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Summary
A considerable fraction of stars live in binary systems and may exchange mass with each
other. One of the outcomes of this mass transfer is a contact phase in which the two stars
share a common envelope. If this contact phase is unstable, the binary components will
merge and leave behind a merger product. In the first part of this thesis, we evolve sev-
eral thousand binary systems with varying initial parameters and assumptions regarding the
efficiency of mass transfer to trace which binaries evolve into a contact phase and which
of these may merge. We identify the mechanisms leading to contact and stellar mergers,
assess the influence of our assumptions, and compare our population of contact binaries to
observations.

In the second part of this thesis, we predict the pulsations of stellar merger products to
investigate whether they differ significantly from those of genuine single stars. We find that
the peculiar internal structure of these merger products affects their predicted asteroseismic
signatures, both for merger products on the main sequence and more evolved merger prod-
ucts. With these predictions, we demonstrate the potential of asteroseismology to distinguish
merger products from genuine single stars.

Zusammenfassung
Ein beträchtlicher Teil der Sterne lebt in Doppelsternsystemen. Neben der gravitativen
Wechselwirkung können diese Sterne auch Masse austauschen. Ein mögliches Ergebnis
dieses Massenaustauschs ist eine Kontaktphase, in der die beiden Sterne eine gemeinsame
Hülle teilen. Wenn diese Kontaktphase instabil ist, verschmelzen die Komponenten zu
einem Stern. Im ersten Teil dieser Arbeit entwickeln wir mehrere tausend Doppelsysteme
mit variierenden Anfangsparametern und Annahmen zur Effizienz des Massentransfers, um
zu untersuchen, welche Systeme eine Kontaktphase erreichen und welche davon vermut-
lich verschmelzen. Wir identifizieren die Mechanismen, die zu Kontaktphasen und stellaren
Verschmelzungen führen, bewerten den Einfluss unserer Annahmen und vergleichen unsere
Population von Kontakt-Doppelsternen mit Beobachtungen.

Im zweiten Teil dieser Arbeit sagen wir die Pulsationseigenschaften von
Verschmelzungsprodukten vorher und untersuchen dann, ob sie sich signifikant von echten
Einzelsternen unterscheiden. Wir stellen fest, dass die besondere innere Struktur dieser
Verschmelzungsprodukte ihre vorhergesagten asteroseismischen Eigenschaften beeinflusst,
sowohl für Verschmelzungsprodukte auf der Hauptreihe als auch für weiter entwickelte
Sterne. Mit diesen Vorhersagen zeigen wir das Potenzial der Asteroseismologie,
Verschmelzungsprodukte von echten Einzelsternen zu unterscheiden.
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List of abbreviations

AGB Asymptotic giant branch

BV Brunt-Väisälä

CE Common envelope

CM Centre of mass

HG Hertzsprung gap

HRD Hertzsprung-Russell diagram

LHS Left-hand-side

MHD Magnetohydrodynamic

MS Main sequence

ND N dimension(s), N-dimensional

PSP Period spacing pattern

RHS Right-hand-side

RG Red giant

RL Roche lobe

RLOF Roche lobe overflow

SN Supernova

SPH Smoothed particle hydrodynamic
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List of physical constants

symbol name value in SI units

M⊙ Solar mass 1.988410 × 1030 kg

L⊙ Solar luminosity 3.828 × 1026 W

R⊙ Solar radius 6.957 × 108 m

σ Stefan-Boltzmann constant 5.6703744191844314 × 10−8 W m−2 K−4

c Speed of light in vacuum 2.99792458 × 108 m s−1

G Gravitational constant 6.6743 × 10−11 m3 kg−1 s−2
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“A few years ago the city council of Monza, Italy, barred pet owners from keeping
goldfish in curved bowls. The measure’s sponsor explained the measure in part by saying
that it is cruel to keep a fish in a bowl with curved sides because, gazing out, the fish would
have a distorted view of reality. But how do we know we have the true, undistorted picture
of reality?”

– Stephen Hawking (1942–2018), The Grand Design (2010)





1
Context and theoretical background

Living together can complicate the lives of stars, but, just as for people, it definitely makes
them considerably more interesting and exciting. It just happens that most stars, especially
the ones more massive than our Sun, do not live alone. Observations have firmly established
this for over a decade now (Sana et al., 2012). In fact, approximately half of the stars as
massive as our Sun (one solar mass, 1 M⊙) are part of what we call a multiple system. Such
a multiple system can be a binary system (two stars), triple system (three stars), quadruple
system (four stars) and so on. For stars more massive than our Sun, this multiplicity factor
increases, and for masses around 10 M⊙, the fraction of triple systems even overtakes the
fraction of binary systems (Moe and Di Stefano, 2017; Offner et al., 2023). Thus, if we
want to correctly interpret the ever-growing collection of data from ground- and space-based
instruments, we ought to realise that single stellar structure and evolution theory alone does
not suffice. For the remainder of this thesis, we focus specifically on binary systems.

The first mention of ‘double stars’ (that we know of) dates back to the 2nd century of the
Common Era, when the Alexandrian astronomer Claudius Ptolemy described ‘the nebulous
and double star at the eye’ of the Sagittarius constellation. Later, with the invention of
telescopes, many more binary stars could be discovered by astronomers such as Benedetto
Castelli, John Mitchel, and William Herschel. During these early days of binary detections,
astronomers were restricted to detecting visual binaries, stars that are positioned closely in
the sky, but that can still be distinguished. The difficulty back then was that some of these
visual binaries were not physical binaries, orbiting around the components’ common centre
of mass, but rather optical binaries. The latter are nothing more than chance alignments of
two stars, which may in reality be separated by lightyears. For more information on the first
detections of binary stars, we refer the reader to Tauris and van den Heuvel (2023).

In the 1950s, observations of the inner binary of the Algol1 triple system showed that the
more evolved star was the less massive one. Assuming that both stars were born together,
this went against the basic theory that more massive stars evolve faster than less massive
stars. This Algol paradox was eventually solved by Crawford (1955), who realised that sig-
nificant amounts of mass transfer (see Sect. 1.1.4) must have occurred between the two stars.

1The variability of the Algol system was realised already in ancient times. This prompted Arabic as-
tronomers to call the system ra’s al-ghūl (Èñ 	

ªË@ �

@P) or head of the ogre. It was only in 1881 that Edward

Charles Pickering confirmed that the system contained an eclipsing binary, hence finding the cause for the
variability.

1



1 Context and theoretical background

With this, the realisation was born that the evolution of binary stars can severely impact the
binary components.

One of the more extreme ways in which binary evolution can impact the binary compo-
nents is when it leads to a situation in which they merge into one star. Such stellar mergers
are predicted to be common; de Mink et al. (2014) estimate that ∼8% of early-type stars
in their simulated sample are stellar merger products, while Sana et al. (2012) infer from
the comparison between observations of massive stars and simulations that 20–30% of bi-
nary systems will likely merge. In the first part of this thesis, we focus on the evolution of
binary systems (binary star systems or binary stars) and how this evolution can lead to con-
tact phases, which are the phases that precede stellar mergers. Stellar merger products are
predicted to have peculiar properties, and based on these properties, several merger prod-
uct candidates have been found. Examples of these candidates include τ Sco (Schneider
et al., 2016, 2020) and one of the components of the binary system HD 148937 (Frost et al.,
2024, in this case, the merger happened between two components of a triple system). It is,
however, not straightforward and sometimes even impossible to identify merger products
from their potentially peculiar surface properties alone. Therefore, in the second part of this
thesis, we use asteroseismology, the study of stellar interiors through stellar pulsations. We
predict how peculiarities in the internal structure of merger products might lead to signatures
in their pulsations that could help us to distinguish them from ‘normal’ single stars.

The following sections are meant to introduce the worlds of binary evolution (Sect. 1.1)
and asteroseismology (Sect. 1.2). Since this is a theoretical work, we also introduce the
computational tools we use to predict the evolution of stars and their asteroseismic char-
acteristics in this thesis (Sect. 1.3). In Sect. 1.4, we further highlight the importance of
stellar mergers in astrophysics and discuss the idea of using asteroseismology to identify
their products.

1.1. Binary star evolution: the basics

1.1.1. Timescales
In stellar evolution, we typically consider three timescales. From the theoretical side, these
timescales serve as diagnostics for understanding the evolution of stars. When we see that
a certain process, for example, the expansion of the star, occurs on a timescale similar to
one of these three timescales, we get an idea of what physics is likely driving this process.
The first timescale estimates the time a star, a binary component in this case, will spend
in a phase of central nuclear burning, such as on the main sequence (MS) when it burns
hydrogen (H) in its core. This timescale, the nuclear timescale τnuc, is typically the longest
and is on the order of 107 years for a 10 M⊙ MS star. The nuclear timescale of a star is
usually estimated by the available nuclear energy in its core Enuc and its luminosity L⋆, as
given in Kippenhahn et al. (2013)

τnuc =
Enuc

L⋆
≈ 1010 M⋆

M⊙

L⊙
L⋆

yr , (1.1)

where M⋆ is the mass of the star. The Kelvin-Helmholtz timescale τKH, also referred to as
the thermal timescale, essentially tells us how long it would take for a star with a certain
luminosity to radiate away all of its internal energy. In other words, it is the survival time of

2



1.1 Binary star evolution: the basics

a star without nuclear burning to generate counterpressure, and it is on the order of 104 years
for a 10 M⊙ MS star. When a star is out of thermal equilibrium, for example, because it
loses or gains mass (see Sect. 1.1.4), the thermal timescale is the time it takes to regain this
thermal equilibrium. Its explicit expression is (Kippenhahn et al., 2013)

τKH =
GM2

⋆

2R⋆L⋆
≈ 1.5 × 107

(
M⋆

M⊙

)2 R⊙
R⋆

L⊙
L⋆

yr , (1.2)

where R⋆ is the stellar radius and G the gravitational constant. The dynamical timescale
τdyn is on the order of 10−3 years or half a day for a 10 M⊙ MS star and is thus the shortest
of the three timescales. It is the time a star needs to regain hydrostatic equilibrium after
experiencing a perturbation. We typically estimate it as the sound-crossing time, that is, the
time it takes a sound wave, which is a pressure disturbance, with a global average sound
speed ⟨cs⟩ to traverse the stellar radius R⋆ (Kippenhahn et al., 2013; Tauris and van den
Heuvel, 2023):

τdyn =

∫ R⋆

0

dr
cs
≈ R⋆

⟨cs⟩ ≈ 0.04
(
M⊙
M⋆

)1/2 (
R⋆

R⊙

)3/2

day , (1.3)

where cs = cs(r) is the local sound speed and r the radial coordinate.

1.1.2. The Roche potential
The Roche potential is an approximation of the effective gravitational potential felt by a
particle, be it a blob of stellar matter, material flowing between the two stars, or a planet.
This approximation, introduced by Édouard Roche (1820–1883), assumes that both stars
are co-rotating with the binary orbit, treats the stars as point masses, and assumes a circular
orbit, that is, the eccentricity e = 0. Putting the origin of the coordinate system, which we
take to co-rotate with the binary system, in the centre of mass (CM), we can write down the
Roche potential Φ(⃗r) as follows (Tauris and van den Heuvel, 2023):

Φ(⃗r) = − GM1

|⃗r − r⃗1| −
GM2

|⃗r − r⃗2| −
1
2

(
Ω⃗bin × r⃗

)2
. (1.4)

In this expression, r⃗ is the position vector of a particle in the Roche geometry, r⃗1 and r⃗2 are
the positions of the centres of the primary and secondary star, respectively, and M1 and M2

are the masses of the primary and secondary star, respectively. ‘Primary’ usually refers to
the more massive star in the binary, and ‘secondary’ to the less massive star. It is important
to realise that some authors will use this terminology for the currently more and less massive
stars, for example, in an observed binary system. In this thesis, as emphasised in Sect. 2.2.2,
we call the initially more massive star the primary and the initially less massive star the
secondary. The force a test particle feels is retrieved by taking the negative of the gradient
of the Roche potential: f⃗Roche = −∇⃗Φ.

The last term on the right-hand-side (RHS) of Eq. (1.4) is the centrifugal potential, with

|Ω⃗bin| = Ωbin = 2π/Porb =

√
G(M1 + M2)/a3

orb the angular orbital frequency, and Porb and
aorb the orbital period and separation, respectively. A stationary particle in the Roche ge-
ometry will thus feel the combined effect of the gravitational force from both stars and the
centrifugal force. If a particle moves with respect to the co-rotating coordinate system, it
will, in addition, be influenced by the Coriolis force.

3



1 Context and theoretical background

L1 L2L3

L4

L5

CM
M1

M2

Figure 1.1: Roche equipotential lines (indigo and black) through the Lagrange points L1, L2, and L3,
indicated by red crosses, in the orbital (xy) plane for a binary system with M1 = 10 M⊙, M2 = 4 M⊙
and Porb = 20 days. The Roche lobe is highlighted in indigo, and the centre of mass with a blue plus
symbol. Around the L4 and L5 points, which themselves are indicated by red crosses, equipotential
lines between Φ(L3) and Φ(L4), and Φ(L3) and Φ(L5) are shown, respectively. The thin grey line in
the secondary star’s Roche lobe shows the trajectory (for one orbital period) of a particle travelling
through L1 with a small initial velocity in the x- and y-directions. The script to produce this figure
is a combination of adapted scripts originally by V. Bronner (Roche equipotentials) and F. Schneider
(particle trajectories).
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1.1 Binary star evolution: the basics

The Roche potential has a total of five saddle points, commonly referred to as the La-
grange points and shown in Fig. 1.1. The first three Lagrange points lie on the line connect-
ing the centres of the two stars. The first Lagrange point, L1, is the point in between the
two stars. The second and third Lagrange points, L2 and L3, lie on the outside of the binary
system, at the side of the less massive and more massive star, respectively. These points are
also referred to as the outer Lagrange points. The L4 and L5 points lie in the orbital plane on
a line orthogonal to the line connecting the two stars. Figure 1.1 shows equipotential lines
of the Roche potential through the L1, L2, and L3 points and around the L4 and L5 points.
The two sides of the eight-shaped equipotential through L1 are called the Roche lobes. A
star filling its Roche lobe will thus no longer be spherical but more tear-shaped. When both
binary components are well within their Roche lobes, we call the binary detached. If one of
the binary components fills or overfills its Roche lobe, it is called semi-detached, and when
both stars (over)fill their Roche lobes, we say that the stars are in a contact phase. A more
detailed classification scheme for the different kinds of contact phases is given in Sect. 1.1.5.
As discussed in Sect. 1.3.1, we often need to make further approximations because we want
to model binary systems in one dimension (1D). To know if a star, which is necessarily
spherically symmetric in 1D, fills or overfills its Roche lobe, we need to compare its radius
to the so-called Roche-lobe radius RRL. This Roche-lobe radius is a volume-equivalent ra-
dius of the star’s Roche lobe, that is, the radius of a sphere with the same volume as the
Roche lobe. Different approximations for RRL exist (see, e.g. Paczyński 1971), but the one
from Eggleton (1983) is most often used and is given by

RRL

aorb
=

0.49q−2/3

0.6q−2/3 + ln
(
1 + q−1/3) . (1.5)

It is important to realise that RRL = RRL(aorb, q) only depends on the orbital separation
aorb and the mass ratio2 q = M2/M1, not on the total mass of the binary system.

1.1.3. Tides in binary systems
One of the main approximations in the Roche potential is that the binary components are
treated as point masses, which they obviously are not. Since stars are extended objects,
the different parts of the star feel different amounts of gravitational attraction from their
companion in a binary system. As a result, the star is squeezed at its poles and stretched
at its equator along the line between the binary components. This is referred to as tidal
deformation. A simple way to see this is if we look at the problem in the orbital xy-plane
(in 2D) and start from the expression of the gravitational potential at position r⃗ caused by
the companion with mass Mcomp at position a⃗orb (with the origin in the centre of the tidally
deformed star), which is

Φgrav
(⃗
r
)
= −GMcomp

|⃗r − a⃗orb| . (1.6)

By taking θ as the angle between r⃗ and a⃗orb, we can rewrite the denominator on the RHS as

2Throughout this thesis, we define q to always be the ratio of the mass of the less massive over the mass of
the more massive star. So, assuming that at a given time M1 > M2, we use q = M2/M1 in Eq. (1.5) to get the
Roche-lobe radius of the more massive star. To get RRL for the less massive star, we use the inverse mass ratio
qinv = M1/M2 in Eq. (1.5).
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1
|⃗r − a⃗orb| =

1√(⃗
r − a⃗orb

) · (⃗r − a⃗orb
) =

1√
r2 − 2raorb cos θ + a2

orb

=
1

aorb

1√(
r

aorb

)2

− 2
(

r
aorb

)
cos θ + 1

.
(1.7)

Realising that the second fraction on the RHS of Eq. (1.7) is the generating function of the
Legendre polynomials Pm=0

ℓ (cos θ), we can write Φgrav as

Φgrav = −
GMcomp

aorb

∞∑

ℓ=0

P0
ℓ(cos θ)

(
r

aorb

)ℓ
. (1.8)

Writing this out up to the second degree (ℓ = 2), we find

Φgrav ≃ −
GMcomp

aorb

1 +
(

r
aorb

)
cos θ +

1
2

(
r

aorb

)2 (
3 cos2 θ − 1

) , (1.9)

where we have used that P0
0(cos θ) = 1, P0

1(cos θ) = cos θ, and P0
2(cos θ) = (1/2)(3 cos2 θ−1).

The first term in Eq. (1.9) is a constant. From the second term, we recover the gravitational
attraction in the x-direction, −GMcomp/a2

orb, with x = r cos θ. The third term is the one
responsible for the stretching and squeezing. It reaches its minimum and is negative in the
y-direction (θ = π/2 and θ = 3π/2), and has its maximum and is positive in the x-direction
(θ = 0 and θ = π). Assuming the tidally deformed star is otherwise spherical (i.e. not
rotationally deformed), the deformation, which we now derived in a specific 2D plane, is
independent of the orientation of this plane. Hence, we see how the third term on the RHS
of Eq. (1.9) deforms the star into a ‘rugby ball’ shape.

In a binary where the rotation of the tidally deformed component is synchronised with
the binary orbit, the tidal bulges align with the line connecting the centres of the two stars, as
recovered from Eq. (1.9). When a star rotates non-synchronously, various dissipative forces
in the stellar interior, which convert the kinetic energy of the large-scale fluid motions in
the tidal bulge into heat, cause a misalignment of the tidal bulge with this connecting line
(see, e.g. Zahn 2008 for an overview of these dissipation mechanisms). When the tidally
deformed star has a rotation period that is longer than the orbital period, the bulge lags
behind because of this friction, while the bulge gets dragged ahead when a star’s rotation
period is shorter than the orbital period. This misalignment causes a torque on the tidally
deformed star, which serves as a mechanism to transfer angular momentum between the
binary orbit and the deformed star. If, for example, a tidally deformed star has a longer
rotation period than the orbital period, this torque and conservation of angular momentum
cause a spin-up of the star and a shrinking of the binary orbit. This transfer of angular
momentum between the orbit and the components is often referred to as L–S -coupling or
spin-orbit-coupling, where L = Lorb stands for the orbital angular momentum and S for
the spin-angular momentum. Through this L–S -coupling, tides influence the evolution of
binary systems.

Assuming no angular momentum is lost, a binary system strives to be in a minimal en-
ergy state. In this state, called the state of equilibrium tides, the binary components are
synchronised (P1 = P2 = Porb, with P1 and P2 the rotation periods of the primary and
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1.1 Binary star evolution: the basics

secondary, respectively), the orbit is circularised (eccentricity e = 0), and the spins of
the components are aligned (Hut, 1981). The synchronisation, circularisation, and spin-
alignment timescales τsync, τcirc, and τalign, respectively, can be estimated and depend on the
structure of the binary components (see Hut 1981 and Hurley et al. 2002). In general, it
is found that τcirc ≫ τsync, τalign. It is also important to realise that τsync ∝ (aorb/R⋆)6 and
τcirc ∝ (aorb/R⋆)8, meaning that the effect of tides become relevant only in relatively close
binary systems or systems in which one or both components is/are near Roche-lobe filling.
For example, Lennon et al. (2024) find that systems with primary masses of 5–20 M⊙ and
orbital periods below 3 days in the 30 Doradus region of the Large Magellanic Cloud (LMC)
are synchronised, while those with orbital periods of more than 10 days are not. Giuricin
et al. (1984) find that systems in a similar mass range have circular orbits if their orbital
period is roughly below 2 days. Lastly, this state of equilibrium tides can, in certain cases,
become unstable, resulting in contact phases and potentially stellar mergers. We dive deeper
into this possibility in Sect. 2.3.4.

1.1.4. Mass transfer
When a component of a binary system (over)fills its Roche lobe, that is, R⋆ ≥ RRL, some
of its mass is transferred to its companion. The more massive a star, the quicker it evolves
through the MS and, consequently, the more rapidly it expands (be it on the MS or by the fact
that it reaches the post-MS expansion phases earlier). Therefore, the more massive binary
component fills its Roche lobe first and initiates mass transfer.

Mass transfer occurs through the L1-point, which acts as a nozzle. To estimate the mass-
transfer rate Ṁtrans (usually expressed in units of M⊙ yr−1) we need to know the density ρ of
stellar material, the local sound speed cs, and the effective cross-section of the mass flow Q
at L1 (Kippenhahn and Weigert, 1967; Savonije, 1979; Meyer and Meyer-Hofmeister, 1983;
Ritter, 1988):

Ṁtrans ≃ ρcsQ . (1.10)

Estimating these three quantities is not straightforward, especially in 1D approximations,
and is part of ongoing research (Pavlovskii and Ivanova, 2015; Marchant et al., 2021; Ce-
hula and Pejcha, 2023; Ivanova et al., 2024). See also Tauris and van den Heuvel (2023)
for some commonly used approximations. An important realisation was made by Kolb and
Ritter (1990) about the onset of mass transfer. They found that mass transfer must start grad-
ually instead of suddenly when R⋆ = RRL. The reason for this is that the radius R⋆ is often
defined as the photospheric radius, meaning that there is a non-negligible optically thin part
of the stellar atmosphere above R⋆. In other words, mass transfer starts gradually and before
the star is formally filling its Roche lobe, that is, when R⋆ < RRL. This is the optically thin
regime in the scheme of Kolb and Ritter (1990), and when R⋆ ≥ RRL, mass transfer occurs
in the optically thick regime.

The star that loses mass in a mass-transfer phase is commonly referred to as the donor
star (subscript ‘d’ in the following chapters), and the mass gainer is called the accretor star
(subscript ‘a’). Although the accretor is often overlooked in binary evolution studies, its
response to mass gaining can alter the evolution of the binary system tremendously (see
Chapters 2 and 3).
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1 Context and theoretical background

Mass-transfer phases are typically classified in cases based on the evolutionary stage of
the donor star. More specifically, these cases are based on the main expansion phases of a
star, as shown in Fig. 1.2. Case-A mass transfer refers to mass transfer that occurs when the
donor star is on the MS. The donor star is, in this case, initially driven to fill its Roche lobe by
the nuclear-timescale expansion during its core-H burning phase. When mass transfer sets
in while the donor star has left the MS and before it has ignited helium (He) in its core, that
is, when the star is on the Hertzsprung gap (HG), we refer to it as Case-B mass transfer. In
these cases, the donor star is out of thermal equilibrium, which leads to a thermal-timescale
expansion phase. We subdivide Case-B mass transfer further into early (Case Be) and late
(Case Bl) phases. This distinction is based on the state of the donor star’s envelope. Case-Be
mass transfer occurs when the donor star still has a mostly radiative envelope, while Case-
Bl mass transfer occurs when this envelope is mostly convective. Lastly, mass transfer is
classified as Case-C when the donor star is post-core-He ignition. Technically, a massive
star such as the one shown in Fig. 1.2 contracts upon core-He ignition and only expands
again close to core-He exhaustion. For this reason, some authors put the line between Case-
B and Case-C mass transfer at core-He exhaustion.
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Figure 1.2: Radial expansion of a 10.2 M⊙ star (solid black line). The radial evolution is divided into
different cases based on the main phases of expansion (solid horizontal lines). The dashed horizontal
lines are the sampling points at which we put R = RRL, as described in Sect. 2.2.3. This figure is
taken from Henneco et al. (2024b).

1.1.4.1 Mass-transfer efficiency

Since accretors do not only accrete mass but also angular momentum (either by direct impact
or through an accretion disk), they tend to spin up to higher rotation rates. Once the critical
rotation rate is reached, which is the rotation rate at which the centrifugal force balances
out the gravitational force (hence the often used name breakup rotation rate), mass accre-
tion is quenched. This creates a situation where the accretor does not accrete all the mass
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transferred into its Roche lobe through L1. Mass transfer is then said to be non-conservative
and has a mass-transfer efficiency, defined as the fraction of accreted mass over the trans-
ferred mass, smaller than one. However, this is a simplified picture. Interactions between
the inner rim of the accretion disk and the surface of the accretor combined with various
angular momentum transport processes in the accretion disk can allow for higher accretion
efficiencies than what we predict from the spin-up of the accretor alone (Paczynski, 1991;
Popham and Narayan, 1991). Both from the observational and theoretical side, the mass-
transfer efficiency is ill-constrained (see discussion in Sect. 2.5.1). It remains one of the
main uncertainties in binary evolution. However, there is hope now that the first populations
of stripped stars, stars that have lost (part of) their envelope in a mass-transfer event, are
being observed and detected (Schootemeijer et al. 2018; Wang et al. 2021; El-Badry and
Quataert 2021; Irrgang et al. 2022; El-Badry and Burdge 2022; El-Badry et al. 2022; Frost
et al. 2022; Gilkis and Shenar 2023; Ramachandran et al. 2023; Drout et al. 2023; Götberg
et al. 2023). Comparing, for example, the mass ratio and orbital period distributions of ob-
served populations of these post-mass-transfer binaries to those from simulated populations
could help us constrain the mass-transfer efficiency.

During conservative mass transfer, when both the total mass (ignoring mass loss through
stellar winds) and angular momentum are conserved, we can easily estimate the binary or-
bit’s response by differentiating the expression of the total angular momentum in a binary
system and equating it to zero (Tauris and van den Heuvel, 2023). Under these assumptions,
the change in accretor mass with time, Ṁa, is exactly the opposite of the change in donor
mass with time, Ṁd, namely Ṁa = −Ṁd. Using this together with the assumption that the
orbit is circular, one finds that

ȧorb

aorb
= 2

(
Md

Ma
− 1

)
Ṁd

Md
, (1.11)

with ȧorb the time derivative of the orbital separation, and Ma and Md the accretor and donor
mass, respectively. What comes out of this is that, as long as the donor star is more massive
than the accretor, the orbit will shrink (ȧorb < 0). At the point where Ma = Md, the sign of
ȧorb reverses and the orbit widens. For non-conservative mass transfer, the expression for the
orbital evolution becomes more complicated and depends on the mass-transfer efficiency and
the uncertain amount of specific angular momentum taken away by the non-accreted matter:

ȧorb

aorb
= −2

[
1 − βth

Md

Ma
− (1 − βth)(γ + 1/2)

Md

Md + Ma

]
Ṁd

Md
. (1.12)

Here, βth = −Ṁa/Ṁd is the mass-transfer efficiency3 and γ the fraction of the binary system’s
total specific angular momentum that is taken away by the non-accreted matter. Figure 1.3
shows the evolution of q = Ma/Md and the sign of ȧorb for different mass-transfer efficien-
cies. We set γ = Md/Ma, which is appropriate for the case in which the non-accreted matter
is isotropically re-emitted from the vicinity of the accretor (Soberman et al., 1997). The plots
in Fig. 1.3 show that in the case of isotropic re-emission, systems with non-conservative
mass transfer widen before the accretor mass exceeds the donor mass.

3Note the ‘th’ = ‘theoretical’ subscript added to differentiate this definition of the mass-transfer efficiency
from the more practical definition introduced in Sect. 2.2.2.1 and used in Chapter 2.
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Figure 1.3: Evolution of q = Ma/Md for different values of βth and a fixed value of |Ṁd| =
10−4 M⊙yr−1. The colour of the lines indicates the sign of ȧorb, determined with Eq. (1.12). The
horizontal grey line indicates the point where q = 1.

1.1.4.2 Mass-transfer stability

A second key aspect of mass transfer is its stability. It is also one of its most ill-defined
aspects. Mass transfer is said to be unstable if the mass-transferring binary system finds itself
in a runaway situation with ever-increasing mass-transfer rates. However, defining what
exactly is a runaway situation is ambiguous and often not straightforward (e.g. Temmink
et al., 2023). As shown at the beginning of this section, the mass-transfer rate depends on
the density ρ at L1. The more the donor star overfills its Roche lobe, the higher this density
and the higher Ṁtrans. Therefore, to assess the stability of mass transfer in simulations,
we ought to see how the donor star’s radius and Roche lobe radius respond to mass loss
(Soberman et al., 1997). This is made quantitative by Webbink (1984) in so-called mass-
radius exponents, defined as

ζ⋆ =
d ln R
d ln M

and ζRL =
d ln RRL

d ln M
, (1.13)

where ζ⋆ and ζRL are the mass-radius exponents of the donor star and its Roche lobe, re-
spectively. These mass-radius exponents are simply the slopes of the mass-radius relation.
When the donor star loses mass, it is out of hydrostatic and thermal equilibrium. To find
out the response of the donor star to mass loss, one should look at its dynamic and thermal
responses. However, it is often assumed that the dynamic response of the star happens adi-
abatically, hence, the classical criteria for mass-transfer stability are based on the adiabatic
and thermal responses, ζad and ζth, respectively. These mass-radius exponents determine the
radius of the donor after regaining hydrostatic and thermal equilibrium. The mass transfer
stability criteria then become a matter of comparing ζad, ζth, and ζRL:
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Stable mass transfer: ζRL ≤ ζth and ζRL ≤ ζad — The donor star remains in thermal and
hydrostatic equilibrium, and is at all times contained within its Roche lobe. Stable mass
transfer is typical when the mass transfer is driven by the star’s expansion during central
nuclear-burning stages such as the MS (nuclear-timescale mass transfer, Case-A mass trans-
fer). Alternatively, the orbital shrinkage caused by angular momentum loss can also drive
stable mass-transfer phases.

Thermal timescale (stable) mass transfer: ζth ≤ ζRL < ζad — In this case, the donor star
is in hydrostatic but not in thermal equilibrium. This kind of mass-transfer phase lasts until
the donor star has regained thermal equilibrium and is characterised by higher mass-transfer
rates than stable mass-transfer.

Unstable mass transfer: ζRL > ζth and ζRL > ζad — This is a runaway situation in which
the Roche lobe fails to contain the donor star. As a result, the more mass is lost, the more
Roche-lobe overflow there is, and the more the mass-transfer rate increases.

In general, stars with convective envelopes (Case-Bl and -C mass transfer) tend to expand
upon mass loss, while those with radiative envelopes (Case-A and -Be mass transfer) shrink.
From the definitions above, it is clear that a situation in which the donor star expands upon
mass loss can quickly become unstable if its Roche lobe does not expand at least at the
same rate. Although this is a convenient rule of thumb for estimating what will happen to
a binary system when mass transfer sets in, detailed mass-transfer calculations show that a
more nuanced approach is appropriate (see, e.g. Temmink et al. 2023).

Since most binary evolution codes operate on evolutionary timescales, the dynamic and
adiabatic responses of donor stars to mass loss cannot be captured. However, detailed com-
putations for the adiabatic response of donor stars exist (e.g. Hjellming, 1989a,b; Deloye
and Taam, 2010; Ge et al., 2010a,b; Ge et al., 2015, 2020; Ge et al., 2023, 2024) and can be
incorporated through fitting formulae and/or tables. A drawback of these studies is that they
do not always account for the evolution of the binary system as a whole in their stability
assessment. Additionally, despite looking at the adiabatic response of the donor star, they
still assume the star to be in hydrostatic equilibrium, that is, the fluid velocities are neglected
(Ge et al., 2010a). This assumption only breaks down in the vicinity of L1, yet it causes us
to potentially miss physical processes influencing the stability of mass transfer. To alleviate
this shortcoming, other works do not look at the adiabatic response of the donor star but
instead include hydrodynamic terms in the stellar structure equations solved in stellar evolu-
tion codes to find the response of the donor star to mass loss (e.g. Woods and Ivanova, 2011;
Ivanova et al., 2024). In yet another way, works such as Pavlovskii and Ivanova (2015)
and Temmink et al. (2023), do not consider the hydrodynamic or adiabatic response of the
donor star but take into account the fact that the sub-surface layers of certain types of stars
are super-adiabatic when determining the stability of mass transfer. Furthermore, it is also
important to realise that the onset of mass transfer can be stable and become unstable later
on (delayed instability), or vice versa; what seems like a runaway behaviour in the mass-
transfer rate can stabilise (Temmink et al., 2023). In Sect. 2.3.5, we come back to this issue
of predicting the onset of unstable mass transfer in the light of our own models.

Unstable mass transfer results in the onset of a contact phase, which can be catastrophic
for the binary system’s survival. The next section focuses on such and other contact phases.
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1.1.5. Contact phases and stellar mergers

Two things can happen during a mass-transfer phase between ‘living’4 stars: either the donor
star settles back into its Roche lobe and the binary becomes detached again, or the two stars
enter a contact phase. Once a binary reaches such a contact phase, the stars are said to share
a common envelope (CE). Depending on the physical driving mechanism and relative sizes
of the binary components, such common envelope systems can be subdivided into several
categories (Röpke and De Marco, 2023). We discuss the physical driving mechanisms for
contact phases at length in Sect. 2.3, so we only briefly mention them here.

1.1.5.1 Contact binaries

Under the term ‘contact binaries’ (also referred to as overcontact binaries), we typically
count systems in which both components are MS or hot post-MS stars, that is, when contact
is reached during Case-A or -Be mass transfer. The latter stars have evolved off the MS
but have not yet evolved to (super)giant proportions. When such stars initially come into
contact, there is no loss of co-rotation, and they form peanut-shaped objects. Within their
peanut-shaped common envelope, the components exchange energy, as theorised by Lucy
(1968) and modelled by Lucy (1976), Flannery (1976), Hazlehurst (1985), Kaehler (1989),
Shu et al. (1976, 1979), and Lubow and Shu (1977, 1979). More recently, Fabry et al. (2023)
implemented the model from Shu et al. (1976, 1979) and Lubow and Shu (1977, 1979) in
the modern-day stellar evolution code MESA (see Sect. 1.3.1 for more info about MESA). The
models for contact binaries given above resolved Kuiper’s paradox (Kuiper, 1941), which
stated that unequal-mass contact binaries should be unstable. In fact, stable contact binary
configurations must exist, since on the order of 105 contact binary candidates, with equal
and unequal masses, have been observed with the Optical Gravitational Lensing Experiment
(OGLE, Pietrukowicz et al., 2013; Pawlak et al., 2016; Soszyński et al., 2016, and references
therein), the All Sky Automated Survey (ASAS, Paczyński et al., 2006; Rucinski, 2007),
Kepler (Prša et al., 2011), the Transiting Exoplanet Survey Satellite (TESS Ricker et al.,
2015), and Gaia (Gaia Collaboration et al., 2016, 2023b). The majority of these observations
are of low-mass contact binaries. Only on the order of 10 high-mass (initial primary mass
≳8 M⊙) contact binaries have been detected so far (Abdul-Masih et al., 2022). We know that
both stable and unstable contact binaries exist from the theoretical side (see, e.g. Fabry et al.
2022, 2023 and references therein).

To understand the stability of contact binaries, we need to consider the mechanisms that
drive them. Contact binaries form when the accretor star fills its Roche lobe during a mass-
transfer phase (see Sect. 2.3.1). If it does this on its nuclear timescale (i.e. the accretor
has regained thermal equilibrium), the resulting contact phase is initially likely stable. If
the expansion happens on the accretor’s thermal timescale, two things can happen. If the
thermal expansion of the accretor continues, the contact binary will be unstable and likely
merge. If the thermal expansion halts upon reaching contact, the contact phase tends to
be relatively short-lived since the accretor typically shrinks again after regaining thermal
equilibrium. During unstable mass transfer, the accretor’s expansion timescale typically
approaches its dynamical timescale, leading to an unstable contact binary (see Sect. 2.3.5).
Tides, more specifically tidal instabilities, can lead to the formation of unstable contact
binaries (see Sect. 2.3.4) or destabilise previously stable contact binaries. The luminous red

4In this thesis, we focus on stars before they turn into compact objects. We use the term ‘living’ as an
antonym for the way compact objects tend to be referred to as ‘dead’ stars (see, e.g. Longair, 2011)
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nova V1309 Sco, the transient phenomenon linked to a stellar merger, has been shown by
Tylenda et al. (2011) and Stȩpień (2011) to be likely caused by a tidal instability.

When the common envelope of a (stable) contact binary increasingly overfills the Roche
lobe (e.g. because of the expansion of the components or orbital shrinkage), it can fill the
L2-lobe (see Fig. 1.1). Expansion beyond this point leads to mass loss though the L2-point
(L2-overflow). Matter lost through L2 carries a substantial amount of angular momentum
(depending on the assumed expulsion velocity, see Marchant et al. 2021), causing the binary
orbit to shrink. This is yet another way in which contact binaries can become unstable and
result in stellar mergers.

1.1.5.2 Classical common envelopes

A classical CE is a contact phase in which one of the components is of (super)giant propor-
tions (Case-Bl or -C mass transfer). Its more compact companion, for example, an MS star,
hot post-MS star, or compact object (white dwarf, neutron star, or black hole), is engulfed by
the (super)giant star and spirals in together with the (super)giant’s core under the influence of
drag forces (Röpke and De Marco, 2023). The classical CE phase, first hypothesised explic-
itly by Paczynski (1976), is a necessary phase of binary evolution to explain the formation of
the close, compact object binaries, which are the progenitors of gravitational wave sources.
This is because, from binary evolution calculations, we know that this particular kind of
binary system must have been initially in significantly wider orbits. In general, classical
common envelopes have two outcomes (these are often referred to as ‘failed’ and ‘success-
ful’ classical CEs, but this naming scheme is rather subjective in the sense that whether the
classical CE ‘fails’ depends on which aspect of classical CE evolution one is interested in).
In the first scenario, the common envelope is fully ejected, and a binary with a closer orbit
than the one at the onset of the classical CE is left behind. One of the mechanisms fuelling
this envelope ejection is the conversion of orbital energy into kinetic energy through dynam-
ical friction (Röpke and De Marco, 2023). Together with the transfer of angular momentum
from the orbit to the envelope material, this creates spiral arms and shock fronts, which can
additionally heat the envelope material, causing it to expand. During the later stages of the
classical CE phase, the colder envelope material recombines and can be further accelerated
by radiation pressure. Furthermore, magnetohydrodynamic instabilities can occur and, for
example, lead to magnetised outflows (Ondratschek et al., 2022; Vetter et al., 2024). In the
second classical CE scenario, the envelope cannot be fully ejected, and the continuous grav-
itational drag forces lead to a stellar merger. The onset of classical CE phases can be caused
by the expansion of the (super)giant donor star, possibly even beyond the outer Lagrange
points (see Sect. 2.3.3). This is often accompanied by the onset of unstable mass transfer
(see Sect. 2.3.5). Tidal instabilities (see Sect. 2.3.4) can also cause the onset of classical CE
phases. Next to their importance for the formation of gravitational wave progenitors, their
ejected common envelopes are responsible for a significant fraction of observed planetary
nebulae (Boffin and Jones, 2019).

1.1.5.3 Double-core common envelopes

The last category of common envelopes is that of the double-core CEs. This contact phase
sets in when two stars of (super)giant proportion come into contact. The difference with
classical CEs is that the extended CE now consists of material from both stars. Although
double-core CEs are often overlooked, they have been shown by Vigna-Gómez et al. (2018)
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to be essential in explaining the population of double neutron stars. Like the classical CEs,
double-core CEs can also result in stellar mergers (Röpke and De Marco, 2023).

1.1.5.4 Stellar mergers

As made clear in the preceding sections, one of the principal outcomes of a contact phase is
a stellar merger. We note that binary evolution is not the only pathway to stellar mergers. In
dense stellar environments such as clusters, dynamical interactions have been shown to lead
to stellar mergers (Hills and Day, 1976; Portegies Zwart et al., 1997, 1999, 2004). These
dynamically driven mergers are usually more energetic than evolution-driven ones since the
components have higher kinetic energy upon contact. Such a merger event can be viewed as
a collision, whereas an evolution-driven merger is a coalescence between stars. Regardless
of their nature, stellar mergers are violent events linked to various types of transients such as
luminous red novae5 (Tylenda et al., 2005; Soker and Tylenda, 2007; Tylenda et al., 2011;
Stȩpień, 2011) and the great eruption of η Carinae (Frew, 2004; Gallagher, 1989; Iben,
1999; Podsiadlowski et al., 2006; Morris and Podsiadlowski, 2006; Podsiadlowski, 2010;
Fitzpatrick, 2012; Portegies Zwart and van den Heuvel, 2016; Smith et al., 2018; Owocki
et al., 2019; Hirai et al., 2021). During the merger, material is turbulently mixed, and shocks
change the overall thermal structure. Moreover, seed magnetic fields can be amplified and
produce highly magnetic stars (Schneider et al., 2019; Ryu et al., 2024). Depending on the
initial conditions and nature of the stellar merger, it results in a merger product with a pe-
culiar internal structure and surface diagnostics (see, e.g. Gaburov et al., 2008b; Glebbeek
et al., 2013; Menon et al., 2024).

In this section, we have given an overview of the physical mechanisms and evolutionary
phases that allow us to describe and predict the progenitor systems of stellar mergers. As
can be inferred from the title of this thesis, its second part focuses on the objects left behind
after stellar mergers, namely the merger products. We have gone beyond classical surface
diagnostics and used asteroseismology, the study of the internal structures of stars through
their stellar pulsations, to characterise these potentially peculiar stars and make predictions
which could one day be used to identify them among populations of ‘regular’ or ‘genuinely
single’ stars.

1.2. Asteroseismology: going beyond the stellar surface

In the 20th century, seismologists such as Richard Dixon Oldham (e.g. Oldham, 1906),
Andrija Mohorovičić (e.g. Mohorovičić, 1910), Inge Lehmann (e.g. Lehmann, 1930), and
Beno Gutenberg (e.g. Gutenberg and Richter, 1941) successfully used the waves sent out by
earthquakes to characterise the interior structure of the Earth. Decades later, Christensen-
Dalsgaard and Gough (1976) realised that they could use solar pulsations, which cause peri-
odic variations in the Sun’s intensity, to study its interior. This realisation and the subsequent
years of work triggered by it gave rise to the field of helioseismology. From helioseismol-
ogy, asteroseismology was eventually born when the same principle was applied to stars
other than the Sun. Although both fields are based on the same physical principles, they

5It should be noted that according to some authors, these novae are neither red nor luminous. Since this
concerns an observational classification, we do not address this further in this thesis and keep referring to
transients linked to stellar mergers as luminous red novae.
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1.2 Asteroseismology: going beyond the stellar surface

employ different methods due to the enormous difference in the data quality for the Sun and
the more distant other stars (Aerts et al., 2010a).

Asteroseismology uses the fact that stellar pulsations (or oscillations) cause the star to
expand and contract locally. As a result, the star’s brightness varies, and these variations
can be captured in photometric time series. The local expansion and contraction of the
stellar surface can also be detected via the Doppler shifts they introduce in spectral lines
with spectroscopic time series (radial velocity measurements and line profile variability,
Aerts et al., 2010a). These time-series data, that is, the star’s variability in terms of the
time, can be converted into a frequency or Fourier spectrum through a Fourier transform.
In such a Fourier spectrum, the individual oscillation modes appear as peaks (given that the
observational baseline is long enough to resolve them) with a certain amplitude. From these
spectra, the stellar pulsations can then be further analysed. For more info on the analysis
of asteroseismic measurements, we refer the reader to, for example, Aerts et al. (2010a),
Hekker and Christensen-Dalsgaard (2017), and Aerts (2021).

Various processes within the star can create waves in the stellar interior. If these waves
are reflected between two turning points, they form standing waves and thus correspond to
the eigenmodes of the star. The eigenmodes’ frequencies, amplitudes, and whether there is
something amplifying and sustaining small perturbations at the right frequency all depend
on the star’s size, internal structure, and the physical processes that take place within. More
generally, the properties of these stellar oscillations are extremely sensitive to the stellar
interior, which is why asteroseismology is such a powerful tool for the characterisation of
stellar interiors.

In this section, we give an overview of the basic concepts of asteroseismology and the
asteroseismic diagnostics used in Chapter 4 and 5. Parts of Sect. 1.2.1 and 1.2.2 are based
on the original Sect. 2 (‘Asteroseismic diagnostics’) of Henneco et al. (2024a), which has
consequently been omitted from the reproduction of this work in Chapter 4.

1.2.1. Describing stellar oscillations
In the simplest case, that of a spherically symmetric star, stellar oscillations can be described
by using spherical harmonics Ym

ℓ . The spherical harmonics are defined as (Aerts et al.,
2010a)

Ym
ℓ (θ, ϕ) = (−1)m

√
(2ℓ + 1)

4π
(ℓ − m)!
(ℓ + m)!

Pm
ℓ (cos θ) exp(imϕ) . (1.14)

Here, the Pm
ℓ (cos θ) are the Legendre polynomials encountered already in Sect. 1.1.3, ℓ is

the spherical degree, and m is the azimuthal order. The variables θ and ϕ are the co-latitude
(measured from the pole) and the longitude, respectively, and are shown in Fig. 1.4. In this
figure, we show the morphology of a spherical harmonic with ℓ = 7 and m = 4 on the
surface of a unit sphere. The spherical degree gives the total number of nodal lines (lines at
which there is no displacement) on the surface, and the azimuthal order gives the number
of these lines that cross the equator, hence |m| ≤ ℓ. In practice, we cannot observe modes
with high spherical degrees because the brightness measured for a star is the integrated
value over the whole stellar surface. With a high ℓ value, the stellar surface is divided into
many smaller regions with nodal lines in between them. This leads to the so-called partial
cancellation of the signal of such a mode (Aerts et al., 2010a). The line of sight at which
a star is observed also matters for the detectability of a mode. In the example shown in
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1 Context and theoretical background

Figure 1.4: Illustration of the deformation of the spherical stellar surface because of a spherical
harmonic Ym=4

ℓ=7 . The spherical harmonic has been added to a unit sphere to produce this illustration.
The blue regions (hills) are moving outwards, the red regions (depressions) are moving inwards, and
the white lines indicate the positions with no displacement with respect to the unit sphere (nodal
lines). The dashed magenta line shows the equator of the spherical harmonic. The amplitude of the
displacement with respect to the unit sphere is exaggerated compared to the amplitudes of real stellar
non-radial oscillations.
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1.2 Asteroseismology: going beyond the stellar surface

Fig. 1.4, the (ℓ, m) = (7, 4) mode will be harder to detect pole-on than when the star’s
equator is pointed at us. We focus on oscillations with ℓ > 0 in this thesis, which are called
non-radial oscillations. Each mode needs one additional quantum number to describe its
morphology, namely the radial order or overtone n. The radial order gives us the number of
nodal surfaces within the star. Modes with n = 0, the fundamental modes, only have nodes
at the centre and surface of the star.

Knowing the morphology and frequency ν of a mode, we can write down its wave dis-
placement ξ⃗(r, θ, ϕ, t) in 3D. This wave displacement is a function of the radial coordinate
r and the time t, and its components are (Aerts et al., 2010a)

ξr(r, θ, ϕ, t) = A(r)Ym
ℓ (θ, ϕ) exp(−2πiνt) , (1.15)

ξθ(r, θ, ϕ, t) = B(r)
∂Ym

ℓ (θ, ϕ)
∂θ

exp(−2πiνt) , and (1.16)

ξϕ(r, θ, ϕ, t) =
B(r)
sin θ

∂Ym
ℓ (θ, ϕ)
∂ϕ

exp(−2πiνt) . (1.17)

The amplitudes A(r) and B(r) depend on the driving and damping mechanisms present in
the star. Since these mechanisms play a role in Chapter 4, we discuss them shortly in Sec-
tion 1.2.3 below.

Stellar oscillations can be characterised in another way, namely by their restoring force.
For a stellar oscillation mode to propagate, there needs to be a force that pushes it towards
its original position. For pressure modes or p modes, this restoring force is the pressure
gradient of the stellar material (Aerts et al., 2010a). These p modes are essentially sound or
acoustic waves propagating through the star, are most sensitive to the outer layers of stars,
and can propagate in both radiative and convective regions. Gravity modes or g modes are
restored by the buoyancy force, so, in other words, they propagate following Archimedes’
principle (Aerts et al., 2010a). Hence, in convective regions, the buoyancy force cannot act
as a restoring force, and g modes cannot propagate.

More formally, the regions in which p and g modes can propagate, their mode cavities,
are determined by the Lamb frequency S̃ ℓ and Brunt-Väisälä (BV) or buoyancy frequency
Ñ, defined as6 (Aerts et al., 2010a)

S̃ 2
ℓ =

ℓ(ℓ + 1)c2
s

4π2r2 (1.18)

and

Ñ2 =
g

4π2

(
1
Γ1, 0

d ln P
dr
− d ln ρ

dr

)
. (1.19)

In the expressions above, g is the local gravitational acceleration, Γ1, 0 the first adiabatic
exponent and P the pressure. Assuming a fully ionised ideal gas, we can rewrite the expres-
sion for the BV frequency Ñ in terms of the temperature gradient ∇, adiabatic temperature
gradient ∇ad, and chemical gradient ∇µ within the star as

6Throughout this thesis, we use linear frequencies (as opposed to angular frequencies) unless stated oth-
erwise. Therefore, we use the linear definitions of the Lamb and Brunt-Väisälä frequency, indicated by a tilde.
The linear definitions of these frequencies are related to their angular definitions N and S ℓ by N = 2πÑ and
S ℓ = 2πS̃ ℓ, respectively.
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1 Context and theoretical background

Ñ2 ≃ g2ρ

4π2P

(
∇ad − ∇ + ∇µ

)
, (1.20)

with

∇ = d ln T
d ln P

, ∇ad =

(
d ln T
d ln P

)

ad
, ∇µ = d ln µ

d ln P
. (1.21)

Here, T is the temperature, and µ is the mean molecular weight. This approximate expres-
sion shows how a chemical gradient, for example, in the near-core region of an MS star
with a receding convective core, can stabilise the stellar matter against convection, which
is what happens when Ñ2 < 0. Gravity modes with a linear frequency ν (see Footnote 6)
can propagate when |ν| < S̃ ℓ and |ν| < |Ñ |, while pressure modes can propagate when their
frequency obeys |ν| > S̃ ℓ and |ν| > |Ñ |. Outside of these mode cavities, the amplitudes of the
modes decay exponentially and they are said to be evanescent.

In some stars, such as evolved MS stars with convective cores (Unno et al., 1989) and red
giant stars (Cunha et al., 2015), the p- and g-mode cavities can overlap in terms of frequency.
Provided that the oscillation modes can tunnel through the evanescent zone separating the
two cavities, the p and g modes can interact and will have a dual p-g character. These p-g
mixed modes7 thus carry information about the stellar structure in both the p- and g-mode
cavity. For example, g modes propagate in the radiative core of red giant stars and cannot
propagate in the extended convective envelope of these stars. Thanks to their coupling with
the p modes propagating in this convective envelope, asteroseismologists can nevertheless
characterise the cores of such stars (Hekker and Christensen-Dalsgaard, 2017). Since p-
g mixed modes have radial nodes in both the g-mode and p-mode cavity8, extra care is
required to describe them in a unique way. To this end, we define ng as the number of radial
nodes in the g-mode character regime, and np as the number of radial nodes in the p-mode
character regime. The radial order npg of the p-g mixed mode as a whole is then, following
the Eckart-Scuflaire-Osaki-Takata scheme (Takata, 2006, 2012)

npg =


np − ng for a gnp−ng mode
np − ng + 1 for a pnp−ng+1 mode

. (1.22)

In this scheme, a pure (not mixed) g mode has npg = −ng and a pure p mode has npg = np+1.
Before we look into how these oscillation modes can be used as diagnostics for the inte-

rior structure of stars, we mention some other types of oscillation modes that are observed in
stars. Inertial modes have the Coriolis force as their main restoring force and can propagate
in convective regions. In the near-core region of rotating stars with convective cores, for ex-
ample, g modes have both the buoyancy and Coriolis force as a restoring force. Such modes
are called gravito-inertial waves (GIWs) or gravito-inertial modes. Rossby or r modes are a
specific subset of the inertial modes. These are toroidal modes (as opposed to the spheroidal
modes discussed so far), which can only propagate against the rotation of a star (Aerts,
2021). In stars with magnetic fields, the Lorentz force can also act as an additional restoring
force for gravity, inertial, and gravito-inertial modes (Aerts et al., 2019).

7In literature, these modes are usually simply referred to as ‘mixed’ modes, but we explicitly refer to them
as ‘p-g mixed’ modes to avoid confusion with other types of mode mixing treated in Chapter 4.

8As detailed in Takata (2006), the distinction between p and g nodes is based on whether the spatial deriva-
tive of the phase angle φ, dφ/dr, is positive or negative at the node location, respectively.
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1.2 Asteroseismology: going beyond the stellar surface

1.2.2. Asteroseismic diagnostics
The asymptotic theory for non-radial oscillations (Tassoul, 1980) holds for oscillation modes
with a high radial order, n ≫ 1, also called high-order modes. Within this asymptotic
regime, several asteroseismic diagnostics can be derived, each of which can be linked to the
physical conditions in the mode cavity.

Assuming that we have a chemically homogeneous, non-rotating, non-magnetic star, the
asymptotic theory tells us that high-order g modes (ng ≫ 1) with the same spherical degree
ℓ are equally spaced in period. In other words, the difference in period between two g modes
of consecutive radial order,

∆Pn = Pn − Pn−1 , (1.23)

is constant, with Pn the period9 of an oscillation mode with radial order n. For a given
degree ℓ, this constant value of the period spacing is the asymptotic period spacing Πℓ, that
is, ∆Pn = Πℓ with

Πℓ =
Π0√
ℓ(ℓ + 1)

(1.24)

and

Π0 = π

(∫ ro

ri

Ñ
r

dr
)−1

. (1.25)

The quantity Π0 is the characteristic period or buoyancy travel time for high-order g modes
(Aerts et al., 2010a) and relates the period spacing to the size of the g-mode cavity, bounded
by its inner and outer turning points ri and ro. From the definition of the g-mode cavity given
in the previous section, we see that these turning points are the points when the star becomes
convective, that is, when Ñ2 becomes negative.

From the observed g modes of a g-mode pulsator, we can construct so-called period
spacing patterns (PSPs), but only if these modes can be identified, that is, assign an n, ℓ,
and m value to each mode. These PSPs are plots of the period spacing between g modes of
consecutive radial order ∆Pn as a function of the mode period Pn or the radial order n. For
MS stars with convective cores and radiative envelopes, the mean value of an observed PSP
is directly related to the extent of their convective core. The mean value of observed PSPs
can, therefore, be used to estimate convective core radii and sizes of such stars (Moravveji
et al., 2015, 2016; Pedersen et al., 2018, 2021; Mombarg et al., 2019, 2021; Michielsen
et al., 2019, 2021; Wu and Li, 2019; Wu et al., 2020b).

In general, stars are not chemically homogeneous, rotate, and can have magnetic fields.
As a result, observed PSPs and PSPs constructed for less idealised stellar models will de-
viate from this constant value Πℓ. These deviations hold a wealth of information about the
structure and chemical composition of the mode cavities in which these g modes propagate.
Structural and chemical gradients and glitches (sudden changes) influence the BV frequency
Ñ and, hence, change the shape of the g-mode cavity. For example, the chemical gradient
left behind by the receding convective core of an intermediate- or high-mass MS star causes
a large peak to form in the Ñ-profile. Glitches in the chemical composition cause spike fea-
tures to appear in the Ñ-profile. When the spatial extent of such peak and spike features is
smaller than or of the same order as the local wavelength of a g-mode pulsation, the mode

9We use the more general symbol n instead of ng in the expression for the period spacing ∆Pn for legibility.
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1 Context and theoretical background

can become trapped. This mode trapping leads to quasi-periodic variation away from the
mean value Πℓ in the star’s PSP and has been theoretically predicted (Miglio et al., 2008;
Cunha et al., 2015, 2019, 2024) and observed (Degroote et al., 2010) for g-mode pulsators.
This effect on the PSPs is shown in Fig. 1.5a. Stellar models with more envelope mixing
have weaker chemical gradients and weaker deviations from the constant value Πℓ, which is
apparent from the PSPs shown in this figure. The interaction or coupling between modes of
different mode cavities, such as the coupling between p and g modes in p-g mixed modes or
between the inertial modes from the convective core of a star with the GIWs in the near-core
region can cause dips in the PSP (i.e. locations in the PSP where ∆Pn < Πℓ, Mosser et al.,
2012; Cunha et al., 2015; Saio et al., 2018; Tokuno and Takata, 2022; Aerts and Mathis,
2023).

Another deviation from the constant value of a star’s PSP is caused by rotation, more
specifically, by the Coriolis force. However, theoretically predicting the effect of the Cori-
olis force on the stellar pulsations is not straightforward. When the Coriolis term is no
longer neglected, the stellar oscillation equations become a set of infinitely coupled equa-
tions (Aerts and Tkachenko, 2023). For modes with angular frequencies ω = 2πν much
larger than twice the angular rotation frequency Ω of the star, that is, ω ≫ 2Ω, we can treat
the Coriolis force as a perturbation to the original, non-rotating oscillation equations. Such
modes are a subset of what we call super-inertial modes, which are modes with ω > 2Ω.
For modes with ω ≲ 2Ω, called sub-inertial modes, the Coriolis force acts as an additional
restoring force. Hence, these are the GIWs mentioned in Sect. 1.2.1. For GIWs, the Coriolis
force can no longer be treated as a perturbation. High-order g-modes, which have ng ≫ 1,
typically have frequencies low enough such that ν ≪ S̃ ℓ and ν ≪ Ñ. For such modes, we
can assume that the vertical wave motions (in the radial direction) are inhibited by the strong
chemical and entropy stratification inside the radiative regions of stars with convective cores.
We can, therefore, neglect these vertical motions and thus also the horizontal components
(the θ and ϕ components) of the rotation vector. As a result, the vertical component of the
Coriolis force can be neglected. With this approximation, referred to as the traditional ap-
proximation of rotation (TAR, Eckart, 1960; Berthomieu et al., 1978; Lee and Saio, 1987;
Townsend, 2003; Mathis, 2009), the stellar oscillation equations decouple and can be writ-
ten in the form of the Laplace tidal equation (Laplace, 1799). By solving the Laplace tidal
equation, we recover for each mode its corresponding eigenvalue Λs ,ℓ ,m, with s = 2Ω/ω
the spin parameter. With these eigenvalues, it is possible to construct a theoretical PSP for
gravito-inertial modes in the frame co-rotating with the star,

(Πs)co ≃ Π0

√
Λs, ℓ,m

(
1 +

1
2

d lnΛs, ℓ,m

d ln s

) . (1.26)

Because of the frequency dependence of the period spacing (Πs)co, through the spin param-
eter s, each mode is affected by the Coriolis force to a different extent. The PSPs for GIWs
are not uniform (ignoring the effect of chemical inhomogeneities and mode coupling de-
scribed above) but have slopes (Bouabid et al., 2013). The sign of these slopes (with respect
to the increasing mode period or radial order) depends on the sign of the azimuthal order m
of the modes, while their magnitude depends on the value of m and the rotation rate Ω. In
the co-rotating frame, prograde modes, which have m > 0 and travel with the rotation of
the star, have PSPs with negative slopes, while retrograde modes, which have m < 0 and
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1.2 Asteroseismology: going beyond the stellar surface

travel against the star’s rotation, have PSPs with positive slopes. This effect is demonstrated
in Fig. 1.5b and 1.5c. Thanks to the theoretical framework of the TAR and observed GIW
PSPs, it has been possible to constrain the internal rotation profiles of hundreds of MS stars
with convective cores (Van Reeth et al., 2015a,b, 2016; Ouazzani et al., 2017; Van Reeth
et al., 2018; Li et al., 2019, 2020; Van Reeth et al., 2022).

Before such comparisons between predicted and observed PSPs of gravito-inertial modes
can be made, we need to convert our theoretically predicted mode periods in the co-rotating
frame, Pco, to periods in the inertial or observer’s frame, Pin. To do this, the Doppler shift
needs to be taken into account, which is done as

Pin =
Pco

1 + m
Pco

Prot

, (1.27)

with Prot = 2π/Ω the rotation period of the star.

Just as for high-order g modes, several asteroseismic diagnostics for high-order p modes
can be derived within the framework of the asymptotic theory. Going back to our idealised
chemically homogeneous, non-rotating, non-magnetic star, the asymptotic theory predicts
that high-order p modes of consecutive radial order np are equally spaced in frequency (Aerts
et al., 2010a). This constant frequency difference is called the large frequency spacing ∆ν
and is an often-used diagnostic (Hekker and Christensen-Dalsgaard, 2017). Analogue to the
period spacing for high-order g modes, ∆ν is sensitive to small- and large-scale variations
in the stellar structure, rotation, and magnetic fields, which cause deviations from a constant
large frequency spacing value. The small frequency spacing δν, or more precisely the small
frequency spacing δν02 between radial (ℓ = 0) and quadrupole (ℓ = 2) modes of consecutive
radial order np, is sensitive to the chemical composition inside the p-mode cavity and is,
therefore, a proxy for the star’s age. We will not dive deeper into these asteroseismic diag-
nostics for high-order p modes since this thesis, more specifically Chapter 5, only focuses
on low-order p modes.

1.2.3. Driving and damping mechanisms
This section gives a brief overview of the main driving and damping mechanisms for stellar
oscillations. For more details, we refer the reader to Aerts (2021), Aerts et al. (2010a,
Chapter 3.7), and Unno et al. (1989, Chapter V). An oscillation mode is said to be unstable
or excited when it has a positive growth rate and stable or damped when this growth rate is
negative. A star usually has tons of eigenmodes, but the stability of the modes tells us which
of these, when they start off as a small perturbation, are amplified and sustained enough to
still have a non-negligible amplitude at the stellar surface, causing the brightness variations
and Doppler shifts we measure. This growth rate varies throughout the star; a mode may be
excited (positive growth rate) in some regions and damped (negative growth rate) in others.
Operating in a similar way as a classical heat engine, the growth rate of an oscillation mode is
positive when the heating of the stellar material is in phase with its compression. Depending
on the source of this heating, we generally distinguish between three different heat-engine
mechanisms. To make this more concrete, take the energy equation of stellar interiors (Aerts,
2021),

ρT
∂S
∂t
+ ρT v⃗ · ∇S = ρϵ − ∇F⃗ , (1.28)
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Figure 1.5: Period spacing patterns for g modes in a 7.0 M⊙ MS star with a central hydrogen mass
fraction of Xc = 0.50. Panel (a) shows the effect of envelope mixing through the minimal envelope
mixing parameter Dmix on the period spacing patterns. Panel (b) and (c) show the effect of the
Coriolis force, computed with the TAR, on the period spacing patterns for prograde dipole (ℓ, m =
1, +1) and retrograde dipole (ℓ, m = 1, −1) modes, respectively. This effect is shown for the model
with log10

(
Dmix/cm2 s−1

)
= 2 for no rotation, 20% of the Roche critical angular rotation rate Ωc =√

8GM⋆/27R3
⋆, 40% of Ωc, and 60% of Ωc.
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where S is the specific (i.e. per unit mass) entropy, v⃗ the velocity of the gas, ϵ the energy
generation per unit mass (with energy loss through neutrinos taken into account), and F⃗ =
F⃗rad + F⃗conv the sum of the radiative and convective energy flux.

When the main heat supplier to the stellar gas upon compression is the (nuclear) energy
generation, we say that the modes are excited by the ϵ-mechanism. This mechanism is
responsible for mode excitation in the inner stellar regions, where nuclear energy generation
occurs.

In the outer regions of the star, where we typically find regions of increased opacity
because of partial ionisation zones and the iron opacity bump, the radiative energy flux F⃗rad

is responsible for heating the gas during its compression. Due to its relation to the opacity,
this mechanism is often called the κ-mechanism. Because of the increased opacity in certain
layers of the star, the radiation essentially pushes on this layer, converting radiative energy
into mechanical energy and driving the oscillation mode.

Things become more complicated in the cases where the convective energy flux F⃗conv is
the main heat source. If a star has a convective outer envelope, for example, when it is a
Solar-like oscillator, the convective flux does not lead to a heat-engine mechanism in this en-
velope. Instead, perturbations to the convective flux and turbulent pressure damp the modes,
rendering them stable. However, another form of mode excitation occurs in these situations,
namely stochastic forcing. In these convective envelopes, convection has a more turbulent,
chaotic nature, leading to the creation of random, acoustic noise. Global eigenmodes of the
star with frequencies within this range are subsequently excited yet simultaneously strongly
damped by the aforementioned processes in convective regions. These modes must be con-
tinuously driven by the acoustic noise, and these stochastically forced modes usually span
a wide frequency range. Convective motions are more structured (as opposed to turbulent)
in the inner convective regions of stars, such as convective cores and near-core convective
shells. If the turn-over timescales of the convective motions are similar to those of the star’s
eigenmodes, convection can also excite modes this way. This mechanism is called convec-
tive forcing. Predictions for stochastic and convective forcing are plagued by our current
simplified descriptions of convection, especially in 1D models. However, 3D simulations
are quite valuable in this regard (see references in Aerts 2021 Sect. III.A).

The last excitation mechanism related to convection that we discuss concerns a mode
that reaches the boundary of a convective region with convective turn-over timescales sev-
eral orders of magnitude longer than the period of the mode. In such cases, the convective
flux is unaffected by the mode, which is blocked and ‘pushes’ on this boundary (similar to
the κ-mechanism). This mechanism is often referred to as convective flux blocking.

Apart from stochastic forcing, there are other excitation mechanisms unrelated to the
general heat-engine mechanism. Non-linear resonant mode excitation is a mechanism in
which combinations of ‘parent’ modes, driven by other mechanisms and interacting non-
linearly, excite other ‘daughter’ modes. Although the theories behind non-linear mode ex-
citation are not new, their practical exploitation is currently still under development (Aerts,
2021). Given the right orbital period and eccentricity, eigenmodes can also be excited by
tides in a close binary system. Such modes are said to be tidally excited.

An important point to make here is that our current theoretical mode excitation predic-
tions are lagging behind on the observations (Aerts, 2021). In stars which are known to
pulsate, mode instability predictions with the heat-engine mechanism tend to under-predict
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the number of excited modes compared to the observed modes (see, e.g. Rehm et al., 2024).
Recently, Hey and Aerts (2024) and Mombarg et al. (2024a) showed that even outside of
the so-called instability strips, regions in the Hertzsprung-Russell diagram (HRD) in which
stars are predicted to have excited modes, a significant number of pulsating stars can be
found.

1.2.4. The space revolution
In the early years of asteroseismology, asteroseismologists could only rely on ground-based
observations of stars to detect and characterise pulsating stars. Although it is possible with
time and dedication to get high-quality time-series data from the ground, see, for example,
the results from the 21-year-long observational campaign of the hybrid pulsator (pulsating in
both p and g modes) HD 129929 by Aerts et al. (2003), the process of getting ground-based
time series for asteroseismic purposes has several disadvantages. The frequency resolution
of time series data is the inverse of the total observation time. Especially for g modes, which
have longer periods than p modes, long observational baselines are required to get sufficient
frequency resolution. Getting these long observational baselines from the ground, where the
day-night cycle, weather conditions, observational schedules, and the time certain targets
are observable from a specific location all play a role, is challenging. The day-night cycle
leads to another difficulty in time-series data in the form of aliasing. If one observes a star
every night for a certain number of days, the Fourier spectrum of these observations will
be contaminated by a series of peaks at multiples of 1/day, which is especially problematic
for stars exhibiting pulsations with periods on the order of a day. For a concise overview of
the challenges and pitfalls of ground-based asteroseismic observations, we refer the reader
to Aerts et al. (2010a), which was published on the advent of the space revolution of as-
teroseismology. Asteroseismic measurements based on spectroscopy do benefit from be-
ing ground-based. For example, the Stellar Oscillations Network Group (SONG, Grundahl
et al., 2006; Andersen et al., 2016) is a project that set up a network of telescopes around
the globe with the aim of providing high-resolution spectroscopic time series. Such time
series are required for radial velocity measurements and detecting line profile variability.
Even though space-based spectroscopy is possible, getting high-quality spectroscopy from
the ground is often more efficient.

Going to space alleviates many of the problems plaguing ground-based photometric
time-series observations. Observations can go on (nearly) uninterrupted, independent of
the weather and the day-night cycle, atmospheric effects are no longer contributing to the
overall noise budget, and observational baselines of years are possible for more than one
target simultaneously. What we have been referring to as the ‘space revolution’ (a term
borrowed from the review of Bowman et al. 2020) started with two cases of ‘piggyback
riding’ (Buzasi, 2000). Using data from the European Space Agency’s (ESA) Hipparcos
mission (van Leeuwen et al., 1997), a telescope intended for astrometry and a predeces-
sor of the Gaia space mission, Waelkens et al. (1998), Koen and Eyer (2002), Aerts et al.
(2006), and Lefèvre et al. (2009) were able to detect and characterise hundredths of pulsating
stars (Bowman et al., 2020). Around the same time, Buzasi (2000) proposed repurposing
NASA’s Wide-field InfraRed Explorer (WIRE) mission for asteroseismic measurements.
The primary science instrument, built to study galaxies, was damaged beyond repair be-
cause of problems during the spacecraft’s deployment in orbit. However, its star guiding
camera, as Buzasi (2000) realised, could be used to measure the brightness variations of

24
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stars. These two endeavours, in which asteroseismic studies were conducted using instru-
ments and spacecraft intended for other purposes (hence ‘piggyback riding’), showcased the
potential of space-based asteroseismic observations to the astronomy community.

These proof-of-concept studies undertaken using the WIRE and Hipporacos spacecrafts
prompted the first dedicated asteroseismic space mission called Microvariability and Oscil-
lations of STars (MOST10) by the Canadian Space Agency (CSA), launched in 2003. De-
spite its limitations (compared to the specifications of today’s space missions), MOST was
a successful mission, revealing pulsations in stars across many classes of pulsators, which
are shown on the asteroseismic HRD in Fig. 1.6, and proved to be a definite improvement
for detecting pulsation modes compared to ground-based observations (Aerts, 2021).

After MOST came the Convection, Rotation & planetary Transits (CoRoT, Auvergne
et al., 2009) mission, which started operating in 2007. CoRoT was a hybrid mission dedi-
cated not only to asteroseismology but also to detecting exoplanets via the transit method.
Like the MOST mission, CoRoT detected pulsations in many different classes of pulsators,
from low- to high-mass stars (for an overview, see Aerts 2021). One of the many highlights
of the CoRoT science output is the proper asteroseismic characterisations of Sun-like stars
and red giants.

The BRIght Target Explorer (BRITE) mission, launched in 2013 and born out of a col-
laboration between Austria, Poland, and Canada, consisted of a constellation of nanosatel-
lites that obtained long-term photometric time series of the brightest stars in the sky (Bow-
man et al., 2020). These bright stars are excluded from the CoRoT and Kepler (see next
paragraph) missions, making BRITE a key mission in the asteroseismic studies of massive
stars. Furthermore, BRITE collected photometric time series in two wavelength passbands
(red and blue) simultaneously, which allowed the data to be used for mode identification
(Weiss et al., 2014).

The Kepler (Koch et al., 2010, launched in 2009) and Transiting Exoplanet Survey Satel-
lite (TESS, Ricker et al., 2016, launched in 2018) missions’ primary goal is the detection of
exoplanets (in the case of Kepler, the focus was on Earth-sized planets specifically). How-
ever, in the process of finding these exoplanets, valuable data for asteroseismic purposes
were/are collected. Whereas Kepler’s target list contained mostly low-mass stars, TESS has
also been observing massive (intermediate- and high-mass) stars. Both missions can pro-
vide photometric time series with observational baselines on the order of years, which lead
to extremely small uncertainties on the derived oscillation mode frequencies (see Table 1
in Aerts et al. 2019 for an overview of these uncertainties). After four years of observing,
Kepler lost an essential reaction wheel and could not observe its intended field of view any
longer. The spacecraft was then repurposed to observe patches of the sky containing more
massive stars for periods of 80 days (Howell et al., 2014). This new mission was dubbed
K2 and is another example of space-based recycling. The upcoming PLAnetary Transits
and Oscillations of stars (PLATO, Rauer et al., 2024) mission, again primarily an exoplanet
mission suited for asteroseismology, will continue to observe a plethora of pulsators and is
planned to be launched in 2026.

These space missions have not only lifted the quality of asteroseismic data (at least two
orders of magnitude improvement in precision, Bowman et al. 2020) to higher levels but also
the quantity of detected pulsating stars. The Kepler mission alone provided four-year long

10Given that this is a Canadian mission, we also provide the acronym in French: Microvariabilité et Oscil-
lations STellaire.
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Figure 1.6: Asteroseismic HRD from Kurtz (2022). The dashed red lines show single-star evolution
tracks for different initial masses in units of M⊙. The classical Cepheid instability strip is indicated
by the two dashed black lines. The instability strips for other pulsator classes are indicated by the
hatched ellipses. The κ-mechanism instability strips for the g and p modes are shown with /// and
\\\ hatching, respectively. Stochastically excited pulsators are shown with ≡ hatching, and strange-
mode pulsators (see Kurtz 2022 for more details about strange modes) with ||| hatching. See Aerts
et al. (2010a, Chapter 2) and Kurtz (2022) for the definitions of the different classes shown in the
figure with their abbreviated names.
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photometric time series for upwards of 200 000 stars. As recent works by Hey and Aerts
(2024), Fritzewski et al. (2024b), and Mombarg et al. (2024a) show, the asteroseismic space
revolution and the steady development of sophisticated software tools have brought us from
being able to characterise and model individual pulsators to the advent of population-based
studies of pulsating stars.

1.3. Numerical methods

The works presented in this thesis are all of a theoretical nature. Using the theories of
single and binary star evolution, stellar structure, and asteroseismology, parts of which are
presented in the preceding sections, we computed evolutionary models of binary systems
and merger products, and predicted stellar oscillations. To do so, we used a set of often-used
numerical codes. Since these codes are only mentioned but not explained in the method
sections of the upcoming chapters, we give a brief overview of the workings and assumptions
of the stellar/binary evolution and pulsation codes used in this thesis.

1.3.1. Stellar and binary evolution
Stars, especially those in binary systems, are typically not spherically symmetric objects.
We have seen in the preceding sections how the Roche geometry (even though it is derived
for point-mass stars) and tides deform stars. The centrifugal force in a rotating star turns
the star into an oblate spheroid. Internal processes such as convection, with its large-scale
boiling motions, are evidently not well described in a spherically symmetric setting.

Despite these fundamental departures from spherical symmetry, we are, to this day, still
forced to resort to 1D (i.e. spherically symmetric) approximation of stars to be able to evolve
them over evolutionary timescales within a reasonable amount of time. 3D processes such
as convection can be simulated in specific regions of a star for a time on the order of a few
dynamical timescales only, although this requires some clever tricks (see, e.g. Andrassy et al.
2024). Even though important steps forward have been taken recently for stellar evolution
in 2D (Mombarg et al., 2023, 2024b), it is not yet in a mature enough stage to evolve a wide
variety of stars, let alone stars in binary systems. In other words, the standard for stellar
evolution computations is still 1D.

To compute a star’s structure and evolution, a 1D stellar structure and evolution (SSE)
code needs to solve the set of non-linear coupled differential equations of stellar struc-
ture. Iben and Ehrman (1962), Henyey et al. (1964), Hofmeister et al. (1964), and Kip-
penhahn et al. (1967) were the first to use the recently made available electronic computers
to solve the set of stellar structure equations. In this thesis, we have used the open-source
and community-driven SSE code Modules for Experiments in Stellar Astrophysics (MESA,
Paxton et al., 2011, 2013, 2015, 2018, 2019; Jermyn et al., 2023). MESA is based on Peter
Eggleton’s stellar structure and evolution code (Eggleton, 1971, 1972, 1973; Eggleton et al.,
1973), which became to be known as the Cambridge STARS code (Pols et al., 1995). The
STARS code was rewritten by Paxton (2004) and eventually transformed into its modular (i.e.
each of the modules, such as the opacity and equation of state modules, can be used inde-
pendently) form by Paxton et al. (2011). Other SSE codes exist, such as the PAdova TRieste
Stellar Evolutionary Code (PARSEC, Bressan et al., 2012), the Geneva Code (GENEC, Eggen-
berger et al., 2008), the STAREVOL code (Forestini et al., 1991; Siess et al., 2000; Siess,
2006), the STERN code (Yoon and Langer, 2003), and the Garching Stellar Evolution Code
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(GARSTEC, Weiss and Schlattl, 2008). Even though MESA, thanks to its open-source nature
and large community, seems to dominate SSE calculations in recent years, it is important to
remember that it, like the other codes, has its strengths and weaknesses. As a community,
we should, therefore, keep comparing these codes, use them in a complementary fashion,
and avoid a situation in which all SSE predictions are made with one single code.
MESA solves the set of stellar structure equations using a Newton-Raphson scheme. This

scheme is an iterative root-finding algorithm. In the simplest case, for finding the root of a
1D function f (x), it uses the function value and derivative f ′(x) at the previous estimate of
the root, xn, to find a better estimate of the root, xn+1 (Scherer, 2017):

xn+1 = xn − f (xn)
f ′ (xn)

. (1.29)

This scheme works well if the function f (x) is at least two times differentiable around
the root and the initial guess for the root, x0, is chosen sufficiently close to the actual one. In
MESA, which has to solve a system of non-linear coupled differential equations, the update
rule to find an acceptable solution for the stellar structure has the following form (Paxton
et al., 2011):

F⃗(y⃗) = F⃗
(
y⃗i + δy⃗i

)
= F⃗

(
y⃗i
)
+


dF⃗
dy⃗


i

δy⃗i + O
(
δy⃗2

i

)
= 0 . (1.30)

Here, y⃗i is the vector containing the trial solution for the physical quantities, F⃗ the set
of differential equations, F⃗

(
y⃗i
)

the residual, δy⃗i the correction, and [dF⃗/dy⃗]i the Jacobian
matrix (i.e. the matrix containing the partial derivatives). Over the course of multiple itera-
tions, MESA attempts to minimise the residual and correction to a point where they satisfy a
set (which can be set, to an extent, by the user) of convergence criteria. Solving the stellar
structure equation is one step in the scheme MESA follows to evolve a stellar model over one
timestep:

1. Remesh the model’s spatial grid based on a specific set of criteria.

2. Take into account any changes to the total mass of the star (e.g. because of stellar
winds), adjust its chemical structure based on the diffusion and changes because of
nuclear burning, compute the convective diffusion coefficients (to go from 3D to 1D,
convection is treated as a diffusive process), and solve the stellar structure equations
using the Newton-Raphson scheme.

3. Estimate the next timestep based on a set of specific criteria.

4. Write out the output files.

To evolve a binary star, MESA evolves two single stars (MESA has the option to treat the
accretor star as a point mass, but we do not make use of this in this thesis) within the same
timestep. It computes the mass transfer rate following a 1D prescription, as mentioned in
Sect. 1.1.4, and changes the masses of the two stars accordingly in the second step of the
evolution scheme above. After going through the evolution step for the two components,
MESA takes into account the changes in angular momentum of the orbit and the components.
The binary module of MESA was introduced in Paxton et al. (2015), and is a continuation
of the works of Madhusudhan et al. (2006) and Lin et al. (2011). These works, along with
other parts of the code, were implemented in MESA by Pablo Marchant (Marchant, 2017).
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1.3.2. Stellar oscillations

To predict the eigenmodes and eigenfrequencies for a specific stellar structure profile, which
we call the equilibrium model, we need to solve the linearised stellar oscillation equations
(see, e.g. Smeyers and van Hoolst, 2010). This is a set of differential equations governing
small perturbations to the equilibrium structure with boundary values at the surface and in
the model’s centre that needs to be solved numerically (Townsend and Teitler, 2013).

Traditionally, there have been two types of numerical schemes to solve this boundary-
value problem (BVP): relaxation schemes, such as the Newton-Raphson scheme described
above, and shooting schemes. In the latter, the BVP is split up into two initial value problems
(IVPs), each starting from one of the boundaries. The solutions (i.e. the eigenfrequencies)
are recovered by matching the solutions of the two IVPs at a certain interior point where
they meet (Townsend and Teitler, 2013).

In this thesis, we use the stellar oscillation code GYRE (Townsend and Teitler, 2013;
Townsend et al., 2018), which uses the ‘Magnus Multiple Shooting’ scheme. This scheme,
described in Townsend and Teitler (2013), alleviates some typical problems with simpler
shooting schemes. Stellar oscillation codes using relaxation schemes are the BOOJUM code
(Townsend, 2005), the Nice Oscillation code (NOC, Provost, 2008), the Granada Oscillation
code (GRACO, Moya and Garrido, 2008), and the Linear NonAdiabatic NonRadial (LNAWENR,
Suran, 2008) code. Codes using some sort of shooting scheme are the Aarhus adiabatic
oscillation package (ADIPLS, this code can use both a relaxation and a shooting scheme,
Christensen-Dalsgaard, 2008), the Porto Oscillation Code (posc, Monteiro, 2008), and the
OSCROX code (Roxburgh, 2008).

Generally speaking, GYRE has two modes, the adiabatic one and the non-adiabatic one. In
the adiabatic mode, GYRE computes the eigenfrequencies and eigenmodes for an equilibrium
model ignoring the change in energy of the oscillations. Hence, as seen in Sect. 1.2.3, it
does not take into account the driving and damping of modes. In the non-adiabatic mode,
this energy exchange is taken into account, albeit only in the form of the κ-mechanism.
Although it is often sufficient to use the adiabatic form of the oscillation equations if one
is not interested in mode excitation and damping, there are situations in which the non-
adiabatic mode is warranted. For example, in the outer regions of massive stars, the thermal
timescale becomes relatively short and the p modes can no longer be assumed to propagate
adiabatically.

1.4. Overview of this thesis

With the stellar astrophysics community having warmed up to the idea that the products
of binary evolution are not merely an afterthought but rather play a critical role in stellar
populations (Marchant and Bodensteiner, 2024), stellar mergers and their products have
emerged as a potential explanation for a wealth of peculiar observations. The progenitor of
the core-collapse supernova SN 1987A, which was a blue supergiant and not a red supergiant
as expected from single stellar evolution, has been shown to likely have been a merger
product (e.g. Podsiadlowski et al., 1990; Podsiadlowski, 1992; Morris and Podsiadlowski,
2007). More generally, the products of post-MS stellar mergers can stay in the blue part of
the HG for millions of years, appearing and even ending their evolution as blue supergiants
(Bellinger et al., 2024; Schneider et al., 2024). Therefore, these merger products serve as a
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natural explanation for the blue supergiant problem11 (Castro et al., 2014, 2018; de Burgos
et al., 2023; Bernini-Peron et al., 2023). As mentioned in Sect. 1.1.5.4, various transients,
such as the luminous red novae (or gap transients) V1309 Sco (Tylenda et al., 2011; Stȩpień,
2011), V838 Mon (Soker and Tylenda, 2007) and V4332 Sgr (Tylenda et al., 2005), and the
great eruption of η Carina (Frew, 2004; Gallagher, 1989; Iben, 1999; Podsiadlowski et al.,
2006; Morris and Podsiadlowski, 2006; Podsiadlowski, 2010; Fitzpatrick, 2012; Portegies
Zwart and van den Heuvel, 2016; Smith et al., 2018; Owocki et al., 2019; Hirai et al., 2021),
can be linked to the dynamical merger phase itself. When two MS stars merge, the mass of
the merger product can be higher than the MS turn-off mass in a cluster, that is, the mass
of the most massive MS stars that have not yet evolved off the MS. Such merger products
appear as blue stragglers (e.g. Rasio, 1995; Sills et al., 1997, 2001; Mapelli et al., 2006;
Glebbeek et al., 2008; Ferraro et al., 2012; Schneider et al., 2015). Moreover, MS merger
products can rejuvenate (injection of fresh hydrogen into the hydrogen-burning core, see,
e.g. Braun and Langer 1995) and evolve as seemingly normal, younger MS stars, leading to
age discrepancies when they are analysed. Merger products may be rotating relatively slowly
(Schneider et al., 2019), forming the blue main sequence in cluster observations (Wang et al.,
2022). As shown by Menon et al. (2024), the luminosity, effective temperature, surface
gravity, and surface abundances of merger products can differ significantly from those of
genuine single stars (i.e. stars born as single stars). The peculiar surface abundances of
merger products have also been used as a potential explanation for α-rich young stars (e.g.
Chiappini et al., 2015; Martig et al., 2015; Izzard et al., 2018; Hekker and Johnson, 2019).
The turbulent and shearing flows during the stellar merger phase of low-mass (Ryu et al.,
2024) and massive (Schneider et al., 2019) stars have been demonstrated to amplify seed
magnetic fields. This leads to the formation of merger products with strong, large-scale
magnetic fields observable at the stellar surface. The presence of such fields in stars such as
τ Sco (Schneider et al., 2016, 2020) and one of the binary components of HD 148937 (Frost
et al., 2024) thus provides compelling evidence for their merger origin. Furthermore, these
magnetic merger products are likely the progenitors of highly-magnetic white dwarfs and
magnetars (e.g. Tout et al., 2004; Ferrario and Wickramasinghe, 2005; Wickramasinghe and
Ferrario, 2005; Wickramasinghe et al., 2014; Shenar et al., 2023). Lastly, some of the most
massive stars in the Universe are predicted to have been formed through stellar mergers (e.g.
Portegies Zwart et al., 1999; Banerjee et al., 2012; Schneider et al., 2014; Boekholt et al.,
2018).

It is, however, important to have a solid base when invoking the stellar merger scenario
in the explanations for the transient phenomena and peculiar stellar properties given above.
Thus, it is essential to know which binary systems are likely progenitors of stellar merg-
ers. Furthermore, we want to characterise these progenitor binary and contact systems to
provide satisfactory explanations for the mass-ratio distributions of contact binaries (Kobul-
nicky et al., 2022), especially the massive ones (Abdul-Masih et al., 2022). Even though they
are considered essential in forming gravitational wave sources, the progenitor systems and
onset of classical common envelope phases have not been characterised and mapped consis-
tently. Modern 3D simulations of binary-evolution-driven stellar merger (Schneider et al.,
2019) and classical common envelope (Moreno et al., 2022; Lau et al., 2022a,b; Morán-
Fraile et al., 2023; Röpke and De Marco, 2023; Vetter et al., 2024) can benefit from more
realistic input models too. More generally, predictions for the outcomes of binary evolu-

11The blue supergiant problem arises from the fact that blue supergiant stars are abundant in the Hertzsprung
gap, despite single-stellar evolution theory predicting that starts rapidly evolve through this part of the HRD.
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tion are valuable for binary and compact object population studies. Lastly, fast population
synthesis models predict that between 50% to 95% of mass-transferring binaries (depending
on the initial primary mass) experience a dynamical interaction, that is, a stellar merger of
classical/double-core CE phase (Schneider et al., 2015). These challenges form the basis
for the first part of this thesis. In Chapter 2 and 3, we present two grids of several thousand
detailed 1D binary evolution models with different assumptions regarding the mass-transfer
efficiency. These two grids have been computed with the lowest (Chapter 2) and highest
(Chapter 3) physically possible mass-transfer efficiency. The actual mass-transfer efficiency
of binary systems is expected to lie in between these two extremes. With these grids, we
conduct a ‘contact tracing’ exercise to determine which binary systems evolve towards con-
tact binaries and classical/double-core common envelope phases. We predict which contact
binaries will likely merge, synthesise our population of binary evolution models to provide
statistics that can serve as input in future work, and compare the predicted contact binaries
with observed systems.

So far, the peculiar properties attributed to stellar merger products concern so-called
surface diagnostics. At the same time, stellar merger simulations show that the interior
structures of merger products can be considerably different from genuine single stars (e.g.
Glebbeek et al., 2013; Schneider et al., 2019). As discussed in the preceding sections, with
asteroseismology, we can probe these stellar interiors. Asteroseismology can thus, poten-
tially, give us an additional, less ambiguous set of diagnostics for distinguishing merger
products from genuine single stars by exploiting their internal differences. Moreover, if a
star’s merger origin imprints a detectable signature in its stellar pulsations, this signature
could help confirm that some of the aforementioned peculiarities in surface properties are
indeed related to this merger origin. Therefore, in the second part of this thesis, we make
asteroseismic predictions for merger products and genuine single stars. By comparing these
predictions for stars that otherwise have similar surface diagnostics, we assess the potential
of asteroseismology to distinguish merger products from genuine single stars. In Chapter 4,
we focus on merger products formed after one of the binary components has left the main
sequence (Case-Be mergers). As mentioned above, these types of merger products are of
special interest because they remain in the blue part of the HRD for millions of years and
are, therefore, a potential explanation of the blue supergiant problem. In Chapter 5, we use
similar tools as in Chapter 4 to assess whether products of the merger between two MS
stars (Case-A mergers) can be identified based on their asteroseismic characteristics. Lastly,
in Chapter 6, we list all of our conclusions for the work presented in this thesis and look
at how this work can serve as a basis for future research in the fields of binary evolution,
asteroseismology, and their rapidly expanding interface.
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2
Contact tracing of binary stars: Path-
ways to stellar mergers

Authors Jan Henneco, Fabian R. N. Schneider, and Eva Laplace

Chapter info This chapter is a reproduction of the first paper I published as part of my
doctoral studies, Henneco et al. (2024b), A&A, vol. 682, A169. It covers the search and
characterisation of the progenitors of contact systems and stellar mergers through a grid of
one-dimensional binary star evolution models. I was the main author of this work, and I
computed, analysed, and interpreted the models. Fabian Schneider was my doctoral super-
visor during this work. He was instrumental in shaping this project. Both Fabian Schneider
and Eva Laplace assisted me in the interpretation of the results and provided helpful com-
ments and suggestions for the main text and figures.

Abstract Stellar mergers are responsible for a wide variety of phenomena such as reju-
venated blue stragglers, highly magnetised stars, spectacular transients, iconic nebulae, and
stars with peculiar surface chemical abundances and rotation rates. Before stars merge,
they enter a contact phase. Here, we investigate which initial binary-star configurations
lead to contact and classical common-envelope (CE) phases and assess the likelihood of
a subsequent merger. To this end, we computed a grid of about 6000 detailed 1D binary
evolution models with initial component masses of 0.5–20.0 M⊙ at solar metallicity. Both
components were evolved, and rotation and tides were taken into account. We identified five
mechanisms that lead to contact and mergers: runaway mass transfer, mass loss through the
outer Lagrange point L2, expansion of the accretor, orbital decay because of tides, and non-
conservative mass transfer. At least 40% of mass-transferring binaries with initial primary-
star masses of 5–20 M⊙ evolve into a contact phase; > 12% and > 19% likely merge and
evolve into a CE phase, respectively. Because of the non-conservative mass transfer in our
models, classical CE evolution from late Case-B and Case-C binaries is only found for ini-
tial mass ratios qi < 0.15–0.35. For larger mass ratios, we find stable mass transfer. In early
Case-B binaries, contact occurs for initial mass ratios qi < 0.15–0.35, while in Case-A mass
transfer, this is the case for all qi in binaries with the initially closest orbits and qi < 0.35 for
initially wider binaries. Our models predict that most Case-A binaries with mass ratios of
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q < 0.5 upon contact mainly get into contact because of runaway mass transfer and accre-
tor expansion on a thermal timescale, with subsequent L2-overflow in more than half of the
cases. Thus, these binaries likely merge quickly after establishing contact or remain in con-
tact only for a thermal timescale. On the contrary, Case-A contact binaries with higher mass
ratios form through accretor expansion on a nuclear timescale and can thus give rise to long-
lived contact phases before a possible merger. Observationally, massive contact binaries are
almost exclusively found with mass ratios q > 0.5, confirming our model expectations. Be-
cause of non-conservative mass transfer with mass transfer efficiencies of 15–65%, 5–25%,
and 25–50% in Case-A, -B, and -C mass transfer, respectively (for primary-star masses
above 3 M⊙), our contact, merger, and classical CE incidence rates are conservative lower
limits. With more conservative mass transfer, these incidences would increase. Moreover,
in most binaries, the non-accreted mass cannot be ejected, raising the question of the fur-
ther evolution of such systems. The non-accreted mass may settle into circumstellar and
circumbinary disks, but could also lead to further contact systems and mergers. Overall,
contact binaries are a frequent and fascinating result of binary mass transfer of which the
exact outcomes still remain to be understood and explored further.

2.1. Introduction

Mergers of non-compact stars frequently occur in the Universe (Podsiadlowski et al., 1992;
Sana et al., 2012; de Mink et al., 2014). They can be caused by the evolution of the com-
ponents in a binary system, during which the stars come into contact because of their radial
expansion or orbital decay. Such orbital decay is not necessarily a result of the binary evo-
lution itself, but can also be induced by von Zeipel-Kozai-Lidov oscillations (von Zeipel,
1910; Lidov, 1962; Kozai, 1962; Naoz, 2016) caused by a third component or a circumbi-
nary disk (e.g. Lubow and Artymowicz, 2000; Perets and Fabrycky, 2009; Toonen et al.,
2020, 2022). A third option is dynamically driven mergers, which occur during close en-
counters between stars in dense stellar environments (e.g. Hills and Day, 1976; Portegies
Zwart et al., 1997, 1999, 2004).

The products of stellar mergers can explain a multitude of objects. Examples include
blue stragglers (e.g. Rasio, 1995; Sills et al., 1997, 2001; Mapelli et al., 2006; Glebbeek
et al., 2008; Ferraro et al., 2012; Schneider et al., 2015), some of the most massive stars
observed in the Universe (e.g. Portegies Zwart et al., 1999; Banerjee et al., 2012; Schneider
et al., 2014; Boekholt et al., 2018), B[e] supergiants (e.g. Podsiadlowski et al., 2006; Wu
et al., 2020a), OBA stars with large-scale surface magnetic fields (Schneider et al., 2019),
highly-magnetic white dwarfs and magnetars (e.g. Tout et al., 2004; Ferrario and Wickra-
masinghe, 2005; Wickramasinghe and Ferrario, 2005; Wickramasinghe et al., 2014; Shenar
et al., 2023), and α-rich young stars (e.g. Chiappini et al., 2015; Martig et al., 2015; Izzard
et al., 2018; Hekker and Johnson, 2019). Transients linked to stellar mergers include su-
pernovae such as the core-collapse supernova SN 1987A (e.g. Podsiadlowski et al., 1990;
Podsiadlowski, 1992; Morris and Podsiadlowski, 2007), the great eruption of η Car (Frew,
2004; Gallagher, 1989; Iben, 1999; Podsiadlowski et al., 2006; Morris and Podsiadlowski,
2006; Podsiadlowski, 2010; Fitzpatrick, 2012; Portegies Zwart and van den Heuvel, 2016;
Smith et al., 2018; Owocki et al., 2019; Hirai et al., 2021), and luminous red novae such as
V1309 Sco (Tylenda et al., 2011; Stȩpień, 2011), V838 Mon (Soker and Tylenda, 2007), and
V4332 Sgr (Tylenda et al., 2005).
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Three-dimensional simulations of stellar mergers with magnetohydrodynamic (MHD,
Schneider et al., 2019) and smoothed particle hydrodynamic (SPH, Sills et al., 1997, 2001;
Freitag and Benz, 2005; Dale and Davies, 2006; Suzuki et al., 2007; Gaburov et al., 2008a;
Antonini et al., 2011; Glebbeek et al., 2013; Ballone et al., 2023) codes provide useful
insights into the merger events and merger products (Schneider et al., 2020; Costa et al.,
2022). However, to obtain realistic initial conditions for these computationally expensive
simulations, it is crucial to understand in which binary configurations stellar mergers are
most commonly expected to occur. Moreover, it is important to characterise the interior
structures of stars directly before they enter a merger phase, as these largely determine the
merger outcome.

Before stars in a binary system merge, they go through a phase of contact (e.g. Langer,
2012). Yet, not every contact phase necessarily leads to a merger. These contact phases
can be (over-)contact binaries in which both stars (over-)fill their Roche lobe1, or classical
common-envelope (CE) phases, in which one star is engulfed by the envelope of the other
star (e.g. Ivanova et al., 2013). Hence, as a first step towards predicting the occurrence of
mergers, it is important to determine in which binary configurations contact phases occur
and what the outcomes of these phases are. Mapping the occurrence of contact binaries
using detailed 1D binary evolution simulations has been carried out, for example, by Pols
(1994), Wellstein et al. (2001), de Mink et al. (2007), Claeys et al. (2011), and Mennekens
and Vanbeveren (2017) for massive stars. Marchant et al. (2016) and Menon et al. (2021)
additionally computed through contact binary phases, which yields information on their life-
time and stability (i.e. likelihood to merge). More recently, three extended grids of detailed
binary evolution models, spanning masses of 0.5-300 M⊙ , have been computed as part of
the binary population synthesis code POSYDON (Fragos et al., 2023). These contain valu-
able information about the onset of contact phases. Using rapid binary population synthesis
codes, de Mink et al. (2014) and Schneider et al. (2014) evolved entire populations of binary
systems and mapped the occurrence of contact phases.

In this work, we use a grid of low-mass and massive binary evolution models with com-
ponent masses between 0.5 and 20.0 M⊙ at solar metallicity (Z = 0.0142, Asplund et al.
2009) to trace the occurrence of contact phases over the complete range of initial mass ra-
tios2 and orbital separations. We evolve both components and include physical processes
such as stellar winds, rotation, and tidal interactions. It is known that binary systems can
evolve towards tidal instabilities, which lead to rapid orbital decay and subsequent mergers
(Darwin, 1879). These instabilities have been proposed to be responsible for the lack of
observations of W UMa type contact binaries at low mass ratios (Rasio, 1995) and the final
spiral-in of the progenitor system of V1309 Sco (Stȩpień, 2011).

Including these physical processes allows us to arrive at a picture of the physical mech-
anisms leading to contact and their likelihood to lead to stellar mergers that is as complete
as possible. Moreover, it illustrates the relative importance of, for example, tides, wind-
mass loss, and mass-transfer efficiency on the evolution of binaries. We allow for non-
conservative mass transfer and expect differences in the occurrence rate of contact binaries
compared to works that assume conservative mass transfer (e.g. Pols, 1994; Wellstein et al.,
2001; Menon et al., 2021) or that use fixed mass-transfer efficiencies (e.g. de Mink et al.,

1For simplicity, we use ‘contact’ to refer to both contact and ‘overcontact’ systems.
2In this work, the mass ratio q is always defined as the mass of the less massive star over the mass of the

more massive star.
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2007; Claeys et al., 2011). Lastly, by including low-mass and massive binaries in our grid,
we can compare the onset of contact over a wide mass range.

This chapter is structured as follows. In Sect. 2.2, we describe the computational setup
of the grid of binary evolution models. Section 2.3 covers the physical mechanisms that
have been identified to lead to contact phases, their likelihood to result in a merger, and the
way in which they are traced throughout the evolution of the binary models. Our findings of
the occurrence of contact phases and mergers over the whole mass range, as well as some
notable cases, are given in Sect. 2.4. Our results are discussed in Sect. 2.5, and summary
and conclusions can be found in Sect. 2.6.

2.2. Methods
We computed a grid of 5957 1D binary evolution models using the binary module of MESA
(release 12778; Paxton et al., 2011, 2013, 2015, 2018, 2019). First, we describe the adopted
single-star physics used in the stellar models in Sect. 2.2.1 before describing the binary
star physics in Sect. 2.2.2. We briefly outline the setup of the grid in Sect. 2.2.3 and list
the stopping conditions of our binary evolution models in Sect. 2.2.4. In Sect. 2.2.5, we
describe how we compute the birth probabilities for the binaries in our grid, which we use
for population studies.

2.2.1. Adopted stellar physics
Each binary component was initialised from a precomputed zero-age main-sequence (ZAMS)
model at solar metallicity, that is, Z = 0.0142 and Y = 0.2703 (Asplund et al., 2009). We
used a blend of the OPAL (Iglesias and Rogers, 1993, 1996) and Ferguson et al. (2005) opac-
ity tables appropriate for the chemical composition of Asplund et al. (2009). We allowed
the stars to rotate using the shellular approximation as implemented in MESA, with a limit on

the rotation rate at 97% of the Roche critical rotation rate Ωc =

√
GM/R3

eq ≃
√

8GM/27R3

(Maeder, 2009). In this expression, M and R are the mass and radius of the star, respectively,
G is the gravitational constant and Req is the equatorial radius of a rotationally deformed
star. All models were hydrostatic, meaning that MESA’s implicit hydrodynamic solver was
disabled. We used the approx21 nuclear network.

2.2.1.1 Mixing

Convective mixing was handled via the mixing length theory (Böhm-Vitense, 1958; Cox
and Giuli, 1968) and a mixing length parameter of αmlt = 2.0 (Paxton et al., 2013). We
used the Ledoux criterion to identify regions in the star that were unstable to convection.
The efficiency of semi-convective mixing was set to αsc = 10.0 (Schootemeijer et al., 2019).
Thermohaline mixing was also included with an efficiency of αth = 1.0 (Marchant et al.,
2021).

Convective boundary mixing (CBM) was included via the step-overshoot scheme, in
which we allowed the convective hydrogen-burning core to extend by 0.20 HP beyond the
core boundary set by the Ledoux criterion, with HP the pressure scale height (Martinet et al.,
2021). At the bottom of nonburning convective envelopes, we used step overshoot with a
0.05 HP extension of the convective region towards the centre. This corresponds to one-half
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of the upper limit typically inferred for the Sun (Angelou et al., 2020). For convectively
burning cores beyond the main sequence (MS), overshooting is not yet understood properly
and is known to have a large effect on the final fate of stars (Herwig, 2000; Temaj et al.,
2024). Because of this, we followed Marchant et al. (2021) and used exponential over-
shoot extending only 0.005 HP beyond the edge of the convective region set by the Ledoux
criterion.

To account for the rotational mixing of chemical elements and diffusion of angular mo-
mentum, the Goldreich-Schubert-Fricke instability, Eddington-Sweet circulation, and the
secular and dynamic shear instabilities were included (see for example Heger et al. 2000
for a detailed description). Additional diffusion of angular momentum was taken care of by
the Spruit-Tayler dynamo. We scaled the strength of the mixing of chemical elements by a
factor fc = 1/30 as in Heger et al. (2000). The sensitivity of the rotational instabilities to
stabilising composition gradients, which is incorporated in the factor fµ, was set to fµ = 0.1
(see also Pinsonneault et al., 1989).

2.2.1.2 Wind mass-loss prescription

Our binary models contain low-, intermediate-, and high-mass stars, and the masses can
change significantly over the star’s evolution. Therefore, we employed a wind mass-loss
prescription that covered this large mass range and all evolutionary stages.

We considered two distinct regimes, the hot-wind regime with surface temperature3

Tsurf ⩾ 11 kK and the cool-wind regime for stars with Tsurf ⩽ 10 kK. We used linear in-
terpolation to determine the mass-loss rate in the temperature region between those two
values.

Within the hot-wind regime, the mass-loss rate for stars with hydrogen envelopes (sur-
face hydrogen mass fraction Xsurf > 0.5) was computed via the Vink et al. (2000) prescrip-
tion. When Xsurf dropped below 0.4, either the prescription for Wolf-Rayet (WR) stars from
Sander and Vink (2020) or the prescription for low-mass helium stars from Vink (2017)
was used, depending on whether the star’s luminosity L was higher or lower than a certain
luminosity L0 respectively. As described in Sander and Vink (2020), L0 is the asymptotic
limit below which no WR-like wind mass-loss is expected to occur. Its value is metallicity-
dependent and obtained from stellar atmosphere models. In the regime where L > L0,
we computed the mass-loss rate with both prescriptions and took the maximum value as
the adopted wind mass-loss rate (J. Vink, 2021, priv. comm.). All of the aforementioned
prescriptions had a scaling factor of 1.0. For 0.4 ⩽ Xsurf ⩽ 0.5, the mass-loss rate was
determined via linear interpolation between the mass-loss rates from both regimes.

When a model reached the cool-wind regime, the distinction between stars expected to
become giants or supergiants was made. The cut was made at log10 (L /L⊙) = 3.15, where
L is defined as in Langer and Kudritzki (2014),

L =
1

4πσG
L
M

. (2.1)

Here, σ is the Stefan-Boltzmann constant. This cut corresponds roughly to a mass of
10 M⊙ at the base of the (super-)giant branch. Models below the cut used the Reimers (1975)
wind prescription on the red giant branch (RGB) and the Bloecker (1995) wind prescription

3In these wind mass-loss rate computations, the surface temperature Tsurf is that of the outermost cell of
the model.
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on the asymptotic giant branch (AGB). Following Choi et al. (2016), we used a scaling
factor of 0.1 for the former and 0.2 for the latter. Models above the cut in L used the
Nieuwenhuijzen and de Jager (1990) prescription with a scaling factor of 1.0.

We increased the scaling factor for the Bloecker (1995) wind to 3.0 at the onset of ther-
mal pulses (TP) during the AGB phase following Choi et al. (2016). This increase aimed
to ease the computations through this phase by mimicking the enhanced mass loss during
the TP-AGB phase while simultaneously avoiding the TPs themselves (by removing the
envelope). Additionally, by removing part of the envelope, we aimed to avoid the Hydro-
gen Recombination Instability (HRI) and the Fe-Peak Instability (FePI). These instabilities,
which lead to envelope inflation over multiple orders of magnitude, can occur when the
cold, expanded envelopes of AGB stars are modelled with a hydrostatic code (Rees et al.,
in prep.). The HRI is caused by the increased dynamical instability of the envelope because
of hydrogen recombination (Wagenhuber and Weiss, 1994), and the FePI occurs when lu-
minosity at the base of the convective envelope exceeds the Eddington luminosity because
of a local iron opacity bump (Lau et al., 2012). The physical mechanism behind these in-
stabilities most likely leads to events of extreme mass loss. The timescales on which this
envelope inflation occurs are too short to be captured correctly in MESA’s hydrostatic mode
and can lead to numerical issues. The increase of the Bloecker (1995) wind scaling factor
was not successful in avoiding numerical issues in each model, especially in those models
where the aforementioned instabilities occur. Because of this, we opted to disregard models
in which binary mass transfer occurs after the TP-AGB phase. A more elaborate approach
to compute through the TP-AGB phase and these instabilities is provided in, for example,
Rees et al. (in prep.).

2.2.2. Adopted binary physics
In our models, we evolved both binary components. This allowed us to consider the be-
haviour of both the donor and the accretor star for tracing potential contact scenarios (see
Sect. 2.3). Only mass transfer from the initially more massive or ‘primary’ star onto the
initially less massive or ‘secondary’ star was considered. Hence, in this work, references
to primary (secondary) and donor (accretor) are equivalent. We mostly employ the names
primary (subscript ‘1’) and secondary (subscript ‘2’) star. We assumed circular orbits for all
binary systems.

2.2.2.1 Mass transfer and accretion

Whenever the primary star was on the MS, mass transfer was computed using the contact
scheme (Marchant et al., 2016). In semi-detached binaries, this scheme uses MESA’s
roche lobe scheme, which ensures that the donor stays within its Roche lobe. When both
stars (over-)fill their Roche lobe it switches to a different solver for the mass-transfer rate
suitable for contact binaries. In this scheme, only the computation of the mass-transfer rate
is handled. Energy transport between the components of the contact binary and the tidal
distortion are not taken into account (for the effect of including those, see Fabry et al. 2022,
2023). For systems with post-MS primary masses smaller than 1.3 M⊙, the Kolb scheme
(Kolb and Ritter, 1990) was used because this scheme is better suited for envelopes with
larger pressure scale heights (Fragos et al., 2023). Both schemes were solved implicitly.

The mass-transfer efficiency β is defined as the effective, overall change in mass of the
accretor over the mass transferred from the donor to the accretor, β ≡ −Ṁ2/Ṁtrans. In this

38



2.2 Methods

definition, Ṁtrans < 0 and Ṁ2 > 0. Ṁ2 also includes the wind mass loss of the accretor.
During conservative mass transfer in our models, β ≈ 1, because typically |Ṁtrans| is orders of
magnitude larger than the absolute value of the wind mass-loss rate. When the accretor star
spun up to its critical rotation rateΩc, 2, mass transfer was non-conservative and β < 1. When
the accretor star’s accretion timescale τacc ≡ M2/Ṁtrans approached the star’s dynamical
timescale τdyn, 2 (Eq. 1.3) we limited the accretion rate to that of 0.1 times the star’s Kelvin-
Helmholtz (or thermal) timescale τKH. This also resulted in non-conservative mass transfer,
that is, β < 1. We did this because the accreting models tend not to converge numerically
when τacc ∼ τdyn, 2. Models for which the accretion rate was limited are marked in the results.
The accretion of angular momentum during mass transfer was computed following Lubow
and Shu (1975) and Ulrich and Burger (1976), which includes accretion through ballistic
impact and a Keplerian disk.

2.2.2.2 Tides and angular momentum loss

Tidal synchronisation was computed uniformly over the components’ structure using the
convective synchronisation timescale from Hurley et al. (2002). Upon initialisation of the
binary models, the rotation periods of both components were equal to the orbital period.
In our models, orbital angular momentum evolved via mass loss from the system (through
winds or isotropic re-emission) and spin-orbit coupling. In the former case, the lost mass
was assumed to have the specific angular momentum of the star’s orbit in which vicinity it
was leaving the system.

2.2.3. Binary-star grid
In our grid, we varied the initial mass of the primary star M1, i (in units of M⊙), the initial
mass ratio qi = M2, i/M1, i with M2, i the initial mass of the secondary star, and the initial sep-
aration ai (in units of R⊙). Twenty primary masses were selected between 0.8 and 20.0 M⊙
with logarithmic mass spacing ∆ log10 M1, i ≈ 0.074. At the high-mass end, we added three
additional primary masses (13.1, 15.6 and 18.4 M⊙) for increased resolution, bringing the
total number of primary masses to 23. Values between 0.1 and 0.9 were considered for the
mass ratios, with linear spacing and steps of 0.1. We imposed a lower limit on the secondary
mass of 0.5 M⊙ to avoid fully convective companions, which are difficult to converge nu-
merically when they accrete. We added an additional mass ratio at qi = 0.97 to model twin
systems. Lastly, we chose the initial binary separations ai such that the first phase of mass
transfer occurred during all stages of the primary star’s evolution. These stages at which
mass transfer occurs are called Case A, B, and C, for when the donor star is on the MS,
before core-helium ignition, and after core-helium ignition, respectively4. This distinction
is related to the phases in which the (primary) star expands, as illustrated in Fig. 1.2. Case B
phases were further divided into early (Case Be) and late (Case Bl) phases. The distinction
is based on the presence of a deep convective zone in the envelope of the star5.

To ensure sufficient sampling of all these stages, we used the radius evolution of single-
star models in combination with the volume-equivalent Roche lobe radius RRL for a given

4As demonstrated in Ge et al. (2015), core-helium ignition can occur before the primary star reaches the
base of the supergiant branch for Mi ≳ 15 M⊙. Although mass transfer at this point would be classified as Case
C, it behaves in a very similar way to Case B. This does not, however, occur in our models.

5For stars with convective envelopes during the main sequence, that is, initial masses < 1.3 M⊙, the distinc-
tion between early and late Case-B mass transfer was not made.
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mass ratio q = M2/M1 and separation a, computed through Eq. (1.5). For a given primary
mass M1 and mass ratio q, we selected a number of points along the radius evolution of the
star, indicated by the dashed horizontal lines in Fig. 1.2. At each of these points, we assumed
the star filled its Roche lobe, R = RRL, and mass transfer ensued. From Eq. (1.5), we then
got the separation a at which this happened. Assuming that the orbit stays approximately
constant until mass transfer starts, we took this value for the separation a as our initial value,
ai = a. Although this method of sampling the initial separation space is adequate for closer
binaries, it cannot accurately predict the division lines between later mass-transfer cases for
a number of reasons (see, for example, the dividing line between Case Bl and Case C in
Fig. 2.6). Firstly, the assumption that the orbital separation a stays approximately constant
does not hold in systems with strong wind mass loss and tidal interaction prior to mass
transfer. Secondly, post-MS donors use MESA’s Kolb scheme for mass transfer (Kolb and
Ritter, 1990). This scheme can result in significant mass-transfer rates before the donor star
formally overfills its Roche lobe, since it takes both the optically thick and thin Roche lobe
overflow into account (Paxton et al., 2015).

2.2.4. Stopping conditions
In principle, we computed each binary model until one of the components, usually the
initially more massive primary star, reached the end of core carbon burning. This is de-
fined as the moment when the central mass fractions of He and C fall below 10−6 and
10−2, respectively. Systems with MS primaries having predominantly radiative envelopes
(M1, i > 1.3 M⊙) used MESA’s contact mass-transfer scheme (see Sect. 2.2.2.1) and could
therefore be modelled through such phases. During a contact phase, the computation ter-
minated when the condition for mass overflow through the second Lagrange point (L2) or
L2-overflow from Marchant et al. (2016) was met (see Sect. 2.3.3). For primaries with
mostly convective envelopes (post-MS or M1, i ≤ 1.3 M⊙), we used the Kolb mass-transfer
scheme. The computation stopped whenever the secondary star overfilled its Roche lobe
by more than RRL, 2. When the mass-transfer rate Ṁtrans reached a value of 10 M⊙ yr−1, the
evolution was terminated. The timescale on which such fast mass transfer occurs nears typ-
ical dynamical timescales, which is not numerically feasible with our MESA setup. Lastly,
reverse mass transfer in a semi-detached system from the secondary to the primary star was
not considered in this study. The onset of reverse mass transfer was used as a stopping
condition.

2.2.5. Birth probabilities
To describe the models in our grid as a population (Sect. 2.4.3–2.4.5), we computed their
birth probability pbirth from the initial distribution function, which is the product of the dis-
tribution functions of the initial primary mass M1, i, mass ratio qi and period Pi. For the M1, i

distribution, we used the Kroupa (2001) initial mass function (IMF),

ψ(M1, i) = CmMα , (2.2)

with α = −2.3 as appropriate for primary star masses ≥ 0.5 M⊙ and Cm a normalisation
constant. We assumed the other two initial distribution functions to be uniform in qi and
log10 Pi, respectively,

ϕ(qi) = Cq and χ(log10 Pi) = Cp , (2.3)
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Figure 2.1: Schematic representation of the physical mechanisms leading to contact (not to scale).
The filled blue circles and purple squares indicate the position of the L1- and L2- points, respectively.
The filled grey-blue circles represent the stellar cores in Panel (3a) and (3b). Panel (1a) shows
the expansion of the accretor leading to a contact binary (1b). This corresponds to the ‘Accretor
expansion’ mechanism described in Sect. 2.3.1. Subsequent overfilling of the components’ Roche
lobes leads to the formation of an overcontact binary (2b). The primary increasingly overfills its
Roche lobe (2a) and can eventually fill the secondary’s Roche lobe (2b). This can eventually lead to
L2-overflow (2c), which likely results in a stellar merger. The scenarios (1b–2b–2c) and (2a–2b–2c)
correspond to the ‘L2-overflow’ mechanism described in Sect. 2.3.3. In Panel (3a), runaway mass
transfer from a (super-)giant (left) to an MS star (right) leads to the onset of a classical common-
envelope phase (3b), where the cores of both stars revolve in the (super-)giant’s envelope. This
corresponds to the ‘Runaway MT’ mechanism described in Sect. 2.3.5.

with Cq and Cp being normalisation constants. The birth probability pbirth of each model
was then computed by integrating the product of the initial distribution functions over the
parameter size in the model grid,

pbirth =

∫ log10 Pu

log10 Pl

∫ qu

ql

∫ Mu

Ml

ψ(M1, i)ϕ(qi) χ(log10 Pi) dM1, i dqi d log10 Pi . (2.4)

Here, log10 Pu, l, qu, l and Mu, l are the upper- and lower-boundaries of the parameter size of a
model in the grid for log10 Pi, qi, and M1, i, respectively. They were chosen as the midpoints
between the initial parameter values of the model and its neighbouring models.

2.3. Physical mechanisms leading to contact

We use the following nomenclature of contact phases traced in our grid, based on the phys-
ical picture in Röpke and De Marco (2023) and illustrated in Fig. 2.1. Systems with MS
and/or Hertzsprung-gap (HG) stars (i.e. Case A & Be) that both (over-)fill their Roche lobes
or undergo (unstable) runaway mass transfer are referred to as contact binaries (Fig. 2.1.1b
and 2.1.2b). Systems with a (super-)giant primary (i.e. Case Bl & C) and an MS secondary
undergoing (unstable) runaway mass transfer enter a ‘classical’ common-envelope phase
(Fig. 2.1.3b). What sets the onset of a classical CE phase apart from the formation of a
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contact binary is that now the primary has a clear core-envelope boundary and the radius of
the secondary is at least an order of magnitude smaller than that of the primary.

In this section, we discuss the different physical mechanisms that can lead to contact
phases. As stated before, being in contact does not necessarily mean that the binary will
merge. Hence, for each mechanism leading to contact, we discuss the likelihood of a merger
or rather a longer-lived contact phase. Additionally, we explain how we trace each mecha-
nism in the binary star models.

2.3.1. Expansion of accretor

Arguably the most intuitive way to form contact binaries is when the accreting secondary star
expands during a mass-transfer phase and (over-)fills its Roche lobe. A schematic represen-
tation of this mechanism is shown in Fig. 2.1.1a–b. The timescale on which the secondary
expands, generally defined as τR/Ṙ ≡ R/Ṙ with R the stellar radius and Ṙ its time derivative,
has implications for the evolution of the subsequent contact phase.

When the mass-transfer timescale τtrans ≡ |M1/Ṁtrans| is shorter than the secondary’s
thermal or Kelvin-Helmholtz timescale6 defined in Eq. (1.2), the star is out of thermal equi-
librium. In an effort to regain thermal equilibrium, the secondary expands on its thermal
timescale (Ulrich and Burger, 1976; Kippenhahn and Meyer-Hofmeister, 1977; Webbink,
1976; Neo et al., 1977; Pols, 1994). A contact binary is formed if the increase in radius is
sufficient for the secondary to fill its Roche lobe. Such a contact binary can rapidly merge
on a thermal timescale, or evolve back to a semi-detached binary when the accretor regains
thermal equilibrium and shrinks.

When the secondary is in thermal equilibrium during mass transfer, it expands on a nu-
clear timescale, defined in Eq. (1.1). Contact phases driven by the nuclear expansion of the
accretor are longer lived since the accretor will not shrink inside its Roche lobe again until
the end of the nuclear burning phase. As a result, such contact phases are expected to persist
on a nuclear timescale, or until the stars merge.

The onset of contact phases through the expansion of the accretor is traced by check-
ing whether at any point the accretor overfills its Roche lobe. These models are labelled
as ‘Accretor expansion’ in the following sections. This is a stopping condition for models
using the Kolbmass-transfer scheme. Models using the contactmass-transfer scheme can
evolve through these contact phases. Hence, multiple contact phases might occur through-
out the evolution of the system. If more than one contact phase occurs in a model using the
contact scheme, only the onset of the first contact phase is considered for a better compar-
ison with models using the Kolb scheme.

An example of a system forming a contact binary because of the thermal expansion of
the accreting secondary star (shown up to the point of contact) is shown in Fig. 2.2. From
the Hertzsprung-Russell diagram (HRD, Fig. 2.2a), it can be seen that, as a result of Case-
A mass transfer, the primary and secondary become under- and over-luminous compared
to their single-star counterparts, respectively. The single-star tracks are shown up to their

6Technically one should compare with the local thermal timescale in the surface layers of the accreting star,
defined in Kippenhahn et al. (2013) (see also Temmink et al. 2023) as τlocal

KH (m) =
∫ M

m cP(m′)T (m′)dm′, with
cP(m) the heat capacity at constant pressure P and T (m) the temperature at mass coordinate m. In practice,
timescale comparisons should therefore be made at an order-of-magnitude level.
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Figure 2.2: Example of a M1, i = 10.2 M⊙, qi = 0.4, and ai = 12.4 R⊙ binary system forming
a contact binary during the MS of the primary (Case A) because of the thermal expansion of the
secondary (accretor) star. Panel (a) shows an HRD with the evolutionary tracks of the primary and
secondary stars (solid lines). The dashed black lines show the evolutionary tracks of single stars with
the same initial masses as the binary components and initial rotation rates of Ω/Ωc = 0.25. Panel
(b) shows the evolution of the radius R (solid lines) and Roche lobe radius RRL (dashed lines) of
both components. The timescales governing the evolution of the binary and the mass-transfer rate
(black dashed line) are shown in Panel (c) as a function of the decreasing primary star mass. The
secondary’s nuclear (τnuc, 2) and thermal (τKH, 2) timescales are shown with a dashed green and pink
line, respectively. The expansion (τR/Ṙ, 2) and mass-transfer (τtrans) timescales are shown with a solid
blue and orange line, respectively.

terminal-age main sequence (TAMS). As a result of mass accretion, the secondary star ex-
pands rapidly and fills its Roche lobe (Fig. 2.2b). The expansion timescale τR/Ṙ, 2 becomes
about an order of magnitude shorter than the secondary’s global thermal timescale τKH, 2 due
to the mass-transfer timescale τtrans becoming comparable to τKH, 2 (Fig. 2.2c). An example
of a system forming a contact binary because of the nuclear expansion of the accretor is pro-
vided in Appendix A.1. The accretor expansion timescales of all systems forming contact
binaries through accretor expansion are shown in Fig. A.8–A.9 in Appendix A.4.

2.3.2. Non-conservative mass transfer

As demonstrated in Packet (1981) and, for example, more recently in Ghodla et al. (2023),
a star only has to accrete between ∼2 to ∼10 percent of its own mass to be spun up to the
Roche critical rotation rate Ωc. When a star is rotating at (near) this critical rotation rate,
it may not be able to accrete any more material. It is then often assumed that the excess
mass is lost through an enhanced stellar wind, or even instantaneously through a so-called
‘fast’ wind from the accretor, resulting in non-conservative mass transfer. In our models,
instantaneous wind mass loss is invoked to expel the excess matter for accretors rotating near
the critical rotation rate and for models in which the accretion timescale τacc is restricted to
10% of the Kelvin-Helmholtz timescale τKH. It is assumed that there is an energy source
that can expel this excess mass. Let us consider the energy per unit mass ε required to drive
away the mass to infinity, ε = GM2/2R2. This is under the simplifying assumption that the
primary’s gravitational potential can be ignored and that the mass is lost from the surface of
the accretor. Equating ε to (L1 + L2) /Ṁmax, we eventually find a maximum mass-loss rate
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2 Contact tracing of binary stars: Pathways to stellar mergers

Ṁmax the accretor can have under the condition that all this mass is driven away to infinity
by the combined luminosity (L1 + L2) of the binary (Marchant, 2017),

Ṁmax

M⊙yr−1 = 10−7.19 feff
R2

R⊙

M⊙
M2

(L1 + L2)
L⊙

. (2.5)

The factor feff is a free parameter added to take into account the uncertainty on the exact
radius at which the non-accreted mass is expelled, the fact that only the gravitational poten-
tial of the accretor is accounted for, the unknown fraction of the total luminosity that can be
used to expel the non-accreted mass, and the unknown energy of the ejected mass at infinity.

Since the non-accreted mass in systems with Ṁ2 > Ṁmax cannot be expelled to infinity,
it must remain in or around the binary system. Although it is unclear what exactly happens,
the non-accreted mass can potentially lead to a contact phase, for example, if it fills the
secondary’s Roche lobe or introduces a drag on the binary components. Alternatively, the
non-accreted matter can form an accretion disk. In this work, we merely flag such models
and discuss the potential consequences for their evolution in Sect. 2.5.3.

In the models, we trace the failure to eject non-accreted matter in post-processing by
using Eq. (2.5) and assuming feff = 1.0. Models for which the mass-loss rate of the accre-
tor, defined as Ṁej = (1 − β) Ṁtrans, at one point exceeds Ṁmax are labelled in the following
sections as ‘Non-conservative MT + cannot eject’.

An example of a system in which the accretor cannot eject the non-accreted matter dur-
ing non-conservative mass transfer is shown in Fig. 2.3. The system undergoes Case-Be and
-C mass transfer. The primary is partially stripped in the former mass-transfer phase, and the
remaining H+He envelope amounts to ≈ 20% of the mass of the post-mass-transfer primary
star. After core-He exhaustion, the star expands again, initiating a Case-C mass-transfer
phase. During Case-Be mass transfer, the secondary star becomes over-luminous because
it is out of thermal equilibrium. However, its luminosity decreases again when its rotation
rate Ω reaches the critical rotation rate Ωc (Fig. 2.3c). At this point (M1 ≈ 9.5 M⊙), the
mass-transfer efficiency β decreases to almost zero. During the non-conservative Case-Be
mass transfer, the combined luminosity is insufficient to expel the non-accreted matter to
infinity. This holds both for feff = 0.1 and feff = 1.0 (Fig. 2.3b).

2.3.3. Outflow from second Lagrange point
In the Roche potential, there are three equilibrium points located on the line connecting the
centres of the binary components. From lowest to highest potential, these are L1 (through
which mass transfer occurs), L2 and L3. The L2-point is always located on the side of the
less massive star in the binary, and L3 on the side of the more massive star. In Case-A and
-Be binaries, mass loss from the L2-point (Fig 2.1.2c) takes away a significant amount of
specific angular momentum from the system, which can lead to rapid orbital shrinkage and
a subsequent merger. The rate of orbital shrinkage and hence the time until the merging
event depends on the mass-loss rate and the outflow velocity through L2 (Marchant et al.,
2021). In Case Bl and -C binaries, L2 indicates the onset of a classical CE.

We trace L2-overflow in our models when either one (semi-detached) or both (contact)
components overfill(s) their Roche lobe. In the latter case, the radii of the components
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Figure 2.3: Example of a M1, i = 10.2 M⊙, qi = 0.9, and ai = 39.2 R⊙ binary star model in which
non-conservative mass transfer occurs and for which the non-accreted matter cannot be driven to
infinity. Panel (a) is the same as Fig. 2.2a (‘ign.’ = ‘ignition’ and ‘exh.’ = ‘exhaustion’). In Panel
(b), the mass-loss rate of the secondary (solid black line) is compared to the maximum mass-loss rate
Ṁmax (dashed lines; pink for feff = 1.0, green for feff = 0.1) set by Eq. (2.5). The surface rotation
rates (solid blue and orange lines) and mass-transfer efficiency (dashed black line) are shown in Panel
(c) as a function of the primary mass.

are compared to L2 volume-equivalent radii from Marchant et al. (2016). This is done
during the computation of the model and the moment of L2-overflow is a stopping con-
dition (Sect. 2.2.4). In semi-detached systems, we compare the radius of the primary star
to the volume-equivalent radius RL2 and the distance to the L2-point DL2 from Misra et al.
(2020) (similar fitting formulae for RL2 are derived in Ge et al. 2020). This is done in
post-processing, meaning that the outflow from L2 is not modelled and does not affect the
evolution of the model. We refer to, for example, Marchant et al. (2021) to see the effect of
these outflows. In both cases, if L2-overflow occurs, the models are labelled ‘L2-overflow’.

The evolution of a binary system experiencing L2-overflow is shown in Fig. 2.4. The pri-
mary and secondary become under- and over-luminous, respectively, during Case-Be mass
transfer (Fig. 2.4a). As in the previous example, mass transfer is non-conservative and early
on during the mass transfer the non-accreted matter cannot be driven to infinity (Fig. 2.4b).
As the binary orbit shrinks during mass transfer, also the Roche lobe radius RRL, 1 and the
volume-equivalent radius RL2, 1 decrease (Fig. 2.4c ). After about 1.5 M⊙ is lost from the
primary star, its radius decreases slower than RRL, 1 and RL2, 1. As a consequence, the star
increasingly overfills its Roche lobe until it reaches the point of L2-overflow. The subse-
quent loss of mass and angular momentum from the L2-point will result in an accelerated
orbital shrinkage, which is not accounted for in this model. The onset of L2-overflow is
shown schematically in Fig. 2.1. In the evolutionary scenario depicted in Fig. 2.1.1a–1b–
2b–2c, a contact binary is formed because of the expansion of the accretor. The components
continuously overfill their Roche lobes (Fig. 2.1.2b) until the overcontact binary fills the
L2-lobe (Fig. 2.1.2c). In the second scenario, from Fig. 2.1.2a–2c, the primary overfills its
own Roche lobe (Fig. 2.1.2a) and later fills the Roche lobe of the secondary, forming an
overcontact binary (Fig. 2.1.2b). Eventually, this overcontact binary fills the L2-lobe and
L2-overflow occurs (Fig. 2.1.2c).
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Figure 2.4: Example of a binary model with M1, i = 10.2 M⊙, qi = 0.2, and ai = 175.7 R⊙ going
through a phase of (delayed) runaway mass transfer. Panel (a) is the same as Fig. 2.2a (‘ign.’ =
‘ignition’). Panel (b) shows the mass-transfer rate Ṁtrans (solid black line), thermal mass-transfer
rate ṀKH (solid green line) and dynamical mass-transfer rate Ṁdyn (solid gold line) for the primary
star on the left axis. The right axis shows the component mass evolution as a function of age (dashed
blue and orange lines). In Panel (c), the radius R (solid blue line), Roche lobe radius RRL (dashed
light-blue line), L2-volume-equivalent radius RL2 (dahsed green line, Misra et al., 2020, Eq. 15) and
orbital separation aorb (dashed black line) evolution for the primary are shown as a function of the
decreasing primary mass. The blue cross indicates the moment of L2-overflow.

2.3.4. Tidally driven contact
When a single star ascends the (super-)giant branch, its moment of inertia I increases, such
that its surface rotation velocity decreases. In a binary and if the tidal synchronisation
timescale τsync (Hurley et al., 2002, Eq. 27) is shorter than the expansion timescale τR/Ṙ,
the star is tidally locked to the orbit and does not spin down. The transfer of angular mo-
mentum from the orbit to the spin of the star shrinks the orbit. Under certain circumstances,
tidally driven orbital decay can lead to contact phases, which demonstrates the importance
of considering the effect of tides in binaries.

In the most extreme case, the binary system becomes Darwin unstable (Darwin, 1879).
This instability arises if

Lorb

(I1 + I2)Ω
< 3 , (2.6)

where Lorb is the orbital angular momentum, Ω is the orbital angular rotation velocity, and I1

and I2 are the moment of inertia of the primary and secondary star, respectively. This con-
dition is derived under the assumption of a circular (e = 0, with e the eccentricity), coplanar
(spins of components are aligned), and synchronised (ω1 = ω2 = Ω) system. Here, ω1 and
ω2 are the angular rotation rates of the primary and secondary, respectively. Moreover, solid-
body rotation is assumed for the individual components, allowing the spin angular momenta
S 1, 2 to be written as S 1, 2 = ω1, 2I1, 2. Especially for close or contact binaries, where τsync is
typically of the order of a few years, the Darwin instability can lead to a dynamical inspiral
of the components, resulting in a merger.

Models labelled ‘Tidally driven contact’ experience orbital decay caused by tides before
the onset of contact, while orbital widening is expected from mass transfer (q > 1). We trace
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Figure 2.5: Example of a M1, i = 1.1 M⊙, qi = 0.8 and ai = 4.1 R⊙ binary system in which tides lead
to contact. In Panel (a) we show the exchange between the orbital angular momentum Lorb (solid
black line) and the secondary’s spin angular momentum S 2 (solid orange line), which coincides with
the decrease in Lorb/(S 1 + S 2) (dashed green line). The primary’s spin angular momentum S 1 is
shown with a solid blue line. Panel (b) shows the evolution of the moment of inertia (solid lines)
and tidal synchronisation timescale (dashed lines) for both components. While the moment of inertia
of the primary decreases around M1 = 0.3 M⊙, it sharply increases for the secondary. At the same
time, the secondary star’s tidal synchronisation timescale decreases by approximately two orders of
magnitude. Panel (c) shows the evolution of the primary’s and secondary’s radii (solid lines) and
Roche lobe radii (dashed lines). While the former fills its Roche lobe, tides cause orbital shrinkage,
which results in the secondary also filling its Roche lobe.
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this condition in post-processing. This label is not used for systems which are at one point
during their evolution Darwin unstable. Although these systems will experience orbital de-
cay, this can happen on timescales longer than the evolutionary timescales of the system.
However, most of the systems that are driven into contact by tides do eventually become
Darwin unstable.

An example of a system in which tides lead to the onset of contact is shown in Fig. 2.5.
In this low-mass binary, the primary overfills its Roche lobe near the end of the MS. During
mass transfer, the primary star reaches the TAMS, but does not become a red giant because of
the continuous stripping of its envelope. During the mass-transfer phase, the secondary star
overtakes in evolution, leaves the MS and turns to the giant branch. At this point, the mass
ratio of the system has already reversed, and mass transfer is almost conservative, widening
the orbit. Two important changes occur when the secondary becomes a giant. First, there
is the development of a deep convective envelope and an increase in radius, which lead to
increased tidal coupling of the star: τsync, 2 drops by several orders of magnitude (Fig. 2.5b).
Because of this, the orbital and rotation period of the secondary synchronise. Secondly, the
increase in radius and density redistribution (the envelope now has a deep convective zone)
both increase the moment of inertia I2 of the star (Fig. 2.5b). Following the conservation of
angular momentum, the secondary spins down, yet it is immediately spun up again by tides.
Hence, the spin angular momentum of the secondary S 2 increases and the orbital angular
momentum Lorb decreases (Fig. 2.5a). Eventually, the system becomes Darwin unstable, as
it fulfils the condition7 Lorb/(S 1 + S 2) ≲ 3. Because of the decrease in Lorb, the orbit, which
was widening from mass transfer, starts shrinking again. As a consequence of the shrinking
Roche lobe, the primary star is stripped of its outer envelope increasingly rapidly, leading to
a decrease in radius and an increase in mass-transfer rate (not shown). The shrinking of the
Roche lobes eventually leads to the formation of a contact binary once the secondary also
fills its Roche lobe (Fig. 2.5c). At the point when the contact binary is formed, the helium
core mass MHe has increased beyond that of the primary star. This means that the secondary
is closer to core helium ignition, that is, it has overtaken the primary in evolution.

2.3.5. Unstable mass transfer and CE phases

During mass transfer, the donor star’s radius and Roche lobe can both either shrink or ex-
pand. Mass transfer is generally stable when the donor star shrinks faster or expands slower
than its Roche lobe. However, when the donor star overfills its Roche lobe by increasing
amounts as a reaction to mass loss, the binary enters an unstable runaway situation (e.g.
Soberman et al., 1997). This happens, for example, when the Roche lobe shrinks while the
donor expands (e.g. during mass transfer with q < 1 and/or because of orbital angular mo-
mentum loss). The responses of the donor’s radius and Roche lobe radius are quantified in
the mass-radius exponents ζR1 ≡ d ln R1/d ln M1 and ζRL ≡ d ln RRL, 1/d ln M1, respectively
(Webbink, 1984). If ζR1 < ζRL, mass transfer is unstable, and the mass-transfer rate keeps
increasing, potentially reaching values larger than 1 M⊙ yr−1. During runaway (unstable)
mass transfer, the primary star increasingly overfills its Roche lobe, and the secondary’s ex-
pansion timescale becomes orders of magnitude lower than its thermal timescale. When the

7Since the stars in our models are in general not solid body rotators, we cannot assume that S 1, 2 = ω1, 2I1, 2.
Therefore, we use a modified version of the classical criterion for the Darwin instability: Lorb/(S 1 + S 2) ≲ 3.
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primary star is an MS or HG star (Case-A or -Be), a contact binary forms and merge on a
timescale shorter than the primary’s thermal timescale because of the runaway expansion of
both components. In Case-Bl and -C binaries, runaway mass transfer leads to the engulf-
ment of the secondary in the primary’s envelope, that is, a classical CE phase. A classical
CE phase can lead to a merger or leave a close binary behind (see, e.g. Röpke and De Marco,
2023). The onset of a classical CE through runaway mass transfer is shown schematically
in Fig. 2.1.3a–b.

We look for runaway mass transfer in post-processing and label such models ‘Runaway
MT’ given the following three criteria. Firstly, the mass-transfer rate Ṁtrans needs to exceed
the thermal-timescale mass-transfer rate, set by ṀKH = M1/τKH, 1. Secondly, the second
time derivative of log10 Ṁtrans has to be positive. When this is the case, the rate of change in
Ṁtrans is increasing, which is indicative of a runaway situation. Moreover, this condition also
ensures that Ṁtrans does not decrease again, as is observed for stable Case-C mass transfer
(see Sect. 2.4.2). Thirdly, the condition for unstable mass transfer described above needs
to be fulfilled: ζR1 < ζRL. For semi-detached models using MESA’s contact mass-transfer
scheme, ζR1 = ζRL by definition. Hence, in this case, only the first two conditions are eval-
uated. We note that L2-overflow is not a necessary condition for the onset of runaway mass
transfer. However, it does often occur in systems with runaway mass transfer.

An example of a binary system experiencing delayed runaway mass transfer is shown
in Fig. 2.4 and was previously discussed to demonstrate L2-overflow in Sect. 2.3.3. The
evolution of the mass-transfer rate Ṁtrans as a function of the binary system’s age is shown
in Fig. 2.4b, where it is also compared to the thermal and dynamical mass-transfer rates.
Shortly after Ṁtrans exceeds the former, the runaway nature of the evolution is observed, dur-
ing which Ṁtrans starts nearing the dynamical mass-transfer rate. Simultaneously, we see in
Fig. 2.4c that the slope of R1 as a function of the decreasing M1 becomes larger than that
of RRL, 1, which means that the primary increasingly overfills its Roche lobe. This contin-
ues up to the point where L2-overflow occurs, after which an accelerated orbital shrinkage is
expected (see Sect. 2.3.3). In this example, the binary does not enter a runaway phase imme-
diately at the onset of mass transfer. Therefore, it is an example of a delayed runaway mass-
transfer phase (e.g. Hjellming and Webbink, 1987; Han and Podsiadlowski, 2006; Pavlovskii
and Ivanova, 2015; Ge et al., 2015, 2020). Since in this particular example the primary star
is not yet a supergiant at the onset of mass transfer, this system is not expected to enter a
classical common-envelope phase, but rather become a contact binary that will most likely
eventually merge.

2.4. Occurrence of contact phases

In this section, we present our contact tracing results for three initial primary masses
(Sect. 2.4.1). Then, we focus on a particular region of the initial binary parameter space
in which Case-Bl and -C mass transfer are found to be stable (Sect. 2.4.2). Next, we look
at the incidence of the different physical mechanisms leading to contact in a population of
binary systems (Sect. 2.4.3), and put lower limits on the stellar merger and classical CE
fractions of mass-transferring binaries (Sect. 2.4.4). Lastly, we compare the properties of
Case-A contact systems found in our grid with those of observed systems (Sect. 2.4.5).
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Figure 2.6: Occurrence of contact phases for models with initial primary masses M1, i = 10.2 M⊙ on
the initial mass ratio–separation plane. Models marked with a dot are those for which accretion was
limited to 0.1 times the secondary’s global thermal timescale τKH (see Sect. 2.2.2.1). The other ones
are marked with a star symbol. The dark-blue quasi-horizontal lines indicate the initial mass transfer
cases, which can be read from the right side. Systems on the left of the solid black line are Darwin
unstable at the onset of mass transfer according to Eq. (2.6) and assuming R1 = RRL, 1.

2.4.1. Contact phases for different initial primary masses

2.4.1.1 Initial primary mass of 10.2 M⊙

In Fig. 2.6, we show our binary models in the initial mass ratio–separation (qi-log10 ai) plane
for a fixed initial primary mass M1, i of 10.2 M⊙. Systems with M1, i = 20.0 and 1.6 M⊙ are
shown in Fig. 2.7, and described in Sect. 2.4.1.2 and 2.4.1.3, respectively. The results for
the other M1, i are shown in Appendix A.2. A table with the evolutionary outcomes of all
computed MESA models as well as the model input and output files are available online8. An
extract of this table can be found in Appendix A.7.

The coloured regions in Fig. 2.6 indicate the different physical mechanisms leading
to contact (‘Accretor expansion’, ‘Non-conservative MT + cannot eject’, ‘L2-overflow’,
‘Tidally driven contact’, and ‘Runaway MT’, see Sect. 2.3). They have been constructed
using nearest neighbour interpolation. Models labelled ‘No contact’ undergo at least one
phase of mass transfer but manage to avoid any form of contact until the end of our compu-
tations (see Sect. 2.2.4). In some models, reverse mass transfer occurs from the initially less
massive secondary to the primary, but we do not consider this here for contact tracing. These
models are also labelled ‘No contact’. The potential fates of reverse mass transfer systems
are briefly described later in this section. Models labelled ‘Numerical issues’ were numeri-
cally unable to reach the desired stopping conditions of our computations (see Sect. 2.2.4).
Lastly, models labelled ‘MT after TP’ are those for which Case-C mass transfer occurs after
the TP-AGB phase. Their final fate is not further interpreted (see Sect. 2.2.1.2).

8https://zenodo.org/doi/10.5281/zenodo.10148634
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In some regions of the initial binary parameter space, more than one of the above condi-
tions are met, and we indicate this by the corresponding hatching (ancillary outcome). For
the background colour (principal outcome), priority is given in the following order (highest
to lowest priority): ‘Tidally driven contact’, ‘Runaway MT’, ‘Accretor expansion’, ‘L2-
overflow’ ‘No contact’, and ‘Numerical issues’. Regions in which ‘No contact’ is indicated
by hatching contain models that make it to the end of core-He burning and are, therefore,
strong candidates for avoiding contact but encountered numerical difficulties before they
could reach the end of core-C burning (see Sect. 2.2.4). We use ‘Non-conservative MT +
cannot eject’ exclusively as an ancillary outcome (hatching). Although this is a viable mech-
anism leading to contact (Sect. 2.3.2), it is uncertain to what evolutionary outcome it leads.
For example, a system with ‘No contact’ as its principal outcome and ‘Non-conservative
MT + cannot eject’ as its ancillary outcome can either avoid contact when, for example, an
accretion or circumbinary disk is formed, or form a contact binary when the non-accreted
matter fills the secondary’s Roche lobe.

For systems with M1, i = 10.2 M⊙, contact binaries form because of the expansion of
the accreting secondary star for qi = 0.15–1.00 in the initially closest Case-A binary sys-
tems (‘Accretor expansion’; Fig. 2.6). For qi = 0.15–0.45 with log10 (ai/R⊙) ≲ 1.23 and
qi = 0.75–1.00, these contact systems additionally experience L2-overflow, which leads to
orbital angular momentum loss and subsequent stellar mergers. For qi = 0.45–0.75, the
contact binaries do not expand beyond the L2-lobe. This behaviour is found consistently
throughout the range of M1, i = 2.6–20.0 M⊙ for qi between 0.45 and 0.65–0.75, where
the upper boundary decreases with decreasing M1, i. By comparing with the expansion
timescales of the accretors (Figs. A.8–A.9) in systems avoiding L2-overflow, we find that
systems with qi ≳ 0.5 likely produce longer-lived (τnuc, 1) contact binaries, which may be
observable. The contact binaries with qi ≲ 0.5 form through the thermal-timescale expan-
sion of the accretor and merge or detach again on the accretor’s thermal timescale.

The initially wider Case-A (log10 (ai/R⊙) ≳ 1.23) systems with qi = 0.15–0.35 that avoid
L2-overflow reach mass-transfer rates Ṁtrans orders of magnitude larger than their thermal
mass-transfer rate ṀKH. Ṁtrans eventually reaches the stopping condition value of 10 M⊙ yr−1

(see Sect. 2.2.4). In the Case-Be models labelled ‘Accretor expansion’, the primary is an
HG star and the secondary is expanding on a timescale orders of magnitude shorter than
its thermal timescale. The resulting contact binary will likely experience L2-overflow and
merge.

The Case-A binary systems with qi ≤ 0.15 and log10 (ai/R⊙) ≲ 1.37 experience a phase
of runaway mass transfer (‘Runaway MT’). In addition, the mass-accretion rate of the sec-
ondaries is limited to 10ṀKH, 2, which brings the mass-transfer efficiency β almost down to
zero right after the onset of mass transfer. The lack of further accretion quenches initially
rapid expansion (τR/Ṙ, 2 < τKH, 2) of the secondary. Assuming that in reality this rapid expan-
sion continues (the accretion rate in these models is limited for numerical reasons), the two
MS stars are likely to form contact binaries.

In the region of qi = 0.35–1.00 and log10 (ai/R⊙) ≈ 1.2–1.5, we find Case-A systems
that avoid contact (‘No contact’). In these systems, the primary stars are stripped in Case-
A, Case-AB, and in some models even Case-ABC mass-transfer phases. Eventually, they
reach or are expected to reach (horizontal hatching) the end of core carbon burning, or en-
ter a phase of reverse mass transfer. The latter occurs for some of the binary systems with
qi = 0.65–1.00 close to the border between forming contact binaries and avoiding contact.
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Here, the secondary (over-)fills its Roche lobe after the primary has detached, leading to a
phase of accretion onto a stripped primary star. Other models that experience reverse mass-
transfer phases are found at qi = 0.97 and log10 (ai/R⊙) ≈ 1.52–2.30. Such phases are not
considered further in our contact tracing.

For Case-Be systems, contact is likely avoided for qi ≳ 0.25–0.35. The primary stars in
these systems all follow the same evolutionary pathway as the example described in Fig. 2.3:
the HG primaries are stripped and reach core-C exhaustion. The secondary stars are spun up
by accretion and mass transfer becomes non-conservative. Tidal synchronisation timescales
are longer than the spin-up timescales, hence tides are not able to prevent spin-up to the
critical rotation rate as is the case in the closer-orbit Case-A systems. Virtually all systems
fail to eject the non-accreted matter at one point during this phase of non-conservative mass
transfer (‘Non-conservative MT + cannot eject’).

At qi ≤ 0.25 − 0.35, Case-Be binaries experience runaway mass transfer. All systems
experience non-conservative mass transfer and fail to eject the non-accreted matter. Except
for systems at log10 (ai/R⊙) ≲ 1.78 and qi = 0.15–0.35, all of them also experience L2-
overflow. The secondary stars are still on the MS. The primaries are HG stars without a
clear core-envelope boundary (see Fig. A.5–A.7 in Appendix A.3 for the evolutionary state
of all models at contact and/or termination). Hence, these systems are expected to evolve
into contact binaries and not result in classical CEs.

We find runaway mass transfer in Case-Bl systems with qi ≤ 0.25 and log10 (ai/R⊙) ≲
2.92, and qi ≤ 0.35 and log10 (ai/R⊙) ≳ 2.92 as well as a small set of Case-C systems
with qi = 0.15–0.35. The secondary stars in these systems are MS stars. The difference
compared to the Case-Be systems experiencing runaway mass transfer is that all primary
stars have now evolved into supergiants with a clear core-envelope boundary by the time
mass transfer starts (this can be observed from, for example, the steeper drop in density and
binding energy around the core-envelope boundary). As a consequence, all these systems
are expected to enter a classical CE phase.

Following Rasio (1995), we have computed the mass ratios below which binary systems
are Darwin unstable at the onset of mass transfer (black solid line in Fig. 2.6). Systems with
supergiant donors with deep convective envelopes (Case Bl and C) are Darwin unstable at
the onset of mass transfer for qi ≲ 0.1. In Case-A and -Be binaries, this is the case for
qi ≲ 0.05.

At qi = 0.15–0.45, we find Case-C systems (and one Case-Bl system) with runaway
mass-transfer where the primary stars overfill their L2-lobes by a factor of more than one.
The primaries have (almost) engulfed their companion and we witness the beginning of a
classical CE phase.

For qi ≥ 0.45, Case-Bl and -C binary systems evolve through a stable phase of mass
transfer. The Case-Bl systems are actually found to go through two stable mass-transfer
phases, Case-Bl and Case-BC. Thanks to the stability of these mass-transfer phases, contact
is avoided. The stability of Case Bl and -C mass transfer is described further in Sect. 2.4.2.

The region around the transition between early and late Case-B systems contains models
for which MESA does not converge numerically because of the rapid spin-up of the accretor.
These issues with the spin-up of the accretor occur in systems with initial primary masses
down to 8.6 M⊙. For systems with initial primary masses of ≥ 13.1 M⊙, models with Case Be
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mass transfer are also affected. This can be seen in Figs. 2.7 and A.2.

2.4.1.2 Initial primary mass of 20.0 M⊙

For M1, i = 20.0 M⊙ (left panel in Fig. 2.7), the general picture is similar to that of models
with M1, i = 10.2 M⊙ presented above. However, there are some notable differences.

Similarly to the models with M1, i = 10.2 M⊙, the initially closest Case-A systems form
contact binaries through the expansion of the secondary star during mass transfer. For the
twin systems (qi ≈ 0.97), this even happens for all the Case-A systems. Binary systems with
qi ≤ 0.15 and log10 (ai/R⊙) ≲ 1.37 enter contact through accretor expansion, whereas binary
systems in the equivalent region for M1, i = 10.2 M⊙ do so through a phase of runaway mass
transfer. In general, it is found that the former holds for models with M1, i = 12.6–20.0 M⊙
and the latter for M1, i = 5.2–10.2 M⊙. For M1, i < 5.0 M⊙, models with qi = 0.1 are not
computed, so information about this region is not available.

Just as for the systems with M1, i = 10.2 M⊙, contact binaries with qi ≤ 0.45 formed
through accretor expansion experience L2-overflow (Fig. 2.7, left). However, at qi ≥ 0.75,
L2-overflow is found to be largely avoided during the first phase of contact, contrary to what
is found for systems with M1, i = 10.2 M⊙. This, however, does not imply that these contact
phases are long-lived (τcontact ∼ τnuc, 1) since the secondary has been found to shrink again
after regaining thermal equilibrium (τcontact ∼ τKH, 2). In almost all of these systems, a second
contact phase follows later in the evolution because of the nuclear timescale expansion of
the secondary star. The primary stars are at his point either MS or post-MS stars. In the
former case, the models have again been computed through the contact phase, which almost
exclusively results in L2-overflow. In the latter case, the evolution is terminated when the
accretor fills its Roche lobe (see Sect. 2.2.4).

Initially wider Case-A systems, with log10 (ai/R⊙) = 1.37–1.68 and qi ≤ 0.35, go
through a phase of runaway mass transfer and thus likely form contact binaries. Compared
to the systems with M1, i = 10.2 M⊙, this region extends to higher values of qi. At similar
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initial separations and qi = 0.35–0.55, MESA does not converge numerically. As in the equiv-
alent region for M1, i = 10.2 M⊙ models, the solver fails to find a suitable solution for the
accretor such that the rotation rate remains below the critical rotation rate.

Primary stars in Case-A systems with qi = 0.550–0.935 and log10 (ai/R⊙) = 1.38–1.77
are stripped in Case-A, Case-AB, and Case-ABC mass-transfer phases and avoid or are ex-
pected to avoid contact. Contrarily to similar systems with M1, i = 10.2 M⊙, none experience
a phase of reverse mass transfer. There is, however, a set of models of twin systems with
qi = 0.97 and log10 (ai/R⊙) ≈ 1.78–2.80 where reverse mass transfer does occur, as in the
binaries with M1, i = 10.2 M⊙.

In Case-Be binaries, the differences with respect to the equivalent M1, i = 10.2 M⊙ sys-
tems are more pronounced. Firstly, a few systems only experience L2-overflow and thus
avoid runaway mass transfer. Closer inspection shows that in these systems, the radius of
the primary star exceeds RL2 by ≲ 20% for ≲ 103 yrs. It is uncertain whether these contact
binaries (see Fig. 2.1.2c) are stable, given that the phase of L2-overflow is short and might
not lead to sufficient angular momentum loss to cause significant orbital decay and hence
a merger. Moreover, the primary star shrinks again rapidly afterwards, causing the binary
to become semi-detached again. Secondly, Case-Be models have a harder time converging
numerically. In these models, the primary stars are stripped in one or more mass-transfer
phase(s), and continue core-He burning and core-C burning as stripped stars with a thin
hydrogen layer (≲ 1 M⊙). At these masses, MESA runs into numerical difficulties and the
timesteps of the simulations drop well below one year. This is a known issue for this kind
of stripped stars (Y. Götberg, 2022, priv. comm.) and has prevented us from computing
the evolution to the end of core-C exhaustion for all models. A select number of models
are computed with small timesteps until core-C exhaustion. In these models, the hydrogen
surface layers expand during core-C burning and drive a stable and short-lived (∼103 yrs)
Case-C mass-transfer phase. Mass transfer is stable because the donor stars shrink again
when nearing core-C exhaustion and the core-mass fraction is > 0.5, which typically signals
stability (Temmink et al., 2023). At lower initial primary masses, such as for models with
M1, i = 18.4 M⊙ (see Fig. A.2 in Appendix A.2), the aforementioned numerical difficulties
are less severe, allowing most stripped primaries to reach core-C exhaustion. Most of them
avoid Case-C mass transfer, such that we do not expect contact phases.

From the left panel of Fig. 2.7, we see that for Case-Be, -Bl, and -C systems with
qi ≤ 0.25 and log10 (ai/R⊙) ≲ 2.5, and qi ≤ 0.15 and log10 (ai/R⊙) = 2.50–3.42, contact
is reached again through runaway mass transfer. Among these, Case-Bl and Case-C sys-
tems are likely to enter classical CE phases. We also see two models at qi = 0.2 with
log10 (ai/R⊙) ≈ 1.72 and log10 (ai/R⊙) ≈ 2.57, respectively, that enter contact through ac-
cretor expansion. However, the accretor expansion is driven by numerical difficulties with
finding accretors that spin below critical. Contact appears likely in these two models, albeit
for another reason (unstable mass transfer or L2-overflow).

Just as for the M1, i = 10.2 M⊙ systems, there is a small region in the initial binary param-
eter space at qi ≲ 0.35 and log10 (ai/R⊙) ≈ 3.4–3.5 where runaway mass transfer does not
occur, but a classical CE phase is expected from L2-overflow. For qi ≳ 0.35, a similar region
of stable Case-Bl and Case-C mass transfer as for the M1, i = 10.2 M⊙ systems is found (see
Sect. 2.4.2).
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In the same way as the 10.2 M⊙ initial primary mass models, the spin-up of the accretor
leads to numerical convergence problems in both the Case Bl and -Be regions. At these
higher masses, the problems persist down to initial separations of a few 100 R⊙.

2.4.1.3 Initial primary mass of 1.6 M⊙

At lower initial primary masses, more specifically M1, i = 1.6 M⊙, the situation is different
than at higher masses (right panel in Fig. 2.7)9. Although the primary stars have radiative
envelopes during the MS, none of our systems undergo Case-Be mass transfer, because of
the resolution in ai

10.

Case-A models at qi = 0.35–0.65 encounter numerical issues when the accreting sec-
ondary star reaches critical rotation. Also in Case-Bl systems with mass ratios q < 0.65–0.75,
the models do not converge numerically. As can be seen from Figs. A.3–A.4, this is an issue
that occurs for M1, i ≤ 2.2 M⊙. Although this prevents us from including binary systems with
M1, i ≤ 2.2 M⊙ in further population analysis, specific regions of the initial binary parameter
space can still be described and hold valuable information.

The expansion of the accretor star is leading to the formation of contact binaries in Case-
A systems with log10 (ai/R⊙) ≲ 0.57 and qi = 0.35–0.55, and log10 (ai/R⊙) = 0.57–0.79 and
qi = 0.55–1.00 (Fig. 2.7). Similar to contact systems with M1, i = 10.2 M⊙, systems with
qi ≳ 0.80 experience L2-overflow.

Case-A systems with qi = 0.65–0.94 and log10 (ai/R⊙) = 0.73–0.94 evolve through
similar pathways as those in equivalent regions of the initial parameters space with M1, i =

10.2 M⊙ and M1, i = 20.0 M⊙. The primaries are stripped in Case-A and Case-B mass-
transfer phases, after which reverse mass transfer occurs.

In between the Case-A systems at qi = 0.65–1.00 that form contact binaries through
accretor expansion and those that avoid contact, contact binaries form by tidal interaction.
In our grid, such tidally driven contact in Case-A systems can be found for initial primary
masses between 0.8 and 1.8 M⊙. For initial primary masses between 0.8 and 1.1 M⊙ tidally
driven contact also occurs in the initially closest Case-B systems with qi = 0.97 (Fig. A.4).

Case-Bl binary systems at qi = 0.65–1.00 and log10 (ai/R⊙) = 0.91–1.45 evolve into
contact binaries because of the expansion of the accretor. The donor stars in these binaries
have deep convective envelopes, resulting in mass-transfer rates ≳ 10−5 M⊙/yr. Because
of the relatively high mass transfer rates, the accretors are out of thermal equilibrium and
expand with τdyn, 2 < τR/Ṙ, 2 < τKH, 2 and fill their Roche lobes. In comparison, the Case-A
binaries at log10 (ai/R⊙) < 0.91, which avoid contact, have mass transfer rates ≲ 10−7 M⊙/yr,
resulting in a nuclear-timescale expansion of the accretor star. The three models at qi =

0.85–1.00 not labelled ‘Non-conservative mass transfer + cannot eject’ have conservative
mass transfer because they manage to reach contact before the secondary star rotates at its
critical rotation rate.

9Note that the lower limit for initial secondary star masses is 0.5 M⊙. Hence, there are no models at qi < 0.4.
101.6 M⊙ stars only expand about 20% in radius (≲ 1 R⊙) before the envelope becomes predominantly

convective and Case-Bl mass transfer ensues when the star fills its Roche lobe. Given the average resolution
of ∼5 R⊙ in the Case-B region of the grid for these initial primary masses, a narrow Case-Be region is not
resolved.
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At larger initial separations (log10 (ai/R⊙) = 1.07–2.64), Case-Bl systems with qi >
0.65–0.75 avoid contact. The primary stars have their envelopes removed during the red
giant (RG) phase and end up as (partially) stripped stars. Mass transfer is stable because
of the relatively high initial mass ratios (the mass ratio becomes greater than one early on
during mass transfer). The mass transfer stops when the entire hydrogen envelope is re-
moved. A pure helium WD remains if the hydrogen-burning shell is stripped before the
helium core grows to a mass above roughly 0.45 M⊙. If this is not the case, central helium
ignition occurs and the primary ends up as a carbon-oxygen white dwarf. Systems with
log10 (ai/R⊙) = 2.42, 2.27, 2.28, 2.12 do not ignite helium in the centre, whereas the ini-
tially wider systems do. We find reverse mass transfer in all cases once the secondary star
becomes an RG and fills its Roche lobe. Given that the primary stars are WDs, these systems
might be observable as symbiotic binaries.

Case-Bl systems with qi = 0.35–0.45 and log10 (ai/R⊙) = 2.38–2.56 go through a phase
of runaway mass transfer and experience L2-overflow. Since the primary star is an RG with
a deep convective envelope and the secondary star an MS star at the onset of mass transfer,
we expect a classical CE phase. Initially slightly wider binary systems (qi = 0.35–0.65
and log10 (ai/R⊙) ≈ 2.60) avoid runaway Case-Bl mass transfer. After core-He exhaustion,
Case-BC mass transfer starts and the model quickly fails to converge numerically. While
there is no clear indication for future runaway mass transfer, we cannot rule it out. Binary
systems with qi = 0.45–0.65 and log10 (ai/R⊙) = 2.39–2.60 only go through Case-Bl mass
transfer. The models stop when the primary stars evolve into a pure helium WD, and the
secondaries climb the giant branch.

Finally, we find that in the initially widest Case-C systems, contact phases are avoided.
Here, mass transfer is stable because the primary star is in its TP-AGB phase, during which
it experiences enhanced mass loss in our models (Sect. 2.2.1.2). Moreover, the star’s radius
periodically decreases again, preventing a runaway situation. Models that failed to converge
numerically experience Case-C mass transfer before or early on during the TP-AGB phase
of the primary. Their outcomes are uncertain.

2.4.2. Stable Case-Bl and -C mass transfer
For all initial primary masses considered in this work, Case-C mass transfer has been found
to be stable over a wide range of initial mass ratios, even down to qi ≈ 0.2 in some cases
(e.g. for M1, i = 15.5 M⊙, see Fig. A.2). This also applies to the initially widest Case-Bl
systems, but the exact extent of this region in the initial binary parameter space is unknown
because of the aforementioned numerical difficulties.

The response of the donor star’s radius to mass loss has been studied using models with
polytropic equations of state in Hjellming and Webbink (1987) and detailed adiabatic mass
loss computations such as in Ge et al. (2010a); Ge et al. (2015, 2020). It is found that donors
with radiative or convective envelopes with core-mass fractions11 greater than 0.5 shrink and
hence have stable mass transfer (Temmink et al., 2023)12. Donors with convective envelopes

11The core-mass fraction is defined as the mass of the core over the total mass of the star.
12As discussed in Temmink et al. (2023), a major caveat of this simplified picture is the assumption that the

response of the donor star is fully adiabatic, as assumed in, for example, Ge et al. (2010a); Ge et al. (2015,
2020). They show that even in giants with convective envelopes, the subsurface layers, right below the layers
stripped by mass transfer, thermally readjust on timescales shorter than the dynamical timescale. Considering
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Figure 2.8: Example of a M1, i = 10.16 M⊙, qi = 0.6, and ai = 1398.2 R⊙ binary model with stable
Case-C mass transfer. Panel (a) is the same as Fig. 2.2a (‘ign.’ = ‘ignition’). Panel (b) is the same
as Fig. 2.4b. Panel (c) is the same as Fig. 2.4c, with the addition of a solid orange line indicating the
evolution of the mass ratio.

and core-mass fractions below 0.5 typically expand in response to mass loss and cause un-
stable mass transfer.

In our models, we identify two stabilising effects during Case-Bl and -C mass transfer.
First, the primary star’s envelope is partially lost due to winds prior to mass transfer. This
increases the core-mass fraction. At core helium ignition, values of the core-mass fraction in
our stable Case-C models are 0.22, 0.15, 0.19, 0.26, and 0.31 for M1, i = 1.9, 4.4, 8.6, 14.3,
and 20.0 M⊙, respectively. At core helium exhaustion, the values for the core-mass fraction
are 0.26, 0.22, 0.28, 0.36, and 0.44, respectively. Only for the most massive primary stars
with M1, i = 20.0 M⊙ at core helium exhaustion, the core-mass fraction approaches the sta-
bilising value of 0.5. Hence, the increased core-mass fraction alone is insufficient to explain
the mass transfer stability. However, stellar wind mass loss increases the mass ratio q to-
wards unity before the onset of mass transfer. With q’s approaching or exceeding one, orbits
will (soon) widen, stabilising mass transfer.

Second, orbital widening can stabilise mass transfer. Because the mass transfer in these
systems is non-conservative, it results in less orbital shrinkage ȧ/a than in the conserva-
tive case. Furthermore, this also causes orbital widening already at mass ratios q < 1,
whereas this only occurs for q ≥ 1 in conservative mass transfer (Tauris and van den
Heuvel, 2006). How orbital widening stabilises mass transfer can be seen in the example
of a M1, i = 10.2 M⊙, qi = 0.6, and ai = 1398.2 R⊙ system undergoing stable Case-C mass
transfer in Fig. 2.8. The orbital separation drops sharply before the onset of mass transfer
because of an enhanced spin-orbit coupling when the primary becomes a supergiant. After
the primary loses about 0.1 M⊙, the mass-transfer efficiency β becomes zero when the sec-
ondary star reaches critical rotation. The orbit starts to widen when the mass ratio reaches
a value of 0.67 and the primary star’s Roche lobe radius stays nearly constant, preventing a
situation of runaway mass transfer as described in Sect. 2.3.5. Further on, the primary star’s
Roche lobe radius increases faster than the star’s radius, such that R1 < RRL, 1 at q = 1.21.

the local thermal timescale of these subsurface layers, they derive a maximum mass-loss rate for the donor for
which it can thermally readjust and avoid the (unstable) adiabatic response.
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At M1 = 7.2 M⊙ (q = 0.87, age = 25.8815 Myr) the mass-transfer rate reaches its peak, after
which it decreases sharply. This model ends its evolution when the primary reaches core-C
exhaustion, which happens during mass transfer as in most of our stable Case-C models.

2.4.3. Population properties

To understand what fraction of systems avoid or end up in contact and through which mech-
anism, we count the systems in each category (‘No contact’, ‘Accretor expansion’ etc.) and
weigh them with their birth probability pbirth (see Sect. 2.2.5). We show the results for initial
primary mass ranges of [4.8; 12.6) M⊙ and [12.6; 20.8] M⊙ in so-called sunburst charts in
Fig. 2.9. Figure 2.10 shows the results for the whole mass range of M1, i ∈ [4.8; 20.8] M⊙13.
We only consider binaries with M1, i ≥ 4.8 M⊙ because models with lower masses have not
been computed for the entire qi = 0.1–0.97 range (Sect. 2.2.3). The sunburst charts in the top
row show the incidences of the physical mechanisms leading to contact for mass-transferring
binaries. The inner level of these charts shows the fraction of all mass-transferring binary
systems in the specified mass range that end their evolution with the indicated outcome. In
other words, they represent the principal outcomes, ‘Accretor expansion’, ‘Runaway MT’,
‘L2-overflow’, and ‘No contact’ (see Sect. 2.4.1.1), which correspond to the outcomes in-
dicated by the background colours in Figs. 2.6–2.7. Models expected to avoid contact but
which encountered numerical issues before the primaries reached core-C exhaustion (‘No
contact’ hatching in Figs. 2.6–2.7) are included in the principal ‘No contact’ outcomes.
The outer level of the sunburst charts shows the incidence of ancillary outcomes, that is, the
hatching in Figs. 2.6–2.7 (‘L2-overflow’ and ‘Non-conservative MT + cannot eject’). We as-
sign systems that experienced numerical issues a likely evolutionary outcome based on their
initial mass ratio and first mass-transfer case. For more information, we refer to Appendix
A.5. These outcomes are shown at the intermediate level of the charts in the ‘Numerical is-
sues’ slice. On the bottom row of Fig. 2.9, we show the incidences of the principal outcomes
per initial mass transfer case. The outer level of these charts shows the lower limits of the
incidences for stellar mergers and classical CEs (see Sect. 2.4.4).

We find that the fractions for M1, i ∈ [4.8; 12.6) M⊙ and M1, i ∈ [12.6; 20.8] M⊙ are
relatively similar (Fig. 2.9). The most noticeable differences are found for the systems going
through a phase of runaway mass transfer (‘Runaway MT’) and systems failing to eject non-
accreted matter (‘Non-conservative MT + cannot eject’). The lower fraction of systems that
simultaneously avoid contact and fail to eject non-accreted matter for higher primary masses
can be traced back to the mass-luminosity relation. In general, L ∼ Mα, where the exponent
α > 1 (Kippenhahn et al., 2013). So, even though the gravitational potential increases
linearly with increasing mass, the luminosity increase is steeper since α > 1. Hence, it is
easier for higher mass systems to expel non-accreted matter.

The fraction of systems with runaway mass transfer in the lower mass range is 5% higher
than in the higher mass range. At the same time, the fraction of systems with numerical is-
sues is 7% higher in the higher mass range. However, the total fraction of systems with
numerical issues that have runaway mass transfer as their most likely outcome is 4–6% in
both mass ranges. The higher fraction of systems with runaway mass transfer in the lower
mass range is thus not caused by increased numerical difficulties at higher masses but is

13To compute pbirth, the initial mass function is integrated from Ml to Mu (see Sect. 2.2.5). For the models
with M1, i = 20.0 M⊙, Mu = 20.8 M⊙. This explains why the initial primary mass range extends to 20.8 M⊙.
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Figure 2.10: Sunburst charts displaying the fractions of evolutionary outcomes for mass-transferring
binary systems in the grid over initial primary mass ranges of [4.8; 20.8] M⊙. The left and right
charts are equivalent to those in the top and bottom row of Fig. 2.9, respectively.

physical.

Excluding the systems with numerical issues, we find that ≥ 41% of binaries with M1, i ∈
[4.8; 12.6) M⊙ and ≥ 34% of binaries with M1, i ∈ [12.6; 20.8] M⊙ enter a contact phase
(Fig. 2.9). Over the whole initial primary mass range of M1, i ∈ [4.8; 20.8] M⊙, the percent-
age of binaries entering a contact phase is ≥ 40% (Fig. 2.10). These are lower limits because,
in addition to excluding the systems with numerical issues, we do not take into account the
binaries that avoid contact in our models but fail to eject non-accreted matter.

2.4.4. Stellar merger and classical CE incidence
We assume that all binaries experiencing runaway mass transfer and/or L2-overflow merge
or enter a classical CE phase. Following the physical picture described in Sect. 2.3, we make
the distinction based on the structure of the primary star. This means that Case-A and -Be
binaries with runaway mass transfer and/or L2-overflow lead to stellar mergers, and Case-Bl
and -C binaries to classical CEs. Based on this, we compute lower limits on the incidences
of stellar mergers and classical CEs, shown in the bottom row of Fig. 2.9 for initial primary
mass ranges of [4.8; 12.6) M⊙ and [12.6; 20.8] M⊙, and for each initial primary mass in
Table 2.1. This table also lists the critical mass ratios qcrit for which binaries with qi < qcrit

merge or enter classical CE phases. The stellar merger and classical CE incidences are
≥ 13% and ≥ 21%, respectively, for the primary mass range of [4.8; 12.6) M⊙, and ≥ 12%
and ≥ 11%, respectively, for the primary mass range of [12.6; 20.8] M⊙. Figure 2.10 shows
similar charts for the total initial primary mass range of [4.8; 20.8] M⊙, and we find that
≥ 12% of mass-transferring binaries merge and ≥ 19% evolve towards a classical CE phase.
The stellar merger incidence for Case-A binaries of 8% (Fig. 2.10) is similar to the incidence
of massive stars with strong, large-scale magnetic fields of ∼ 10% (Donati and Landstreet,
2009; Fossati et al., 2015; Grunhut et al., 2017), which are likely formed by (pre-)MS stellar

60



2.4 Occurrence of contact phases

mergers (Schneider et al., 2019).
The incidences reported in Figs. 2.9–2.10 and Table 2.1 are lower limits since the crite-

ria given here do not take into account binary systems that merge as a result of a classical
CE phase, binary systems that experience L2-overflow in later contact phases (so far if more
than one contact phase occurred, we only considered the first one, see Sect. 2.3.1), and
potential mergers among the models that had numerical issues. Furthermore, a certain frac-
tion of models avoiding contact but failing to eject non-accreted matter (‘Non-conservative
MT + cannot eject’) might in reality also merge (see discussion in Sect. 2.5.3). If we now
assume that all contact binaries formed through the expansion of the accretor eventually
merge (except those which survive contact and reach core-C exhaustion in either compo-
nent), we find stellar merger incidences of ≥ 18%, ≥ 20%, and ≥ 19% for initial primary
masses of [4.8; 12.6) M⊙, [12.6; 20.8] M⊙, and [4.8; 20.8] M⊙, respectively. For compari-
son, the merger incidence for O-type stars (M1 ≳ 15 M⊙) found by interpreting observations
in the context of binary evolution and reported in Sana et al. (2012) is 20–30%.

We find that the incidences of stellar mergers of ∼ 12% are similar for all initial primary
masses (bottom row of Fig. 2.9 and Table 2.1). The classical CE incidence varies more
significantly, from 12% at M1, i = 5.2 M⊙, to 33% at M1, i = 10.2 M⊙ and 9% at M1, i =

20.0 M⊙. The decrease in classical CE incidence from 10.2 M⊙ to 20.0 M⊙ is linked to the
decrease in Case-C systems (bottom row of Fig. 2.9). Our values of qcrit = 0.15–0.35,
correspond reasonably well with those for HG star donors from Temmink et al. (2023).

2.4.5. Comparison with observed contact binaries
In Fig. 2.11, our simulated population of Case-A contact binaries with initial primary masses
of 4.8–20.8 M⊙ is compared to observed near-contact14 and contact systems in the Milky
Way (MW), Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) from Os-
trov (2001), Harries et al. (2003), Hilditch et al. (2005), Mahy et al. (2020), and Janssens
et al. (2021), compiled in Menon et al. (2021). The sample consists of MS O+O, B+O and
B+B massive contact systems, which is why we have chosen to compare only to Case-A
binaries from our grid with initial primary masses ≥ 4.8 M⊙ (this is as low as we can go in
terms of the initial primary mass while still having models at all qi). The mass ratios of the
observed systems are compared to the probability distribution function (PDF) of the models
as a function of the mass ratio q at contact. For models that enter a contact phase through
the expansion of the accretor, contact is defined as the moment when both the primary and
the secondary overfill their respective Roche lobes. When runaway mass transfer is respon-
sible for the onset of a contact phase, the moment at which Ṁtrans > ṀKH, 1 is taken as the
moment of contact. To have a meaningful comparison with observed contact systems, the
mass ratios at contact of the observed systems are defined here as the mass of the currently
less massive component over the mass of the currently more massive one (whereas before q
has always been defined as the mass of the initially less massive component over the mass
of the initially more massive one). The probabilities used to construct the PDF are the birth
probabilities pbirth computed via Eq. (2.4) in Sect. 2.2.5. We highlight the following con-
tributions to the PDF: ‘accretor expansion’ systems are those that enter contact because of
accretor expansion but do not experience L2-overflow, while the ‘accretor expansion + L2-
overflow’ do. The third contribution comes from runaway mass transfer systems (‘runaway
MT’). The ‘accretor expansion’ and ‘accretor expansion + L2-overflow’ systems are further

14Near-contact systems are systems in which for both components R/RRL ≥ 0.9 (Menon et al., 2021).
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Table 2.1: Stellar merger and classical CE incidences, and critical mass ratios qi, crit for mass-
transferring binaries with M1, i ∈ [4.8; 20.8] M⊙. For each initial primary mass, the incidence frac-
tions are given per mass-transfer case.

M1, i Mergers Class. CEs qi, crit
a

[M⊙] [%] [%]
5.2 12.8 11.9
A 10.2 - 0.35
Be 2.6 - 0.35
Bl - 4.3 0.35–0.55
C - 7.5 0.55

6.1 14.8 16.1
A 12.0 - 0.35
Be 2.9 - 0.35
Bl - 9.1 0.25–0.45
C - 6.9 0.55

7.2 13.0 18.4
A 8.2 - 0.35
Be 4.8 - 0.15–0.25
Bl 0 12.3 0.35–0.45
C 0 6.1 0.25

8.6 11.3 31.2
A 7.3 - 0.35
Be 4.0 - 0.25–0.35
Bl - 19.7 0.25–0.35
C - 11.8 0.45

10.2 12.2 33.0
A 8.0 - 0.25–0.35
Be 4.2 - 0.25–0.35
Bl - 19.9 0.25–0.35
C - 13.0 0.45

12.0 11.3 23.1
A 7.0 - 0.35
Be 4.3 - 0.25–0.35
Bl - 19.1 0.15–0.35
C - 4.0 0.15–0.45

13.1 8.1 12.4
A 5.7 - 0.35
Be 2.4 - 0.25–0.35
Bl - 8.7 0.35–0.45
C - 3.7 0.15–0.35

14.2 11.4 16.4
A 5.6 - 0.35
Be 5.8 - 0.25–0.35
Bl - 12.4 0.15–0.45
C - 4.0 0.15–0.35

15.6 13.9 9.2
A 6.9 - 0.35
Be 7.0 - 0.25–0.35
Bl - 8.2 0.15–0.35
C - 0.9 0.15

16.9 14.3 8.7
A 6.8 - 0.35
Be 7.6 - 0.15–0.35
Bl - 7.7 0.15–0.35
C - 1.0 0.15

18.4 14.0 8.5
A 6.5 - 0.35
Be 7.5 - 0.15–0.35
Bl - 5.8 0.15–0.35
C - 2.7 0.15–0.25

20.0 13.6 8.6
A 6.8 - 0.35
Be 6.8 - 0.15–0.35
Bl - 4.9 0.15
C - 8.6 0.25–0.35

(a) Case A and -Be systems with qi < qi, crit form contact binaries through runaway mass
transfer and/or L2-overflow, and merge. Case-Bl and -C systems form classical CEs

through runaway mass transfer and/or L2-overflow.
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Figure 2.11: Probability density function (PDF) of contact systems formed in Case-A binaries with
M1, i = 4.8–20.8 M⊙ as a function of the mass ratio q at the onset of contact. Data points (filled
squares) show the observed mass ratio and primary mass (right axis) for all observed MW, LMC
and SMC contact and near-contact systems from Ostrov (2001), Harries et al. (2003), Hilditch et al.
(2005), Mahy et al. (2020), and Janssens et al. (2021), compiled in Menon et al. (2021), including the
uncertainties on their values. Systems without reported uncertainties on q are indicated with a dash
symbol, and those without reported uncertainties on q and M1 are indicated with a star symbol.

divided into systems where the accretor expands on a nuclear and a thermal timescale prior
to filling its Roche lobe. This division is made by comparing the mean of the expansion
timescale τR/Ṙ from the onset of mass transfer to the formation of a contact system with the
mean of the thermal and nuclear timescales respectively (see Appendix A.4).

There is a striking difference between the PDF from the model systems and the observa-
tions. From the models, we expect two to three times more contact systems at q < 0.5 than
at q ≥ 0.5. Contrarily, observations show a dearth of contact binaries at q < 0.5. There are
only a few models at q ≥ 0.5 experiencing L2-overflow, while such systems are dominant at
q < 0.5. For q < 0.45, there is an additional contribution of contact systems formed through
runaway mass transfer. Among the contact binaries that do not experience L2-overflow or
runaway mass transfer (‘accretor expansion’), it can be seen that at q < 0.5 contact is formed
mostly on a thermal timescale, while for q ≥ 0.5 contact is formed on the longer, nuclear
timescale. Overall, 29% of the Case-A contact binaries in the mass range considered here
form through the nuclear timescale expansion of the accretor. 59% of those (17% of the
total) do not yet experience L2-overflow and are expected to be longer-lived.

We find a number of ways in which this (apparent) discrepancy can be resolved. Firstly,
it should be noted that the sample of observed systems is small, especially if one disregards
the near-contact systems, which have been considered in this comparison. The absence
of observed systems at mass ratios q < 0.5 might be because they have simply not been
observed yet. As argued in Abdul-Masih et al. (2022), a larger sample size, which requires
a dedicated search for these massive contact binary systems, should shed light on whether
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this is the case.
A second reason for the discrepancy could be that contact systems rapidly evolve to

equal-mass systems, that is, to q = 1, and are therefore not observed as unequal-mass sys-
tems. However, following the same argument as in Abdul-Masih et al. (2022), the observed
systems are uniformly distributed for q ≥ 0.5. Should contact systems all equalise in mass,
the bulk of them would be expected to be observed at q ≈ 1. Furthermore, they find that
based on the observed stability of the orbit, the systems in their sample will continue to
evolve as unequal-mass contact binaries on a nuclear timescale.

Based on the different contributions to the PDF in Fig. 2.11, a third reason for the
lack of contact systems at q < 0.5 can be found. The largest contribution to the PDF at
these mass ratios comes from contact binaries that experience L2-overflow. As described in
Sect. 2.3.3, this can lead to considerable orbital angular momentum loss and thereby likely
stellar mergers. Case-A contact binaries formed through runaway mass transfer, which we
find at q < 0.45, also lead to mergers (see Sect. 2.3.5). In other words, contact systems are
almost exclusively observed at q ≥ 0.5 because those at q < 0.5 merge shortly after they get
into contact.

Considering that binaries with L2-overflow or runaway mass transfer merge quickly, we
are left with a PDF that at q < 0.5 is dominated by contact systems formed by the thermal-
timescale expansion of the accretor. As explained in Sect. 2.3.1, such contact binaries either
detach or merge quickly. In the former case, these systems would be observed as semi-
detached binaries. In the latter case, we argue that if the thermal expansion of the accretor
continues during contact, it eventually leads to L2-overflow and a merger. Ge et al. (2023)
find that the critical mass ratio qcrit below which binaries experience runaway mass transfer
increases with decreasing metallicities. Therefore, at lower metallicities, we expect an even
more significant fraction of binaries to experience runaway mass transfer and a subsequent
quick merger. In conclusion, we find that contact systems are almost exclusively observed
at q ≥ 0.5 because those at q < 0.5 merge or detach shortly after they get into contact.

2.5. Discussion

In this section, we put into perspective the influence of mass-transfer efficiency on our con-
tact tracing results (Sect. 2.5.1), the occurrence of stable mass transfer from (super-)giant
donors (Sect. 2.5.2), and the potential fates of binaries with non-ejected matter (Sect. 2.5.3).

2.5.1. The role of mass-transfer efficiency

The mean mass-transfer efficiencies β̄ of binaries in our grid (Fig. A.10 in Appendix A.6)
are relatively low for Case-B and -C mass transfer. In these systems, the secondary usually
reaches critical rotation after accreting Maccreted/M2, i < 3% of its initial mass (with Maccreted

the accreted mass), which is lower than the ∼5–10% from Packet (1981) and consistent with
the ∼2% found by Ghodla et al. (2023). It should be noted that only a few percent of the
secondary’s outer envelope in terms of its mass is rotating near the critical rotation rate.
With more efficient angular momentum transport, the relative mass accretion fraction would
be higher than 3% because of a delay of critical surface rotation.

Because the secondary stars in our models accrete less matter than those in more con-
servative models, they also expand less. Compared to models with higher mass-transfer
efficiencies, such as those from Pols (1994), Wellstein et al. (2001), de Mink et al. (2007),
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Claeys et al. (2011), and Menon et al. (2021), we find fewer contact systems from accretor
expansion. The difference is particularly noticeable for Case-B binaries, where virtually
none of such systems are found in our models. Our results generally agree better with the
model grids from Fragos et al. (2023). This is expected since similar assumptions with re-
gard to mass-transfer efficiency are made in their models.

From observations of Be X-ray binaries in the SMC, Vinciguerra et al. (2020) infer a
mass-transfer efficiency of ∼30% for the progenitor systems (i.e. the systems before the
primary has formed a compact object). Potential progenitors of Be X-ray binaries in our
grid, those with post-CHeB (core helium burning) and MS components (see Figs. A.5–A.7
in Appendix A.3), have a wide range of mass-transfer efficiencies (see Fig. A.10). For
Case-A binaries with M1, i = 6.1–8.6 M⊙ and Case C binaries with M1, i = 5.2–14.2 M⊙ the
mass-transfer efficiency is consistent with the observationally constrained value of ∼30%.

Using observations of the classical Algol system δ Librae, Dervişoǧlu et al. (2018) found
a mass-transfer efficiency of ∼100%. Based on the component masses derived for δ Li-
brae, the initial primary mass would have been between ≈ 2.6 M⊙ (qi = 1.0) and ≈ 4.1 M⊙
(qi = 0.25, stable mass transfer). Our Case-A mass-transfer efficiency for M1, i ≈ 2.6 M⊙ is
∼ 95%, which is consistent with the observationally constrained value. For M1, i ≈ 4.1 M⊙,
we find a Case-A mass-transfer efficiency of ∼ 25%, which is inconsistent with the value
inferred for δ Librae.

Sen et al. (2022) computed a grid of Case-A systems with M1, i = 10–40 M⊙ at LMC
metallicity (Z = 0.0047) and similar assumptions as ours with regards to rotation, tides
and accretion of angular momentum. For thermal-timescale mass-transfer phases in sys-
tems avoiding contact on the MS, they find relatively low (time-averaged) mass-transfer ef-
ficiencies (peak around ∼ 0.06). During the slower, nuclear-timescale mass transfer phases,
the mass-transfer efficiency peaks around ∼ 0.94. This is consistent with our models, in
which the rapid spin-up of the accretor during thermal-timescale mass transfer results in
non-conservative mass transfer. For M1, i > 10 M⊙, the time-averaged mass-transfer efficien-
cies in our models range from ∼ 0.4 to ∼ 0.65 (Fig. A.10). The thermal timescale is several
orders of magnitude shorter than the nuclear timescale (Eq. 1.2 and 1.1). From estimat-
ing the time-averaged mass-transfer efficiencies over the whole Case-A phase (thermal- and
nuclear-timescale mass-transfer phases) in the models of Sen et al. (2022), we see that their
values of the mass-transfer efficiency are closer to unity. The slightly different definitions
of the mass-transfer efficiency and the different metallicities (and, therefore, wind mass-loss
rates) between our grids likely explain this difference.

Our models’ current assumption that stars cannot accrete anymore once they are at
breakup velocities might be up for debate. Interactions with an accretion disk have been
proposed to spin down the surface of the accretor and allow for additional accretion of ma-
terial (Paczynski, 1991; Popham and Narayan, 1991). This contributes to the fact that the
incidences of contact systems reported in Sect. 2.4.4 are lower limits because more accre-
tion allows the accretor to expand more and potentially fill its Roche lobe. This could in
turn increase the stellar merger incidences.
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2.5.2. The stability of Case-B and -C mass transfer
In Sect. 2.4.2 we have described how non-conservative mass transfer and stellar wind mass
loss from the donor prior to mass transfer can lead to stable mass transfer from (super-
)giant donors (Case Bl and C) with initial mass ratios down to 0.1. Following the discussion
in Sect. 2.5.1, these outcomes might also change with different assumptions regarding the
mass-transfer efficiency. Just as for the formation of contact binaries, an increase in the
mass-transfer efficiency leads to a higher incidence of classical CEs.

The presence of stable Case-Bl and -C mass transfer in our models agrees with what was
found by Chen and Han (2008) for stars with M1, i ≲ 8 M⊙, who also note that the effect of
wind mass loss prior to the onset of mass transfer only has a minor effect on the stability.

We find that our critical mass ratios qi, crit for Case-Bl and -C mass transfer (Table 2.1)
are higher than those from the adiabatic mass loss computations of Ge et al. (2010a) for
M1, i > 10 M⊙, while being in relatively good agreement for stars with lower initial primary
masses. These differences are likely caused by the fact that contrary to Ge et al. (2010a),
we also take the response of the accretor and orbit into account. Another difference is that
Ge et al. (2010a); Ge et al. (2015, 2020) derive the critical mass ratios under the assumption
of fully conservative mass transfer. Our critical mass ratio ranges agree relatively well with
similar simulations with fully non-conservative mass transfer (H. Ge, 2023, priv. comm.).

Picco et al. (2024) use the adiabatic mass-radius exponents ζad (see Sect. 1.1.4.2) from
Ge et al. (2020) to determine the stability of mass transfer in their detailed binary evolution
models. Our critical mass ratios agree relatively well with the ones from their simulations
of fully non-conservative mass transfer in binaries with M1, i = 8.0 M⊙.

The adiabatic mass-radius exponents ζad are also used by Li et al. (2023) in their binary
population synthesis computations. For binaries with M1, i = 8.0 M⊙ with non-conservative
(β = 0–0.5) Case-Bl and -C mass transfer, they find values for qi, crit ≈ 0.37–0.66, which is
in broad agreement with our values.

Similar stable Case-Bl and -C mass transfer has been found by Ercolino et al. (2023) for
M1, i = 12.6 M⊙. The reported critical mass ratio qcrit = 0.525–0.625 is slightly higher than
what is found in our models for stars with similar masses (Table 2.1). This difference can be
attributed to the different stability criteria for mass transfer used in their work.

2.5.3. The fate of binaries with non-ejected matter
In the majority of our models with β < 1, the non-accreted mass cannot be ejected to infinity.
This raises the question of where this excess material resides. Should the excess matter
remain in the accretor’s Roche lobe or the binary’s L2-lobe, it can fill it up and lead to a
situation similar to a contact binary. In this case, our grid would contain significantly more
contact systems. For the orbital evolution, this scenario would essentially correspond to that
of systems with higher mass-transfer efficiencies. Should the excess matter overfill the L2-
lobe and hydrodynamic drag becomes significant, a classical CE could form. Alternatively,
the matter could settle in a circumbinary disk or shell, which can significantly influence the
further evolution of the binary (Wei et al., 2024).

Alternatively, a circumstellar disk may form, through which the secondary can poten-
tially continue to accrete mass (Paczynski, 1991; Popham and Narayan, 1991). In this sce-
nario, systems might show signs of circumstellar disks such as Hα excess and emission
features in Be/Oe stars. This could explain the fast-rotating Hα emitters in the extended
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MS turn-off observed in young clusters (Milone et al., 2018). Moreover, Bodensteiner et al.
(2021) has found a significant close-binary fraction of 34+8

−7% for one of the clusters analysed
in Milone et al. (2018), NGC 330.

2.5.4. The onset of contact through runaway mass transfer
and L2-overflow

In Sect. 2.4.1, we find that runaway mass transfer and/or L2-overflow are responsible for the
onset of contact for a significant fraction of the Case-A, -Be, -Bl, and -C binaries. In Case-A
binaries, L2-overflow is of lesser importance for the onset of contact but leads to stellar merg-
ers in contact binaries formed through the expansion of the accretor. Runaway mass transfer
in Case-A systems leads to the formation of unstable contact binaries and subsequent stellar
mergers. The same happens in Case-Be binaries, but now in unison with L2-overflow. The
added effect of the orbital angular momentum loss associated with L2-overflow contributes
to the instability of the contact binary formed through runaway mass transfer. In Case-Bl
and -C binaries, the onset of runaway mass transfer and L2-overflow often occur quasi si-
multaneously. In these systems, the L2-overflow serves as an additional indication that the
secondary is being engulfed by the rapidly expanding envelope of the (super-)giant primary
star during runaway mass transfer. Lastly, some Case-Bl and C systems do not experience
runaway mass transfer but do have primary stars that extend far beyond the L2-lobe. In both
cases, we expect the onset of a classical CE phase.

2.6. Summary and conclusions

Using a grid of ∼ 6000 detailed binary evolution models including rotation, tidal inter-
actions, the evolution of both components, and with component masses between 0.5 and
20.0 M⊙, we examine in which regions of the initial binary parameter space we expect con-
tact phases, such as contact binaries and classical common-envelope (CE) phases, to occur.
We identify five mechanisms that lead to contact: the expansion of the accretor, runaway
mass transfer, L2-overflow, orbital decay because of tides, and non-conservative mass trans-
fer.

We find that accretor expansion, L2-overflow, and runaway mass transfer lead to the
formation of contact binaries in Case-A and -Be systems, and L2-overflow and runaway
mass transfer to the onset of classical CEs in Case-Bl and -C systems. This distinction stems
from the fact that primary stars in Case-Bl and Case-C systems have extended envelopes
with a clear core-envelope boundary, which engulfs the more compact MS companion upon
contact. Case-A binaries with initial primary masses below 2 M⊙ also form contact binaries
because of the orbital decay caused by tides. Overall, the incidences of mass-transferring
binaries forming contact binaries or entering a classical CE phase are ≥ 41% and ≥ 34%
for M1, i ∈ [4.8; 12.6) M⊙ and M1, i ∈ [12.6; 20.8] M⊙, respectively. Over the entire mass
range of M1, i ∈ [4.8; 20.8] M⊙, the incidence is ≥ 40%. These numbers are lower limits
because they do not take into account the binaries that might enter a contact phase because
of the interaction with non-accreted matter. Such systems are fairly common in our grid,
and could alternatively result in systems with circumstellar disks and Hα emission features.
Potential observational counterparts could be found in the extended MS turn-off in young
stellar clusters.
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We find that mass transfer is non-conservative in a large part of the initial binary param-
eter space, which is caused by the spin-up of the accretors to critical rotation after accreting
< 3% of their own mass. The mass transfer efficiencies are 15–65%, 5–25%, and 25–50% in
Case-A,-B, and -C mass transfer, respectively, for primary-star masses above 3 M⊙. The in-
cidence of systems entering a contact phase is sensitive to the mass-transfer efficiency. Given
the relatively low mass-transfer efficiencies in our models, we might be underestimating this
incidence. Another consequence of non-conservative mass transfer is that Case-Bl and -C
mass transfer is stable for mass ratios ≥ 0.15–0.35.

By assuming that systems Case-A and -Be systems with M1, i ∈ [4.8; 20.8] M⊙ that
experience L2-overflow and/or runaway mass transfer merge, and Case-Bl and -C systems
experiencing this enter a classical CE, we find stellar merger and classical CE incidences
among mass-transferring binaries of ≥ 12% and ≥ 19%, respectively. If we relax this as-
sumption and assume that all contact binaries, except those for which either component
reaches core-C exhaustion, eventually merge, the stellar merger incidence increases to≥ 19%.
Just as for the incidence of mass-transferring binaries reaching a contact phase, the stellar
merger and classical CE incidences are lower limits, which are sensitive to the mass-transfer
efficiency.

Lastly, we compare our population of massive (M1, i ≳ 5 M⊙) Case-A contact systems
with observed (near-)contact systems. We find from our models that approximately two to
three times as many contact binaries form with mass ratios q < 0.5 upon contact than with
q > 0.5. Moreover, the majority of the systems with q < 0.5 form contact binaries because of
runaway mass transfer or the thermal-timescale expansion of the accretor, with subsequent
L2-overflow in more than half of the cases. Therefore, most of these systems quickly merge
or detach. This is in agreement with the observations since almost no (near-)contact systems
are observed with mass ratios below 0.5. Out of all systems forming contact binaries, 17%
do so on the accretor’s nuclear timescale and avoid L2-overflow, and are expected to be
stable and long-lived. The majority of these systems have q > 0.5 upon contact, which is
again in excellent agreement with the observations.

Mergers and classical CEs are some of the most complex and fascinating outcomes of
binary evolution. While we have identified the physical mechanisms that can lead to contact,
the outcome of mergers and classical CEs still need to be explored in more detail and leave
many open questions.
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Chapter info This brief chapter covers a small follow-up project based on the work de-
scribed in Chapter 2. In this follow-up project, we computed a second binary evolution grid
with fully conservative mass transfer. The main goal of this project was to see how the
results from Chapter 2 would change if we assume that all the mass transferred from the
donor star is accreted by the accretor star. This work is (currently) unpublished and will
serve as the basis for follow-up work on the mass-transfer efficiency in the Stellar Evolution
Theory group at the Heidelberg Institute for Theoretical Studies. I was the main author of
this chapter. I computed, analysed, and interpreted the models. Fabian Schneider, my super-
visor, was the main collaborator for this work, and we discussed the results together. This
chapter is essentially an extension of Chapter 2. Therefore, explanations of the key concepts
and definitions are not repeated here. It is advisable to read this chapter only after reading
Chapter 2.

3.1. Introduction

The efficiency of mass transfer, that is, the fraction of mass received by the accretor star from
the donor star that is actually accreted, has been a long-standing open question in binary
evolution. Nevertheless, it is crucial to constrain this efficiency since it can heavily influence
the outcome of binary evolution models (see, e.g. de Mink et al. 2007 and Claeys et al. 2011).
In the discussion section of Chapter 2 (Sect. 2.5.1), we already saw some examples of efforts
to constrain the mass-transfer efficiency with a combination of observations of post-mass-
transfer binaries and binary evolution models. It is clear from the results of Chapter 2
that with the assumption of rotation-limited accretion, that is, the quenching of accretion
because of the spin-up of the accretor star to its critical rotation rate, the mass-transfer
efficiency in models without strong tidal coupling becomes relatively low. In that sense, we
can consider mass-transfer efficiency in the grid of binary evolution models in Chapter 2 to
be the lower end of the mass-transfer efficiency range (assuming that no mass is accreted
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3 Contact tracing of binary stars with fully conservative mass transfer

at all is nonsensical). Therefore, in this work, we recompute the grid of binary evolution
models from Henneco et al. (2024b) assuming fully conservative mass transfer and assess
how this influences the outcomes of binary evolution.

3.2. Methods

We computed a grid of ∼6000 binary evolution models using an almost identical setup to
the one used in Chapter 2 (Henneco et al., 2024b), which is described in Sect. 2.2. The
main difference with that setup is that we do not allow the binary components to rotate. We
did this to ensure that mass transfer is fully conservative during the whole evolution since
the spin-up of the accretor star is the main reason for non-conservative mass transfer (see
Sect. 2.2.2.1). Additionally, we did not limit the accretion rate to that of 0.1 times the accre-
tor’s thermal timescale (done in Henneco et al. 2024b to avoid convergence issues in some
parts of the initial parameter space). Following Henneco et al. (2024b), we used MESA’s
Kolb mass-transfer scheme for post-MS donors. However, contrary to the models in Hen-
neco et al. (2024b), we use MESA’s contact scheme whenever both stars (over)fill their re-
spective Roche lobes regardless of the mass-transfer case. In other words, the mass-transfer
computations used in this model grid are identical to those used in the models presented in
Chapter 2, except for the fact that we continue the evolution for post-MS contact systems
when it would be terminated in the original models. Although MESA’s contact scheme
is primarily meant for Case-A binary systems (Marchant et al., 2016), we are interested to
see how early Case-B contact binaries evolve with this scheme and how likely they are to
merge, especially since we expect more Case-Be contact binaries to form with fully conser-
vative mass transfer. Donor stars in Case-Be binaries still have relatively dense, radiative
envelopes, which justifies the usage of the contact scheme to an extent. For the wider
Case-Bl and Case-C systems in which both stars (over)fill their Roche lobes, the results
from the contact scheme should be interpreted with caution.

To avoid confusion during the comparison between the original Henneco et al. (2024b)
grid and the grid presented in this work, we refer to the former as the ‘NC grid’ or ‘NC mod-
els’ (NC = non-conservative since we allow systems to have non-conservative mass transfer)
and the latter as the ‘C grid’ or ‘C models’ (C = conservative). The initial parameters (M1, i,
qi, and ai) of the C grid are identical to those of the NC grid, since this allows for one-to-one
comparisons between models with the same initial parameters in the two grids.

3.3. Results and discussion

In Fig. 3.1, we see a similar diagram as in Fig. 2.6, which shows the occurrence of contact
phases in the initial parameter space for models with M1, i = 10.2 M⊙. An obvious difference
between these two diagrams is the absence of systems designated with ‘Non-conservative
MT + cannot eject’, given that our models have fully conservative mass transfer. Following
Fig. 2.6, we added a black line in Fig. 3.1 indicating the mass ratio below which systems
become Darwin unstable if they were rotating. At the lowest initial mass ratios qi, a sub-
stantial fraction of the Case-A, -Be, and -C mass-transfer models run into numerical issues.
Similar issues are reported in the results in Chapter 2. The expansion timescales τR/Ṙ of
these accretors with convective envelopes tend to approach their dynamical timescales τdyn,
which goes beyond our MESA setup’s capabilities to compute. The intricacies of accretor
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Figure 3.1: Occurrence of contact phases for models with initial primary masses M1, i = 10.2 M⊙
on the initial mass ratio–separation plane. Each MESA model is marked with a star symbol. The
dark-blue quasi-horizontal lines indicate the initial mass transfer cases, which can be read from the
right side. Systems on the left of the solid black line are Darwin unstable at the onset of mass transfer
according to Eq. (2.6) and assuming R1 = RRL, 1.
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expansion have been the topic of recent work by Lau et al. (2024), Zhao et al. (2024), and
Schürmann and Langer (2024).

Both the C and NC initially closest Case-A binary models result in contact binaries. This
follows from the fact that in the rotating close binary systems of the NC grid, tides efficiently
spin down the accretor such that its rotation rate remains below the critical one. Mass trans-
fer remains conservative, leading to the increasing expansion of the accretor and, hence, the
formation of contact binaries. The tendency of Case-A systems with qi ≤ 0.45 to experi-
ence L2-overflow, and likely merge, is present in both grids. At larger initial separations, the
Case-A outcome landscape looks considerably different. Whereas a large portion of the NC
grid models at log(ai/R⊙) ∼ 1.25 avoid contact, those in the C grid form contact binaries.
The continuous accretion and the resulting expansion of the accretor in these models can
explain this. The accretors in their NC counterparts spin up because of weaker tidal torques,
and mass transfer becomes non-conservative, avoiding a further expansion of the accretor.
The line separating the Case-A from the Case-Be systems follows a trend at lower initial
separations in the C grid. Since the models in the C grid do not rotate, they have smaller
radii than rotating models. Consequently, their smaller radii can prevent them from filling
their Roche lobe during the MS, whereas equivalent models from the NC grid do fill their
Roche lobe because of their larger radius.

We see considerable differences between the C and NC grids for Case-Be systems. In the
NC grid, only systems with qi ≤ 0.25–0.35 reach contact caused by runaway mass transfer or
accretor expansion (Fig. 2.6). The other systems avoid contact, and their primaries evolve
into stripped stars. When mass transfer is fully conservative, we see from Fig. 3.1 that a
significant portion of Case-Be systems form contact binaries, experience L2-overflow, and
likely merge. This is in stark contrast with the non-conservative models of the NC grid.
Only Case-Be systems roughly below the line through (qi; log ai/R⊙) ≈ (0.65; 1.75) and
(qi; log ai/R⊙) ≈ (0.97; 2.10) avoid contact. The primaries in these systems evolve into
stripped stars. We ought to consider two trends to explain why these systems avoid contact:
the trend with the initial mass ratio qi and the trend with the initial separation ai. Accretors
in systems with lower mass ratios have smaller Roche lobes. Hence, when the accretor is
expanding, in this case, on their thermal timescale because of the thermal-timescale mass
transfer from the donor star, they fill their Roche lobe more easily than systems with larger
mass ratios. Additionally, the initial response of the accretor’s Roche lobe is to shrink since
the orbit of a binary with conservative mass transfer shrinks as long q < 1 (see Eq. 1.11).
The lower the initial mass ratio, the longer the orbit and the accretor’s Roche lobe shrinks.
To explain the trend with ai, we need to consider the mass-transfer rates. Despite their larger
Roche lobes (see Eq. 1.5), the accretors in the wider binaries expand more rapidly and to
larger radii, eventually filling their Roche lobe. Based on this information, we expect the
wider binaries to avoid contact and the closer binaries to form contact binaries. However, the
determinative difference between these systems is the mass-accretion rate. We find that the
mass-accretion rates (i.e. mass-transfer rates, since the mass transfer is fully conservative)
in the wider binaries are consistently higher than those in the closer binaries, leading to
the more rapid and extreme expansion of the accretor and the onset of contact. This is to be
expected, given that the wider the orbit, the larger the radius of the donor star. Consequently,
their thermal timescale, which is the timescale on which this Case-B mass transfer takes
place, is shorter, leading to higher mass-transfer rates. This is consistent with what is found
in Schneider et al. (2015).

Contrary to their non-conservative counterparts, Case-Bl and -C systems with fully con-
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servative mass transfer almost exclusively evolve to a contact configuration because of the
expansion of the accretor. Only the widest mass-transferring binaries avoid contact. In these
widest systems, the red supergiant donor stars never formally fill their Roche lobes, that
is, there is only a phase of optically thin mass transfer (see Sect. 1.1.4) with relatively low
mass transfer rates (Ṁtrans ∼ 10−13 M⊙yr−1). The MS accretors are virtually unaffected by
these extremely low accretion rates and continue to expand on their nuclear timescale. The
Case-Bl and -C systems that do evolve into contact require some extra attention. Since the
donor star is a supergiant, the ensuing contact phase does not qualify as a contact binary (see
Sects. 1.1.5 and 2.3 or Röpke and De Marco 2023 for the definitions). However, they do not
qualify as classical common envelopes either since the Roche-lobe-filling accretor star has
taken on supergiant proportions itself. With fully conservative mass transfer, we thus see
that the accretor star keeps expanding, whereas accretor stars that are allowed to spin up to
their critical rotation rate stop expanding once the accretion is quenched. The contact phases
resulting from the accretor expansion in Case-Bl and Case-C systems qualify as double-core
common envelopes. This is a striking difference from the results from the NC grid, where
no such double-core common envelopes are predicted to form.

So far, we have only covered the occurrence of contact phases for fully conservative
systems with M1, i = 10.2 M⊙. We do not discuss the other primary masses because this will
be part of future work, but show their equivalent figures to Fig. 3.1 in Appendix B.1.

We now zoom out to the population of binaries with initial primary masses in the range
of [4.8; 20.8] M⊙ and look at the fractions of evolutionary outcomes for the C grid models in
Fig. 3.2. Comparing this to their equivalent NC models, shown in Fig. 2.10 in Chapter 2, we
see that the fraction of binary systems that reach a contact phase because of the expansion
of the accretor is 3.66 times higher when mass transfer is fully conservative. The fraction
of systems entering a contact phase because of runaway mass transfer is more than 3 times
lower with fully conservative mass transfer because the accretors seem to fill their Roche
lobes before mass transfer becomes unstable. Taking the systems reaching contact because
of L2-overflow into account, we see that with fully conservative mass transfer, at least 67%
or 2/3 of the binary systems in this initial primary mass range enter a contact phase. As
a comparison, with non-conservative mass transfer, this lower boundary on the fraction of
systems entering contact phases lies at 40%.

The fraction of binaries likely to merge is ≥23% for models with fully conservative mass
transfer, while this is twice as low (≥12%) for the non-conservative models. This increase in
the stellar merger fraction is primarily due to the increase in the fraction of Case-Be binaries
forming contact binaries. In the non-conservative models, this happened only in a negligible
fraction of Case-Be models. With conservative mass transfer, at least 26% of the binary
models end up in double-core CEs. As discussed above, this type of contact configuration is
absent from the NC grid. Only about 10% of binaries enter classical CEs with conservative
mass transfer, almost half of the fraction of classical CEs in the NC grid.

In Fig. 3.3, we plot the probability distribution function of Case-A contact binaries in
terms of their mass ratio q at the onset of contact and compare this with the mass ratios of
observed massive contact binaries from Ostrov (2001), Harries et al. (2003), Hilditch et al.
(2005), Mahy et al. (2020), and Janssens et al. (2021), compiled in Menon et al. (2021).
This is the equivalent figure for Fig. 2.11 in Chapter 2, but now for the fully conservative
models. We see that contrary to the non-conservative models, there are hardly any con-
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Figure 3.2: Sunburst charts displaying the fractions of evolutionary outcomes for mass-transferring
binary systems in the fully conservative grid over initial primary mass ranges of [4.8; 20.8] M⊙.
Wedges with a percentage < 1% are not labelled. (Left) The inner level shows the principal outcome
of the evolution (‘Accretor expansion’, ‘Runaway MT’, ‘L2-overflow’, and ‘No contact’), while the
outer level shows the ancillary outcome (‘L2-overflow’). Ancillary ‘No contact’ outcomes are incor-
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Figure 3.3: Probability density function (PDF) of contact systems formed in fully conservative Case-
A binaries with M1, i = 4.8–20.8 M⊙ as a function of the mass ratio q at the onset of contact. Data
points (filled squares) show the observed mass ratio and primary mass (right axis) for all observed
MW, LMC and SMC contact and near-contact systems from Ostrov (2001), Harries et al. (2003),
Hilditch et al. (2005), Mahy et al. (2020), and Janssens et al. (2021), compiled in Menon et al.
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indicated with a dash symbol, and those without reported uncertainties on q and M1 are indicated
with a star symbol.
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tact binaries entering contact because of the nuclear-timescale expansion of the accretor at
mass ratios q > 0.5. Overall, the fraction of systems forming contact binaries because of
the thermal-timescale expansion of the accretor dominates over those forming because of
nuclear-timescale expansion for all mass ratios. Another striking difference is that virtually
all conservative models likely merge because of L2-overflow. In summary, fully conserva-
tive mass transfer can explain the dearth of observed contact binaries with q < 0.5, given
that virtually all of these are expected to merge, but does not predict a large fraction of long-
lived (nuclear-timescale expansion of the accretor) contact binaries as the non-conservative
models do.

3.4. Conclusions

We computed an equivalent grid to that of Henneco et al. (2024b), presented in Chapter 2,
forcing the binary evolution models to have fully conservative mass transfer. In the original
grid from Henneco et al. (2024b), the spin-up of the accretor star leads to non-conservative
mass transfer in systems where tides cannot synchronise the accretor. We find that the
efficiency of mass transfer strongly influences contact phase occurrence in the initial binary
parameter space. Case-Be binaries, with HG donor stars, produce stripped-star binaries with
non-conservative mass transfer yet evolve into unstable contact binaries when mass transfer
is fully conservative. We see the appearance of double-core CEs, contact configurations
between two objects of supergiant proportions, when we assume conservative mass transfer.
In contrast, these objects are completely absent from the grid with non-conservative mass
transfer. The lower boundary on the fraction of binary systems from the grid entering a
contact phase because of the expansion of the accretor is almost four times as large for
conservative mass transfer than it is for non-conservative mass transfer: 55% and 15%,
respectively. The lower boundary on the fraction of stellar mergers almost doubles with
conservative mass transfer: 23% compared to 12%. We find that the onset of unstable mass
transfer occurs in a smaller fraction of the conservative systems because they reach contact
by the expansion of the accretor before this can happen.

With this study, we do not attempt to determine which mass-transfer efficiency is most
likely happening in nature. We merely demonstrate the considerable effects efficiency as-
sumptions can have with respect to the occurrence of contact phases and stellar mergers.
The academic exercise undertaken in this chapter is meant to look at the extreme case in
which no mass is lost from the system (except through wind mass-loss), whereas the grid
presented in Chapter 2 shows the other extreme. This exercise is unrealistic in the sense
that stars do rotate and are expected to spin up to critical rotation rates in all but the closest
binaries. However, as discussed in Chapter 2, the current implementation of rotation-limited
accretion is most likely not accurate either. Therefore, future work ought to explore alterna-
tive mechanisms that, on the one hand, limit the mass-transfer efficiency while, on the other
hand, allow for higher efficiencies than predicted by the current accretion-limited approach.
The population studies presented in this chapter and Chapter 2 should be expanded upon and
make them suitable for more in-depth comparisons with observed systems. From the obser-
vational side, there are exciting prospects with the first populations of intermediate- and
high-mass (partially) stripped stars (Schootemeijer et al. 2018; Wang et al. 2021; El-Badry
and Quataert 2021; Irrgang et al. 2022; El-Badry and Burdge 2022; El-Badry et al. 2022;
Frost et al. 2022; Gilkis and Shenar 2023; Ramachandran et al. 2023; Drout et al. 2023;
Götberg et al. 2023; Ludwig et al. in prep.). Since these are post-mass-transfer systems,
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they might shed some light on realistic values of the mass-transfer efficiency.
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Chapter info This chapter is a reproduction of the second paper I published as part of my
doctoral studies, Henneco et al. (2024a), A&A, vol. 690, A65. In this work, we explored
the asteroseismic differences between genuine single stars and post-main-sequence merger
products to see if we could potentially use asteroseismology to distinguish the two types
of stars. I was the main author of this paper and computed, analysed, and interpreted the
results. The original idea for this project came from my supervisor Fabian Schneider. This
work was done in close collaboration with Conny Aerts, with whom I frequently discussed
and who provided detailed feedback throughout all stages of the project and publication
process. All three co-authors (Fabian Schneider, Saskia Hekker, and Conny Aerts) provided
helpful comments and suggestions regarding the main text and figures. The original Sect. 2
of Henneco et al. (2024a) titled ‘Asteroseismic diagnostics’ has been removed from the
reproduction in this chapter. Its contents have been included in Sects. 1.2.1 and 1.2.2.

Abstract Products of stellar mergers are predicted to be common in stellar populations
and can potentially explain stars with peculiar properties. When the merger occurs after
the initially more massive star has evolved into the Hertzsprung gap, the merger product
may remain in the blue part of the Hertzsprung-Russell diagram for millions of years. Such
objects could, therefore, explain the overabundance of observed blue stars, such as blue
supergiants. However, it is currently not straightforward to distinguish merger products
from genuine single stars or other stars with similar surface diagnostics. In this work, we
made detailed asteroseismic comparisons between models of massive post-main-sequence
merger products and genuine single stars to identify which asteroseismic diagnostics can be
used to distinguish them. In doing so, we developed tools for the relatively young field of
merger seismology. Genuine single stars in the Hertzsprung gap are fully radiative, while
merger products have a convective He-burning core and convective H-burning shell while

79



4 Merger seismology: Distinguishing massive merger products from genuine single stars
using asteroseismology

occupying similar locations in the Hertzsprung-Russell diagram. These major structural
differences are reflected in lower asymptotic period spacing values for merger products and
the appearance of deep dips in their period spacing patterns. Our genuine single-star models
with masses above roughly 11.4 solar masses develop short-lived intermediate convective
zones during their Hertzsprung gap evolution. This also leads to deep dips in their period
spacing patterns. Because of the lack of a convective core, merger products and genuine
single stars can be distinguished based on their asymptotic period spacing value in this
mass range. We performed the comparisons with and without the effects of slow rotation
included in the pulsation equations and conclude that the two types of stars are seismically
distinguishable in both cases. The observability of the distinguishing asteroseismic features
of merger products can now be assessed and exploited in practice.

4.1. Introduction

Stellar mergers occur frequently in our Universe (Podsiadlowski et al., 1992; Sana et al.,
2012; de Mink et al., 2014) and are driven by a plethora of mechanisms (Henneco et al.,
2024b). Merger products, the stars left behind after the stellar merger events, are expected
to have peculiar properties. These properties include large-scale surface magnetic fields
(Ferrario et al., 2009; Wickramasinghe et al., 2014; Schneider et al., 2019), peculiar chem-
ical compositions (e.g. α-rich young stars; Chiappini et al. 2015; Martig et al. 2015; Izzard
et al. 2018; Hekker and Johnson 2019), peculiar rotation rates (Schneider et al., 2019; Wang
et al., 2022), B[e] emission features (Podsiadlowski et al., 2006; Wu et al., 2020a), and
masses above a cluster’s main sequence (MS) turn-off mass (blue stragglers; e.g. Rasio
1995; Sills et al. 1997, 2001; Mapelli et al. 2006; Glebbeek et al. 2008; Ferraro et al. 2012;
Schneider et al. 2015).

Single-star evolution predicts that post-MS intermediate- and high-mass stars (stars with
convective cores during core-hydrogen burning, i.e. initial masses ≳1.3 M⊙) evolve relatively
quickly from the blue to the red side of the Hertzsprung-Russell diagram (HRD), crossing
the Hertzsprung gap (HG) and becoming red supergiants. The theoretically predicted HG
crossing times depend on the assumptions for (semi-)convective mixing (Kaiser et al., 2020;
Sibony et al., 2023), but regardless of these assumptions, HG stars are expected to be rare.
However, blue post-MS stars, most notably blue supergiants (BSGs), are abundant (Castro
et al., 2014, 2018; de Burgos et al., 2023; Bernini-Peron et al., 2023). This is known as the
blue supergiant problem. Several potential solutions to this problem exist. Extra mixing on
the MS can enhance core masses, radii, and luminosities, while the stars reach cooler effec-
tive temperatures before the terminal-age main sequence (TAMS; Brott et al., 2011; Johnston
et al., 2019; Kaiser et al., 2020; Johnston, 2021). Another way to populate the blue part of
the HG is through the blue loop phase, during which red supergiants evolve towards hotter
temperatures and appear as BSGs (Saio et al., 2013; Ostrowski and Daszyńska-Daszkiewicz,
2015). However, these single-star evolutionary channels do not produce the full population
of observed BSGs (Bellinger et al., 2024). The products of post-MS stellar mergers, that
is, mergers that occur after one of the components has left the MS, also appear as BSGs
(Hellings, 1983, 1984; Podsiadlowski et al., 1990; Podsiadlowski, 1992; Morris and Podsi-
adlowski, 2007; Claeys et al., 2011; Vanbeveren et al., 2013; Justham et al., 2014; Menon
and Heger, 2017; Menon et al., 2024). Furthermore, the variety in pre-merger systems, such
as the mass ratio and the evolutionary stage at which the merger occurs, naturally explains

80



4.1 Introduction

the variety of luminosities and effective temperatures of the observed BSGs.

Using 1D merger models, Menon et al. (2024) show that the surface diagnostics, such
as luminosity, effective temperature, surface gravity, and N/O and N/C ratios, of post-MS
merger products differ significantly from those of genuine single HG stars. Moreover, these
surface diagnostics agree well with those determined from a sample of nearly 60 BSGs ob-
served in the Large Magellanic Cloud. In their proof-of-principle study, Bellinger et al.
(2024) show the potential of asteroseismology to distinguish MS stars with oversized cores
because of extra mixing from core-helium burning stars with undersized cores among the
population of BSGs. Core-helium burning stars with undersized cores can be the result of
post-MS mergers or a blue loop phase. These stars have significantly different internal struc-
tures, which is reflected in the mean spacing between their oscillation modes. To distinguish
between post-MS merger products and genuine single HG stars, Bellinger et al. (2024) pro-
pose searching for a temporal change in oscillation frequencies, which could be detectable
for the faster-evolving genuine single HG stars. For lower-mass stars, Rui and Fuller (2021)
find that one can distinguish post-MS merger products from genuine single red giant branch
stars based on the mean spacing between the oscillation modes and mass estimates from
other asteroseismic and surface diagnostics. One condition is that the red giant branch star
needs to have a degenerate core before the merger. Other studies have explored the influence
of mass accretion and mass loss on the seismic signals of red giant stars (Deheuvels et al.,
2022; Li et al., 2022) and more massive B-type stars (Wagg et al., 2024) in binary systems.

Here, we focus on genuine and candidate merger product BSGs in the mass range be-
tween about 5 M⊙ and 20 M⊙. In this current era of high-cadence space photometry, multi-
period non-radial oscillations have been detected in several BSGs in this mass regime, al-
though the number of stars with firm detections remains limited compared to other classes
of pulsators (see Kurtz, 2022, for a recent review). Multiple isolated oscillation modes have
been detected in a set of about 40 BSGs with the ESA Hipparcos satellite (Lefever et al.,
2007) and in specific BSGs with the Microvariability and Oscillations of Stars (MOST;
Walker et al., 2003) mission by Saio et al. (2006), Moravveji et al. (2012a), and Moravveji
et al. (2012b), the Convection, Rotation and planetary Transits (CoRoT; Auvergne et al.,
2009) space telescope by Aerts et al. (2010b), the Kepler/K2 (Koch et al., 2010) missions
by Aerts et al. (2017) and Aerts et al. (2018a), and the Transiting Exoplanet Survey Satellite
(TESS; Ricker et al., 2016) by Sánchez Arias et al. (2023).

All of the above detections concern individual isolated frequencies in the amplitude spec-
tra. However, BSG variability is more diverse than this. Bowman et al. (2019) and Ma et al.
(2024) discovered a global low-frequency power excess in a sample of about 180 K2 or
TESS BSGs, several of which are in the Large Magellanic Cloud. For many of these tar-
gets, Bowman et al. (2019) stress that the low-frequency power excess occurs in addition to
many isolated significant frequencies with higher amplitudes. In his review of massive star
variability, Bowman (2023) points out that the origin of the low-amplitude low-frequency
variability is related to a spectrum of internal gravity waves triggered by core convection,
but this is not yet firmly established (see also Cantiello et al., 2021, for interpretations in
terms of sub-surface convection in regard to the power excess). Ma et al. (2024) used a BSG
merger model from Bellinger et al. (2024) to explore two not mutually exclusive physical
origins of the observed frequency spectra, namely sub-surface convective motions and inter-
nal gravity waves excited by the thin convective layer connected to the iron opacity bump in
the envelope. They find waves to be the more plausible explanation for the overall observed
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variability frequency spectra but warn that more 3D simulations are needed to come to firm
conclusions.

In this work we made an in-depth model-by-model comparison between the asteroseis-
mic predictions for post-MS merger products and genuine single HG stars based on 1D
stellar structure models. We focused on stars with masses between 7.8 and 15.3 M⊙ at sim-
ilar locations in the HRD and explored which asteroseismic diagnostics help us distinguish
merger products from genuine single stars. With this mass range, we include stars below
and inside the mass range considered in previous works (e.g. Bellinger et al. 2024) and also
avoid the added complexity that stellar wind mass loss might have on the photometric signal
(Krtička and Feldmeier, 2018).

This chapter has the following structure. In Sect. 4.2, we describe our computational
setup for the equilibrium stellar structure models and stellar oscillation calculations. Sec-
tion 4.3 covers the results of our comparison between merger products and genuine single
stars. Lastly, in Sect. 4.4 we discuss these results and draw our conclusions.

4.2. Methods

We computed the asteroseismic properties of merger products and genuine single stars by
solving the stellar oscillation equations, which require an equilibrium stellar structure model
as input. These equilibrium stellar structure profiles were taken from 1D stellar evolution
models. Asteroseismology has shown that intermediate-mass stars born with a convective
core have quasi-rigid rotation throughout their MS and undergo efficient yet poorly under-
stood angular moment loss once beyond the MS (Aerts et al., 2019; Aerts, 2021). From
the results of the 3D merger simulations from Schneider et al. (2019) and the 1D follow-up
study by Schneider et al. (2020), we expect merger products to be slow rotators. More-
over, as shown by Wang et al. (2022), merger products’ slow rotation can explain the blue
MS band in young stellar clusters. We thus expect slow rotation for both genuine HG stars
and post-MS merger products. In first instance, it is therefore justified to ignore rotation
in the equilibrium models used to solve the pulsation equations, as is common practice for
post-MS stars. Ignoring rotation in the equilibrium models disregards the theory of rota-
tionally induced mixing, but we mimicked its effects by means of simpler approximations
for the internal mixing profiles (Pedersen et al., 2021). Following Henneco et al. (2021)
we also ignored the centrifugal deformation of the equilibrium model, because it results in
negligible frequency shifts. Henneco et al. (2021) furthermore show that for up to 70% of
critical rotation, the inclusion of the centrifugal deformation at the level of the asymptotic
pulsation mode predictions and the level of the equilibrium model combined lead to frac-
tional frequency shifts well below 1%. Therefore, the effect of the centrifugal deformation
may be neglected for initial asteroseismic modelling attempts for rotation rates up to 70% of
the critical rotation rate. The procedure of including rotation only at the level of the stellar
oscillation equations and ignoring the centrifugal deformation of the equilibrium model is
common practice (Aerts, 2021) and is further elaborated in Aerts and Tkachenko (2023), to
which we refer for details. Section 4.2.1 describes the computation of the equilibrium mod-
els for the genuine single HG stars and post-MS merger products. We show in Sect. 4.2.2
how we predicted the asteroseismic properties by solving the oscillation equations using the
equilibrium models as input. The input files for the various codes used in this work are
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available online1.

4.2.1. Stellar model computations with MESA

4.2.1.1 Adopted stellar physics

We used the stellar structure and evolution code MESA (r12778; Paxton et al., 2011, 2013,
2015, 2018, 2019) to compute non-rotating single-star evolution models at solar metallicity
(Y = 0.2703 and Z = 0.0142, Asplund et al. 2009). We used a combination of the OPAL
(Iglesias and Rogers, 1993, 1996) and Ferguson et al. (2005) opacity tables suitable for the
chemical mixture of Asplund et al. (2009). We did not enable MESA’s hydrodynamic solver,
that is, all models are hydrostatic. We used the approx21 nuclear network. Each model was
initialised at its zero-age main sequence (ZAMS) and evolved until core-helium exhaustion
(i.e. when the central mass fraction of helium is below 10−6).

The Ledoux criterion was employed to determine which regions of the stellar model
were convective and the mixing length theory (MLT; Böhm-Vitense, 1958; Cox and Giuli,
1968) for the treatment of convective mixing, with a mixing length parameter of αmlt = 2.0
as the best estimate from asteroseismology of stars on the MS with a convective core (e.g.
Fritzewski et al., 2024a). Semi-convective mixing was included with an efficiency of αsc =

10.0 (Schootemeijer et al., 2019). For thermohaline mixing, we used αth = 1.0 (Marchant
et al., 2021). We added a constant envelope mixing of log(Dmix/cm2s−1) = 3 to smooth out
small step-like features in the chemical composition left behind by the receding convective
cores and shrinking convective shells. This value used for Dmix is typical for what is deduced
from asteroseismology of B stars (Pedersen et al., 2021).

Convective boundary mixing was handled through the overshooting scheme. For hydrogen-
burning convective cores, we used the step overshooting scheme in MESA to extend the con-
vective region by 0.20HP (Martinet et al., 2021) beyond the boundary set by the Ledoux
criterion. Here, HP is the pressure scale height. We used exponential overshooting (Herwig,
2000) for helium-burning cores, with fov = 0.015. The magnitude of overshooting above
helium-burning cores is not constrained adequately and yet can severely influence the final
fate of stars (Temaj et al., 2024; Brinkman et al., 2024). We chose a moderately high value
in a range consistent with observations of intermediate- (Constantino et al., 2016) and low-
mass (Bossini et al., 2017) stars. This value of fov was chosen to avoid the occurrence of
breathing pulses, which are instabilities of the convective helium-burning core that occur in
models with lower values of overshooting. Whether these breathing pulses are numerical
artefacts or physical instabilities is unclear, though recent evidence supports the former (Os-
trowski et al., 2021). Above and below convective shells and below convective envelopes,
we used exponential overshooting with fov = 0.005, which is consistent with values typically
inferred for the Sun (Angelou et al., 2020).

We used the same setup as in Henneco et al. (2024b) to compute the wind mass-loss
rate. For hot stars (Tsurf ≥ 11 kK, with Tsurf the temperature of the outermost cell), we
used the Vink et al. (2000) wind mass-loss prescription with a scaling factor of 1.0. The
cool wind regime (Tsurf ≤ 10 kK) was divided based on whether the stars evolve into giants
or supergiants. The cut is made at log(L /L⊙) = 3.15, with L defined in Eq. (2.1). We
evaluated L when Tsurf < 11 kK for the first time during the star’s evolution. The division

1https://zenodo.org/doi/10.5281/zenodo.12087024
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between giant and supergiant wind regimes at log(L /L⊙) = 3.15 corresponds roughly to a
division at 10 M⊙. We used linear interpolation to compute the wind mass-loss rate between
the hot and cool wind regimes.

4.2.1.2 Merger products via fast accretion

This work focuses on massive stars produced in early Case B (Case Be) mergers. These stel-
lar mergers occur when the initially more massive or primary star is in the HG and does not
yet have a (deep) convective envelope (Henneco et al., 2024b). To produce a merger product
in MESA, we evolved a single star, using the assumptions described above, until it reached
the HG. When the star reached a point in the HG at which its effective temperature Teff is
cooler than roughly its lowest MS value, we invoked the merger procedure. The merger
procedure consisted of accreting a specified mass ∆M onto the single star with initial mass
Mi on a timescale of 0.1τKH, with τKH the star’s current global thermal or Kelvin-Helmholtz
timescale, defined as in Eq. (1.2). This procedure is similar to what is used in Justham et al.
(2014), Rui and Fuller (2021), Deheuvels et al. (2022), and Schneider et al. (2024) to mimic
the result of stellar mergers. Justham et al. (2014) assumed accretion happens on a timescale
≲104 yr, Rui and Fuller (2021) used a fixed accretion rate of 10−5 M⊙ yr−1, while Schneider
et al. (2024) assumed accretion to happen on the star’s thermal timescale, that is, at an accre-
tion rate Ṁacc = M⋆/τKH. Although the technical setup is essentially the same, Deheuvels
et al. (2022) studied the effect of accretion in a binary system rather than for stellar mergers,
which occur on shorter timescales. Schneider et al. (2024) used their setup to study both
merger and accretion products.

During the fast accretion phase, an extended convection region develops in the star’s
envelope. After this phase, we mixed the outer envelope, that is, the region from the top of
the convective hydrogen-burning shell to the surface with log(Dmix/cm2s−1) = 12 for a time
0.01τKH. We did this to smooth out the abrupt changes in the chemical composition profile
left behind by the extended convection zone. Afterwards, we evolved the merger models
until the end of core helium exhaustion.

4.2.1.3 Limitations of the fast accretion method

Stellar mergers are complex phenomena that include a wealth of physical processes. 3D
merger simulations, such as those in Lombardi et al. (2002), Ivanova et al. (2002), Glebbeek
et al. (2013), and Schneider et al. (2019) currently are our best windows into the merging
process and the products that result from it, but they are computationally expensive. As a
result, these 3D simulations are limited to only a handful of initial binary parameters. The
fast accretion method provides a quick and flexible zeroth-order approximation for merger
product structures. We now list some of its main limitations.

First, before stars merge, they evolve through a contact phase, preceded by a mass-
transfer phase (this is true if we consider a merger driven by binary evolution channels
and not through dynamical interactions). During both phases, the structure can be altered
significantly (Henneco et al., 2024b). With the fast accretion method, we assumed that the
star onto which the companion is accreted is unaltered by any previous mass-transfer and
contact phases.

Second, fast accretion does not account for the chemical composition of the merger
product because the chemical composition of the accreted material is taken to be the same
as the surface chemical composition of the accretor. With this assumption, we primarily
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underestimate the amount of helium in the envelope of the merger product. Moreover, it
does not account for the mixing of stellar material from the two components during the
merger phase. As a result, neither the internal chemical structure nor the surface chemical
abundances can be reproduced correctly by the fast accretion method. We stress that we used
the fast accretion method to create effective merger product structures of the kind in which
the less evolved secondary star is mixed in with the more evolved primary star’s envelope.
Generally, mass is expected to be lost from both components during the merger phase (see
e.g. Schneider et al. 2019). Therefore, ∆M is the mass effectively added to the primary’s
envelope. The added mass fraction fadd = ∆M/Mi should not be confused with the mass ratio
of the merger product’s progenitor binary system. From smoothed particle hydrodynamic
simulations of mergers (e.g. Lombardi et al., 2002; Gaburov et al., 2008a; Glebbeek et al.,
2013), we know that if the H-rich core of the secondary star has lower entropy than that of
the primary star, it can sink to the centre of the merger product. In such cases, the merger
product rejuvenates and becomes an MS star (Glebbeek et al., 2013). One needs different
merging schemes to create these kinds of merger products, such as entropy sorting (Gaburov
et al., 2008b). While such merger products warrant their own investigations (Henneco et al.
in prep.), our work focuses solely on long-lived B-type or BSG merger products.

Third, the fast accretion method does not reproduce the strong surface magnetic fields
expected from both 3D magnetohydrodynamic simulations (Schneider et al., 2019) and the
recent observation of a massive magnetic star that shows strong signs of having been formed
in a merger (Frost et al., 2024). Although internal magnetic fields are less well constrained
than surface magnetic fields (Donati and Landstreet, 2009), it cannot be excluded that they
also result from binary mergers. As shown by, for example, Prat et al. (2019), Van Beeck
et al. (2020), Dhouib et al. (2022), and Rui et al. (2024), internal magnetic fields can signif-
icantly influence the frequencies of g modes.

4.2.2. Stellar oscillation calculations with GYRE

For the computation of the stellar oscillations, we used the stellar pulsation code GYRE (v7.0;
Townsend and Teitler, 2013; Townsend et al., 2018) with the equilibrium models produced
with MESA as input. We used the MAGNUS GL6 solver and the boundary conditions from
Unno et al. (1989) to compute adiabatic2 oscillations for (ℓ, m) = (1, 0) and (ℓ, m) = (2, 0)
modes (no rotation). For the computation of oscillation modes with rotation in the inertial
frame, we used the TAR in GYRE (see Sect. 1.2.2). Even though we only considered slow
to moderate rotation in this work, the use of the TAR is required (as opposed to treating the
Coriolis acceleration as a perturbation), which we demonstrate in Appendix C.1. Core and
envelope rotation rates inferred from asteroseismology show that low- and intermediate-
mass stars have nearly uniform radial rotation profiles during their MS and HG or sub-
giant evolution (Aerts et al., 2019). We currently have internal rotation profiles inferred
from asteroseismology for only a handful of high-mass stars, which show core-to-envelope
rotation rate ratios between 1 and 5 without proper error estimation (Burssens et al., 2023;
Aerts and Tkachenko, 2023). Considering this, we assumed a uniform (solid-body) rotation
profile for the GYRE computations. We computed (ℓ, m) = (1, 0), (1, ±1), (2, 0), (2, ±1),
and (2, ±2) modes with rotation.

2It is appropriate to use the adiabatic approximation for the computation of oscillation modes in B-type
stars (Aerts et al., 2018b).

85



4 Merger seismology: Distinguishing massive merger products from genuine single stars
using asteroseismology

3.63.84.04.2
log(Teff/K)

3.0

3.2

3.4

3.6

3.8

4.0

lo
g(

L ?
/L
�)

(a)

7.8 M�
6.0 + 2.4 M�

3.63.84.04.24.4
log(Teff/K)

3.6

3.8

4.0

4.2

4.4

4.6

4.8 (b)

13.6 M�
9.0 + 6.3 M� 300

400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

bu
oy

an
cy

tr
av

el
tim

e
Π

0
[s

]

300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

bu
oy

an
cy

tr
av

el
tim

e
Π

0
[s

]

Figure 4.1: HRD with evolutionary tracks for a merger product of M⋆ = 6.0+ 2.4 M⊙ and a genuine
single star with an initial mass of M⋆ = 7.8 M⊙ (Panel a), and a merger product of M⋆ = 9.0+6.3 M⊙
and a genuine single star with an initial mass of M⋆ = 13.6 M⊙ (Panel b). The merger and genuine
single-star tracks are shown in black and grey, respectively. To avoid cluttering, the track of the
merger model is not shown during the fast accretion phase. A dashed black line replaces it. Each
evolutionary track is connected to its label through a symbol on the HRD at the ZAMS. The green
plus symbols indicate the position in the HRD after 106 years have passed since the merging or
TAMS for the merger product and single star, respectively. The colours on the tracks are related
to the buoyancy travel time, Π0. The violet box indicates the position at which we compare the
asteroseismic properties of the merger product and genuine single star in Sects. 4.3.1.1 and 4.3.1.2.

4.3. Results

4.3.1. Detailed comparison between Case-Be merger products and gen-
uine single HG stars

We compared the predicted asteroseismic properties of merger products formed through the
fast accretion method described in Sect. 4.2.1.2 and genuine single stars in the HG. We
focused on two merger products resulting from early Case B mergers: an M⋆ = 8.4 M⊙
product of a star with Mi = 6.0 M⊙ and ∆M = 2.4 M⊙ (added mass fraction fadd = 0.4)
and an M⋆ = 15.3 M⊙ product of star with Mi = 9.0 M⊙ and ∆M = 6.3 M⊙ ( fadd = 0.7).
We compared both merger products with appropriate genuine single-star counterparts. To
find these genuine single star counterparts, we compared the merger products’ HRD tracks
with a range of genuine single star tracks of different masses and selected those that cross in
the blue region of the HRD (log Teff/K ≳ 4.0). Hence, we compared the 6.0 + 2.4 M⊙ and
9.0 + 6.3 M⊙ merger products with 7.8 M⊙ and 13.6 M⊙ genuine single stars, respectively.

The evolutionary tracks of the merger products and genuine single stars are shown in
Fig. 4.1. Each track has been colour-coded with the value of the buoyancy travel time Π0,
defined in Eq. (1.25). Each HRD track is also marked with a plus symbol, which indicates
the position of the star 1 Myr (106 yr) after the TAMS for genuine single stars, and 1 Myr
after the merger event for merger products. Given that the plus symbol is located in the

86



4.3 Results

blue region of the HRD for the merger products, it is clear that they spend at least 1 Myr
there and are, hence, likely to be observed as B-type stars or BSGs. Genuine single stars
have already moved towards the red region of the HRD within 1 Myr and are, therefore, less
likely to be observed as B-type stars or BSGs. The merger products’ luminosities increase
during their evolution on the HG (around log Teff/K = 4.2 for the 6.0 + 2.4 M⊙ product and
log Teff/K = 4.4 for the 9.0 + 6.3 M⊙ product), which is caused by the onset of core He
burning. We defined the onset of core He burning as when the central He mass fraction falls
below 99% of its value at the TAMS. For the 13.6 M⊙ genuine single star, core He ignition
also occurs already on the HG around log Teff/K = 4.1. Our genuine single stars with masses
≳ 11.4 M⊙ ignite helium in their cores on the HG.

4.3.1.1 Comparison between a 6.0 + 2.4 M⊙ merger product and a 7.8 M⊙ genuine
single star

We find a clear difference between the respective Π0 values of the merger product and gen-
uine single star during the time their evolutionary tracks cross in the HRD, indicated by the
violet box in Fig. 4.1a. The merger product has Π0 = 678 s and for the genuine single
star we find Π0 = 1485 s. This difference comes from the fact that the g-mode cavities,
which determine the value of Π0 (Eq. 1.25), have significantly different shapes. From the
propagation3 and Kippenhahn diagrams in Fig. 4.2, we see that the merger product has two
g-mode cavities, one near the convective He-burning core (inner cavity) and one further out
(outer cavity). Because of the mass accretion onto the primary star during the merger, it has
a higher envelope mass and, consequently, a higher temperature at the base of the envelope.
The higher temperature leads to a larger H-shell burning luminosity. This then drives a con-
vective zone in and above the H-burning region. This convective region is responsible for
separating the g-mode cavity into two parts. The genuine single star is fully radiative and
hence has a single g-mode cavity (Figs. 4.2c and 4.2d). From Fig. 4.2a, we also see that the
pure g modes are mostly confined to the inner cavity and only have a few radial nodes in the
outer cavity. To correctly apply Eq. (1.25), which is derived within the asymptotic theory
(n ≫ 1), we only integrated over the inner cavity. Integrating over both cavities results in Π0

values that are lower by up to 10 s, which is of the order of the period precision for time se-
ries from space missions such as Kepler and the TESS continuous viewing zone (Van Reeth
et al., 2015a; Pedersen et al., 2021; Garcia et al., 2022b,a). Even though the merger product
has a smaller mode cavity than the genuine single star, the BV frequency reaches higher
values at low radial coordinates (see Figs. C.2 and C.3), which results in a higher value of
the integral in the denominator of Eq. (1.25), and hence a smaller value of Π0 compared to
the genuine single star.

The difference in terms of asteroseismic properties between the merger product and gen-
uine single star can be further appreciated from the comparison between their PSPs for
(ℓ, m) = (1, 0) and (2, 0) modes without rotation and with radial orders npg between -1
and roughly -200 (Fig. 4.3). We see that for high radial orders (long mode periods Pn), the
mean values of the PSPs differ significantly, as expected from our earlier estimation based
on Π0. Next to the difference in mean PSP values, we see that modes with the same number
of radial nodes have different mode periods in the two models. The modes of the merger
product have shorter mode periods for the same number of nodes compared to the modes of

3Alternative versions of the propagation diagrams as a function of the relative radial coordinate r/R⋆ can
be found in Appendix C.2.
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Figure 4.2: Propagation and Kippenhahn diagrams for the M⋆ = 6.0 + 2.4 M⊙ merger product and
M⋆ = 7.8 M⊙ genuine single star. Panels (a) and (c) show propagation diagrams for ℓ = 1, 2 and
m = 0 modes without rotation for the merger product with M⋆ = 6.0+2.4 M⊙ and genuine single star
with M⋆ = 7.8 M⊙, respectively. The black (grey) dots represent the radial nodes of the oscillation
modes, or more specifically, the locations where the radial wave displacement ξr(r) = 0 for the ℓ = 1
(ℓ = 2) modes. The purple regions show the g-mode cavity or cavities, while the orange region
shows the p-mode cavity. Panels (b) and (d) show Kippenhahn diagrams for the merger product with
M⋆ = 6.0 + 2.4 M⊙ and a genuine single star with M⋆ = 7.8 M⊙, respectively. The dash-dotted
green lines indicate the models for which the respective propagation diagrams in Panels (a) and (c)
are shown, which is when their HRD tracks overlap, indicated by the violet box in Fig. 4.1a. Both
Kippenhahn diagrams show the evolution of the models up to core-helium exhaustion.
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Figure 4.3: PSPs for the 6.0+ 2.4 M⊙ merger product (black) and the 7.8 M⊙ genuine HG star (blue)
without rotation at the time of comparison (violet box in Fig. 4.1). The dashed grey lines connect
pure g modes with the same radial order ng. The dashed black and grey lines with cross symbols
indicate p-g mixed modes. These p-g mixed modes have at least one node in the radial direction, that
is, np > 0. Panel (a) and (b) show the PSPs for (ℓ, m) = (1, 0) and (2, 0) modes, respectively. The
green and purple horizontal lines indicate the Πℓ values for the merger product and genuine single
star, respectively.
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Figure 4.4: Same as Fig. 4.2 but for the merger product with M⋆ = 9.0+6.3 M⊙ and a genuine single
star with M⋆ = 13.6 M⊙.

the genuine single star. This period shift increases with increasing mode period (increasing
radial order ng), both for (ℓ, m) = (1, 0) and (2, 0) modes. Lastly, we see another clear
difference between the respective PSPs of the merger product and genuine single star in the
form of relatively deep and narrow dips. These dips arise whenever a star has two g-mode
cavities. We elaborate further on the nature of these deep dips in Sect. 4.3.2.

4.3.1.2 Comparison between a 9.0 + 6.3 M⊙ merger and a 13.6 M⊙ genuine single star

Figure 4.1b shows the HRD tracks for a 9.0+6.3 M⊙ merger product and a 13.6 M⊙ genuine
single star. During their time in the blue side of the HRD, both stars are observable as BSGs
(log L⋆/L⊙ ≳ 4.04, Urbaneja et al. 2017; Bernini-Peron et al. 2023). The Π0 values for the
merger product and genuine single star when their HRD track cross (indicated by the violet
box in Fig 4.1b) are Π0 = 1276 s and Π0 = 2104 s, respectively. As expected from Mombarg
et al. (2019) and Pedersen et al. (2021), these values are higher than for their lower-mass

4The lower luminosity limit for the BSGs is not well defined. For this work we used a limit based on
observed BSGs.
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Figure 4.5: Same as Fig. 4.3 but for a 9.0 + 6.3 M⊙ merger product (black) and a 13.6 M⊙ genuine
HG star (blue).
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analogues described in Sect. 4.3.1.1. The absolute difference between the Π0 values is 828 s
for this comparison. For the lower-mass counterparts described in Sect. 4.3.1.1, the absolute
difference between the Π0 values is 807 s. These values are of the same order of magnitude,
while the absolute difference is somewhat larger for the more massive merger product and
genuine single star. At slightly lower effective temperatures, the values of Π0 become more
comparable than at the effective temperatures the 9.0 + 6.3 M⊙ merger product and 13.6 M⊙
genuine single star models are compared, but they remain distinguishable based on their
asymptotic period spacing. The propagation and Kippenhahn diagrams for these models
(Fig. 4.4) show that their structures are more comparable than their lower-mass counterparts.
Notably, the 13.6 M⊙ genuine single star has a convective shell above the H-burning shell,
the so-called intermediate convective zones (ICZs). The extent and lifetime of these ICZs
are sensitive to the assumptions for convective mixing in the stellar models (e.g. Kaiser
et al., 2020; Sibony et al., 2023, see also our Appendix C.3). Because of the ICZ, the
13.6 M⊙ genuine single star has two g-mode cavities, just like the merger product. The main
difference between the two models remains, as for the lower-mass counterparts, the absence
of a convective core in the structure of the genuine single star, which has the largest influence
on the value of Π0.

Figure 4.5 shows the PSPs for the 9.0 + 6.3 M⊙ merger product and the 13.6 M⊙ gen-
uine single star. The PSPs for the merger product look similar to those of its lower-mass
counterpart (see Fig. 4.3). We find some key differences when comparing the PSPs of the
genuine single star with those of its lower-mass counterparts. First, we see the presence of
deep dips with similar morphologies as those in the merger product’s PSPs. As mentioned
in the previous section, these are related to the existence of an inner and outer g-mode cav-
ity. Second, we see relatively strong quasi-periodic wave-like variability in the ∆Pn values.
Such variability is also present for pure g modes in the 7.8 M⊙ genuine single star (Fig. 4.3),
but to a lesser extent. As discussed in Sect. 1.2.2, such wave-like variability in PSPs is
caused by mode trapping (Pedersen et al., 2018; Michielsen et al., 2019, 2021), which it-
self can be caused by sharp features or structural glitches in the Ñ(r)−profile. We see from
Fig. 4.4c that both the inner and outer g-mode cavities of the 13.6 M⊙ genuine single star
have prominent spike features. These features are remnants of an extended, relatively short-
lived (∆T ∼ 103 yr), non-uniform (blocky) convection zone that appears after the TAMS and
before the development of the ICZ (see Appendix C.3). The non-uniform structure of this
convection zone appears at higher and lower spatial and temporal resolutions, and might be
the result of an insufficient treatment of convection. We do note that similarly structured
convection zones at the onset of the ICZ appear also in the models of Kaiser et al. (2020)
for different treatments of convection. We do not discuss the nature of this short-lived,
non-uniform convection zone further, but we note that the peaks it introduces in the Ñ(r)
profile influence the oscillation modes. In the outer cavity, where the g-modes only have a
handful of nodes, the location of the nodes is influenced by mode trapping caused by the
peaks. The strong peaks at the outer edge of the inner g-mode cavity are responsible for
the strongest mode trapping and, hence, the quasi-periodic wave-like variability in the PSPs
mentioned above. In Appendix C.4, we demonstrate how we disentangled the deep dips and
quasi-periodic variability in the 13.6 M⊙ genuine single star’s PSP.

4.3.2. Deep dips in pure g-mode PSPs
From the results in Sect. 4.3.1, it has become clear that stellar models with two g-mode
cavities, that is, models with either a convective hydrogen-burning shell or ICZ, show deep,
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Figure 4.6: Temporal evolution of the deep PSP dip for the merger product with M⋆ = 6.0+ 2.4 M⊙.
Panel (a) shows the PSP dip for (ℓ, m) = (1, 0) modes around 0.92 days. Panel (b) shows a zoomed-in
view of the Kippenhahn diagram from Fig. 4.2c. The colours of the vertical dashed lines correspond
to those in Panel (a).
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Figure 4.7: Zoomed-in view of a mode-bumping diagram for (ℓ, m) = (2, 0) modes of the merger
product with M⋆ = 6.0 + 2.4 M⊙. The black (grey) lines show the evolution of the mode period of g
modes with even (odd) radial order npg. The green (lime) symbols indicate periods of the even (odd)
modes shown in Fig. 4.8.
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Figure 4.8: PSP for (ℓ, m) = (2, 0) modes with npg ∈ [−202; −111] for the merger product with
M⋆ = 6.0 + 2.4 M⊙ (black line, left axis) and ∆U89 (orange line, right axis).

narrow dips in their PSPs. In this section, we explore the nature of these deep dips.
First, we looked at how these deep dips evolve. From Fig. 4.6a, we see that the dip

location for a specific (ℓ, m) = (1, 0) dip moves to longer periods over time. This follows
from the deep dip’s physical origin. We also see that the width of the dip increases with
time and eventually becomes relatively shallow. The transition from a deep, sharp dip to
a shallow morphology coincides with the disappearance of the convective zone (Fig. 4.6b).
In other words, the width of the dip is inversely proportional to the width of the evanescent
zone between the two g-mode cavities.

Next, we examined the evolution of the g-mode periods with time in Fig. 4.7. The mode
periods (this time shown for ℓ = 2 modes) increase in time with a quasi-constant slope.
For some modes, we observe so-called mode bumping (see e.g. Vanlaer et al. 2023); the
period increases faster or more slowly than the periods of adjacent modes of consecutive
radial order, causing the mode periods to be close in value. In such avoided crossings,
the mode exchanges energy (couples) with its consecutive mode, which then experiences a
faster or slower period increase until it bumps the next mode. This mode bumping sequence
continues until the evanescent (convection) zone disappears at around 71.0–71.5 Myr.

Lastly, we show a part of the PSP for (ℓ, m) = (2, 0) modes of the 6.0 + 2.4 M⊙ merger
product in Fig. 4.8. For each mode in the PSP, we computed the value of ∆U89, which is
the ratio of the kinetic energy of a mode in the inner cavity over its kinetic energy in both
cavities (Unno et al., 1989):

∆U89 =

∫ r2

r1
4πr2ρ

[
ξr(r)2 + ℓ(ℓ + 1)ξh(r)2

]
dr

∫ R⋆
0

4πr2ρ
[
ξr(r)2 + ℓ(ℓ + 1)ξh(r)2] dr

. (4.1)

In this expression, r1 and r2 are the radii of the inner and outer turning points of the inner
g-mode cavity, respectively, and ξr(r) and ξh(r) are the radial and horizontal wave displace-
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Figure 4.9: Same as Fig. 4.1 but for 8.0 + 2.0 M⊙ ( fadd = 0.25, black square), 6.4 + 3.6 M⊙ ( fadd =

0.56, grey circle), and 5.6 + 4.4 M⊙ ( fadd = 0.79, indigo diamond) merger products. The lime
rectangle indicates the region in which the three merger products occupy the same region of the
HRD and have similar structures.

ment, respectively. For modes that are mostly confined to the inner g-mode cavity, ∆U89 ≈ 1,
while for modes with a considerable amount of kinetic energy in the outer cavity, ∆U89 < 1.
We see from Fig. 4.8 that modes within the deep dips consistently have ∆U89 < 1, meaning
that a significant fraction of their kinetic energy sits in the outer g-mode cavity.

Putting the pieces together, we arrive at the nature of the deep dips in the PSPs of models
with two g-mode cavities. We find that several inner-cavity g modes tunnel through the
evanescent zone, where they interact with outer-cavity g-modes. During this interaction, the
coupled modes’ periods converge, they exchange energy, and their periods diverge again.
The fact that the mode periods converge to the same value causes the deep, narrow dips in
the PSPs. The virtual line connecting a sequence of avoided crossings in Fig. 4.7 shows
the period evolution of a specific outer-cavity mode. The inversely proportional relation
between the dips’ width and the evanescent zone’s size also follows from this explanation
(Fig. 4.6). Namely, when the evanescent zone is smaller, more inner-cavity modes can
tunnel through and couple with outer-cavity modes. This can be appreciated even further
when comparing the width of the deep dips for (ℓ, m) = (1, 0) and (ℓ, m) = (2, 0) modes
(Figs. 4.3 and 4.5). Dipole modes (ℓ = 1) have a weaker damping rate than quadrupole
(ℓ = 2) modes (Aerts et al., 2010a, Chapter 3.4). Hence, more inner-cavity dipole modes
can tunnel through the evanescent zone and interact with the outer-cavity g-modes, leading
to wider dips.

4.3.3. Effect of the added mass fraction, fadd

As the results in the previous sections have shown, it is, in principle, possible to distinguish
merger products from genuine single stars based on their g-mode PSPs. In this section,
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Figure 4.10: Kippenhahn diagrams for 8.0 + 2.0 M⊙ ( fadd = 0.25, a), 6.4 + 3.6 M⊙ ( fadd = 0.56, b),
and 5.6+ 4.4 M⊙ ( fadd = 0.79, c) merger products. The left (right) lime vertical line indicates the left
(right) bound of the lime rectangle in Fig. 4.9.
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Figure 4.11: Zoomed-in view of the part of the HRD track of the 5.6 + 4.4 M⊙ merger product from
Fig. 4.9 that coincides with the MS of a 10.6 M⊙ genuine singe star. We draw attention to the different
colour bar scaling than in Fig. 4.9.

we briefly explore how the added mass fraction fadd influences our results. We stress again
that fadd is a measure of the mass effectively added to the primary star during the merger
procedure and should not be confused with the mass ratio of the progenitor binary system
(see Sect. 4.2.1.3). We compare the HRD tracks of three 10 M⊙ merger products with vary-
ing added mass fractions fadd in Fig. 4.9. The following merger products are considered:
8.0 + 2.0 M⊙ ( fadd = 0.25), 6.4 + 3.6 M⊙ ( fadd = 0.56), and 5.6 + 4.4 M⊙ ( fadd = 0.79).
Although core He ignition, indicated by the luminosity rise on the HG, occurs at different
effective temperatures for the three merger products, they eventually become core-He burn-
ing BSGs, which occupy a similar region in the HRD. We indicate this part of the HRD
with a lime rectangle. All merger products have a similar structure during this time: a con-
vective core and a convective H-burning shell. This can be seen in Fig. 4.10, in which the
vertical lime lines indicate the age range when the star is located within the lime rectangle
on the HRD in Fig. 4.9. The main difference is that models with higher added mass frac-
tions have smaller He-core masses. Despite this, the convective core masses during core
He burning are similar because the merger products are all 10 M⊙ stars that have relaxed
to their new structure. This is true for the mass- and fadd-ranges considered at the time of
the comparison made here, but in general, the final CO core mass depends strongly on fadd

(Schneider et al., 2024). The similar structures of the merger products are reflected in their
Π0 values (Fig. 4.9). Closer inspection shows that the values of Π0 in the overlapping re-
gion are Π0 = 734–819 s, 906–1034 s, and 717–822 s for the 8.0 + 2.0 M⊙, 6.4 + 3.6 M⊙,
and 5.6 + 4.4 M⊙ merger products, respectively. The Π0 values for the 6.4 + 3.6 M⊙ merger
product are considerably higher than for the other merger products, which is related to the
fact that by the time it occupies the same region of the HRD as the other merger products,
its inner g-mode cavity has shifted outwards because of the growing convective core and
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shrinking convective H-burning shell. The main cause for the differences in Π0 is the point
in evolution when the models are compared. If we compare the merger products to the left
of the lime rectangle in Fig. 4.9, the differences in their Π0 values are more evident. This
is because the merger products ignite helium at different effective temperatures. However,
these differences might be method-dependent (see Sect. 4.2.1.3), and we opted not to inter-
pret this further than warranted by the nature of our current models. We discuss future steps
to improve these comparisons in Sect. 4.4. Lastly, we note from Figs. 4.9 and 4.10c that
the 5.4+ 4.6 M⊙ merger product spends a considerable amount of time (between the ages of
79.0 and 83.5 Myr) in the MS region of the HRD. During this time, the merger product has
not yet ignited He in its core and has a ∼2 M⊙ convective H-burning shell. Since such a star
would be observed in the same region of the HRD as MS stars, we compare it to a 10.6 M⊙
genuine single MS star in Fig. 4.11. During the time the merger product’s and MS star’s
HRD tracks cross, their Π0 values are 2000–3000 s and 19000–20000 s, respectively. This
almost order-of-magnitude difference in Π0 values follows from the different structures of
the stars (see also Eq. 1.25): 10.6 M⊙ MS stars have a convective core and hence a g-mode
cavity in the radiative envelope only. The merger product has an inner and outer g-mode
cavity, with the bulk of the g modes trapped in and hence sensitive to the inner cavity (see
Sect. 4.3.1) Therefore, even if a Case Be merger product is found in the MS region of the
HRD, it will be clearly distinguishable from genuine single MS stars based on their respec-
tive mean PSP values. This also means that if such merger products contaminate a sample
of genuine MS stars, they may influence the inference of the convective core sizes.

4.3.4. Comparison for oscillation equations including rotation
In Fig. 4.12 we compare the PSPs of the 6.0 + 2.4 M⊙ merger product and 7.8 M⊙ genuine

single star with Ω = 0.2Ωc. Here, Ωc =

√
GM⋆/R3

eq ≃
√

8GM⋆/27R3
⋆ is the Roche critical

angular rotation frequency (Maeder, 2009). As motivated at the beginning of Sect. 1.2.2,
we opted for a relatively slow rotation rate in this work. The angular rotation frequencies
for both the merger product and genuine single star correspond to a surface rotation velocity
of vsurf = 38 km s−1. These values for the surface rotation velocity are realistic given the
efficient slow-down of stars beyond the TAMS as shown by asteroseismology of single stars
(Aerts, 2021).

Given the significant difference in the mean PSP values between merger products and
genuine single stars, and the relatively low rotation rates, the PSPs remain easily distin-
guishable with rotation included in the pulsation equations. The appearance of the deep dips
in the merger product’s PSPs also persists. Their positions shift because of the rotational
modulated frequency shifts due to the inclusion of the Coriolis acceleration in the pulsation
equations (see Aerts and Tkachenko 2023 for details).

4.3.5. Observability
We have not yet considered the observability of the modes predicted in this work. This
depends on many aspects, the most important one being the intrinsic amplitude a mode
gets when excited by the physical mechanism responsible for it. Even for genuine single
intermediate- and high-mass stars, we have neither a complete theory to predict the excita-
tion of the observed gravity modes nor the intrinsic amplitudes. Indeed, current excitation
predictions cannot explain all the non-radial oscillations detected in modern space photom-
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Figure 4.12: PSPs for a 6.0 + 2.4 M⊙ merger product and a 7.8 M⊙ genuine HG star with Ω = 0.2Ωc
in the inertial frame. Panel (a) shows the PSPs for (ℓ, m) = (1, −1), (1, 0), and (1, +1) modes, and
Panel (b) those for (ℓ, m) = (2, −2), (2, −1), (2, 0), (2, +1), and (2, +2) modes.
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Figure 4.13: Observation times required for different period spacings, ∆P, in a period range relevant
for the PSPs of merger products in our work. The horizontal dashed silver lines indicate the number
of years on the y-axis. The vertical solid and dashed lines show the maximum period (i.e. the period
for the mode at npg = −200) for the (ℓ, m) = (1, 0) and (ℓ, m) = (2, 0) modes, respectively, for the
non-rotating 6.0 + 2.4 M⊙ (black) and 9.0 + 6.3 M⊙ (grey) merger products (see Figs. 4.3 and 4.5).

etry of such pulsators (e.g. Hey and Aerts, 2024; Balona, 2024, for summaries on the short-
comings of the theory revealed by the observations). Despite these limitations, especially
the lack of knowledge about the modes’ intrinsic amplitudes, we performed basic tests of
the observability of the oscillation modes predicted in this work.

4.3.5.1 Frequency resolution from the observation’s time base

To estimate the observational baseline required to resolve the period spacings predicted in
this work, we started from the fact that the frequency resolution, δν, is inversely proportional
to the observational baseline, Tobs:

δν =
1

Tobs
. (4.2)

Using that the period P is inversely proportional to the frequency ν and that δν = ν2 − ν1, we
can rewrite Eq. (4.2) as

1
P2
− 1

P1
=

1
Tobs

, (4.3)
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which then gives

Tobs =
P1P2

P1 − P2
=

P2
1 − ∆PP1

∆P
, (4.4)

where we have used that the period spacing ∆P = P1 − P2. We see from Eq. (4.4) that
we require a different observational baseline depending on the period P1 and the g-mode
period spacing ∆P we want to observe. We show the results for a range of period spacings
and periods relevant for the PSPs of merger products (which have lower PSP values than
the genuine single stars) in this work, in Fig. 4.13. We see that for the ℓ = 1 modes of
the 6.0 + 2.4 M⊙ merger product (mean ∆Pn ≈ Πℓ = 479 s), period spacings down to 200 s
can be resolved with observational baselines of two years, and everything down to 100 s
when three years of data are available (for modes with npg ≥ −200). The period spacings
for ℓ = 2 modes (mean ∆Pn ≈ Πℓ = 277 s) should be resolved down to 100 s with an
observational baseline of one year. The mean ∆Pn value for ℓ = 1 modes of the higher-
mass 9.0+6.3 M⊙ merger product is larger than for its lower-mass counterpart (mean ∆Pn ≈
Πℓ = 902 s) and period spacings of ∆P ≥ 500 s between ℓ = 1 modes with npg ≥ −200
can in principle be resolved with a baseline of two years. For ℓ = 2 g modes (mean ∆Pn ≈
Πℓ = 521 s), period spacings down to 100 s can be resolved with an observational baseline
of less than four years. Given that inner- and outer-cavity g modes’ periods converge when
they couple (see Sect. 4.3.2), the period spacings in the deep PSP dips can be relatively
small. Therefore, resolving all of these dips with reasonable observational baselines might
be impossible. However, as discussed in Sect. 4.3.2, the deep dips do not consist of a single
set of modes. Hence, even when the deep dip’s minimum cannot be resolved, the overall
deep dip’s signature might still be discernible in observational PSPs. We note that we did
not consider any form of noise in these estimates of the observational baselines.

4.3.5.2 Mode instability for the opacity mechanism

Stellar oscillation computations in this work have been performed in the adiabatic approx-
imation (see Sect. 4.2.2). This approximation does not allow us to predict whether modes
are excited or damped, that is, which modes are unstable. Even without the adiabatic ap-
proximation, GYRE only considers the so-called heat-engine mechanism (also known as the
opacity or κ-mechanism) to predict the instability (i.e. the balance between excitation and
damping) of modes (Aerts et al., 2010a). While offering a basic understanding for MS
pulsators with large amplitudes, this mechanism is known to under-predict the number of
observed oscillation modes that occur at µmag level. Many reasons are known to form the
basis of the limitations (e.g. ignoring radiative levitation in MS B-type pulsators Rehm et al.,
2024, to mention just one). Other excitation mechanisms include stochastic forcing, convec-
tive driving, and non-linear resonant mode excitation as observed in single and close binary
pulsators (e.g. Guo et al., 2020, 2022; Van Beeck et al., 2024). Gaia Collaboration et al.
(2023a), Balona (2024), and Hey and Aerts (2024) all illustrate that g-mode pulsators form
a continuous group of pulsating B-, A-, and F-type stars. Indeed, a significant fraction of
these observed pulsators fall outside predicted instability strips based on current mode exci-
tation mechanisms. The situation is even less understood for stars in the HG. In other words,
the theory of mode excitation needs to be refined appreciably to explain the observed oscilla-
tions in stars in the modern high-cadence, high-precision space photometry for intermediate-
and high-mass stars, including mergers.
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By solving the oscillation equations for our models with GYRE in its non-adiabatic mode5

and for the current input physics of stellar evolution theory of single and merger stars, we
find that none of the oscillation modes in our models are unstable (that is, the imaginary
parts of the mode frequency are negative). This is the case in both our merger product and
genuine single-star models.

4.3.5.3 Wave displacements at the stellar surface

Irrespective of whether the modes treated in this work are predicted to be unstable, the
modes’ amplitudes throughout the stellar interior and up to the stellar surface can be as-
sessed. We provide plots of the wave displacement profiles ξr(r) and ξh(r), and the differen-
tial mode inertia profile dE/dr for a specific set of oscillation modes for the merger products
and genuine single stars described in Sects. 4.3.1.1 and 4.3.1.2. These plots can be found in
Appendix C.5. The differential mode inertia is the radial derivative of the denominator of
Eq. (4.1) (see also Eq. 3.139 in Aerts et al. 2010a). To have a chance to observe these pul-
sation modes, their wave displacements should not disappear near the surface. Although we
find that the wave displacements and differential mode inertias are diminished for the pure
inner-cavity g modes in stars with two g-mode cavities, there is still a non-negligible mode
signal near the surface. The p-g mixed modes, which have shorter mode periods (higher
frequencies), couple efficiently, resulting in even larger displacements and differential mode
inertias. We stress that this does not immediately mean they are observable, as this depends
on the intrinsic amplitude the mode gets from the excitation mechanism.

4.3.5.4 Mode suppression by internal magnetic fields

Fuller et al. (2015) show that a strong magnetic field can suppress mixed modes in red giants.
A similar phenomenon may be active in pulsating B stars (Lecoanet et al., 2022). It is thus
worthwhile to ask what its effect could be for mode observability in HG BSGs and merger
products.

As mentioned in Sect. 4.2.1.3, we did not consider the presence of strong internal mag-
netic fields resulting from the merger process. We can estimate what the internal magnetic
field strength would be if we assume a dipole magnetic field, that is, B(r) = Bsurf(R⋆/r)3,
with Bsurf the surface magnetic field of our merger product (Schneider et al., 2020). Bsurf

can be estimated from the surface magnetic field of the MS merger product from Schneider
et al. (2019) and assuming flux freezing, that is, BMSR2

MS = BsurfR2
⋆, with BMS = 9 × 103 G

and RMS = 5 R⊙ the surface magnetic field and MS radius of the 3D magnetohydrodynamic
merger product from Schneider et al. (2019).

We can now compare this field strength with the critical magnetic field strength Bcrit =√
πρ/2ω2r/N, defined in Fuller et al. (2015) as the magnetic field strength above which the

magnetic tension overcomes the buoyancy force. Here, ω is the angular mode frequency.
We find that, using ω values from the range of mode frequencies predicted in this work,
B(r) < Bcrit in the outer g-mode cavity of the 6.0 + 2.4 M⊙ merger product at the time it
is compared with the 7.8 M⊙ genuine single star, while in the inner g-mode cavity B(r) >
Bcrit (for modes with a period of 1 day, Bcrit ∼ 104–107 G in the inner g-mode cavity and
Bcrit ∼ 5 × 104–107 G in the outer g-mode cavity). Under these assumptions, we would
expect the inner cavity g-modes to be suppressed by the magnetic field. However, this does

5The setup for these computational is identical to the one described in Sect. 4.2.2, except for that we used
the MAGNUS GL2 solver. This solver is more appropriate for non-adiabatic computations.
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not consider, among other uncertainties, that the magnetic field strength can be severely
attenuated (Quentin and Tout, 2018) or even expelled (Braithwaite and Spruit, 2017) when
propagating through convective regions. Furthermore, Landstreet et al. (2007), Landstreet
et al. (2008), and Fossati et al. (2016) show that the magnetic field strength in massive MS
stars disappears faster than predicted from flux freezing alone.

4.4. Discussion and conclusions

Considering an ensemble of early Case B merger product models and genuine single HG
stars, Bellinger et al. (2024) conclude that these two classes of objects cannot be distin-
guished from one another based on their mean PSP values. However, these authors com-
pared the Πℓ=1 values of all their models in the sets of merger products and genuine single
stars (masses of 10–20 M⊙) at all points during their BSG evolution simultaneously. Be-
cause of relatively large variations in Πℓ with evolutionary time and mass, which we also
find in our models, there is a significant overlap between the ranges of Πℓ of the two types
of stars, which led to their conclusion that they are indistinguishable based on Πℓ. However,
from our case-by-case comparison between models of these two classes at similar positions
in the HRD, we conclude that the mean PSP value is consistently and significantly lower
for merger products than for genuine single stars. We stress that for accurate predictions of
the mean PSP value from the stellar structure, that is, Πℓ, the integral in the denominator of
Eq. (1.25) has to be evaluated over the proper g-mode cavity if more cavities are present in
the model. In such cases, when the evanescent zone separating the cavities is substantial in
size, the bulk of the g modes will be trapped in the inner cavity. Integrating over multiple
cavities, as done in Bellinger et al. (2024), leads to a deviation in the predictions of ≲10 s.
This deviation is an order of magnitude smaller than the differences between the mean PSP
values of post-MS merger products and genuine single HG stars found in our work but is
comparable to the period precision of time series data from space missions.

We find that when a star has two g-mode cavities, which is the case for early Case B
merger products at all the masses considered in this work and genuine single HG stars with
M⋆ ≳ 11.4 M⊙, some inner-cavity g modes couple to outer-cavity g modes. This coupling
leads to the formation of deep dips in the PSPs and can be used as a diagnostic to distinguish
merger products from genuine single stars in the mass range roughly below 11.4 M⊙. At
higher masses, both the merger products and genuine single stars have two mode cavities,
resulting in deep dips in their PSPs. In general, the appearance of deep PSP dips might not be
unique to merger products since blue loop stars also have two mode cavities (Ostrowski and
Daszyńska-Daszkiewicz, 2015). Further detailed comparisons between genuine single HG
stars, merger products, and blue loop stars should shed light on whether other differences
can be used to identify blue loop stars in a population of BSGs.

From our initial results in Sect. 4.3.3, we conclude that the added mass fraction, fadd, has
a relatively minor impact on the asteroseismic properties of our merger products. Depending
on fadd, we see that the merger products ignite He in their cores at different effective tem-
peratures, leading to different stellar structures when the merger product occupies the same
region of the HRD. With this exercise, we explored how the pre-merger conditions might
influence the asteroseismic properties of the merger product, even though fadd cannot be di-
rectly related to the mass ratio. Future exploration based on a grid of more complete merger
models will allow us to determine whether the binary parameters at the time of merging are
detectable in the asteroseismic properties of the merger product.
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4.4 Discussion and conclusions

We find that the PSPs of early Case B merger products and genuine single HG stars are
distinguishable when we ignore rotation, as well as when we include rotation at a level of
Ω = 0.2Ωc. Taking rotation into account in the stellar oscillation computations for merger
products is an important step forward for realistically predicting their asteroseismic prop-
erties. The modes most frequently observed are prograde sectoral dipole and quadrupole
modes (ℓ = m = 1 and ℓ = m = 2, respectively; Li et al. 2020; Pedersen et al. 2021).
Furthermore, the fact that merger products are slow rotators is not firmly established, so
asteroseismic predictions of fast-rotating merger products are warranted. Despite the many
uncertainties on internal angular momentum transport, rotating equilibrium models with
more realistic rotation profiles, such as those recently computed from 2-to-1D models by
Mombarg et al. (2024b), should be considered for such an exercise.

Finally, we conducted a set of preliminary tests to determine the observational potential
of the modes predicted in our work. We find that it should, in principle, be possible to
resolve period spacings down to 200 s, which is far below the mean PSP values predicted in
this work, with five years of time series data. Depending on the depth of the deep PSP dips,
which in turn depends on how close the periods of modes in the inner and outer g-mode
cavity lie, it might not be possible to resolve their minima at longer periods with less than
five years of time series data. We stress again that a full assessment of the observability is
plagued by uncertainties related to mode instability, the observable mode amplitudes at the
stellar surface, and interior magnetic fields. Even though these uncertainties are pointed out
here, we cannot meaningfully address mode observability as long as the mode excitation
mechanisms remain non-compliant with the observations, as they are today, and are unable
to provide us with reliable predictions for the intrinsic mode amplitudes.

Acknowledgments We thank the anonymous referee for their valuable comments and sug-
gestions, which have triggered further research and helped us to improve the presentation of
our results. We thank J. Saling for the valuable insights from his Bachelor thesis titled “For-
mation of Blue Supergiants in Stellar Mergers” (University of Heidelberg, 2023). We thank
T. Van Reeth, M. Michielsen, E. Bellinger, D. Bowman, E. Laplace, A. Noll, B. Bordadágua,
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4 Merger seismology: Distinguishing massive merger products from genuine single stars
using asteroseismology
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if and how the product of a merger between two main-sequence stars differs asteroseismi-
cally from a genuine single star with similar surface diagnostics. I was the main author
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Aerts advised me during this project and contributed to the text in the form of comments,
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Abstract The products of stellar mergers between two massive main-sequence stars ap-
pear as seemingly normal main-sequence stars after a phase of thermal relaxation, if not for
certain peculiarities. These peculiarities, such as strong magnetic fields, chemically enriched
surfaces, rejuvenated cores, and masses above the main-sequence turnoff mass, have been
proposed to indicate merger or mass accretion origins. Since these peculiarities are not lim-
ited to the merger product’s surface, we use asteroseismology to predict how the differences
in the internal structure of a merger product and a genuine single star manifest via prop-
erties of non-radial stellar pulsations. We use the result of a 3D (magneto)hydrodynamic
simulation of a stellar merger between a 9 and an 8 M⊙ main-sequence star, which was
mapped to 1D and evolved through the main sequence. We compare the predicted pressure
and gravity modes for the merger product model with those predicted for a corresponding
genuine single-star model. The pressure-mode frequencies are consistently lower for the
merger product than for the genuine single star, and the differences between them are more
than a thousand times larger than the current best observational uncertainties for measured
mode frequencies of this kind. Even though the absolute differences in gravity mode period
spacings vary in value and sign throughout the main-sequence life of both stars, they, too,

107



5 Asteroseismic predictions for a massive main-sequence merger product

are larger than the current best observational uncertainties for such slow modes. This, com-
bined with additional variability in the merger product’s period spacing patterns, shows the
potential of identifying merger products in future-forward modelling. We also attempt to
replicate the merger product’s structure using three widely applied 1D merger prescriptions
and repeat the asteroseismic analysis. Although none of the 1D prescriptions reproduces
the entire merger product’s structure, we conclude that the prescription with shock heat-
ing shows the best potential, provided that it can be calibrated on binary-evolution-driven
3D merger simulations. Our work focuses on a particular kind of massive main-sequence
merger and should be expanded to encompass the various possible merger product structures
predicted to exist in the Universe.

5.1. Introduction

When two massive1 main-sequence (MS) stars merge, they form a new MS star with poten-
tially peculiar properties. For example, it has been proposed and shown that such mergers
produce strong, large-scale surface magnetic fields in the resulting merger products (Fer-
rario et al., 2009; Wickramasinghe et al., 2014; Schneider et al., 2019). Should it indeed
be true that such merger products are slow rotators, as found in Schneider et al. (2019) and
Schneider et al. (2020), they are a natural explanation for the blue MS band in young stellar
clusters (Wang et al., 2022), and can also appear as blue stragglers in star clusters (Rasio,
1995; Sills et al., 1997, 2001; Mapelli et al., 2006; Glebbeek et al., 2008; Ferraro et al., 2012;
Schneider et al., 2015). Further along their evolution, MS merger products can appear as red
stragglers in a population of red supergiants, which can lead to cluster age underestimations
of ∼60% (Britavskiy et al., 2019).

Despite these peculiarities, it is currently not straightforward to distinguish massive MS
merger products from genuine single MS stars based on surface diagnostics alone. If one or
more unambiguous distinguishing features of merger products were to be found, they could
be used to confirm, for example, their slow-rotation hypothesis. To find such distinguishing
features, we ought to go beyond the stars’ surface diagnostics and assess any differences in
their internal structure, which are expected from merger simulations (Lombardi et al., 1996;
Sandquist et al., 1997; Sills et al., 2001; Freitag and Benz, 2005; Dale and Davies, 2006;
Glebbeek et al., 2013; Schneider et al., 2019; Ballone et al., 2023). Asteroseismology has
proven to be the ideal tool to do so (see, e.g. Hekker and Christensen-Dalsgaard 2017; Aerts
2021; Kurtz 2022; Bowman 2023 for recent reviews). Bellinger et al. (2024) and Henneco
et al. (2024a) used asteroseismology to identify distinguishing features of different physical
object classes appearing as blue supergiants, including post-MS merger products. Wagg
et al. (2024) used asteroseismic predictions of rejuvenated MS accretors to assess whether
they can be distinguished from MS stars with the same mass that have not accreted matter.
They conclude that the effects of accretion on the accretor’s internal structure produce a
measurable difference in its asteroseismic signal compared to that of regular MS stars.

An obvious prerequisite for using asteroseismology is that the stars show pulsations.
This is indeed the case for massive MS stars. Thanks to space-based asteroseismic obser-
vations with, for example, Convection, Rotation and planetary Transits (CoRoT, Auvergne
et al., 2009), Kepler/K2 (Koch et al., 2010), and the Transiting Exoplanet Survey Satel-

1With massive stars we refer to intermediate- and high-mass stars, which have initial masses Mi of 1.3 M⊙ ≲
Mi ≲ 8 M⊙ and Mi ≳ 8 M⊙, respectively.
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lite (TESS, Ricker et al., 2016) a wealth of MS pulsators have been found and charac-
terised (Aerts, 2021). Fewer detections are currently available for stars with masses above
roughly 8 M⊙, which is the mass regime this work focuses on. Yet, the future looks bright
thanks to the ongoing TESS and upcoming PLAnetary Transits and Oscillations of stars
(PLATO, Rauer et al., 2024) missions. Mode excitation calculations (e.g. Bouabid et al.,
2013; Moravveji, 2016; Szewczuk and Daszyńska-Daszkiewicz, 2017) also predict massive
MS stars to exhibit a variety of pulsations. Moreover, it is becoming increasingly clear that
our current excitation theories tend to under-predict the number of excited linear modes (e.g.
Rehm et al., 2024), as well as the actual observed modes in stars (e.g. Balona, 2024; Hey
and Aerts, 2024). Additional mode excitation theories for MS stars, such as non-linear res-
onant mode coupling (Guo et al., 2022; Van Beeck et al., 2024), are currently not included
in mode instability predictions while such modes were found to be common among B-type
pulsators (Van Beeck et al., 2021). Finally, tidal excitation (Guo, 2021, for a review) cannot
be ignored given the high fraction of massive stars in close binaries (Sana et al., 2012).

This work consists of two parts. In the first part, we determine whether it is possible to
distinguish a massive MS merger product from a genuine single MS star following a quasi-
identical evolution in the Hertzsprung-Russel diagram (HRD). To do so, we make use of
the 3D magnetohydrodynamic (MHD) merger product model from Schneider et al. (2019),
which we map to 1D following Schneider et al. (2020) to follow its post-merger evolution.
In the second part, we repeat the first part’s analysis, using 1D merger prescriptions instead
of a 3D merger product model. 3D simulations of stellar mergers are computationally expen-
sive, and hence, a limited number of 3D merger models are available. Multiple 1D merger
prescriptions have been developed in an attempt to alleviate this problem. Contrary to 3D
simulations, these 1D merger prescriptions do not model the merger phase itself but instead
predict the structure of the merger product based on those of the binary components before
the merger. Therefore, in the second part of this work, we investigate whether using three
of these 1D merger prescriptions (entropy sorting, Python Make Me A Massive Star,
and fast accretion) results in similarly structured merger product models as the one result-
ing from the 3D simulation. We then assess to what extent any asteroseismic differences
between the MS merger product and its corresponding genuine single star found in the first
part of this work are recovered with the 1D merger models.

The structure of this work is as follows. Section 5.2 covers the methods used to create
merger products, evolve them and their genuine single-star counterparts, and predict their
pulsations. We show our results and discuss them in Sect. 5.3, and the conclusions can be
found in Sect. 5.4.

5.2. Methods

5.2.1. Stellar evolution computations with MESA
We used the 1D stellar structure and evolution code MESA (r12778, Paxton et al., 2011,
2013, 2015, 2018, 2019) to compute the input models for the various merger prescriptions
and evolve the resulting merger products. We computed the genuine single-star models
using the same MESA setup and, hence, input physics. The choices for the input physics
and setup were based on those from Schneider et al. (2020), except that we did not include
rotation at the level of the equilibrium models, we did not model any accretion from the disk
formed during the merger event, and we ignored the magnetic field produced in the merger
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process (Schneider et al., 2019). The number of works on the effect of magnetic fields
on non-radial pulsations grows steadily (see, e.g. Prat et al. 2019, Van Beeck et al. 2020,
Dhouib et al. 2022, Rui et al. 2024, Bessila and Mathis 2024, Bhattacharya et al. 2024, and
Hatt et al. 2024), however, we aim to assess the effects of the structure and composition of
MS merger products separately from the effects of magnetic fields. Ignoring rotation in the
equilibrium models and only taking it into account at the level of the oscillation equations
(see Sect. 5.2.3) is justified by the small effect of the centrifugal deformation of the star on
predicted frequencies (Henneco et al., 2021; Dhouib et al., 2021) and is common practice
for slow to moderate rotators (Aerts, 2021; Aerts and Tkachenko, 2023). We compensated
for the resulting lack of rotationally induced mixing by mimicking its effect with a constant
envelope mixing of log(Dmix/cm2s−1) = 3. This envelope mixing was also used to smooth
out small chemical glitches introduced during the merger and left behind by the receding
convective core during the MS evolution. This is a typical value for envelope mixing inferred
from asteroseismic modelling of single B-type stars (Pedersen et al., 2021; Burssens et al.,
2023).

We used mixing length theory (MLT, Böhm-Vitense, 1958; Cox and Giuli, 1968) to treat
convection in our models with a mixing length parameter of αmlt = 1.8. We assessed the
stability against convection using the Ledoux criterion. Additional mixing was included in
the form of thermohaline mixing with an efficiency of αth = 2.0 and semi-convective mixing
with an efficiency of αsc = 1.0 (semi-convective mixing only appears in our models during
thermal relaxation phases, not during the MS evolution). We used the exponential overshoot
scheme to account for convective boundary mixing above convective cores with fov = 0.019.
This value for fov was based on observational constrains from ≈10 M⊙ MS stars by Castro
et al. (2014) (see also Schneider et al., 2020). We used the Vink et al. (2001) wind mass-loss
prescription with a scaling factor of one (we only consider the MS evolution, i.e. the hot star
regime for wind mass loss). All models were computed at solar metallicity (Y = 0.2703 and
Z = 0.0142, Asplund et al. 2009), with a combination of the OPAL (Iglesias and Rogers,
1993, 1996) and Ferguson et al. (2005) opacity tables suitable for the chemical mixture from
Asplund et al. (2009). The models were terminated when the central hydrogen mass fraction
Xc dropped below 10−6.

5.2.2. Merger models and prescriptions

This section describes how we obtained a 1D model for an MS merger product from the 3D
MHD simulation from Schneider et al. (2019) and three 1D merger prescriptions used to
approximate this model. The 3D MHD simulation, as well as the three 1D methods, used
9 M⊙ and 8 M⊙ single-star 1D MESA models evolved up to 9 Myr. At this point, their central
hydrogen mass fractions were Xc = 0.60 and Xc = 0.62, respectively, and the mass ratio
q = M2/M1 = 0.89. A limitation that all of the methods described below share, including
the 3D MHD merger product model, is that mass transfer before and during the contact
phase, which precedes the stellar merger, is not included in this initial study of MS merger
asteroseismology. From detailed binary evolution calculations, such as those from Pols
(1994), Wellstein et al. (2001), de Mink et al. (2007), Claeys et al. (2011), Marchant et al.
(2016), Mennekens and Vanbeveren (2017), Laplace et al. (2021), Menon et al. (2021), and
Henneco et al. (2024b), we know that mass transfer can significantly alter the structure of
the binary components. The impact of ignoring the mass transfer phase prior to merging
will be assessed in a future study (Heller et al. in prep.).
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5.2.2.1 3D MHD model

Following Schneider et al. (2019) and Schneider et al. (2020), we started from the chemi-
cal composition and entropy profiles of the 16.9 M⊙ merger product resulting from the 3D
MHD simulation of Schneider et al. (2019). These were used to relax a 1D stellar model
in MESA with the same total mass, chemical composition profile, and entropy structure
(i.e. thermal structure) as the 3D merger product (see Appendix B of Paxton et al. 2018 for
a technical description of this relaxation routine). The resulting 1D model was then used
as the starting point of a MESA evolution run with the physical and numerical choices de-
scribed in Sect. 5.2.1. As described in Schneider et al. (2020), the 8 M⊙ secondary star’s
core sinks to the centre of the merger product, and the 9 M⊙ primary star’s more evolved
and more He-rich core ends up in the layer around it. Consequently, the merger product’s
inner envelope is enriched in He and other products of hydrogen burning. During the initial
phases of the evolution of the merger product, the merger product thermally relaxes, leading
to a rapid expansion and subsequent contraction phase. During this contraction phase, the
merger product has a transient (∆t ≃ 9000 yr) convective core reaching a mass of ≈11 M⊙
(for comparison, when the star arrives again on the MS after thermally relaxing, its con-
vective core mass ≈7 M⊙). We refer to this merger product model as the ‘3D MHD merger
product’ or the ‘3D MHD model’ to distinguish it from the 1D merger product models. The
corresponding acronym in figures, sub-, and super-scripts is ‘MHD’.

5.2.2.2 Entropy sorting

Entropy sorting is based on the relation between the entropy and buoyancy of stellar ma-
terial. In an ideal case, a star in hydrostatic equilibrium has a monotonically increasing
entropy profile, except for convective regions, where the entropy profile is approximately
flat (Lombardi et al., 1996). The layers with lower entropy have lower buoyancy and are
thus found closer to the star’s centre. In a simplified picture, when two stars merge, the
layers with the lowest entropy will sink to the centre of the merger product. Using this
principle, we combined the structures of the 9 M⊙ and 8 M⊙ progenitor stars based on their
entropy profiles. Starting from the centre, we selected the layer from either star with the
lowest entropy, creating a new structure with a monotonically increasing entropy profile.
Analogous to the 3D MHD model, we used the chemical composition profile2 to relax a
MESA model with a total mass of 16.9 M⊙3. The relaxed model was subsequently evolved in
MESA. It went through a similar thermal relaxation phase with the appearance of a transient
convective core, further described in Sect. 5.3.2.1. We did not employ any artificial smooth-
ing of the merger product’s structure; small chemical and structural glitches were smoothed
out during the relaxation phase and subsequent MS evolution because of the envelope mix-
ing described in Sect. 5.2.1. We refer to the merger product constructed through entropy

2Although it might seem like a logical thing to use the entropy-sorted entropy profile as well for the relax-
ation routine, doing so leads to abnormally high central temperatures and densities in the relaxed model. This
is caused by the fact that the entropy sorting model is not in hydrostatic equilibrium prior to relaxing, i.e. the
central entropy has not adjusted to the merger product’s mass. For the 3D MHD merger product and PyMMAMS
model this is not a problem since they are in hydrostatic equilibrium.

3Contrary to the 3D MHD model, the chemical composition profiles resulting from entropy sorting is that
of a 17.0 M⊙ stellar model. In other words, we did not yet account for the 0.1 M⊙ lost during the merger in
the 3D MHD simulation. Since we do not want to make assumptions for the composition of the lost material
during the merger, we relaxed the original 17.0 M⊙ MESA model to a 16.9 M⊙ model, as opposed to stripping
the 0.1 M⊙ from the merger product’s surface after relaxation.

111



5 Asteroseismic predictions for a massive main-sequence merger product

sorting as the ‘entropy-sorted model’ or ‘entropy-sorted merger product’, with the acronym
‘ES’.

A limitation of the entropy sorting method is that it does not consider any form of entropy
generation. During the merging phase, shocks can increase the entropy in both companions
and, in general, additional mixing occurs. We see the consequences of this in our case study
of the merger between the 9 M⊙ and 8 M⊙ stars. Assuming the stars are born together, the
more massive 9 M⊙ primary star has a more evolved, He-rich core with a lower mean entropy
than the core of the 8 M⊙ secondary star. By applying entropy sorting, we thus find that the
core of the primary sinks to the centre of the merger product (this is further described in
Sec. 5.3.2.1), whereas we found from the 3D MHD model that the secondary’s core has
sunk to the centre.

5.2.2.3 PyMMAMS: entropic variable sorting with shock heating

The Make Me A Massive Star (MMAMS) routine is a 1D merger prescription originally
presented in Gaburov et al. (2008b) and includes an approximation for the shock heating
(entropy generation) that occurs during stellar head-on collisions (as opposed to slower in-
spiral mergers driven by binary evolution). MMAMS performs stellar mergers by first shock
heating the progenitors and then sorting them using the entropic variable A (Gaburov et al.,
2008b)

A =
βgasP
ρ5/3 exp


8
3

(
1 − βgas

)

βgas

 , (5.1)

which is closely linked to the specific entropy. Here, βgas is the ratio of gas pressure Pgas

over total pressure P. The entropic variable is used together with a pressure estimate from
hydrostatic equilibrium to compute the density of the progenitor shells in the merger product.
MMAMS builds the merger remnant starting at the center, with the more dense shells being
placed closer to the core. The merger product is then dynamically relaxed by solving the
equations of hydrostatic equilibrium. Shock heating changes the entropic variable profile of
the stars, leading to changes in the post-merger composition profiles compared to entropy
sorting. The shock heating prescription was obtained from smoothed particle hydrodynamic
(SPH) simulations of stellar head-on collisions for progenitors of different initial masses,
mass ratios and evolutionary stages (Gaburov et al., 2008b). The prescription includes a
correction factor to account for energy conservation before and after the merger.

Currently, MMAMS is available as part of the AMUSE framework (Portegies Zwart et al.,
2009; Pelupessy et al., 2013; Portegies Zwart et al., 2013; Portegies Zwart and McMillan,
2018; Portegies Zwart et al., 2019). For better portability and modifiability, we translated
MMAMS to Python (Heller et al., in prep.). It is this Python version, Python Make Me A
Massive Star (PyMMAMS), that we used in this work. We implemented several modifi-
cations in PyMMAMS compared to the original MMAMS code. For example, we introduced a
new re-meshing scheme, which alleviates the double-valuedness in regions of the merged
star, where progenitor mass elements of very different compositions ended up next to each
other. Our re-meshing scheme aims to improve upon the mixing scheme included in the
original code, which mixed stellar matter over steep composition gradients. These gradients
are located at the interface of single- and double-valued regions, that is, parts of the merger
product where shells of material coming from only one of the progenitors touch shells of
material consisting of a mixture of both progenitors. In the original mixing scheme from
MMAMS, these gradients were softened, which in some cases led to hydrogen from the enve-
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lope being mixed into the helium core of a post-MS merger product, distorting the merger
product’s further evolution.

Certain numerical solvers used to compute the shock heating in (Py)MMAMS have been
found to fail for mass ratios q = M2/M1 below 0.1 and above 0.8. Since the mass ratio of
our progenitor binary system is q = 0.89, we compute the shock heating for a q = 0.8 and
use that to alleviate this shortcoming of (Py)MMAMS.

Even though PyMMAMS includes the effect of shock heating, the shock-heating prescrip-
tion has been calibrated for head-on collisions. These tend to be more energetic than the
slower inspiral of binary components of a stellar merger driven by binary evolution. There-
fore, we consider PyMMAMS and entropy sorting to be the two extremes regarding shock
heating, with the actual amount of shock heating likely somewhere in between.

We refer to the merger product model obtained with PyMMAMS as the ‘PyMMAMS model’
or ‘PyMMAMS merger product’. The corresponding acronym is ‘PM’.

5.2.2.4 Fast accretion

The last 1D merger method used in this work is fast accretion. This method consists of
accreting a certain amount of mass onto a star, in this case, the 9 M⊙ primary star, in a
timescale shorter than or equal to the primary star’s global thermal timescale. We closely
followed the setup of Henneco et al. (2024a) and accreted 7.9 M⊙ of material with the same
chemical composition as the surface of the primary star during 10% of the primary star’s
global thermal timescale τKH. We initiated this fast accretion phase when the primary star
reached an age of 9 Myr. The main limitations of this method are described in Henneco
et al. (2024a). We describe its restrictions specifically for reproducing massive MS merger
products in Sects. 5.3.2.3 and 5.4. The merger product constructed with the fast accretion
method is referred to as the ‘fast accretion model’ or ‘fast accretion merger product’. For
this model, we use the acronym ‘FA’.

5.2.3. Oscillation mode predictions with GYRE

We used the stellar oscillation code GYRE (v7.0; Townsend and Teitler, 2013; Townsend
et al., 2018) to predict the oscillation modes for the equilibrium models obtained from the
1D MESA models described above. We used the MAGNUS GL6 solver with the boundary con-
ditions from Unno et al. (1989). For g modes in the absence of rotation, we computed
(ℓ, m) = (1, 0) and (ℓ, m) = (2, 0) modes. For predictions with rotation, we used the tradi-
tional approximation of rotation (TAR, Eckart, 1960; Berthomieu et al., 1978; Lee and Saio,
1987; Townsend, 2003; Mathis, 2009) as implemented in GYRE to compute (ℓ, m) = (1, 0),
(ℓ, m) = (1, ±1), (ℓ, m) = (2, 0), (ℓ, m) = (2, ±1), and (ℓ, m) = (2, ±2) modes in the inertial
(observer’s) frame. All these computations of g modes were conducted with the adiabatic
approximation, which is appropriate to compute the frequencies of g modes in B-type stars
(Aerts et al., 2018b).

We computed p modes under non-adiabatic conditions because they are more sensitive
to the star’s outer layers, where the thermal timescale becomes relatively short and non-
adiabatic effects may become important. We used the MAGNUS GL24 solver together with
GYRE’s CONTOUR initial search method for these non-adiabatic p-mode computations. In

4As stated by the GYRE documentation, this solver is more appropriate for non-adiabatic computations,
given that it does not lead to convergence issues.
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the absence of rotation, we computed p modes of (ℓ, m) = (1, 0) and (ℓ, m) = (2, 0).
The effects of rotation were included through the first-order Ledoux perturbative approach
(see Aerts and Tkachenko 2023 for more details on this approach) for (ℓ, m) = (1, ±1),
(ℓ, m) = (2, ±1), and (ℓ, m) = (2, ±2) p modes. We did not add atmosphere models to the
equilibrium model output used by GYRE because the MS stars treated in this work are not
expected to have extended atmospheres.

5.3. Results

Figure 5.1 shows the MS evolutionary tracks of the 16.9 M⊙ merger product constructed
from the 3D MHD simulation described in Sect. 5.2.2.1, and a genuine single 17.4 M⊙ star
in an HRD. We chose a mass of 17.4 M⊙ for the genuine single-star model because we found
that its evolutionary track in the HRD overlaps almost completely with that of the 16.9 M⊙
merger product. Since the massive MS merger product’s HRD track overlaps with a higher-
mass genuine single-star track (∆M⋆ = 0.5 M⊙), we find that the merger product has a
higher L⋆/M⋆-ratio compared to the genuine single star (L⋆ and M⋆ are the luminosity and
total mass of the star, respectively). This higher L⋆/M⋆-ratio follows from the fact that the
He-rich core material of the more evolved star ends up in the lower envelope of the merger
product, leading to a higher mean molecular weight µ there. This can be seen from the
chemical composition profiles in Fig. 5.2. Following the mass-luminosity relation for MS
stars, L⋆ ∝ M3

⋆µ
4 (Kippenhahn et al., 2013), we see that the He enrichment compensates for

the merger product’s lower mass. In addition to the similar values in luminosity and effective
temperature, we see from Fig. 5.3 that throughout their MS evolution, the merger product
and genuine single star also have similar radii R⋆ and convective core radii Rcc when they
occupy the same position in the HRD.

From the horizontal bar markers on the HRD tracks in Fig. 5.1, we see that for the same
effective temperature Teff and luminosity L⋆, the two stars are at different MS ages, that is,
they have different central hydrogen mass fractions Xc. In earlier times, the genuine single
star still has more hydrogen in its convective core than the merger product when they are at
the same position in the HRD. With increasing time, this difference in Xc becomes smaller,
reaching a minimum around the time when both stars have Xc ≈ 0.20. At later times, the
merger product has a higher value for Xc than the genuine single star for the same Teff and
L⋆.

Although it is instructive to compare the asteroseismic predictions for our models at
certain values of Xc (as done, for example, in Wagg et al. 2024), we opted to compare
models when they have similar luminosities and effective temperatures. We make this choice
because we want to identify distinguishing features in the asteroseismic predictions for a
merger product and genuine single star with similar surface diagnostics, which we get from
observations. Therefore, in practice, we compare the models at specific Xc values for the
merger product. At each of these points in the HRD, we compare the predictions for the
merger product with those for the genuine single-star model closest in terms of L⋆ and Teff.
In other words, we compare the models at the positions in the HRD marked by the grey
horizontal markers in Fig. 5.1. The corresponding genuine single-star models have only
slightly different values of Xc (at most 2.3%), which can be seen by comparing the top and
bottom x-axes in Figs. 5.3 and 5.4.
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Figure 5.1: HRD with MS evolutionary tracks for the 16.9 M⊙ 3D MHD merger product (black
dashed line) and the 17.4 M⊙ genuine single star (green solid line). The grey and lime-coloured
horizontal markers indicate different evolutionary stages, using the central hydrogen mass fraction
Xc as a proxy for the evolutionary age, for the merger product and genuine single star, respectively.

5.3.1. Asteroseismic comparison

The 16.9 M⊙ merger product and 17.4 M⊙ genuine single star find themselves in the region of
the HRD associated with β Cephei (β Cep) pulsators (Aerts et al., 2010a; Aerts, 2021). Stars
in this class have recently been shown to pulsate in numerous low-order p and g modes (e.g.
Burssens et al., 2023), as well as in some high-order g modes (e.g. Daszyńska-Daszkiewicz
et al., 2017) when observed in modern space photometry. In this section, we compare the
predictions for the g and p modes in this merger product and genuine single star, with and
without rotation.

5.3.1.1 Gravity modes

We start by looking at the difference between the buoyancy travel times Π0 (Eq. 1.25) for
the two objects at different points along their evolution, shown in Fig. 5.4. The buoyancy
travel times span a range of roughly 20 × 103 s to 30 × 103 s (5.56–8.33 h). The absolute
differences between the buoyancy travel times of the merger product and genuine single star
(Fig. 5.4b) have a median value of 173 s and lie in the interval [−349; 426] s. If we convert
this to the asymptotic period spacing via Eq. (1.24), we find that the median values of the
difference in Πℓ are 122 s and 71 s for ℓ = 1 and ℓ = 2, respectively. These values are
considerably higher than the currently best uncertainties for observed period spacing values
of B-type stars σ∆P = 50 s (Degroote et al., 2010; Moravveji et al., 2015; Pedersen et al.,
2021). At earlier evolutionary stages (higher values of Xc), the genuine single star has a
longer buoyancy travel time than the merger product. Around Xc,merger ≈ Xc, single ≈ 0.15,
the merger product overtakes the genuine single star in Π0. In summary, we see that the Π0
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Figure 5.2: Evolution of the radial hydrogen mass fraction X and helium mass fraction Y profiles
of the 16.9 M⊙ 3D MHD merger product (solid lines) and the 17.4 M⊙ genuine single star (dashed
lines). Each panel is labelled with the corresponding central hydrogen mass fractions of the merger
product and the genuine single star and compares the merger product and genuine single star when
they have similar L⋆ and Teff (see beginning of Sect. 5.3).
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Figure 5.3: Absolute difference in stellar radius R⋆ (panel a) and convective core radius Rcc (panel b)
of the 16.9 M⊙ 3D MHD merger product and the 17.4 M⊙ genuine single star as a function of their
respective central hydrogen mass fractions Xc. The central hydrogen mass fraction for the merger
product (genuine single star), Xc,merger (Xc, single), is shown on the bottom (top) x-axis.
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values differ for the merger product and genuine single star during large parts of their MS
lifetimes, and this difference follows a trend with Xc.

To explain these differences in Π0 for these two types of stars, we compare their g-mode
cavities shown in the propagation diagrams in Fig. 5.5. We identify multiple differences.
First, there is the location of the inner boundary of the mode cavity ri, which is equal to the
convective core radius Rcc. Since we integrate Ñ/r to compute Π0, the latter’s value is the
most sensitive to that of Ñ at this inner boundary. From Fig. 5.3b, we see that the absolute
difference between Rcc,merger and Rcc, single is at most 0.0125 R⊙ and it follows a similar trend
as ∆(Π0) in Fig. 5.4b. This follows from the fact that a larger convective core leads to a
smaller g-mode cavity. Second, the leftmost BV frequency peaks (‘glitch 1’ in the top left
panel of Fig. 5.5), caused by the chemical gradient left behind by the receding convective
core, are wider for the genuine single star at all points along the MS. If this were the only
difference between the two g-mode cavities, we would expect lower Π0 values of the gen-
uine single star than for the merger product. Third, to the right of this BV frequency peak
(glitch 1), we see that the genuine single star’s Ñ is lower across multiple solar radii, and
the merger product has an additional peak (‘glitch 2’) in its Ñ−profile. This peak results
from the transient convective core of the merger product during its thermal relaxation phase
described in Sect. 5.2.2.1. The effect of Ñmerger > Ñsingle in this region is to lower Π0 for
the merger product compared to the one for the genuine single star. Considering all three
effects together, we see that the differences in the merger product’s and genuine single star’s
respective Π0 follow the same trend as the convective core radius, but that the point at which
the merger product’s Π0 becomes larger than the one of the single star occurs later in the
evolution than for the convective core radius because of differences in Ñ in the near-core
and envelope regions of both models.

We now turn our attention to the PSPs for ℓ = 1 modes (those for ℓ = 2 modes are
shown in Fig. D.1 in Appendix D.1) in the absence of rotation. Figure 5.6 shows PSPs con-
structed using GYRE predictions (see Sect. 5.2.3) for the 16.9 M⊙ 3D MHD merger product
and the 17.4 M⊙ single star at different points along their MS evolution. As expected from
the asymptotic period spacing Πℓ = Π0/

√
ℓ(ℓ + 1), the mean values of the PSPs for the two

models are relatively similar. At Xc, single = 0.61, we see a quasi-periodic departure of the
PSP from its asymptotic behaviour (∆Pn = constant). This quasi-periodic variation is caused
by the steep chemical gradient left behind by the receding convective core. These chemi-
cal gradients are deduced from the H and He profiles plotted in Fig. 5.2 and cause sharp
variations in the BV frequency Ñ (Eq. 1.20) shown in the propagation diagrams in Fig. 5.5.
These ‘glitches’ in the BV frequency can ‘trap’ g modes as observed in stars. Mode trapping
alters the mode periods as long as the local wavelength of the mode is larger than or similar
to the radial extent of the glitch. From both theory (Miglio et al., 2008; Cunha et al., 2015,
2019, 2024) and observations (Moravveji et al., 2015, 2016; Michielsen et al., 2021, 2023),
we know that the occurrence rate of dips in the PSP is related to the location and width of
the sharp variation in Ñ within the g-mode cavity. Generally, the more the convective core
recedes, the higher and broader the Ñ profile (see Aerts 2021) and the higher the probability
of mode trapping. This is apparent from the PSPs for our models shown in Fig. 5.6. Be-
cause of the similar location of the sharp Ñ-variations (glitch 1) with respect to the outer
g-mode cavity in the merger product and a genuine single star, the periodicity in the PSP
variations is relatively similar. However, there appears to be an additional component to
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Figure 5.4: Comparison between the buoyancy travel time Π0 of the 16.9 M⊙ 3D MHD merger
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Figure 5.6: Period spacing patterns for ℓ = 1 g modes without rotation for the 16.9 M⊙ 3D MHD
merger product (blue solid lines, dot markers) and the 17.4 M⊙ genuine single star (orange solid
lines, cross markers) at different evolutionary stages. Each panel compares the merger product and
genuine single star when they have similar L⋆ and Teff (see beginning of Sect. 5.3). The horizontal
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order plotted for the merger product (blue) and genuine single star (red).
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this variation, most clearly seen at Xc,merger = 0.60 in the PSPs of the merger product. The
second peak in the BV frequency profiles of the merger product (glitch 2, to the right of
glitch 1) causes additional variation in the PSPs. This peak is a remnant of the transient
convective core described in Sect. 5.2.2.1. Such narrow glitches can trap g modes with local
wavelengths comparable to or larger than the width of the glitch (Cunha et al., 2024, and ref-
erences therein). For modes with a period around 10 days (these are the shortest-wavelength
modes considered here), the local wavelengths are λlocal ≈ 0.03 R⊙ and λlocal ≈ 0.15 R⊙ at
Xc,merger = 0.60 and Xc,merger = 0.01, respectively. The full-width-half-maxima (FWHM),
which we use as a proxy for the radial extent of the Gaussian-like shape of the glitches, are
FWHMglitch ≈ 0.02 R⊙ and FWHMglitch ≈ 0.08 R⊙ for Xc,merger = 0.60 and Xc,merger = 0.01,
respectively. This shows that we expect the extra glitches in the BV frequency profiles of
the merger product to affect the g modes since λlocal ≳ FWHMglitch.

The amplitude of the PSP variation, that is, the departure of ∆Pn from the asymptotic
value Πℓ, depends on the sharpness, height, and width of the variation in Ñ (Miglio et al.,
2008; Cunha et al., 2015, 2019, 2024). The Ñ profiles of 26 Slowly Pulsating B-type (SPB)
pulsators observed by Kepler and modelled in Pedersen et al. (2021) show a large variety
in their sharpness, height, and width. Here we see that the PSP variations amplitudes are
similar for the two models, albeit slightly higher for the merger product. The glitches in
the BV frequency profiles of the genuine single star are sharper than those for the merger
product, while the extra glitch in the BV frequency profile of the merger product introduces
additional quasi-periodic variability with a different occurrence rate. Despite the similar
magnitude of the amplitudes, their differences are typically larger than the observational un-
certainties measured for ∆Pn of B-type stars, σ∆P.

We now repeat the comparison above in the presence of rotation. As argued in Sects. 5.2.1
and 5.2.3, we include the effects of rotation (more specifically, the Coriolis force) at the level
of the pulsation equations. Figure 5.7 shows the PSPs for prograde (m > 0) and retrograde
(m < 0) sectoral (ℓ = |m|) g modes predicted for the merger product and genuine single
star at Xc,merger = 0.50 and Xc, single = 0.51, respectively. We consider rotation rates of

Ω/Ωc = 0.10–0.60, with Ωc =

√
GM⋆/R3

eq ≃
√

8GM⋆/27R3
⋆ the Roche critical angular

rotation frequency (Maeder, 2009), G the gravitational constant, and Req the stellar radius
at the equator of a rotationally deformed star. As expected from Bouabid et al. (2013),
the period spacings ∆Pn between the prograde modes become smaller with longer oscilla-
tion periods and with higher rotation rates, resulting in a negative slope of the PSP, while
the retrograde PSPs have positive slopes, in agreement with observations of SPB pulsators
(Pápics et al., 2014, 2015, 2017; Szewczuk and Daszyńska-Daszkiewicz, 2018; Szewczuk
et al., 2021; Pedersen et al., 2021). Overall, we see that the PSPs of the merger product
and genuine single star have similar morphologies, that is, they follow the same trends.
For prograde modes, the largest differences between the PSPs of the two models are found
at shorter periods, whereas the PSPs become virtually indistinguishable at longer periods.
The main differences in PSP variability are caused by the slightly different positions of the
glitches. Whereas the average value ∆Pn for the merger product is lower than that for the
genuine single star at Xc,merger = 0.50, the opposite is true for prograde modes with longer
periods when we take into account the effects of rotation. This is true for all rotation rates
considered here. This can be seen in Fig. 5.8, where we show the estimated differences

122



5.3 Results

the larger-period end5 of the prograde-mode PSPs by fitting a quadratic function. We use a
fit through the PSPs because it is not possible to do a one-to-one comparison between the
modes of these models. Comparing these estimated differences with σ∆P, we see that even
when the PSPs are seemingly indistinguishable, the differences ∆Pn could technically be
observed for most prograde dipole (ℓ = 1) modes and some prograde quadrupole (ℓ = 2) in
stars with Ω/Ωc ≤ 0.20.

The PSPs for retrograde modes become ‘stretched’ towards longer periods, accentuating
the differences in PSP variability between the merger product and genuine single star even
more. Lastly, we note the presence of relatively deep dips in the period spacing patterns
of both the merger product and genuine single star for different mode morphologies and
rotation rates. We do not find such deep dips in the non-rotating case for ℓ = 1 modes in the
period range shown in Fig. 5.6, but they are present at longer periods (higher radial order
ng) and in the ℓ = 2 modes (see Fig. D.1). Closer inspection shows that these deep dips are
caused by the coupling between g modes in the main inner g-mode cavity and those in the
subsurface g-mode cavity. This is reminiscent of the g-g-mode coupling described in Unno
et al. (1989) and Henneco et al. (2024a).

5.3.1.2 Low-order pressure modes

Figure 5.9 shows the frequencies of the low-radial order ℓ = 1 and ℓ = 2 p modes with
radial orders np ≤ 4 and without rotation. Pressure modes with higher radial orders are
not observed in β Cep stars (Fritzewski et al., 2024b). We compare the predicted modes
for the 16.9 M⊙ 3D MHD merger product and the 17.4 M⊙ genuine single star at different
stages during their MS evolution6. Because of their similar p-mode cavities, the p modes in
the merger product and genuine single star span a similar frequency range. It is also clear
from Fig. 5.9 and Fig. 5.10 that the p-mode frequencies of the genuine single star are higher
by at most 0.3 cycles per day (3.5 µHz). Furthermore, this frequency difference increases
with radial order np and decreases with MS age (Fig. 5.10). Even the smallest frequency
difference, which we predict for the fundamental (np = 0) ℓ = 1 mode at Xc = 0.30,
has a relative value of ∼10%. This is 1000 times larger than the observed relative p-mode
frequency uncertainty of ∼0.01% reported in Aerts et al. (2019) and the absolute p-mode
frequency uncertainty of σp

ν ≃ 0.01µHz found for the prototypical β Cep star HD 129929
by Aerts et al. (2003, 2004). Overall, the merger product’s p modes are more closely spaced
than the genuine single star’s.

The difference in p-mode frequencies can be explained by the merger product’s lower
mean density in its envelope, as seen from Fig. D.2 in Appendix D.2. The decrease of the
difference in p-mode frequencies between the two models with MS age can be attributed to
the fact that the merger product’s and genuine single star’s mean envelope density become
similar. Since p modes with higher radial order have more nodes in the region of the star
when the merger product and genuine single star differ significantly, they are more sensitive
to these differences than those with fewer radial nodes.

Analogue to the g modes, we consider the effect of rotation on the p modes and its

5We only consider modes with periods Pn satisfying
(
Pn − Pmin

n

)
/
(
Pmax

n − Pmin
n

)
> 0.75, with Pmin

n and
Pmax

n the minimum and maximum period shown in Fig. 5.7.
6We find no pure p modes, i.e. modes with ng = 0 for the models at Xc,merger = 0.01 and Xc,merger = 0.10

because the structures of the g- and p-mode cavities start to overlap more in frequency, leading to mode mixing
(Unno et al., 1989), hence, we leave these evolutionary stages out.
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Figure 5.7: Period spacing patterns for (ℓ, m) = (1, ±1) and (ℓ, m) = (2, ±2) g modes with rotation
rates of Ω/Ωc = 0.10–0.30 (Panels a–d) and Ω/Ωc = 0.40–0.60 (Panels e–h) for the 16.9 M⊙ 3D
MHD merger product and the 17.4 M⊙ genuine single star at Xc,merger = 0.50 and Xc, single = 0.51,
respectively. The black, blue, and grey lines with dot markers correspond to the merger product’s
PSPs, while the red, orange, and gold lines with cross markers correspond to the PSPs of the genuine
single star. The PSPs are shown in the inertial (observer’s) frame.
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show the differences for the (ℓ, m) = (1, 1) and (ℓ, m) = (2, 2) modes, respectively. The horizontal
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5 Asteroseismic predictions for a massive main-sequence merger product

influence on the frequency difference found in the absence of rotation. We treat the rotation
perturbatively, which is a good approximation for p modes (Aerts et al., 2019) and show
the results of the inclusion of rotation for the models at Xc,merger = 0.50 in Figs. D.3 and
D.4 in Appendix D.3. Figure D.3 shows the mode frequencies and radial orders of (ℓ, m) =
(1, ±1), (2, ±1), and (2, ±2) p modes predicted for the 16.9 M⊙ 3D MHD merger product
and 17.4 M⊙ with Ω/Ωc = 0.50. As expected, prograde (m > 0) p modes are shifted to
higher frequencies, while retrograde (m < 0) p modes are shifted to lower frequencies in
the inertial frame. The zonal modes (m = 0) are unaffected by rotation in the first-order
Ledoux perturbative approach. Hence, we do not show them here again. Qualitatively,
the frequency differences between the merger product and genuine single star look similar
to those in the non-rotating case (Fig. 5.9). Quantitatively, we see from Fig. D.4 that the
differences between the p-mode frequencies of the same radial order are of the same order
of magnitude as in the non-rotating case. Varying the rotation rate Ω/Ωc does not affect the
frequency differences between the merger product and genuine single star in a significant
way. The effect of rotation is strongest for sectoral modes (ℓ = |m|), where the differences
increase with the rotation rate for prograde modes and decrease for retrograde modes.

5.3.2. Comparison with and between 1D merger methods
We now investigate if and how the predictions made in Sect. 5.3.1 differ when we use
1D merger prescriptions. As mentioned in Sect. 5.1, we consider three commonly used
1D merger prescriptions: entropy sorting, entropic variable sorting with shock heating
(PyMMAMS), and fast accretion (see Sect. 5.2.2). The HRD in Fig. 5.11 shows evolution-
ary tracks of the merger products acquired with all four methods (the 3D MHD simulation
and the three 1D methods). We see that the tracks do not coincide in the HRD, which results
in each merger product approximately overlapping with a genuine single star of a different
mass. As detailed at the beginning of Sect. 5.3, The track for the entropy-sorted model
comes closest to that of the 3D MHD model; its corresponding genuine single star has a
mass of 17.15 M⊙. Using the entropy sorting method, we under-predict Π0 by at most 450 s
in comparison to the 3D MHD model. The error one would make by using entropy sorting
instead of the 3D MHD model would thus be around 9 × σ∆P. In other words, the error we
make by using entropy sorting is of the same order as the difference in Π0 between the 3D
MHD merger product model and its corresponding genuine single star (see Sect. 5.3.1.1).
With entropy sorting, we under-predict this Π0 difference between the merger product and
its corresponding genuine single star compared to the 3D MHD merger product (Fig. 5.12b).
This difference has a median value of 213 s and lies in the interval [−36; 402] s.

The HRD tracks of the PyMMAMS and fast accretion merger products lie below that of the
3D merger product, corresponding to genuine single-star models with masses of 17.0 M⊙
and 16.9 M⊙, respectively (Fig. 5.11). With both methods, we under-predict Π0 compared
to the 3D MHD merger product by at least 657 s and 257 s, and at most 850 s and 590 s for
the PyMMAMS and fast-accretion merger product, respectively. Both offsets are significantly
larger than σ∆P. With the PyMMAMS method, we over-predict the difference in Π0 compared
to its corresponding genuine single star. The median value of this difference is 420 s and it
lies in the interval [246; 583] s. With the fast accretion method, we under-predict the differ-
ence in Π0 between the merger product and the genuine single star. This absolute difference
has a median value of −87 s and lies in the interval [−726; 61] s. The Π0 difference between
all merger products and their genuine single-star counterparts increases abruptly in absolute
value at Xc,merger = 0.01. We attribute this to the fact that there is a noticeable difference
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Figure 5.9: Frequencies and radial orders np of ℓ = 1 and ℓ = 2 p modes with np ≤ 4 for the 16.9 M⊙
3D MHD merger product (blue and light-blue markers) and the 17.4 M⊙ genuine single star (red and
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Figure 5.10: Absolute differences between the 17.4 M⊙ genuine single star’s p-mode frequencies
νs

np
and the 16.9 M⊙ 3D MHD merger product’s p-mode frequencies νm
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per radial order np, in the

absence of rotation. The (ℓ, m) = (1, 0) and (ℓ, m) = (2, 0) modes are shown in the upper and lower
panel, respectively. The lines are colour-coded according to the merger product’s central hydrogen
fraction Xc.
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MHD simulation (MHD, black dashed line), entropy sorting (ES, red dashed line), PyMMAMS (PM,
blue dashed line), and fast accretion (FA, indigo dashed line). The corresponding 17.4 M⊙, 17.15 M⊙,
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between the HRD tracks around the Henyey hook (the point where log Teff starts increasing;
see Fig. 5.11). The overall differences in the Π0 values and differences in Π0 between the
merger products obtained through 1D methods and their corresponding genuine single stars
can be explained by the differences in the merger products’ BV profiles compared to the 3D
MHD merger product. We highlight these differences in the following sections.

5.3.2.1 Entropy-sorted merger product

From Fig. D.5 (Appendix D.4), we see that the near-core region of the entropy-sorted merger
product model is enriched in He, yet to a lesser radial extent than what we found in the
model for the 3D MHD merger product. Contrary to the 3D MHD merger product, the
entropy-sorting method does not lead to the He-rich core of the primary star ending up in
a shell around the secondary’s core. The He enrichment stems from transient convective
zones appearing around the core-envelope boundary during the thermal relaxation phase,
mixing He-rich core material into the near-core region. Whereas the 3D MHD model has an
extended transient convective core during thermal relaxation, the entropy-sorted model has
smaller convective zones appearing at different radial coordinates and times. This leads to a
staircase pattern in the chemical composition profiles and multiple Gaussian-like glitches in
the BV frequency profile, as can be seen in Fig. D.8.

Looking at the predicted PSPs for the entropy-sorted merger model and its 17.15 M⊙
genuine single-star counterpart in Fig. 5.13, we see a similar trend in the asymptotic pe-
riod spacings Πℓ as in the case of the 3D MHD merger product. The values of Πℓ for the
merger product and genuine single star differ by more than σ∆P, yet these differences are,
in general, somewhat higher (except at Xc,merger = 0.60) than what we predict for the 3D
MHD merger product. The variability in the PSPs of the entropy-sorted model is seemingly
more chaotic than that for the 3D MHD merger product because the modes are affected
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Figure 5.12: Comparison between the buoyancy travel time Π0 for the 16.9 M⊙ 3D MHD (MHD,
black line), entropy-sorted (ES, red line), PyMAMMS (PM, blue line), and fast accretion (FA, indigo
line) merger products (Panel a), and the absolute differences ∆(Π0) = Π0, single − Π0,merger with their
respective genuine single star models (Panel b). The error bar in Panel (b) shows the σ∆P.
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Figure 5.13: Same as Fig. 5.6, now for the 16.9 M⊙ entropy sorted merger product (blue solid lines,
dot markers) and the 17.15 M⊙ genuine single star (orange solid lines, cross markers).
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Figure 5.14: Mode frequencies and radial orders np for (ℓ, m) = (1, 0) and (ℓ, m) = (2, 0) p modes
in the absence of rotation at Xc,merger = 0.50 for the entropy-sorted (ES), PyMMAMS (PM), and fast
accretion (FA) merger product models and their corresponding genuine single-star models. In the top
three panels, the colour, line, and marker conventions are the same as in Fig. 5.9. The bottom panel
shows the (ℓ, m) = (1, 0) p mode frequencies for the 3D MHD, entropy-sorted, PyMMAMS, and fast
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Figure 5.15: Absolute differences between the 17.4 M⊙, 17.15 M⊙, 17.0 M⊙, and 16.9 M⊙ genuine
single star’s p mode frequency νs

np
and the 16.9 M⊙ 3D MHD (MHD), entropy-sorted (ES), PyMMAMS

(PM), and fast-accretion (FA) merger product’s frequency νm
np

per radial order np, in the absence of
rotation (top panel). The bottom panel shows the difference in p-mode frequencies per radial order
for p modes computed with the 3D MHD merger model as input in GYRE and those computed with
the respective 1D models used as input.
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by multiple Gaussian-like glitches. The amplitude of the variability is also higher for the
entropy-sorted model.

From Figs. 5.14 and 5.15, we see that the predicted p modes for the entropy-sorted
merger product model behave qualitatively similarly to those predicted for the 3D MHD
model. However, we under-predict the differences in ℓ = 1 and ℓ = 2 p-mode frequen-
cies between the merger product and genuine single star by up to 0.14 cycles/day (1.62 µHz)
compared to the 3D MHD model, which is more than two orders of magnitude larger than
σ

p
ν ≃ 0.01 µHz (Aerts et al., 2003, 2004). Furthermore, the frequency error we make by us-

ing entropy sorting instead of the 3D MHD model, shown in the bottom panel of Fig. 5.10, is
on the order of 0.03–0.05 cycles/day (0.35–0.58 µHz) and is also significantly larger than σp

ν.
We attribute these frequency shifts to the different chemical and density structures (Figs. D.5
and D.8) the two merger product models have in their p-mode cavities (see Sect. 5.3.1.2).

5.3.2.2 PyMMAMS merger product

Thanks to the addition of shock heating in the PyMMAMS prescription, it performs better
in reproducing the overall merger product structure expected from the 3D MHD simula-
tion. Contrary to the entropy sorted model, the PyMMAMS prescription results in the sec-
ondary’s core sinking to the centre of the merger product and the primary’s core forming a
shell around it (see Fig. D.6). However, as can be seen by comparing the chemical com-
position profiles for the 3D MHD andPyMMAMS merger products (Figs. 5.2 and D.6), the
He-enrichment of the merger product’s envelope is limited to the near-core region (up to
r ≈ 1.8 R⊙ at Xc = 0.60) in the PyMMAMS model, whereas the enrichment extends further out
to r ≈ 3.0 R⊙ in the 3D MHD model. A second difference between the 3D MHD, entropy-
sorted, and PyMMAMS models is the lack of an extended transient convective core during the
merger product’s thermal relaxation phase before settling back on the MS in the latter model.
The Gaussian-like glitch, present in the 3D MHD and entropy-sorted model (albeit at differ-
ent locations), is missing in the PyMMAMS model. As a result, the BV frequency profiles for
this merger product and its corresponding 17.0 M⊙ genuine single star-model look almost
identical (Fig. D.9). Only the radial extent of the BV frequency peak of the merger product
is larger than in the genuine single-star model because of the He-enrichment in the near-
core region. The lack of a Gaussian-like glitch in the BV frequency profile of the PyMMAMS
model causes there to be no additional variability in the merger model’s PSPs (Fig. 5.16).
The two PSPs have roughly the same quasi-periodic behaviour, albeit with a relatively small
phase shift likely caused by the more extended BV frequency peak of the PyMMAMS merger
product. However, the phase shift and difference in ∆Pn are still larger than the currently
best uncertainty of g-mode periods σg

P ≃ 2.56 × 10−4 days (Moravveji et al., 2015) and σ∆P,
respectively.

Because of the virtually identical chemical composition profiles and p-mode cavities
(Figs. D.6 and D.9), we find that the p-mode frequency absolute differences between the
PyMMAMS merger model and its corresponding genuine single star are negative and
≤0.02 cycles/day (≤0.23 µHz), as can be seen from the top panel of Fig. 5.10. This is an
order of magnitude larger than σp

ν. The p-mode frequency error compared to the 3D MHD
model (bottom panel of Fig. 5.10) is on the order of 0.1 cycles/day (1.16 µHz), several orders
of magnitude larger than σp

ν.
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Figure 5.16: Same as Fig. 5.6, now for the 16.9 M⊙ PyMMAMS merger product (blue solid lines, dot
markers) and the 17.0 M⊙ genuine single star (orange solid lines, cross markers).
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5 Asteroseismic predictions for a massive main-sequence merger product

5.3.2.3 Fast accretion merger product

Although the fast accretion method has proven to be sufficient in reproducing low-mass
(Rui and Fuller, 2021) and massive (Henneco et al., 2024a) post-MS merger products, it
does not perform well for MS merger products. For massive post-MS merger products,
the sub-thermal-timescale accretion onto a blue Hertzsprung gap star emulating the merger
leads to the formation of long-lived blue supergiant stars with distinct structures. In the MS
case, we see that the fast accretion phase leads to a transient convective core, yet this core
has a smaller extent than what we found in the 3D MHD and entropy-sorted model. This
transient convective core and the subsequent receding rejuvenated convective core leave an
imprint in the chemical composition profile (Fig. D.7), which results in double-peaked BV
frequency profile in the near-core region (Fig. D.10), similar to the one found in Wagg et al.
(2024). From Henneco et al. (2024a), we expect that the extent of this transient convective
core depends on the mass added to the primary star and the accretion timescale. We see
from Fig. 5.17 that the second BV frequency peak influences the PSP variability mostly in
the number of modes found in the PSP dips and the amplitude, which are both higher for the
merger product.

On the level of the p modes, we see similar behaviour as for the PyMMAMS model. Since
we assumed that the composition of the accreted material is that of the surface of the accret-
ing star, the envelope of the merger product is not enriched in helium. Because of the small
radial extent of the transient convective core during the merger procedure, the p-mode cav-
ity is virtually identical to the 16.9 M⊙ genuine single star’s p-mode cavity. The frequency
differences between the merger product and genuine single star are at most 0.025 cycles/day
(0.289 µHz). The frequency error compared to the 3D MHD merger product’s p-modes is
in the interval [−0.025; 0.036] cycles/day ([−0.289; 0.417] µHz), but is larger in absolute
value than σp

ν for all radial orders (bottom panel of Fig. 5.10).

5.3.2.4 Potential improvements to 1D merger prescriptions

Since none of the 1D merger prescription models is able to reproduce the interior struc-
ture and asteroseismic predictions of the 3D MHD model, we briefly discuss some ways
in which these methods could potentially be improved. Both the mean asymptotic period
spacing values and PSP variability morphology of the 3D MHD merger product model are
not reproduced well with the fast accretion method. A potential improvement to this method
would be to abandon the assumption that the chemical composition of the accreted material
is the same as that of the accretor’s surface and instead accrete the full chemical composition
of the secondary star. However, this has the drawback that one needs to make assumptions
about the mixing of this material in the accretor’s envelope.

The PyMMAMSmodel performed worse than the entropy-sorted model, but has the highest
potential for improvement, especially since it predicts the correct overall chemical structure
of the merger product (secondary core in the centre, primary core around it). As mentioned
in Sect. 5.2.2.3, the main difference between entropy-sorting and PyMMAMS is the inclusion of
shock heating in the latter. Evidently, the shock heating, calibrated on more energetic head-
on collisions, does not lead to a satisfactory reproduction of the 3D MHD model. However,
provided that more 3D binary merger simulations become available, they could be used
to calibrate the shock heating prescription in PyMMAMS to better reproduce the structures
resulting from these slower, less energetic binary inspiral mergers (Heller et al., in prep.).
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Figure 5.17: Same as Fig. 5.6, now for the 16.9 M⊙ fast accretion merger product (blue solid lines,
dot markers) and the 16.9 M⊙ genuine single star (orange solid lines, cross markers).
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5.4. Discussion and conclusions

We find from the results presented in Sect. 5.3 that even though the resulting product of
a stellar merger between a 9 M⊙ and a 8 M⊙ MS star leads a seemingly ‘normal’ MS life,
its structure and composition are rather anomalous compared to genuine single stars. The
16.9 M⊙ merger product obtained from the 3D MHD simulation of Schneider et al. (2019)
has an abnormally high convective core radius and stellar radius for its respective mass.
More specifically, throughout its MS evolution, the merger product’s convective core and
stellar radii are similar to those of a more massive 17.4 M⊙ genuine single star with similar
effective temperature and luminosity. Given that the merger product overlaps in the HRD
with a more massive star, its L⋆/M⋆-ratio is higher than that of genuine single stars. We
have shown in Sect. 5.3 that this can be explained by the He-enrichment of the envelope of
the merger product.

These structural and chemical anomalies lead, as shown in Sect. 5.3.1.1, to different
asymptotic period spacings Πℓ and hence mean PSP values for the merger product and gen-
uine single star. The differences in the asymptotic period spacing are on the order of several
100 s, which is larger than the current best uncertainties on g-mode period spacing patterns
of σ∆P ≃ 50 s. However, as we have shown, this difference in the asymptotic period spacing
changes as the star evolves (Fig. 5.4). Also, for prograde sectoral modes computed under
the TAR, the differences in mean PSP value are smaller, and these mean values are higher
for the merger product than for the genuine single star, whereas the opposite is true in the
non-rotating case (at Xc = 0.50). In other words, if observed period spacing patterns are
available, their mean value likely does not unambiguously allow us to distinguish this type
of merger product from genuine single stars.

The quasi-periodic variation found in the PSPs has the additional potential of singling
out merger products from photometric light curves. The merger product’s PSP variability
contains approximately the same component as the genuine single star’s, namely that caused
by the strong BV frequency peak in their near-core regions. However, the extra glitch in the
merger product’s BV frequency profile introduces a second component to this variability.
Although it is harder to see at later MS stages, this second component in the merger product’s
variability distorts the somewhat regular behaviour of the variability that we would expect
without the effect of the Gaussian-like glitch. This becomes clear when comparing the PSPs
of the merger product and the genuine single star. A promising diagnostic for the presence
of a merger product would be to look for such irregularities in observed PSPs. For that,
mode identification (assigning n, ℓ, and m values to individual modes) is required, which
currently lies within the realm from combined Gaia and TESS space photometry (Hey and
Aerts, 2024; Fritzewski et al., 2024b). Eventually, tools such as those developed by Cunha
et al. (2024, and references therein) could be used to link merger products’ particular PSP
variability to their internal structure. However, the exact location of the Gaussian-like glitch
in our models depends on the extent of the transient convective core after the merger and,
hence, on our assumptions for the mixing length and overshooting parameters.

As described in Sect. 5.3.1.2, frequencies of p modes are lower and more closely spaced
in the merger product compared to the genuine single star, which we attribute to the merger
product’s lower mean density and sound speed in its p-mode cavity. These mean values
converge with MS age, making the differences in p-mode frequencies smaller. Nevertheless,
the differences are still larger than the current best relative uncertainties on observed p-mode
frequencies of 0.01% (Aerts et al., 2019, Table 1). Additionally, the differences increase
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with increasing radial order because of the higher sensitivity of these modes to the chemical
composition in the p-mode cavity. We also found that the frequency differences between
the merger product and genuine single star are virtually insensitive to the rotation rate as
a consequence of the first-order Ledoux perturbative approach used to include rotation on
the level of the pulsation equations only. Especially at higher rotation rates, the effects of
the centrifugal deformation of the star on p modes should not be ignored (see Aerts and
Tkachenko 2023 for an overview). Overall, our analysis shows that the differences in p-
mode frequencies are on the order of 0.10 cycles/day (1.16 µHz) and depend strongly on the
chemical composition of the p-mode cavity, which is the part of the star where the merger
product deviates the most from its corresponding genuine single star.

While the differences between the mean ∆Pn and/or p-mode frequencies νp of a merger
and genuine single star of similar mass are comfortably above the current best observational
uncertainties, applications will benefit from additional constraints aside from asteroseismic
ones. Surface diagnostics such as abundances and L⋆/M⋆ estimates, for example, could help
to firmly identify MS merger products. Moreover, fitting observed properties with genuine
single-star and merger models and their pulsation predictions may lead to systematic offsets
in their derived masses, ages, pulsation frequencies, etc. between the two best solutions. For
such forward modelling applications to become possible, extensive grids of merger product
models are required in addition to single-star model grids.

In this work, we have compared models when they occupy similar positions in the HRD.
However, this approach ignores the often considerable observational uncertainties on the
effective temperature and luminosity of stars. Hence, what is missing from our analysis, and
ought to be assessed in future work, is the sensitivity of our results to changes in the location
of the models in the HRD. More specifically, it should be assessed how much our results
would change if we compare the merger product at a specific point during its evolution to
genuine single-star models with effective temperatures and luminosities within the ranges
of their typical uncertainties. If the differences in the predicted asteroseismic characteristics
are systematic, it would allow us to use them confidentially in future efforts to distinguish
massive MS merger products from genuine single stars.

In our assessment of the performance of the three 1D merger methods, we find that none
of the 1D methods can replicate the 3D MHD model structure. Entropy sorting performs
best for this particular merger product even though this is likely coincidental. This method
fails to reproduce the behaviour found in the 3D merger product model where the He-rich
core of the primary star forms a layer around the secondary star’s core, leading to He-
enrichment in the lower envelope. The PyMMAMS prescription does lead to an overall correct
chemical structure for the merger product, yet, the radial extent of the He-enrichment of the
envelope is less than in the 3D MHD model. By design, the fast accretion method is unable
to reproduce the overall structure of the 3D MHD model, which is unlikely to improve
by accreting material with a more realistic composition (see Sect. 5.3.2.4). Because of
the sensitivity of both g and p modes to the interior chemical structure, the asteroseismic
predictions differ depending on which 1D merger prescription we used. More importantly,
none of the asteroseismic predictions based on 1D merger prescription equilibrium models
managed to reproduce those for the 3D MHD model within the observational uncertainties.
In other words, all 1D methods introduce errors in the predicted ∆Pn and νp that are larger
than the current best observational uncertainties. Moreover, even with the best-performing
method, entropy sorting, the error we make in Π0 is of the same order as the predicted Π0

differences between the 3D MHD merger model and its corresponding genuine single star.
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5 Asteroseismic predictions for a massive main-sequence merger product

Therefore, it would be quite problematic if one were to use these 1D merger methods to
create merger models for asteroseismic fitting and forward modelling purposes. Overall,
as explained in Sect. 5.3.2.4, the PyMMAMS model has the most potential to produce merger
product models consistent with those obtained from 3D simulations on the condition that it
is calibrated for binary mergers.

It is imperative to keep in mind when interpreting the results presented in this work that
we focus on one particular type of MS merger product, formed through the merger of two rel-
atively young MS stars with a mass ratio close to one. From, for example, the set of merger
products described in Glebbeek et al. (2013), we know that depending on the age and binary
configuration of a stellar merger’s progenitor system, qualitatively different merger products
can be achieved that might have different asteroseismic characteristics compared to equiva-
lent genuine single stars. To answer the question of whether we can use asteroseismology
to distinguish MS merger products from genuine single stars and to eventually create grids
of MS merger models for forward modelling, the analysis presented in this work ought to
be repeated on a range of different MS merger products. Doing this requires a cohesive set
of 3D merger simulations, similar to those of Glebbeek et al. (2013), but for mergers driven
by binary evolution. As demonstrated in this work, we should be wary of resorting to 1D
merger prescriptions unless they are calibrated on the results of 3D simulations. Addition-
ally, more realistic predictions for the asteroseismic fingerprints of stellar merger products
also require us to take large-scale magnetic fields into account in our evolution models and
asteroseismic predictions, given that they are predicted (Schneider et al., 2019; Ryu et al.,
2024) and inferred from observations (Schneider et al., 2020; Frost et al., 2024) to be present
in these stars.
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6
Conclusions and outlook

In this last chapter, we will look back and summarise the conclusions that can be drawn
from the work presented in this thesis. From these conclusions, we formulate an outlook
for what the future of binary evolution modelling, contact tracing, and merger seismology
might hold.

6.1. Binary evolution and contact tracing

We can conclude several things from the contact tracing exercise presented in Chapters 2
and 3. We looked at the different physical mechanisms responsible for mass-transferring
binary systems evolving into a contact configuration and what this implied for their poten-
tial to result in a stellar merger. It was found that in this respect, it is important to consider
not only the mechanism driving the system into contact, but also the overall structure of the
binary components. We identified the expansion of the accretor and runaway mass transfer
as the drivers behind contact-binary formation during Case-A and Case-Be mass transfer.
Runaway mass transfer and the expansion of the donor star beyond the L2-point were found
to be indicative of the onset of classical common envelope phases when one of the binary
components is a (super)giant, that is, when it has a deep convective envelope (Case-Bl and
-C mass transfer). We found that by taking the evolution of the full binary system into ac-
count, Case-Bl and Case-C systems with initial mass ratios above roughly 0.3 (this depends
on the initial primary mass) have stable mass transfer, despite the conventional assumption
that their mass transfer turns unstable in this part of the initial binary parameter space. Nev-
ertheless, attempting to trace the onset of runaway mass transfer in Chapter 2 and 3 has
again highlighted the uncertainties associated with determining the onset of unstable mass
transfer. One way to alleviate these uncertainties would be to consider not only the adiabatic,
but also the hydrodynamic response of the donor star to mass loss, in combination with the
evolution of the accretor star and binary orbit.

Another important uncertainty in binary evolution is the mass-transfer efficiency. From
our work in Chapter 2, we concluded that when mass transfer is limited by the spin-up of the
accretor, its efficiency is relatively low except in the binary systems where tides efficiently
synchronise the accretor. Moreover, if the mass-transfer efficiency is indeed this low, we
expect the majority of systems to be unable to eject all of the non-accreted matter, which
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could severely impact their further evolution and observational signatures. The so far ill-
constrained efficiency of angular momentum accretion, angular momentum transport in the
interior of the accretor and in the accretion disk, and potential interactions between this disk
and the surface of the accretor (Paczynski, 1991; Popham and Narayan, 1991) all contribute
to the uncertainty of the mass-transfer efficiency. Dedicated efforts in these separate topics
are required if we want to have more stringent constraints on the mass-transfer efficiency
from the theoretical side. For example, future work could explore new mass-transfer effi-
ciency prescriptions that include a model for the interaction between the accretor’s surface
and the accretion disk. The results from Chapter 3 accentuated the need to constrain this
efficiency, since, from them, we conclude that the occurrence of contact phases changes
drastically when all mass transfer is assumed to be fully conservative. With this assumption,
the fraction of mass-transferring binary systems that form contact binaries and subsequently
merge approximately doubles. Moreover, with fully conservative mass transfer, Case-Bl and
a considerable fraction of Case-C systems evolve towards a double-core CE phase, which
did not occur in the non-conservative models. From the observational side, attempts to con-
strain the mass-transfer efficiency have mostly been based on individual post-mass-transfer
binary systems (see, e.g. Vinciguerra et al., 2020; Dervişoǧlu et al., 2018). In the future,
our two grids can be used to synthesise populations of binary systems and compare them to
large, concise sets of observations of massive stars, such as those from the BLOeM survey
(Shenar et al., 2024). Such efforts could provide us with more substantiated constraints on
the mass-transfer efficiency.

Despite our best efforts, the low-mass binary models computed in Chapter 2 and 3 were
plagued with numerical issues during mass transfer. This turns out to be a recurring issue in
low-mass binary grid computations. In the future, it would, therefore, be valuable to invest
in alleviating these numerical issues and computing complete grids of low-mass binaries,
especially since our results from Chapter 2 have shown that these systems follow unique
evolutionary paths (e.g. the tidal instability described in Sect. 2.3.4).

Lastly, we conclude that the grids used in Chapters 2 and 3 have by no means been
fully exploited. They can serve as the basis of future work on, e.g., stripped stars, merger
products, and serve as input for 3D merger and classical/double-core CE simulations.

6.2. Merger seismology

From the results in Chapter 4, we concluded that the predicted asteroseismic characteristics
of Case-Be merger products in the Hertzsprung gap differ enough from those of genuine sin-
gle stars so that they could be used to identify merger products with asteroseismology. How-
ever, that is based on the assumption that these modes are excited and not damped out by,
for example, internal magnetic fields. Moreover, currently available observations of high-
mass blue supergiant stars do not seem to show isolated oscillation modes in their Fourier
spectra (Bowman et al., 2019; Ma et al., 2024). To test these predictions for the asteroseis-
mic fingerprints of merger products, we ought to expand this analysis to intermediate-mass
post-MS stars in the Hertzsprung gap. For such stars, more high-quality data from the Ke-
pler mission are available. Testing asteroseismic predictions for merger products in this
mass regime, especially against data previously discarded because of strange features, could
allow us to validate our predictions and improve them, for example, by adding currently
missing physics. In general, future work should explore different parts of the initial binary
parameter space for merger products, constrained in Chapter 2 and 3, to get a more complete
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image of how post-MS merger products can differ asteroseismically from not only genuine
single stars, but other B-type stars such as blue loop stars. Moreover, the work presented in
this thesis and in the works of Bellinger et al. (2024) and Wagg et al. (2024) has opened the
door to asteroseismic predictions for other types of binary products, such as (fast-rotating)
accretors and stripped-star donors.

The comparison between an MS merger product and a genuine single MS star, explored
in Chapter 5, showed that the differences in their predicted asteroseismic characteristics
are less pronounced than for post-MS merger products. These differences in the g-mode
period spacings and p-mode frequencies, in combination with the detection of additional
components in the variability of the merger product’s PSPs and constraints from surface di-
agnostics, can, nevertheless, potentially help us identify merger products. Given that these
differences are larger than the current smallest uncertainties for period spacings and fre-
quencies, unknowingly fitting observed merger products to grids of single-star models can
lead to offsets in their inferred properties. That said, the work presented in Chapter 5 should
be viewed as a proof-of-concept study and should be expanded to other merger products
with different binary progenitors. Because of the second conclusion of this work, namely
that current 1D merger prescriptions fail to reproduce the internal structures and hence as-
teroseismic characteristics of the 3D MHD merger product, the extension of this work to
other kinds of merger products should initially be based on the results of 3D simulations.
Only when 1D merger prescriptions have been calibrated for binary mergers (as opposed to
dynamic collisions) should they be used to construct grids of merger models fit for astero-
seismic purposes such as forward modelling.

Furthermore, several physical ingredients are missing from our current merger product
models. For example, we have, so far, only considered solid-body rotation in our predictions
and only on the level of the stellar pulsation equations. Using the advances in the theory of
angular momentum transport (see Aerts et al., 2019, for a review), we should assess if and
how the peculiar internal structures of merger products affect their internal rotation profiles
and how this affects their pulsations. Simulations predict (Schneider et al., 2019; Ryu et al.,
2024) and observations give strong indications (Frost et al., 2024) that merger products are
highly magnetic stars. Such magnetic fields can influence the internal structure, angular
momentum transport, and pulsations of stars considerably (e.g. Aerts et al., 2019; Mathis
et al., 2021; Rui et al., 2024). Hence, their various effects should be included in the next
generation of stellar merger product models.

Overall, in this thesis, we have explored the evolutionary pathways and physical mecha-
nisms leading to stellar mergers and other types of contact phases. With this detailed knowl-
edge of the progenitors of stellar mergers, we have then focussed on their products and how
these might be distinguished from genuine single stars. By doing so, we ventured onto the
relatively young and exciting interface between binary physics and asteroseismology. We
have demonstrated some of the benefits the synergy of binary physics and asteroseismology
brings, and conclude that the future of this synergy looks immensely bright.
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A
Appendices for Chapter 2: ‘Contact
tracing of binary stars: Pathways to
stellar mergers’

A.1. Nuclear timescale expansion of the accretor

Here, we present an example of a model forming a contact binary from the nuclear timescale
expansion of the secondary (accretor) star. The evolution of the Case-A system with M1, i =

10.2 M⊙, qi = 0.9, and ai = 12.5 R⊙ is shown in Fig. A.1. After regaining thermal equi-
librium, the primary star detaches and later fills its Roche lobe again because of nuclear
expansion. The detachment phase is short compared to the evolutionary timescale and only
visible by a slight wiggle in the HRD (Fig. A.1a). During the first, thermal-timescale mass-
transfer phase, the secondary star expands on its thermal timescale (Fig. A.1b). However,
during the second, nuclear-timescale mass-transfer phase, the secondary remains in thermal
equilibrium and its radius evolves on a nuclear timescale (Fig. A.1c) and increases with
mass accretion. Because R2 grows faster in time than RRL, 2, the secondary eventually fills
its Roche lobe simultaneously with the primary, and a contact binary is formed.

A.2. Contact tracing results for other M1, i

Figures A.2–A.4 contain the contact tracing results for the initial primary masses M1, i = 0.8,
0.9, 1.1, 1.3, 1.9, 2.2, 2.6, 3.1, 3.7, 4.3, 5.2, 6.1, 7.2, 8.6, 12.0, 13.1, 14.2, 15.6, 16.9, and
18.4 M⊙.

A.3. Evolutionary states at contact or termination of models

In Figs. A.5–A.7, we show the evolutionary state of the binary components for all systems
in our grid at contact or at termination for systems that avoid contact.
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Figure A.1: Same as Fig. 2.2 but for a M1, i = 10.2 M⊙, qi = 0.9, and ai = 12.5 R⊙ binary.

A.4. Expansion timescales for Case-A contact systems
In Figs. A.8–A.9, the Case-A region of the initial binary parameter space is shown for all
initial primary masses of the grid. The contact systems formed through the expansion of the
accretor and those which experience L2-overflow are indicated with the same colour scheme
as in Fig. 2.6. Each model is marked with a red or blue square based on whether the mean of
the accretor’s expansion timescale is of the order of its mean thermal or nuclear timescale,
respectively.

A.5. Assignment criteria for evolutionary outcomes of mod-
els with numerical issues

Table A.1 lists the criteria used to determine the evolutionary outcome of models that ex-
perience numerical issues. The outcome assignment criteria for these models are based on
the outcomes of neighbouring models and information from equivalent systems at different
initial primary masses.

Table A.1: Evolutionary outcome assignment criteria for models with numerical issues.

qi-range Case A Case Be Case Bl/C
qi < 0.3 Accr. exp.a Runaway MT Runaway MT
qi ≥ 0.3 No contact No contact No contact

(a) ‘Accr. exp.’ = ‘Accretor expansion’.
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Figure A.2: Contact tracing results for M1, i = 7.2–18.4 M⊙. Models with M1, i = 7.2 M⊙ and initial
separations larger than the Case-C systems experience numerical issues after the TP-AGB phase (see
Sect. 2.2.1.2). Only the model with qi = 0.1 avoids these issues and does not initiate mass transfer.
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Figure A.3: Contact tracing results for M1, i = 1.9–6.1 M⊙. Models with M1, i = 3.7–6.1 M⊙ expe-
rience numerical issues after the TP-AGB phase (see Sect. 2.2.1.2). This explains the unexpected
onset of mass transfer at initial separations larger than those of systems avoiding mass transfer. For
M1, i = 1.9–2.2 M⊙ we find certain models where mass transfer starts when the primary is on the WD
cooling track and experiences sudden radial expansion.
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Figure A.4: Contact tracing results for M1, i = 0.8–1.3 M⊙. For M1, i = 1.1–1.3 M⊙ we find certain
models where mass transfer starts when the primary is on the WD cooling track and experiences
sudden radial expansion.
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Figure A.5: Evolutionary state of the primary (left triangle) and secondary (right triangle) at contact
or termination for M1, i = 8.6–20.0 M⊙. The pink, blue and grey background colours indicate systems
that get into contact, avoid contact and fail to converge numerically, respectively. Post-MS stars are
those that have exhausted hydrogen but have not yet ignited helium in their core. ‘CHeB’ stands for
core helium burning.
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Figure A.6: Same as for Fig. A.5 but for M1, i = 1.9–7.2 M⊙.
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Figure A.7: Same as for Fig. A.5 but for M1, i = 0.8–1.6 M⊙.
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Figure A.8: Expansion timescales for Case-A contact systems formed through the expansion of the
accretor star with M1, i = 5.2–20.0 M⊙. In models marked with filled red (blue) squares, the accretor
expands on its thermal (nuclear) timescale prior to the onset of contact. The colour scheme is the
same as in Fig. 2.6. The dark blue solid line indicates the division between Case-A and -Be systems.
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Figure A.9: Same as Fig. A.8 but for M1, i = 0.8–4.3 M⊙.
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A.6. Mass-transfer efficiency

We show the mean mass-transfer efficiency β̄ for Case-A, -B, and -C mass transfer as a
function of the initial primary mass M1, i in Fig. A.10. We use the birth probabilities pbirth

(Sect. 2.2.5) of each model as weights for the computation of these mean values. The value
of the mass-transfer efficiency for each individual model is averaged over time. We only
consider mass transfer in systems that avoid contact.

First, we see that for all mass-transfer cases, the mean mass-transfer efficiency β̄ is rel-
atively high for log10(M1, i) < 0.25–0.45. For log10(M1, i) > 0.25–0.45, β̄ has moderate to
low values. The high values of β̄ for binaries with lower initial primary masses should be
regarded as an approximation since for all mass-transfer cases the models avoiding contact
are sparse due to numerical issues (Fig. A.3–A.4). The models that avoided numerical issues
have high mass-transfer efficiencies.

Case-A mass transfer has low to moderate mean mass-transfer efficiencies for log10(M1, i) >
0.45. The initially closest Case-A binaries go through conservative mass transfer before
they form contact binaries and are, therefore, not taken into account for the computation
of β̄. Case-A binaries that avoid contact are on initially wider orbits. The accretors in
these systems have longer tidal synchronisation times, so tides are unable to prevent them
from rotating critically. As discussed in Sect. 2.5.1, Case-A mass transfer consists of a short
thermal-timescale phase, which is mostly non-conservative, and a more conservative, longer
nuclear-timescale phase. This results in values of β̄ between ∼ 0.15 and ∼ 0.65.

Case-B mass transfer in binaries with log10(M1, i) > 0.25 have relatively low values of β̄,
with values between ∼ 0.05 and ∼ 0.25. In virtually all systems with Case-B mass transfer,
the accretors reach critical rotation after accreting a few percent of their own mass, which
quenches accretion (Sect. 2.4.1 and 2.5.1).

Case-C mass transfer is generally highly non-conservative (Sect. 2.4.2). However, the
contribution of Case-C systems with relatively short mass-transfer phases before core-C
exhaustion in which the accretor is not spun up to critical rotation increases the value of β̄
for log10(M1, i) > 0.25.

The contribution of both conservative and non-conservative mass transfer in Case-A and
-C mass transfer cases, for the former in terms of mass-transfer phases (thermal and nuclear)
and for the latter in terms of systems (highly non-conservative models and conservative
models), results in somewhat similar mean mass-transfer efficiencies.
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Figure A.10: Mean mass-transfer efficiency β̄ per mass-transfer case for each initial primary mass
M1, i.

A.7. Table with contact tracing results
Table A.2 contains an extract of the table containing the contact tracing results for all our
models.
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B
Appendices for Chapter 3: ‘Contact
tracing of binary stars with fully con-
servative mass transfer’

B.1. Contact tracing results for other M1, i

Figures B.1–B.3 contain the contact tracing results for the initial primary masses M1, i = 0.8,
0.9, 1.1, 1.3, 1.6, 1.9, 2.2, 2.6, 3.1, 3.7, 4.3, 5.2, 6.1, 7.2, 8.6, 12.0, 13.1, 14.2, 15.6, 16.9,
18.4, and 20.0 M⊙ with fully conservative mass transfer.
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Figure B.1: Contact tracing results for M1, i = 8.6–20.0 M⊙ with fully conservative mass transfer
(individual panels are equivalent to the plot in Fig. 3.1).
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Figure B.2: Contact tracing results for M1, i = 2.2–7.2 M⊙ with fully conservative mass transfer
(individual panels are equivalent to the plot in Fig. 3.1).
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Figure B.3: Contact tracing results for M1, i = 0.8–1.9 M⊙ with fully conservative mass transfer
(individual panels are equivalent to the plot in Fig. 3.1).
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seismology: Distinguishing massive
merger products from genuine single
stars using asteroseismology’

C.1. Inclusion of slow rotation: TAR versus perturbative in-
clusion of the Coriolis acceleration

We computed the spin parameters s (see Sect. 1.2.2) for the (ℓ, m) = (1, 0) modes from
the non-rotating calculations for the 6.0 + 2.4 M⊙ merger product to determine whether we
expect the modes to be super-inertial (s < 1) or sub-inertial (s > 1). We find values for s
between 0.02 (npg = −20) and 0.13 (npg = −200) when we assume Ω = 0.2Ωc, which means
that the modes are super-inertial. However, the condition that s ≪ 1, which is required
for treating the Coriolis acceleration as a perturbation, is not strongly satisfied, especially
for the higher-order modes. From the PSPs shown in Fig. C.1, it is apparent that including
the Coriolis acceleration as a perturbation leads to significant deviations from the solutions
obtained using the TAR. These deviations are larger than the typical measurement errors for
such modes, which are smaller than the plotted symbols in Fig. C.1 (Van Reeth et al., 2015a).
This shows that even though the oscillation modes considered in this work are super-inertial
when Ω = 0.2Ωc, one should use the TAR instead of the first-order Ledoux perturbative
approach (see Aerts and Tkachenko 2023 for details). This is especially true when the goal
is to fit observed modes against theoretically predicted modes of such models (not in this
work).
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Figure C.1: PSPs for a 6.0 + 2.4 M⊙ merger product with Ω = 0.2Ωc in the inertial frame using the
TAR and treating the Coriolis force as a perturbation. Light colours (grey, light blue, salmon, light
green, and gold) indicate the results when the Coriolis force is treated as a perturbation. Dark colours
(black, blue, red, bluish-green, and orange) show those for when the TAR is used. Panel (a) shows
the PSPs for (ℓ, m) = (1, −1), (1, 0), and (1, +1) modes, and Panel (b) those for (ℓ, m) = (2, −2),
(2, −1), (2, 0), (2, +1), and (2, +2) modes.
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C.2 Propagation diagrams as a function of radial coordinate

Figure C.2: Propagation diagrams of the 6.0 + 2.4 M⊙ merger product (a) and 7.8 M⊙ (c) genuine
single star, and the 9.0+6.3 M⊙ merger product (b) and 13.6 M⊙ genuine single star (d) from Fig. 4.2
and Fig. 4.4, respectively, now as a function of the relative radial coordinate, r/R⋆. The ξr nodes are
left out for clarity.

C.2. Propagation diagrams as a function of radial coordi-
nate

In Fig. C.2 we show the propagation diagrams from Figs. 4.2 and 4.4 as a function of the
relative radial coordinate r/R⋆ instead of relative mass coordinate m/M⋆. The ξr nodes are
left out for clarity. Figure C.3 shows zoomed-in views of the inner 20% in relative radial
coordinate of propagation diagrams in Fig. C.2.

C.3. Effect of semi-convection efficiency on ICZs

In Fig. C.4a we show a zoomed-in view of the Kippenhahn diagram of the 13.6 M⊙ genuine
single star during its HG evolution. The structure of the ICZ, which was first described in
Sect. 4.3.1.2, is clearer here. A more extended, non-uniform convection zone appears when
the star arrives on the HG, which is responsible for the spiky features in the outer g-mode
cavity of the 13.6 M⊙ genuine single star (see Sect. 4.3.1.2). Afterwards, a uniform ICZ
appears, which persists until core-He ignition. As mentioned in Sect. 4.3.1.2 and demon-
strated by Kaiser et al. (2020) and Sibony et al. (2023), the extent and lifetime of these ICZs
depend on the assumptions made for (semi-)convective mixing. To demonstrate this effect
in our setup, we computed the same model with a semi-convection efficiency of αsc = 0.1,
shown in Fig. C.4b. With lower values of αsc, an ICZ also appears. We note that the ICZ
has a different morphology and lifetime. As shown in the main text of this work, ICZs are
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Figure C.3: Same as Fig. C.2 but now zoomed in on the region with r/R⋆ ≤ 0.2.

responsible for the appearance of deep dips in the PSPs of genuine single stars. The detec-
tion of these deep dips in the PSPs of genuine single stars with ICZ, if detectable at all, thus
depends on the assumptions for (semi-)convection and on the time in the evolution that a
genuine single HG star is observed. However, as demonstrated in Sects. 4.3.1.1 and 4.3.1.2,
even without an ICZ, merger products and genuine single stars are distinguishable based on
their asymptotic period spacing values.

C.4. Disentangling of dip structures in genuine single stars
with an ICZ

Figure C.5 shows a part of the 13.6 M⊙ genuine single star’s PSP for (ℓ, m) = (1, 0) modes
without rotation, which is shown in full in Fig. 4.5. As in Fig. 4.8, we add the value of ∆U89

(Eq. 4.1) for each mode in the PSP. We see that only the deep, narrow dips have most of
their kinetic energy in the outer g-mode cavity (∆U89 < 1). Following the discourse from
Sect. 4.3.2, these are the dips caused by mode coupling between inner- and outer-cavity
g-modes. The more regular, quasi-periodic variation in the PSP involves only modes with
most of their kinetic energy in the inner g-mode cavity (∆U89 ≈ 1). This confirms that the
quasi-periodic variation of these modes in the PSP is caused by mode trapping in the inner
g-mode cavity (see e.g. Michielsen et al. 2021 for details on mode trapping).

166



C.4 Disentangling of dip structures in genuine single stars with an ICZ

14.55 14.60 14.65 14.70
0

2

4

6

8

10

12
m
/M
�

(a) αsc = 10.0
convection
semiconvection
overshooting
thermohaline mixing
He core mass

14.55 14.60 14.65 14.70
star age [Myr]

0

2

4

6

8

10

12

m
/M
�

(b) αsc = 0.1

0

1

2

3

4

5

6

lo
g
( ε̇ n

uc
/e

rg
g−

1
s−

1)

0

1

2

3

4

5

6

lo
g
( ε̇ n

uc
/e

rg
g−

1
s−

1)

Figure C.4: Kippenhahn diagram for a 13.6 M⊙ genuine single star with an intermediate convection
zone for αsc = 10.0 (a) and αsc = 0.1 (b).
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Figure C.5: Same as Fig. 4.8 but for the 13.6 M⊙ genuine single star and (ℓ, m) = (1, 0) modes.

C.5. Wave displacements and differential mode inertia for a
selection of modes

Figures C.6 and C.7 show the wave displacements ξr(r), ξh(r) and the differential mode
inertia dE/dr (see Eq. 3.139 in Aerts et al. 2010a) for a selection of long-period (high-
frequency) pure g modes of the merger product and genuine single-star models described in
Sects. 4.3.1.1 and 4.3.1.2. We computed these mode properties with GYRE’s non-adiabatic
setting to include non-adiabatic effects such as damping. Since we used the boundary con-
ditions from Unno et al. (1989), the wave displacements at the surface behave as

ξh(r = R⋆)
ξr(r = R⋆)

≃ GM⋆

R3
⋆ω

2
. (C.1)

Using this relation, we normalised the wave displacements such that ξr(r = R⋆) ≡ 1. In
Fig. C.8, we show the equivalent plots for p-g mixed modes (shorter period, higher frequen-
cies) for the 6.0 + 2.4 M⊙ merger product and 7.8 M⊙ genuine single star.
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Figure C.6: Wave displacement and differential mode inertia profiles for the 6.0 + 2.4 M⊙ merger
product (left column) and 7.8 M⊙ genuine single star (right column) from non-adiabatic GYRE calcu-
lations for pure g modes in the long-period (low-frequency) regime. Panel (a)–(b) show the radial
wave displacement ξr(r), Panel (c)–(d) the horizontal wave displacement ξh(r), and Panel (e)–(f) the
differential mode inertia dE/dr. The dashed pink lines in Panel (a), (c), and (e) show the aforemen-
tioned quantities for a mode in a deep PSP dip. The solid blue lines show those for a mode outside
of a deep PSP dip, that is, for an inner-cavity g mode.

169



C Appendices for Chapter 4: ‘Merger seismology: Distinguishing massive merger products
from genuine single stars using asteroseismology’

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

ξ r

(a)

(npg, `, m) =
(−128, 1, 0)
Pn = 1.308 days
(npg, `, m) =
(−123, 1, 0)
Pn = 1.256 days −1.5

−1.0

−0.5

0.0

0.5

1.0

1.5 (b)

(npg, `, m) =
(−163, 1, 0)
Pn = 2.698 days
(npg, `, m) =
(−174, 1, 0)
Pn = 2.870 days

−1.0

−0.5

0.0

0.5

1.0

ξ h

(c)

−4

−2

0

2

4
(d)

0.0 0.2 0.4 0.6 0.8 1.0
r/R?

10−9

10−6

10−3

100

103

dE
/d

r
[M

?
R

2 ?
]

(e)

0.0 0.2 0.4 0.6 0.8 1.0
r/R?

10−11

10−8

10−5

10−2

101
(f)

Figure C.7: Same as Fig. C.6 but for the 9.0 + 6.3 M⊙ merger product (left column) and 13.6 M⊙
genuine single star (right column). The dashed pink lines in all panels show the aforementioned
quantities for a mode in a deep PSP dip. The solid blue lines show those for a mode outside of a deep
PSP dip, that is, for an inner-cavity g mode.
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Figure C.8: Same as Fig. C.6 but for p-g mixed modes predicted for the 6.0+2.4 M⊙ merger product
(left column) and 7.8 M⊙ genuine single star (right column). The dashed pink lines in all panels show
the aforementioned quantities for a mode in a deep PSP dip. The solid blue lines show those for a
mode outside of a deep PSP dip, that is, for an inner-cavity g mode. The radial orders npg = np − ng
of the p-g mixed modes in these plots are as follows: npg = −53 = 3 − 56, npg = −60 = 2 − 62,
npg = −28 = 2 − 30, and npg = −32 = 1 − 33.
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D
Appendices for Chapter 5: ‘Asteroseis-
mic predictions for a massive main-
sequence merger product’

D.1. Period spacing patterns for ℓ = 2 modes of 3D MHD
merger product

Figure D.1 shows the PSPs for the (ℓ, m) = (2, 0) modes of the 16.9 M⊙ 3D MHD merger
product and its corresponding 17.4 M⊙ genuine single star.

D.2. Mean envelope density and sound speed comparison

In Fig. D.2, we compare the mean values of the density ρ and sound speed cs in the respective
envelopes of the 16.9 M⊙ 3D MHD merger product and 17.4 M⊙ genuine single star. The
bottom of the envelope is taken as the location where the mass coordinate m = Mcc. We
interpolated the density and sound speed on a grid of equal-sized (in radius) cells to arrive
at weighted means.

D.3. Comparison of p modes with rotation

Figures D.3 and D.4 show the results of the GYRE calculations for p modes with the inclusion
of rotation in the first-order Ledoux perturbative approach (see Sect. 5.2.3). We only show
the results for the models at the point where Xc,merger = 0.50. Figure D.3 only shows the
results for Ω/Ωc = 0.30.
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Figure D.1: Same as Fig. 5.6, now for ℓ = 2 modes.
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Figure D.2: Mean envelope density (top panel) and sound speed (bottom panel) for the 16.9 M⊙ 3D
MHD merger product (blue line) and 17.4 M⊙ genuine single star (red line) at different MS ages.

D.4. Composition profiles and propagation diagrams for 1D
merger methods

Figures D.5–D.7 and D.8–D.10 show the evolution of the composition profiles and propaga-
tion diagrams with Xc for the 16.9 M⊙ entropy-sorted, PyMMAMS, and fast accretion merger
product models and their genuine single star counterparts, respectively.
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Figure D.3: Frequencies and radial orders np of (ℓ, m) = (1, ±1), (2, ±1), and (2, ±2) p modes for
the 16.9 M⊙ 3D MHD merger product (blue dot markers) and the 17.4 M⊙ genuine single star (red
dot markers) at Xc = 0.50 and with Ω/Ωc = 0.30. The dotted and dash-dotted lines are drawn to
accentuate the frequency differences and improve the legibility of the frequency values. The modes
are shown in the inertial (observer’s) frame.
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Figure D.4: Absolute differences between the 17.4 M⊙ genuine single star’s p-mode frequencies νs
np

and the 16.9 M⊙ 3D MHD merger product’s p-mode frequencies νm
np

per radial order np, with rotation
rates of Ω/Ωc = 0.10, 0.20, 0.30, 0.40, 0.50, and 0.60, at Xc = 0.50. The lines are colour-coded
according to the rotation rate. The modes are shown in the inertial (observer’s) frame.
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Figure D.5: Same as Fig. 5.2, now for the 16.9 M⊙ entropy-sorted merger product (solid lines) and
the 17.15 M⊙ genuine single star (dashed lines).
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Figure D.6: Same as Fig. 5.2, now for the 16.9 M⊙ PyMMAMS merger product (solid lines) and the
17.0 M⊙ genuine single star (dashed lines).
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Figure D.7: Same as Fig. 5.2, now for the 16.9 M⊙ fast accretion merger product (solid lines) and
the 16.9 M⊙ genuine single star (dashed lines).
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Figure D.8: Same as Fig. 5.5, now for the 16.9 M⊙ entropy-sorted merger product (solid lines) and
the 17.15 M⊙ genuine single star (dashed lines).
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Figure D.9: Same as Fig. 5.5, now for the 16.9 M⊙ PyMMAMS merger product (solid lines) and the
17.0 M⊙ genuine single star (dashed lines).
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D.4 Composition profiles and propagation diagrams for 1D merger methods
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Figure D.10: Same as Fig. 5.5, now for the 16.9 M⊙ fast accretion merger product (solid lines) and
the 16.9 M⊙ genuine single star (dashed lines).
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Schürmann, C. and Langer, N., “Exploring the borderline between stable mass trans-
fer and mergers in close binary evolution,” arXiv e-prints, arXiv:2404.08615, 2024,
doi:10.48550/arXiv.2404.08615.

Sen, K., Langer, N., Marchant, P., Menon, A., de Mink, S. E., Schootemeijer, A.,
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