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Zusammenfassung

In dieser Arbeit werden Methoden entwickelt, um effiziente und skalierbare Vorher-
sagemodelle für die Sternentwicklung, die Endzustände von Kernkollaps-Supernovae
(CCSN) und die Gravitationswellenemission von den Überresten der Verschmelzung
binärer Neutronensterne (NS) mit Hilfe von überwachtem maschinellem Lernen zu
konstruieren. Mit Hilfe der Vorhersagemodelle werden die folgenden zentralen wis-
senschaftlichen Erkenntnisse gewonnen. Das endgültige Schicksal von massereichen
Einzel- und Geber-Sternen in Doppelstern-Systemen, die einen Kollaps des Eisenkerns
durchlaufen, ist nicht nur in der Struktur des SN-Vorläufers codiert, sondern bereits
am Ende des Kern-Helium Brennens (CHeB) weitgehend vorherbestimmt. Das in
dieser Arbeit entwickelte CCSN-Modell stimmt mit Abschätzungen der Kohlenstoff-
Sauerstoff Kernmassen (MCO) mehrerer beobachteter SN-Vorläufer überein, welche
andere CCSN-Rezepturen, die typischerweise in schnellen Binärstern–Populations-
synthese–Codes verwendet werden, nicht erklären können. Um das Problem der
fehlenden Roten Überriesen teilweise mit gescheiterten SNe zu lösen, müssen Ster-
nentwicklungsmodelle am Ende des CHeB MCO-Werte und einen zentralen Massenan-
teil an Kohlenstoff innerhalb eines begrenzten Bereichs des Parameterraums haben.
Ein NS ist der wahrscheinlichere (garantiert für MCO . 6M�, sonst mit einer
Wahrscheinlichkeit von 85-90%) kompakte Überrest, der nach einer erfolgreichen SN
zurückbleibt, denn die Bildung eines Schwarzen Lochs über Rückfall kann unter bes-
timmten Bedingungen bereits vor der SN ausgeschlossen werden. Wenn zwei Neu-
tronensterne verschmelzen, kann das Gravitationswellen-Signal des Verschmelzungs-
überrests bei fortgeschrittener LIGO Sensitivität bis zu einer Leuchtkraftentfernung
von etwa 12 Mpc rekonstruiert werden. Ein masseärmerer NS-Doppelstern mit einer
weicheren Zustandsgleichung (EOS) kann zu einer ähnlichen Peak-Oszillationsfrequenz
des Verschmelzungsüberrests führen wie ein massereicherer NS-Doppelstern mit einer
steiferen EOS.





Abstract

In this thesis, methods are elaborated for constructing efficient, scalable predictive
models of stellar evolution, of core collapse supernova (CCSN) outcomes and of the
gravitational wave (GW) emission from binary neutron star (NS) merger remnants,
with supervised machine learning techniques. Aided by the predictive models, the
following central scientific findings are made. The final fates of massive single and
binary-stripped stars undergoing iron core collapse are not only encoded in the pre-SN
progenitor structure, but broadly pre-determined already at the end of core helium
burning (CHeB). The CCSN model developed in this work is in agreement with
estimates of carbon-oxygen core masses (MCO) of several observed SN progenitors,
which other CCSN recipes typically used in rapid binary population synthesis codes
cannot explain. In order to partially address the missing red supergiant problem by
failed SNe, stellar evolution models are constrained to have a MCO and a central
carbon mass fraction at the end of CHeB within a confined region of parameter
space. A NS is the more likely (guaranteed for MCO . 6M�, and at 85-90 %
probability otherwise) compact remnant left behind a successful SN, while fallback
black hole formation can under certain pre-SN conditions be excluded. When two
NSs merge, the GW signal of the merger remnant can be reconstructed at advanced
LIGO sensitivity up to a source luminosity distance of approximately 12 Mpc. A
less massive NS binary at a softer equation of state (EOS) can lead to a similar peak
oscillation frequency of the merger remnant as a more massive binary at a stiffer
EOS.





“Keep your eyes on the stars, and
your feet on the ground.”

— Theodore Roosevelt
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1. Introduction

1.1. Motivation

Stars are self-gravitating bodies that are massive enough to ignite nuclear fusion as
they convert gravitational potential energy into thermal heat (e.g. Prialnik, 1996).
They form through the gravitational collapse of gigantic gaseous nebula, and burn
successively heavier elements as they undergo a sequence of evolutionary phases (e.g.
Kippenhahn, 1990), governed by an interplay of gravity and thermodynamics, nu-
clear and particle quantum physics, and hydrodynamics. Stars end their lives by
transformation into compact objects, or in violent supernova (SN) explosions tearing
them apart. Massive stars become large, shine bright and die young.

1.1.1. The need for scalable statistical models of stellar evo-
lution and its outcomes

The study of stars is crucial for various fields in astrophysics. For example, planets
form in the protoplanetary disks around young stars. Stars make up the vast majority
of baryonic matter in the Universe and are responsible for producing heavy elements
(e.g. Kippenhahn, 1990). These are ejected into space through stellar winds or SN
explosions, enriching the interstellar medium and driving chemical evolution (e.g.
Goswami et al., 2022). Stellar radiation heats the surfaces of planets and is essential
for sustaining life. Stellar feedback co-regulates the star formation rate in galaxies
(Hopkins et al., 2018). The energy released by stars can heat up the surrounding gas
and prevent it from collapsing to form new stars. Stars are the constituents of open
and globular clusters, providing information about their formation and evolution (e.g.
Paunzen and Netopil, 2006). Many such and similar astrophysical studies require
efficient predictive models of stellar evolution, feedback and explosions.

Stars evolve on timescales that are orders of magnitude beyond human lifetimes.
Therefore, the only way to probe stellar evolution models is to compare statistical
model predictions with observations of stellar populations.

Statistical methods are necessary to model stars also because of their vast num-
ber and the variability among them. With thousands, millions or billions of stars
scattered across space, a detailed simulation of each star is impossible due to the
associated computational costs.

1.1.2. Gravitational wave astronomy

One example for such applications is gravitational wave astronomy. Massive stars are
the progenitors of neutron stars and stellar-mass black holes (e.g. Heger et al., 2003),
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1. Introduction

and the coalescence of these compact objects gives rise to gravitational wave radiation
(e.g. Carroll, 1997). Depending on the frequency range and luminosity distance,
this source emission can be observed at present or will be observable with future
generation detectors (Abbott and et al., 2019). Among the crucial requirements for
gravitational wave astronomy are

• efficient gravitational wave models that can be used to facilitate the detec-
tion of source signals and to relate its spectral features to properties of the
astrophysical source (e.g. Meyer and Christensen, 2016), and

• estimates of binary compact object merger rates (Santoliquido et al., 2021) from
the two main progenitor channels: isolated binary evolution (Broekgaarden
et al., 2022) and the dynamical pairing in a stellar cluster (Mapelli et al.,
2021).

In this thesis, three predictive models are constructed, which all contribute to
targeting these requirements:

1. The gravitational wave model traces the binary neutron star (BNS) post-merger
emission over 17 ms, assuming an equal-mass NS binary over a range from the
minimal NS mass at birth in a CCSN up to the threshold mass for prompt
black hole (BH) formation, for two different nuclear equations of state (EOS).
Given its predictive accuracy and execution time of 1-3 ms for generating a
signal at sampling rates comparable to those of advanced LIGO (aLIGO), it is
applicable as a matched-filtering template for the detection of signals at aLIGO
sensitivity and next-generation detectors.

2. The CCSN model evaluates structural properties of a pre-SN progenitor to pre-
dict the final fate (failed or successful SN). A CCSN recipe, which parametrizes
the final fate outcomes as a function of carbon-oxygen core mass MCO, metal-
licity Z and mass transfer pre-history of binary-stripped stars, is derived from
it. The CCSN recipe is applicable for rapid binary population synthesis studies,
such as the prediction of binary BH, BNS and BH-NS merger rates. Both final
fate prescriptions are evaluated analytically and have negligible computational
cost.

3. The single star evolution model covers a mass range from red dwarves to 300M�
Wolf-Rayet stars and the stellar lifetime from the zero-age-main-sequence up to
the end of core helium burning. A parameter space this wide entails the progen-
itor evolution of neutron stars and stellar-mass black holes from the single-star
channel. The predictive model achieves an accuracy that is at least one or-
der of magnitude below typical observational uncertainties, and an efficiency
of millions of point predictions within tens of seconds on a 4-core CPU. It is
applicable for testing adopted stellar evolution physics against observations, for
estimation of stellar parameters by iterative optimization, and in larger-scale
astrophysical simulations such as stellar N -body dynamics.

Each of these is subject of a chapter in this thesis:
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1.2. Surrogate modeling

• Ch. 2. deals with scalable stellar evolution forecasting,

• Ch. 3. with the scalable prediction of CCSN outcomes and

• Ch. 4. with scalable gravitational wave modeling.

The three statistical models have in common that their construction is motivated
by the computational costs associated with running detailed stellar evolution, core
collapse and numerical relativity simulations, respectively, over a quasi-continuous
parameter space in order to obtain the output predictions of the variables of interest.
For example, these are necessary for population synthesis or iterative optimization.
The three models have supervised machine learning (ML) as a construction means in
common. In the introductory sections of each thesis chapter on the aforementioned
predictive models — i.e. Sect. 2.1., Sect. 3.1. and Sect. 4.1. — respectively, the moti-
vation for building the predictive models is covered in greater depth, and compared to
alternative methods. In this thesis, supervised ML is used to fit surrogate models on
data obtained by running the original (expensive) astrophysical code. A well-trained
surrogate model acquires the capability to generalize the output predictions over the
input parameter space, and to cast predictions at low computational cost. General
aspects of this modeling framework are introduced in Sect. 1.2.. The specifics of each
of the three predictive models constructed in this thesis are treated in the methods-
related sections of each chapter, i.e. Sect. 2.2. and Sect. 2.3. for the stellar evolution
surrogate model, Sect. 3.2. for the CCSN model and Sect. 4.2. for the GW model.
The scientific and method development results are presented in Sect. 2.4., Sect. ??
and Sect. 4.3., respectively. These are reflected upon and integrated in Ch. 5., which
also gives an outlook for future research that could build upon this work.

1.2. Surrogate modeling

Surrogate modeling is a technique used in scientific computing to approximate the
behavior of a complex computer model F with a simpler, computationally less ex-
pensive model F̂ , referred to as an emulator (Gramacy, 2020). The emulator imitates
the computationally expensive original model,

F ← F̂ , (1..1)

and can therefore reliably used instead of the original to mimic its output. The
process of building a surrogate model typically involves five main steps:

1. data collection,

2. regression problem formulation,

3. model selection,

4. model training and

5. model testing.
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1. Introduction

1.2.1. Supervised machine learning

Data collection involves gathering information about the system or process of interest
through simulations, experiments, or observations. In context of this work, the data
consists of catalogs of pre-computed simulation results using astrophysical codes that
model stellar evolution, core collapse and binary neutron star mergers. This data
serves as the basis for training the emulators.

The next step is the formulation of the regression problem (e.g. Hastie et al., 2009).
This amounts to the choice of the target variables and of the regressor variables. This
choice needs to be tailored to the science goal that is aimed to be addressed with the
fitted surrogate model.

Suppose that an expensive computer experiment F produces the outcome yi under
the condition xi for i = 1, ..., n. Then, the regression problem reads

yi = F̂ (xi). (1..2)

Supervised machine learning (e.g. Hastie et al., 2009) is then used to construct an
emulator that predicts a target variable yi as output, given the regressor variable
xi as its input. While the collected data discretely sample the parameter space at
the grid points x1, ..., xn, the training goal is to construct a predictive model that
generalizes the prediction of y over a continuous parameter space.

Supervised machine learning works by training a model on a labeled dataset. This
means that the training data set consists of i = 1, ..., n input-output pairs

Di = (xi, yi) (1..3)

which are presented to the model. During training, the surrogate model learns to
map the inputs to the outputs.

1.2.2. Model selection, training and testing

A suitable model F̂ needs to be selected to approximate the relationship between
the input and output variables of the system. Common models used in surrogate
modeling include gaussian processes (Sacks et al., 1989; Rasmussen, 2004; Gramacy,
2020), feedforward neural networks (Ivakhnenko and Lapa, 1967; Rumelhart et al.,
1985), random forest models (Ho, 1995) and support vector machines (Cortes and
Vapnik, 1995). The choice of the model depends on the regression problem, on the
size of the data set, on the specific characteristics of the data and on the complexity
of the system being modeled.

Each surrogate model has hyperparameters that configure its design. These are,
for example, the number of hidden layers in a feedforward neural network. The
hyperparameters need to be specified before the training. Each surrogate model also
has parameters which – in contrast to the hyperparameters – are adjusted during the
training.

Once a model is selected, it is trained using the collected data to learn the un-
derlying patterns and relationships within the system. To this end, the available
data is split into a training, a validation and a test data subsets (e.g. Hastie et al.,
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1.2. Surrogate modeling

2009). The training data is used to fit a surrogate model’s free parameters. Each
model has free parameters that are adjusted during training to minimize the error
between the predicted and actual values of the system’s outputs. This comparison
requires the selection of a statistical score (Gneiting, 2011) that evaluates the pre-
dictive performance of the model. One example for a statistical score is the mean
squared error. The training process is realized using optimization techniques, such
as gradient descent (Curry, 1944).

The validation data is used to optimize hyperparameters of the model. To this
end, the surrogate model is fitted multiple times on the training data set, each time
with a different hyperparameter configuration. The model performance for each
hyperparameter configuration is assessed using the validation data set, based on
predictive accuracy of the different surrogate models at the evaluation points in
parameter space that have not been used for training. The best-fit hyperparameter
configuration is chosen based on the least error score over the validation data. This
process is referred to as hyperparameter optimization (e.g. Bischl et al., 2023). It
can be realized by methods such as manual engineering, a grid search or Bayesian
optimization (Mockus, 1982). Cross-validation (Stone, 2018) ensures that the best-
fit model is not biased toward a specific data split into training and validation data
subsets.

The test data is used to evaluate the performance of the surrogate model with the
optimal hyperparameter choice. It assesses the fitted model’s capability to generalize
the prediction of the output variables over the input parameter space.
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2. Scalable stellar evolution forecasting

This chapter has been published in Maltsev et al. (2024b). Formatting and small
text edits have been made to match this thesis. I conducted the scientific work and
wrote all of the text myself, with the support of the co-authors.

Abstract: Many astrophysical applications require efficient yet reliable forecasts of
stellar evolution tracks. One example is population synthesis, which generates for-
ward predictions of models for comparison with observations. The majority of state-
of-the-art rapid population synthesis methods are based on analytic fitting formulae
to stellar evolution tracks that are computationally cheap to sample statistically over
a continuous parameter range. Running detailed stellar evolution codes, such as
MESA, over wide and densely sampled parameter grids is prohibitively expensive
computationally, while stellar-age based interpolation in-between sparsely sampled
grid points leads to intolerably large systematic prediction errors. In this work,
we provide two solutions of automated interpolation methods that find satisfactory
trade-off points between cost-efficiency and accuracy. We construct a timescale-
adapted evolutionary coordinate and use it in a two-step interpolation scheme that
traces the evolution of stars from zero age main sequence all the way to the end of
core helium burning while covering a mass range from 0.65 to 300 M�. The feedfor-
ward neural network regression model (first solution) that we train to predict stellar
surface variables can make millions of predictions, sufficiently accurate over the entire
parameter space, within tens of seconds on a 4-core CPU. The hierarchical nearest
neighbor interpolation algorithm (second solution) that we hard-code to the same
end achieves even higher predictive accuracy, the same algorithm remains applicable
to all stellar variables evolved over time, but it is two orders of magnitude slower.
Our methodological framework is demonstrated to work on the MESA Isochrones
and Stellar Tracks (Choi et al., 2016) data set, but is independent of the input stel-
lar catalog. Finally, we discuss prospective applications and provide guidelines how
to generalize our methods to higher dimensional parameter spaces.

2.1. Introduction

Several fields of astrophysics need cost-efficient and fast predictive models of stellar
evolution for their deployment at scale. These include stellar population synthe-
sis, N -body dynamics models of stellar clusters (e.g. Kamlah et al., 2022), iterative
optimization-based stellar parameter estimation methods (e.g. Bazot et al., 2012),
and large-scale galactic and cosmic evolution simulations (e.g. Springel et al., 2018)
that require a stellar sub-grid physics.
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2. Scalable stellar evolution forecasting

To illustrate, the Bonn Stellar Astrophysics Interface (BONNSAI; Schnei-
der et al., 2014) is an example of a Bayesian framework that allows to test stellar
evolution models, and—if the test is passed—to infer fundamental stellar model pa-
rameters given the observational data. Determination of fundamental stellar parame-
ters that best match the observation requires costly iterative optimization procedures,
such as Markov chain Monte Carlo nested sampling techniques, which need a large
number of evaluations over a quasi-continuous parameter space for convergence to the
best-fit model. In order to reduce systematic estimation errors, BONNSAI requires
a stellar parameter grid as dense as possible.

However, there are costly computational demands arising from the traditional
method of running a detailed stellar evolution code over a dense rectilinear grid in
stellar parameter space: for a fixed grid spacing, the number of stellar tracks to
evolve scales to the power of the dimensionality of the fundamental stellar parameter
space. The most important parameters of single star evolution are age τ , initial mass
Mini at zero age main sequence (ZAMS), initial metallicity Zini and initial rotation
velocity vini. For stars of Mini > 8M�, binary interaction effects become increasingly
important: 71% of all O-stars interact with a companion, and over half of them
during the main sequence evolution (Sana et al., 2012). Therefore, in order to evolve
massive stars, the parameter space needs be expanded to cover, in general, eight
dimensions (τ1,Mini,1,Mini,2, vini,1, vini,2, Zini, Pini, ε) where Pini is the initial period, ε
the eccentricity of the binary orbit and τ1 ' τ2 to a good approximation.

Modules for Experiment in Stellar Astrophysics (MESA; Paxton et al.,
2011) is an example of a detailed one-dimensional (1D) stellar evolution code with
modular structure, which allows to update the adopted physics when generating
stellar evolution tracks: for instance, the equation of state, the mass loss recipe, and
the opacity tables. When evolving stars numerically over a wide and densely sampled
parameter grid with MESA, there are two main computational challenges: first, the
computational cost associated with running the code over the large grid size, and
second, numerical instabilities. To overcome the latter, substantial manual effort
is required to push a simulation past failure points by reconfiguring the code, and
by checking for unphysical results. The manual action mainly involves adaptation
of spatial mesh refinement and time step control strategy, and of error tolerance
thresholds in stellar model computation, to make sure the solvers converge over each
evolutionary phase within reasonable computation time.

The problem of prohibitive computational costs has been addressed in three dif-
ferent ways: First, stellar evolution tracks have been approximated by analytic fitting
formulae. Second, the output of detailed stellar evolution codes over a discrete pa-
rameter grid has been interpolated. Third, cost-efficient surrogate models of stellar
evolution have been constructed. Below, we summarize these main approaches.

The single star evolution (SSE) package (Hurley et al., 2000) consists of an-
alytic stellar evolution track formulae predicting stellar luminosity, radius and core
mass as functions of age, mass and metallicity of the star. Separate formulae ap-
ply to each evolutionary phase, and the duration of each phase is estimated from
physical conditions. Along with analytical expressions from stellar evolution theory,
the SSE package was obtained by fitting polynomials to the set of stellar tracks by
Pols et al. (1998). The fitting formulae method has been extended to predict evo-
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2.1. Introduction

lution of binary systems, to include analytical prescriptions for mass transfer, mass
accretion, common-envelope evolution, collisions, supernova kicks, angular momen-
tum loss mechanisms and tides (Hurley et al., 2002). At present, the fitting formulae
are often used in connection with rapid binary population synthesis codes, for ex-
ample Compact Object Mergers: Population Astrophysics & Statistics
(COMPAS; Riley et al., 2022), and stellar N -body dynamics codes. Though there
are two main drawbacks: First, the fixed (rather than modular) input physics. And
second, the limited set of predicted output variables, which—depending on the as-
trophysical application—may be not all the variables of interest. A re-derivation of
analytic fitting formulae for a new set of stellar tracks is non-trivial (Church et al.,
2009; Tanikawa et al., 2020). Overall, the analytic approach is not sustainable, since
it would need be reiterated after each update in stellar input physics.

Interpolation of tracks pre-computed by a detailed code is an alternative to ana-
lytic fitting. Brott et al. (2011) interpolate stellar variables in a (Mini, vini, τ) parame-
ter space. For each stellar age, the two nearest neighbors (from above and from below)
in initial mass are selected first, and then—for each of the two initial masses—the
two nearest neighbors in initial rotational velocity. Values of stellar evolution vari-
ables, at each stellar age, are computed from these four neighboring grid points by a
sequence of linear interpolations in the sampled parameter space. The scope of the
interpolation method is restricted to the main sequence evolution of stars. Instead
of stellar age, the fractional main sequence lifetime is used as interpolation variable.

Following a different approach to interpolation of stellar tracks, the Method of
Interpolation for Single Star Evolution code (METISSE; Agrawal et al.,
2020) takes as input a discrete single-star parameter grid, and uses interpolation by
a piece-wise cubic function to generate new stellar tracks in-between the sampled
initial mass grid points at fixed metallicity. The parameter space covers the initial
mass range from 0.5 to 50 M�, and stars are evolved up to the late stages beyond core
helium burning. Instead of stellar age, the interpolation scheme uses a uniform basis,
Equivalent Evolutionary Points (EEP; Dotter, 2016), to model evolutionary
tracks. The EEP coordinate quantifies the evolutionary stage of a star based on
physical conditions, derived from numerical values of evolutionary variables (e.g.,
depletion of central hydrogen mass fraction to a threshold value), which are readily
identifiable for different evolutionary tracks. For any given stellar age, an isochrone
is constructed by identifying which EEP coordinate values are valid for that age as
function of Mini. For each fixed EEP value, an ordered Mini−τ relation is constructed
over the available grid points and interpolated over. In a second step, Mini is used as
independent variable to obtain stellar properties by another round of interpolation.
Reliable and fast stellar track interpolation with the EEP method has originally been
demonstrated upon MESA Isochrones and Stellar Tracks (MIST; Choi et al.,
2016), a catalog of stellar evolution tracks over a grid space covering the age, initial
mass and initial metallicity parameters. METISSE is a more general alternative to
SSE, because it may take any single star grid (at fixed initial metallicity)—produced
as output of a detailed stellar evolution code—as input, i.e., it is not tied to specific
input physics adopted to generate the stellar tracks.

Apart from METISSE, there are the combine (Kruckow et al., 2018), sevn (Io-
rio et al., 2023, in its latest version) and posydon (Fragos et al., 2023) population
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2. Scalable stellar evolution forecasting

synthesis codes that interpolate grids of detailed single or binary evolution simu-
lations. Interpolation in combine is based on the method of Brott et al. (2011)
while in sevn, single star evolution is divided into sub-phases analogous to the EEP
method, and interpolation is performed over each sub-phase using a fractional time
coordinate relative to duration of each sub-phase. Evolution of the binary companion
and interaction effects are approximated using analytic fitting formulae. Since the
procedure to construct the uniform EEP basis cannot be trivially automatized, the
pre-processing steps to identify EEPs, to define appropriate interpolation functions
and also to down-sample the stellar evolution catalog to reduce memory costs need
to be re-iterated after each stellar grid update (see e.g. the TrackCruncher pre-
processing modules, Iorio et al., 2023, in context of sevn).
In contrast, posydon interpolates output of detailed binary evolution simulations
with MESA. The EEP-based interpolation method is not directly applicable to bi-
nary evolution tracks, because EEPs must be strictly ordered a priori while binary
interaction, which can set on at any time, may change their order. Therefore, in
posydon interpolation needs to be preceded by classification of binary evolution
phase, over each of which separate interpolation schemes are applied.

Finally, the third way is to build a prediction-making tool that allows to replace
the output of cost-intensive detailed up-to-date stellar evolution code like MESA
by a cost-efficient imitation model (emulator, or surrogate) of the original. Emula-
tion, or surrogate modeling, is a pragmatic but reliable reproduction of the output
generated by an expensive computer experiment. The predictive surrogate model is
constructed by training a supervised machine learning (ML) algorithm on a stellar
evolution tracks data base pre-computed with the original code over a discrete pa-
rameter grid. A well-trained model will not only efficiently reproduce stellar tracks
at the parameter grid points it has seen during training, but be capable of gener-
ating accurate predictions of tracks in-between the grid points, by the capability to
generalize it acquired by training. Once constructed, the emulator can be used as a
package to generate predictions of stellar variables of interest, instead of running the
original detailed stellar evolution code like MESA over a quasi-continuous parameter
range, or instead of storing the catalog data in computer memory for interpolation.
Calling the emulator package saves energy costs, speeds up generation of output pre-
dictions and reduces human effort of running models over a dense grid by orders
of magnitude. The speed-up is owed to the efficiency of input-to-output mapping
by machine learning algorithms. The disadvantage is the introduction of prediction
errors by the trained model, which reproduces stellar tracks with a finite precision.
Therefore, when training machine learning models, the main task is to achieve reli-
able generalization over the parameter space with a prediction inaccuracy of stellar
variables of interest that is tolerable for inference and astrophysical application.

Surrogate modeling of stellar evolution has yet not been explored extensively at
widths of the parameter range necessary for more general applicability. Li et al.
(2022) use Gaussian Process Regression (GPR) to emulate stellar tracks in a five-
dimensional parameter space, though the initial mass range covered by the predictive
models is restricted to the solar-mass neighborhood Mini ∈ (0.8, 1.2) M�, and to evo-
lutionary sequences from the Hayashi line onward through the main sequence up to
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the base of the red giant branch. GPR-based emulators have also been used, for
example, for parameter space exploration of state-of-art binary population synthesis
codes like COMPAS (Barrett et al., 2017; Taylor and Gerosa, 2018). Because of data
set size limitation for applicability of GPR, it is not the ideal tool for emulating
a large stellar model grid, and we seek for other ML based models instead. The
feedforward neural network algorithm proved itself as promising in previous surro-
gate modeling work: Scutt et al. (2023) emulate 25 stellar output variables (classic
photometric variables, asteroseismic quantities, radial and dipole mode frequencies)
over a (Mini, Zini) grid space of stars in or near the δ Scuti instability strip using
neural networks, and principal component analysis to reduce the output dimension
to nine. Lyttle et al. (2021) emulate five variables of red dwarfs, sun-like stars and
subgiants in a five-dimensional input parameter space. While these are high dimen-
sion problems successfully addressed by neural networks, the problem settings have
in common that the mass range considered is relatively narrow—Mini ∈ (1.3, 2.2) M�
and Mini ∈ (0.8, 1.2) M�, respectively—and that evolutionary sequences cover the
pre-main sequence and only part of the main sequence, or main sequence and sub-
giant phase, respectively.
More widely in context of stellar astrophysics, supervised machine learning has been
applied to solve the inverse problem of mapping observables to models. For example,
a variant of the Random Forest regression model (Bellinger et al., 2016) and invert-
ible neural networks (Ksoll et al., 2020) have been trained to predict fundamental
stellar parameters in a high dimensional parameter space given a set of observational
variables. Though again, the predictive models were restricted to an initial mass
range and evolutionary sequences of stars narrower (e.g., main sequence evolution
of Mini ∈ (0.7, 1.6) M� stars in Bellinger et al. 2016) than those presented in this
work, where we consider an initial mass range from red dwarfs to very massive stars
evolved from the zero age main sequence up to end of core helium burning.

In this work, we provide two proof-of-concept solutions of automated single star
interpolation schemes over a wide parameter span, which—in contrast to the EEP-
based interpolation method—do not require mapping out points of interest in stellar
parameter space, because they are constructed based on a timescale-adapted evolu-
tionary coordinate that we introduce, whose computation is easily automated. Using
the latter for constructing more general interpolation models has the potential to
be applicable to larger parameter spaces, such as those found in stellar binaries.
The first solution we develop is a surrogate model of stellar evolution, constructed
with supervised machine learning. The second is a stellar-catalog-based hierarchical
nearest neighbor interpolation (HNNI) method. These find two different trade-off
points between efficiency and accuracy of predictions—depending on astrophysical
application, either the one or the other is preferable.

This paper is organized as follows. In Sect. 2.2., we describe the methods com-
mon to both interpolation scheme solutions that we develop: the regression prob-
lem that is addressed, the data base used for constructing predictive models, the
timescale-adapted evolutionary coordinate—which is used as the primary interpola-
tion variable—and performance scores that assess quality of predictions. Sect. 2.3.
outlines how the two interpolation scheme solutions are set up. For the surrogate
model, we report on the choice of loss function, on the selection of machine learning
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2. Scalable stellar evolution forecasting

model class, and on its hyperparameter optimization. For the interpolation-based
solution, we explain how HNNI works, and how it differs from interpolation models
from previous work. In Sect. 2.4., results are presented that are obtained with both
the supervised machine learning and the HNNI. The paper is concluded in Sect. 2.5.
with a summary of results, limitations, and an outlook on possible future develop-
ments.

2.2. Methods

In Sect. 2.2.1., we define the problem which is addressed by two different predictive
frameworks (surrogate modeling of stellar evolution, and catalog-based hierarchical
nearest neighbor interpolation), and motivate the two-step approach to fitting stellar
evolution tracks. In Sect. 2.2.2., the timescale-adapted evolutionary coordinate is
introduced, which we use to set up reliable predictive frameworks, in the two-step
interpolation scheme. In Sect. 2.2.3., the methods to prepare the data base are
described: a nonlinear sampling density segmentation of the initial mass parameter
space, and a data augmentation routine for the core helium burning phase. This
data base is used as catalog for interpolation of tracks by HNNI, and as training data
for constructing surrogate models. Finally, Sect. 2.2.4. outlines how we evaluate
predictive performance of our models based on error metrics.

2.2.1. Regression problem formulation

In 1D stellar evolution codes like MESA, stellar evolution is modeled as a determin-
istic initial value problem, and observables are predicted by cost-intensive numerical
time integration of differential equations. Instead, we formulate the prediction of
observables as a regression problem, which is to be addressed by supervised ma-
chine learning or by catalog-based interpolation. In a regression problem, the goal
is to predict output target variables from input regressor variables, but instead of
programming the rules that map the input to the output, in the surrogate mod-
eling case the data-driven approach is used to learn the mapping. We constrain
the problem to predicting three stellar surface observables, namely, log-scaled lumi-
nosity YL = logL/L�, effective temperature YT = log Teff/K, and surface gravity
Yg = log g/[cm · s−2]. These are the target variables to be predicted for a given the
input of age τ and initial mass Mini of an isolated non-rotating single star, at fixed
solar-like initial metallicity Zini = Z�.

Stars evolve on different timescales, depending on the evolutionary phase they
undergo, on their masses, and on other stellar parameters. Therefore, stellar track
fitting across different evolutionary phases and initial masses is a temporal multiscale
problem. We confirm the conclusion of Li et al. (2022) that the naive approach of
training a machine learning surrogate model fML : (τ,Mini) 7→ Y to predict the ob-
servable Y , by operating directly on (scaled) age τ , does not result in accurate enough
predictions of the post-main sequence evolution (see Fig. 2..11 for an illustration).
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Instead, we set up a two-step interpolation scheme:

Step 1 (age proxy fit) f1 : (log τ, logMini) 7→ s,

Step 2 (observables fit) f2 : (s, logMini) 7→ (YL, YT , Yg).

Here, the evolution of stellar surface variables is modeled as function of a timescale-
adapted evolutionary coordinate s—an age proxy—instead of the age τ (step 2). The
transition from stellar age to the age proxy is accomplished by a second predictive
model (step 1).

We find that the fits of the post-main sequence evolutionary stages resulting from
this two-step interpolation scheme are orders of magnitude more accurate, as assessed
by standard statistical performance scores, than the direct naive fit. We take the
logarithm of initial mass values, in order to exploit the approximate mass-luminosity
power law relation, which is a linear variable dependence in log-log space.

2.2.2. The timescale-adapted evolutionary coordinate

The method of using a timescale-adapted evolutionary coordinate, or age proxy,
instead of the age variable for fitting stellar evolution tracks has been explored before
in stellar astrophysics (e.g. Jørgensen and Lindegren, 2005; Li et al., 2022). The
motivation for this re-parametrization is to reduce timescale variability. Stellar age
at computation step i,

τi =
i∑

j=1

δtj, (2..1)

is a monotonically increasing function which grows cumulatively at an adaptive step
size δtj after each step j = 1, . . . , i of numerical time integration of the differential
equations describing stellar structure and evolution. The age proxy variable

si =
i∑

j=1

δsj (2..2)

is constructed analogously, but here δsj is the increment in the star’s Euclidean
displacement in a diagram spanned by a set of its physical variables, obtained after the
numerical time integration step j = 1, . . . , i. For a parametric form of δs, Jørgensen
and Lindegren (2005) used the ansatz

δsj =

√∣∣∣∣∆j,j−1 log
L

L�

∣∣∣∣2 +

∣∣∣∣∆j,j−1 log
Teff

K

∣∣∣∣2 (2..3)

where ∆j,j−1X = Xj −Xj−1. By construction, this age proxy measures the increase
in Euclidean path length of a star along its evolutionary track in the Hertzsprung-
Russell (HR) diagram. More recently, Li et al. (2022) suggested another prescription

δsj =

(∣∣∣∣∆j,j−1 log
g

[cm s−2]

∣∣∣∣2 +

∣∣∣∣∆j,j−1 log
Teff

K

∣∣∣∣2
)c

(2..4)
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2. Scalable stellar evolution forecasting

which they tailor to their problem formulation and parameter range. Their age proxy
measures the displacement of the star in the Kiel diagram, to the power of a parameter
c. After experimentation, they conclude that c = 0.18 yields the most uniform
distribution of the data they train their models on. At the same time, the authors
report fit inaccuracies at transition regions between consecutive evolutionary phases
and over the fast ascension of the red giant branch. Over these phases—in contrast
to the MS evolution—target variables change rapidly in time, and vary unsteadily
even as function of the age proxy. To cure this problem, we have re-defined the
timescale-adapted evolutionary coordinate by an altered prescription, whose effect is
to not only smooth out transitions in-between stellar phases, but—in addition—to
also resolve the CHeB phase in a way that allows for reliable stellar track fitting, by
keeping the resolution of variability on the same numerical age proxy scale as the
previous two phases. To get there, we found as a promising approach returning to
the original formulation by Jørgensen and Lindegren (2005) but extending it by a
third variable that spans another dimension of the diagram, in which the Euclidean
path length is calculated:

δs̃j =

√∣∣∣∣∆j,j−1 log
L

L�

∣∣∣∣2 +

∣∣∣∣∆j,j−1 log
Teff

K

∣∣∣∣2 +

∣∣∣∣∆j,j−1 log
ρc

[g · cm−3]

∣∣∣∣2 (2..5)

The motivation for introducing another variable into the computational prescrip-
tion of the path length stems from the fact that during the stable CHeB, stars
hardly displace in the HR diagram, although their nuclear composition and hydro-
dynamic properties undergo substantial changes. In order to adjust the path length
prescription, we therefore sought for a suitable stellar-core-related variable. After
experimental tests, we found that adding the log-scaled core density log ρc/[g · cm−3]
has the desirable effect of casting the variability of all target variables of interest onto
a unified numerical scale across the three consecutive phases MS, RGB, CHeB, and
across the wide initial mass range that we work with.1

We normalize the age proxy of each initial mass to the range (0, 1). The star is
on the ZAMS when s = 0, while s = 1 when the stellar core has terminated helium
burning (TACHeB).

2.2.3. Data base

Stellar evolution catalog: Here, we use MIST (Choi et al., 2016) as an example
data set upon which we formulate and demonstrate our method, train, and validate
our predictive models. However, the method we develop is general and not specific to

1This age proxy computation prescription has the aforementioned desirable effects not only
during these, but also during the pre-MS and post-CHeB phases, as shown in Fig. 2..12 in the
appendix. Our age proxy construction therefore is a promising general candidate solution to the
multiscale problem of stellar evolutionary track fitting beyond the evolutionary sequences considered
in this work. It resolves prominent features (e.g. the Henyey MS hook, the first dredge-up, MS
turnoff, the Hertzsprung gap, tip of RGB, helium flashes, blue loops, thermal pulsations on the
asymptotic giant branch, and white dwarf cooling) across all evolutionary phases we tested over the
wide initial mass span.
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Figure 2..1: Luminosity series of a Sun-like star from the ZAMS up to TACHeB
parametrized as function of stellar age τ (a) vs. of the timescale-adapted evolutionary
coordinate s̃, before (b) vs. after (c) CHeB data augmentation and normalization to
s. The original MIST data contains phase labels for each model, which the predictive
models (the surrogate model and HNNI) do not see.

the MIST data set. We restrict the scope of ages of stars to the evolutionary sequence
from ZAMS to the terminal age of core helium burning (TACHeB)2, which is expected
to account for ' 99 % of stellar observations (excluding compact object sequences).
The initial mass parameter range, from 0.65 to 300 M�, is chosen as the entire initial
mass span available in the MIST data set, over which stars are evolved through
all three consecutive phases main sequence (MS), red giant branch (RGB) and core
helium burning (CHeB). The wide initial mass range, and at the same time the
inclusion of the red giant as well as core helium burning phases have not been explored
in previous work of stellar evolution surrogate modeling. We acknowledge that the
two-dimensional input parameter space is small compared to the size of the eight-
dimensional parameter space required for general cost-efficient binary star modeling.
We see our work as a first step toward a large-scale enterprise of stellar evolution
surrogate modeling and of hierarchical interpolation in high dimensional parameter
space over wide parameter ranges, however, as a lay-out of basic methodology toward
this end.

CHeB data augmentation: The MIST data set is generated with the MESA
code, which by default outputs more stellar evolution models than what is included
in the MIST data set for each Mini-dependent track. The number of models per
track is ∼500, with ∼250 models on the MS, ∼150 on the RGB before ignition of
helium burning in the core, and ∼100 for the CHeB phase. While the MIST data set
includes phase labels for each stellar model, the predictive models that we build are
not exposed to this information. All the input information they are exposed to is the
value of the age (proxy) and of initial mass of the star. While in the MIST data set,
the CHeB phase is the least sampled among these three, it is the phase most difficult
to fit. In particular, the helium flashes of low mass stars, blue loops of upper main-
sequence stars, and fast timescale dynamics of Wolf-Rayet stars during CHeB pose a
challenge to fitting. To increase weight and accuracy of interpolation fits during the
CHeB phase, we use local nearest neighbor 1D linear interpolation of the training
data (not of the test data) along the age proxy axis (for the step 2 fit) or along the

2The end of core helium burning is determined by the condition XHe,central ≤ 10−3 where
XHe,central is the central helium mass fraction.
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Figure 2..2: Original initial mass sampling in the MIST catalog (in blue), and the
locally increased sampling (in red) that we use for training surrogate models. The
stock MIST catalog contains 177 solar metallicity stellar evolution tracks within
the initial mass range (0.65, 300) M�. For our purposes, we expand it to 274, to
achieve the desired quality of predictive accuracy necessary for a general-purpose
stellar evolution emulator.

scaled age axis (for the step 1 fit) during this phase. The net effect is an artificial
increase in the CHeB training data by insertion of a sample in-between each pair
of age proxy neighbors. Despite simplicity of this methodological step, we find the
predictive performance of our best-fit models to be boosted by around half an order of
magnitude decline in the mean squared error over the validation data (to which CHeB
data augmentation is not applied), after switching on CHeB data augmentation of
the training data. In Fig. 2..1 the data pre-processing consisting of age proxy re-
parametrization, normalization and CHeB data augmentation is illustrated upon the
example of the Sun-like stellar model.

Parameter space grid sampling: A recommended standard routine for a homo-
geneous sampling of the parameter space that produces the data for training surrogate
models is Latin Hypercube Sampling (LHS) (McKay et al., 1979a). LHS is an
efficient alternative to random uniform and rectilinear sampling methods for homo-
geneity. Random sampling introduces sampling voids by consequence of statistical
random clumping effects while dense rectilinear sampling is too expensive in many
problem settings. However, since the stellar evolution dependence on the initial mass
parameter is strongly non-linear, a homogeneous population of parameter space is
not the optimal sampling scheme. We work with the pre-computed MIST data set
for which a segmented parameter sampling density across the initial mass range has
already been pre-determined by the makers of the catalog, based on physics-informed
considerations.

In order to reach a high accuracy level of stellar track forecasts—necessary for
a general-purpose stellar evolution emulator—across the entire initial mass range,
we found that it is needed to locally increase the initial mass sampling. Practically,
we increase initial mass sampling in those parameter space sub-regions where the fit
quality is worst, while we keep the MIST stock sampling intact where the local fit
accuracy is found to be satisfactory (see Fig. 2..2 and Tab. 2..1 for a summary). For
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Table 2..1: Summary of the initial mass sampling density segmentation before
(δ0Mini) and after (δMini) expanding the stock MIST data set.

Range (Mini/M�) δ0Mini [M�] δMini [M�] NMini

(0.65, 0.9) 0.05 0.025 10
(0.9, 1.16) 0.02 0.02 13
(1.16, 1.5) 0.02 0.01 34
(1.5, 2.8) 0.02 0.02 65
(2.8, 3) 0.2 0.1 2
(3, 8) 0.2 0.2 25
(8, 21) 1 0.5 26
(21, 22) 2 1 1
(22, 28) 2 2 4
(28, 40) 2 1 12
(40, 45) 5 1.25 4
(45, 70) 5 0.625 40
(70, 150) 5 2.5 32
(150, 300) 25 25 6

generating the additional stellar tracks, we use the MIST Web Interpolator3, which
works by applying the EEP-based method referred to in Sect. 2.1.. Our finding is
that the final sampling required to reach the predictive accuracy goal varies substan-
tially depending on sub-region of parameter space: a least δMini/M� = 0.01 between
Mini/M� ∈ (1.16, 1.5) and a largest δMini/M� = 25 between Mini/M� ∈ (150, 300).
For the Mini/M� ∈ (0.65, 0.9) interval, we double the sampling to correct for a sys-
tematic under-representation of red dwarfs in the stock MIST catalog as compared to
the adjacent initial mass intervals. For the Mini/M� ∈ (1.16, 1.5) interval, we double
the sampling rate mainly because of complexity of shape changes in HR diagrams
due to the helium flashes. In the interval Mini/M� ∈ (1.5, 40), we hardly increase
the sampling, except at transitions in-between neighbouring sampling segments at
different rates, in order to smooth out transitions. The biggest increase in this range
is within the interval Mini/M� ∈ (8, 21). We stress that our densest sampling region
(the solar neighborhood initial mass range) is the same as in Li et al. (2022), in
Bellinger et al. (2016) and in Lyttle et al. (2021), while at the same time our sur-
rogate models evolve the stars further, up to end of CHeB, and cover a much wider
initial mass range. Scutt et al. (2023) adopt a sampling of δMini = 0.02 M� over the
range Mini/M� ∈ (1.3, 2.2), comparable to ours.
At the high mass end, the relative increase in sampling is greatest within the interval
Mini/M� ∈ (40, 70), where the increment step size δMini/M� was augmented from 5
to 0.625. We suspect that numerical challenges are the reason for unexpectedly sharp,
peculiarly shaped changes in HR diagrams. Nevertheless, for the proof-of-concept,
we assume as if MIST was a perfect data set, even if we know that it may be not.

Naturally, the denser the grid sampling, the more accurate are the forecasts of

3https://waps.cfa.harvard.edu/MIST/interp_tracks.html
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surrogate models. We stress that depending on minimal performance benchmarks
(as quantified by error scores) of a specific astrophysical application, the initial mass
sampling required to reach that benchmark can be significantly sparser.

With the initial-mass parameter space sampling as described above, the total size
Ntot of the data set amounts to 139016. Shuffling it, we do a uniform random split
of the Ntot into 85 % training (Ntrain) and 15 % validation (Nval) data sets. To the
Ntrain data, we apply CHeB data augmentation, which yields additional Naug = 32143
samples, such that the expanded training data set is of size N ′train = Ntrain + Naug.
This is the final data set on which we train different classes of surrogate models (for
the first solution) or which we use as the catalog for interpolation (for the second
solution).

2.2.4. Performance evaluation

Validation and test data: We use two schemes to evaluate performance of pre-
dictive models: the first (model validation) based on the validation data set, and the
second (model testing) based on the test data set. The validation data consists of
randomly selected grid points over the input domain (initial masses and evolutionary
phases of stars). It is representative, since it has similar statistical properties as the
training data. In contrast, for model testing, we aim to assess the trained model’s ca-
pability to predict entire stellar tracks from ZAMS up to TACHeB for initial masses
unseen during training. We choose this method of model testing since it is of main
interest to obtain a predictive model that is capable of accurate interpolation over
the space of fundamental stellar parameters. Only then the traditional method of
running expensive simulations over densely sampled grids can be replaced by a sur-
rogate model capable of sufficiently accurate generalization. As test data, we prepare
another set of stellar tracks at 16 initial mass grid points, {M test

ini /M�} = {0.91, 1.51,
2.41, 4.1, 8.25, 16.25, 21.5, 31.5, 41, 51, 61, 83.75, 103.75, 155, 262.5, 295}, which we
hold back from training. These are chosen at half of the grid step in the respective
region of parameter space. This choice is motivated by the aim to test predictive
accuracy at parameter space points that are farthest away from training grid points,
where we likely probe the worst cases of complete stellar track predictions.4

Performance scores: A crucial ingredient for the optimization procedure of an au-
tomated interpolation method is a set of appropriately designed scores that quantify
performance in a physically meaningful and numerically appropriate manner. Only
with adequately defined quantitative performance scores, the automated interpola-
tion scheme can be scaled up to higher dimensional fundamental stellar parameter
spaces, which become too large for visual inspection based performance evaluation
for comparing the predicted against the held-back test tracks.

4 An alternative approach to choosing test initial mass grid points is to sample the initial mass
range randomly, in order to obtain the statistically likely distribution of prediction errors of stellar
tracks. Since we quantitatively probe statistical error distribution already on the validation data
set by appropriate statistical error scores, we opt for the half-grid step approach to probe the worst
cases instead.
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For model validation on the validation data set, we look at residuals for each
observable independently, and at measures of overall predictive performance. A
residual is a signed prediction error, εi = Yi − Ŷi, of a given prediction-label pair
(Ŷi, Yi), and we evaluate it for each of the surface variables. We consider the follow-
ing error scores that retain the physical significance of residuals: the mean residual
ε = (ε1 + · · ·+ εNval

)/Nval, the most extremal under-prediction ε+ = maxi=1,...,Nval
{εi},

and the most extremal over-prediction ε− = mini=1,...,Nval
{εi}. If ε+ and ε− are close

enough to zero over the entire set of validation data grid points, then there is no need
to further stratify the performance evaluation.5 Additionally, we use the following
error scores to quantify overall predictive performance across the three surface vari-
ables: the Mean Squared Error (MSE) and the Mean Absolute Error (MAE). These
scores are calculated from the squared residuals and from the absolute residuals,
respectively, by taking the average variable by variable and over the three surface
variables. We choose the MSE and the MAE, because these are standard choices
for evaluating point forecasts generated by statistical learning models, but physical
significance is largely lost by averaging across surface variables.

For model testing on the held-back test tracks at the 16 Mini grid points stated
above, we define and use the following error scores based on HR and Kiel diagrams:
L2+

HR and L2+
K. For a single track in HR or in Kiel diagram at a particular initial

mass Mini, the L2 score measures the cumulative deviation between predicted track
and held-back track,

L2(Mini) =
1

N(Mini)

N(Mini)∑
i=1

∗~vi − ~̂vi
2
, (2..6)

computed as the mean squared Euclidean distance in a two-dimensional plane of tar-
get variable pairs: ~vi = (logLi, log Teff,i) for the HR diagram, and ~vi = (log gi, log Teff,i)
for the Kiel diagram. This measure agrees reasonably well with the visual assessment
of how closely a predicted track aligns with the true test track. As summary mea-
sures of predictive performance on the test data, we take the maximum L2 measure,
L2+ = max {L2(M test

ini /M�)} among the 16 initial masses of the test set, for each
type of diagram, i.e. L2+

HR and L2+
K.

2.3. Interpolation scheme solutions

In this section, we describe the methodology behind the development of the two solu-
tions to cost-efficient stellar evolution forecasting over continuous parameter spaces.
For construction of a stellar evolution emulator with supervised machine learning,
we treat the selection of the surrogate model class in Sect. 2.3.1.. Then, we discuss
loss function choice (Sect. 2.3.2.), and outline our training and hyperparameter opti-
mization methods to obtain the best-fit model (Sect. 2.3.3.), which is a feedforward

5The statistical performance assessment can be further stratified by applying the scoring pre-
scriptions not globally over the entire initial mass range and over the full evolutionary sequence,
but to confined sub-regions of parameter space. For instance, ε+L(1.2, 4.5)RGB is the most extremal
under-prediction of log-scaled luminosity during the RGB phase within the initial mass segment
Mini/M� ∈ (1.2, 4.5).
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2. Scalable stellar evolution forecasting

neural network. The hierarchical nearest neighbor interpolation method is subject of
Sect. 2.3.4..

2.3.1. Supervised learning model selection

There are different surrogate model class candidates available for tackling the regres-
sion problem defined in Sect. 2.2.1.. For selection of statistical learning algorithms,
the following three requirements apply in our problem case: first: applicability to a
large data set (N > 150k), second: multiple output6, and third: fast computational
speed in forecast generation, for applicability of the surrogate model at scale. Below,
we discuss a number of available options, and justify our choices.

Choice of statistical learning model: GPR has been considered the standard
model choice for emulation tasks (Sacks et al., 1989). However, because of mem-
ory limitations, the default implementation of global GPR is not applicable to large
training data sets. While there exist approaches to improve scalability of GPR, we
do not opt for GPR-based emulators for reasons discussed in Appendix A3.. Instead,
we test the performance of a number of regression models that satisfy the afore-
mentioned constraints. After a series of manual tests, we find satisfactory starting
performance with the k-Nearest Neighbors (Fix and Hodges, 1989), Random Forest
(Ho, 1995), and Feedforward Neural Network (Ivakhnenko and Lapa, 1967; Rumel-
hart et al., 1985) regression models classes, all of which are efficient statistical learning
algorithms that qualify as scalable predictive models with multiple output. Among
them, in order to identify which model class is the best choice for construction of a
high-accuracy surrogate model, we perform hyperparameter optimization of each of
these three, to cross-compare their performance as assessed by the scores defined in
Sect. 2.2.4.. We perform hyperparameter optimization of k-Nearest Neighbors (KNN)
and Random Forest (RF) regression models by a grid search, with a sampling of nu-
merical hyperparameters over a log scale, and do model selection based on 3-fold
cross-validation. For the Feedforward Neural Network (ffNN) model, which has a
much larger space of options for hyperparameter choices, we determine a preliminary
best-fit hyperparameter configuration after training hundreds of models over a high-
dimensional but coarsely sampled hyperparameter grid. We then take it as a starting
configuration from which we further optimize hyperparameter selection over a series
of manual experiments. The result is that a manually tuned Feedforward Neural Net-
work (ffNN) outperforms KNN and RF models that have been optimized through
grid search, as assessed by the majority of error metrics defined above (see Tab. 2..3).
The KNN and RF best-fit models therefore serve us primarily as benchmarks for ffNN
performance.

Deep learning models: ffNN is one out of many available deep learning architec-
tures. We opt for a ffNN architecture because in our regression problem, the input is

6The multiple output condition (three target variables predicted by a single surrogate model)
is motivated by pragmatic considerations: predicting a multitude of stellar variables each with a
separate surrogate model requires substantially more effort, if the desired number of output variables
of interest is large.

22



2.3. Interpolation scheme solutions

a vector of fixed dimension. To discriminate, we do not train, for instance, a recurrent
neural network based architecture, which is the model class of choice if the input is a
sequence of variable length; nor a convolutional neural network architecture, which
is model class of choice if the input is a higher dimensional topological data array.
A motivation for choosing a ffNN architecture is the established theoretical result
that a ffNN with a number of hidden layers ≥ 1 is capable of universal function
approximation (Hornik et al., 1989).

2.3.2. Choice of loss function

Choosing a loss function appropriate to the problem is a crucial step, because it de-
fines the training goal for the supervised machine learning. During optimization of a
ffNN, its trainable parameters are iteratively updated, after each batch, to minimize
the loss score. Choosing one error score over another is a trade-off to compromise
which type of error is least tolerable against other types of errors. Common choices
of scoring rules (for a more detailed reference on scoring rules for point forecast eval-
uation, see Gneiting, 2011) for model training as well as for point forecast evaluation
are the MAE and MSE. Other choices include the Mean Squared Logarithmic Error
(MSLE) and the Mean Absolute Percentage Error (MAPE). For our problem case,
loss function selection was guided by the following considerations.

MAPE is not the appropriate loss function since, for instance, changes in log-
scaled luminosity of massive stars in HR diagram happen on a smaller relative nu-
merical scale than for low mass stars, and prediction errors in that range would
therefore hardly be penalized. Furthermore, we do not opt for MAPE for reasons
outlined in Tofallis (2015). When choosing MSLE as loss function, we observed an in-
efficient learning, with a too slow decline of MSE, MAE and our physical performance
scores over the validation data. However, we also found neither MAE nor MSE to be
optimal choices for our problem. Using MAE kept the mean averaged error scores low
but admitted considerable prediction outliers. Conversely, using MSE reproduced the
global shape of the distribution of values of the target variables, but predictions of
stellar tracks were often not precise enough locally, and overfitting occurred at epochs
much earlier than when minimizing MAE. Instead, we opt for the Huber loss (Huber,
1964), which seeks a trade-off between MAE and MSE minimization. It penalizes
MSE-like for small prediction errors and MAE-like for large prediction errors, using
a parameter d for the transition threshold (for a recent discussion and generalization,
see Taggart, 2022):

Ld(Y, Ŷ ) =

{
1
2
(Y − Ŷ )2 for Y − Ŷ ≤ d

d Y − Ŷ − 1
2
d2 otherwise.

(2..7)

During supervised learning, the Huber loss Ld(Y, Ŷ ) issues a penalty for each point
prediction error, given the prediction Ŷ by the surrogate model and the true label
Y it is compared against. When training deep learning models to predict multiple
output, the mean Huber loss is computed as the average across target variables, that

is, over the set of labels and over multiple output predictions {~Yj, ~̂Yj}j=1,...,nb that are
obtained from one randomly sampled data batch of size nb. We find our best results,

23



2. Scalable stellar evolution forecasting

as assessed by the physically meaningful performance scores outlined in Sect. 2.2.4.,
with d = 0.75. Once a desired target value of the validation loss score is set, which
comes in hand with low enough physical performance scores over the validation data,
what is left is to seek a suitably configured deep learning model that reaches this
target value.7

2.3.3. Hyperparameter optimization

There are two types of hyperparameters to optimize when constructing ffNN-based
emulators: architecture and learning hyperparameters. The most important archi-
tecture hyperparameters are the number of layers, the number of neurons per layer,
the choice of activation function, and the kernel initialization. Typical important
learning hyperparameters are the learning rate, the batch size, the choice of opti-
mizer, and the choice of regularization method. There are three different ways to
optimize hyperparameters: first, by manual ffNN learning engineering; second, by
automated brute-force search methods (for instance, grid or random search); third,
by sophisticated search algorithms (for instance, Bayesian optimization or Genetic
Evolutionary Search). We opt for manual ffNN learning engineering instead of au-
tomated searches, because for deep learning models, the optimal stage when (i.e.,
at which epoch8) to stop training cannot be faithfully decided upon a priori, and
requires careful consideration of numerical criteria for stopping training if models are
optimized in an automated pipeline. Most reliably, it is determined a posteriori by
inspection of the fluctuating training and validation data loss curve declines during
run-time. Then, we continue training so long as the degree of overfitting is tolerable.
We consider overfitting as tolerable so long as the validation loss—even though it may
be decaying slower than the training loss at advanced learning stages (i.e. at large
epoch numbers)—has yet neither reached the flattening plateau stage nor started to
increase.

Best-fit model: For theoretical considerations regarding hyperparameter tuning
and the selection criteria we used, refer to Appendix A4.. In practice, we found a suc-
cessful hyperparameter tuning strategy (guided by Goodfellow et al., 2017) with the
following configurations (see Tab. 2..2 for a summary): First, a symmetric many-layer
(6 hidden layers) architecture with a moderate number of neurons per layer (128),
rectified linear unit (ReLU; Hahnloser et al., 2000) activation, Glorot uniform (GU;
Glorot and Bengio, 2010) kernel initialization, and Layer Normalization (LN; Ba
et al., 2016) regularization after each layer. Layer Normalization counteracts over-
fitting while the 8-layer architecture with 128 neurons per hidden layer yields a large
enough model capacity to prevent underfitting by over-parametrization. Second,
long-term training (∼ 70k epochs) at relatively small (512) batch size. Observation
of the degree of fluctuation of the loss curves is a means to assess exploration of
the high-dimensional trainable parameter space spanned by the biases and by the

7See Appendix A5. for caveats regarding choice of the loss function.
8One single epoch is over, once the entire training data set—presented to the network in batch

subsets—has been propagated through the network.
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weighted connections between neurons from neighboring layers in each backpropaga-
tion step. The small batch size (as compared to the size of N ′train) adds stochasticity
to the learning, and thereby ensures enough exploration, which is aimed to prevent
early flattening of the validation loss curve. Third, a learning rate schedule of slow
exponential decay in the Adam optimizer (Kingma and Ba, 2014): starting with
a large enough initial learning rate lri = 10−3 (to accelerate the gradient descent
at beginning stages of learning), and decreasing the learning rate down to a final
lrf ∼ 5 · 10−6 towards end of training (in order to target global rather local minima
in the value space of trainable network parameters). The slow gradual decrease is
aimed to improve on subtle prediction errors.

Table 2..2: Summary of loss function choice, architecture and learning hyperparam-
eters adopted for training our best-fit ffNN model, compared to those adopted by
Scutt et al. (2023).

Hyperparameter Our choice Scutt et al. (2023)
# of hidden layers 6 6
# of neurons per layer 128 64
Activation function ReLU ELU
Kernel initializer GU
Regularization LN /
Batch size 512 6 · 104

Optimizer Adam Adam
lr schedule Exp. decay Fixed lr
lr range (10−3, 5 · 10−6) 7 · 10−5

Loss function Huber loss MSE

2.3.4. Hierarchical Nearest Neighbor Interpolation (HNNI)

In this section, we present a second method to solve the problem by a HNNI scheme.
Our construction of the HNNI algorithm was partly motivated by an attempt to
customize the operation of the KNN algorithm to our problem setting. In KNN, the
nearest neighbors are selected based on a pre-defined distance metric (for instance,
Euclidean or Manhattan) over the input parameter space (which, in our case, is
two-dimensional), without treating the regressor dimensions apart from one another.
The key principle behind the HNNI method is to select the nearest available grid
points, from above and from below, in each parameter space direction, to the location
in parameter space at which the interpolation prediction is to be made, and then
apply a 1D interpolation prescription subsequently in each parameter space direction
according to a hierarchical order of parameters. Our method works similar to Brott
et al. (2011) in that it performs a sequence of linear interpolations separately in each
parameter space direction according to a hierarchical ordering of stellar variables, but
different from it in that it uses a timescale-adapted evolutionary coordinate, instead
of fractional age, as primary interpolation variable. We thereby show that the method
is applicable not only to the MS evolution but to a sequence of evolutionary phases.
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In this regard, our method is analogous to Agrawal et al. (2020) in that it uses an
adapted evolutionary coordinate to trace the evolution of stars across phases, but we
use a prescription for it that allows to automate its computation.

We prepare the data set for generating predictions with HNNI under exactly the
same conditions as in the supervised machine learning case. The N ′train is now used
as a catalog data base, upon which the hierarchical nearest neighbor interpolation
is performed, instead of serving as the training data for fitting a surrogate model.
The HNNI method requires continued access to the pre-computed stellar evolution-
ary tracks catalog. The HNNI method is applied separately to each of the three
surface variables YL, YT , and Yg, for obtaining point forecasts at unseen locations in
parameter space.

As will be shown in Sect. 2.4.1., the HNNI is applicable reliably over the entire
initial mass range and over all three evolutionary phases, including the transitions in
between them, without the need to map out points of interest for that purpose. The
level of predictive accuracy of HNNI is achieved for two main reasons. First, HNNI
operates on local parameter space regions immediate to the test location at which
a prediction is to be made. Predictions are calculated by an interpolation scheme
that treats different dimensions apart from one another. This stands in contrast to
the way ffNN, RF and KNN operate. RF and ffNN take the global properties of the
input parameter space into account, in order to find their own rules for making local
predictions. This can be a great benefit in some problem settings, but irrelevant in
others. Likewise to HNNI, KNN also operates on local environments but does not
take hierarchy relations among input parameters into account. Second, HNNI uses
the normalized timescale-adapted evolutionary coordinate s as primary interpolation
variable, without which the interpolation scheme would not produce accurate results.
By virtue of using the latter, interpolation-based predictions at transitions between
evolutionary phases are mostly accurate because meanwhile values of stellar log-scaled
luminosity, effective temperature or core density variables change drastically. There-
fore, the path length increment δs—which is computed from absolute increments in
these variables—increases significantly, resulting in a higher resolution—along the
age proxy axis—of the transition stages between evolutionary phases.
Given the initial mass parameter space sampling used in this work, a linear interpo-
lator was sufficient for making accurate forecasts. More generally, for each parameter
space dimension, a different (for instance, a quadratic or cubic polynomial) functional
could be applied instead.
For clarity, we outline the pseudo-code of HNNI in a 3D (s,Mini, Zini) single star
parameter space in Appendix A2.. We believe that the HNNI method, in its basic
principle, is applicable to those higher dimensional parameter spaces that allow for
a sequential ordering of the parameters in importance of their effect on the shape of
resulting stellar evolutionary tracks.

2.4. Results

In this section, the prediction results—obtained with the deep learning surrogate
model and with the HNNI algorithm—are analyzed. We treat the observables fit
(step 2) first (Sect. 2.4.1.), because it yields the physically meaningful outcome:
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Table 2..3: Ranking of the predictive models Hierarchical Nearest Neighbor Inter-
polation (HNNI), feedforward Neural Network (ffNN), Random Forest (RF) and k-
Nearest Neighbors (KNN) regressors, according to the performance scores outlined
in Sect. 2.2.4. to assess predictive accuracy of stellar observables. The best per-
formance is marked in bold, the worst with a ”*” tag. The manually tuned ffNN
outperforms the grid search hyperparameter optimized RF and KNN models accord-
ing to all scores except εT . HNNI outperforms ffNN as assessed by all scores except
εL, ε+g and ε−L .

Score HNNI ffNN RF KNN
validation data set
εL 6.57E-05 −4.46E-05 2.612E-04* 2.506E-04
εT −4.94E-06 1.82E-04* −2.00E-05 −1.758E-05
εg −9.22E-05 4.16E-04 −4.77E-04* −4.55E-04
ε+L 0.102 0.145 0.210 0.217*
ε+T 0.014 0.032 0.093 0.095*
ε+g 0.169 0.165 1.05 1.08*
ε−L −0.115 −0.108 −0.700 −0.721*
ε−T −0.011 −0.016 −0.0378* −0.0375
ε−g −0.143 −0.191 −0.286 −0.294*

MSE 1.11E-05 2.01E-05 2.39E-04 5.79E-04*
MAE 0.00041 0.00193 0.00479* 0.00270
test data set
L2+

HR 0.0166 0.0176 0.0319* 0.0237
L2+

K 0.0225 0.0283 0.0442* 0.0283

the prediction of stellar evolution variables and tracks. Therefore, in our two-step
interpolation scheme, the observables fit needs to reach a satisfactory level of accuracy
first, which can be assessed physically, before approaching the age proxy fit (step 1).
Then, the performance baseline for the age proxy fit is set by the condition that the
predictive accuracy of the integral two-step interpolation scheme is maintained on
the same order of magnitude, as assessed by the scores. We analyze the step 1 fit in
Sect. 2.4.2..

2.4.1. Prediction of classical photometric observables

Deep learning emulation

Validation data: The performance assessment on the validation data is presented
in Fig. 2..3 by histograms of the residuals and by the summary statistics, defined in
Sect. 2.2.4., individually for each of the three predicted surface variables. If we assume
that the prediction errors of YL, YT , and Yg were scored over the same numerical scale,
then the following conclusions could be made. The mean residual, in absolute value,
is largest for log g and lowest for logL, while the most extremal over-prediction and
under-prediction are obtained for the log g target variable. All three mean residuals
take on low numerical values of order 10−4 or 10−5. These error scores are comparable
to those found with the best-fit neural network model of Scutt et al. (2023) (8 · 10−4
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dex on logL and 2 · 10−4 dex on log Teff) who address a similar regression problem.
Since εres is negative for logL but positive for log Teff and log g, the deep learning
emulator tends to over-predict the first, but to under-predict the latter two. The most
extreme prediction outliers are of the order 10−1 or 10−2 in absolute value, i.e. up
to three orders of magnitude larger than the mean residuals. To better characterize
the distribution of errors, we therefore compute an additional score, σε, which is the
standard deviation of the residuals over each target variable. It is a measure of the
spread of the prediction errors around the mean residual error, which we find to be
of order 10−3 for each of the three target variables.

Comparison to observational uncertainties: It is of interest to compare the
mean residual errors on the target variables to the typical uncertainties from ob-
servations of stars. For stellar bolometric luminosity, the relative error is of or-
der δL/L ∝ 0.01 for Gaia observations of solar-like stars (Creevey, O. L. et al.,
2023), which translates into δ logL/L� = δL

L
log e ∝ 0.004. For surface gravity,

with δ log g/[cm · s−2] ∝ 0.1 (see e.g. Ryabchikova et al., 2016) it is comparatively
large. For effective temperature of low mass stars, the observational error is of order
δTeff/K ∝ 50 − 100 depending on stellar class and spectral method (Ryabchikova
et al., 2016). For massive stars, the observational uncertainty on the classical observ-
ables typically ranges δ logL/L� = 0.1, δTeff ∝ 500− 2000 K and δ log g/[cm · s−2] ∝
0.1− 0.2 (Schneider et al., 2018b,a).

In sum, the mean residual errors on all three target variables are smaller than
the typical observational errors on the same log-scaled quantities. In the case of
εL and εg, not only these, but also the expected spreads σε are smaller, by 1–3
orders of magnitude depending on statistical score. This means that the prediction
errors from the emulator are greater than the observational uncertainties only when
the prediction errors belong to the tail of their integral empirical histogram, which
comprises cases that are statistically rare. For εT , the histogram of linear-scaled
residual errors Teff − T̂eff yields a mean residual error of ' 8.3 K, an expected spread
of ' 85 K, a worst over-prediction outlier of ' 1385 K and a worst under-prediction
outlier of ' 2885 K in absolute values. The expected spread is smaller than the
observational uncertainty δTeff/K but of a similar order of magnitude. Therefore,
inference on effective temperature of low mass stars using the emulator is—under
assumption of the aforementioned observational uncertainties—least reliable, out of
the three surface variables, in a practical setting.

Test data: For model testing on the test data, in order to predict evolutionary
tracks in the HR diagram, we compute the values of target variables log Li, log gi,
log Teff,i at the evolutionary coordinate grid points {si}i=1,...,N(Mtest

ini ) contained in the
held-back series for each test initial mass M test

ini . We then plot pairs of predicted
target variables against one another, to obtain the predicted tracks in the HR and
in the Kiel diagram, respectively. These can now be compared with the held-back
tracks test data in the diagrams. As shown in Fig. 2..4, the shape of the stellar tracks
is reproduced by the deep learning surrogate models across the entire initial mass
range. For a closer resolution of predictive quality, Fig. 2..5 displays the best and
worst prediction, respectively, of stellar evolution tracks in HR diagram at unseen
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Figure 2..3: Validation data results for the ffNN-based stellar evolution emulator.
The histograms and summary statistics of the residuals εk = Yk − Ŷk, over the
validation data k = 1, . . . , Nval are shown, for YL in panel (a), for YT in panel (b),
and for Yg in panel (c). We calculate the mean ε, the standard deviation σε, the most
extremal under-prediction ε+, and the most extremal over-prediction ε−. Overall, the
distribution of residuals is globally symmetric around near 0, with a sharper peak
than a Gaussian, reminiscent of a Cauchy distribution.

test data initial mass grid points. The biggest deviation between predicted and
held-back test stellar track is observed at the low mass end (worst fit for M test

ini =
0.91 M�). There are two main reasons for this. First, as low mass stars displace
in the HR diagram from ZAMS up to TACHeB, they cover a larger spread in value
range of log-scaled luminosity than higher mass stars, due to the stretched-out (in
the HR diagram) ascension of the red giant branch. Second, the main contribution
to cumulative deviation of predicted to the actual test track for low mass stars arises
during the unstable core helium burning, the sequence of short-lived helium flashes.
The helium flashes introduce the most prompt transition in both the logL and the
log Teff variables. Since these are physically uncertain from the modeling perspective,
it therefore is not as important to obtain high accuracy prediction of flashes compared
to other parts of the stellar evolution track. We evaluate our state-of-art worst fit as
satisfactory, since the more reliable (from the modeling perspective) evolution before
and after the flashes is well reproduced by the surrogate model: the evolution up to
the tip of the RGB, and the stable core helium burning after electron degeneracy in
the core is lifted.

HNNI

Stellar track predictions in the HR and Kiel diagram are obtained in the same way
as described above for the deep learning case. Performance of the HNNI predictive
model is assessed using the same data bases, procedures and metrics as the super-
vised machine learning models. The outcome is that over the validation and test
data, HNNI even outperforms the deep learning method in accuracy of predictions,
although not significantly, as is measured by the majority of statistical scores (see
Tab. 2..3). Over the test data, the HNNI method yields accurate predictions of stellar
evolutionary tracks across the entire initial mass range and over all three evolution-
ary phases, including the fast-timescale transition regions. To illustrate, Fig. 2..5
shows the best and worst fit of a stellar track in HR diagram over the test data.
The HNNI and deep learning models agree on the worst fit for M test

ini = 0.91 M�
for reasons explained above. In the HNNI case, the worst fit is resolved at higher
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Figure 2..4: Test data results, comparing the true (left) and the ffNN-predicted
(right) stellar evolutionary tracks in HR (top) and Kiel (bottom) diagrams, over the
entire set of our test initial masses {M test

ini } unseen by the predictive model during
training.
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Figure 2..5: Test data results, showing the best (left) and the worst (right) predictions
of stellar evolutionary tracks, as assessed by the L2 measure, in the HR diagram,
for unseen test initial masses, by the trained ffNN model (top) and by the HNNI
algorithm (bottom). For comparison, the original held-back tracks are underlain.
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Figure 2..6: Cost-efficiency of forecast generation. Given our problem size and soft-
ware implementation of HNNI (see Appendix A2. for an outline of the pseudo-code),
the computing time scaling relation t(N) ∝ N with the number N of multiple output
predictions is around 360 times larger for HNNI compared to that of the ffNN.

accuracy than in the deep learning case, with a deviation from the test track that is
marginal throughout except during the helium flashes.

Furthermore, the HNNI scheme allows to predict any stellar evolution variable of
interest we tested, by virtue of the same algorithmic prescription for interpolation (see
Fig. 2..13 in the appendix for prediction of stellar-core related variables for unseen
test data initial masses). In contrast, by the current setting, the ffNN predicts only
those three surface variables which it has been trained upon, as set by the regression
problem defined in Sect. 2.2.1.. In principle, a predictive framework with a large
number of time-evolved variables could also be achieved with a ffNN emulator in
two different ways. By the first way, the dimension of the output would need to be
expanded to match the total number of stellar evolution variables of interest. For
example, the values of 6 stellar variables would be produced as output of the 6 neurons
in the outermost layer of the ffNN. However, optimizing such a model by a single
globally defined loss score is cumbersome (for a discussion, see Appendix A5.). By
the second way, a separate ffNN model with univariate output would need be trained
to predict each additional stellar variable of interest. This is the more promising
approach out of the two, but requires construction of a separate hyperparameter-
optimized model for each output variable.

Method comparison

The two methods for stellar evolutionary track forecasting (deep learning emulation
vs. HNNI) that we develop lie at different trade-off points between cost-efficiency and
accuracy of the forecasts. To summarize, the advantages of HNNI are the following:

1. The quality of predictions is reliable, with HNNI even outperforming our best-
fit deep learning model.

2. All evolved stellar variables (i.e., not only logLi, log Teff,i, log gi, whose predic-
tion has numerically been evaluated for comparison with output of the surrogate
model) are covered by the same interpolation prescription.

3. HNNI works as a sustainable out-of-the-box solution method. In contrast to the
supervised machine learning approach, there is no need to re-iterate training
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2. Scalable stellar evolution forecasting

and optimization of a predictive model each time another stellar tracks data
base is used as the catalog being accessed by the algorithm.

The disadvantages of HNNI are:

1. Continued access to the catalog data base is required which—depending on size
of parameter space, sampling density and dimension of the problem—typically
is of ∼GB size,

2. the computing time to generate predictions is significantly slower compared
to the speed of the surrogate model. For the comparison, we have computed
scaling relations on a 4-core CPU (see Fig. 2..6): on such a machine, it takes
around 40 seconds to generate one million point predictions of all the three
surface variables, spread randomly across the evolutionary phases and the initial
mass range, with ffNN, while making the same number of predictions takes
around 3 hours 13 minutes for HNNI. The computing time scales down linearly
with the number of cores that are used to generate the predictions.

3. Extension to higher dimensional parameter space is not straightforward. De-
pending on the set of stellar parameters, a hierarchical relation may not always
be identifiable. Moreover, in a high-dimensional parameter space, the required
number of subsequent 1D interpolations becomes large (see the discussion in
Appendix A2.). Thereby, prediction-generation is slowed down further.

In contrast, advantages of the supervised machine learning method are:

1. Prediction-making is fast, two orders of magnitude faster (in seconds) to gen-
erate than with HNNI.

2. Trained surrogate models are handy: a predictive ffNN model is of file size ∼3
MB.
Third, the supervised machine learning approach is very general: the extension
to higher dimensions does—in contrast to HNNI—neither require hierarchical
ordering of regressor variables, nor faces significant increase in computing time
with increasing dimension.

The disadvantages of the method are as follows:

1. Optimization of deep learning models is a more entailed task than a hard-coding
adjustment of HNNI.

2. Minimizing a single global loss score during model training does not guarantee
locally accurate fit results consistently over the entire parameter space (see
Appendix A5. for a discussion thereof and proposed solutions).

3. The scaling of ffNN output with the number of target variables either comes
under sacrifice of predictive accuracy (in the multiple output case) or implies
considerably more development effort (in the single output case).
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Figure 2..7: GPR fits of the log τZAMS(logMini/M�) and log τTACHeB(logMini/M�)
relations (a), and scatter plots of the age proxy predictions ŝ(log τ, logMini) against
the validation data stest with HNNI (b) and KNN (c) methods, for performance
comparison.

2.4.2. Prediction of the evolutionary coordinate

The series of age proxy values from s = 0 (ZAMS) to s = 1 (TACHeB) are not known
for initial masses over which no stellar evolution tracks have been pre-computed,
since s is calculated from the logL, log Teff and log ρc time series which are then
not available at those initial mass grid points. Both our methods for predicting
stellar evolution tracks rely on the timescale-adapted evolutionary coordinate s,
which we use to re-parametrize the evolution of stars. Many astrophysical appli-
cations, however, require indication of stellar ages—for instance, drawing model
isochrones into observed color-magnitude diagrams. We therefore construct another
duet of interpolation methods (with HNNI and with supervised machine learning)
that map the age τ onto the value of a star’s timescale-adapted evolutionary co-
ordinate s(log τ, logMini) ∈ (0, 1) over a continuous initial mass range, in order to
accomplish the two-step interpolation scheme as defined in Sect. 2.2.1..
Time counting in the MIST data set starts with the pre-MS phase. The values of
ages at ZAMS, τZAMS(Mini), therefore quantify its duration. Instead of τ , we use
a scaled age variable τ̃ ∈ (0, 1) for the age proxy fit with both the HNNI and the
supervised ML methods:

τ̃i(Mini) =
log τi(Mini)− log τZAMS(Mini)

log τTACHeB(Mini)− log τZAMS(Mini)
. (2..8)

To obtain back the actual non-normalized age values (in units of years), the sup-
ply of the ZAMS log τZAMS(Mini) and the TACHeB log τTACHeB(Mini) functions is
needed. The τZAMS(Mini) values are available from the MIST data set at the dis-
cretely sampled initial mass grid points. In order to be able to predict ZAMS and
TACHeB ages of stars over a continuous Mini range, we fit a Gaussian Process model
to the discretely sampled catalog ZAMS and TACHeB grid points (see Fig. 2..7 a),
respectively.

HNNI

The HNNI routine for the age proxy fit operates in the same way as outlined in
Sect. 2.3.4., with the sole difference that the primary regressor variable now is τ̃
(instead of the age proxy used in step 2), while s is itself the target variable of the
fit.
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Figure 2..8: Best [(a) and (c)] and worst [(b) and (d)] fits of age proxy tracks for
unseen test initial masses, with the HNNI and KNN methods, respectively.

As Fig. 2..7 b) shows, HNNI predicts the values of the age proxy reliably throughout
evolution of stars from s = 0 up to s = 1 over the validation data set. The mean
residual error εres is of order 10−5. The only clustered scatter regions off the diagonal
are around s ' 0.25 and s ' 0.6, but the scatter offsets are low in amplitude. The
most extremal over- and under-prediction outliers are of order 10−2 in absolute value.
The performance evaluation based on the test data assesses the predictive accuracy of
mapping the stellar age onto the timescale-adapted evolutionary coordinate over the
course of the entire evolution from ZAMS up to TACHeB for unseen initial masses.
HNNI predicts the value of the age proxy reliably throughout the evolution from
ZAMS to TACHeB except at fast-timescale transitions, which make up little stellar
lifetime but manifest themselves as sharp increases in age proxy values as function of
age. Fig. 2..8 a) and b) show the best and the worst fit, respectively, assessed by the
MSE metric, among all the test initial masses. The scatter plot of the best fit (for
M test

ini = 41 M�) has no considerable spread, since ŝ aligns with stest over course of
the full evolution. In the scatter plot of the worst fit (for M test

ini = 0.91 M�), the local
deviations of ŝ from stest are apparent: the age proxy is first reproduced accurately up
to s ' 0.47. Then a gap in the output range forms, such that the next predicted age
proxy value is at s ' 0.6 and continues to be over-predicted up to s ∼ 0.7 from where
onward it transitions to an under-prediction phase. A second domain gap forms, and
the predicted age proxy aligns back with its actual test data value at s ∼ 0.9 up to
end. The physical implications on the prediction of HR and Kiel diagrams in effect
of the two-step interpolation scheme will be discussed in Sect. 2.4.3.. Age proxy
prediction errors imply that the evolutionary state of the star is either under- or over-
predicted, since a wrong evolutionary coordinate value has been assigned to a given
stellar age of reference. However, as has been shown in Sect. 2.4.1., sampling target
variables at homogeneously distributed δs increments (e.g. an equidistant spacing) in
the step 2 scheme ensures that no significant changes in target variability will have
been jumped over. In other words, artifact gap formation along curves in HR and Kiel
diagrams is avoided by the fitted age proxy parametrization of stellar evolutionary
tracks (step 2 fit), independent of the age proxy forecasts (step 1 fit).
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KNN

Analogous to the procedure for the observables fit, we construct another solution to
the age proxy fit with supervised machine learning. The reason is that we would like
to obtain a more cost-efficient interpolation model than HNNI, which nevertheless
is sufficiently accurate for astrophysical application purposes. The age proxy fit is
a univariate regression problem distinct from the observables fit, and for which the
procedure of surrogate model class selection and hyperparameter optimization needs
be re-iterated. For comparing and selecting ML surrogate models, we use perfor-
mance scores that are defined analogously to the performance scores for the step 2 fit
(Sect. 2.2.4.), but applied to the univariate output of age proxy prediction. After a
series of tests of a number of model classes, including ffNN, we obtain the best perfor-
mance with the KNN algorithm. After a preliminary grid search for hyperparameter
optimization of KNN, we manually fine-tune hyperparameters for best-fit results. We
obtain these with two neighbors to query, a Minkowski metric, a p = 2 power pa-
rameter for distance calculation, the BallTree algorithm, distance-based weighting,
and a leaf size of 300. The predictive quality is lower, but error scores are of the
same order of magnitude compared to the HNNI case (see Fig. 2..7c for the summary
statistics of the age proxy prediction errors over the validation data). Therefore, we
evaluate the solution with the KNN algorithm as sufficiently accurate.
For performance assessment over the test data set, Fig. 2..8 c) and d) show the best
and worst fits of the age proxy, respectively. HNNI and KNN agree on the worst fit to
be at the low mass end, for M test

ini = 0.91 M�. Here, the KNN worst-fit has a charac-
teristic similar to the HNNI case: the age proxy is first reproduced accurately up to
s ' 0.52. Then a gap in the output range forms, such that the subsequent predicted
age proxy value is at s ∼ 0.76. The gap is larger than in the HNNI case. Hereafter,
the age proxy is over-predicted, and aligns with the stest values from s ∼ 0.93 onward
up to end.

2.4.3. Prediction of evolutionary tracks and isochrones

Putting consecutively together two predictive models for the age proxy and for the
stellar observables, respectively, allows for the prediction of stellar evolution tracks
in HR and Kiel diagrams as function of stellar age, and of isochrones showing stars
of same age in the HR or Kiel diagram. In this section, we use the integral two-
step interpolation scheme to predict complete stellar evolution tracks in HR and Kiel
diagrams over the set of test initial masses (see Sect. 2.4.3.), and to predict stellar
observables at fixed values of stellar age over a densely sampled initial mass range
(see Sect. 2.4.3.).

Evolutionary tracks

For the input of age (log τ) and initial mass (logMini) of the star, the value of the age
proxy (ŝ) is predicted first by the step 1 method. ŝ is then used as input variable for
the step 2 method, together with again the initial mass (logMini). Here, we present
the two-step pipeline interpolation results that are obtained with the supervised
machine learning models (KNN and ffNN), which is the less accurate method than
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Figure 2..9: Outcome of the two-step interpolation scheme with supervised ML.
Stellar tracks in the HR (top left) and Kiel diagram (top right) for unseen test initial
masses are predicted as function of age τ . For comparison with the true test HR and
Kiel tracks, see Fig. 2..4. For better visibility, the best- (bottom left) and worst-fit
(bottom right) of tracks in the HR diagram—as assessed by the L2 measure—are
displayed separately.

HNNI in both fitting tasks, and find that predictive quality of stellar surface variables
reaches the desired accuracy level (see prediction of HR and Kiel diagrams for unseen
test initial masses in Fig. 2..9). The net effect the step 1 fit errors have on the shape
of predicted tracks in HR and Kiel diagrams in the two-step interpolation scheme is
that step 2 based point forecasts of surface variables are incorrectly shifted along the
track. If the step 1 fit by KNN accomplished a perfect log τ -to-s mapping, then the
tracks predicted by ffNN (step 2 fit) would retain the same shape as shown in Fig. 2..4
b) and d). However, as the step 1 fit introduces over- and under-prediction errors of
the age proxy values, these lead to locally increased or decreased sampling densities of
the age proxy axis as compared to the original unperturbed case. The under-densities
along the age proxy axis result in domain gaps, over which no corresponding step 2
output (values of surface variables) is produced. These gaps form predominantly at
fast-timescale transitions between evolutionary phases. As can be seen in Fig. 2..9,
this applies in particular to the rear part of passage through the Hertzsprung gap
and toward the late stages of CHeB (for high mass stars), to the nearing of the
tip of the RGB and during the helium flashes (for low mass stars). Depending on
accuracy or sampling needs of specific astrophysical applications, post-processing
methods could be applied to fill the prediction gaps. The post-processing method
would need to identify the domain gaps in the age proxy value range, sample the
age proxy within the gap regions to obtain the prediction of observables (by the
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Figure 2..10: Comparison of MIST isochrones with emulator-based (GPR, KNN and
ffNN) predictions of stellar observables at fixed ages. The initial mass range Mini ∈
(0.65, 300) M� is sampled over a log scale with a step size δ logMini/M� = 5 · 10−5 to
obtain the parameter space points at which discrete predictions are made. For the
set of values of stellar isochrones, we choose a log sampling of the time axis to cover
the full range of stellar ages τ . The theoretical MIST isochrones are color-marked,
the emulator-based point predictions are scatter-plotted in black.

model which accomplishes the step 2 fit, which is ffNN or HNNI), and then use local
interpolation based methods to infer the stellar ages over the gap regions along the
age proxy axis.

Isochrones

Finally, we further demonstrate consistency of our predictive models with the origi-
nal MIST stellar evolution catalog by comparison of MIST isochrones with emulator-
based predictions of observables at fixed stellar ages. MIST isochrones, interpolated
over the parameter space using the EEP-based method discussed in Sect. 2.1., are
imported from the Web interface9 provided by the makers of the catalog. For the em-
ulator isochrones, we use the following multistep predictive pipeline to obtain stellar
observables at fixed age:
First, for each Mini value of interest, the two fitted GPR models are used to predict
log τZAMS(Mini) and log τTACHeB(Mini). Second, these are then used to calculate an-
alytically the scaled age τ̃ for each pair {Mini, τ} of interest. Third, together with
logMini, τ̃ serves as input of the trained KNN model, which predicts the correspond-
ing value of the timescale-adapted evolutionary coordinate s. Fourth, s and logMini

serve as input of the trained ffNN model to predict the observables logL, log Teff and
log g, which are then plotted against one another.
Fig. 2..10 shows the outcome of the multistep predictive pipeline to obtain isochrones.10

9https://waps.cfa.harvard.edu/MIST/interp_isos.html
10 The value range of the imported MIST isochrones is adapted to match our problem setting: only

the evolutionary sequences ZAMS–TACHeB are shown, the pre-MS and the post-CHeB evolution
of stars are cut off. Note that in addition, there is an intrinsic cut-off in the MIST isochrones at
the high mass end, which –in contrast to the MIST training data set we used– do not include the
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For each value of stellar age, the distribution of point predictions in the HR diagrams
mimics a simulated observation of stars under assumption of a log-uniform initial
mass probability distribution. Therefore, most emulator-based point predictions of
observables populate those regions of stellar evolution tracks over which stars evolve
on the nuclear timescales. While there is some scatter of emulator-based predictions
about the theoretical isochrones, most prominent at the blue end of the HR diagram
and along the blue loop of the 100 Myr isochrone, we consider the overall statistical
match as satisfactory.

Comparison with observations

As has been stressed in Sect. 2.1., in this work we use the MIST catalog for a proof-of-
concept study to demonstrate our method of constructing accurate predictive models
of stellar evolution over a width of parameter space necessary for a scalable general-
purpose astrophysical applicability. We therefore proceed with the background as-
sumption that the MIST data set is the ground truth of stellar evolution modeling.
In Sect. 2.4.1. we show that the emulator-based prediction errors on all the three
observables logL, log Teff and log g are significantly lower than typical observational
uncertainties on the same variables. However, our predictive models can explain ob-
servations only as good as the original MIST models do. The important question how
well MIST stellar models agree with observations, and which sources of systematic
uncertainty have been identified, is addressed elsewhere, in the original paper on the
catalog (Choi et al., 2016) and in follow-up studies. In this section, we provide a
brief summary of their main conclusions concerning the ZAMS–TACHeB evolution
at solar metallicity over the initial mass range (0.65, 300) M�. It is aimed to inform
interested readers about which scalable astrophysical applications of our predictive
models are reasonable, and which are not, as consequence of systematic prediction er-
rors that result from the adopted MIST input physics. Our trained machine learning
models can be used for astrophysical applications in future work, and are available
to corresponding authors upon reasonable request.
MS evolution, MS turn-off morphologies and red clump luminosities of low mass
stars are in good agreement with MIST predictions except for those in the mass
range Mini < 0.7 M�. MS evolution of high mass stars is reproduced well by MIST
models close to ZAMS, but not the MS width at the highest masses within the tested
range Mini/M� ∈ (10, 80). The slope of model red supergiants is too shallow com-
pared to observations, however no observed red supergiants lie in the forbidden zone
cooler than the limit at the Hayashi line. Comparing the observed to predicted ratio
of WC- to WN-type11 stars, of WR to O-type, and of blue- to red supergiant stars
allows to test mass loss, semiconvection and convective overshoot models. At Z�,
model ratios and observed ratios broadly agree on the order of magnitude, but the
deviation is substantial in particular for the ratio of WC- to WN-type stars. For a
more detailed analysis, the reader is referred to the original paper (Choi et al., 2016)

WR stars. Therefore, the emulator-based 1 Myr isochrone extends further to the blue part of the
HR diagram than the MIST isochrones.

11 WC stars are WR subtype stars that reveal helium-burning products in the outer layers, while
WR stars of subtype WN reveal hydrogen-burning products.

38



2.5. Conclusions and outlook

and references therein.

2.5. Conclusions and outlook

We develop two method classes for interpolation of stellar evolution tracks over an
initial mass range from red dwarfs to very massive stars, evolved from the zero age
main sequence up to end of core helium burning. The two interpolation methods
are, first, a surrogate model of stellar evolution constructed with supervised machine
learning, and second, a catalog-based hard-coded hierarchical nearest neighbors in-
terpolation algorithm. Both of these invoke a two-step interpolation procedure that
makes use of a timescale-adapted evolutionary coordinate s (age proxy) that we in-
troduce to re-parametrize the evolution of stars. This re-parametrization reduces the
timescale variability of evolutionary variables, and thereby allows for more accurate
predictions across timescale-separated evolutionary phases.
For the predictive two-step pipeline constructed with supervised machine learning,
we optimize a K-Nearest Neighbors model to predict the age proxy for the input of
(scaled) stellar age τ̃ and initial mass Mini. The predicted age proxy value, together
with initial mass, is then used as input by a hyperparameter-tuned Feedforward
Neural Network model to produce the multiple output prediction of the log-scaled
surface variables luminosity logL, effective temperature log Teff , and surface gravity
log g. These predictions allow tracing the evolution of stars in the HR and Kiel dia-
grams over the dominant duration of their lifetimes.
For the predictive two-step pipeline constructed with HNNI, we use the same syn-
tax in the algorithmic prescription for both the age proxy prediction and for the
prediction of observables. It operates by selecting the two nearest neighbors, from
above and from below, in each parameter space direction, and by then performing a
sequence of linear interpolations according to a hierarchical ordering of parameters.
Depending on the astrophysical application, one method is preferable over the other.
The supervised machine learning approach is more cost-efficient (by two orders of
magnitude in seconds) but more difficult to develop. The hard-coded HNNI is more
accurate by one order of magnitude on the MAE and by two orders of magnitude on
εT , while all other error scores are on the same scale), but less handy, since continued
access to the stellar evolution catalog is required.
With a wide initial mass range and with a sequence of evolutionary phases from zero
age main sequence up to the end of core helium burning, astrophysical application
of our models is of interest, first, in context of rapid single star population synthesis.
The second promising application prospect is the incorporation of stellar evolution
emulators as stellar microphysics sub-grid models in large-scale stellar N -body dy-
namics or galactic evolution simulations. The third application prospect is the usage
of our interpolation methods to infer fundamental stellar parameters (given multiple
observables of a single star) or the initial mass function (given the observation of a
stellar population). The latter astrophysical application prospect could follow the
Dalek (Kerzendorf et al., 2021) working example in context of spectral modeling of
Type Ia supernovae. Dalek is a deep learning based emulator of the output of the
Tardis (Kerzendorf and Sim, 2014) radiative transfer code. A variant thereof has
been used in a Bayesian framework, where it represents the output of Tardis, to
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infer supernova progenitor parameters from the observation of its spectrum (O’Brien
et al., 2021). The variant has been trained from scratch on a training data set
which has been generated over a reasonably constrained parameter range given likely
properties of the progenitor system. Reliable inference on the parameters of the
progenitor system without the emulator, with the traditional grid-based methods
instead, is impossible—it would take thousands of years of clock time to evaluate
the high-dimensional parameter space by the classical Bayesian inference approach
of running Tardis models at all those parameter space grid points as selected by
iterative optimization that typically requires millions of evaluations.
Sampling a stellar evolution track as function of the age proxy instead of the stellar
age, for instance at equidistant δs increments, facilitates the adequate resolution of
all significant changes in the stellar output variables. This applies not only to the
ZAMS–TACHeB sequence, but also to the pre-MS and post-CHeB evolution (up to
white dwarf cooling for low mass stars).
For generalization of our methods to a higher-dimensional space of fundamental pa-
rameters, additional considerations need to be taken into account. Sampling of a
high-dimensional parameter space to generate the grid data needs to be efficient:
sparse enough to keep the computational expenses low but dense enough to maintain
the predictive accuracy satisfactory locally across all directions in parameter space.
The MIST single star grid space sampling density distribution, which we used to
construct our models, has been decided upon by the makers of the catalog, based on
physical insight from domain expertise. We have expanded the data set in parameter
ranges of interest based on inspection of local fit results by the surrogate model, to
locally improve predictions where needed, by supplying more training data in those
regions. An alternative approach to determining the optimal parameter space sam-
pling goes by using Active Learning (AL; Settles, 2009). By pre-defined heuristics,
decision-making with AL is automated, and therefore better adapted to high dimen-
sional parameter spaces for finding an optimized distribution of grid points. In the
context of stellar astrophysics, Rocha et al. (2022) apply AL in a case study involving
the mapping of initial binary star parameters to the final orbital period, and show
that it can be used to reduce the training data grid size.
For stellar parameter spaces greater than those tested here, we recommend using
HNNI as the predictive interpolation model as far as it is applicable given compu-
tational cost constraints. The HNNI method generalizes to higher dimensions: for
clarity, we have provided the recipe for a 3D (s,Mini, Zini) formulation of HNNI in
order to show the systematic of its dimensional extension. In the case that either the
HNNI method we developed will break down or be computationally too inefficient in
the high dimensional parameter space (given the impractically large cumulative num-
ber of 1D interpolations to make), we recommend using supervised machine learning,
in particular deep learning, to train univariate surrogate models of stellar evolution
on segments of the initial mass parameter space. For training deep learning models,
we have provided basic guidance on selection of feedforward neural network architec-
ture and learning hyperparameters and on the choice of the loss function. Finally, we
have found a successful training strategy that, in its basic design, could—since it has
been adjusted to data base specifics of a stellar evolution catalog—continue to pro-
duce satisfactory fit results when trained on data in a higher-dimensional parameter
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Figure 2..11: Comparison of naive vs. two-step fit of stellar evolution time series,
upon the 1D test case of predicting log-scaled luminosity of a Sun-like star over the
MS, RGB and CHeB phases.

space.

A Appendix

A1. Stellar evolution re-parametrization and HNNI

Figures 2..11–2..13 provide additional materials that support the use of a timescale-
adapted evolutionary coordinate and of the HNNI method for interpolation of stellar
evolution tracks.
Fig. 2..11 demonstrates the general suitability of our age proxy prescription for res-
olution of variability in stellar tracks over a wide span of sequential evolutionary
phases and across the initial mass range.
Fig. 2..12 compares the predictive quality of the two-step fitting approach with the
naive direct fit, when applied to the test case of modeling the log-scaled luminos-
ity time series of a Sun-like star from ZAMS up to TACHeB. We make an 85:15%
train-test split of the data and use the scaled age variable τ̃ defined in Sect. 2.4.2. as
regressor variable. For the naive fit, we train a GPR model on the log-scaled luminos-
ity training data, and use it to predict the test data. For the two-step approach, we
first train a KNN model to predict the normalized age proxy s based on the training
data. Second, we use the age proxy prediction as regressor variable when training
another GPR model to predict the log-scaled luminosity training data. To compare
the outcomes, we plot the prediction of the naive fit and the one resulting from the
two-step pipeline separately for each evolutionary phase MS, RGB and CHeB. For
better discrimination of the test data stellar track, neighboring test data points are
connected by piecewise linear dashed lines over each phase. The MS evolution data
is accurately predicted by both methods, and so is the sub-giant and early red giant
phase. The naive fit loses out to the two-step fit during the later stages: the ascension
of the RGB and throughout the CHeB phase.
Fig. 2..13 shows that HNNI, by virtue of the same algorithmic prescription, yields
accurate forecasts of not only the surface variables logL, log Teff and log g—which
have been evaluated in the main part of the paper—but also of all other stellar vari-
ables we tested. The shape of the tracks in the (log ρc, log Tc) diagram is represented
well by HNNI, except at fast-timescale transitions during the helium flashes of low
mass stars.
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Figure 2..12: Parametrization of stellar evolution as function of the timescale-adapted
evolutionary coordinate over phases beyond the ZAMS–TACHeB sequence. Stars
across the initial mass range are evolved from the pre-MS up to post-CHeB evolution
(post-asymptotic giant branch evolution for low mass stars, and onset of core carbon
burning for massive stars) as function of (unnormalized) timescale-adapted evolu-
tionary coordinate s̃. The color marking denotes the evolutionary phases pre-main
sequence (PMS), main sequence (MS), red giant branch (RGB), core helium burn-
ing (CHeB), early asymptotic giant branch (EAGB), thermally pulsating asymptotic
giant branch (TPAGB), post asymptotic giant branch (postAGB), and Wolf-Rayet
(WR) phase.
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Figure 2..13: Prediction of stellar evolutionary tracks in the core density-temperature
diagram over the test data, with the HNNI method (right), and the true held-back
tracks (left) for comparison.
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A2. HNNI in 3 dimensions or higher

Here, we assume that the stellar parameter space is spanned by a third dimension—
the initial metallicity Zini. The resulting set of parameters (s,Mini, Zini) allows for a
hierarchical ordering: Always first is the age proxy axis s. Always second is the initial
mass axis Mini. Third and least significant out of the three, is the initial metallicity
axis Zini, whose effect on the shape of stellar evolutionary tracks—at fixed initial
mass—results in minor corrections.
The pseudo-code below provides the recipe for a numerical response to the fol-
lowing inquiry: What is the value of target variable Yj = Y (sj) at test location
(Ztest

ini ,M
test
ini , sj) in parameter space?

Y is any evolved stellar variable: for example, Y = logL/L�. For full generality, we
assume that neither M test

ini nor Ztest
ini is contained in the catalog grid database spanned

by {Mini, Zini}cat.
Below, the linear interpolation equation y(x) = y1 + y2−y1

x2−x1 (x − x1) is referred to by
its parameters: y(x)← y2, y1, x2, x1. We assume that, in the catalog, a similar initial
mass grid sampling density is available for each initial metallicity.

Pseudo-code:

1. Determine the nearest neighbors Z+
ini, Z

−
ini ∈ {Zini}cat to the test initial metal-

licity value Ztest
ini from above and from below, respectively.

2. From the set of available initial masses {Mini}(Z+
ini) and {Mini}(Z−ini) contained

in the catalog at these two metallicities, determine the nearest neighbors to
M test

ini from above and from below, respectively:
M+

+ ,M
−
+ ∈ {Mini}(Z+

ini),
M+
− ,M

−
− ∈ {Mini}(Z−ini).

3. From the age proxy series available in the catalog at each of these four initial
mass grid points, find the nearest neighbors to sj along the age proxy axis that
satisfy:
s+

+,max, s
+
+,min ∈ {si}(M+

+ ) with s+
+,min < sj < s+

+,max,

s−+,max, s
−
+,min ∈ {si}(M−

+ ) with s−+,min < sj < s−+,max,

s+
−,max, s

+
−,min ∈ {si}(M+

− ) with s+
−,min < sj < s+

−,max,

s−−,max, s
−
−,min ∈ {si}(M−

− ) with s−−,min < sj < s−−,max.

4. Interpolate along the age proxy axis to find
Y +

+ (sj)← Y +
+ (s+

+,max), Y +
+ (s+

+,min), s+
+,max, s

+
+,min,

Y −+ (sj)← Y −+ (s−+,max), Y −+ (s−+,min), s−+,max, s
−
+,min,

Y +
− (sj)← Y +

− (s+
−,max), Y +

− (s+
−,min), s+

−,max, s
+
−,min,

Y −− (sj)← Y −− (s−−,max), Y −− (s−−,min), s−−,max, s
−
−,min.

5. Interpolate along the log-scaled initial mass axis to find
Y+(sj)← Y +

+ (sj), Y
−

+ (sj), log(M+
+/M�), log(M−

+/M�),
Y−(sj)← Y +

− (sj), Y
−
− (sj), log(M+

−/M�), log(M−
−/M�).

6. Interpolate along the log-scaled initial metallicity axis to find
Y (sj)← Y+(sj), Y−(sj), log(Z+

ini/Z�), log(Z−ini/Z�).
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Generalization: The HNNI method is extended analogously to higher-dimensional
parameter spaces. The number n of hierarchical 1D interpolations to perform and
number k of neighboring grid points to query scale as follows with dimensionality of
the parameter space:

• 1D (s): n = 1, k = 2

• 2D (s,Mini): n = (1 + 1) + 1 = 3, k = (2 + 2) + 2 = 6

• 3D (s,Mini, Zini): n = (3 + 3) + 1 = 7, k = (6 + 6) + 2 = 14

• 4D (s,Mini, Zini, vini): n = (7 + 7) + 1 = 15, k = (14 + 14) + 2 = 30.

We believe that our HNNI method is generalizable to even higher parameter space
dimensions but have not verified this hypothesis. For a binary system composed
of two non-rotating stars of the same initial metallicity, we expect the following
hierarchical ordering of variables to yield accurate interpolation results:

5D: (s1,Mini,1,Mini,2, Pini, ε)

with n = (15 + 15) + 1 = 31, and k = (30 + 30) + 2 = 62.

A3. GPR

Ever since pioneering work by Sacks et al. (1989), GPR has been considered standard
method choice for emulation tasks because of flexibility of the fitting model and
regulatory effect of the Gaussian assumption (for a detailed discussion of application
of GPR to computer model calibration, see Kennedy and O’Hagan, 2001). In general,
GPR becomes increasingly time-prohibitive and computationally expensive as the size
of training data grows. Particularly, GPR involves the Cholesky factorization and
inversion of the covariance matrix, which are computationally costly operations for
a large data set.

The literature on GPR includes multiple approaches to improve scalability (Liu
et al., 2020), which can be broadly classified into global approximation and local ap-
proximation of the GPR. While approaches to global approximation tend to focus on
methods based on sparse kernels (Kaufman et al., 2008) and approximate likelihoods
(Varin et al., 2011), approaches to local approximation center around inference and
prediction on local subsets of data, such as moving-window GPR (Van Tooren and
Haas, 1993; Ni et al., 2012).

Following the local approximation approach, Li et al. (2022) solved the forward
problem of stellar evolutionary track forecasts for given fundamental input param-
eters with separate GPR models that each cover a subspace of the narrow but five
dimensional stellar parameter space. However, using a separate GPR on subspaces
is likely to ignore the potential dependence across them, which in turn can lead to
suboptimal predictions. We expect this to become problematic upon extension of
the input space, when exploring parameter spaces of binary star systems. For these
reasons, we investigate machine learning models that can be trained on the full data
set more closely.
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A4. ffNN hyperparameter tuning

Architecture design: There are a number of relevant theoretical considerations
that guided our approach to ffNN architecture design. The main role of the activation
function is to introduce non-linearities into the information processing pipeline of
the neural network. We adopt the standard recommendation of choosing the ReLU
activation function, and instead focus on tuning the model capacity.12 There are
approaches to tuning the model capacity based on complexity of the learning task
(Achille et al., 2021), which can be estimated using the Kolmogorov complexity
measure (Kolmogorov, 1963). But its estimation is more a theoretical, less a practical
enterprise, due to its non-trivial computation. Instead, there is a body of theoretical
hint suggesting that over-parametrization of the deep learning model is required in
order to overcome an inherent bias of learning simple (rather than complex) input-
output mapping rules (Dingle et al., 2018; Nichani et al., 2020). Model capacity
ought to be chosen large enough to prevent underfitting, though not overly large to
prevent overfitting. The model capacity, once fixed, can be built up in two contrasting
ways: by few hidden layers and many neurons per hidden layer, or by many hidden
layers and few neurons per hidden layer. An incentive towards the first approach is
the success of GPR as emulation method: A first-order Taylor approximation to the
output of a wide network, initialized with independent and identically distributed
weights and trained for a large number of epochs, approximates the predictions of
a GPR model, and the selection of activation functions corresponds to a particular
kernel (the neural tangent kernel) in GPR (Jacot et al., 2018; Lee et al., 2019). The
other approach to building up a fixed model capacity, by choosing a higher number
of layers, can—on the other hand—be more valuable than increasing the width.
For example, Eldan and Shamir (2016) show that approximating certain functions
requires an exponentially higher number of neurons in a wide network configuration
to achieve the same accuracy as that of a deeper network, and the result holds
irrespective of the choice of activation function. We tested both approaches on our
problem and found the best result by building up model capacity through a many-
layer architecture with a moderate number of neurons.
When training deep learning models, we tested dropout, batch normalization and
layer normalization as regularization techniques, in order to push the validation loss
further down past stagnation phases.

Selection criteria: We performed empirical tests of manually designed hyperpa-
rameter (HP) combinations, and then applied selection criteria to decide whether or
not to train the configured model up to end. The main HP that we varied were the
number of hidden layers, the number of neurons per layer (assuming a symmetric
network architecture), learning rate schedule parameters and the batch size. For
each HP combination, we evaluated the loss curve decline during run-time of learn-
ing and applied the following selection criteria at the {500, 103, 2 · 103, 5 · 103} epoch
stages: First, the speed of learning (judged upon by cross-comparison of validation

12The model capacity corresponds to the number of free trainable parameters. In a fully connected
ffNN without regularization layers, the model capacity is given by the total number of weighted
connections between neural nodes plus the total number of biases in the network.
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loss scores at the aforementioned epoch stages for different HP combinations, and
estimation of the slopes). Second, the degree of overfit (judged upon by visual as-
sessment of departure of the validation from the training loss curve with increasing
epoch number). Subsequently, we manually adjusted the HP choice for the next
series of empirical tests, informed by performance of HP combinations from the pre-
vious trials. Promising models (with fast validation loss curve decline and tolerable
overfit over long training periods) were trained until the validation loss curve either
flattened out or started to oscillate over epoch scales of order 5− 10k. Out of those
promising models, the ’best’ deep learning model was selected as the one that had
the least error scores on the validation data. This procedure was iterated until we
trained a surrogate model that attained a threshold value of the validation loss, with
the lowest error scores among all the deep learning models we tested over a series
of generations. Training our best-fit ffNN model lasted around 8 hours on a Nvidia
RTX 3060 GPU machine.

Randomness and reproducibility: A trained deep learning model is the outcome
of a stochastic computer experiment. In order to obtain reproducible results, the
random seed needs to be fixed twice: First, before the train-test split of the total
data set Ntotal = Ntrain + Nval. Second, before initializing the ffNN kernel at model
compilation.

A5. Alignment problem

Globally defined loss functions: What remains an issue when building stellar
evolution surrogate models with supervised machine learning models to approach
the regression problem we formulated, is what we refer to as the Alignment Problem
(AP): our expectation of the surrogate model’s predictive capability (characterized
by locally accurate performance over all three target variables, across all three evo-
lutionary phases, and across the entire initial mass range) does not align with the
formalized numerical condition (characterized by minimization of one single global
error score) that is optimized during training of machine learning models. We find
that none of the standard loss function choices optimally match our problem setting.
13 The reason for the AP is that the evolution of stars, traced in the HR diagram,
does neither happen over the same absolute nor relative numerical scale range for
different initial masses. At the same time, our expectation of the surrogate model’s

13 MSE is the average squared residual, where the squared penalization incentivizes to avoid
large absolute residuals in model training. Clearly, this behavior is globally desirable for stellar
evolutionary track fitting, but leads to too much leniency when a surface variable does not vary
much over a star’s lifetime. Then, residuals would be small compared to the global range, but large
as perceived in HR or Kiel diagrams for a given initial mass. MAE is the average absolute residual,
where penalization is linear, and the behavior is reversed in comparison to the MSE. Common
scale-free measures, such as MSLE and MAPE, essentially penalize multiplicative errors. MSLE
evaluates squared penalties on a log scale (that is, squared log ratios), and MAPE is the average
ratio of the absolute residual over the actual value of predicted target variable. In a nutshell, both
of these measures tolerate larger absolute residuals as the observed value increases, but we require
the opposite for luminosity, which tends stay in a smaller range for tracks at overall high values of
luminosity (see top-left panel of Fig. 2..9).
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performance is that it yields locally accurate fit results for all three predicted sur-
face variables. Instead, the surrogate model learns by minimizing a globally defined
error score, which means by improving to reproduce the overall global shape of the
three-dimensional hypersurface of the target variables over the two-dimensional in-
put parameter space. While training deep learning models, we encountered cases
when the statistical MSE scores on training and validation data decreased further
(i.e., no overfit in the statistical learning sense of the term), but our physical perfor-
mance scores, which are locally defined, worsened. In essence, this means that the
surrogate model continued to learn, but not that what we appreciate. It may hap-
pen that the emulator will have improved predictive capability globally, as assessed
by the global loss score, by substantial gains in predictive accuracy in those param-
eter space regions where the accuracy was already good enough according to our
physical performance metrics, though at the sacrifice of losing predictive accuracy in
other parameter space regions admitted by statistical fluctuations. That latter loss
in local predictive accuracy, however, may manifest itself in a decrease of physical
performance scores over the target variables, adverse to expectations. However, this
performance loss is not considered problematic by the surrogate model based on the
global error score that too little penalizes the prediction errors in relevant parameter
regions of concern.
The AP is only partially addressed by choosing a ffNN model class (which minimizes
the loss of—not the global data set in a single step, but of—a sequence of randomly
selected data batches14), by choosing the Huber loss score (which seeks a trade-off
between MSE and MAE minimization), and by locally increasing the initial mass
parameter space sampling (which, statistically, increases the importance of specific
parameter space regions by the increased amount of data for that region). If su-
pervised ML is to be applied in high dimensional parameter space for stellar track
fitting, this issue requires adequate resolution.

Solution approaches: For future extensions of our surrogate modeling method to
wide high dimensional parameter spaces, we propose the following approaches:

(i) To train a separate ffNN model for each target variable, instead of training a
single ffNN model with multiple output.

(ii) To segment the initial mass parameter space into parts, and train a different
ffNN model on each segment of the initial mass range.

(iii) To tailor a loss function (parameterized by input variables, in particular the
initial mass) to account for differences in numerical scale range over which

14This point is best understood by comparison of ffNN optimization to that of another statistical
learning algorithm. For instance, a RF model is optimized in a single step: a loss score (such as
MSE) is minimized after the complete data set is fed into the RF by the bagging technique that
distributes the input data onto the individual decision trees. A RF forecast is an ensemble forecast
from an ensemble of decision trees, each of which receives a random split of data samples. For
this subset of training data (which differ from one tree to another), the decision tree finds its own
hierarchically conditioned numerical rules during the supervised machine learning. However, during
training the minimization of the loss score happens globally, not locally for each subset of the total
training data set. In contrast, ffNN minimizes the loss score for each batch (a small, randomly
selected chunk of the total training data set) and repeatedly over a large number of iterations.
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stellar variables change across the initial mass range, across evolutionary phases
and—in the case of multiple output—across different target variables.

Approaches (i) and (ii) are the most common and straightforward. Li et al. (2022)
employed both of them when modeling stars by a set of global GPR models. Here,
approach (ii) facilitated a splitting of the total training data set of size ∼300k into
subsets of size ∼20k, which is their stated limit of computational feasibility for ap-
plying global GPR models on a training subset. With approaches (i) and (ii), the
learning task is simplified and that can lead to more accurate individual interpola-
tions.
However, all three approaches to solving the AP, which can be employed individually
or in concert, do have their drawbacks: For approaches (i) and (ii), many separate
models need to be trained, and the capability to capture dependence structures is
impaired. Approach (iii) is the only solution that leads to truly multivariate predic-
tions, but is the most difficult to realize. If the training target loss does not account
for inter-variable dependence, then any loss-based training lacks the required guid-
ance. The first step in accounting for dependence is accounting for variability and
covariance. Already that initial step is a challenge since the range of a single stellar
surface variable over a star’s lifetime can be drastically different depending on initial
mass alone. Possibly, creating a suitable multivariate loss function, tailored to stellar
evolution tracks, is similarly complex as the multivariate interpolation task itself.

For future research towards extending stellar evolution emulators to wide high
dimensional parameter spaces, we therefore believe that a good starting approach is
to build a separate deep learning model for each target variable, and to segment the
initial mass range into parts, in order to train sets of univariate deep learning models
on each initial mass segment, in an otherwise high dimensional parameter space.
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3. Explodability criteria for the neutrino-driven su-

pernova mechanism

This chapter is based on a paper manuscript that is to-be-submitted as Maltsev
et al. (2024a) for publication in the A&A journal. I conducted the scientific work
and wrote all of the text myself, with the support of the co-authors.

Abstract: Massive stars undergoing iron core collapse at the end of their evolution
either explode and leave a neutron star behind, or explode but form a black hole
by fallback, or do not explode and form a black hole directly. The outcomes of 3D
core collapse supernova (CCSN) simulations depend on the structure of the stellar
progenitor, on the nuclear equation of state and on the treatment of the complex
physical ingredients such as neutrino physics and transport, turbulent convection
and other instabilities. While CCSNe are inherently multi-dimensional phenomena,
due to computational cost constraints, 3D simulations are prohibitive over the wide
parameter space of stellar progenitors as necessary for population synthesis. In this
work, we formulate criteria that allow us to predict the final fates of stars by eval-
uating multiple explodabiliy proxies derived from the stellar structure at the onset
of core collapse. These criteria are derived from the outcomes of a semi-analytic
supernova model evaluated over a set of stellar models consisting of ∼ 3900 heteroge-
neous stellar progenitors (single stars, binary-stripped stars and accretor stars), over
which they achieve an accuracy of 99%. The criteria are validated over 27 state-of-
art 3D core collapse simulation outcomes from two different groups, over which the
accuracy is 89%. We further find that all explodability proxies relevant for our pre-
SN based criterion have two distinct peaks with an intervening valley as a function
of the carbon-oxygen (CO) core mass MCO. The CO core masses of explodability
peaks shift systematically with metallicity Z and with the timing of hydrogen-rich
envelope removal of binary-stripped stars. We identify critical values in MCO that
define windows over which black holes form directly. The outcome is a CCSN recipe
based on MCO and Z, applicable for rapid binary population synthesis studies. We
find that our explodability formalism is consistent with observations of Type IIP and
Type IIb/Ib supernova progenitors and partially addresses the missing red super-
giant problem by direct black hole formation. Moreover, it seems to be in agreement
with observations of inferred Type IIn and Type Ic progenitors that other supernova
recipes used in binary population synthesis codes cannot explain.

3.1. Introduction

Asymmetry-induced turbulence in both the progenitor structure at the onset of and
during the collapse as well as other multi-dimensional effects can be decisive to shock
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revival by the delayed neutrino-driven perturbation-aided SN mechanism (Müller,
2020). Therefore, the appropriate modeling of CCSNe1 is addressed by 3D simula-
tions. However, 3D CCSN simulations are notoriously computationally expensive due
to the spatial and temporal scales that need to be resolved and the complexity of the
physical processes involved (Janka et al., 2007; Burrows and Vartanyan, 2021). For
population synthesis over hundreds and thousands of stars, only 1D codes of stellar
evolution up to core collapse, and only 1D CCSN codes are computationally feasible.
However, in most spherically symmetric CCSN simulations, successful explosions do
not occur except for the lightest progenitors (Kitaura et al., 2006; Janka et al., 2008),
and stars therefore need pushed to explode, e.g., by artificially enhancing neutrino
heating (O’Connor and Ott, 2010) or the proto-neutron star contraction dynamics
(Ugliano et al., 2012) using some appropriate calibration.

The degree of difficulty to explode a star by neutrino energy transport has been
linked to the steepness of density decline outside the iron core (Burrows and Lattimer,
1987). Based on large samples of 1D CCSN simulations, different explodability prox-
ies, derived from the pre-SN structure, have been introduced to predict whether iron
core collapse will result in a successful neutrino-driven supernova explosion or not,
which we summarize below. O’Connor and Ott (2011) introduced the compactness
parameter

ξM =
M/M�

R(M)/1000 km
, (3..1)

where R is the radius of the Lagrangian mass shell enclosing baryonic mass M in the
pre-supernova star, as a first-order criterion for predicting final fates at the moment
of core bounce. When choosing the mass coordinate M = 2.5M�, they found that
setting the condition ξ2.5 > 0.45 for failed SNe agreed with CCSN outcomes predicted
with the GR1D SN model (O’Connor and Ott, 2010) over a sample of over 700
single-star progenitors. It has further been shown that compactness at bounce and
at the pre-SN stage is comparable, and that it distinguishes whether the steep density
stratification at the interface between the silicon core and the silicon/oxygen burning
shells that contribute to neutrino heating inside the gain region and revival of the
stalled shock is inside or outside 2.5 M� (Sukhbold and Woosley, 2014). Based on
2D and 3D CCSN simulations with approximate neutrino transport, Horiuchi et al.
(2014) concluded that a lower threshold of ξ2.5 > 0.2 better represents the final
fate outcomes in their sample and is in line with observational constraints. Many
other works confirmed the following gross trend, based on different sets of stellar
progenitors and various 1D SN codes: statistically, stars with lower ξ2.5 are more likely
to explode (e.g. O’Connor and Ott, 2013; Nakamura et al., 2015; Sukhbold et al., 2018;
Schneider et al., 2021). With the Prometheus-hotbath 1D hydrodynamics code
that parametrizes the contraction of the proto-neutron star (PNS) which is excised
from the computational domain, Ugliano et al. (2012) obtained successful SNe for
ξ2.5 < 0.15, failed SNe for ξ2.5 > 0.35, and their co-existence for values in-between.
Using a semi-analytical approach of comparing the neutrino luminosity obtained from
GR1D simulations to the estimated critical neutrino luminosity required for shock

1In this work, we consider the neutrino-driven engine and not alternative SN mechanisms, such
as those driven by jittering jets (Papish and Soker, 2011), magnetars (Kasen and Bildsten, 2010) or
collapsars (Woosley and Bloom, 2006).
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revival, Pejcha and Thompson (2015) found a similar degeneracy in the final fate
outcomes over a large set of pre-SN progenitors, even when optimizing the choice of
M for ξM . Ertl et al. (2016) made the choice of the mass coordinate dependent on
entropy (dimensionless entropy per nucleon number of s = 4) and suggested to use
a two-parameter criterion to classify explodability. To this end, they introduced the
normalized mass

M4 = m(s = 4)/M�, (3..2)

which is located where the entropy abruptly rises and the density declines. It typically
defines the mass shell of the proto-neutron star (PNS) in whose vicinity the shock is
revived in case of a successful SN explosion. Matter falling onto the stalled shock at
a rate Ṁ exerts ram pressure and thereby obstructs shock expansion. Smaller values
of the radial gradient at the mass coordinate M4,

µ4 =
dm/M�

dr/1000km
|s=4, (3..3)

imply a steeper density jump, such that at core collapse, lower-density matter arrives
at the neutrino-sphere and the ram pressure is reduced (Sukhbold et al., 2018). The
hot accretion mantle pushes onto the PNS, giving rise to an accretion luminosity
that is maintained by persistent mass accretion. For neutrino luminosities above a
critical threshold Lν,crit ∝ GMPNS Ṁ/RPNS that depends on the mass accretion rate
as well as on the PNS mass MPNS ∝ M4 and radius RPNS, the neutrino heating
triggers the onset of an explosion by shock runaway expansion (Burrows and Goshy,
1993). µ4, when divided by the free-fall timescale and multiplied by the radius up
to which M4 is enclosed, is proportional to Ṁ . Since RPNS was found to be similar
across different progenitors and only weakly time-dependent in late-time explosions,
Ertl et al. (2016) argued based on analytical considerations that the product µ4M4

is a proxy for Lν,crit. To separate exploding from non-exploding pre-SN progenitors,
they suggested to draw a separation line in the (µ4M4, µ4) plane that compares two
competing forces onto the CCSN outcome: failed SNe are favoured by a high density
outside of the iron core (i.e., a large µ4) and by weak accretion luminosities (i.e., a
small µ4M4). With this explodability criterion (E16), Ertl et al. (2016) achieve an
accuracy of ' 97% over a heterogeneous set of 621 massive single star progenitors,
when exploding them with a 1D CCSN model that updates the 1D approach of
Ugliano et al. (2012) by a reduced neutrino wind power. While a two parameter-
criterion is more appropriate to model explodability (see e.g. Heger et al., 2023) a
separation line in the (µ4M4, µ4) plane has not been shown to be a reliable criterion to
discriminate the outcomes of other 1D SN codes, such as those that model the effects
of turbulence in 1D by a modified mixing-length theory approach2, stir (Couch
et al., 2020; Boccioli and Fragione, 2024).

E16 assesses the shock revival conditions at one instant of time – at the onset of
iron core infall. It therefore does not capture the temporal-dynamical nature of how
the heating and accretion conditions compare as the collapse proceeds. One of the
original motivations for the formulation of a semi-analytic supernova model (M16

2However, see Müller (2019) for a critical assessment of this approach to incorporating the effects
of turbulence.
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Müller et al., 2016) was to supply a set of ordinary differential equations that takes
the dynamical evolution of these competing effects into account. M16 draws together
theoretical insight, scaling relations and analytical approaches from previous work
into a unified semi-analytic framework that models the neutrino-driven perturbation-
aided SN mechanism. It takes as input the density, chemical composition, binding
energy, sound speed and entropy profiles from the pre-SN progenitor. To assess
whether the stalled shock is revived or not, it adopts the earlier established criterion
that stars are expected to explode if the mass advection timescale is greater than
that of neutrino heating (Janka and Keil, 1998):

τadv > τheat. (3..4)

After a successful shock revival and SN launch, the mass accretion onto the PNS
is continued while mass is ejected. M16 models the effects due to the competing
co-existence of outflows and downflows during the explosion phase using dissipation
terms. A fallback BH is formed if the predicted initial explosion energy is insufficient
to unbind the envelope or if the mass gaining PNS surpasses the maximal equation-
of-state dependent baryonic NS mass Mmax

NS,bary. When the downflows resume, the
final explosion energy, the compact remnant mass, total ejecta mass and nickel mass
nucleosynthesis yield are obtained from a set of equations modeling explosive nuclear
burning during shock propagation up to breakout.

The M16 model outcomes have been compared to those of the ξ2.5-based and
E16 criteria over the same set of pre-SN progenitors (e.g., Sukhbold et al., 2018;
Schneider et al., 2023; Takahashi et al., 2023; Aguilera-Dena et al., 2023), but so far
no simple pre-SN criterion to the M16 outcomes based on a reduced set of pre-SN
variables parameters has been formulated. In this work, we evaluate M16, with a
parameter calibration from Schneider et al. (2021) over a large sample of ' 3900
single, binary-stripped and accretor star 1D models, in order to formulate a method
to classify explodability of massive stars based on multiple diagnostic pre-SN struc-
tural parameters that are used in concert: ξ2.5, the E16 parameters (µ4M4, µ4), the
carbon-oxygen mass MCO and central specific entropy sc. We further find that the
CCSN outcome not only is encoded in the pre-SN stellar progenitor structure, but –
given a fixed model for the late burning phases – already pre-determined at the end of
core helium burning. This has far-reaching consequences in particular for population
synthesis. Since 1D CCSN codes such as M16 require as input the entire progenitor
structure profiles at pre-SN stage, they cannot be applied for binary population syn-
thesis (BPS) for two reasons. First, rapid and detailed BPS codes such as posydon
(Fragos et al., 2023) and bpass (Byrne et al., 2022) impose an evolutionary cut-off at
– if not before – central neon ignition. Second, rapid BPS codes such as compas (Ri-
ley et al., 2022) and binary c (Izzard and Jermyn, 2023) do not keep track of entire
stellar structure profiles up to the cut-off point, and evolve only global parameters.
At the same time, in BPS codes that are used to – for example – predict binary black
hole merger rates, the CCSN model is one of the most principal components of the
predictive pipeline. Rapid codes use recipes such as those introduced in Fryer et al.
(2012), Mapelli et al. (2020) or Mandel and Müller (2020) for predicting the final fate
that are all based on MCO. In this work, we use our pre-SN explodability criterion
to construct a predictive framework that bridges the gap between the evolutionary
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cut-off imposed by rapid BPS codes and the CCSN outcomes as predicted by the
M16 model.

This paper is structured as follows. In Sect. 3.2.1. we refer to the set of sin-
gle, binary-stripped and accretor star CCSN progenitor models, in Sect. 3.2.2. the
parameter choice of the M16 CCSN model, and in Sect. 3.2.3. the catalog of 3D
CCSN simulation outcomes considered in this work. In Sect. 3.2.4., the supervised
learning model is described, which we use to map out CCSN outcomes as a function
of progenitor MCO. The pre-SN explodability criterion telling apart successful and
failed SNe is formulated in Sect. 3.3.1.. It is compared against 3D CCSN simulation
outcomes, and extended by a scheme predicting the remnant type (NS of fallback
BH) left behind a successful SN explosion. The final fate landscape of single and
binary-stripped stars is presented in Sect. 3.3.2.. It is derived from the trends of
explodability proxies relevant for the pre-SN criterion with MCO and Z, while tak-
ing into account differences between single and binary-stripped star progenitors. We
use these results to formulate a CCSN recipe applicable for rapid BPS studies, and
compare it to previous recipes. In Sect. 3.3.3. the prediction of CCSN outcomes is
compared against observations that constrain the CCSN progenitor properties. The
results are discussed and an outlook given in Sect. 3.4.. Conclusions are drawn in
Sect. 3.5..

3.2. Methods

3.2.1. 1D CCSN progenitor models

We consider the following set of stellar evolution models:

• 127 single and binary-stripped stars [Case A, Case Be, Case Bl, Case C] of
variable zero-age-main-sequence mass MZAMS ∈ (11, 90)M� at solar3 metallic-
ity Z = Z� (S21) from Schneider et al. (2021),

• 121 single and binary-stripped stars [Case A, Case Be, Case Bl, Case C] of
variable MZAMS ∈ (11, 90)M� at Z = Z�/10 (S23) from Schneider et al. (2023),

• 570 accretor stars [Case Ae4, Case Al, Case Be, Case Bl, Case C] of variable
MZAMS ∈ (11, 90)M� and fraction f ∈ (0.1, 2) of ZAMS mass accreted on the
thermal timescale at Z = Z� (S24) from Schneider et al. (2024),

• 169 single stars of variable MZAMS ∈ (9, 70)M� and convective core overshoot
parameter αov/HP ∈ (0.05, 5) at Z = Z� (T24) from Temaj et al. (2024),

• 2910 single stars of variable MZAMS ∈ (9, 45)M� at Z = Z� (H16) from Müller
et al. (2016).

All 3897 stellar models were evolved from ZAMS up to onset of iron-core infall. The
first four data sets, S21, S23, S24 and T24 have in common that for the advanced

3As solar metallicity, we assume Z� = 0.001432 following Asplund et al. (2009)
4The distinction between case Ae and case Al is made depending on whether the mass transfer

occurs before (Ae) or after (Al) the mid-MS.
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burning phases, the same input physics is assumed, and that these are evolved using
the mesa (Paxton et al., 2011) code. H16 adopts a different input physics for the
main and the advanced burning phases, and the stellar models are evolved using the
kepler (Weaver et al., 1978; Heger and Woosley, 2010) code.

The classification of binary-stripped stars in S21 and S23 based on the mass trans-
fer (MT) history follows the nomenclature summarized in Table 3..1. The stripped
stars are modeled effectively as single stars, with a prescription for removal of the
hydrogen-rich envelope over 10% of the thermal timescale. For details on the effective
modeling approach, see Schneider et al. (2021).

Table 3..1: Classification of binary-stripped star models based on the mass trans-
fer history of the donor star. Stable MT leading to removal of the hydrogen-rich
envelope takes place during the main sequence (MS) evolution for case A systems,
between terminal age main sequence (TAMS) and terminal age core helium burning
(TACHeB) for case B systems. In early case B (Be), the envelope of the star being
stripped is still radiative, while it is convective for late case B (Bl). In case C systems,
the hydrogen-rich envelope is removed after TACHeB.

MT class timing of h-rich envelope removal
single none
case A during MS
case Be between TAMS and TACHeB, radiative envelope
case Bl between TAMS and TACHeB, convective envelope
case C after TACHeB

3.2.2. 1D CCSN explosion model

CCSN outcomes predicted by the M16 code depend on in total six explicitly speci-
fiable free parameters. The accretion efficiency ζ = 0.8, the cooling timescale
τ1.5/s = 1.2 of a 1.5M� PNS and the mass outflow fraction αout = 0.5 are left
with the default values from Müller et al. (2016). For this work, we adopt a lower
shock compression ratio value, β = 3.3 (default: 4.0), a greater shock expansion pa-
rameter due to turbulent stresses, αturb = 1.22 (default: 1.18), and lower the maximal
gravitational NS mass to Mmax

NS,grav = 2.0M� (default: 2.05M�). In Schneider et al.
(2021), these values were tuned manually in order to get an average explosion energy
of Type IIP SNe in the range 0.5−1.0 B for consistency with observations. For single
stars, this choice of parameters preserves the highly skewed shape of the explosion
energy distribution landscape as is also obtained with the default parameters but
admits explosion energies above 2 B, which is the maximal value over the H16 pro-
genitors when using the M16 model with default parameters. The explosion energy
distribution from the customized parameter choice has a longer tail, i.e. an extension
toward greater explosion energies up to ' 3 B for single stars at Z = Z� (see Fig.
3..18). The predicted chirp mass landscape obtained from this parameter choice is
consistent with the current LIGO-Virgo-KAGRA observations of gravitational-wave
sources (Schneider et al., 2023).
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3.2.3. Catalog of 3D CCSN simulation outcomes

We compare the final fate predictions using our pre-SN criterion to those of state-
of-art 3D CCSN simulations from two different groups: 1) the Garching group, over
single-star progenitors from Sukhbold et al. (2018), and 2) the Monash group, over
single-star progenitors and stripped-star progenitors from catalogs other than those
used in this work. Unless otherwise specified, the pre-SN progenitors were non-
rotating. The model naming acronyms encode metallicity (’s’ for solar, ’z’ for Pop-
ulation III), ZAMS mass (e.g., 9.5 for MZAMS = 9.5M�) and binary-stripped status
(’he’ for helium stars at Z = Z�) of the progenitors. In the Monash group archive,
3D CCSN simulations have been run over 21 single and binary-stripped star pre-SN
progenitors. Simulations have been carried out either over spherically symmetric
progenitors with or without magnetic fields, or with a perturbation introduced into
the progenitor stratifications as initial conditions, obtained from simulations of pre-
collapse oxygen burning.

Over the low-mass (MCO < 2M�) progenitors he2.8, he3.5, s9.5, z9.6, s11.5 and
s11.8 and the high-mass (MCO > 8M�) progenitors y20, z40, z85 and z100 and
the rapidly rotating m39, CCSN simulations used spherically symmetric stratifica-
tions and did not include magnetic fields. With the exception of z100, all of these
exploded. In the intermediate MCO range mostly in-between the aforementioned
low-mass and high-mass models, perturbations were introduced into the spherically
symmetric stratifications of the progenitors he3, z12, s12.5 and s14.07, and these
models exploded in 3D simulations without the enhancing effect of magnetic fields.
3D CCSN simulations with magnetic fields over the spherically symmetric stratifica-
tions of s14, s15s7b2 and of the very slowly rotating s16.9 lead to a non-explosion
(s14) and an explosion (s15s7b2, s16.9). The effect of perturbations and of magnetic
fields was studied systematically upon the pre-SN progenitors s18 and the slowly ro-
tating m15b2. The latter did not explode when starting from spherically symmetric
progenitor stratifications and not including magnetic fields, but exploded once mag-
netic fields were introduced. The same outcomes were observed for s18. In addition,
a 3D CCSN simulation over perturbed s18 statifications lead to an explosion even
without magnetic field effects.

Multi-dimensional effects enhance shock revival due to turbulent stresses, in-
creased advection timescale and the increased heating efficiency compared to the ax-
isymmetric treatment, which are coupled to each other by feedback processes (Müller
and Janka, 2015). One approach to taking the shock revival enhancing effects into
account in the 1D modeling is to modify equations for hydrostatic structure and jump
conditions at the shock by scaling up the shock radius rsh → αturb · rsh by a factor
αturb that is set by the root-mean-square averaged turbulent Mach number in the
gain region (Müller and Janka, 2015). One of the origins for strong seed perturba-
tions are oxygen-neon shell mergers, convective burning in the silicon burning phase
or pulsations before the iron core forms and surpasses its effective Chandrasekhar
mass (Timmes et al., 1996). Müller et al. (2016) suggest to consider αturb within a
range between 1.08 and 1.28 depending on progenitor properties and due to theoret-
ical uncertainty about the reasons for the turbulent motion boosts behind the shock.
Further on, they suggest that explosion-enhancing multi-D effects are switched off at

57



3. Explodability criteria for the neutrino-driven supernova mechanism

αturb ' 0.86 rather than at αturb = 1 due to renormalization procedures. Since in our
1D CCSN model, we keep the value αturb = 1.22 > 0.86 fixed, we implicitly assume
the presence of seed perturbation or other shock-revival enhancing multi-dimensional
effects (such as magnetic fields).

Therefore, in our comparison of pre-SN progenitor properties to outcomes of 3D
CCSN simulations, we use the outcomes of 3D simulations with perturbations or
magnetic fields wherever applicable. For the lighter and heaver progenitors, these
are not available, but since the spherically symmetric stratifications already explode
(except for z100), it is to be expected that the same progenitors would still explode
if perturbations are introduced. This distinction becomes relevant in particular for
m15b2 and s18. For the models s14 (non-exploding), s16.9 (exploding) and s24
(exploding), 3D CCSN simulations have been carried out only with magnetic fields.

3.2.4. Supervised learning model

Since the stellar structure profiles are not available beyond the stellar parameter
grid nodes over which massive stars have been evolved up to pre-SN stage, it is
not possible to directly predict final fates over a quasi-continuous parameter space
of stellar progenitors as necessary for BPS studies. To overcome this gap, in this
work, we directly relate stellar parameters to CCSN outcomes. To this end, we first
formulate a pre-SN explodability criterion based on scalar quantities derived from
the stellar structure at the onset of core collapse. This criterion coincides with the
final fate outcomes issued by the M16 model and therefore can be reliably used as
its surrogate. In a second step, in order to obtain final fate landscape forecasts, we
evaluate the pre-SN criterion over a quasi-continuous parameter space in MCO using
fitted models of the scalar proxies necessary for evaluation of the criterion.

As a fitting model, we use Gaussian Process Regression (GPR; Rasmussen, 2004).
Ever since pioneering the work by Sacks et al. (1989), GPR has been a standard
method for emulation tasks because of its flexibility, smoothness and regulatory effect
of the Gaussianity assumption (for a detailed discussion of application of GPR to
computer model calibration, see Kennedy and O’Hagan, 2001). The data-driven
supervised learning approach is used to fit GPR models. If n is the size of the
training data set, then GPR interprets the output data as a random sample drawn
from an n-dimensional multivariate normal (MVN)

Nn(µ,Σ) =
exp

(
−1

2
(X− µ)TΣ−1 (X− µ)

)√
(2π)n|Σ|

(3..5)

which has the mean vector µ and the functional form of the n× n covariance matrix
Σi,j = Cov[xi, xj] as free choices that need to be pre-set before the training.

While µ is typically set to the zero vector, different kernel functions k(xi, xj) are
available5 that specify Σ. In this work we adapt the kernel choice to each fitting

5For a selection of kernel models, see e.g. https://scikit-learn.org/stable/modules/

generated/sklearn.gaussian_process.GaussianProcessRegressor.html
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task. We often find best performance with the Matérn kernel

k(xi, xj) =
1

Γ(ν)2ν−1

(√
2ν

l
d (xi, xj)

)ν

Kν

(√
2ν

l
d (xi, xj)

)
, (3..6)

where d(xi, xj) is the Euclidean distance between xi and xj, Kν the modified Bessel
function, and Γ the Gamma function. The Matérn kernel has free parameters ν and
l. ν controls the smoothness of the approximated function, and l is the length scale
of the kernel. The training task is to optimize the choice of the kernel parameters by
returning a probability distribution over their values, such that the resulting MVN
has maximum likelihood over the training data.

Once the GPR model is fitted, predictions over evaluation points are made by
conditioning over the training data. and their prediction intervals are obtained from
marginalization. For more technical detail, refer to Rasmussen (2004).

3.3. Results

3.3.1. Pre-SN explodability criterion

Is the CCSN outcome as predicted by M16 universally (i.e., over single, binary-
stripped and accretor stars having very different pre-SN properties) encoded already
at the pre-SN stage? We find that the final fate cannot be discriminated using a
single explodability proxy, be it ξ2.5, central specific entropy sc, iron core mass MFe,
nor when using two of them with calibrated threshold values (e.g. ξ2.5 and sc), nor
with a separation line in the (µ4M4, µ4) plane (see Fig. 3..1 and 3..2). However, there
are upper (lower) limits in ξ2.5, sc and MCO, beyond (below) which only implosions
(explosions) occur (see Table 3..2 and the red demarcation lines in the aforementioned
figures). For the remaining pre-SN progenitor models, we find that a modified E16
criterion discriminates the CCSN outcomes. To summarize, the following set of
conditions replicates the CCSN outcomes of M16 with an accuracy of ' 99.3 % over
the super-set consisting of 3897 heterogeneous pre-SN progenitor models (see Fig. 3..1
and Fig. 3..2):

Pre-SN distinction between failed and successful SNe: If either ξ2.5, or sc
or MCO are above an upper threshold value, the SN outcome is a failed SN. If,
conversely, any of these proxies is below a lower threshold value, the outcome is a
successful SN launch. For values in the intermediate (“overlap”) region or in the
rare case of conflicting final fate assignments using these variables, the final fate is
decided in the (µ4M4, µ4) plane: if the µ4M4 coordinate is critically low (large), the
outcome is a successful (failed) SN, while for intermediate values a separation line
tells the exploding and imploding stars apart. The critical values are summarized in
Tab. 3..2. The separation line is set by the parameters (k1, k2) = (0.005, 0.421) and
yields the following condition for a failed SN, over µ4M4 ∈ (0.247, 0.438):

µ4 < k1 + k2 · µ4M4. (3..7)
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Figure 3..1: Final fate assignment in the (ξ2.5, sc) and (µ4M4,MCO) planes, based
on CCSN outcomes predicted by M16 over the set of S21, S23, S24, T24 and H16
pre-SN progenitors. The red lines indicate the critical lower and upper thresholds of
each expodability proxy considered, which are summarized in Table 3..2. The fates
of those collapsing stars that hitherto have not been assigned, are mapped out by
the separation line in the (µ4M4, µ4) plane (see Fig. 3..2).

Stellar models that fulfill this condition, i.e. those found below the separation line
in the (µ4M4, µ4) plane, are found to implode; otherwise, they explode. Note that
according to E16, the final fate outcomes are reversed: the non-exploding models
are found above the separation line. We interpret the reversed (within a subrange of
µ4M4) E16 criterion as follows:

Since µ4M4 is a proxy for the required neutrino luminosity Lν,crit for runaway
shock expansion, for µ4M4 < (µ4M4)min, Lν,crit is critically low, making it easy
to explode the progenitor. Conversely, for µ4M4 > (µ4M4)max, Lν,crit is critically
high, making it difficult to explode the star. In the intermediate range (µ4M4)min ≤
µ4M4 ≤ (µ4M4)max, a large µ4 compared to k1 + k2 · µ4M4 ∝ µ4M4 implies a com-
paratively small PNS mass M4 = µ4M4/µ4, which makes it easier to explode the
progenitor for the following reasons. The mass accretion onto the gain region has
two adverse effects: on the one hand, it will increase the PNS mass, and on the other
hand, it supplies fresh material into the gain region that is neutrino-heated. With
a comparatively small M4, the first effect is less dramatic (since more mass needs
to be accreted for surpassing the limiting PNS mass for stability) while the second
effect is enhanced (because Lν,crit is comparatively low. With a comparatively large
µ4, it then is easier to reach the critical neutrino luminosity for shock revival than
the threshold mass for PNS collapse.

Out of 3987 progenitor models, 2685 (' 69%) explode. The pre-SN explodability
criterion does not depend on evolutionary pre-history of the progenitors, since it is
constructed based on a heterogeneous set that contains single-stars, binary-stripped
stars and accretor stars. The most essential part of our criterion is the one based on
the (µ4M4, µ4) plane. Using it alone leads to an accuracy in the final fate assignment
of ' 98%. When adding the critical values in ξ2.5, sc and MCO, the accuracy rises to
99%.

There are two main ideas advocated by our approach to parametrizing explod-
ability. First, there is no sharp boundary in ξ2.5 or any other explodability proxies
that would allow to map out explodability based on a single threshold value alone.
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Figure 3..2: Final fate distribution in the (µ4M4, µ4) plane over the entire set of
S21, S23, S24, T24 and H16 pre-SN progenitors (left panel), and over a subset of
progenitors that fall into the overlap region with degenerate final fate outcomes, as
their ξ2.5, sc and MCO are neither super-critical nor sub-critical to assign a final fate
forecast based on ξ2.5, sc or MCO (right panel). Stars from this overlap region explode
if µ4M4 is below the lower threshold, and implode if it is greater than the upper
threshold. For µ4M4 values in-between, a separation line (in blue) discriminates the
SN outcomes.

Table 3..2: Upper and lower threshold values in explodability proxies that pre-
determine CCSN outcomes as predicted by M16. Below the lower threshold value,
only SNe occur. Above the upper threshold value, only implosions occur. Over the
value range in-between, the final fate outcome is degenerate (co-existence of success-
ful and failed SN). Final fate outcomes in this intermediate range are mapped out
using Eq. 3..7 with coefficients (k1, k2) = (0.005, 0.421), which determine the sepa-
ration line between exploding and non-exploding stars in the (µ4M4, µ4) plane (see
Fig. 3..2).

variable X lower threshold Xmin upper threshold Xmax

ξ2.5 0.314 0.579
sc/[NA · kB] 0.988 1.169
MCO/M� 5.6 16.2
µ4M4 0.247 0.438

Looking at one single explodability proxy, such as ξ2.5, is thus insufficient to make
faithful final fate forecasts. Neither can a globally valid segmentation line be con-
structed in the (µ4M4, µ4) plane for discriminating the CCSN outcomes. Instead,
there are relatively broad value ranges in ξ2.5, sc and in other pre-SN variables, over
which both successful and failed SN outcome are the outcomes (see Figs. 3..1 and
3..2). Second, the explodability proxies ξ2.5, sc and the E16 parameters (µ4, µ4M4)
are not equivalent in their significance for the final fate outcome. While these can in
some cases follow similar trends (e.g. a large ξ2.5 accompanied by a large sc), they
may carry complimentary information about explodability (e.g. a critically low sc for
a successful SN, but a moderate ξ2.5 within the degenerate range over which failed
and successful SNe co-exist). To assign the final fate of a CCSN at the pre-SN stage,
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insight from several explodability proxies needs be drawn together. Our criterion
states that it is sufficient to evaluate ξ2.5, sc, µ4, µ4M4 and MCO. These proxies
probe the pre-SN progenitor at four different mass coordinates: the innermost region
of the stellar core at constant entropy, the mass coordinate at which typically the
PNS is enclosed once it gets formed, the mass coordinate 2.5M� which for many
stars6 is at the interface between the silicon core and the silicon-enriched oxygen
layers, and the carbon-oxygen rich layers much further out.

Comparison with 3D CCSN simulation outcomes

For our validation of the pre-SN criterion against 3D CCSN simulation outocomes, we
take into account 6 exploding and 2 non-exploding models from the Garching archive,
as well as 17 exploding and 2 non-exploding models from the Monash archive 7.
Fig. 3..3 compares the outcomes of 3D CCSN simulations to their pre-SN properties
necessary for diagnosing a final fate using our explodability criterion. We first analyze
the models that explode in 3D. As in the 1D case, most of them are scattered in the
region of critically low ξ2.5 and critically low sc. There are a few exceptions:

• the stripped-star model y20 represented by the “left-hand triangle” symbol has
a conflicting final fate prediction issued by ξ2.5 (to explode) versus by sc (to
implode). Its MCO ' 8.2M� is within the overlap region of degenerate final
fate outcomes. It is predicted to explode – in agreement with the 3D outcome
– because of a critically low µ4M4 value.

• The stripped-star model m39 represented by the “right-hand triangle” symbol
is within the overlap region in the (ξ2.5, sc) plane, but is predicted to implode
because of a critically large MCO ' 21M�, in disagreement with the 3D out-
come. Interestingly, if the MCO condition is ignored, according to the final
fate assignment in the (µ4M4, µ4) plane, the model is predicted to explode as
it lies above the separation line in the (µ4M4, µ4) plane, on the verge of the
transition to the regime of having a critically large µ4M4 value for an implo-
sion. We conclude that since stars with MCO as high as 21 M� are found to
explode in 3D simulations, the final fate assignment based on MCO alone is not
faithful. We speculate that the progenitor has had a high (at least XC > 0.25)
central carbon mass fraction XC core carbon burning onward, which enhances
the probability for an explosion. If we lift the MCO-based condition for final
fate assignment in our pre-SN criterion, we still achieve a predictive accuracy
of 98.5 % over the super-set of pre-SN progenitors.

• The models represented by the rhombus and square have a critically large com-
pactness and µ4M4 coordinate for an implosion according to our pre-SN crite-
rion, but explode nevertheless in the 3D simulations. These are the Population

6For many stars, the mass coordinate at 2.5 M� is large enough to be located outside the iron
core MFe, and small enough to be within the mass accreting region. However, the compactness
criterion becomes inadequate for stars massive enough to develop iron cores heavier than 2.5M�
(see Fig 3..16 in the appendix).

7We plan to compare our explodability criterion with 3D CCSN simulation outcomes from other
groups in follow-up work.
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III star models z85 and z40, having an MCO of around 31 and 13 solar masses,
respectively. Their (µ4M4, µ4) coordinates reach beyond the region sampled
by our set of models. We suspect that the reason for the discrepancy in the
final fate outcome predictions are effects of the altered nuclear reactions during
iron core collapse compared to stars initially with metals, and conclude that
our pre-SN criterion breaks down when it comes to Population III stars, which
were not part of the set of stellar models based on which we constructed the
pre-SN criterion. We aim to introduce possible fixes to our pre-SN criterion for
stellar progenitors with (µ4M4, µ4) values beyond the region sampled by our
models and for better applicability to Population III stars in future work.

All models that are non-exploding in the 3D simulation are predicted to implode
by the pre-SN criterion, except for the spherically symmetric progenitor model s14
from the Monash group archive. Whether or not s14 explodes in a 3D simulation if
asymmetry is introduced into the progenitor stratifications has not been tested.

The final fate predictions of the non-exploding models with the pre-SN criterion
have the following origins:

• the non-exploding u75 model (represented by a brown circle) has critically large
ξ2.5, sc, MCO and µ4M4 values for an implosion,

• the non-exploding s40 model (represented by a brown circle) has its ξ2.5, sc and
MCO within the overlap region, but it is predicted to implode given its critically
large µ4M4 coordinate.

• the Population III star model z100 represented by the “upward” triangle sym-
bol has a conflicting final fate prediction based on sc (explosion) and MCO

(implosion), but its µ4M4 coordinate is critically large for an implosion.

When using our pre-SN criterion for prediction-making, the value of the µ4M4

coordinate is found to play the decisive role for the explosion of y20, for the implosion
of s40 and z100, and – together with µ4– for the explosion of m39. The number of false
final fate assignments with our pre-SN criterion over a set of 8+19=27 progenitors is
4 when the MCO-based condition is included and 3 when it is excluded. The resulting
overall accuracy over 3D CCSN simulation outcomes is 85% and 89%, respectively.

Three out of the four prediction errors issued by the pre-SN criterion compared
to the 3D outcomes are false negatives for an explosion, i.e. the 3D simulations are
even more optimistic about explosions than our pre-SN criterion is. Note that when
considering the 3D CCSN simulations on their own, bypassing the M16 1D CCSN
model outcomes over the large set of progenitor models, the same predictive accuracy
is also achieved by setting a critical ξcrit

2.5 ' 0.37 − 0.39, or by using our (µ4M4, µ4)
plane based prescription only. Compared to the M16 model outcomes, the ξcrit

2.5 >
0.38 criterion for direct BH formation would predict substantially more implosion
outcomes (compare Fig. 3..1), and have an agreement with M16 in only 86% over the
sample of 3897 1D progenitors. With the (µ4M4, µ4)-only pre-SN criterion applied
to our set of SN progenitor models, the agreement with the M16 outcomes is as
high as 98.3%, but results in even more explosion outcomes. While the threshold
value in ξcrit

2.5 is tightly constrained by 3D CCSN simulation outcomes, the final fate
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Figure 3..3: Comparison of the final fate assignment using our pre-SN explodabil-
ity criterion to 3D CCSN simulation outcomes performed in the Garching (G) and
Monash (M) groups. The dashed red lines in the two-parameter planes spanned by
(ξ2.5, sc), (MCO, µ4M4) and (µ4M4, µ4) planes indicate the critical lower and upper
thresholds of each explodability proxy involved in our pre-SN criterion. The fates of
collapsing stars for µ4M4 in-between the lower and the upper threshold are mapped
out by the reversed E16 criterion (right panel): it predicts explosions if the progenitor
is found above the red solid separation line, and implosions if below. The final fate
assignment in the (µ4M4, µ4) plane is compared to the standard E16 criterion, with
calibrations from Ertl et al. (2020) for the updated W20 and N20 engines. The final
fates (success or failure of shock revival at the end of the 3D CCSN simulation) are
color-marked in yellow/brown for the Garching, and in orange/black for the Monash
group. Specific progenitors that are referenced in the main text are represented by
symbols other than circles.

outcomes in 3D CCSN simulations in the (µ4M4, µ4) plane can be segmented in
ways different from our scheme while retaining the same level of consistency over the
sparsely sampled (µ4M4, µ4) plane given the low number of 3D CCSN simulations
available. However, as is evident from Fig. 3..3, no single separation line with
BH forming models above and exploding models below the line can be drawn to
segregate the final fate outcomes. To illustrate this, the separation lines with (k1, k2)
calibrations from Ertl et al. (2020), assuming the updated N20 and W20 engines8,
respectively, in 1D CCSN simulations with p-hotb are shown in the right panel.
These are consistent with explosions at low µ4M4 and low µ4 but evidently over-
predict BH formation compared to the 3D outcomes.

BH formation by fallback

If shock revival is successful, outflows and downflows onto the PNS co-exist until
the layers surrounding the PNS are unbound. During this process the PNS accretes
matter. If the mass gain lifts its mass beyond the limit for hydrostatic stability or
if the explosion is not energetic enough to unbind the envelope, the PNS undergoes
accretion-induced collapse to form a fallback BH. If not, the compact remnant be-
comes a NS. The M16 CCSN model not only predicts the final fate (successful or

8The excision of the PNS core introduces free parameters that regulate the neutrino-emission
evolution and settling of the hot accretion mantle above the PNS. These are constrained to reproduce
the explosion energy, nickel mass, total neutrino energy loss and duration of the neutrino signal of
SN 1987A. However, different parameter choices satisfy these observational constraints, and CCSN
outcomes still change depending on their calibration (Ertl et al., 2016).
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Figure 3..4: Prerequisites for black hole formation by fallback in a successful CCSN
explosion. Left panel: the exploding pre-SN progenitors are projected onto a plane
spanned by (ξ2.5, µ4M4). The minimal ξ2.5 = 0.04 value for fallback BH formation
to occur is indicated by a red horizontal line. The linear ξ2.5-to-µ4M4 fit model that
sets a minimal ξ2.5 value for fallback to occur depending on µ4M4 is represented by
a diagonal dashed red line. This constraint applies to progenitors with ξ2.5 < 0.41
(threshold indicated by horizontal line). For progenitors with a greater ξ2.5, fallback
may occur regardless of µ4M4. Right panel: the ratio M4/MCO discriminates the
compact remnant type. In both panels, the gray-shaded background indicates the
parameter subspace that permits both compact remnant types (NS and fallback BH)
while the yellow-shaded background indicates the subspace that excludes BHs and
guarantees NS formation.

failed SN) but also the remnant type (NS or fallback BH) for the case of a successful
SN. Out of 2685 exploding pre-SN progenitors in our sample, only 167 (' 6%) leave
fallback BHs behind. Based on pre-SN properties alone, we do not find a scheme
that could discriminate the remnant type (NS versus fallback BH) in a deterministic
way. Instead, we identify empirically prerequisites placed on pre-SN variables that
need to be fulfilled for fallback BH formation to occur with a certain probability:

• Fallback BH formation occurs only if the compactness is not critically low. At

ξ2.5 < 0.04, (3..8)

only NSs are left behind, since the silicon-oxygen layers (typically found at the
2.5M� mass coordinate surrounding the infalling iron core) are then too loosely
bound for substantial fallback onto the PNS.

• Fallback BH formation may occur if the dimensionless ξ2.5 parameter is large
compared to the dimensionless µ4M4 coordinate, which scales with the accretion
luminosity. Under these governing conditions, a typical outcome will be that
the kinetic explosion energy imparted to the gain region by neutrino heating
does not overcompensate its comparatively strong gravitational binding energy.
If the opposite holds, that is when

ξ2.5 < a · µ4M4 + b (3..9)
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with (a, b) = (1.75,−0.044), only NSs are left behind. This condition remains
valid for ξ2.5 ∈ (0.04, 0.41). For

ξ2.5 ≥ 0.41, (3..10)

the outer layers are tightly bound, and fallback may occur regardless of the
accretion luminosity.

• Fallback BH formation occurs only if MCO is large compared to the PNS mass
(which correlates with the M4 coordinate). These two masses allow to compare
two adverse effects on the final fate. The PNS mass is an important proxy
for the neutrino heating conditions, since it sets the PNS surface temperature.
MCO is a proxy for the gravitational binding energy of the entire carbon-oxygen
core and for the ram pressure exerted onto the revived shock as it propagates
outward. If

M4/MCO > 0.6 (3..11)

is satisfied, only NSs are left behind.

Fig. 3..4 summarizes these pre-requisites for BH formation by fallback. We find
that among the exploding progenitors that satisfy these conditions, the fraction of SN
explosions that lead to fallback BHs is f = 0.15, while NS formation is guaranteed if
these conditions are not satisfied.

3.3.2. Final fate landscapes of single and binary-stripped
stars

Explodability dependence on MCO and Z

Motivation: Previous works have shown that for the same MCO, pre-SN profile
structures of massive stars differ, depending on metallicity (e.g. Limongi and Chieffi,
2018; Schneider et al., 2023) and on whether the star evolved in isolation or underwent
binary mass transfer (e.g. Brown et al., 2001; Wellstein and Langer, 1999; Schneider
et al., 2021; Laplace et al., 2021). In spite of this, MCO-based CCSN recipes that are
typically used in rapid BPS codes do not make such a distinction. Here we construct
predictive models that bridge MCO to the final fate outcomes in a class-specific way,
i.e. with a distinct treatment of single and binary-stripped stars, and by taking Z
dependence into account. To facilitate the mapping, we assume a particular model
of the late burning stages, Schneider et al. (2021), that evolves stars from the end of
core helium burning (CHeB) up to the onset of iron core collapse. We then extract
the scalar quantities used in our pre-SN explodability criterion from the catalogs S21
and S23, and fit these as a function of MCO. The fits of the explodability proxies
are then used to assign final fates for MCO values in-between the Mmin

CO and Mmax
CO

thresholds9 for having explosion and implosion outcomes only, i.e. over the range

9With the 3D CCSN simulations of the stripped star m39 and Population III star z85 progenitors,
there are two counter-examples of explosions at MCO > Mmax

CO = 16.2M�. Nevertheless, for the
construction of a MCO-based CCSN recipe for rapid BPS codes, we keep these limiting values for
the following reason. The stellar models behind m39 and z85 have different input physics from the
single and stripped star models S21, S23, S24 and T24. Over these, the MCO axis is sampled up to
above 40 M� and we do not encounter explosions at such large CO core masses (see Fig. 3..10).
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where we find their co-existence, when applying the M16 SN code to the pre-SN
progenitors from S21 and S23.

Bimodality: We find that not only the explodability proxies (such as ξ2.5) of single
stars (e.g. Sukhbold et al., 2018; Limongi and Chieffi, 2018; Patton and Sukhbold,
2020; Schneider et al., 2021, 2023; Takahashi et al., 2023) as well as the ξ2.5 and sc
parameters of binary-stripped stars (Schneider et al., 2021), but that all the explod-
ability proxies relevant for our criterion introduced in Sect. 3.3.1. follow structured
bimodal trends – characterized globally by two peaks and a valley in-between – with
MCO, over the value range in-between Mmin

CO and Mmax
CO . This is shown in Fig. 3..5:

typically, the explodability proxy rises up to a peak at MCO values between around
6.1 and 8.4 M�, depending on the MT class and on Z, which for most proxies even-
tually reaches the respective threshold value for BH formation by direct collapse, as
predicted by the pre-SN criterion. With further increasing MCO, the values of the
proxies first decrease and then increase again. At MCO > Mmax

CO , even though the
explodability variable such as sc may oscillate down to below its upper threshold
(e.g., smax

c ), this does not change the final fate assignment due to the critically large
MCO value itself.

The reason why the dependence of explodability on MCO is non-monotonic is
that MCO is a proxy for the interior core structure at the onset of collapse as set
by the evolution through the late burning phases. The pioneering work of Sukhbold
and Woosley (2014) studied the physical origin of explodability properties on the
nuclear burning conditions during the burning stages past core helium exhaustion,
and how these are set by MCO. MCO controls the core temperature Tc and density ρc
and thereby also the neutrino luminosity leaking out of the core. At greater helium
core masses (which are proportional to the CO core masses), Tc and ρc during CHeB
are greater, and the 12C (α, γ)16 O reaction sets in earlier. This leads to a general
trend of having a lower XC at the end of CHeB with increasing MCO. The non-
monotonicity in the final fate dependence on MCO has been linked to episodes of
enhanced versus weakened neutrino-emission during core carbon and neon burning
phases (Brown et al., 2001; Sukhbold and Woosley, 2014), which in turn are primarily
set by MCO and XC (Chieffi and Limongi, 2020; Schneider et al., 2023; Laplace et al.,
2024). Carbon and neon burning becoming neutrino-dominated leads to an increase
in ξ2.5, and – by taking away thermal energy from the core – marks the transition
from a convective to radiative burning core, and changes the number as well as size
of carbon burning shells (Sukhbold and Woosley, 2014). However recent work by
Laplace et al. (2024) made the case that this transition is not the cause for the
changes in the explodability patterns, and identified the mechanisms explaining the
formation of the peaks in ξ2.5. When the temperature and density conditions (set
by MCO) and the amount of nuclear fuel (which, in the case of carbon burning, is
given by XC at carbon ignition) are such that the central burning source is strongly
neutrino-dominated, the core contraction increases, leading to a large fuel-free core
and – ultimately – to an increase in the iron core mass MFe and ξ2.5. For even more
neutrino-dominated cases at higher masses and lower initial fuel abundance, the next
nuclear burning episode ignites early, which counters the core contraction and leads
to a drop in MFe and ξ2.5. Ultimately, these mechanisms lead to the formation of
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3. Explodability criteria for the neutrino-driven supernova mechanism

characteristic ξ2.5 peaks when carbon and neon burning become neutrino-dominated.
We discuss how these findings relate to our predictive framework in Sect. 3.4..

Prediction of final fate landscapes: With the fitted models for each quantity
relevant for our pre-SN criterion and the critical values from Sect. 3.3.1., we sample
– for each MT class – MCO in increments of δMCO/M� = 0.1 within the range
MCO/M� ∈ (5.6.16.2) that has co-existence of failed and successful SN outcomes,
and evaluate the fitted GPR models of ξ2.5, sc, µ4M4 and µ4. If any of the ξ2.5, sc
or µ4M4 are above (below) the upper (lower) threshold — i.e., above ξmax

2.5 , smax
c or

µ4M
max
4 (or below ξmin

2.5 , smin
c or (µ4M4)min) — the outcome at the corresponding MCO

is a failed (successful) SN. If not yet classified given these threshold values, the µ4 fit
model is used to discriminate the final fate outcome based on the separation line in
the (µ4M4, µ4) plane set by eq. (3..7). Tables 3..3 and 3..4 summarize the results at
the two metallicities Z� and Z�/10.

Table 3..3: Boundary values in MCO demarcating non-explosive BH formation by
direct collapse at Z = Z�. Stars are expected to explode for MCO < M

(1)
CO and

for M
(2)
CO < MCO < M

(3)
CO. Conversely, stars are expected to implode, forming BHs

without a supernova, between M
(1)
CO and M

(2)
CO, and again from M

(3)
CO up to the pair-

instability mass gap.

M
(1)
CO/M� M

(2)
CO/M� M

(3)
CO/M�

single 6.6 7.2 12.9
case C 6.6 7.1 13.2
case Bl 7.7 8.3 15.2
case Be 7.8 8.3 15.3
case A 7.4 8.4 15.4

Table 3..4: Same as Table 3..3, but for Z = Z�/10.

M
(1)
CO/M� M

(2)
CO/M� M

(3)
CO/M�

single 6.1 6.6 12.9
case C 6.3 7.1 12.3
case Bl 7.0 7.9 14.0
case Be 6.9 7.9 13.5
case A 6.9 7.4 13.7

The following structural pattern of explodability dependence on MCO is preserved:

• At low MCO < M
(1)
CO, the outcomes are successful SNe.

• As MCO increases, a narrow direct collapse BH formation window arises for
MCO ∈ (M

(1)
CO,M

(2)
CO).

• It is followed by successful SNe for M
(2)
CO < MCO < M

(3)
CO.
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Figure 3..5: Dependence of the explodability parameters ξ2.5, sc, µ4M4 and µ4 of
single and binary-stripped stars (case A, case Be, case Bl and case C donors) on
MCO at Z = Z� and at Z = Z�/10. To obtain these, the data points (circles) from
S21 and S23 have been fitted using GPR models (solid lines). The red vertical lines
indicate the lower (upper) threshold in MCO below (beyond) which only explosions
(implosions) occur. The red horizontal lines indicate the lower (upper) threshold in
ξ2.5, µ4M4 and sc, respectively, below (beyond) which only explosions (implosions)
occur.
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• For critically large MCO ≥M
(3)
CO a plateau of BH formation outcomes by direct

collapse sets in.

What changes with Z and MT pre-history are boundaries M
(1)
CO, M

(2)
CO and M

(3)
CO.

Differences in the MCO dependence of final fates among single and stripped
stars: Comparing the final fates of single and binary-stripped stars at Z = Z� and
at Z = Z�/10 over the MCO range (see Table 3..3, Table 3..4 and Fig. 3..5), the three
most important conclusions are the following:

1. The boundaries M
(1)
CO, M

(2)
CO and M

(3)
CO shift systematically toward lower values

as Z decreases from Z� to Z�/10.

2. The need to discriminate between single and stripped star pre-SN progenitors
is apparent: for example, at Z = Z�, the BH formation window by direct
collapse is within (6.6, 7.1)M� for case C donors, while it is (7.4, 8.4)M� for
case A donors, i.e. these do not even overlap.

3. The critical MCO values of single stars / case C donors differ more substantially
from those of case A/B donors.

We further observe the following trends:

• the direct10 BH formation window widen for case C, case Bl and case Be donors,
as Z decreases.

• At Z�, M
(1)
CO and M

(2)
CO of single stars and case C stripped stars are almost the

same, however they differ at Z�/10. As Z decreases from Z� to Z�/10, M
(3)
CO

of case C stars lowers by more than a solar mass. This stands in contrast to
single stars, whose M

(3)
CO remains unaffected.

• The direct BH formation window of case A/B donors shifts toward larger MCO

values by 0.4− 1.3M� compared to single stars / case C donors, depending on
Z and on the mass transfer case. At Z�, the plateau of direct BH formation

outcomes sets in at significantly larger M
(3)
CO (by 2M� or more) in case A/B

donors compared to single stars / case C donors.

• M (3)
CO is greater, the earlier the hydrogen-rich envelope is removed.

10To shorten the terminology, in the following we use the terms ”direct BH” and ”fallback BH”.
For direct BH formation, failure of shock revival and implosion of the core without a supernova
(failed supernova) is assumed. For fallback BH formation, success of shock revival is assumed,
which launches a supernova but leaves a BH behind once the PNS collapses following the accretion
of fallback material. This classification allows to decouple the question of a star’s final fate from that
of its compact remnant mass, which is an additional degree of freedom associated with uncertainties.
A scheme to determine the compact remnant mass inevitably needs to assume whether most of the
hydrogen-rich envelope or only the helium core fall into the BH formed by direct collapse, and what
fraction of the ejecta mass falls back onto the PNS when a fallback BH is formed. Such a scheme
is not subject of this work.
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• The direct BH formation boundaries of case Be and case Bl systems are almost
the same at Z� and at Z�/10, except that M

(3)
CO is greater by half a solar mass

for case Bl compared to case Be donors at Z = Z�/10.

Among the stellar types considered, the direct BH formation window is widest
for case A donors at Z� (of 1M� width), whereas it is (together with that of single
stars) the narrowest at Z�/10 (of 0.5M� width). Direct BH formation windows of
all stellar types taken together cover a range from 6.1 to 8.4 M�.

S21 versus H16 single star models: We further study the systematics behind
differences in final fate outcomes based on a comparison of H16 to S21, which adopt
a different input physics for the advanced burning phases. H16 comprises a densely
sampled grid of single-star models over MCO ∈ (2, 15)M�. It therefore is ideal to
study phenomenologically the distribution of remnant types (NS, direct BH, fallback
BH). Fig. 3..6 shows their distribution over MCO. In contrast to the S21 set of single-
star models, there is no window at intermediate MCO values (i.e., around the first
peak in ξ2.5) over which BHs are predicted to form. The first peak in ξ2.5 is not
large enough to surpass ξmax

2.5 for having direct BH formation guaranteed. With the
exception of one model at MCO ' 2.8M�, all pre-SN progenitors up to a threshold
value MCO ' 9M� explode, and BHs form by direct collapse for values beyond. The

plateau of direct collapse outcomes sets in at a much greater value of M
(3)
CO = 12.9M�

in S21. In H16, ξ2.5 peaks at MCO ' 4.8M�, with a ξ2.5 value substantially lower and
the peak position in MCO shifted to a lower value by roughly 2M� compared to S21.
Few fallback BHs form near the ξ2.5 peak and close to the transition to the plateau of
direct BH outcomes. In Fig. 3..7, we further compare the MZAMS-to-MCO relations
for the H16 and the S21 single stars. Single star models starting from the same
MZAMS can result in remarkably different MCO values at the end of CHeB. MCO and
MZAMS can therefore not be used interchangeably for parametrizing explodability.

Guaranteed NS formation at large MCO

After having mapped out the final fates of single and binary-stripped stars in Sect. 3.3.3.,
as a next step, we investigate he type of the compact remnant left behind a successful
SN, which is either a NS or a fallback BH. Two important conclusions can be drawn
from the remnant type distribution over the densely sampled exploding models in
the H16 set (see Fig. 3..6):

1. Fallback BH formation is not randomly distributed over the MCO range but is
clustered, leaving regions of NS formation in-between the clusters.

2. Fallback BH remnants co-exist with NS remnants over clustered MCO ranges.

The M16 model with parameter choice from S21 predicts NS formation at large
MCO > 8M� over both H16 and S21, which CCSN recipes such as those introduced
in Fryer et al. (2012) and Mandel and Müller (2020) do not allow for.

We inquire whether there is systematics withMCO behind the clustered occurrence
of the rarer fallback BH formation outcomes in CCSN explosions. To this end, we
evaluate our probabilistic criterion defined in Sect. 3.3.1. for fallback BH formation
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based on the pre-SN variables ξ2.5, µ4M4,M4 and MCO. In a successful SN explosion,
when the criterion for fallback BH formation based on these variables is not satisfied,
the compact remnant is guaranteed to be a NS. The variables ξ2.5, µ4M4 and M4 =
µ4M4/µ4 all show bimodal trends with MCO and sharply decrease for MCO > M

(2)
CO.

For probability of the occurrence of fallback according to our pre-SN based criterion,
it is the difference in the slopes at which these quantities decrease (increase) compared
to one another what decides the remnant type. Tables 3..5 and 3..6 summarize the
widest intervals δMCO for which NS formation is guaranteed at Z = Z� and at

Z = Z�/10, over the range M
(2)
CO < MCO < M

(3)
CO.

In our sample of the S21 and S23 stellar models, we only find pre-SN progenitors
that leave fallback BHs behind for M

(2)
CO < MCO < M

(3)
CO (see right panel in Fig. 3..10).

Stellar models that fulfill the criterion form fallback BHs with a frequency of 0.15,
which we interpret as a probability P = 0.15. The probability has an objective and
a subjective origin: first, we expect that the map from MCO to the remnant type is
only partially bijective (i.e. allowing for co-existence of NSs and falback BHs), and
second, we are ignorant of the precise location and width of the window over which
fallback BHs are expected to be constrained to cluster.

Table 3..5: Critical values in MCO for NS formation at Z = Z� from single and
binary-stripped star SN progenitors12. MNS,1

CO and MNS,2
CO indicate the width of the

windows over which stars are expected to explode and to leave NSs behind. Outside
these intervals, the compact remnant for exploding stars with M

(2)
CO < MCO < M

(3)
CO

is either a NS or a fallback BH.
MNS,1

CO /M� MNS,2
CO /M�

single 9 10.2
case C 9.6 10.7
case B 9.9 10.3
case A 11.1 12.1

Table 3..6: Same as Table 3..5, but at Z = Z�/10.

MNS,1
CO /M� MNS,2

CO /M�
single 7.4 11
case C 8.9 9.5
case B 9.3 10.3
case A 10.4 11.1

For the same MT pre-history class, the guaranteed NS formation windows in
MCO shift systematically toward larger values as Z increases. For the same Z, the
earlier MT sets in, the larger is the value range in CO core mass over which NSs are
predicted to form.
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Figure 3..8: Left panels: Regions of BH formation by direct collapse (in black),
of NS formation (in orange) and of the co-existence of fallback BH and NS rem-
nants (in grey) in the stellar parameter space spanned by MCO and Z for each MT
pre-history class (none, case C, case B and case A). The MCO range is limited to
within MCO ∈ (Mmin

CO ,M
max
CO ) (borderlines in red), outside of which only implosions

and explosions, respectively, are predicted to occur. Right panels: Statistical real-
ization of our probabilistic fallback BH formation recipe within the MCO intervals as
generalized by the MNS,i

CO ∝ log(Z/Z�) model for i = 1, 2. The boundaries demarcate
windows inside of which NS formation is guaranteed. Outside of these, fallback BH
formation is predicted to occur at a probability P = 0.15 over M

(2)
CO < MCO < M

(3)
CO.
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CCSN recipe for rapid BPS

We construct a CCSN recipe that retains the distinction between single and binary-
stripped stars and a dependence on Z. To get a first-order estimate of how BH
formation boundaries we derived in Sect. 3.3.3. and 3.3.2. for Z� and Z�/10 depend
on Z more generally, we assume a linear model in logZ for scaling the boundaries

M
(i)
CO(Z)/M� = ai + bi · logZ/Z� (3..12)

for i = 1, 2, 3 and each MT pre-history class.
For each MT case, we determine a separate set of parameters (ai, bi) that fit

the model defined by eq. (3..12) to connect the two known critical value points(
M

(i)
CO(Z = Z�),M

(i)
CO(Z = Z�/10)

)
for i = 1, 2, 3 at Z = Z� and at Z = Z�/10,

respectively, by a curve (see Appendix B2. for explicit formulae how these are cal-
culated analytically). The same procedure is applied to the fallback BH formation

boundaries set by M
(NS,1)
CO and M

(NS,2)
CO in-between M

(2)
CO and M

(3)
CO. Since we do not

encounter BH formation by fallback in our S21 and S23 samples for MCO < M
(1)
CO, we

infer that these are statistically insignificant and – for the CCSN recipe – assume that
only NSs form. Fig. 3..8 shows the outcome for single and binary-stripped stars. The
prediction of the occurrence of fallback is limited by both systematic uncertainties
about CCSN outcomes and the restricted modeling approach using global parameters
given at the time of evolutionary cut-off alone. With the exception of single stars
and case C donors at Z�, the guaranteed NS formation windows are rather narrow.
We therefore construct a second, even simpler probabilistic fallback model for rapid
BPS, which we designate as model B. For model B, we assume a uniform probability
of 10% for the occurrence of fallback BH formation in-between M

(2)
CO and M

(3)
CO. This

probability is assumed given the relative frequencies for the occurrence of fallback
BH formation from successfully exploding stellar models:

• 8.5% over the entire set of pre-SN progenitors (S21, S23, S24, T24, H16),

• 11.5 % over single and binary stripped stars S21, S23, T24, for which the same
physics for the late burning stages has been assumed.

These frequencies are similar despite differences in adopted stellar evolution physics
and resulting pre-SN properties. We thus coarse-grain over these differences and
assume a value of 10%.

The resulting final fate landscape of single and binary-stripped stars shows a
recurrent pattern: a direct BH formation window is followed by an interval permitting
co-existence of fallback BHs and NSs, then by a NS formation window at even higher
MCO, which again is followed by an interval with co-existence of fallback BH and NS
outcomes, until the plateau of BH formation outcomes is reached.

This remnant type distribution follows directly from the bimodal dependence of
explodability proxies µ4M4, µ4, ξ2.5 and sc on MCO (see Fig. 3..5), and has its shifts
in critical MCO value ranges depending on Z and MT pre-history.

Finally, with the fitted parameters of the assumed scaling law given by eq. (3..12),
we obtain a CCSN recipe that predicts final fates (failed or successful SN) and rem-
nant type (NS or BH) for given MCO, Z and assignment of MT pre-history class.
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Figure 3..9: Cross-comparison of CCSN outcomes predicted by MCO-based CCSN
recipes for binary population synthesis.

The source code behind its construction is applicable for rapid BPS studies and
available upon reasonable request to the corresponding author. Usage of this CCSN
recipe beyond Z ∈ (Z�/10, Z�) is extrapolation. The recipe breaks down at a cut-off
Zcut−off < Z�/10 presumably higher than zero (Population III stars). The CCSN
recipe and the pre-SN explodability criterion formulated in Sect. 3.3.1. are based
on the same CCSN model. However, the former, i.e. the final fate parametrization
scheme as function of MCO loses the universality property, since the critical values
in MCO become dependent on adopted physics of the late burning stages that evolve
the star carbon burning onward up to the pre-SN stage, and since we find different
critical MCO value ranges depending on stellar MT pre-history and metallicity.

Comparison with other MCO-based CCSN recipes

The following more general conclusions can be drawn from the final fate landscapes
of single and binary-stripped stars at Z ≥ Z�/10 that result from our predictive
framework, regardless of Z and MT pre-history:

• for MCO/M� < 6.1, only NSs form,

• for MCO/M� ∈ (6.1, 15.4), NS, direct BH, and fallback BH remnants co-exist,

• for MCO/M� ∈ (8.4, 12.4), direct BH formation is excluded and a successful SN
explosion guaranteed, leaving NSs or fallback BHs behind, and

• for MCO/M� > 15.4, only direct BHs form.

This final fate parametrization using MCO differs substantially from others that
have commonly been used in binary population synthesis codes and that adopt a
similar approach of predicting CCSN outcomes based on MCO. In Fig. 3..9 we com-
pare the CCSN outcomes predicted by our recipe to those by Mandel and Müller
(2020) (MM20), Mapelli et al. (2020) (M20), Fryer et al. (2012) (F12) and Patton
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and Sukhbold (2020) (PS20). In what follows, we summarize each of these CCSN
recipes and discuss in more detail how these compare to ours.

MM20: In MM20, the remnant mass and type is assigned using probabilistic for-
mulae based on calibrated threshold values Mi, with i1, . . . 4, in MCO. Core collapse
is predicted to result in a successful SN that leaves only NSs behind for MCO ≤M1.
BHs (formed either by fallback or directly) and NSs co-exist for M1 < MCO ≤ M3.
For M3 < MCO ≤ M4, BH formation, either directly or by fallback, is guaranteed.
For MCO > M4, only direct BHs form. The default threshold values are M1 = 2M�,
M3 = 7M� and M4 = 8M�. MM20 is used as CCSN recipe in compas, for example.

While both MM20 and our CCSN recipe are constructed based on outcomes of
the M16 SN codes, there are two main differences. The first concerns the parameter
choice for the M16 SN code: in MM20 the default settings from M16 are used, except
for a higher accretion efficiency (ζ = 0.8) and a different calculation of the final mass
cut in case of BH formation by fallback in a successful CCSN explosion. The second
difference concerns the pre-SN progenitor models: MM20 is based on the H16 single
star models at Z = Z�. A randomized scheme is used that follows gross trends of
compact remnant mass Mrem with MCO.

M20: According to M20, there is no co-existence of BHs and NSs for the same
MCO. Only NS form up to a critical CO core mass M crit

CO , and only direct BHs form
for more massive CO cores.13 M20 differs from our framework in three principal
regards. First, the stellar progenitors considered in M20 are the single star models
from Limongi and Chieffi (2018) evolved from ZAMS up to the onset of iron core
infall over a parameter space spanned by MZAMS, Z and initial rotation vini. Second,
as pre-SN explodability criterion, ξ2.5 is used in M20. Third, in order to relate
CCSN outcomes to MCO, in M20 the ξ2.5 values over the sampled parameter space
in (MZAMS, Z, vini) are stacked together, and then fitted as function of MCO with
a monotonically increasing parametric power-law model. The critical compactness
value ξcrit

2.5 for BH formation is a free parameter in M20. Setting the threshold for
BH formation to ξcrit

2.5 = 0.3 as is suggested in M20, results in M crit
CO = 4.4M�. With

greater threshold values ξcrit
2.5 ∈ [0.32, 0.33, 0.37, 0.45], the resulting critical CO core

masses are M crit
CO/M� ∈ [4.8, 5, 6.1, 11].

M20 and MM20 both are based on stellar evolution tracks that exhibit a weak
compactness peak (ξmax

2.5 < 0.45) at intermediate MCO < 7M�, which does not reach
the upper threshold for direct BH formation (see Fig. 1 in Mapelli et al. (2020) for
M20, and Fig. 3..6 for MM20), according to our pre-SN based criterion. The CCSN
recipes are indirectly testable by comparison to observations of compact remnant
masses. M20 and MM20 both do not predict the presence of a BH-BH (“upper”)
mass gap, because direct BH formation outcomes are not interrupted after having
set in at sufficiently large MCO. Our CCSN recipe is compatible with a BH-BH mass
gap, since there is a SN window between MCO ∈ (8.4, 12.4)M� independent of MT
pre-history and Z > Z�/10, over which the expected outcome is a NS or a fallback

13In context of the BPS code sevn (Iorio et al., 2023), a fallback BH formation window is inserted
over MCO values in-between the NS and direct BH outcomes.

77



3. Explodability criteria for the neutrino-driven supernova mechanism

BH of lower mass than one that would arise from a direct BH at the same MCO.
The default M20 model (without fallback) predicts a NS-BH (“lower”) mass gap
because of a sharp transition between remnant types at a critical M crit

CO and because
BH progenitors with lower MCO are weakly affected by stellar winds (Mapelli et al.,
2020). MM20 does not predict a lower mass gap, since over the MCO ∈ (2, 7)M�
range, direct BH, fallback BH and NSs co-exist.

F12: In Fryer et al. (2012), a recipe is formulated for computing compact remnant
masses. The original recipe uses parametric fits to model remnant masses as function
of ZAMS mass and metallicity of single-stars. It is constructed based on hydrody-
namical simulations and stellar progenitors at two reference metallicities (solar and
Population III) from Woosley et al. (2002). The original recipe is then reformulated
as a function of MCO and final mass, to account for differences in outcomes due to
different assumptions about wind mass loss and binary mass transfer. It is assumed
that the amount of fallback onto the PNS (of fixed mass ' 1M�) depends on the
timing of the explosion (a “fast-convection” explosion, if it happens within 250 ms
after core bounce; a “delayed-convection” explosion otherwise), since the accretion
rate of the infalling material decreases with time and therefore also the total ki-
netic energy stored in the convective region between the PNS and the base of the
shock. The fast-convection (“rapid”) explosion model and the delayed-convection
(“delayed”) explosion models do not explicitly distinguish the remnant type. How-
ever, the remnant type can be distinguished implicitly in the rapid model, since it
predicts a lower mass gap. According to the rapid F12, there is no co-existence of NSs
and BHs for the same MCO. For MCO < 6M�, only NSs form. For MCO ∈ (6, 7)M�
and MCO > 11M�, only direct BHs form. For MCO ∈ (7, 11)M�, stars are predicted
to explode and leave only fallback BHs behind, with a fallback mass fraction that
increases with MCO.

Comparison to 3D CCSN simulation outcomes: The MM20, M20 and F12
recipes are less consistent with 3D CCSN simulation outcomes than the new recipe
presented in this work. For example, the explosion (in the 3D simulation) of the
MCO = 6.07M� single star Z = Z� model s24 from the Monash group is consistent
with our recipe but not with rapid F12. The explosion in 3D of the high MCO =
8.2M� but low ξ2.5 = 0.22 binary-stripped star y20 is not consistent with the default
upper mass limit for explosions (M4) in MM20, and with the ξ2.5-to-MCO relation
assumed in M20. The explosion in the 3D simulation of Population III star z40 at
MCO = 12.9M� is consistent with our CCSN recipe (when extrapolated to Z = 0),
but not with any of the others mentioned.

PS20: In PS20, the final fate dependence on the starting point in (MCO, XC) plane
at zero age core carbon burning has been studied systematically. The final fates are
predicted by applying E1614to the pre-SN profiles that are obtained after evolving
bare CO cores through the late burning phases over a densely sampled grid in the

14E16 is the default criterion suggested by PS20. However, other explodability criteria can equally
be extracted from the pre-SN profiles, such as the ξ2.5-based final fate determination.
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(MCO, XC) parameter space. The motivation for evolving bare CO cores is that after
the end of CHeB, the evolution of the core and that of the envelope are largely
decoupled. The envelope re-structures itself on the thermal timescale and has little
time to re-adjust to the core whose evolution speeds up after core helium burning due
to the enhanced neutrino losses - it only takes a few thousands of years from carbon
ignition up to collapse. Final fates are looked up given (MCO and XC), and the grid
base interpolated over to get predictions at arbitrary values of interest within the
grid boundaries. When assuming E16 as explodability criterion, the gross trend is
that at high XC and low MCO, explosions dominate, while it is implosions at low
XC and high MCO. At the grid boundaries in MCO, the most frequent outcomes are
explosions over all XC at the low-mass end of MCO = 2.5M� and implosions over
the majority of XC at the high-mass end of MCO = 10M� (see Fig. 3..12). For
population synthesis purposes, it therefore has been suggested to assume that all
stars with MCO < 2.5M� explode and all stars with MCO > 10M� implode (Patton
et al., 2022). Implosions and explosions may in principle co-exist over the entire
range from 2.5 to 10 M�, provided that XC is suitably chosen.

Explodability dependence on XC

Given a fixed MCO, we inferred that the final fate of a given pre-SN progenitor may
differ, depending on its Z and its MT pre-history. We find systematics behind these
differences by taking into account XC at the end of core helium burning. Fig. 3..10
shows the XC-to-MCO dependence of single and binary-stripped stars at Z� and at
Z�/10, respectively. For the same MCO and MT pre-history, as Z increases, XC

increases. This is because with greater Z, the helium core is less massive due to its
reaction to stronger wind mass loss from the envelope. In a less massive helium core,
the core temperature is lower and the 12C (α, γ)16 O reaction sets in later during core
helium burning. This leaves more carbon in the core at core helium exhaustion. With
a higher XC for the same MCO, more nuclear fuel is available during the relatively
long-lasting carbon burning phase. A higher XC shifts the peaks in explodability
proxies such as ξ2.5 toward larger MCO values (Patton and Sukhbold, 2020; Chieffi
and Limongi, 2020). At a critically low XC , the dependence of explodability proxies
on MCO flattens and the peak structure vanishes altogether.

Single stars and case C donors follow similar tracks in the (MCO, XC) plane at
Z� and at Z�/10, respectively. The same applies to the XC(MCO) tracks of case
A and case B donors. The differences are noteworthy only at MCO < 2M� and
at MCO > 15M�. For the same MCO and Z, Case A/B donors have a higher XC

compared to single stars/case C donors. Effects of case A/B MT change the core
structure of the donor because before core carbon burning, the core and envelope
evolution are not yet decoupled. For the same metallicity, earlier removal of the
hydrogen-rich envelope leads to a lower helium core mass, as a response to the mass
loss. A less massive helium core leads to a cooler core temperature during CHeB.
This results in a greater XC , since the 12C (α, γ)16 O reaction that uses up carbon
sets in at hotter temperatures than the Triple-α reaction that produces it.

The starting points in (MCO, XC) plane set the neutrino burning conditions for the
late burning stages, which pre-determine the explodability of the pre-SN progenitors.
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Figure 3..10: Left panel: XC(MCO) tracks of single and binary-stripped stars (case
C, case B and case A donors) at Z� and at Z�/10, respectively. Right panel: CCSN
outcomes of single and binary-stripped stars at Z� and at Z�/10 in the (MCO, XC)
plane.
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Figure 3..11: The lower XC abundance in the H16 set compared to the S21 set, for
the same MCO mass. It explains the shift of the compactness peaks toward lower
values in H16 compared to S21, and the resulting differences in the CCSN outcomes
over the Z� single star models (see Fig. 3..6).
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Figure 3..12: Final fate landscapes resulting from E16 (left panel) and from our
pre-SN based explodability criteria (right panel), when applied to the pre-SN profiles
over the PS20 grid in the (MCO, XC) plane. The parameters (k1, k2) of the separation
line for the E16 criterion are calibrated to the updated W20 engine from Ertl et al.
(2020). The explodability criterion introduced in this work is more optimistic about
successful explosions than E16, and leads to a segmented final fate landscape. The
latter features two islands of direct BH formation over a similar MCO range but
different value ranges in XC . In contrast to the landscape resulting from the E16
criterion, in the one resulting from our criterion the plateau of BH formation outcomes
is not yet in sight at MCO = 10M�.

The systematic shifts (see right panel of Fig. 3..10) of direct BH formation boundaries
in MCO with increasing Z and when comparing those of single star/case C systems
to those of case A/B windows can thus be reverted to differences in XC for the same
MCO.

More generally, differences in the adopted stellar evolution physics up to the end
of CHeB will manifest themselves in differences in XC-to-MCO relations (e.g. Chieffi
and Limongi, 2020; Patton and Sukhbold, 2020; Schneider et al., 2021; Temaj et al.,
2024). For example, for the same model (S21) of the late burning phases, increased
core overshooting smoothly shifts the XC(MCO) tracks for the same XC towards
larger MCO values (see Fig. 3 in Temaj et al. (2024)). Likewise, the difference in the
predicted final fate landscape of the H16 versus the S21 single stars as a function of
MCO can be traced back to a lower XC for the same MCO in H16 compared to S21
(see Fig. 3..11).

While we relate the differences in CCSN outcomes among single and binary-
stripped stars and with variable Z to a higher XC in binary-stripped stars compared
to single stars and to a higher XC with increasing Z, rapid BPS codes do not track
the XC variable. BPS codes that do keep track the XC variable can use the PS20 grid
to look up the final fate. When the pre-SN models over the PS20 grid are assigned
a final fate by using the E16 criterion, the final fate is sensitive to the location
in (MCO, XC) plane, featuring a landscape that has explosion islands in implosion-
dominated regions and vice-versa (see left panel of Fig. 3..12). Note that while E16
fails to reproduce the 3D CCSN simulation outcomes (see right panel of Fig. 3..3),
it is the pre-SN criterion that has recently been used in bpass (Patton et al., 2022)
and posydon (Fragos et al., 2023) BPS codes over the PS20 grid. To highlight the
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differences between our15 and the E16 pre-SN criteria, we compute the resulting final
fate landscapes over the same grid of PS20 pre-SN progenitors (see Fig. 3..12). As is
evident from Fig. 3..12, applying E16 over PS20 yields an implosion-dominated final
fate landscape at the grid boundary MCO = 10M� for most XC values. In contrast,
our pre-SN criterion over PS20 results in a decay of the direct BH formation stripe
at MCO ' 9M� and a final fate landscape that is dominated by explosions except at
low XC . The parameter space width in MCO is not wide enough to assess when and
whether at all – according to our pre-SN criterion– the final fate landscape becomes
implosion-dominated regardless of XC as MCO increases beyond 10M�. Over the S21
and S23 tracks in (MCO, XC), no explosions are found for MCO > 15.4M�, however
this statement is valid only for XC roughly within 0.1 and 0.2.

We defer the development of a final fate look-up table over an extended parameter
space in MCO with arbitrary starting points in (MCO, XC) plane to future work. In
order to make final fate predictions over the (MCO, XC) parameter space with our
explodability criterion, the (ξ2.5, sc, µ4M4, µ4) variables necessary for its evaluation
are readily available in the PS20 data base and can be interpolated over in the
(MCO, XC) for MCO ≤ 10M� plane in the same way as is done at present with the
(µ4M4, µ4) parameters for evaluating E16. For MCO > 10M�, our CCSN recipe for

rapid BPS (see Sect. 3.3.2.) can be used to look up M
(3)
CO of single and binary-stripped

stars.

3.3.3. Comparison with observations

In what follows, our CCSN recipe as well as the aforementioned ones (MM20, M20,
F12, PS20) are tested against CCSN observations that allow to estimate the MCO of
pre-SN progenitors.

Type IIP SN progenitors and the missing RSG problem

Type IIP SNe are the most frequent type of observed transients in a volume-limited
sample, and result from CCSNe of massive stars with hydrogen-rich envelopes. In
a few dozen of cases, observational missions have directly imaged the explosion site
years before the transient detection in nearby galaxies, using space- or ground-based
telescopes. Pre-explosion imaging allowed to estimate photometric properties of Type
IIP SN progenitors, in particular their effective temperature and bolometric lumi-
nosity, and confirm the expectation that these are red supergiants (RSGs) (Smartt,
2015). During the advanced burning phases, the bolometric luminosity of RSGs
changes little, and is primarily set by the core mass. The CO core mass sets the in-
ner temperature and density stratifications, and thereby also determines the burning
rate of helium in the shell surrounding the CO core. This leads to a dependence of
bolometric luminosity of pre-SN RSGs on the CO core mass. RSGs not only preserve
a hydrogen-rich envelope up to collapse, but also retain a nearly constant CO core

15For our pre-SN criterion, we lift the MCO-based condition for the distinction between failed and
successful SNe and assign final fates based on the variables ξ2.5, sc, µ4M4 and µ4.
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Figure 3..13: Inferred MCO values (within uncertainty bounds) of the most luminous
Type IIP SN progenitors SN2012ec, SN2009kr and SN2009hd, of the failed SN can-
didate N6946-BH1 and of the progenitor of the Type IIn SN2019jl, assuming that all
these systems stem from the single star progenitor channel. Inference is performed
using a parametric scaling law logLTACCB(MCO) that relates bolometric luminosity
logLTACCB at terminal age core carbon burning to MCO. Observations are compared
with the direct BH formation windows predicted by our CCSN recipe model as func-
tion of Z, and the Humphreys-Davidson limit for Red Supergiants in the Magellanic
Clouds, that together with the upper bound on the SN2009hd progenitor defines the
value range in logLTACCB (and MCO) over which RSGs are missing out as observed
Type IIP SN progenitors.
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mass after formation at the end of CHeB16. In the present work, we use the empirical
formula given by eq. (6) in Temaj et al. (2024) to estimate MCO of the most luminous
observed Type IIP pre-SN progenitors. To this end, we invert it in order to express
the estimated CO core mass M̂CO,

M̂CO/M� = 10(logLpre−SN,obs/L�−4.372)/1.268 (3..13)

as function of observed pre-SN bolometric luminosity logLpre−SN,obs.
According to Davies and Beasor (2018), the three most luminous observed Type

IIP pre-SN progenitor are those of SN2009hd (Elias-Rosa et al., 2011), SN2012ec
(Maund et al., 2013) and SN2009kr (Fraser et al., 2010). With its logLpre−SN,obs/L� =

5.24 ± 0.08, the progenitor of SN2009hd is estimated to have M̂CO = 4.84+0.76
−0.66M�.

The Humphreys-Davidson (HD) limit of the most luminous RSGs that have been
observed in the Magellanic Clouds is logL/L� ' 5.5 (Davies et al., 2018). The lack
of observed Type IIP SN progenitors at higher luminosities up to the HD limit defines
the problem of missing RSGs as Type IIP progenitors (Smartt, 2009). The luminos-
ity of the brightest, (most likely) helium burning stars that define the HD limit is
lower than that of pre-SN stars. Therefore, logL/L� ' 5.5 is in fact a lower bound
on the upper boundary to the luminosity range over which RSGs are missing out as
Type IIP SN progenitors. Assuming that the lower boundary is set by the upper limit
logL/L� = 5.32 on SN2009hd, using eq. (3..13), the missing RSG problem can be re-
formulated as the lack of RSG progenitors of Type IIP SNe over MCO ∈ (5.6, 7.8)M�.
One of the solution proposals is that RSGs over this range do not explode and instead
collapse to form BHs quietly (Smartt, 2009, 2015). We test whether this hypothesis
is compatible with our predictive models. Since our MCO-based CCSN recipe for
single stars predicts explosions for MCO < 6.1M� at Z > Z�/10, the three most
luminous Type IIP SNe cited in this work and observations of all fainter ones are
all consistent with our predictive model (see Fig. 3..13). The integral BH forma-
tion window of single stars over all Z > Z�/10 predicted by our model is contained
within the value range in MCO over which RSGs are indeed found to be missing.
However, this failed SN window does not entail the intervals logL/L� ∈ (5.32, 5.37)
and logL/L� ∈ (5.45, 5.5). Within our framework, the direct BH formation window
over MCO is of width ' 0.4 − 0.5M� as it gradually slides from (6.1, 6.6)M� to
(6.6, 7.2)M� while Z increases from Z�/10 to Z�. For example, this means that
a star of MCO = 6.5M� is predicted to implode at Z = Z�/10 but to explode at
Z = Z�. If RSGs happen to co-exist at variable Z over the MCO ∈ (6.1, 7.2)M�
range, then Type IIP are expected to be suppressed but observable. In other words,
direct BH formation can be part of solution to the missing RSG problem by a sup-
pressed SN rate, but there must be other physical reasons on top to add to it, in
particular over the intervals logL/L� ∈ (5.32, 5.37) and logL/L� ∈ (5.45, 5.5).

The source N6946-BH1 is a failed SN candidate (Gerke et al., 2015), whose bolo-
metric luminosity logL/L� = 5.40± 0.09 imaged before disappearing in the optical
(Adams et al., 2017) is within the luminosity range over which RSGs are missing out
as SN progenitors. Assuming that it is indeed a failed SN17, it is consistent with the

16The CO core mass at the end of CHeB and at the onset of iron core infall has negligible variation
not only for RSGs but over all the S21 and S23 progenitors (except at MCO > 18M�).

17Based on observations of a luminous infrared source at the same sky location, recent work has
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direct BH formation interval in MCO predicted by our CCSN recipe. However, the
observation is not constrained enough to confirm it. With logL/L� = 5.4, assuming
that the progenitor is a RSG, M̂CO ' 6.5M�, which lies within the span of direct
BH formation windows from Z > Z�/10 up to slightly sub-solar. A higher logL/L�
of N6946-BH1 favours an implosion at higher Z, a lower one favours an implosion at
lower Z. The value ranges logL/L� > 5.45 or logL/L� < 5.36 would be too bright
or too faint to be inside any of our direct BH formation windows in MCO between
Z� and Z�/10.

Since MM20 admits failed and successful SNe up to MCO = 8M�, it is consistent
with observations of the most luminous Type IIP SN progenitors. It can partially
address the missing RSG problem by direct BH formation because of an increasing
probability for direct BH formation with increasing MCO. In order to account for
MCO of the progenitor of SN2009hd, the compactness threshold in M20 needs to be
placed at ξ2.5 ≥ 0.323, which implies M crit

CO ≥ 4.85M�. Assuming that all stars with
MCO > M crit

CO implode, M20 can address the missing RSG problem by BH formation
entirely. F12 is consistent with the most luminous Type IIP SN progenitors and can
partially explain the missing RSG problem by BH formation over a similar range
(MCO/M� ∈ (6, 7)) as our CCSN recipe. In contrast to the Z-dependence of the BH
forming windows in MCO of our CCSN recipe, F12 does not predict co-existence of
failed and successful SNe over the MCO/M� ∈ (6, 7) range, and therefore predicts the
absence of Type IIP SNe over this MCO range, while our model only predicts their
suppression. M20 and MM20 are consistent with N6946-BH1 constituting a failed
SN for any value within logL/L� = 5.40± 0.09, whereas – similar to the constraint
valid for our CCSN recipe – F12 requires it to be within logL/L� = 5.40± 0.04.

PS20 coupled to E16 can explain the most luminous Type IIP SNe and the missing
RSG problem by failed SNe provided that stellar models of RSGs at variable Z have
XC(MCO) relations suitably low for passing through explosion/implosion sites.

When assuming PS20 as model for the late burning stages but using our pre-SN
explodability criterion instead of E16 to map out final fates in the (MCO, XC) plane,
tighter constraints are posed on stellar evolution models up to end of CHeB. In order
to “land” on the implosion stripe at intermediate MCO values in-between the MCO

range over which RSGs are found to be missing (see Fig. 3..14), stellar models need
to have specific XC values over MCO intervals (and thereby logLpre−SN/L� value
ranges) of interest.

Type IIn SN progenitors:

Type IIL SN progenitors: In the few cases of SNe IIL progenitor identification,
no progenitor luminosity greater than the most luminous Type IIP of logL/L� =
5.24± 0.08 has been estimated.

Type IIn SN progenitor channels and observations: In contrast, Type IIn
SN progenitors as bright as logLpre−SN/L� > 6 have been observed (Gal-Yam et al.,
2007; Boian and Groh, 2018; Kankare, E. et al., 2015). Type IIn SNe are distinctive by

questioned this hypothesis and made other progenitor scenarios, such as a stellar merger event,
plausible.(Beasor et al., 2024)
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Figure 3..14: Final fates (failed or successful SNe) in (MCO, XC) plane, when applying
the pre-SN explodability criterion introduced in this work to the pre-SN progenitors
from PS20, and the constraints it poses on stellar evolution models for partially
addressing the missing RSG problem by direct BH formation. The MCO range over
which RSGs are found to be missing is delineated in red. The H16, S21 and mesa
isochrones and stellar tracks (MIST; Choi et al., 2016) single star models
lead to different XC(MCO) tracks through this plane.

narrow, bright multi-component hydrogen Balmer lines in the spectrum. These lines
are attributed to interaction of the supernova with the circumstellar medium, which
may have been formed by episodes of enhanced mass loss from the pre-SN progenitor.
Progenitor channels of Type IIn SNe may be single stars, but also accretor stars and
stellar merger products. The latter two categories are the more likely ones, given their
explosion sites in the HR diagram (Justham et al., 2014; Schneider et al., 2024). In
the accretor star scenario, a binary system is subject to stable mass transfer, wherein
the acceptor star accretes mass from the hydrogen-rich envelope of the donor star,
and then explodes to produce a hydrogen-rich transient. The large logL values do not
necessarily imply large MCO for accretor stars, because luminosity in that case also is
contributed by hydrogen-rich envelope mass and hydrogen shell burning luminosity,
not only the helium burning shell whose burning conditions are largely set by MCO.

Single star progenitor channel for Type IIn: However, not all Type IIn need
to have accretor star or stellar merger progenitors. In the single star scenario, the
progenitor is expected to have gone through a luminous blue variable (LBV) phase of
enhanced mass loss outbursts, which however did not shed away the entire hydrogen-
rich envelope by the time the explosion sets in. We explore consequences of the
hypothesis that the Type IIn SN2010jl (Smith et al., 2011) is such a case. Its compar-
atively faint progenitor is inferred to have a bolometric luminosity of logL/L� = 5.55,
and the observational data is consistent with a progenitor that has gone through a
LBV phase. We find that the logLTACCB(MCO) scaling law remains reliably appli-
cable up to logL/L� ' 5.7, even though the stellar models then are not anymore
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RSGs. From eq. (3..13) follows that assuming that the progenitor is a single star,
its carbon-oxygen core is estimated to weigh M̂CO = 8.5 M�. This value is inside
the region over which our CCSN recipe predicts explosions of single and stripped
stars independent of Z, and the same applies to F12. MM20 is challenged to explain
a single star progenitor channel of SN2010jl, since it allows for explosions only up
to MCO < 8M�. Consistency requires lifting the M4 threshold value up to which
MM20 allows for the occurrence of fallback BHs. M20 cannot explain the missing
RSG problem by direct BH formation and SN2010jl by the single star progenitor
channel at the same time. Lifting ξcrit

2.5 to a greater value to explain the progenitor
SN2010jl results in loss of explanatory power over the missing RSG problem.

Type IIb/Ib SN progenitors:

The progenitors of stripped-envelope SNe (SESNe) are considered to either be massive
single stars that experienced strong mass loss or donor stars that evolved through a
binary MT phase. At the time of explosion, the progenitor could be a blue supergiant,
a cool supergiant or a Wolf-Rayet (WR) star. Only five progenitors of Type IIb and
two progenitors of Type Ib SNe have been imaged directly (Gilkis and Arcavi, 2022).
The most luminous progenitors are those of the Type IIb SN1993J (Aldering et al.,
1994), estimated to have logL/L� = 5.1 ± 0.3, of the Type IIb SN2016gkg (Arcavi
et al., 2017), estimated to have logL/L� = 4.99±0.32, and of the Type Ib SN2019yvr
(Kilpatrick et al., 2021), estimated to have logL/L� = 5.3± 0.2. All three estimates
have been revised in Gilkis and Arcavi (2022), which assesses the most luminous
progenitor source to be that of SN2016gkg with logL/L� = 5.28± 0.16.

We explore the consequences of the hypothesis that the progenitors of these sys-
tems are case B donors that explode after having lost all or most of their hydrogen-
rich envelope. This progenitor channel is supported by comparison of observations
to detailed stellar evolution models (Yoon et al., 2017). For inferring MCO of the
progenitors, we find that the logLTACCB(MCO) scaling law is applicable also to case
B donors in S21 and S23 independent of Z up to logLTACCB/L� ' 5.2. At greater
logLTACCB, dependence on Z emerges: eq. (3..13) predicts a MCO value lower than
the actual stellar models at Z�/10. Further more, the progenitor MCO is greater
the greater is Z (see Fig. 3..15). At logLTACCB > 5.2L�, the scaling law therefore
provides a lower limit on the progenitor MCO.

Within the observational uncertainty bounds, the progenitor MCO inferred from
eq. (3..13) is admitted to be > 6M� in four out of in total six reference luminosity
estimates. In addition, a progenitor metallicity closer to Z� than to Z�/10 makes a
greater progenitor MCO than the one inferred from eq. (3..13) more likely. Compared
to the most luminous Type IIP SN progenitors detected, those of Type IIb/Ib admit
greater progenitor luminosities and therefore greater MCO. This is consistent with
our CCSN recipe, which predicts the BH formation windows in case B systems to
be shifted toward greater MCO values compared to single stars. MM20 can explain
the progenitor observations since it allows for explosions for MCO < 8M�. M20 can
explain the observations provided that a high enough M crit

CO is set. However, the obser-
vations challenge the F12 criterion, which predicts direct BH formation universally for
single and stripped stars satisfying 6 < MCO/M� < 7. One or several out of the four
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Figure 3..15: Inferred MCO (within uncertainty bounds) of the most luminous Type
IIb and Type Ib pre-SN progenitors. The parametric scaling law logLTACCB(MCO)
is applicable at arbitrary Z up to logLTACCB < 5.2L�, and provides a lower limit
to MCO for SN progenitor luminosities beyond. Observations are compared with the
direct BH formation windows for case B donors predicted by our CCSN recipe as
function of Z.

MCO estimates that permit MCO > 6M� potentially constitute a counter-example
to F12. The large observational uncertainties on the SESN progenitor luminosities
do not allow for a decisive statement.

Type Ic SN progenitors:

The spectra of Type Ic SNe lack both hydrogen and helium lines, and the progenitors
of these transients are WR stars. In the single-star progenitor channel, these form
after a period of enhanced wind mass loss that removes all or most of the helium-
rich envelope, which requires a higher Z for strong enough winds. In the binary
star progenitor channel, a carbon-oxygen star can be formed by helium-rich envelope
removal through the combined effect of mass loss by Roche lobe overlow to an acceptor
star and winds, and therefore is not limited to higher Z. Since the helium-rich
envelope is then mostly lost by the time the iron core collapses, the final pre-SN
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progenitor mass Mfinal is bounded from above by MCO at the end of CHeB, A naive
way to place a lower bound on its value is to assume that

MCO ≥Mfinal ≥Mrem +Mej (3..14)

where Mej is the ejecta mass and Mrem the compact remnant mass. Since Mej of
Type Ic SNe can be deduced from the light curve, eq. (3..14) places constrains on
the progenitor MCO. Within the context of this framework, the spectroscopically
normal nickel-rich Type Ic SN 2011bm (Valenti et al., 2012) poses a challenging test
case to CCSN recipes. Its ejecta mass is estimated to be Mej ∈ (7, 17)M�. In order to
account for this transient, M20 needs to lift M crit

CO to ≥ 8.2M� when assuming that a
NS of mass Mrem = 1.2M� is formed. Since MM20 admits SNe leaving fallback BHs
of mass Mrem > 2M� behind over MCO ∈ (7, 8)M�, it cannot explain SN2011bm
unless it assumes a greater threshold value M4 > 9M�.

The PS20 grid coupled to E16 admits explosions up to MCO ≤ 10M� for suitable
values of XC at the end of CHeB. Assuming that the compact remnant is a NS of
mass Mrem = 1.2M�, it is consistent with Mej < 11.2 M�.

For MCO ∈ (7, 11)M�, F12 expects SN explosions and fallback BH remnants. In
order to satisfy eq. (3..14) with a fallback BH of mass Mrem > 2M� and Mej ≥ 7M�,
MCO > 9M� needs be assumed. However a CCSN explosion at MCO > 9M� of a
Type Ic progenitor of pre-SN mass Mfinal ' MCO leaving a fallback BH remnant of
mass Mrem < MCO− 7M� is not consistent with the compact remnant mass calcula-
tion formalism of the “fast-convection” explosion model. It yields Mrem = 7.272M�
for a SN progenitor of MCO = 9M� and Mrem = 10.76M� for MCO = 10.9M�, since
the fallback mass fraction is predicted to increase with MCO. A distinctive feature
of our CCSN recipe is that it guarantees explosions for MCO ∈ (8.4, 12.4)M� inde-
pendent of Z and binarity, admits explosions up to MCO = 15.4M� provided that
Z is high enough and removal of the hydrogen-rich envelope sets in early enough,
and expects NSs to be the more frequent remnant type than fallback BHs at larger
MCO values past the direct BH formation window. It therefore is consistent with
Mej ∈ (7, 16.6)M� so long as no further constraint is put on progenitor Z and MT
pre-history.

SN remnants:

The CO core masses of SN progenitors can also be constrained by nebular line spec-
troscopy of SN remnants. After explosive nuclear burning, the ejecta mass of Type
Ic SNe is mostly composed of oxygen and iron group elements. The nebular line
ratio [OI/CaII] is an indicator of the oxygen mass MO released in the SN explosion
according to the calibrated scaling law

log[OI/CaII] = 0.9 · log(MO/M�) + 0.03 (3..15)

that is applicable to SESNe of Type IIb/Ib and Type Ic/Ic-BL (Fang and Maeda,
2023; Fang et al., 2022). The greatest values of Type IIb/Ib are log[OI/CaII] ' 0.5
while those of Type Ic/Ic-BL reach out up to log[OI/CaII] ' 0.7 (Taddia et al.,
2019; Pellegrino et al., 2022; Fang et al., 2022). These imply MO ≤ 4.29M� and
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MO ≤ 6.23M�, respectively. The oxygen mass MO takes up a significant fraction
XO of the total SN ejecta,

MO = XO ·Mej (3..16)

that depends on the progenitor. According to radiation-hydrodynamics calculations
with snec (Morozova et al., 2015), the mass fraction is found to be X0 < 0.5 for
progenitor CO cores up to MCO < 6.6M� (which result in oxygen ejecta masses up
to MO < 3.1M�) and to increase to greater fractions for progenitor CO core masses
somewhat beyond (Fang and Maeda, 2023). In the case of SN2011bm, the estimates
are MO ∈ (5, 10)M� (Valenti et al., 2012) while Mej ∈ (7, 17), which implies XO '
0.6 − 0.7. Starting from these reference XO values within the range MO ∈ (5, 10),
if we assume that X0 = 0.7 places a lower bound on Mej for MO = 6.23M�, then
eq. (3..14) implies progenitor MCO ≥ 8.9M� for the most oxygen-rich Type Ic SN
explosions. While the rapid F12 and the PS20 table coupled to E16 can account
for this observation, it challenges the M20 and MM20 recipes. In order to achieve
compatibility with these observations, M crit

CO in M20 needs to be lifted accordingly,
which again implies that M20 loses its power to explain the missing RSG problem by
failed SNe. MM20 needs to lift M4 by at least 1M� for consistency with observations.

3.4. Discussion and outlook

Pre-SN structure dependence on core evolution through the advanced
burning phases: The findings from Laplace et al. (2024), which build the theoret-
ical background for the the MCO-based parametrization of explodability established
by this work, are discussed in relation to the CCSN recipe below.

• At low MCO < M
(1)
CO, XC is comparatively high and the core temperature Tc

comparatively low. Neutrino cooling is inefficient and the core carbon burning
phase either radiation-dominated or weakly neutrino-dominated. The convec-
tive burning leads to an expanded core, and — due to the large amount of
fuel XC — the burning front does not move outward far in mass coordinate.
Ultimately, these result in a lower core density and low iron core mass at the
onset of collapse. The explodability is therefore high.

• At M
(2)
CO ≥ MCO ≥ M

(1)
CO, less fuel XC is available and the neutrino losses are

greater. These lead to a neutrino-dominated core carbon burning phase. The
core cools and turns radiative. The decreasing amount of fuel and the neutrino
cooling accelerate core contraction and the outward progression of the burning
front. The burning front moves further out in mass coordinate but stays below
the effective Chandrasekhar mass. With partial degeneracy support, the core
burns almost all of the XC fuel in the convective regions before ignition of
radiation-dominated neon burning. After core neon burning, the burning front
quickly burns the former convective region, moving out far in mass coordinate.
This leads to the growth of a large and dense fuel-free core. The explodability
is therefore low.

• At greater MCO > M
(2)
CO, due to high Tc and low XC , core carbon burning is

even more neutrino-dominated. The burning phase proceeds faster, and the
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core contraction is even more accelerated. The burning front moves further out
in mass coordinate, until it exceeds the effective Chandrasekhar mass. The con-
traction leads to an early core neon ignition. This next (radiation-dominated)
burning stage suppresses nuclear burning at the front above, preventing it from
moving far outward. Ultimately, this results in a low-mass iron core and high
explodability.

• At high MCO ≥ M
(3)
CO, it is the central neon burning phase that becomes

neutrino-dominated. The neutrino cooling leads to a quickly contracting ra-
diative core, and accelerated progression of the burning front above. The burn-
ing front again moves further out but stays below the effective Chandrasekhar
mass. With partial degeneracy support, the core burns most of the neon fuel
before ignition of the radiation-dominated oxygen burning. Central burning of
the large oxygen core leads to an enhanced growth of the silicon-rich core, as
the burning front moves out in mass coordinate. These lead to a heavy iron
core and low explodability.

The role of sc for gravitational collapse: The relevance of the pre-SN variables
used in our criterion for explodability is discussed in detail elsewhere, except for sc
(although see Schneider et al. (2021); Laplace et al. (2024)). The PNS is supported by
repulsive nuclear forces, degeneracy pressure, thermal and other effects. The central
specific entropy measures the thermal energy content inside the hot inner electron-
degenerate core. With a greater sc, the thermal effect add more to the mechanical
support of the core, and therefore increase the gravitational mass MPNS,grav of the
PNS. More generally, the maximal hydrostatic equilibrium mass for a PNS against
collapse is EOS-dependent. From the empirically found monotonically increasing
trend of MNS,grav with sc (Temaj et al., 2024) follows that if an EOS-dependent
upper NS mass limit Mmax

NS,grav exists beyond which it collapses, then accordingly
there must also be a smax

c for NS stability. da Silva Schneider et al. (2020) relates
the maximal gravitational mass Mmax

grav of the PNS to the “most common specific
entropy” s̃ within the PNS (as defined therein), due to temperature contributions
to the degeneracy-dominated EOS, and identifies an ordering with ξ2.5 of the PNS
pathway in the (MPNS

grav , s̃) plane up to collapse. Not only the PNS mass, but also sc
increase, until the PNS loses hydrostatic stability and begins to collapse. Therefore
the gross trend is that with greater sc in the inner core as a starting condition, it
is more difficult to retain a stable NS during the collapse phase, and the star more
likely will form a BH.

How appropriate is our parameter choice for the M16 SN model? In fu-
ture work, we aim to investigate in greater detail how well the semi-analytic SN code
M16 agrees with state-of-art 3D simulations beyond solely the final fate prediction
(successful or failed SN). Instead, we aim to compare the computed variables by the
1D SN code – such as the solutions to the gain radius, to neutrino luminosity and
to the shock velocity – to those actually obtained in state-of-art 3D simulations. It
is questionable, for example, whether the same values of β and αturb are appropriate
for all progenitors. After potential updates to adopted physics in the M16 SN code,
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sophistication in choice of its free parameters, and re-evaluation over a large set of
pre-SN progenitors, consequently also the pre-SN explodability criteria will need to
be re-formulated to account for the differences. Given that our current formulation
of the explodability criteria already are broadly in agreement with 3D CCSN out-
comes mainly due to the approach we chose to segment the final fate landscape in the
(µ4M4, µ4) plane, we anticipate that it is mainly the critical value choice and slope
of the separation line that will need be adjusted to account for the final fate out-
come differences. In future work, we intend to construct a probabilistic scheme that
predicts the CCSN outcome at the pre-SN stage, which takes into account stochastic
effects due to magnetohydrodynamics and turbulence.

3.5. Conclusion

We have formulated explodability criteria that probe the pre-SN progenitor at four
different mass coordinates based on the scalar variables ξ2.5, sc, µ4, µ4M4, and MCO.
Our pre-SN criterion is more optimistic about successful CCSN explosions by the
neutrino-driven perturbation-aided mechanism than both E16 – based on (µ4M4, µ4)
with E20 parameters for the separation line – and the default compactness (ξ2.5 >
0.45) criterion. Our explodability formalism is calibrated to outcomes of the semi-
analytic SN code (with parameter choice from S21) over a heterogeneous set of' 3900
single, binary-stripped and accretor star pre-SN progenitors, over which it achieves
a predictive accuracy of > 99 %. Enhancement of shock revival by multi-D effects
is implicitly assumed by the pre-SN criterion, and in the original M16 code modeled
with the parameter αturb that scales up the shock radius expansion.

The pre-SN criterion is in broad agreement with 3D CCSN simulation outcomes
of the Garching and the Monash group (in total, 27 simulations) this is a very
sloppy attribution that you can perhaps make in a talk, but not in a paper, where
proper citations are needed., achieving an accuracy of 85 % or 89 % depending on
whether the more restrictive MCO-based condition is included into the criterion or
not) provided that for progenitors at intermediate MCO, asymmetry is introduced
as starting condition of the 3D simulation or magnetic field effects are taken into
account during the explosion These enhancement effects can be decisive to the final
fate outcome. Since a separation line in (µ4M4, µ4) plane that would segregate the
exploding from the non-exploding models cannot be drawn for any (k1, k2) choice,
E16 cannot explain the sample of 3D CCSN simulation outcomes considered in this
work. When placing a compactness-based single-parameter condition ξ2.5 > 0.38 for
failed SNe, the same predictive accuracy over the 3D CCSN simulation outcomes is
achieved, but the agreement with the M16 model outcomes over the large sample of
pre-SN progenitors drops down to 86 %, over-predicting BH formation.

We also formulate a probabilistic model for BH formation by fallback in a success-
ful SN explosion after shock revival. It excludes BH formation by fallback, if µ4M4

is large compared to ξ2.5, if ξ2.5 is critically low or if M4 large compared to MCO.
Otherwise, we find that fallback BH formation occurs at a frequency of 0.15 over
exploding models, i.e. NSs are the several times more likely CCSN outcome than
fallback BHs. The fallback model is a particularly uncertain part of our predictive
framework for several reasons. First, the deterministic criterion is not robust against
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different parameter choices of the M16 model. Second, it has not been validated
against 3D CCSN simulation outcomes. Third, it has not been compared against
observations of fallback BH formation that constrain the progenitor properties.

We further find that all explodability proxies of single and binary-stripped star
pre-SN progenitors, which are evaluated by our criterion, show bimodal trends as a
function of MCO within the wide range (MCO ∈ (5.1, 15.4)M�), over which explosions
and implosions co-exist. We relate explodability proxies to MCO over the S21 and S23
models of single and binary-stripped stars at different Z using supervised machine
learning methods. The bimodality in explodability dependence on MCO allows us to
predict CCSN outcomes already at the end of core helium burning, when most stellar
lifetime is over. Aided by the fitted ML models, we map out the windows in MCO

over which we predict direct BH formation to occur, depending on over which MCO

ranges the critical values in explodability proxies for a failed SN are reached. The
bimodality in explodability dependence on MCO allows us to predict CCSN outcomes
already at the end of core helium burning, when most stellar lifetime is over. Our
prediction is that direct BH formation outcomes are not spread randomly over a
wider MCO range, but occur within windows that shift in location and width that
depend on MT pre-history and metallicity of the pre-SN progenitor. At higher Z, the
direct BH formation windows of single and binary-stripped stars shift systematically
to higher MCO ranges. At any Z, the direct BH formation windows of stripped stars
occur at greater MCO values than those of single stars. These shifts can be reverted
to differences in their central carbon mass fractions XC at the end of core helium
burning. Envelope mass loss by stellar winds (enhanced by a greater Z) or by stable
MT to a companion star results in lower-mass helium cores. Lower-mass helium cores
imply a lower core temperature and later ignition of the 12C (α, γ)16 O reaction that
uses up carbon. This leaves more carbon behind at core helium exhaustion. Over
the same MCO range, a greater XC shifts the peaks in explodability proxies toward
larger MCO values. Based on these results, we construct a CCSN recipe that allows to
predict the final fate of a star, when MCO are Z are given and a MT pre-history class
(single stars, case C, case B and case A donor stars) is assigned. Our MCO-based
recipe is applicable in rapid BPS codes, which only keep track of global parameters
and impose an evolutionary cut-off at – if not earlier – central neon ignition, well
before the pre-SN stage is reached. Our proposed recipe is a first, preliminary version
of a predictive model of CCSN outcomes, which — for a fixed pre-SN explodability
criterion — will need be updated as adopted physics for stellar evolution up to the
end of core helium burning, through the late burning stages, and for binary mass
transfer are changed.

We have compared our CCSN recipe to competing recipes that are also based
on MCO and typically used in BPS codes: the rapid F12 criterion, the PS20 “look-
up” table coupled to the E16 criterion, the ξ2.5-criterion based M20 recipe, and the
stochastic MM20 recipe to the M16 1D SN code based on H16 single star pre-SN
progenitor models. The aforementioned recipes were tested against observations that
constrain the MCO of Type IIP, Type IIn, Type IIb/Ib and Type Ic SN progenitors.
We find that M20 needs to lift M crit

CO to > 8.5M� in order to be consistent with
Type IIn SN2010jl progenitor imaging, to > 8.2M� in order to be consistent with
the lower bound on the Type Ic SN2011bm ejecta mass, and to M crit

CO > 8.9M�
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Figure 3..16: Trends of iron core mass MFe with carbon-oxygen core mass MCO for
single, binary-stripped and accretor star pre-SN progenitors. For some stars, the
M = 2.5M� mass coordinate used for ξM (grey solid line) is found inside the iron
core.

in order to be consistent with the most oxygen-rich Type Ic SNe that have been
observed to date. However, M20 then loses the explanatory power for the missing
RSG problem, which we inferred to be the lack of Type IIP SN progenitors over the
MCO ∈ (5.6, 7.8)M� range, by failed SNe. Accordingly, for the MM20 recipe, the
threshold value for guaranteed direct BH formation needs to be lifted to M4 > 8.9M�
in order to be consistent with the aforementioned transients. F12, MM20 and our
recipe can partially explain the missing RSG problem by direct BH formation. The
fixed direct BH formation window of F12, between 6 and 7 M�, is challenged by direct
imaging of the progenitors of Type IIb/Ib SNe, which are consistent with progenitor
MCO > 6M� within the observational uncertainty bounds. F12 cannot explain the
lower bound on the ejecta mass of Type Ic SN2011bm, since at this progenitor MCO

range, this recipe predicts a fallback BH rather than the less massive NS remnant.
Since binary-stripped stars are the expected progenitors of both components in a

binary BH (BBH) mergers, we expect that our CCSN recipe will result in a suppres-
sion of the predicted BBH merger rates compared to previous estimates. We aim to
explore implications of our explodability formalism for gravitational wave astronomy
in subsequent work.

B Appendix

B1. The 2.5M� mass coordinate and MFe

Fig. 3..16 illustrates that the ξ2.5 criterion does not for all pre-SN progenitors probe
the density of the mass-accretion regions outside the iron core.

B2. Parameters of the logZ scaling model

The linear model f(x) = a+ b · x has two free parameters a and b, and we use pairs

of data points
(
M crit,i

CO (Z�), Z�

)
and

(
M crit,i

CO (Z�/10), Z�/10
)

to determine these

analytically. This means that the curve for the critical boundary M
(i)
CO(Z) is given
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Figure 3..17: Determination of the remnant type (NS or fallback BH) in a successful
CCSN explosion. By comparison of the explosion energy Eexpl and the delay en-
ergy Edelay, the remnant type can be discriminated deterministically. The criterion
Edelay > Eexpl for BH formation by fallback holds exactly over the S21, S23, S24 and
T24 pre-SN progenitors (evaluated in the panel), and approximately over H16.

by

M
(i)
CO(Z) = a+ logZ/Z� · b

and the linear model’s free parameters are given by

• b = a1 − a2 and

• a = a1

• (a1, a2) = (M
(i)
CO(Z�),M

(i)
CO(Z�/10))

are the critical CO core mass values for BH formation by direct collapse at Z� and
at Z�/10 are given in Tables 3..3 and 3..4. The same formalism is applied to the
guaranteed NS formation windows that delineate boundaries of non-zero fallback BH
probability, listed in Tables 3..5 and 3..6.

B3. Deterministic fallback model

The condition for BH formation from Müller and Janka (2015) applies during the
explosion phase: if the diagnostic energy Ediag happens to become negative, then
the gravitational binding energy of the matter enclosed by the mass shell contained
within the shock is greater than the kinetic energy of the explosion. In this case, a
BH forms by fallback of ejected matter onto the PNS. With the set of M16 model
parameters adopted in Schneider et al. (2021), we find that remnant type can be
predicted by comparing two characteristic energies during the explosion phase: the
final explosion energy Eexpl of the shock at breakout, and the energy term Edelay

which – within the limitations of a 1D formulation – by construction accounts for
the co-existence of outflows and downflows in the region surrounding the PNS during
the explosion phase. Edelay is an auxiliary variable defined implicitly from eq. (42)
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Figure 3..18: BH formation by fallback in successful CCSN explosions, as predicted
by the deterministic criterion Edelay − Eexpl > 0, at Z = Z�. Non-exploding single
and binary-stripped stars are removed from the sample, and the estiamted direct BH
formation boundaries are indicated by black dashed lines. The explosion energies
Eexpl and delay energies Edelay are fitted as a function of MCO using GPR regressors.
The GPR regressors are consistent with the hypothesis that fallback BH formation is
not randomly distributed but occurs over windows in MCO, and that the width and
position of the windows varies with MT class. With the systematic uncertainties given
the wide, overlapping prediction intervals on the relevant variables, the determinsitic
falback BH formation window predictions are unreliable.
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and (43) in Müller et al. (2016), which are used to calculate the evolution of Ediag as
the revived shock moves outward in mass shell. The fallback condition reads

Edelay > Eexpl (3..17)

where Eexpl is the final kinetic energy of the explosion. The criterion achieves an
accuracy of 100% over the S21, S23, S24 and T24 stellar models (shown in Fig.
3..17), and 93% over the H16 models, and is sensitive to our particular parameter
choice for M16.

Edelay is expected to correlate well with the initial explosion energy Eini at shock
revival, say Edelay = η ·Eini, where η is a parameter not too far below 1. η measures
the amount of energy that is dissipated during shock propagation. Physically one
expects fallback to be determined primarily by the ratio of initial explosion energy
to envelope binding energy Ebind, with a drastic increase of fallback once Ebind gets
close to the diagnostic energy Ediag. Fallback BH formation is expected to occur,
as soon as Ebind/Ediag crosses some threshold. To zeroth approximation, Eexpl =
Eini +Edelay −Ebind. The threshold is of the order of the binding energy at the mass
cut in the “weak shock” regime defined in Mandel and Müller (2020), in which case
Eexpl � Eini. So Eexpl − Edelay < 0 essentially means just Eexpl/Eini < η, i.e. the
explosion has lost a substantial fraction of its initial energy.

As shown exemplarily in Fig. 3..18, single and binary-stripped stars of different
MT classes show complex, oscillatory patterns in the dependence of the Eexpl and
Ediag variables on MCO. In principle, windows in MCO can be mapped out over which
eq. 3..17 is satisfied as a function of MT pre-history and Z. However, in contrast to
H16, the sampling of the MCO axes in S21 and S23 is too sparse for drawing faithful
conclusions. The prediction intervals of our fitted GPR models overlap over wide
ranges in MCO and therefore do not allow for confident deterministic prediction of
the remnant type as a function of MCO.
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remnants

This chapter has been submitted as Soultanis et al. (2024) for publication in the
Phys. Rev. D journal. I contribute as the second author and have conducted sub-
stantial parts to the scientific work. Formatting and small text edits have been made
to match this thesis.

Abstract: We present a time-domain model for the gravitational waves emitted
by equal-mass binary neutron star merger remnants i.e., quasi-stable hypermassive
neutron stars, for a fixed equation of state. We construct a large set of numerical
relativity simulations for a consistent with current constraints, totaling 157 equal-
mass binary neutron star merger configurations. The gravitational-wave model is
constructed using the supervised learning method of K-nearest neighbor regression.
As a first step toward developing a general model with supervised learning methods
that accounts for the dependencies on equation of state and the binary masses of
the system, we explore the impact of the size of the dataset on the model. We
assess the accuracy of the model for a varied dataset size and number density in
total binary mass. Specifically, we consider five training sets of {20, 40, 60, 80, 100}
simulations uniformly distributed in total binary mass. We evaluate the resulting
models in terms of faithfulness using a test set of 30 additional simulations that are
not used during training and which are equidistantly spaced in total binary mass.
The models achieve faithfulness with maximum values in the range of 0.980 to 0.995.
We assess our models simulating signals observed by the three-detector network of
Advanced LIGO-Virgo. We find that all models with training sets of size equal to
or larger than 40 achieve an unbiased measurement of the main gravitational-wave
frequency. We confirm that our results do not depend qualitatively on the choice
of the (fixed) equation of state. We conclude that training sets, with a minimum
size of 40 simulations, or a number density of approximately 11 simulations per
0.1M� of total binary mass, suffice for the construction of faithful templates for the
post-merger signal for a single equation of state and equal-mass binaries, and lead
to mean faithfulness values of F ' 0.95. Our model being based on only one fixed
equation of state represents only a first step towards a method that is fully applicable
for gravitational-wave parameter estimation. However, our findings are encouraging
since we show that our supervised learning model built on a set of simulations for
a fixed equation of state successfully recovers the main gravitaional-wave features
of a simulated signal obtained using another equation of state. This may indicate
that the extension of this model to an arbitrary equation of state may actually be
achieved with a manageable set of simulations.
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4.1. Introduction

Two detections of gravitational-waves (GWs) from sources identified as binary neu-
tron star (BNS) mergers, GW170817 (Abbott et al., 2017a) and GW190425 (Abbott
et al., 2020), have been reported already, and many more observations are antici-
pated in the next years (Abbott et al., 2018b). The GWs emitted by BNS mergers
provide a new channel for probing the properties of high-density matter in the inte-
rior of neutron stars. Already GW170817 has led to stringent constraints on the so
far incompletely known neutron star equation of state (EOS) (Abbott et al., 2017a;
Abbott et al., 2019, 2018a), by the measurement of the tidal deformation of the
binary components of the inspiral phase (see Chatziioannou (2020); Dietrich et al.
(2021a) for reviews). Further constraints on the EOS could be derived from the
electromagnetic counterparts of GW170817 or by combined measurements, such as
those discussed in Margalit and Metzger (2017); Bauswein et al. (2017); Shibata et al.
(2017); Radice et al. (2018); Ruiz et al. (2018); Rezzolla et al. (2018); Capano et al.
(2020,?); Dietrich et al. (2020); Landry et al. (2020); Dietrich et al. (2020); Bauswein
et al. (2021); Raaijmakers et al. (2021); Legred et al. (2021); Pang et al. (2021);
Nicholl et al. (2021); Huth et al. (2022); Brandes et al. (2023) and the references
therein. In addition, the increased number of detections expected in the near future
would improve those constraints (Del Pozzo et al., 2013; Chatziioannou et al., 2015;
Lackey and Wade, 2015; Hernandez Vivanco et al., 2019; Chatziioannou and Han,
2020; Criswell et al., 2023). The post-merger GW signal in GW170817 could not
be detected because the sensitivity of the Advanced LIGO Aasi et al. (2015) and
Advanced Virgo Acernese et al. (2015) detectors was not sufficient (Abbott et al.,
2017a,b; Abbott et al., 2019). However, with upgraded second-generation (Abbott
et al., 2020), future next-generation (Abbott et al., 2017; Maggiore et al., 2020; Reitze
et al., 2019; Srivastava et al., 2022), or dedicated high-frequency detectors (Martynov
et al., 2019; Ackley et al., 2020; Ganapathy et al., 2021; Page et al., 2021; Sarin and
Lasky, 2021a), such detections are likely to be achieved in the next years.

In the post-merger phase, if the total binary mass is lower than a threshold mass
(Mthres) Hotokezaka et al. (2011); Bauswein et al. (2013, 2021); Tootle et al. (2021)
for prompt black hole formation, the remnant is a quasi-stable rapidly rotating neu-
tron star that is supported against gravitational collapse by differential rotation and
thermal pressure. This object is typically referred to as a hypermassive neutron star
(HMNS) in the literature. The remnant oscillates in various fluid (quasi) oscillation
modes and emits GWs in the range of 2-4 kHz. The most prominent feature of the
post-merger GW emission is associated with the fundamental quadrupolar oscilla-
tion mode (see Zhuge et al. (1996); Shibata (2005); Shibata et al. (2005); Oechslin
and Janka (2007); Stergioulas et al. (2011); Bauswein and Janka (2012); Bauswein
et al. (2012); Hotokezaka et al. (2013); Takami et al. (2015); Bernuzzi et al. (2015);
Clark et al. (2016); Bauswein et al. (2016); Foucart et al. (2016); Dietrich et al.
(2017); Maione et al. (2017); Liebling et al. (2021); Dudi et al. (2022)). The fre-
quency of this mode, denoted as fpeak or f2, depends on the EOS (see Stergioulas
et al. (2011); Bauswein and Stergioulas (2015); Paschalidis and Stergioulas (2017);
Dietrich et al. (2021a); Bernuzzi (2020)). As a result, a measurement of the GWs
emitted in the post-merger phase would provide substantial and independent con-
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straints to the EOS, see Bauswein and Stergioulas (2019); Baiotti (2019); Friedman
and Stergioulas (2020); Bernuzzi (2020); Dietrich et al. (2021b); Sarin and Lasky
(2021b) and references therein.

The detection of GWs emitted from BNS mergers relies on robust and efficient
data analysis techniques. One approach is to employ matched filtering search meth-
ods that rely on post-merger GW models. To achieve this, reliable models in the
time or frequency domain for the post-merger GW emission which are informed by
numerical relativity simulations, also called templates, are required. Several paramet-
ric models have been introduced already, either in the frequency domain (Messenger
et al., 2014; Tsang et al., 2019; Puecher et al., 2023; Breschi et al., 2022) or in the
time domain Hotokezaka et al. (2013); Bauswein et al. (2016); Bose et al. (2018);
Yang et al. (2018); Breschi et al. (2019); Easter et al. (2020); Soultanis et al. (2022);
Ω. An alternative method employs morphology-independent models (Chatziioannou
et al., 2017; Torres-Rivas et al., 2019; Wijngaarden et al., 2022; Tringali et al., 2023;
Criswell et al., 2023; Miravet-Tenés et al., 2023; Sasli et al., 2023).

In this work, we focus on the construction of models informed by numerical relativ-
ity simulations. Whittaker et al. (2022) introduced a time domain model employing
a conditional variational auto-encoder (CVAE) using simulations of BNS mergers in
numerical relativity. The CVAE is a deep-learning method where two sets of vari-
ables are employed for the interpolation. The first set of variables characterizes the
system. These variables can be the total mass, binary mass ratio, initial spins, etc.
The second set of variables, that is, the latent variables, are not known a priori but
the CVAE algorithm learns to use them during training. Latent variables include the
EOS, discretization errors, physics-modeling choices, etc. The authors generated an
extended data set using a stochastic model and estimated that training such CVAE
models would require approximately 104 signals. Clark et al. (2016) introduced a fre-
quency domain model for the amplitude and phase of the spectra, based on principal
component analysis for a set of numerical relativity simulations. Easter et al. (2019)
introduced a hierarchical frequency domain model, for the amplitude of spectra, that
trains on existing numerical-relativity post-merger simulations. They employed GW
spectra aligned in frequency, as in (Clark et al., 2016), and fitted the amplitudes with
a linear model. In Pesios et al. (2024), the amplitude of the post-merger spectrum
was predicted using two different types of regression models in the frequency do-
main, multi-linear regression (MLR) and artificial neural network (ANN) regression,
which were trained on a total of 87 simulations spread among 14 different EOS. With
both regression methods, high fitting factors were achieved, when the method was
calibrated to reduce the uncertainties inherent in empirical relations for the main
post-merger frequency.

One of the main challenges in the construction of post-merger models informed
by numerical relativity simulations is that they can be computationally costly, and
thus it is difficult to create a sufficiently large library of simulations. Furthermore,
general-purpose GW models must take into account the various degrees of freedom
that influence the properties of the GW signals, such as the total binary mass Mtot =
m1 + m2, the binary mass ratio q = m1/m2

1, the EOS model, intrinsic spin, etc.

1m1,m2 correspond to the individual gravitational masses, at infinite separation, of the two
companion neutron stars.
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which significantly increase the size of the required data set of simulations. In this
work, we vary the total binary mass Mtot and fix the EOS model and the mass ratio
to q = 1. We intend to study the other degrees of freedom in future work. The
current study allows to understand the minimum requirement for using supervised
learning techniques and thus to assess the performance of such methods.

We introduce a model for post-merger GWs employing the supervised learning
method of K-nearest neighbor (KNN) regression. In this method, the assigned value
at the interpolation point is computed based on the mean of the values of its K-
nearest neighbors. Weights can be assigned to each point in the local neighborhood
using arbitrary functions of distance in the parameter space. We consider a sequence
of equal-mass binaries with increasing total binary mass Mtot for a fixed EOS model.
We build a large library of simulations for a fixed EOS model, consisting of a total
of 157 binaries uniformly distributed with respect to the total binary mass of the
system using a smooth particle hydrodynamics (SPH) code (Oechslin et al., 2002;
Oechslin, R. et al., 2007; Bauswein et al., 2010b) (see Sec. 4.2.). We split the data
set into three subsets used for training, validation, and testing, and optimize models
with training sets of varied sizes. We assess the KNN models, i.e., models constructed
with KNN regression, in terms of a noise weighted inner product between two sig-
nals, the faithfulness (F) 2. In addition, we carry out injections, that mimic real
detection scenarios, and enable us to evaluate our models. In those, a simulated
signal with specific binary source parameters is inserted into a detector network and
then reconstructed by the model using parameter estimation methods. We inject
the simulated signals from the test set configurations and consider the Advanced
LIGO-Virgo network. We find that KNN models with training sets of size equal or
larger than 40 exhibit convergence, and accurately reconstruct the dominant fpeak

frequency of the injected signals. The models achieve high values of F with mean
values of approximately 0.95 and maximum values in the range of 0.992 to 0.995, for
simulated signals of the test set.

Furthermore, we study the execution time of templates generated with the KNN
method. We find that the KNN models achieve execution times of approximately
a few milliseconds for sampling rates comparable to those employed by Advanced
LIGO.

Finally, we explore the generality of our findings by constructing another KNN
model for a fixed EOS using an alternative EOS model. We show that a training set
with 40 simulations suffices to build a reliable time-domain model that achieves high
mean values of F in that case too. In Pesios et al. (2024) the same order of magnitude
of number of simulations was used to create MLR and ANN-based regression models
to predict the amplitude in the frequency domain.

This paper is structured as follows: In Sec. 4.2. we describe the methods employed
for the different stages of this work, i.e., the simulation tool and the parameters of
the simulated systems, the employed supervised learning method, and the numerical
setup of the injection studies. In Sec. 4.3. we present our results. We evaluate
the performance of the various KNN models in terms of the faithfulness F achieved
between the model predictions and the simulations of the test and validation sets.

2A perfect match between two signals corresponds to the value of F = 1.
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We present information regarding the speed of such type of models. We discuss the
results of the injection studies. Finally, we construct a KNN model using a different
EOS model and assess the effect of the EOS on the accuracy of the template and
the necessary sampling density to achieve high performance. We draw conclusions in
Sec. 4.4..

4.2. Methods

In this section, we discuss the methods employed in this work. We describe the
numerical setup of the BNS simulations. We describe the main concepts of the KNN
scheme, the preparation of data, and how the optimization of the KNN model and
the hyper-parameter tuning is carried out. We discuss the scheme for splitting the
original GW data set into subsets that are used for training, validation, and testing
of the KNN model. We present the complete form of the model. Finally, we describe
the setup of our injection studies.

4.2.1. BNS merger simulations

We perform numerical relativity BNS merger simulations using a general relativistic
SPH code (Oechslin et al., 2002; Oechslin, R. et al., 2007; Bauswein et al., 2010b).
The spacetime is evolved under the conformal flatness condition (CFC) (Isenberg and
Nester, 1980; Wilson et al., 1996). In this version of the code we use the Wendland
kernel function (Schaback and Wendland, 2006; Rosswog, 2015).

We simulate a sequence of 157 equal-mass binaries with increasing binary mass.
We employ the APR4 (Akmal et al., 1998) EOS model. For this EOS model, the
thermal effects are approximated by an ideal gas pressure component with Γth =
1.75 (see e.g. Bauswein et al. (2010a)). The total binary masses of the sequence of
simulations range from 2.4 M� to 2.76 M�. The simulations are uniformly distributed
with respect to total binary mass Mtot (see Fig. 4..8). Because the threshold mass
Mthres for prompt black hole formation is 2.825 M� (Bauswein et al., 2021) for this
EOS model, the chosen Mtot range results in remnants that do not undergo a delayed
collapse for at least a few tens of milliseconds. From every simulation, we obtain the
+ and × polarizations of the GW signal, denoted by h+(t;Mtot) and h×(t;Mtot), for
an observer at the rotational axis of the binary. We then interpolate the signal with
a sampling rate of dt ≈ 0.005 ms (or 200 kHz).

Furthermore, we construct a second mass-sequence of equal mass binaries using
the SFHX EOS model (Steiner et al., 2013). The SFHX EOS model provides a
consistent treatment of thermal effects. We simulate a total of 99 binaries with Mtot

ranging from 2.4 M� to 2.8 M�. With this data set, we construct another KNN model
for a fixed EOS model, i.e. the SFHX EOS, and discuss the agreement between the
results obtained using the two different EOS modelsobtained from the same Mtot

sampling density of the training data (see Sec. 4.3.4.).
To extract the fpeak frequency, for every simulation, we construct the complex

signal defined as h(t) = h+(t) − ih×(t). We then compute the Fourier Transform of
the post-merger GW signal using the implementation of Numpy (Harris et al., 2020).
We use the Tukey window function with a roll-off parameter of 0.05. Then we obtain
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the characteristic frequency-domain GW strain defined as hchar(f) = h̃(f) · f , where
h̃(f) is the Fourier Transform of h(t). We identify fpeak, i.e., the frequency of the
quadrupolar oscillation mode, as the frequency corresponding to the most dominant
peak in the GW spectrum. Finally, a second-order polynomial fit is performed in the
local region of this peak to determine the exact fpeak value at which the maximum
occurs.

4.2.2. K-nearest neighbors model

K-nearest neighbor regression is a supervised learning method that allows for non-
parametric fitting. In this work, we use KNN regression to describe the emission
of GWs in the post-merger phase using training sets of different sizes (number of
simulations). The goal is to predict GW signals of unseen configurations. As is
typically done in other supervised learning methods, we train the model using the
strain data from the training set. In addition, we aim to estimate the size of the
dataset that is required for building accurate post-merger models. In this regard, the
KNN regression is a simple yet robust method that allows us to explore concepts of
supervised learning regression without dealing with the complexity of more sophis-
ticated schemes such as deep learning approaches. Furthermore, a relatively smooth
transition between the GW spectra with respect to Mtot is expected as in our model
the EOS is fixed. Thus, regression schemes that use information from neighbors may
be appropriate to use. For our analysis we use the KNN implementation provided
by SciKit (Pedregosa et al., 2011).

Definitions

The overlap (O) is a widely used metric that quantifies the match between two
signals. Perfect agreement corresponds to an O value of 1. The overlap O is defined
as

O ≡
〈
h1(t), h2(t)

〉√〈
h1(t), h1(t)

〉〈
h2(t), h2(t)

〉 . (4..1)

The noise-weighted inner product 〈h1(t), h2(t)〉 between the signals h1(t) and h2(t)
is given by

〈
h1(t), h2(t)

〉
≡ 4Re

∫ ∞
0

df
h̃1(f) · h̃∗2(f)

Sh(f)
, (4..2)

where the one sided noise spectral density of the detector Sh(f) of Advanced LIGO
at design sensitivity (Aasi et al., 2015), and the Fourier transforms h̃1(f), h̃2(f) are
used.

The maximized overlap O with respect to initial phase φ0 and merger time t0
defines the faithfulness F (or match) between two signals. It reads

F ≡ max
φ0,t0

〈
h1(t), h2(t)

〉√〈
h1(t), h1(t)

〉〈
h2(t), h2(t)

〉 . (4..3)
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In what follows, O and F are calculated only for the post-merger signals (t > t0)
while the inspiral is not used (see below). We consider a frequency band, for Eq (4..7),
from 10 Hz to 5.0 kHz.

We assess how well the model reproduces the simulated signals in terms of faith-
fulness F , i.e., the maximized in phase and time overlap, between the simulations and
the model’s predictions for the same value of Mtot (see Sec. 4.3.1. and Sec. 4.3.4.).
For the injections (see Sec. 4.3.3.), that correspond to the realistic parameter esti-
mation scenario, all parameters of the model are varied (including Mtot). In this
regard, the overlap O distribution shows how well the reconstructed signal matches
the injected signal.

K-nearest neighbors regression

We summarize the general concepts of the KNN regression (see James et al. (2023)).

We consider a point ~X0 in the N-dimensional regressor parameter space of the in-
terpolation problem and the corresponding target variable prediction denoted by ~Y0.
The algorithm first identifies the K points of the training set that are closest to ~X0,
denoted by N0. The prediction ~Y0 is then estimated using the average (or weighted
average) of all points in N0. The prediction estimate is given by the general form

~Y0 =
1

K

∑
~Xi∈N0

wi · ~Yi
W

, where W =
∑
~Xi∈N0

wi , (4..4)

where ~Yi are the observations i.e., the strain data in our case, of the training set, and
wi are assigned weights between ~X0 and the points in N0.

The weights can be chosen to be equal for all neighbors or according to arbitrary
criteria. For example, an inverse proportionality of the form wi = 1/di where di is the

distance between ~X0 and the neighbors ~Xi in N0 is commonly used. Furthermore, the
metric that defines the calculation of distances between points in the N-dimensional
space need to be chosen before the training.

The number of neighbors K, the weighting criterion, or the metric which deter-
mines how distances in the parameter space are measured, are not known a priori
and are considered tuning parameters, commonly referred as hyper-parameters (see
SciKit (Pedregosa et al., 2011) and references therein). The hyper-parameters affect
the accuracy and performance of the KNN regression model. For this reason, we use
the validation data to determine the optimal set of hyper-parameters. This stage is
called hyper-parameter tuning.

In order to determine the optimal set of hyper-parameters, for each training set,
we evaluate the accuracy of the KNN regression predictions for the simulations of the
validation sets by considering a global quantity that is representative of the overall
performance. We opt for the mean value of faithfulness F , defined in Eq. (4..8),

between the signals of the validation set and the corresponding predictions of the
various KNN models. A possible caveat of this choice of global quantity may be that
the late part of the signal, where the amplitude is low, is penalized less than the early
part. For each training set, we iterate over all combinations of hyper-parameters pre-
defined over a grid, and store the set of hyper-parameters that maximize the mean
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F over the validation data. For each Ntrain, we obtain a different hyperparameter
configuration of the best-fit KNN model as scored by the mean F .

In our case, the input features, i.e., the space where the vectors ~Xi live, of the KNN
model are the total binary mass Mtot and the simulation coordinate time t expressed
as an array with sampling rate fs = 1/dt. The vectors ~Yi are + polarization simulated
signals h+(t;Mtot) expressed as arrays of the same length as t. The output of the
KNN model is a GW signal for the + polarization.

The overlap (O) is a widely used metric that quantifies the match between two
signals. Perfect agreement corresponds to an O value of 1. The overlap O is defined
as

O ≡
〈
h1(t), h2(t)

〉√〈
h1(t), h1(t)

〉〈
h2(t), h2(t)

〉 . (4..5)

The noise-weighted inner product 〈h1(t), h2(t)〉 between the signals h1(t) and h2(t)
is given by

〈
h1(t), h2(t)

〉
≡ 4Re

∫ ∞
0

df
h̃1(f) · h̃∗2(f)

Sh(f)
, (4..6)

where the one sided noise spectral density of the detector Sh(f) of Advanced LIGO
at design sensitivity, and the Fourier transforms h̃1(f), h̃2(f) are used.

The noise-weighted inner product 〈h1(t), h2(t)〉 between the signals h1(t) and h2(t)
is given by

〈
h1(t), h2(t)

〉
≡ 4Re

∫ ∞
0

df
h̃1(f) · h̃∗2(f)

Sh(f)
, (4..7)

where the Fourier transforms h̃1(f), h̃2(f) are normalized by the one sided noise
spectral density of the detector Sh(f) of Advanced LIGO at design sensitivity

The maximized overlap O with respect to initial phase φ0 and merger time t0
defines the faithfulness F (or match) between two signals. It reads

F ≡ max
φ0,t0

〈
h1(t), h2(t)

〉√〈
h1(t), h1(t)

〉〈
h2(t), h2(t)

〉 . (4..8)

In what follows, O and F are calculated only for the post-merger phase signals
(t > t0) while the inspiral is not used (see below). We consider a frequency band,
for Eq (4..5), Eq. (4..8), from 10 Hz to 5.0 kHz. We assess how well the model
reproduces the simulated signals in terms of faithfulness F , i.e., the maximized agree-
ment in phase and time overlap, between the simulations and the model’s predictions
for the same value of Mtot (see Sec. 4.3.1. and Sec. 4.3.4.). For the injections (see
Sec. 4.3.3.), that correspond to the realistic parameter estimation scenario, all pa-
rameters of the model are varied (including Mtot). In this regard, the overlap O
distribution shows how well the reconstructed signal matches the injected signal.
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The model

We find that the KNN algorithm performs best when the input GW signals used in
training are aligned in phase. In order to align the signals in phase, we express the
GW signal in the complex form

h(t) = h+(t) + i h×(t) (4..9)

= |h(t)| · e+iφ(t) , (4..10)

where the amplitude |h(t)|, and phase φ(t) are defined as

|h(t)| =
√
h2

+(t) + h2
×(t) , (4..11)

φ(t) = tan−1

(
h×(t)

h+(t)

)
. (4..12)

The merger time tmerge is the time at which |h(t)| reaches its maximum value, and
the phase during the merger time is given by φmerge = φ(tmerge). We then introduce
a phase shift φ→ φ− φmerge, and reconstruct the two polarizations as

h+(t) = Re(h(t)) , (4..13)

h×(t) = Im(h(t)) . (4..14)

We also introduce a time shift t → t − tmerge so that t = 0 corresponds to the
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Figure 4..1: Aligned GW signals for the complete set of 157 simulations. The colors
indicate the different total binary mass. The first 5 ms of the GW signals are shown,
while the total duration of the signals is 17 ms.

merger time. Figure!4..1 shows the aligned signals h+(t) for the complete set of
simulations where the color code indicates the total binary mass Mtot. Interestingly,
we find remarkable agreement in the morphology of the aligned signals in the first
1 ms. In the early phase, up to 1 ms, the signal is simple, as it exhibits almost
no dependence on the total binary mass Mtot. The dependence on Mtot becomes
apparent as the different signals start to fall out of phase. This is because the
characteristic frequencies of the GW signal scale proportional to the total binary
mass of the system. Phase alignment simplifies the first 1 ms of the post-merger

107



4. Gravitational wave model for neutron star merger remnants

signal and ensures that it is better modeled by the KNN model than in the case
without phase alignment.

Finally, we discuss the general form of our model in the binary frame, which
is numerically equivalent to a face-on observer. The antenna response functions of
the detectors for a source with arbitrary position and orientation in the sky can
be computed using the detector projection tensors (Maggiore, 2000, 2007) which
introduce several parameters: a) the right ascension (r.a.) and the declination (δ),
which describe the location of the source in the sky; b) the inclination angle of the
binary’s orbital plane (ι); and c) the polarization angle (ψ), which is an angle in
the plane perpendicular to the line of sight that defines the + and × polarizations.
In order for the KNN model’s predictions to describe general GW signals, we also
introduce an appropriate phase shift of the form eiφ0 . This phase shift is typically
used in every detection search scenario, since GW signals have arbitrary initial phases
depending on the position of the detector and arrival of the signal (see Sec. 4.3.3.).
In order to account for the arbitrary arrival time of the GW signal we also introduce
a time shift parameter t0 which corresponds to the start of the post-merger signal,
or equivalently to the merger time. The model reads

h+(t) = KNN(t− t0;Mtot) e
iφ0 , (4..15)

h×(t) = h+(t− t0) ei
π
2 , (4..16)

where KNN corresponds to the KNN model, and t0 is the starting time of the post-
merger signal.

Throughout the training and validation of the KNN model, we impose a cut-off
at t = 17 ms of post-merger signal. The KNN model produces longer post-merger
signals than the cut-off time. The extrapolated signal depends on the data close to
the cut-off region.

4.2.3. Splitting of data

We split the APR4 data set (157 simulations) into subsets used for training, valida-
tion, and testing of the models. The test set contains Ntest = 30 simulations that
we set aside and use for testing. The remaining data are split into training and
validation sets.

The training set includes the simulations used to obtain KNN models for given
sets of hyper-parameters. The validation set is used for the optimization of the KNN
models, that is the hyper-parameter tuning, where the set of hyper-parameters that
maximizes the mean F , is determined. As we want to quantify the number of simu-
lations required to build accurate models, we vary the size Ntrain of the training set
(the number of simulations for training) in the range of Ntrain = {20, 40, 60, 80, 100}.
The size of the validation set is thus Nval = Ntot − Ntest − Ntrain where Ntot is the
total number of simulations. This split thus results in a total of five KNN models
labeled by the size of their training set and the EOS, e.g. KNNEOS

tr=X where X denotes
the size of the training set.

The hold-out test set provides an independent way to assess the performance of
KNN models (with varying Ntrain) under the same conditions. The simulations of the
test set are distributed in an approximate equidistant manner with respect to Mtot.
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We employ the Latin Hypercube Sampler (LHS) (McKay et al., 1979b) to draw
Ntrain simulations from a uniform distribution to construct the training set. LHS is
a method for generating a homogeneously distributed sequence of parameter values
using a randomized sampling scheme with memory. The advantage of LHS over the
memoryless uniform random sampler is that it prevents formation of sampling gaps.
These arise for the uniform random sampler as a statistical effect in consequence
of grid point clustering, when the sample size is small (McKay et al., 1979b). The
validation set contains the remaining simulations.

4.2.4. Injection setup

We describe the setup for the injection study (see Sec. 4.3.3.). We perform injec-
tions using Bilby (Ashton et al., 2019; Romero-Shaw et al., 2020), an inference code
implemented in Python, which provides an infrastructure for GW parameter esti-
mation. In this work, we use the Dynesty sampler (Speagle, 2020; Koposov et al.,
2023; Skilling, 2004, 2006; Higson et al., 2019), implemented in Bilby3 (see Ashton
et al. (2019) and the references therein for other sampler options), and consider 1000
live points. For the auxiliary parameters of the Dynesty sampler, i.e., the number of
autocorrelation lengths in the Markov-chain Monte Carlo algorithm and the number
of walks taken by the live points, we choose values 100 and 3, respectively. We do not
find a significant difference in the outcome of the injections using slightly different
values. We evaluate the performance of the KNN models by comparing the source
parameters of the reconstructed signals to those of the injected signals. We carry
out several injections with varied luminosity distance (DL) of the source, and sample
the parameters Mtot, φ0, t0, DL. We use the posterior probabilities of the model’s
parameters and convert them to posterior probabilities of quantities connected to
the the post-merger signal (see Sec. 4.3.3.). In this way, we examine the posterior
probabilities of the dominant frequency peak, fpeak, in the GW spectra and compare
them to the values of the injected simulated signals. In addition, we discuss the
posterior probabilities of the overlap O values between the reconstructed and the
injected signals.

We inject a GW signal for a binary configuration from the test set with a total
mass of 2.656 M� in the source frame and vary the luminosity distance DL of the
source from 1 Mpc to 40 Mpc. We use the three-detector Advanced LIGO Hanford,
Livingston, and Advanced Virgo network, at design sensitivity. For the sky location of
the source, we choose the combination of r.a. and δ which corresponds to optimal ori-
entation. We consider a face-on binary, i.e., ι = 0. We do not include a noise realiza-
tion in our analysis. We employ uniform priors for the intrinsic parameters Mtot, φ0,
t0 in the range of [2.4M�, 2.8M�], [0.0, 2π], [tinject

0 −5 ms, tinject
0 +5 ms], respectively4.

For DL, we employ a logarithmic uniform prior in the range of [0.48 Mpc, 48 Mpc].
We use the sampling rate of Advanced LIGO, i.e., fs = 16384 Hz, and consider a
signal of total duration of 1 second (see Chatziioannou et al. (2017)).

3The package version 2.1.1. is used.
4tinject0 represents the injected t0 value.
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Figure 4..2: Upper panel: Faithfulness F as a function of the total binary mass Mtot

for the simulations of the test set and the predictions of the different KNN models,
where training sets of sizes Ntrain = {20, 40, 60, 80, 100} were employed. Black
dashed line indicates the mean value. Shaded areas indicate the scatter of the data
defined by the standard deviation. Bottom panel: Histograms of the aforementioned
F .

4.3. Results

In this section, we discuss the predictive accuracy of the KNN models with varied
Ntrain and their overall performance. We compute the faithfulness F between the
KNN predicted signals and those of the validation and test sets. We also discuss
the execution time of the KNN models. We perform injection studies in which GW
simulated signals from the test set are reconstructed using the KNN models. We
investigate how accurately the characteristics of the GW spectra, such as the fpeak

frequency, can be reproduced using the different KNN models. Finally, we explore
the generality of our results by considering a KNN template constructed using an
other EOS model.

4.3.1. Performance of KNN models

We assess the quality of the fits by calculating the values of F between the simulated
signals of the test set and the signal predictions obtained from the KNN models. We
consider a known starting time of the signal of t = 0. Because the simulated GW
signals have arbitrary initial phases, we perform phase maximization with the SciPy

curve-fit routine (Virtanen et al., 2020), that employs a non-linear least squares al-
gorithm (Branch et al., 1999; Byrd et al., 1988). This procedure is repeated for each
of the GW signals of the test set. The test set is a unique collection of configura-
tions equidistantly distributed with respect to Mtot, and thus allows us to compare
the different KNN models on the same GW signals. In Appendix C1., we present
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the distribution of the faithfulness F , computed using the above procedure, for the
simulations of the validation set that were used during the hyper-parameter tuning
of the KNN models.

We present the values of F between the predictions of the various KNN models,
for each Ntrain, and the 30 simulations of the test set in Fig. 4..2. The upper row
shows F as a function of the total binary mass Mtot, and the lower row shows the
distribution of these F values. We find very good performance for most KNN models
with almost no dependence on the size of the training set. More specifically, a
minimum of Ntrain = 40 simulations used for training is sufficient to achieve high F ,
and larger values of Ntrain do not significantly enhance the overall performance of the
model.

As shown in Fig. 4..2, the mean value of F (indicated by a black dashed line) for
most KNN models, i.e. KNNAPR4

tr=40 to KNNAPR4
tr=100, is approximately constant at 0.95,

and only marginally increases with Ntrain. These mean values are comparable to those
of Easter et al. (2020), where F in the range of 0.92 to roughly 0.97 are reported
for 9 simulated signals. The mean value of the model KNNAPR4

tr=20 , F = 0.938, is lower
than that of the other models, however, it is still well above 0.90. We also report the
standard deviation, with respect to the mean value, for each KNN model (indicated
by the shaded areas). The scatter is roughly constant for most KNN models except for
the low-resolution KNNAPR4

tr=20 model where it is slightly larger than the rest. This may
not be surprising since the overall performance of the KNN models with Ntrain ≥ 40
converges (see Fig. 4..2). Furthermore, the best reproduced configurations achieve
significantly larger F values, close to perfect match (F = 1), considering that the
test set consists of signals that are not used in training or validation. We do not find
a clear trend in F as a function of Mtot(see Fig. 4..2) for any of the KNN models.

The lower row of Fig. 4..2 shows the distribution (histograms) of F for the con-
figurations of the test set. The KNN models with large Ntrain exhibit a large number
of counts at the last two bins with the highest F (in range of approximately 0.96
to 1.0). In particular, the KNNAPR4

tr=100 model corresponds to no counts below the
histogram bin with center at 0.90 (with minimum F at 0.901). Quantitatively, the
difference between the models KNNAPR4

tr=40 to KNNAPR4
tr=80 is negligible with respect to

the accuracy of the predictions. In practice, the model KNNAPR4
tr=40 is preferable, as

it is computationally less expensive to construct a training set of simulations of size
Ntrain = 40 compared to Ntrain = 100.

In addition, we examine the outliers with the lowest F . As shown in Fig. 4..2, for
most KNN models (Ntrain ≥ 40), the lowest values of F are roughly around 0.85. The
mean value of F (see above) represents the average error assigned to a prediction of
the KNN models.

Figure 4..3 displays the GW signal obtained from the KNNAPR4
tr=100 model compared

to the simulated signal from the test set for the configuration with Mtot = 2.728 M�.
This configuration corresponds to the best performing prediction, with F = 0.995, of
the test set. The agreement between these signals is remarkable, as indicated by the
high F . This large F is a consequence of our large data set as every configuration
of the test set has close neighbors with respect to Mtot. In this particular case, the
test simulation with Mtot = 2.728 M�, has closest neighbors in Mtot from both sides,
Mtot = 2.732 Mtot and Mtot = 2.726 Mtot. In Appendix C2., we present the five best
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and five worst predictions for the simulations of the test set for the KNN models
with Ntrain = 40, 100 (see Fig. 4..11 and Fig. 4..12). Overall, we find very good
agreement between the initial parts of the two signals (first 10 ms) which is important
for achieving large values of F . Approximately in the first 5-7 ms, the signal also
contains information on the secondary frequency components of the spectrum, apart
from the dominant component, and thus it is important for resolving those.

In the later parts of the signals, on average, all KNN models, regardless of Ntrain,
tend to overestimate the decay of the signal (see also Fig. 4..12). This effect may
be a consequence of the chosen global metric, i.e., mean F , used for the selection of
the best-performing KNN models during the hyper-parameter tuning. As the late
part of the signal is low in amplitude compared to the early part, leniency in fitting
performance of the late part is not penalized as much as that of the early part.
We also note that configurations neighbouring in Mtot may exhibit small stochastic
fluctuations in the decay times of their respective signals, which are triggered by
numerical errors, and thus the KNN algorithm cannot resolve those trends over local
neighborhoods. Although this systematic trend should be further investigated in the
future, we find this effect to be negligible, since the F of the configurations of the
test set are already high.

In summary, the various KNN models reproduce exceptionally well the GW sig-
nals of the test set with high precision (F close to 1) in the whole Mtot range. Our
results suggest that KNN models with training sets of size Ntrain ≥ 40 lead to accu-
rate predictions for test set GW signals with large values of the F , i.e., mean values
roughly around 0.95. The mean of F appears to converge as the performance of the
various KNN models is qualitatively the same for Ntrain ≥ 40. However, it should
be noted that the F is a global metric for the match between two signals, and thus
depends on the total length of the signals.

4.3.2. Execution time of the model

Furthermore, we examine the average execution time of the KNN models, i.e., the
average time required to generate a signal with a duration of 17 ms. As the goal is
to use post-merger templates based on a KNN method (or other supervised learning
methods) in real parameter estimation efforts, the execution time of the model must
be reasonably short. This is because in inference, the model can potentially be called
thousands of times.

The speed of the model is largely dominated by the sampling rate used for the
generated GW signal. As the sampling rate decreases (increases), the coordinate time
t array becomes less dense (more dense), and thus the KNN model generates fewer
(more) data points. This results in a shorter (longer) execution time for a call as
fewer (more) data points need to be computed. To evaluate the speed of the model,
we generate signals for every configuration of the test set and vary the sampling rate
fs = 1/dt. For each sampling rate we repeat the procedure a thousand times and
store the mean value of the execution times.

Figure 4..4 displays the average execution time for a single call for all KNN mod-
els. This corroborates the above statement that the execution time is an increasing
function of the sampling rate. For reference, the black dashed line depicts the sam-
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Figure 4..3: Upper panel: Comparison between the time-domain GW signal for a
simulation from the test set (black) and the respective KNNAPR4

tr=100 model’s prediction
(orange). Bottom panel: The same comparison but for the effective strain hchar(f).

pling rate for Advanced LIGO (aLIGO) data, fs = 16384 Hz. The execution time
for all KNN models ranges from 1− 3 ms for sampling rates comparable to those of
aLIGO. We note that the execution time reaches values of ∼ 10 ms for unrealistically
high sampling rates. This result is very encouraging, as it shows that templates con-
structed with supervised learning schemes can be employed for parameter estimation,
which requires million of waveform evaluations.

Interestingly, as shown in Fig. 4..4, all KNN models exhibit approximately identi-
cal execution time curves, implying that the size of the training set does not influence
the speed of the templates. This may be explained by the fact that for all KNN mod-
els, the number of neighbors hyper-parameter (determined during hyper-parameter
tuning) is approximately equal (∼ 8 − 14). This is encouraging since a full EOS-
dependent model will obviously rely on a large training set.

4.3.3. Parameter estimation on simulated data

We discuss the results of our injection study for the configuration of the test set
with the total binary mass Mtot = 2.656 M� and varied luminosity distance (see
Sec. 4.2.4.). The three-detector network of Advanced LIGO and Advanced Virgo at
design sensitivity is employed. For each injection, we sample the multi-dimensional
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Figure 4..4: Average execution time for one call of the KNN models as function of
the sampling rate. Dashed black line indicates the sampling rate of Advanced LIGO.

posterior for Mtot, φ0, t0, and DL, from which the distributions of fpeak and O are
derived. To achieve this, we iterate through all samples (Mtot, φ0, t0, DL)i of the
posterior distribution and generate GW signals h+(t;Mtot,i, φ0,i, t0,i, DL,i) using the
KNN models. We then take the Fourier Transform of the GW signals, extract fpeak,
as described in Sec. 4.2., for all samples, and thus obtain the posterior distribution
of fpeak. Finally, we derive the posterior distribution of O by computing the match
between each reconstructed GW sample and the GW signal that corresponds to the
injected parameters (Mtot, φ0, t0, DL).

Figure 4..5 shows the 90% credible interval for fpeak (left) and the correspond-
ing O (right) as a function of the luminosity distance of the injected signal for the
various KNN models. The black dashed lines correspond to the fpeak and F of the
injected simulated signal. As the luminosity distance of the injected signal decreases,
the signal-to-noise ratio S/N (Cutler and Flanagan, 1994) increases and thus the
ability to reconstruct the signal is enhanced. This can be seen in Fig. 4..5 where the
uncertainties in O, and also in fpeak, become smaller at low DL values.

We find remarkable agreement between the KNN models with Ntrain ≥ 40, as all
of these models successfully reconstruct the injected signal and achieve high overlaps
of approximately O ' 0.969− 0.992. As DL decreases, the posterior distributions of
fpeak and O become narrower, thus exhibiting reconstructed values of fpeak and O
with smaller uncertainty at 90% credible intervals. The fpeak medians, indicated by
the solid curves in Fig. 4..5, approach the corresponding true value of the injected
signal. As expected, we observe a drop of the O as a function of DL. At a luminosity
distance of roughly DL = 12 Mpc, the median O continues to be relatively high,
i.e., O ' 0.80, but drops below 0.60 at approximately DL = 14 Mpc. The 90%
uncertainty in the reconstructed fpeak only becomes large at DL ' 12 Mpc.

The KNNAPR4
tr=20 model successfully reconstructs the injected signal. However, it

reaches lower median O values than the other models. At low luminosity distances,
the KNNAPR4

tr=20 model achieves a median O of ' 0.95. This trend is in agreement with
the results discussed in Sec. 4.3.1., i.e., the mean F for the KNNAPR4

tr=20 model is lower
than those of the other models, Ntrain ≥ 40, as depicted in Fig. 4..10.
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Figure 4..5: Left panel: Posterior of fpeak for the simulation of the test set with
Mtot = 2.656M� using the KNN models as a function of the luminosity distance DL

of the simulated signal. Black dashed lines indicate the fpeak value of the injected
signal. Colored curves show the medians, while shaded areas correspond to the 90%
credible intervals of the posterior probabilities. Right panel: As in the left panel, but
for the corresponding O values. Black dashed lines indicate the maximum median
overlap O of the injected signal. A three-detector network of Advanced LIGO and
Advanced Virgo at design sensitivity is considered. The upper horizontal axis in both
panels displays the corresponding S/N .

The injection study provides additional information on the reconstructive capacity
of the KNN models under realistic conditions. We observe very good agreement
between the models with Ntrain ≥ 40, and thus conclude that a training set of 40
simulations suffices for the construction of robust templates.

4.3.4. Dependence on the EOS

As discussed in Sec. 4.3., a training set with a minimum size of Ntrain = 40 suffices to
build a robust model that leads to large values of F and successful injection studies
for a fixed EOS model and equal-mass binaries. To further test our findings, we
repeat our analysis for the construction of a KNN model using the SFHX EOS.
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We only consider the case where Ntrain = 40, since we previously determined
that such a size is sufficient to achieve convergence. As before, we split the data
set into training (Ntrain = 40), validation (Nval = 29), and test (Ntest = 30) sets.
The validation sets between the APR4 and SFHX KNN models have different sizes
since the total number of simulations for each EOS model is different. Despite these
differences and inconsistencies, the comparison is still meaningful as it enables us
to examine the robustness of the predictions, for models constructed with KNN
regression, in terms of unknown GW signals, from a test set of simulations, covering
a significant binary mass range. In the following, we denote the KNN models with
training set of size Ntrain = 40 for the SFHX and APR4 EOS models as KNNAPR4

tr=40

and KNNSFHX
tr=40 , respectively.
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Figure 4..6: Faithfulness F as a function of Mtot for the KNNAPR4
tr=40 (blue) and

KNNSFHX
tr=40 (red) KNN models constructed using a training set of size Ntrain = 40.

Figure 4..6 shows the F values as a function of the total binary mass Mtot for
the unseen GW signals of the test sets of the APR4 and SFHX EOS models. It is
evident from Fig. 4..6 that the general behavior of the data is qualitatively similar
in both cases. Both KNN models exhibit high values of F where for most of the
GW signals the F values range roughly between 0.90 and 1.0, with some outliers
that still have F > 0.80. The mean value of F for the KNNSFHX

tr=40 model is slightly
lower (' 1% difference). Both values of F are high, considering that these signals
are not used for training or validation. Furthermore, the KNNSFHX

tr=40 predictions with
the highest F reach values close to 1 (perfect match) as observed for KNNAPR4

tr=40 . The
KNNSFHX

tr=40 model exhibits slightly larger scatter (and more outliers) compared to the
KNNAPR4

tr=40 case. However, the lowest values of F for the KNNAPR4
tr=40 and KNNSFHX

tr=40

models exhibit comparable values, i.e., larger than 0.85 and 0.82, respectively.

The good agreement between the two KNN models suggests that our results are
robust in terms of the F values achieved, and in fact a training set with a minimum
size of 40 simulations may be sufficient to construct accurate templates. We also note
that, for practical use, the size Ntrain should be converted to number density defined
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4.3. Results

EOS Ntrain n [ sims.
M�

] Nper 0.1M� [Mmin
tot ,M

max
tot ] mean F

APR4 20 55.87 6 2.40, 2.76 0.938
APR4 40 111.73 11 2.40, 2.76 0.951
APR4 60 167.60 17 2.40, 2.76 0.953
APR4 80 223.46 22 2.40, 2.76 0.953
APR4 100 279.33 28 2.40, 2.76 0.956
SFHX 40 100.00 10 2.40, 2.80 0.941

Table 4..1: Number densities and number of simulations per 0.1M� for all KNN
models considered in this work.

as

n =
Ntrain

Mmax
tot −Mmin

tot

, (4..17)

where Mmax
tot (Mmin

tot ) refers to the maximum (minimum) total binary mass of the
respective data set. Table 4..1 reports the number densities and the corresponding
number of simulations per 0.1 M�, for all KNN models used in this work. For both
EOS models, we considered comparable Mtot ranges, and thus, the choice of Ntrain

corresponds roughly to the same number density. For a stiffer EOS model, where
binary configurations with higher Mtot can occur, the corresponding Ntrain value may
need to be adjusted.

We conduct an additional test to determine whether the KNN models discussed
in this work, constructed for single EOSs, can be used to reconstruct general signals,
i.e., those originating from simulations where other EOSs are employed. We inject
a signal from the SFHX test set, with Mtot = 2.796 M�, and use the KNNAPR4

tr=40 as
reconstruction model. This configuration is chosen so that the characteristic frequen-
cies of its GW spectrum are in the frequency regime of the KNNAPR4

tr=40 model. Both
EOS models represent relatively soft EOSs, so there is overlap in the frequency range
of their respective fpeak as a function of mass. We consider a luminosity distance
of DL = 5 Mpc and sample Mtot, φ0, t0, DL using the setup described in Sec. 4.3.3..
We find that the KNNAPR4

tr=40 model is capable of reconstructing the injected SFHX
signal. Figure 4..7 displays the GW spectra and time-domain signals for the injected
signal and the reconstructed signal, which maximizes the likelihood. The agreement
is impressive, achieving a median overlap of O = 0.776. The spectra match well,
particularly for the value of fpeak, and there is also relatively good agreement in the
subdominant feature, at roughly 2.5 kHz. Therefore, KNNAPR4

tr=40 manages to capture
the dominant and approximately the subdominant frequency peaks.

The injected luminosity distance of the source is not reconstructed accurately.
This is because the injected signal corresponds to a system with Mtot = 2.796 M�,
while the total mass for the KNNAPR4

tr=40 model that best reconstructs the injected signal
is Mtot = 2.41 M�, which is a much lighter binary, resulting in weaker excitation of
the quadrupolar mode.

This result suggests that the effect of the EOS may not be as important as ex-
pected, and that the construction of EOS-dependent post-merger models, i.e., a
model that is suitable for any EOS, may be accomplished by a moderate number
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Figure 4..7: Reconstructed signal (blue) using the KNNAPR4
tr=40 model for the injected

signal (black) of the simulation from the SFHX test set. Blue shaded areas represent
the 90% credible intervals of the posterior probability of the GW spectra.

of simulations. In addition, it may be possible to introduce modifications to extent
the capabilities of the models we presented in this work. In addition, it is possible
that even without fully general EOS-dependent models, modifications may exist to
take advantage of the capabilities of models such as those discussed in this work.
For example, shifts in the frequency-domain may be employed to ensure that KNN
models, constructed for a single EOS, cover a wider range of fpeak values that would
allow approximate reconstruction of signals from stiffer or softer EOS models than
those discussed here.

4.4. Conclusions

In this work, we construct accurate models for the post-merger GW emission from
BNS merger remnants. We use a supervised learning method, i.e., KNN regression,
and create a large library of numerical relativity simulations, for a single EOS model
(APR4), which includes 157 equal-mass binaries. We split the entire data set into
subsets used for training, validation, and testing. To determine the optimal size of
the data set required for the construction of reliable templates, we vary the size of the
training set for values in Ntrain = {20, 40, 60, 80, 100} and optimize the corresponding
KNN models.
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4.4. Conclusions

We evaluate the performance of the KNN models in terms of the distribution of
the faithfulness F values for the simulations of the test set, but we also monitor those
of the validation set. The test set is a holdout set of 30 simulations covering the entire
Mtot range that enables us to compare the various KNN models. We further explore
the robustness of the KNN models by performing injection studies using the three-
detector network of Advanced LIGO and Advanced Virgo with a varied luminosity
distance of the source. We find that the KNN models achieve high values of F for
completely unseen GW signals from the test set. The predictions with the highest F ,
reach values ranging from 0.980 to 0.995, which is remarkably high, considering these
signals are not used during the optimization of the KNN models. We find that KNN
models with Ntrain ≥ 40, exhibit convergence with mean F approximately equal to
0.95, and standard deviation approximately around 0.032, for the simulations of the
holdout test set (see Fig. 4..10).

Furthermore, all KNN models successfully reconstruct the injected signals. Using
the posterior probabilities of the Mtot, φ0, t0, and DL, we derive the distributions of
fpeak and O, and show that the ability to reconstruct fpeak scales with the luminosity
distance, as expected. Models with Ntrain ≥ 40 exhibit convergence as the medians of
fpeak approach the injected value. The median O values, for models with Ntrain ≥ 40,
are in the range of 0.969 to 0.992, while the KNNAPR4

tr=20 model achieves lower values.

All KNN models, for sampling rates comparable to those employed by Advanced
LIGO-Virgo, exhibit execution times that range from 1 to 3 ms, and only slightly
increase for unrealistically large sampling rates. Thus, such models can indeed be
employed in real detection searches, that require million of waveform evaluations,
with future detectors.

Furthermore, we verify our findings using an additional sequence of equal-mass
binaries for the SFHX EOS. For this data set, the mean F and standard deviation
for a holdout test set of 30 simulations is 0.941 and 0.0437, respectively. This large
value of mean F qualitatively agrees with the values for the KNN models of the
APR4 data set. This further supports the argument that a size of Ntrain = 40, which
corresponds to a similar number density of simulations per unit of mass for these two
EOS models, suffices for the construction of accurate GW templates.

We show that the APR4 KNN models may potentially be used to reconstruct
the dominant component of GW signals from different EOS models. To accomplish
this, we perform an injection with a signal from the SFHX data set and utilize
the KNNAPR4

tr=40 model as a reconstruction tool. We find that the KNNAPR4
tr=40 model,

provided a sufficiently large S/N , accurately reconstructs the fpeak component of the
GW spectrum and achieves an overlap of O = 0.776. This result indicates that the
impact of the EOS might be less significant than expected, and thus the construction
of post-merger models that cover all possible EOSs, may be accomplished using a
moderate number of simulations. However, it is clear that this test is limited to only
a particular region in the parameter space of possible EOS models. The GW spectra
of these binary configurations exhibit similarities that may not be present for other
EOS models.

Finally, we conclude that a minimum size of Ntrain = 40 simulations used for
training, or equivalently a number density of approximately 11 simulations per 0.1M�
of total binary mass, is sufficient (mean F ' 0.95) for the construction of reliable
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and accurate GW models for fixed EOS and binary mass ratio of q = 1. For models
with training sets of Ntrain ≥ 40, the mean values of F for the simulations of the test
set converge to the value ' 0.95. In those models, the maximum median O values
are in the range of 0.969 to 0.992, while the KNNAPR4

tr=20 model achieves lower O values.
In this work, we have addressed the first of a series of questions toward the

construction of a general purpose EOS-dependent GW model for the post-merger
emission based on supervised learning methods. We systematically investigated the
minimum size of the data set required for developing accurate templates, using the
supervised learning method of KNN regression, for a sequence of equal-mass binaries
and a fixed EOS model. Our findings are based on this particular method, however,
the KNN regression may be indicative of other types of regression methods. However,
it is evident that the models discussed in this work need to be extended in order to be
applicable to realistic scenarios where the EOS is only partially known. The intrinsic
parameters have to be adjusted to include the effects of the EOS and binary mass
ratio. In this regard, varying the additional degrees of freedom would significantly
increase the number of simulations needed, as discussed in Whittaker et al. (2022).
A potential caveat of any model based on simulations is the fact that the simulated
GW signal depends on the employed resolution and may be affected by missing
physics in the simulations or the finite number of EOS models. However, the first
few milliseconds of the post-merger phase, in which most of the GW radiation occurs,
may be more reliable than the later evolution, i.e., of the order of tens of milliseconds.
In addition, the fact that an APR model successfully recovers a SFHX signal may
indicate that these issues are less relevant in practice.

In future work, we plan to investigate the behavior of the remaining degrees of
freedom, such as the EOS model, or the binary mass ratio q, and construct tem-
plates for the post-merger GW emission that consider those quantities as intrinsic
parameters. The effect of the binary mass ratio is likely less dominant in compar-
ison to that of the EOS model. This is because the GW spectra for unequal-mass
configurations exhibit similarities to those of equal-mass systems, while the range of
characteristic frequencies of the GW spectra are not expected to differ significantly.
However, the mechanisms that explain some of the subdominant frequency peaks,
such as fspiral (see Bauswein and Stergioulas (2015)), in the GW spectrum depend on
the mass ratio, and thus the amplitudes of those may change for binaries with low
values of q. The EOS model affects the dynamics of the post-merger system, and
thus the characteristic frequencies of the GW spectra. To obtain faithful templates,
that achieve large O values, the model must accurately describe the the dominant
and subdominant frequency components of the GW spectrum. For this reason, the
model must incorporate EOSs, with different degrees of softness and stiffness.

The data underlying this article will be shared on reasonable request to the cor-
responding author.

C Appendix

C1. KNN models

In this section, we provide additional information regarding the KNN models. We
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C Appendix

show histograms of the mass distribution for simulated binary configurations. We
present the mean and standard deviation of F for the simulations of the test set for
the various training set sizes employed in this work. Furthermore, we discuss the F
values of the simulations of the validation sets.

Data set of simulations

Figure 4..8 shows the histograms of the simulated binaries for the APR4 and SFHX
EOS models. The complete set consists of simulations uniformly distributed with
respect to total binary mass. The test set includes simulations distributed in an
equidistant manner.

2.4 2.6
Mtot [M�]

0
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10

15

20

Complete set Test set

APR4

2.4 2.6 2.8
Mtot [M�]

SFHX

Figure 4..8: Histograms for the simulated binaries for the APR4 (left) and SFHX
(right) EOS models. Blue histograms indicate the simulations of the complete set.
Orange histograms indicate the configurations of the test set.

Validation data

The validation sets have different sizes (for the various KNN models) that are supple-
mentary to the training sets. The validation sets are used during the grid search for
the hyper-parameter tuning to determine the optimal hyper-parameters of the KNN
models. Figure 4..9 shows the F as a function of the total binary mass Mtot for the
configurations of the validation sets. As in the case of the test set comparison, we
find that the mean value of the F exhibits an increase as the size of the training set
increasesI think the mean consistently goes up as yo increase the training set. For
the KNNAPR4

tr=20 model the mean value slightly drops, however, it still corresponds to
a large value of 0.931. The scatter of the data around the mean, expressed by the
standard deviation, also decreases as the size Ntrain of the training set increases, and
thus the resolution of the KNN model increases.

In addition, all KNN models exhibit some outliers that decrease asNtrain increases.
These outliers tend to occur at the corners of the parameter space (low-mass and high-
mass configurations). This is a well-known characteristic of the KNN schemes as these
methods rely on neighbors to make accurate predictions, and thus configurations at
the edge of the parameter space have more one-sided neighbors. This effect is possibly
minimized in the test data, as we did not include the two simulations at the edges
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Figure 4..9: Fs for the signals of the validation set, which is used for hyper-
parameter tuning, as a function of total binary mass Mtot for the all KNN models.

(minimum and maximum Mtot) and also used a uniform distribution of configurations
covering the entire range. We also observe a slight preference for outliers to occur at
low Mtot, especially for the KNNAPR4

tr=20 model.

Test data

Figure 4..10 displays the mean and standard deviation for the KNN models. There
is a small systematic increase in the mean F as Ntrain increases. Furthermore, the
standard deviation decreases as Ntrain increases.

C2. Best and worst predictions over the test data

In this section, we present the predictions of the KNNAPR4
tr=40 and KNNAPR4

tr=100 KNN
models for the configurations of the test set that lead to the highest and lowest values
of F . Figures 4..11 and 4..12 show the predicted GW signals in the time domain in
comparison to the corresponding simulated signals. This comparison enables us to
better understand how F , which is a global metric for the match between two signals,
is affected by the different segments of the signal. For example, fits with high F
show a good match over the whole duration of the signal. In contrast, fits with low
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Figure 4..10: Upper panel: Mean F as a function of the size of the training set
Ntrain. Bottom panel: Standard deviation as a function of the size of the training set
Ntrain.

F exhibit certain periods within the signal where there is an apparent mismatch
between the oscillations that reduce the overall faithfulness F .
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Figure 4..11: Comparison between the predictions of the KNNAPR4
tr=40 model that lead

to the highest (green) and lowest (cyan) F values and the simulated GW signals
(black) for the binary configurations of the test set.
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Figure 4..12: Comparison between the predictions of the KNNAPR4
tr=100 model that lead

to the highest (orange) and lowest (cyan) F values and the simulated GW signals
(black) for the binary configurations of the test set.
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5. Conclusions

There are method development results and scientific results as yields of this PhD
research. I summarize and discuss these, and give an outlook on possible follow-up
work.

5.1. Main method development results

In what follows, the main method development related outcomes of the three research
projects conducted as parts of this thesis are summarized. These are ordered by
subject domain:

Stellar evolution (Ch. 2.):

• Stellar evolution modeling across different evolutionary phases is a temporal
multi-scale problem. A timescale-adapted evolutionary coordinate has been
defined for re-parametrization of stellar evolution from zero age main sequence
(ZAMS) up to the end of core helium burning (Sect. 2.2.2.) and beyond
(Sect. A1.). Its primary purpose was a simplification of the fitting task by
surrogate models, which yielded substantially more accurate predictions over
the post-MS evolution (Sect. A1.). It can however be used independent of the
fitting task, in particular to sample and visualize variability of stellar variables
across scale ranges and across evolutionary phases.

• An efficient general-purpose stellar evolution surrogate model was constructed,
covering a ZAMS mass range from 0.65M� red dwarves to 300M� Wolf-Rayet
stars, and stellar lifetimes from ZAMS up to the end of CHeB (Sect. 2.3.3.).
It predicts evolutionary tracks and isochrones in the Hertzsprung-Russell and
Kiel diagrams (Sect. 2.4.3.). The model achieves a predictive accuracy over
classical photometric variables that is at least one order of magnitude lower
than typical observational uncertainties, and an efficiency of 1 million point
predictions per 40 seconds on a 4-core CPU hardware (Sect. 2.4.1.).

• The hierarchical nearest-neighbor interpolation algorithm for interpolating stel-
lar evolution tracks (Sect. 2.3.4., A2.) was developed, as a more accurate but
less efficient (Sect. 2.4.1.) alternative to the deep learning based surrogate
model.

CCSNe (Ch. 3.):

• An adjustable scheme was formulated to predict outcomes of iron core collapse
(failed or successful SN) at the pre-SN stage based on multiple pre-SN variables
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(Sect. 3.3.1.). The scheme is adjustable in the sense that the threshold values
for each of the five pre-SN variables involved (ξ2.5, sc, MCO, µ4M4 and µ4) can
easily be modified to incorporate future changes in the SN code that is used to
compute the CCSN outcomes.

• A CCSN recipe was constructed (Sect. 3.3.2.) that predicts the remnant type
(neutron star, fallback black hole or direct collapse black hole) as a function
of MCO and Z, and distinguishes between single and binary-stripped stars of
different mass transfer pre-history (case A, case B and case C donors), mak-
ing it applicable for rapid binary population synthesis studies. The method-
ology behind the construction of the CCSN recipe is sustainable, because –
with future updates to the single and binary-stripped star evolutionary mod-
els – it is straightforward to re-derive the critical values M

(1)
CO, M

(2)
CO and M

(3)
CO

(Sect. 3.3.3.) for direct BH formation from the fits of the explodability proxies.
A distinctive feature of our CCSN recipe is that it guarantees explosions for
MCO ∈ (8.4, 12.4)M�, independent of Z and binarity, with a more likely NS
than fallback BH remnant. Moreover, it admits CCSN explosions at progenitor
MCO as high as 15.4 M�.

• The missing red supergiant (RSG) problem (Smartt, 2009) is usually discussed
in terms of ranges in ZAMS mass of RSG stellar models that result in pre-SN
bolometric luminosities over which RSGs are observed to miss out as Type IIP
SN progenitors. Instead, I have re-formulated the missing RSG problem in
terms of MCO masses (Sect. ??): there is a lack in Type IIP SN progenitor
observations over the range MCO ∈ (5.6, 7.8)M�. The formation of the CO
core at the end of CHeB is an important anchor point in the stellar evolution
which directly relates to the pre-SN bolometric luminosity, and different MCO

core masses can be obtained for the same ZAMS mass as the adopted physics
up to the end of core helium burning is changed (Fig. 3..7 in Sect. 3.3.2.).

Gravitational waves (Ch. 4.):

• A gravitational wave template, predicting (equal mass) binary neutron star
post-merger emission in time domain as function of the source parameters
total binary mass Mtot and two different fixed EOSs (Sect. 4.2.2.), was con-
structed. The Mtot parameter space spans the entire range from twice the
minimal NS mass assumed at birth in a CCSN (1.2M�) to the EOS-dependent
theshold mass Mthres for prompt black hole formation. The model achieves
mean faithfulness scores F ≥ 0.938 (Sect. 4.3.1.) and an execution time of 1-3
ms (Sect. 4.3.2.) for sampling rates comparable to those of aLIGO, making it
applicable for future online searches of source signals.

• The minimal parameter space sampling density in total binary mass Mtot, re-
quired for reliable reconstruction of the equation of state dependent peak os-
cillation frequency from a colored noise background (Sect. 4.3.1. and 4.3.3.),
was determined to be 11 simulations per 0.1 M�. This sampling density result
gives a first-order estimate of the number of numerical relativity simulations
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required to extend the parameter space of the GW template model by covering
a greater number of EOSs over the full total binary mass range.

5.2. A cross-comparative and integral view

In this section, the three research projects are considered in their integrity, to em-
phasize how they compare and relate to one other.

Table 5..1: Cross-comparison of the three research projects conducted in this the-
sis. It outlines the evolutionary part modeled by emulator-based techniques, the
references to the adopted physics behind the data set used to fit the models, the
supervised learning models used to address the fitting task, the simplifying step in-
troduced into the formulation of the regression problem, the predicted observables
and the long-term research goal associated with each of the projects.

Evolutionary part Adopted physics
(1) ZAMS - end of CHeB Choi et al. (2016)
(2) End of CHeB - iron core collapse Schneider et al. (2021, 2023)

Müller et al. (2016)
(3) BNS post-merger phase Soultanis et al. (2024)

Predictive model Simplifying step
(1) ffNN timescale-adapted evolutionary coordinate
(2) GPR pre-SN explodability criterion
(3) KNN phase alignment

Observables Long-term research goal
(1) logL, log Teff , log g test of stellar evolution model / parameter inference
(2) SNe Re-estimation of CO merger and CCSN rates
(3) GWs Constraints on the nuclear EOS

Table 5..1 compares the three projects systematically. Each of the predictive
models constructed in this work addresses a different evolutionary part, which relates
to its consecutive part:

1. The stellar evolution model (Sect. 2.4.1.) predicts evolutionary tracks from
ZAMS up to the end of CHeB. To this end, an intermediate step is introduced
to map stellar age onto the timescale-adapted evolutionary coordinate, which
is used instead of stellar age to trace the evolution of stars.

2. The fits of the pre-SN variables as a function of MCO (Sect. 3.3.3.) bridge the
evolution from the end of core helium burning through the late burning phases
up to the onset of iron core collapse. These are then used for final fate and
remnant type prediction over single and binary-stripped star progenitors using
the pre-SN explodability criterion.

129



5. Conclusions

3. Granted that two neutron stars get formed through one of the stellar binary
evolutionary channels, and that these are found close enough to merge within
the Hubble time (these two conditions are assumed, their statistical modeling
is out of scope of this thesis), the gravitational wave model traces the BNS
merger remnant evolution over the entire total binary mass range up to prompt
collapse.

An advantage of the integral predictive framework elaborated in this thesis is its
modular structure: when the adopted physics behind each evolutionary part – be it
(1), (2) or (3) – is replaced, the predictive surrogate models need to be re-fitted on
an updated data base independent of the other evolutionary parts.

For each of the fitting tasks, a different surrogate model class was found to achieve
best performance:

• a feedforward neural network (ffNN) was most powerful in generalizing the
prediction of stellar evolution tracks,

• gaussian process regression (GPR) yielded the most accurate interpolation of
the pre-SN variables, and

• k -nearest neighbor regression (KNN) was the most appropriate model choice
for resolving local variability structures in the gravitational wave parameter
space.

Their hyperparameters were optimized using different techniques (manual tuning,
randomized search and grid search under k-fold cross-validation), and the perfor-
mance metrics (see Sect. 2.2.4. for scoring the prediction of stellar evolution, and
Sect. 4.2.2. for scoring the prediction of gravitational waves; the mean squared error
was used to score the prediction of pre-SN variables ) were tailored to the application
context.

In all of the three projects, a simplifying step was introduced when formulating
the regression problem. This step enchanced the accuracy of the fits compared to
the brute-force approach, by altering the distribution of data in the parameter space
or by reducing the dimensionality of the regression problem. The introduction of the
timescale-adapted evolutionary coordinate addressed the temporal multi-scale prob-
lem of stellar evolution modeling across phases. The alignment of the gravitational
waves in-phase over the first few ms (Sect. 4.2.2.) allowed to accurately fit the most
relevant part of the gravitational wave signal, which has the largest strain amplitude
and which carries information about the peak oscillation frequency. The formulation
of the pre-SN explodability criterion to the M16 SN code made it sufficient to pre-
dict the five explodability proxies – which are derived from the pre-SN progenitor
structure, and required for evaluation of the criterion – instead of predicting entire
pre-SN stellar structure profiles – needed as input for running the M16 1D SN code
– as a function of MCO, in order to obtain the resulting CCSN outcomes.

All three research projects lead to the prediction of observables: classical pho-
tometric variables are predicted by the stellar evolution emulator (Ch.2.), SNe by
the explodability formalism (Ch. 3.) and gravitational waves by the template model
(Ch.4.). These immediately connect to the long-term research goal associated with
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the construction of the surrogate models. The stellar evolution emulator (in the
way it is currently set up) allows to test the adopted physics behind the catalog
upon which it was trained, by comparison of model predictions to observations of
stellar populations. The emulator can also be used for iterative optimization to in-
fer the stellar age and the ZAMS mass of a star (given a single observation), or to
estimate the age of a stellar population (by comparison of model isochrones to pop-
ulation observations). The construction of the MCO-based CCSN recipe was tailored
for application in rapid binary population synthesis codes. Its integration in these
codes will allow to re-assess the CCSN rates and binary compact object merger rates
(BH-BH, BH-NS, NS-NS).

5.3. Main scientific results

The research project reported in Ch. 2. was a proof-of-concept study, in which the
elaboration of a sustainable methodology for fitting stellar evolution tracks over a
large stellar parameter space was put into the foreground. Since binary neutron
star post-merger gravitational waves have too high frequencies for detection with
current interferometry, the template constructed in the research project reported in
Ch. 4. cannot be used for detection of gravitational waves at present day. However,
scientific conclusions were drawn regarding their detectability and the dependence
of the gravitational wave signal morphology on the source parameters. These are
presented in Soultanis et al. (2024). The main scientific findings were made in the
research project associated with Ch. 3., which is based on the to-be-submitted paper
Maltsev et al. (2024a). The main results are summarized below:

Detectability of GWs from BNS merger remnants and dependence of the
GW morphology on source parameters (Ch. 4.):

• A gravitational wave (GW) from a neutron star merger remnant at one EOS can
be characterized by the same main peak oscillation frequency and similar sub-
dominant frequency peaks as a gravitational wave from a NS merger remnant
at another EOS (Sect. 4.3.4.). This is the case if the NS binary of the stiffer
EOS has a higher total mass Mtot compared to the softer EOS. It is therefore
difficult to disentangle the effect of Mtot and of the EOS on the morphology of
the GW signal, and to use the detection of GWs from the NS post-merger phase
to constrain competing models on the nuclear EOS. These two reference GW
signals will, however, differ in strain amplitude, since a lighter binary results in
a weaker excitation of the quadrupolar mode. For a fixed signal-to-noise ratio
of the detecting interferometry, this will therefore lead to differences in lumi-
nosity distance estimates: the GW from the stiffer EOS and the more massive
binary will be predicted to have originated closer to Earth than the GW from
the softer EOS and the less massive binary.

• While the less pronounced effect of the EOS on the GW morphology than
expected makes it more difficult to select EOS models upon detection of a
source GW, it makes it easier to detect one (Sect. 4.3.4.). A detection of a
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GW from a BNS merger remnant is therefore possible even if the EOS model
is inaccurate, further away from the real conditions that govern the actual
astrophysical source.

• BNS post-merger GW signals can be reconstructed reliably at advanced LIGO
sensitivity, i.e. at a high overlap and narrow posterior probability distributions
on fpeak, if the source is close enough (a luminosity distance of DL ' 12 Mpc
(Sect. 4.3.3.).

Pre-determination of the final fate and compact remnant type at the onset
of iron core infall:

• The explodability formalism, which was developed based on outcomes of the
M16 CCSN model (Sect. 3.2.2.) over a heterogeneous super-set of ' 3900 pre-
SN progenitors (Sec. 3.2.1.) is in broad agreement with 3D CCSN simulation
outcomes from the Garching and the Monash groups (Sec. 3.3.1.). The for-
malism thereby improves previous approaches to predict the outcome of iron
core collapse, by using multiple explodability proxies – derived from the pre-SN
progenitor structure – in concert. These are the compactness parameter ξ2.5,
the central specific entropy sc, the carbon-oxygen core mass MCO and the E16
parameters µ4 and µ4M4 that scale with the mass accretion rate and the accre-
tion luminosity, respectively. To address the question whether a given pre-SN
progenitor will explode or not, the explodability criterion can be used to make
a final fate prediction at high confidence, without the need to run expensive
3D CCSN simulations in order to get the answer.

• Black hole formation by fallback in a successful SN explosion is rarer than
NS formation (< 13% of exploding progenitors from the super-set of stellar
models over MCO values in-between peaks in ξ2.5, and none otherwise), and can
be excluded at pre-SN stage if ξ2.5 is small compared to µ4M4, and M4 large
compared to MCO, respectively (Sect. 3.3.1.).

Explodability systematics in the (MCO, XC) plane at the end of CHeB:

• Outcomes of CCSN simulations not only are encoded in the pre-SN progenitor
structure, but – provided that the model for the late burning phases is fixed –
pre-determined already at the end of core helium burning (Sect. 3.3.3.). Dif-
ferences in CCSN outcomes for stars of the same MCO but different Z, of the
same MCO and Z but different mass transfer pre-history, or of the same MCO,
Z and mass transfer pre-history but different input physics such as convective
core overshooting, can all be traced back to differences in the central carbon
mass fraction XC at the end of core helium burning (see Fig. 3..10 and 3..6,
and Sect. 3.3.2.).

• When applying the pre-SN explodability criterion introduced in Sect. 3.3.1. to a
densely sampled model grid of bare carbon-oxygen cores (Patton and Sukhbold,
2020), evolved from the zero age core carbon burning up to onset of iron core
infall over a parameter space spanned by (MCO, XC), the resulting final fate
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landscape is radically different: it features a less scattered distribution of CCSN
outcomes and is more optimistic about successful SNe than the one resulting
from the standard E16 criterion (Fig. 3..12, Sect. 3.3.2.). E16 is currently
widely used for binary population synthesis, while it does not agree with 3D
CCSN simulation outcomes, in contrast to our formalism (Fig. 3..3).

Constraints on stellar evolution models and on CCSN recipes from SN
observations:

• The explodability systematics in the aforementioned (MCO, XC) plane, featur-
ing only two “islands” of failed SN outcomes for MCO ≤ 10M� constrains
stellar evolution models to have specific value ranges in MCO and XC in order
to land on these at the end of core helium burning, for partially addressing the
missing red supergiant problem (Smartt, 2009) by direct BH formation (see
Fig. 3..14 and Sect. 3.3.3.). This implies, first, that adopted physics such as
the 12C (α, γ)16 O rate during core helium burning, the wind mass loss scheme
and/or convective core overshooting must be suitably configured to yield the
appropriate XC values for resulting in failed SN outcomes over the MCO inter-
val of interest. This constraint may serve as an indirect test of stellar evolution
models. The second implication is that failed SNe cannot be the only reason
for the lack of RSGs as Type IIP progenitors: other physical mechanisms need
be invoked on top for its explanation.

• The CCSN recipe introduced in Sect. 3.3.2. is in better agreement with obser-
vations that constrain CCSN progenitors than other MCO-based recipes Mapelli
et al. (2020), Mandel and Müller (2020) and Fryer et al. (2012) that are widely
used in binary population synthesis codes. The CCSN recipe is consistent with
the most luminous Type IIP, IIL, IIb and Ib progenitor (direct imaging) obser-
vations (Sect. 3.3.3.) while at the same time partially addressing the missing
red supergiant problem by failed SNe. Furthermore, it explains the Type IIn
SN2010jl (Smith et al., 2011), the Type Ic SN2011bm (Valenti et al., 2012) and
the most oxygen-rich SN remnants (Fang et al., 2022), which other recipes are
challenged to explain (Sect. 3.3.3.).

5.4. Outlook

There are several directions for extending the research conducted in this thesis further
by building upon the aforementioned results. These are again ordered by research
project.

Stellar evolution (Ch. 2.): The stellar evolution emulator – in its current version
– can be used, as already anticipated, for the following three astrophysical applica-
tions:

1. a test of the input physics adopted for the Choi et al. (2016) stellar evolution
models, which are emulated by the surrogate model constructed in Ch. 2., by
comparison against population observations,
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2. age determination of a stellar population, such as an open cluster, by compar-
ison of isochrones predicted by the emulator to population observations in the
Hertzsprung-Russell and Kiel diagrams, and

3. estimation of the age and the ZAMS mass of a single star, by optimization tech-
niques that iteratively evaluate the emulator at different points in parameter
space,

provided that the astrophysical sources can be constrained to have a metallicity close
to solar, Z�. An obvious way to extend the current version of the stellar evolution
surrogate model is to enlarge the regressor parameter space to include the ZAMS
metallicity Zini. Following Sect. 2.2.1., the two-step interpolation scheme then reads

Step 1 (age proxy fit) f1 : (log τ, logMini, logZini) 7→ s,

Step 2 (observables fit) f2 : (s, logMini, logZini) 7→ (YL, YT , Yg).

Similarly, other observables could be added to the set of target variables predicted
by the emulator, such as surface element abundances. To this end, in order to avoid
the alignment problem (Sect. A5.), I have argued that training multiple emulators
that each predict a single target variable is a better approach than training a single
emulator predicting multiple target variables. These two extensions will not only
increase the realm of applicability of the emulator for the aforementioned science
cases, but also for the other ones mentioned in Sect. 2.1.:

• Population synthesis codes,

• stellar N -body dynamics codes and

• large-scale galactic evolution simulations

all are astrophysical applications that could benefit from a stellar evolution surrogate
model, as an alternative to SSE (Hurley et al., 2000) or to the simpler approaches
that integrate effects of stellar evolution over a larger scale. These astrophysical
applications require adaptation of the emulator set-up compared to the one presented
in this work. In order to replace SSE in population synthesis codes that are based
on SSE (and on BSE (Hurley et al., 2002)) – such as COMPAS and binary c – by
a stellar evolution surrogate model that is based on a more recent stellar evolution
catalog, the surrogate model needs to predict the same set of variables over the
same span of stellar parameter space as is currently predicted by SSE. In stellar N -
body dynamics codes, the target variables of interest are those that are relevant for
the dynamical evolution, such as present-day mass, radius and rotation. In large-
scale galactic evolution simulations, the target variables of interest are those that
contribute to stellar feedback and chemical evolution, such as bolometric luminosity,
stellar wind rates, compositional variables and nucleosynthesis yields. The advantage
of the methodological framework elaborated in this thesis is that the same stellar
evolution surrogate modeling method can be applied to an arbitrary choice of the
target variable of interest.
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CCSNe (Ch. 3.): The pre-SN explodability criterion formulated in this work has
been tested against 3D CCSN simulations performed in the Garching (Germany)
and Monash (Australia) research groups (Sect. 3.3.1.). An insightful follow-up study
would be the test of the criterion against the 3D CCSN simulation outcomes ob-
tained at some of the other few research centers around the world that perform these
simulations: the Stockholm (Sweden), Fukuoka (Japan), Princeton and Oak Ridge
(USA) groups.

As already discussed in Sect. 3.4., a profound step forward would be the compar-
ison of 3D CCSN simulations with the M16 model not only in regard of the final fate
(successful or failed SN), but also in regard of the modeled core collapse physics. This
research requires running the M16 code over a few selected pre-SN progenitors (such
a non-exploding, an exploding high-mass and an exploding low-mass progenitor) over
which 3D CCSN simulations have been performed, and comparing the predicted size
of the gain region, the shock radius evolution, the core temperature conditions, the
explosive nuclear burning, the PNS mass growth and other processes modeled in 1D
and 3D. The expected outcome is that the free M16 1D model parameters will need to
be tuned for an improved agreement with the 3D CCSN simulation, presumably with
parameter choices that depend on the progenitor. On the other hand, insight from 3D
simulations of the ultimate stages between the end of the core silicon burning phases
and the onset of iron core collapse can be used to improve the estimation of the αturb

parameter. As stressed in Müller and Janka (2015), the root-mean-square averaged
turbulent Mach number informs the value choice for αturb. It needs be greater, the
greater are the perturbations to spherically symmetric pre-SN progenitor stratifica-
tions, induced by late phase oxygen-neon shell mergers, convective silicon burning
and other effects. Again, presumably a progenitor-dependent choice of αturb will be
the most appropriate modeling assumption for M16 that better agrees with 3D sim-
ulations. After sophistication in the choice of the M16 model parameters, the M16
code needs to be re-run over a large sample of pre-SN progenitors (such as those
considered in Sect. 3.2.1.) to re-evaluate the final fate outcomes. Any substantial
differences therein will need to be reflected in a re-formulation of the pre-SN explod-
ability criterion. In simplest way, this would go by retaining the scheme proposed in
Sect. 3.3.1. and updating the critical values in the pre-SN variables ξ2.5, sc, µ4M4

and fit parameters (k1, k2).

A MCO-based CCSN recipe in rapid BPS needs to assume a model for the ad-
vanced burning phases that bridges evolution from the cut-off point (such as central
carbon ignition) to the pre-SN stage (and to the final fate). While the Schneider et al.
(2021) model was assumed for the recipe constructed in Sect. 3.3.2., differences in the
adopted physics for the late burning phases will lead to different pre-SN variables for
the same progenitor (such as, for example, a single star of MCO = 6M� at Z = Z�).
For a fixed pre-SN explodability criterion, the differences in the pre-SN variables will
result in shifts of the critical values M

(1)
CO, M

(2)
CO and M

(3)
CO that delineate the direct

collapse threshold values.

As already mentioned, a work-in-progress is the implementation of the current
version of the MCO-based CCSN recipe into a rapid BPS code, and its use to re-
estimate BBH merger rates. Since the recipe developed in this research thesis is
considerably more optimistic about successful SN explosions at higher MCO than
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other recipes that are widely used, such as F12, the anticipated result is that the
BBH merger rates will be lower than those predicted with those. The consequences
for gravitational wave astronomy will need to be further explored.

Gravitational waves (Ch. 4.): An optimistic preliminary result obtained in
Sect. 4.3. is that a more general gravitational wave model, i.e. one that depends
on a greater number of BNS source parameters, is achievable with a manageable
number of numerical relativity simulations while being accurate and efficient enough
for real-time searches of signals at advanced LVK sensitivity. The next step is the
construction of a gravitational wave model which predicts the BNS post-merger emis-
sion at a variable mass ratio q as an additional degree of freedom. This means that
the regression problem introduced in Sect. 4.2.2. needs to be extended as

h+(t) = KNN(t− t0;Mtot, q) e
iφ0 , (5..1)

h×(t) = h+(t− t0) ei
π
2 . (5..2)

Following the methodology elaborated in Sect. 4., the minimal parameter space
sampling density for reliable reconstruction of source signals at colored noise condi-
tions will now need to be determined over the extended (Mtot, q) parameter space,
at a fixed EOS. For a more general conclusion, it is of interest to repeat this study
for an exemplary soft EOS – such as APR4 – and a stiff EOS.

While this extension of the parameter space is straightforward, the more chal-
lenging task is the parametrization of the post-merger emission at a variable EOS.
The resulting gravitational wave model would predict

h+(t) = KNN(t− t0;Mtot, q, EOS) eiφ0 (5..3)

as a function of the mass parameters Mtot and q, and at variable EOS assumptions.
The optimal method for parametrizing the dependence of the GW emission on dif-
ferent EOSs using the same predictive framework has yet to be found. One possible
approach, applicable to cold EOSs, is to use the polytropic EOS

P (ε) ∝ εγ (5..4)

where P is the inner pressure, ε the energy density and γ the polytropic index. For
a fixed EOS, the polytropic model could be used to optimize the choice of γ over
different ranges in energy density. For example, three different indices γ1, γ2 and γ3

could be the modeling choices over the ranges (ε
(1)
a , ε

(1)
b ), (ε

(2)
a , ε

(2)
b ) and (ε

(3)
a , ε

(3)
b ),

respectively. Here, ε
(i)
a and ε

(i)
b ) define the upper and lower limits of the density

interval, over which the polytropic index i = 1, 2, 3 is the appropriate choice. Different
nuclear EOS

EOS← (γ1, ..., γn) (5..5)

are then characterized by different values in γ1, ..., γn, where n is the number of
spectral indices used for the piecewise polytrope modeling.
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A different, more general approach to parametrizing the EOS is to use deep
learning based techniques for encoding different EOS in a latent space. This approach
has already been tested in Whittaker et al. (2022), but requires further exploration.
The idea is to use an encoder neural network architecture to find a low-dimensional
EOS representation using latent variables. Each EOS, is then encoded by a set of
variables α1, ..., αk,

EOS← α1, ..., αk, (5..6)

that span a latent space of dimension k, vectorized by ~α.
The construction of a general GW model that takes the EOS dependence of

the BNS post-merger emission into account is necessary to address the long-term
scientific goal: to help facilitate a future detection of a BNS post-merger GW signal,
with interferometry at aLIGO sensitivity or next-generation detectors, that can be
used to derive constraints on the nuclear EOS.
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Gómez, A., and Yoon, S.-C. (2023). Stripped-envelope stars in different metallicity
environments. II. Type I supernovae and compact remnants. Astron. Astrophys.,
671:A134.

Akmal, A., Pandharipande, V., and Ravenhall, D. (1998). The Equation of state of
nucleon matter and neutron star structure. Phys. Rev. C, 58:1804–1828.

Aldering, G., Humphreys, R. M., and Richmond, M. (1994). SN 1993J: The Optical
Properties of its Progenitor. Astron. J., 107:662.

Arcavi, I., Hosseinzadeh, G., Brown, P. J., Smartt, S. J., Valenti, S., Tartaglia, L.,
Piro, A. L., Sanchez, J. L., Nicholls, B., Monard, B. L. A. G., Howell, D. A.,
McCully, C., Sand, D. J., Tonry, J., Denneau, L., Stalder, B., Heinze, A., Rest,
A., Smith, K. W., and Bishop, D. (2017). Constraints on the Progenitor of SN
2016gkg from Its Shock-cooling Light Curve. Astrophys. J. Lett., 837(1):L2.
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Hopkins, P. F., Kereš, D., Faucher-Giguère, C.-A., and Murray, N. (2018). Stellar
feedback in galaxies and the origin of galaxy-scale winds. Monthly Notices of the
Royal Astronomical Society, 481(3):4133–4188.

Horiuchi, S., Nakamura, K., Takiwaki, T., Kotake, K., and Tanaka, M. (2014). The
red supergiant and supernova rate problems: implications for core-collapse super-
nova physics. Mon. Not. Roy. Astron. Soc., 445:L99–L103.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366.

Hotokezaka, K., Kiuchi, K., Kyutoku, K., Muranushi, T., Sekiguchi, Y.-i., Shibata,
M., and Taniguchi, K. (2013). Remnant massive neutron stars of binary neu-
tron star mergers: Evolution process and gravitational waveform. Phys. Rev. D,
88:044026.

Hotokezaka, K., Kyutoku, K., Okawa, H., Shibata, M., and Kiuchi, K. (2011). Binary
neutron star mergers: Dependence on the nuclear equation of state. Phys. Rev. D,
83:124008.

Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of
Mathematical Statistics, 35(1):73–101.

Hurley, J. R., Pols, O. R., and Tout, C. A. (2000). Comprehensive analytic formulae
for stellar evolution as a function of mass and metallicity. Mon. Not. Roy. Astron.
Soc., 315(3):543–569.

Hurley, J. R., Tout, C. A., and Pols, O. R. (2002). Evolution of binary stars and the
effect of tides on binary populations. Mon. Not. Roy. Astron. Soc., 329(4):897–928.

Huth, S., Pang, P. T. H., Tews, I., Dietrich, T., Le Fèvre, A., Schwenk, A., Traut-
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