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Abstract 

The 2021 WHO classification represents a significant shift in Central Nervous System (CNS) 

tumour diagnostics, emphasising the integration of molecular alterations alongside traditional 

histopathology. Among the advancements in molecular diagnostics, methylation-based 

classification using the Heidelberg Molecular Neuropathology (MNP) classifier 

(molecularneuropathology.org) has become an essential diagnostic tool. Conventional 

molecular testing often involves multiple assays such as DNA/RNA sequencing, methylation 

arrays, immunohistochemistry among others, which are resource-intensive and limited to high-

throughput settings due to their complexity, costs, and lengthy turnaround times. 

In this work, I introduce two tools aimed at improving the accessibility and affordability of CNS 

tumour molecular diagnostics: Rapid-CNS2 and MNP-Flex. Rapid-CNS2 is a nanopore 

sequencing workflow that employs adaptive sampling to efficiently detect mutations, copy 

number alterations, gene fusions, target gene methylation, and perform methylation 

classification, all in a single test. This system is flexible, allowing immediate testing on 

individual samples and customisable targets via a simple text file. I formulated and 

subsequently validated the pipeline using 252 samples, including archival and diagnostic 

frozen sections. I developed ad-hoc models for methylation classification and MGMT promoter 

methylation detection. I employed publicly available state-of-the-art tools for pre-processing, 

variant calling and annotation, and devised computational acceleration strategies. 

Additionally, I demonstrate the potential of the pipeline to report results in an intraoperative 

time-frame with 18 samples from two independent centres. Thus, Rapid-CNS2 offers real-time 

methylation classification and DNA copy-number reporting within a 30-minute intraoperative 

window, followed by comprehensive molecular profiling within 24h, covering the entire 

spectrum of molecular alterations relevant for diagnosis and targeted therapies for CNS 

tumour subtypes- drastically reducing the weeks-long turnaround required by conventional 

methods. 

To further enhance accessibility of the MNP classifier, I developed MNP-Flex, a platform-

independent version of the MNP classifier, covering 184 CNS tumour classes. I validated 

MNP-Flex on a global cohort of over 78,000 samples, including both frozen and formalin-fixed 



paraffin-embedded (FFPE) samples processed using five different methylation profiling 

technologies. With clinically relevant thresholds, MNP-Flex achieved accuracies of 99.6% for 

methylation families and 99.2% for methylation classes. 

Together, Rapid-CNS2 and MNP-Flex offer a comprehensive workflow for CNS tumour 

diagnostics. Rapid-CNS2 provides real-time, intraoperative reporting of broad methylation 

classification and copy number variations to guide surgical strategy, while the complete 

molecular profile and fine-grained methylation classification with MNP-Flex is available the 

next day, informing clinical care and therapeutic decisions. The workflow is cost-effective, uses 

compact equipment, and employs straightforward laboratory and bioinformatics tools. Rapid-

CNS2 is available on GitHub, and MNP-Flex can be accessed via a research-use web service 

at https://mnp-flex.org. This integrated approach aims to streamline CNS tumour molecular 

diagnostics, broadening global access to precise, molecularly-informed classification and 

ultimately improving patient outcomes. 



Zusammenfassung 

Die WHO-Klassifikation von 2021 markiert einen tiefgreifenden Wandel in der Diagnostik von 

Tumoren des zentralen Nervensystems (ZNS). Sie legt den Fokus auf die Integration 

molekularer Veränderungen als Ergänzung zur traditionellen Histopathologie. Besonders 

hervorzuheben ist der Fortschritt in der Molekulardiagnostik durch die methylierungsbasierte 

Klassifikation mittels des Heidelberg Molecular Neuropathology (MNP)-Klassifikators 

(molecularneuropathology.org), der mittlerweile als unverzichtbares Diagnosewerkzeug gilt. 

Herkömmliche molekulare Analysen setzen häufig mehrere komplexe Methoden wie DNA-

/RNA-Sequenzierung, Methylierungsarrays und Immunhistochemie ein. Diese Verfahren sind 

ressourcenintensiv und aufgrund ihrer Komplexität, Kosten und langen Bearbeitungszeiten 

auf hochspezialisierte Einrichtungen beschränkt.  

In dieser Arbeit präsentiere ich zwei Tools, die darauf abzielen, die Zugänglichkeit und 

Erschwinglichkeit der molekularen Diagnostik von ZNS-Tumoren zu verbessern: Rapid-CNS2 

und MNP-Flex. Rapid-CNS2 ist ein Nanoporen-Sequenzierungsworkflow, der mithilfe 

adaptiven Samplings effizient Mutationen, Kopienzahlveränderungen, Genfusionen und 

Zielgenmethylierungen erfasst und eine umfassende Methylierungsklassifikation ermöglicht – 

alles in einem einzigen Workflow. Das System ist flexibel und erlaubt sofortige Analysen 

einzelner Proben mit individuell anpassbaren Genregionen, die einfach über eine Textdatei 

festgelegt werden können. Die Pipeline habe ich mit 252 Proben – einschließlich archivierten 

Kryogewebes und diagnostischen Schnellschnitten – entwickelt und validiert. Hierbei kamen 

Ad-hoc-Modelle für die Methylierungsklassifikation und den Nachweis der MGMT-Promoter-

Methylierung zum Einsatz. Für die Vorverarbeitung, Variantendetektion und -annotation nutzte 

ich hochmoderne, öffentlich zugängliche Tools und entwickelte Strategien zur Beschleunigung 

der Datenverarbeitung. Zusätzlich zeige ich das Potenzial der Pipeline auf, intraoperative 

Ergebnisse zu liefern: Anhand von 18 Proben aus zwei unabhängigen Zentren wird 

demonstriert, dass Rapid-CNS2 innerhalb eines 30-minütigen intraoperativen Zeitfensters 

Echtzeit-Methylierungsklassifikationen und DNA-Kopienzahlberichte bereitstellt. Das 

vollständige molekulare Profiling erfolgt dann innerhalb von 24 Stunden, was das gesamte 

Spektrum molekularer Veränderungen abdeckt, die für die Diagnose und gezielte Therapie 

von ZNS-Tumorsubtypen von Bedeutung sind. Damit verkürzt Rapid-CNS2 die wochenlange 

Bearbeitungszeit herkömmlicher Methoden erheblich.  

Um den Zugang zum MNP-Klassifikator weiter zu erleichtern, entwickelte ich MNP-Flex, eine 

plattformunabhängige Version des MNP-Klassifikators, die 184 ZNS-Tumorklassen abdeckt. 



MNP-Flex wurde an einer globalen Kohorte von über 78.000 Proben validiert, darunter 

gefrorene sowie formalinfixierte, paraffineingebettete (FFPE) Proben, die mit fünf 

verschiedenen Methylierungsprofilierungstechnologien verarbeitet wurden. Mit klinisch 

relevanten Schwellenwerten erzielte MNP-Flex eine beeindruckende Genauigkeit von 99,6 % 

für Methylierungsfamilien und 99,2 % für Methylierungsklassen.  

Gemeinsam bieten Rapid-CNS2 und MNP-Flex einen umfassenden Workflow für die ZNS-

Tumordiagnostik. Rapid-CNS2 ermöglicht intraoperative Echtzeitberichte über 

Methylierungsklassifikationen und Kopienzahlveränderungen, die die chirurgische Strategie 

unterstützen, während das vollständige molekulare Profil und die detaillierte 

Methylierungsklassifikation durch MNP-Flex bereits am Folgetag bereitstehen, um klinische 

Entscheidungen und therapeutische Maßnahmen zu erleichtern. Dieser Workflow ist nicht nur 

kosteneffektiv und kompakt in der Anwendung, sondern verwendet auch leicht zugängliche 

Labor- und Bioinformatik-Tools. Rapid-CNS2 ist auf GitHub verfügbar, und MNP-Flex kann als 

Webservice für Forschungszwecke unter https://mnp-flex.org abgerufen werden. Dieser 

integrierte Ansatz optimiert die molekulare Diagnostik von ZNS-Tumoren, erweitert den 

globalen Zugang zu präzisen, molekular fundierten Klassifikationen und trägt letztlich zur 

Verbesserung der Patientenergebnisse bei.  
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About this thesis 

This thesis marks the commencement of my overarching quest to enable access to modern 

precision cancer diagnostics and subsequently therapy to one and all irrespective of their 

geographical location, socioeconomic status, ethnicity or gender. Coming from a developing 

country, I have first-hand observed the disparity in care and treatment among my countrymen 

primarily owing to inequality of access. It is this inequality that has fuelled my determination to 

bridge the gap between advanced scientific innovations and the people who need them the 

most. Through this work, I aim to contribute to the democratisation of healthcare by developing 

methods that are not only scientifically robust but also accessible and affordable for 

implementation in diverse settings, particularly in under-resourced regions. I firmly believe that 

precision diagnostics should not be a privilege limited to the affluent or those in developed 

nations, but a basic healthcare right available to every individual, no matter where they are or 

who they are. This thesis represents my first step towards realising that vision. 

In this thesis, I commence with a comprehensive literature review of CNS tumours, their 

diagnosis, and an overview of how evolution of sequencing technologies has impacted 

advances in diagnostics and treatment approaches. This sets the stage for the development 

and application of new methodologies in the field. 

The core of my work is presented in two chapters, each dedicated to a specific method I have 

developed- Rapid-CNS2 and MNP-Flex. In these chapters, I first provide a primer on the 

technology underlying these methods, along with a discussion of the work of giants that I have 

had the privilege of standing on the shoulders of. Next comes a detailed explanation of the 

methods, including how I validated them detailing experiments and analyses. I follow this with 

a results section that states and discusses individual results. The chapters conclude with a 

broad discussion of implications of the methods, developing research in the field, along with 

reflections on how these methods could potentially be improved in future work. 

Finally, I conclude with a general discussion and outlook chapter. This chapter provides a 

broader context for my work, exploring its potential impact on the field while acknowledging 

the limitations of the study. It also looks ahead to possible future developments and 

refinements that could build on the foundation that I have attempted to establish. 
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Chapter 1 Introduction 

1.1 Sequencing technologies 

The ability to sequence DNA has revolutionised biology and medicine, providing deep insights 

into the genetic blueprint of organisms. The development and accessibility of advanced 

sequencing technologies have been pivotal in ushering in a molecular era in CNS tumour 

diagnostics and treatment. As these technologies evolved, they allowed for the generation of 

large-scale molecular data that was previously unattainable, making it possible to identify 

distinct tumour subtypes and actionable alterations in larger populations. This influx of data 

provided a foundation for refining diagnostic criteria and testing new hypotheses, leading to 

more accurate tumour stratification and the development of targeted therapeutic approaches 

that were not feasible before. Sequencing technology has undergone significant evolution 

since the first DNA sequencing methods were developed, transitioning from laborious, manual 

techniques to highly automated, high-throughput platforms (Figure 1-1). Early methods, such 

as Sanger sequencing, paved the way for massive genomic projects like the Human Genome 

Project, while next-generation sequencing (NGS) introduced massively parallel sequencing, 

drastically reduced costs and time. The latest innovations in third-generation sequencing now 

offer longer reads and single-molecule accuracy, opening new avenues for studying complex 

genomes, structural variants, and epigenetic modifications leading to the complete telomere-

to-telomere assembly of the human genome. In this section, I give an overview of the 

progression of sequencing technologies from their inception to the current state of the art while 

simultaneously commenting on their impact on advances in modern CNS tumour diagnostics. 
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Figure 1-1 Evolution of sequencing technologies (Reprinted from https://www.pacb.com/blog/the-evolution-of-dna-

sequencing-tools/, accessed on 16th Sep 2024) 

1.1.1 First generation sequencing: the genesis of genomics 

The journey towards understanding the genetic code began with the discovery of the structure 

of DNA in 1953, when Watson and Crick unveiled their iconic double helix shape at the Eagle 

pub in Cambridge, building on crystallographic data from Rosalind Franklin and Maurice 

Wilkins1,2. This ground-breaking discovery laid the foundation for understanding DNA 

replication and its role in encoding proteins. However, there was no technology to actually 

"read" or sequence DNA. The landscape of DNA sequencing changed drastically with two 

influential developments in the mid-1970s: the "plus and minus" system developed by Alan 

Coulson and Fred Sanger, and the chemical cleavage method of Allan Maxam and Walter 

Gilbert3. This technique led to the sequencing of the first DNA genome, bacteriophage φX174, 

which remains a reference genome for many modern sequencing labs. Despite its added 

complexity, Maxam-Gilbert sequencing became the first widely adopted method for DNA 

sequencing. 

The most significant breakthrough in first-generation sequencing came in 1977, when Sanger 

developed the chain-termination method, also known as Sanger sequencing4. This technique 

relied on the incorporation of dideoxynucleotides (ddNTPs), which lacked the 3' hydroxyl group 

required for DNA chain elongation. By mixing ddNTPs with regular nucleotides in a DNA 

polymerase reaction, the sequencing process was halted at random points, generating 
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fragments of varying lengths. These fragments were then separated on polyacrylamide gels, 

and the resulting bands were used to infer the DNA sequence via autoradiography. 

Sanger sequencing had a profound impact on the field of genomics and was particularly 

transformative for fields such as oncology, where understanding the genetic basis of diseases 

like cancer became crucial. By enabling the sequencing of oncogenes, Sanger sequencing 

laid the groundwork for identifying key genetic mutations involved in tumour formation and 

progression. For instance, the identification of mutations in genes like IDH1 and 1p/19q co-

deletions in gliomas, a crucial component in the diagnosis and treatment planning of CNS 

tumours, was made possible through the early use of Sanger sequencing. 

Improvements in Sanger sequencing followed in the late 1980s and 1990s, including the shift 

to fluorescent labelling and introduction of capillary electrophoresis, enabling the automation 

of DNA sequencing5. Sanger sequencing was also instrumental in the Human Genome 

Project, which produced the first draft of the human genome ahead of schedule6,7. The 

introduction of polymerase chain reaction (PCR) and recombinant DNA technologies further 

accelerated genomic research by providing ample quantities of high-purity DNA for 

sequencing. 

These early technologies, were instrumental in shaping the future of CNS tumour diagnostics 

and treatment, providing insights that continue to inform current therapeutic strategies. Even 

today, automated Sanger sequencing is the gold standard for mutation detection for molecular 

diagnostics and is widely used by modern labs to test specific alterations. 

1.1.2 Second (next) generation sequencing 

The advent of next-generation sequencing (NGS) marked a paradigm shift in genetics by 

enabling DNA sequencing at unprecedented speed. Unlike first-generation sequencing 

methods, which relied on labour-intensive processes like Sanger sequencing, NGS leveraged 

massively parallel sequencing to generate vast amounts of data in a fraction of the time and 

cost.  The first major breakthrough in NGS came with the introduction of pyrosequencing, 

developed by Pål Nyrén and colleagues8,9. The method measured the release of 

pyrophosphate during nucleotide incorporation, which was subsequently converted into light 

through an enzymatic reaction involving ATP sulfurylase and luciferase. However, it had 

limitations, particularly in handling homopolymer regions, where the signal became noisy and 
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difficult to interpret beyond a stretch of four or five identical nucleotides. 454 Life Sciences, 

founded by Jonathan Rothberg, was the first to commercialise pyrosequencing, producing the 

454 GS 20 system. This enabled high-throughput sequencing for the first time. The platform 

made it possible to sequence entire genomes, famously of DNA structure co-discoverer James 

Watson, at a significantly lower cost than traditional Sanger sequencing. Nevertheless, 

challenges with interpreting homopolymer regions and the cost of reagents led to other NGS 

technologies, particularly Illumina’s platform, to dominate the market. 

Illumina utilised the sequencing-by-synthesis (SBS) platform which included incorporation of 

fluorescently labelled nucleotides to synthesize complementary DNA strands, one nucleotide 

at a time. These nucleotides are modified with reversible terminator groups, which blocks 

further synthesis after the addition of each nucleotide, ensuring high accuracy by allowing only 

one base to be added per cycle. After each nucleotide incorporation, the terminator and 

fluorophore are cleaved, to begin the next cycle of synthesis. SBS operates through the 

generation of short reads, typically ranging between 50–300 base pairs (bp) in length. A key 

component of Illumina sequencing is the generation of clonal DNA clusters through a process 

called solid-phase bridge amplification. DNA is fragmented, followed by adapter ligation. 

These adapters enable binding to bind to complementary primers immobilised on a solid 

surface, such as a flow cell. DNA polymerase then synthesises a complementary strand, 

forming a bridge-like structure. Through repeated cycles, millions of identical copies of each 

DNA fragment are created, forming dense clusters of DNA molecules on the flow cell. In recent 

Illumina platforms, such as the NovaSeq, the use of patterned flow cells has optimised this 

process. The NovaSeq 6000 is capable of generating over 3 terabytes (TB) of data in a single 

run, enabling population-scale studies of human genomes at 30X coverage in a matter of 

days. 

While Illumina’s SBS dominates short-read sequencing, sequencing by ligation (SBL) is 

another prominent method used by some platforms, such as Thermo Fisher’s SOLiD platform. 

SBL operates by hybridising short fluorescently labelled oligonucleotide probes to the DNA 

template. These probes contain known bases at specific positions, which are ligated to 

adjacent oligonucleotides if they are complementary to the template. The emission spectra 

from the fluorophores are detected to identify the incorporated nucleotides. A major advantage 

of SBL is its high basecalling accuracy (~ 99.99). However, the short-read lengths produced 

by SBL, typically between 50 and 75 bp, limit its utility in applications such as genome 

assembly or detection of structural variants. 
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Moore's law, which predicts the doubling of computing power every two years, has traditionally 

guided expectations for technological advancement in fields reliant on computation and data 

processing. The cost of sequencing has decreased at a rate surpassing Moore's law, with the 

price of sequencing a human genome plummeting from nearly $3 billion during the Human 

Genome Project to approximately $1,000 today (Figure 1-2). The shift to massively parallel 

sequencing, automation, miniaturisation of reaction volumes, and increased throughput from 

platforms like the NovaSeq have drastically reduced sequencing costs. Additionally, 

bioinformatics innovations have streamlined data processing, further lowering expenses.  

 

Figure 1-2 Cost per human genome over time (Reprinted from NHGRI website https://www.genome.gov/about-

genomics/fact-sheets/DNA-Sequencing-Costs-Data, accessed on 28th September 2024) 

Despite the dramatic reduction in cost of sequencing, whole-genome sequencing (WGS) 

remains a costly endeavour, particularly for large-scale studies. A recent study has shown that 

although WGS results in an estimated fivefold increase in the total number of assayed variants 

over WES + array genotyping with imputation, the number of detected signals differed by only 

1% for both SNVs and gene-based association analyses10. To address this, targeted 

sequencing strategies were developed to focus on specific regions of interest within the 

genome. Targeted sequencing involves identification of relevant genomic regions, design and 

ordering of primers, fragmentation, target enrichment by either hybrid-capture or PCR 

amplicons, sequencing and finally data analysis of targeted regions. A combination of WGS, 
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WES and NGS panel sequencing of CNS tumours has resulted in the accumulation of large 

population-level datasets across the globe. The boom in accessibility of NGS caused rapid 

identification of new molecular markers by consortiums such as The Cancer Genome Atlas 

(TCGA) in 2015, leading to addition of molecular markers for the first time to the WHO 

classification of CNS tumours (Figure 1-3).  

Figure 1-3 Clinical outcomes of diffuse glioma stratified 

by molecular subtypes (Reproduced with permission 
from The Cancer Genome Atlas Research Network 

201511, Copyright Massachusetts Medical Society.) 

NGS also enabled epigenetic profiling of whole 

genomes using bisulphite conversion called 

whole genome bisulphite sequencing 

(WGBS)12. WGBS and similar epigenetic 

assays resulted in finally understanding the 

mutationally-cold tumours of the CNS 

especially those with no obvious driver 

alteration13-15.  

In parallel, Illumina developed a series of DNA methylation arrays to offer more accessible 

alternatives to WGBS, with increasing coverage of CpG sites across the human genome. The 

initial HumanMethylation27 BeadChip (27K) covered over 27,000 CpGs, followed by the 

HumanMethylation450 BeadChip (450K), which expanded coverage to more than 450,000 

CpGs16,17. In 2016, the HumanMethylationEPIC BeadChip (850K) was introduced, covering 

over 850,000 CpGs and extending coverage to include regulatory elements like enhancers 

and CTCF-binding sites, which play critical roles in transcriptional regulation18. Each chip can 

profile 8 samples at a time. These scalable solutions were key in the development of the MNP 

methylation classifier that has positively transformed CNS tumour diagnostics19. The most 

recent version, released in 2023, the Infinium HumanMethylationEPIC v2.0 BeadChip (900K), 

further expands this to cover 900,000 CpG sites, incorporating regions identified by major 

projects like ENCODE and FANTOM520-22. This includes 200,000 new CpGs in open 

chromatin and enhancer regions, critical for understanding the influence of distal regulatory 

elements on gene expression. 
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Despite these innovations and scalability, the reliance of NGS on short reads (50–300 bp) 

makes it difficult to accurately sequence complex genomic regions like repetitive sequences 

and structural variants. Additionally, NGS requires DNA amplification, introducing biases that 

prevent the detection of base modifications, such as DNA methylation, which necessitates 

separate, indirect methods like bisulphite treatment. Third-generation sequencing 

technologies, such as those by PacBio and Oxford Nanopore, address these issues by 

producing much longer reads to the order of a few Mb and sequencing single molecules 

without amplification.  

1.1.3 Third generation sequencing 

Over the past thirty years, the field of single-molecule detection has caught speed giving rise 

to third-generation sequencing. Among these innovations, nanopore-based sequencing has 

gained particular attention due to its compact devices and simplified library preparation, 

allowing researchers to sequence individual DNA or RNA molecules without amplification. The 

early concepts of nanopore sequencing date back to the 1980s, when independent 

laboratories, including those led by David Deamer, George Church, and Hagan Bayley, 

postulated the feasibility of using nanopores for single-molecule detection23-25. This idea 

hinged on the principle that nucleic acids could be driven through a nanoscale pore by an 

electric current, with each nucleotide base causing a characteristic disruption in the current as 

it passed through. In 2003, Hagan Bayley became a professor of chemical biology at the 

University of Oxford and co-founded Oxford Nanopore Technologies (ONT) in 2005 with a 

team experienced in biotech and diagnostics. ONT licensed DNA sequencing patents in 2008 

and focused on strand sequencing, leading to the MinION device, unveiled by CTO Clive 

Brown at the 2012 AGBT Meeting. In 2014, ONT launched the MinION Access Program, 

distributing devices for large-scale collaboration. Nanopore sequencing technology has 

matured significantly since these early breakthroughs. The initial experiments used the 

staphylococcal alpha-haemolysin (αHL) nanopore for nucleic acid translocation. ONT has 

released eight versions of the nanopore and motor protein so far starting from R6 in 2014. A 

significant advancement came with the R9 version, which utilised the Curlin sigma S-

dependent growth subunit G (CsgG) from Escherichia coli, resulting in improved sequencing 

accuracy (~87%, compared to ~64% in R7) and faster translocation speeds (~250 bases per 

second versus ~70 bases per second in R7). The R10 and R10.3 nanopores feature two 

sensing regions (or reader heads) to improve homopolymer sequencing accuracy. 
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 This technology employed by ONT has made this technology widely accessible by offering 

long-read sequencing capabilities at competitive costs. Unlike other platforms, nanopore 

sequencing enables sequencing of entire genomic regions in a single read, making it 

especially valuable for detecting structural variants, exploring epigenetic modifications, and 

conducting molecular biomarker discovery. In nanopore sequencing, a biological or synthetic 

nanopore is embedded in a membrane separating two chambers filled with electrolytic fluid, 

typically KCl or Ag/AgCl systems. The sequencing chamber holds the nucleic acid molecules, 

while the trans side receives them after they pass through the pore. A voltage bias applied 

across the membrane causes an ionic current to flow through the nanopore, which is 

monitored by a patch-clamp amplifier or, in the case of those developed by Oxford Nanopore 

Technologies (ONT), by compact ASIC chips. Since this current disruption is directly affected 

by the structure of the base, it follows that base modifications can also be detected by sensitive 

basecalling techniques. The negatively charged DNA or RNA molecules are drawn towards 

the anode and thread through the nanopore. As they translocate through the pore, each base 

disrupts the ionic current in a uniquely, producing a pattern that can be used to infer the 

sequence. Two key parameters are used to characterise the translocation process: the event 

duration, which refers to the time a molecule spends in the pore, and the magnitude of the 

current blockade, which corresponds to the interaction between the nucleotides and the ionic 

current. These disruptions, or nucleotide fingerprints, are then mapped back to reveal the 

sequence of the molecule being analysed.  

Figure 1-4 Mechanism of nanopore 
sequencing on a portable MinION 

(Reprinted with permission from Wang et. al 

202126) 

Figure 1-4 demonstrates the 

mechanism of sequencing and 

basecalling using the handheld 

device by ONT- the MinION27. As 

evident from the figure, subtle 

changes in the current are observed 

due to base modifications that are represented in a ‘squiggle’. This squiggle is translated to 

base space using basecallers that have evolved from employing statistical tests, hidden 

Markov models (HMM), neural networks and recently transformer-based models28-35.  
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Among third-generation sequencers, ONT and PacBio are the two dominant players. PacBio 

has the single-molecule real-time (SMRT) sequencing technology that uses fluorescently 

labelled nucleotides to track DNA replication in real-time. It is particularly known for its high 

accuracy, especially with the advent of HiFi (high-fidelity) sequencing, which repeatedly 

sequences the same strand of DNA to produce a highly accurate consensus read. However, 

the need for multiple passes through the same sequence limits the length of reads, typically 

to around 20 kbp. ONT’s approach, on the other hand, detects changes in ionic current as 

nucleic acids pass through a nanopore, rather than relying on fluorescence. This technology 

has evolved rapidly, reducing the error rates historically associated with nanopore sequencing, 

which once ranged as high as 38%. Current error rates for ONT are now on par with PacBio, 

owing to improvements in basecalling algorithms and library preparation methods. ONT's 

ability to generate ultra-long reads—sometimes extending beyond a megabase—offers a 

distinct advantage in sequencing highly repetitive or complex regions that are difficult to 

resolve using PacBio or short-read platforms. In line with expectations, nanopore sequencing 

has been instrumental in closing gaps in the genomes by accurately tracing hard to map 

regions of the genome finally leading to completion of whole chromosome assemblies36,37.  

ONT devices are user-friendly and accessible, as they do not require advanced computing 

resources or expertise for basic data analysis, making them practical for many laboratories. 

There are four major device families- Flongle, MinION, GridION and PromethION and two 

flowcell types- MinION and PromethION. MinION flowcells are smaller with 2,048 pores and 

512 channels, while PromethION flowcells have 12,000 pores and 2,675 channels. MinION is 

the smallest handheld device that can use one flowcell at a time. the GridION is a multiplexed 

version with 5 MinION flowcells and integrated compute. Currently, there are 4 PromethION 

devices- PromethION24, PromethION48, PromethION2 Solo (P2 Solo) and PromethION2i 

(P2i) which is with integrated compute. An overview of all devices is provided in Figure 1-5. 
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Figure 1-5 Overview of ONT devices (Reprinted with permission from Pugh et. al 202338) 

The sequencing is controlled using MinKNOW, the operating software for ONT devices, which 

manages sequencing parameters, tracks samples, and handles real-time analysis. With 

integrated basecallers, MinKNOW can also performs base calling, thus converting the raw 

FAST5 or recently the POD5 files to FASTQ and BAM files. FAST5 and POD5 files are 

organised in a nested format for easy extraction of specific information. With current 

basecalling tools like guppy and dorado, BAM files also indicate modified base information 

depending on the model employed.  

Nanopore sequencing enables the direct detection of DNA and RNA modifications through the 

analysis of current shifts. Tools such as Nanopolish, and DeepSignal have been developed to 

detect modifications like 5mC and 6mA in DNA. ONT is particularly effective in detecting 5mC 

with high accuracy at the single-molecule level. RNA modification detection has also 

advanced, with tools identifying modifications such as m5C, m6A and pseU in RNA. However, 

the detection of more RNA modifications with single-nucleotide resolution is still under 

development. 

Initial studies have demonstrated effective fusion detection, short tandem repeat detection and 

allele-specific chromosome arm telomere length measurement39-42. Nanopore sequencing is 
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currently the only platform that allows direct RNA sequencing opening up avenues for 

detecting RNA modifications without manipulations like chemical conversions43,44. Long reads 

have also enabled early studies into single cell RNA sequencing where specific transcript 

isoforms as well as fusions can be resolved on a single cell and spatial level45,46. Recent 

studies have also demonstrated the feasibility of sequencing single protein molecules in their 

native form using nanopores47-49. With further improvements in the technology, it follows that 

these will undergo considerable developments leading to better detection strategies and 

deeper understanding of cancer and beyond. 

1.2 Cancer 

Cancer is the second leading cause of death in the world accounting for nearly 10 million 

deaths in 2020. The number of new cancer cases is expected to increase to 29.9 million per 

year by 2040, and the number of cancer-related deaths is expected to increase to 15.3 

million50. Nevertheless, cancer mortality has been steadily decreasing across the globe. In the 

United States, for example, cancer death rates fell by 33% from 1991 to 2020, preventing an 

estimated 3.8 million deaths. This drop is largely attributed to nationwide screening programs, 

public health initiatives like tobacco control and development of targeted therapeutic 

approaches driven by precise identification of molecular markers through cutting-edge 

diagnostic methods. 

 

Figure 1-6 New hallmarks of cancer (Reprinted with permission from Hanahan et. al 202251) 

The key capabilities of cancer cells during oncogenesis and progression have been famously 

described by the hallmarks of cancer elucidated by Douglas Hanahan and Robert Weinberg52. 
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These hallmarks include sustaining proliferative signalling, evading growth suppressors, 

resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating 

invasion and metastasis. These fundamental characteristics allow cancer cells to grow 

uncontrollably and spread throughout the body, overcoming the normal regulatory 

mechanisms of the cellular environment. In the recent update as shown in Figure 1-6, 

emerging hallmarks have been proposed, such as non-mutational epigenetic reprogramming, 

further expanding our understanding of the adaptability of cancerous cells53. 

Molecular diagnostics plays a vital role in understanding and identifying the hallmarks of 

cancer, offering precise tools to detect genetic and epigenetic alterations that drive tumour 

growth and progression. The hallmarks of cancer, such as sustaining proliferative signalling 

or evading growth suppressors, are rooted in molecular changes that are detectable through 

modern diagnostic technologies. For example, DNA sequencing can reveal mutations in 

oncogenes or tumour suppressor genes, which are key to understanding how cancer cells 

bypass normal regulatory pathways. Epigenetic changes, particularly DNA methylation 

patterns, are another crucial layer in cancer biology reflecting the emerging hallmark. These 

alterations can silence or activate genes involved in hallmarks like resisting cell death or 

enabling replicative immortality. Methylation profiling, as part of molecular diagnostics, is now 

used to classify tumour types with greater precision, often when histopathology alone cannot 

provide clear answers. Tools like nanopore sequencing and methylation arrays allow for the 

detection of aberrant epigenetic modifications that are associated with specific cancer types, 

leading to more tailored treatments. 

Through its multi-omic character, molecular diagnostics can be instrumental in tracking how 

cancers evolve, revealing clonal changes that contribute to metastasis, therapeutic resistance, 

or immune evasion. This adaptability of tumours, reflected in changes to the molecular 

landscape, is a key aspect of the hallmarks, and molecular diagnostics enables continuous 

monitoring, particularly in recurrent or aggressive cancers. Overall, by targeting these 

molecular changes associated with the hallmarks of cancer, diagnostics guide personalised 

medicine approaches, improve patient outcomes, and allow for more targeted therapies that 

disrupt the fundamental biological processes of cancer. 

There has been a substantial shift from morphology to molecular analyses in tumour 

diagnostics driven by advances in technologies like NGS, methylome profiling, and 

proteomics, offering granular classification and better treatment insights. Methylation analysis 
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is key for determining tumour lineage, while NGS focuses on tumour-specific alterations like 

gene fusions and mutations, especially in genetically simple paediatric tumours. Proteomics, 

particularly through mass spectrometry, holds promise for understanding cellular signalling 

pathways to guide targeted therapies. The integrated, layered diagnostic system of the WHO 

seeks to standardise diagnoses globally, incorporating molecular data, tumour grading, and 

morphologic features for a comprehensive evaluation. 

1.2.1 Central nervous system tumours 

CNS tumours represent around 1.5% of all cancers worldwide, with approximately 308,000 

new cases diagnosed annually. CNS tumours are the second most common cancer in children 

(after leukaemia) and the most prevalent solid tumour in children accounting for around 20-

25% of paediatric cancers54. Annually, around 241,000 people worldwide die from brain and 

CNS tumours55. In 2017, the 5-year survival rate for primary malignant brain tumours was a 

bleak 36%, nevertheless marking a 5% improvement since 199750. This increase is largely 

due to advances in molecular diagnostics, which have identified molecular targets and enabled 

more effective therapeutic strategies. 

For over a century, CNS tumours have been diagnosed based on histopathology. This has 

been reflected in the WHO guidelines for CNS tumour classification. In 2021, the fifth edition 

of the WHO Classification of Tumours of the Central Nervous System (WHO CNS5) 

represented a paradigm shift in the classification of CNS tumours, with molecular testing taking 

the centre stage in diagnosis and classification56-58. Issuing an integrated diagnosis thus 

involves multiple layers of information, beginning with conventional histopathological features 

enhanced by molecular markers. An important example of this shift is the refined grading and 

nomenclature for diffuse gliomas. The diagnostic flowchart for such adult and paediatric diffuse 

gliomas is demonstrated in Figure 1-7. The schematic demonstrates the need for multiple 

molecular testing to make a WHO compatible integrated diagnosis. 
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Figure 1-7 Diagnostic flowchart for diffuse gliomas. (Reprinted with permission from Park et. al 202359) 

The traditional reliance on histological features is now augmented by molecular markers like 

mutations, copy number alterations, gene fusions and methylation-based classification, which 

are increasingly recognised as defining characteristics for many tumour types (Figure 1-8). 

Molecular profiling can either assist or independently classify a tumour type, improve 

prognostic accuracy by supplementing histology-based tumour grading, and identify potential 

therapeutic targets for personalised treatment. These layers are often interconnected, 

requiring a strong understanding of how to interpret each molecular marker within the relevant 

diagnostic context for proper clinical application. Childhood tumours, though heterogeneous 

and less common than adult cancers, have distinct origins and lower genetic complexity, often 

driven by a single clonal event such as an oncogenic fusion. Unlike adult tumours, which are 

frequently linked to long-term exposure to carcinogens, paediatric tumours typically arise from 

immature cell types with a block in normal development. For the first time, paediatric tumours 

have been assigned a separate volume in the new WHO classification system60.  
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Figure 1-8 WHO compatible integrated CNS 

tumour diagnostics (*MGMT promoter 
methylation test recommended for high grade 

gliomas) 

Therapeutic options for primary brain 

tumour patients remain limited, 

particularly after radiotherapy and 

chemotherapy have failed. NGS 

panels are increasingly used to 

identify molecular alterations for 

targeted therapy, especially when 

first-line treatments are exhausted. 

However, the clinical relevance of 

these alterations varies, from 

established therapeutic efficacy to hypothetical targets based on preclinical evidence. In order 

to reduce redundant testing, additional workload and financial burden, molecular testing in 

gliomas, neuronal or glioneuronal tumours is recommended by the EANO guidelines for 

recurrent or resistant tumours, rare tumour types or types with no standard care protocols, 

high mutational burden (TMB) or mismatch repair deficiency (MMR), and for clinical trial 

participation61. 

In mid-2015, as the WHO CNS tumour classification update was being prepared, DNA 

methylation, a previously less emphasised molecular feature, began to show significant 

potential for classification, though it was not yet central to the process. Methylation based 

profiling has emerged as a trailblazer in the field of CNS tumour diagnostics. Sturm et. al 

demonstrated the co-localisation of IDH1 and H3F3A mutations with methylation based 

unsupervised clusters in diffuse gliomas13. Armed with first the 450K and then the 850K EPIC 

Illumina methylation array, this effort culminated into the first large scale methylation-based 

classification of CNS tumours published by Capper et. al in 201862. This classifier was trained 

on a reference set of 2,801 well-annotated tumour samples classified into 91 classes. These 

classes represented different subtypes of CNS tumours, capturing a wide range of entities, 

many of which are difficult to distinguish using traditional methods. These classes were 

primarily histology-driven and all samples had established diagnoses. This tool called the MNP 

or Molecular Neuropathology classifier has been made freely available on the website 
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www.molecularneuropathology.org. As of 29th September 2024, the website had 158,076 

uploads by 1800 users from 500 different institutes globally. Methylation profiles from new 

cases are constantly added to a centralised database which are then subjected to 

unsupervised clustering like t-SNE or UMAP analysis. With the growth of the database, new 

clusters emerge constantly. Samples in these clusters are queried to identify common 

histology, mutations using NGS panel sequencing, gene fusions and expression using RNA 

sequencing and copy number alterations using the methylation array. This is finally correlated 

with survival and/or drug response leading to the discovery of novel diagnostically relevant 

classes. The classifier has now evolved to identify 184 methylation subclasses, 143 classes, 

75 families, and 34 superfamilies. The methylation classifier was able to classify 12% cases 

that could not be resolved by conventional histology and has been shown to improve risk 

stratification of tumours as compared to traditional WHO grading62-64. Additionally, methylation 

profiles provide a more objective and reproducible classification, reducing interobserver 

variability prevalent in histology. Methylation classification has been accepted and adopted by 

neuropathology centres globally over the past decade. Multiple studies from over the globe 

have been published describing independent evaluations of the integration of methylation 

classification into neuropathology diagnostic workflows63-69. This has led to the endorsement 

of methylation profiling by the 2021 WHO classification and the cIMPACT-NOW 

consortium70,71. For instance, classes like high-grade astrocytoma with piloid features (HGAP), 

diffuse midline glioma, H3 K27-altered and diffuse hemispheric glioma, H3 G34-mutant that 

were identified through their specific methylation profiles have now been added to the WHO 

classification and their detection is recommended by methylation profiling72-75. Remarkably, in 

the case of meningiomas, the methylation classes are especially prognostic since they are 

able to distinguish between benign, intermediate and malignant types76-78. This tool hence 

reflects the emerging hallmark of non-mutational epigenetic reprogramming for cancers53.  

CNS tumours are thought to arise from progenitor cells that retain characteristics from early 

developmental stages. Tumours that emerge from such progenitor cells maintain a 

methylation "fingerprint" that reflects the cell type they originated from while additionally 

incorporating tumour specific marks. Thus, methylation profiles serve as a developmental 

map, reflecting their developmental lineage and allowing us to identify the subtype of the 

tumour. For example, medulloblastomas, the most common malignant paediatric brain 

tumours, are divided into several subtypes like WNT, SHH, etc., reflecting the developmental 

origins of the tumour from different regions of the cerebellum or neural progenitor cells leading 
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to unique methylation profile79. Methylation signatures also serve as markers that reflect the 

cell of origin of a tumour. This is particularly important in CNS tumours, where certain subtypes 

mimic specific developmental stages. Gliomas, for instance, often reflect the epigenetic profile 

of neural progenitors or stem cells80,81. These profiles help differentiate between tumour types 

like astrocytomas or oligodendrogliomas. IDH1 and IDH2 mutations play a significant role in 

altering DNA methylation, which is central to cancer initiation and progression in these 

tumours82. These mutations disrupt the normal DNA and histone demethylation processes, 

leading to an imbalance in histone methylation, including increases in H3K36 and H3K9 

methylation83. This disruption is also linked to increased CpG island hypermethylation in 

promoter regions of genes involved in early developmental regulation, similar to the CpG 

island methylator phenotype (CIMP) seen in some cancers. The leading theory is that these 

methylation changes are caused by the accumulation of 2-hydroxyglutarate, a by-product of 

the IDH mutations, which interferes with α-ketoglutarate—a critical metabolite for enzymes 

that regulate DNA and histone demethylation84. This interference leads to the build-up of 

repressive histone marks and promoter DNA hypermethylation, which may contribute to 

cancer progression. 

Tumour heterogeneity in CNS tumours has been shown to be driven by epigenetic changes 

rather than genetic mutations alone79,85-88. These epigenetic modifications, especially in 

methylation, correlate with developmental timing and tissue-specific patterns, allowing for 

more precise classification of CNS tumours compared to other tumour types where genetic 

mutations play a more dominant role89. In contrast, tumours in other organs, such as breast, 

lung or colon cancers, are typically driven by somatic mutations, which can override the 

epigenetic landscape, making methylation classification less specific for these tumour 

types84,90. In addition, mutations like IDH, BRAF, NF1, TP53, etc. and key fusions in genes 

like NTRK1-3, ROS1, ALK, MET, etc are relevant for risk prediction and to guide targeted 

therapies. Next-generation sequencing (NGS) panels specifically designed to target these 

mutations and fusions are widely utilised in clinical practice91. These panels allow for 

comprehensive molecular profiling of CNS tumours, enabling the simultaneous detection of 

key genetic alterations such as SNV/Indels as well as relevant gene fusions. Further, gene 

expression of certain markers like EZHIP is required for diagnosis of EZHIP expressing 

tumours. Thus, cDNA sequencing is also performed in suspicious cases for gene expression 

and fusion detection92. The widespread use of methylation arrays, NGS panels and RNA 
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sequencing has significantly improved the accuracy of tumour classification, prognosis, and 

the ability to tailor treatments based on actionable genetic targets93-96. 

Thus, WHO guidelines require identification of a wide range of tumour type specific molecular 

markers. Today, molecular marker evaluation is incorporated into the diagnostic workflow for 

all major CNS tumour types.  

Figure 1-9 Overview of the assays 
routinely employed in molecular 

neuropathology diagnostics. 

(Reprinted from Beretro et. al 
202397) 

As demonstrated in Figure 
1-9, the methods used for 

molecular testing include: 

NGS DNA sequencing for 

testing for multiple targets 

simultaneously to detect 

gene mutations, small indels 

and copy number variations 

with DNA sequencing,  

NGS RNA sequencing to 

detect fusions and gene expression  

Methylation arrays to detect copy number variations, MGMT promoter status and methylation 

profiles, including methylation classification. 

Immunohistochemistry (IHC) for molecular alterations like BRAF p.V600E mutations or 

FGFR3 expression, often followed by confirmatory molecular tests. It is not recommended for 

general use in CNS tumours, except in specific contexts like diagnosing certain fusions. 

Fluorescence in-situ hybridisation (FISH) to detect gene amplifications and fusions such 

as those involving EGFR, PDGFRA, and NTRK1-3. However, it cannot confirm functional gene 

fusions and is less effective compared to NGS. 
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The range of equipment required to perform these tests, such as Illumina devices like 

NovaSeq and the array scanner, can cost in the range of 1-2 million EUR. This has significantly 

skewed the availability of such testing towards larger centres and developed nations. 

Furthermore, the library preparation process for these methods is labour-intensive, taking 

several days and often requiring overnight incubation steps. This demands highly qualified 

and experienced laboratory personnel, who are often scarce in smaller cities or low-throughput 

settings. Additionally, the latest versions of the MNP methylation classifier are only compatible 

with EPIC array data and cannot use data generated by a vast variety of other methylation 

assays. These limitations have led to criticism of the WHO classification criteria for not being 

truly universal, as a majority of the global population lacks access to the molecular tests 

recommended by the WHO. 

The primary treatment for central nervous system (CNS) tumours typically involves 

neurosurgical resection, the extent of which is often determined by the tumour type, as certain 

types warrant more conservative approaches. For instance, diffuse midline gliomas with the 

H3K27 histone mutation are considered incurable, and in such cases, surgery is aimed 

primarily at obtaining tissue for diagnosis and preserving quality of life, rather than attempting 

complete tumour removal98. Similarly, for medulloblastomas, there is little prognostic 

difference between near-total and total resection, making maximal resection unnecessary99. 

In contrast, for tumours like posterior fossa ependymoma type A and atypical teratoid rhabdoid 

tumours, gross total resection is crucial for prognosis, necessitating a more aggressive 

surgical approach100-102. Similarly, in adult CNS tumours, gross total resection has been linked 

to improved survival in IDH wild-type glioblastomas of the receptor tyrosine kinase (RTK) I and 

RTK II subtypes, but not in the mesenchymal subtype103. Similarly, failure to achieve gross 

total resection in IDH-mutant astrocytomas adversely affects overall survival104. Therefore, the 

neurosurgical strategy relies heavily on an accurate and precise diagnosis. Current practice 

involves preoperative imaging and intraoperative diagnosis through rapid histological 

assessment of frozen sections. However, this process does not always yield a definitive 

diagnosis, and post-operative diagnostics may revise the initial findings. Methylation arrays 

report prognostically relevant copy number profiles and methylation classification using the 

MNP methylation classifier. However, obtaining results can take several days, making it 

impractical for intraoperative decision-making63. As a result, some patients require a second 

surgery, while others may have undergone unnecessarily aggressive procedures. The delay 

in molecular reporting is caused by the sequential nature of conventional methods, for 
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example, methylation array is ordered after IHC examination, which is often followed by NGS 

DNA sequencing and also RNA sequencing if needed depending on how the diagnosis shapes 

as per the previous test results. Additionally, high throughput NGS and arrays are only 

economically feasible when samples are batched. Thus, in order for a run to be initiated, 

sufficient samples need to be have accumulated further increasing turnaround time. Even in 

a high density centre like the Department of Neuropathology at the University Hospital 

Heidelberg, the average turnaround time for molecular diagnostics is 20 days95. 

In order to improve accessibility and turnaround time of molecular diagnostics for CNS 

tumours, I developed and validated two tools- Rapid-CNS2 and MNP-Flex. Rapid-CNS2 

leverages nanopore sequencing technology to target critical genomic regions, delivering both 

methylation classification and copy number profiling in real-time during surgery—crucial for 

intraoperative decision-making. Combined with MNP-Flex, a platform-agnostic methylation 

classifier, this system can offer a broad array of molecular insights required to make a WHO 

compatible diagnosis.  



 

Chapter 2 Aims of the thesis 

To address the challenges outlined in the preceding section, this thesis pursued the following 

three primary objectives: 

• To establish an accessible and swift third-generation sequencing-based pipeline for 

comprehensive molecular diagnostics of CNS tumours 

• To perform an extensive validation of this pipeline within a real-world diagnostic 

environment 

• To develop and comprehensively validate a platform-agnostic methylation classifier 

that is compatible with the latest versions of the MNP classifier 

 





 

Chapter 3 Rapid-CNS2 

3.1 Introduction 

Nanopore DNA sequencing has emerged as a rapid diagnostic tool, offering several 

advantages such as low setup costs, compact devices, and real-time data availability105. 

Additionally, nanopore sequencing enables direct measurement of methylated cytosines and 

significantly reduces sample preparation time. This allows tissue samples to be sequenced 

early in surgery, potentially providing molecular insights that can inform the surgical approach 

in real-time. However, a major challenge remains that only sparse methylation profiles can be 

generated in such a short timeframe, and it is uncertain which CpG sites will be covered. 

Additionally, shallow WGS results in a 1-2X coverage over the whole genome rendering it 

inept for mutation or fusion calling. Adding PCR based enrichment faces limitations with long 

fragments and may erase crucial epigenetic modifications.  

Nanopore adaptive sampling is a pioneering technique, rooted in the fundamental principles 

of real-time sequencing enabled by Oxford Nanopore Technologies (ONT). To address the 

need for targeted sequencing in nanopore technologies, ONT developed "ReadUntil," a real-

time selective sequencing method. This concept leverages the direct interaction with individual 

nanopores, where the voltage across a pore can be reversed to reject specific reads. As 

demonstrated in Figure 3-1, this provides the potential to either sequence a particular 

molecule to completion or to eject it mid-sequencing and replace it with another molecule, 

optimising the sequencing process by selectively reading only the molecules of interest. By 

quickly rejecting reads from off-target regions, ReadUntil maximises sequencing efficiency, 

particularly with longer reads, where the loss of sequencing capacity from a single pore can 

be significant. However, for this selective sequencing to be effective, identification of unwanted 

molecules must be completed before sequencing is finished. This relies heavily on the speed 

of sequence identification and the average length of reads. Since read length can exceed 100 

kb in some cases, the challenge of the "ReadUntil" approach lies in accurately matching even 

the shortest fragment of a long read to a reference sequence in real-time. Using the MinION 
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device, Matthew Loose and colleagues demonstrated the first real-time selective sequencing 

in 2016106.   

 

Figure 3-1 Adaptive sampling schematic. (Reprinted from Oxford Nanopore Technologies website 
https://nanoporetech.com/document/adaptive-sampling, accessed on 4th October 2024) 

Building upon the principles of real-time selective sequencing, a method called ReadFish was 

developed as a robust solution to address some of the limitations of previous approaches like 

dynamic time warping (DTW) and signal-based methods107. DTW was initially used to compare 

raw nanopore signals to simulated current traces derived from reference sequences, but this 

method required extensive computational resources, limiting its practicality. Other methods, 

such as UNCALLED, sought to improve the computational efficiency of raw signal comparison, 

but they still faced challenges in scalability and resource demands108. Direct basecalling of 

signal fragments was another alternative, offering the advantage of filtering out unwanted 

reads but without providing true enrichment and still requiring significant CPU power. 

ReadFish introduced a more efficient approach by focusing on nucleotide sequences rather 

than raw signals, taking advantage of existing basecalling tools and manageable 

computational resources. ONT has developed several basecallers, moving from HMMs to 

neural network-based models that now operate on GPUs. These GPU-based models enable 

real-time basecalling, allowing data from sequencing flow cells to be processed rapidly enough 

to match the sequencing speed of the ONT devices, which can sequence up to 2,675 channels 

simultaneously. By using this real-time basecalling capability, ReadFish integrates with tools 

like minimap2 to map reads dynamically as they are generated109. This eliminates the need to 
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convert reference genomes into signal space, as required by DTW and other signal-based 

methods. Readfish follows the logic as demonstrated in Figure 3-2.  

Figure 3-2 Readfish targeting 
logic flowchart (Adapted with 

permission from Payne et. al 

2021107) 

ReadFish toolkit leverages 

powerful GPUs, such as the 

NVIDIA GV100 or RTX 

4090, to ensure that even 

large-scale genomes, such 

as human chromosomes, 

can be targeted without 

computational constraints. 

In newer updates, 

ReadFish is able to enrich 

barcoded samples by 

barcode balancing further 

enabling multiplexing of 

samples110. Building on 

ReadFish, new developments have been made to dynamically update the sequencing focus 

based on real-time analysis of the reads, enriching specific targets as they are identified during 

the sequencing run111.  

Multiple studies have reported impressive CNS tumour methylation classification results using 

nanopore sequencing data. The models trained on the reference data from Capper et. al range 

from ad-hoc random forests models to neural networks112-116. The classifiers have been shown 

to work on a vast range of tissue types including intraoperatively on frozen sections, FFPE 

tissue and liquid biopsies. These approaches are restricted to reporting methylation 

classification only, thus missing out on crucial alterations like mutations, focal copy number 

alterations and gene fusions. Similarly, due to the random nature of nanopore sequencing, the 

MGMT promoter status, relevant for temozolomide response, is also not reported. 
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In order to provide a comprehensive range of alterations including methylation classification, 

mutations, copy number variants (CNV), MGMT promoter status and gene fusions, I leveraged 

adaptive sampling to develop Rapid-CNS2- a workflow that can report methylation 

classification and broad CNVs intraoperatively followed by a comprehensive report of 

alterations on the next day.  

In this part of the work, I developed the bioinformatics workflows in bash, Snakemake and 

Nextflow for targeting and analysis of the data. I utilised community-developed tools for SNV, 

CNV, and SV calling and annotation. To address gaps in tools, I developed methods for 

methylation classification and MGMT promoter methylation status. I also optimised speed of 

analysis using multiprocessing and GPU-based methods where applicable. I validated the 

results using data from matched samples generated using conventional methods like NGS 

panel sequencing and methylation array. 

3.2 Methods 

3.2.1 DNA extraction and library preparation 

DNA extraction and library preparation were performed by technicians, MD students, masters 

students and working students at the Department of Neuropathology, University Hospital 

Heidelberg. Helin Dogan optimised the protocol using R9 flowcells as follows, quoted from 

Patel et. al 2024117:  

“DNA was extracted using the Maxwell® RSC Blood DNA Kit (Promega, #AS1400) following 

manufacturer's instructions. In summary, 40x10 µm of fresh frozen tumour tissue were 

incubated with 300µl of Lysis Buffer and 30 µl of Proteinase K, at 56°C overnight, with 

continuous agitation at 550 rpm. The following day, samples were transferred into Well 1 of a 

Maxwell cartridge. DNA extraction was performed using the recommended protocol on the 

device. For sequencing performed in Heidelberg, two protocols were followed depending on 

flowcells used. For R9 flowcells, we used the previously described protocol118. In summary: 

DNA concentrations were quantified with the Invitrogen Qubit DNA BR Assay Kit (Q32851, 

Thermo Fisher Scientific) using a FLUOStar Omega microplate reader (BMG Labtech). DNA 

was then sheared to 9-11 kb using g-TUBEs (Covaris) at 7200 rpm for 120 seconds, and 

fragment size was assessed with the Agilent 2100 Bioanalyzer using the Agilent DNA 12000 
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Kit (5067-1508, Agilent Technologies). Sequencing libraries were prepared with the SQK-

LSK109 Ligation Sequencing Kit, incorporating modifications including a 30 min end-prep at 

20°C and 65°C, followed by AMPure XP bead clean-up, 5 min elution, and a 60 min adapter 

ligation at room temperature. The ligation mix was cleaned with AMPure XP beads (0.4x) and 

eluted in 31 µl using the Long Fragment Buffer. Library concentration was determined with the 

Invitrogen Qubit DNA HS Assay Kit (Q32851, Thermo Fisher Scientific) on a Quantus 

fluorometer (Promega). Libraries (500-600 ng) were loaded onto FLO-MIN106 R9.4.1 flow 

cells with at least 1100 pores available, and sequencing was performed on MinION and 

GridION platforms, with flow cells flushed twice per sample using the Flow Cell Wash Kit (EXP-

WSH003).” 

The following protocol describes the protocol for R10 flowcells as optimised by Pauline Göller 

and Michelle Brehm quoted from Patel et. al117:  

“2.5 µg of extracted DNA was sheared to 10kb fragments in 60 µl nuclease-free water using 

Covaris g-TubeTM (Covaris, #520079) following manufactures instructions. Sequencing 

library was prepared using the ligation sequencing kit (Oxford Nanopore Technologies, SQK-

LSK114) and the NEBNext® Companion Module (New England Biolabs, E7180S) with only 

minor adjustments to the original protocol SQK-LSK114. In brief, DNA repair and end-prep 

was carried out starting with 58 µl of sheared DNA as input. The ratio of Ampure Beads for 

bead cleanup was adjusted to the volume of the sheared DNA as proposed by Kolmogorov 

et. al 2023119. Adapter ligation and bead clean-up was performed using the short fragment 

buffer. DNA was eluted in 15 µl for a MinION sequencing run, and 25 µl for a PromethION 

sequencing run. If sequencing was performed with a MinION (FLO-MIN114, R10) flow cell, 

flow cells were primed using the BSA supplement and sequenced using a GridION (Device 

and software). If sequencing was performed with a PromethION (FLO-PRO114M, R10) flow 

cell, flow cells were primed without BSA supplement and sequenced on the P2 solo (Device 

and software). Sequencing on both devices was performed with 600-700 ng of DNA library.” 

3.2.2 Adaptive sampling 

I initially tested Panel A on 47 samples that constituted regions from the neuropathology gene 

panel and 10,000 CpG sites used for classification by MNP classifier (available on GitHub 

https://github.com/areebapatel/Rapid-CNS2)19,120. I added a 10kb flank to the sites on either 

side to ensure optimal targeting by ReadFish (155 Mb). Panel B included only the 
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neuropathology gene panel flanked by 10 kb on either side, with a total targeted size of 15 

Mb120. All remaining samples were run with Panel B. Both panels were based on the hg19 

genome121. At the Department of Neuropathology, University Hospital Heidelberg, I ran 

adaptive sampling in three modes-  

1. Using Readfish122,123 on the MinION 

2. Using MinKNOW’s in-built adaptive sampling on the GridION 

3. Using Readfish on the P2 Solo 

I set-up CUDA , Python 3.8 and MinKNOW on a notebook equipped with a NVIDIA RTX 2080 

Ti GPU. I installed readfish and read_until_api_v2 in a virtual environment through the 

https://github.com/LooseLab/readfish git repository (accessed September 2020). I used the 

fast basecalling mode (config dna_r9.4.1_450bps_fast) from Guppy 4.2.2 to run basecalling 

for Readfish on the notebook. For the GridION, I used the in-built adaptive sampling option 

from MinKNOW. I used MinKNOW in the ‘offline’ mode by disabling pings to the server as 

required by the firewalls of the University Hospital Heidelberg. I connected the P2 Solo to a 

local Linux workstation that had 7 NVIDIA RTX 4090 GPUs. I set up Readfish on the 

workstation through the Git repository (https://github.com/LooseLab/readfish, accessed May 

2024). I restricted MinKNOW and Readfish to use one GPU each. If I ran two flowcells in 

parallel, I assigned one GPU to the Readfish process of each. I ran readfish using the readfish 

targets command. 

3.2.3 Dataset 

My dataset included 252 frozen samples- 112 archival and 252 diagnostic samples including 

5 intraoperative from Department of Neuropathology, University Hospital Heidelberg. I 

included 13 samples sequenced intraoperatively at the lab of Matthew Loose at University of 

Nottingham for the intraoperative analysis part only. 

3.2.4 Bioinformatics analysis pipeline 

I curated and constantly developed an end-to-end bash pipeline to analyse the data. The 

pipeline had two major versions- v1 and v2. v1 was used for samples 1-78 and involved 

separate basecalling, modified basecalling and alignment on a single GPU. v2 was used for 

all other samples and was capable of simultaneous basecalling, alignment and modified 
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basecalling by harnessing multi-GPU potential. Kirsten Göbel adapted it to analyse data locally 

on GPU workstations in the network of the Department of Neuropathology at the University 

Hospital Heidelberg. I analysed samples 1 – 139 on the ODCF cluster of DKFZ, and Kirsten 

Göbel analysed samples 140 – 252 using local GPU workstations. Owing to rapid turnover in 

nanopore sequencing technology and the tools to analyse the data, the pipeline underwent 

multiple updates in terms of versions and specific tools used. Barring logistical limitations, I 

employed the latest stable versions of tools available at the time of analysis of the respective 

samples. I developed bash (v1 and v2), Snakemake (v1) and Nextflow (v2) pipelines to ensure 

flexibility and adaptability across environments. Pipelines are available on Github as 

https://github.com/areebapatel/Rapid-CNS2_nf and https://github.com/areebapatel/Rapid-

CNS2_sh. I used the NVIDIA Clara Parabricks docker container to run accelerate tools as 

indicated below.  The basic pipeline involved: basecalling, alignment, QC, coverage analysis, 

methylation calling, methylation value extraction, SNV/CNV/SV calling, variant annotation and 

filtering, methylation classification, MGMT promoter methylation analysis and report 

generation. 

Basecalling: I deployed basecalling on the LSF cluster of the ODCF. For samples 1-78 using 

v1, I used the guppy basecaller binary in a bash script with a single GPU. For samples 79-145 

using v2, I deployed basecalling in multi-GPU mode on the LSF cluster. I used basecaller 

versions and models as indicated in Table 3-1. 

This extract is taken from Patel et. al 2024: 

“I performed basecalling in a basecall server-supervisor mode for ONT’s proprietary software 

guppy or Dorado (https://github.com/nanoporetech/dorado). For the multi-GPU mode, I used 

15 basecall clients for a 3 GPU setting with available NVIDIA GPU models (RTX 2080 Ti, 

A100, V100). For a single GPU, I ran guppy_basecall_supervisor or subsequently 

ont_basecall_supervisor on with 5 clients. For local deployment at the Department of 

Neuropathology, Kirsten Göbel used a single NVIDIA RTX 3090 Ti GPU powered local 

workstation or 2 GPUs on the multi-GPU workstation with a Dockerised pipeline.” 

Table 3-1 Basecaller versions and models 

Samples Basecaller version Basecaller model 

1 – 60 Guppy v4.4.1 High accuracy with 5mC 

61 – 78 Guppy v5.0.1 High accuracy with 5mC 
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79 – 139 Guppy v6.1.7 Super accuracy with 5mC 

140 – 145 Guppy v6.4.6 Super accuracy with 5mC 

146 – 252 Dorado basecall server 7.1.4 Super accuracy with 5mC 

For samples using v1, I performed adapter trimming using Porechop, alignment to the hg19 

genome using minimap2 v2.18 followed by samtools sorting and indexing121,124-126. For all 

following samples, simultaneous basecalling and alignment was possible. Thus, I merged the 

bam files into a single bam file and indexed it using samtools125. 

Methylation calling: In v1, I performed methylation calling for samples 1-78 using megalodon 

v2.3.3 with a guppy backend (https://github.com/nanoporetech/megalodon). For all following 

samples using v2, I used the built-in capabilities of the basecaller to directly output methylation 

tagged bam files. I used the basecalling models as indicated in Table 3-1. I extracted 

methylation values using modbam2bed (https://github.com/epi2me-labs/modbam2bed) with 

the –cpg parameter. I performed liftover of the methylation bed files to the hg38 genome using 

the liftOver tool127. 

SNV calling and annotation 

I performed SNV calling using the latest available version of DeepVariant128 on the reads 

mapping to the targeted regions. For v2 run on the ODCF cluster, I used the Parabricks 

accelerated version of PEPPER-Margin-DeepVariant on a GPU129,130. The subset bam file was 

generated using the bedtools intersect function131. I annotated SNVs using 

ANNOVAR132. Filtering for clinical relevance was based on the 1000 Genomes (Aug 2015) 

frequencies and COSMIC 68 database133,134. For pathognomonic alterations in IDH1/2, 

TERTp, BRAF V600E, H3F3A and H3K27M, I additionally ran bcftools mpileup over the 

relevant regions125,135. 

CNV calling 

This extract was adapted from Patel et. al 2024: 

“I called copy number variations on the entire bam file with bin sizes of 1kb, 10kb and 100kb 

using default parameters for cnvpytor136. I plotted the copy number profiles generated using a 

100kb bin size. Copy number status of relevant genes was reported using a custom python 

script. The script parses the pytor file obtained as output of cnvpytor. If the complete gene was 

covered by the bin, the copy number status of the bin was assigned to the gene.” 
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Methylation classification 

I developed a custom random forest classifier to analyse DNA methylation profiles of central 

nervous system tumours derived from nanopore sequencing. The model was created and run 

in R 4.2.0, using the publicly available 450k methylation array reference dataset from the MNP 

methylation classifier version 11 (GSE90496), as pre-processed in Capper et al. 201819. For 

each nanopore sample, I selected methylation calls that overlapped with the top 100,000 

probes (ranked by mean decrease in accuracy) from the MNP classifier. I then applied 

variance filtering to these probes, narrowing it down to the 10,000 most variable ones. Using 

these probes, I trained a random forest model with 20,000 trees, using the ranger 

package137. To improve precision of the model, I recalibrated it by training one-vs-all 

generalised linear models for each class. These models produced a confidence score for each 

prediction. I determined the methylation families by grouping similar methylation classes from 

the reference set. 

For the samples with corresponding tissue analysed using the EPIC array v1, I validated the 

results based on the MNP methylation classifier v11b4 predictions. However, samples 

processed with the EPIC v2 chip lacked v11b4 predictions, so I inferred annotations based on 

the MNP v12.8 classification. This involved: a) assigning a specific class if it matched one 

class in v12.8, b) assigning a methylation family if multiple subclasses were present, or c) 

labelling the sample as 'Not in classifier' if no corresponding class was present in MNP v11b4. 

MGMT promoter methylation 

I inferred ground truth for MGMT promoter methylation status from EPIC array analysis. I split 

59 samples (47 Panel A and 12 Panel B samples) into 70% training and 30% validation data. 

I subjected each of the 212 CpG sites in the MGMT promoter region to a Student’s t-test to 

assess their predictive value. I selected 137 sites with p-value <0.01.  I trained a logistic 

regression based binomial classifier on the average of these 137 sites. I subset the hg38 

bedmethyl file for each sample to chr10:129466536-129467536. I selected the 

aforementioned 137 sites and calculated the average. I ran the MGMT prediction model on 

the results. 

SV calling 



56 Rapid-CNS2 

 
I performed SV calling using svim and Sniffles138,139. I ran Sniffles in non-germline mode with 

a minimum support of 2X for reporting variants. I annotated the variants using AnnotSV140. For 

fusion calling, I manually queried the VCF for genes relevant to the predicted methylation class 

or suspected diagnosis. I further visualised the results in IGV141. 

Report generation 

I generated reports using R packages rmarkdown, kableExtra, knitr. The report 

generation scripts used outputs from the coverage calculation, filtered SNV calls, copy number 

variation profile, methylation classification and MGMT promoter prediction. I generated reports 

in the PDF and HTML formats. 

3.2.5 Integrated diagnosis 

Pathologists provided integrated diagnoses by considering histology, clinical data, and 

molecular findings from the Rapid-CNS2 workflow. For conventional analyses, the integrated 

diagnoses were based on histology, clinical data, and results from the MNP v12.8 classifier, 

along with DNA panel sequencing and/or RNA sequencing, depending on 

availability19,120,142,143. 

3.2.6 NGS and EPIC sequencing and analysis 

NGS and EPIC array analysis were performed as described previously in a routine setting at 

the Department of Neuropathology, University Hospital Heidelberg19,120,144. 

3.2.7 Intraoperative sequencing simulation 

This extract was adapted from Patel et. al 2024: 

 “For 39 Rapid-CNS2 samples sequenced in Heidelberg, I conducted simultaneous basecalling 

and alignment to the hg19 genome using guppy 6.4.6 with the super accuracy configuration 

and 5mC modification detection121. Sequencing summary files aided in extracting cumulative 

reads at time intervals (5 min, 10 min, …. 1440 min). I extracted methylation values using 

modbam2bed (https://github.com/epi2me-labs/modbam2bed), performed liftover to the hg38 

genome and applied the ad-hoc Rapid-CNS2 classifier118,127. Simultaneously, I conducted CNV 

calling using QDNAseq with a bin size of 1 Mb145.” 
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3.2.8 Intraoperative sequencing protocol 

Intraoperative sequencing was performed on 5 samples by Jochen Meyer at the Department 

of Neuropathology, University Hospital Heidelberg and for 13 samples by Simon Deacon at 

University of Nottingham. For the protocol, we require minimum 5 mg tissue. The lab of Matt 

Loose in Nottingham developed the initial protocol. The samples were prepared with the ONT 

ultra-long kit using an adjusted protocol (SQK-ULK114) (https://protocols.io/view/intra-

operative-nanopore-sequencing-to-classify-br-c65qzg5w). For intraoperative samples 

sequenced in Heidelberg, Jochen modified an adjusted protocol using the ONT ultra-long kit 

to perform protein cracking using Maxwell-DNA-extraction by a PreCellys-cell/tissue-

homogenization-device instead of shearing by needle. The samples in Nottingham were 

analysed in real-time using the ROBIN pipeline and a custom pipeline at Heidelberg146,147. 

Briefly, the pipelines basecall and align the FAST5/POD5 files using dorado with the high 

accuracy model for 5mC detection as soon they are written to the output folder. Methylation 

values were extracted using modbam2bed at Heidelberg and modkit at Nottingham. Both ran 

the Rapid-CNS2 methylation classifier on the files upon generation. At Heidelberg, we ran 

QDNAseq for copy number variant calling on bam files at 5-minute intervals.145 The bedmethyl 

files for every 5 minute intervals from Nottingham were sent to me through OneDrive. I re-ran 

the classifier for the files and plotted the results using ggplot2. 

3.3 Results 

3.3.1 Adaptive sampling vs whole genome sequencing 

To assess the efficiency of adaptive sampling, I compared 5 whole genome sequencing 

libraries to 5 adaptive sampling libraries sequenced on a GridION. I found a considerably 

higher number of reads in the adaptive sampling libraries. WGS libraries showed an increased 

N50 and median read lengths compared to the adaptive sampling ones (Figure 3-3 a) to c)). 

Adaptive sampling involves a real-time rejection of reads, ideally within the first 180 bp. Panel 

B covers 1.5% of the genome. Assuming relatively uniform distribution of reads over the 

genome, it follows that most reads would be rejected with read lengths of ~200 bp. Thus, it 

would be expected that adaptive sampling libraries accumulate higher number of reads 

coupled with lower N50 and median read length as compared to WGS libraries. Figure 3-3 d) 
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displays a significant increase in coverage over the on-target region for adaptive sampling 

libraries compared to WGS, confirming the efficacy of real-time targeting using adaptive 

sampling. Despite exclusion of CpG sites from panel B, a greater number of CpG sites 

overlapping the 450k array sites were detected by adaptive sampling libraries potentially owing 

to the greater uniformity of rejected reads. CNV profiles of adaptive sampling libraries also 

displayed better resolution than those from WGS libraries for the same bin sizes. This could 

also be attributed to the contribution of the short rejected reads that covered a larger scope of 

the genome in a shorter time as opposed to the much longer reads in WGS. For example, in 

the time taken to sequence a 10,000 bp read covering a single region of the genome, an 

adaptive sampling library could cover around 50 (10,000 ÷ 200) different genomic regions. 
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Figure 3-3 Comparison of whole genome sequencing and adaptive sampling libraries 

3.3.2 Workflow establishment 

Helin Dogan and I established the wet-lab and computational workflow for Rapid-CNS2 

respectively. I set up the adaptive sampling tool Readfish on a consumer grade notebook, 

while Helin Dogan optimised incubation time and other wet-lab parameters for efficient 

targeting and output118.  
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Figure 3-4 Comparison of timelines for a complete molecular workup with conventional methods -NGS panel seq 
(a) and EPIC array (b) to Rapid-CNS2 v1 (c). (Reprinted from Patel et. al 2022148) 

Conventional molecular analysis involved NGS panel sequencing and EPIC array analyses. 

Figure 3-4 demonstrates the timeline comparison for Rapid-CNS2 vs conventional analysis. 

The Rapid-CNS2 workflow reduces the library preparation time to 7h as compared to over 48h 

for conventional analyses. Conventional analyses suffer from a need to batch multiple samples 

for cost effectiveness, exacerbating the delay in turnaround time. Rapid-CNS2 improves upon 

that by allowing single sample processing, making it possible to start sequencing upon sample 

receipt. 

We first sequenced 45 archival frozen glioma samples for 72 h each to examine the feasibility 

for identifying pathognomonic alterations using a handheld MinION (Figure 3-5). Targets 



3.3 Results 61 

 
(Panel A) included the regions of the neuropathology panel and 10,000 CpG sites inferred 

from the MNP classifier (155 Mb)19,120. I compared reported molecular alterations to 

conventional data from corresponding FFPE tissue samples. I could reliably detect IDH1 

R132H/S mutations in 12/13 samples and TERT promoter mutations in 23/25 samples with 

mutations detected in NGS panel seq. Pathognomonic copy number alterations including focal 

alterations like EGFR and CDKN2A/B were correctly identified. MGMT promoter methylation 

status was accurate in 45/45 samples. Methylation families were accurately identified in all 45 

samples and methylation classes were also correct in 37 out of 45 cases. 

Figure 3-5 Concordance of pathognomonic alterations for glioma samples targeting Panel A 

To further improve coverage, we targeted Panel B which only included regions from the NGS 

gene panel120. We then sequenced 8 archival frozen glioma samples that targeted Panel B on 

a GridION. Similar to previous results, I found complete concordance for pathognomonic 

SNVs, CNVs, MGMTp status and methylation family classification (Figure 3-6).  
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Figure 3-6 Concordance of 

pathognomonic alterations for 
glioma samples targeting Panel B 

3.3.3 Panel curation 

As shown in Figure 3-7, 
libraries sequenced using the 

smaller panel B (15 Mb) 

achieved a higher on-target 

rate compared to those 

sequenced using the larger panel A (155 Mb). Despite removal of CpG site-specific target 

regions in B, the number of detected CpG sites overlapping the Illumina 450K methylation 

array sites remained consistent across panels. CNV profiles also maintained consistent 

resolution. This could largely be attributed to off-target reads. Thus, B was designated as the 

default panel for subsequent runs. 

 
Figure 3-7 Mean on-target coverage for samples targeting Panel A vs Panel B. (Reprinted from Patel et. al 
2022148) 

3.3.4 Sequencing time optimisation 

I split five libraries run using Panel B into two each, containing reads generated in the first 24h 

and those generated in the subsequent 48h after flushing and reloading respectively. Since 

flushing the flowcell depletes all previously loaded sample, I considered data generated after 

reloading the flowcell to be equivalent to loading a new library on a previously used flowcell. 

Since the same sample was loaded again, it avoided any sample or flowcell-related bias. 
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Figure 3-8 Oncoprint showing 

concordance for samples 
sequenced for 24h and after 

flowcell washing and reloading for 

48h 

Each split library contained 

> 5 million reads. While 

there was no clear trend 

observed for the number of 

reads generated in the first 

24h vs next 48h, mean on-

target coverage for all libraries was 10-15X, similar to that observed with Panel A libraries 

sequenced for 72h. As shown in Figure 3-8, complete concordance was reported for all 

pathognomonic alterations (IDH1, TERTp, MGMT promoter methylation and copy number 

alterations). Methylation families were correctly identified in all split libraries, 4 of which also 

reported the accurate methylation sub-class as identified by the corresponding EPIC array-

based classification (same as their corresponding 72h runs).  

 

Figure 3-9 Copy number profiles at varying sequencing times. 

Copy number profiles were identical for the complete 72h run, first 24h run and next 48h run 

for all split libraries (Figure 3-9). For a 24h run, sequencing with the shorter panel (Panel B) 

resulted in mean on-target coverage equivalent to a 72h run with the longer panel (Panel A). 

This demonstrated that sequencing time can be reduced proportionally by decreasing target 

sizes. As flowcell quality was maintained, it was decided to sequence all samples after Panel 

B for 24h or after washing and reloading for 48h. 
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3.3.5 Sample overview 

I collected a dataset of 301 samples to develop and validate the pipeline. 252 samples were 

sequenced at Department of Neuropathology, University Hospital Heidelberg and 49 samples 

were sequenced at DeepSeq, University of Nottingham. For the sake of completeness of 

analysis and since they were locally processed, I only refer to the 252 samples sequenced in 

Heidelberg in this chapter except for when specifically mentioned. Of these, 112 samples were 

retrospectively sequenced, while 140 samples were prospectively sequenced in a ‘real-life’ 

diagnostic setting. Among the scope of tumour types included in the dataset, the cohort 

included particularly 53 molecular low-grade tumours (e.g. pilocytic astrocytoma, 

ganglioglioma, dysembryoblastic neuroepithelial tumour, and CNS WHO grade 2 diffuse 

glioma), 15 recurrent tumours, 10 samples with infiltration zones of diffuse glioma, and 5 

samples the size of a small biopsy (~1.5mm diameter). Of these, we sequenced 5 samples in 

an intraoperative setting where the samples underwent library preparation and sequencing as 

soon as they were sent to the Department of Neuropathology for frozen section inspection. 

Kirsten Göbel ran live analyses including methylation classification and copy number profiling 

on these samples. To provide a better understanding of the intraoperative sequencing and 

results, I also added 13 samples sequenced intraoperatively at the University of Nottingham. 

3.3.6 Coverage 

Adaptive sampling resulted in a noticeable improvement in on-target coverage for all libraries. 

I observed a significant difference in coverage depending on the device used, in-line with the 

specifications. P2 Solo provided the highest on-target coverage, achieving an average of 

44.8X after 24 hours of sequencing. In comparison, the GridION device showed varying 

coverage levels, with an average of 16.5X across all runs. Specifically, 72-hour runs on the 

GridION yielded 24.4X coverage, while shorter runs (24 and 48 hours) averaged 12.56X. The 

MinION, though the smallest device, performed well with an average on-target coverage of 

17.5X during 72-hour runs. It should be noted that the samples sequenced on the MinION 

targeted Panel A which is 10 times the size of Panel B employed by the other libraries. These 

results demonstrate that while all devices benefited from adaptive sampling, the P2 Solo was 

the most effective in reaching higher coverage in a shorter period, with the GridION and 

MinION offering reasonable alternatives with lower, but still reasonable coverage. 
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3.3.7 SNV calling 

I compared SNVs from 103 samples to their matched NGS libraries. I compared all variants 

called using DeepVariant for the Rapid-CNS2 samples and mpileup for their corresponding 

NGS libraries. I observed 91.7% recovery of SNVs called in NGS data (Figure 3-10).  

 

Figure 3-10 SNV concordance and its relationship with on-target coverage. (Reprinted from Patel et. al 2024117) 

Since targeting by adaptive sampling was primarily meant to improve variant calling over 

clinically relevant regions, I delved into the relationship between SNV recovery and on-target 

coverage. I found that proportion of SNVs recovered increases with on-target coverage A 

minimum on-target coverage of 10X was necessary to capture 90% of the variants (Figure 
3-10).  

Minor differences between sequencing platforms are typically expected and unavoidable due 

to the inherent distinctions between nanopore and Illumina technologies. However, these 

differences can pose challenges when they involve clinically relevant alterations. Despite 

technical variability across sequencing platforms, pathognomonic and canonical mutations 

that align with the integrated diagnosis, as well as those confirmed by direct sequencing or by 

mutation-specific antibodies at the protein level, can be regarded as the biological "gold 

standard" or "ground truth." Hence, I investigated IDH1/2 and BRAF mutations and found 

correct calling in 44/45 and 1/1 samples respectively with matched NGS data and endorsed 

by direct sequencing and/or immunohistochemistry, with no false positives (97.9% sensitivity, 

100% specificity). For samples with methylation class predictions suggestive of an IDH1/2 

mutation, I consulted the mpileup variant calls if the variant was not called by DeepVariant. 
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TERT promoter mutations are notoriously hard to amplify for NGS and subsequently detect 

owing to their presence in a GC-rich region149. The resulting poor coverage makes variant 

calls in the region susceptible to false negatives and false positives. Previous work found over 

65 % false negatives in variant calling with targeted NGS over Sanger sequencing which could 

only be resolved by looking at raw reads in IGV149. In line with previous findings, coverage 

over the TERTp region for our NGS panel sequencing was ~10% of the mean on-target 

coverage for the library. Thus, establishment of ground truth in this region is a matter of some 

debate. However, considering NGS calls as true mutations, I found that they were concordant 

in 48 out of 54 (88.9%) cases (A.1.1). 

 

Figure 3-11 Number of shared and unique mutations per sample. (Reprinted from Patel et. al 2024117) 

To examine the complete set of variants, I probed the variants detected by NGS panel 

sequencing and Rapid-CNS2 from each sample with available corresponding data (Figure 
3-11), considering NGS variant calls as the reference or "true" calls. I found 68,941 true 

positives, 35,370 false positives, 6170 false negatives. However, previous studies have 

demonstrated substantial variability in the performance of different variant callers when 

applied to the same dataset150. In this analysis, the sequencing technologies, tissue types 

(FFPE for NGS panel sequencing), and variant calling algorithms used are distinct, making 

the assumption that NGS calls represent absolute ground truth not entirely accurate. 

Therefore, the discrepancies observed in variant calls between the two methods are consistent 

with findings from literature. 
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Figure 3-12 Variant allele frequency comparison of detected 

mutations. (Reprinted from Patel et. al 2024117) 

Additionally, I queried the variant allele frequencies 

(VAF) of shared and exclusive variants in NGS and ONT 

(Rapid-CNS2) libraries. The results showed that the 

VAFs of variants detected by both technologies were 

significantly higher than those found exclusively by 

either method (Figure 3-12). This indicates that the 

variants missed by Rapid-CNS2 were likely low-

frequency mutations, which could represent either false 

positives or sub-clonal variants. Similarly, false positives 

identified by Rapid-CNS2 were associated with low 

VAFs, suggesting that these could potentially be filtered 

out by applying a VAF threshold. 

As evident from Figure 3-11, the number of false positives decreased considerably with R10 

chemistry. R9 flowcells accumulated and average of 424 false positives per sample, while R10 

flowcells improved by 5.5 fold with 77 false positives on average per sample. This aligns with 

the improved basecalling accuracy claimed by R10 flowcells. As poorer results were obtained 

from the older R9 flowcells and software versions, which are now obsolete, this clearly 

demonstrates that advancements in sequencing chemistry and variant calling algorithms play 

a crucial role in improving the accuracy of SNV calls. Although I evaluated SNV calling across 

all flowcells, it is important to note that future users will use R10 or higher flowcells, which is 

guaranteed to yield more reliable results. 

3.3.8 MGMT promoter methylation analysis 

Molecularly, patients with glioblastoma that have hyper-methylated promoter region of the 

gene encoding O6-methylguanine-DNA methyltransferase (MGMT) benefit from alkylating 

agents like temozolomide as compared to those patients whose tumours lack such MGMT 

promoter methylation151. Additionally, extensive resection is more beneficial for patients with 

MGMT methylated glioblastoma152,153. Thus, accurate reporting of MGMT promoter status is 

crucial. Conventionally, this is determined using pyrosequencing or Bady’s two-site model for 

the methylation arrays154. Due to inconsistencies in the identification of modified sites, the two-
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CpG MGMT-STP27 method developed by Bady could not be directly used for assessing the 

MGMT promoter methylation status2. I formulated a model that uses the average over multiple 

predictive sites instead of a site-specific model to deal with the issue of random missingness 

in high-confidence methylation calls prevalent in nanopore sequencing data. First, I tested a 

naïve average-based approach. I calculated the mean of methylation values over all reported 

CpG sites in the UCSC-annotated CpG island. Based on ground truth values for 25 samples, 

I chose a cut-off of 30%. On further addition of samples, I found that this approach resulted in 

values being poorly resolved between methylated and unmethylated samples (cut-off ± 5%).  

 

Figure 3-13 MGMT promoter methylation status prediction model. (Reprinted from Patel et. al 2022148) 

After comparing the average methylation levels in 59 methylated and unmethylated samples 

analysed using Rapid-CNS2 v1, I found that certain sites had poor predictive power (Figure 
3-13 a). On subjecting each site to a Student’s t-test, I selected 137 out of 212 sites (p-val < 

0.01). When the methylation values were averaged over the 137 selected CpG sites, I 

observed a clear difference between methylated and unmethylated samples (Figure 3-13 b). 

The logistic regression classifier showed in Figure 3-13 c), which was trained on the training 

samples and used a 25% cutoff, accurately predicted the methylation status of the test 

samples. I similarly employed the model for MGMT promoter status prediction in Rapid-CNS2 

v2. Methylation calls over the MGMT promoter region provided a high resolution of methylation 

patterns across glioblastoma samples as demonstrated in Figure 3-14. The top panel has 
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aligned reads coloured by sample with CpG sites marked as closed if they are methylated and 

open if they are unmethylated. The curves on the bottom panel indicate smoothed methylation 

profiles coloured by sample. As evident from Figure 3-14, the profiles show an unambiguous 

difference between unmethylated and methylated samples. 

 

Figure 3-14 Methylation values over the MGMT promoter region. (Reprinted from Patel et. al 2024117) 

MGMT predictions remained consistent with the corresponding EPIC array ground truth in 188 

out of 207 cases (90.8%) that had matched EPIC array predictions and coverage > 3X over 

the MGMT promoter region (Figure 3-15). Three samples with matched EPIC array 

predictions exhibited low coverage over this region. This discrepancy is consistent with 

previous reports comparing other MGMT methylation assays, such as pyrosequencing versus 

methylation arrays154-156. Notably, discrepancies in MGMT methylation predictions are known 

to occur even between well-established conventional methods, making it challenging to define 

a definitive ground truth for MGMT methylation status57. 

Figure 3-15 MGMT promoter methylation 

concordance 

MGMT promoter methylation status 

is a critical prognostic marker and 

predictor of response to 

temozolomide therapy in gliomas, 

making it essential that this 

information is accurately conveyed 

to the treating physician157-160. 

Additionally, IDH-wt glioblastomas with methylated MGMT promoter have been shown to 
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benefit from extensive resection in terms of survival152. Currently, there is no reliable 

histopathological feature that would enable a pathologist to determine the methylation status 

of the MGMT promoter. Commonly employed nanopore-based rapid methylation classification 

methods, such as shallow whole genome sequencing, rely on stochastic, non-uniform 

coverage of the genome in a short period of time161-163. While this approach provides sufficient 

coverage of CpG sites for training methylation classification models, it does not guarantee 

coverage of the MGMT promoter region. Moreover, methylation classes have not been shown 

to segregate based on MGMT promoter methylation status, meaning that methylation 

classification cannot serve as a substitute for determining MGMT status, unlike the IDH1 

mutation. Therefore, accurate reporting of MGMT promoter methylation, alongside 

methylation classification, SNVs, fusions, and CNVs, enhances the value of Rapid-CNS2 as a 

comprehensive diagnostic tool in clinical practice. More importantly, I hypothesise that the 

improved resolution of the MGMT promoter region achieved through Rapid-CNS2 could serve 

as an invaluable resource for enhancing patient stratification in predicting temozolomide 

response. 

3.3.9 Methylation classification 

I set up the methylation classification scheme using the 59 samples used for workflow 

establishment. I developed an ad-hoc random forest-based classifier that re-trains on sample 

specific sites. Similar approaches have been successfully applied elsewhere161,162,164. I used 

the reference dataset from the Capper et. al 2018 paper as reference19. Data obtained from a 

full run usually covered >300,000 probes from the 450K array. Loading the entirety of the 

overlapping probe set from the training set for re-training warranted considerable memory. I 

inferred CpG importance from the MNP methylation classifier by selecting sites from the top 

100K probes to re-train the ad-hoc classifier. This considerably reduced the time and memory 

required to perform methylation classification and used a refined feature space. On average, 

methylation classification (including I/O processes) took 10 minutes with 32 threads. Of the 

10,000 probes selected for training in each sample, only ~1400 probes were common in all of 

the samples. The out-of-the bag error for ad-hoc classifiers for each sample was between 

0.18-0.20 (A.1.2). This classifier, referred to as the Rapid-CNS2 methylation classifier, was 

applied to all samples of the cohort. 
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Methylation classification with the integrated Rapid-CNS2 model covered 91 CNS tumour 

classes as published in the Capper et. al paper62. Of the 228 samples that could be 

categorised by the conventional methylation classifiers (v11 or v12), 213 (93.4%) were 

accurately assigned to the correct methylation family, which is generally the most critical 

diagnostic level. 

Since the conventional random forest classifier employs a confidence cut-off of 0.9 for cases 

considered “classifiable,” I derived a corresponding cut-off from the Rapid-CNS2 data. By 

filtering samples with a minimum confidence score of 30%, 181 out of 185 (97.8 %) were 

correctly predicted (Figure 3-16). However, to provide a comprehensive assessment, I did not 

apply this confidence cut-off for the following evaluation of individual Rapid-CNS2 samples, 

instead including all cases regardless of score. 

 

Figure 3-16 Comparison of array-based methylation class predictions to Rapid-CNS2 predictions (prediction 

confidence > 30 %) 

At the lower hierarchy level of methylation class, 136 out of 189 samples (71.9%) with class-

level information available were correctly classified. For instance, 34 cases were concordant 

at the family level but discordant at the class level within the methylation family of glioblastoma, 

IDH wildtype. Despite having class-level predictions, the WHO classification does not endorse 

further sub-classification within glioblastoma, IDH wildtype, due to the absence of established 

clinical relevance. Moreover, it has been demonstrated that class-level methylation patterns 

can vary within different regions of the same tumour sample. This likely accounts for some of 

the discrepancies observed between frozen and FFPE tissue in certain cases. Therefore, 

based on current evidence, no biological ground truth for class-level distinctions or their intra-

tumoural consistency exists, nor has their clinical significance been established. 
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Among the 15 samples that did not match their methylation classification, seven were 

associated with scores indicative of inflammatory or reactive tumour tissue. Of these, four 

were eventually diagnosed as glioblastoma and received scores corresponding to an 

"inflammatory glioblastoma microenvironment," which, while not an exact match to the 

glioblastoma score from the methylation array (which was derived from different tumour 

regions), still provided sufficient diagnostic clarity.  

Figure 3-17 Distribution of confidence scores 

for Rapid-CNS2 methylation classification 

Another three samples were assigned 

to a reactive tumour microenvironment 

category, correctly identifying the 

context of the tumour but not specifying 

the precise tumour type. The remaining 

8 out of 15 non-matching samples were 

considered clear mismatches. Notably 

as shown in Figure 3-17, samples that 

were correctly classified tended to have higher confidence scores than those that were 

mismatched or outside the reference set, indicating a generally conservative approach. An 

important challenge for classification models is the handling of entities not present in the 

current classifier reference set. As demonstrated in Figure 3-17, all cases belonging to 

classes not in the current classifier (eg. metastases) were predicted with low calibrated scores. 

In contrast, samples with concordant methylation classes had high calibrated scores.  

3.3.10 Copy number variation calling and validation 

Copy number calls made by the Rapid-CNS2 pipeline were compared to their corresponding 

EPIC array and NGS panel sequencing analysis results. Visual inspection was carried out for 

comparison as it is the standard practice for evaluating such results in neuropathology 

diagnostics. Complete concordance in copy number profiles with EPIC array was observed 

for all samples. CNV profiles generated by Rapid-CNS2 displayed improved resolution over 

those from NGS panel sequencing for the same targets (Panel B) as shown in Figure 3-18. 

This can be attributed to the rejected reads that are uniformly distributed across the genome.  
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Figure 3-18 Copy number profiles from Rapid-CNS2 (left), NGS panel sequencing (middle) and EPIC array (right) 

Reducing the panel size did not reduce the resolution of copy number calls. Samples targeting 

Panel A and B had similar accuracy of copy number variation detection. Since the copy 

number profile is primarily results from the rejected short reads, it follows that the copy number 

profiles should remain similar regardless of panel size.  

 

Figure 3-19 Concordance of focal alterations in CNV profiles. (Reprinted from Patel et. al 2024117) 

On account of their pathognomonic nature, arm-level copy number alterations like 1p/19q 

codeletion and 7 gain/10 loss were particularly investigated. In all sequenced glioma samples, 

these alterations were detected with 100% accuracy.  

Focal alterations like EGFR amplification were reliably detected in all cases. Visual inspection 

of the CNV profiles from EPIC array analysis is the standard practice for diagnostic decisions 
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and was also used as the ground truth for focal deletions. Figure 3-19 shows an example of 

a glioblastoma sample with multiple focal alterations that were accurately identified by Rapid-

CNS2. Copy number calculations by Rapid-CNS2 also report genes falling within variant 

segments. This was additionally considered while assigning gene-level copy numbers. Rapid-

CNS2 considers multiple bin sizes (1kb, 10kb and 100kb) for copy number calling. While not 

reported in this work, a combination of small and large bin sizes could further contribute to the 

reliable calculations of gene and arm-level copy numbers.    

 

Figure 3-20 Comparison of CNV profiles for brain metastases samples 

Metastatic tumours are known to have a host of complicated genome-wide copy number 

alterations. I compared CNV profiles for such brain metastases samples and found them to 

be consistent with their respective CNV profiles from EPIC array analyses. Figure 3-20 shows 

the copy number profile for metastases samples by methylation array analyses on the left and 

that generated by Rapid-CNS2 on the right. Focal alterations in the samples were concordant 

and could be detected with high resolution.  
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Copy number variants are widely known to be of prognostic and even pathognomonic value 

in CNS tumours13,143,165,166. The list of relevant copy number alterations is constantly 

increasing. For example, the recent c-IMPACT-NOW update 8 additionally proposed to assign 

a higher WHO grade to meningiomas with WHO grade 1 histology but chromosome 1p arm 

deletion in combination 22q deletion167. It has recently been suggested that size-dependent 

CNVs significantly influence risk stratification in cancer genomes168. While methylation arrays 

can indicate arm and gene level alterations, they are dependent on individual probes over the 

genome which might affect the detection of such sizes. On the other hand, sequencing reads 

cover entire regions enabling finer resolution and more precise size detection of CNVs. With 

the added benefit of SNP/SNV detection, sequencing data provides the additional capability 

to assess loss of heterozygosity (LOH) and allele-specific sizes. 

Copy number profiling emerged as one of the strongest features of the Rapid-CNS2 approach, 

with results demonstrating complete concordance with methylation array analyses at both 

chromosomal and focal levels. This success can largely be attributed to adaptive sampling, 

which rejects 90% of off-target reads within 500 base pairs, allowing the remaining reads to 

effectively span diverse genomic regions. This precise targeting was particularly valuable in 

cases where methylation classification failed, as copy number profiles played a key role in 

providing molecular diagnoses. However, it is important to note that in this study, the nature 

of nanopore-based copy number variant (CNV) results differed significantly from those 

generated by the EPIC array, making it impossible to quantify concordance by directly 

comparing scores. This highlights the need for a more systematic approach to quantify CNV 

concordance between different platforms, particularly in assessing zygosity, since zygosity of 

CDKN2A/B for example is pathognomonic for CNS tumours. Additionally, cut-offs beyond 

simple visual inspection should be defined to determine the zygosity of CNVs. Clear thresholds 

for distinguishing between heterozygous and homozygous deletions would further enhance 

the diagnostic precision of CNV profiling in nanopore-based workflows. Developing such 

quantitative metrics would improve the reliability of CNV analysis, making it a more valuable 

component of the diagnostic toolkit.  

3.3.11 Structural variant calling 

I focused the validation of fusion calls on clinically relevant fusions present in the “ground truth” 

samples. svim and Sniffles (or Sniffles2) detected a range of long structural variants including 
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deletions, inversions and duplications138,139,169. Since the matched NGS data was based on 

panel sequencing, it covered only targeted regions of the genome. In contrast, targeting 

through adaptive sampling retains the entirety of the reads mapping to the regions of interest. 

More importantly, long reads reliably represent the entire landscape of a structural variant 

whereas short reads require considerable amount of inferencing to unravel a long structural 

variant. Due to the limitations in reliable SV calling from short read panel sequencing data, no 

ground truth was available to validate SVs called by Rapid-CNS2.  

 

Figure 3-21 BRAF:KIAA1549 fusion detection (Reprinted from Patel et. al 2024117) 

I specifically queried fusions from the SV calling results depending on the suspected diagnosis 

or predicted methylation class. For example, I looked for BRAF:KIAA1549 fusions in pilocytic 

astrocytoma cases and CIC rearrangements in a sample predicted as EFT_CIC (CIC altered 

sarcoma) by methylation. I found BRAF:KIAA1549 fusions in all 7 cases with the fusion 

identified in corresponding NGS-RNA seq data. Interestingly, the fusion was called as a 19Mb 

duplication on chr7.q34 with breakpoints located in the introns of BRAF and KIAA1549 genes. 

The duplicated region is highlighted in blue in Figure 3-21 a). This is in line with the tandem 

duplication based mechanism of the fusion proposed by Jones et. al170. IGV screenshot of the 

breakpoints is shown in Figure 3-21 b). Bars at the bottom indicate duplication region 

annotated by Sniffles138. 

Sample 173 was predicted as a CIC altered sarcoma by methylation. This diagnosis warrants 

presence of a CIC (capicua transcriptional repressor) fusion usually with LEUTX (leucine 

twenty homeobox), NUTM1 (NUT midline carcinoma family member 1), or DUX4 (double 

homeobox 4) family genes171-174. No fusion was detected by NGS DNA or RNA sequencing. I 

found a single 13kb read, with 3kb mapping to exon 20 of the CIC gene (chr19) and 10 kb 
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mapping to the region of DUX4 retrogenes (chr4) specifically to DUX4L5. The read is 

highlighted in orange in Figure 3-22.  

 

Figure 3-22 IGV screenshot for CIC exon 20 (chr19) and DUX4 retrogene (chr4) regions 

While fusions with DUX4 retrogenes on chr4.q35 have been reported widely, these have been 

detected by short read sequencing by aligning to the hg19 genome. In the hg19 genome, the 

DUX4 gene is present on an unplaced scaffold and the retrogenes are on chr4, which was 

resolved and then placed next to the retrogenes on chr4 in the hg38 genome121,133. This implies 

that effective alignment of reads to this gene in hg19 would be challenging. This demonstrates 

the need to incorporate newer reference assemblies for better resolution and fusion detection. 

I did a BLAST (basic local alignment search tool) comparison of the DUX4L5 gene to the 

DUX4 gene and found that the retrogene had a 99.7% match to exon 1 of the DUX4 gene175,176. 

The usual location of the DUX4 gene fusion breakpoint is in exon 1. Since short reads only 

cover up to 300 bp which is shorter than an exon, the exon 1 breakpoint detected for DUX4 

by NGS could in fact be from one of the retrogenes. I speculate that long read sequencing 

would better resolve the actual rearrangement since they cover bases to the order of kilo- or 

even megabases. 

Long read sequencing offers a major advantage over NGS panel sequencing in being able to 

resolve long complex variants in a single read. Due to unavailability of ground truth data, SV 

calling for this work was restricted to purely exploratory analysis.  
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A 1.3 Mb deletion in EGFR (epidermal growth factor receptor) spanning the exons 2 through 

7 was called by Sniffles2 in one glioblastoma sample as shown in Figure 3-23. Deletion of 

exons 2-7 is characteristic of the EGFR vIII variant. The deletion was found in 18 out of 100 

reads covering the region, thus making it a subclonal variant. All 18 reads spanned both the 

breakends and extended over 300 bp on either side. The read highlighted in orange indicates 

the same read. To confirm the variant, the sample was sequenced again using an R10 flowcell. 

The variant was not detected in NGS panel sequencing. 

 

Figure 3-23 EGFR vIII detection (Reprinted from Patel et. al 2024117) 

Interestingly, the EGFR gene was amplified in this sample without a chr7 gain. Since the 

variant was found in ~20% of the reads covering the gene, it follows that the variant was 

acquired after the amplification. This is consistent with clonal evolution analyses of EGFR in 

glioblastomas that deem EGFR amplification an early clonal event that is followed by 

acquisition of EGFR vIII mutations as a result of intratumoural heterogeneity177-179. 

3.3.12 Integrated diagnoses 

Integrated diagnoses were issued considering histology, clinical data and molecular data 

reported by Rapid-CNS2. Figure 3-24 shows the concordance over the multiple layers of 

evaluation for the entire cohort. While methylation classification is a major criterion, Rapid-

CNS2 also possessed the added advantage of reporting SNVs, CNVs and gene fusions. These 
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layers contributed significantly to cases where methylation classification was incorrect or 

unclassifiable, and to cement diagnoses that cannot be made based on methylation classes 

and histology alone. 

 

Figure 3-24 Concordance over layers of evaluation of Rapid-CNS2 results for the cohort 

I found integrated diagnoses to be in concordant in 242 out of 251 cases. One case was issued 

a diagnosis compatible with the conventional integrated diagnosis (Sample 124). The EPIC 

array methylation family for the sample matched the Rapid-CNS2 prediction albeit both of them 

had very low scores. Conventional analysis discovered an IDH1 R132H mutation and 

mutations indicating MMR-deficiency, leading to an integrated diagnosis of ‘Primary mismatch 

repair deficient IDH-mutant astrocytoma’. On the other hand, Rapid-CNS2 reported a 

hypermutant phenotype with mutations in MSH6 but no IDH1 mutation and a flat copy number 

profile. This led to an integrated diagnosis of ‘Mismatch repair deficient glioma’, compatible 

with the conventional diagnosis. Five samples suffered from lack of specific class in the Rapid-

CNS2 classification scheme (MNP v11). EPIC array had an advantage in these case since it 



80 Rapid-CNS2 

 
employs the v12 classifier with 184 classes. While four of these tumours could be assigned a 

coarse diagnosis, one of them remained unresolved. Only four cases had potentially 

misleading diagnoses (1.6%). Importantly, none of them presented a consistent picture of a 

confidently but incorrectly called diagnosis across all layers, but evidently called for additional 

analysis in keeping with the integrated diagnosis concept of the WHO classification. 

3.3.13 Overall concordance 

To thoroughly evaluate the performance of Rapid-CNS2 on a highly diverse, nearly ‘come as 

you are’ basis, we prospectively included cases that, in hindsight, might not have been suitable 

for methylation-based analysis (e.g., non-primary brain tumours not represented in the CNS 

methylation classifier). However, these cases were not excluded from the final analyses to 

provide a complete assessment of the capabilities of Rapid-CNS2. Even in cases where 

methylation was uninformative, other data layers such as CNVs, mutations, and fusions still 

contributed significantly to the diagnostic process. The added value beyond methylation 

classification in rendering a precise diagnosis encompassed pathognomonic CNVs (e.g. 7/10 

in glioblastoma, 1p/19q in oligodendroglioma) and/or pathognomonic mutations (e.g. IDH1, 

TERT) and/or gene fusions (e.g. BRAF:KIAA1549) to distinguish between differential 

diagnosis in cases not resolved by methylation alone. Remarkably, all small biopsy, 

recurrence and infiltration zone samples could be issued concordant integrated diagnosis. 

Figure 3-25 and Figure 3-26 show the overall concordance for archival and diagnostic 

samples including intraoperative samples respectively. 
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Figure 3-25 Overview of archival samples 

 
Figure 3-26 Overview of diagnostic samples 
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3.3.14 Intraoperative sequencing 

This extract was adapted from Patel et. al 2024117: 

“To evaluate the shortest time needed for methylation classification and copy number calling, 

I re-analysed data from 36 representative samples taken from intra-operative frozen sections 

in the Heidelberg Rapid-CNS2 dataset, which had been previously run on R9 flowcells. These 

samples had originally been analysed from archival tissue, so I recreated a real-world 

sequencing scenario by sub-setting the data to include only reads generated at various time 

points during the actual run. I used the sequencing summary file generated by guppy to identify 

the reads. Figure 3-27 displays how methylation class assignment progressed over time. After 

merely 15 minutes of sequencing, 29 out of 35 (83%) samples with sufficient reads were 

assigned the correct methylation family. After an hour, 35 out of 36 samples were accurately 

classified. Importantly, concordant classifications had significantly higher calibrated scores 

than discordant ones at all time points as indicated by the boxplots in the top plot of Figure 
3-27. 
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Figure 3-27 Simulated intraoperative methylation class reporting. (Reprinted from Patel et. al 2024117) 

Adaptive sampling's rejected short reads led to uniform genome coverage, allowing for high-

resolution copy number profiles within short timeframes. Arm-level alterations, such as the 

loss of 1p, 7p, and 22q, were clearly detected after only 10 minutes of sequencing. Notably, 

one sample identified as an IDH-wildtype glioblastoma based on copy number alterations, 

including diagnostic chromosome 7/10 changes, had initially been misclassified as a ‘high-

grade IDH-mutant astrocytoma’ via methylation profiling until after 24h of sequencing.” 

The success of the simulated experiments prompted the establishment of true intraoperative 

experiments. Rapid protocols for intraoperative methylation classification have been reported 

in multiple studies before163,164. These protocols are based on shallow whole genome 

sequencing, which while swift, are restricted to detecting methylation classification and lower 

resolution copy number alterations. Matthew Loose’s lab devised a protocol that combined the 

ultra-long kit from ONT with the rapid sequencing kit to reduce the DNA extraction and library 

preparation time to less than 60 minutes from 7 hours. This protocol was improved by Jochen 

Meyer to further reduce the time to 50 minutes. We performed sequencing on a P2 Solo using 

adaptive sampling by ReadFish in Nottingham and Heidelberg122,123. This led to a workflow 

that started intraoperatively with methylation classification and broad CNV reporting within 30 



84 Rapid-CNS2 

 
minutes followed by a full spectrum of alterations reported after 24h of sequencing as 

demonstrated in Figure 3-28. 

 

Figure 3-28 Schematic of intraoperative Rapid-CNS2 pipeline. (Reprinted from Patel et. al 2024117) 

Using this modified rapid library preparation protocol, we conducted real-time intraoperative 

sequencing on a combined 18 samples in both centres. Figure 3-29 shows the predictions 

over an hour of sequencing for 16 of the classifiable samples, with each centre running its 

analysis independently. Consistent with my retrospective simulations, integrating real-time 

methylation and CNV data improved the precision of interpretation for 13 out of 18 

intraoperative samples using Rapid-CNS2, with results available within 30 minutes. One of the 

unresolved samples was a novel entity unclassifiable with the methylation classes available 

and the other was not classifiable by the methylation array. Importantly, these two samples 

were consistently predicted with very low confidence (<25%), supporting a conservative 

approach taken by the classifier. The samples predicted confidently were relayed to the 

surgeon in the operating room by phone.  
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Figure 3-29 Methylation classification results over time for real intraoperative sequenced samples. (Reprinted 

from Patel et. al 2024117) 

Since I only had access to the aligned bam files from the Heidelberg data, I also analysed the 

CNV profiles from these samples. On the other hand, I only analysed the methylation data for 

the samples processed in Nottingham.  

Table 3-2 describes the results for the samples sequenced intraoperatively in Heidelberg. 

Methylation class predictions for three out of five samples were completely concordant with 

the final conventional integrated diagnosis after only 30 minutes of sequencing. Notably, their 

copy number profiles were also accurately represented in the intraoperative timeframe. 
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Table 3-2 Heidelberg intraoperative sequencing results 

ID Rapid-CNS2 
classification 

Rapid-CNS2 CNV Final 
conventional 
integrated 
diagnosis 

Comment 

248 No clear classification, 

consistent PXA 

classification from 35 
minutes onwards 

chr7 gain / chr10 loss 

estimable from 5 

minutes onwards 

Gliosarcoma, IDH-

wildtype, WHO 

grade 4 

Recurrence post therapy, 

no clear score with 

methylation array 

249 No clear classification, 

consistently low scores 
(<10%)  

chr7 gain / chr10 loss Glioblastoma, 

IDH-wildtype, 
WHO grade 4 

Resolved by CNV. Poor 

tissue selection, library 
preparation. 

250 A_IDH from 20 minutes 

onwards 

Segmental gains in 

chr7, chr8; segmental 
losses in chr3, chr4, 

chr19 

Astrocytoma, IDH-

mutant, WHO 
grade 2 

Concordant with final 

diagnosis 

251 A_IDH from 30 minutes 
onwards 

Flat copy number 
profile 

Astrocytoma, IDH-
mutant, WHO 

grade 2 

Concordant with final 
diagnosis 

252 GBM_RTK_II from 5 

minutes onwards 

chr7 gain / chr10 loss 

estimable from 5 
minutes onwards 

Glioblastoma, 

IDH-wildtype, 
WHO grade 4 

Concordant with final 

diagnosis 

Of the two unclassifiable samples, ID 248 was the recurrence of a glioblastoma. As evident in 

Figure 3-30, this sample gave inconsistent classifications with very low scores until one hour 

of sequencing. Even after 24h of sequencing, the methylation class prediction was 

pleomorphic xanthoastrocytoma (PXA). There was no methylation array for this resection. 

Methylation array analyses of earlier resections gave a score of 0.32 for the GBM_MES class, 

deeming the sample unclassifiable. But, there was an evident 7/10 signature from 10 minutes 

of sequencing onwards, leaning the intraoperative diagnosis towards recurrent glioblastoma. 

The histology description from the FFPE section described an abundance of CD68 positive 

cells (most likely macrophages). Post-therapy recurrent glioblastoma to gliosarcoma transition 

is known to have increased immune cells, reactive astrocytes and macrophages that can 

impair methylation classification180,181. However, the intraoperative CNV profile was consistent 

with that generated by the methylation array analyses of previous resections and stayed 

similar even after 24h of sequencing. It was nearly identical with segmental 3p loss, 7/10 

signature, 9q gain, segmental 13q loss, NF1 deletion, and gain of chromosome 20.  While 

there exists an overlap between PXA and GBM (for e.g. 7/10 signature, CDKN2A/B deletion), 
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the diffuse nature of the tumour, absence of BRAF V600E mutation and early recurrence with 

evident sarcomatous phase on histology, led to the final diagnosis of gliosarcoma in 

concordance with conventional analysis.  

 

Figure 3-30 Intraoperative classification and copy number profiles for gliosarcoma sample 

The second sample (ID 249) had poor tissue selection leading to suboptimal library 

preparation. This is evident from the number of reads generated over time, the sample only 

accumulated 77,000 reads after 20 minutes compared to 191,000 reads for the previous 

sample (ID 248) at the same timepoint. This was reflected in the low scoring, inconsistent 

methylation classification over time for the sample as depicted in Figure 3-31. However, the 

copy number profiles showed a clear 7/10 signature from 5 minutes onwards, leading to a 

glioblastoma diagnosis in line with the conventional diagnosis established later. 
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Figure 3-31 Intraoperative sequencing resolved by CNVs for glioblastoma (GBM) (Reprinted from Patel et. al 

2024117) 

As presented in Table 3-3, eight out of eleven classifiable samples from Nottingham were 

correctly classified intraoperatively. Two samples (Nott_6 and Nott_13) were unclassifiable as 

mentioned above. I was able to accurately identify three diffuse glioma samples as either IDH-

mutant astrocytoma or IDH-wildtype glioblastoma, diagnoses that are difficult to distinguish 

based on frozen section alone. Similarly, one ependymoma sample was classified as part of 

the high-risk supratentorial ZFTA-fusion positive group, differentiating it from the lower-risk 

YAP1-fusion diagnosis, which is histologically similar. I could also accurately predict five 

meningioma cases with high scores from 10 minutes onwards. Only three cases offered no 

substantial improvement over standard morphological inspection of frozen sections, and one 

of these remained unresolved even after conventional testing, labelled simply as a "glial 

neoplasm." Importantly, these three cases were constantly predicted with low scores, 

consistent with similar observations in the Heidelberg data. 

Table 3-3 Nottingham intraoperative sequencing results 

ID Rapid-CNS2 classification Final conventional 
integrated diagnosis 

Comment 

Nott_1 EPN_RELA from 10 minutes 

onwards 

Supratentorial ependymoma, 

ZFTA fusion-positive 

Concordant with final 

diagnosis 

Nott_2 GBM_RTK_II from 5 minutes 
onwards 

Glioblastoma, IDH-wildtype, 
WHO grade 4 

Concordant with final 
diagnosis 

Nott_3 MNG from 5 minutes onwards Meningioma Concordant with final 

diagnosis 
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Nott_4 MNG from 10 minutes onwards Meningioma Concordant with final 

diagnosis 
Nott_5 Consistently misclassified with 

low scores 

Astrocytoma, IDH-mutant, 

WHO grade 2 

Low tumour DNA fraction 

Nott_6 CONTR_INFLAM from 10 

minutes onwards 

Glial Neoplasm, NOS Not classifiable with array 

Nott_7 GBM_RTK_II from 5 minutes 

onwards 

Glioblastoma, IDH-wildtype, 

WHO grade 4 

Concordant with final 

diagnosis 

Nott_8 MNG from 5 minutes onwards Meningioma Concordant with final 
diagnosis 

Nott_9 MNG from 5 minutes onwards Meningioma Concordant with final 

diagnosis 
Nott_10 MNG from 10 minutes onwards Meningioma Concordant with final 

diagnosis 

Nott_11 CHORDM from 40 minutes albeit 
with low scores 

Chordoma Poor tissue selection 

Nott_12 PXA from 30 minutes with low 

scores 

Pleomorphic 

xanthoastrocytoma, CNS WHO 
3 

Necrosis & microvascular 

proliferation 

Nott_13 Consistently misclassified with 

low scores 

Diffuse Paediatric-type high 

grade glioma, RTK1, subclass 
A 

Novel entity, not 

classifiable 

Overall, intraoperative Rapid-CNS2 provided clinically relevant information on tumour subtype 

and risk profile in 72.2% of cases. The intraoperative protocol yielded results on tumour 

classification and CNVs within 90 minutes of sample receipt, with sequencing and data 

interpretation taking just 30 minutes. I provided a comprehensive report, including SNVs, 

indels, gene fusions, and detailed methylation classification, the following day. 

3.3.15 Routine application 

Once the pipeline was fully implemented at the Department of Neuropathology, UKHD for 

routine prospective use, 51 out of 62 CNS tumour samples (82.3%) received from February 

to May 2024 were processed through the Rapid-CNS2 workflow without tissue quantity or 

quality limitations. I investigated the potential advantages of intraoperative sequencing in 

these samples by simulating real-time analysis and comparing results after 30 minutes of 

sequencing. As is clear from Figure 3-32, most cases could be issued granular molecular 

diagnoses within the intraoperative window concordant to the final integrated diagnoses and 
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a major improvement from the broad histology-based diagnoses usually issued in the same 

timeframe.  

 
Figure 3-32 Improvement over frozen section histology diagnoses after 30 minutes of sequencing (Reprinted 
from Patel et. al 2024117) 

In this dataset, Rapid-CNS2 demonstrated a high level of concordance with conventional 

diagnostic methods, offering results potentially within an intraoperative timeframe compared 
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to the 15-20 days typically required for traditional diagnostics.  As shown in A.1.3, out of the 

51 cases analysed, 15 out of 16 cases were consistently diagnosed as Glioblastoma IDH-

wildtype WHO grade 4 by both Rapid-CNS2 and conventional methods. Methylation 

classification was correct in 14 cases, while one cases with a wrong classification could be 

resolved by histology and a 7/10 signature in the copy number profile. One case (ID 200) was 

issued a reactive tissue diagnosis as per its histology, inconsistent methylation classification 

and a flat CNV profile. One gliosarcoma (ID 184) was diagnosed as a glioblastoma by 7/10 

signature in the CNV profile of Rapid-CNS2, which is a compatible diagnosis. This would have 

been crucial to know since the histology-based frozen section diagnosis of this sample was 

that of a spindle cell tumour without indication for higher malignancy. This reliable early 

confirmation of these aggressive tumours could allow for prompt surgical decisions aimed at 

maximising resection margins. 9 meningioma cases were identified as WHO grade 1 tumours 

with no high-risk CNVs through nanopore sequencing. The methylation class was concordant 

in 8/9 with the conventional diagnosis, with one discrepant tumour being identified by histology 

and 22q deletion. Early identification of low-risk meningiomas would enable surgeons to take 

a more conservative approach by avoiding overly aggressive procedures for these slow-

growing tumours. Three astrocytomas were correctly identified of which two were also 

accurately classified as high grade. For ID 219, methylation classification indicated suspected 

diffuse midline glioma (DMG_K27) with low score, but histology and CDKN2A/B homozygous 

deletion were suggestive of a high-grade astrocytoma with piloid features (HGAP), compatible 

with the final diagnosis. 4 oligodendroglioma cases were also accurately diagnosed 

intraoperatively, identified by either methylation class and/or the 1p/19q codeletion. One case 

(ID 209) could not be classified and was predicted as a malignant glioma which was finally 

described as a NEC glial/glioneuronal tumour with VHL mutation by conventional analysis. 

Additionally, 1 case of desmoid-type fibromatosis (ID 175) was could also not be classified by 

methylation and was diagnosed as a spindle cell tumour with a chromosome 6 deletion, which 

was later confirmed by conventional diagnostics. This tumour was classified as desmoid-type 

fibromatosis by the sarcoma classifier in conventional analysis, a tool not available for 

nanopore methylation data. Though benign, this tumour is locally aggressive, and early 

identification via nanopore sequencing could have enabled accurate classification of this rare 

tumour type. This calls for more classifiers to be trained for nanopore data. Two 

medulloblastomas (IDs 185, 203) were diagnosed as WHO grade 4 tumours, with one being 

SHH-activated (ID 185) and the other from group 4 (ID 203). Given the rapid progression and 

poor prognosis of medulloblastomas in paediatric cases, intraoperative molecular diagnosis 
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offers substantial advantages for resection strategy as well as initiating timely treatment plans, 

including postoperative radiation and chemotherapy. Another complex case was ID 173, 

where frozen section analysis initially suggested a glioma. Nanopore sequencing, however, 

classified it as a CIC-rearranged sarcoma ('EFT_CIC'), a rare but aggressive tumour. 

Conventional methods later confirmed this diagnosis, although RNA sequencing failed to 

detect a CIC-fusion. This case emphasises the potential of the workflow to reveal molecular 

signatures even when traditional techniques are inconclusive. 

3.3.16 Improvements over conventional methods 

While intraoperative sequencing can influence the extent of resection for CNS tumours, Rapid-

CNS2 run postoperatively also majorly improves over conventional methods. The turnaround 

time is reduced to 2 days compared to over 20 days for conventional molecular analysis. In 

addition, long reads enable detection of single nucleotide and structural variants in addition to 

methylation. This could potentially replace methylation array, NGS DNA panel sequencing and 

NGS RNA sequencing, not to mention whole genome sequencing that might be needed if no 

relevant variants are detected by any of the previous methods. For example, sample 173 was 

issued a frozen section diagnosis of ‘glioma’ based on the smear and frozen section (Figure 
3-33).  

This sample was sent for Rapid-CNS2 analysis with results available within 5 days without any 

prioritisation. The sample had a methylation classification of Ewing-family tumour, CIC altered 

(EFT_CIC) with a high confidence score. As discussed in the previous section, this diagnosis 

was already available within 30 minutes of sequencing. The copy number profile indicated a 

chr6 gain. As suggested by the name, this diagnosis warrants identification of CIC 

rearrangement in the sample. Rapid-CNS2 detected a CIC:DUX4L5 fusion which was not 

detected by NGS DNA or RNA sequencing which were eventually available over 25 days later 

(Figure 3-22).  

This case demonstrates the multifaceted advantages of Rapid-CNS2- it accurately reported 

the methylation class, chr6 deletion and the CIC gene fusion which was missed by NGS DNA 

and RNA sequencing within 5 days of tissue receipt. It should be noted that RNA sequencing 

is usually ordered after EPIC array and NGS DNA sequencing results are received. 
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Figure 3-33 Accurate diagnosis of a CIC altered Ewing sarcoma by Rapid-CNS2, which was described as a 

glioma by histology 

Considering the aggressive nature of these tumours and considerably different treatment 

course as compared to the initial histology diagnosis of glioma, a swiftly established integrated 

diagnosis was essential. 

3.3.17 Cost effectiveness 

The cost of molecular analysis is a major barrier in its adoption across centres. I analysed the 

costs incurred for running Rapid-CNS2 in different conditions. Flowcell costs vary depending 

on the pack purchased. Recommended shelf life of flowcells is 3 months. All prices are as per 

the ONT website store on 22nd September 2024. A comparison of Rapid-CNS2 v1 and v2 is 

shown in Figure 3-34. 

Rapid-CNS2 v1: We used MinION flow cells for v1. Estimating two runs with two flow cells per 

week and reloading them twice, we were able to utilise a pack of 24 flow cells within three 

months. Each flow cell cost 475 EUR. The library preparation kit, which included three 
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reactions, was priced at 285 EUR. Flow cell washing incurred a cost of 32 EUR, and the gTube 

was 350 EUR. In total, the costs amounted to approximately 1,150 EUR per sample. 

 
Figure 3-34 Comparison of Rapid-CNS2 v1 and v2. (Costs for v1 and v2 for each sample using a MinION and 
PromethION flowcell respectively) 

Rapid-CNS2 v2: We used either MinION or PromethION flowcells for v2. Since we flush and 

reload the flowcells, we were able to use one flowcell for two samples. MinION flowcells cost 

475 EUR each, approximating 240 EUR per sample. Library preparation with 1 reaction costs 

95 EUR per sample. Flowcell washing costs 16 EUR and gTube costs 350 EUR, bringing the 

per sample cost to 700 EUR per sample. Using a PromethION flowcell that costs 390 EUR 

per sample, the workflow costs 850 EUR per sample. With the combination of the ultra-long 

kit and rapid kit, we could forego the gTube to reduce the cost to 350 EUR per sample with a 

MinION flowcell and 500 EUR per sample with the PromethION flowcell. 

Thus, the improved configuration of v2 reduced costs and turnaround time while improving the 

accuracy and coverage even with the use of the more expensive PromethION device and 

flowcells. 

3.3.18 Turnaround time 

We achieved an average turnaround time of just 2 days from tissue receipt to the final report, 

which includes methylation classification, copy number profile, mutations, and structural 

variants for diagnostic samples. This is a significant improvement compared to the average 
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20 days turnaround time for the conventional workflow. When accounting for avoidable 

logistical and organisational delays, the entire pipeline from tissue to report took only 40 hours. 

For intraoperatively sequenced samples, it required less than 30 hours. 

3.3.19 Code and data availability 

Rapid-CNS2 is available as a Nextflow pipeline that can be easily deployed with a single 

command and only requires a basic knowledge of command-line programming 

(https://github.com/areebapatel/Rapid-CNS2_nf). Code to run Rapid-CNS2 v1 on the DKFZ 

cluster is available at https://github.com/areebapatel/Rapid-CNS2/tree/dkfz and to run Rapid-

CNS2 on the local workstation at Department of Neuropathology is at 

https://github.com/areebapatel/Rapid-CNS2_sh. All raw and processed data from this section 

is stored on the ODCF cluster. 

3.4 Discussion 

This chapter takes a journey through the establishment, validation, routine use and continued 

development of the Rapid-CNS2 pipeline for the molecular characterisation of central nervous 

system (CNS) tumours. The modifications and optimisations introduced have led to notable 

improvements in efficiency, cost-effectiveness, and diagnostic accuracy, presenting promising 

implications for both clinical and research settings. 

Nanopore sequencing has revolutionised molecular research with its portable devices, ease 

of use, native DNA/RNA sequencing, long reads and detection of base modifications, all at a 

relatively low cost. Recent studies have showed the potential of rapid whole-genome nanopore 

sequencing for methylation classification, but Rapid-CNS2 takes this a step further118,161-164,182. 

By incorporating adaptive sampling, it targets clinically and prognostically relevant genomic 

regions while simultaneously covering sufficient CpG sites for methylation classification and 

fine copy number profiling. The demonstrated ability to report both methylation profiles and 

copy number variants (CNVs) within a surgical timeframe offers a significant advantage in 

CNS tumour diagnostics, particularly for intraoperative decision-making. 

A key advantage of Rapid-CNS2 is its ability to provide all molecular results simultaneously, 

which represents an improvement over the conventional diagnostic process, where tests are 
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typically ordered sequentially based on prior results. The immediate availability of 

comprehensive data proved particularly valuable in resolving cases where methylation 

classification was inaccurate. For instance, glioblastoma samples that were classified as 

inflammatory microenvironment could be correctly diagnosed by identifying the hallmark 7/10 

signature in their copy number profiles. Additionally, for samples that did not belong to any 

classes represented in the classifier, the integration of mutational, copy number, and fusion 

data provided critical insights that helped refine the diagnosis. Importantly, in the few cases 

where potentially misleading diagnoses were issued, the results across multiple molecular 

layers did not support a clear or convincing conclusion. This highlights the procedural safety 

of the multi-modal approach, as no single erroneous result could unduly influence the final 

diagnosis. A recent study demonstrated that inaccurate AI model predictions can negatively 

impact the diagnostic accuracy of human clinicians, especially those with less experience183. 

While this study focused on radiology models, it is reasonable to assume that similar risks 

exist in neuropathology. Therefore, the multi-modal nature of Rapid-CNS2 mitigates these 

risks by offering multiple layers of molecular data. Even if one data type is incorrect, the 

presence of other molecular results helps reduce the likelihood of a misdiagnosis by providing 

additional context for the neuropathologist. 

This work demonstrated successful application of real-time methylation and copy number 

analysis for samples in an intraoperative timeframe at two independent centres. Previous 

studies demonstrating successful methylation classification using shallow whole genome 

sequencing were unable to achieve fine resolution for copy number variations in an 

intraoperative time frame163,164,182. Ad-hoc methylation classification performed reliably for all 

classifiable samples and those that could not be classified were explainable by tissue or 

clinical specificities. In cases where classification was not possible, accurate copy number 

profiles were obtained as early as 10 minutes into sequencing, providing crucial diagnostic 

insights. Two samples fell into categories that were not represented in the MNP v11 

classification scheme, and therefore, could not be classified. This highlights the need for the 

development of MNP v12-based classifiers that can work with sparse intraoperative data to 

resolve such cases effectively. Although the approach yielded promising results, the relatively 

small sample size limits the ability to draw concrete conclusions about its broader clinical 

utility. Therefore, validating these findings in a larger cohort is essential to ensure robust and 

reliable application in clinical settings. To further enhance prediction confidence, a potential 

solution would be to use multiple published classifiers simultaneously. This approach has been 



3.4 Discussion 97 

 
successfully tested by our collaborators in Nottingham, thus providing a comprehensive 

framework for classification146. 

The use of adaptive sampling greatly simplifies the targeted sequencing process, as it only 

requires a text file to assign regions of interest. This flexibility eliminates the need for complex 

primer designs and custom consumables, streamlining the workflow. By reducing the length 

of targeted panels, the pipeline can further enhance coverage. Recent developments have 

showcased the ability to barcode samples for multiplexing to make the process even more 

efficient123. A new framework BOSS-RUNS, allows for dynamic stopping of region targeting 

once sufficient coverage is achieved, further ensuring uniform coverage across regions of 

interest. These advancements can be incorporated into future iterations of Rapid-CNS2, 

improving data quality while simultaneously reducing costs. 

The ease of modifying targeted regions by simply editing a text file allows us to quickly adapt 

and customise the focus without re-designing and ordering custom panels as is required for 

NGS panel sequencing. One particularly valuable aspect is the flexibility to make these 

changes in real-time, even during the sequencing run. As initial evidence accumulates, the 

pipeline can be re-directed towards genomic loci that are of greater diagnostic and clinical 

relevance. In the pre-print by Deacon et. al 2024, this was shown for an intracranial 

schwannoma, where the schwannoma was detected within minutes146. The pathologist 

suspected a rare type of CNS schwannoma with a VGLL fusion as described before184. VGLL1 

and VGLL3 were not a part of the gene panel that was being targeted initially, so the run was 

paused to add the coordinates of the gene to the bed file. Within an hour of targeting, the 

authors reported detection of split reads aligning to VGLL3 and CHD7 indicating a fusion. This 

shows the dynamic adaptability of the workflow. Methylation classification can considerably 

narrow down the variants relevant to a particular diagnosis. A useful feature for future work 

would be the ability to dynamically switch panels as soon as a confident methylation class is 

predicted. The workflow could begin with a broad CNS tumour panel with real-time methylation 

classification to generate a preliminary classification. Once a reliable classification is 

established, the panel could be refined to focus on regions of interest specific to the tumour 

type. For example, if the tumour is classified as CNS lymphoma, it warrants identification of 

variants in genes like MYD88, CD79, PIM1, BTG2, PRDM1, BCL2/6, CARD11 etc.- genes not 

commonly associated with other CNS tumours185. Switching to a lymphoma specific panel 

would additionally enable detection of structural variants, such as translocations in BCL2/6 

that are not presently covered in the CNS tumour panel186,187. Detecting these structural 
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variants is crucial for accurate diagnosis and therapeutic decision-making, as they play a 

significant role in the pathogenesis and prognosis of CNS lymphomas. Additionally, long reads 

are capable of comprehensively profiling short tandem repeat (STR) regions relevant in 

neurological conditions like repeat expansion disorders188-191. A recent study targeted STRs 

with adaptive sampling and performed haplotype resolved assembly and DNA methylation 

profiling of their sites190. This could be incorporated as an additional feature in the Rapid-CNS2 

panels. Telomere length is known to play a significant role in CNS tumours particularly in 

glioblastomas192-194. Recent studies have showed that long-read sequencing is able to resolve 

allele-specific chromosomal telomere length195,196. This has the potential to observe an 

unprecedented detail in telomere biology and its effect on tumourigenesis and progression. 

Adding telomere regions to the panel could not only inform diagnoses but also add to our 

understanding of the disease biology.  

One of the key results of this work was enabling use of small biopsy samples and the reduction 

of the minimum DNA input requirement to 500 ng, making the pipeline more accessible for 

cases with limited tissue samples. This is particularly beneficial in clinical settings where 

tumour samples may be scarce, such as in stereotactic biopsies or delicate surgical 

procedures. Additionally, the reduction in sequencing time to 24 hours not only expedites the 

diagnostic process but also allows for the reuse of flowcells, contributing to significant cost 

reductions. This makes Rapid-CNS2 an affordable option for cases with limited tissue that is 

not sufficient for other molecular assays even in settings with limited resources, aligning with 

the broader objective of expanding access to advanced molecular diagnostics.  

The detection of pathogenic single nucleotide variants (SNVs) and structural variants (SVs) 

remains crucial for comprehensive molecular diagnosis. While the findings in this work show 

that next-day pathognomonic SNV and SV detection is possible, I did not perform a systematic 

analysis of the types of errors incurred. A comprehensive analysis of the false positives and 

negatives would better inform if types of variants are better detected using Nanopore and 

which are more likely to be missed. Importantly, it should be recognised that NGS panel 

sequencing provides much higher coverage of target regions even to the order of 1000X. 

Using a single PromethION flowcell, the maximum on-target coverage we could achieve was 

around 60X. However, for somatic variant detection, a minimum coverage of 250X or more is 

typically recommended, and even higher coverage is suggested for detecting low-frequency 

variants197. I suggest that while nanopore-based SNV and SV detection can be a valuable 

additional tool in providing an integrated diagnosis, it should currently be viewed as a 



3.4 Discussion 99 

 
complement to, and a reason for, confirmatory panel-based sequencing. At this stage, it is not 

yet suitable for novel variant discovery, particularly given the high false positive rate. However, 

with anticipated advancements in library preparation protocols, adaptive sampling methods, 

and flow cell architecture, further improvements in targeting may make this method more 

viable in the future. 

A key limitation in this work was the inability to re-basecall and re-analyse all samples using 

the latest tools currently available. The samples processed with R9 flow cells could not be re-

basecalled using newer models and tools developed for R10 chemistry. These newer tools 

are tailored specifically to the characteristics of the R10 chemistry and the newly introduced 

file types and formats, making them incompatible with data generated by R9 flow cells. 

Additionally, each library sequenced on a MinION flow cell demands a substantial amount of 

storage—between 200 and 500 GB per run—for basecalling and analysis and even more for 

PromethION flowcells. Beyond the significant storage requirements, each run also requires at 

least 3 hours of GPU time, coupled with CPU processing, to complete the analysis. Given 

these constraints on storage, compute resources, and no backward compatibility, I chose to 

use the data as it was originally reported during the sequencing and initial processing stages. 

The results presented in this work therefore reflect the pipeline configurations that were in 

place at the time of sequencing. 

To address these limitations and provide comprehensive insights into the real-world accuracy 

of nanopore sequencing in clinical settings, a systematic study could be undertaken to 

evaluate the performance of updated basecalling and downstream analysis tools, specifically 

using clinical samples with varying tumour purities. While cell lines and well-characterised 

samples are typically used in benchmarking studies, they may not fully represent the 

complexity of clinical samples, particularly in terms of tumour heterogeneity, sample quality, 

and purity198,199. Therefore, using clinical samples with different known tumour purities would 

provide a more clinically relevant assessment of the performance of the platform. Additionally, 

a side-by-side comparison of the performance of older versus newer basecalling algorithms 

across the same dataset would help quantify any biases introduced by legacy tools. 

I recognise that while nanopore sequencing offers significant benefits, including lower startup 

costs and a compact laboratory footprint, its accessibility to neurosurgery departments 

worldwide is still hindered by various financial and non-financial constraints. The non-financial 

barriers often include regulatory red tape, legal challenges related to the procurement and 
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supply of nanopore devices in certain countries, and an underdeveloped supply chain network, 

given that the company behind this technology is still in its growth phase. Despite these 

hurdles, the relatively low initial investment of around €50,000—compared to the 

approximately €500,000 required for Illumina-based sequencing—makes it reasonable to 

expect that nanopore technology could be adopted more widely as these logistical issues are 

addressed and the market matures. As described in the review by MacKenzie et. al 2023, 

PacBio- the other large company for long-read sequencing, has the Sequel II platform which 

achieves maximum read lengths exceeding 200 kb with accuracy of 87–92% and has an 

estimated cost per Gb ranging from USD 43 to 86 per Gb200. In comparison, Oxford Nanopore 

Technologies' PromethION platform, capable of generating reads over 1000 kb with a read 

accuracy of 87–98%, has a much lower estimated cost of USD 21 to 42 per Gb which is 

constantly decreasing. Additionally, its smaller space requirements make nanopore 

sequencing more feasible for institutions that might lack the infrastructure needed for more 

traditional sequencing platforms. 

One of the significant challenges posed by nanopore sequencing, however, is the sheer 

volume of raw data generated. A single MinION flow cell can produce around 200 GB of raw 

FAST5 files, while a PromethION flow cell can yield over 500 GB per sample. Storing such 

vast amounts of data for extended periods is not only costly but also logistically prohibitive for 

many institutions. Furthermore, it is essential to preserve this raw data because basecalling 

technology is constantly evolving. As basecalling algorithms improve, reanalysis of raw data 

can yield more accurate results, making long-term data retention critical for both clinical and 

research purposes. 

Another challenge is the computational expense associated with basecalling. Nanopore 

basecalling employs neural networks, and the most recent developments utilise transformers, 

which demand high-performance GPUs to operate efficiently. This computational requirement 

adds another layer of cost and complexity, as institutions must invest in advanced hardware 

to ensure rapid and accurate processing of sequencing data. These challenges need to be 

addressed to truly realise the benefits of nanopore sequencing—its portability, scalability, and 

lower initial costs making it a promising technology for broader adoption in the future, 

particularly as computational and data storage solutions continue to advance. This adds 

complexity and cost, but also presents a key opportunity for genomics facilities to modernise 

their infrastructure. Traditionally, genomics workflows have relied on multi-threaded CPUs in 

large high-performance computing environments, but platforms like NVIDIA Parabricks have 
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shown that incorporating multi-GPU systems can reduce processing times to under an 

hour201,202. Cancer Research UK’s TRACERx EVO project, the latest expansion of the world’s 

largest long-term lung cancer research program, exemplifies the potential of GPUs203. Early 

results from the Francis Crick Institute indicate that end-to-end analysis of whole human 

genomes can now be completed in just over two hours using NVIDIA Parabricks on GPUs, 

compared to the 13 hours previously required. This advancement, when extended across the 

workload of TRACERx EVO, is expected to save nearly nine years of bioinformatics 

processing time204. In this work, I used Parabricks to run DeepVariant, which significantly 

accelerated the variant calling process. With improved targeting and accumulation of more 

sequencing data, the computational demand will only increase, making it imperative to use 

GPU-accelerated platforms. Furthermore, Parabricks offers the ability to perform structural 

variant calling through de novo assembly, another computationally intensive task that benefits 

greatly from GPU acceleration205. This would allow more efficient detection of long and 

complex genomic aberrations in a reference-independent manner.  

I developed a Nextflow pipeline for Rapid-CNS2 to maximise its applicability across a wide 

range of environments206. Nextflow offers flexibility enabling the pipeline to be easily 

implemented on different systems, whether in local setups, high-performance computing 

clusters, or cloud platforms. This adaptability allows for broader deployment in both research 

and clinical settings, regardless of available infrastructure. Additionally, the use of 

containerisation, via Docker or Singularity, ensures that the pipeline remains reproducible and 

consistent, a key factor when working across different labs or institutions. Of note is that ONT’s 

EPI2ME platform supports execution of Nextflow workflows through the MinKNOW UI. This 

means that Rapid-CNS2 can be seamlessly imported and run directly through MinKNOW as a 

user-friendly workflow without the need for bioinformatics expertise. 

Newer editions of the MinION are with integrated compute called MinION Compute or the 

latest announced edition MinION Mk1D that can be connected to modern laptops as well as 

the new iPad Pro with USB-C connectivity. In early 2024, ONT announced a new smaller 

device called the SmidgION with a new flow cell and sequencing device configuration. On the 

other hand, at London Calling 2024 they also introduced the large integrated sample to answer 

sequencing device called the ElysION- a standalone device with integrated MinION Mk1D or 

P2 Solo sequencer and onboard compute. Moreover, they also announced the TraxION, an 

all-in-one compact device that has a pipette-free approach and only requires an unprocessed 

sample to be loaded. Approximately the size of a MinION, it is claimed to have built-in nucleic 
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acid extraction, library preparation and integrated flowcell. This innovation has the potential to 

significantly reduce the need for dedicated wet-lab personnel and could be particularly 

advantageous for intraoperative sequencing, where homogenised tissue samples could be 

directly loaded into the system. Such advancements may facilitate the broader adoption of 

nanopore sequencing technology in smaller medical centres and clinics, particularly in point-

of-care settings. Beyond hardware developments, ONT is actively pursuing enhancements to 

sequencing accuracy. One promising advancement is duplex sequencing, where one strand 

of DNA helps to correct errors in the complementary strand. Basecalling is also constantly 

improving with new transformer-based models combined with error correction approaches like 

HERRO207. ONT’s base modification models now detect six different types of DNA and RNA 

modifications, with further developments in the pipeline. In light of these dynamic 

enhancements, it is reasonable to expect that nanopore sequencing will become even more 

accurate, user-friendly, and accessible in the coming years. Within the next 5-10 years, we 

may see this technology not only dominate fields like cancer diagnostics but also expand into 

a wide array of applications, from infectious disease monitoring and antimicrobial resistance 

detection to personalised medicine and environmental genomics. The portability, real-time 

capabilities, and continued reduction in cost are likely to drive wider adoption across both 

research and clinical settings globally. Furthermore, with the commitment of the long read 

sequencing to continuous improvement, the barriers for entry will likely lower, enabling smaller 

labs, field-based researchers, and even remote clinics to harness the power of real-time, high-

throughput sequencing. 

Nanopore sequencing holds transformative potential far beyond traditional diagnostics. The 

ability to generate long reads provides the unique advantage of resolving complex structural 

variants—such as large insertions, deletions, and rearrangements—that short-read 

sequencing technologies often miss. This capacity to uncover the full spectrum of genetic 

variation offers a more complete view of the genome, particularly in regions that are difficult to 

sequence, such as repetitive elements and highly homologous regions particularly telomeric 

regions. Moreover, long-read sequencing enables simultaneous detection of DNA methylation 

and other modifications on the same read as the genetic variations. This capability allows us 

to interrogate both genetic and epigenetic alterations within the same molecule, revealing 

insights into how these two layers of molecular information may interact. For instance, it could 

shed light on how epigenetic changes, such as methylation patterns, influence gene 

expression in the context of structural variants or mutations. This comprehensive view is 
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invaluable to understand CNS tumours where both genomic and epigenomic changes have 

been known to play critical roles. 

In this context, Rapid-CNS2 is not only pivotal for CNS tumour diagnostics but also offers a 

powerful resource for multi-omics research. By facilitating the simultaneous study of genome 

and epigenome alterations in routine clinical samples, data generated by Rapid-CNS2 can 

help to unravel the interplay between different molecular processes, providing deeper insights 

into disease mechanisms, progression, and treatment responses. As the field of multi-omics 

expands, the integration of long-read sequencing technologies into research workflows will be 

key to advancing personalised medicine, identifying novel biomarkers, and unlocking new 

therapeutic targets. 

In conclusion, I have developed a novel diagnostic workflow capable of providing reliable 

methylation-based tumour classification and copy number profiles within a 2-hour 

intraoperative timeframe, and delivering a comprehensive molecular profile, including the 

identification of MGMT promoter status, structural variants (SVs) and single nucleotide 

variants (SNVs), within 24 hours. This workflow could significantly transform the current 

standard of care for brain tumour diagnosis, streamlining the process and enhancing the depth 

of molecular insights available within a clinically relevant timeframe. Additionally, the dual 

genomic and epigenomic data generated by the workflow would serve as a robust resource to 

investigate the nuances of CNS tumour subtypes. However, for this advancement to be fully 

realised in practice, it is essential that healthcare professionals receive proper training to 

interpret and analyse the complex data produced by these assays. The role of the 

neuropathologist is changing, with increasing responsibilities to interpret complex molecular 

data in real-time. They will be expected to integrate these new molecular findings with 

traditional diagnostic tools, such as histopathology, clinical and radiological data, to provide 

comprehensive diagnoses. It is only through synthesizing these various sources of information 

that we can achieve better patient outcomes and enable the delivery of truly personalised 

therapies. I hope that this diagnostic tool represents a pivotal step forward in the treatment of 

brain tumours. As we continue to refine this technology and expand its adoption, it holds great 

promise for improving both the accuracy and speed of diagnosis, thereby facilitating more 

tailored and effective treatment strategies for patients. 





 

Chapter 4 MNP-Flex 

4.1 Introduction 

Traditional methods for DNA methylation profiling typically rely on generating methylation 

profiles through methylation arrays, followed by supervised classification trained on a 

comprehensively annotated reference dataset. This has now become a standard diagnostic 

approach in adult and paediatric neuro-oncology, with methylation profiling being 

recommended by the WHO guidelines72,73,208. However, as technology evolves, a range of 

methods for interrogating the methylome at different resolutions and target regions has 

emerged. Whole-genome bisulphite sequencing (WGBS) is considered the gold standard, 

offering the most comprehensive and high-resolution methylation maps at the single-base 

level. Despite its accuracy and comprehensiveness, WGBS is expensive, requires significant 

quantities of input DNA, and often results in reads that lack usable methylation information. 

Alternative methods, such as methylation panel sequencing employ restriction enzymes or 

hybridisation capture to reduce costs by focusing on specific genomic regions. Microarray-

based technologies like the Infinium HumanMethylation450 (450K) and MethylationEPIC 

(850K) arrays are extensively used to report specific CpG sites across the genome209,210. More 

recently, third-generation sequencing techniques, such as nanopore sequencing, have 

allowed methylation data to be obtained directly from native DNA, without the need for 

chemical conversion. The previous section of this work, along with other studies, has 

demonstrated the utility of low-coverage stochastic nanopore sequencing for rapid, affordable 

DNA methylation-based classification of CNS tumours112-114,148,211-213. However, this approach 

typically provides binary methylation information from a random subset of CpG sites, rather 

than the more detailed beta values common in array data.  

These diverse technologies have each demonstrated high concordance in results, but their 

different coverage depths, errors owing to sequencing and specific genomic target regions 

have necessitated platform-specific classification approaches. Machine learning has been 

extensively applied in this space, with random forest (RF) models being a popular choice for 
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array-based methylation classification. However, RF models are limited by fixed feature sets 

and are often platform-specific, reducing their applicability across different methylation 

profiling techniques. In the previous section, I proposed an ad-hoc RF approach to apply the 

classification scheme to low-coverage nanopore sequencing, but this required training a new 

model for each sample. This endeavour was computationally expensive, time-intensive, and 

made cross-sample comparison difficult114,148,211-213. More recently, neural network-based 

models were proposed to handle sparse methylation data, providing more robust predictions 

for brain tumour classification112,113. However, a precise and flexible model that can handle 

data from multiple platforms while maintaining high prediction accuracy is still urgently needed.  

The application of machine learning to tabular data has gained significant traction in recent 

years, with several popular approaches emerging as go-to solutions. Among these, random 

forests, gradient boosting, and neural networks are widely recognised for their effectiveness 

in a variety of tasks. Each model has its unique strengths and weaknesses, and the choice of 

which to use often depends on the nature of the data and the specific problem being 

addressed. In this section, I will explore how these models perform in the context of tabular 

data, drawing on both theoretical insights and practical evidence. 

4.1.1 Random Forests 

First introduced by Breiman et. al 2001, random forests have become a staple in the machine 

learning toolkit214. At its core, the random forest algorithm builds multiple decision trees 

through bagging—short for Bootstrap Aggregating. Essentially, the model creates several 

different trees, each trained on a random subset of the data, and makes predictions by 

averaging the outputs of these trees. This approach is particularly effective at reducing 

overfitting, as it ensures that no single tree dominates the decisions made by the model. One 

of the major advantages of random forests is their robustness. They can handle noisy data 

well and often perform reliably even in situations where the data contains irrelevant or 

redundant features215. However, while random forest tend to perform well in many tasks, they 

require fixed data points and cannot deal with missingness in data. Additionally, although they 

provide some level of interpretability through feature importance scores, the sheer number of 

trees can make it challenging to fully understand the model decisions216. Random forests have 

been used to classify CNS tumours in all available versions of the MNP classifier62,63. When 
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Illumina changed their EPIC array to v2, this necessitated training a new classifier with sites 

overlapping the v2 array since some sites from v1 had been made redundant210.  

4.1.2 XGBoost 

XGBoost, which stands for Extreme Gradient Boosting, takes a different approach by using 

boosting rather than bagging. Boosting is a sequential process; each new tree is built to rectify 

the mistakes in the previous one. This strategy allows XGBoost to refine its predictions 

iteratively, leading to high accuracy, particularly in tasks involving tabular data217. XGBoost 

also incorporates advanced techniques like L1 and L2 regularisation, helping to prevent 

overfitting, a common problem in machine learning. One of the reasons XGBoost has become 

so popular is its ability to handle a variety of data challenges, such as missing values and 

categorical variables, with minimal preprocessing218. It is also highly efficient, thanks to its 

optimisation strategies, making it a preferred choice in competitive machine learning. 

However, the sequential nature of XGBoost also makes it more difficult to interpret compared 

to simpler models like Random Forests. The intricate way it builds and combines trees means 

that understanding exactly how features contribute to the final prediction can be quite 

complex219. Nevertheless, approaches such as Shapley values have been used reliably to add 

layers of explainability to XGBoost predictions.  

4.1.3 Neural Networks 

Neural Networks, particularly deep learning architectures, have garnered significant attention 

in recent years due to their success in fields like image recognition and natural language 

processing220. However, neural networks often struggle to outperform tree-based models like 

Random Forests and XGBoost for tabular data. This is largely because tabular data typically 

consists of fewer features and less complexity compared to unstructured data like images or 

text, where neural networks excel. For smaller datasets, neural networks are often prone to 

overfitting unless measures like dropout or batch normalisation are used221. Additionally, 

neural networks typically require careful feature scaling and preprocessing, whereas tree-

based models like Random Forests and XGBoost handle such tasks natively. The lack of 

interpretability is another significant drawback. While neural networks are excellent at 

capturing non-linear relationships, they are often described as “black-box” models, since it is 

difficult to explain how the model arrived at a particular prediction222. 
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4.1.4 Comparison for Tabular Data 

For most tasks involving tabular data, tree-based models like random forests and XGBoost 

tend to outperform neural networks223,224. This is especially true when the dataset is small or 

the relationships between features are not highly complex. In practical applications, XGBoost 

often leads to higher predictive accuracy than both random forests and neural networks, owing 

to its ability to minimise both bias and variance225. That said, random forests are still an 

excellent choice in many cases, particularly when interpretability and ease of use are important 

considerations. They also tend to train faster and require less fine-tuning compared to 

XGBoost. In contrast, while neural networks shine in tasks involving high-dimensional, 

unstructured data, their performance on tabular datasets tends to lag behind. Neural networks 

typically require larger datasets to train effectively and, even then, often need significant tuning 

to achieve comparable results to tree-based methods223. They also require considerable 

computational resources, which can be a limiting factor, particularly in situations where 

resources are constrained. In view of the nature of sequencing based methylation data, 

XGBoost provided the best balance between error and missing value handling and data as 

well as computational requirements. 

Additionally, the previous approaches have been trained on a 91 class scheme of classification 

based on the Capper et. al dataset. The current version v12.8 (as of October 2024) 

encompasses 184 methylation subclasses, thus doubling the number of identifiable classes. 

The newly identified classes often constitute rare subtypes that could be differentiated owing 

to the unsupervised clustering of the data followed by thorough investigation of additional 

molecular layers. These classes are now recommended to be identified by methylation 

profiling in the WHO classification of CNS tumours 202173.  

In this work, I propose MNP-Flex - a v12 compatible XGBoost-based model as a robust, 

scalable alternative to neural networks for DNA methylation classification. XGBoost, a 

powerful gradient-boosting algorithm is able to handle sparse data, feature variability, and 

large datasets efficiently. The XGBoost-based framework in this work is trained on a fixed 

reference dataset and designed to classify methylation data generated by diverse platforms, 

including WGBS, targeted methyl-seq, nanopore whole-genome as well as adaptive sampling-

based sequencing, and microarray platforms (e.g., Illumina 450K, EPIC, EPICv2). This 

approach offers several key advantages over previous models, such as faster training times, 

reduced computational costs, and improved generalisation across different methylation 
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platforms. Additionally, the inherent scalability of the model allows for rapid updates and re-

training as new reference datasets become available, ensuring that it remains compatible with 

emerging CNS tumour methylation atlases. 

By employing XGBoost, I aim to create a unified framework that can accommodate the 

growing diversity of DNA methylation data while delivering precise, platform-agnostic tumour 

classification. 

4.2 Methods 

4.2.1 Model training 

Martin Sill and I trained and evaluated the MNP-Flex model respectively. The classification 

model was constructed using gradient-boosted decision trees, specifically utilising the 

XGBoost algorithm (R package xgboost v2.01)226, which is well-regarded for its efficiency and 

performance in handling large datasets and complex classification tasks. The training dataset, 

was the same as that used for the MNP classifier v12. The dataset comprised 7,495 biological 

samples distributed across 184 distinct methylation classes. These methylation classes are 

comprehensively described on the classifier website 

(https://www.molecularneuropathology.org) and in A.2.1. For model training and evaluation, 

the dataset was partitioned into two subsets: a training set consisting of 70% of the samples 

and a validation set comprising the remaining 30%. This split was carried out using the 

createDataPartition function in the caret package (R package caret v6.0-94)227, ensuring that 

the distribution of methylation classes was preserved across both sets. 

The following extract is adapted from Patel et. al 2024117: 

“Preprocessing of the raw signal intensities was performed using the minfi Bioconductor 

package (version 1.21.459)228. Raw intensities were extracted from IDAT files generated from 

Illumina EPIC or 450k arrays as applicable. To merge the data from these two array platforms, 

the intersection of the CpG probes common to both platforms was selected, using the 

combineArrays function from the minfi package228. This step was crucial to ensure 

comparability and consistency across the different datasets. Background correction was 

applied to adjust the signal intensities, where the 5th percentile of negative control probe 

intensities was shifted to 0, reducing any non-biological noise in the data. Additionally, dye-
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bias correction was performed by scaling the mean intensities of normalisation control probes 

to 10,000 for both color channels (red and green), ensuring that technical artifacts introduced 

during the scanning process were mitigated. 

To further account for batch effects arising from the different types of sample material (FFPE 

vs. frozen tissue) and array platforms (450k vs. EPIC), we employed the removeBatchEffect 

function from the limma package (version 3.30.11). This function fits univariate linear models 

to the log2-transformed intensity values, allowing for the removal of systematic biases 

introduced by differences in tissue processing or platform technology. Importantly, both 

methylated and unmethylated signals were corrected individually, as the processing biases 

might affect each signal type differently. 

Following batch correction, beta-values were computed from the normalised intensities. These 

beta-values represent the proportion of methylation at each CpG site and were calculated 

using an offset of 100, as recommended by Illumina, to prevent division by zero and to stabilise 

variance at low intensities. We then performed a stringent filtering of CpG probes. Probes 

were retained based on the filtering criteria proposed by Zhou et al. (2017)229, which ensures 

that only reliable and biologically relevant probes are included. Specifically, probes located on 

the X and Y chromosomes were excluded to avoid sex-specific methylation bias, resulting in 

a final set of 357,521 probes. To reduce the dimensionality of the dataset and focus on the 

most informative methylation sites, we further filtered the dataset to retain only the 100,000 

CpG probes with the highest standard deviation across all samples. This step ensured that 

the most variable and potentially discriminative probes were prioritised in the model training 

process. 

In preparation for training the classification model, the pre-processed beta-values were 

binarised by applying a threshold of >0.6. This binarisation step was undertaken to facilitate 

the future application of the model to lower-coverage sequencing-based data sources, where 

methylation calls are typically dichotomised. By setting a threshold, we transformed the 

continuous beta-values into binary categories, representing methylated and unmethylated 

states. 

The XGBoost model was trained using the using the “multi:softprob”  objective function that 

aims to minimise the multiclass log loss, i.e. negative log-likelihood of a logistic model which 

is also known as cross-entropy. A loss function typically used in probabilistic forecasting 

models, i.e. same is used in the v12.8 MNP-RF glmnet calibration model. The training process 
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was conducted for 2,306 iterations, with a learning rate (eta) set at 0.01 to control the step 

size in the optimisation process. The training was monitored using early stopping, which halted 

the training process when no improvement in the multiclass log loss was observed for a pre-

defined number of rounds. This strategy helps prevent overfitting and ensures that the model 

generalises well to unseen data.” 

4.2.2 Data collection 

I collected samples from diverse sources as shown in Table 4-1. The data encompassed 

methylation profiles obtained from four different technologies – whole genome bisulphite 

sequencing (WGBS), methylation panels, Nanopore whole genome sequencing, and Rapid-

CNS2. 

Table 4-1 Details of non-array samples used for validating MNP-Flex 

Sequencing type No. of samples Site / Project With matched 
array 

WGBS 25 KiTZ / KickCan 25 

34 KiTZ / ICGC PBCA-DE 34 

21 KiTZ / internal 21 

Methylation panels 11 University Hospital Basel 11 

15 Ghent University 12 

1 University of Cincinnati 1 

Nanopore WGS 40 University Hospital Oslo None 

Rapid-CNS2 

 

252 University Hospital Heidelberg 210 

49 University of Nottingham 44 

4.2.3 Whole genome bisulphite sequencing 

The following extract is adapted from Patel et. al 2024117: 

“Whole genome bisulphite sequencing libraries were sequenced at the Hopp Children’s 

Cancer Center (KiTZ), Heidelberg. Samples were prepared for the WGBS library using the 

“Swift Accel-NGS Methyl-Seq DNA” kit and sequenced on the Illumina HiSeq X Ten V2.5 in 

paired-end mode, with one lane per tumour sample, resulting in an average genome coverage 
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of ~30x per sample. WGBS sequencing data were analysed using methylCtools 

(https://github.com/hovestadt/methylCtools) as part of the ODCF Bisulfite core workflow 

(https://github.com/DKFZ-ODCF/AlignmentAndQCWorkflows; 

AlignmentAndQCWorkflows:1.2.73-2)230,231. In brief, methylCtools builds upon BWA and adds 

functionality for aligning bisulphite-treated DNA to a reference genome in a similar manner 

described previously33.Sequencing reads were adaptor-trimmed and translated to a fully C-

to-T converted state. Alignments were performed against a single index of both in silico 

bisulphite-converted strands of the human reference genome (hs37d5 including PhiX) using 

BWA121. Previously translated bases were translated back to their original state, and reads 

mapping antisense to the respective reference strand were removed. Single-base-pair 

methylation ratios (β-values) were determined by quantifying evidence for methylated 

(unconverted) and unmethylated (converted) cytosines at all CpG positions. Only properly 

paired or singleton reads with mapping quality of ≥1 and bases with a Phred-scaled quality 

score of ≥20 were considered.  I used processed WGBS data from the publicly available 

PBCA-DE cohort on the ICGC portal230.” 

4.2.4 Methylation panels 

The following extract is adapted from Patel et. al 2024117: 

“Twist targeted methylation sequencing was performed at Ghent University, University 

Hospital Basel and University of Cincinnati respectively. DNA was extracted from FFPE tissue. 

200 ng DNA was used as input for the Twist Human Methylome Panel232. The protocol 

provided by the Twist Targeted Methylation Sequencing Protocol was followed. The libraries 

were sequenced on a Novaseq (2x150 cycles). Methylation values were extracted using a 

Nextflow pipeline (https://nf-co.re/methylseq/1.6.1).” 

4.2.5 Nanopore whole genome sequencing 

The following extract is adapted from Patel et. al 2024117: 

“Nanopore whole genome sequencing was performed at the University Hospital Oslo using 

the following protocol: gDNA was extracted from fresh or fresh-frozen tumour biopsies with 

the Qiagen Blood & Tissue mini kit. Briefly, 10-30 mg of tissue were homogenised in ATL 

buffer in a Tissuelyzer bead mill at 30 Hz for 30 seconds, followed by digestion with proteinase 
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K for 3-16 hours. Buffer AL and RNAse were added to the sample and incubated at RT for 5 

minutes, followed by incubation at 70 degrees C for 10 minutes. 100% EtOH was added to 

the sample prior to washing and elution on spin columns. DNA purity was evaluated with 

Nanodrop (260/230 > 1.8 and 260/280 > 1.9 was deemed sufficient) and concentration 

measured with Qbit DNA Broad-range kit.1-3 µg of gDNA were used as input for sequencing 

library preparation with Ligation Sequencing kit V14 (SQK-LSK114) according to 

manufacturer's protocol (Ligation sequencing DNA V14). 300 ng of DNA library were loaded 

onto PromethION flow-cells (FLO-PRO114M) on a P24 sequencing device, one library per 

flow-cell and sequenced for 80 hours. Flow-cells were washed and reloaded if necessary after 

24 or 48 hours of sequencing (Flow-cell wash kit, EXP-WSH004). Live basecalling, 

methylation calling and mapping (hg38) was performed via the MinKNOW software (version 

23.07) with Dorado (version 7.1.14). Basecalling was performed with the super-high accuracy 

model (dna_r10.4.1_e8.2_400bps_sup@v4.1.0), sequences below the quality threshold of 10 

were excluded from further analysis. Per-site methylation extraction and across-strand 

aggregation from modified .bam files was performed in the epi2me-labs suite through the wf-

human-variation (version 1.8.1) workflow with modkit (v0.2.0) or modbam2bed (v0.10.0). 

Whole-genome methylation .bed files were cross-referenced with EPIC probe genomic 

locations with the bedtools intersect function.” 

4.2.6 Data pre-processing 

I formulated a BED file constituting all sites from the Illumina Infinium MethylationEPIC array 

and the MGMT promoter region (chr10:129466536-129467536, hg38 genome233). The file 

constituted columns called chr (chromosome), start (start position), end (end position), IlmnID 

(Illumina CpG ID). This will be called MNP-Flex_sites.bed for the rest of this work. In order to 

maintain uniformity, I lifted over data bedmethyl files to hg38127.  I ran bedtools intersect with 

-wa and -wb options on all hg38 compliant bedmethyl files to obtain the sites that were 

represented in the MNP-Flex_sites.bed file. I converted them to files with columns called- chr, 

start, end, coverage, methylation_percentage and IlmnID. I required all input files to MNP-Flex 

have at minimum columns called- coverage, methylation_percentage and IlmnID. 
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4.2.7 Model execution 

To execute the model, I developed an R script, which was run through a bash script for 

streamlined automation. Additionally, I formulated a Docker container to facilitate the end-to-

end execution of the model in a consistent and reproducible environment. The container was 

also employed to build the backend of a publicly available website, mnp-flex.org, developed 

by Daniel Schrimpf. This website enables users to run the model interactively. Users can 

upload input files in the specified format and subsequently download a comprehensive report. 

The report includes the coverage distribution, methylation value distribution, predictions, and 

scores across all four levels of methylation classification (subclass, class, family, and 

superfamily), as well as the prediction of MGMT promoter status, if applicable. 

4.2.8 Ground truth data 

Methylation array data analysed using the MNP v12.8 model (hereafter referred to as MNP-

RF) was considered as ground truth for samples with matched array data available. Array data 

was generated using either frozen or FFPE tissue as previously described19,144. For nanopore 

WGS and methylation panel samples without matched array data, I inferred ground truth 

based on recorded histopathological evaluation and/or pathognomonic molecular alterations 

as described in the sections below.  

4.2.9 Concordance analysis 

The following extract is adapted from Patel et. al 2024117: 

“I subset data from all validation samples to sites present in the Illumina InfiniumEPIC 

Methylation array and the MGMT promoter region. For methylation array data, I compared 

subclass and family level predictions to the corresponding MNP-RF predictions. For non-

methylation array samples, I calculated concordance for MNP-flex samples based on 

predictions made for corresponding EPIC array profiles by MNP-RF or available 

neuropathology data assessment. I calculated confidence intervals using the binom R-

package. I generated plots using ggplot2, ggsankey, ggridges, patchwork, and related R 

packages for visualisation. I obtained MNP-flex scores from analysing samples gathered from 

FFPE and frozen sources by testing with non-parametric equivalence test available through 

the R-package TOSTER using an upper and lower equivalence bound of 0.01234” 
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4.3 Results 

4.3.1 Model training 

With the advances in sequencing-based approaches for methylation analysis, including but 

not limited to nanopore sequencing, WGBS, and methylation panels, I sought to extend the 

utility of the latest version of the MNP classifier (v12) to accommodate such data. The MNP 

v12 classifier employs a hierarchical structure comprising 184 subclasses, 143 classes, 75 

families, and 34 superfamilies. Martin Sill and I developed and evaluated MNP-flex, a platform-

agnostic CNS tumour methylation classifier. The model uses binarised values to specifically 

allow for low coverage methylation calls as input data and account for the technical differences 

across sequencing technologies employed for methylation calling. The model was trained on 

a binarised version of the reference dataset used to develop the array-based MNP-RF model. 

Upon completion of training, the model achieved a multiclass log loss of 0.1969 on the 

validation dataset, indicating a strong predictive performance.  

4.3.2 Thresholding 

I investigated the effect of prediction score on accuracy. I observed that accuracy increased 

proportionally with prediction score. On analysing the array and non-array validation datasets, 

I determined that optimal thresholds for MNP-Flex classification are ≥0.7 for array-based 

samples and ≥0.3 for sequencing-based samples (A.2.3). When applying these thresholds, 

the model achieved an overall family-level accuracy of 99.6% and subclass-level accuracy of 

99.2% across all platforms. These thresholds offer a balance between sensitivity and 

specificity, making MNP-Flex a reliable tool for methylation-based CNS tumour classification. 

4.3.3 Validation on methylation array data 

I tested the MNP-Flex model on the entire MNP dataset, consisting of over 90,000 samples 

that were uploaded to the molecularneuropathology.org website. These samples had been 

previously classified using the MNP-RF model. As the MNP-RF model considers scores ≥0.9 

as reliably classified, I imposed a similar threshold to validate MNP-Flex19,144. However, 

literature suggests that the threshold could be lowered to 0.84 or even 0.7 to account for real-
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world variability235. For this reason, I tested both a strict cut-off (≥0.9) and a more lenient one 

(≥0.7) for model validation. Using a threshold of 0.7 for MNP-RF, I compared 78,833 samples 

and achieved a subclass-level accuracy of 92.7% (95% CI: 92.5% to 92.8%) and a family-

level accuracy of 95.7% (95% CI: 95.5% to 95.8%). The subclass predictions displayed an 

AUC = 0.887 (A.2.2). 

 

Figure 4-1 F1-scores for the methylation array dataset comprising 78,833 samples (Reprinted from Patel et. al 
2024117) 

Further filtering samples for which the MNP-Flex subclass score was ≥0.7, the model achieved 

an accuracy of 98.5% (95% CI: 98.4% to 98.6%) for 58,410 samples across 182 subclasses. 

Majority of these subclasses (176 out of 182) had F1 scores greater than 0.5, with 163 

subclasses having F1 scores ≥0.9, demonstrating the robustness of the model for subclass 

prediction (Figure 4-1). 

4.3.4 Validation on non-array data 

I evaluated MNP-Flex on sequencing-based data from 448 samples across four technologies: 

whole-genome bisulphite sequencing (WGBS), nanopore sequencing, methylation panels, 

and Rapid-CNS2. As shown in Figure 4-2, non-array validation data originated from seven 

institutions.  
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Figure 4-2 Sources of validation data for MNP-Flex (Reprinted from Patel et. al 2024117) 

For all non-array samples without thresholding, I observed a subclass accuracy of 65.9% (95% 

CI: 61.0% to 70.5%) and family accuracy of 91.9% (95% CI: 88.9% to 94.1%).  However, 

applying a prediction threshold of 0.3 increased subclass accuracy to 82.8% (95% CI: 77.0% 

to 87.4%) and family accuracy to 99.5% (95% CI: 97.5% to 99.9%). Accuracy over different 

prediction scores for each technology are shown in A.2.3. Sankey plots for both conditions 

(prediction score ³ 0.3 and £ 0.3) are displayed in Figure 4-3 and Figure 4-4 respectively.  As 

indicated by the accuracy metrics, high confidence samples incur errors that tend to occur 

within their respective families. On the other hand, low confidence samples are more prone to 

cross-family predictions. Confusion within the same family would usually not have major 

consequences for patient diagnosis and treatment, while for instance, misprediction of a high 

grade tumour as low grade would be deleterious. This further supports the rationale for 

thresholding prediction scores to improve performance. 
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Figure 4-3 High confidence MNP-Flex predictions for non-array samples (score ³ 0.3) (Reprinted from Patel et. 

al 2024117) 

 

Figure 4-4 Low confidence MNP-Flex predictions for non-array samples (score £ 0.3) (Reprinted from Patel et. al 

2024117) 

Since data was derived from four different non-array technologies, I delved deeper into the 

nuances of each technology. Figure 4-5 presents a comparative analysis of the employed 

DNA methylation profiling methods, evaluating their accuracy, score distributions, and the 

percentage of missing sites. Barplots indicate accuracy with 95% confidence interval for 

samples processed using whole genome bisulphite sequencing (WGBS), Twist methylation 

panels, Rapid-CNS2 in Nottingham and Heidelberg, Nanopore whole genome sequencing and 

the MNP methylation array dataset. The solid coloured bars indicate subclass level accuracy 

and bars with increased alpha indicate family level accuracy. Nanopore whole genome 

sequencing samples did not have matched array predictions, thus, family-level predictions 

were inferred from histological and molecular findings. Density plots indicate scores for 

subclass prediction while boxplots denote percentage of missing CpG sites in each dataset. 
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Figure 4-5 Comparison of MNP-Flex performance over different technologies without threshold (Reprinted from 
Patel et. al 2024117) 

As indicated in A-14, accuracy of subclass and family level predictions increased on 

thresholding all methylation array samples with scores ³ 0.7 and non-array samples ³ 0.3. 

Improved accuracies for each technology are demonstrated in Figure 4-6. Detailed 

description of individual results is given in the sections 0 - 4.3.4.4 below. 

Figure 4-6 MNP-Flex accuracy over 
different technologies MNP-Flex 

accuracy for different technologies for 

array samples with scores ³ 0.7 and 

non-array samples ³ 0.3 (Reprinted 

from Patel et. al 2024117) 

4.3.4.1 Whole 
genome bisulphite 

sequencing  

I accumulated 80 pre-processed WGBS bedmethyl files from publicly available repositories 

and internal projects as shown in Table 4-1. As indicated in Figure 4-5 and Figure 4-6, MNP-

Flex accurately predicted the methylation subclasses for 93.8% of WGBS samples (75 out of 

80). Four misclassified samples were classified within the same methylation family, while one 

sample was predicted as “inflammatory microenvironment” which indicates inflammatory 

components of the true subclass. WGBS data had an average missingness of 0.13 % and 
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mean prediction score of 0.77 (Figure 4-5 and Figure 4-6). While tools for WGBS analysis 

usually set a coverage threshold for methylation calculation, I did not apply a coverage filter 

to the data. Higher coverage data (>10X) like the publicly available ICGC PBCA-DE samples, 

achieved mean prediction scores of 0.92. I speculate that while selecting only high coverage 

sites does improve scores, the reduced number of sites would negatively affect model 

performance. 

4.3.4.2 Nanopore whole genome sequencing 

I received bedmethyl files for 40 brain tumour samples sequenced at University Hospital Oslo. 

The samples had been sequenced to an average depth of 30X over the whole genome. There 

was an average missingness of 0.02 % over all samples while they achieved a mean 

prediction score of 0.63 (Figure 4-5). Since these samples did not have matched methylation 

arrays as ground truth, I adopted a conservative approach and inferred “methylation families” 

from the reported molecular alterations as well as histological and clinical data (A.2.4). For 

example, presence of a H3K27 alteration confirmed the prediction of 

“diffuse midline glioma, H3K27-altered” or detected ZFTA fusion supported the prediction of 

methylation family “supratentorial ependymoma, ZFTA fusion-positive”. Predicted methylation 

families were concordant in all nanopore whole genome sequencing samples, with inferred 

families aligning with corresponding molecular alterations. 

4.3.4.3 Methylation panels 

Methylation panels by Twist were used for the enzymatic EM-seq based approach. Martin Sill 

and I received 27 samples processed using Twist methylation panels from Ghent University, 

University of Cincinnati and University Hospital Basel. As demonstrated in Figure 4-5 and 

Figure 4-6, the samples had an average missingness of 2.7 % but achieved mean prediction 

scores of 0.73. Two samples did not have matched array but were diagnosed as “alveolar 

rhabdomyosarcoma”. Since this diagnosis exactly corresponds to one methylation class, I 

considered this as ground truth. Out of 27 samples sequenced using Twist methylation panels, 

25 were correctly classified at the subclass level (A.2.5) One glioblastoma RTK1 subtype 

sample was classified as glioblastoma RTK2, while the other (Twist_3) had very few 

sequencing reads and a low prediction score ≤0.03. On excluding Twist_3, the average CpG 

missingness reduced to 1.9 % and average prediction score increased to 0.76.  
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4.3.4.4 Rapid-CNS2 

174 out of 194 (89.7%) classifiable samples with matched arrays were accurately assigned to 

the correct methylation family, with 128 samples (66.0%) correctly classified at the methylation 

subclass level (Figure 4-5). When excluding samples with confidence scores ≤0.3 (n=74), the 

accuracy at the methylation subclass level improved to 89.1%, while the accuracy at the family 

level rose to 98.7% (Figure 4-6). 11, 835 missing sites. Similarly, for the Nottingham Rapid-

CNS2 dataset, methylation subclasses were correctly predicted for 26 out of 41 samples 

(63.4%), and methylation families for 37 samples (90.2%) (Figure 4-5). After excluding 

samples with scores ≤0.3, the accuracy increased to 78% for methylation subclasses and 

100% for methylation families (Figure 4-6). 

The model struggled with Rapid-CNS2 data due to a large number of missing methylation sites 

(16.56 %), leading to lower subclass accuracy. Reassuringly, MNP-Flex classified samples 

from this dataset with lower prediction scores (Figure 4-5). The Heidelberg Rapid-CNS2 

dataset had an average of 17.59 % missing sites.  

Table 4-2 MNP-Flex results for Rapid-CNS2 Heidelberg dataset with matched arrays 

Device Flowcell Sequencing 
time 

No. of 
samples 

Missing 
sites (%) 

Average 
score 

Accuracy (%) 

Family / subclass 

MinION R9 72 44 5.76 0.35 95.45 / 84.09 

GridION R9 24 18 27.31 0.16 83.33 / 55.55 

48 11 34.55 0.14 81.82 / 36.36 

72 48 14.51 0.17 83.33 / 62.5 

GridION R10 24 55 21.43 0.28 87.27 / 63.63 

P2 Solo R10 24 18 2.99 0.49 88.88 / 66.66 

As indicated in the meta-information for the dataset shown in Table 4-2, I observed that 

samples sequenced on the MinION with R9 flowcells for 72h had highest accuracy. While this 

seems counterintuitive, all samples sequenced on the MinION were archival and were 

carefully selected for high tumour purity to facilitate set-up of the workflow. The flowcells were 

re-loaded twice during the run. Additionally, samples belonging to only 4 major glioma types 

namely, glioblastoma, oligodendroglioma, astrocytoma and pilocytic astrocytoma were 

selected for the set-up phase. This led to highly optimised results that would be difficult to 
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achieve in a real world setting with limited tissue and personnel hours available. As expected, 

samples run on the P2 Solo with R10 flowcells had the lowest number of missing values and 

highest average score.  

Figure 4-7 MNP-Flex scores for 
Rapid-CNS2 data at different 

concordance levels (Reprinted 

from Patel et. al 2024117) 

Among all datasets 

tested, the Rapid-CNS2 

datasets showed the 

lowest confidence scores 

(Figure 4-5). 

Reassuringly, as 

indicated in Figure 4-7, 

correctly classified 

samples were assigned higher scores while incorrect predictions had low prediction scores. 

Thus, the model does not make incorrect predictions confidently. This is especially important 

for tools to be used in a medical context. I speculate that the reduced classification accuracy 

in these samples is largely attributable to the significant number of missing values present in 

the dataset. Missing data can disrupt the model’s ability to make accurate predictions, 

particularly in complex classification tasks like ours involving methylation patterns. In 

comparing the Heidelberg and Nottingham datasets, I observed that the Heidelberg dataset 

had notably lower accuracy rates. This discrepancy appears to be linked to the higher 

frequency of missing values in the Heidelberg data, which can be traced to technical 

differences in sequencing approaches. Specifically, a greater proportion of samples in the 

Heidelberg cohort were run using R9 flow cells rather than the new R10 flow cells, which are 

known to yield higher accuracy data and lower error rates. Additionally, many of the Heidelberg 

samples were processed on GridION or MinION devices, which generally produce fewer reads 

and lower throughput compared to the PromethION device, used more frequently for 

Nottingham samples. These factors together likely contributed to the overall lower 

performance of the Heidelberg dataset. 
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I compared all samples run on the GridION in Heidelberg and Nottingham to further analyse 

the effect of flowcell configuration. I compared 95 samples sequenced with R9 flowcells to 116 

samples sequenced with R10 flowcells. 

Figure 4-8 Comparison 
of R9 and R10 flowcells 

for samples sequenced 

on the GridION 

(Reprinted from Patel et. 
al 2024117) 

As shown in Figure 
4-8, I found that 

there was a 

statistically 

significant difference 

(unpaired Wilcoxon 

test, p = 0.001492) in 

the MNP-Flex 

subclass prediction score with R10 flowcells tending to have higher scores. On the other hand, 

there was no significant difference in the number of missing sites (unpaired Wilcoxon test, p = 

0.9035). Since the number of available sites remained similar, this indicated a significant 

increase in per CpG accuracy for R10 flowcells. Importantly, I observed that data generated 

exclusively using R10 flow cells demonstrated an improvement in classification accuracy for 

MNP-Flex. This finding underscores the impact of technical advancements, such as the 

transition from R9 to R10 flow cells, on the quality and reliability of methylation data, further 

supporting the notion that optimising sequencing technology can mitigate some of the issues 

associated with randomness in data and improve overall model performance. 

4.3.5 Effect of tissue type 

To estimate the effect of tissue type used, I compared the prediction scores across all 

samples. The dataset had 48,621 FFPE samples and 30,378 frozen samples sequenced using 

the different technologies. I performed a Wilcoxon rank sum test with continuity correction to 

compare the distribution of scores between frozen and FFPE samples. Additionally, I 
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employed the two one-sided test (TOST) procedure to assess equivalence within the 

predefined margin of [-0.01, 0.01]234. 

Figure 4-9 MNP-Flex 
prediction scores over 

tissue preparation types 

(Reprinted from Patel 
et. al 2024117) 

As shown in Figure 
4-9, the results 

indicated a 

significant effect in 

both the 

equivalence test 

and the null 

hypothesis significance test (NHST). The equivalence test was significant (W = 654,773,271, 

p = 2.04e-118), indicating that the observed effect fell within the equivalence bounds. Similarly, 

the null hypothesis test was significant (W = 730,355,988, p = 0.009), leading me to reject the 

null hypothesis that the effect size is equal to zero. Further, the results from the TOST 

procedure supported these findings, with both the lower bound (W = 810,553,731, p < 0.001) 

and upper bound (W = 654,773,271, p < 0.001) tests showing strong statistical significance. 

This provided strong evidence that the observed effect is equivalent within the defined bounds. 

Despite these significant results, the effect size was notably small. The median of differences 

was -0.000891 with a 90% confidence interval of [-0.0014, -0.0003], suggesting that the 

absolute difference in model performance between the tissue types is minimal. Additionally, 

the rank-biserial correlation was -0.011034, with a 90% confidence interval of [-0.018, -

0.0041], indicating a very weak relationship between the ranks of the frozen and FFPE data. 

Thus, we observed a significant effect (NHST), but this was significant due to the extremely 

high sample size of the several thousand samples and when tested for equivalence using 

TOST it was within the small margin range of 2 % score and thus the effect can be neglected. 
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This suggests that although the differences in scores between frozen and FFPE tissue are 

statistically significant, the practical impact of this difference is likely minimal.  

4.4 Discussion 

MNP-Flex expands the utility of methylation-based CNS tumour classification to include both 

array and sequencing-based data, maintaining high accuracy across multiple platforms. Its 

ability to handle missing data and deliver reliable predictions with a lower threshold makes it 

a versatile tool for clinical and research applications. 

Methylation classification has evolved into a robust framework applicable to pan-CNS tumour 

classification. This is evidenced by the exponential increase in the number of classes, starting 

with the Sturm et. al defined glioma classes, progressing to the first CNS tumour classifier with 

91 classes, and now expanding to encompass 184 classes in the latest version of the MNP 

classifier.13,19,236. The extension of this clinically relevant tool to platforms beyond methylation 

arrays opens up opportunities for broader application, enhances the classification scheme, 

and allows us to leverage the advantages of sequencing-based approaches to gain a deeper 

understanding of the differences between the classes and the potentially actionable 

mechanisms driving them. 

The MNP-Flex classifier could successfully classify Rapid-CNS2 samples providing granular 

classifications for the samples with 184 classes improving from the coarse classification 

provided by the in-built model with 91 classes. Cases that were unresolved due to absence of 

a reference class, could be successfully classified after MNP-Flex classification. This results 

in an integrated Rapid-CNS2 workflow, as demonstrated in Figure 4-10, to report a coarse 

classification in the intraoperative time frame that is sufficient for resection decisions followed 

by the full spectrum of alterations including the granular methylation classification by MNP-

Flex on the next day. 
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Figure 4-10 Example of the end-to-end workflow combining intraoperative and postoperative analysis (Reprinted 

from Patel et. al 2024117) 

MNP-Flex uses a gradient-boosted model and leverages the inherent ability of the architecture 

to handle missing values. However, as the results show, this poses limitations when dealing 

with sparse data that contains a high proportion of missing values. However, as the results 

indicate, dealing with sparse data containing a large proportion of missing values presents 

challenges. Consequently, we were unable to use MNP-Flex for classification intraoperatively 

in the Rapid-CNS2 workflow, and could only apply it at the end of the sequencing run, once a 

substantial amount of data had been collected. This restricts the classifier's use to dense 

sequencing datasets such as high-coverage Nanopore WGS, WGBS, or methylation panels, 

making it unsuitable for classifying low-pass WGS or the error-prone Nanopore FFPE data. 

Although not described in this work, our attempts to train gradient-boosted models on data 

with varying degrees of missingness improved classification for sparse data at the cost of 

reduced scores and accuracy over dense data which deemed it unsuitable for a truly platform-

agnostic approach. Errors in sequencing-based data arise either from random missing sites 

or from low coverage, which can result in incorrect methylation values. Improved classification 

may come from either refining the features or enhancing the model architecture and 

parameters237. Therefore, I speculate that a two-pronged approach—imputation of missing 

values followed by the use of a classifier capable of accounting for data errors—might be an 

effective strategy for this task. Given their ability to learn compact representations of data and 

reconstruct missing or noisy inputs, autoencoders offer a promising approach for imputing 

missing values in methylation data, where accurate reconstruction is crucial Autoencoders 

and their variants offer powerful deep learning tools for non-linear dimensionality reduction, 

clustering, data generation, imputation, and classification tasks238-241. Using autoencoders for 
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DNA methylation data could have the additional advantage of understanding how specific CpG 

sites relate through shared latent features, which could provide valuable insights into 

methylation signatures. Imputing such data before feeding it into MNP-Flex could already 

enhance classifier performance. In particular, masked autoencoders offer an elegant solution 

to handle missing or erroneous methylation values. A masked autoencoder randomly hides 

portions of the input data during training and attempts to reconstruct the masked information. 

This method not only encourages the model to learn robust representations of the underlying 

data but also simulates the real-world challenge of missing or erroneous CpG sites caused by 

low sequencing depth or random dropouts. Applying masked autoencoders with well-defined 

masking criteria could help simulate the inherent errors introduced by sequencing techniques, 

especially in low-quality datasets such as those derived from FFPE samples, which often 

exhibit high error rates in nanopore sequencing. Additionally, models could be trained on data 

with incrementally erroneous values to account for errors introduced by low coverage in 

sequencing-based data, as well as any inaccuracies from the imputation process. In practice, 

the model could be trained on partitions of the reference dataset with error rates of up to 15% 

to simulate real-world errors or higher to also account for the prohibitive error rates in nanopore 

sequencing of FFPE samples242.To further mimic sequencing-based errors, incorrect sites 

could be positioned adjacent to one another, similar to erroneous methylation values caused 

by low-quality reads or reads originating from the normal compartment of the tumour. Such an 

approach could be combined with masked autoencoders, where predefined masking criteria 

could allow the model to learn from and correct for these localised sequencing errors. In this 

context, masked autoencoders would play a dual role: both as a tool for imputing missing 

values and as a mechanism for error correction in noisy methylation data. This approach not 

only improves the classifier’s performance by providing cleaner input data but also enables a 

deeper understanding of the underlying methylation landscape by identifying patterns that 

emerge from noisy or incomplete data. Thus, the integration of masked autoencoders could 

be a valuable addition to the workflow for methylation-based classification, improving both the 

robustness and accuracy of the predictions in a real-world clinical setting. 

Another promising area of application for MNP-Flex is liquid biopsies. Detecting cancer types 

using non-invasive methods, such as liquid biopsies from blood or cerebrospinal fluid (CSF), 

could be a game-changer for CNS tumours, particularly in cases where surgery is either 

impossible or too risky. Circulating tumour DNA (ctDNA) is found in the blood of fewer than 

10% of glioma patients, as the blood-brain barrier restricts the release of biomarkers like cell-
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free DNA (cfDNA) from brain tumours into the bloodstream, making detection with 

conventional assays challenging243-246. The shedding of cfDNA into the CSF is increased in 

patients with high tumour burden, progressive or metastasised tumours, or tumours adjacent 

to ventricles. Liquid biopsies provide a valuable opportunity to reassess the tumour molecular 

profile in cases of recurrence and track its evolution during treatment by detecting mutation 

fractions in plasma and CSF. Additionally, longitudinal plasma-based liquid biopsies may 

complement neuroimaging in evaluating treatment response, particularly in distinguishing 

between pseudoprogression and true progression—an important clinical issue highlighted by 

the RANO (Response Assessment in Neuro-Oncology) consortium’s liquid biopsy task 

force247. A study by Nassiri et. al demonstrated successful detection and classification of 

methylomes of cfDNA from plasma for intracranial tumours using a immunoprecipitation 

approach245. Previous studies have reported detection of pathogenic mutations, CNVs 

methylation classification using NGS DNA sequencing as well as nanopore sequencing albeit 

for restricted set of CNS tumour types248-251. A major challenge with liquid biopsy data is to 

distinguish tumour DNA from healthy DNA. This could potentially be solved by borrowing from 

the field of Natural Language Processing (NLP) with models like BERT (Bidirectional Encoder 

Representations from Transformers). A recent study has proposed MethylBERT, a BERT 

based method for read-level methylation pattern identification and tumour purity estimation252. 

Integrating such a model with MNP-Flex would enable processing of read-level methylomes 

and classifying sequencing reads as either tumour or normal based on their methylation 

patterns. This prior sorting of tumour reads would enhance the precision of MNP-Flex for cell-

free DNA from plasma or CSF. A considerable proportion of errors by MNP-Flex in this work 

were mispredictions as tumour microenvironment or reactive tissue resulting from low tumour 

purity. The MethylBERT approach could also be useful for improving classification accuracy 

in such cases.  

The accumulation of sequencing-based methylation profiles alongside methylation 

classification using MNP-Flex offers the additional advantage of exploring genetic data in 

conjunction with epigenetic information. This integrative approach holds significant potential 

for uncovering subtle distinctions among various tumour subtypes, especially novel subtypes. 

Particularly with Nanopore sequencing, the simultaneous availability of mutational and 

methylation data from the same read provides a unique opportunity to investigate the interplay 

between genetic mutations and epigenetic modifications. This could be especially valuable in 

understanding the complex drivers of CNS tumours, where both genetic and epigenetic factors 
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contribute to tumour behaviour and progression. By combining these data, the community can 

gain deeper insights into tumour heterogeneity, enabling more precise diagnostics and 

potentially identifying novel therapeutic targets. This integrated analysis could further enhance 

our understanding of tumour evolution, treatment resistance, and the discovery of new 

molecular markers, ultimately paving the way for more personalised approaches in cancer 

management. 

Another limitation of MNP-Flex and methylation classifiers, in general, is the lack of 

representation from ethnically diverse populations in the reference dataset, which is 

predominantly derived from patients in the Global North. It is well-known that different diseases 

can manifest differently across ethnic groups, with variations in genetic and epigenetic drivers 

contributing to these differences253,254. The role of ethnicity in disease manifestation is 

particularly well-documented in fields like cancer, cardiovascular diseases, and autoimmune 

disorders. Studies have highlighted how genetic variants, allele frequencies, and 

environmental interactions vary across populations, influencing disease susceptibility, 

progression, and response to treatment255-257. Thus, it follows that the classes that form the 

basis of MNP-Flex might not accurately reflect the tumour subtypes in the underrepresented 

populations. This underscores the need for an ethnically inclusive approach to ensure 

healthcare interventions are tailored to diverse populations. Incorporating data from a broader 

range of ethnic groups would improve MNP-Flex to make it not only platform-agnostic but truly 

a flexible classifier catering to diverse technologies as well as individuals. 

 





 

Chapter 5 Discussion and outlook 

 

The WHO CNS5 classification reflects a significant shift towards a more precise, molecularly 

driven approach to CNS tumour diagnosis. Molecular testing is now essential for defining 

many tumour types, providing critical diagnostic and prognostic information that histology 

alone cannot offer. From IDH mutations in gliomas, CDKN2A/B deletions in meningiomas to 

gene fusions in ependymomas and methylation profiles in medulloblastomas, molecular 

markers have become the cornerstone of CNS tumour classification. This move towards 

molecular diagnostics has enhanced diagnostic accuracy and also opened the door for 

personalised treatments, leading to improved patient outcomes in neuro-oncology. 

Traditional molecular diagnostics in neuropathology have long been hindered by cumbersome 

methods and significant financial barriers, preventing several patients from accessing timely 

and precise diagnoses. The centralisation of testing, while rational considering the cost and 

effort of running such facilities, has further contributed to delays, straining resources and 

extending turnaround times. Building on the momentum of the WHO CNS5 classification, the 

development of tools like Rapid-CNS2 and MNP-Flex offers a response to these challenges in 

face of the growing need for molecularly driven diagnostics in CNS tumours. As molecular 

markers become central to diagnostic and treatment decisions, the ability to rapidly and 

accurately assess these markers is critical. Rapid-CNS2, with its adaptive sampling and 

nanopore sequencing technology, enables comprehensive molecular profiling, including 

methylation classification, within clinically relevant and even intraoperative timeframes. MNP-

Flex further complements this by providing platform-agnostic methylation classification 

compatible with the latest versions of the MNP classifier, ensuring that updated diagnostic 

classes can be identified regardless of the sequencing method used. This work presents a 

complete end-to-end streamlined workflow as demonstrated in Figure 5-1, with the frozen 

section being sequenced intraoperatively to report a broad v11 methylation classification and 

copy number profile in a surgical timeframe, followed by next day reporting of the full spectrum 
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of molecular alterations along with granular v12 based methylation classification using MNP-

Flex.  

 

Figure 5-1 Overview of the end-to-end pipeline 

The tools developed in this work are catered to support the advances in CNS tumour 

diagnostics and the ongoing shift towards precision medicine in neuro-oncology. Moreover, 

the tools are readily adaptable, making them well-suited for the constantly increasing number 

of molecular criteria and evolving technologies. For instance, BGI has unveiled CycloneSeq, 

its own nanopore-based sequencing approach258. Methylation data generated using this 

approach could easily be used with MNP-Flex without retraining. Additionally, newly 

discovered methylation subytpes can be easily incorporated to retrain MNP-Flex, while new 

molecular targets could be added to the panel for Rapid-CNS2. Importantly, these tools are 

not limited to CNS tumours; they can be adapted to various tumour types making them a 

flexible foundation for broader cancer diagnostics. Other methylation classifiers like sarcoma, 

sinonasal and any classifiers that might be developed in the future could also be trained using 

the MNP-Flex model in combination with targeting using adaptive sampling259,260. 

One of the most practical consequences of Rapid-CNS2 is the dramatically reduced 

turnaround time. Comprehensive molecular diagnostics, including targeted regions, can now 

be completed in less than two days, and methylation classification and broad CNV profiling 

can be performed in under 30 minutes. This is a substantial improvement from the average 

20-day wait time associated with conventional methods (Figure 5-1). From a postoperative 

management perspective, this accelerates the timeline to enable faster treatment decisions, 

allowing for timely access to molecularly informed disease management, in distant or 

resource-limited facilities. 



 
 A recent report in from the UK found that less than 5% patients with a brain tumour have 

access to WGS, even though all individuals with brain tumours are eligible for WGS261. The 

report by the Tessa Jowell Brain Cancer Mission specifically stated the Rapid-CNS2 based 

approach adopted at University of Nottingham as a future technology that should be 

considered to improve access to precision diagnostics for all patients. Although nanopore 

devices are not yet widely available in all neurosurgical settings, the affordability of the 

technology—where the smallest device capable of running Rapid-CNS2 costs about one-

fiftieth of the setup required for conventional methylation testing—positions it for swift 

adoption.  

Rapid-CNS2 leverages single-molecule sequencing which enables detection of both genetic 

and epigenetic modifications of the same molecule. By integrating data on mutations, CNVs, 

and methylation—especially through long-read sequencing—this approach holds significant 

promise for accurately identifying subclonal reads119,262,263. A robust MNP-Flex model could 

further extend this capability to identify subclonal methylation classes, providing critical 

insights into tumour heterogeneity for potential targeted therapies. As nanopore sequencing 

technology continues to advance, along with improvements in clonotyping and methylation 

classification models, the future could see routine non-invasive liquid biopsy for disease 

monitoring264,265. Such approaches would enable the detection of clonal diversity, the targeting 

of emerging clones, and the ability to assess treatment efficacy by accurately estimating 

tumour burden266,267. 

The successful use of MNP-Flex across global datasets underscores its generalisability and 

utility in diverse diagnostic and research settings. The static nature of MNP-flex, as opposed 

to the dynamic ad-hoc classification of Rapid-CNS2, allows it to cover the full granularity of the 

MNP v12 classifier with an even lower computational footprint. This has important implications 

not only for future iterations of methylation classifiers but also for regulatory compliance, as 

dynamic systems often face more scrutiny in clinical applications. With improvements, MNP-

Flex could replace the ad-hoc model in intraoperative settings as well, providing an even more 

streamlined diagnostic process. 

A further step to accessibility would be to replace molecular testing with solely H&E based 

analysis in certain cases. The last decade has seen an exponential rise in the development of 

neural network and transformer-based AI models to predict the occurrence of molecular 

markers like mutations, gene expression, molecular signatures and other prognostically 

relevant features directly from a H&E slide246,268-276. A recent study from NCI has demonstrated 

the prediction of about 10 broad CNS tumour methylation subtypes from H&E subtypes277. A 
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major limitation to training such models is the lack of sufficient annotated data to fully exploit 

the deep networks that are dominating other computer vision fields. To overcome this, a 

number of foundation models have been released that can serve as pre-training followed by 

fine tuning on specific data and labels271,273,274,278. Harnessing such foundation models and the 

large annotated dataset from the Department of Neuropathology, University Hospital 

Heidelberg and co-supervision by Felix Sahm and Moritz Gerstung, I am currently working on 

developing and evaluating a transformer-based model that can predict 108 methylation-based 

subtypes of CNS tumours. As molecular classification guidelines evolve, such tools will be 

essential for democratising access to high-quality, cutting-edge diagnostics. 

The development of Rapid-CNS2 and MNP-flex took place in a fast-moving technological 

environment, where sequencing devices, analytical tools, and methodologies were constantly 

evolving. Throughout this process, the tools were continuously refined to incorporate the latest 

advancements, such as improved adaptive sampling with updates to ReadFish and 

modifications in nanopore devices. This adaptability ensured that the tools stayed up-to-date 

with current methods, offering an example of how to build cutting-edge systems capable of 

keeping pace with technological advancements. Beyond their immediate diagnostic utility, 

Rapid-CNS2 and MNP-Flex provide a structure for future developments in molecular 

diagnostics. Their modular design allows them to evolve in tandem with emerging technologies 

and discoveries, positioning them as platforms that can be expanded to accommodate the 

complexities of different tumour types. As more tumour-specific data becomes available, these 

tools can be further adapted. Moreover, the framework they provide serves as a model for the 

development of new diagnostic tools that can quickly integrate advancements in sequencing 

technology and computational analysis. 

While tools like Rapid-CNS2 and MNP-Flex demonstrate immense potential for both research 

and clinical applications, it is important to recognise that these tools are currently for research 

use only (RUO). Despite their proven efficacy in molecular diagnostics, their dedicated 

implementation in clinical practice hinges on obtaining the necessary clinical certifications. 

One such certification is the In Vitro Diagnostic Regulation (IVD-R) in Europe, which ensures 

that medical devices, including diagnostic tools, meet stringent safety and performance 

standards before being deployed in healthcare settings. Achieving IVD-R certification, or 

similar regulatory approvals in other regions, is essential for the formal integration of new 

workflows into routine clinical workflows. This process would involve rigorous validation 

studies, demonstrating reproducibility, reliability, and accuracy across diverse patient 



 
populations and clinical environments. Securing clinical certification would unlock the potential 

of these tools for use in diagnosing CNS tumours and other cancers in a real-world clinical 

setting, allowing for more widespread adoption. The transition from RUO to certified clinical 

diagnostics is a critical next step in bringing the benefits of advanced molecular profiling and 

precision medicine to patients. As these tools continue to evolve, the pursuit of clinical 

certification will ensure they can contribute meaningfully to improving patient outcomes on a 

global scale. Efforts are already underway in Heidelberg to bridge the gap between research 

and clinical application. Heidelberg Epignostix GmbH, a DKFZ and UKHD spin-off, is focused 

on obtaining IVD-R certification and securing market access for the MNP methylation classifier 

while also developing further tools for clinical use275. This is a crucial step to ensuring that 

such tools can be used in clinical settings, where their potential can be fully realised. 

Current tools for methylation classification of CNS tumours like the MNP classifier and similarly 

Rapid-CNS2 and MNP-Flex, suffer from a severe lack of diversity, as 90% of genomic data 

used to develop these tools comes from individuals of European and North American descent 

who form 17% of the global population278. This overlooks significant global populations, 

particularly those from low-to-middle-income countries (LMICs) in Asia, Africa, and South 

America. As a result, the biological insights derived from these tools are incomplete, failing to 

capture the unique genetic and epigenetic variations present in underrepresented populations. 

This gap not only limits our understanding of disease in these regions but also hampers the 

global applicability of the classifiers. The MNP Outreach Consortium, a Hopp Children’s 

Cancer Centre (KiTZ) and UKHD initiative, represents a transformative approach to 

addressing this disparity by extending access to methylation profiling and diagnostic 

technologies to LMICs279. By partnering with multiple centres across the global south, the 

consortium aims to close the diversity gap in genomic databases, fostering more inclusive and 

representative research. This initiative has the potential to uncover novel genetic markers that 

are prevalent in LMICs, contributing to a more equitable global health landscape. 

In alignment with my broader goal of making molecular diagnostics more accessible, my next 

step will be to work for Heidelberg Epignostix to develop approaches for new technologies and 

support the MNP Outreach consortium in implementing them in centres located in the global 

south. Through this role, I will be directly involved in translating these advanced technologies 

from research tools into clinically certified diagnostics, ensuring that they can be implemented 

in real-world healthcare settings. This endeavour is not just a professional advancement but 

part of my ongoing mission to reduce the barriers to molecular diagnostics. By also focusing 
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on certification and market access, I hope to make precision diagnostics more widely 

available, particularly in under-resourced regions. 
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Appendix A Tables and Figures 

A.1 Rapid-CNS2 

A.1.1 TERT promoter mutation concordance 

Study ID TERTp status 

1 discordant, called in NGS 

2 discordant, called in NGS 

3 concordant, upstream 1295228 

4 concordant, upstream 1295250 

5 concordant, upstream 1295228 

6 concordant, upstream 1295228 

7 concordant, upstream 1295228 

8 concordant, upstream 1295250 

9 concordant, upstream 1295228 

10 discordant, called in NGS 

11 discordant, called in NGS 

12 concordant, upstream 1295250 

13 concordant, upstream 1295228 

14 concordant, upstream 1295228 

15 concordant, upstream 1295228 

17 concordant, upstream 1295228 

18 concordant, upstream 1295228 

22 concordant, upstream 1295228 

29 concordant, upstream 1295228 

31 concordant, upstream 1295228 
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32 concordant, upstream 1295228 

34 concordant, upstream 1295228 

36 concordant, upstream 1295228 

37 concordant, upstream 1295228 

45 concordant, upstream 1295228 

48 concordant, upstream 1295228 

50 concordant, upstream 1295228 

51 concordant, upstream 1295250 

54 concordant, upstream 1295228 

57 concordant, upstream 1295228 

60 concordant, upstream 1295228 

61 concordant, upstream 1295228 

62 concordant, upstream 1295228 

65 concordant, upstream 1295228 

66 concordant, upstream 1295228 

67 concordant, upstream 1295228 

68 concordant, upstream 1295228 

69 concordant, upstream 1295228 

83 concordant, upstream 1295250 

86 concordant, upstream 1295228 

88 discordant, called in NGS 

89 concordant, upstream 1295250 

92 concordant, upstream 1295250 

105 concordant, upstream 1295228 

116 concordant, upstream 1295228 

119 concordant, upstream 1295228 

120 concordant, upstream 1295228 

152 concordant, upstream 1295228 

155 concordant, upstream 1295228 
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156 discordant, called in NGS 

171 concordant, upstream 1295228 

185 concordant, upstream 1295250 

194 concordant, upstream 1295228 

A.1.2 Out of the bag (OOB) error for 54 samples 

 

A.1.3 Integrated diagnoses within 30 minutes of sequencing for 
prospective samples 

ID Frozen section 
diagnosis 

Methylation 
class (30 min) 

CNVs (30 
min) 

Integrated diagnosis 
(30 min) 

Conventional 
diagnosis 

170 Meningioma 
without indication 
for atypia 

MNG   Meningioma WHO 
grade 1, no high-risk 
CNVs 

 
Meningioma WHO 
grade 1 

171 Glioblastoma GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

172 High grade glioma GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

173 Cell dense tumor, 
suspected glioma 

EFT_CIC   Cell dense tumor, 
morphologically 
suspected glioma, 
molecularly 
indicative of CIC-
rearranged sarcoma 

 
Round cell 
sarcomatoid tumor 
with methylation class 
"CIC-rearranged 
sarcoma" but no 
detection of CIC-fusion 
by RNA sequencing, 
NEC 

174 Meningioma, 
highly vasculated 

MNG 
 

Meningioma WHO 
grade 1, no high-risk 
CNVs 

 
Meningioma WHO 
grade 1 
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175 Spindle cell tumor 
without signs of 
higher malignancy 

MNG 
 

Spindle cell tumor 
without signs of higher 
malignancy, chr6 del 

Desmoid-type 
fibromatosis 

176 Glioblastoma GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

177 Spindle cell tumor, 
compatible with 
schwannoma 

SCHW 
 

Schwannoma WHO 
grade 1 

 
Schwannoma WHO 
grade 1 

178 Isomorphic tumor, 
compatible with 
ependymoma 

EPN_SPINE 
 

Ependymoma, 22q 
deleted, several 
additional CNVs 

 
Spinal ependymoma 
WHO grade 2 

179 Glioma  A_IDH_HG   Astrocytoma IDH-
mutant 

 
Astrocytoma IDH-
mutant WHO grade 3 

180 Malignant glioma GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

181 Meningioma MNG 
 

Meningioma WHO 
grade 1, 22q 
deleted, no high-risk 
CNVs 

 
Meningioma WHO 
grade 1 

182 High grade glioma GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

183 Meningioma 
without indication 
for atypia 

MNG 
 

Meningioma WHO 
grade 1, no high-risk 
CNVs 

 
Meningioma WHO 
grade 1 

184 Spindle cell tumor 
without indication 
for higher 
malignancy 

MELAN 7/10 Glioblastoma IDH-
wildtype WHO grade 
4 

 
Gliosarcoma IDH-
wildtype WHO grade 4 

185 Small, blue, round 
cell tumor, 
compatible with 
medulloblastoma 

MB_SHH_CHL_AD Medulloblastoma, 
SHH-activated, 
WHO grade 4 

 
Medulloblastoma, 
SHH-activated and 
TP53-wildtype, WHO 
grade 4 

186 Spindle cell tumor, 
fitting to 
meningioma. No 
indication of 
atypia.  

MNG 
 

Meningioma WHO 
grade 1, 22q 
deleted, no high-risk 
CNVs 

 
Meningioma WHO 
grade 1 

187 Low grade glial / 
glioneuronal 
tumor, compatible 
with DNET 

LGG_DNT 
 

Dysembryoplastic 
neuroepithelial tumor 
WHO grade 1 

 
Dysembryoplastic 
neuroepithelial tumor 
WHO grade 1 

188 Malignant glioma A_IDH_HG 
 

Astrocytoma IDH-
mutant 

 
Astrocytoma IDH-
mutant WHO grade 4 

189 Glioblastoma EFT_CIC 7/10 Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

190 Suspected 
ependymoma 

EPN_SPINE 
 

Ependymoma, 22q 
deleted 

 
Spinal ependymoma 
who grade 2 

191 Malignant tumor, 
most likely 
glioblastoma 

GBM_RTK_I 
 

Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

192 CNS-tissue with 
elevated cell 
density and 
satellitosis, tumor 

LGG_DNT 1p/19q Oligodendroglioma 
IDH-mutant and 
1p/19q-codeleted 

 
Oligodendroglioma 
IDH-mutant and 
1p/19q-codeleted 
WHO grade 2 
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possible, although 
uncertain 

193 Low grade 
astrocytic tumor 

O_IDH 
 

Oligodendroglioma 
IDH-mutant and 
1p/19q-codeleted 

 
Oligodendroglioma 
IDH-mutant and 
1p/19q-codeleted 
WHO grade 2 

194 Suspected 
recurrence of the 
known 
glioblastoma 

GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

195 Glioma with no 
sign of increased 
malignancy 

SUBEPN_PF 
 

Subependymoma 
 

Ependymal glioma 
with a loss if chr.6q 
and TERTp mutation, 
NEC 

196 Malignant glioma GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

197 Suspected 
ependymoma 

EPN_SPINE 
 

Ependymoma, 22q 
deleted, several 
additional CNVs 

 
Spinal ependymoma 
WHO grade 2 

198 Compatible with a 
glioblastoma 

GBM_RTK_I 7/10 Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

199 Compatible with a 
central 
neurocytoma 

CN 
 

Central neurocytoma 
 

Central neurocytoma 

200 Reactive tissue, 
compatible with 
radionecrosis 

LYMPHO no 
advantag
e 

Reactive tissue, flat 
CNV 

Glioblastoma IDH-
wildtype WHO grade 4 

201 Glial tumor, 
compatible with an 
ependymoma 

EPN_SPINE 
 

Ependymoma, 22q 
deleted, several 
additional CNVs 

 
Spinal ependymoma 
WHO grade 2 

202 Schwannoma SCHW 
 

Schwannoma WHO 
grade 1 

 
Schwannoma WHO 
grade 1 

203 Small blue round 
cell tumor 

MB_G4 
 

Medulloblastoma 
WHO grade 4, group 
4 

 
Medulloblastoma 
WHO grade 4, group 4 

204 Compatible with 
pilocytic 
astrocytoma 

CONTR_HEMI 5/7 gain Compatible with 
pilocytic astrocytoma 
by histology and CNVs 

Pilocytic astrocytoma 
WHO grade 1 

205 Schwannoma SCHW 
 

Schwannoma WHO 
grade 1 

 
Schwannoma WHO 
grade 1 

206 Epitheloid tumor MNG 
 

Meningioma WHO 
grade 1, multiple 
chromosomal gains, 
indicating 
metaplastic subtype 

 
Meningioma WHO 
grade 1 

207 Meningioma MNG 
 

Meningioma WHO 
grade 1, 22q 
deleted, no high-risk 
CNVs 

 
Meningioma WHO 
grade 1 

208 Meningioma DD 
SFT 

CONTR_INFLA
M 

22q del Meningioma WHO 
grade 1, 22q deleted, 
no high-risk CNVs 

Meningioma WHO 
grade 1 

209 Malignant glioma LGG_DNT segmenta
l 7q gain 

Malignant glioma Glial/glioneuronal 
tumor, MET fused and 
VHL mutant, NEC 
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210 Infiltration zone of 
a diffuse glioma 

O_IDH 
 

Oligodendroglioma 
IDH-mutant and 
1p/19q-codeleted 

 
Oligodendroglioma 
WHO grade 2 

211 Malignant glioma, 
compatible with 
glioblastoma 

GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

212 Compatible with 
glioblastoma 

GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

213 Glioblastoma GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

214 Compatible with 
infiltration zone of 
a diffuse glioma 

A_IDH 
 

Astrocytoma IDH-
mutant 

 
Astrocytoma IDH-
mutant 

215 Malignant glioma GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

216 Infiltration zone of 
a diffuse glioma 

O_IDH 
 

Oligodendroglioma 
IDH-mutant and 
1p/19q-codeleted 

 
Oligodendroglioma 
WHO grade 2 

217 Meningioma MNG 
 

Meningioma WHO 
grade 1, no high-risk 
CNVs 

 
Meningioma WHO 
grade 1 

218 Malignant glioma, 
compatible with 
glioblastoma 

GBM_RTK_II Glioblastoma IDH-
wildtype WHO grade 
4 

 
Glioblastoma IDH-
wildtype WHO grade 4 

219 Suspected HGAP DMG_K27 multiple 
CNVs 

Suspected HGAP, 
compatible 
CDKN2A/B 
homozygous 
deletion 

 
High-grade 
astrocytoma with piloid 
features (HGAP) 

220 PitNet DD 
craniopharyngeom
a 

PITAD_ACTH Pituitary adenoma / 
pituitary 
neuroendocrine 
tumour (PitNet) 

 
Pituitary adenoma / 
pituitary 
neuroendocrine 
tumour (PitNet) 

A.2 MNP-Flex 

A.2.1 Abbreviations for MNP-Flex classes 

Abbreviation Description 

A_IDH_LG Astrocytoma, IDH-mutant 

HGAP High-grade astrocytoma with piloid features 

GTAKA Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features 
(novel) 

ATRT_MYC Atypical teratoid rhabdoid tumour, MYC activated 

ATRT_SHH Atypical teratoid rhabdoid tumour, SHH activated 

ATRT_TYR Atypical teratoid rhabdoid tumour, Tyrosinase activated 
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CHGL Chordoid glioma, PRKCA-mutant 

CHORDM Chordoma 

CN Central neurocytoma 

CNS_NB_FOXR2 CNS neuroblastoma, FOXR2-altered 

CNS_SARC_DICER Primary intracranial sarcoma, DICER1-mutant 

CPC_PED Choroid plexus carcinoma, pediatric subtype 

CPC_AD Choroid plexus carcinoma, adult subtype 

CPH_ADM Adamantinomatous craniopharyngioma 

CPH_PAP Papillary craniopharyngioma 

CPP_AD Choroid plexus papilloma, adult subtype 

CPP_PED Choroid plexus papilloma, pediatric subtype 

CRINET Cribriform neuroepithelial tumour 

CTRL_BLOOD Control tissue, blood 

DGONC Diffuse glioneuronal tumour with oligodendroglioma-like features and nuclear 
clusters 

DIG_DIA Desmoplastic infantile ganglioglioma / desmoplastic infantile astrocytoma 

DLGNT_1 Diffuse leptomeningeal glioneuronal tumour, subclass 1 

DLGNT_2 Diffuse leptomeningeal glioneuronal tumour, subclass 2 

DMG_K27 Diffuse midline glioma, H3 K27-altered, subtype H3 K27-mutant or EZHIP 
expressing 

DNET Dysembryoplastic neuroepithelial tumour 

CNS_SARC_CIC CIC-rearranged sarcoma 

ONB Olfactory neuroblastoma 

SNUC_IDH2 Sinonasal undifferentiated carcinoma, IDH2-mutant 

CNS_BCOR_FUS CNS tumour with EP300:BCOR(L1) fusion 

EPN_MPE Myxopapillary ependymoma 

EPN_PF_SE Posterior fossa subependymoma 

EPN_SPINE Spinal ependymoma 

EPN_SPINE_MYCN Spinal ependymoma, MYCN-amplified 

EPN_SPINE_SE_B Spinal subependymoma [subtype B] 

EPN_SPINE_SE_A Spinal subependymoma [subtype A] 

NET_PLAGL1_FUS Neuroepithelial tumour, PLAGL1-fused 

EPN_ST_SE Supratentorial subependymoma 

EPN_YAP Supratentorial ependymoma, YAP1-fused 

ETMR_C19MC Embryonal tumour with multilayered rosettes, C19MC altered 

ETMR_Atyp Embryonal tumour with multilayered rosettes, atypical 

EVNCYT Extraventricular neurocytoma 

EWS Ewing sarcoma 

GBM_CBM 
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DHG_G34 Diffuse hemispheric glioma, H3 G34-mutant 

A_IDH_HG Astrocytoma, IDH-mutant 

INFLAM_ENV Inflammatory microenvironment 

GBM_MES_TYP Glioblastoma, IDH-wildtype, [typical mesenchymal type] 

GBM_MES_ATYP Glioblastoma, IDH-wildtype, [atypical mesenchymal type] 

pedHGG_MYCN Diffuse paediatric-type high grade glioma, MYCN subtype 

pedHGG_RTK1A Diffuse paediatric-type high grade glioma, RTK1 subtype, subclass A (novel) 

pedHGG_RTK1B Diffuse paediatric-type high grade glioma, RTK1 subtype, subclass B (novel) 

pedHGG_RTK1C Diffuse paediatric-type high grade glioma, RTK1 subtype, subclass C (novel) 

pedHGG_RTK2A Diffuse paediatric-type high grade glioma, RTK2 subtype, subclass A (novel) 

pedHGG_RTK2B Diffuse paediatric-type high grade glioma, RTK2 subtype, subclass B (novel) 

GBM_RTK1 Glioblastoma, IDH-wildtype, RTK1 subtype 

GBM_RTK2 Glioblastoma, IDH-wildtype, RTK2 subtype 

DMG_EGFR Diffuse midline glioma, H3 K27-altered, subtype EGFR-altered 

GCT_GERM_A Germinoma, subtype KIT wildtype (novel) 

GCT_GERM_KIT Germinoma, subtype KIT mutant (novel) 

GCT_TERA Teratoma 

GCT_YOLKSAC Yolk sac tumour 

GG Ganglioglioma 

CTRL_REACTIVE Control tissue, reactive tumour microenvironment 

GNT_A Diffuse glioneuronal tumour, subtype A 

pedHGG_A Diffuse paediatric-type high grade glioma, H3 wildtype and IDH wild type, Subtype 
A 

pedHGG_B Diffuse paediatric-type high grade glioma, H3 wildtype and IDH wild type, Subtype 
B 

CNS_BCOR_ITD CNS tumour with BCOR internal tandem duplication 

NET_CXXC5 Neuroepithelial tumour, MN1:CXXC5-fused 

ABM_MN1 Astroblastoma, MN1-altered, MN1:BEND2-fused 

GBM_PNC Glioblastoma, IDH-wildtype, with primitive neuronal component 

HGG_B Adult-type diffuse high grade glioma, IDH-wildtype, subtype B 

HGG_E Adult-type diffuse high grade glioma, IDH-wildtype, subtype E 

HGG_F Adult-type diffuse high grade glioma, IDH-wildtype, subtype F 

NET_PATZ1 Neuroepithelial tumour with PATZ1 fusion 

ET_PLAG CNS Embryonal tumour with PLAG-family amplification 

HMB Haemangioblastoma 

SFT_HMPC Solitary fibrous tumour / haemangiopericytoma 

IHG Infant-type hemispheric glioma 

IO_MEPL Intraocular medulloepithelioma 

LCH Langerhans cell histiocytosis 
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AG_MYB Angiocentric glioma, MYB/MYBL1-altered 

LGG_MYB_B Diffuse astrocytoma, MYB or MYBL1-altered, subtype B [infratentorial] (novel) 

LGG_MYB_C Diffuse astrocytoma, MYB or MYBL1-altered, subtype C [isomorphic] (novel) 

LGG_MYB_D Diffuse astrocytoma, MYB or MYBL1-altered, subtype D (novel) 

LIPN Liponeurocytoma 

ET_BRD4_LEUTX CNS embryonal tumour with BRD4:LEUTX fusion 

MB_MYO Medullomyoblastoma 

MB_SHH_1 Medulloblastoma, SHH-activated, subtype 1 

MB_SHH_2 Medulloblastoma, SHH-activated, subtype 2 

MB_SHH_3 Medulloblastoma, SHH-activated, subtype 3 

MB_SHH_4 Medulloblastoma, SHH-activated, subtype 4 

MB_SHH_IDH Medulloblastoma, SHH-activated, IDH-mutant 

MB_WNT Medulloblastoma, WNT activated 

MB_G34_I Medulloblastoma Group 3, subclass I 

MB_G34_II Medulloblastoma Group 3, subclass II 

MB_G34_III Medulloblastoma Group 3, subclass III 

MB_G34_IV Medulloblastoma Group 3, subclass IV 

MB_G34_V Medulloblastoma Group 4, subclass V 

MB_G34_VI Medulloblastoma Group 4, subclass VI 

MB_G34_VII Medulloblastoma Group 4, subclass VII 

MB_G34_VIII Medulloblastoma Group 4, subclass VIII 

MMNST Malignant melanotic nerve sheath tumour 

MELN Melanocytoma 

MET_MEL Melanoma [metastatic] 

MNG_BEN_1 Meningioma, subclass benign 1 

MNG_BEN_2 Meningioma, subclass benign 2 

MNG_BEN_3 Meningioma, subclass benign 3 

MNG_SMARCE1 Meningioma, SMARCE1-altered 

MNG_INT_A Meningioma, subclass intermediate A 

MNG_INT_B Meningioma, subclass intermediate B 

MNG_MAL Meningioma, malignant 

MPNST_TYP Malignant peripheral nerve sheath tumour [typical type] 

MPNST_ATYP Malignant peripheral nerve sheath tumour [spinal or atypical type] 

MYXGNT Myxoid glioneuronal tumour, PDGFRA-mutant 

NB_MYCN Neuroblastoma, MYCN subtype 

NB_TMM_NEG Neuroblastoma, subtype TMM negative 

NB_TMM_POS Neuroblastoma, subtype ALT/TERT TMM positive 
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NFIB_PLEX Plexiform neurofibroma 

CTRL_ADENOPIT Control tissue, pituitary gland (anterior lobe) 

CTRL_CBM Control tissue, cerebellar hemisphere 

CTRL_CORPCAL Control tissue, white matter (corpus callosum) 

CTRL_HEMI Control tissue, hemispheric cortex 

CTRL_HYPOTHAL Control tissue, hypothalamus 

CTRL_OPTIC Control tissue, optic pathway 

CTRL_PIN Control tissue, pineal gland 

CTRL_PONS Control tissue, pons 

O_IDH Oligodendroglioma, IDH-mutant and 1p/19q-codeleted 

OLIGOSARC_IDH Oligosarcoma, IDH-mutant 

PA_CORT Supratentorial pilocytic astrocytoma 

PA_INF Infratentorial pilocytic astrocytoma 

PA_INF_FGFR Infratentorial pilocytic astrocytoma, FGFR1-altered 

PA_MID Supratentorial midline pilocytic astrocytoma 

PB_GRP1A Pineoblastoma, miRNA pathway altered, group 1A 

PB_GRP1B Pineoblastoma, miRNA pathway altered, group 1B 

PB_GRP2 Pineoblastoma, miRNA pathway altered, group 2 

PB_FOXR2 Pineoblastoma, MYC/FOXR2-activated 

DLBCL Primary diffuse large B cell lymphoma of the CNS 

PLASMACYT Plasmacytoma of the CNS 

EPN_PFA_1A Posterior fossa group A (PFA) ependymoma, subclass 1a 

EPN_PFA_1B Posterior fossa group A (PFA) ependymoma, subclass 1b 

EPN_PFA_1C Posterior fossa group A (PFA) ependymoma, subclass 1c 

EPN_PFA_1D Posterior fossa group A (PFA) ependymoma, subclass 1d 

EPN_PFA_1E Posterior fossa group A (PFA) ependymoma, subclass 1e 

EPN_PFA_1F Posterior fossa group A (PFA) ependymoma, subclass 1f 

EPN_PFA_2A Posterior fossa group A (PFA) ependymoma, subclass 2a 

EPN_PFA_2B Posterior fossa group A (PFA) ependymoma, subclass 2b 

EPN_PFA_2C Posterior fossa group A (PFA) ependymoma, subclass 2c 

EPN_PFB_1 Posterior fossa group B (PFB) ependymoma, subclass 1 

EPN_PFB_2 Posterior fossa group B (PFB) ependymoma, subclass 2 

EPN_PFB_3 Posterior fossa group B (PFB) ependymoma, subclass 3 

EPN_PFB_4 Posterior fossa group B (PFB) ependymoma, subclass 4 

EPN_PFB_5 Posterior fossa group B (PFB) ependymoma, subclass 5 

CAUDEQU_NET Cauda equina neuroendocrine tumour [paraganglioma], subtype non-CIMP 

PGNT Papillary glioneuronal tumour 
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PIN_CYT Pineocytoma 

PIN_RB Pineal retinoblastoma 

PITAD_ACTH Pituitary adenoma, ACTH-producing 

PITAD_GON Pituitary adenoma, gonadotrophin-producing 

PITAD_PRL Pituitary adenoma, prolactin-producing 

PITAD_STH_DENSE1 Pituitary adenoma, STH-producing, subclass densely granulated A 

PITAD_STH_DENSE2 Pituitary adenoma, STH-producing, subclass densely granulated B 

PITAD_STH_SPARSE Pituitary adenoma, STH-producing, subclass sparsely granulated 

PITAD_TSH Pituitary adenoma, TSH-producing 

PITUI Pituicytoma, granular cell tumour of the sellar region, and spindle-cell oncocytoma 

PLNTY Polymorphous low-grade neuroepithelial tumour of the young 

PPTID_A Pineal parenchymal tumour of intermediate differentiation, subclass A 

PPTID_B Pineal parenchymal tumour of intermediate differentiation, subclass B 

PTPR_A Papillary tumour of the pineal region, subclass A 

PTPR_B Papillary tumour of the pineal region, subclass B 

PXA Pleomorphic xanthoastrocytoma 

RB Retinoblastoma 

RB_MYCN Retinoblastoma, MYCN-activated 

EPN_ST_ZFTA_FUS_C Supratentorial ependymoma, ZFTA fusion-positive, subclass C 

EPN_ST_ZFTA_FUS_D Supratentorial ependymoma, ZFTA fusion-positive, subclass D 

EPN_ST_ZFTA_FUS_E Supratentorial ependymoma, ZFTA fusion-positive, subclass E 

RGNT Rosette-forming glioneuronal tumour 

ARMS Rhabdomyosarcoma, alveolar subtype 

ERMS Rhabdomyosarcoma, embryonal subtype 

RMS_MYOD1 Rhabdomyosarcoma, MYOD1-mutant 

SCHW Schwannoma 

SEGA Subependymal giant cell astrocytoma 

EPN_ST_ZFTA_RELA_
A 

Supratentorial ependymoma, ZFTA fusion-positive, subtype ZFTA-RELA fused, 
subclass A 

EPN_ST_ZFTA_RELA_
B 

Supratentorial ependymoma, ZFTA fusion-positive, subtype ZFTA-RELA fused, 
subclass B 

CNS_SCHW_VGLL CNS Schwannoma, VGLL-fused 
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A.2.2 ROC-AUC for all methylation array samples with MNP-RF 

score ³ 0.7 
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A.2.3 MNP-Flex accuracy over binned prediction scores for each 
technology 

*Bars indicate 95% confidence interval 

A.2.4 Nanopore WGS samples for MNP-Flex 

Sample ID MNP-Flex subclass MNP-Flex 
subclass score 

Number of 
missing sites 

Other evidence 

ONT_WGS_1 Supratentorial pilocytic 
astrocytoma 

0.66047812 7 Low grade 
neuroepithelial tumor, 
compatible with 
pilocytic astrocytoma 
(supratentorial) 

ONT_WGS_2 Glioblastoma, IDH-
wildtype, RTK2 subtype 

0.96216446 3 Glioblastoma, IDH-
wildtype; TERT 
promoter, NF1 
mutation 
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ONT_WGS_3 Glioblastoma, IDH-
wildtype, RTK1 subtype 

0.97804058 13 Glioblastoma, IDH-
wildtype 

ONT_WGS_4 Meningioma, subclass 
benign 1 

0.91916049 6 Atypical meningioma 
(brain invasion) 

ONT_WGS_5 Diffuse midline glioma, 
H3 K27-altered, 
subtype H3 K27-mutant 
or EZHIP expressing 

0.69325751 11 Diffuse midline glioma, 
H3-3A p.K28M, 
TP53,ATRX mutations 

ONT_WGS_6 Glioblastoma, IDH-
wildtype, [typical 
mesenchymal type] 

0.72031081 10 Glioblastoma, IDH-
wildtype; TERT 
promoter, BRAF 
p.G466V mutation 

ONT_WGS_7 High-grade 
astrocytoma with piloid 
features 

0.74914902 19 Low grade astrocytic 
tumor, compatible with 
pilocytic astrocytoma; 
Slightly increased 
proliferative activity 

ONT_WGS_8 Medulloblastoma, 
SHH-activated, 
subtype 1 

0.95206517 12 Medulloblastoma, 
MBEN, SHH 

ONT_WGS_9 Supratentorial pilocytic 
astrocytoma 

0.44090471 6 PA supratentorial 

ONT_WGS_10 Infratentorial pilocytic 
astrocytoma 

0.92838794 11 PA infratentorial; 
BRAF:KIAA1549 
fusion 

ONT_WGS_11 Glioblastoma, IDH-
wildtype, [atypical 
mesenchymal type] 

0.07266787 5 High grade 
astrocytoma with 
features of GBM; 
TERT promoter 
mutation 

ONT_WGS_12 Astrocytoma, IDH-
mutant, high grade 

0.99313051 10 Astrocytoma (CNS 
WHO grade 3), IDH-
mutant 

ONT_WGS_13 Oligodendroglioma, 
IDH-mutant and 
1p/19q-codeleted 

0.96982682 5 Oligodendroglioma 
CNS WHO grade 3; 
1p/19q deletion 

ONT_WGS_14 Glioblastoma, IDH-
wildtype, [atypical 
mesenchymal type] 

0.42014417 6 Gliosarcoma; TERT 
mutation; 
mesenchymal type 

ONT_WGS_15 Glioblastoma, IDH-
wildtype, [typical 
mesenchymal type] 

0.35345697 8 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation 

ONT_WGS_16 Glioblastoma, IDH-
wildtype, [typical 
mesenchymal type] 

0.86063206 13 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation 

ONT_WGS_17 Glioblastoma, IDH-
wildtype, RTK2 subtype 

0.77491069 595 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation; 
EGFR amplification 



A-16 Tables and Figures 

 

 

ONT_WGS_18 Glioblastoma, IDH-
wildtype, RTK1 subtype 

0.65486097 10 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation; 
EGFR amplification 

ONT_WGS_19 Astrocytoma, IDH-
mutant, high grade 

0.96108365 4 Astrocytoma (CNS 
WHO grade 3), IDH-
mutant 

ONT_WGS_20 Astrocytoma, IDH-
mutant, high grade 

0.92733258 10 Astrocytoma (CNS 
WHO grade 3), IDH-
mutant 

ONT_WGS_21 Glioblastoma, IDH-
wildtype, [typical 
mesenchymal type] 

0.05869766 8 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation 

ONT_WGS_22 Glioblastoma, IDH-
wildtype, RTK2 subtype 

0.54883164 15 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation; 
EGFR amplification 
and mutation 

ONT_WGS_23 Supratentorial pilocytic 
astrocytoma 

0.30169761 12 Ganglioglioma; BRAF 
p.V600E 

ONT_WGS_24 Oligodendroglioma, 
IDH-mutant and 
1p/19q-codeleted 

0.98866129 9 Oligodendroglioma 
CNS WHO grade 3; 
1p/19q deletion 

ONT_WGS_25 Astrocytoma, IDH-
mutant, high grade 

0.98384124 8 Astrocytoma (CNS 
WHO grade 3), IDH-
mutant 

ONT_WGS_26 Infratentorial pilocytic 
astrocytoma 

0.48420542 7 Supratentorial PA 

ONT_WGS_27 Supratentorial 
ependymoma, ZFTA 
fusion-positive, 
subtype ZFTA-RELA 
fused, subclass A 

0.96517265 7 Ependymoma 
ZFTA::RELA fusion 

ONT_WGS_28 Astrocytoma, IDH-
mutant, high grade 

0.71385247 7 Astrocytoma (CNS 
WHO grade 3), IDH-
mutant 

ONT_WGS_29 Glioblastoma, IDH-
wildtype, [typical 
mesenchymal type] 

0.149838 8 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation 

ONT_WGS_30 Melanoma [metastatic] 0.04253213 5 Melanoma 

ONT_WGS_31 Supratentorial pilocytic 
astrocytoma 

0.07866751 7 Ganglioglioma; BRAF 
p.V600E 

ONT_WGS_32 Astrocytoma, IDH-
mutant, high grade 

0.7783125 11 Astrocytoma (CNS 
WHO grade 3), IDH-
mutant 

ONT_WGS_33 Oligodendroglioma, 
IDH-mutant and 
1p/19q-codeleted 

0.29146042 12 Oligodendroglioma 
CNS WHO grade 3; 
1p/19q deletion 
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ONT_WGS_34 Glioblastoma, IDH-
wildtype, RTK2 subtype 

0.27574193 6 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation 

ONT_WGS_35 Oligodendroglioma, 
IDH-mutant and 
1p/19q-codeleted 

0.90576172 23 Oligodendroglioma 
CNS WHO grade 3; 
1p/19q deletion 

ONT_WGS_36 Astrocytoma, IDH-
mutant, high grade 

0.92524707 12 Astrocytoma (CNS 
WHO grade 3), IDH-
mutant 

ONT_WGS_37 Glioblastoma, IDH-
wildtype, RTK2 subtype 

0.75149095 17 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation 

ONT_WGS_38 Glioblastoma, IDH-
wildtype, RTK2 subtype 

0.43869066 4 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation 

ONT_WGS_39 Glioblastoma, IDH-
wildtype, [typical 
mesenchymal type] 

0.40496102 4 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation 

ONT_WGS_40 Glioblastoma, IDH-
wildtype, [typical 
mesenchymal type] 

0.17933275 9 Glioblastoma, IDH-
wildtype; TERT 
promoter mutation 

 

A.2.5 Twist methylation panel samples for MNP-Flex 

Sample 
ID 

MNP-Flex subclass MNP-Flex 
subclass 
score 

Number of 
missing 
sites 

MNP-RF subclass Concordance 

Twist_1 Medulloblastoma 
Group 4, subclass VIII 

0.99945432 850 Medulloblastoma 
Group 4, subclass VIII 

correct, subclass 
level 

Twist_2 Oligodendroglioma, 
IDH-mutant and 
1p/19q-codeleted 

0.96556652 1038 not classifiable, low 
array scores 

correct, inferred 
subclass level 

Twist_3 Oligodendroglioma, 
IDH-mutant and 
1p/19q-codeleted 

0.03357558 20576 Oligodendroglioma, 
IDH-mutant and 
1p/19q-codeleted 

correct, subclass 
level 

Twist_4 Medulloblastoma, 
WNT activated 

0.36605892 1057 Medulloblastoma, 
WNT activated 

correct, subclass 
level 

Twist_5 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

0.28064326 924 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

correct, subclass 
level 

Twist_6 Diffuse paediatric-type 
high grade glioma, 
MYCN subtype 

0.06243469 864 Diffuse paediatric-
type high grade 
glioma, MYCN 
subtype 

correct, subclass 
level 

Twist_7 Rhabdomyosarcoma, 
alveolar subtype 

0.95710695 871 no array correct, inferred 
subclass level 
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Twist_8 Rhabdomyosarcoma, 
alveolar subtype 

0.63181114 986 no array correct, inferred 
subclass level 

Twist_9 Glioblastoma, IDH-
wildtype, RTK2 
subtype 

0.3801648 718 Glioblastoma, IDH-
wildtype, RTK2 
subtype 

correct, subclass 
level 

Twist_10 Glioblastoma, IDH-
wildtype, RTK2 
subtype 

0.24995735 1302 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

correct, family 
level 

Twist_11 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

0.88813639 756 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

correct, subclass 
level 

Twist_12 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

0.55524468 1128 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

correct, subclass 
level 

Twist_13 Glioblastoma, IDH-
wildtype, [typical 
mesenchymal type] 

0.86691952 1130 Glioblastoma, IDH-
wildtype, [typical 
mesenchymal type] 

correct, subclass 
level 

Twist_14 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

0.775702 1225 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

correct, subclass 
level 

Twist_15 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

0.68152976 1141 Glioblastoma, IDH-
wildtype, RTK1 
subtype 

correct, subclass 
level 

Twist_16 Medulloblastoma, 
SHH-activated, 
subtype 3 

0.85646999 1096 Medulloblastoma, 
SHH-activated, 
subtype 3 

correct, subclass 
level 

Twist_17 Medulloblastoma, 
WNT activated 

0.98816001 1138 Medulloblastoma, 
WNT activated 

correct, subclass 
level 

Twist_18 Medulloblastoma, 
SHH-activated, 
subtype 3 

0.96852273 1216 Medulloblastoma, 
SHH-activated, 
subtype 3 

correct, subclass 
level 

Twist_19 Medulloblastoma, 
SHH-activated, 
subtype 3 

0.84640223 1190 Medulloblastoma, 
SHH-activated, 
subtype 3 

correct, subclass 
level 

Twist_20 Astrocytoma, IDH-
mutant, high grade 

0.92211211 1165 Astrocytoma, IDH-
mutant, high grade 

correct, subclass 
level 

Twist_21 Meningioma, subclass 
benign 1 

0.98504096 3437 Meningioma, 
subclass benign 1 

correct, subclass 
level 

Twist_22 Meningioma, subclass 
benign 2 

0.73003393 3527 Meningioma, 
subclass benign 2 

correct, subclass 
level 

Twist_23 Meningioma, subclass 
benign 1 

0.97072429 4864 Meningioma, 
subclass benign 1 

correct, subclass 
level 

Twist_24 Oligodendroglioma, 
IDH-mutant and 
1p/19q-codeleted 

0.9690963 3360 Oligodendroglioma, 
IDH-mutant and 
1p/19q-codeleted 

correct, subclass 
level 

Twist_25 Meningioma, subclass 
benign 2 

0.93222749 6724 Meningioma, 
subclass benign 2 

correct, subclass 
level 

Twist_26 Meningioma, subclass 
benign 2 

0.88537419 6668 Meningioma, 
subclass benign 2 

correct, subclass 
level 
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Twist_27 Glioblastoma, IDH-
wildtype, RTK2 
subtype 

0.98383969 3302 Glioblastoma, IDH-
wildtype, RTK2 
subtype 

correct, subclass 
level 

 


