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Datengetriebene Bildqualitätsverbesserungen für die Kegelstrahl-
Computertomographie in der Strahlentherapie
Bei der Strahlentherapie werden ionisierende Strahlen eingesetzt, um den Tumor gezielt
zu behandeln. Um gesundes Gewebe zu schonen, wird der Behandlungsplan anhand eines
Computertomographie-Bildes (CT) optimiert. Kegelstrahl-CT-Bilder (CBCT) können aufgrund
ihrer unzureichenden Bildqualität nicht für eine Planoptimierung verwendet werden. Das Ziel
dieser Arbeit ist es, zwei Hauptartefakte zu reduzieren, die für den Verlust der Bildqualität
verantwortlich sind: Streuung und Strahlenaufhärtung. Neuartige Deep-Learning-basierte
Methoden werden für die Korrektur von Projektionen angepasst und entwickelt und mit Vergle-
ichsmethoden moderner CBCT-Scanner verglichen. Hier wird ein deterministischer Löser der
linearen Boltzmann-Gleichung verwendet, um Trainingsdaten für die Deep Scatter Estimation
(DSE) zu erzeugen. Die vorgeschlagene tiefe Strahlenhärtungskorrektur wurde so konzipiert,
dass sie sowohl die Beiträge von Knochen als auch von Weichgewebe berücksichtigt, was einen
Vorteil gegenüber der üblicherweise angewandten Wasservorkorrekturmethode darstellt, die nur
ein einzelnes Material berücksichtigt. Die DSE reduziert den mittleren absoluten Fehler in
Test-Scans um ca. 96 %, übertrifft die projektionsbasierte Referenzmethode in der Bildqualität
und ist über 29 Mal schneller als die Referenzmethode im Bildraum. Die vorgeschlagene Strahlen-
härtungskorrektur reduziert den Fehler im Knochen deutlich und verringert den Restfehler der
Wasservorkorrektur um weitere 40 %.

Data-driven Image Quality Improvements for Cone-Beam Computed Tomography
in Radiation Therapy
In radiotherapy, ionizing radiation is used to accurately treat tumors. To spare healthy tissue
the treatment plan is optimized on a computed tomography (CT) image. On-board cone-beam
CT (CBCT) images cannot be used for a daily-updated plan because of their insufficient image
quality. The aim of this thesis is to reduce two artifacts responsible for image quality loss:
scatter and beam hardening. Novel deep learning-based methods are adapted and developed
for the correction of projections, and are compared to correction methods of state-of-the-
art CBCT scanners. Here, a deterministic solver of the linear Boltzmann equation is used
to generate training data for the deep scatter estimation (DSE). The proposed deep beam
hardening corrections were designed to incorporate the contributions from bones as well as soft
tissue, bringing an advantage to the commonly applied water precorrection method, which only
considers a single material. DSE reduces the mean absolute error in test scans by approximately
96 %, outperforming the projection-based reference method in image quality, and is over 29
times faster than the reference in image domain. The proposed beam hardening correction
significantly reduces the error in bone, with the remaining error reduced by 40 % in comparison
to the water precorrection.
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1 | Introduction

Computed tomography (CT), first used to image a patient in 1971 [1], is a powerful tool
to derive cross-sectional images of the patient’s anatomy. Starting as a method to image
a single 2D slice of the patient, full three-dimensional (3D) body scans are nowadays
possible. This distinguishes it from conventional X-ray imaging, which provides only
2D transmission images. As a non-invasive imaging method, it has improved patient
diagnosis and treatment in medicine. Not only did this lead to a rapidly growing number
of CTs in hospitals (today, most clinics operate at least one CT) but it also led to the
award of the Nobel Prize in Physiology or Medicine to Allan M. Cormack and Godfrey
N. Hounsfield in 1979.
Since 1972, there has been an ongoing effort by the scientific community and industry to
improve CT systems and develop new applications. In the beginning, a small detector,
consisting of only two detector elements, and a needle beam were used to raster scan
the field of measurement (FoM) [2]. In contrast, modern CT systems acquire data
from hundreds of thousands of detector elements simultaneously. Moreover, the source
and the detector rotate to acquire hundreds of projections from different directions in
a short time. State-of-the-art clinical CT scanners have a rotation time of less than
0.25 s [3], [4]. CT scanners are not only used for diagnostic but also for a wide range of
other applications, such as image guidance during a stent placement [5], image-guided
radiation therapy (IGRT) [6], [7], dental scans [8], and are important for the optimization
process of radiation treatment plans in radiation therapy [6]. As treatment planning is
based on the CT images, the quantitative accuracy is vitally important to guarantee
optimal radiotherapy treatment.
There are different types of CT scanner. A key distinction between cone-beam computed
tomography (CBCT) systems and clinical CT scanner is the shape of the detector and
the manner of data acquisition. Clinical CTs, also called fan beam CTs, utilize a narrow,
fan-shaped X-ray beam and curved detector(s) that rotate around the patient in a
helical or circular pattern. In the conventional approach, the couch is advanced through
the rotating detector and source in order to obtain the helical pattern. CBCTs, with a
flat panel detector, on the other hand employ a cone-shaped X-ray beam that captures
the entire FoM in a single rotation around the patient. Nowadays, flat detectors can be
integrated on other medical systems, including radiation therapy devices [7], [9].
Over half of individuals diagnosed with cancer undergo radiation therapy as a treatment
modality. In radiation therapy, the patient is irradiated with ionizing radiation to
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CHAPTER 1. INTRODUCTION

disable cancerous cells. Given that this radiation damages healthy tissue as well, a
significant amount of work is dedicated to improve the precision of the prescribed dose
to the target volume. Currently, a planning CT is conducted with a clinical CT, which
is subsequently utilized to generate the treatment plan. A target volume is defined
and the plan is optimized with constraints regarding vital organs such as the heart
or salivary glands. Commonly, the treatment plan is divided into so-called fractions,
with the planned dose not applied in one session but rather spread out over several
sessions and weeks. It is noteworthy that the patient anatomy changes over time. For
instance, the tumor may shrink or air bubbles move in the abdomen. This can result in
a discrepancy between the planning CT and the actual patient anatomy, decreasing
treatment accuracy. In modern IGRT, a daily update of the anatomy is considered
by acquiring a new CT image on an imaging device built into the treatment unit. It
is not possible to use a clinical CT as an on-board imaging device due to mechanical
restrictions. However, a CBCT can be used as an on-board system for this purpose.
The image quality of a CBCT scanner is inferior to a clinical CT [10], so the update
image is not used to optimize the treatment plan, but to register the previously taken
clinical CT to the current anatomy [11]. Moreover, errors in the CBCT image can
propagate to the registration during the registration process.
The image is distorted by artifacts, which are the result of an imperfect modeling
of the physical processes during image reconstruction or mechanical constraints of
the projection acquisition. Common artifacts originate from the assumption that
the attenuation of the photons is energy-independent while the scanners utilize a
polychromatic energy spectrum. This causes the so-called beam hardening artifacts.
Another frequently occurring source of artifacts are scattered photons. These scattered
photons do not travel on a straight line from the source to a detector pixel. Instead, the
intensity of scattered photons is accumulated at other detector elements. Flat detectors,
as used in CBCT systems, produce more severe artifacts than clinical CT systems with
curved detectors, which are nearly artifact-free. Considerable effort is dedicated to the
enhancement of image quality for all scanner types, through mechanical components,
such as prefilter and anti-scatter grids [6] or computational post-processing [12]–[18].
In recent times, there has been considerable interest in machine learning and a plethora
of deep learning applications. Large models impact daily life and are accessible to
the general public. Examples of such models include ChatGPT [19], text-to-image
applications [20], and image segmentation and classification tools [21], [22]. Moreover,
novel deep learning algorithms have demonstrated considerable potential in a diverse
array of image processing tasks. In the context of medical imaging, this led to advances
in several application, such as image segmentation [22], [23], artifact correction in CT
[14], [15], [24]–[26], image reconstruction [27], [28] or tool extraction in fluoroscopy [29].
Recently, deep learning-based methods found their way into commercial products in
medical imaging, including artifact reduction [30] in CT image reconstruction.
This work aims at improving CBCT image quality by adapting and developing new
data-driven methods to correct artifacts. It is essential to implement fast algorithms
to reduce the time between image acquisition and treatment. This need is especially
important for the emerging field of online treatment. Consequently, deep learning-based
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corrections of the projections, which can be applied in real time [24], is a promising
avenue of research. This work focuses on the two severe artifacts in CBCT, namely:
beam hardening and scatter. Firstly, a deep learning-based approach to correct for
scatter is adapted for an on-board CBCT scanner, the Ethos, used in radiotherapy.
The Ethos is a device that combines a linear accelerator (LINAC) with an on-board
CBCT scanner. It is currently in clinical use in radiotherapy facilities around the world.
For this purpose, a deep neural network is trained on data not generated by Monte
Carlo simulations as in many previous studies [14], [24], [25], [31] but with Acuros, a
deterministic solver of the linear Boltzmann transport equation [13], [32]. To be used
routinely, the proposed approach was optimized to fit various clinical settings including
different anatomical regions. In a second step, the efficiency of data-driven methods
to account for beam hardening are investigated. A novel approach was developed
that makes use of a deep learning-based segmentation within a physically motivated
correction scheme. This approach was designed, to incorporate the contributions from
bones as well as soft tissue, bringing an advantage to the commonly applied water
precorrection method, which only considers a single material.
The structure of this work is as follows: Chapter 2 covers the fundamentals of X-ray
computed tomography. It discusses the main physical principles, image reconstruction
and common artifacts. In addition, it gives a brief overview of machine learning and deep
learning with neural networks (NNs). Then, Chapter 3 focuses on the improvements
made to existing methods and presents novel deep learning-based artifact corrections.
Chapter 4 will present the results from the proposed methods and their robustness to
different clinical settings. This is followed by a summary and discussion in Chapter 5
and finally, conclusions are drawn in Chapter 6.
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2 | Fundamentals

X-ray beams pass through objects or patients while being attenuated by interaction
with the surrounding tissue. In CT systems, the attenuated photons are measured with
a detector behind the object. Therefore, the measured data at the detector are 1D or
2D projections of the spatial attenuation distribution of the 3D object. While X-ray
imaging uses a projection directly, CT reconstructs the 3D distribution from many
projections. The following sections give a brief overview of the underlying physics, the
mechanical components of a CT scanner and the image reconstruction. In addition, the
section introduces machine learning and deep learning.

2.1 X-ray Tubes

X-rays in medical imaging applications are usually in the range of 30 keV to 150 keV [6].
Hence, only a fraction of the electromagnetic spectrum which is referred to as X-rays
(100 eV to several hundred keV) is used. In CT, X-ray tubes are used as the photon
source, which generate photons by accelerating and decelerating electrons. Figure 2.1
illustrates a reflection X-ray tube. The cathode is heated (≈2400 K [33]) to overcome
the binding energy between filament and electrons, thereby producing free electrons.
A potential difference, UB, is applied between the cathode and a ring anode, which
accelerates the electrons. After accelerating, the electrons are further focused and
guided through magnetic fields towards the anode. The internal vacuum of the tube
allows electrons to reach the target with a maximum kinetic energy of T = eUB, where
e is the electron charge. Inside the target, the electrons are rapidly decelerated which
heats up the target on the point of the incoming beam. To prevent a single point on the
target from overheating, the target is rotated, thereby increasing the dispersion of heat
and the operational time of the X-ray tube. As a consequence of the considerable heat
production, the target must have a high melting point. One material that is frequently
utilized is tungsten, which has the additional advantage of a high atomic number,
increasing the efficiency for electron-material interactions. When electrons impact on
the target, they primarily decelerate through collisions and radiative interactions. The
collisions are inelastic Coulomb collisions with bound atomic electrons, which can lead
to excitation and ionization. This can create “holes” in inner electron shells which are
filled by outer shell electrons. Following the transition to a shell with lower potential
energy, the difference is emitted as electromagnetic radiation, which is also known
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CHAPTER 2. FUNDAMENTALS

Figure 2.1: Schematic of a reflection X-ray tube in a cooling agent. In addition, the
anode rotates for better heat dissipation.

as characteristic radiation due to discrete and material-dependent potential energy
differences. The second kind of deceleration is caused by the Coulomb field of the atomic
nuclei and is called bremsstrahlung. A continuous spectrum is emitted, whereby the
maximum energy corresponds to the kinetic energy of the electrons T = hνmax before
hitting the target. Considering the spectrum nature of both types of interactions, the
emitted spectrum is continuous [34] with distinctive peaks at the energy corresponding
to the transition energy between different atomic (sub)shells.

2.2 X-rays Matter Interaction

The process of imaging is dependent upon the attenuation of the photons inside the
object or patient placed between the X-ray tube and the detector. The following
subsections presents the fundamental principles governing the attenuation of a photon
beam.

2.2.1 Beer-Lambert Law

For a monoenergetic X-ray beam of intensity I0 and an object with a homogeneous
attenuation, the two parameters that determine the attenuation are the thickness d of
the object and the linear attenuation µ. This is described by the Beer-Lambert law
based on the work of Bougert, Lambert and Beer [37]–[39]

I = I0e
−µ·d . (2.1)
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Figure 2.2: The overall attenuation and the contributions from the three primary at-
tenuating interactions for four materials. The attenuation data were taken
from [35], the bone composition and density were taken from [36].

Here, I0 is the intensity before attenuation and I behind the object, after attenuation.
It should be noted that the assumptions of a monoenergetic beam and a homogeneous
attenuation coefficient do not apply to medical cases where a tube emits a continuous
spectrum (see Section 2.1) and the patients consist of different types of tissue and density.
Considering the spatial and energy dependence of µ, i.e. µ → µ(E, r), Equation (2.1)
can be rewritten as

I(E) = I0e
−
∫ d

0 µ(E, s+λΘ)dλ , (2.2)

incorporating that the beam starts at the source position s and travels along Θ with a
spatial and energy dependent µ.
The attenuation is the combined effect of different interactions. In the energy range
of medical CT scans the total attenuation is governed by three interactions: the
photoelectric effect µP (E), the Rayleigh scattering µR (E) and the Compton scattering
µC (E). The total attenuation is the sum of all contributions:

µ (E) = µP (E) + µR (E) + µC (E) . (2.3)

Above 1.022 MeV, pair production, the creation of an electron-positron pair from a
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photon, becomes possible as well. For this interaction to occur, the energy of the photon
must be above the aforementioned threshold, which is the combined rest mass of an
electron and a positron. Therefore, it is not present in medical CT scanners which
operate in an energy range far below 1 MeV. Figure 2.2 shows the total attenuation
and the contribution of the three primary interactions for four distinct materials at
different energies. The most important interactions and their cross-sections, which are
used to describe the interaction probability, are explained in more detail in the following
subsections. Moreover, the cross-section σ is linked to the attenuation by

µ = ρNA
A

σ . (2.4)

Here, ρ is the density, NA is the Avogadro constant and A is the atomic mass number.

2.2.2 Photoelectric Effect

As illustrated in Figure 2.2, the photoelectric effect is the most prominent interaction
for low energies, extending up to 80 keV for water. In this case, the photon is absorbed
by an electron, resulting in an excited state. If the binding energy Eb of the electron
is smaller than the energy of the photon Eγ , the photon can ionize the atom. The
remaining energy is then emitted as kinetic energy T = Eγ − Eb, and the remaining
kinetic energy of the electron is transferred locally as heat [33]. There is a vacancy
in the shell of the ejected electron, which is filled by an electron from an outer shell.
As explained before, this emits a (characteristic) photon. The specific binding energy
required to remove an electron produces edges in the attenuation that are visible in
Figure 2.2 in the shown energy range for all materials except for water.
The dependency on energy and atomic number of the cross-section σP is given by

σP ∝ Z4

E7/2 . (2.5)

This relation remains valid for photons with energies lower than Eγ/T < 0.9 [40].

2.2.3 Rayleigh Scattering

Rayleigh scattering, also known as elastic or coherent scattering, describes an interaction
between a photon and a particle whose size is much smaller than the wavelength of the
photon [33]. In this scenario, the photon is deflected by a bound electron. The energy
in the resting center of mass (CoM) frame remains the same and only the direction
of flight of the photon is changed. Contrary to the photoelectric effect, the electron
cannot be excited, because no energy is transferred.

2.2.4 Compton Scattering

In contrast to Rayleigh scattering, in Compton scattering the photon changes not only
the direction of its trajectory but also its energy. In addition, the photon does not
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interact with a bound but with a quasi-free electron. This, in most cases, is a valence
electron in an outer shell. The new energy E′

γ of an incident photon of energy Eγ ,
which is inelastically scattered with an angle α, is given by:

E′
γ = Eγ

1 + Eγ

mec (1 − cosα)
, (2.6)

with me the electron mass. The differential cross-section of the Compton scattering is
given by the Klein-Nishina equation [41]:

dσ

dΩKlein-Nishina
= 1

2
α2

m2
0

(
E′

γ

Eγ

)2 [
E′

γ

Eγ
+ Eγ

E′
γ

− sin2 α

]
. (2.7)

The cross-section can be obtained by integrating Equation (2.7) over all angles [42].

2.3 Detection of X-Rays
After the photon beam has been attenuated by the object, the beam impinges on
the detector. Commonly, an anti-scatter grid is placed before the detector to block
scattered X-rays. For more information about scatter artifacts the reader is referred
to Section 2.6.1. The detected signal relies on the successful detection of incoming
X-rays and thus the efficiency of the detector. Most detectors are energy-integrating
detectors, but in recent years a new generation of detectors, so-called photon-counting
detectors have been introduced to CT systems. Figure 2.3 shows an illustration for the
two detectors, both of which are equipped with an anti-scatter grid.
A variety of detector shapes have been developed, each with its own advantages and
disadvantages. The first detector built consisted of only two detector pixels [2] which had
to be moved with the source to acquire a single 2D projection of the object. Nowadays,
detectors can have many rows and columns, with up to millions of pixels. The two most
prominent designs feature either curved surfaces like a section cut off a cylinder with
a highly optimized gantry for rotation or as flat plates offering an easier mechanical
implementation at the cost of increased imaging artifacts. The former is used in clinical
CT scanners, while the latter is characteristic for CBCT scanners. In the following, CT
systems with a flat detector will be referred to as CBCT and CT scanners with a curved
detector as clinical CT, if not explicitly stated otherwise. In addition to the different
shapes, there is a variety of detector types, which can be attributed to differences in
the materials used and the techniques employed to convert the measured intensity into
an electric signal. Figure 2.3 shows the two most common detector types for converting
the incoming photons into a measured signal.

2.3.1 Energy-Integrating Detectors

This detector type relies on an indirect conversion from X-rays to the measured signal.
Below a thin reflective film, a scintillator crystal converts the incident X-rays into
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optical photons. Typically, an inorganic crystal such as gadolinium oxysulfide (Gd2O2S)
serves as the material of choice. The incoming X-ray excites an electron from the
valence band (Compton scattering or photoelectric effect) and leaves a corresponding
hole behind. Similar to the photoelectric interaction, only discrete energy transitions
exist. Commonly, artificial impurities are added to the crystal to increase the number
of energy levels, thereby improving the efficiency. In the case of Gd2O2S, this may
include the doping with Pr4+ and Tb4+ [43]. The electron-hole pairs are loosely bound
and wander through the lattice. They are captured by impurity centers and an optical
photon is released in this process. A photo diode or photomultiplier is used to convert
the optical photons to an electric signal. Given the prolonged decay time of each discrete
signal, it is only possible to measure the combined signal. Thus, the measured signal
represents an integral of all incoming photons over a time interval, with each photon
weighted according to its respective energy. Accordingly, this detector type is referred
to as energy-integrating.

2.3.2 Photon-Counting Detectors

In contrast, the newer generation of detectors is based on semiconducting sensors that
measure electron-hole pairs created by the incoming X-rays. Similar to the previously
described process the incident X-ray creates electron-hole pairs. Instead of creating
optical photons, a potential difference is applied between the bottom and the top.
This accumulates the created charges at the electrodes situated at the bottom. The
collected charge is then compared to references in order to estimate the photon energy.
In comparison to an energy integrating detector, the readout time is considerably faster,
and the detection of energy resolved spectra are possible, offering the potential for
material decomposition [44].
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Figure 2.3: Schematic of an energy-integrating detector (left) and a photon-counting
detector (right). The latter being a new technology available in clinical
CT scanners in recent years increasing the spatial resolution and offering
material decomposition from a single source-single detector scan. Note that
the anti-scatter grid is not drawn to scale, as in real systems it has a height
up to 30 times larger than a detector pixel.

2.4 Raw Data Post-processing

As described in Section 2.2.1, photons are attenuated according to the Beer-Lambert
law before reaching the detector. The intensity I measured at the detector is further
processed before reconstruction to gain the projection value p:

p = − ln
(
I

I0

)
. (2.8)

The air norm I0 is measured by acquiring a projection without an attenuating object
between source and detector. The projection values p are stored in a sinogram for
several rotation angles. It is standard practice to correct the measured intensity I before
further processing. This may entail a flat field correction or a defect pixel correction.

2.5 Image Reconstruction

In order to transform the acquired raw data to slice images, an image reconstruction
algorithm is necessary. This section shows the mathematical basis for a 2D CT recon-
struction with parallel beam geometry as illustrated in Figure 2.4. The approach is
based on the work of Johann Radon [45]. As shown in Figure 2.4, ϑ represents the
angle between the ray and the x-axis, which is also referred to as the projection angle.
The symbol ξ denotes the distance of the ray to the isocenter, which is defined as the
origin of the coordinate system. Hence, the equation

x cosϑ+ y sinϑ− ξ = 0 (2.9)
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can be formulated to describe a ray of the beam. If the energy dependency of the
attenuation is ignored as well as effects such as scatter, the projection value can be
related to the attenuation of the scanned object as:

p (ϑ, ξ) =
∫
µ (s + λΘ) dλ (2.10)

=
∫
µ (x, y) δ (x cosϑ+ y sinϑ− ξ) dxdy (2.11)

=
∫
µ (r) δ (r · Θn − ξ) d2r (2.12)

= Rµ (r) . (2.13)

Here, δ(·) is the Dirac delta function, Θ the directional vector of a ray, Θn the directional
vector normalized to unit length and R the Radon transform operator for two dimensions.
For parallel beam geometry, the angular scanning range must be at least 180◦. The aim
of the reconstruction is to obtain µ (r), the spatial attenuation distribution, from a set
of measured projections. For this, Equation (2.10) needs to be inverted. Simplified, this
translates to a “smearing” of the projections back onto the image plane. This is done
by looping over all projections and then accumulating the values of all intersecting rays
at each voxel. An analytical solution can be derived with the Fourier slice theorem. It
states that a straight line through the origin of the 2D Fourier transform equals the 1D
Fourier transform of the projection. Therefore, the Fourier transform of the projection
p (ϑ, ξ) is given by

P (ϑ, u) = (Fp) (ϑ, u) (2.14)

=
∫
dξ p (ϑ, ξ) e−2πiuξ (2.15)

=
∫
dxdy µ (x, y) e−2πiu(x cos ϑ+y sin ϑ) . (2.16)

In accordance with the Fourier theorem, this is equivalent to the 2D Fourier transform
of our object

F (ux, uy) =
∫
dxdy µ(x, y)e−2πi(uxx+uyy) . (2.17)

Comparing Equation (2.14) and Equation (2.17) the relation

P (ϑ, u) = F (u cosϑ, u sinϑ) (2.18)

can be found. Due to mechanical constraints, such as a finite pixel size on the detector,
the acquired data are discrete. This presents a challenge when attempting to reconstruct
using the Fourier-slice theorem, as it requires switching between polar-coordinated and
a Cartesian coordinate system (see Equation (2.18)). The discrete and equidistant
sampled data in Cartesian coordinates result in an increased sampling close to the origin
and a reduced sampling further away in polar coordinates. Thus, information in the low
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frequency domain would be lost. The relations of Equation (2.18) and Equation (2.17)
result in ux = u cosϑ, uy = u sinϑ and duxduy = |u|dudϑ. Then, the equation can be
written as follows

µ(x, y) =
∫ π

0
dϑ

∫
du |u|P (ϑ, u) e2πiu(x cos ϑ+y sin ϑ) (2.19)

=
∫ π

0
dϑ

∫
duK (u)P (ϑ, u) e2πiuξ . (2.20)

By using the convolution theorem, according to which the convolution of two functions,
defined as

(g1 ∗ g2) (x) =
∫
dy g1 (y) g2 (x− y) , (2.21)

is equal to the inverse Fourier transform of the multiplication of their respective Fourier
transform

(g1 ∗ g2) (x) = F−1 ((Fg1) (Fg2)) , (2.22)

we can rewrite the multiplication of the Fourier-transformed projection P (ϑ, u) with
K (u) which gives

µ (x, y) =
∫ π

0
dϑ p (ϑ, ξ) ∗ k (ξ)

∣∣∣∣
ξ=x cos ϑ+y sin ϑ

. (2.23)

Evidently, the projections p are filtered with kernel k before being backprojected [or
smeared] onto the image plane. This method is therefore called filtered backprojection
(FBP). The kernel k is defined as

k (ξ) = F−1K (u) =
∫
du |u| e2πiuξ = −1

2π2ξ2 . (2.24)

The discrete form of the kernel is given for detector pixel m with size ∆ξ by

km =


(2∆ξ)−2 if m = 0,
−(πm∆ξ)−2 if m ∈ 2Z + 1,
0 otherwise.

(2.25)

This kernel is called Ramachandran–Lakshminarayanan-kernel or RamLak [46]. The
utilized filter influences the image properties. Thus, there are many possible filters
available, all with benefits as well as disadvantages and the radiologist needs to find a
trade-off between sharp edges, more smoothing to reduce the noise, and other image
attributes. While FBP is a standard method, available on all CT systems, there are
other more sophisticated methods such as iterative reconstructions [33] or deep learning-
based reconstructions [30].
In most diagnostic settings, the attenuation values were not relatable for medical
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Figure 2.4: Illustration of the geometry for the 2D parallel beam geometry for a filtered
backprojection.

personnel. Therefore, the CT values are displayed in Hounsfield units (HU), as defined
by the following equation

CT(x) = µ(x) − µref
µref

· 1000 HU , (2.26)

in which water at 70 keV is used as reference. Hence by definition, water is at 0 HU
and air with µair = 0 mm-1 at −1000 HU. Other common value ranges include those
for fat tissue (between −100 HU and −70 HU), blood (between 30 HU and 60 HU),
and cortical bone (between 350 HU and 2000 HU). The images are displayed on a
gray scale, but the number of gray values are much larger than the human eye can
differentiate [6]. Therefore, only a predefined window of gray values is displayed, written
as C = 0 HU, W = 500 HU for a windowing with the center C and the width W. Values
outside of the display window are presented as black or white, contingent upon whether
they are below or above the windowing range.

For reconstruction of CBCT scans the simple 2D example has to be extended. Discussing
the multitude of available reconstruction algorithms is beyond the scope of this work.
The reconstructed images presented in this work are using versions of the Feldkamp-
David-Kress (FDK) algorithm [47].
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Figure 2.5: Schematic of two different CBCT scanner geometries. The right incorporates
a laterally shifted detector, increasing the FoM.

2.6 CBCT Scanner Setup

A CBCT scanner is made from more components than a source and a detector. Figure 2.5
shows two possible scanner setups. The left one features a centered detector, while
the right one has a lateral shift applied to its detector. Except for the shifted detector
both follow the same principle. First, a collimator restricts the X-ray beam to the
FoM to spare as much healthy tissue as possible from radiation. This is applied in
longitudinal as well as lateral direction. Typically, different prefilters are placed between
the source and the object. The first filter is a flat sheet of a high attenuating material,
e.g. titanium, and the second a so-called bowtie filter. Flat prefilters are employed
to adjust and shape the spectrum in a manner that is most favorable for the patient.
This is accomplished by filtering out low-energy photons, which would otherwise be
absorbed by the patient, thereby increasing the received dose while not contributing to
the detected signal. Bowtie filters are thinner in the center and are used to modulate
the intensity, attenuating more at the edges where the patient is thinner and less in the
center where the patient is thicker. The two setups depicted in Figure 2.5 each possess
distinct advantages and disadvantages. In both drawings, the red circle indicates the
FoM of the centered detector, while the orange circle shows the FoM of the shifted
detector. It is evident that the FoM of the shifted detector is increased if compared to
the centered detector. Conversely, the aforementioned disadvantage becomes evident
when the scan time is considered. A centered detector necessitates a scan range of
180◦ + fan angle, whereas the shifted detector requires a full 360◦. A 360° scan requires
a greater time span, with state-of-the-art scanners requiring approximately six seconds,
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which can lead to motion artifacts. In comparison, clinical CT scanners are much faster,
with rotation times smaller than half a second [6].

2.6.1 Artifacts

Whenever assumptions and simplifications of the physical processes are made during
reconstruction, artifacts are created in the reconstructed image. A great deal of effort is
expended on the correction and reduction of these artifacts, with mechanical components
during the scan or with computational methods in post-processing.

i.) Beam Hardening Artifacts

This artifact can be attributed to the energy dependent attenuation. Low-energy
photons have a higher attenuation, which results in an increase in the mean energy of
the spectrum after passing through an object, a phenomenon known as beam hardening.
Section 2.2.1 discussed the energy dependence of the attenuation and the polychromatic
nature of X-ray tubes. In addition, as highlighted in Section 2.5, the energy dependency
of the attenuation is neglected during the reconstruction. At a detector element the
measured spectrum-dependent negative log attenuation can be expressed as

q(L) = − ln
∫
dE w(E,L) e

−
∫ ∞

0
dλµ(E, s + λΘ(L))

. (2.27)

Here, L is the line corresponding to a ray starting at s(L) going along the directional
vector Θ(L). µ(E, r) is the energy-dependent spatial distribution of the linear at-
tenuation coefficient. E is the photon energy and w(E,L) is the detected spectrum
normalized to unit area, which is angle-dependent, and hence depends on the direction
of the line L. The spectrum includes the emitted X-ray distribution and can include
attenuation aspects such as the prefiltration and the sensitivity of the detector. Note
that in the following the dependence on L is dropped for the sake of readability.
The attenuation µ(E, r) of a single material can be split into a spatial and an energy-
dependent part µ(E, r) = ψ(E)f(r). Then, the line integral can be written as

p =
∫ ∞

0
dλf(s + λΘ) := Xf(s + λΘ) , (2.28)

with X the forwards projection operator. By expressing q through p and the polychro-
matic Radon transform operator Rf

q = Rff = − ln
∫
dE w(E)e−ψ (E) p , (2.29)

it is apparent that a non-linear relationship exists between q and p. If p is doubled,
the measured attenuation q is not doubled, therefore the X-rays which undergo greater
attenuation, for instance, when traversing the central region of the patient, are subject
to underestimation in the reconstruction process, which is based on the assumption of
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Figure 2.6: The reconstruction from a polychromatic simulation of a cylindrical water
phantom with two bone inserts and the corresponding monochromatic
reconstruction. The beam hardening artifacts are visible as cupping with
higher values closer to the edge and as streaks originating from the bone
inserts. C = 0 HU, W = 500 HU

monochromatic X-ray beams. In comparison, the attenuation of X-rays that interact
with the outer regions of the patient deviate less from a monochromatic beam. This
causes so-called cupping artifacts, with the edge of the object appearing with a higher
attenuation in the reconstructed image than the center. In addition, the difference
of the energy dependency of ψ for different materials can cause streak artifacts at
tissue boundaries such as soft tissue and bones. Figure 2.6 highlights both artifacts
by comparing the reconstruction of polychromatic projections of a water cylinder with
bone inserts to the reconstruction of monochromatic projections.

ii.) Scatter Artifacts

Scattered photons cause a significant loss of image quality. An example is displayed
in Figure 2.7, where the scatter causes dark regions in the reconstructed image. The
artifacts result from the wrong assumption that the measured intensity comes from
photons which traveled in a straight line. As discussed in Section 2.5, the reconstruction
is based on line integrals that start at the source and continue in a straight line to the
detector. However, as highlighted in Section 2.2, Compton and Rayleigh scattering
change the direction of flight of photons. Thus, the measured intensity I can be split
into two parts

I = Ip + S , (2.30)

the intensity of the primary intensity Ip, the contribution of non-scattered photons, and
the intensity of the scattered photons S.
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Figure 2.7: Example of a pelvis phantom scan without scatter correction (left) and with
applied scatter correction (right). C = 50 HU, W = 500 HU

iii.) Cone-Beam Artifacts

In contrast to the two artifacts highlighted before, the so-called cone-beam artifacts do
not stem from imperfection in the physical modeling but from geometric constraints
of the CBCT scanner geometry and the resulting scanning trajectory. Therefore, they
are not observed in clinical CT and thus named cone-beam artifacts. They appear in
reconstructed slices which do not satisfy the “Tuy-Condition” [48]. It states that a
mathematically exact reconstruction is only possible for voxels for which every plane
containing this voxel intersects the source trajectory. For a circular trajectory, this
only applies to the central plane. The condition is violated more strongly for slices
further away from the central plane, because the number of intersecting planes decreases
towards the outside.

2.7 Deep Learning

Deep learning (DL) is a subset of machine learning (ML) which utilizes neural networks
(NNs). It is a data driven approach which learns a representation or transformation by
composing simple and non-linear modules [49]. This is in contrast to classical methods,
which rely on handcrafted algorithms.

2.7.1 Artificial Neurons

The fundamental computational unit of a NN is an artificial neuron. Their setup
is inspired by biological neurons. In a system of biological neurons, the neurons are
connected by axons and dendrites. Signals by other neurons are received by the dendrites
and if the combined signal exceeds a certain threshold the neuron “fires” a signal which
is sent over its own axons to the dendrites of other neurons. In an artificial neuron the
signal of the previous neurons are summed up, sometimes a bias is added (like a static
potential) and passed through an activation function modeling the threshold. This can
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be expressed mathematically as

a′ = σ

(∑
k

akwk + b

)
, (2.31)

with a′ representing the signal of the current neuron, ak the signal of the input neuron
k scaled with its respective weight wk, the bias b and the activation function σ (·). The
activation function can be used to further define the output. In instances where a
probability is anticipated, the utilization of an activation function that scales the output
between zero and one is a viable approach. An example for this is the softmax function
[50] given by

σ (z)i = ezi∑K
k=1 e

zk
(2.32)

for output neuron i of all K outputs. Another popular activation function is the rectified
linear unit (ReLU) [51], [52] function defined as

σ (x) = max (0, x) (2.33)

2.7.2 Neural Networks

The simplest examples of NNs are so-called multilayer perceptrons (MLPs). They
consist of an input layer, any number of hidden layers and an output layer. Each layer is
built from a number of artificial neurons and each neuron is connected to every neuron
in the previous and the following layer. This configuration is the basis for the name fully
connected neural network. A schematic for such a network is displayed in Figure 2.8
with the corresponding nomenclature. The first layer receives the input, in this case two
values (x = (x1, x2)). Then the forward pass is calculated, by propagating the input
values through every layer towards the output layer. Accordingly, the calculation of the
output y can be written as

y = f (x) = aout (a2 (a1 (x))) , (2.34)

with ai being the output of the layer i = 1, 2, out (for hidden layer one, two and the
output). Using Equation (2.31) we can write the output of layer two as

a(2) = σ
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The superscript (l) denotes the output/weights of layer l and σ applies the activation
function to each element of the vector i.e. to each neuron. Therefore, the forward
pass is a chain of matrix multiplications which can be calculated very fast through
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Figure 2.8: Schematic of a dense neural network with an input layer, two hidden layers
each with a ReLU function as activation function and bias and an output
layer.

parallelization on graphics processing units (GPUs).

2.7.3 Convolutional Neural Networks

An important subgroup of NNs are convolutional neural networks (CNNs). The number
of input pixels in images is considerable, which renders conventional networks inefficient.
Consequently, alternative approaches were explored, resulting in the development of
convolutional neural networks, which employ standard filters. In the beginning they
were primarily used in the field of pattern recognition within images and can learn to
extract image specific features [53]. However, their applicability has since expanded
to nearly all domains with 2D or 3D data. Similar to the previously discussed MLPs,
convolutional layers are made up of artificial neurons with trainable weights. They
calculate a dot-product, add a bias and pass the value through an activation function.
However, the dot-product is not calculated over all input values or pixels in the case of
images, but only over a small patch. Figure 2.9 shows a schematic for a 1D example. A
1D patch of size K = 3 is scaled with the weights and bias of the kernel and written to
the output. The patch used to calculate the output is moved over the input and the
output elements are created one after the other. This corresponds to a convolution of
the input with a kernel. Furthermore, additional padding can be incorporated into the
input to ensure that the resulting output is aligned with the input size. The convolution
to calculate output Oi can be expressed as

a = σ ((I ∗ K) + b) , (2.36)
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Figure 2.9: Schematic of a 1D convolutional layer with padding.

with I the input, K the kernel with the trainable weights, the bias b and the activation
function σ. Note that the process is the same with a higher dimension. Also the stride,
the amount of elements the kernel is moved after it is applied, can be changed. This
will reduce the size of the output, for example for a stride s = 2 half of the input is
skipped and the output size is reduced by 50 %.
Another name for the output from a single kernel is feature map. In most cases each
convolution layer does not apply a single kernel, but different kernels. The weights of
each kernel are optimized during training, with the objective of enabling each kernel to
extract a different meaningful feature from the input.
Pooling layers represent an additional crucial component of large convolutional networks.
In this approach, patches are replaced by a statistic that summarizes the patch. In
contrast to convolutional layers, these pooling layers have no trainable weights but
apply mathematical operations such as maximum, minimum, or averaging. Reducing
the resolution helps the network to learn low-frequency features and increases the field
of perception.

2.7.4 Training of Neural Networks

It is important to have an automated method of identifying the optimal parameters in
larger neural networks, which comprise millions or even billions of trainable elements.
Deep neural networks are trained in a fashion that they learn a mapping from an
input X to an output Y , fΘ : X → Y . Here, fΘ represents the network f with its
trainable parameters Θ. There are several different ways to find the correct parameters.
Most of them can be divided into supervised and unsupervised learning approaches.
In supervised learning, matching pairs of input x ∈ X and output y ∈ Y , also called
label, are collected. Then the predicted output of the network ŷ (x; Θ) of input x
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and parameters Θ is calculated and the error with respect to the ground truth y is
evaluated. The error is also referred to as loss, and the loss function should be selected
in accordance with the specific problem at hand, as it has a significant impact on the
overall performance. A prominent function for a pixel-wise loss is the mean squared
error (MSE) which is given by

LMSE (y, ŷ; Θ) = 1
N

N∑
n=1

||ŷn − yn||22 , (2.37)

with n being a single element of the output such as a pixel of the predicted image. In
general, the loss is back-propagated with a gradient-descent optimization to train the
network weights. A common optimizer is the Adam optimizer [54].
The finite data, on which the parameters are optimized on, are only subsets of the
infinite true set of all possible data Xtrain ⊂ X. Given that the trained network, fΘ,
is an approximation of the true function, f : X → Y , it follows that the training
data should be a good representation of the entire set, given that optimal parameters
Θ are found on this data. Commonly, the data available for training are split into
three sets: training data, validation data and test data. The feed-forward computation
of the training set with weight optimization is called an epoch. At the end of an
epoch, the performance is evaluated on the validation set which has not been used
for the optimization of the weights and biases. The comparison helps to adjust some
hyperparameters, parameters which define the network structure and optimization
process, and to verify that the network does not overfit on the training data. After a
certain number of epochs are reached, the training is stopped and the network is applied
on the test data for a final performance test. Test data, neglected during training, gives
a certain amount of confidence if a suitable mapping has been learned.
While supervised training is conceptually simple, suitable matched training data are
not always available since it can be very time- and resource-consuming to curate. In
such cases, unsupervised learning may be a viable alternative. In that case, only the
training data x ∈ Xtrain are available and an appropriate loss function has to be found
to measure the performance without a corresponding ground truth (GT). One approach
is a generative adversarial network (GAN) architecture [55] which uses another NN to
evaluate the performance of the first network.
As mentioned above, one problem with training NNs is overfitting. Similar to fitting
a function to data, during training the NN is fitted to the mapping of f : X → Y .
Overfitting is referred to the case, if the utilized function achieves good results on the
fitting or training data while failing on data not seen during optimization. A prominent
example is fitting an higher order polynomial function to data from a second order
polynomial. The fitted function represents the training data perfectly while the error
on test data increases. Another problem for overfitting is an inappropriately chosen
training set which does not represent the whole range of possible inputs. Some strategies
to improve training and to reduce overfitting are described below:

Batches: The straight forward way to calculate the loss would be to process the training
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data one after one, updating the weights after each sample. This is called stochastic
gradient-descent and increases the influence of some outliers in the data. Processing
the whole data as a single batch would be batch gradient-descent, but is not feasible
due to the limited GPU memory. The solution are mini-batches, processing a small
batch of several inputs at once and calculating the mean loss. Hence, the computation
of the weight optimization is optimized while averaging the loss decreases the influence
of outliers in the training set.

Data Augmentation: The available data can be augmented to increase the range of
“different” data included in the training so that the training data Xtrain closer represents
X, the set of all possible input data. This makes the network less prone to perturbations
in the input and increases the training data size, possibly preventing overfitting. Typical
data augmentations include some sort of transformation, such as a vertical or horizontal
flipping, scaling or deformation.

Early Stopping: During training, the loss may further decrease over the training data,
while the validation loss reaches a plateau or even starts to increase again. The training
can be stopped after the validation loss did not improve for a set number of epochs.

Dropout: Averaging the output of differently trained methods may also increase the
performance. A computationally efficient method is to use dropout layers. Here, a set
percentage of neurons are dropped during training, which refers to deactivating their
incoming and outgoing connections [56]. The dropped neurons are chosen independently
for every forward call. For inference the probability is multiplied with the outgoing
weights of each neuron in the dropout layer. In summary, a network with N neurons in
a dropout layer can then be seen as 2N networks [56].
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3.1 Scatter Artifact Correction
This section focused on the correction of scatter, which is a major source of image
quality loss. First, the prior work is discussed, followed by a closer look into Acuros
[13], [32] and deep scatter estimation (DSE) [14], [24], [31], both state-of-the-art scatter
corrections.

3.1.1 Background and Prior Work

Scatter is especially problematic in CBCT because of high scatter-to-primary ratios.
Typically, there are two strategies for reducing the resulting artifacts: scatter suppression
and correction. While the scatter suppression is a process that occurs during the
acquisition of the projections, the scatter correction is a post-processing step. The
scatter can be suppressed by anti-scatter grids and collimators which reduce the number
of scattered X-rays reaching the detector [57]. Scatter correction, on the other hand,
tries to estimate and correct the scatter intensity in the measured data. This may be
achieved through the utilization of software-based methods for physical or empirical
modeling of X-ray scattering [13], [18], [58], [59], or alternatively, through the deployment
of particular filters during the scanning process, such as primary modulation grids or
beam blockers [60], [61].
The gold standard for the software-based scatter estimations are Monte Carlo (MC)
scatter simulations. If properly implemented, they are able to represent all physical
processes of the data acquisition. Thus, they can provide an accurate estimate of the
scatter. A well-known drawback of MC simulations is the extensive computational
effort, which makes MC simulations time-consuming. This prevents them from being
applicable in real-time and making them impractical for clinical applications. A further
limitation of MC simulations is that they are image-based methods. In other words,
they rely on a prior reconstruction of the uncorrected data.
Relying on a prior reconstruction makes the method susceptible to errors in the
reconstructed image. In addition to the uncorrected scatter artifacts, other image
distortions such as truncation and movement during data acquisition may also affect the
results from image-based correction methods. Other methods circumvent the problem
by estimating and correcting the measured projection data in the raw data domain and
therefore do not rely on a prior reconstruction. Common methods include kernel-based
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algorithms [12] which are also in clinical use but do not perform as well as image-based
correction methods [32]. The latest techniques, which are based on deep learning,
demonstrate the capacity to surpass the established projection-based methods [24].

3.1.2 Acuros

An image-based method which is faster than MC simulations is AcurosCTS [13], [32] (for
reasons of better readability, it will be written only as Acuros in subsequent sections).
Acuros is the gold standard for scatter correction in products by Varian Medical Systems,
a Siemens Healthineers Company. It solves the linear Boltzmann transport equation
deterministically. Although Acuros is currently employed in clinical settings, this
approach shares the same limitation as other image-based correction techniques, the
necessity for a prior reconstruction, which is susceptible to inaccuracies and requires a
full set of projections.
As described above, Acuros is the gold standard for scatter correction in clinically used
Varian CBCT systems. An example for this is the Ethos, a LINAC with integrated
CBCT. This subsection provides an overview of Acuros, outlining its functionality and
how it addresses the linear Boltzmann transport equation. For a complete description
the reader is referred to the publications [13], [32].
Acuros relies on a prior reconstruction. Thus, after applying some initial corrections to
the measured projections, such as a darkfield correction and a first kernel-based scatter
correction, a first-pass reconstruction is performed. The reconstructed images are used
as input to Acuros, which first performs a segmentation into soft tissue and bone [32]
to account for the different attenuation and scatter cross-section for each tissue type.
Then, the linear Boltzmann transport equation is used to calculate the photon fluence
of scattered and unscattered photons that reach each detector pixel.
Prior to an examination of the methodology for resolving the linear transport equation,
it is necessary to provide an explanation of the equation itself. Following [13] the
equation can be written as:

Ω̂ · ∇ϕ
(
r, E, Ω̂

)
+ µt (r, E)ϕ

(
r, E, Ω̂

)
=

S
(
r, E, Ω̂

)
+
∫ E0

0
dE′

∫
4π
dΩ̂′

[
µs

(
r, E′ → E, Ω̂′ → Ω̂

)
ϕ
(
r, E′, Ω̂′

)]
.

(3.1)

The first term is the dot-product between a directional vector Ω̂ and the gradient of the
photon fluence ϕ for photons of energy E at spatial position r. Secondly, the remaining
term on the left-hand side is the total attenuation µt (see Section 2.2) of ϕ. On the
right-hand side, the first term is the contribution from external and internal sources S,
for example the X-ray tube. Finally, the increase due to the photon fluences of energy
E′ going in the direction Ω̂′, which, after scattering with the probability given by the
linear directional scattering coefficient µs, have the energy E and go in the direction Ω̂.
In summary, the left-hand side of the equation represents the photon flux emanating
from position r in the direction of Ω̂ and the fraction of this beam absorbed at position
r. The total outgoing photon fluence must therefore be in equilibrium with the angular
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Source

Voxelized
Object

Detector

1) Trace photons from 
source to all voxels

2.1) Is the termination condition
 reached?

2) Photon fluence is absorbed
 and scattered to the other voxels

3) Trace the sum of photon fluences 
from every voxel to the detector

No

Yes

Figure 3.1: Schematic of how Acuros solves the linear Boltzmann transport equation. In
a first step, the photons are traced from the source to the voxels. Then, the
photon interactions are handled in an iterative fashion by calculating the
contribution from each voxel to each other voxel by considering the fluence
of the incoming photons and the respective linear directional scattering
coefficient. When the photon fluences after the scatter interaction are too
small a stopping criterion is reached, and the fluences in each voxel are
summed. Then the fluences are traced to the detector pixels to sum the
total fluence reaching each detector pixel from every voxel. Adapted from
[13].

fluence arising from external sources along with those scattered into the point r from
the specified direction Ω̂. Figure 3.1 visualizes the three distinctive steps to solve the
equation, which has to hold for every point.
Initially, photons are tracked from the source to the voxels. These are the fluences
of the unscattered photons. To handle scattering interactions, an iterative approach
is employed. The scattered photon fluence is calculated for each voxel, so in the first
iteration the photons are scattered once and the contribution from each voxel to all
other voxels can be determined for a single scatter contribution. Then the second
iteration starts, now considering only photon fluences that have undergone a single
scattering process. This iterative process continues until a stopping criterion is met,
such as when the fluence from scattering drops below a predefined threshold. At this
point, the total fluence in each voxel is summed and then traced to the detector pixels
to determine the total fluence reaching each pixel. In the final step, attenuation of
anti-scatter grids and the detector sensitivity can be taken into account by using the
Beer-Lambert law (see Section 2.2.1) and the direction of incoming photons. These
attenuation values can also be stored in a look-up table (LUT) for fast access [13].
It is evident that computing the photon fluence from every voxel to every other voxel is
a significant computational burden. Consequently, the data are subjected to a drastic
downsampling to fit on the GPU memory. The angular directions are discretized, the
available energies are binned, the detector pixel size is downsampled to larger pixels, and
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the voxels of the input image are downsampled as well to larger voxels with a larger edge
length. In addition to memory reduction, this approach also reduces computation time.
Of course, the method cannot be applied in real-time because a full set of projections
is required for a prior reconstruction with a reasonable image quality without the
introduction of excessive sparseness artifacts. Nevertheless, it is sufficiently rapid and
precise to be employed in a clinical setting [32], unlike a MC simulation.

3.1.3 Deep Scatter Estimation

The DSE was introduced as a real-time scatter estimation method which uses a CNN
to estimate the scatter intensity directly from a measured projection [14], [24]. The
applicability of DSE has been demonstrated for both forward scatter [24] and cross-
scatter in a dual source CT [31] and for proton radiation therapy treatment planning [25].
Applying a neural network holds the advantage of not relying on handcrafted kernels
or features, but intrinsically learning the best fitting features and representation from
training data. In [14] the DSE was presented with a network architecture similar to a U-
Net, which was previously developed for image segmentation purposes [62] and has found
a very broad applicability for various other problems. DSE is trained in a supervised
manner with simulated data, the input being the scatter-corrupted projections and
their corresponding label being the intensity of the scattered photons. In previous
publications [14], [24], [25] it has been shown that DSE works well with measured data,
provided that the simulation accurately reproduces the measured projections. This
is an important trait, because there is not enough data of scatter-free measurements
available. Thus, simulations are used to generate training data. In this work, the scatter
intensities are generated by Acuros, the tool originally designed to correct for scatter.
DSE used to be trained only by data generated with MC simulations, hence, the use of
Acuros is a novelty. At present, DSE needs to be retrained for each individual scanner
geometry. All Varian scanners are already integrated into Acuros. Therefore, if DSE
can be trained with Acuros, it can be readily made available for a diverse range of
scanners. Furthermore, DSE was only compared to other projection-based correction
methods [14], [24], [31], whereas here it is also compared to Acuros, a state-of-the-art
image-based correction method.

i.) Training Data

In order to train a CNN, a large amount of training data is required. As highlighted
above, there are not enough paired data available to train a DSE network on measured
data. Thus, Acuros was utilized for the simulation of data for a scanner of the Ethos
product line. Here, another advantage of training the network with Acuros becomes
apparent. Acuros is already in clinical use and therefore is optimized to generate a
realistic scatter distribution for a wide range of scanners. In this thesis, the training
data were simulated in the scanner geometry of the Ethos scanner, as this scanner is
available at the German Cancer Research Center (DKFZ) for measurements. Figure 3.2
compares the workflow of Acuros when it is applied to measured data and how it was
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Figure 3.2: Schematic of the different Acuros pipelines. The red path shows how it is
applied for measured data and the blue path how it was applied to simulate
training data. Reconstructions from clinical CT scanners were used as
input and Acuros simulated primary intensity and corresponding scatter
distributions.

Figure 3.3: On the left, a slice of the clinical CT scan and on the right, the same slice
with the Ethos couch inserted.

used for training data generation. Normally, Acuros uses a prior reconstruction as
input. On the basis of this first-pass reconstruction the scatter is estimated and then
subtracted from the measured projections. However, in order to generate training
data, reconstructed images from clinical CT scanners were used as input. Due to the
reduced artifacts in clinical CT, when compared to images from CBCT, they are seen
as artifact-free.
A set of 24 full body clinical CT scans were collected, partly from an open source
dataset which was published for the segmentation challenge [63] and the rest from
cadaver measurements which have been acquired in scope of a forensic study in close
collaboration with the Institute of Forensic and Traffic Medicine (Prof. Sarah Heinze),
Heidelberg University, Heidelberg, Germany, after being approved by the local ethics
review board (S388/2014). The clinical CT scans are pre-processed by removing the
patient couch and replacing it with a couch similar to the one used in the Ethos. This
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Figure 3.4: The network architecture used for the deep scatter estimation.

is necessary because the couches mounted on clinical CT systems are curved and the
couches on the Ethos system are flat. Figure 3.3 shows an example slice with both
couches. In addition, Wang et al. [32] found that the couch has a strong influence
on the scatter distribution. Thus, a realistic couch model is required. Following the
preprocessing, the patients were split into a training (17 patients), validation (2 patients)
and a test set (5 patients). Then, three anatomical regions, thorax, abdomen and pelvis,
were selected. For each patient and anatomical region two positions along the z-axis
were randomly chosen. To ensure a wide coverage of the projection angle, 72 projections
were simulated for each z-position, uniformly distributed around 360◦. Furthermore,
every scan was simulated twice, once with the original voxel size and once with a scaled
voxel size. This is a form of data augmentation to incorporate more smaller and thicker
patients. This resulted in 72 × 2 × 3 × 17 × 2 × 2 = 14688 projections for training and
72 × 2 × 3 × 2 = 1728 for validation. Finally, the simulated scatter SAcuros, air norm I0
and primary intensities Iprim are used to generate training data, with the projection
calculated as:

p = − ln
(
Iprim + SAcuros

I0

)
, (3.2)

and the corresponding label or ground truth as

y = SAcuros
I0

. (3.3)

ii.) Network Architecture

Figure 3.4 depicts the network architecture which follows the architecture proposed by
Maier et al. [14], [24]. It resembles a U-Net, with convolutional blocks constructed from
three 2D convolutional layers, each with a 3×3 kernel, a stride of s = 1 and followed by a
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ReLU activation function. In the encoding path, downsampling is accomplished through
a max pooling layer, halving the feature map size in width and height. Following each
downsampling, the number of feature maps is doubled in the first convolutional layer,
commencing with 16 feature maps and culminating in 1024 in the deepest convolutional
block. The decoding path employs a bilinear interpolation for upsampling to double the
image width and height. A skip connection concatenates the output of the convolutional
blocks of the encoding path with the input of their respective convolutional blocks in
the decoding path.

iii.) Training

Three different inputs are investigated to train DSE. “pDSE” is the first model which is
trained on the projection p. “pepDSE” is the second and applies a transformation first.
The transformation was proposed by Maier et al. [24] and is given by

T (p) = pep = pe−p . (3.4)

Lastly, the “pepDSE-Air0”-model is trained, utilizing pep as input and values in air are
set to zero. This approach ensures that no information about the scatter in air is passed
to the network. The pep-transform is proportional to a first order scatter estimation
as it was shown in [64]. Furthermore, the input was downsampled to 128 × 384 pixels.
Scatter distributions are known to be of low frequency, and thus, this approach allows for
the preservation of all relevant features while reducing the input size. A smaller sample
size decreases the computational work load and thus the inference time. Further data
augmentation was applied during training by applying a 50 % probability to horizontally
flipping both the input and the corresponding label.
The network was implemented with Python (v. 3.11) in the PyTorch (v. 2.3.0) and the
PyTorch Lightning framework (v. 2.2.3). To accelerate the training, it was performed
on an NVIDIA RTX A5000 GPU utilizing the NVIDIA API compute unified device
architecture (CUDA) (v. 11.8). AdamW [65], a modified version of the Adam [54]
algorithm, serves as the optimizer, with a mini-batch size of b = 16. The learning rate
was initialized with 10−5 and halved whenever the validation loss did not decrease for
more than 30 epochs. Ultimately, the training was set to stop after 250 epochs, with an
early stopping when the validation loss did not decrease for 110 epochs. In order to
enhance the network’s focus on areas where the scatter is more pronounced relative to
the primary signal, the loss function was set to be the scatter-to-primary-weighted mean
absolute percentage error (SPMAPE) [31]. The SPMAPE for the predicted scatter
SDSE with corresponding ground truth SAcuros and Iprim is given by

SPMAPE = 1
N

∑∣∣∣∣∣SAcuros − SDSE
SAcuros

× SAcuros
Iprim

∣∣∣∣∣ (3.5)

= 1
N

∑∣∣∣∣∣SAcuros − SDSE
Iprim

∣∣∣∣∣ . (3.6)
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3.1.4 Evaluation

To evaluate the performance of the trained DSE, its scatter removal capabilities are
compared to the image-based correction Acuros and projection-based correction fast
adaptive scatter kernel superposition (fASKS) [12]. Both are currently in clinical use
and represent the state-of-art of scatter correction methods by Varian. In a first step,
the five test patients are used to simulate full CBCT scans with Acuros. In total, one
scan per anatomical region (thorax, abdomen, pelvis) and test patient is evaluated,
resulting in a total of 15 evaluated scans. fASKS is a simple correction method applied
in the raw data domain and also used to correct the prior reconstruction for Acuros. For
all three correction methods, the estimated scatter is clipped to 95 % of the measured
intensity as a precautionary measure to prohibit nonphysical scatter intensities that
exceed the measured signal. Finally, the reconstructions of the different scatter-corrected
projections and the uncorrected projections are compared to the GT reconstruction of
the scatter-free primary intensity pGT = − ln

(
Iprim

I0

)
.

The reconstruction pipeline was created in iTools (v. 3.7.0.36), an application which
incorporates the same reconstruction algorithms and correction methods as they are
applied on the Ethos scanner. Thus, the default reconstruction pipelines are utilized, as
they are applied to clinical cases. The prior image was reconstructed using the iterative
algorithm iCBCT, which is the default algorithm for iterative reconstructions. All other
reconstructions, as well as the Acuros scatter-corrected projections, are reconstructed
with a variant of the FDK. The resulting image has 512 × 512 × 251 voxels with a voxel
size of 0.8 mm × 0.8 mm × 1.0 mm.
The accuracy of the correction methods is evaluated through qualitative and quantitative
metrics. In an initial step the skin contour of the patient is automatically segmented
in the GT image. All metrics are calculated on voxels of interest, which excludes all
voxels outside of the contour. For a quantitative analysis three metrics are calculated.
First with the mean absolute error (MAE) given by

MAE (ŷ, y) = 1
N

N∑
n=1

|yi − ŷi| . (3.7)

Here, ŷ is the reference volume, the GT, consisting of N voxels and y is the volume
of the method that is to be evaluated. As the error is calculated over each voxel in
relation to its corresponding voxel in the reference volume, this metric is referred to
as a voxel-wise metric. Including all tissues with different Hounsfield unit ranges may
bias the mean. For example, a mean difference of 10 HU may be much more severe
in the kidneys which are in the range of 20 HU to 40 HU ([6]) than in cortical bone
which reaches up to 2000 HU. Thus, a MAE-spectrum is calculated as well, with bins
of 20 HU width from −1000 HU to 1500 HU as used in [66]. Each voxel in the ground
truth reconstruction is sorted into its corresponding bin, and the MAE is calculated for
each bin, with the results presented separately for each bin.
Another commonly applied metric is the structural similarity index metric (SSIM) which
was developed for the evaluation of perceptual image quality on the basis of known
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properties of the human visual system [67]. In this work the SSIM is used as defined in
[67]:

SSIM (ŷ, y) = (2µŷµy + C1) (2σŷy + C2)(
µ2

ŷ + µ2
y + C1

) (
σ2

ŷ + σ2
y + C2

) . (3.8)

In this notation, µ is the local mean, σ is the local standard deviation and σŷy is the
cross-covariance. C1 and C2 are two constants to ensure stable results if σ2

ŷ + σ2
y ≈ 0

and µ2
ŷ + µ2

y ≈ 0 [67]. The SSIM, as defined here, requires voxel values to be greater
than or equal to zero. The CT value range of the reconstructed images starts at
−1000 HU. Hence, it is rescaled to the range [0, 1]. Given the variability in windowing
parameters across different anatomical regions and tasks, the proposed rescaled value,
I ′, is dependent on these parameters

I ′ =


0 if I < C −W/2,
I−C+W/2

W if C −W/2 ≤ I ≤ C +W/2,
1 otherwise.

(3.9)

The constants C1 and C2 are set to C1 = (0.01L)2 and C2 = (0.03L)2, following [68]. L
is the dynamic range of the images, which is one after rescaling.
For a further comparison, all correction methods are applied to a real measurement of
an anthropomorphic pelvis phantom. A proper ground truth is not available. Thus, the
scans are only compared qualitatively to each other.

3.2 Beam Hardening Correction
This section presents projection-based beam hardening correction methods. First, the
theoretical framework for the commonly employed water precorrection is discussed and
then extended for higher-order beam hardening correction approaches. At last, novel
projection-based deep beam hardening corrections are introduced, aiming to improve
the water precorrection in bone tissue.

3.2.1 Water Precorrection

The water precorrection is a common beam hardening correction method available
on all clinical scanners [69]. Recall from Section 2.6.1 that beam hardening comes
from the energy-dependent attenuation which is neglected during reconstruction and
the polychromatic nature of the X-ray tube. Following Equation (2.29) the measured
attenuation q can be expressed by

q = − ln
∫
dEw(E) e−p0ψ0 (E) , (3.10)

with p0 a line integral in the scanned object f0(r) and the energy-dependent attenuation
ψ0 (E). If the energy and spectrum-independent p0 could be retrieved and reconstructed
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in place of q, beam hardening would be mitigated. Assuming that the object is composed
exclusively of water (i.e., ψ0(E) = ψwater(E)), the equation can be inverted to gain
p0. Water is commonly used due to its dominant abundance in the human body.
Consequently, this approach is referred to as the “water precorrection”. There are two
different ways to estimate p0. First, Equation (3.10) can be numerically inverted. For
this, it is necessary to know the spectrum w(E), which can be measured, and the energy
dependency of water ψwater(E). The energy dependency is a quantity that has been
the subject of experimental investigation for a long time. It has been published and
discussed in publications such as [35], [42]. Consequently, it is expected to be known
with a high degree of precision. Instead of an analytical inversion, a mapping from
q to p0 can be measured. For this, a scan of a water phantom of known dimensions
is acquired. Consequently, for each measured value of q, the actual path length p0
through the phantom is known. If the phantom contains a large range of line integrals,
an accurate mapping from q to p0 can be created and applied to other measurements.
Some scanners store the mapping in a LUT to improve computation times.
The above method assumes that all tissues have an attenuation similar to water. However,
materials such as bone or metal feature significantly different energy dependencies.
Therefore, the water precorrection is unable to remove all artifacts, and some streaks
persist in the image. Figure 3.5 shows this by comparing the reconstruction of a
polychromatic simulated CBCT scan to the corresponding reconstruction of water-
precorrected projection data. The water precorrection removes the cupping while it is
unable to correct the dark streaks between the bone inserts.

3.2.2 Higher Order Beam Hardening Correction

Higher order beam hardening corrections are used to also correct for beam hardening
by bones. These methods often rely on a prior reconstruction of the polychromatic
projection. In most cases, the different tissues are segmented in the image domain.
Then the forward projection for every tissue type is calculated and the resulting
polychromatic projection from the prior reconstruction is compared to the initially
measured attenuation. More complete descriptions are found in [70]–[72]. As highlighted
before, the reliance on prior information is subject to artifacts in the reconstructed
images. These are the to-be corrected beam hardening artifacts, scatter artifacts or
truncation. Moreover, the calculation of multiple reconstructions and forward projections
is a computationally expensive process. Furthermore, a full set of projections is necessary
for reconstruction. Thus, they are not practical for fast and in real-time applicable
problems, such as online imaging during treatment. This increases the need for real-time
applicable methods in the raw data domain.
Equation (2.27) is re-written, similar to the water precorrection, for a higher order
beam hardening correction. In this case, the patient is represented by soft tissue and
bone, the two most abundant materials in the human body. Then, the attenuation q
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Figure 3.5: The reconstruction from a polychromatic simulation of a cylindrical water
phantom with two bone inserts and the corresponding water-precorrected
reconstruction. The beam hardening artifacts are visible as cupping with
higher values closer to the outside and as streaks originating from the bone
inserts. The water precorrection removes the cupping while the streaks
persist between the bone inserts persist. The graphic below shows the
line profiles for the red lines and compares them with a monochromatic
reconstruction. C = 0 HU, W = 500 HU

.

can be rewritten as

q = − ln
∫
dEw(E)e−psoftψsoft(E) − pboneψbone(E) . (3.11)

Now, the line integral is split into two parts pbone and psoft, each belonging to the
previously mentioned materials with a distinct energy dependency, represented by ψbone
and ψsoft. A monochromatic projection of energy E0 is calculated as

pmono(E0) = psoftψsoft(E0) + pboneψbone(E0) . (3.12)

Consequently, monochromatic projections for different energies are calculable if the
line integrals are known for soft tissue and bone, in addition to the respective energy-
dependent attenuation. In this work, deep leaning methods are proposed to estimate
the monochromatic projection or even to extract psoft and pbone from the measured
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polychromatic projection q. Extracting psoft and pbone enables the calculation of
virtual monochromatic images (VMIs). The advantages of virtual monochromatic
reconstructions have been discussed in length for dual energy computed tomography
(DECT) scanners. There, they have shown to be beneficial for non-contrast and contrast-
enhanced dual energy scan routines [73].
In a preliminary investigation, a simulation study is proposed to examine the training
of deep neural networks for the correction of beam hardening in the raw data domain.
To this end, a variety of approaches are evaluated, with different networks trained on
different labels. Subsequently, the method with the best performance is used for a
robustness study in relation to the anatomical region and the X-ray tube spectrum.
Table 3.1 summarizes the investigated options. Each of the proposed methods is
discussed in more detail in the following subsections.

i.) Monochromatic Projection Prediction

The first method is to predict the monochromatic projection from the measured poly-
chromatic projection. This concept of directly predicting an artifact-free projection
is derived from numerous approaches that accomplish this within the image domain.
There, a mapping from deteriorated images to images without artifacts is a common
practice by training and applying a NN. Examples for this can be found for synthetic
CT generation [74], metal artifact correction [75] or denoising [76].
Learning a direct mapping from the measured projection q to a monochromatic projection
pmono has the disadvantage that no additional information is gained about the bone
and water content. Thus, the possibility of calculating monochromatic projections for
different energies is lost. The energy of the predicted monochromatic projection is
determined by the training data. To circumvent this problem, it would be possible to
train multiple networks, with each network trained to map to monochromatic projections
of a different energy.

ii.) Deep Bone Extraction (DBE)

The deep bone extraction (DBE) aims to enable the calculation of VMIs by estimating
the line integrals in bone and soft tissue. In order to achieve this, a NN is trained to
predict psoft and pbone directly from the polychromatic projection q. The network has
two output channels, one for psoft and the other for pbone, which are used as labels during
training. One disadvantage is the lack of data consistency. The predicted psoft, pred. and
pbone, pred. are not constrained to reproduce the input q. Thus, the relation

q = − ln
∫
dEw(E)e−psoft, pred.ψsoft(E) − pbone, pred.ψbone(E) , (3.13)

may not hold for every prediction. Therefore, the reconstruction from the ground truth
may not represent the ground truth anymore.
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iii.) Deep Bone Blending (DBB)

Table 3.1: Summary of the evaluated network labels for a higher order beam hardening
correction with their respective advantages and disadvantages.

q → pmono - · Single energy VMI

q → psoft, pbone
· VMIs for different
energies possible

· No data consistency
· High frequency
structures

q → qwater → psoft, pbone

· Data consistency · Approximation of bone
line integral

· Less high frequency
structures
· VMIs for different
energies possible

Learned Mapping Advantage Disadvantage

As seen in Figure 3.6, psoft has a dark shadow at the position of the bones, which are
called “holes” in the following. These holes create more high-frequency structures in
psoft, the correct prediction of which may be more difficult to learn. In addition, the
NN has to learn a mapping from the polychromatic q to the spectrum-independent
line integrals. This may limit the previous approach to the input of a polychromatic
input from the characteristic tube spectrum with which the NN was trained. The
third proposed method is designed to be less spectrum-dependent by predicting qwater.
Similar to Equation (3.10), qwater is calculated as

qwater = − ln
∫
dEw(E)e−pwaterψsoft(E) . (3.14)

pwater is the line integral through the patient with the bones replaced by standard water
at 70 keV. An example for pwater can be seen in Figure 3.6. In the absence of bone
tissue along the line integral, the relation q = qwater is applicable to these line integrals.
Therefore, this method can be seen as a “blending” of bones into the soft tissue and the
method is called deep bone blending (DBB). Further, the polychromatic projection q is
split into two parts,

q = qwater + qbone . (3.15)

With the assumption

r = pbone
psoft

≈ qbone
qwater

(3.16)
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Equation (3.11) is rewritten into

q = − ln
∫
dEw(E)e−psoftψsoft(E) − rpsoftψbone(E) . (3.17)

With the spectrum w(E) and the energy dependencies of the soft and bone tissue
Equation (3.17) can be solved with any common root finding algorithm. The spectrum
can be measured, and the energy dependency can be derived from the relevant literature.
After the network predicted qwater, the ratio is calculated and the Newton-Raphson
method was utilized to solve Equation (3.17) for psoft.
qwater has to be smaller than or equal to q, thus the post processing qwater = min (qwater, q)
is done before calculating qbone and the ratio r.

Figure 3.6: In the top row the monochromatic projection pmono is shown on the left
and qwater in the top right. The corresponding line integrals in the soft
tissue psoft and bone tissue pbone are shown on the bottom left and right
respectively. The f(r) for the two line integrals can be seen in Figure 3.7.

3.2.3 2D Look-up Table (LUT)

Equation (3.17) has to be solved for every pixel individually. The psoft depends only
on the two parameters q and r. In addition, similar ratio and attenuation pairs are
likely to appear several times across all projections of a scan. Hence, a two-dimensional
LUT can be calculated once and then accessed by the given ratio and attenuation. This
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gives psoft(q, r) = LUT(q, r). To avoid unnecessary large LUTs the ratio was limited to
a maximum of 0.8, which was empirically found to be sufficiently large.

3.2.4 Training Data

In order to calculate data for training, validation and testing, clinical CT scans are
prepared in the following manner. Firstly, a segmentation is created. Secondly, the NN
input q and the possible labels of the networks are calculated.

i.) Segmentation

Figure 3.7: Example slice of a clinical CT scan (left) with the corresponding binary
segmentation of the bone (center) and the same CT slice with the bones
replaced by standard water (right). The binary segmentation was created by
using a threshold of 200 HU and morphological operators to remove small
voxel clusters.C = 0 HU, W = 700 HU

Two distinct segmentation processes were conducted. The first to segment the bones
to replace them with water to calculate pwater. For this, a binary segmentation with
a threshold of 200 HU was used. In addition, morphological operations were used to
eliminate singular voxels without a neighboring bone voxel. This eliminates voxels
which would be classified as bone due to noise. Figure 3.7 shows an example slice of a
clinical CT volume with corresponding segmentation. The segmentation is deployed
to substitute bones with water with an attenuation of µwater = 0.0192 cm−1 =̂ 0 HU.
Alternatively, a soft segmentation, as outlined in the following section, could be utilized
for this process.
The second segmentation is necessary for the calculation of line integrals psoft and
pbone. These line integrals are used to determine the polychromatic and monochromatic
projections, as well as all other labels for training. For this, a simple image-based
segmentation is utilized that assigns each voxel a material-dependent weight. Each voxel
is represented as a water-bone-mixture. Hence, for each voxel of the CT reconstruction
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f (r) the fraction wwater (r) and wbone (r) is calculated following

wwater (r) =


1 if f (r) < τwater,
τbone−f(r)

τbone−τwater
if τwater ≤ f (r) < τbone,

0 otherwise.
(3.18)

and

wbone (r) =
{

0 if f (r) < τwater,

1 − wwater (r) otherwise.
(3.19)

In this case the thresholds were τwater = 250 HU and τbone = 800 HU. Figure 3.8
illustrates a plot of the weights. These weights are used to calculate polychromatic data
as described in the next section.

Figure 3.8: The weights for soft tissue and bone used for generating line integrals for
soft tissue and bone.

ii.) Data Generation

In order to calculate q and all of the training labels, it is necessary to calculate the
line integrals psoft, pbone and pwater. In addition, an X-ray spectrum and the energy
dependence of the soft and the bone tissue are used to generate training data according
to Equation (3.11). For the polychromatic spectrum, a semi-empirical model was used
to simulate a tungsten target X-ray spectrum [77] with a tube voltage of 125 kV and no
prefiltration. As previously written, the attenuation for a single material µ(E, r) can
be split into the product of f(r) and ψ(E). The spatial function f(r) is defined as

f(r) = CT (r)µwater(70 keV)
1000 HU + µwater(70 keV) . (3.20)
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CT (r) are the CT values from a clinical CT used as input to simulate projections from
realist patient anatomies. The clinical CT images display CT values in Hounsfield units.
Therefore, f(r) has the dimension length−1 and pi the line integrals are unitless. The
line integral pi for tissue i is calculated using the Joseph forward projector [78] through
the volume w(r)i · f(r), with w(r)i the segmentation weight for tissue i. Now, ψ(E)
has to be unitless to as well and is defined for tissue i as

ψi(E) =

(
µ
ρ

)
i
(E)(

µ
ρ

)
water

(70 keV)
. (3.21)

The mass attenuation
(

µ
ρ

)
for various elements and tissues, along with the material

compositions of different tissue types, is available in the literature [79], [80]. For soft
tissue the attenuation of water is chosen as

(
µ
ρ

)
soft

=
(

µ
ρ

)
water

.
The same patients utilized for the generation of the DSE training data (see Section 3.1.3)
serve as the basis for the generation of training and test data. Similar to the training in
Section 3.1.3, the patients are split into a training set (17 patients), validation (two
patients) and testing (five patients). For each patient, two z-positions in the pelvis
region were selected for simulation of 72 projections of a CBCT scan, distributed
uniformly around a 360◦ range. The detector consists of 1280 × 1280 detector elements
with a pixel size of 0.336 mm × 0.336 mm. Additionally, the voxel size of the patient
was once used in the original size and once multiplied by a factor of 0.9, a measure of
data augmentation, in order to artificially double the number of training, validation
and testing data. As a result, the training set comprised 4896 projections, while the
validation set contained 576 projections.

3.2.5 Network Architecture

Similar to the previously defined architecture for the DSE, the proposed network
architecture is the U-Net [62]. It consists of an encoding path and a decoding path
which are connected by a skip connection. There are six stages in the encoding path,
going from 32 to 1024 feature channels. Each stage applies two 3 × 3 convolutions,
followed by a rectified linear unit (ReLU) activation function. It is to note that the
network trained to directly predict psoft and pbone had a dying ReLU problem, which
causes the neurons to only output zeros and a dying gradient. For this network, leaky
ReLU activation functions were used with a slope of 0.1. The encoding path uses max
pooling and the decoding path uses bilinear interpolation for upsampling to restore
spatial resolution. In the final layer of the U-Net, a 1 × 1 convolution is applied to
map the 32-component feature vector to the desired number of output channel(s). This
setup ensures that the network is able to learn from the input data at various scales
and spatial resolutions, capturing both high-level semantic information and low-level
details.
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3.2.6 Network Training

The network was initialized with the He initialization, also known as Kaiming initializa-
tion [81] and the bias with zeroes. As optimizer the AdamW [65], a modified version
of the Adam [54] algorithm, was selected. The network was trained on patches of
640 px × 640 px, which were slightly larger than the receptive field of the U-Net and
with a batch size of 16. Entire projections were used as input for validation and testing.
The network was trained until the validation loss no longer decreased for 110 epochs
with a learning rate of 10−5. As for the DSE training, the learning rate was halved
after 100 epochs in the absence of a reduction in the validation loss. In addition, the
software and hardware used for implementing and conducting the training is the same
as for the DSE training.

i.) Loss Functions

Two different loss functions were applied during training, depending on the task at
hand. For the networks predicting pmono or psoft and pbone the mean absolute error
was used, evaluated at the patient position (all pixels in the projection with q > 0).
For the network trained with qwater as label the MAE loss is modified. As explained
before, qwater has to be smaller or equal than q. If pbone = 0 for a given detector
pixel q = qwater and if the network would return qwater = q for every detector pixel the
proposed beam hardening correction using deep bone blending would be equal to a water
precorrection. Therefore, in both cases, if the line integral crosses bone tissue or not, it
is more advantageous for the network to predict a qwater higher than the label. This
can be enforced by applying a weight to the lower prediction (qwater, pred. < qwater, label),
enhancing the contribution to the loss. For a prediction yi with GT ŷi this loss is

weightedMAE = 1
n

N∑
i

{
|ŷi − yi| if ŷi ≥ yi

α |ŷi − yi| if ŷi < yi

(3.22)

with N pixels in the projection and weighting factor α which was empirically found to
perform best for α = 2.

3.2.7 Reference Methods and Evaluation

To evaluate the different networks, full CBCT scans with 720 projections uniformly
distributed around 360◦ are simulated and reconstructed. A water precorrection is
implemented as reference method, because it is the most common applied beam harden-
ing correction on clinical CTs as well as the only available beam hardening correction
at the Ethos CBCT. To evaluate the methods, the MAE and the MAE-spectrum are
calculated as defined in Section 3.1.4.
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3.2.8 Robustness Studies

The best performing network with respect to the used label is further evaluated with
regards to different anatomical regions and different tube voltages.

i.) Different Tube Spectra

The selection of the appropriate tube voltage is dependent upon the specific patient in
question. Factors such as patient thickness and age are crucial in determining the optimal
value. In pediatric patients, lower tube voltages are used to reduce the administered
dose and for thicker patients higher tube voltages are selected for a better signal. On the
Ethos CBCT scanner, installed at the DKFZ, the available options are 80 kV, 100 kV,
125 kV or 140 kV. The application of different tube voltages results in the generation
of distinct tube spectra, which in turn affects the beam hardening. Additionally, as
outlined in Section 2.6, the use of prefilters by CBCT scanners introduces further
modulation of the spectrum. To evaluate the robustness, one network is trained for
each spectrum and then compared to a network trained on data from all spectra. In
total four different spectra were considered during training and testing. They result
from all permutations of two tube voltages (100 kV and 125 kV) and two tin prefilter
thicknesses (0 mm and 1 mm). It is to note that this resulted in an unbalanced number
of projections for training, because the network trained with all spectra is trained on
four times as much data as the network trained on a single spectrum. There are several
ways to correct for this shortcoming, for example, by decreasing the amount of update
steps or using only one fourth of the data per spectrum. In this case both networks were
trained until the validation loss had not decreased for more than 120 epochs and then
the network with the best validation loss is used. Similar to the first study, full CBCT
scans were simulated for testing, but in this case all scans were simulated once for each
spectrum and both neural networks were applied for a higher order beam hardening
correction. Then, the mean absolute percentage error, for N voxels of the ground truth
yi,GT and the prediction yi,pred. defined as

MAPE = 100
N

N∑
n=1

∣∣∣∣∣yi,pred. − yi,GT
yi,GT + ϵ

∣∣∣∣∣ . (3.23)

To prevent a division by zero ϵ was set to 0.001 if not stated otherwise. The simulation
parameters are summarized in Table 3.2.

ii.) Different Anatomical Regions

Applying the correction method to different anatomical regions would be practical for
clinical cases. For this a simulation study was done by simulating training data not
only for pelvis, but also for thorax and abdomen scans. Again, one network was trained
on all anatomical regions while one was only trained for each region separately. The
network with the best validation loss is used for the evaluation on the test data. All
networks were evaluated on fully simulated CBCT scans on all anatomical regions by
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Table 3.2: Generalizability of higher order beam hardening correction to different tube
spectra: simulation study parameters.

Parameter Training Testing
Label qwater qwater
No. patients 19 5
Anatomical region pelvis pelvis
Source-to-isocenter distance 540 mm 540 mm
Source-to-detector distance 1000 mm 1000 mm
View angle 0◦ – 360◦, ∆ϑ = 5◦ 0◦ – 360◦, ∆ϑ = 0.5◦

Detector elements 1280 × 1280 1280 × 1280
Detector pixel size 0.4 mm × 0.4 mm 0.4 mm × 0.4 mm
Detector shift 175 mm 175 mm
Tube voltage 125 kV, 100 kV 125 kV, 100 kV
Prefilter 0 mm Sn, 1 mm Sn 0 mm Sn, 1 mm Sn
#Projection per scan 72 720
Object scaling 0.9, 1.0 1.0
Data augmentation Horizontal flipping -

calculating the mean absolute percentage error (MAPE) between the predictions and
the ground truth. The simulation parameters are summarized in Table 3.3.
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Table 3.3: Generalizability of higher order beam hardening correction to different
anatomical regions: simulation study parameters.

Parameter Training Testing
Label qwater qwater
No. patients 19 5
Anatomical region pelvis, abdomen, thorax pelvis, abdomen, thorax
Source-to-isocenter distance 540 mm 540 mm
Source-to-detector distance 1000 mm 1000 mm
View angle 0◦ – 360◦, ∆ϑ = 5◦ 0◦ – 360◦, ∆ϑ = 0.5◦

Detector elements 1280 × 1280 1280 × 1280
Detector pixel size 0.4 mm × 0.4 mm 0.4 mm × 0.4 mm
Detector shift 175 mm 175 mm
Tube voltage 125 kV 125 kV
#Projection per scan 72 720
Object scaling 0.9, 1.0 1.0
Data augmentation Horizontal flipping -
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This chapter presents the results for the scatter and beam hardening correction methods.
The first part compares the deep scatter estimation to gold standard methods by a
quantitative evaluation with simulated data, for which a ground truth exists. Then, a
phantom measurement is qualitatively evaluated. Earlier results for a scanner with a
shifted detector have been presented at the conference Fully 3D 2023 [82]. The second
part showcases deep beam hardening corrections in the projection domain. For this, a
simulation study utilizing pelvic scans is evaluated, and the robustness with respect to
different spectra and anatomical regions is subsequently analyzed. Initial results for a
deep beam hardening correction have been presented at the CT Meeting 2024 [83].

4.1 Scatter Artifact Correction

4.1.1 Example Scatter Estimations

This subsection presents an analysis and evaluation of the scatter intensity estimations
of Acuros, fASKS and DSE, which were introduced in Section 3.1. Figure 4.1 illustrates
an uncorrected projection with the corresponding ground truth scatter distribution and
example scatter estimations of the investigated methods. It is evident that all scatter
estimations are consistent with the ground truth scatter distribution. Nevertheless,
some differences are visible in the scatter distributions as well as the absolute percentage
error (APE) which is defined for the estimated scatter Sest and the ground truth (GT)
SGT as

APE = 100
∣∣∣∣Sest − SGT

SGT

∣∣∣∣ . (4.1)

The most significant discrepancy is evident in the scatter intensity generated with fASKS.
In this scatter distribution, a decline in the predicted scatter intensity is observable in
the projection’s outermost area. An examination of the absolute percentage error with
respect to the ground truth scatter provides further evidence of discrepancies between
the scatter distribution of fASKS and the GT. In the APE image, the patient outline
and anatomical features, including the lung, are clearly distinguishable. This illustrates
that fASKS is not capable of adequately addressing the diverse anatomical structures
present in a human body.
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Furthermore, the scatter intensity of Acuros exhibits a distinctive striped pattern. This
is indicated by red arrows in the scatter intensity and the corresponding APE image.
It is not visible in the ground truth, which has also been generated with Acuros and
is a nonphysical behavior, because scatter is expected to be a smooth distribution.
This phenomenon can be attributed to the downsampling of the input volume and the
detector pixel size used for the scatter correction. As discussed earlier, in order for the
reconstruction to be clinically applicable, it must be fast. To reduce the computation
time of the scatter correction with Acuros the prior reconstruction is downsampled to
voxels of size 15 mm×15 mm×20 mm and detector pixels of size 12.6 mm×8.4 mm. For
the simulation of the training and the test data for DSE, time was not a limiting factor
and the full resolution has been used. Therefore, DSE shows a smooth and accurate
scatter distribution in contrast to Acuros. However, the APE images of the DSE and
Acuros exhibit a significantly smaller discrepancy to the ground truth in comparison to
the absolute percentage error (APE) image of fASKS.
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Figure 4.1: Scatter intensities from the different scatter correction methods, com-
pared to the ground truth scatter distribution. The right column shows
the absolute percentage error (APE) to the ground truth. The red
arrow indicates the presence of a non-physical stripe pattern within
the Acuros estimated scatter intensity. Projection: C = 4.4, W = 8.8,
Scatter Intensity: C = 0.018, W = 0.018, APE: C = 0 %, W = 50 %
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4.1.2 Reconstructed Slices of Scatter-corrected Scans

The following subsection examines the impact of the different scatter correction methods
on the image quality of the reconstructed images. Figures 4.2 to 4.4, respectively,
illustrate a slice of the thorax, abdomen, and pelvis scan of one test patient. All figures
show the uncorrected scan, fASKS-, Acuros-, and all three DSE-corrected scans, as
well as the difference to the scatter-free ground truth. Each of the three DSE versions
are trained with different input. “pDSE” was trained on the negative log normed
projection p, “pepDSE” on pep = pe−p and “pepDSE-Air0” was trained on pep but all
values in air are set to zero. The last method has no information about the projection
value in air and no features considering the scatter in air can be extracted during
training. In all three example slices, the scatter artifacts are clearly evident in the
uncorrected reconstruction. The bones and soft tissue exhibit considerably lower CT
values and appear darkened. In the fASKS-corrected reconstruction, the artifacts are
less distinct, but still present. Notably, in bones, the difference is particularly evident in
the difference images for all anatomical regions. No artifacts are visible in the CT images
of Acuros- and DSE-corrected scans. Upon consideration of the difference image, a
slight discrepancy in performance is discernible. pDSE and Acuros demonstrate the best
performance, whereas pepDSE exhibits a slight decline in performance and pepDSE-Air0
displays some artifacts in the difference images. In particular, for projections with a
stronger attenuation, such as those in the pelvis region parallel to the transversal axis,
a slight overestimation of the scatter of pepDSE-Air0 occurs, visible as bright streaks
in the difference image. For all methods, the estimated scatter is subtracted from the
scatter-corrupted signal. If the scatter is overestimated, too much signal is removed,
and a stronger attenuation is assumed, resulting in the observed bright streaks in the
reconstruction.
Figures 4.5 to 4.10, illustrate exemplary slices of the thorax, abdomen, and pelvis
of two more test patients. Here, DSE introduces slight ring artifacts, only visible in
the difference image. The rings are stronger visible in the abdomen scan (Figure 4.6)
and pelvis scan (Figure 4.7) for both DSE versions using pep as input. The same
observations that were made for the first test patient also apply to the other two test
patients. fASKS cannot correct for scatter as well as DSE or Acuros, leaving some
remaining scatter artifacts in the reconstructed image. Acuros and DSE perform on
par, while the pepDSE-Air0 performs the worst of all three DSE variants, again, over
predicting the scatter intensity for projections with higher attenuation.
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Figure 4.2: A slice of a thorax scan of test patient one, reconstructed with differ-
ent scatter correction methods with the difference to the ground truth.
C = 0 HU, W = 400 HU for CT and difference images.
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Figure 4.3: A slice of an abdomen scan of test patient one, reconstructed with dif-
ferent scatter correction methods with the difference to the ground truth.
C = 0 HU, W = 400 HU for CT and difference images.
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Figure 4.4: A slice of a pelvis scan of test patient one, reconstructed with differ-
ent scatter correction methods with the difference to the ground truth.
C = 0 HU, W = 400 HU for CT and difference images.
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Figure 4.5: A slice of a thorax scan of test patient two, reconstructed with differ-
ent scatter correction methods with the difference to the ground truth.
C = 0 HU, W = 400 HU for CT and difference images.
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Figure 4.6: A slice of an abdomen scan of test patient two, reconstructed with dif-
ferent scatter correction methods with the difference to the ground truth.
C = 0 HU, W = 400 HU for CT and difference images.
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Figure 4.7: A slice of a pelvis scan of test patient two, reconstructed with differ-
ent scatter correction methods with the difference to the ground truth.
C = 0 HU, W = 400 HU for CT and difference images.
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Figure 4.8: A slice of a thorax scan of test patient three, reconstructed with differ-
ent scatter correction methods with the difference to the ground truth.
C = 0 HU, W = 400 HU for CT and difference images.
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Figure 4.9: A slice of an abdomen scan of test patient three, reconstructed with dif-
ferent scatter correction methods with the difference to the ground truth.
C = 0 HU, W = 400 HU for CT and difference images.
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Figure 4.10: A slice of a pelvis scan of test patient three, reconstructed with differ-
ent scatter correction methods with the difference to the ground truth.
C = 0 HU, W = 400 HU for CT and difference images.
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4.1.3 Quantitative Comparison of the Scatter Correction Methods

In addition to the qualitative comparison, a quantitative evaluation was performed. For
this purpose, the MAE, MAE-spectrum and the SSIM were calculated for each test
scan as described in Section 3.1.4. The MAE is limited to the voxels within the patient
contour, excluding those in the surrounding air. For this, the patient was automatically
segmented by applying a threshold to the CT values and only considering closed contours
with a size above a given threshold. Figure 4.11 shows a box plot for the MAE across all

Figure 4.11: The mean absolute error (MAE) is shown to assess the image quality of
the different scatter correction methods. Each box plot is drawn over the
mean SSIM over all test scans and illustrates the 25th and 75th percentiles.
The red line marks the median and the triangle the worst MAE for every
box plot.

test scans for the different correction methods. The triangle marker indicates the worst
performance. It is noteworthy that the least effective correction method is fASKS. While
the median MAE is reduced by over 70 %, the reduction for both Acuros and DSE is over
96 %. Furthermore, the box is smaller for Acuros and all DSE variants, highlighting a
better stability. The median MAEs are 88 HU, 27.6 HU, 3.1 HU, 3.2 HU, 3.4 HU, 6.1 HU,
for the uncorrected, fASKS-, Acuros-, pDSE-, pepDSE- and pepDSE-Air0-corrected
scans, respectively. In addition, the mean MAEs are 89.8 HU, 30.2 HU, 3.5 HU, 4.3 HU,
4.2 HU, 7.0 HU, respectively. These results indicate, that the DSE outperforms fASKS,
the current gold standard projection-based scatter correction for Varian CBCT scanners.
Moreover, it is comparable to Acuros, a state-of-the-art image-based scatter correction
algorithm. The box plots for both pepDSE variants are slightly larger than those for
pDSE. This may be attributed to a diminished capacity for generalization in networks
trained with pep. It is notable that both pDSE and pepDSE-Air0 display an outlier, a
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phenomenon that is discussed in greater detail in Section 4.1.4.

Figure 4.12: The structural similarity index (SSIM) is shown to assess the image quality
of the different scatter correction methods. Each box plot is drawn over the
mean SSIMs over all test scans and illustrates the 25th and 75th percentiles.
The red line marks the median and the triangle the worst SSIM for every
box plot.

As a subsequent step, the widely used image quality metric SSIM was calculated for
every scan. Before calculating the SSIM on the reconstructed images, each image was
scaled to values between zero and one. In order to incorporate the fact that different
anatomical regions are viewed with a different windowing, the windowing settings were
considered for by scaling the CT image I as

Iscaled =


0, for I < C − W

2
I−(C− W

2 )
W , for C − W

2 ≤ I ≤ C + W
2

1, for I > C + W
2 .

(4.2)

The chosen windowing setting were C = 40 HU, W = 400 HU for pelvis, C = 50 HU,
W = 350 HU for abdomen and C = −50 HU, W = 400 HU for thorax scans. Figure 4.12
displays the SSIMs for all test scans as box plots. The box plots show the 25th and 75th

percentiles, with the median highlighted by a red line and the worst case marked by
a triangle. Notably, the image quality improves from uncorrected to fASKS-corrected
scans and even more if Acuros or DSE are used. The median SSIMs is 0.813, 0.932,
0.993, 0.995, 0.995, 0.989, for the uncorrected, fASKS-, Acuros-, pDSE-, pepDSE- and
pepDSE-Air0-corrected scans, respectively. Thus, fASKS shows an improvement of
14 %, while both Acuros and DSE demonstrate an even more pronounced improvement
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of approximately 22 %. Similar to the MAE, fASKS has the largest deviation between
the 25th and 75th percentile. Acuros has the smallest difference, closely followed by
DSE. Here, there is less difference between each DSE variant. Nonetheless, the outlier
for pDSE and pepDSE-Air0 are visible. All DSE variants were found to outperform
fASKS and are on a par with Acuros, with both methods achieving an almost perfect
SSIM of one. This highlights the good performance of DSE which is applied in the
projection domain, the same as fASKS.

Figure 4.13: The mean absolute error spectra of the scatter-corrected reconstructions
with respect to the ground truth are presented. Voxels are binned according
to their CT value in bins of 20 HU width, and the MAE is calculated for
each bin separately. Each line plot represents the mean over all test scans,
and the colored area corresponds to one standard deviation.

Figure 4.13 depicts the final image metric, the MAE-spectrum as described in Sec-
tion 3.1.4. The line plot connects the mean MAE over all patients of each bin and
the colored region corresponds to one standard deviation. As with the other metrics,
fASKS demonstrates a notable decline in scatter artifacts, which consequently results in
a reduction of the overall MAE. Notably, scatter artifacts are stronger for voxels with
higher CT values. This is a consequence of the higher attenuation by bones. On the
one hand, the stronger attenuation results in a lower signal at the detector. In addition,
the scatter is a smooth distribution that does not change as substantial as the primary
attenuation signal. Consequently, the scatter-to-primary ratio is considerably higher for
projection values from photons passing through bones, and a higher error is visible in the
reconstruction. An error of over 50 HU is still present in fASKS-corrected images for CT
values above 250 HU, and an error of over 100 HU is present for CT values above 750 HU.
All DSE variants and Acuros demonstrate significantly reduced errors compared to
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fASKS, particularly for higher CT values. The mean and standard deviation curves
are overlapping for Acuros and DSE, and only a minimal increase in error is visible for
higher CT values. pepDSE-Air0 again demonstrates a slightly worse performance than
the other two DSE versions, as evidenced by the larger standard deviation and slightly
higher mean. Nevertheless, this highlights the excellent performance of DSE.

4.1.4 Outlier Case

The quantitative evaluation illustrates an outlier for pepDSE-Air0 and pDSE, which is
here presented in greater detail. Figure 4.14 shows in the top row the central transversal
and coronal slice of the outlier scan for pepDSE-Air0. A red arrow highlights high
attenuation streaks between the elbow bone and the upper arm bone. The pepDSE-Air0
model demonstrates an overestimation of scatter in this case, which is consistent with
the findings observed in the pelvis scans, where scatter was also overestimated for
high-attenuation projection values. In the pelvis reconstructions, the overestimation was
less severe and not visible in the CT image, only in the difference image. One potential
reason for the increased artifacts could be the patient shape. As it was shown by Maier
et al. [24] the network performance drops if it is applied to projection data of anatomical
regions not included in the training. In the outlier case, the pre-processing removed
parts of the arm altering the anatomy. The left-over arm is indicated in Figure 4.14 by
an yellow arrow. This resulted in an irregular patient shape that was not included in the
training. In addition, patient scans without arms are more common in the training data,
because many patients are scanned with the arms above the head to spare the healthy
tissue. This is also evident in the previously shown test patients, e.g. Figures 4.2 to 4.7.
Removing the arm completely reduces the artifacts and the MAE goes from 12.2 HU
down to 5.8 HU, below the median of 6.1 HU. This finding backs the hypothesis, that
the irregular patient shape caused by the cut-off arm which was not included in the
training increases the error.
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Transversal Slice Coronal Slice

Figure 4.14: In the top row, the central transversal slice and coronal slice of the outlier
scan for pepDSE-Air0. The red arrow highlights high attenuation streaks
between the elbow bone and the upper arm bone. These streaks are
caused by an overestimation of the scatter intensity. Furthermore, a yellow
arrow marks a arm which was cut-off in a preprocessing step. The bottom
shows the same scan, but before simulation the cut-off arm was completely
removed, reducing the error. C = 0 HU, W = 400 HU.

4.1.5 Scatter Reduction for a Phantom Measurement

Following the quantitative assessment of simulated CBCT scans, the subsequent section
will address the qualitative evaluation on a measured pelvis phantom scan. Figure 4.15
shows the central transversal and sagittal slice of an uncorrected, fASKS-, Acuros- and
DSE-corrected scan. In the uncorrected scan, the scatter artifacts are clearly visible as
dark regions. In particular, the light-gray soft tissue, which should have uniform CT
values, has dark areas throughout. fASKS reduces the occurrence of scatter artifacts in
the reconstruction. Nevertheless, as highlighted by the red arrow, it is unable to fully
eliminate all instances of scatter artifacts, particularly in regions in close proximity to
bones, where a darkening is noticeable.
The reduction in scatter artifacts is also visible in the sagittal slice. A prominent dark
area is visible in the bottom part of the phantom, as indicated by the yellow arrow
in the sagittal slice. In images with scatter correction, the affected area shows less
darkening. Again, fASKS cannot correct for all artifacts. Acuros shows more uniform
CT values than fASKS, but less brightening than pDSE and pepDSE-Air0. It is to
note, that there are other artifacts, i.e. CBCT artifacts, which are uncorrected. Thus,
the resulting dark areas and artifacts in the frontal slice may have a different origin
than that of scatter. Therefore, remaining artifacts do not necessarily indicate a worse
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performance of the scatter correction.
Notably, an artifact that is more prominent in the scatter-corrected images is noise.
As illustrated by the pink arrow in Figure 4.15, thin streaks become more evident in
the image after scatter correction. The visibility of these streaks is directly correlated
with the reduction in scatter. They are noise artifacts, which are predominantly visible
as horizontal streaks, close to bones. The attenuation is higher for these projections,
resulting in a lower signal and a lower signal-to-noise ratio. Subtracting the scatter
from the signal results in an additional reduction of the signal and a further decrease
in the signal-to-noise ratio. This, in turn, leads to an increase in the strength of noise
artifacts. In addition, DSE introduces some minor ring artifacts, which are visible in
the transversal slice.
pepDSE induces strong artifacts in the reconstruction. The scatter is heavily overes-
timated creating bright streaks and areas in the image. For the DSE variants pDSE
and pepDSE the projection values in air are not ignored. Notably, the projection
values in air from the simulated projections show a deviation from the measurement.
As described in Section 3.1.3 the negative values come from the scatter added to the
primary signal, which has not been attenuated in air. There, more scatter is related to
more negative values and a lot of information of the scatter intensity is included in air.
In the measurement, other effects, such as spectrum shifts in the air norm due to the
heat-up of the source, can lead to larger negative values. It appears that pepDSE takes
more information from air than the other DSE versions, and overestimates the scatter
significantly due to the presence of more negative values in air than during training.
pDSE demonstrates greater generalizability, while pepDSE-Air0 excludes the values in
air, both performing well on the measurement.
In general, the same patterns that were identified in the quantitative assessment are
also evident in this qualitative analysis. fASKS is outperformed by Acuros and DSE.
Furthermore, training data representing real measurements are critical for a functional
deep scatter estimation, particularly for DSE trained with pep.
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Transversal Slice Sagittal Slice
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Figure 4.15: Central transversal slice and sagittal slice of a pelvis phantom measurement
with different scatter correction methods applied. The red and yellow
arrows highlight areas with strong scatter artifacts and the pink arrow the
thin streaks caused by noise. C = 40 HU, W = 400 HU.
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4.1.6 Comparison of the Computation Time

Besides the image quality, the time needed for the correction is important for radiation
therapy. The time between imaging and treating the patient should be as short as
possible to reduce errors caused by motion. Furthermore, for online imaging during
treatment the imaging process has to be real-time applicable. Table 4.1 displays the time
needed to estimate the scatter distribution for a full scan with 624 projections of size
384 × 3072. Acuros relies on a fASKS-corrected prior reconstruction. In order to reduce
the computation time, the projections for DSE are downsampled to a size of 128 × 384
which is possible because of the low frequency nature of the scatter. In comparison to
Acuros, DSE has a 34-fold increase in speed and is applied in the projection domain.
Consequently, the correction can be initiated without delay upon the acquisition of
the initial projection, in parallel to the acquisition of the remaining projections. The
necessity for a full set of projections would exclude the use of Acuros as a potential
correction method for online treatment. Note that the reconstruction tool used could
not measure the time for fASKS as for the other two methods. Instead, the mean time
difference of three scans with and without fASKS is displayed. Thus, the time may
include other effects like a slower data loading, writing or other reconstruction processes.
However, DSE is more than twice as fast as fASKS. Notably, all methods are optimized
and executed on a single NVIDIA RTX A5000 GPU.
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Table 4.1: The wall time for the scatter estimation for a full scan with 624 projections.
The pre-processing time for Acuros contains the fASKS-corrected prior
reconstruction. In the case of DSE, the pre-processing stage involves the
downscaling of the projections, which serves to reduce the computational
time and memory usage during both training and inference.

Method Pre-processing Single Projection Full Scan Total Time
Acuros 37.8 s 208 ms 129.5 s 167.3 s
DSE 0.8 s 7 ms 4.1 s 4.9 s
fASKS - 16 ms 10.2 s 10.2 s

4.2 Projection-based Beam Hardening Correction
This section presents the evaluation of the proposed projection-based beam hardening
corrections. Initially, a qualitative comparison of reconstructed pelvis scans is provided
by examining an example slice of beam hardening-corrected images. Then, quantitative
image quality metrics are evaluated. Finally, the results of the investigation into the
robustness of DBB with respect to different tube spectra and anatomical regions are
presented.

4.2.1 Example Slice of Beam Hardening-Corrected Scans

Figure 4.16 displays the central slice and the difference to the monochromatic ground
truth at 70 keV. For a more realistic presentation of the uncorrected scan, it was scaled
with a linear factor which was found by minimizing the MSE between the uncorrected
image and the ground truth. The uncorrected reconstruction shows strong beam
hardening in the soft tissue as a bright cupping. Additionally, the bones are clearly
distinguishable in the difference image. Cupping artifacts are completely removed by
the water precorrection, but the secondary artifacts in bone remain, as highlighted
by red arrows. In addition to the error in bone, there are dark streaks in the soft
tissue surrounding bones. All three proposed beam hardening correction networks can
reduce the error in bone. DBE has the least error left in bone. In contrast, DBB
reduces the difference in bone if compared to the water-corrected scan, but less than
the other correction methods. However, it shows less errors in soft tissue. Both the
direct prediction of pmono and the DBE exhibit a higher difference in soft tissue than
the water precorrection or DBB.
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Reconstruction Difference to GT

Ground Truth (GT)

Uncorrected

Water-precorrected

pmono-predicted

DBE

DBB

Figure 4.16: Slice of the different beam hardening correction methods. All images
are calculated to show the image at 70 keV. C = 40 HU, W = 400 HU
for reconstructions and C = 0 HU, W = 100 HU for difference images,
C = 0 HU, W = 400 HU for the difference of the uncorrected scan. 69



CHAPTER 4. RESULTS

4.2.2 Quantitative Comparison of the Beam Hardening Correction
Methods

After the qualitative comparison, the quantitative metrics, MAE and MAE-spectrum,
are evaluated to assess the image quality. Figure 4.17 plots the MAE for all test scans
as box plots. To include only important voxels, the air is always excluded from the
MAE calculation. Medians are 109 HU, 5.5 HU, 3.5 HU, 4.2 HU, and 2.7 HU for the
uncorrected, water-corrected, pmono-predicted, DBE-, and DBB-corrected scans. Thus,
DBB corrects the remaining error by 50 % if compared to the water precorrection. In
addition, it has the lowest MAE error. DBE performs a little bit worse than the direct
prediction of the monochromatic projection pmono.

Figure 4.17: The mean absolute error (MAE) is shown to assess the image quality
of the different beam hardening correction methods. Each box plot is
drawn over the MAE over all test scans and illustrates the 25th and 75th

percentiles. The red line marks the median and the triangle the worst
MAE for every box plot. Note the gap and change in the y-axis scaling for
better visualization due to the large errors in the uncorrected scan.

As illustrated in Figure 4.16, after a water precorrection most of the remaining error
is in bones. The MAE is computed over all tissues at the same time, a drawback not
shared by the MAE-spectrum. While it cannot distinguish between different tissues,
binning the voxels with respect to their CT value is analogous to a simple segmentation.
Figure 4.18 plots the mean MAE over all test images of each bin and the colored area
corresponds to one standard deviation. There, the good performance of the water
precorrection is immediately apparent. Only for bins with a CT value greater than
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250 HU the error gets significant. This is to be expected, as a higher CT value in the GT
indicates denser tissue, i.e. bone, and thus a greater deviation from the attenuation with
respect to water. Similar to the qualitative evaluation, DBB reduces the error in bone
better than the water precorrection, but it performs less optimal for higher CT values
than the other two proposed methods. While the prediction of the monochromatic
projection and the DBE have a better error reduction in bone, they perform slightly
worse in soft tissue. This results in a better overall MAE reduction for the DBB as it is
evident in Figure 4.17.

Figure 4.18: The mean absolute error spectra of the scatter-corrected reconstructions
with respect to the monochromatic ground truth are presented. Voxels
are binned according to their CT value in bins of 20 HU width, and the
MAE is calculated for each bin separately. Each line plot represents the
mean over all test scans, and the colored area corresponds to one standard
deviation.

4.2.3 Generalization to Different Tube Spectra

The generalization of the DBB approach with respect to different tube spectra was
evaluated as described in Section 3.2.8. Table 4.2 shows the quantitative results for
DBB networks trained on four each spectrum separately and on all data at once. In
general, the network trained on all spectra outperforms the networks that were only
trained on a single spectrum, for all test sets. This also holds true for projections
calculated from the tube spectrum used during the training of a single spectrum network.
However, compared to the variation of the anatomical region (see next section), the
performance reduction is rather small. For the networks trained on a single spectrum,
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Table 4.2: The mean absolute percentage error of the network predictions and the
ground truth label. The networks were either trained with projections from
a single spectrum or with all spectra.

Testing
Training 100 kV 125 kV 100 kV + Sn 125 kV + Sn All data

DBB

100 kV 1.36 % 1.24 % 1.45 % 1.47 % 1.32 %
125 kV 0.98 % 0.88 % 1.08 % 1.12 % 1.02 %

100 kV + Sn 1.32 % 1.20 % 1.25 % 1.21 % 1.25 %
125 kV + Sn 1.06 % 0.99 % 1.00 % 0.97 % 1.01 %
All spectra 0.77 % 0.71 % 0.76 % 0.73 % 0.74 %

it is noteworthy that the networks trained on a tube voltage of 100 kV perform worse
on the test data from a 100 kV tube than the networks trained with data from a 125 kV
tube. In addition, the networks trained with data from a tube voltage of 100 kV show
the highest MAPE for all test data sets.

4.2.4 Generalization to Different Anatomical Region

The generalization of the DBB approach with respect to different anatomical regions was
evaluated as described in Section 3.2.8 by simulating projections for thorax, abdomen
and pelvis scans for training and testing. Table 4.3 shows the MAPE calculated between
the labels and the different DBB network predictions. Similar to the robustness study
with different tube spectra, the network, trained on data including all three anatomical
regions, outperforms the networks trained only on projections of a single anatomical
region. This is also the case when the networks are evaluated on the anatomical region
they were trained on. The MAPE increases by more than three times for the network
trained on pelvis projections only, when comparing the evaluation of pelvis to the thorax
projections. Figure 4.19 shows an example input, label and predictions for a thorax
projection. A red arrow marks a rib bone in all projections and highlights that the
DBB only trained on pelvis or abdomen projections cannot remove the ribs completely.
Additionally, some residual bone structures are marked with a blue arrow. In contrast,
the label, the prediction of the network, trained on all anatomical regions, and the
network trained on thorax projections do not show any residual bones.
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Table 4.3: The mean absolute percentage error of the network predictions and the
ground truth label. One network was only trained with pelvis projections,
while the other also included projections from thorax and abdomen.

Testing
Training Pelvis Abdomen Thorax All data

DBB

Pelvis 0.87 % 1.75 % 2.62 % 1.75 %
Abdomen 1.49 % 1.20 % 2.33 % 1.67 %
Thorax 2.19 % 1.56 % 1.20 % 1.65 %
All data 0.73 % 0.81 % 0.91 % 0.82 %

Input q Label qWater 

pelvis
DBB trained on  

abdomen
DBB trained on  

thorax
DBB trained on  

all data
DBB trained on  

Figure 4.19: Input, label and deep bone blending predictions of DBB networks trained
on different anatomical regions. The red arrows mark the position of a
rib bone and the blue arrows highlights residual bones in the network
predictions. C = 3, W = 6.

73





5 | Summary & Discussion

This thesis investigated the image quality improvements of CBCT images by addressing
two major artifacts: scatter and beam hardening. For this, deep learning-based methods
were developed and adapted for real-time applicable artifact corrections in the projection
domain. The results of the scatter correction are discussed in the following section.
Then, the results of the beam hardening correction are summarized and reviewed.

5.1 Scatter Artifact Correction
Scatter is one of the most severe artifacts in CBCT, with a significant impact on the
image quality and the CT value accuracy. Modern on-board CBCT scanners, such as
the Ethos [84], [85], utilize a combination of hardware, an anti-scatter grid, and software,
e.g. Acuros, to reduce scatter artifacts [13], [85]. Varian treatment machines with an
on-board CBCT are deployed around the world and use an image-based algorithm as
state-of-the-art scatter correction method [13], [85]. Image-based methods require a
prior reconstruction, which necessitates a good first-pass reconstruction. Moreover,
a full scan has to be acquired to reduce sparseness artifacts. This thesis presents a
comparative analysis of deep scatter estimation in the projection domain and existing
state-of-the-art scatter correction methods, including image-based algorithms.
It is essential to utilize an appropriate simulation tool in order to generate training data
from a distribution that is as close as possible to the distribution of the measured data.
During the training, the neural network learns suitable features to accurately predict
the scatter from simulated and labeled data. Otherwise, a network trained on simulated
data demonstrates suboptimal performance when evaluated on measured data. DSE is
commonly trained with MC simulations, but in this thesis a novel approach of using a
deterministic solver of the linear Boltzmann transport equation was investigated. The
deterministic solver used for the training data generation is Acuros, which also serves
as the reference image-based correction method.
DSE trained with Acuros demonstrates clear advantages over Acuros in clinical applica-
tions. This is due to the fact that the input data needs to be downsampled for Acuros
for reasons of efficiency during clinical applications, which results in the emergence of
visible artifacts such as nonphysical stripe patterns in the scatter distribution. This was
highlighted in the comparison of the scatter distributions displayed in Figure 2.7. In
both scatter distributions, the scatter predicted by DSE and the ground truth scatter,
the stripe pattern is not visible. This is due to the fact that the generation of training
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data is not primarily constrained by time. Consequently, Acuros can be used with less
downsampling of the input data, resulting in smooth scatter distributions for training
which gives DSE an advantage over Acuros in clinical applications.
Time is especially critical for imaging in radiation therapy. The patient is in most
cases placed on the treatment bench and sometimes even fixated to reduce movement.
After the scan, the data obtained must be reconstructed and the treatment plan
reviewed or even updated [6]. During this time, movements of the patient decrease the
accuracy between actual and scanned anatomy, consequently affecting the precision of
the treatment plan. In addition, motion such as gas bubbles in the abdomen cannot
be controlled by the patient, which can lead to further discrepancies. Therefore, fast
correction methods are essential for a more accurate treatment. Another aspect of
motion are motion artifacts in the reconstructed image. They can have a strong influence
on image quality [86] especially in CBCT scans with scan times of six or more seconds
for state-of-the-art systems [85], [86]. While DSE requires only a single projection
that is motion-free, Acuros requires a first-pass reconstruction which may contain
motion artifacts due to the long scan time. In general, Acuros is much slower than
DSE. Table 4.1 contains the average time to estimate the scatter intensity for a single
projection. DSE needs 7 ms which makes it real-time applicable and over 29 times faster
than Acuros with 208 ms. The second reference method, which is projection-based
and requires 16 ms for a single projection, is approximately half as fast as DSE. A
full scan including pre-processing, the full first-pass reconstruction for Acuros and the
downsampling of the input projections for DSE, takes 167.3 s, 10.2 s and 4.9 s for Acuros,
fASKS and DSE, respectively.
fASKS and Acuros both represent the current Varian standard of clinically utilized
scatter correction methods. fASKS reduces the error in the median MAE by 70 %
from 88 HU to 28 HU, while DSE and Acuros can reduce the error to 3 HU, which is a
correction of about 96 %. Additionally, the assessment of the MAE-spectrum indicates
that scatter results in increased error in bone, and that fASKS is unable to correct the
scatter in bone as effectively as in soft tissue. The reconstructed slices in Figures 4.2
to 4.7 further highlight the increased error in the difference image, which shows a greater
deviation to the ground truth in bone. Acuros and DSE only show a small increase
in error for higher CT values. Overall, this demonstrates that DSE is on par with
state-of-the-art image-based correction methods. Notably, all simulations do not contain
any other artifacts than scatter. In a measurement, additional artifacts, such as motion
or truncation, can further impair the image quality of the first-pass reconstruction,
which may subsequently diminish the efficacy of Acuros. DSE, on the other hand, was
already shown to perform well on truncated scans by Maier et al. [24] and, as discussed
before, is less prone to motion. In summary, the DSEs trained with Acuros display an
excellent performance in the quantitative as well as the qualitative evaluation.
Three DSE variants have been trained and evaluated. All variants were trained on
the same data set but with a different input preprocessing. Two versions shared the
same projection value transform, namely pep. pep represents a first order scatter
intensity estimation and showed good performance in the initial DSE publication by
Maier et al. [24]. The sole distinction is that for one pep-trained network, the negative
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values in air were set to zero. Consequently, no information about the scatter in air
is passed to the network, which resulted in a slight decline in performance across all
image quality metrics. As evident in Figures 4.4 and 4.7 a slight overprediction of the
scatter intensities is visible in the example slices. If the signal is attenuated more, the
scatter-to-primary ratio increases and the estimated scatter has a larger influence on
the relative signal. Thus, it is expected that a performance loss would be especially
evident for projection values with a high attenuation. The decreased accuracy can be
contributed to a loss of information in air. For the simulated projections the unscattered
photons are not attenuated in air. Therefore, the difference to the air norm, the reason
why a projection value is unequal to zero, is completely contributed to the scatter signal.
Consequently, an accurate estimation of the scatter magnitude can be achieved in air.
A discrepancy was identified between the simulated and measured data in air, with the
measured projections showing significantly lower values. This causes the pepDSE to
heavily overestimate the scatter. Interestingly, pDSE, the network trained with the
projection p as input, does not perform poorly on the measurement. There are several
possible reasons. First of all Maier et al. [24] investigated the robustness with respect
to different anatomical regions. In their case, the network on pep also exhibits a larger
error for anatomies not included in the training data than the network trained on the
projection p. This leads to the assumption that networks with pep cannot generalize as
well as networks trained on p. Another possibility is that during training the network
trained with p learned to extract more features from inside the patient. This hypothesis
would also explain the error case with the change in patient anatomy. This outlier is
only visible in pDSE and the pepDSE which ignores the air.
As stated above, the simulated projections have to be very close to the ground truth.
This was highlighted by the pepDSE network which created new artifacts in correction
of the measurement. While this problem could be circumvented by excluding projection
values in air during training, new approaches to eliminate the need of labeled data and
ultimately simulated data would be an important next step. Unsupervised training
would therefore be an interesting follow-up project. First experiments utilizing a cycle
GAN already show promising results [87]. An alternative approach would be to leverage
the fractionated treatment. In modern radiation therapy the patient is not treated a
single time to apply the prescribed dose, but many times, each time applying only a
fraction of the dose. Thus, a measurement is already available for the second treatment
and a personalized DSE could be trained. For a more robust network, all follow-up
scans could also be included in the training data.

5.2 Projection-based Beam Hardening Correction
The second part of this thesis considers beam hardening correction methods in the
projection domain. Although the conventional water precorrection can greatly increase
the image quality in soft tissue, it still has residual errors in and around bones. A
more detailed examination of the example slice of the reconstructed images presented
in Figure 4.16 revealed that the CT value in bone is higher than in the monochromatic
ground truth. This would result in an overestimation of the stopping power during
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treatment planning and consequently reduce the plan accuracy. All three proposed
methods were able to reduce the error in bone drastically. This is evident in Figure 4.18
which shows the MAE-spectrum. As illustrated in the figure, the water precorrection
drastically reduces the error, until CT values of 250 HU, after which the error increases.
On one hand, DBB shows the least improvement for higher CT values of the proposed
methods. On the other hand, it has the overall lowest MAE for all correction methods.
In the example slice in Figure 4.16 the reason for this is apparent. While the direct
prediction of the monochromatic projection and DBE show less deviation to the ground
truth in the difference image in bone, more errors are visible in the soft tissue. This
is expected, both methods have to correct for the projection values for soft and bone
tissue, because they have to learn the mapping from the polychromatic projection q
to an energy-independent variable. Slight variations in the projection can have a large
influence on the reconstructed image. However, all proposed methods outperform the
classic water precorrection. DBB on the other hand, only needs to correct for the
contribution by bone and stays in the polychromatic domain with its prediction
In the context of this thesis, the robustness of the DBB network was investigated with
respect to X-ray tube spectra and anatomical regions. The two major findings were i) it
is better to train on 125 kV than on 100 kV, even if the network is applied on test data
from a 100 kV tube and ii) always train on multiple anatomical regions and spectra even
if it is only applied to a single spectrum or region. The latter was especially visible for
the networks trained on pelvis or abdomen projections which were not able to remove
the rib bones of a thorax projection.
There are currently two major limitations to the study. First of all, it does not consider
a quantitative evaluation of a measurement. In standard practice, a cylinder phantom
with inserts of varying electron densities is used for the evaluation. Nevertheless,
as demonstrated in the robustness studies, a DBB network demonstrates reduced
performance on anatomical regions not included in its training data. Therefore, the
networks would need to include training examples of such electron density phantoms
for a good performance. However, if the density phantom is already in the training
data set it cannot be used for testing, otherwise a good performance on the electron
density phantom does not allow the conclusion that the network performs well on
anatomies that are not in the training data. In addition, due to the black-box nature
of neural networks, the accuracy test on a cylindrical phantom may not be equivalent
to the accuracy on patient scans. An option to circumvent this problem would be an
anthropomorphic phantom with exact and known electron densities for the different
soft tissues and bones. This phantom can be used to test the network while ensuring
that this data is not included in the training set and while maintaining as close a
resemblance as possible to the human anatomy. Furthermore, it is advisable to use
different phantoms for each body part.
Another shortcoming of DBB is the necessity to know the spectrum. A bowtie filter
will change the spectrum significantly along the u-axis of the detector or the heat up
of the tube during the scan will change the emitted spectrum. It is recommended
that a further robustness study should be conducted to determine the extent of error
that would be caused by assuming a faulty spectrum during the calculation of psoft.
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Nonetheless, the spectrum is already known well enough to apply an analytical water
precorrection for scanners with a bowtie filter. It can thus be assumed that the spectrum
can be measured with sufficient accuracy for DBB.
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6 | Conclusions

The efficiency of radiation therapy can be enhanced by modifying the treatment plan on
a daily basis. At present, the on-board CBCT lacks in image quality and can only be
used for registering the planning CT. This work addresses two significant error sources,
scatter and beam hardening, to improve the image quality of CBCT images. In both
cases, data-driven deep learning methods have been adapted, developed and compared
to the correction methods currently used in state-of-the-art on-board CBCT scanners.
In the case of scatter correction, the projection-based reference is outperformed in terms
of image quality while the image-based reference method exhibits a similar level of
image quality at a significantly slower computational speed. For beam hardening, all
proposed methods decrease the error in bone tissue and show a lower deviation to the
ground truth over the whole patient. Additionally, the best performing beam hardening
correction was further investigated and the robustness in regards to tube spectra and
anatomical region was shown if the neural network was trained on appropriate data.
The proposed methods are real-time applicable and can facilitate the transition towards
online treatment with on-board CBCT scanners.
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