablERT-CNN-
NERE follows closely with an F1 score of 90.90 %. Both models marginally outperform SpERT.MT,
TablERT-CNN (BERTBASE), and TablERT (BERTLARGE), which achieved F1 scores of 90.70 %,
90.50 %, and 90.50 %, respectively.
For RE, the highest F1 score is 80.76 %, achieved by the Flan T5+GPT-3-generated CoT, followed by
In-Context GPT-3+CoT with an F1 score of 78.18 %. On the other hand, TablERT-CNN-NERE
falls behind by a large margin, with an F1 score of 73.40 %. When comparing the models with
respect to training parameters, In-Context GPT-3+CoT has the largest number of parameters at
175B, followed by Flan T5+GPT-3-generated CoT with 760M. In contrast, the WeLT models,
such as TablERT-CNN-NERE and TablERT-CNN-RE, both use 110M parameters, highlighting
that the WeLT models provide competitive NER and RE performance with a significantly lower
computational cost.

Regarding the SciERC dataset, the micro-averaged F1 scores are presented in Table 7.3. The
TablERT-CNN-RE model achieved an NER F1 score of 68.60 % and an RE F1 score of 48.90 %,
which falls behind the top-performing models such as SpERT.MT, which has an NER F1 score of
73.22 % and an RE F1 score of 53.72 %. In this case, SpERT.MT remains the best choice.

NER RE
Method Encoder Parameters Precision Recall F1 Precision Recall F1
SpERT Eberts and Ulges (2020) SciBERT 102 M 70.87 69.79 70.33 53.40 48.54 50.84
Two phase Paradigm Bin Ji (2023) BERTBASE 110 M 69.70 72.30 71.00 52.90 52.50 52.70
PURE Zhong and Chen (2021) SciBERT 110 M - - 66.60 - - 48.20
Syntax-informed multi-head self-attention Zhang et al. (2021b) BERTBASE 110 M 69.70 71.10 70.40 55.30 50.00 52.50
SpERT.PL Santosh et al. (2021) BERTBASE 102 M 69.80 71.30 70.50 51.90 50.60 51.30
Boundary Assembling Tang et al. (2022) ALBERTXXLARGEv2 235 M 62.40 67.10 64.70 56.60 48.20 52.10
SpERT.MT Xue and Lu (2023) BERTBASE 102 M 71.21 75.35 73.22 53.63 53.81 53.72

TablERT-CNN-RE SciBERT 110 M - - 68.60 - - 48.90

Table 7.3: Comparison of micro-averaged SciERC test scores between various language models and WeLT-
based models.The best F1 scores are in bold, with the second-best underlined. For training
parameters, the largest are in bold and the smallest are underlined.

Regarding the ADE dataset, the macro-averaged F1 scores are presented in Table 7.4. The
SpERT-NERE model achieved competitive performance with the second-highest NER F1 score of
92.37 %, while Boundary Assembling achieved the best F1 score of 92.50 %.

Concerning the performance of RE, TablERT-CNN-RE achieved the second-best score of 85.70 %,
while the Flan T5 (Large)+GPT-3-generated CoT achieved an F1 score of 92.17 %. In terms of
parameters, SpERT-NERE requires only 102M, significantly fewer than the 760M needed for the
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Flan T5 (Large)+GPT-3-generated CoT. This again illustrates the competitive performance of
WeLT models with fewer computational resources.

Across the three datasets, the WeLT models deliver modest performance in both NER and RE tasks,
often ranking among the best or second-best models in terms of F1 scores. The parameter efficiency
of WeLT models, typically around 102M to 110M, is a significant advantage over competing
models that require upwards of 235M to 175B parameters. This balance of high performance and
lower computational demands makes the WeLT models particularly attractive for deployment in
environments where resource efficiency is critical. Overall, the WeLT models demonstrate a strong
ability to maintain competitive and modest performance while also offering significant savings in
model size, making them a compelling choice for both NER and RE tasks.
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7.1.3 Final Assessment of WeLT Models

WeLT adjusts class weights for cost-sensitive learning to address class imbalance. As previously
mentioned, the datasets are skewed, and the use of standard loss functions, which assume that
error costs are equal for all classes, often leads to biased models. WeLT is a simple approach
that adjusts class weights, providing a straightforward solution to assign higher loss contributions
without needing to modify the model architecture, as it is typically implemented at the loss
function level. This flexibility enables WeLT models to be adaptable across a wide range of
architectures. WeLT does not involve augmenting the datasets with synthetic samples from the
minority class, which may lead to potential overfitting, and reduces the risk of inflating the data
size, which could increase training time. In contrast, WeLT models have the same training costs as
vanilla models.
Despite adjusting the class weights by setting higher weights for minority classes and penalising the
majority classes, WeLT still offers modest improvements. We suggest some justifications based on
overall performance observations:

• Although in WeLT we normalised class weights using the Softmax function to avoid
discrepancies in new rescaled weights between minority and majority classes, the emphasis on
boosting the performance of underrepresented classes by penalising misclassification more
heavily for those classes may inadvertently reduce the focus on correctly classifying instances
of majority classes. While the performance of minority classes improves, the performance of
majority classes may drop slightly, resulting in only modest overall improvements.

• Adjusting class weights mainly affects the decision threshold by increasing the importance
of the minority class. However, this does not introduce fundamentally new information to
improve feature extraction. Thus, the performance gains become marginal. Moreover, for
datasets with less pronounced imbalances, such as CoNLL04, the improvements are less
significant, and in some cases, the baselines remain the best choice. In contrast, the ADE
dataset and other highly skewed datasets in Chapter 3 show more consistent gains, especially
for the NER task.

• In noisy datasets, particularly in tasks with manual labelling, minority class labels often have
a higher error rate. Adjusting class weights emphasises these noisy instances, making the
model disproportionately affected by label noise in the minority classes. Hence, this may
degrade overall performance by making the model sensitive to incorrectly labelled instances,
particularly when working with noisy real-world datasets.

In summary, the improvements observed throughout Chapters 3 to 6, though modest, suggest
that WeLT-based approaches effectively contribute to better entity recognition and relation
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7 Conclusions and Future Work

extraction. However, they do not enhance the feature extraction capability of the model, which is
often crucial for achieving significant gains.

7.2 Outlook

While several clear pathways for future research are evident, predicting the immediate next steps is
challenging, given the swift pace of progress in NLP. Notably, even during the course of writing this
thesis, we have witnessed multiple iterations and innovations addressing some of the key limitations
outlined in this work. We believe that future research should focus on improving modelling
techniques, with an emphasis on the extraction of document-level relations and the establishment
of benchmarks for class imbalance in NLP:

• Enhancing entity and relation predictions with human-in-the-Loop: in our work, we
have released fine-tuned biomedical named entity recognition and joint entity-relation
extraction models. A promising extension involves using these models to pre-annotate text,
which can then be reviewed by domain experts. This process can be supported by the
INCEpTION (Klie et al., 2018) semantic annotation platform, which leverages external
recommender systems for annotation prediction. INCEpTION’s uncertainty sampling
technique aids in selecting and presenting uncertain examples to human annotators. This
human-in-the-loop approach enhances model performance, reduces the annotation work-
load, and ensures the model effectively learns from the most challenging and informative data
points.

• Potential improvements for large language models in information extraction: as discussed in
Chapter 3, LLMs still struggle to surpass the state-of-the-art scores achieved by encoder-only
models. We propose that this difficulty may stem from the limitations of zero-shot and
few-shot learning in effectively training LLMs for classification and information extraction
tasks. Therefore, we suggest incorporating additional domain-specific knowledge sources,
such as ontologies and taxonomies, into instruction-based techniques to potentially enhance
LLM performance for these tasks.

• Knowledge distillation: in Chapters 4 to 6, we presented fine-tuned WeLT models for joint
named entity and relation extraction. A promising extension of this work could involve
applying the knowledge distillation framework outlined by Gu et al. (2023). This framework
uses GPT-3.5 as a teacher model for self-supervision and employs PubMedBERT and
BioGPT as student models that learn from the teacher’s self-supervised labels. Similarly,
we suggest that our WeLT-based models could serve as effective teacher models. Given
that these models address class imbalance issues previously overlooked, they may offer
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7.2 Outlook

further performance enhancements. Additionally, exploring domain-specific LLMs, such as
BioMedLM, as teacher models, could be a valuable direction for future research.

• Establishing a benchmark for class imbalance in NLP: at present, there is no established
benchmark specifically addressing class-imbalanced settings (Henning et al., 2023). This
absence makes it challenging to compare evaluation results consistently across studies,
unlike the widely recognised benchmarks such as the General Language Understanding
Evaluation (Wang et al., 2018) and the Biomedical Language Understanding Evaluation (Peng
et al., 2019). While F1 scores remain the predominant metric in NLP, in scenarios involving
class imbalance, it is essential to supplement these scores with per-class performance metrics
to ensure a more comprehensive evaluation.

Finally, while significant efforts have been dedicated to sentence-level relation extraction, we believe
that relatively few attempts have addressed the use of document-level context (Christopoulou et al.,
2019; Zhou et al., 2021; Le et al., 2022). In our view, one of the key future directions should involve
adjusting model architectures to extend beyond sentence-level analysis and incorporate co-reference
resolution.
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Acronyms

2D image Two-dimensional Image
2D table Two-dimensional Table
2D-CNNs Two-dimensional Convolutional Neural Networks
ACD Attentional Contribution Algorithm
ACE Angiotensin-converting Enzyme
ACL Association for Computational Linguistics
ADE Adverse Drug Events
AMCA Tranexamic Acid
APIs Application Programming Interface
ARTHS Arboleda-Tham Syndrome
ASpERT Attention and Span-based Entity and Relation Transformer
BBFL Batch-balanced Loss
BC2GM BioCreative II Gene Mention
BC4CHEMD BioCreative IV Chemical and Drug
BC5CDR BioCreative V Chemical Disease Relation corpus
BERT Bidirectional Encoder Representations from Transformers
Bi-LSTM Bidirectional Long Short-term Memory
BioCreative Critical Assessment of Information Extraction Systems in

Biology
BioIE Biomedical Information Extraction
BioNEL Biomedical Named Entity Linking
BioNER Biomedical Named Entity Recognition
BioNLP Biomedical Natural Language Processing
BioNLP-ST BioNLP Shared Tasks
BioPLMs Biomedical Pre-trained Language Models
BioRE Biomedical Relation Extraction
BioRED Biomedical Relation extraction dataset
BiRNN Bidirectional Recurrent Neural Network
BLEU Bilingual Evaluation Understudy Score
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Acronyms

BPE Byte-pair Encoding
CAS Class-aware Sampling
CDR Chemical Disease Relation
ChatGPT Chat Generative Pre-trained Transformer
CID Chemical-induced Disease
CLMLE Cluster-based Large-margin Local Embedding
CNN Convolutional Neural Network
CoSen CNN Cost-sensitive Convolutional Neural Network
CoT Chain-of-thoughts
CTD Taxonomy Comparative Toxicogenomics Database
DL Deep Learning
DSPT Domain-specific Pre-training
DyGIE Dynamic Graph IE
EDA Easy Data Augmentation
EE Event Extraction
ENS Effective Number of Samples
ER-LAC Span-based Joint Entity and Relation Extraction Model with

Multi-level Lexical and Attention on Context Features
F1 F1 Score
FL Focal Loss
FN False Negatives
GDA Gene Disease Associations
GPT Generative Pre-trained Transformers
ICL In-context Learning
IE Information Extraction
IFT Instruction Fine-tuning
iNERD Informed Named Entity Recognition Decoding
INS Inverse of the Number of Samples
IOB Inside–outside–beginning Format
IR Imbalance Ratio
ISNS Inverse of the Square Root of the Number of Samples
JNERE Joint Entity and Relation Extraction
LDAM Label-distribution-aware Margin Loss
LLMs Large Language Models
LMLE Large Margin Local Embedding
LMs Language Models
LoRA Low-rank Adaption of Large Language Models
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Acronyms

LSTM Long Short-term Memory
MASS MAsked Sequence to Sequence Pre-training
MEDIC Medical dictionary for regulatory activities
MeSH Medical Subject Headings
Meta Llama Large Language Model Meta AI
MIMIC-III Medical Information Mart for Intensive Care
MLM Masked Language Modelling
MLP Multi-layer Perceptron
NCBI National Centre for Biotechnology Information
NER Named Entity Recognition
NestedNER Nested Entity Recognition
NLM National Library of Medicine
NLP Natural Language Processing
NSP Next Sentence Prediction
OMIM Online Mendelian Inheritance in Man
OOD Out-of-distribution
OOV Out-of-vocabulary
OverlapNER Overlapping Entities
P Precision
PaLM Pathways Language Models
PAS Performance-based Sampling
PEFT Parameter-Efficient Fine-tuning
PLMs Pre-trained Language models
PMC PubMed Central
PPI Protein-protein Interaction
PubMed PubMed Abstracts
R Recall
RE Relation extraction
ReLU Rectified Linear Unit
RETRO Retrieval Enhanced Transformer
RLHF Reinforcement Learning from Human Feedback
ROS Random Oversampling
ROUGE Recall-Oriented Understudy for Gisting Evaluation
RUS Random Undersampling
Seq2Seq Sequence-to-sequence Model
SFT Supervised Fine-tuningg
SOTA State-of-the-art
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Acronyms

SpERT Span-based Entity and Relation Transformer
SwiGLU Swish-Gated Linear Unit
T5 Text-to-Text Transfer Transformer
TANL Translation between Augmented Natural Languages
TP True Positives
UMLS Unified Medical Language System Semantic Network
WBCE Weighted Binary Cross-Entropy
WCE Weighted Cross-Entropy Loss
WeLT Weighted Loss Trainer
WP WordPiece
XLMs Cross-lingual Language Model
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Glossary

pr A vector of relative class frequencies
fa(s) Attentional contribution degree
ES BERT embedded sequence
br Bias term for relation classification layer
bs Bias vector for span classifier
B Billion
BCE Binary cross-entropy loss
α j Weight associated to class j

e[CLS ] Classifier token
1 −

n j∑c
k=1 nk

The complement of the relative frequency of class j compared
to the overall frequency of all classes

◦ Concatenation
α Confidence threshold
Θ Contribution degree threshold
CE Cross-entropy loss
d Document
d1 Embedding dimension
e j Embedding vector
ei Entity type in the document d ∈ E

F1i F1 score for class i

xs Final input to the span classifier
ne Fixed number of random non-entity spans
nr Fixed number of random non-relation samples
f Fusion function via max-pooling

eh Head entity
nhead j Total number of instances where the entity appears as the head

of the relation
Lr Loss of relation classifier
Ls Loss of the span classifier
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Glossary

masks Mask score
max Max-pooling function
fl Max-pooling fusion function in ASpERT
M Million
p Model prediction vector
n j Number of instances in class j

ns Number of spans
Pi Percision for class i

S gt Positive span sample
E Predefined set of entity types/categories
R Predefined set of relation types/categories
ŷs The predicted posterior probability distribution over each

entity class (including the none class) for the span s

ŷr
1/2 The predicted posterior probability distribution over each

relation class (including the none class) for the span s

p j Predicted probabilty for class j

Ri Recall for class i

nr The number of instances of the relation class indexed by j

ri Relation type in the document
Wr Relation’s weight matrix
we Rescaled entity weights
wr Rescaled relation weights
di Sentence
T Sequence of tokens in the document
Rd1 Set of all dl dimensional vectors
A Set of all possible annotations in the document
S Set of Spans
γ Sigmoid function
σ Softmax activation function
ls Span’s length
k + 1 Span width
e(s) Span’s embedding
ε Span’s variable length threshold
W s Span’s weight matrix
s Span
Y Table-filling matrix
et Tail entity
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Glossary

ntail j Total number of instances where the entity appears as the tail of
the relation

y Target vector
IR j The imbalance ratio for class j

da The number of BERT’s attention heads
ks The number of entity classes (including none)
m The number of hidden layer units of the MLP
K Thousand
ti Token in the document
nk Total class frequency
c Total number of entity types/classes
ps Total number of possible spans
r Total number of relation classes
n Total number of tokens
td Training Datasets
y j True label for class j

β Tunable focusing parameter
W s The weight matrix of the Softmax classifier
wk Width embedding
pr j is the proportion of samples in class j with respect to the total

class frequency nk
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Appendix

Hyper-parameters

We report all the hyperparameters for BioNER experiments in Section 3.4.4. Here is the brief
description of the hyperparameters as follows:

• maximum sequence length denoted by max_seq_length, which represents the maximum
length of texts the BERT model can process,

• train batch size designated by train_batch_size, referring to the number of training instances
in each batch, and

• training epochs denoted by num_train_epochs, identifying the number of epochs
comprising one complete pass through the entire training dataset with predefined iterations.

Model max_seq_length train_batch_size num_train_epochs
BioBERT 384 5 20
BlueBERT 128 32 30
PubMedBERT 512 5 30
SciBERT 384 5 20
BioELECTRA 512 5 100

Table 1: Hyper-parameters for fine-tuning BioRED-Chemical

Model max_seq_length train_batch_size num_train_epochs
BioBERT 384 5 20
BlueBERT 128 32 30
PubMedBERT 320 8 10
SciBERT 512 5 30
BioELECTRA 256 16 13

Table 2: Hyper-parameters for fine-tuning BioRED-Disease
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Model max_seq_length train_batch_size num_train_epochs
BioBERT 320 8 10
BlueBERT 256 16 13
PubMedBERT 512 5 75
SciBERT 320 8 30
BioELECTRA 384 12 20

Table 3: Hyper-parameters for fine-tuning BC5CDR-Chemical

Model max_seq_length train_batch_size num_train_epochs
BioBERT 512 5 30
BlueBERT 256 16 13
PubMedBERT 512 5 30
SciBERT 256 16 13
BioELECTRA 256 16 13

Table 4: Hyper-parameters for fine-tuning BC5CDR-Disease

Model max_seq_length train_batch_size num_train_epochs
BioBERT 128 32 30
BlueBERT 320 8 80
PubMedBERT 384 5 20
SciBERT 320 8 30
BioELECTRA 128 32 30

Table 5: Hyper-parameters for fine-tuning BC4Chem

Model max_seq_length train_batch_size num_train_epochs
BioBERT 320 8 10
BlueBERT 256 16 20
PubMedBERT 320 8 20
SciBERT 256 16 13
BioELECTRA 384 12 10

Table 6: Hyper-parameters for fine-tuning Linnaeus
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Model max_seq_length train_batch_size num_train_epochs
BioBERT 128 32 30
BlueBERT 256 16 40
PubMedBERT 256 16 30
SciBERT 128 32 30
BioELECTRA 384 12 10

Table 7: Hyper-parameters for fine-tuning BC2GM-Gene

Model max_seq_length train_batch_size num_train_epochs
BioBERT 384 5 20
BlueBERT 256 16 13
PubMedBERT 384 5 20
SciBERT 256 16 13
BioELECTRA 256 16 5

Table 8: Hyper-parameters for fine-tuning NCBI

We report all the hyperparameters for BioNER and BioNEL experiments in Section 3.6.

Model max_seq_length train_batch_size num_train_epochs
NCBI 320 8 10
BC5CDR-disease 320 8 10
BC5CDR-chemical 256 16 10
BioRED-disease 384 8 10
BioRED-chemical 128 32 10

Table 9: Hyper-parameters for fine-tuning BioNER and BioNEL
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We report all the hyperparameters for SpERT-WeLT experiments in Section 4.4.

Hyper-parameters CoNLL04 & ADE(train_development)
Entity negative sampling 100
Relation negative sampling 100
Pre-trained model type BERTBAS E(cased)
Width embedding size 25
Batch size 2
Relation classifier threshold 0.4
Optimizer Adam
Peak learning rate 5e-5
Linear warmup learning rate 0.1
Linear decay learning rate 0.01
Epochs 20
Batch size 2

Table 10: Hyper-parameters for SpERT-WeLT experiments

We report all the hyperparameters for ASpERT-WeLT experiments in Section 5.3. We have used
the same hyperparameters as ASpERT experiments with an exception of batch size, due to limited
computational resources.

Hyper-parameters CoNLL04 & ADE(training)
Entity negative sampling 150
Relation negative sampling 150
Span classifier MLP size 784
Contribution threshold 0.5
MLP dropout 0.1
Pre-trained model type BERTBAS E(cased) & BioBERT (cased) for ADE
Width embedding size 25
Batch size 2
Relation classifier threshold 0.4
Optimizer Adam
Peak learning rate 5e-5
Linear warmup learning rate 0.1
Linear decay learning rate 0.01
Epochs 20
Batch size 2

Table 11: Hyper-parameters for ASpERT-WeLT experiments
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We report all the hyperparameters for TablERT-CNN-WeLT experiments in Section 6.4.

Hyper-parameters CoNLL04(train_development) ADE(train_development)
CNN configuration
Kernel size (Fh × Fw) 3 × 3 3 × 3
Number of Layers L 2 3
Hidden Dimension d(l) 512 256|512
Training configuration
Batch size 8 16
Pre-trained model type BERTBAS E(cased) BERTBAS E(cased)
BERT learning rate 5e-5 5e-5
Learning rate for other parameters 1e-3 1e-3
Dropout 0.3 0.3
Epochs 30 30
Warm-up period 0.2 0.2

Table 12: Hyper-parameters for TablERT-CNN-WeLT experiments
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