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Abstract

Inference tasks on non-Gaussian posterior distributions are commonly approached using
Markov chain Monte Carlo. We draw an analogy to canonical partition functions
defined as Laplace transforms of the Bayesian likelihood and prior. This allows to derive
analytical expressions for cumulants of the posterior. At second order, we recover the
conventional Fisher matrix formalism. We find a closed formula for cumulants of weakly
non-Gaussian posteriors. Additionally, we use this formalism to construct physically
motivated convergence criteria with clearly defined target values based on virialization,
equipartition, and thermalization of the Markov chain. We successfully validate these
approaches using a dark energy model applied to supernova data. To speed up forward
simulation we use physics-informed neural networks (PINNs). They provide fast and
accurate predictions of the luminosity distance for a given choice of parameters. Using
the same architecture we perform a model-independent, parameter-free reconstruction of
the Hubble function. The PINN uncertainties are quantified using a heteroscedastic loss
and repulsive ensembles. Continuing in the vein of fast simulations, we construct the
parallelized inflation solver Parallizis, based on the Madelung transformed perturbation
equations. It provides a forward simulation from arbitrary inflaton potentials to the
primordial power spectrum, while allowing for GPU parallelization.

Zusammenfassung

Das Markov-Chain-Monte-Carlo-Verfahren ist eine übliche Methode zur Inferenz auf
nicht-Gaußschen A-posteriori-Verteilungen. Markov-Ketten können als Random Walk in
einem, durch eine statistische Zustandssumme bestimmten, thermischen System verstan-
den werden. Hierbei ist die Zustandssumme als Laplace-Transformation der bayesschen
Likelihood und A-priori-Verteilung definiert. Diese kann als kumulantenerzeugende
Funktion genutzt werden. Aus den Kumulanten erster und zweiter Ordnung lässt sich wie-
derum der Fisher-Matrix-Formalismus herleiten. Darüber hinaus wird eine geschlossene
Formel für Kumulanten schwach nicht-Gaußscher A-posteriori-Verteilungen konstruiert.
Die so definierten Zustandssummen werden in der Folge genutzt, um, basierend auf der
Virialisierung, Äquipartition und Thermalisierung von Markov-Ketten, Konvergenzkri-
terien mit klar definierten Zielwerten zu entwickeln. Anschließend werden Supernova
Daten verwendet, um diese Ansätze erfolgreich auf ein Modell Dunkler Energie anzu-
wenden. Dabei wird die Konvergenz der untersuchten Markov-Ketten durch den Einsatz
Physik-informierter neuronaler Netze (PINNs) beschleunigt, welche schnelle und präzise
Vorhersagen der Leuchtkraftentfernung liefern. Diese Architektur wird verwendet, um
eine modellunabhängige, parameterfreie Rekonstruktion der Hubble-Funktion zu erstellen.
Hierbei werden die Unsicherheiten über heteroskedastische Verlustfunktionen und repul-
sive Ensembles quantifiziert. Ferner wird ausgehend von den Madelung-transformierten
Mukhanov-Sasaki-Gleichungen eine GPU-parallelisierte Inflationssimulation vorgestellt.
Diese bestimmt die primordialen Fluktuationen nach der Inflation ausgehend von einem
beliebigen Inflatonpotential.
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1 Introduction

The inflationary paradigm, first suggested by [Sato, 1981, Starobinsky, 1980, Guth,
1981], introduces exponentially accelerated expansion in the early Universe to cure the
cosmological standard model ΛCDM of the horizon and flatness problems. This period
of exponentially accelerated expansion is used to explain the experimentally observed,
almost perfect isotropy of the Cosmic Microwave Background (CMB) [Bennett et al.,
1992]. In addition, quantum fluctuation during this rapid expansion can be understood
as the seeds of structure formation through the perturbation equations formulated in
[Mukhanov et al., 1992, Maldacena, 2003].

The curvature fluctuations seeded in the early universe are later observed through
temperature and polarization anisotropies in the CMB, [Smoot et al., 1992, Bennett et al.,
1996, Akrami et al., 2020]. Additionally, they source density fluctuations in the matter
power spectrum. These can in turn be observed through the galaxy power spectrum
[Almeida et al., 2023]. Future probes of the primordial power spectrum include new CMB
experiments such as LiteBIRD [Allys et al., 2023], CMB-S4 [Abazajian et al., 2022] and
galaxy surveys such as Euclid [Mellier et al., 2024]. Additionally, HI intensity mapping
offers a new avenue to measure the matter power spectrum in a larger redshift range
[Bacon et al., 2020].

At redshifts around and below one, observation of type Ia supernovae provide evidence
for another period of accelerated expansion [Riess et al., 1998, Perlmutter and et al., 2003,
Perlmutter et al., 1999]. It is driven by dark energy with equation of state w < −1

3 . While
the cosmological constant in ΛCDM plays the role of dark energy with w = −1, there
are compelling arguments for evolving dark energy [Wetterich, 1988, Ratra and Peebles,
1988, Linder, 2008, Tsujikawa, 2013, Mortonson et al., 2013]. Numerical applications
often work with constant or linearly evolving equations of state [Chevallier and Polarski,
2001, Linder, 2003].

The dark energy equation of state can be reconstructed from measurements of the Hubble
function H(a). We focus on the supernova type Ia catalogs Union2.1 [Suzuki et al., 2012,
Amanullah et al., 2010, Kowalski et al., 2008] and Pantheon+ [Scolnic et al., 2022] as
redshift dependent probes of the Hubble function.

We develop methods to explore these two periods of accelerated expansion on supernova
type Ia and CMB data. The first part of this thesis constructs a partition function
approach to gain a physical intuition into the behavior of inference tasks focusing on
Markov chain Monte Carlo (MCMC). To that end, chapter 2 provides an introduction
to probability theory, sampling and Markov chains. Following that, chapter 3 explores
partition functions constructed from the evidence of an inference task. Section 3.1.2
uses the partition function to generate cumulants of the posterior distribution. When a
Gaussian approximation of the posterior is permissible, the Fisher formalism [Tegmark
et al., 1997], based on the first two cumulants, fully captures its shape. This approach
is applied throughout cosmology [Bassett et al., 2009, 2011, Coe, 2009, Elsner and
Wandelt, 2012, Refregier et al., 2011, Amara and Kitching, 2011, Raveri et al., 2016]. For

1



1 Introduction

weakly non-Gaussian posteriors the formalism can be extended, often using higher-order
cumulants [Wolz et al., 2012, Giesel et al., 2021, Schäfer and Reischke, 2016, Sellentin
et al., 2014]. For this type of distribution we derive an analytical approximation to
cumulants of any order.

In general, cosmological posteriors are non-Gaussian and can be high dimensional. This
behavior is captured by Markov chain Monte Carlo which has become an important tool for
inference in cosmology starting with [Lewis and Bridle, 2002]. The samples of the Markov
chain become representative of the underlying distribution only after burn-in [Roberts and
Rosenthal, 2001, Tierney, 1994]. Their convergence is often quantified using the Gelman-
Rubin criterion [Gelman and Rubin, 1992, Vats and Knudson, 2021]. Sampling processes
in an MCMC algorithm can be understood as a random walk in the thermodynamic
system described by the partition function based on the evidence. By constructing
a partition function for samples from the Hamilton Monte Carlo algorithm [Duane
et al., 1987, Neal, 2012] section 3.3 defines convergence criteria based on virialization,
equipartition and thermal equilibrium.

In the second part of the thesis, chapter 4 gives a more thorough introduction to the
physics of inflation and a brief introduction to the different data sets used throughout
the thesis. In addition, it contains a brief introduction to neural networks, uncertainty
estimation and physics-informed neural networks (PINNs) [Raissi et al., 2017, Piscopo
et al., 2019, Araz et al., 2021, Li et al., 2021, Cuomo et al., 2022, Hao et al., 2022].

Continuing with the theme of inference, chapter 5 uses PINNs to reconstruct the Hubble
function from supernova data. Section 5.2 describes an emulator for the forward simulation
based on the differential equation governing the evolution of the luminosity distance.
This emulator is used in section 3.3.5 to speed up the forward simulation needed to infer
parameters using an MCMC approach. Additionally, section 5.3 introduces a method to
find a neural network based, redshift-dependent reconstruction of the Hubble function.
In this approach, the Hubble function is represented using a fully connected network
equipped with uncertainty estimates, based on heteroscedastic loss functions [Le et al.,
2005, Gal, 2016] and repulsive ensembles [D’Angelo and Fortuin, 2021]. The Hubble
function and its uncertainties are reconstructed based on supernova type Ia distance
moduli.

Cosmological inference of the primordial potential using MCMC methods requires fast
simulations of either the angular power spectra in the CMB or the matter power spectrum.
In current CMB experiments [Akrami et al., 2020] this task is performed using Boltzmann
solvers such as class [Blas et al., 2011] and camb [Lewis et al., 2000]. Chapter 6
introduces the GPU parallelized inflation solver Parallizis based on the differential
equation solver implemented in torchdiffeq [Chen et al., 2018]. Section 6.1 provides
the theoretical groundwork for the differential equations used in the solver, identifying
a constant in the perturbation equation for each mode. The implementation of the
parallelized inflation solver is described in section 6.2. The last section in this chapter
6.3 describes an emulator approach to connect primordial power spectra to observations
in cosmology.

2



Part I

Partition Functions in Inference
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2 Probability Theory and Sampling

This chapter provides a rough introduction to the aspects of Bayesian statistics needed
as a foundation for [Röver et al., 2023a,b]. More complete introductions can be found in
[Sivia and Skilling, 2006] and [MacKay, 2003].

Throughout this chapter parameter tuples θµ and data tuples yi are denoted as vectors
with contravariant indices. Latin indices indicate objects in data space, while Greek indices
denote objects in parameter space. With this convention, covariances are contravariant
tensors. For example the data covariance is Cij = ⟨yiyj⟩ − ⟨yi⟩⟨yj⟩ the corresponding
covariant tensor denotes its inverse CijCjk = δi

k. A similar convention is used in parameter
space for the Fisher matrix Fαβ.

Section 2.1 introduces relevant concepts from probability theory and information theory,
while section 2.2 introduces moments, cumulants and their generating functions and
section 2.3 gives a brief introduction to inference. Finally, section 2.4 gives a brief
derivation of partition functions in probability theory.

2.1 Basic probability theory

The basic framework of probability theory is centered on the concept of a measure space
Ω = (X, A, P ). In this triple, X is the set of all possible outcomes a random variable can
take. The second entry is a σ-algebra on this set, containing all measurable subsets of
X. Third, P is the probability measure that assigns a probability to each of the subsets
A ∈ A. In the context of this thesis, the set of possible outcomes is the n dimensional
real numbers, X = Rn. The Borel algebra B(Rn) constitutes a σ-algebra on this set. The
measure is then set by different probability densities p(x) as p(x)dx. They fulfill the
relation ∫︂ ∞

−∞
p(x)dx = 1, p(x) > 0. (2.1)

The probability of an event A can be recovered as

P (A) =
∫︂

A
p(x)dx. (2.2)

Probability densities transform under variable transformations x → y such that p(x)dx =
p(y)dy.

In information theory, the Shannon information content of an outcome x is defined as

I(x) = − ln(p(x)). (2.3)

The expected information content of a probability distribution is the Shannon entropy

S = −
∫︂

dxp(x) ln p(x). (2.4)

5



2 Probability Theory and Sampling

When the outcome of a process is very certain the entropy is small. When all possibilities
are equally likely the entropy is maximized.

Joint probability densities describing the probability of two separate events admit to
the following relations. The probability density for one event can be recovered through
marginalization

p(x) =
∫︂ ∞

−∞
p(x, y)dy. (2.5)

They can be expressed using conditional probabilities p(x|y) describing the probability
of x given y is true as

p(x, y) = p(x|y)p(y) = p(y|x)p(x). (2.6)

This relation gives rise to Bayes theorem

p(x|y) = p(y|x)p(x)
p(y) . (2.7)

In Bayesian parameter inference, for a review in cosmology see [Trotta, 2008], Bayes
theorem is used to recover probability distributions of parameters θ given data points y.
Usually, it takes the form

p(θ|y, M) = L(y|θ, M)π(θ|M)
p(y|M) . (2.8)

Typically, the probability distribution of interest is the posterior p(θ|y, M). It describes
the probability distribution of the parameters in a model M given the data. The
likelihood L(y|θ, M) describes how likely it is to generate the data points for a given set
of parameters in the model. The prior π(θ|M) describes the knowledge or assumptions
prior to conducting the experiment. The evidence is recovered from the expression
p(y|M) =

∫︁
L(y|θ, M)π(θ|M)dθ. It is used in model selection tasks to compare the

probabilities that different models M1 and M2 give rise to the observed data points. For
applications in cosmology see [Jaffe, 1996, Trotta, 2007, Schosser et al., 2024].

For most of this thesis, the likelihood and sometimes the prior are assumed to be part of
the exponential family. They can be expressed as

L(y|θ) = 1
NL

exp
(︃

−1
2χ2(y|θ)

)︃
π(y) = 1

Nπ
exp

(︃
−1

2ϕ(y)
)︃ (2.9)

respectively. Here Np are the respective normalizations and χ2(y|θ) is a function of the
parameters and the data points. The dependence on the model is omitted for brevity.
This results in a posterior that is also part of the exponential family

p(θ|y) ∝ exp
(︃

−1
2(χ2(y|θ) + ϕ(y))

)︃
. (2.10)

6



2 Probability Theory and Sampling

2.2 Cumulants and moments

Given a probability density p(x) the expected outcome of some function f(x) of the
random variable can be computed as

⟨f(x)⟩p =
∫︂ ∞

−∞
f(x)p(x)dx. (2.11)

For a set of samples from this probability distribution {xi}i=1,...N the expectation value
can be approximated as

⟨f(x)⟩p ≈ 1
N

N∑︂
i=1

f(xi). (2.12)

The moments of a probability distribution are defined as

mn =
∫︂ ∞

−∞
xnp(x)dx. (2.13)

They can be generated from a moment-generating function

M(t) = ⟨etx⟩ =
∞∑︂

n=0

tn⟨xn⟩
n! , (2.14)

where the n-th moment is recovered from the moment-generating function as

mn = ∂nM(t)
∂tn

⃓⃓⃓⃓
t=0

. (2.15)

Cumulants κn are constructed as an alternative to moments using the cumulant generating
function

K(t) = log⟨etx⟩ =
∞∑︂

n=0
κn

tn

n! . (2.16)

Similar to the moments the n-th cumulant is recovered from the cumulant generating
function as

κn = ∂nK(t)
∂tn

⃓⃓⃓⃓
t=0

. (2.17)

In practice, this means that given a set of samples from some unknown probability
distribution, we can construct expectation values of this distribution. This situation
arises when we measure some quantity but do not understand the process generating it.
For some probability densities, it is possible to recover the underlying parameters from
their moments or cumulants. A normal distribution

N (x|µ, σ2) = 1√
2πσ2

exp
(︄

−1
2

(x − µ)2

σ2

)︄
, (2.18)

is fully characterized by both its first two moments m1 = µ, m2 = σ2 + µ2 or equivalently
its first two cumulants κ1 = µ, κ2 = σ2. While the higher moments of a normal
distribution are non-zero, all higher cumulants are zero. Since the cumulant generating
function cannot be a finite polynomial of degree greater than two [Lukacs, 1970] higher
order cumulants give an indication of how non-Gaussian the probability distribution
behaves. Weakly non-Gaussian probability distributions κn

κ
n
2
2

≪ 1 can be reconstructed

7



2 Probability Theory and Sampling

using the Gram-Charlier series

p(x) ≈ 1√
2πκ2

exp
(︄

−1
2

(x − µ)2

κ2

)︄⎛⎝1 +
∞∑︂

n=3

κn

κ
n
2
2 n!

Hn

(︃
x − κ1

κ2

)︃⎞⎠ . (2.19)

Here, Hn(x) are the Hermite polynomials of nth order. A multivariate form of this series
is presented in [Berkowitz and Garner, 1970, Juszkiewicz et al., 1995, Giesel et al., 2021].
For large cumulants this expression may diverge and not constitute a valid probability
density [Cramér, 1999]. Whenever a Gaussian approximation of the posterior is sufficient,
the Fisher-formalism can be used to approximate the parameter covariance [Tegmark
et al., 1997]. Another way to approximate weakly non-Gaussian distributions from its
cumulants or moments is derived in the DALI expansion [Sellentin, 2015a].

2.3 Sampling and inference

The previous section gives a strategy for discovering the parameter values for a normal
distribution as well as finding some hint on the shape of weakly non-Gaussian distributions.
Inference tasks employ Bayes theorem (2.8) to find a probability distribution in the
parameters. The model mapping the parameters θ to the data space is fixed as ymodel(θ).
For the experiments in this thesis, the likelihoods are assumed to be normally distributed
in the data points. They take the form

L(y|θ) = 1√︁
(2π)n det C

exp
(︃

−1
2 (y − ymodel(θ))i Cij (y − ymodel(θ))j

)︃
. (2.20)

The correlations between different data points are expressed in the inverse covariance
matrix Cij . For non-linear models the corresponding posterior is not a normal distribution
in the parameters. While it is often possible to find the functional form of the posterior
p(θ1, . . . θN |y), both its normalization and its marginals p(θi|y) are usually not accessible
through analytic calculations. Gaining a qualitative understanding of which parameter
ranges are favored given a set of data points usually requires finding lower-dimensional
marginals of the probability distribution.

For some classes of distributions, including uniform distributions and normal distributions,
the generation of samples is straightforward. More sophisticated methods are needed for
more general functional forms. There is a wide range of methods to make these posterior
probabilities tractable including Markov chain Monte Carlo (MCMC) [Metropolis et al.,
1953, Hastings, 1970], variational inference [Jordan et al., 1999, David M. Blei and
McAuliffe, 2017], nested sampling [Skilling, 2006] and recently simulation-based inference
[Schafer and Freeman, 2012, Cameron and Pettitt, 2012, Weyant et al., 2013]. In this
thesis, MCMC methods are used to generate samples from the posterior distribution.
While they usually do not give access to the evidence, they allow for robust estimates of the
marginal probability distributions. MCMC methods are a central tool in cosmology since
their introduction in [Lewis and Bridle, 2002]. They outperform grid-based evaluation
methods, especially in high dimensions. This is due to the method’s ability to generate
more samples in parameter regions with higher likelihood.
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2 Probability Theory and Sampling

Markov chains

A Markov chain is a set of random variables {θ1, θ2, ...}, where the probability of drawing
the next number θn+1 depends only on the previous number T (θn+1|θ1, θ2, . . . , θn) =
T (θn+1|θn). When there is a unique stationary distribution such that∫︂ ∞

−∞
p(θi)T (θi|θj)dθi = p(θj), ∀θj , (2.21)

an infinitely long ergodic Markov chain can be understood as samples from the stationary
distribution. A distribution is stationary if it fulfills the detailed balance condition

p(θj)T (θi|θj) = p(θi)T (θj |θi). (2.22)

This allows to generate samples from the probability distribution p(θ) by designing a
transition probability T (θi|θj) such that detailed balance is fulfilled.

Metropolis-Hastings

One of the earliest algorithms still in use for this problem is the Metropolis-Hastings
algorithm [Hastings, 1970]. It is used to generate samples {θ1, θ2, . . . , θN } from the
distribution p(θ). It uses a proposal distribution q(θi|θj) to generate a proposal for the
next step. This proposal is then accepted with the probability

α(θi, θj) = min
{︄

1,
p(θi)q(θj |θi)
p(θj)q(θi|θj)

}︄
. (2.23)

This defines the transition probability as T (θi|θj) = α(θi, θj)q(θi|θj), ensuring that
detailed balance holds for the desired stationary distribution

p(θj)T (θi|θj) = min {p(θj)q(θi|θj), p(θi)q(θj |θi)} = p(θi)T (θj |θi). (2.24)

The desired set of samples is generated through the following steps:

1. Choose an initial θi and compute probability p(θi)

2. Generate a candidate θj ∼ q(θj |θi) and compute p(θj)

3. Accept or reject candidate according to α(θi, θj)

4. If the candidate is rejected repeat the previous point in the chain

5. Repeat steps 2 to 4 until the desired chain length is reached.

The resulting set of samples depends on the choice of initial point θi, especially when
it is far away from the mass of the probability distribution sampled. The movement
of the chain towards the mass of the distribution is referred to as burn-in. Usually,
the burn-in points are dropped when analyzing the samples. The performance of this
algorithm depends on how well the proposal distribution is tailored towards the stationary
distribution.

9



2 Probability Theory and Sampling

Hamilton Monte Carlo

There are several ways to improve on this algorithm, section 3.3 focuses on Hybrid
(Hamilton) Monte Carlo (HMC). These modifications of the Metropolis-Hastings algorithm
were proposed by [Duane et al., 1987, Betancourt, 2017], and their working principles are
reviewed in [Neal, 2012, Jasche and Kitaura, 2010]. In HMC, the original probability
distribution P (θ) = 1

N exp
(︂
−1

2χ2(θ)
)︂

is modified to include a set of momentum directions

P (θ, p) = 1
Z

exp (−H(θ, p))

= 1
Z

exp
(︃

−1
2χ2(θ) − 1

2K(p)
)︃

= 1
Z

exp
(︃

−1
2χ2(θ)

)︃
exp

(︃
−1

2K(p)
)︃

.

(2.25)

Usually K(p) = p2. This effectively doubles the number of parameters while the distribu-
tion in the momenta is a multivariate normal with a diagonal covariance matrix. The
Hamiltonian equations of motion

dθα

dt
= ∂H

∂pα
= 1

2
∂K(p)

∂pα

dpα

dt
= − ∂H

∂θα
= −1

2
∂χ(θ)
∂θα

,

(2.26)

allow us to move in parameter and momentum space without changing the overall
Hamiltonian H(θ, p). Greek indices denote entries in the parameter vectors. It is worth
noting that these equations incorporate information on the gradients of χ. Trajectories
fulfilling the Hamilton equations of motion do not change the joint momentum and
parameter distribution (2.25). HMC exploits this, in addition to the fact that the
momentum and parameter distribution are independent, to generate proposals in a
Markov chain.

At each step in the algorithm, a momentum p is drawn from the normal momentum
probability P (p) ∝ exp

(︂
−1

2K(p)
)︂
. The algorithm effectively moves to a different energy

shell. The previous parameters θold are evolved according to the Hamilton equations
(2.26). The resulting combination (θc, pc) is treated as the candidate. Similar to the
Metropolis-Hastings algorithm an acceptance probability α((θc, pc), (θold, p)) is computed.
Since the energy shell has not changed between these two combinations the proposal is
nearly always accepted.

While this algorithm samples from the joint probability distribution in momentum and
parameter space, the Hamiltonian is designed such that the distributions are independent
of each other. The probability distribution in parameter space can be recovered by
marginalizing over momentum space∫︂

dnpP (θ, p) = N

NZ
exp

(︃
−1

2χ2(θ)
)︃∫︂

dnp exp
(︃

−1
2K(p)

)︃
= 1

N
exp

(︃
−1

2χ2(θ)
)︃

= P (θ).

(2.27)

When computing expectation values this marginalization is performed by summing over

10



2 Probability Theory and Sampling

all possible momenta.

Compared to the Metropolis-Hastings algorithm, HMC converges to the desired stationary
distribution quicker for curved and narrow probability distributions. Additionally, HMC
performs better for higher dimensional parameter spaces. For an application in cosmology
see [Jasche and Kitaura, 2010, Kitaura and Ensslin, 2008].

Other commonly used methods in cosmology include ensemble samplers such as emcee
[Foreman-Mackey et al., 2013]. Where multiple interacting Markov chains are used to
map the parameter space efficiently. While emcee uses the distance to other Markov
chains to propose candidate steps [Herzog et al., 2024] allows for a variable number of
active chains, mirroring a macrocanonical ensemble in statistical physics.

Convergence

The algorithms discussed previously use the properties of Markov chains to generate
a set of samples {θ0, θ1, . . . , θn}. However, detailed balance with a unique stationary
distribution only guarantees the convergence to this distribution for infinitely long Markov
chains. One of the most commonly used methods to quantify the convergence of a set
of Markov chains is the Gelman-Rubin criterion [Gelman and Rubin, 1992, Brook and
Gelman, 1997, Roberts et al., 1997]. It compares the variance of samples within a single
chain with the variance of samples between m different chains. The parameter mean
from a single chain i is denoted as θi with the overall mean µ̂ = 1

m

∑︁m
i=1 θi. The samples

of the ith chain have the variance s2
i = 1

n−1
∑︁n

t=1

(︂
θi,t − θi

)︂2
. The first estimator for the

variance is constructed as the average of the different chain variances

s2 = 1
m

m∑︂
i=1

s2
i . (2.28)

Due to positive correlation in the Markov chain, s2 underestimates the target variance.
A second estimate for the true variance of the distribution can be found with the help of
the variance of the means between chains

B

n
= 1

m − 1

m∑︂
i=1

(θi − µ̂)2. (2.29)

The second estimator is then defined as

σ̂2 = n − 1
n

s2 + B

n
. (2.30)

This estimator is designed to overestimate the true variance. The ratio of the two
estimators converges to one as the chains converge. This defines the Gelman-Rubin R

R =

√︄
σ̂2

s2 . (2.31)

A more thorough derivation, as well as a multivariate version can be found in [Brook
and Gelman, 1997]. Additionally, [Vats and Knudson, 2021] includes variants applicable
to singular Markov chains. Other methods of assessing the convergence are based on
the effective sample size of a Markov chain [Gong and Flegal, 2014, Vats et al., 2019].
Additionally, [Jones et al., 2006] propose computing the expected error for the estimated
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quantities from different batches of a single chain. Section 3.3 proposes convergence
criteria based on a partition function approach to Markov chains.

2.4 Partition functions in probability theory

This section gives an introduction to the partition function formalism used in [Röver
et al., 2023a,b]. It contains parts of the introductions and calculations first published
there. Partition functions can be used as an approach to understand some of the tools
discussed in the previous sections. This approach is based on [Jaynes, 1957]. Here,
thermodynamics is cast as a theory of information. Our approach establishes methods
similar to partition functions from thermodynamics as a tool to gain insight into the
relations between physical models and the shape of the likelihood. In particular, when
likelihood, prior and posterior belong to the exponential family they can be expressed as

L(x|θ) ∝ exp
(︃

−1
2χ2(y|θ)

)︃
,

π(θ) ∝ exp (−ϕ(θ)) ,

p(θ|y) ∝ exp
(︃

−
(︃1

2χ2(y|θ) + ϕ(θ)
)︃)︃

.

(2.32)

This exponential structure is reminiscent of the probability of finding a microstate with
energy ∆Φ in statistical physics. A thermal bath can provide this energy at the Boltzmann
probability p = exp(−β∆Φ). By defining the potential as

Φ(θ) = χ2(y|θ)/2 + ϕ(θ) (2.33)

we can understand the parameters θµ in a Markov chain as a time series of positions
in parameter space obtained by performing a thermal random walk. The properties of
the time series are determined by the sampling algorithm. The probability of finding a
particle at a position θµ is determined by the posterior distribution.

2.4.1 Metropolis-Hastings partitions

The construction of the partition function is based on the Bayesian evidence

p(y) = 1
NLNπ

∫︂
dnθ exp

(︃
−
[︃1

2χ2(y|θ) + ϕ(θ)
]︃)︃

. (2.34)

The likelihood and the prior are assumed to belong to the exponential family. In analogy
to a canonical partition function, we introduce sources Jα and an inverse temperature β.
The partition function can then be defined as

Z[β, Jα] = 1
NLNπ

∫︂
dnθ exp

(︃
−β

[︃1
2χ2(y|θ) + ϕ(θ)

]︃)︃
exp(βJαθα) (2.35)

where the inverse temperature β and the sources Jα play the role of state variables. The
evidence is recovered for β = 1 and Jα = 0. This construction closely resembles the
definition of the moment-generating function of the posterior (2.14) for β = 1. The
difference is a normalization factor given by the evidence. This difference is intentional
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since the evidence is difficult to access for most inference problems. The temperature
scaled logarithm of the partition function can be understood as the Helmholtz energy

F [β, Jα] = 1
β

ln Z[β, Jα]. (2.36)

This corresponds to the cumulant generating functional (2.16), offset by the evidence.
The evidence is constant in the parameters and does not affect the derivatives of the
Helmholtz energy with respect to the sources.

In this system, the energy of a particle is entirely determined by its position in parameter
space through its potential

Φ(θ) = 1
2χ2(y|θ) + ϕ(θ). (2.37)

A thermal random walk with respect to this potential can be generated using the
Metropolis-Hastings algorithm.

2.4.2 Hamilton Monte-Carlo partitions

To fully accommodate Hamilton Monte Carlo sampling the partition function formalism
needs to be extended by a kinetic term T (p). For a given position θµ and conjugate
momentum pµ the microscopic energy can be described using the Hamiltonian function
H(p, θ) [Liu, 2004, Betancourt, 2017]

H(p, θ) = T (p) + Φ(θ). (2.38)

This Hamiltonian function can then be used to define a new partition function of the
form

Z[β, Jα, Kα] = 1
N

∫︂
dnp

∫︂
dnθ exp (−βH(p, θ)) exp (βJαθα) exp (βKαpα) (2.39)

with analogous sources Kα for the canonical momenta pα. Here, N incorporates the
normalization factors of the likelihood, the prior and the kinetic terms. By choosing
to represent the parameter tuples θµ as vectors, the conjugate momenta are assigned
covariant indices to be consistent with the Hamilton equations of motion (2.26). This
also determines that Jµ are linear forms and Kµ are vectors.

As the energies H(p, θ) are constructed additively from the kinetic term T (p) and the
potential term Φ(θ) = χ2/2 + ϕ, the partition function separates

Z[β, Jα, Kα] =
∫︂

dnθ exp (−βΦ(θ)) exp (βJαθα) ×
∫︂

dnp exp (−βT (p)) exp (βKαpα)

= ZΦ[β, Jα] × ZT [β, Kα]
(2.40)

and its logarithm

ln Z[β, Jα, Kα] = ln ZΦ[β, Jα] + ln ZT [β, Kα] (2.41)

can be used as a generating function for both the cumulants of the posterior distribution
p(θ|y) in configuration space and the cumulants of the posterior distribution in momentum
space p(p|y). This factorization of the partition function mirrors the independence of
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2 Probability Theory and Sampling

the two posterior distributions. The posterior distribution in parameter space can be
recovered from the joint distribution through marginalization.

Physically, this canonical partition Z[β, Jα, Kα] = ZT [β, Kα] × ZΦ[β, Jα] would corre-
spond to a classical, non-relativistic, ideal gas in thermal equilibrium inside a potential Φ.

While the kinetic term is often chosen as T (p) = p2/2 generalizations to a positive
symmetric quadratic form can yield numerical advantages [Betancourt, 2017]. A parabolic
likelihood χ2 = Fαβθαθβ with a Fisher matrix Fαβ would lead to a canonical partition

Z[β, Jα, Kα] =
∫︂

dnθ

∫︂
dnp exp

(︃
−β

2 Mαβpαpβ

)︃
exp

(︃
−β

2 Fαβθαθβ
)︃

·

exp (βJαθα) exp (βKαpβ) .

(2.42)

A choice of Mαβ proportional to the inverse Fisher matrix F αβ is convenient, as the
inverse Fisher matrix encodes the covariance of the distribution. Then, Mαβ assigns low
inertia to motion in the directions in which the distribution is broad. This introduces an
anisotropy in the proposal distribution which could make sampling more efficient, similar
to affine-invariant sampling [Foreman-Mackey et al., 2013, Hou et al., 2012]. Strong
statistical degeneracies of the likelihood might even suggest a prior in momentum space.
Such a prior π(p) does not change the posterior distribution p(θ|y) but could be set up
to make sampling more efficient by covering the degeneracies in parameter space more
efficiently with samples compared to random, diffusive motion.

2.4.3 Ensemble Monte-Carlo partitions

Having N instead of a single Markov chain bridges towards ensemble methods [Foreman-
Mackey et al., 2013]. If the chains are non-interacting, this amounts to a factorizing
N -particle partition Z[β, Jα, N ]

Z[β, Jα, N ] = Z[β, Jα]N . (2.43)

A variable number of chains is explored in [Herzog et al., 2024] by introducing a chemical
potential µ promoting this to a macrocanonical partition function

Ξ[β, Jα, µ] =
∑︂
N

1
N !Z[β, Jα, N ] exp(βµN)

=
∑︂
N

1
N ! (Z[β, Jα] exp(βµ))N

= exp (zZ[β, Jα])

(2.44)

with a fugacity z = exp (β, µ).
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3 Partition Functions for Weakly
non-Gaussian Likelihoods

This chapter is based on both [Röver et al., 2023a] and [Röver et al., 2023b] it contains the
calculations and results first published there. The chapter is split into three sections, the
theoretical results derived from the partition function approach in 3.1, the computation
of cumulants for weakly non-Gaussian likelihoods in section 3.2 and the construction of
convergence measures in section 3.3.

3.1 Theoretical results

3.1.1 Entropy measures

As mentioned in the introduction 2.4 the partition function Z[β, Jα] evaluated at unit
temperature β = 1 and for vanishing sources Jα = 0 falls back onto the Bayesian evidence
as the normalizing factor for the posterior distribution

Z[β, Jα = 0] = 1
NLNπ

∫︂
dnθ exp

(︃
−β

[︃1
2χ2(y|θ) + ϕ(θ)

]︃)︃
such that Z[β = 1, Jα = 0] = p(y).

(3.1)

Here posterior, likelihood and prior are taken from the exponential family as described
in eqn. (2.32). In analogy to statistical physics the entropy S(β) can be derived from the
Helmholtz free energy F (β, Jα) through differentiation with the inverse temperature β as

S(β) = β2 ∂F (β)
∂β

= −β2 ∂

∂β

(︃ 1
β

ln Z[β]
)︃

= ln Z[β] − β
∂

∂β
ln Z[β]. (3.2)

Evaluated at the temperature β = 1 the first term corresponds to the logarithm of the
evidence ln p(y). The second term reads as

β
∂

∂β
ln Z[β]

⃓⃓⃓⃓
⃓
β=1

= − 1
p(y)

∫︂
dnθ

(︃1
2χ2(y|θ) + ϕ(θ)

)︃
exp

(︃
−
[︃1

2χ2(y|θ) + ϕ(θ)
]︃)︃

= −
∫︂

dnθ

(︃1
2χ2(y|θ) + ϕ(θ)

)︃
p(θ|y).

(3.3)

With the logarithmic Bayes theorem

ln p(θ|y) = −
(︃1

2χ2(y|θ) + ϕ(θ)
)︃

− ln p(y) (3.4)
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the second term simplifies to

β
∂

∂β
ln Z[β]

⃓⃓⃓⃓
⃓
β=1

=
∫︂

dnθ p(θ|y) ln p(θ|y) + ln p(y). (3.5)

This relates the entropy S directly to Shannon’s measure of information entropy

S(β = 1) = −β2 ∂

∂β

(︃ 1
β

ln Z[β]
)︃ ⃓⃓⃓⃓
⃓
β=1

= −
∫︂

dnθ p(θ|y) ln p(θ|y) (3.6)

This is another way to show the compatibility of Shannon’s entropy over the wider class
of Rényi-entropies with Bayes’ law [Van Erven and Harremos, 2014, Baez and Fritz, 2014].
Applications of the Shannon entropy in cosmology can be found in [Carron et al., 2011,
Grandis et al., 2016, Pinho et al., 2021, Nicola et al., 2019].

3.1.2 Cumulants

The partition function defined in eqn. (2.35) can be understood as a cumulant-generating
function similar to the expression in (2.16). Cumulants of the posterior distribution of
order n follow from n-fold differentiation with respect to the sources Jα, i.e. the first
cumulant coincides with the expectation value as

κµ = ⟨θµ⟩ = ∂

∂Jµ

(︃ 1
β

ln Z[β, Jα]
)︃ ⃓⃓⃓⃓
⃓
J=0,β=1

, (3.7)

evaluated at Jµ = 0 for all µ. Additionally, the second cumulant coincides with the
covariance and is given by

κµ,ν = ⟨θµθν⟩ − ⟨θµ⟩⟨θν⟩ = ∂2

∂Jµ∂Jν

(︃ 1
β

ln Z[β, Jα]
)︃ ⃓⃓⃓⃓
⃓
J=0,β=1

. (3.8)

The higher-order derivatives correspond to skewness

κµ,ν,ρ = ⟨θµθνθρ⟩ − ⟨θµ⟩⟨θνθρ⟩ − ⟨θν⟩⟨θµθρ⟩ − ⟨θρ⟩⟨θµθν⟩ + 2⟨θµ⟩⟨θν⟩⟨θρ⟩

= ∂3

∂Jµ∂Jν∂Jρ

(︃ 1
β

ln Z[β, Jα]
)︃ ⃓⃓⃓⃓
⃓
J=0,β=1

,
(3.9)

and a non-Gaussian kurtosis

κµ,ν,ρ,σ = ⟨θµθνθρθσ⟩ − ⟨θµθν⟩⟨θρθσ⟩ − ⟨θµθρ⟩⟨θνθσ⟩ − ⟨θµθσ⟩⟨θνθρ⟩

= ∂4

∂Jµ∂Jν∂Jρ∂Jσ

(︃ 1
β

ln Z[β, Jα]
)︃ ⃓⃓⃓⃓
⃓
J=0,β=1

,
(3.10)

all taken at Jµ = 0 and β = 1 after differentiation. Note that differentiation of the
Helmholtz free energy yields the expectation values of the parameters ⟨θµ⟩ and not the
best-fit values. This is due to the definition of the partition function as an integrated
quantity.

For Hamilton Monte Carlo partitions the separation of the partition function into its
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potential and kinetic part (2.40) allows for separate computation of the cumulants of the
joint probability distribution. The cumulants of the posterior are computed as

κµ1,...,µn

Φ = ∂n

∂Jµ1 . . . ∂Jµn

(︃ 1
β

ln Z[β, Jα, Kα]
)︃⃓⃓⃓⃓

J=0,K=0,β=1

= ∂n

∂Jµ1 . . . ∂Jµn

(︃ 1
β

ln ZΦ[β, Jα]
)︃⃓⃓⃓⃓

J=0,β=1
.

(3.11)

The cumulants of the momentum distribution can be computed with a similar prescription
using

κµ1,...,µn

T = ∂n

∂Kµ1 . . . ∂Kµn

(︃ 1
β

ln Z[β, Jα, Kα]
)︃⃓⃓⃓⃓

J=0,K=0,β=1

= ∂n

∂Kµ1 . . . ∂Kµn

(︃ 1
β

ln ZT [β, Kα]
)︃⃓⃓⃓⃓

K=0,β=1
.

(3.12)

Computing cumulants for a given non-Gaussian probability distribution commonly
involves generating samples using Markov chain Monte Carlo. These samples are then
used to compute moments and equivalently cumulants, as the two are related by Faà di
Bruno’s formula [Johnson, 2002]. Whenever a numerical approximation of the logarithmic
partition function is viable this approach yields an analytical approximation of the
cumulants. In the case of weakly non-Gaussian likelihoods this yields an analytical
approximation to the posterior distribution, see section 3.2.

3.1.3 Linear models

While the partition function formalism allows for general prescriptions to find cumulants
and entropies the analytical calculation is challenging for non-Gaussian likelihoods. In
this section we assume that the data yi follows a Gaussian error process. The data
covariance is obtained as Cij = ⟨yiyj⟩ − ⟨yi⟩⟨yj⟩. Additionally, the physical model is
assumed to be linear in the parameters yi

model = Ai
αθα. This determines the χ2-functional

as
χ2 =

(︂
yi − Ai

αθα
)︂

Cij

(︂
yj − Aj

βθβ
)︂

= yiCijyj⏞ ⏟⏟ ⏞
c

−2 yjCijAi
α⏞ ⏟⏟ ⏞

Qα

θα + Ai
αCijAj

β⏞ ⏟⏟ ⏞
Fαβ

θαθβ

= c − 2Qαθα + Fαβθαθβ.

(3.13)

The Jacobian Ai
α = ∂yi/∂θα transforms between parameter and data space. For a

likelihood L(y|θ) ∝ exp
(︂
−1

2χ2(y|θ)
)︂
, we identify the term Ai

αCijAj
β as the Fisher

matrix Fαβ, since

Fαβ =
⟨︃

∂ ln L
∂θα

∂ ln L
∂θβ

⟩︃
y∼L

= ∂yi
model

∂θα

⟨︂
Cik(yk − yk

model)Cjℓ(yℓ − yℓ
model)

⟩︂
y∼L

∂yj
model

∂θβ

= Ai
αCikCkℓCjℓA

j
β = Ai

αCijAj
β.

(3.14)

The best-fit parameter tuple θ̄
µ is computed by minimizing χ2 as a function of the
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parameters θµ as
∂

∂θµ
χ2 = −2Qα

∂θα

∂θµ
+ Fαβ

∂

∂θµ
θαθβ

= −2Qαδα
µ + Fαβ

(︂
δα

µθβ + θαδβ
µ

)︂
= −2Qµ + Fµβθβ + Fαµθα

→ θ̄
µ = F µαQα = Aµ

iy
i.

(3.15)

This expression uses the (pseudo) inverse Jacobian Aα
i = ∂θα/∂yi. For linear models

this estimate is unbiased ⟨θ̄µ⟩y∼L = Aµ
i⟨yi⟩y∼L = Aµ

iA
i
βθβ = θµ.

Constructing the partition function for such a linear model amounts to

Z[β, Jα] = 1
N

∫︂
dnθ exp

(︃
−β

2 Fαβθαθβ + βQαθα
)︃

exp (βJαθα) . (3.16)

The Gaussian integrals can be carried out to yield

Z[β, Jα] = 1
N

√︄(︃2π

β

)︃n 1
det(F ) exp

(︃
β

2 F αβ(Jα + Qα)(Jβ + Qβ)
)︃

, (3.17)

with the inverse Fisher matrix F αβ . We absorb the constant c from eqn. (3.13) into the
normalization N and disregard the prior π(θ) for simplicity.

The expectation value of the posterior distribution follows directly from differentiation of
ln Z[β, Jα]/β, evaluated at Jµ = 0

κµ = ⟨θµ⟩θ∼p(θ|y) = ∂

∂Jµ

(︃ 1
β

ln Z[β, Jα]
)︃ ⃓⃓⃓⃓
⃓
J=0

= F αβ

2

(︄
∂Jα

∂Jµ
(Jβ + Qβ) + (Jα + Qα)∂Jβ

∂Jµ

)︄ ⃓⃓⃓⃓
⃓
J=0

= F αβ

2
(︂
δµ

α(Jβ + Qβ) + (Jα + Qα)δµ
β

)︂ ⃓⃓⃓⃓⃓
J=0

= F µαQα.

(3.18)

The last step uses the symmetry of the Fisher matrix to recover the result from the
direct calculation in eqn. (3.15). For a symmetric distribution the most likely value and
expectation value coincide with the true parameter value κµ = ⟨θµ⟩ = θ̂

µ, as a reflection
of the Gauss-Markov theorem in this formalism.

The second cumulant κµ,ν , corresponding to the parameter covariance, is computed as

κµ,ν = ∂2

∂Jµ∂Jν

(︃ 1
β

ln Z[β, Jα]
)︃ ⃓⃓⃓⃓
⃓
J=0

= F αβ

2
(︂
δµ

αδν
β + δν

αδµ
β

)︂ ⃓⃓⃓⃓⃓
J=0

= F µν (3.19)

Since any higher-order cumulants are zero, the posterior distribution p(θ|y) is Gaussian.
The inverse parameter covariance is determined by the Fisher matrix and the first
cumulant determines the mean. This allows to recover the full posterior as

p(θ|y) =
√︄

1
(2π)ndet(F ) exp

(︃
−1

2Fµν(θµ − κµ)(θν − κν)
)︃

. (3.20)
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3 Partition Functions for Weakly non-Gaussian Likelihoods

3.2 Cumulants for weakly non-Gaussian posteriors

Non-Gaussian posteriors result from nonlinear models. In this case the function yi(θα)
can not be written as yi = Ai

αθα with a constant Ai
α. The Helmholtz free energy does

not truncate after second order in the sources Jα. The posterior distribution becomes
genuinely non-Gaussian. However, cumulants of order n with n ≥ 3 remain numerically
computable from the partition function. In this sense, the partition function formalism
provides an approximation for non-Gaussian posterior distributions at a given order. In
this section the models are rescaled such that the fiducial parameter values are zero,
⟨θµ⟩ = κµ = 0 to simplify the notation.

3.2.1 Weakly non-Gaussian posteriors

When introducing a weak non-Gaussianity, e.g. through introducing a model where the
parameters are not quite linearly linked to the data, the partition function factorizes into
a Gaussian and a non-Gaussian part. Non-Gaussianity is introduced in the χ2-functional
as

χ2

2 = 1
2Fαβθαθβ −

N∑︂
k=3

1
k!Cµ1...µk

θµ1 . . . θµk , (3.21)

i.e. with a Taylor-expansion of χ2 beyond quadratic order. Coefficients in the Taylor
expansion are assumed to be small compared to the entries of the covariance matrix
Fαβ. The minus sign of the nonlinear term Cµ1...µk

is chosen out of convenience. The
separation of the partition function then follows as

Z[β, Jα] =
∫︂ dnθ

N
exp

(︄
−β

2 Fαβθαθβ + β
N∑︂

k=3

1
k!Cµ1...µk

θµ1 . . . θµk + βJαθα

)︄

≈
∫︂ dnθ

N
exp

(︃
−β

2 Fαβθαθβ + βJαθα
)︃(︄

1 + β
N∑︂

k=3

1
k!Cµ1...µk

θµ1 . . . θµk

)︄
.

(3.22)

Here we assumed that the χ2-functional contains the prior dependence on the parameters θ.
The normalization N denotes the normalizations of both the likelihood and the prior.

Next, the computation of the moments is replaced with a differentiation with respect to
the sources Jα. The partition function can then be expressed as

Z[β, Jα] ≈ 1
N

(︄
1 + β

N∑︂
k=3

1
k!Cµ1...µk

∂

∂Jµ1
. . .

∂

∂Jµk

)︄∫︂
dnθ exp

(︃
−β

2 Fαβθαθβ + βJαθα
)︃

= 1
N

√︄(︃2π

β

)︃n 1
det(F )

(︄
1 + β

N∑︂
k=3

1
k!Cµ1...µk

∂

∂Jµ1
. . .

∂

∂Jµk

)︄
exp

(︃
β

2 F αβJαJβ

)︃

= 1
N

√︄(︃2π

β

)︃n 1
det(F ) exp

(︃
β

2 F αβJαJβ

)︃
·(︄

1 + β
N∑︂

k=3

1
k!Cµ1...µk

exp
(︃

−β

2 F αβJαJβ

)︃
∂

∂Jµ1
. . .

∂

∂Jµk

exp
(︃

β

2 F αβJαJβ

)︃)︄
.

(3.23)
The first factor in this equation is equivalent to the partition function for a linear model
as given in eqn. (3.17). Here the mean values are set to zero. The second factor in the
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3 Partition Functions for Weakly non-Gaussian Likelihoods

equation is the contribution of non-Gaussianities to the partition function. With the
definitions

ZG[β, Jα] = 1
N

√︄(︃2π

β

)︃n 1
det(F ) exp

(︃
β

2 F αβJαJβ

)︃
(3.24)

and

ZNG[β, Jα] = 1 + β
N∑︂

k=3

1
k!Cµ1...µk

exp
(︃

−β

2 F αβJαJβ

)︃
∂k

∂Jµ1 . . . ∂Jµk

exp
(︃

β

2 F αβJαJβ

)︃
(3.25)

a factorization of the partition function into a contribution due to its Gaussian part and
the influence of the non-Gaussianities is observed,

Z[β, Jα]) = ZG[β, Jα]ZNG[β, Jα]. (3.26)

Using the fact that the inverse Fisher matrix can be Cholesky decomposed as F αβ =
LγβL α

γ the non-Gaussian part is expressed in terms of multivariate Hermite polynomials
of the form

H(ν1...νℓ)(Jα) = exp
(︃1

2JαδαβJβ

)︃
(−1)ℓ ∂ℓ

∂Jν1 . . . ∂Jνℓ

exp
(︃

−1
2JαδαβJβ

)︃
(3.27)

as

ZNG[β, Jα] =
(︄

1 + β
N∑︂

k=3

(−ik)
k! Cµ1...µk

Lµ1
ν1 . . . Lµk

νk
H(ν1...νk)(iLµ

αJµ)
)︄

. (3.28)

Cumulants are computed from the Helmholtz free energy and the contributions of the
Gaussian and non-Gaussian parts can be expressed as a sum. Up to first order in the
non-Gaussianities the expression is

1
β

ln Z[β, Jα] = 1
β

ln ZG[β, Jα] + 1
β

ln ZNG[β, Jα]

≈ 1
2F αβJαJβ +

N∑︂
k=3

(−ik)
k! Cµ1...µk

Lµ1
ν1 . . . Lµk

νk
H(ν1...νk)(iLµ

αJµ) + const.

(3.29)
Note that in eqn. (3.22) the approximation can be performed to higher order in the
non-Gaussianities for the cost of including higher-order Hermite polynomials in the result.
The factorization itself can still be performed.

For non-vanishing expectation values such that

χ2

2 = 1
2Fαβθαθβ + καθα −

N∑︂
k=3

1
k!Cµ1...µk

θµ1 . . . θµk (3.30)

the Gaussian term is modified by a term linear in the sources

1
β

ln ZG[β, Jα] = 1
2F αβJαJβ − καJα, (3.31)

and consequently, the non-Gaussian term in the partition function remains unchanged.
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3 Partition Functions for Weakly non-Gaussian Likelihoods

Higher-order cumulants of the posterior can be computed as

κµ1,...,µn = ∂n

∂Jµ1 . . . ∂Jµn

(︃ 1
β

ln Z[β, Jα]
)︃ ⃓⃓⃓⃓
⃓
J=0

= ∂n

∂Jµ1 . . . ∂Jµn

(︄
1
2F αβJαJβ −

N∑︂
k=3

(−ik)
k! Cµ1...µk

Lµ1
ν1 . . . Lµk

νk
H(ν1...νk)(iLµ

αJµ)
)︄ ⃓⃓⃓⃓
⃓
J=0

.

(3.32)
The first and second cumulants contain contributions from the odd and even Hermite
polynomials in the non-Gaussian term respectively. The higher cumulants are completely
determined by the non-Gaussian term.

Whether non-Gaussianities are genuine or an artifact of an unfortunate choice of random
variables and can be removed by a suitable coordinate transform can be traced to the
existence of curvature on the manifold whose metric is given by the Fisher matrix Fµν

[see the foundational work by Amari, 2016]. Applications in cosmology are discussed in
[Giesel et al., 2021], and variations of the Fisher matrix over the parameter manifold
and the resulting non-Gaussianities in [Schäfer and Reischke, 2016] and [Reischke et al.,
2017].

3.2.2 Gram-Charlier series

The cumulants of a weakly non-Gaussian posterior allow us to reconstruct it using the
multivariate Gram-Charlier series. It can be written as [Berkowitz and Garner, 1970,
Juszkiewicz et al., 1995, Giesel et al., 2021]

p(θ|y) = 1

(2π)
n
2

√︂
det(κ(2))

exp
(︃

−1
2κα,β(θα − κα)(θβ − κβ)

)︃
·

(︄
1 +

∞∑︂
ℓ=3

κα1,...,αℓ

ℓ! Lβ1
α1 . . . Lβℓ

αℓ
H(β1...βℓ)(Lα

β(θ − µ)β)
)︄

.

(3.33)

The mean value of the distribution is chosen as the first cumulant of the posterior while the
covariance matrix is the inverse of the second cumulant. The Hermite polynomials in this
expression again follow the definition in eqn. (3.27). In this definition the multidimensional
Hermite polynomials factorize into one-dimensional ones. The variable transformation
necessary to achieve this form is in the argument of the Hermite polynomials. This
accounts for the Cholesky decomposed second cumulants in their prefactors.

In the following, the Gram-Charlier series is used to reconstruct a probability distribution
of the form

p(θ|y) = 1
(2π)

n
2
√︁

det(Σ)
exp

(︃
−1

2Σαβθαθβ
)︃(︃

1 + 1
3!Cαβγθαθβθγ

)︃
. (3.34)

This is a first-order approximation in the coefficients Cαβγ to a posterior with a third-order
non-Gaussianity. For small coefficients, it is possible to compute the cumulants of this
posterior according to eqn. (3.32). They can then be inserted into expression eqn. (3.33)
to recover an approximation of the posterior. This reconstruction is depicted in Fig. 3.1.

As demonstrated in the above example it is possible to approximately construct cumulants
for a given expansion coefficient in the DALI expansion. However, it is worth noting that
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Figure 3.1: Reconstruction of non-Gaussianity of second order using the Gram-
Charlier series. The left plot shows the posterior constructed according to
eqn. (3.34) and a Gaussian (dashed) with the same width in comparison. The
middle (dashed) is the Gram-Charlier series to first order in the non-Gaussianities.
The dashed lines on the right depict the Gram-Charlier series to second order in
the non-Gaussianities

even the first order in the DALI expansion does not correspond to any specific order in
the Gram-Charlier expansion. This can be seen by considering

exp
(︃

−1
2Fαβθαθβ + 1

3!Sαβγθαθβθγ
)︃

= exp
(︃

−1
2Fαβθαθβ

)︃ ∞∑︂
n=0

1
n! (Sαβγθαθβθγ)n. (3.35)

In this expansion terms of order 3n in the parameters θ can only be obtained by including
an ever-increasing order expansion in the Gram-Charlier series. In this sense, the
Gram-Charlier series seems to be incompatible with a straightforward expansion of
the logarithmic likelihood in terms of a polynomial as done in DALI [Sellentin et al.,
2014, Sellentin, 2015b]. A large number of terms is needed to describe even moderately
non-Gaussian distributions, and set aside issues with non-positive definite probability
densities, as pointed out in [Cramér, 1999].

3.2.3 Application to supernova data

As an example for a non-Gaussian likelihood from cosmology, we consider constraints on
Ωm and w from the distance redshift relation of supernovae [Riess et al., 1998, Goobar
and Leibundgut, 2011]. We focus on spatially flat FLRW-cosmologies with a constant
dark energy equation of state, and derive constraints on Ωm and w for the Union2.1-data
set [Suzuki et al., 2012, Amanullah et al., 2010, Kowalski et al., 2008]. For these cases,
the distance modulus y(z) as a function of redshift z is given by

y(z, Ωm, w) = 10 + 5 log

⎛⎝(1 + z) χH

∫︂ z

0
dz′ 1√︂

Ωm(1 + z′)3 + (1 − Ωm)(1 + z′)3(1+w)

⎞⎠ .

(3.36)
For this type of cosmology the relevant integral can be expressed in terms of a hypergeo-
metric function 2F1 [Arutjunjan et al., 2022]

∫︂
du

1√
A u3 + B uc

= −
2u
√︂

A u3−c

B + 1 2F1
(︂

1
2 , c−2

2c−6 ; 3c−8
2c−6 ; −A u3−c

B

)︂
(c − 2)

√
A u3 + B uc

+ const. (3.37)

Expressing the likelihood for the two parameters Ωm and w for Gaussian errors σi in the
distance moduli yi yields a simplified expression, where we neglect correlations between
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the data points,

L(y|Ωm, w) ∝ exp
(︃

−1
2χ2(y|Ωm, w)

)︃
with χ2(y|Ωm, w) =

∑︂
i

(︃
yi − y(zi, Ωm, w)

σi

)︃2
.

(3.38)

We use this formulation to construct partition functions Z[β, Jα] and implementation in
a Monte Carlo Markov chain. For simplicity, we employ a flat prior π(Ωm, w) on the two
cosmological parameters. The model for the distance modulus as a function of the model
parameters Ωm and w is nonlinear, giving rise to a non-Gaussian likelihood, on which we
demonstrate a Gram-Charlier expansion.

In this case the partition function is constructed from a Monte Carlo Markov chain
sampling from the posterior distribution. Up to a constant normalization the partition
function is the expectation value of exp (Jαθα)

Z[β = 1, Jα] ∝ ⟨exp (Jαθα)⟩ ≈ 1
N

N∑︂
i=1

exp (Jα(θα)i) . (3.39)

Here, i denotes the i-th sample in the Markov chain. This allows us to construct the
Helmholtz free energy for a given Jα and to find the cumulants following eqn. (3.11).
The cumulants are computed through finite differencing with respect to all Jα.

The numerical precision is verified by computing moments of order a + b of the posterior
using the samples drawn using Markov chain Monte Carlo. The moments are computed
as ⟨︂

Ω a
m wb

⟩︂
=
∫︂

dΩmdw p(Ωm, w|y) Ω a
m wb ≈ 1

N

N∑︂
i=1

(Ω a
m wb)i. (3.40)

They are converted to cumulants with Faà di Bruno’s formula.

At Gaussian and lowest non-Gaussian order, posterior distribution p(Ωm, w|y) is depicted
in Fig. 3.2 along with the samples generated by the Monte Carlo algorithm. The
Gaussian isoprobability contours correspond exactly to the Fisher matrix and the lowest
non-Gaussian approximation to a Gram-Charlier expansion including skewness. Driving
the Gram-Charlier expansion to higher-order shows the known deficiency in reproducing
distributions with strong non-Gaussianities. This causes the Gram-Charlier expansion to
lose positive definiteness. Those are cases where DALI plays its unique strength [Sellentin,
2015b, Sellentin et al., 2014]. We would like to emphasize that the computation of the
cumulants from ln Z is numerically sound.

The computations of cumulants of the posterior distribution from the two ways considered
in this work give very similar results. Table 3.1 collects all cumulants up to fourth-order
from the posterior distribution p(Ωm, w|y) of the supernova example. These cumulants
follow either through estimation of the moments from MCMC samples and successive
conversion into cumulants using Faà di Bruno’s formula, or by finite differencing of the
numerically evaluated partition function ln Z. Note however that both of these results
are entirely dependent on the same part of a Markov chain. Comparing the results in
Table 3.1 to cumulants obtained from three different parts of the same Markov chain,
each containing 106 elements leads to differences in the cumulant values of about 0.07%,
0.4%, 20%, 20%, for the first, second, third and fourth cumulant respectively. Given the
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Figure 3.2: The scatter plot depicts 104 points from a Monte-Carlo Markov chain
with a likelihood as described in eqn. (3.38). The superimposed contours are
the 0th (left) and 1st (right) order approximations to this posterior distribution
using the Fisher matrix (left) and Gram-Charlier series with nonzero skewness
(right).

large number of samples needed, we replaced the Metropolis-Hastings algorithm with the
affine-invariant sampler emcee [Foreman-Mackey et al., 2013] for better efficiency.

3.3 Measuring convergence

The previous sections dealt with approximations of posterior properties using the partition
function formalism. This section focuses on the analogy between Markov chain Monte
Carlo and statistical physics. We identify virialization, equipartition and thermalization
as quantifiers of convergence when treating the Markov chain as the time evolution of the
state of a physical system. In the following, kinetic energy is introduced as described in
section 2.4.2. The Hamiltonian is defined as the sum of the kinetic and potential energy,
H(p, θ) = T (p) + Φ(θ). The potential is determined by the underlying likelihood and
prior, Φ(θ) = 1

2χ2(y|θ) + ϕ(θ).

3.3.1 Virialization

Bounded motion inside a potential exhibits the virial relation⟨︃
θµ ∂H

∂θµ

⟩︃
=
⟨︄

pµ
∂H
∂pµ

⟩︄
(3.41)

which translates to the relation 2⟨T ⟩ = k⟨Φ⟩ between the average kinetic and potential
energies for Hamiltonian functions that are homogeneous of order 2 in p and of order k
in θ. For ergodic systems it does not matter whether the averages are taken over time
or a statistical ensemble. As a Markov chain starts exploring the potential Φ the virial
relation does not hold straight away. Rather, it can only be expected to hold over a few
dynamical timescales of the system.

For equilibrated Markov chains which are a proper realization of the canonical partition
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cumulants MCMC sampling partition function
κΩm 0.27881995 0.27882000
κw −1.01051052 −1.01051010
κΩm,Ωm 0.0021031685 0.0021031674
κΩm,w −0.004649421 −0.004649417
κw,w 0.010934010 0.010934001
κΩm,Ωm,Ωm −3.565244 · 10−5 −3.565206 · 10−5

κΩm,Ωm,w 3.7907932 · 10−5 3.7907907 · 10−5

κΩm,w,w 1.082203 · 10−5 1.082211 · 10−5

κw,w,w −0.000250971 −0.000250968
κΩm,Ωm,Ωm,Ωm 1.2953 · 10−6 1.2961 · 10−6

κΩm,Ωm,Ωm,w −1.23547 · 10−6 −1.23531 · 10−6

κΩm,Ωm,w,w 7.911 · 10−7 7.906 · 10−7

κΩm,w,w,w −1.27243 · 10−6 −1.27230 · 10−6

κw,w,w,w 1.1046275 · 10−5 1.1046293 · 10−5

Table 3.1: Comparison of the cumulants κ of order 1, 2, 3 and 4 of the supernova
posterior distribution p(Ωm, w|y), evaluated by MCMC sampling and by finite
differencing of the logarithmic partition function ln Z. The cumulants are
computed from a Markov chain with 106 elements.

function Z[β, Jα, Kα], the expectation values in the virial theorem are computed as⟨︃
θµ ∂H

∂θµ

⟩︃
= 1

Z

∫︂
dnθ

∫︂
dnp exp(−βH(θ, p))θµ ∂H

∂θµ

= − 1
βZ

∫︂
dnθ

∫︂
dnp θµ ∂

∂θµ
exp(−βH(θ, p))

= n

β
.

(3.42)

This calculation uses integration by parts and the fact that the trace ∂θµ/∂θµ = δµ
µ = n

gives the dimensionality n of the parameter space. Analogously,⟨︄
pµ

∂H
∂pµ

⟩︄
= 1

Z

∫︂
dnθ

∫︂
dnp exp(−βH(θ, p))pµ

∂H
∂pµ

= − 1
βZ

∫︂
dnθ

∫︂
dnp pµ

∂

∂pµ
exp(−βH(θ, p))

= n

β

(3.43)

again with the trace ∂pµ/∂pµ = δµ
µ = n. Both results apply regardless of the shape of

the potential Φ. We argue that the virial relation might serve as a convergence criterion
for Markov chains, with a well-defined value of n for β = 1. This value is reached after
equilibration or burn-in. Naturally, derivatives of the Hamilton function H(θ, p) with
respect to the canonical momentum are trivial, with T (p) = δαβpαpβ/2 implying for
the derivative ∂T/∂pµ = δαβ(δµ

αpβ + pαδµ
β)/2 = pµ, such that the virial expression for

the momenta becomes ⟨pµpµ⟩ = 2⟨T ⟩. It should be noted, however, that the validity
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of the virialization condition does not require a kinetic energy that is quadratic in the
momenta. The natural value of β = 1 for the inverse temperature suggests that both
virial expressions should equal the dimensionality in thermal equilibrium.

3.3.2 Stationarity

The thermal ensemble is stationary, since the posterior distribution p(θ, p|y) that the
Markov chain samples from does not evolve with time. As demonstrated in the previous
sections cumulants κm of the posterior p(θ|y) can be computed as

κm
Φ = ∂m

∂Jm

1
β

ln Z[β, Jα, Kα]
⃓⃓⃓⃓
K=0=J

. (3.44)

The time derivative of the cumulant is given by

∂

∂t
κm

Φ = ∂m

∂Jm

1
N

∫︂
dnθ

∫︂
dnp exp(−βH(θ, p)) exp(βJαθα) Jγθγ̇

⃓⃓⃓⃓
J=0

(3.45)

as partial differentiations interchange and the Hamiltonian is constant in time. Here, we
already discard the non-contributing terms involving Kα. The normalization N contains
the normalizations of the likelihood, the prior and the kinetic term. Time derivatives of
the parameters can be rewritten with the Hamilton equation of motion,

θ̇
γ = + ∂H

∂pγ
(3.46)

leading to

∂

∂t
κm = − ∂m

∂Jm

1
βN

∫︂
dnθ

∫︂
dnp exp(β[Jαθα])

[︄
Jγ

∂

∂pγ
exp(−βH(θ, p))

]︄⃓⃓⃓⃓
⃓
J=0

. (3.47)

Integration by parts then yields a vanishing integral,

∂

∂t
κm = ∂m

∂Jm

1
βN

∫︂
dnθ

∫︂
dnp exp(−βH(θ, p)) Jγ

∂

∂pγ
exp(βJαθα)

⃓⃓⃓⃓
⃓
J=0

= 0, (3.48)

since exp(βJαθα) does not depend on p. This implies that there is no time evolution of
the configuration space cumulants.

Likewise, the momentum space cumulants are given by

κm
T = ∂m

∂Km

1
β

ln Z[β, Jα, Kα]
⃓⃓⃓⃓
K=0=J

. (3.49)

Their time derivative follows analogously

∂

∂t
κm

T = ∂m

∂Km

1
N

∫︂
dnθ

∫︂
dnp exp(−βH(θ, p)) exp(βKαpα) Kγpγ̇

⃓⃓⃓⃓
K=0

(3.50)

using the other Hamilton equation of motion at this point

ṗγ = − ∂H
∂θγ

(3.51)
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implying

∂

∂t
κm

T = ∂m

∂Km

1
βN

∫︂
dnθ

∫︂
dnp exp(β[Kαpα])

[︃
Kγ ∂

∂θγ
exp(−βH(θ, p))

]︃⃓⃓⃓⃓
K=0

. (3.52)

Again, integration by parts then yields a vanishing integral,

∂

∂t
κm

T = − ∂m

∂Km

1
βN

∫︂
dnθ

∫︂
dnp exp(−βH(θ, p)) Kγ ∂

∂θγ
exp(βKαpα)

⃓⃓⃓⃓
K=0

= 0,

(3.53)
such that the cumulants become stationary. After equilibration, the Markov chain samples
from a stationary posterior distribution and that the cumulants do not evolve.

3.3.3 Equipartition

In contrast to virialization, equipartition is a characteristic of thermalized systems.
Virialization does not make assumptions about thermodynamic equilibrium. Calculating
the expectation values of the quantities θµ∂νΦ⟨︃

θµ ∂Φ
∂θν

⟩︃
= 1

Z

∫︂
dnθ

∫︂
dnp exp(−βH) θµ ∂Φ

∂θν

= − 1
βZ

∫︂
dnθ

∫︂
dnp θµ ∂

∂θν
exp(−βH)

= 1
βZ

∫︂
dnθ

∫︂
dnp

∂θµ

∂θν
exp(−βH)

= δµ
ν

β

(3.54)

and pµ∂νT ⟨︃
pµ

∂T

∂pν

⟩︃
= 1

Z

∫︂
dnθ

∫︂
dnp exp(−βH) pµ

∂T

∂pν

= − 1
βZ

∫︂
dnθ

∫︂
dnp pµ

∂

∂pν
exp(−βH)

= 1
βZ

∫︂
dnθ

∫︂
dnp

∂pµ

∂pν
exp(−βH)

=
δν

µ

β

(3.55)

suggests that the degrees of freedom become independent of each other. Furthermore,
the expectation values are equal and proportional to temperature in equilibrium. From
this we define a further convergence criterion for Markov chains, for the specific value of
β = 1.

Equipartition is a much stronger condition than virialization. While virialization sums
over all degrees of freedom, equipartition makes a statement about the individual degrees
of freedom of the system. The virialization condition follows from equipartition by
summing over different degrees of freedom since⟨︃

θµ ∂Φ
∂θµ

⟩︃
=
∑︂
µν

⟨︃
θµ ∂Φ

∂θν

⟩︃
=
∑︂
µν

δµ
ν

β
= n

β

and
⟨︄

pµ
∂T

∂pµ

⟩︄
=
∑︂
µν

⟨︃
pµ

∂T

∂pν

⟩︃
=
∑︂
µν

δν
µ

β
= n

β
.

(3.56)
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In addition, as the virialization condition is built as an average over the equipartition
conditions, fluctuations are suppressed according to the law of large numbers and the
expectation value n/β is reached faster, again indicating that virialization is the weaker
criterion.

Mixed expectation values are zero as coordinates and momenta are independent in
Hamiltonian mechanics,⟨︃

θµ ∂T

∂pν

⟩︃
= 1

Z

∫︂
dnθ

∫︂
dnp exp(−βH) θµ ∂T

∂pν

= − 1
βZ

∫︂
dnθ

∫︂
dnp θµ ∂

∂pν
exp(−βH)

= 1
βZ

∫︂
dnθ

∫︂
dnp

∂θµ

∂pν
exp(−βH) = 0

(3.57)

and similarly, ⟨︃
pµ

∂Φ
∂θν

⟩︃
= 1

Z

∫︂
dnθ

∫︂
dnp exp(−βH) pµ

∂Φ
∂θν

= − 1
βZ

∫︂
dnθ

∫︂
dnp pµ ∂

∂θν
exp(−βH)

= 1
βZ

∫︂
dnθ

∫︂
dnp

∂pµ

∂θν
exp(−βH) = 0.

(3.58)

This illustrates that the sampling in parameter space and momentum space is independent.
Again, this characteristic of thermal equilibrium can be investigated in the burn-in of
Markov chains.

Gelman-Rubin criterion as a particular case

The Gelman-Rubin criterion [Gelman and Rubin, 1992, Brook and Gelman, 1997, Roberts
et al., 1997] quantifies convergence in Markov chain Monte Carlo by comparing the (co)-
variance generated by a single chain in its evolution with the (co)-variance of an ensemble
of chains at the same instant, see section 2.3. In ergodic cases, the two averages should
coincide, and if properly equilibrated, the variance does not evolve anymore.

While the Gelman-Rubin criterion [for reviews, see Brooks et al., 2011, Vats and Knudson,
2021] quantifies stationarity, it is remarkable that a criterion based on (co)-variance alone
is sufficient to ensure that the sampling is representative of the posterior distribution.
The physical interpretation of the Gelman-Rubin criterion, however, seems to be identical
to equipartition for Gaussian distributions. Choosing a parabolic potential

Φ(θ) = 1
2Fαβθαθβ

→ ∂Φ
∂θν

= Fαβ

2
(︂
δα

ν θβ + θαδβ
ν

)︂
= Fανθα

(3.59)

allows to rewrite the covariance as

Fαν⟨θµθα⟩ =
⟨︃

θµ ∂Φ
∂θν

⟩︃
= δµ

ν

β

→ ⟨θµθν⟩ = F µν .

(3.60)
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In an equilibrated Markov chain at unit β the covariance is the inverse Fisher matrix.
Monitoring the covariance using the Gelman-Rubin criterion or the equipartition condition
for the corresponding degree of freedom is equivalent. The Gelman-Rubin criterion
compares two variances and is formulated as a statistical test for their equality. In contrast,
virialization, equipartition and thermalization make statements about an expectation
value with a physically defined target value in thermal equilibrium.

While the Gelman-Rubin criterion requires a comparison between in-chain variances and
a variance between chains, the virialization, equipartition and thermalization conditions
can naturally be applied to a single chain. Additionally, virialization, equipartition and
thermalization can be sensible even in the case of distributions that do not have a finite
second moment such as the Cauchy distribution. In the case of multiple parameters,
the computation of the Gelman-Rubin R requires the inversion of the covariance matrix.
This slows down the computation of the convergence criterion.

3.3.4 Thermalization

Driven by physical intuition one might keep a record of the thermal energy transferred
to and dissipated from the system in the sampling process. Equilibration is characterized
by no net exchange of energy with the heat bath. Initializing the Markov chain close to
the minimum position of the potential requires an investment of energy for equilibration.
Initialization far away from the minimum results in dissipation of energy until equilibrium
is reached. For an equilibrated Markov chain the average energy is determined by the
evidence and the entropy of the posterior distribution. The average energy is computed
as

⟨H⟩ = ⟨T (p)⟩p + 1
Z(β)

∫︂
dnθ exp (−βΦ(θ)) Φ(θ)

= ⟨T (p)⟩p − 1
Z(β)

∂

∂β

∫︂
dnθ exp (−βΦ(θ))

= ⟨T (p)⟩p − 1
Z(β)

∂

∂β
Z(β)

= ⟨T (p)⟩p − ∂

∂β
ln Z(β).

(3.61)

Comparing to the result of section 3.1.1 yields

⟨H⟩ = ⟨T (p)⟩p + 1
β

ln ZΦ [β, Jα = 0] − 1
β

SΦ(β). (3.62)

The difference in normalization is lost due to the differentiation. At unit inverse temper-
ature, the expectation value of the potential energy is given by the difference between
the entropy of the posterior and the logarithm of the evidence

⟨Φ⟩ = ln p(y) − S(p(θ|y)). (3.63)

The kinetic term T (p) is usually constructed without connection to the data. The
momenta are sampled from

p ∼ 1
NT

exp (−T (p)) . (3.64)

The expectation value of the kinetic term then consists of the entropy of the momenta ST

and the normalization ⟨T (p)⟩p = ln NT − ST . This is analogous to the structure derived
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for the parameters. The expectation value of the full Hamiltonian then reads

⟨H⟩ = ln p(y) − S(p(θ|y)) + ln NT − ST . (3.65)

In equilibrium this expectation value is a fixed, if often a priori inaccessible number.
Since the average energy of an equilibrated Markov chain is constant the energy exchange
with the heat bath fluctuates around an expectation value of zero.

It is important to notice that the exchange of thermal energy in burn-in takes place outside
thermal equilibrium. This criterion is not directly linked to the thermodynamic entropy
dS. The differential entropy is defined as the reversibly exchanged heat normalized by the
equilibrium temperature. However, there is no notion of temperature outside equilibrium.
The criterion is attractive from a technical point of view, since keeping track of the
energy while sampling is a straightforward addition to a Markov chain implementation.
It also allows the definition of a convergence criterion without calculating the derivative
of the potential. Consequently, the energy exchange with the heat bath can measure the
convergence of conventional Metropolis-Hastings algorithms. Here the energy exchanged
is measured by the change in the potential energy Φ(θ) = χ2(y|θ)/2 + ϕ(θ), equivalent to
∆χ2/2 if the prior is neglected.

3.3.5 Numerical results

We investigate physically motivated convergence criteria for Markov chains with a
Hamilton Monte Carlo algorithm. It efficiently samples microstates (pµ, θν) from the
canonical partition function

Z[β, Jα, Kα] = 1
NH

∫︂
dnθ

∫︂
dnp exp (−β [T (p) + Φ(θ)]) exp (β [Jαθα + Kαpα]) . (3.66)

Here NH combines the normalizations of the prior, the likelihood and the kinetic part.
The Hamiltonian function H(p, θ) = T (p) + Φ(θ) separates into a conventional quadratic
kinetic part and a potential,

T (p) = 1
2m

δµνpµpν as well as Φ(θ) = χ2(y|θ)
2 + ϕ(θ). (3.67)

Expectation values of any phase space function g(p, θ) can be estimated from the samples(︂
p

(i)
µ , θν,(i)

)︂
i=1...N

provided by the Markov chain

⟨g(p, θ)⟩ =
∫︂

dnθ

∫︂
dnp p(θ, p|y)g(p, θ)

= 1
Z

∫︂
dnθ

∫︂
dnp exp (−βH(p, θ)) g(p, θ)

≈ 1
N

N∑︂
i=1

g
(︂
p(i), θ(i)

)︂
.

(3.68)

For instance, equipartition conditions in the previous section would be computed as

⟨︃
θµ ∂H

∂θν

⟩︃
≈ 1

N

N∑︂
i=1

θµ,(i) ∂Φ
∂θν

(︂
θ(i)
)︂

(3.69)
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Figure 3.3: Kernel density estimates performed on the first 102, 104 and 105

points of an HMC chain for the toy example. For the plot on the left initial
conditions for the HMC are chosen away from the maximum posterior region,
while for the plot on the right one of the most probable points was chosen as
the initial condition.

where the gradient ∂Φ/∂θν at the position θ(i) can be evaluated by finite differencing.
We work with an analytical expression of the gradients of Φ in the example Sect. 3.3.5
and use autodifferentiability of the physics-informed neural network implementation in
Sect. 3.3.5.

First numerical experiments

To demonstrate that the derived convergence criteria perform well in practice they
are applied to a two-dimensional toy example with non-Gaussian shape and a strong
degeneracy. The positions, associated momenta and derivatives of the potential are
obtained using a basic Hamilton Monte Carlo algorithm as described in [Neal, 2012]. The
likelihood is chosen as

L (θ|R, σ) ∝ exp
(︄

−
(︁√

θνθν − R
)︁2

2σ2

)︄
, (3.70)

with the analytic derivative

∂

∂θµ
(− ln L (θ|R, σ)) =

√
θνθν − R√︁
θρθρσ2 θµ. (3.71)

The Hamilton Monte Carlo algorithm uses the derivatives of the potential to find
trajectories on which new points are proposed. Estimates of the convergence criteria,
eqn. (3.69) are computed on these points. Fig. 3.3 shows kernel density estimates,
performed with getDist [Lewis, 2019] on the first 102, 104 and 105 points of the Markov
chain. This gives some intuition of how well the chain reproduces the actual posterior
after accumulating a certain number of samples.

The cumulative values of the convergence criteria up to a specific step along the Markov
chain are shown in Fig. 3.4. For the left column of the Figure, the initial conditions of
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the Markov chain are chosen far away from the minimum of the potential, whereas the
initial conditions of the right column are at the (degenerate) minimum of the potential.
The top row of plots illustrates the evolution of the mixed expectation value terms. They
converge to zero as more samples are drawn. This is realized surprisingly early in the
evolution of the Markov chain, even before 102 steps are performed. In the center row
partition into different degrees of freedom is illustrated. The quantities ⟨θµ∂νΦ⟩ and
⟨pµ∂νT ⟩, for µ ̸= ν, tend towards zero as a larger amount of samples is accumulated. In
these plots it is worth noting that the partition is significantly faster in the momentum
degrees of freedom. This can be easily understood by recalling that the underlying
distribution of the momenta is an uncorrelated normal distribution, which is sampled
from directly in the HMC algorithm. The lower row shows that the virial relations, i.e.
the expectation values for µ = ν, tend towards one, after a similar number of steps.
While the left column illustrates the effect a long burn-in phase has on the different
convergence criteria, the right column shows the effect of thermal fluctuations when the
chain is started at a potential minimum. Even though we compute all expectation values
cumulatively over all samples including those in the burn-in phase, a clear trend towards
the thermal expectation values is seen, which can help to quantify convergence.

Lastly, Fig. 3.5 illustrates that the convergence of the Gelman-Rubin R is commensurate
with the virialization conditions, in both cases of a well and badly chosen initial condition.
Here we would like to emphasize that R is a test statistic akin to a t-test and helps
to decide between the hypothesis that the variances along a single Markov chain and
between an ensemble of independent Markov chains are identical versus the hypothesis
that this is not true, at a selected confidence level. Similarly, one would quantify equality
of the virialization or equipartition conditions with the thermal expectation value by
formulating a similar statistical test, in this case an F -test.

Application to supernova data

As a straightforward and relevant example for non-Gaussian likelihoods, we consider
constraints on the matter density Ωm and the dark energy equation of state w from
the distance redshift relation of the type Ia supernovae [Riess et al., 1998, Goobar and
Leibundgut, 2011]. We impose a prior on spatial flatness and assume the equation of
state to be constant in time. Constraints are derived from the Union2.1-data set [Suzuki
et al., 2012, Amanullah et al., 2010, Kowalski et al., 2008]. The FLRW-distance modulus
y(z) as a function of redshift z is given by

y(z|Ωm, w) = 10 + 5 log

⎛⎝(1 + z) χH

∫︂ z

0
dz′ 1√︂

Ωm(1 + z′)3 + (1 − Ωm)(1 + z′)3(1+w)

⎞⎠ .

(3.72)
Constructing the likelihood for the two parameters Ωm and w for Gaussian errors σi in the
distance moduli yi yields the same simplified expression as in eqn. 3.38. This likelihood is
implemented in a Hamilton Monte Carlo sampler, with a uniform prior π(θ) for simplicity.
To speed up the computations, we employ physics-informed neural networks (PINN)
[Raissi et al., 2017]. Details on the emulation of distance moduli using a PINN are
discussed in section 5.2. For this work we used a dense neural network with three hidden
layers and a width of 50 neurons. As the model prediction yi(zi|Ωm, w) is given as an
explicit function, we use its automatic differentiation functionality to derive the gradients
of χ2(y|Ωm, w) needed in Hamilton Monte Carlo sampling.
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Figure 3.4: Progression plots of the stationarity condition and the equipartition
of the different degrees of freedom in an HMC chain sampling the toy example.
For the plots on the left initial conditions for the HMC chain are chosen away
from the maximum posterior region, while for the right column the maximum of
the posterior was chosen as the initial condition.
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Figure 3.5: Comparison between the virialization conditions and the Gelman-
Rubin criterion R. For the ensemble averaging in the determination of the
Gelman-Rubin criterion the Markov chain was split into 10 batches. For the plot
on the left initial conditions for the HMC are chosen away from the maximum
posterior region, while for the plot on the right one of the most probable points
was chosen as the initial condition.
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Figure 3.6: Application of the equipartition criterion to Hamilton Markov chain
Monte Carlo sampling the supernova likelihood. The left plot shows the partition
into different degrees of freedom while the plot on the right shows that they are
equipartitioned.

The convergence criteria discussed in the previous sections are applied to the PINN-
enhanced supernova likelihoods in Fig. 3.6: There is a clear trend towards the values
expected for thermal equilibrium, with a scaling ∝ step−1 for the cumulatively computed
values.

Fig. 3.7 shows the average energy H(θ, p) in the HMC system. For the left plot, energies
are averaged over 102 steps each and then, all 104 batches are plotted successively. This
allows to see the thermal fluctuations of these batch averages around the overall average
value defined by the entire chain. The right plot depicts the cumulative average energy
of the Markov chain. For an equilibrated Markov chain the average of the energy can be
approximated under the assumption that the data points are uncorrelated and that the
model fits the data within the data variance σ2 as

⟨H⟩ = ⟨T (p)⟩p + ⟨Φ(θ)⟩θ

= 1 +
⟨︄

1
2

D∑︂
j=1

(︄
yj − y(zj |Ωm, w)

σj

)︄2⟩︄
Ωm,w

≈ 1 + D

2 .

(3.73)

Where D is the number of data points. The average potential energy approximately
equals half the number of data points. This approximation disregards the correlations
between the data points, which explains why the numerical value of ⟨H⟩ falls short of
half the number of actual data points, which is 290.

3.4 Summary and discussion

Partition functions are constructed from the likelihood and prior by introducing an inverse
temperature β and carrying out a Laplace transform from the model parameters θα to
the sources Jα. In the case of HMC the momenta pβ are also transformed to sources Kγ .
Evaluating at Jα = 0, Kγ = 0 and β = 1 recovers the Bayesian evidence.

Most of the analytical calculations are based on the Helmholtz free energy F = − 1
β ln Z,

which is introduced based on the partition function Z. This definition allows to recover
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Figure 3.7: Application of the energy transfer convergence criteria to Hamilton
Markov chain Monte Carlo sampling the supernova likelihood. The plot on the
left shows the averaged energy over 100 steps each, while the plot on the right
shows the cumulative average at each step.

the Shannon entropy in analogy to statistical physics as S(β) = β2 ∂F
∂β . It can also be

used as a cumulant-generating function by taking derivatives with respect to the sources
and evaluating at Jα = 0, Kγ = 0 and β = 1.

For linear models, the integrand of the partition function is of Gaussian shape in the
parameters and has an analytical solution. The sequence of cumulants truncates at
second order. Thus, the posterior is a Gaussian distribution. While the first cumulant
becomes equal to the true model parameters due to the Gauß-Markov theorem, the
second cumulant recovers the inverse Fisher matrix. For non-linear models, the partition
function factorizes into a Gaussian and a non-Gaussian term. In the case of weak non-
Gaussianities, the corresponding term can be Taylor expanded leading to an analytical
expression based on the multivariate Hermite polynomials. This analytical expression
is successfully applied to a toy model. The cumulants are computed numerically for
supernova data up to fourth order via finite differencing.

A Markov chain is considered converged when the samples θ allow the computation of
any expectation value of a function g(θ) through

lim
N→∞

1
N

N∑︂
i=1

g(θ(i)) =
∫︂

dθ p(θ|y)g(θ). (3.74)

The Gelman-Rubin criterion probes this relation for the choice g(θ) = θ2. The canon-
ical partition function in combination with the analogy to statistical physics provides
quantitative methods to characterize thermal equilibrium.

Any bounded mechanical system satisfies the virialization condition ⟨θµ∂Φ/∂θµ⟩ =
⟨pµ∂T/∂pµ⟩. For an HMC chain in thermal equilibrium, the expectation values can be
evaluated as n/β, giving a clearly defined value that can be checked against expectation
values computed from the Markov chain. In contrast to this parameter averaged criterion
the equipartition criterion makes a statement about the individual degrees of freedom
⟨θµ∂Φ/∂θν⟩ ∝ δµ

ν and ⟨pµ∂T/∂pν⟩ ∝ δν
µ. Mixed derivatives ⟨pµ∂Φ/∂θν⟩ and ⟨pµ∂T/∂θν⟩

evaluate to zero in thermal equilibrium.

The criteria in the previous paragraph require a notion of the gradient of the potential
Φ or the kinetic energy. Thermal equilibrium can also be characterized as no net
energy exchange with the heat bath. This can be evaluated from the average energy

35



3 Partition Functions for Weakly non-Gaussian Likelihoods

difference ⟨∆H⟩ between Markov chain steps. This suggests that the average energy of
an equilibrated Markov chain ⟨H⟩ = ⟨T ⟩ + ⟨Φ⟩ is constant. From the partition function
we obtain ⟨Φ⟩ = ln p(y) − S(p(θ|y)) while the average kinetic energy is determined by
the choice of the kinetic term in an HMC algorithm.

We demonstrate the viability of the virialization, equipartition and thermalization con-
ditions as convergence criteria using a two-dimensional toy example. The numerical
approximations of the thermodynamic criteria approach their target values as the Markov
chain converges towards the true distribution. During burn-in the evolution of the virials
shows similar properties to the Gelman-Rubin criterion. As a physical application the
convergence criteria are applied to the inference of the matter density Ωm and dark-
energy equation of state parameter w from the magnitude redshift relation of the type Ia
supernovae.
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4 A Short History of the Universe

This introduction to the Geometry and dynamics of the Universe and the introduction to
inflation are strongly influenced by [Baumann, 2012]. In all calculations in this chapter
we set the speed of light c = 1 as well as the gravitational constant 8πG = 1. Unless
otherwise specified we work under the assumption of ΛCDM.

This chapter gives a brief introduction to the geometry and dynamics governing the
evolution of the Universe in section 4.1. Section 4.2 introduces inflation and the differential
equations governing both the evolution of the inflaton field and the evolution of its
perturbations. The primordial power spectrum of these perturbations at the end of
inflation is linked to observations in section 4.3. Section 4.4 gives a brief introduction to
the dark energy driven expansion of the current Universe and the supernovae observations
used to measure it. Finally, section 4.5 introduces the aspects of machine learning needed
in the later chapters.

4.1 Geometry and dynamics

On large scales the universe can be described using a Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric

ds2 = −dt2 + a2(t)
[︄

dr2

1 − kr2 + r2dΩ2
]︄

. (4.1)

Here, a is the scale factor and k ∈ {−1, 0, 1} characterizes the curvature. The rescaling
symmetry

a → λa, r → r

λ
, k → λ2k (4.2)

is used to fix the value of the scale factor today to a(t0) = 1. By defining comoving
coordinates χ through

r2 = Φk(χ2) =

⎧⎪⎪⎨⎪⎪⎩
sinh2 χ k = −1
χ2 k = 0
sin2 χ k = +1

(4.3)

and conformal time η such that dt = a(η)dη the FLRW metric is rewritten as

ds2 = a(η)2
(︂
−dη2 + dχ2 + Φk(χ2)

)︂
. (4.4)

This defines the underlying geometry for the physics problems considered in this work.

The dynamics of the scale factor as well as any cosmological fields are governed by the
Einstein equation

Gµν + Λgµν = 8πGTµν . (4.5)
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Here, Λ represents the cosmological constant. The Einstein tensor Gµν is governed by
spacetime curvature while the stress-energy tensor Tµν is determined by the matter
content of the Universe. The stress-energy tensor is conserved in the sense ∇µT µ

ν = 0.
Under the assumption that the matter content behaves like an ideal fluid the stress-energy
tensor can be completely described with its energy density ρ and pressure P in the fluid
rest frame. The FLRW metric is constructed under the assumption of isotropy and
homogeneity. Combining this assumption with both the continuity equation and Einstein
equation for a FLRW metric yields the Friedmann equations

H2 = ρ

3 − k

a2 + Λ
3

ä

a
= −1

6(ρ + 3P ) + Λ
3 .

(4.6)

Here, the Hubble function is defined as H = ȧ
a .

This set of equations governs the history of cosmic expansion. In the inflationary paradigm
the universe undergoes a period of rapid expansion immediately after the Big Bang. This
period of inflation is described in more detail in section 4.2. After the end of inflation
matter in the Universe consists of Standard Model particles. The scaling behavior of
their energy densities can be derived from the Friedmann equations as

ρ ∝ a−3(1+w). (4.7)

Here, we assumed a constant equation of state w = P
ρ . Cosmology usually distinguishes

between radiation with an equation of state is w = 1/3, matter with w = 0 and dark
energy. In ΛCDM the cosmological constant Λ plays the role of dark energy. It can be
interpreted as a fluid with ρ = Λ, P = −Λ. This leads to an equation of state of w = −1.
Modifications of ΛCDM often propose different models for dark energy [Wetterich, 1988,
Ratra and Peebles, 1988, Linder, 2008, Tsujikawa, 2013, Mortonson et al., 2013]. This
can lead to a scale factor dependent dark energy equation of state.

The scaling behavior of the different cosmological fluids can be used to rewrite the first
Friedmann equation (4.6) as

H2

H2
0

= Ωγa−4 + Ωma−3 + Ωka−2 + ΩΛ. (4.8)

The index 0 denotes quantities at present time. The energy densities Ω are computed
relative to the value of the Hubble function today as Ωi = ρi,0

3H2
0
, Ωk = − k

H2
0
. Observations

of the CMB [Aghanim et al., 2020b] suggest that the Universe is flat Ωk = 0.001 ± 0.002.
The combination of the first Friedmann equation (4.6) with a positive H0 suggests that
the scale factor is always increasing. The formulation in eqn. (4.8) allows us to identify
periods in which different components of the cosmological fluid dominate the dynamics.

In the early universe the scale factor is small and the evolution of the Hubble function
is radiation-dominated. The evolution of the Hubble function is determined by the
first term in equation (4.8). During this period gravitational attraction and pressure
compete to give rise to acoustic oscillations in the primordial plasma. As the Universe
continues to grow the second term in eqn. (4.8) starts to dominate the evolution and
the Universe enters matter domination. About 370000 years after the Big Bang protons
and electrons combine into Hydrogen and Helium (and some Lithium), in a process
called recombination. The Universe transitions from ionized to neutral. Photons emitted
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during recombination do not scatter off charged particles anymore and can be observed
today as the CMB. As the Universe continues to expand the scale factor approaches its
current value a0 = 1 at these values and especially at a > 1 in the future the last term in
eqn. (4.8) begins to dominate. The expansion becomes cosmological constant, or dark
energy dominated. During this period the Friedmann equations (4.6) suggest that there
will be an accelerated expansion in contrast to the decelerating expansion in the previous
two periods.

4.2 Inflation

Cosmic inflation was introduced in [Sato, 1981, Starobinsky, 1980, Guth, 1981] to cure
the standard cosmological model (ΛCDM) of the horizon and flatness problems.

4.2.1 Horizon problem

In a universe starting with the Big Bang, governed by the geometry and dynamics
introduced in the previous section there is a maximum comoving distance that light can
propagate. This distance is called the particle horizon and can be defined as

χp(η) = η − ηi =
∫︂ t

ti

dt

a(t) . (4.9)

Here the subscript i denotes a quantity at the beginning of the universe a(ti) = ai = 0.
In terms of the comoving Hubble radius (aH)−1 the particle horizon can be computed as

χp =
∫︂ a

ai

1
ȧ

da

a
=
∫︂ ln a

ln ai

(aH)−1 d ln a. (4.10)

For a universe dominated by a fluid with a constant equation of state w, the first
Friedmann equation (4.6) implies that the comoving horizon can be expressed as

(aH)−1 = H−1
0 a

1
2 (1+3w). (4.11)

The particle horizon is then determined by

χp = 2H−1
0

1 + 3w

(︃
a

1
2 (1+3w) − a

1
2 (1+3w)
i

)︃
= 2

1 + 3w

(︂
(aH)−1 − (aH)−1

i

)︂
.

(4.12)

For radiation domination, with w = 1
3 , this falls back to χp = aH−1

0 = (aH)−1. In the
standard Big Bang picture this means that two points at the end of radiation domination
can not have communicated if their comoving distance from each other is greater than
the comoving Hubble radius.

The horizon problem arises from the observation that the Cosmic Microwave Background
(CMB) is almost perfectly isotropic. Points all across the sky are at almost exactly the
same temperature. This implies that the observable points in the CMB have been in
causal contact. However, the particle horizon around each of these points only covers a
fraction of the sky.
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In the inflationary paradigm the horizon problem is solved by introducing a period
of decreasing Hubble radius d

dt (aH)−1 < 0 in the early universe. According to the
calculation in eqn. (4.12) this translates to a fluid with (1+3w) < 0. The particle horizon
is then dominated by the early universe where ai → 0. This period of shrinking Hubble
radius, or equivalently exponential expansion, must last at least until all of the observable
universe was in causal contact at early times.

4.2.2 Background evolution of the inflaton

For this thesis we restrict the investigations to single-field inflation. The inflaton φ is
defined as a scalar field that only couples to gravity. Assuming a minimal coupling, the
inflaton action can be formulated as

Sφ =
∫︂

d4x
√

−g

(︃1
2gµν∇µφ∇νφ − V (φ)

)︃
. (4.13)

Here, gµν denotes the metric during inflation. The inflaton is described with canonical
kinetic term and a potential V (φ) determining its self-interaction. Under the assumptions
of the FLRW metric, eqn. (4.4) and a homogeneous inflaton field, the density and pressure
of the inflaton fluid are found as [Baumann, 2012]

ρφ = 1
2 φ̇2 + V (φ)

Pφ = 1
2 φ̇2 − V (φ).

(4.14)

To induce a shrinking Hubble radius the equation of state parameter

wφ =
1
2 φ̇2 − V (φ)
1
2 φ̇2 + V (φ)

, (4.15)

must fulfill wφ < −1
3 .

The background equations of motion are obtained through varying the inflaton field in
the action. In proper time they are described by

φ̈ + 3Hφ̇ = −dV

dφ
. (4.16)

The dynamics of the Hubble function is described by the Friedmann equation as

H2 = ρφ

3 = 1
3

(︃1
2 φ̇2 + V (φ)

)︃
. (4.17)

This description determines the dynamics of the inflaton field in the absence of other
matter and under the assumptions of homogeneity and isotropy in both the metric and
the inflaton field.

Slow-Roll inflation

The equation of state parameter, eqn. (4.15) together with the restriction wφ < −1
3

suggests that the kinetic energy 1
2 φ̇2 must be at least twice as large as the potential V (φ)

to sustain inflation. To shrink the Hubble radius enough to explain the homogeneity
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of the CMB inflation needs to be sustained for some time. This admits to the intuitive
picture of the inflaton slowly rolling down a potential until its kinetic energy exceeds
the potential energy and inflation ends. The ratio of kinetic and potential energy can be
quantified with the first slow-roll parameter

ϵ = − Ḣ

H2 = 3
1
2 φ̇2

1
2 φ̇2 + V (φ)

. (4.18)

During inflation ϵ < 1, inflation ends when this condition is not fulfilled. To sustain
inflation the acceleration of the scalar field

δ = − φ̈

Hφ̇
(4.19)

has to remain small as well.

Slow-roll inflation is realized whenever ϵ, δ ≪ 1. The equations of motion simplify since
the potential energy dominates over the kinetic energy V (φ) ≫ 1

2 φ̇2 and the second
condition implies |φ̈| ≪ |Hφ̇|. The simplified background equations of motion read

3Hφ̇ = −dV

dφ

H2 = V

3 .

(4.20)

Reheating

For the standard cosmic history to resume inflation needs to end. In the numerical
calculations we remain agnostic to this process. In the picture of single-field inflation
the energy density in the inflaton field must be transformed into standard model degrees
of freedom. This process is referred to as reheating. After reheating the universe is
radiation-dominated and highly ionized. While the physics during reheating is largely
unknown more detailed descriptions can be found in [Baumann, 2012] and [Riotto, 2003].

4.2.3 Perturbations

The previous section describes the evolution of the inflaton field in a perfectly homogeneous
and isotropic universe. This explains the homogeneity of the CMB. However, the CMB
is only homogeneous up to fluctuations at all length scales of order 10−5 [Bennett et al.,
1992]. These can be seeded in the inflaton and the metric during inflation by allowing for
a small deviation from homogeneity and isotropy. The fluctuations can be characterized
in a gauge invariant fashion through the comoving curvature perturbations R. In Fourier
space the modes Rk of the fluctuations are associated to a comoving wavenumber k.
For adiabatic expansion the curvature perturbation modes are constant on superhorizon
scales k ≪ aH. While fluctuations are created at all length scales k only modes inside
the horizon at their creation evolve during inflation. All relevant modes are created
on subhorizon scales k ≫ aH. While their comoving wavenumber stays constant the
comoving Hubble radius (aH)−1 decreases during inflation. The curvature modes evolve
until they exit the horizon k < aH and freeze.

Immediately after inflation ends the observable modes are outside the horizon and remain
unchanged by reheating. As the universe returns to the standard Big Bang scenario
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the comoving horizon begins to grow until the observable modes reenter the horizon
when k > aH. They continue evolving at this point. This allows to probe the physics of
inflation from observables such as the CMB or Galaxy surveys without knowledge about
the physics of reheating.

Similar to the differential equations for the background evolution the differential equations
governing the evolution of the curvature modes can be derived starting from an action
defined on the background and the perturbations [Mukhanov et al., 1992, Maldacena,
2003]. The differential equation governing the conformal time evolution of the Mukhanov-
Sasaki potentials

uk = zRk, z = a
φ̇

H
, (4.21)

[Baumann, 2012] is given by

∂2
ηuk +

[︄
k2 −

∂2
ηz

z

]︄
uk = 0, z = ∂ηφ

H
. (4.22)

An analogous derivation is performed for the tensor perturbations

hij =
∫︂ d3k

(2π)3

∑︂
s=+,×

ϵs
ijhs

k(η)eikx. (4.23)

Here +, × represent two different polarizations, while the coefficients fulfill ϵii = kiϵij = 0
and ϵs

ijϵs′
ij = 2δss′ . Similar to the scalar perturbations a differential equation for the

Mukhanov-Sasaki potentials vs
k = a

2 hs
k is derived as

∂2
ηvk +

[︄
k2 −

∂2
ηa

a

]︄
vk = 0. (4.24)

In this formulation polarization indices are omitted.

The Mukhanov-Sasaki potentials are initialized at η → −∞ where k ≫ ∂2
ηa

a ,
∂2

ηz

z . In this
limit the differential equations simplify to a harmonic oscillator with the solution

lim
η→−∞

uk(η) = e−ikη

√
2k

. (4.25)

Note that the differential equations are independent under constant phase shifts in uk or
vk. This freedom can be used to fix the phase of the variables at the initial time to 0.
In numerical calculations conformal time translation invariance is used to fix the initial
conditions using the Bunch-Davies vacuum [Chernikov and Tagirov, 1968, Bunch and
Davies, 1978]

Re(uk) = Re(vk) = 1√
2k

Im(uk) = Im(vk) = 0
Re(∂ηuk) = Re(∂ηvk) = 0

Im(∂ηuk) = Im(∂ηvk) = −k√
2k

.

(4.26)

The assumption on the differential equation is justified when k ≫ aH. In numerical
calculations this can be enforced by setting these initial conditions at k = aH/100.

There are tools to compute the evolution of primordial fluctuation such as class [Blas
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et al., 2011]. Figure 6.1 in section 6.1.1 gives some intuition on how the curvature modes
uk evolve with conformal time.

Primordial power spectrum

The power spectrum of the curvature R provides a statistical measure of the primordial
perturbations. It is defined as the ensemble average

⟨RkRk′⟩ = (2π)3δ(k + k′)∆2
R. (4.27)

The scalar power spectrum is defined as

PR = k3

2π2 ∆2
R, (4.28)

and can also be obtained from the Mukhanov-Sasaki potentials at the end of inflation as
[Powell and Kinney, 2007]

PR = k3

2π2

⃓⃓⃓⃓
uk

z

⃓⃓⃓⃓2
. (4.29)

In ΛCDM the primordial scalar power spectrum is described through its scale dependence.
The scalar spectral index is defined as

ns − 1 ≡ d ln PR
d ln k

, (4.30)

while its scale dependence is in turn characterized through

αs ≡ d2 ln PR
d ln k2 . (4.31)

In proximity of some pivot scale k∗ the logarithmic primordial scalar power spectrum is
approximated by

ln PR(k) = ln As(k∗) + (ns(k∗) − 1) ln k

k∗
+ αs(k∗)

(︃
ln k

k∗

)︃2
. (4.32)

For a better approximation this Taylor series can be extended to higher order in logarith-
mic comoving wavenumber. In ΛCDM the primordial power spectrum is characterized
by the amplitude of the primordial power spectrum at the pivot scale As and the scalar
spectral index ns.

The primordial tensor power spectrum can similarly be defined based on the ensemble
average

⟨hkhk′⟩ = (2π)3δ(k + k′)∆2
h, (4.33)

as
Pt = 2Ph = 2 k3

2π2 ∆2
h. (4.34)

Here, the factor two comes from including both polarization modes. Again the tensor
power spectrum can be computed from the Mukhanov-Sasaki variables at the end of
inflation as [Powell and Kinney, 2007]

Pt = 32k3

π

⃓⃓⃓⃓
vk

a

⃓⃓⃓⃓2
. (4.35)
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Its scale dependence is characterized by the tensor spectral index

nt ≡ d ln Pt

d ln k
. (4.36)

The amplitude of the tensor power spectrum is typically defined relative to the scalar
power spectrum through the tensor-to-scalar ratio

r ≡ Pt(k∗)
PR(k∗) . (4.37)

4.3 Cosmic Microwave Background

After inflation ends, and the subsequent reheating, the universe is radiation-dominated.
During this period highly energetic photons ionize the matter content of the universe. As
it expands the number density of photons with energies above the hydrogen ionization
energy drops below the baryon density of the universe. Electrons and protons combine for
the first time. This process is known as recombination. The free electron density drops
sharply and the photon mean free path grows large. At redshift zdec ∼ 1100 photons
decouple from the electrons and the universe becomes transparent [Durrer, 2020]. They
travel until redshift z = 0 and constitute the Cosmic Microwave Background observed
today. This is one of the earliest observables with a signature of the primordial power
spectrum.

The CMB has a thermal black body spectrum at a temperature of T0 ≈ 2.73K [Fixsen,
2009] and is almost perfectly isotropic. The anisotropies are of order ∆T/T ∼ 10−5 and
directly result from the curvature perturbations at the time of photon decoupling. The
power spectrum of the anisotropies is shaped by the physics in the early universe as
described in the previous section. Additionally, modes that reenter the horizon before
recombination undergo an evolution in the radiation-dominated universe. A prominent
effect of this on both the angular power spectra of the CMB and the matter power
spectrum at later times are Baryon Acoustic Oscillations (BAOs).

Curvature fluctuations sourced during the primordial universe lead to anisotropies in the
radiation-dominated universe. While the dark matter in the universe follows the curvature
fluctuations the equation of state parameter of radiation suggests a non-vanishing effect
from photon pressure. During radiation domination baryonic matter is coupled to photons
leading to sound waves of photons and baryons traveling away from the dark matter
overdensities. At recombination, the origin of the CMB, photons decouple. They leave a
shell of baryonic matter at a comoving distance of about 150 Mpc away from the dark
matter overdensities. This overdense shell in real space is imprinted on the angular power
spectra of the CMB in the structure of its peaks [Aghanim et al., 2020a]. It can also be
observed in the matter power spectrum reconstructed from Galaxy surveys [Paillas et al.,
2024].

Angular power spectra

Light from the CMB reaches us from all directions n̂ in the sky from an approximately
isotropic sphere around us. The CMB photons are released at similar redshift giving
the sphere a small but finite thickness. The anisotropies in this sphere can be analyzed
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through a harmonic expansion. For the temperature anisotropies Θ(n̂) = ∆T (n̂)
T0

the
expansion reads

Θ(n̂) =
∑︂
ℓm

aℓmYℓm(n̂). (4.38)

Here Yℓm are the spherical harmonics. The angular power spectrum of the temperature
anisotropies can be reconstructed from the expansion coefficients

CT T
ℓ = 1

2ℓ + 1
∑︂
m

⟨a∗
ℓmaℓm⟩. (4.39)

In addition to the anisotropies in temperature, the CMB photons also exhibit an anisotropy
in their polarizations. For an introduction to CMB polarizations see [Hu and White, 1997,
Baumann et al., 2009]. The polarizations arise during recombination from electron-photon
scattering. Unpolarized photons lead to a linear polarization of the scattered photons in
the plane orthogonal to the line of sight. When the radiation field influencing the electron
is isotropic the polarizations cancel out. However, the incoming radiation is dependent on
the temperature anisotropies and can have a quadrupole component leading to a linear
polarization. The polarization anisotropies are characterized by the curl-free modes E
and the divergence-free modes B defined as

E(n̂) =
∑︂
ℓm

aE,ℓmYℓm(n̂), B(n̂) =
∑︂
ℓm

aB,ℓmYℓm(n̂). (4.40)

The coefficients follow from a decomposition of the intensity tensor into Stokes parameters
and subsequent expansion into tensor spherical harmonics [Baumann et al., 2009]. The
expansion of the desired modes is then found from their properties. The angular power
spectra of the polarization anisotropies and the correlations between different anisotropies
are defined as

CXY
ℓ = 1

2ℓ + 1
∑︂
m

⟨a∗
X,ℓmaY,ℓm⟩, X, Y ∈ {T, E, B}. (4.41)

Modern measurements of the angular power spectra can be found in [Akrami et al., 2020].
Figure 4.1 depicts the angular CMB spectra of the CMB as measured by the Planck
satellite. In this plot the TT and TE spectra are transformed to DT X

ℓ = ℓ(ℓ+1)
2π CT X

ℓ with
X ∈ T, E to make the BAO peaks more visible.

To find constraints on the primordial power spectrum P(k) the angular power spectra are
simulated using Boltzmann codes such as class and camb [Blas et al., 2011, Lewis et al.,
2000]. The evolution of the curvature and tensor modes after horizon reentry is modeled
by transfer functions ∆X,ℓ(k) for each of the different observable modes X ∈ {T, E, B}.
The angular power spectra are obtained from the primordial power spectra through the
integrations

CT T
ℓ = 2

π

∫︂
k2dkPR(k)∆2

T,ℓ(k)

CXY
ℓ ≈ (4π)2

∫︂
k2dkPR(k)∆X,ℓ(k)∆Y,ℓ(k), XY ∈ {TE, EE}

CBB
ℓ = (4π)2

∫︂
k2dkPt(k)∆2

B,ℓ(k),

(4.42)

while the EB and TB correlations are zero [Baumann, 2012]. Note that the TT and
BB modes are determined by the scalar power spectrum and the tensor power spectrum
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respectively. The TE and EE modes are written as an approximation because they
contain a small contribution from the tensor power spectrum not reflected in the formulae
above.

A central prediction of inflation are primordial gravitational waves, sourced by tensor
perturbations and governed by eqn. (4.24). Following eqn. (4.42) they lead to B-modes in
the CMB polarization. In current experiments, such as the Planck satellite, the angular
power spectrum of these modes is consistent with zero [Akrami et al., 2020]. Future
experiments such as CMB-S4 [Abazajian et al., 2022] and LiteBIRD [Allys et al., 2023]
are designed to probe them with higher sensitivity.

0

1000

2000

3000

4000

5000

6000

D
TT

 [
K

2 ]

0 500 1000 1500 2000 2500

0.1
0.2

D
TT

/D
TT

0

20

40

60

80

100

C
EE

 [1
0

5
K

2 ]

0 250 500 750 1000 1250 1500 1750 2000
0.0000

0.0002

C
EE

 [1
0

5
K

2 ]

100

50

0

50

100

D
TE

 [
K

2 ]

0 250 500 750 1000 1250 1500 1750 2000
2.5
5.0
7.5

D
TE

 [
K

2 ]

Figure 4.1: Angular power spectra of the CMB as reported in [Aghanim et al.,
2020c]. This shows the binned data used in the plik_lite likelihoods. The data
is extracted using the tool published together with [Prince and Dunkley, 2019].
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Matter power spectrum

In addition to the CMB the primordial power spectrum can also be investigated using the
density fluctuations of matter. If the dynamics of the universe after horizon reentry of
the curvature modes is understood well enough the power spectrum of the matter density
fluctuations can be predicted from the primordial scalar power spectrum. Schematically,
when the matter dynamics after horizon reentry is encoded in the dark matter transport
function T 2

δ (k, η) the density contrast power spectrum is calculated as [Baumann, 2012]

Pδ(k, η) = 4
25

(︃
k

aH

)︃4
Tδ(k, η)PR(k). (4.43)

Similar to the CMB, the transfer function is computed numerically using the Boltzmann
solver class [Blas et al., 2011] throughout this thesis. An analytical approximation can
be found in [Eisenstein and Hu, 1998].

There are different ways to probe the matter power spectrum, such as measuring the
fluctuations of galaxy populations and weak lensing [Adame et al., 2024, Abbott et al.,
2022, Almeida et al., 2023]. More recently 21cm intensity mapping experiments such as
the SKA [Bacon et al., 2020] have been brought up as a future probe of the density power
spectrum. This would make the matter power spectrum accessible at higher redshifts.

4.4 Type Ia supernovae

Type Ia supernovae occur when a white dwarf in a binary system exceeds the Chan-
drasekhar limit by accreting mass from the companion star [Mazzali et al., 2007]. The
emitted radiation is measured as the light curve of the supernova. These light curves
can be standardized to yield simultaneous measurements of the distance modulus µ, in
magnitudes, and redshift z [Brout et al., 2022]. The distance modulus can be related to
the Hubble function H(z) through the luminosity distance dL as

µ(z) = 5 log10 dL(z) + 10, dL(z) = (1 + z)c
∫︂ z

0
dz′ 1

H(z′) . (4.44)

Essentially, this measurement provides a way to measure the Hubble function at late
times. Supernovae measurements have been used to provide the first evidence for the
accelerated expansion of the universe [Riess et al., 1998, Perlmutter and et al., 2003,
Perlmutter et al., 1999].

In the framework of ΛCDM the Hubble function is determined by eqn. (4.8). The
supernovae type Ia measurements can be used to find constraints on the energy densities
of the cosmological constant ΩΛ and matter Ωm under the assumption of a flat universe
[Brout et al., 2022, Rubin et al., 2023]. Combining the supernova measurement with
local distance indicators of their host galaxies allows to measure the Hubble constant H0
[Riess et al., 2022]. The value obtained through this late time measurement is in tension
with the value obtained from CMB measurements [Aghanim et al., 2020b].

Common extensions of ΛCDM postulate dark energy as a cosmological fluid driving the
current expansion of the universe [Wetterich, 1988, Ratra and Peebles, 1988, Linder,
2008, Tsujikawa, 2013, Mortonson et al., 2013]. The dark energy equation of state can
deviate from the constant value of −1 implied by ΛCDM. It is often restricted to be
constant or linearly evolving [Chevallier and Polarski, 2001, Linder, 2003]. These types
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of dark energy models are investigated in [Brout et al., 2022, Rubin et al., 2023]. For a
general dark energy equation of state the Hubble function is expressed as [Takada and
Jain, 2004]

H2(a)
H2

0
= Ωm

a3 + (1 − Ωm) exp
[︃
−3
∫︂ a

1
da′ 1 + w(a′)

a′

]︃
. (4.45)

This equation assumes a flat universe and an insignificant contribution from the energy
density of radiation.

Throughout this work we use the Union2.1 [Suzuki et al., 2012, Amanullah et al., 2010,
Kowalski et al., 2008] and Pantheon+ [Scolnic et al., 2022] datasets. The redshift
distribution and distance modulus values for these surveys are depicted in Fig. 4.2. The
more recent Pantheon+ data set includes a larger number of supernovae and can probe a
wider redshift range.

4.5 Neural networks

This introduction to neural networks is by no means exhaustive. It covers the concepts
and ideas needed to arrive at the models used in [Röver et al., 2024]. It is roughly based
on [Plehn et al., 2022].

4.5.1 Function approximation

In this thesis neural networks are used to approximate some function f mapping an input
vector x ∈ Rd onto the output space Rn. The neural network is described by the map

x → fθ(x), x ∈ Rd, fθ(x) ∈ Rn, (4.46)
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Figure 4.2: Redshift dependence of the distance modulus of the Union2.1 (left)
and Pantheon+ data (right). The histograms capture the distribution of the
supernovae in redshift. The lower sub-panels show the relative error bars on the
distance moduli.
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where θ are the network parameters. The loss function L measures how well the network
approximates the target function f . It compares the output of the target function
to the network output using some distance measure. A common loss function is the
mean-squared error loss which compares the squared ℓ2-norm of the two functions
L(θ) = ∥fθ(x) − f(x)∥2

2 for an input vector x. For a batch of B input vectors the
mean-squared error loss is computed as

⟨L(θ)⟩batch = 1
B

B∑︂
i=1

∥fθ(xi) − f(xi)∥2
2 . (4.47)

The network parameters θ are optimized on a training data set {(xi, f(xi))}i∈{1,...,N} by
minimizing the loss functions. In many applications the training data set is large such
that the computation of the loss for all input vectors at once is slow. In these cases the
training data is divided into batches of fixed size. The optimization of the loss function is
usually based on gradient descent, where the parameters are updated using the gradient
of the loss function

θt+1 = θt − α
⟨︂
∇θLt

⟩︂
batch

, (4.48)

with a step size α. Throughout this work network parameters are optimized using the
stochastic gradient descent algorithm Adam [Kingma and Ba, 2014].

In a multilayer perceptron (MLP) or fully connected neural network the neural network
fθ is composed of multiple layers of affine transformations. Each layer g̃n transforms an
input vector x(n) ∈ Rdn into an output vector y(n) ∈ Ron using

y(n) = g̃n(x(n)) = W (n)x(n) + b(n). (4.49)

Note that the matrices W (n) are not necessarily square matrices. Together with the
biases b(n) they constitute the network parameters. To approximate non-linear functions
an activation function σ is introduced. It acts on every node, i.e. every entry of each
layer of the network. Including the non-linearity each layer can be written as

gn(x(n)) = σ
(︂
W (n)x(n) + b(n)

)︂
. (4.50)

The fully connected neural network is a composition of these layers

fθ(x) = gL ◦ gL−1 · · · ◦ g1(x), (4.51)

where we have assumed a network with L layers. For sufficiently many network parameters
this architecture is a universal approximator [Hornik et al., 1989].

Optimizing a loss function using a fully connected network requires computing derivatives
of the loss function with respect to the network parameters. If the non-linearity σ is
chosen such that its analytical derivative σ′ is known this can be expressed using the
chain rule

∂
W

(n)
ij

L = ∂fθ,k

∂W
(n)
ij

∂fθ,k
L

= ∂gn(gn−1)ln

∂W
(n)
ij

∂(gL ◦ gL−1 · · · ◦ gn)k

∂(gn)ln

∂fθ,k
L

= σ′δiln(gn−1)jσ′W
(L)
klL−1

. . . σ′W
(n+1)
ln+1ln

∂fθ,k
L

= σ′W
(L)
klL−1

. . . σ′W
(n+1)
ln+1i σ′(gn−1)j∂fθ,k

L.

(4.52)
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In numerical calculations this back-propagation is done by saving a graph of the operations
performed on a tensor. This composition of operations is then used to find the analytical
derivatives similar to eqn. (4.52), in a process called automatic differentiation [Griewank
and Walther, 2008, Paszke et al., 2017].

4.5.2 Uncertainty estimation

While there is a lot of variability in the choice of network architecture the loss function
determines what the network output approximates. Using the loss described in eqn. (4.47)
ensures that the Euclidean distance between the network approximation and the data
points used in the network is minimized. Alternatively, the problem can be approached
from an inference perspective. The training data is distributed according to the data
distribution p(x). We can understand the network, with parameters θ, as a model used to
explain the data distribution and construct a likelihood p(x|θ). The posterior distribution
of the network parameters p(θ|x) is then constructed using Bayes theorem as

p(θ|x) = p(x|θ)p(θ)
p(x) , (4.53)

where p(θ) is a prior on the network parameters. By constructing a loss as the negative
logarithm of the posterior the training objective becomes finding the most probable
parameter configuration that describes the data distribution.

In practice the loss can be defined as

L = − log p(x|θ) − log p(θ) (4.54)

since the data distribution does not contribute to derivatives with respect to the parame-
ters and does not change the shape of the loss landscape. While this loss is defined for
a single data point x, gradients in parameter space are usually determined as averages
over the batch entries ⟨∇θL⟩x∈batch. The prior can be chosen to implement additional
constraints on the network parameters the likelihood determines the effect of the training
data on the network. For an n-dimensional problem f(x) ∈ Rn a Gaussian likelihood
leads to a loss defined as

LG(θ) = 1
2(f(x) − fθ(x))T Σ−1

θ (x)(f(x) − fθ(x)) + 1
2 log det Σθ(x) + log p(θ). (4.55)

In this description the network approximates both the mean of the likelihood fθ(x)
and the covariance Σθ(x) at each data point. Since the problem is n-dimensional the
neural network needs to be expressive enough to find all n2 + n entries of the mean and
the covariance for each data point. This expression can be simplified by assuming an
uncorrelated Gaussian likelihood to arrive at the heteroscedastic loss [Le et al., 2005, Gal,
2016]

Lhet = |f(x) − fθ(x)|2

2σθ(x)2 + log σθ(x) + log p(θ). (4.56)

Here, the variance of the network is allowed to vary with the data and the network only
needs to be able to express a 2n dimensional function. This loss can be further simplified
to the homoscedastic loss by enforcing the same variance for each data point

Lhom = |f(x) − fθ(x)|2

2σ2
θ

+ log σθ + log p(θ). (4.57)
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In this case there is only one parameter σθ added to the network when compared to
approximating the mean value using a mean-squared error loss.

The variance and covariance in these loss functions capture the width of the likelihood
providing a quantification for the variability of the data labels f(x) around the mean
predicted by the network fθ(x). The likelihood is linked to the data distribution p(x)
through Bayes theorem. If the mean predicted by the network is close to the physical
truth underlying the measurement producing p(x) the covariance captures the variability
of the measurements around this truth. For a well-trained model the aleatoric uncertainty
described in this section makes a statement about the uncertainty in the data distribution.

Epistemic uncertainty

The average loss as a function of the parameters ⟨L(θ)⟩x is rarely unimodal. Loss
minimization usually introduces a stochastic element to avoid getting stuck in suboptimal
minima. However, this stochasticity, as well as many, often equally good, minima can lead
to different results when training similar networks on the same data set. This variability
is often an indication of little or no data in the regions where differences between the
network realizations occur.

While training an ensemble of networks [Lakshminarayanan et al., 2016] provides a
measure of the epistemic uncertainty it does not come with a guarantee on the diversity
of the trained networks. This diversity can be enforced by introducing a repulsive term
as demonstrated in [D’Angelo and Fortuin, 2021]. Section 4.5.3 provides an introduction
to this method of uncertainty quantification. Another approach to epistemic as well
as aleatoric uncertainties is provided by Bayesian neural networks [Gal, 2016, Bollweg
et al., 2020, Kasieczka et al., 2020, Bellagente et al., 2022, Butter et al., 2023]. In this
approach each of the network parameters is promoted to a random variable drawn from
a probability distribution. A principled if computationally challenging approach to this
is to perform HMC parameter inference for the whole network [Izmailov et al., 2021].
However, there are also faster to compute approaches parametrizing the probability
distribution for each network parameter in a traditional network with a few parameters
[Graves, 2011].

4.5.3 Repulsive ensembles

This section is based on [Röver et al., 2024] and reproduces the derivation of repulsive
ensembles described in [D’Angelo and Fortuin, 2021, Plehn et al., 2022]. This derivation
is the work of Tilman Plehn and Theo Heimel.

For a repulsive ensemble the update rule to minimize the log-probability p(θt|x) is
extended to an ensemble of networks, while its coverage of the parameter space is
improved by a repulsive interaction. This interaction is based on the proximity of the
ensemble member θ to all other members. The kernel k(θ, θj) describes the interaction
with a second ensemble member θj . Adding up the interactions with all other weight
configurations yields

θt+1 = θt + α∇θt

⎡⎣log p(θt|x) −
∑︂

j

k(θt, θt
j)

⎤⎦ . (4.58)

53



4 A Short History of the Universe

The kernel is chosen such that after training each ensemble member is a sample from the
weight probability, θ ∼ p(θ|x).

Weight-space density

To ensure this sampling property the discretized t-dependence of the network parameters
is related to a time-dependent probability density ρ(θ, t). The time evolution of the
parameters can either be described through an ODE or a continuity equation,

dθ

dt
= v(θ, t) or ∂ρ(θ, t)

∂t
= −∇θ [υ(θ, t)ρ(θ, t)] . (4.59)

For a given velocity field υ(θ, t) the individual paths θ(t) describe the evolving density
ρ(θ, t) and the two descriptions are equivalent. If we choose the velocity field as

υ(θ, t) = −∇θ log ρ(θ, t)
π(θ) , (4.60)

the two descriptions read

dθ

dt
= −∇θ log ρ(θ, t)

π(θ)
∂ρ(θ, t)

∂t
= −∇θ [ρ(θ, t)∇θ log π(θ)] + ∇2

θ log ρ(θ, t) .

(4.61)

The continuity equation becomes the Fokker-Planck equation, for which ρ(θ, t) → π(θ) is
the unique stationary probability distribution.

Based on this ODE description we can construct an update rule similar to eqn. (4.58).
The discretized version of the ODE is

θt+1 − θt

α
= −∇θt log ρ(θt)

π(θt) . (4.62)

An unknown density ρ(θt), can be approximated as a superposition of kernels,

ρ(θt) ≈ 1
n

n∑︂
i=1

k(θt, θt
i) with

∫︂
dθtρ(θt) = 1 . (4.63)

Inserting this approximation into the discretized ODE yields

θt+1 − θt

α
= ∇θt log π(θt) − ∇θt

∑︁
i k(θt, θt

i)∑︁
i k(θt, θt

i)
. (4.64)

This form can be related to eqn. (4.58) by setting π(θ) ≡ p(θ|x). Following this description
we add the normalization term of eqn. (4.64) to our original kernel in eqn. (4.58),

∇θt

∑︂
i

k(θt, θt
i) → ∇θt

∑︁
i k(θt, θt

i)∑︁
i k(θt, θt

i)
, (4.65)

to ensure that the update rule with an appropriate kernel leads to the correct density.
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Function-space density

The derivation in the previous section holds for ensembles with a repulsive force in weight
space. However, we are interested in the function the network encodes and not the
weight representation. Two networks encoding the same function could be constructed
by permuting weights of the hidden layers. The resulting network configurations can be
well separated in weight space while exhibiting very similar network outputs, unaffected
by a repulsive force in weight space. To properly approximate epistemic uncertainty the
repulsion should take place in the space of the network outputs fθ(x).

In this space we can symbolically write the update rule from eqn. (4.58) with the
normalization of eqn. (4.65) as

f t+1 − f t

α
= ∇f t log p(f |x) −

∑︁
j ∇f tk(f, fj)∑︁

j k(f, fj) . (4.66)

Since the network training is defined in weight space, we have to translate the function-
space update rule into weight space using the appropriate Jacobian

θt+1 − θt

α
= ∇θt log p(θt|x) − ∂f t

∂θt

∑︁
j ∇f k(fθt , fθt

j
)∑︁

j k(fθt , fθt
j
) . (4.67)

Since the kernel cannot be evaluated in function space we have to evaluate the function
for a finite batch of points x,

θt+1 − θt

α
≈ ∇θt log p(θt|x) −

∑︁
j ∇θtk(fθt(x), fθt

j
(x))∑︁

j k(fθt(x), fθt
j
(x)) . (4.68)

Loss function

The update rule derived in eqn. (4.68) can be used to define a loss function for the
repulsive ensemble training. To that end we transform the posterior into a tractable
likelihood loss with a Gaussian prior,

log p(θ|x) = log p(x|θ) − |θ|2

2σ2 + const . (4.69)

Given a training dataset of size N , we evaluate the likelihood on batches of size B, so
eqn. (4.66) becomes

θt+1 − θt

α
≈ ∇θt

N

B

B∑︂
b=1

log p(xb|θ) −
∑︁

j ∇θtk(fθt(x), fθt
j
(x))∑︁

j k(fθt(x), fθt
j
(x)) − ∇θt

|θ|2

2σ2 . (4.70)

Here, fθt(x) is to be understood as evaluating the function for all samples x1, . . . , xB in
the batch.

The loss function is obtained from the update rule by dividing by N to remove the scaling
with the size of the training dataset and summing over all members of the ensemble.
Since the gradients of the loss function are computed with respect to the parameters of
all networks in the ensemble, we need to ensure the correct gradients of the repulsive
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term using a stop-gradient operation, denoted with an overline fθj
(x). The loss function

for repulsive ensembles then reads

L =
n∑︂

i=1

[︄
− 1

B

B∑︂
b=1

log p(xb|θi) + 1
N

∑︁n
j=1 k(fθi

(x), fθj
(x))∑︁n

j=1 k(fθi
(x), fθj

(x))
+ |θi|2

2Nσ2

]︄
. (4.71)

The prior is used to enforce an L2-regularization with prefactor 1/(2Nσ2).

Kernel in function space

A typical choice for the kernel introduced in eqn. (4.63) is a normal distribution. In
eqn. (4.71) this is a Gaussian in the multidimensional function space, evaluated over a
sample,

k(fθi
(x), fθj

(x)) =
B∏︂

b=1
exp

(︄
−

|fθi
(xb) − fθj

(xb)|2

h

)︄
. (4.72)

The width h should be chosen such that the width of the distribution is not overestimated
while still ensuring that it is sufficiently smooth. This can be achieved with the median
heuristic [Liu and Wang, 2016],

h =
medianij

(︂∑︁
b |fθi

(xb) − fθj
(xb)|2

)︂
2 log(n + 1) , (4.73)

with the number of ensemble members n.

4.5.4 Physics-informed neural networks

This section is based on the introduction to physics-informed neural networks (PINNs)
in [Röver et al., 2024].

Physics-informed neural networks [Raissi et al., 2017, Piscopo et al., 2019, Araz et al.,
2021, Li et al., 2021, Cuomo et al., 2022, Hao et al., 2022] together with neural differential
equations and neural operators form a group of machine learning methods relating neural
networks to solutions of differential equations. PINNs learn a prediction for a given
parameter choice without really solving an ODE at the stage of evaluation. Neural ODEs
[Chen et al., 2018] use neural networks as part of a system of differential equations that is
solved with conventional methods. Neural operators [Patel and Desjardins, 2018] provide
a parametrized mapping of e.g. initial conditions to a state at a given time but can be
used in a more general context.

The PINN setup requires training data that can be understood as the solution to a
differential equation. The connection to the differential equation is encoded in the loss
function. For an ODE,

u̇(t) = F (u, t) with initial conditions u(t = 0) = u0 , (4.74)
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the MSE loss for a PINN consists of two terms,

L = (1 − β)LIC + βLODE

with LIC = [uθ(t = 0) − u0]2

LODE = [u̇θ(t) − F (uθ, t)]2 .

(4.75)

The first term drives the PINN to fulfill the initial conditions, and can be used without
any additional training data. The second term ensures that the network approximates a
solution to the differential equation. The parameter β balances the two contributions.

Training through the ODE loss uses two kinds of data. First, unlabeled or residual data
points consist of points in time, where the differential equation is evaluated during the
training [Raissi et al., 2017]. Second, labeled time points can include other information,
in our case the corresponding true values for u(t) and u̇(t). This can either be only the
initial condition or a larger number of points used to encourage the PINN towards the
correct differential equation solution.

In addition to the MSE loss we can define an uncertainty-aware heteroscedastic loss
function similar to eqn. (4.56). For a d-dimensional function, defined through eqn. (4.74),
evaluated on N residual points the heteroscedastic PINN loss reads

LIC,het = 1
N

N∑︂
i=1

d∑︂
k=1

[︄
|uθ,k(ti = 0) − u0,k|2

2σθ,k(ti = 0)2 + log σθ,k(ti = 0)
]︄

LODE,het = 1
N

N∑︂
i=1

d∑︂
k=1

[︄
|u̇θ,k(ti) − Fk(uθ(ti))|2

2σθ,k(ti)2 + log σθ,k(ti)
]︄

.

(4.76)

The heteroscedastic loss is based on the likelihood that the network parameters describe
a solution to the differential equation. When training with residual points that fulfill the
differential equation exactly the widths σθ,k should approach zero. Regions with a large
width, after training only with residual points, can indicate a large difference between
the network approximation of the mean and the residual points.

We can also construct a heteroscedastic loss for the labeled data points following
eqn. (4.56). In all numerical applications in this thesis heteroscedastic uncertainty
is implemented by doubling the number of output parameters of the network. Half of
them are used to approximate the mean, while the other half describe the uncertainty.

As an alternative to repulsive ensembles Bayesian neural networks offer a way to include
epistemic uncertainty on top of the approach to aleatoric uncertainty described in this
section. For PINNs this has been investigated in [Yang et al., 2021].
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5 Inferring the Hubble Function with
Uncertainties

This chapter is based on [Röver et al., 2024]. It explores the supernova data introduced in
section 4.4 by constructing an uncertainty-aware emulator as well as inferring the Hubble
function in a model-independent way. These tasks are performed using physics-informed
neural networks, described in section 4.5.4. Section 5.1 describes an uncertainty-aware
emulator setup using a toy example. This approach is then applied to the supernova
data in section 5.2 and subsequently expanded to find a network reconstruction of the
Hubble function in 5.3.

5.1 PINNcertainties

5.1.1 Toy example

This section demonstrates some properties of PINNs and the uncertainties we introduce.
We explore the influence of the number of residual points as well as the effect of introducing
labeled data points, representing a noisy measurement of the truth. We concentrate on a
toy model, defined by the two-dimensional differential equation,

ü + u

2 = 0 with u(0) =
(︄

1
0

)︄
u̇(0) =

(︄
0
1

)︄
. (5.1)

Numerically the PINNs are trained on the four-dimensional, first-order ODE describing
the evolution of (u, u̇). Apart from the differential equations we do not enforce an
additional relation between u and u̇. This has the advantage of increasing training speed.
However, while the loss drives u̇ towards the derivative of u this relation is not exact.
For all results, we show one of the two components u1,2(t).

Note that the harmonic oscillator has a trivial solution u(t) = 0. For a PINN loss
constructed as in eqn. (4.75) LIC is not minimal, but LODE does not lead to any gradient.
Non-trivial approximations to the ODE solution are constructed by including both loss
terms in the training. However, for times far away from the initial condition the influence
of the initial conditions weakens, and the network predicts an oscillation with a decreasing
amplitude over time.

Unlabeled or residual data

This section establishes the effect of the number of residual points on the network
estimation of the ODE solution. Using the MSE loss described in eqn. (4.75) we obtain
uncertainties through training an ensemble of ten networks. Our basic architecture
consists of five layers with 200 nodes per hidden layer. All our networks are written in
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Figure 5.1: Learned harmonic oscillator, u(t) on the left and u̇(t) on the right,
for a varying number of uniformly distributed residual points. For the ensemble
spread we train 10 independent models trained on different data points.

PyTorch [Paszke et al., 2019]. The training uses the ADAM optimizer [Kingma and Ba,
2014] in a batch learning setup. For the loss, we choose equal contributions, β = 1/2.
We train the networks on 333, 1000, 1666, 2000, and 3000 uniformly distributed residual
points in t ∈ [0, 10]. The means and standard deviations of this ensemble are shown in
Figure 5.1.

As expected, the approximation improves when the number of residual points increases.
While the initial condition and the evolution shortly after are learned from even a few
residual points, good predictions at later times require more training data. Since the
networks are designed as continuous functions their value at early times is close to the
initial conditions and thus approximates the true solution. However, the network is
trained for all times simultaneously and is initialized close to the trivial solution u(t) = 0.
The network appears to get stuck in a local minimum where later times still fulfill the
differential equation approximately, while also finding a continuous connection to the
initial conditions. For more residual points, the agreement with the true solution improves
quantitatively at early times and qualitatively at late times.

While the uncertainty estimate from the network ensemble appears to decrease as the
networks approach the true solution they do not capture the poor agreement with the
true solution. The different networks appear to be drawn to the same local minimum in
the loss function even for different sets of residual points.

Labeled data

In many physics problems we have measurements of the desired quantity on top of
information on its evolution through the differential equation. To judge the impact of this
data we combine 1000 residual points ti and 6000 labeled points (t, u, u̇)i. The additional
information can be incorporated in the ODE loss of eqn. (4.75) similar to the initial
condition loss. This helps anchor the network to the true solution at different times. We
train the network alternatingly. In a first step we minimize the MSE between the network
prediction and the labels, and a second step minimizes the PINN loss from eqn. (4.75) on
the residual points. Training with labeled data points can be considered standard network
training. On the other hand for the labeled data points we first generate the information
for the network training by inserting the network into the differential equation. In particle
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physics, efficient integration and sampling build on a very similar combination of online
and buffered or sample-based training [Heimel et al., 2023, 2024].

For the harmonic oscillator uniformly distributed labeled data points are not optimal. In
Figure 5.2 we show how the PINN training improves when we include labeled data in
specific time windows, while the unlabeled data remains distributed uniformly.

The left panel shows that training with 6000 labeled data points close to the initial
condition yields a significant improvement in the region of the labeled data points.
Additionally, for a short time after leaving the labeled data region the PINNs are able to
extrapolate well. This effect is comparable to the unlabeled data case where the PINNs
find a good approximation close to the initial condition. The ensemble uncertainties do
not cover any of the deviations from the true solution. In the right panel the labeled
points are positioned at later times. Combined with the IC-loss this allows the networks
to learn a good approximation over the entire time range. If we consider the initial
condition as labeled data as well, this setup reduces our problem to an interpolation.
The gap between the initial condition and the additional labeled points does not cover
the first maximum of the oscillation, its position is however captured by the PINN loss.

5.1.2 Uncertainties

This section demonstrates the estimation of PINN uncertainties using a heteroscedastic
loss from eqn. (4.56) and repulsive ensembles, see section 4.5.3. We use the harmonic
oscillator toy model from section 5.1.1 while adding noisy labeled data points. To
determine how well each uncertainty estimate captures the statistic uncertainty in the
training data the labeled data points are distributed such that they become sparse for
late times.

Sparse and stochastic data

To determine the effect of the PINN loss we first establish the effect of noisy and sparse
data. For this experiment the neural networks are trained only on the labeled data points.
We generate two datasets with a reduced training point density towards late times. For
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Figure 5.2: Learned harmonic oscillator adding labeled data points at small times
(left) and intermediate times (right). The light histogram gives the distribution
of training points. For the ensemble spread we train 10 independent models on
different residual data points.
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Figure 5.3: Learned harmonic oscillator with sparse training data at late times.
For the training we only use labeled data points, defining a simple regression
task. In the left panel the training data is exact, in the right panel it includes
noise. The error bars correspond to 68% and 95% CL.

one of them we include noise while the other is exact. In this setup the labels u and u̇ are
separate, the network architecture does not include any information on the differential
equation. The decreasing distribution of labeled data points is given in the background
histogram of Figure 5.3, creating a smooth transition from abundant to sparse data and
ultimately to an extrapolation problem.

The left panel of this Figure demonstrates the effect of increasingly sparse data without
noise. The heteroscedastic uncertainty increases with time, as the density of labeled
training points decreases [Seitzer et al., 2022]. Both, the repulsive ensemble and the
heteroscedastic network deviate from the true solution for t > 8. They learn the shape
of the minimum even though there is very little data beyond t = 6. The repulsive
ensemble remains more stable than the heteroscedastic network, which can be explained
by the stabilizing effect of ensembling. For both, the heteroscedastic network and the
repulsive ensembles, the error bar increases fast enough to cover the deviation from the
true solution up to t = 9. Beyond this point the error bar is not conservative in covering
the uncertainty related to missing training data altogether. The classic ensemble without
repulsive term approximates the solution well up to t = 9 but without a meaningful
spread beyond that.

The right panel of Figure 5.3 focuses on noisy data. The labeled data points still encode
the solution to the differential equation, but with Gaussian noise on u and u̇ information
of mean zero and width 0.1. The heteroscedastic network captures this stochasticity as
an additional source of uncertainty over the entire time range. While each member of
the repulsive ensemble is determined using a heteroscedastic loss we only plot the spread
of their means to capture the effects of epistemic uncertainty. They approximate the
truth well, without a visible spread. The ensemble trained with an MSE loss does not
capture the noise in the data. At late times, the noise has a counter-intuitive effect on
the extrapolation; all predictions using a heteroscedastic loss become better, and the
reduced uncertainties confirm this trend. The central values and the error bars for the
heteroscedastic network and the repulsive ensembles lose their reliability in the region
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Figure 5.4: Learned harmonic oscillator adding the ODE loss enforcing the
differential equation. For the left panel the additional residual points are
distributed like the labeled point, for the right panels we add 10000 residual
points uniformly over time. The error bars correspond to 68% and 95% CL.

without data, t > 9.

For both test cases regression works as long as there is some training data. However, once
we enter the regime of extrapolation the networks fail to approximate the true solution.
This is true for the central value as well as the learned uncertainty estimates.

ODE extrapolation

Adding the ODE loss to the network training allows them to extrapolate to regions
without labeled data by using the additional residual data. At these points the network
confirms that its output fulfills the differential equation. We train with the two datasets
alternatingly, one epoch using the labeled data point and one epoch using residual points,
both computing the loss in eqn. (4.76).

As a first experiment, we include residual data with the same time distribution as the
labeled data. In practice, we strip the labeled data of the additional information and
add the remaining t-values as residual points. The left panel of Figure 5.4 shows the
PINNs becoming slightly more accurate at large times due to the increased total number
of training points. While this is true for the case without noise, the improvement is not
visible for noisy data. The learned network uncertainty confirms the behavior of the
central prediction.

In a further experiment, we add 10000 residual training points uniformly distributed over
time. Without noise, these models reproduce the true function extremely well, over the
entire time range and with correspondingly small uncertainties from the heteroscedastic
loss and the repulsive ensembles. Note, however, that this extrapolation away from the
labeled data points requires residual data points in the regions where the solution is
predicted.
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Figure 5.5: Learned harmonic oscillator with split training data and no noise.
In the left panel we only use the labeled training point, in the right panel we
add residual points distributed the same way as the labeled points. The error
bars correspond to 68% and 95% CL.

Interpolation with a gap

As illustrated in Figure 5.3 both the heteroscedastic loss and the repulsive ensembles
assign an increasing error bar towards the data-deprived region, with a conservative
uncertainty estimate for as long as there is training data. This section addresses wide
interpolation.

Here noisy training data is distributed uniformly in the ranges, t = [0, 2], and t = [7, 8]
with higher density in the second range. This forces the network to interpolate over a
large time window and extrapolate to late times. In the left panel of Figure 5.5 we train
with the labeled data only. The wide interpolation challenges the three different types
of networks, indicated by the poor agreement with the true solution. The spread of the
classic ensemble barely covers the difference from the truth. The situation improves with
repulsive ensembles, which provide more conservative error bars in both data-deprived
regions. In the interpolation region the heteroscedastic network covers a much smaller
family of functions. It does not appear to capture the aleatoric uncertainty in this
region. While at late times the central value deviates from the true solution at a similar
level as the repulsive ensembles, the error bar is smaller and not conservative for the
extrapolation.

In the right panel of Figure 5.5, we again add residual data following the same distribution
as the labeled data. The network can learn the differential equation using the ODE loss.
From the left panel of Figure 5.4 we know that this has hardly any effect on regions with
enough data or actual extrapolation. However, here we see that the residual data and the
ODE loss have a significant effect on the uncertainty estimate for the wide interpolation.

Note that domain knowledge can guide our expectation of network behavior for wide
interpolation and thus the choice of uncertainty estimate. Either we argue that the
network should consider a wide interpolation an extrapolation and admit that there is
not enough data to capture possible features in the sparsely probed region. In that case
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the error bar should be large. Or we assume that there are no additional features, in
which case a small uncertainty reflects the confidence of the network training.

5.2 Supernova PINNulator

This section moves away from the toy example and explores the computation of the
distance moduli µ of the type Ia supernovae through a PINN based neural network
emulator. For a known Hubble function the luminosity distances are computed through
the integration

µ = 5 log10 dL(z, λ) + 10 with dL(z, λ) = (1 + z) c

∫︂ z

0
dz′ 1

H(z′, λ) . (5.2)

The functional form of the Hubble function is dependent on our assumptions of the
underlying cosmology. The argument λ symbolizes the dependence on cosmological
parameters, and is carried through all derivations. In this section we focus on a flat two-
fluid universe including matter and dark energy, wCDM, assuming a constant w(z) < −1/3
to ensure accelerated expansion. This model contains ΛCDM as a particular choice of
the equation of state parameter w = −1. If we only assume the FLRW symmetries, the
Hubble function H(z) can take any form allowed by the data. We come back to this
second option in section 5.3.

Luminosity-distance PINN

PINNs can learn luminosity distances as a solution to a differential equation based on
eqn. (5.2). The resulting emulator can be used to speed up inference in classical MCMC
inference as used in section 3.3.5.

Based on the integral expression luminosity distances are governed by the ODE

dd̃L(z, λ)
dz

− d̃L(z, λ)
1 + z

− 1 + z

H̃(z, λ)
= 0 with dL(0, λ) = 0 . (5.3)

Here, d̃L = dLH0/c and H̃(z, λ) = H(z, λ)/H0 are dimensionless and ensure solutions of
order unity. This makes PINN training more stable [Wang et al., 2023]. To learn the
solution to eqn. (5.3), we choose the cosmological parameters and the functional form for
the Hubble function similar to [Chantada et al., 2023],

H(z, λ)
H0

=
√︂

Ωm(1 + z)3 + (1 − Ωm)(1 + z)3(1+w) . (5.4)

As cosmological input parameters we concentrate on the redshift z, the energy density of
matter Ωm and the dark energy equation of state parameter w. In this subsection, we fix
the Hubble parameter to 70 km/s/Mpc.
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The two relevant losses defined in eqn. (4.75) can be read off eqn. (5.3) as

LIC = 1
N

N∑︂
i=0

[dL,θ(0, λi)]2

LODE = 1
N

N∑︂
i=0

[︃ddL,θ(zi, λi)
dz

− dL,θ(zi, λi)
1 + zi

− 1 + zi

H(zi, λi)

]︃2
.

(5.5)

The index i counts N elements (z, λ)i, generated uniformly over the relevant parameter
ranges.

As in the toy example, we construct heteroscedastic versions of the MSE losses to learn
the uncertainties from the training data,

LIC,het = 1
N

N∑︂
i=0

[︄
dL,θ(0, λi)2

2σθ(0, λi)2 + log σθ(0, λi)
]︄

LODE,het = 1
N

N∑︂
i=1

⎡⎢⎣
(︂ddL,θ(zi,λi)

dz − dL,θ(zi,λi)
1+zi

− 1+zi
H(zi,λi)

)︂2

2σθ(zi, λi)2 + log σθ(zi, λi)

⎤⎥⎦ .

(5.6)

Our small network uses five hidden layers with 100 nodes each, with a one-dimensional
output approximating the luminosity distance. The 105 residual training points are
generated uniformly in the ranges z ∈ [0, 1.8], Ωm ∈ [0, 1], and w ∈ [−1.6, −0.5]. Network
training with only the residual points is good enough that we do not have to consider
labeled data for the PNN emulator. Section 3.3.5 uses a smaller model to constrain the
matter density and the equation of state parameter using the Union2.1 dataset [Suzuki
et al., 2012, Amanullah et al., 2010, Kowalski et al., 2008].

Luminosity-distance emulator

Figure 5.6 demonstrates the accuracy of the PINN emulator assuming the best-fit
parameters of the Union2.1 dataset. The left panel demonstrates that the spread of ten
emulators trained using MSE errors and heteroscedastic errors both vary at less than an
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Figure 5.6: Learned luminosity distance from residual points only. The left panel
compares the heteroscedastic PINN uncertainty to the experimental uncertainties
in the Union2.1 dataset. The right panel shows the relative difference between
the learned and true solutions. For the ensemble spread we train 10 independent
models on different data points.
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Figure 5.7: PINN accuracy for data points uniformly sampled from the same
cosmological parameter ranges as the training points. The left panel shows
the error bands around the true solution, the right panel the evolution of the
ensemble spread and the heteroscedastic uncertainty with redshift.

order of magnitude of the experimental uncertainties. The right panel shows that the
spread of ten MSE-trained PINNs is larger than the uncertainty estimation obtained
when training with a heteroscedastic loss.

Since the networks are trained using only residual points the solution is probed exactly.
The heteroscedastic error bars do not capture the noise in the data but the limitations of
the network expressivity. The error bands computed from ten networks trained with the
heteroscedastic loss lie within the heteroscedastic error bars. Rather than adjusting a
network with limited expressivity to data with arbitrary precision this effect is captured in
the heteroscedastic loss. This helps stabilize the training and subsequently the agreement
of the trained model with the true solution.

To test the reliability of the distance modulus emulator we generate 1000 test data points
from the same distribution as the training data, while computing their true luminosity
distances using eqn. (5.3). The left panel of Figure 5.7 shows the deviation of the PINN
prediction from the true solution. The spread of the ensemble trained with an MSE loss
deviates from the truth by less than two percent. The heteroscedastic training improves
this agreement to better than one percent. In the right panel of Figure 5.7 the relative
uncertainties grow rapidly for small redshifts since the initial condition of the luminosity
distance is also small. This requires better absolute precision.

Overall PINNs trained with either type of loss function are precise enough to use as an
emulator for the Union2.1 or Pantheon+ [Scolnic et al., 2022] data, which come with
experimental errors of around 10%, without resorting to labeled data training.

5.3 Supernova PINNference

The previous section demonstrates that PINNs can learn and emulate luminosity distances
for a given parameterized Hubble function as a solution to a differential equation.
The trained emulators can be used to infer posterior distributions of the cosmological
parameters. This section instead uses the experimental data sets represented in Figure 4.2
to infer a neural network representation of the Hubble function with minimal assumptions
on the underlying cosmology.
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Figure 5.8: Illustration of the PINN emulation in section 5.2 and inference setups
in section 5.3.

Introducing a free function fϕ(t) ≈ f(t) represented by a neural network, similar to
[Shukla et al., 2020], expands the structure of eqn. (4.74) to

u̇(t) = F (u(t), t, f(t)) with u(0) = u0 . (5.7)

We extract information on the differential equation including f(t) by training a network
uθ(t) on the labeled data. The trained network fulfills the differential equation with the
true function f(t). This function is approximated with a second network fϕ(t). Given N
labeled data points (t, u)i and M residual points t̃j the training uses the loss functions

LData = 1
N

N∑︂
i=1

[uθ(ti) − ui]2

LODE = 1
M

M∑︂
j=1

[︁
u̇θ(t̃j) − F (uθ(t̃j), t̃j , fϕ(t̃j))

]︁2
.

(5.8)

In this equation the data loss plays the same role as LIC in eqn. (4.75). It anchors the
network approximation to the true solution of the differential equation and extracts
the information on f(t) via uθ. The second loss term LODE ensures that the network
fϕ(t) approximates the true f(t) for all times covered by the residual points, as long
as uθ is sufficiently accurate. In all numerical experiments the losses are combined by
alternating between epochs using only one of them. The network structure and training
are illustrated in Figure 5.8.

As a first numerical experiment we generate 103 artificial, noiseless data points from a
cosmological model defined by eqn. (5.4). Here w is fixed to the best-fit value of the
Union2.1 dataset. In Figure 5.9 both the Hubble function and the luminosity distance are
reconstructed using dense networks with five hidden layers and a width of 100 nodes. We
use 104 residual points and compensate for the imbalance between residual and labeled
data points by training ten epochs with the data loss for every epoch trained with the
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Figure 5.9: Reconstruction of the Hubble function using PINNs with an MSE
loss. The left plot depicts the luminosity distance approximation compared
to the true value with an ensembling error bar derived from ten models. The
right-hand side depicts the corresponding Hubble reconstruction.

ODE loss. This reconstruction of the (inverse) Hubble function is performed without any
input on the particular model used to generate the data. On this synthetic data set the
Hubble function can be learned almost perfectly.

5.3.1 Uncertainty estimation

While the previous section reconstructs the Hubble function from noiseless labeled data
this section provides a way to incorporate data uncertainties into the calculation, using a
heteroscedastic loss. Additionally, we implement repulsive ensembles since they allow
for a more conservative error estimate in regions with sparse data, as demonstrated in
section 4.5.3.

Combining the learned luminosity distance d̃L,θ, with uncertainty σθ, and the ODE in
eqn. (5.3), every luminosity distance value contributes to the reconstruction of the Hubble
function as

1 + zi

H̃(zi)
≈ dd̃L,θ(zi)

dz
− d̃L,θ(zi)

1 + zi
. (5.9)

In order to include the network uncertainties σθ in the Hubble reconstruction, both
d̃L,θ(zi) and dd̃L,θ(zi)/dz need to be drawn from their respective probability distributions.
By using a heteroscedastic loss the luminosity distance at each redshift is assumed to
follow a normal distribution N (d̃L,θ(zi), σ2

θ). Since samples of the luminosity distance are
generated using a standard Gaussian, the width of the derivative distribution is dσθ/dz.
We can generate a distribution of Hubble function values by sampling the luminosity
distance and its derivative from their distributions and inserting into eqn. (5.9).

A second network can then learn H̃ϕ with an uncertainty σϕ based on this distribution
of Hubble function values. The uncertainty on H̃ϕ is learned using the heteroscedastic
loss of eqn. (5.6). This uncertainty is interpreted as the uncertainty on (1 + z)/H̃ϕ(z)
under the assumption that for each redshift dL,θ fulfills the differential equation correctly.
Based on this assumption inserting eqn. (5.9) into the loss allows us to reduce it to the
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expression

LHubble, het = 1
N

N∑︂
i=1

⎡⎢⎢⎢⎢⎢⎣
(︄

1 + zi

H̃(zi)
− 1 + zi

H̃ϕ(zi)

)︄2

2 (σϕ(zi))2 + log σϕ(zi)

⎤⎥⎥⎥⎥⎥⎦ . (5.10)

The Hubble function is approximated by a normal distribution in (1 + zi)/H̃ϕ(zi) with
variance σ2

ϕ(zi).

Note that training with the data loss only modifies the luminosity distance network
dL,θ, while combining eqn. (5.9) and eqn. (5.10) allows us to optimize Hϕ and dL,θ

simultaneously. Here both mean value and uncertainty of dL,θ appear in the sampling of
dL(zi), allowing the network parameters θ to influence the loss. The ratio of labeled data
epochs, where the data is extracted using dL,θ, to ODE epochs, where Hϕ is inferred, is
a training hyperparameter.

5.3.2 Noisy data

With the uncertainty estimation derived in the previous section we can solve the inverse
problem for real observations. We consider two datasets, Union2.1 [Suzuki et al., 2012,
Amanullah et al., 2010, Kowalski et al., 2008] and Pantheon+ [Scolnic et al., 2022]. Figure
4.2 depicts the measured distance moduli and their redshift distributions. We convert
each of these data sets into luminosity distance following eqn. (5.2). In this process we
assume that the data follows a multivariate normal distribution and generate a set of
luminosity distances per redshift using the mean and the covariance matrix from the
actual data.

The resulting luminosity distances and the distribution of redshifts for the ensemble
of synthetic datasets are depicted in Figure 5.10. Their relative error is around 10%
of the function value, and the data becomes sparse towards large redshift. The newer
Pantheon+ dataset covers a larger range of redshifts and includes three times as many
supernovae.

In this section the luminosity distance is learned as dL,θ, using five layers with 100
nodes each. The inverse Hubble function is modeled with a second network with five
layers and 200 nodes wide. As suggested in [Wang et al., 2023] we impose the boundary
condition of the luminosity distance network by learning (dL/z)θ and multiplying by z
later. This ensures that dL,θ(z = 0) = 0. In addition, we find that using random Fourier
features [Tancik et al., 2020] significantly reduces the required training time. For each
epoch the labeled training is generated from the luminosity distance distribution shown
in Figure 5.10. The resulting ensemble of luminosity distances scatters around the mean
at each redshift, which can be captured by the heteroscedastic loss of the Hubble function
network.

Figure 5.11 depicts the reconstruction of the Hubble function from both datasets. We
show the learned luminosity distance and the reconstructed Hubble function, comparing
a heteroscedastic network, an ensemble of MSE networks and a repulsive ensemble.
Similar to section 5.1.2, the ensemble and the aleatoric uncertainty of the repulsive
ensemble do not capture the data noise, whereas the heteroscedastic uncertainty of the
luminosity distance does. The reconstructed Hubble function is consistent with a wCDM
approximation of the Hubble function from a direct fit of a parameterized model.
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The sharp feature in the Hubble function reconstruction from the Union2.1 dataset can
be understood from eqn. (5.9). The uncertainty of the Hubble function is approximately
the quadratic mean of the uncertainty of the derivative of the luminosity distance and
the uncertainty of the luminosity distance itself. Fast changes in the width and scatter
of the labeled data points with redshift, see Figure 5.10, leverage fast changes in the
predicted error bars of the luminosity distance. The sharp increase in the uncertainty
of the reconstructed Hubble function at redshift 0.3 corresponds to the change in the
uncertainty in the luminosity distance leading to a maximum in the uncertainty.

The reconstruction of the Hubble function in eqn. (5.9) relies on the assumption that the
network approximating the luminosity distances fulfills the differential equation exactly.
The deviation from the true solution can be approximated by inserting both networks
into the differential equation. In this application the deviation is small compared to the
predicted uncertainties from the spread of the data.

5.3.3 Dark energy equation of state

Finally, the inferred, parameter-free Hubble function H(a)/H0 can be converted to an
equation of state function w(a). Using the general relation [Takada and Jain, 2004],

H2(a)
H2

0
= Ωm

a3 + (1 − Ωm) exp
[︃
−3
∫︂ a

1
da′ 1 + w(a′)

a′

]︃
, (5.11)

w(a) is determined through differentiation,

w(a) = −1
3

d
d log a

log
[︄

H2(a)
H2

0
− Ωm

a3

]︄
− 1 . (5.12)
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Figure 5.10: Generated redshift dependencies of the luminosity distance values
of the Union2.1 (left) and Pantheon+ data (right). The histograms capture
the distribution of the supernovae in redshift. The lower sub-panels show the
relative error bars on the luminosity distances.
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Figure 5.11: Top: PINN-learned luminosity distance from the labeled data,
derived from the Union2.1 (left) and Pantheon+ (right) data. Bottom: learned
inverse Hubble function from the two datasets.

We use Ωm = 0.28, as suggested by the Union2.1 dataset. Note that following this
equation reintroduces more model assumptions into our setup.

The left panel of Figure 5.12 demonstrates that w(z) can be reconstructed for small data
uncertainties. Increasing the observational uncertainty to 5% or 10% has a large impact on
the inferred uncertainty of w(z) beyond z ≃ 0.3. This is partially caused by the increase
in PINN uncertainty away from the initial conditions. More importantly, at high redshift
the dark energy has a small influence on the Hubble function at high redshift, rendering
w(z) effectively unconstrained. Technically, by approaching H(a)2/H2

0 ≃ Ωm/a3 at
sufficiently high redshifts leads to a diverging logarithmic derivative in eqn. (5.12).

In the right panel of Figure 5.12 we show the reconstruction of w(z) from our two datasets.
The matter density for each dataset is assumed to be their respective best-fit values. At
small redshifts our inference method constrains w(z) well, but the uncertainties of the
labeled data do not leave any sensitivity beyond z ≳ 0.3.

5.4 PINNclusions

Physics-informed neural networks are trained on the output of a parameterized system
of differential equations. They can predict solutions for given parameters with a proper
interpolation between parameter choices. This emulation of the space of ODE solutions
provides tremendous speed-ups and therefore an excellent tool for statistical inference. The
focus of our investigation was the error-awareness or uncertainty estimation of PINNs. For
this purpose we have compared a heteroscedastic loss and repulsive ensembles, confirming
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Figure 5.12: Inferred dark energy equation of state. The left panel uses sim-
ulated data with increasing assumed error bars. The right panel uses the
Union2.1 and the Pantheon+ dataset, propagating the error bars estimated by
the collaborations through the PINN inference.

that PINNs extrapolate into regions of sparse or low-quality data, while sensibly increasing
their learned error in these regions. Testing these aspects with the harmonic oscillator as
a toy example confirms the fundamental behavior of PINNs.

The functionality of PINNs as emulators was then verified with luminosity distances as
functions of redshift for a conventional dark-energy dominated Friedmann-Robertson-
Walker universe. PINNs correctly predict the luminosity distance for a given redshift
over a wide range of dark energy equation of state parameters, without performing a
numerical integration in the forward simulation.

Using PINNs for inference rather than emulation requires a statistical inversion, i.e. a
mapping of the experimental uncertainty back to the parameterization. Applied to the
supernova example, PINNs allow for an uncertainty-aware reconstruction of the Hubble
function without any predefined parameterization. The Hubble function is reconstructed
by the PINN including an error estimate. They discover peculiarities in the data, such
as the sudden increase in error in the Union data set at z ≃ 0.3, reflecting a large
uncertainty in the reconstructed Hubble function. Re-expressing the Hubble function
with the dark energy equation of state function derived for a fixed matter density shows
weaker constraints, as the increase in error is driven by the derivative transitioning from
H(a) to w(a).
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6 Parallelizing Madelung Modes during
Inflation

This chapter introduces the parallelized inflation solver Parallizis. Section 6.1 derives
the Madelung transformed mode equations used in the solver, while section 6.2 constructs
a parallelized approach to the mode equations using the ODE solvers implemented in
torchdiffeq. Additionally, section 6.3 describes emulators to translate from primordial
power spectra to observable power spectra based on fully connected neural networks.

6.1 Madelung mode equations

This section collects theoretical insights into the perturbation equations of single-field
inflation. Applying the Madelung transformation from quantum mechanics to the mode
equations yields a conserved quantity similar to a conserved angular momentum in the
complex plane.

6.1.1 Mode equations during inflation

In single-field inflation the evolution of the perturbation modes is governed by the mode
equation (4.22). Usually the evolution starts deep inside the horizon, at 100aH = k
[Lesgourgues et al., 2008, Mortonson et al., 2011], such that the Bunch-Davies initial
conditions (4.26) can be applied. This section is concerned with the evolution of the
mode after that and in particular the expected freezing of the mode when aH ≪ k.
All Figures in this section depict the curvature mode uk∗ associated to the pivot scale
k∗ = 0.05 Mpc−1.

Figure 6.1 depicts the conformal time evolution of the Mukhanov-Sasaki variable u.
The absolute values of the curvature modes, shown in red, are accessible through the
primordial power spectrum. The left panel shows the evolution of the mode transformed
with an inverse hyperbolic sine, this allows to capture the rapid change of the curvature
at late times. This happens as the mode crosses the horizon, indicated by the dashed
vertical line. The transition appears fast in conformal time since the comoving horizon
changes quickly at late times, see Figure 6.5. Since the curvature modes are constructed
from the Mukhanov-Sasaki variables u/z the rapid increase in uk∗ is moderated by a
similar increase in z = ∂ηφ

H . This behavior is depicted in the right panel of Figure 6.1.

Transitioning to ln a gives a better intuition into the evolution of the mode as it crosses
the horizon. For this time variable the mode equations in eqn. (4.22) are transformed
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Figure 6.1: Evolution of the curvature perturbation mode uk∗ for k∗ =
0.05 Mpc−1 in conformal time. Blue lines depict the real part of the mode
equations, while orange is the imaginary part. Red lines show their absolute
value, while the gray line marks where the mode crosses the horizon. The left
panel shows the evolution of the Mukhanov-Sasaki modes, while the right panel
shows the evolution of the curvature modes directly.

using d ln a = aHdη to read

u′′ +
(︃

H ′

H
− 1

)︃
u′ +

[︄
k2

a2H2 −
(︄

2 − 2
(︃

H ′

H

)︃2
− 4H ′

H

φ′′

φ′ + 5H ′

H
−

∂2
φV

H2

)︄]︄
u = 0

v′′ +
(︃

H ′

H
− 1

)︃
v′ +

[︄
k2

a2H2 −
(︃

2 − H ′

H

)︃]︄
v = 0.

(6.1)

Similar to the Bunch-Davies initial conditions in conformal time, see eqn. (4.26), we can
find an expression for the initial conditions of the modes in ln a as

Re(uk) = Re(vk) = 1√
2k

Im(uk) = Im(vk) = 0
Re(∂ln auk) = Re(∂ln avk) = 0

Im(∂ln auk) = Im(∂ln avk) = −kaH√
2k

.

(6.2)

The evolution of the mode in terms of the logarithmic scale factor is shown in Figure
6.2. Using this time variable the oscillations do not appear to have a fixed period, and
the Mukhanov-Sasaki variable in the left panel grows more gradually. The right panel
validates the approach to stop the evolution soon after horizon crossing, as the mode
stops evolving. In all numerical calculations we stop computing the evolution of the mode
when aH = 50k similar to the approach in class. When this condition is fulfilled the
curvature mode is far outside the horizon and its evolution is frozen.

This behavior can also be inferred directly from the differential equation for ũk = u
z and
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Figure 6.2: Evolution of the curvature perturbation mode uk∗ for k∗ =
0.05 Mpc−1 in ln a. Blue lines depict the real part of the mode equations,
while orange is the imaginary part. Red lines show their absolute value, while
the gray line marks where the mode crosses the horizon. The left panel shows
the evolution of the Mukhanov-Sasaki modes, while the right panel shows the
evolution of the curvature modes directly.

ṽk = v
a , which can be expressed as

ũ′′ +
(︃

3 + H ′

H
+ 2φ′′

φ′

)︃
ũ′ + k2

a2H2 ũ = 0

ṽ′′ +
(︃

3 + H ′

H

)︃
ṽ′ + k2

a2H2 ṽ = 0.

(6.3)

The changing period in oscillations is an effect of the comoving horizon appearing in the
third term. Additionally, for large aH, corresponding to late times the last term in the
equations is approximately zero and a constant is a solution to the differential equation.
The initial conditions for this set of differential equations can be derived from the initial
conditions for u and v in eqn. (6.2).

6.1.2 Madelung transformation

The previous section is concerned with the evolution of the real and imaginary parts of
the curvature modes during inflation. However, after the evolution stops only the radial
part of the complex-valued mode is used in the computation of the power spectrum, see
eqn. (4.29). This section derives a differential equation for the radial part and the phase
velocity of the modes similar to the derivation of the Madelung equation [Madelung,
1926, 1927] in quantum mechanics.

The differential equations describing the curvature evolution share the common shape

y′′(x) + f(x)y′(x) + g(x)y(x) = 0. (6.4)

Here x can be any time variable and primes denote derivatives with respect to it.
Additionally, f(x) and g(x) are real-valued such that the differential equation for the
complex conjugate is the same. The Mukhanov-Sasaki potentials, and their derivatives,
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are expressed as
y = ρeiα

y′ =
(︁
ρ′ + iρα′)︁ eiα

y′′ =
(︂
ρ′′ + 2iρ′α′ + iρα′′ − ρα′2

)︂
eiα.

(6.5)

This description is used to construct two independent differential equations from the
symmetric and antisymmetric combinations of the modes y and their derivatives y′. In
terms of the radial part ρ and the phase α the antisymmetric combination reads

y∗y′ − y(y∗)′ = 2iρ2α′. (6.6)

In the following derivation y∗ denotes complex conjugate of y. Taking the derivative and
inserting the information from 6.4 yields(︂

2iρ2α′
)︂′

= y∗y′′ − y(y∗)′′

= y∗(−fy′ − gy) − y(−f(y∗)′ − gy∗)
= −f(y∗y′ − y(y∗)′) = −2ifρ2α′.

(6.7)

The symmetrical analogue reads

y∗y′ + y(y∗)′ = 2ρρ′ = (ρ2)′, (6.8)

resulting in the differential equation

(ρ2)′′ = y∗y′′ + y(y∗)′′ + 2y′(y∗)′

= 2y′(y∗)′ − f(y∗y′ + y(y∗)′) − 2gy∗y

= 2
(︁
ρ′ + iρα′)︁ (︁ρ′ − iρα′)︁− f(ρ2)′ − 2gρ2

= 2(ρ′)2 − 2ρ2(α′)2 − f(ρ2)′ − 2gρ2.

(6.9)

Evaluating the derivatives yields the second differential equation

2ρ′′ρ + 2(ρ′)2 = 2(ρ′)2 − 2ρ2(α′)2 − 2fρ′ρ − 2gρ2

=⇒ ρ′′ = −ρ(α′)2 − fρ′ − gρ.
(6.10)

The full mode equations then read

(ρ2α′)′ + fρ2α′ = 0

ρ′′ + fρ′ +
(︂
(α′)2 + g

)︂
ρ = 0.

(6.11)

For any integrable function f(x) with primitive F (x) the first differential equation can
be used to identify a constant exp(F )ρ2α′. Substituting in the Bunch-Davies initial
conditions yields

− exp(F (x))ρ2(x)α′(x) = 1
2 . (6.12)

While the initial conditions fix α′(x0) < 0, the conservation equation ensures that
the sign of α′ never changes. For y = u and x = η the constant can be identified
as ρ2(η)∂ηα(η) = −1

2 . This is similar to angular momentum conservation in classical
mechanics. The solution to the mode equation rotates around ρ = 0 in the complex plane.
The derivative of the complex phase plays the role of angular velocity. The modulus of
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Figure 6.3: Evolution of the curvature perturbation mode uk∗ for k∗ =
0.05 Mpc−1 in the complex plane. The left panel depicts the evolution of
the Mukhanov-Sasaki potential uk∗ in conformal time directly. The right panel
is the evolution of the curvature mode uk∗/z.

the complex number is analogous to the radius in angular movement.

Figure 6.3 gives a visual representation of the conserved quantities. The left panel
depicts the case of y = u and x = η. As the angular velocity approaches zero the
radial part of the mode diverges. Similarly, the right panel shows the case of y = u

z and
x = ln a. In this case eqn. (6.3) suggests f(ln a) =

(︂
3 + H′

H + 2φ′′

φ′

)︂
and consequently

F (ln a) = 3 ln a + ln H + 2 ln φ′. The conservation equation then reads

a3H(φ′)2ρ2α′ = −1
2 . (6.13)

As the scale factor increases during inflation both the radial part and the angular velocity
decrease.

In parallizis the evolution of the perturbation modes is computed using the Madelung
transformed mode equations (6.11) with y = u

z and x = ln a. The differential equation is
further rewritten as an ODE in terms of ln ρ since the radial part of u

z is always positive
and crosses orders of magnitude in its evolution. Using a similar argument the angular
velocity enters the differential equation as ln(−α′). The equations used in the numerical
computations then read

2(ln ρ)′ + (ln(−α′))′ + f = 0
(ln ρ)′′ + (ln ρ)′ [︁(ln ρ)′ + f

]︁
+ g − exp(2 ln(−α′)) = 0.

(6.14)

Here f =
(︂
3 + H′

H + 2φ′′

φ′

)︂
and g = k2

a2H2 . The first equation in combination with the
constant in eqn. (6.13) is used to express the angular velocity in terms of the radial part.
With this choice of variables the initial conditions read

ρ = 1√
2k

1
(aφ′)

(ln ρ)′ = −
(︃

1 + φ′′

φ′

)︃
α′ = − k

aH
.

(6.15)
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Remaining in conformal time and using a naive scipy implementation Madelung trans-
formed mode equations lead to a speed improvement of roughly a factor two, averaged over
modes spaced linearly in ln k ∈ [−4, 0]. While the speed improves for all wavenumbers
smaller wavenumbers gain a larger improvement. This can be attributed to the longer
integration times needed for smaller wavenumbers, see Figure 6.6. Using ln a as a time
variable for the Madelung transformed equations does not have a large impact on the
computation time.

6.2 PARALLelIZed Inflation Solver

This section is designed as a tour through the parallelized inflation solver parallizis. It
starts with the definition of the inflationary potential and follows the steps performed in
the solver to arrive at a numerical solution for the primordial power spectrum.
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Figure 6.4: Parallizis graphical overview. The inflaton potential and back-
ground evolution are described in section 6.2.1. The perturbations and the
parallelization are described in section 6.2.2.

6.2.1 Potential to initial conditions

The inflaton potential

The inflationary paradigm implies a shrinking comoving horizon. This translates to a
period in the cosmic expansion history where the universe is dominated by a fluid with an
equation of state wφ < −1

3 . While there are further constraints from observational data,
such as the CMB anisotropies and Large Scale Structures (LSS), the shape of the inflaton
potential is not known. Descriptions of current models and observational constraints on
them can be found in [Akrami et al., 2020].

For all numerical experiments in this chapter the inflaton potential is characterized as

V (φ) = v0 + v1(φ − φ∗) + v2
2 (φ − φ∗)2 + v3

6 (φ − φ∗)3 + v4
24(φ − φ∗)4, (6.16)
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the parameters are described using the potential slow-roll parameters [Leach et al., 2002]

ϵV = 1
2

m2
pl

8π

(︃
∂φV

V

)︃2
⃓⃓⃓⃓
⃓
φ=φ∗

ηV =
m2

pl

8π

∂2
φV

V

⃓⃓⃓⃓
⃓
φ=φ∗

ξ2
V =

m4
pl

(8π)2
∂φV ∂3

φV

V 2

⃓⃓⃓⃓
⃓
φ=φ∗

ω3
V =

m6
pl

(8π)3
(∂φV )2∂4

φV

V 3

⃓⃓⃓⃓
⃓
φ=φ∗

.

(6.17)

Since the inflaton field has units of Planck mass mpl = (G)−1/2 it is explicitly written
out to emphasize that these parameters are dimensionless. They are evaluated at the
inflaton field value at horizon crossing of the pivot scale. The amplitude of both the
potential and the primordial power spectrum is determined by the additional parameter
[Lesgourgues and Valkenburg, 2007]

128π

3m6
pl

V 3

(∂φV )2

⃓⃓⃓⃓
⃓
φ=φ∗

. (6.18)

This parametrization of the inflaton potential already avoids specifying a model. However,
all calculations performed on this section can be performed for any inflaton potential
as long as its first and second derivatives are implemented as a python function and
the potential results in an inflating universe until all length scales of interest leave the
horizon.

Background evolution

The background evolution of the inflaton is performed in conformal time η. Accordingly,
the differential equation governing the background evolution, eqn. (4.16), is transformed
using the prescription dt = adη, to read

∂2φ

∂η2 + 2aH
∂φ

∂η
= −a2 ∂V

∂φ

∂H

∂η
= − 8π

2m2
pla

(︃
∂φ

∂η

)︃2

∂a

∂η
= a2H.

(6.19)

Here, the evolution of the Hubble function is encoded in the second line through the
derivative of the Friedmann equation. To ensure that the solution fulfills the Friedmann
equations the initial conditions must fulfill

H2 = 8π

3m2
pl

(︄
1

2a2

(︃
∂φ

∂η

)︃2
+ V (φ)

)︄
. (6.20)
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With this time variable both the Friedmann equation and the evolution equation of the
inflaton contain the scale factor explicitly. Its evolution in conformal time, the third line
of eqn. (6.19), is determined from the definition of the Hubble function H = ȧ

a .

Since this differential equation does not explicitly depend on conformal time, the equations
are invariant under conformal time translation. While solving the equation requires a
choice of initial condition the conformal time at which they describe the physical system
is always set to η = 0. The equations are also invariant under rescaling of the scale
factor when taking into account that this also rescales conformal time. Additionally, the
initial value of the inflaton field is degenerate with the normalization of the potential at
V (φ(0)).

The initial conditions of the background equations are found using the same approach as
in class [Blas et al., 2011]. The field value of the inflaton at horizon crossing of the pivot
scale is chosen as φ∗ = 0. Starting from this the other function values are chosen such
that (φ∗, ∂ηφ∗, H∗, a0 = 1) constitute an attractor solution. Numerically this is done by
finding the derivative of the inflaton field and the Hubble function from the slow-roll
approximation to the background equation (4.20). These values are then used to evolve
backward in time, still using the slow-roll approximation. Next, the values at this earlier
time are evolved forward using eqn. (6.19) until φ(η) = φ∗. This yields updated values
of ∂φ and the Hubble function when φ(η) = φ∗. This process is repeated until the value
of ∂φ at the end of the forward evolution does not vary by more than a tunable precision
parameter. To ensure that the pivot scale k∗ crosses the horizon at these field values the
scale symmetry of the scale factor is used to set a∗ = k∗

H∗
.

This set of conditions anchors the background equation in time. To capture the evolution
of the smallest comoving wavenumbers we evolve backward in time until 100aH =
kmin. At this time we find the initial conditions of the background differential equation
(φ0, ∂ηφ0, H0, a0). It is worth noting that the translation invariance with conformal time
is used in this derivation to start any evolution of the background at η = 0. Once the
field value at horizon crossing of the pivot scale is fixed, the scale factor, or the comoving
horizon, indicates the state of the system and the passage time between different solutions
of the differential equation.

Initial conditions of the perturbation equations

The evolution of the perturbation equations is determined by eqn. (4.22) and eqn. (4.24),
while their initial conditions are set using the Bunch-Davies vacuum in eqn. (4.26).
Since the background fields enter the description of the perturbation equations both
sets of differential equations are solved at the same time. To capture the evolution of a
mode with comoving wavenumber k it is evolved from the time when 100aH = k where
the Bunch-Davies initial conditions can be used. Consequently, the full set of initial
conditions in conformal time is obtained by evolving eqn. (6.19) forward starting from the
background initial conditions and appending the Bunch-Davies vacuum at 100aH = k.
In a parallelized setting the initial conditions are found for each comoving wavenumber k
in the observable range.

From a numerical point of view ending the integration of the differential equation when
a specific set of conditions is fulfilled requires keeping track of these conditions in an
event function. The ODE solver torchdiffeq [Chen et al., 2018] offers this capability
[Chen et al., 2021]. Additionally, since the solvers are PyTorch based it is possible to
differentiate through them using automatic differentiation.
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Figure 6.5: Inverse comoving horizon evolution. The left panel depicts the
evolution in terms of conformal time. The right panel shows the evolution in
ln a. The dashed lines show a comoving horizon interval such that k

aH ∈ [1, 5]
for k = 5 · 10−2 Mpc−1. The dot-dashed lines show the same interval for
k = 5 · 10−4 Mpc−1.

6.2.2 Parallel perturbations

The time evolution of the Mukhanov-Sasaki potentials is sensitive to the size of the
comoving horizon. This can be seen in the simplifications of the differential equations
at aH ≫ k where the Bunch-Davies initial conditions are implemented. Additionally,
at aH ≪ k the corresponding mode freezes. While torchdiffeq requires only some
modification to allow for parallelized event functions it is designed to work with only one
time variable.

The left plot in Figure 6.5 demonstrates the evolution of the comoving horizon in
conformal time. For each mode the interval between the starting condition and the
stopping condition is of similar size in ln aH. However, the size of the intervals in
conformal time can be vastly different. A parallel integration of all modes would require
integrating over the whole time interval needed for the smallest mode. The left-hand
side of Figure 6.6 depicts the time evolution of three different modes. They show an
oscillating behavior at different time scales. A solver addressing all modes in parallel
would require time steps resolving these oscillations for all modes at once. This makes the
parallel numerical computation in conformal time using one time axis computationally
challenging.

This problem is addressed by choosing a time variable more closely aligned to the comoving
horizon. Since the evolution of the curvature modes happens during inflation, the Hubble
function varies slowly, following equation (4.18). The evolution of the comoving horizon
is driven by the growth of the scale factor. Following this intuition we choose ln a as
a time variable similar to [Mortonson et al., 2011]. The right-hand side of Figure 6.5
demonstrates that this leads to ln a intervals of approximately equal size for different
modes.

The background differential equations can be transformed using the prescription d ln a =
aHdη to read

φ′′ +
(︃

H ′

H
− 3

)︃
φ′ = − 1

H2 ∂φV

H2 = 2V (φ)
6m2

pl

8π − (φ′)2
.

(6.21)
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Figure 6.6: Conformal time and ln a evolution of three different modes. In
conformal time, left panel, the numerical computation always starts η = 0 and
different modes need to be evolved for different amounts of conformal time, until
u/z freezes. In ln a, right panel, the starting scale factor is shifted, however, the
time intervals are of equal size.

Where the primes denote derivatives with respect to ln a. Additionally, the derivative of
the Hubble function is expressed as

H ′ = 8π

2m2
pl

(φ′)2H. (6.22)

Similarly, the mode equations are transformed into the shape in eqn. (6.1). Note that
the time variable explicitly appears in these equations. They are not invariant under
translation in ln a.

This behavior is depicted on the right side of Figure 6.6. While the intervals of interest
are of similar size they have different starting points. The intervals are brought to the
same starting point by shifting in ln a while explicitly shifting the scale factor a by
different amounts for each mode a → a − aini(k). Here aini(k) = k

100H is determined by
the evolution of the comoving horizon and the comoving wavenumber of the mode.

Computing the modes in parallel on the GPU leads to a significant speedup compared to
solving the same equation using torchdiffeq on the CPU. However, the parallelized
computation is roughly a factor two slower than the primordial module of class which uses
CPU parallelization and a c based differential equation solver. Solving the perturbation
equations without parallelizing with the python based torchdiffeq is an order of
magnitude slower than scipys solve_ivp, depending on the tolerances required of the
solvers.

6.2.3 Primordial power spectrum

The parallel calculation in the previous section yields all the Mukhanov-Sasaki modes
at the end of inflation. From these the primordial power spectrum is computed as in
eqn. (4.29). This numerical calculation of the primordial power spectrum can then be
tested against analytical approximations of the power spectrum. To additionally allow
comparison to class the potential of the inflaton is chosen as in eqn. (6.16), parametrized
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Figure 6.7: The left plot shows a comparison of the primordial power spectrum
obtained from a simulation with Parallizis, class and approximations using
eqn. (6.23). The right plot depicts the relative difference between them.

by the potential slow-roll parameters. Based on them the scale dependence of the
primordial power spectrum is computed as [Kohri et al., 2013]

ns − 1 = − 6ϵV + 2ηV +
(︃

−10
3 + 24C

)︃
ϵ2
V + 2

3η2
V

− (2 + 16C)ϵV ηV +
(︃2

3 + 2C

)︃
ξ

(2)
V

α = − 24ϵ2
V + 16ϵV ηV − 2ξ

(2)
V

β = − 192ϵ3
V + 192ϵ2

V ηV − 32ϵV η2
V + (−24ϵV + 2ηV )ξ(2)

V + 2ω
(3)
V ,

(6.23)

where C = 4(ln(2) + γe) − 5 and γe ≈ 0.577.

Figure 6.7 depicts the primordial power spectra predicted by parallizis, class and
the analytical approximations. While the predictions of class and parallizis agree
at the percent level the analytical approximations struggle to capture the shape of the
spectrum away from the pivot scale. Note that while the deviations of the analytical
approximations are smaller close to the pivot scale they can reach a level of 10% in the
regions Figure 6.11 identifies as relevant to the Planck 2018 data.

6.3 Evolution after horizon reentry

While the primordial power spectrum is not directly observable it can be constrained based
on observations of the angular power spectra of the CMB and the matter power spectrum.
They are related through transfer functions as specified in section 4.3. Traditionally,
this evolution is performed numerically using Boltzmann codes such as camb [Lewis
et al., 2000] and class [Blas et al., 2011]. More recently emulators for these codes that
replace either part of or the full calculation with a neural net have been published in
[Spurio Mancini et al., 2022, Nygaard et al., 2023, Günther et al., 2022]. In the most
direct approach a fully connected network maps cosmological parameters to observable
power spectra. The drawback of this approach is that each emulator is restricted to a
specific model of inflation. This section describes an emulation approach directly based
on the primordial power spectrum instead of a set of parameters describing a model. In

85



6 Parallelizing Madelung Modes during Inflation

this work the cosmological parameters after the end of inflation are fixed to the default
values of class. We train a separate emulator each for the matter power spectrum, and
the TT , TE, EE spectra of the CMB. While it is possible to emulate the BB spectrum,
based on the primordial tensor power spectrum we leave this to future work.

For all of these emulation tasks the scalar power spectrum is determined by the parameters
[As, ns, αs, βs] through eqn. (4.32), using a pivot scale of k∗ = 0.005 Mpc−1. The
parameters are sampled from one-dimensional Gaussian distributions with the means
given in [Akrami et al., 2020]. This spectrum is discretized on the range [10−6, 1] Mpc−1

using 600 equally spaced logarithmic wavenumbers. These primordial power spectra are
used as the input for class to generate both the matter power spectrum at z = 0 and the
angular power spectra of the CMB. These constitute the labels in the network training.
For all emulation tasks we use a heteroscedastic loss (4.56), the trained networks are
more precise than their counterparts trained with an MSE loss, similar to the observation
in 5.2.

6.3.1 Matter power spectrum

The map between the primordial power spectrum and the matter power spectrum is
described schematically in eqn. (4.43). This links the primordial power spectrum to the
matter power spectrum at a scale k in a scale-dependent way. Consequently, the emulator
is designed to map from the tuple (k, PR(k)) to Pm(k), learning the transfer function
directly. The matter power spectrum emulator uses a fully connected neural network
with four hidden layers of width 256. The network is trained for 200 epochs in a batch
learning setup with batches of size 256.

In practice both the network inputs and outputs are preprocessed such that they are
distributed around a mean of zero with a width of one at each wavenumber k. We
generate 900 spectra and split them into a training, validation and test set containing
300 spectra each. The training set is used to find the mean and standard deviation of
the logarithm in both the training data and the labels. These are then used to define a
preprocessing and deprocessing operation for both the training data and the labels.

The left panel of Figure 6.8 depicts the distribution of the matter power spectra from
the test set in the left panel in gray. The dark gray band depicts the standard deviation
while the light gray is twice the standard deviation. This matches almost perfectly with
the orange error band depicting a deprocessed standard normal. Since the training data
is generated using Planck constraints this gives an intuition in what wavenumber ranges
Planck is the most constraining. Note that we have disregarded correlations between
the spectral parameters and restricted ourselves to a specific representation of the power
spectrum.

Figure 6.9 shows the precision of the matter power spectrum emulator. The left panel
compares the preprocessed results of the emulator to the labels of the test data set.
The right panel depicts the relative error of ten deprocessed matter power spectra,
demonstrating a precision in the permille range. Note that the matter spectrum emulator
covers comoving wavenumbers far below the pivot scale k∗, which are not observable with
current surveys.
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Figure 6.8: The left plot shows the average matter power spectrum in gray as
well as the result of deprocessing a standard normal in orange. The right plot
shows the average temperature anisotropy spectrum in gray as well as the result
of deprocessing a standard normal in orange.
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Figure 6.9: Precision of the matter power spectrum emulator. Each color
represents a different sample from the test set. The left plot is the difference
between the preprocessed test labels and the network output, while the right
plot is the relative error on the matter power spectrum at z = 0.

6.3.2 Angular power spectra

In contrast to the construction of the matter power spectra the theoretical computation
of the angular power spectra in eqn. (4.42) contains an integration over all scales. Each
mode in the angular power spectra is influenced by the primordial power spectrum
at all comoving wavenumbers. The angular spectrum emulators map from the whole
primordial power spectrum P (k), evaluated at 600 wavenumbers, to the whole angular
power spectra. While the structure of the theoretical computation suggests using a
convolutional architecture [Fukushima, 1980] it is outperformed by a sufficiently big fully
connected network capturing all the interactions between different inputs. For all further
numerical experiments we used an fully connected network with four hidden layers of
width 256 each. The networks are trained on 3000 spectra.

Similar to the matter spectrum emulator the training data and labels are preprocessed
to resemble a standard normal before training the network. The right panel in Figure 6.8
depicts the average angular temperature anisotropy spectrum, based on 200 test samples,
in gray. The orange error band corresponds to a deprocessed standard normal. Varying
the primordial power spectrum within the Planck 2018 limits of the spectral parameters
allows for some freedom in the value of the peaks of angular power spectra but not their
position. This is in line with the intuition that the position of the peaks is determined
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Figure 6.10: Precision of the angular power spectrum emulators. The plots show
the ratio of the difference between deprocessed test labels and emulator results
and the binned Planck 2018 error bars. The left plot is the TT emulator, the
right for the EE emulator and the middle plot is the comparison for the TE
emulator.

by baryonic acoustic oscillations, which take place after inflation ends and the observable
modes have reentered the horizon.

Figure 6.10 compares the difference between the emulator solution and the labels in the
test dataset to the binned Planck 2018 error bars. The angular power spectra are binned
using the code released together with [Prince and Dunkley, 2019] and compared to the
diagonal of the binned covariance matrix used in the Planck lite likelihoods of [Aghanim
et al., 2020c]. The accuracy of the emulators is smaller than the experimental uncertainty
in Planck 2018 by at least a factor of 100. While the accuracy of the emulator at each ℓ
is approximately proportional to the value of the spectrum, the experimental error bars
in Figure 4.1 are not. This discrepancy leads to the visible imprints of the CMB peaks in
the difference plots. The behavior is particularly pronounced in the TE spectrum.

The emulator can also be used to gain an intuition at what wavenumbers of the Primordial
power spectrum are best constrained by Planck data. The left plot in Figure 6.11 depicts
the average primordial power spectrum generated from the Planck constraints. They
constrain the primordial power spectrum well in the wavenumber range [10−3, 1] Mpc−1.
The right plot shows the derivative of the binned Planck likelihood with respect to the
primordial power spectra. The primordial spectrum is passed through the angular power
spectrum emulators, the resulting spectra are then used to compute the binned likelihood.
Derivatives through this forward evolution are obtained using automatic differentiation.
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Figure 6.11: Connection between the primordial power spectrum and the Planck
likelihood. The left panel shows the training data of the emulators obtained
from the Planck 2018 constraints. The right panel shows influence primordial
power spectrum on the Planck likelihood as a function of comoving wavenumber.

This plot demonstrates, that the likelihood is most sensitive to changes in the primordial
power spectrum in a similar wavenumber range.

It is worth noting that both of these plots are biased by the choice of primordial power
spectrum parametrization. In the left plot choosing a less constraining parametrization
would allow increased error bars, especially away from the well-constrained regions. The
right plot is obtained through differentiating through emulators trained on the same data
set, making it similarly susceptible to changes in the parametrization.

6.4 Summary and discusison

The theory part of this chapter introduces the Madelung transformation for mode
equations during inflation, in section 6.1. They allow the formulation of a conservation
equation for single-field inflation which is similar to angular momentum conservation
in the complex plane. Together with the Bunch-Davies initial conditions we find that
the radial part and the phase velocity of the modes in conformal time combine to the
conserved quantity

ρ2∂ηα = −1
2 . (6.24)

This equation can be used to reduce the size of the ODE system by one per mode equation
considered. Implementing the transformed mode equations in scipys solve_ivp reduces
the computation time by roughly 50%.

Section 6.2 introduces a Parallelized inflation solver using this theoretical insight in its
numerical computation of the mode equations. The derivation of the primordial power
spectrum starts at the definition of the inflaton potential and its first two derivatives
as a python function. From this general form the solver finds the initial conditions for
each mode and performs the forward evolution in a parallelized way using the ODE
solver torchdiffeq to find a numerical representation of the potential. This allows
to automatically differentiate through the forward simulation starting from the initial
conditions of the parallel calculation. Taking derivatives through the determination of
the initial conditions yields results contrasting with finite difference estimates due to the
loop structure in their computation.
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On a power series potential, which is implemented in class, parallizis finds similar
power spectra and is significantly more accurate than approximating it with the scale
parameters As, ns, αs and βs. This allows to probe inflation scenarios away from ΛCDM
leading to primordial power spectra with non-zero running of the scale factor.

After the density fluctuations, sourced during inflation reenter the horizon, section
6.3 models them using MLPs instead of a numerical Boltzmann code. In contrast to
existing methods the emulators in this work map from spectrum to spectrum instead
of cosmological parameters to spectrum. As a trade-off they are fixed to one choice
of cosmological parameters after the end of inflation. This section demonstrates the
feasibility of mapping between spectra. Deploying the emulators for a range of different
potential parametrizations requires training with a wide range of different primordial
power spectra.

While parallizis has these new features it is slower than class by about a factor of
two. This result is somewhat unexpected since there should be a significant speedup
upon switching to GPU parallelization. The slow overall computation appears to be
driven by solving the differential equation numerically. The pytorch based differential
equation solver is significantly slower than the solver implemented in scipy. This might
be addressed by using a differential inflation solver based on jax, such as diffrax [Kidger,
2021]. However, that would require implementing a parallelized stopping criterion in this
framework.
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7 Summary and Outlook

The first part of this work applies a partition function approach to inference problems
to both toy models and cosmological problems. The partition function Z is used as a
cumulant generating function of the posterior. While the approach is successfully used
to recover the cumulants for a posterior based on type Ia supernova data, the partition
function itself is computed from a Markov chain probing the posterior. An alternative
approach is to reformulate the source term with an imaginary unit and make use of
existing fast Fourier transformation algorithms to reconstruct the partition function.

Markov chain Monte Carlo can be understood as a thermal random walk in an energy
landscape defined by the partition function. Based on this intuition, section 3.3 defines
a virialization condition ⟨θµ∂Φ/∂θµ⟩ = ⟨pµ∂T/∂pµ⟩ = n

β and equipartition conditions
⟨θµ∂Φ/∂θµ⟩ = δµ

ν β, ⟨pµ∂T/∂pµ⟩ = δµ
ν β for Hamilton Monte Carlo. Additionally, thermal

equilibrium in a Markov chain can also be characterized through no net energy exchange
with the heat bath. An equilibrated Markov chain has a constant average energy ⟨H⟩.
These convergence criteria are tested both on a toy example and supernova type Ia data.

The second part of the thesis moves away from the partition function approach and
explores machine learning methods to reconstruct functions in cosmology. Section 5.2
focuses on PINNs to construct an emulator, speeding up the forward simulation in MCMC
approaches to SN Ia data. While this section demonstrates the viability of this approach,
section 3.3.5 uses the emulator to reduce computation time.

In section 5.3, the redshift-dependent Hubble function is reconstructed using a PINN
approach to inverse problems. Introducing heteroscedastic error bars allows to also
construct an uncertainty estimate on the Hubble function based on the data uncertainty.
While this reconstruction is largely model agnostic it is possible to reintroduce some model
assumptions on the energy composition of the universe to recover an uncertainty-aware
network reconstruction of the dark energy equation of state.

Chapter 6 focuses on the inflationary paradigm and the numerical computation of the
primordial power spectrum. Reexpressing the perturbation equations during inflation
in terms of their phase velocity and radial part allows to recover a conserved quantity
analogous to an angular momentum in the complex plane, ρ2∂ηα = −1

2 . In addition, this
reformulation allows to reduce the computation time in a straightforward implementation
of the mode equation by about 50% compared to a formulation in terms of the real and
imaginary parts.

Section 6.2 describes a parallelized computation of the mode equation using torchdiffeq.
Their pytorch based differential equation solvers allow to automatically differentiate
through the differential equation. However, for this system of equations, they come
with a reduced performance compared to the differential equation solvers in scipy.
The performance of the inflation solver might be improved by switching to a different
parallelized differential equation solver. Finally, section 6.3 describes the forward evolution
of the primordial power spectrum to observable quantities with fully connected networks.
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