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1 Introduction 

 

Diffusion is a process of the random motion of the molecules, which depends on their ther-

mal energy. In the human body, the molecular diffusion can be measured by diffusion-

weighted imaging (DWI), which is a specialized acquisition scheme of magnetic resonance 

imaging (MRI). Within the tissue microenvironment, the water molecules are in a constant 

motion and interact with cell walls and other cellular compartments. In general, the higher 

the degree of cellularity of the tissue, the more restricted the diffusion. Thus, cancerous tis-

sue, hypercellular metastases, and fibrosis are usually manifested by impeded diffusion in 

comparison to the healthy tissue (Malayeri et al. 2011). Conversely, damaged cell mem-

branes and lower degree of cellularity of the tissue facilitate the water molecules to move 

more freely (Qayyum 2009). Therefore, DWI is a useful method for visualization of the 

pathological states of the tissue, which are often manifested by alterations in water diffusion 

(Woodhams et al. 2011). For conventional DWI sequences, the restrictions in the Brownian 

motion of the water molecules in the tissue can be estimated quantitatively by the apparent 

diffusion coefficient (ADC) derived from the signal intensity in the diffusion-weighted imag-

es.  

One of the first clinical applications of DWI was diagnosis of neurologic diseases, primarily 

acute brain ischemia. After the onset of an ischemic stroke, the brain cells start to swell due 

to the cell membrane damages and accumulation of intracellular fluid. The observed de-

crease in the ADC with concomitant  bright signal on diffusion-weighted images was linked 

to the cytotoxic edema causing restrictions of interstitial flow, and reduction in extracellular 

volume due to the increase in intracellular volume (van Everdingen et al. 1998). While cell 

swelling cannot fully explain the changes in ADC, membrane permeability changes are also 

likely to contribute. In the field of oncology, DWI gains increasing interest in applications 

like lesion detection, differentiation between benignancy and malignancy, or cancer treat-

ment response surveillance (Hedayati et al. 2014).  

In order to visualize the tumor tissue, the alteration in water diffusion is often used as a dis-

tinctive feature, as tumor tissue is characterized by higher cellularity that restricts the move-

ment of water molecules due to the limited intercellular space. DWI was reported as a prom-

ising tool for imaging and evaluation of lesions in an area of the body including brain, head 

and neck, breast, liver, pancreas, prostate, female pelvis, like also for whole-body imaging in 

patients with lymphoma (Hedayati et al. 2014; Iima and Le Bihan 2016; Messina et al. 

2020). 
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Technical improvements in DWI acquisition allowed a development of more advanced imag-

ing techniques. One of them is diffusion tensor imaging, enabling the quantitative assess-

ment of diffusion anisotropy in the tissue with organized structure like brain white matter or 

muscles (Mori and van Zijl 2002), in which water diffusion occurs more preferentially along 

the fibers long axis and is hindered in the perpendicular direction. Another advanced method 

is intravoxel incoherent motion (IVIM) imaging. IVIM quantifies the diffusion of water mol-

ecules  as well as microcirculation of blood in the randomly oriented capillaries, leading to a 

faster signal drop due to intravoxel dephasing as a result of this pseudo-diffusion process 

(Bihan et al. 1988). However, the additional signal attenuation due to perfusion can be ob-

served only using very low diffusion weightings (Iima and Le Bihan 2016). In contrast, the 

application of high diffusion weightings in diffusion kurtosis imaging (DKI) enables assess-

ment of the non-Gaussian diffusion, which occurs in the tissue due to the presence of barriers 

and obstacles, e.g., cell membranes (Jensen and Helpern 2010).      

This dissertation focusses on applications of DWI and DKI for characterization of suspicious 

breast findings and sonographically indeterminate ovarian lesions. In the context of the 

breast DWI, the special attention was paid to phantoms for quality control of the quantitative 

parameters derived from diffusion weighted images. 



 

3 

 

2 Fundamentals 

2.1 Basic Concepts of Magnetic Resonance Imaging 

The principle of MRI is based on the use of the natural magnetic properties of biological 

tissues. The human body is composed mostly of water. Therefore, the clinical MRI uses pri-

marily the signal emitted by the excited hydrogen nuclei. In the presence of the strong mag-

netic field inside the scanner, the excited proton spins forming the macroscopic magnetiza-

tion precesses about the field direction with the Larmor frequency proportional to the 

strength of this external field, that is: 

 𝜔0 =  𝛾𝐵0, (2.1) 

where 𝛾 is a gyromagnetic ratio and 𝐵0 is a static magnetic field. To simplify the description 

of the spin motion, a concept of the rotating frame of reference is used, with coordinate sys-

tem precessing with the same frequency 𝜔0 about the direction of field 𝐵0. This transfor-

mation results in stationary net magnetization in the rotating frame of reference.  

In the clinical routine, the most commonly used MRI technique is two-dimensional imaging, 

based on the two-dimensional Fourier transformation (Martí-Bonmatí 2002). To obtain a 

series of cross-sectional images of the body, three gradients in orthogonal directions are ap-

plied. The first linear gradient is used for slice selection. An application of a radiofrequency 

(RF) pulse of selected bandwidth causes rotation of the magnetization in the corresponding 

slice. The precession of the transverse magnetization generates the signal in the coil. The 

position of the spins in the selected slice is encoded by the phase and frequency encoding 

gradients. The acquired signal is stored in a raw data matrix called k-space. To reconstruct an 

image, an inverse Fourier transform of the k-space data is performed.       

In general, the strength of the measured signal depends on two time constants, T1 and T2, 

which are distinctive for each tissue type. The longitudinal relaxation time T1, connected 

with the release of energy to the atomic neighborhood, characterizes the regrowth of the 

magnetization along the direction of the external static magnetic field. T2 refers to the 

dephasing of the spins caused by their mutual influence leading to the local changes in the 

magnetic field, and therefore to the changes in the local Larmor frequencies. The third char-

acteristic tissue parameter is the spin density, which refers to the number of protons con-

tained in the image voxel. Using the spin-echo sequence, which is one of the fundamental 

MRI pulse sequences, the signal intensity can be described by the following expression:   

 𝑆 =  𝑘𝜌 (1 − 𝑒
−
𝑇𝑅
𝑇1 ) ∙ 𝑒

−
𝑇𝐸
𝑇2  (2.2) 
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where k is a proportionality constant, 𝜌 is a proton density, T1 is the longitudinal relaxation 

time, T2 is the ‘spin-spin’ relaxation time, 𝑇𝑅 is a repetition time, and 𝑇𝐸 echo time. By ad-

justing the value of TR and TE, different types of image contrast can be achieved. Whereas 

the choice of 𝑇𝑅 controls the relaxation of the longitudinal magnetization and therefore the 

degree of T1-weighting in the image, TE controls the degree of T2-weighting. To obtain T1-

weighted image, short TR and short TE are chosen, which minimizes the T2-weighting. In 

contrast, T2-weigted image requires long TR and long TE, which gives a strong recovery of 

the longitudinal magnetization. 𝜌-weighted image can obtained by using long TR and short 

TE, when the impact of both T1 and T2 relaxation time is considerably reduced. The follow-

ing Section 2.2 presents more detailed description of the spin-echo sequence used in DWI. 

For more details about fundamental theory of MRI, please refer to (Bernstein et al. 2004) or 

(E. Mark Haacke 1999). 

2.2 Principles of Diffusion-Weighted Imaging 

DWI is a specialized acquisition scheme of MRI based on the measurements of the Browni-

an motion of the water molecules. In DWI a pair of gradient pulses is applied to visualize the 

impact of diffusion restrictions. If the molecules diffuse in the time interval between the two 

gradients then the spins will not fully rephrase and a signal loss will be observed. However, 

if on the way of the diffusing molecule numerous obstacles are present, the diffusing mole-

cules will get trapped between the barriers. The resulting smaller diffusion distance will lead 

to less signal loss compared to free diffusion. Figure 1 shows a scheme of a diffusion-

weighted spin-echo sequence which is currently the most widespread sequence used in diffu-

sion measurements. In the MRI scanner, the spins are aligning with the static magnetic field, 

which creates net magnetization. The DWI spin-echo sequence starts with a 90 radiofre-

quency (RF) pulse which flips longitudinal magnetization and produces transversal magneti-

zation. This is done because only transversal magnetization can be measured. Then the first 

diffusion gradient dephases the spins. By applying the 180 refocusing RF pulse the phases 

of spin packets are inverted and a spin echo is generated. Subsequently, the second diffusion 

gradient with the same strength as the first one rephases the spins. However, the molecules 

are moving in the time interval between the diffusion-weighting gradients due to Brownian 

motion and the spins are not fully rephased and therefore a signal loss is observed. The diffu-

sion weighting depends on the time interval between the application of the two sensitizing 

gradients (Δ), their duration (𝛿) and strength (𝐺). Usually, the amount of diffusion weighting 

is controlled by the gradient strength which ensures the same echo time for different diffu-

sion weightings so that the influence of T2-relaxation remains the same (Mori 2007). 
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Figure 1. (a) Simplified pulse diagram of the diffusion-weighted spin echo sequence. 𝐺 denotes the amplitude of 

the diffusion gradients, 𝛿 their duration, ε rise time, and Δ the delay time between the diffusion gradients. (b) 

Schematic spatial dependence of the magnetic moment, depicted by the red arrows (second and third row). The 

first row shows the corresponding local magnetic field. When 90° excitation pulse is applied, the magnetic mo-

ment is tipped away by a 90° flip angle from longitudinal into transverse plane. The first diffusion gradient 

dephases the spins according to their location along the gradient direction. Next, the 180° refocusing pulse is 

applied at TE/2, which inverts  the magnetization to regain the coherence of the spin isochromats lost due to the 

magnetic field inhomogeneities and susceptibility effects. The second diffusion gradient rephases the spins. At 

echo time the signal is acquired. However, if the spins have changed their position and moved in the time interval 

between the application of the two diffusion gradients, the second gradient does not fully rephrase the spins, and 

therefore the measured signal is a signal of smaller magnitude. Spatial encoding steps are not included in this 

pulse diagram. Adapted with permission from (Kuder 2014). 

 

For free diffusion, the probability that a molecule moves from the initial point (𝑥 = 0) to 

another location 𝑥 in one dimension in a given time interval 𝑡 is described by diffusion prop-

agator which follows a Gaussian distribution: 

 
𝑃(𝑥, 𝑡) =

1

√4𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡, (2.3) 

where √2𝐷𝑡 is the average diffusion distance in one dimension and 𝐷 is diffusion constant.  

The intensity of the diffusion-weighted signal is represented by a mono-exponential equa-

tion: 
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 𝑆 = 𝑆0𝑒
−𝑏𝐷, (2.4) 

which can be transformed into the logarithmic form as follows: 

 ln(𝑆) = ln(𝑆0) − 𝑏𝐷. (2.5) 

In Equations (2.4) and (2.5) 𝑆 is a diffusion-weighted signal, 𝑆0 is a signal without diffusion-

weighting, and 𝑏 is a sensitizing factor called b-value. For trapezoidal diffusion gradient, like 

the one depicted in Figure 1, b-value can be expressed as: 

 
𝑏 =  𝛾2𝐺2 (𝛿2 (Δ −

𝛿

3
) +

𝜀3

30
−
𝛿𝜀2

6
),  (2.6) 

where 𝛾 is a gyromagnetic ratio, which for hydrogen nucleus equals 26.8 ∙ 108
T

s
, 𝐺 is the 

gradient amplitude, 𝛿 is the gradient duration, and Δ is the time interval between the diffu-

sion-sensitizing gradients. 

For rectangular diffusion gradient the expression for b-value takes a form: 

 
𝑏 = 𝛾2𝐺2𝛿2 (Δ −

𝛿

3
).  (2.7) 

In general, the signal intensity of the diffusion-weighted image, obtained using a spin-echo 

sequence, is given by equation: 

 𝑆 =  𝑘𝜌 (1 − 𝑒
−
𝑇𝑅
𝑇1 ) ∙ 𝑒

−
𝑇𝐸
𝑇2 ∙ 𝑒−𝑏𝐷, (2.8) 

where k is a proportionality constant, 𝜌 is a proton density, 𝑇1 is the longitudinal relaxation 

time, 𝑇2 is the ‘spin-spin’ relaxation time. 

Usually the amount of diffusion weighting is controlled by the gradient strength which en-

sures the same echo time and results in signal loss being influenced only by diffusion process 

and free of 𝑇1- and 𝑇2-weighting (Mori 2007).  

In principle, in the clinical practice, free diffusion in MRI can be observed only for a phan-

tom filled with a homogeneous liquid solution. In biological tissue, the random motion of 

water molecules is restricted due to the presence of natural barriers and compartments, main-

ly assignable to cell membranes (Stieltjes et al. 2013). Moreover, tumor tissue is character-

ized by higher cellularity than normal tissue and therefore diffusion is in principle more hin-

dered in tumors (Woodhams et al. 2011). The motion of water molecules, affected by the 

local tissue environment, is reflected by signal intensity in diffusion-weighted images. High 

cellular density is manifested by more restricted diffusion and weaker signal attenuation as in 

the tissue with low cellular density. Although the diffusion in the biological tissue is not free, 

if b-values in the intermediate range are used for in vivo measurements, signal decay can be 
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still well enough represented by a mono-exponential function (Partridge et al. 2017). How-

ever, the coefficient obtained by fitting the mono-exponential function to the measured diffu-

sion-weighted signal is only an estimate and therefore is called apparent diffusion coefficient 

(ADC). As a rule, the ADC values measured in malignant tumors are lower than ADC meas-

ured in the benign tumors or normal tissue (Zhou et al. 2019). However, there is an overlap 

in these values (Partridge and McDonald 2013) .          

2.3 Principles of Diffusion Kurtosis Imaging 
 

Whereas conventional DWI assumes that the molecular displacement probability function 

follows the normal distribution, DKI takes into account that the complex structure of the 

tissue may result in non-Gaussian water diffusion. When imaging the human body using 

higher diffusion weightings, an increasing deviation from the mono-exponential signal decay 

can be observed. The deviation of the diffusion propagator from the Gaussian distribution 

can be measured by the kurtosis.  

In statistics, the excess kurtosis is defined as the normalized fourth moment minus 3: 

 
𝐸 [(

𝑋 − 𝜇

𝜎
)
4

] − 3 =
𝐸[(𝑋 − 𝜇)4]

(𝐸[(𝑋 − 𝜇)2])2
− 3 =

𝜇4
𝜎2
− 3, (2.9) 

where 𝑋 is a random variable, 𝜇 the mean value, 𝜇4 the fourth central moment and 𝜎 the 

standard deviation. 𝐸 denotes the expectation value operator. In DKI, the considered random 

variable is the particle displacement during the diffusion time. 

In the literature about DKI the term excess kurtosis is usually shortened to kurtosis. There-

fore, from here on in this work, to be consistent with the terminology used in other publica-

tions, diffusional kurtosis will be defined as described by the Equation (2.10). In terms of 

diffusion-weighted MRI, the diffusional kurtosis has to be defined along the particular gradi-

ent direction used for the measurement which is denoted here by the normalized gradient 

vector: 

 
𝐾(𝑡) =

〈(𝒏 ∙ 𝒙(𝑡))4〉

〈(𝒏 ∙ 𝒙(𝑡))2〉2
− 3, (2.10) 

where 𝒙 denotes the particle displacement during the diffusion time 𝑡 (Jensen et al. 2005; Lu 

et al. 2006). The angled brackets symbolize the averaging over all possible random trajecto-

ries in the confining geometry. 

In general, for free diffusion, described by a Gaussian probability distribution, 𝐾 = 0 is val-

id. In contrast, for restricted diffusion, at least some of the molecules get partially trapped 

and travel less far leading to deviations from the free Gaussian diffusion and thus 𝐾 ≠ 0. 
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While both positive and negative values are in general possible, only 𝐾 > 0 has been ob-

served in biological tissue.  

To measure the approximation of diffusional kurtosis, the standard sequence as presented in 

Figure 1 can be used. The method of quantification of non-Gaussian diffusion presented by 

Jensen et al. (2005) is based on a Taylor expansion of the natural logarithm of the measured 

signal in powers of b, the so-called cumulant expansion, which up to the first three terms is 

given by expression:  

 
ln(𝑆) = ln(𝑆0) − 𝑏𝐷app +

1

6
𝑏2𝐷app

2 𝐾app + 𝑂(𝑏
3), (2.11) 

where 𝑆 is the diffusion-weighted signal, 𝑆0 is the signal without diffusion-weighting, 𝑏 is 

the b-value, 𝐷app is the apparent diffusion coefficient corrected for the kurtosis effect and 

𝐾app in the apparent diffusional kurtosis. Again, it should be noted that the measured kurto-

sis 𝐾app in the equation above deviates from the true kurtosis of the propagator which leads 

to the additional term “apparent”. 

Based on this approach, the signal decay in DKI can be described by the following equation 

(Jensen and Helpern 2010): 

 
𝑆(𝑏) = 𝑆0 𝑒

−𝑏𝐷app+
1
6
𝑏2𝐷app

2 𝐾app . 
(2.12) 

Taking the plot of the logarithmized signal intensity against various b-values, to capture the 

deviation from the straight line characteristic for free diffusion and obtain the value of diffu-

sional kurtosis parameter, requires higher b-values than usually used in DWI (Jensen and 

Helpern 2010). Whereas for small b-values the b2-term is negligible, its influence becomes 

increasingly dominant with higher b-values (Stieltjes et al. 2013).  

Figure 2 visualizes the additional information that may be contained in the kurtosis coeffi-

cient using diffusion propagator for free diffusion and restricted diffusion, displayed as 

schematic examples; the lower row sketches the corresponding plots of signal decay on the 

semi-logarithmic scale. The ADC value measured in a liquid with a high viscosity (Figure 

2a) is smaller than ADC measured in liquid with a low viscosity (Figure 2b). In both cases of 

free diffusion the kurtosis value equals zero. For restricted diffusion (Figure 2c) the ADC 

value is also reduced, but the kurtosis is greater than zero. Based only on ADC values we 

cannot distinguish between (b) and (c), but this is possible using the apparent kurtosis coeffi-

cient so that the kurtosis may contain in principle additional independent information.  
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Figure 2. Schematic representation of Gaussian diffusion propagator for free diffusion in low (a) and high viscous 

liquid (b) and non-Gaussian diffusion propagator for restricted diffusion (c); corresponding scheme of the semi-

logarithmic plot of the signal attenuation presented below (e-g). Higher viscosity results in lower diffusion coeffi-

cient, depicted as a slope (f), in comparison to lower viscosity (e). In this both cases of free diffusion diffusional 

kurtosis equals zero. In the case of the hindered diffusion, due to the presence of the obstacles, the diffusion 

coefficient is also reduced, but the kurtosis coefficient is non-zero, which is depicted by the plot curvature at the 

higher b-values (g). Adapted with permission from (Kuder 2014). 

2.4 Noise Correction in Diffusion Kurtosis Imaging 

The assessment of the quality of the acquired magnetic resonance image and quantification 

of the MRI system performance is often based on the estimation of the ratio of the true signal 

to the level of the background noise, known as the signal-to-noise ratio (SNR). As suggested 

in the work by Dietrich et al. (2001), the diagnostic quality of the quantitative parameters 

derived by diffusion-weighted MRI is contingent on the level of SNR. Hereinto, high diffu-

sion weighting and prolonged echo time in DKI cause the decrease in the signal intensity and 

therefore result in a lower SNR of an image. Since for DWI, always magnitude images are 

evaluated and – in the case of averaging – the magnitude is first calculated before averaging, 

the signal noise will lead to a bias in the magnitude signal. This noise-induced bias, especial-

ly relevant for low SNR values, may distort the kurtosis coefficient obtained by the fitting 

Equation (2.12) to the measured signal 𝑆(𝑏). 

It was reported that in the presence of noise the signal intensity in the magnitude images 

follows the Rician distribution (Gudbjartsson and Patz 1995). Taking into account that for 

SNR  3 a Gaussian distribution can be used as an approximation of the Rician distribution, 

Gudbjartsson and Patz (1995) suggested a correction approach to mitigate the bias arising 

from background noise in the signal of magnitude: 
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 𝐴 = √|𝑀2 − 𝜎2|, (2.13) 

where 𝐴 is an estimation of the noiseless signal intensity, 𝑀 is the measured signal intensity 

and 𝜎 is the standard deviation of the Gaussian noise.  

Based on this approach, Jensen et al. (2005) published a modified formula for estimation of 

DKI-derived parameters which accounts for the background noise, which is more accurate 

for very low SNR:   

 

𝑆(𝑏) = √(𝑆0 𝑒
−𝑏𝐷app+

1
6
𝑏2𝐷app

2 𝐾app)
2

+ 𝜂2, 
(2.14) 

where 𝐷app is the apparent diffusion coefficient, 𝐾app is the apparent diffusional kurtosis 

and 𝜂 is the background noise level, estimated by calculating the mean signal intensity in the 

air outside the human body. 

For high b-values, fitting of the diffusion kurtosis equation without this correction may result 

an overestimation of the kurtosis, especially in regions with high diffusion coefficients, 

where the signal already drops to the noise level at relatively low b-values. 

2.5 Intravoxel Incoherent Motion 

In biological tissue in the low b-value regime, the signal decay is more rapid at very low b-

values as it would be expected from the mono-exponential equation. This additional signal 

attenuation is caused by perfusion, that is blood microcirculation in the randomly oriented 

capillaries building a network. The signal decay caused by perfusion depends on the velocity 

of blood flowing in the capillary segments and the geometry of the capillaries (Bihan et al. 

1988). The term “Intravoxel incoherent motion (IVIM)” covers both perfusion and molecular 

diffusion of water. The signal decay is given by the following equation: 

 𝑆

𝑆0
= 𝑓IVIM𝑒

−𝑏(𝐷∗+𝐷blood) + (1 − 𝑓IVIM)𝑒
−𝑏𝐷tissue , (2.15) 

where 𝑓IVIM is the signal fraction of the blood flowing in the capillaries, 𝐷∗ is the pseudo-

diffusion coefficient related to the blood flow in capillaries, 𝐷blood is the diffusion coeffi-

cient measured in blood, 𝐷tissue is diffusion coefficient measured in tissue. Taking into ac-

count that pseudo-diffusion coefficient 𝐷∗ is approximately 10 times greater than tissue dif-

fusion coefficient 𝐷, the blood microcirculation contributes substantially only in low b-value 

regime to the signal decay driven by diffusion; above a particular b-value threshold, the con-

tribution of the capillary blood compartment is negligible.  
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2.6 Technical Aspects of Selected Pulse Sequences 

The most common method used for DWI is echo-planar imaging (EPI), characterized by 

extremely fast acquisition time due to the possible sampling the data for image reconstruc-

tion by only one RF pulse. Rapidly switched frequency-encoding gradients with alternating  

polarity produce the gradient echo train. Each gradient echo is assigned to individual k-space 

line according to the phase-encoding gradient. The advantage of the short acquisition time of 

50–100 ms (Stehling et al. 1991) is a reduction of errors induced by physiologic motion 

(Bammer 2003). Especially single-shot techniques solve the problem of phase instabilities 

between k-space lines induced by the strong weighting of the diffusion gradients on transla-

tional motion. On the other hand, the imperfections during the fast switching of the frequen-

cy-encoding gradient polarity and the long echo train makes EPI prone to artifacts such as 

ghosting and various off-resonance effects. Single-shot EPI images exhibits often high tem-

poral resolution at the cost of limited spatial resolution and small SNR (Bernstein et al. 

2004). Moreover, fat suppression techniques are needed to reduce the chemical shift arti-

facts, appearing in the phase-encoding direction (Bushong and Clarke 2015).  

To improve the image quality, DWI-EPI can be combined with parallel imaging techniques  

(Bammer 2003) which reduce the needed number of phase-encoding steps and decrease the 

echo train length. One method using reconstruction in image space domain is SENSitivity 

Encoding (SENSE). In SENSE, each coil element acquires a different image using a reduced 

field of view and afterwards the signals are merged according to the coil sensitivity infor-

mation (Blaimer et al. 2004). In the second method, named GeneRalized Autocalibrating 

Partially Parallel Acquisitions (GRAPPA), the reconstruction is done in k-space domain. The 

missing k-space lines are calculated for each coil element before the Fourier transformation. 

Due to the acqusition of additional autocalibration lines, the GRAPPA is more resistant to 

severe EPI distortions than SENSE (Griswold et al. 2002). Another form of the EPI sequence 

is read-out segmented EPI where the k-space is divided into several segments along the fre-

quency-encoding direction. The data from the subsequent fractions of k-space is acquired in 

the separate RF excitations to reduce the susceptibility artifacts and spatial blurring caused 

by T2* signal decay (Porter and Heidemann 2009). However, the readout segments distrib-

uted over several TR, in comparison to single-shot EPI, result in higher sensitivity to motion-

induced artifacts. To mitigate this problem, additional navigator data acquired from the cen-

tral part of each k-space segment are used for phase correction. 

Another technical aspect worth mentioning is the utilization of bipolar and monopolar gradi-

ents. High amplitude and fast slew rate of diffusion gradients make diffusion weighted imag-

es prone to eddy current artifacts (Alexander et al. 1997). Rapid switching of diffusion gra-

dient pulses induces current in conducting surfaces of the MR scanner. This results in eddy-

current-induced gradients which distort the shape of diffusion gradient pulses (Le Bihan et 

al. 2006). To mitigate this problem, the bipolar gradients may be applied, thus each unipolar 
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diffusion gradient is split into two bipolar gradients by a refocusing pulse (Reese et al. 1998). 

Therefore, in the sequence with bipolar gradients, two 180° refocusing pulses are used in-

stead of one in a  sequence with monopolar diffusion gradients.  

2.7 Fat Suppression Techniques 

Free water protons resonate at a different frequency than hydrogen protons contained in fat 

molecules, which results in a chemical shift. The difference in resonance frequency is 3.35 

ppm for the dominant groups of fat molecules. The ppm scale is a ratio of frequency differ-

ence between two measured peaks to the frequency of a particular peak, multiplied by 1 mil-

lion. It means that in the static magnetic field 𝐵0 = 1.5 T, free fat protons resonate at a fre-

quency 214 Hz lower than free water protons. For 𝐵0 = 3 T, the frequency is shifted down 

by 447 Hz. This discrepancy in resonance frequency relates to variation in a local magnetic 

field between protons in water and protons in a compound that contains fat or lipids caused 

by different configurations of electrons in these molecules (E. Mark Haacke 1999). Moreo-

ver, in comparison to other tissues, fat has a short T1 time and therefore, in measurements 

with short TR, the signal from fat can significantly exceed the measured signal from water. 

Furthermore, the fat spectral peak is broader than the water spectral peak because in fat there 

are various types of chemical bonds with hydrogen whereas in water there is only one type 

of chemical bond. Approximately 80% of the MRI signal measured in white fat is coming 

from protons in lipids whereas almost 20% from hydrogen protons from water in loose con-

nective tissue (Delfaut et al. 1999). Selected fat suppression techniques which are used to 

reduce the chemical shift artifacts, are described below. 

Spectral fat saturation is a technique in which a frequency-selective RF pulse is applied to 

saturate the magnetization of fat protons. First, the fat saturation pulse of the frequency cor-

responding to resonance frequency of the lipids is applied and the generated transverse mag-

netization is dephased. After a short period of time during which the longitudinal fat magnet-

ization has not regrown, the slice-selective excitation RF pulse is applied. As a result, only 

water longitudinal magnetization is tipped into the transverse plane and only signal from 

water is measured. However, the method is sensitive to inhomogeneities of the main magnet-

ic field caused by susceptibility differences which induce shifts in resonance frequencies. As 

a result of the frequency discrepancies, the saturation pulse may not reflect the lipid reso-

nance frequency or it may cause the saturation of water signal instead of fat signal (Delfaut 

et al. 1999). 

The short inversion time (TI) inversion-recovery sequence, termed with the acronym STIR, 

uses the differences in T1 relaxation time between the adipose tissue and water. At first, the 

longitudinal magnetization of water and fat is inverted. During succeeding recovery, the RF 

pulse is applied at the time-point when the fat longitudinal magnetization is crossing zero. It 

results in nulling the fat signal and collecting only the water signal which – for short inver-
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sion time – remains large and negative due to the long T1 of water in comparison to T1 of fat. 

STIR is insensitive to magnetic field inhomogeneities. However, it results in the overall sig-

nal loss and a low signal-to-noise ratio, because at TInull the longitudinal magnetization of 

water components is below the equilibrium value. Further, TR has to be usually prolonged. 

Moreover, STIR suppresses the signal not only from fat but from all tissues with T1 equal to 

T1 of fat. 

Spectral Adiabatic Inversion Recovery (SPAIR) is a technique which uses a spectrally selec-

tive adiabatic inversion pulse to invert the fat longitudinal magnetization only. The ad-

vantage of adiabatic pulses is the fact that they are relatively insensitive to B0 and B1 varia-

tions. Due to the modulation of the amplitude and phase, the adiabatic inversion pulse is able 

to perfectly invert the magnetization across the slice (E. Mark Haacke 1999). Similar to 

STIR, an excitation pulse is applied at the moment when the fat longitudinal magnetization is 

crossing zero. However, due to the application of spectrally selective adiabatic inversion 

pulse, only fat signal is suppressed and therefore SPAIR is characterized by higher SNR than 

STIR. It is, however, less robust in the presence of field inhomogeneities.  

In DW-EPI the chemical shift will predominantly appear in phase encoding direction. During 

single-shot EPI, all lines of k-space are sampled after a single 90 RF excitation pulse and a 

succeeding 180 RF pulse which results in rephasing of the spins and formation of a spin 

echo. Due to the resulting long echo train, phase errors originating form chemical shift ac-

cumulate and lead to a large shift in phase direction.  
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3 Aim of the Dissertation 

 

This dissertation is focused on the potential applications of DWI and DKI in characterization 

of suspicious breast and ovarian lesions. To investigate the ability of the quantitative pa-

rameters, derived from the different signal representations, to differentiate between benign 

and malignant lesions, the following objectives were addressed in three studies: 

• To start with, ADC is currently the most commonly used quantitative parameter in 

the diffusion MRI of the breast, performed for characterization of ambiguous lesions 

revealed on X-ray mammography. The main challenge is the wide spread of ADC 

thresholds reported in numerous publications which is in part due to the differences 

in the imaging protocol settings, MRI machines and equipment as well as different 

patient groups. Therefore, to ensure the accuracy of the estimated quantitative pa-

rameters, quality control is needed. Till now, several authors proposed various phan-

tom designs for quantitative breast MRI. Nonetheless, there remains a deficiency in a 

low-cost and easy-to-use breast phantom dedicated for simultaneous ADC measure-

ments in the left and right coil side, which would take into account also the ADC de-

pendency on the temperature. Therefore a simplified, inexpensive and adjustable 

breast phantom was constructed and tested for better quality control of the ADC 

measurements. 

• Secondly, if applying a stronger maximal diffusion weighting than in a standard 

DWI, diffusion kurtosis imaging is possible. DKI delivers the second complemen-

tary quantitative parameter – the diffusional kurtosis – which describes the degree of 

the non-Gaussian diffusion. The kurtosis parameter reflects more specifically the 

microstructure of the tissue, its heterogeneity and determines the presence of barriers 

restricting the diffusion. However, signal acquired at higher b-values is more suscep-

tible to the influence of noise. Moreover, for breast DKI, due to the high content of 

adipose tissue, effective fat suppression is essential. If not achieved, the residual fat 

signal may potentially corrupt the signal in the lesion area, which as a result may 

cause an overestimation of the kurtosis parameter. To overcome this problem, vari-

ous signal fitting models were proposed and analyzed in terms of the ability to dif-

ferentiate between benign and malignant breast lesions. 

• Lastly, in contrast to breast DKI, which gains on the popularity, DKI of ovarian le-

sions still remains almost unexplored. Therefore the aim was to evaluate the perfor-

mance of DKI in the characterization of ovarian lesions.   

The following Sections 3.1–3.3 describe in greater detail the objectives mentioned above and 

explain the motivation for this work. 
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3.1 Part I – Spatial and Temporal Variability of ADC 

According to the report published by the International Agency for Research on Cancer 

(IARC), breast cancer is, at the same time, the most frequently diagnosed cancer and the 

leading cause of cancer-related death among women (Bray et al. 2018). Despite of the bene-

fits, X-ray mammography screening programs result in a substantial number of false-positive 

findings (Stout et al. 2014). Herein about 50% of the women that are referred for biopsy 

because of  the concern that the lesion detected on primary X-ray mammography screening 

might be of malignant nature, are diagnosed with a benign breast disease eventually  

(Kooperationsgemeinschaft Mammographie 2019). Breast MRI has been demonstrated in 

multiple studies to be more sensitive in the detection of breast cancer than X-ray mammog-

raphy, especially in women with dense breast (Bakker et al. 2019; Comstock et al. 2020). 

Abbreviated MRI protocols, incorporating contrast-enhanced sequence, have shown high 

efficiency in characterization of breast lesions (Mann et al. 2019). However, facing increas-

ing concerns about possible deposition of gadolinium in the body after administration of the 

linear and macrocylic gadolinium-based contrast agents (Murata et al. 2016; Radbruch et al. 

2015), contrast agent-free diagnostic alternatives are warranted. In this context, DWI is gain-

ing more and more interest as a contrast-free imaging modality either as a primary tool for 

detection of suspicious findings, or as an adjunct complementary method to characterize 

lesions detected by other screening methods, e.g. X-ray mammography. Besides, dynamic 

contrast-enhanced MRI (DCE MRI) is associated with high cost and long examination time 

(Amornsiripanitch et al. 2019). Therefore, incorporating a diffusion-weighted sequence in-

stead of DCE into the MRI breast screening protocol should to be profitable also from the 

economical point of view. 

Currently, breast DWI is mainly used as an additional sequence to the dynamic contrast-

enhanced MRI (DCE MRI) to reduce the number of false positive findings (Partridge et al. 

2017) and therefore to minimize the number of unnecessary biopsies of benign lesions. DWI 

for breast imaging is characterized by high specificity, however the sensitivity reported in 

many studies is lower than sensitivity of DCE MRI, although in comparison to mammogra-

phy or ultrasound an enhancement in performance can be observed (Amornsiripanitch et al. 

2019; Baltzer et al. 2019a). Nonetheless, the results of two large meta-analyses show the 

potential of breast DWI as a standalone sequence and demonstrate sensitivity comparable to 

the one achieved by DCE MRI (Baxter et al. 2019; Zhang et al. 2016). Moreover, a study by 

Bickelhaupt et al. (2016) showed that using the imaging technique based on DWI enhances 

correct classification of malignant lesions among women with suspicious mammogram re-

sult. The most commonly used quantitative parameter for analysis of diffusion-weighted data 

is ADC. However, the discrepancies in reported values of ADC thresholds for discrimination 

of malignant and benign breast masses between multiple studies make it difficult for use in 

clinical routine (Keenan et al. 2016a). Therefore, to decrease the number of unnecessary 

breast biopsies, the quality assurance is an important aspect of quantitative DWI.   
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The aim of this study was to assess the temporal and spatial consistency of the measurements 

of quantitative parameter ADC. To achieve this, the breast phantom for quality control of 

diffusion-weighted images was developed. Spatial and temporal variability was assessed for 

different diffusion-weighted sequences with various setup parameters.   

3.2 Part II – Breast DKI of Suspicious Mammography Findings 

As mentioned at the beginning of this chapter, diffusional kurtosis is an additional diffusion-

based parameter which may contain independent information regarding pathophysiology 

with respect to diffusion restrictions and tissue complexity (Jensen and Helpern 2010). A 

possible major confounding factor for DKI in the female breast is the presence of residual fat 

signal.  

The female breast is composed of a mix of fibroglandular and adipose tissue. The tissue 

composition in women varies greatly and changes as the breast ages. According to the BI-

RADS lexicon, breast density on mammography can be classified into one of the four cate-

gories: almost entirely fatty, scattered areas of fibroglandular density, heterogeneously 

dense, or extremely dense (Spak et al. 2017). Some women might present with extremely 

dense breast tissue, with the fibroglandular component accounting for the vast majority of 

the breast volume, while other women might present with almost entirely fatty tissue and 

only small amounts of fibroglandular tissue. Among examined women, one in ten have al-

most entirely fatty breast and four in ten women have breast with scattered areas of fibro-

glandular density (Sickles 2013). Moreover, the mammographic breast density decreases 

with age already in premenopausal women, with the most pronounced decrease during men-

opausal transition and continued in postmenopausal years (Burton et al. 2017). Moreover, 

fatty tissue is characterized by significantly lower ADC than the ADC of glandular tissue 

(Baron et al. 2010). That is, as the diffusion-weighting increases, there is a very weak attenu-

ation of the fat signal. Therefore, one of the key success factors in breast DWI and DKI is 

complete suppression of the fat signal. If the signal from adipose tissue is not fully sup-

pressed, then its residuals can contaminate the signal from the lesion and distort quantitative 

parameters (Partridge and McDonald 2013).  

Initial findings of the prospective study devoted to the ability of DWI in discriminating be-

tween benign and malignant lesions in patients with suspicious findings on X-ray mammog-

raphy published by Bickelhaupt et al. (2016), revealed higher than expected signal intensities 

in the regions of glandular tissue on the high b-value images in the examined cohort of pa-

tients. Taking into account that the signal from glandular tissue at high b-value is usually 

almost fully suppressed (Woodhams et al. 2011), the elevated signal might be attributed to 

the contamination with residual fat signal, caused by chemical shift artifacts or partial vol-

ume effects. A subsequent publication by Bickelhaupt et al. (2018), in which the main focus 

was to investigate radiomics models, also addressed this issue. In consequence, these reports 
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triggered the need for a detailed investigation of the potential contamination with residual 

fat-related background signal. Therefore, various phenomenological fitting approaches ac-

counting for residual signal from adipose tissue were analyzed and their diagnostic perfor-

mance for lesion characterization was evaluated. 

3.3 Part III – DKI of Sonographically Indeterminate Ovarian 

Lesions 

Ovarian cancer is the eighth most commonly occurring cancer and at the same time the 

eighth leading cause of cancer death in women (Bray et al. 2018). The primary imaging mo-

dality used for assessment of ovarian masses is ultrasonography (ACOG 2016). The charac-

terization of ovarian lesions is of high importance because it determines the surgical treat-

ment approach. The management of benign ovarian lesions relies usually on minimally inva-

sive surgical procedure or conservative treatment (Choi et al. 2016), while in case of malig-

nant lesions the surgery may have to be conducted in specialized oncological center 

(Vernooij et al. 2007). However, even when using the simple rules based on ultrasound pre-

dicting model for differentiation between benign and malignant masses, established by the 

International Ovarian Tumor Analysis (IOTA) group, approximately one-fifth of the cases 

still remains indeterminate (Auekitrungrueng et al. 2019; Timmerman et al. 2010). If the 

character of the lesion cannot be determined using ultrasonography, MRI is used in the sec-

ond line. According to the recommendations published in (Forstner et al. 2017), the further 

assessment of sonographically indeterminate adnexal masses using diffusion-weighted MRI, 

based on analysis of signal intensity on diffusion-weighted images and the value of ADC is 

particularly beneficial in specific cases, e.g., in case of non-fatty and non-haemorrhagic en-

tirely solid masses, septate cysts, complex solid and cystic masses. 

In general, the diffusion restrictions are usually manifested by high signal intensity on high 

b-value images and corresponding low ADC values, what may indicate the presence of ma-

lignancy. However, authors of several studies and meta-analyses examining the role of DWI 

in characterization of suspicious adnexal masses have demonstrated relatively low ADC val-

ues in specific histological types of benign ovarian lesions, like teratoma, endometrioma or 

hemorrhagic cysts, and therefore quantitative analysis of ADC values may lead to false-

positive findings (Agostinho et al. 2019; Duarte et al. 2018; Kim et al. 2016). Fortunately, in 

majority cases of these types of benign lesions the accurate clinical diagnosis can be effi-

ciently made based on the conventional morphological sequences like T1-weighted, T2-

weighted or fat suppressed T1-weighted images (Agostinho et al. 2019; Spencer et al. 2010). 

Although DWI may improve the performance of MRI of ovarian masses, the use of the ADC 

as a quantitative parameter for discrimination between benign and malignant ones is limited 

due to the considerable overlap in ADC values (van Nimwegen et al. 2020). However, the 

diagnostic value of parameters derived by diffusion kurtosis MRI using higher diffusion 
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weightings in characterization of ovarian lesions remains still largely unexplored. Therefore 

the aim of this study is to evaluate the diagnostic ability of parameters derived by DKI in 

characterization of sonographically indeterminate ovarian lesions as a standalone method.      



 

19 

 

4 Materials and Methods 

 

This chapter gives an overview of the data collection process as well as provides detailed 

description of the methods and tools used for data analysis conducted in this work. Section 

4.1 is devoted to the DWI breast phantom dedicated for assessment of the spatial and tem-

poral homogeneity of the ADC measurements with a breast coil. It describes the construction 

of the phantom, the acquisition of DWI data and their evaluation based on the MATLAB 

script. Section 4.2 specifies the improvement of the DWI breast phantom construction and 

describes the imaging procedure used for further assessment of ADC homogeneity. Section 

4.3 deals with the clinical breast DWI imaging and the problem of the possible corruption of 

the signal with not fully suppressed fat. Various mathematical representations accounting for 

this contamination were conceptualized. Section 4.4 deals with the diagnostic ability of DKI 

in characterization of suspicious ovarian lesions. It presents the method used for analysis of 

correlated data. 

4.1 Breast Phantom I 

This section presents the method used for the assessment of homogeneity of ADC measured 

with the use of the breast coil. To achieve this, a homogeneous DWI phantom dedicated for 

the breast coil was constructed. Moreover, to facilitate easy data evaluation, automated anal-

ysis tool was implemented in MATLAB. The sections below describe the subsequent steps 

for analysis of ADC homogeneity . 

4.1.1 Phantom Design 

The fabricated breast phantom consists of two identical parts of simplified breast-mimicking 

volumetric shape, attached to an acrylic glass plate as shown in Figure 3. Each part was 

made of the Veroclear RGD810 material (Stratasys) with the use of an Objet 30pro 3D-

printer. Two plastic threaded rods were screwed perpendicularly to the lid of each phantom 

part. The lids were made of an acrylic glass. The two phantom components can be attached 

to the acrylic glass plate using plastic nuts, which enables the positioning in the left and right 

direction of the coronal plane. Inside one of the phantom parts, a thermometer was glued 

parallel to the surface of the cover. Each component was filled with approximately 1300 ml 

of 30% (w/w) aqueous polyvinylpyrrolidone (PVP) K-30 solution (Sigma-Aldrich). 
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Figure 3. Isometric view of the phantom assembly design (top) and the manufactured phantom filled with aque-

ous 30% PVP K30 solution (bottom). 

 

4.1.2 Imaging Protocol 

The MRI images were acquired using 3T scanner (Prisma, Siemens, Erlangen, Germany) 

with an 18-channel breast coil. The phantom, which was stored in the scanner room, was 

placed in the prone position and scanned in the transversal plane. Before the start of the 

measurements, the temperature of the PVP-solution in the phantom was read off from the 

built-in thermometer. The DWI protocol consisted of 4 types of RESOLVE sequences and 6 

types of single-shot EPI sequences. At the end, the acquisition of the first two types of the 

RESOLVE sequences was repeated. The main distinguishing features of the evaluated se-

quences are diffusion gradients’ design (monopolar or bipolar gradients), and the accelera-

tion factor of the parallel imaging technique GRAPPA (reduction factor R = 2,3,7 or non-

parallel imaging acquisition). The common features of all the acquired sequences are: 4 b-

values = 0,100,750,1500 s/mm2 with number of signal averages = 1,1,1,3 respectively, field 

of view 240mm×480mm, acquisition matrix 72×192, slice thickness 3 mm, and number of 

slices = 37. Although the phantom was constructed without a fat content, the sequences were 
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acquired with the SPAIR technique, as in the original sequence used in the clinical routine. A 

saturation band was placed in the region of the phantom rim to suppress the signal from this 

area. Selected details of DWI sequences are summarized in Table 1. The measurements were 

repeated in the five subsequent days. 

 

Table 1. Technical details of the acquired DWI sequences.   

Sequence  Gradient  

design 

GRAPPA, 

factor 

TR  

[ms] 

TE 

[ms] 

TA 

 [min:s] 

BW 

[HZ/px] 

RESOLVE1 monopolar 2 16260 53 05:43 1300 

RESOLVE2 bipolar 2 16260 65 05:43 1300 

RESOLVE3 monopolar off 16260 69 05:27 1185 

RESOLVE4 bipolar off 16260 79 05:43 1185 

SS-EPI1 monopolar 2 16200 55 02:58 2365 

SS-EPI2 bipolar 2 16200 67 02:58 2365 

SS-EPI3 monopolar 3 16200 48 03:31 2365 

SS-EPI4 bipolar 3 16200 59 03:31 2365 

SS-EPI5 monopolar 7 16200 45 04:35 2365 

SS-EPI6 bipolar 7 16200 52 04:35 2365 

SS-EPI7 monopolar off 16200 79 02:26 2365 

SS-EPI8 bipolar off 16200 96 02:26 2365 

4.1.3 ADC Calculations 

The analysis of the diffusion-weighted images was conducted using an in-house MATLAB 

script. The aim was to create a tool for automatic analysis of the collected data. In order to 

estimate the ADC value for each voxel, linear regression based on Equation (2.4) and the 

observed signals for the b-values was used. First of all, a logarithmic transformation is ap-

plied to Equation (2.4). For the measured value of the diffusion-weighted signal 𝑆1, 𝑆2, 𝑆3 for 

b-values 100,750,1500 s/mm2 denoted as 𝑏1, 𝑏2, 𝑏3, the system of normal equations for a 

case without constant takes the following form:  
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[
 
 
 
 
 
 ln (

𝑆1
𝑆0
)

ln (
𝑆2
𝑆0
)

ln (
𝑆3
𝑆0
)
]
 
 
 
 
 
 

= − [

𝑏1
𝑏2
𝑏3

] 𝐴𝐷𝐶, (4.1) 

where 𝑆0 = 𝑆(𝑏0 = 0) is a signal without diffusion-weighting. This can be simplified to: 

 𝑺 = −𝒃𝐴𝐷𝐶, (4.2) 

where 𝑺 = [𝑙𝑛 (
𝑆1

𝑆0
) , 𝑙𝑛 (

𝑆2

𝑆0
) , 𝑙𝑛 (

𝑆3

𝑆0
)] 𝑇, 𝒃 = [𝑏1, 𝑏2, 𝑏3]

𝑇. 

To estimate the value of ADC parameter, the following normal equations have to be solved: 

 𝒃 ∙ 𝒃 ∙ 𝐴𝐷𝐶 = −𝒃 ∙ 𝑺. (4.3) 

After transformation, the ADC parameter can be found by calculating the formula: 

 
𝐴𝐷𝐶initial = 

−𝒃 ∙ 𝑺

𝒃 ∙ 𝒃
. (4.4) 

In case of a negative value of the expression above, the final ADC value equal to zero is as-

signed to the affected pixels.  

In the next step, the dependency of the ADC on the temperature is taken into consideration. 

Therefore, the previously calculated ADC value is calibrated to the reference temperature of 

the 20C using the following transformation: 

 𝐴𝐷𝐶 = 𝑐1 ⋅  𝑒
𝑐2⋅(𝑇−𝑇0), (4.5) 

where 𝑐1 is the ADC at 𝑇0 = 20°C, 𝑐2 is a factor describing the temperature dependency, and 

𝑇 is an actual temperature of the phantom in degree Celsius. The value of 𝑐2 was taken from 

the study published by Wagner et al. (2017) who experimentally determined this as c2 = 

0.02995 for 30% K30-PVP-solution at 3T. A simple calculation reveals that temperature 

increase by one Celsius degree causes ADC increase of 30% K30-PVP-solution by 3% in 

comparison to the ADC value at 20°C. 

By rearranging terms in Equation (4.5), the calibrated ADC is given as: 

 
𝐴𝐷𝐶20°C = 

𝐴𝐷𝐶initial

exp(𝑐2⋅(𝑇−𝑇20°C))
. 4.6 
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The scale on the thermometer was with the graduation of 0.5°C, however the accuracy of the 

read-out based on the visual judgement was possible up to 0.125°. 

4.1.4 ROI Segmentation 

The shape of the scanned phantom was determined on the non-diffusion-weighted images, 

individually for each slice, using the Canny edge detection function provided by MATLAB. 

This approach extracts the edges of the objects in the picture in the multi-step process includ-

ing smoothing of the image with the use of a Gaussian filter, computing the gradient magni-

tude and orientation to locate the edges and estimate their strengths, applying the non-

maxima suppression to thin the edges, and finally performing the hysteresis thresholding to 

better extract the real edges (Canny 1986; Xin et al. 2012). To find the outline of an object, 

two thresholds are applied. The upper threshold results in less fake edges, but the outline 

might be discontinuous, therefore the lower threshold is intended to connect these strong 

edges, but gives as a result less accurate contours (Xin et al. 2012). In this work, the two 

thresholds, manually adjusted, are consistent among all the measurements. After the outline 

of the phantom is established, five regions of interest (ROIs) are automatically segmented 

inside each part of the phantom, which gives 10 ROIs in total per slice. An exemplary 

placement of the ROIs is shown in the Figure 4. The size of a ROI varies from slice to slice 

depending on the cross section width of the respective part of the phantom in an individual 

image. First of all, the lower border of the phantom is found on the middle slice image and is 

defined as a default value for all other slices. Then, each separate slice is divided into four 

regions within which the vertical edges of the phantom are defined. If not all four vertical 

edges can be found, then the slice is excluded from the analysis. In the next step, the upper 

border of the phantom is defined and the upper ROI in a shape of a segment of the circle is 

determined. Then, rectangular ROIs near the bottom, in the middle and near left and right 

vertical edge are placed. All ROIs are placed in a certain distance from the edges to reduce 

the influence of the artifacts. In case of overlapping ROIs or small cross-sectional area of the 

phantom, the slice is excluded from the analysis.  
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Figure 4. An example of the automatic ROIs placement in the non-diffusion weighted image. The ROIs on the 

left side of the picture are labeled as follows: 1 – left ROI, 2 – right ROI, 5 – upper ROI, 6 – lower ROI, 9 – 

middle ROI; on the right side: 3 – left ROI, 4 – right ROI, 7 – upper ROI, 8 – lower ROI, 10 – middle ROI. 

4.1.5 Statistical Analysis 

The variability of ADC was measured by the coefficient of variation (CV) which describes 

the relative dispersion of the data around the mean. CV is defined as (Dawson and Trapp 

2004): 

 𝐶𝑉 = 
𝜎

𝜇
∙ 100%, (4.7) 

where 𝜎 is the standard deviation and 𝜇 is the mean. 

The spatial and temporal variability of ADC is determined in multiple steps. At first, the 

overall ADC variability in the whole phantom is assessed by calculating the mean value in all 

the pixels from all the 10 ROIs and all the slices. Secondly, the general consistency of ADC 

in the left and in the right part of the phantom is assessed. Analogically, the pixels from all 5 

ROIs and all the slices are taken for calculations. Further, the spatial variability of the ADC 

in the 10 regions represented by 10 ROIs is assessed. To achieve this, the mean values are 

calculated taking a particular ROI’s pixels from all the slices. In each step, the stability of the 

values in the multiple measurements is assessed. 
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4.2 Breast Phantom II 

The homogeneity of ADC measurements in the longer period of time was assessed in the 

second round of measurements. The second experiment was conducted using an improved 

version of the phantom. The screw-on lid was replaced by a cover attached with six screws 

(see Figure 5) to make the filling with a liquid up to the cover easier and reduce the for-

mation of air-bubbles. The other technical details remained unchanged (see Section 4.1.1). 

 

Figure 5. Isometric view of a one part of the phantom with the improved cover. 

The six measurements were carried out weekly for 6 weeks by a medical technologist. The 

DWI protocol contained four variants of an EPI work-in-progress (WIP) sequence. The tech-

nical details of the used DWI sequences are listed in Table 2. The common settings for all 

the sequences are as follows: 4 b-values = 0, 100, 750, 1500s/mm2 with number of signal 

averages = 1, 3, 5, 10 respectively, field of view = 225mm × 360mm, acquisition matrix  

94 × 150, slice thickness 3 mm, number of slices = 50. The WIP3 and WIP4 are motion-

corrected versions of WIP1 and WPI2. However, for a static phantom like the proposed DWI 

breast phantom, it is expected that the sequences with motion correction will deliver similar 

results as the corresponding ones without motion correction. No saturation band is applied. 

The analysis of the data was conducted according to the procedure described in Sections 

4.1.3– 4.1.5. The automatic ROI segmentation process was adjusted to the size of the acqui-

sition matrix. 

Table 2. Details of the EPI WIP sequences used in the second round of the measurements. 

Sequence  Gradient  

design 

GRAPPA, 

factor 

TR  

[ms] 

TE 

[ms] 

TA 

 [min:s] 

BW 

[HZ/px] 

WIP1 monopolar 2 7320 55 02:41 2565  

WIP2 bipolar 2 7840 69 02:53 2564 

WIP3 monopolar 2 7320 55 02:41 2565  

WIP4 bipolar 2 7840 69 02:53 2564 
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4.3 Breast 

This section explains the methodological approach for investigating the influence of the re-

sidual fat signal on the ability of DKI-derived parameters to differentiate between benign and 

malignant breast lesions. The presented work is a retrospective analysis of the data prospec-

tively acquired in a two-institution MRI study. The prospective study received ethical ap-

proval (S-151/2014) from the Ethics Commission of the Medical Faculty of the University of 

Heidelberg. The inclusion criteria for the prospective study was a presence of a suspicious 

finding on X-ray screening mammography, classified as BI-RADS 4 or BI-RADS 5, fol-

lowed by indication for breast biopsy. All the patients with ambiguous lesion, after the pri-

mary mammography, underwent the clarification process incorporating ultrasound, clinical 

examination or magnification mammography. The MRI examination took place before the 

biopsy. The results of a core needle biopsy performed in the guidance of the ultrasound or X-

ray images served as a reference standard. 

In this retrospective research, the patients were excluded if their lesions were unrecognizable 

on the DWI images (23 patients) or due to the technical problems in the DWI acquisition  

(1 patient). In total, 198 patients with a single breast lesion were enrolled. 

4.3.1 Imaging Protocol 

The patients were scanned in one of the two study centers, equipped with 1.5T scanners. In 

the first study center Group A was scanned with the Ingenia MR scanner (Philips, Best, the 

Nederlands) using 2-channel breast loop coil and the elements of the spine coil in the table. 

In the second study center Group B was examined with the Aera MR scanner (Siemens, Er-

langen, Germany) using 18-channel breast coil. For all patients, the diffusion-weighted se-

quence was acquired in addition to the full diagnostic protocol consisting of T2-weighted and 

T1-weighted precontrast sequences and T1-weighted contrast enhanced sequence. The diffu-

sion-weighted images were acquired using 4 b-values 0, 100, 750 and 1500 s/mm2. The de-

tails of the MRI protocols are listed in the Table 3.  
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Table 3. Details of the used DWI sequences for breast lesion imaging.  

Feature Group A Group B 

scanner 1.5T Ingenia, Philips 1.5T Aera, Siemens 

b-value 0, 100, 750, 1500 s/mm2 0, 100, 750, 1500 s/mm2 

phase encoding direction RL AP 

fat suppression technique SPAIR SPAIR 

parallel imaging SENSE × 2.5 GRAPPA × 2 

acquisition bandwidth 2393 Hz/px 870 Hz/px 

readout single shot EPI readout segmented EPI with 3 

segments 

Field Of View (FOV) 340 mm × 400 mm 480 mm × 240 mm 

voxel size 2.5 mm × 2.5 mm  2.5 mm × 2.5 mm  

slice thickness 3 mm 3 mm 

TR 10.6 s 11.7 s 

TE 100 ms 80 ms 

 

4.3.2 Volume of Interest 

For each patient three ROIs were delineated manually by a postgraduate medical researcher 

in consensus with a board-certified radiologist using The Medical Imaging Interaction 

Toolkit (MITK, DKFZ, Heidelberg, Germany). At first, the three-dimensional segmentation 

of a lesion was performed on the highest b-value image. In some cases the lesion could not 

be identified on the b = 1500 s/mm2 image and therefore was delineated on the b = 750 

s/mm2 image. The ROI delineation on diffusion-weighted images was performed using the 

information about location described in the X-ray screening report and complementary T2-

weighted images. In addition, for each patient a second two-dimensional ROI in the fatty 

tissue area was manually delineated. The adipose tissue was identified on T2-weighted imag-

es, in the region free of the artifacts. The one-slice fat ROI was usually segmented on the 

contralateral breast like a mirror image of the lesion, keeping a similar distance from the 

coils, to mimic the sensitivity of the coils near the lesion. The third ROI was segmented for 

the estimation of background signal level. The quadratic ROI of size 10×10 pixels, was au-

tomatically placed in the corner of the DWI-image, 10 pixels from the edges, outside the 

patient’s body, on all slices. 
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4.3.3 DWI-Fitting Models to Evaluate the Influence of Residual Fat Signal 

To investigate the influence of the residual fat signal, the five fitting methods were evaluated 

and compared. For the sake of clarity, 𝐷1 − 𝐷5 denote the apparent diffusion coefficient and 

𝐾2 − 𝐾5 denote the apparent kurtosis coefficient. 

Method1: Firstly, the mono-exponential equation was used: 

 𝑆(𝑏) = 𝑆0 𝑒
−𝑏𝐷1 , (4.8) 

where 𝑆(𝑏) is the diffusion-weighted signal, 𝑆0 is the signal without diffusion-weighting, 𝑏 

is diffusion sensitizing factor. 

Method2: Secondly, the diffusion kurtosis equation was fitted: 

 
𝑆(𝑏) = 𝑆0 𝑒

−𝑏𝐷2+
1
6
𝑏2𝐷2

2𝐾2. (4.9) 

Method3: This method assumes that the signal from the adipose tissue is transferred to the 

lesion area in a result of the chemical shift in the phase encoding direction. Due to the low 

value of ADC of fat, fat signal can be considered constant for each b-value. Therefore, the 

measured signal, in the lesion area, can be approximated by equation: 

 
𝑆(𝑏) = 𝑆0 𝑒

−𝑏𝐷3+
1
6
𝑏2𝐷3

2𝐾3 + 𝑎 ∙ 𝜃(𝑏𝑚𝑎𝑥), (4.10) 

where 𝜃(𝑏𝑚𝑎𝑥) is the signal measured in the fatty tissue ROI at the maximal b-value = 

1500s/mm2 and 𝑎 = 0.1, 0.2, 0.3…1 is a factor moderating step-wise the contribution of the 

𝜃(𝑏𝑚𝑎𝑥)  to the overall measured signal. The assumptions of this method are illustrated in 

the Figure 6. 

S

b-value

ROI in the fatty tissue

𝑆 𝑏 = 𝑆0  𝑒
−𝑏𝐷+

1
6
𝑏2𝐷2𝐾

𝑎  𝜃

 

Figure 6. A conceptual plot of the signal decay in the lesion contaminated with the signal from adipose tissue due 

to the chemical shift artifact. It can be postulated that the almost constant signal measured at the higher b-values  

might come from the fat due to its low ADC value, and therefore build a peculiar background level 𝜃. Factor 𝑎 

describes the fraction of 𝜃 contributing to the measured signal in the lesion area. 
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Method4: In this approach, the phenomenological modification of the equation proposed by 

Jensen et al. (2005) was used. The 𝜂 factor denoting the noise background level in Equation 

(2.14) was replaced by 𝜃(𝑏𝑚𝑎𝑥) denoting the background signal from the chemical shift 

artefact: 

 

𝑆(𝑏) = √(𝑆0 𝑒
−𝑏𝐷3+

1
6
𝑏2𝐷3

2𝐾3)
2

+ 𝜃(𝑏𝑚𝑎𝑥)
2, (4.11) 

where 𝜃(𝑏𝑚𝑎𝑥) is the signal in the fatty tissue area at b-value = 1500s/mm2. The similar 

phenomenological extension with the term accounting for fat-related signal was primarily 

applied to radiomics model by Bickelhaupt et al. (2018). However, the direct influence of the 

correction term on the values of diffusion-kurtosis-derived coefficients has not been studied 

yet.  

Method5: This method considers a possible contamination of the pixels located nearby the 

ROI boarder with a signal from the abutted adipose tissue as a result of the partial volume 

effect (see Figure 7). In this case the contaminating signal comes from fat and water protons, 

its dependency on b-value is expected. The overall signal in the lesion can be represented as 

a sum of the fractions of the standard kurtosis equation and the signal from the fatty tissue of 

discarded absolute magnitude:  

 
𝑆(𝑏) = 𝑆0  [𝑓𝑒

−𝑏𝐷5+
1
6
𝑏2𝐷5

2𝐾5 + (1 − 𝑓)𝜃̃(𝑏)], (4.12) 

where 𝜃̃(𝑏) =
𝜃(𝑏)

𝜃(𝑏=0)
 and 𝑓 = 0.1, 0.2, 0.3…1 is a factor moderating the fractions of the 

signals. 

ROI

adipose tissue containing fat and water signal

lesion

 

Figure 7. Illustration of the contamination of the ROI with the adipose tissue lying nearby the border. The abutted 

pixels contain the signal from fat and water protons.   

The analysis of the DWI data was conducted using an in-house script written in MATLAB. 

The optimization algorithm “Trust Region” with constrained non-linear least square fitting 

was employed for the purpose of fitting. The curves were fitted to the mean of the measured 

signal for three b-values: 100, 750 and 1500 s/mm2. As a fitting option, the lower and upper 

boundary conditions were set to fulfill the requirements: 0 ≤ 𝐷𝑖 ≤ 3.5 μm
2/ms and 0 ≤
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𝐾𝑖 ≤ 3, according to the recommendation published in (Bickelhaupt et al. 2018). 𝑆0 was set 

as a free parameter and the measured signal for b = 0 was set as a starting point for the opti-

mization process. For adjusted methods 3-5, the mean value of the signal in the fatty tissue 

area was taken during the fitting process, with constant or changing value with the strength 

of diffusion weighting, according to the used approach. 

Moreover, the results delivered by the Method4 with the 𝜃(𝑏𝑚𝑎𝑥) factor accounting for re-

sidual fat related signal were compared with the original approach proposed by Jensen,  

Equation (2.14), accounting for background signal level, which is denoted in this thesis as 

Method4b. To do this, the mean value of the signal in the three-dimensional ROI at b-value 

= 1500s/mm2 was taken. 

4.3.4 Lesion-to-Background Ratio 

It may be expected that the proposed methods accounting for residual fat related signal 

should perform better than the standard methods in case of the lesions highly corrupted with 

signal from fat. It can be assumed that such lesions are characterized by the low contrast 

between the lesion and the adipose tissue on the high b-value image. To investigate this as-

sumption, a lesion-to-background ratio (LBR) was introduced. LBR was defined as a ratio of 

the mean signal intensity on the highest measured b-value image in the lesion ROI and the 

fat ROI, given by the following equation: 

 𝐿𝐵𝑅 = 
𝜇𝑡
𝜇𝑏

 (4.13) 

where 𝜇𝑡 is the mean value of the signal measured on the b-value = 1500 s/mm2 image in the 

lesion and 𝜇𝑏 the mean value of the signal measured on the b-value = 1500 s/mm2 image in 

the segmented fatty tissue area. Two thresholds were applied, to divide each of the two 

groups of patients (Group A and Group B) into the three subgroups representing low (LBR < 

1.5), middle (1.5 ≤ LBR < 2) and high lesion-to-background ratio (LBR ≥ 2).   

4.3.5 Statistical Analysis 

Multiple logistic regression was used as a classifier of malignancy and benignancy of the 

lesions. The diagnostic performance of the proposed logistic regression models was assessed 

by plotting Receiver Operating Characteristic (ROC) curve for each model. The accuracy of 

the predictions was assessed by value of Area Under the ROC Curve (AUC), as well as spec-

ificity and sensitivity level. 

A logistic regression model describes the probability of the malignancy of the lesion accord-

ing to the equation (David G. Kleinbaum 2002): 



Materials and Methods  

31 

 

 
𝑃 (𝐷 = 1 𝑋1, 𝑋2, … 𝑋𝑘) =

1

1 + 𝑒−(𝛼+∑ 𝛽𝑖𝑋𝑖
𝑘
𝑖=1 )

, (4.14) 

where 𝐷 indicates malignancy, 𝑋1, 𝑋2, up to 𝑋𝑘 are independent variables, 𝛼 and 𝛽𝑖 are lo-

gistic regression parameters. In this analysis, apparent diffusion coefficient and apparent 

diffusional kurtosis coefficient were taken as a predictor in logistic regression models.  

To assess the diagnostic performance of the diffusion and diffusion kurtosis parameters, the  

Receiver Operating Characteristic (ROC) curves were analyzed. ROC curve describes the 

relationship between false-positive rate and true-positive rate what relates to 1-specificity 

and sensitivity of the diagnostic test.  

Sensitivity is defined as the true positive fraction. It means it describes the accuracy of diag-

nosing malignancy among the patients with malignant lesions:  

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑠𝑖𝑐𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
. (4.15) 

Specificity describes the accuracy of diagnosing benignity among patients with benign le-

sions: 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑠𝑖𝑐𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑛𝑎𝑔𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
. (4.16) 

In analogy, 1-specificity is defined as false positive fraction and describes the rate of benign 

lesions wrongly diagnosed as malignant: 

 
1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑠𝑖𝑐𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑛𝑎𝑔𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
. (4.17) 

The perfect test has high specificity and high sensitivity that is low false-negative rate and 

low false-positive rate. p-values smaller than 0.05 were chosen as an indicator for statistical-

ly significant difference. 

4.4 Ovaries 

The focus of this chapter is on research methodology of effectiveness of DKI as a standalone 

modality for differentiation of sonographically indeterminate ovarian lesions.  

The research described in this dissertation was conducted using data gathered in a prospec-

tive single-institutional study. The study received ethical approval (S-337/2016) from the 

Ethics Commission of the Medical Faculty of the University of Heidelberg. The recruitment 

criteria for patient enrollment was the presence of sonographically indeterminate adnexal 

masses. From the collective of 84 patients, who were examined between November 2016 and 

December 2018 using MRI, 19 were excluded due to the non-visible adnexal lesion on MRI, 

2 patients received conservative treatment, 3 patients were lost to follow-up, 1 patient was 



Materials and Methods 

32 

 

scanned with different DWI sequence parameters. Finally, data from 21 patients with the 

bilateral ovarian lesion and data from 37 patients with a single lesion in the left or right ova-

ry were used in the main analysis. In total, 79 lesions were included. The reference standard 

used in this study was established by the histopathological findings obtained from surgical 

procedure performed on each patient. MRI examination was performed before surgery.    

Moreover, taking into account that certain types of benign lesions can lead to false-positive 

findings during DWI examination due to their relatively low ADC value,  the additional 

subanalysis of a reduced cohort of patients was also performed. The aim was to investigate 

the influence of these lesions on the overall performance of DKI in distinguishing between 

benign and malignant masses. According to the guidelines of the radiologist involved in this 

study, 30 lesions with following histopathological result were excluded: endometrioma, 

dermoid (mature cystic teratoma), corpus luteal cyst (hemorrhagic), mucinous cystadeno-

fibroma with associated mature teratoma. The reduced cohort of patients included 49 lesions.  

4.4.1 Imaging Protocol 

The MRI data were acquired using 3T scanner (Prisma, Siemens, Erlangen) equipped with 

16-channel body coil. In almost all cases, full diagnostic protocol comprising T1-weighted 

and T2-weighted sequence, diffusion-weighted sequence and enhanced T1-weighted sequence 

was applied. Two patients declined the application of contrast agent. The DWI sequence 

used six b-values: 0, 50, 100, 800, 1500 and 2000 s/mm2. The parameters are listed in Table 

4. In general, 60 slices were acquired. However, for some patients, the FOV had to be ex-

tended due to the large size of the lesion.   

Table 4. Technical details of DWI sequence used for imaging of ovarian lesions. 

Feature Values 

scanner 3.0T Prisma, Siemens 

b-value 0, 50, 100, 800, 1500, 2000 s/mm2 

fat suppression technique SPAIR 

parallel imaging GRAPPA × 2 

readout single shot EPI 

FOV 296 mm × 449 mm 

voxel size 1.2 mm × 1.2 mm  

slice thickness 3 mm 

TR 6.2 s 

TE 59 ms 
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4.4.2 Volume of Interest 

The manual delineation of the ROIs was conducted in MITK by two board-certified radiolo-

gists, blinded to the histopathology results. Due to the general large size of the lesions, only a 

single slice, with the highest signal intensity in the lesion area on the image with b = 1500 

s/mm2, was selected, which represents the highest diffusion restriction in the tissue. The le-

sion localization on DWI images was done in conjunction with T2-weighted images. In all 

cases the ROI was delineated directly on the image with b = 1500 s/mm2. However, if the 

signal on b = 1500 s/mm2 image was not strong enough to clearly identify the lesion, the 

contours were visually mapped to the edges on the lower b-value 800 s/mm2 image.   

 

4.4.3 Diffusion and Diffusion Kurtosis Fitting 

At first, in the analysis, the standard diffusion mono-exponential equation was applied: 

 𝑆(𝑏) = 𝑆0 𝑒
−𝑏𝐴𝐷𝐶 , (4.18) 

where ADC is the apparent diffusion coefficient, b diffusion sensitizing factor and 𝑆0 is the 

non-diffusion-weighted signal. The curve was fitted to the three b-values: 100, 800 and 1500 

s/mm2 for each voxel separately. During the fitting process 𝑆0 was set as a free parameter 

with a starting value of the measured signal at b = 0. Very low b-values were excluded from 

the fitting process to minimize the effect of IVIM. The highest b-value was omitted to reduce 

the effect of non-Gaussian diffusion. 

In the second step, the parameters of diffusion kurtosis fitting model were derived from 

equation: 

 
𝑆(𝑏) = 𝑆0 𝑒

−𝑏𝐷app+
1
6
𝑏2𝐷app

2 𝐾app , (4.19) 

where 𝐷𝑎𝑝𝑝 is the apparent diffusion coefficient and 𝐾𝑎𝑝𝑝 is the apparent kurtosis coeffi-

cient. For kurtosis-fitting four b-values were incorporated: 100, 800, 1500 and 2000 s/mm2. 

The low b-values were also not included in the fitting. Likewise, S0 was set as a free parame-

ter. 

The obtained parameter maps were further processed by excluding the pixels which did not 

satisfy the conditions: 0 < ADC < 3.5 mm2/s, 0 < Dapp < 3.5 mm2/s and 0 < Kapp < 3.0, in ac-

cordance with the suggestions published in (Bickelhaupt et al. 2018).   

4.4.4 Voxel Selection  

An ovarian mass can consist of both solid and fluid-filled components, however the first one 

is more concerning and therefore significant for calculation of DWI and DKI parameters. 

Although manual segmentation of solid parts allows precise extraction of relevant regions, it 
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can be time-consuming and therefore not feasible in the clinical routine. Owing to this fact, a 

simplified automatic voxel selection procedure was developed. Under assumption that strong 

signal on high diffusion-weighted images represents the diffusion restrictions in the solid 

part of the lesion, the threshold for the signal intensity was applied to select the brightest 

pixels. The primary threshold was set up to select 1% the pixels inside the ROI with the 

highest signal intensity on the image b = 1500 s/mm2. The selection of only 1% of the voxels 

was dictated by the fact that some lesions consisted mainly of large fluid-filled components 

and relatively small solid areas. On the other hand, in case of the small lesions, the additional 

restriction for the minimal total number of selected pixels was applied. That is, finally more 

than 10 pixels from the parameters map were taken into the further statistical analysis.  

For the sake of comparison, a supplemental analysis was conducted using 10% of the voxels 

with the highest signal intensity in the ROI in the b = 1500 s/mm2 image. 

4.4.5 Statistical Analysis 

To account for the possible correlation in outcomes between bilateral ovarian lesions of the 

some patient, the generalized linear mixed models (GLMMs) were applied. The difference in 

diffusion and diffusion kurtosis-derived parameters for benign and malignant lesions were 

tested using linear mixed model. Subsequently, the mixed logistic models with ADC, Dapp 

and Kapp as single predictor were built. Additionally, the multiple logistic mixed models were 

constructed to analyze the benefit of combining two predictors. In the built GLMMs the 

fixed effect is associated with diffusion and diffusion-kurtosis-derived parameters, whereas 

the random effect is associated with the variation in these parameters between left and right 

lesion in the patient. However, that the aim of the study was to analyze the relation of diffu-

sion and diffusion-kurtosis-derived parameters between malignant and benign lesions for the 

whole population of patients. Hence, the differences in the bilateral lesions of the individuals 

are treated rather as disruptive effect and are out of the area of interest of this work. The 

linear and logistic mixed models were constructed using the built-in GLIMMIX procedure in 

SAS. The ability to discriminate malignancy from benignity was assessed by analyzing ROC 

curves using SigmaPlot 14.0 (Systat Software Inc., San Jose, California). For all tests, p-

values ≤0.05 were considered as statistically significant. 
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5 Results 

 

The results chapter is divided into four parts. The first two Sections 5.1 and 5.2 present the 

results of the use of the developed phantoms for quality assurance in breast DWI (according 

to the methods described in Sections 4.1 and 4.2). Section 5.3 shows the results of the use of 

various fitting models for characterization of breast lesions (see Section 4.3). In the last sec-

tion of this chapter, the results of DKI in ovarian lesions are presented (see Section 4.4). 

5.1 Breast Phantom I 

In this section the results of the assessment of the homogeneity of ADC measurements with 

the use of the DWI breast phantom are presented. At first, the overall ADC value in the 

whole phantom is assessed. Then, the variability between the left and right part of the coil is 

evaluated. Finally, the spatial variability, represented by the values in the individual ROIs 

placed in the different regions of the phantom, is scrutinized. 

5.1.1 Variability of the Mean ADC Measured in the Whole Phantom  

At first, the mean ADC measured in the whole phantom, calculated from voxels in 10 ROIs 

from all slices was assessed. The sequence with parallel imaging and bipolar gradients 

showed higher relative variation (3.93%−4.59%) than the sequence with monopolar gradi-

ents (1.37%−1.53%). Similarly, for analogous sequences without parallel imaging − the CV 

was in the rage of 3.34%−4.15% and 1.47%−1.65%, respectively.  

Similarly, for EPI sequences, higher relative variation was observed for bipolar gradients 

than for monopolar gradients. At the same time, the relative variation in ADC was increasing 

with the higher acceleration factor of parallel imaging.  

Nevertheless, the relative variation of the ADC in the subsequent measurements was compa-

rable with the measurements for the same type of the sequence.  
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Table 5. The CV for the whole phantom over 5-day measurement and the mean ADC calculated in the single 

measurement for 5-day period. 

Sequence CV [%] in the 

whole phantom 

over 5 days 

mean ADC [μm2/ms] (min – max)  

in the single measurement  

for 5-day measurements period 

Left part of the phantom Right part of the phantom 

RESOLVE1 1.48 0.848–0.856 0.861–0.869 

RESOLVE2 4.21 0.882–0.894 0.833–0.836 

RESOLVE1 2nd 1.59 0.847–0.850 0.866–0.868 

RESOLVE2 2nd 4.20 0.874–0.884 0.831–0.833 

RESOLVE3 1.61 0.853–0.853 0.864–0.865 

RESOLVE4 3.80 0.888–0.891 0.842–0.834 

SS-EPI1 2.44 0.840–0.848 0.872–0.880 

SS-EPI2 5.09 0.847–0.856 0.923–0.932 

SS-EPI3 1.90 0.842–0.852 0.860–0.873 

SS-EPI4 4.50 0.856–0.867 0.915–0.921 

SS-EPI5 6.26 0.837–0.846 0.849–0.859 

SS-EPI6 8.69 0.838–0.845 0.906–0.913 

SS-EPI7 2.18 0.841–0.849 0.873–0.878 

SS-EPI8 2.33 0.850–0.851 0.884–0.887 

 

5.1.2 Variability between the Left and the Right Part of the Phantom 

In this section, the mean value was calculated from the pixels in 5 ROIs in all slices. For the 

RESOLVE sequence with monopolar gradients higher relative variation was observed in the 

right part of the phantom. In contrast, for the sequences with bipolar gradients, in majority of 

cases, an opposite trend was observed, that means higher relative variation in ADC was de-

tected in the left part of the phantom. Moreover, in all the cases with monopolar gradient, the 

mean ADC of the right part was slightly higher than in the left part of the phantom. Con-

versely, for sequences with bipolar gradient, the ADC value measured in the right part of the 

phantom was smaller than ADC in the left part.  

In all the analyzed types of the SS-EPI sequences, the relative variation in the right part of 

the phantom was always higher than in the left part. Additionally, in all the cases the mean 

ADC measured in the right part of the phantom was higher than in the left part, usually with 
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higher differences between the two parts of the phantom for sequences with bipolar gradi-

ents. When comparing sequences with the same value of the parallel imaging factor pair-

wisely, a higher CV was always observed for those with bipolar gradient compared to those 

with monopolar gradient.  

5.1.3 Spatial Variability within the Left and the Right Part of the Phantom  

In this part, the variability among 10 segmented ROIs, representing different internal regions 

in the phantom, is presented. For each measurement-day, the mean ADC was calculated for 

10 ROIs separately, taking the pixels from the three slices in the middle into account, which 

resulted in 50 values of mean ADC and 50 values of CV. 

For the RESOLVE sequence with parallel imaging and monopolar gradients, the relative 

variation in the individual ROIs was in the range of 0.38%–1.18% and was lower than for 

the bipolar gradients that was 0.68%–2.21%. The difference between the highest and the 

lowest calculated ADC was 0.031 μm2/ms for monopolar gradients and was four times 

smaller than for the bipolar gradients, which was equal to 0.125 μm2/ms. By averaging the 

ADC values for each ROI over 5-day measurements, for monopolar gradients, the minimal 

mean ADC of 0.844 μm2/ms was observed for the left ROI in the left part of the phantom. A 

maximal ADC value of 0.863 μm2/ms was observed for left ROI in the right part of the phan-

tom (Figure 8). For bipolar gradient, minimal mean ADC = 0.809 μm2/ms was calculated for 

the upper ROI in the right part of the phantom, whereas maximal ADC = 0.924 μm2/ms in 

the lower ROI in the left part. The dispersion of the differences in the single measurement 

between the 10 ROIs was much smaller for the monopolar gradients (0.019–0.025 μm2/ms) 

than for the bipolar gradients (0.109–0.121 μm2/ms). The ADC values measured over the 5 

days are presented in Figure 9.  
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Figure 8. RESOLVE1 sequence with monopolar diffusion gradients and parallel imaging with a reduction 

factor of 2. Plots shown from the left as follows: overall ADC in the left and right part of the phantom, ADC in 

the individual 5 ROIs segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the 

phantom. The x-axis indicates measurement days.  

 

 

Figure 9. RESOLVE2 sequence with bipolar diffusion gradients and parallel imaging with a reduction factor of 

2. Plots shown from the left as follows: overall ADC in the left and right part of the phantom, ADC in the individ-

ual 5 ROIs segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phantom. The 

x-axis indicates measurement days. 
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The second measurement of the sequences RESOLVE1 and RESOLVE2, repeated on the 

same day, showed similar values of CV (0.38%–1.18% vs. 0.68%–2.21% respectively). In 

both cases, a similar spread of the ADC values was observed, with maximal difference of 

0.032 μm2/ms for the monopolar gradient and a difference of 0.123 μm2/ms for the bipolar 

gradient. The mean ADC in the ROIs averaged over 5 measurements was in the range of 

0.848–0.869 μm2/ms for the monopolar (Figure 10) and 0.815–0.928 μm2/ms for bipolar 

diffusion gradient (Figure 11).  

 

 

Figure 10. Repeated measurement at the same day of RESOLVE1 sequence with monopolar diffusion gradients 

and parallel imaging with a reduction factor of 2. Plots shown from the left as follows: overall ADC in the left 

and right part of the phantom, ADC in the individual 5 ROIs segmented in the left part of the phantom, and ADC 

in the 5 ROIs in the right part of the phantom. The x-axis indicates measurement days. 
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Figure 11. Repeated measurement at the same day of RESOLVE2 sequence with bipolar diffusion gradients and 

parallel imaging with a reduction factor of 2. Plots shown from the left as follows: overall ADC in the left and 

right part of the phantom, ADC in the individual 5 ROIs segmented in the left part of the phantom, and ADC in 

the 5 ROIs in the right part of the phantom. The x-axis indicates measurement days. 

 

For the RESOLVE sequence without parallel imaging, for monopolar gradients the relative 

variation in individual ROIs calculated for the 5 time-points separately, varies between 

0.27% and 1.37% and was lower than for bipolar gradients which ranges from 0.40% to 

2.23%. The maximal mean ADC averaged over 5-day measurements for the monopolar gra-

dients was equal to 0.866 μm2/ms for the lower ROI in the right part of the phantom, where-

as the minimal was 0.840 μm2/ms for the left ROI in the left part (Figure 12). For bipolar 

gradients, the highest mean value of  0.903 μm2/ms was calculated for lower ROI in the left 

part of the phantom. The lowest value of 0.813 μm2/ms was found for the upper ROI in the 

right part (Figure 13). The difference between highest and lowest calculated ADC was 0.042 

μm2/ms for RESOLVE3 and was three times smaller than for RESOLVE4, which was equal 

to 0.118 μm2/ms. The differences between 10 ROIs in the single measurements were in the 

range of 0.022–0.032 μm2/ms and 0.072–0.115 μm2/ms, respectively. 
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Figure 12. RESOLVE3 sequence with monopolar diffusion gradients, without parallel imaging. Plots shown 

from the left as follows: overall ADC in the left and right part of the phantom, ADC in the individual 5 ROIs 

segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phantom. The x-axis 

indicates measurement days. 

 

 

Figure 13. RESOLVE4 sequence with bipolar diffusion gradients, without parallel imaging. Plots shown from 

the left as follows: overall ADC in the left and right part of the phantom, ADC in the individual 5 ROIs segmented 

in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phantom. The x-axis indicates 

measurement days. 



Results 

42 

 

Among single-shot EPI sequences, the highest CV was observed for the highest parallel im-

aging acceleration (GRAPPA = 7). The CV obtained for the sequence with monopolar gradi-

ents was in the range of  2.93%–9.47% and for bipolar gradients it was in the range of 

4.11%–10.97%. The differences between the highest and the lowest ADC values calculated 

in one of the 10 ROIs among 5 measurements were 0.091 and 0.150 μm2/ms, respectively. 

The differences among the ROIs in the single measurements were in the range of 0.075–

0.088 μm2/ms for monopolar and 0.132–0.145 μm2/ms for bipolar gradients. The mean ADC 

calculated individually for each ROIs over 5 days took the value between 0.801–0.885 

μm2/ms for monopolar (Figure 14) and 0.824–0.957 μm2/ms for bipolar gradients (Figure 

15).  

 

 

Figure 14. SS-EPI5 sequence with monopolar diffusion gradients and parallel imaging with a reduction factor 

of 7. Plots shown from the left as follows: overall ADC in the left and right part of the phantom, ADC in the 

individual 5 ROIs segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phan-

tom. The x-axis indicates measurement days. 
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Figure 15. SS-EPI6 sequence with bipolar diffusion gradients and parallel imaging with a reduction factor of 7. 

Plots shown from the left as follows: overall ADC in the left and right part of the phantom, ADC in the individual 

5 ROIs segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phantom. The x-

axis indicates measurement days. 

For the SS-EPI sequence with GRAPPA = 2 and GRAPPA = 3, CV calculated for each ROI 

and measurement separately, for monopolar gradients was in the range of  0.52%–1.66% and 

0.69%–1.52%, respectively. For bipolar gradients CV was higher in the range 0.55%–2.80% 

and 0.85%–2.55% respectively. The difference between the maximal and the minimal calcu-

lated ADC was, for monopolar gradients, equal to 0.065 μm2/ms for GRAPPA = 2 and 0.041 

μm2/ms for GRAPPA = 3. For bipolar gradients the differences were twice as high, i.e. 0.122 

μm2/ms and 0.105 μm2/ms, respectively. The mean ADC in individual ROIs, averaged over 

5-day measurements was for monopolar gradients in the range of 0.834–0.886 μm2/ms for 

GRAPPA = 2 (Figure 16) and 0.838–0.865 μm2/ms for GRAPPA = 3 (Figure 17). For bipo-

lar gradients the discrepancy was higher that means successively 0.840–0.953 μm2/ms 

(Figure 18) and 0.859–0.954  μm2/ms (Figure 19). Also the differences between the individ-

ual ROIs in the single measurements, which were in the range of 0.042–0.056 μm2/ms for 

GRAPP = 2  and 0.026–0.031 μm2/ms for GRAPPA = 3, were lower than 0.108–0.115 

μm2/ms  and 0.096–0.098 μm2/ms respectively for bipolar gradients.  
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Figure 16. SS-EPI1 sequence with monopolar diffusion gradients and parallel imaging with a reduction factor 

of 2. Plots shown from the left as follows: overall ADC in the left and right part of the phantom, ADC in the 

individual 5 ROIs segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phan-

tom. The x-axis indicates measurement days. 

 

 

Figure 17. SS-EPI3 sequence with monopolar diffusion gradients and parallel imaging with a reduction factor 

of 3. Plots shown from the left as follows: overall ADC in the left and right part of the phantom, ADC in the 

individual 5 ROIs segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phan-

tom. The x-axis indicates measurement days. 
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Figure 18. SS-EPI2 sequence with bipolar diffusion gradients and parallel imaging with a reduction factor of 2. 

Plots shown from the left as follows: overall ADC in the left and right part of the phantom, ADC in the individual 

5 ROIs segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phantom. The x-

axis indicates measurement days. 

 

Figure 19. SS-EPI4 sequence with bipolar diffusion gradients and parallel imaging with a reduction factor of 3. 

Plots shown from the left as follows: overall ADC in the left and right part of the phantom, ADC in the individual 

5 ROIs segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phantom. The x-

axis indicates measurement days. 

 



Results 

46 

 

For the SS-EPI sequence without parallel imaging, the relative variation in the individual 

ROI, considering separately each measurement, was comparable between monopolar (0.29% 

–0.96%) and bipolar (0.33%–0.91%) gradients. The difference between the maximal and the 

minimal observed ADC was 0.048 μm2/ms for monopolar and was slightly below 0.060 

μm2/ms for bipolar gradients, however the differences are much lower than for the sequences 

with parallel imaging. The difference between the ROIs in the single measurements were in 

the range of 0.036–0.042 μm2/ms for monopolar and 0.044–0.048 μm2/ms for bipolar gradi-

ents. The mean ADC value for particular ROIs are presented in Figure 20 for monopolar and 

in Figure 21 for bipolar diffusion gradient. 

 

 

Figure 20. SS-EPI7 sequence with monopolar diffusion gradients and without parallel imaging. Plots shown 

from the left as follows: overall ADC in the left and right part of the phantom, ADC in the individual 5 ROIs 

segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phantom. The x-axis 

indicates measurement days. 
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Figure 21. SS-EPI8 sequence with bipolar diffusion gradients and without parallel imaging. Plots shown from 

the left as follows: overall ADC in the left and right part of the phantom, ADC in the individual 5 ROIs segmented 

in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phantom. The x-axis indicates 

measurement days. 

 

In summary, the highest dispersion of ADC values, when considering the entire phantom, 

was observed for SS-EPI6 sequence with bipolar diffusion gradients and parallel imaging 

with a reduction factor of 7, and a maximum CV of 8.69%. The highest deviations in ADC 

value between the ROIs on the same side of the coil was observed also for the same se-

quence, resulting in CV of 8.42% for the right side of the coil and 6.70% for the left side. On 

the other hand, the lowest dispersion of ADC value in the entire phantom was observed for 

RESOLVE1 sequence with CV of 1.48%. The deviation between the ROIs on the same side 

of the coil was 1.48% for the right side of the coil and 0.78% for the left side of the coil.  

5.2 Breast Phantom II 

In this section the results of the second round of the measurements, using an improved ver-

sion of the phantom and new DWI protocol are presented. The general CV for the whole 

phantom, taking the pixels from 10 ROIs together, over all 5-day measurements was lower 

for monopolar than for bipolar gradients (3.74% vs. 4.31%). Furthermore, comparing the 

single measurements, the relative variation was in the range of 3.40%–4.14% and 4.04%–

4.61% respectively. 

For both sequences, higher variation was observed in the right part of the phantom. Thus, 

relative variation within 5 measurements was 3.36%–3.70% for monopolar and 3.85%–
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4.48% for bipolar gradients, whereas for the left part of the phantom it was as follows: 

1.26%–1.52% and 1.69%–2.14%. 

To analyze the differences between the internal regions of the phantom, the mean value was 

calculated for each of the 10 ROIs. CV among the ADC calculated for 10 ROIs and each of 

the 5 measurements was in the range of  0.57%–2.25% for monopolar and 0.67%–3.73% 

bipolar gradients. The difference between maximal and minimal ADC was 0.101 μm2/ms and 

was identical for both sequences. However, the difference in the single measurements be-

tween the 10 ROIs for monopolar gradients were lower than for bipolar gradients (0.051–

0.076 μm2/ms  vs. 0.071–0.093 μm2/ms). The mean ADC averaged over 5 measurements for 

each ROI was in the range of 0.836–0.899 μm2/ms for monopolar and 0.846–0.919 μm2/ms 

for bipolar gradients. The mean ADC in 10 ROIs is presented in Figure 22 for monopolar and 

Figure 23 for bipolar diffusion gradient and for analogous sequences with motion correction 

option in Figure 24 and Figure 25, respectively. 

 

 

Figure 22. WIP1 sequence with monopolar diffusion gradients and without parallel imaging. From the left are 

shown as follows: overall ADC in the left and right part of the phantom, ADC in the individual 5 ROIs segmented 

in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phantom. The x-axis indicates 

measurement days. 
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Figure 23. WIP2 sequence with bipolar diffusion gradients and without parallel imaging. From the left are 

shown as follows: overall ADC in the left and right part of the phantom, ADC in the individual 5 ROIs segmented 

in the left part of the phantom, and ADC in the 5 ROIs in the right part of the phantom. The x-axis indicates 

measurement days. The x-axis indicates measurement days. 

 

 

 

Figure 24. WIP3 sequence with monopolar diffusion gradients, without parallel imaging, but with the motion 

correction option. From the left are shown as follows: overall ADC in the left and right part of the phantom, ADC 

in the individual 5 ROIs segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the 

phantom. The x-axis indicates measurement days. 
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Figure 25. WIP4 sequence with bipolar diffusion gradients, without parallel imaging, but with the motion 

correction option. From the left are shown as follows: overall ADC in the left and right part of the phantom, ADC 

in the individual 5 ROIs segmented in the left part of the phantom, and ADC in the 5 ROIs in the right part of the 

phantom. The x-axis indicates measurement days. 

 

5.3 Breast Lesions 

This section presents the results of the use of the various fitting approaches in characteriza-

tion of suspicious mammography findings. Most of the results presented in this section were 

published by Mlynarska-Bujny et al. (2020). The first subsections are devoted to methods 

accounting for constant level of fat-related contamination, which do not change with b-value 

(see Equations (4.8)–(4.11)). In the above mentioned sections, only the case of the maximal 

fat signal contribution (a = 1) in Method3 is considered, what is denoted with two asterisks 

(Method3**). The full evaluation of the extent of contamination with fat-related signal using 

Method3 is showed in Section 5.3.6. Section 5.3.6 presents also results of the Method5, 

which accounts for contamination with fat-related signal depending on b-value. Almost all 

subsections present the results of the ROC analysis for logistic regression models with two 

predictors. Only in Section 5.3.2 the results show the ROC analysis for a single coefficient. 

According to the histopathological findings, the Group A consisted of 45 benign and 60 ma-

lignant lesions, whereas Group B of 32 benign and 61 malignant lesions. The median num-

ber of voxels of the benign lesions was 11 in Group A and 14 in Group B, whereas for ma-

lignant lesions 21 and 25, respectively.        
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5.3.1 Diffusion and Kurtosis Coefficients 

Table 6 summarizes the values of the obtained diffusion and diffusion kurtosis coefficients. 

For methods 1–4, the diffusion coefficient Di was significantly lower in malignant lesions 

than in benign lesions (p < 0.001). On the contrary, the diffusion kurtosis coefficient Ki in 

malignant lesions was significantly higher (p < 0.001) than in benign lesions. The graphical 

representation of the distribution of values in the box-plot graphs is presented in Figure 26. It 

can be observed that the values of diffusion and diffusion kurtosis coefficients are more dis-

persed in Group A than in Group B. Looking at the median value, one can conclude that the 

methods applying fat-related correction factor result in a higher diffusion coefficient and 

lower diffusion kurtosis coefficient than in case of standard methods.   

     

Figure 26. Graphical representation of diffusion Di and diffusion kurtosis Ki coefficients derived by fitting meth-

ods 1–4 for Group A (upper row) and Group B (lower row). Reproduced from (Mlynarska-Bujny et al. 2020). 
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Table 6. Diffusion and diffusion kurtosis coefficients derived by fitting methods 1–4; (b – benign lesions, m – 

malignant lesions). 

 Group A Group B 

 
mean std median min max mean std median min max 

D1b 1.04 0.56 0.89 0.25 2.51 1.08 0.32 1.02 0.68 2.05 

D1m 0.58 0.26 0.62 0.00 1.11 0.76 0.20 0.77 0.26 1.38 

D2b 1.52 0.73 1.44 0.25 3.50 1.67 0.46 1.54 0.95 2.91 

D2m 0.95 0.46 1.00 0.00 1.99 1.14 0.25 1.13 0.69 2.03 

D3b
** 1.98 0.70 1.89 0.65 3.50 2.15 0.56 2.09 0.96 3.50 

D3m
** 1.37 0.59 1.35 0.25 3.14 1.47 0.34 1.41 0.82 2.32 

D4b 1.61 0.70 1.51 0.45 3.50 1.76 0.45 1.66 0.95 3.09 

D4m 1.04 0.48 1.09 0.00 2.31 1.21 0.26 1.20 0.73 2.04 

K2b 1.05 0.65 0.96 0.00 2.80 1.03 0.27 0.99 0.54 1.55 

K2m 1.56 0.72 1.43 0.00 3.00 1.25 0.49 1.20 0.00 3.00 

K3b
** 0.33 0.39 0.18 0.00 1.16 0.38 0.25. 0.40 0.00 0.82 

K3m
** 0.98 0.74 0.90 0.00 3.00 0.61 0.35 0.71 0.00 1.33 

K4b 0.54 0.53 0.47 0.00 1.71 0.67 0.28 0.70 0.00 1.13 

K4m 1.25 0.74 1.18 0.00 3.00 0.94 0.44 1.00 0.00 1.79 

 

5.3.2 ROC Analysis of Di and Ki 

At first, the diagnostic performance of the diffusion and diffusional kurtosis coefficients as 

single predictors was analyzed. 

 

Figure 27. ROC curves for diffusion (a) and kurtosis coefficients (b) for all patients derived by fitting  

methods 1–4. 
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Figure 27 shows the ROC curves for diffusion and diffusional kurtosis coefficients, taking 

the entire study collective into account. The ROC analysis performed for single parameter 

revealed no statistically significant differences in AUC between the Di, while for Ki the dif-

ferences could be observed between Method2 and Method4 (0.76 vs. 0.70, p = 0.049). At the 

cut-off point for sensitivity 95% the specificity for diffusion coefficients oscillated around 

40%, whereas for diffusion kurtosis coefficients the specificity was rather low. The ROC 

statistic is summarized in Table 7.  

 

Table 7. ROC statistics for Di and Ki . In the brackets, 95% confidence intervals are shown. 

  Di Ki 

Method AUC Specificity* AUC  Specificity*  

1 0.77 [0.70–0.84] 44% [33%–56%] - - 

2 0.78 [0.70–0.85] 40% [29%–52%] 0.70 [0.63–0.78] 13% [6%–23%] 

3** 0.79 [0.72–0.85] 38% [27%–49%] 0.75 [0.68–0.82] 12% [5%–21%] 

4 0.79 [0.72–0.85] 39% [28%–51%] 0.76 [0.69–0.83] 17% [9%–27%] 

*Specificity at the cut-off point for 95% sensitivity 

**results for the maximal fat signal contribution (a = 1) 

 

5.3.3 ROC Analysis of Multiple Logistic Regression Models 

The diagnostic accuracy improved dramatically after combining diffusion and diffusion kur-

tosis coefficients in logistic regression model with two predictors. As shown in Table 8, the 

highest AUC was observed for both methods with fat correction factor. The differences in 

AUC between Method3** and standard Method1 or Method2 were statistically significant  

(p < 0.015). For Method4, the difference was statistically significant when compared with 

Method1 (p = 0.020), but for Method2 it was at the margin of statistical significance  

(p = 0.068). No statistically significant difference was observed between Method3 and 

Method4. At the cut-off point for 95% sensitivity, the highest specificity of 52% (95%CI 40–

63) was observed for Method4.  

Next, the analysis by the study site was performed. In Group A it reveals the highest AUC 

for Method3** (0.86 (95%CI 0.79–0.93)) and Method 4 (0.85 (95%CI 0.78–0.93)). However, 

in a pairwise comparison statistically significant differences in AUC can be observed be-

tween Method4 and both standard approaches (p < 0.035). At the cut-off point at 95% sensi-

tivity, Method4 presents the highest specificity of 58% (95%CI 42–72) in comparison to 

49% (95%CI 34–64) for Method3**, 33% (95%CI 20–49) for diffusion kurtosis and 38% 
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(95%CI 24–53) for standard diffusion equation. Although Method4 also presented the high-

est specificity at the 95% sensitivity among all fitting methods in the Group B, no statistical-

ly significant differences in AUC between the models with fat correction factor and standard 

fitting approaches were observed for this cohort of patients.  

  

 

Figure 28. ROC curves for fitting methods 1–4. Reproduced from (Mlynarska-Bujny et al. 2020). 

Table 8. ROC statistics for logistic regression with two predictors – diffusion and diffusion kurtosis coefficient 

(fitting Methods 2–4) and diffusion coefficient as a single predictor (Method1).  95% confidence interval in the 

brackets. 

AUC [95%CI] 

Method All Group A Group B 

1* 0.77 [0.70–0.84] 0.76 [0.66–0.86] 0.82 [0.73–0.91] 

2 0.79 [0.72–0.86] 0.77 [0.68–0.87] 0.89 [0.82–0.97] 

3** 0.85 [0.79–0.90] 0.85 [0.78–0.93] 0.87 [0.80–0.94] 

4 0.85 [0.80–0.91] 0.86 [0.78–0.93] 0.89 [0.82–0.96] 

Specificity at the 95% sensitivity [95%CI] 

Method All patients Group A Group B 

1* 44% [33%–56%] 38% [24%–53%] 44% [26%–62%] 

2 38% [27%–49%] 33% [20%–49%] 47% [29%–65%] 

3** 45% [34%–57%] 49% [34%–64%] 41% [24%–59%] 

4 52% [40%–63%] 58% [42%–72%] 50% [32%–68%] 

*results for logistic regression with diffusion coefficient as a single predictor  
**results for the maximal fat signal contribution (a = 1) 
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5.3.4 Lesion-to-Background Ratio 

As a next step, the patients were divided into the three subgroups according to the lesion-to-

background ratio (Equation (4.13)) using two thresholds of 1.5 and 2.0 (LBR < 1.5, 1.5 ≤ 

LBR < 2 and LBR ≥ 2). The thresholds were set up in such a way to get an equal number of 

the patients in the subgroups. The descriptive statistics of LBR parameter were summarized 

in Table 9.  

The ROC curves for multiple logistic regression models with diffusion and diffusion kurtosis 

coefficient as predictors are presented in Figure 29. At first, let us take into consideration the 

subgroups with the low LBR. The ROC curves analysis showed the highest AUC for Meth-

od4 for the full cohort of patients. In the individual analysis by the study site, in the Group A 

the differences in AUC between standard and fat-corrected methods are even more promi-

nent, albeit not statistically significant like also in the case of the full cohort. Notwithstand-

ing, at the cutoff points yielding around 90% sensitivity, in the Group A the highest speci-

ficity was observed for Method4 (see Figure 29). However, in the Group B the highest sensi-

tivity was found for standard Method2, followed by Method4. It is worth mentioning that 

85% of the lesions in the subgroup with the low LBR in the Group A were poorly visible on 

b = 1500 s/mm2 image and therefore segmented on b = 750 s/mm2 image. In the Group B it 

was only 44%. The proportion of benign lesions in the subgroups is decreasing with LBR 

value, which is consistent with the expectations as malignant lesions present higher signal on 

high b-value DWI. The differences in AUC between the methods accounting for residual fat 

signal and standard diffusion and diffusion kurtosis approaches decrease for the patients with 

middle LBR, whereas for high LBR patients no additive effect of correction factor was ob-

served. The AUC values are summarized in Table 9.  

Table 9. Descriptive statistics of the LBR values for the subgroups obtained by LBR thresholds. 

Group A mean ± std min max benign malignant 

LBR < 1.5 1.21 ± 0.16 0.86 1.47 22 13 

1.5 ≤ LBR < 2 1.74 ± 0.15 1.54 1.98 13 13 

LBR ≥ 2 2.78 ± 0.91 2.03 6.41 10 34 

Group B mean ± std min max benign malignant 

LBR < 1.5 1.28 ± 0.14 0.93 1.49 16 11 

1.5 ≤ LBR < 2 1.77 ± 0.14 1.51 1.99 10 18 

LBR ≥ 2 2.50 ± 0.44 2.00 3.74 6 32 
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Figure 29. ROC curves for multiple logistic regression models with diffusion and diffusion kurtosis coefficients 

as predictors for patients divided into three groups according to LBR. In the first column are ROC curves for all 

patients, in the second for Group A only and in the third for Group B.  
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Table 10. AUC for logistic regression over 𝐷𝑖 and 𝐾𝑖 for the different LBR subgroups. 95% confidence intervals 

in the brackets. 

 
All Group A Group B 

Method LBR < 1.5 

1* 0.80 [0.69–0.91] 0.81 [0.66–0.95] 0.82 [0.62–1.03] 

2 0.78 [0.67–0.90] 0.78 [0.62–0.94] 0.88 [0.71–1.04] 

3** 0.80 [0.69–0.91] 0.85 [0.72–0.98] 0.74 [0.54–0.95] 

4 0.82 [0.71–0.93] 0.87 [0.75–0.99] 0.85 [0.69–1.01] 

Method 1.5 ≤ LBR < 2.0 

1* 0.78 [0.64–0.92] 0.74 [0.54–0.94] 0.92 [0.79–1.05] 

2 0.83 [0.71–0.95] 0.78 [0.58–0.98] 0.92 [0.82–1.02] 

3** 0.83 [0.71–0.96] 0.80 [0.61–0.99] 0.94 [0.87–1.02] 

4 0.83 [0.71–0.96] 0.78 [0.58–0.97] 0.94 [0.85–1.03] 

Method LBR ≥ 2.0 

1* 0.78 [0.65–0.91] 0.81 [0.65–0.96] 0.82 [0.68–0.97] 

2 0.83 [0.72–0.94] 0.88 [0.76–1.00] 0.83 [0.64–1.02] 

3** 0.80 [0.68–0.92] 0.84 [0.69–0.98] 0.81 [0.63–1.00] 

4 0.82 [0.70–0.93] 0.84 [0.70–0.99] 0.82 [0.63–1.02] 

*results for logistic regression with diffusion coefficient as a single predictor  

**results for the maximal fat signal contribution (a = 1) 

5.3.5 Accounting for Noise Contamination  

In this subsection the results of the adapted approach accounting for residual fat-related sig-

nal, given by Equation (4.11), are compared with the original method applying correction 

factor for background noise, given by Equation (2.14). As already mentioned in Chapter 4, 

this comparison is possible only for the patients from Group B. The method accounting for 

noise contamination is denoted as Method4’. As an estimation of the background noise level, 

the mean value in the third ROI was taken.  

 

Table 11 summarizes the values of diffusion and diffusion kurtosis coefficients obtained 

with Method4’. When comparing these values with Table 6 it can be observed that the diffu-
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sion coefficients derived by Method4’ seem to have slightly lower values than these derived 

by Method4, but are still slightly higher than the diffusion coefficient obtained with Meth-

od2. On the other hand, the diffusion kurtosis coefficients derived by Method4’ seem to have 

slightly higher values than these derived by Method4, but lower than these obtained by 

Method2. However, the ROC analysis for multiple logistic regression with diffusion and 

diffusion kurtosis coefficient derived by Method4’ revealed the AUC of 0.89 (95%CI 0.82–

0.97) and the specificity of 53% (95%CI 35–71) at the cut-off point at the 95% sensitivity. 

This results in the same AUC value and slightly higher specificity than these achieved with 

Method4 and Method2 (see Table 8).   

 

Table 11. Statistics of diffusion and diffusion kurtosis parameters derived by Method4’ with primary noise cor-

rection factor; (b – benign lesions, m – malignant lesions).   

Group B 

 
mean std median min max 

D4‘b 1.72 0.45 1.57 0.95 2.99 

D4‘m 1.17 0.25 1.15 0.72 2.03 

K4‘b 0.90 0.21 0.86 0.49 1.32 

K4‘m 1.10 0.45 1.10 0.00 2.27 

 

5.3.6 Fractionated Fat-Related Signal Contribution 

 

This subsection shows the results obtained with Method3 and Method5. At first, the results 

obtained with Method3, with the a factor varying from 0.1 to 1.0 with 0.1 step size, are 

shown. The increasing value of weighting factor a corresponds to the higher contribution of 

the fat signal into the overall signal measured in the lesion area. Table 12 summarizes the 

ROC analysis for logistic regression models with diffusion and diffusion kurtosis coeffi-

cients as predictors. For the full cohort of patients, the highest AUC was observed for the 

highest a factor. Moreover, the AUC values increase with the increasing a factor. In the in-

dividual analysis by the study side, in Group A, also incorporating higher fraction of the fat 

signal into the signal decay fitting equation results in the higher AUC. On the other hand, in 

Group B the highest a factor revealed the smallest AUC, whereas the maximal AUC was 

found for the middle range a factor. 
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Table 12. AUC values for Method3 with varying fat contribution.   

 

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

All 0.79 0.80 0.81 0.81 0.82 0.83 0.84 0.85 0.85 0.85 

Group A 0.78 0.79 0.80 0.80 0.81 0.83 0.85 0.85 0.85 0.85 

Group B 0.89 0.89 0.89 0.90 0.90 0.90 0.89 0.89 0.88 0.87 

 

In Method5, increasing value of the weighting factor f expresses the decreasing contribution 

of the relative residual fat signal to the overall signal measured in the lesion area. Table 13 

shows the obtained AUC value for multiple logistic regression model with D5 and K5 as pre-

dictors. In the full cohort study, as well as in the individual analysis by the study site, the 

maximal AUC value was reached for the f = 1 which corresponds to the Method2 without fat 

correction factor.  

 

Table 13. AUC values for models with fractionated fat contribution. Higher f-value corresponds to the higher 

contribution from the signal in lesion and lower from fatty tissue area. f = 1 relates to the entire contribution from 

signal in the lesion.  

 

f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

All 0.59 0.61 0.63 0.69 0.74 0.75 0.77 0.78 0.79 0.79 

Group A 0.67 0.68 0.69 0.70 0.70 0.71 0.74 0.75 0.77 0.77 

Group B 0.77 0.78 0.80 0.81 0.83 0.82 0.84 0.86 0.88 0.89 

5.4 Ovarian Lesions 

This section is devoted to the results of the study analyzing the performance of DKI in dif-

ferentiation of benign from malignant ovarian lesions. Most of the results presented here 

were published by Mokry et al. (2020). Histopathological examination performed on resect-

ed ovarian tissue resulted in 62 benign and 17 malignant lesions. The following subsections 

5.4.1–5.4.2 present the results of the analysis based on the selected 1% of the voxels with the 

highest intensity on the b = 1500 mm2/s images. Sections 5.4.3–5.4.4 show the results of an 

analogical analysis for 10% of the voxels with the highest intensity on the b = 1500 mm2/s 

images. Subsection 5.4.5 is devoted to the results obtained for a reduced cohort of patients. 

5.4.1 Diffusion and Diffusional Kurtosis Parameters – 1% of the Voxels 

Table 14 presents the summary statistics of voxels used in the calculations of the DWI and 

DKI coefficients.  
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Table 14. Summary statistics of the 1% voxel fraction used in calculations of parameters derived by diffusion and 

diffusion kurtosis fitting model, expressed as percentage and numbers. 

 benign  

% of voxels 

malignant  

% of voxels 

benign 

number of voxels 

malignant  

number of voxels 

 median 

[min, max] 

median 

[min, max] 

median 

[min, max] 

median 

[min, max] 

ADC  0.98 

[0.55, 4.15] 

0.96 

[0.86, 6.36] 

14 

[11, 121] 

23 

[11, 84] 

Dapp, Kapp 0.96 

[0.46, 3.56] 

0.94 

[0.69, 6.36] 

13 

[11, 119] 

23 

[11, 84] 

 

The distribution of diffusion and kurtosis coefficients is shown in Figure 30. The average 

difference in DWI-derived and DKI-derived parameters between benign and malignant le-

sions was calculated using a linear mixed model, and is summarized in Table 15. The ADC 

in malignant lesions was on average lower by 0.45 µm²/ms (95%CI 0.11–0.78) than in be-

nign lesions. Similarly, the Dapp was on average lower by 0.55 µm²/ms (95%CI 0.12–0.98) in 

malignant lesions in comparison to the benign ones. On the contrary, the kurtosis coefficient 

in malignant lesions was on average higher by 0.27 (95%CI 0.14–0.41) than in benign le-

sions. All differences were statistically significant (p < 0.02).   

 

Figure 30. Distribution of ADC parameter (a) and DKI-derived parameters (b and c) in benign and malignant 

lesions for 1% the voxels. Reproduced, with permission, from (Mokry et al. 2020). 
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Table 15. Statistics of the parameters derived by diffusion and diffusion kurtosis fitting model for 1% the voxels 

 benign malignant difference derived by linear mixed 

model 

p* 

 median  

[min, max] 

median  

[min-max] 

average difference between malig-

nant and benign [95%CI] 

 

ADC 

[µm2/ms] 

1.13 

 [0.35, 2.63] 

0.74 

 [0.52, 1.44] 

-0.45 

 [-0.78, -0.11] 

0.011 

Dapp 

[µm2/ms] 

1.45 

 [0.44, 3.34] 

0.98  

[0.63, 2.12] 

-0.55  

[-0.98, -0.12] 

0.016 

Kapp 0.65 

 [0.44, 1.43] 

1.01  

[0.69, 1.30] 

0.27  

[0.14, 0.41] 

0.0003 

 

   

5.4.2 Mixed Logistic Model – 1% of the Voxels 

The statistics of the ROC curves (Figure 31) based on the parameters derived by mixed lo-

gistic model with DWI-derived and DKI-derived parameters is summarized in Table 16. 

 

Figure 31. ROC curves for 1% of the voxels (a – single predictor model, b – two predictors model).  Reproduced, 

with permission, from (Mokry et al. 2020). 
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Table 16. Summary of diagnostic performance of mixed logistic models with diffusion and kurtosis coefficient as 

predictors in differentiating malignant from benign ovarian lesions for 1% the voxels.  

MLM  

parameters   

AUC p* Sensitivity 100% 

(CI95% 80-100) 

Sensitivity 94% 

(CI95% 71-100) 

Sensitivity 

88% (CI95% 

64-99) 

ADC 0.78 

(CI95% 0.67–0.89) 
0.047 

27% 

(CI95% 17–40) 

60% 

(CI95% 46–72) 

68% 

(CI95% 55–79) 

Dapp 0.77 

(CI95% 0.66–0.89) 
0.053 

21% 

(CI95% 12–33) 

55% 

(CI95% 42–68) 

65% 

(CI95% 51–76) 

Kapp  0.85 

(CI95% 0.77–0.94) 
– 

55% 

(CI95% 42–68) 

74% 

(CI95% 62–84) 

76% 

(CI95% 63–86) 

Kapp+Dapp 0.85 

(CI95% 0.77–0.94) 
1.00 

47% 

(CI95% 34–60) 

74% 

(CI95% 62–84) 

77% 

(CI95% 65–87) 

Kapp+ADC 0.85 

(CI95% 0.77–0.94) 
0.89 

48% 

(CI95% 36–61) 

74% 

(CI95% 62–84) 

77% 

(CI95% 65–87) 

*p-value for AUCs comparison to AUC for Kapp 

 

Among the mixed logistic models with single predictor, kurtosis coefficient achieved the 

highest AUC value of 0.85 (CI95% 0.77–0.94) in comparison to apparent diffusion coeffi-

cient 0.78 (CI95% 0.67–0.89) and diffusion kurtosis coefficient with AUC of 0.77 (CI95% 

0.66–0.89). The difference in AUC between Kapp and ADC is statistically significant (p = 

0.047), but between Kapp and Dapp slightly outside the accepted statistical significance level (p 

= 0.053). Aiming for a sensitivity of 100% (CI95% 80-100), the corresponding specificity 

was 27% (CI95% 17–40) for ADC and 21% (CI95% 12–33) for Dapp, whereas for Kapp the 

sensitivity was 55% (CI95% 42–68). Combining Kapp with ADC or Dapp by building GLMM 

models with two predictors, did not improve the AUC and resulted in a lower specificity at 

the 100% sensitivity in comparison to Kapp alone. 

  

5.4.3 Diffusion and Kurtosis Parameters – 10% of the Voxels 

Summary statistics of the number of pixels used for calculations when 10% of the voxels 

were selected is presented in Table 17. 
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Table 17. Summary statistics of the 10% voxel fraction used in calculations of parameters derived by diffusion 

and diffusion kurtosis fitting model, expressed as percentage and numbers. 

 benign  

% of voxels 

malignant  

% of voxels 

benign 

number of voxels 

malignant  

number of voxels 

 median 

[min, max] 

median 

[min, max] 

median 

[min, max] 

median 

[min, max] 

ADC  9.09  

[3.84, 9.98] 

9.70  

[8.14, 9.94] 

117.5 

 [31, 1160] 

235  

[17, 889] 

Dapp, Kapp 8.36  

[1.77, 9.89] 

9.58 

 [6.98, 9.94] 

97  

[12, 1035] 

233  

[17, 885] 

 

The ADC in malignant lesions was on average lower by 0.56 (95%CI 0.18–0.93) than in 

benign lesion, whereas Dapp was on average lower by 0.62 (95%CI 0.21–1.02). On the con-

trary, the Kapp was on average higher by 0.21 (95%CI 0.073–0.34) in malignant lesions than 

in the benign ones. All differences in parameters between benign and malignant lesions were 

statistically significant (p<0.001). The summary statistics of the parameters is presented in 

Table 17. The distribution of parameters is shown in Figure 32. 

 

Figure 32. Distribution of ADC parameter (a) and DKI-derived parameters (b and c) in benign and malignant 

lesions for 10% the voxels. Reproduced, with permission, from (Mokry et al. 2020). 
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Table 18. Statistics of the parameters derived by diffusion and diffusion kurtosis fitting model for 10% the voxels 

 benign malignant difference derived by linear mixed model p* 

 median  

[min, max] 

median  

[min, max] 

average difference between malignant 

and benign [95%CI] 

 

ADC 

[µm2/ms] 

1.38 

[0.41, 2.81] 

0.82 

[0.51, 1.68] 

-0.56 

[-0.93, -0.18] 

0.0053 

Dapp 

[µm2/ms] 

1.80 

[0.52, 3.39] 

1.07 

[0.66, 2.24] 

-0.62 

[-1.02, -0.21] 

0.0048 

Kapp 0.62 

[0.40, 1.55] 

0.86 

[0.57, 1.28] 

0.21 

[0.073, 0.34] 

0.0043 

 

5.4.4 Mixed Logistic Model – 10% of the Voxels 

For the mixed logistic model with single predictor, the highest ROC AUC of 0.85 (CI95% 

0.75–0.95) was observed for Kapp, whereas the AUC for ADC was 0.80 (CI95% 0.70–0.91) 

and for Dapp 0.80 (CI95% 0.69–0.91) but the differences where not statistically significant 

(0.06<p<0.08).  For the cut-off points at the sensitivity 100%, the specificity of ADC and 

Dapp was 29% (CI95% 18–42) and for Kapp was 32% (CI95% 21–45). The addition of ADC or 

Dapp as a second predictor to Kapp did not result in better performance. The ROC curves are 

presented in Figure 33 . 

 

Figure 33. ROC curves for 10% of the voxels (a – single predictor model, b – two predictors model).  Repro-

duced, with permission, from (Mokry et al. 2020). 
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Table 19. Summary of diagnostic performance of mixed logistic models with diffusion and kurtosis coefficient as 

predictors in differentiating malignant from benign ovarian lesions for 10% the voxels. 

MLM  

parameters 

AUC p* Sensitivity 100% 

(CI95% 80-100) 

Sensitivity 94% 

(CI95% 71-100) 

Sensitivity 88% 

(CI95% 64-99) 

ADC 0.80 

(CI95% 0.70–0.91) 
0.06 

29% 

(CI95% 18–42) 

56% 

(CI95% 43–69) 

68% 

(CI95% 55–79) 

Dapp 0.80 

(CI95% 0.69–0.91) 
0.08 

29% 

(CI95% 18–42) 

55% 

(CI95% 42–68) 

65% 

(CI95% 51–76) 

Kapp  0.85 

(CI95% 0.75–0.95) 
– 

32% 

(CI95% 21–45) 

61% 

(CI95% 48–73) 

81% 

(CI95% 69–90) 

Kapp+Dapp 0.83 

(CI95% 0.73–0.94) 
0.15 

29% 

(CI95% 18–42) 

58% 

(CI95% 45–70) 

73% 

(CI95% 60–83) 

Kapp+ADC 0.85 

(CI95% 0.75–0.95) 
0 

32% 

(CI95% 21–45) 

61% 

(CI95% 48–73) 

81% 

(CI95% 69–90) 

*p-value for AUCs comparison to AUC for Kapp 

5.4.5 Reduced Cohort of Patients 

This subsection is devoted to the results obtained for the reduced cohort of patients compris-

ing 49 lesions. For the selected DWI- and DKI-derived parameters under investigation, the 

average differences between the malignant and benign lesions were more pronounced in the 

reduced cohort when comparing with the full cohort of patients, which is in line with expec-

tations. This observation is valid for both analyses based on the selected 1% and 10% the 

voxels in the ROI (Table 20 and Table 22).  

  



Results 

66 

 

Table 20. Statistics of the parameters derived by diffusion and diffusion kurtosis fitting model for the reduced 

cohort of patients for 1% the voxels. 

 benign malignant difference derived by linear mixed model p* 

 median  

[min, max] 

median  

[min, max] 

average difference between malignant and 

benign [95%CI] 

 

ADC 

[µm2/ms] 

1.35 

[0.35, 2.63] 

0.74 

[0.52, 1.44] 

-0.62 

[-1.00, -0.24] 

0.0040 

Dapp 

[µm2/ms] 

1.74 

[0.44, 3.34] 

0.98 

[0.63, 2.12] 

-0.78 

[-1.28, -0.29] 

0.0050 

Kapp 0.61 

[0.44, 1.19] 

1.01 

[0.69, 1.30] 

0.32 

[0.18, 0.46] 

0.0004 

 

The results of the ROC analysis for the reduced number of patients for the main analysis 

based on the selected 1% the voxels in the ROI is summarized in Table 21. 

 

Table 21. Summary of diagnostic performance of mixed logistic models with diffusion and kurtosis coefficient as 

predictors in differentiating malignant from benign ovarian lesions for 1% the voxels in the reduced cohort of 

patients. 

GLMMIX 

paramters 

AUC p* Sensitivity 100% 

(CI95% 80-100) 

Sensitivity 94% 

(CI95% 71-100) 

Sensitivity 88% 

(CI95% 64-99) 

ADC 0.82 

(CI95% 0.69–0.94) 
0.13 

41% 

(CI95% 24-59) 

69% 

(CI95% 50-84) 

78% 

(CI95% 60-91) 

Dapp 0.82 

(CI95% 0.69–0.94) 
0.15 

31% 

(CI95% 16-50) 

69% 

(CI95% 50-84) 

72% 

(CI95% 53-86) 

Kapp  0.89 

(CI95% 0.80–0.98) 
– 

59% 

(CI95% 41-76) 

78% 

(CI95% 60-91) 

78% 

(CI95% 60-91) 

Kapp+Dapp 0.89 

(CI95% 0.80–0.98) 
0.48 

59% 

(CI95% 41-76) 

78% 

(CI95% 60-91) 

81% 

(CI95% 64-93) 

Kapp+ADC 0.89 

(CI95% 0.80–0.98) 
0 

59% 

(CI95% 41-76) 

78% 

(CI95% 60-91) 

78% 

(CI95% 60-91) 

*p-value for AUCs comparison to AUC for Kapp 
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Although for all mixed logistic models with single predictor, the increase in AUC can be 

observed in comparison to the full cohort, resulting in the AUC of 0.82 (CI95% 0.69–0.94) 

for ADC and Dapp and AUC of 0.89 (CI95% 0.80–0.98) for Kapp. However, the differences in 

AUC between Kapp and ADC or Kapp and Dapp are not statistically significant. Aiming again 

for 100% sensitivity, the specificity of 41% (CI95% 24-59) was observed for ADC, 31% 

(CI95% 16-50) for Dapp and 59% (CI95% 41-76) for Kapp. The increase in specificity for 

100% sensitivity in the reduced cohort in comparison to full cohort was more relevant for 

ADC and Dapp than for Kapp. No improvement in specificity at the cut-off point for sensitivity 

100% was observed after combining Kapp with ADC or Dapp in GLMM models with two pre-

dictors. 

 

Table 22. Statistics of the parameters derived by diffusion and diffusion kurtosis fitting model for the reduced 

cohort of patients for 10% the voxels. 

 benign malignant difference derived by linear mixed 

model 

p* 

 median  

[min, max] 

median 

 [min, max] 

average difference between malignant 

and benign [95%CI] 

 

ADC  

[µm2/ms] 

1.66 

[0.41, 2.81] 

0.82 

[0.51, 1.68] 

-0.77 

[-1.21, -0.33] 

0.0024 

Dapp  

[µm2/ms] 

2.18 

[0.52, 3.39] 

1.07 

[0.66, 2.24] 

-0.83 

[-1.31, -0.35] 

0.0028 

Kapp 0.58 

[0.40, 1.24] 

0.86 

[0.57, 1.28] 

0.26 

[0.12, 0.40] 

0.0019 

 

Table 23 shows the results of ROC analysis for 10% the voxels in the ROI. It can be ob-

served that in the reduced patients group the AUC of 0.88 (CI95% 0.78–0.98) for Kapp was 

still significantly higher than AUC of 0.81 (CI95% 0.68–0.93, p = 0.053) for ADC, but the 

difference between the AUC for Dapp which was 0.82 (CI95% 0.70–0.94) was not statistical-

ly significant (p = 0.14). However, for the reduced cohort, all three parameters, Kapp, ADC 

and Dapp, presented the same specificity of 47% (CI95% 29–65) at the cut–off point for sen-

sitivity 100%. No improvement in AUC was observed after adding the ADC or Dapp as a 

second predictor to Kapp in GLMM model (p = 0.24 and p = 0.10).   
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Table 23. Summary of diagnostic performance of mixed logistic models with diffusion and kurtosis coefficient as 

predictors in differentiating malignant from benign ovarian lesions for 10% the voxels in the reduced cohort, after 

excluding patients with endometriomas, teratomas and follicular cysts. 

MLM 

parameters 

AUC p* Sensitivity 100% 

(CI95% 80–100) 

Sensitivity 94% 

(CI95% 71–100) 

Sensitivity 88% 

(CI95% 64–99) 

ADC 0.81 

(CI95% 0.68–0.93) 
0.05 

47% 

(CI95% 29–65) 

72% 

(CI95% 53–86) 

75% 

(CI95% 57–89) 

Dapp 0.82 

(CI95% 0.70–0.94) 
0.14 

47% 

(CI95% 29–65) 

69% 

(CI95% 50–84) 

75% 

(CI95% 57–89) 

Kapp  0.88 

(CI95% 0.78–0.98) 
– 

47% 

(CI95% 29–65) 

72% 

(CI95% 53–86) 

84% 

(CI95% 67–95) 

Kapp+Dapp 0.86 

(CI95% 0.75–0.97) 
0.10 

38% 

(CI95% 21–56) 

72% 

(CI95% 53–86) 

81% 

(CI95% 64–93) 

Kapp+ADC 0.86 

(CI95% 0.76–0.97) 
0.24 

50% 

(CI95% 32–68) 

75% 

(CI95% 57–89) 

81% 

(CI95% 64–93) 

*p-value for AUCs comparison to AUC for Kapp 
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6 Discussion 

 

6.1 Breast Phantom 

This study shows the potential application of the DWI phantom, dedicated for a breast coil, 

for assessing the homogeneity of the ADC measurements. The proposed phantom offers 

large-volume imaging and enables simultaneous measurements on both sides of the breast 

coil. Thanks to the automatization of the segmentation process, various regions depicted on 

the cross-sectional images can be easily compared. Furthermore, the built-in thermometer 

enables simple assessment of the temperature of the liquid solution filling the phantom. 

Therefore, the measured ADC value can be corrected to the reference value at 20°C, which is 

essential for comparison purposes between different measurement days. Moreover, the im-

plemented design solution enables an adjustment of the spacing between the two parts of the 

phantom to the size of a breast coil. Therefore the phantom can be used in the various sys-

tems. 

The choice of the PVP water solution as a base for the DWI breast phantom was dictated by 

its favorable chemical and physical characteristics (Wagner et al. 2017). Firstly, the desired 

degree of diffusivity can be achieved by changing the concentration of PVP in the water. 

Secondly, the PVP water solution shows a mono-exponential signal decay with increasing b-

value, with ADC independent of the diffusion time (Pierpaoli et al. 2009). There are various 

advanced phantoms, composed of multiple compartments filled with the PVP water solutions 

of different degree of diffusivity. Whereas some of them require an ice-water bath to achieve 

the reference temperature of 0°C (Boss et al. 2014), others do not use the temperature correc-

tion (Keenan et al. 2016b). The main disadvantage of cooling down the PVP solution to 0°C 

is a decreased range of ADC values in comparison to the body temperature, for which the 

aqueous solutions of PVP span full physiologic range (Keenan et al. 2018). The chosen 30% 

PVP-K30 concentration results in ADC of approximately 0.84 mm2/s at 20°C (Wagner et al. 

2017), which is in the range of the reported mean ADC values for the malignant breast le-

sions (Baltzer et al. 2019).  

The proposed phantom allows for addressing many aspects of quality assurance in breast 

DWI which were discussed in detail in this dissertation. Regular measurements with the 

phantom may reveal the potential abnormalities during the normal exploitation of the MRI 

scanner. Generally, in almost all the analyzed sequences, the relative variation was higher in 

the right part of the phantom, like also the overall ADC was higher. In contrast, the opposite 

rule was observed for both multi-shot segmented sequences with bipolar gradients, with and 
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without parallel imaging (RESOLVE2 and RESOLVE4), where the left side of the phantom 

showed higher CV and ADC than the right part. The spatial variability of ADC, analyzed 

with the use of the segmented ROIs in the phantom revealed the range of disparities reflect-

ing the value of the overall CV. Moreover, the occurrence of the regions with the highest and 

the lowest ADC value may be more or less associated with the chosen parameters and the 

type of the sequence. Therefore, one of the possible applications of the phantom in the future 

might be the correction of the values obtained for a patient, according to the location of the 

lesion and the choice of the parameters in the applied sequence. The assessment of the re-

producibility of ADC over a longer period of time would be especially important for the 

high-risk patients who have undergone multiple MRI examinations, sometimes on the vari-

ous scanners. 

In the repeated measurements over 5-days period, CV for the whole phantom showed compa-

rable values between the measurements of the same variant of the sequence. Among multi-

shot segmented EPI (RESOLVE) sequences, those with monopolar diffusion gradients were 

more stable than the sequences with bipolar gradients. At the same time, the parallel imaging 

acquisition does not strongly affect the general stability of ADC measurements. Among sin-

gle-shot EPI sequences with parallel imaging acquisition, the variants with bipolar diffusion 

gradients also showed higher relative variation than analogical monopolar sequences. How-

ever, the difference for sequences without parallel imaging was very small. The higher varia-

tion of ADC for the bipolar gradient sequence, in comparison to monopolar sequence, may 

result from the use of the additional refocusing pulse, which makes bipolar gradients more 

susceptible to flip angle imperfections and B1 magnetic field inhomogeneities (Finsterbusch 

2009). An inconsistency in the 90° excitation pulse and a 180° refocusing pulses, which re-

sults in misshaped slice profile already in the standard spin-echo EPI (Schmiedeskamp et al. 

2012), may be the possible cause of the observed intensified inhomogeneity of ADC. Addi-

tionally, there may be deviations of the applied gradient shapes from the intended ones due 

to imperfections of the gradient system. Further investigation of the gradient impulse re-

sponse function would provide clarification in this regard (Wilm et al. 2015). 

To summarize, in this work, the reproducibility of ADC in the measurements repeated during 

the same day was analyzed. A good agreement between the first and the second acquisition 

could be observed for two repeated multi-shot segmented EPI sequences. However, the sec-

ond acquisition was conducted nearly at the end of the DWI protocol. Therefore, the rising 

temperature might be the cause of fluctuations between two measurements from the different 

time points. For WIP sequences from the second round of the measurements, the values ob-

tained in the repeated measurement gave almost identical results. In this case the second 

acquisition was conducted directly after the first one.  

This study has certain limitations. First of all, the study is based on a relatively low number 

of measurements, which influences the accuracy of estimation of the parameters. Another 
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drawback is the used temperature correction method, taking the temperature at the beginning 

of the measurements. In case of the long-lasting protocols, consisting of many sequences, the 

temperature of PVP-solution may rise, therefore for sequences acquired at the later point of 

time the temperature adjustment might be too low and the obtained ADC values may be in-

flated. In such a case the correction assuming linear temperature rise, taking into account the 

acquisition time of each sequence, could mitigate this problem. Moreover, in some cases the 

additional sequences were applied or the acquisition was repeated due to the technical prob-

lems. Therefore, the time-point of the final acquisition, counted from the beginning of the 

measurement, was not always the same for the analogous sequences.   

6.2 Breast Lesions 

The aim of this study was to evaluate the diagnostic ability of various methods with different 

diffusion-kurtosis-based fitting approaches accounting for residual fat-related signal in char-

acterization of breast lesions. The motivation behind this work was the observation that an 

overestimation of kurtosis values, due to the elevated background signal level, can be dimin-

ished by applying an adjusted correction factor (Bickelhaupt et al. 2018; Jensen and Helpern 

2010; Jensen et al. 2005). In this work, three methods aiming to mitigate the overestimation 

of the kurtosis values caused by the fat-related elevated background level were proposed and 

examined. The two proposed methods (Method3 and Method4) account mainly for the pos-

sible contamination due to the chemical shift, whereas the third one (Method5) takes into 

account the partial volume effect. Method4 used similar phenomenological extension as 

proposed by Bickelhaupt et al. (2018), where the approach proposed by Jensen et al. (2005) 

was extended in the context of a radiomics model. Another approach incorporating a noise 

correction factor, which is also very similar to the one proposed by (Jensen et al. 2005) was 

published by Iima et al. (2015). However, this approach was used to reduce the contamina-

tion with background noise in the signal, but it did not address the corruption with the re-

maining fat signal. 

The relationship between the values of the coefficients obtained by different fitting ap-

proaches used in this study was in line with expectations. The diffusion coefficient derived 

by standard diffusion kurtosis fitting was higher than the coefficient derived by mono-

exponential function, which is due to the compensation of the slower signal decay with high-

er b-values with inclusion of kurtosis coefficient. At the same time, the modified diffusion 

kurtosis fitting approaches delivered lower values of kurtosis than the standard diffusion 

kurtosis fitting, because the artificial elevation of the signal at high b-values was counteract-

ed by additional correction parameter. Nevertheless, authors of several studies (Nogueira et 

al. 2014; Palm et al. 2019; Sun et al. 2015) examining DWI and DKI fitting in breast have 

reported higher minimal ADC values in benign and malignant lesions than those observed in 

this work. This fact might be attributed to the cases of an image that has a poor signal-to-
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noise ratio, and exhibits high contamination with residual fat signal. Baron et al. (2010) re-

ported ADC values measured in adipose tissue smaller by factor of 10 than ADC measured in 

fibroglandular tissue using SPAIR for fat signal suppression. On the contrary, looking at the 

mean values of ADC, the results are in agreement with the findings of the meta-analysis by 

Baxter et al. (2019). Regarding the values of diffusion coefficients derived by standard diffu-

sion kurtosis fitting (Method2), the results are consistent with those reported in other studies 

(Christou et al. 2017; Nogueira et al. 2014; Palm et al. 2019; Sun et al. 2015; Wu et al. 2014; 

Zhou et al. 2019), whereas values of kurtosis coefficients, in both malignant and benign le-

sions, are higher. It has to be highlighted that the application of the fat correction factor in 

Method3** results in lower kurtosis coefficients than in Method2 which are in line with the 

literature after all. In majority of these studies more b-values were involved, and higher max-

imum b-value was used. This work involved an abbreviated DWI protocol, therefore the 

range of the used b-values may not be optimal for DKI evaluation (Chuhutin et al. 2017). 

Nevertheless, the primary objective was to create a protocol that enables its utilization in the 

clinical routine. Palm et al. (2019) used a similar number and range of b-values and despite 

of this observed lower kurtosis coefficients. In this case the differences may be attributed to 

the higher field strength of 3T scanner leading to higher SNR, and selection of only one slice 

representing the lesion.  

In terms of the ROC analysis’ outcomes for the entire study population, Method3 and Meth-

od4 demonstrated the highest AUC values. For the sensitivity at 95%, the highest specificity 

was observed with Method4, which reduces the number of indications for biopsy in patients 

with benign lesions by half. In the individual analyses by the study site, for the sensitivity at 

95%, 6 out of 10 patients with benign lesions can be correctly diagnosed with the Method4 

in Group A, whereas in Group B it was 5 out of 10 patients with benign lesion. Regarding 

Method3, the two cohorts exhibit varying outcomes. The inclusion of an extra parameter a in 

Method3, which regulates the level of contamination by fat signal, yielded better results in 

AUC with increasing a value in Group A in comparison to the standard approaches. In con-

trast, in Group B there was a high degree of similarity in the AUC outcomes. Therefore the 

usefulness of Method3 is compromised due to the necessity of choosing an appropriate addi-

tional parameter. The stratified analysis, in which the patients were categorized by the ratio 

of the signal intensity in the lesion and adipose tissue area at high b-value image, indicated 

that varying results were achieved between the two groups. In Group A the outcomes suggest  

that the impaired diagnosis of poorly visible lesions may be indeed caused by the contamina-

tion of the signal with residual fat signal, because the effect of the proposed correction factor 

becomes more significant as the relative background level increases. Group B did not expe-

rience the expected benefits from implementation of modified fitting approaches. However, 

what is true for the entire patient population in this study is the observation that the approach 

(Method5) with  fractionated fat contribution, in which an additional parameter f was intro-

duced, showed not only no improvement in AUC, but also resulted in the adverse effect. 
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This outcome suggests that for the studied population of patients a more significant source of 

the contamination with the residual fat signal may be chemical shift rather than partial vol-

ume effect. Nevertheless, considering the increased intricacy involved with fractionated fat 

contribution methods, Method4 appears to be more favorable option.  

The results of the data analysis suggest that there are noticeable differences between out-

comes obtained in Group A and Group B, where DWI data were acquired using MR scan-

ners from different vendors. Despite setting up both DWI sequences as similar as possible, 

the ultimate parameters were not identical due to differences in technical solutions utilized 

by the two vendors. Thus, the use of segmented EPI (RESOLVE) or parallel imaging operat-

ing on the k-space data (GRAPPA) in Group B, as opposed to single-shot EPI and parallel 

imaging with the reconstruction in the image domain (SENSE) or additional post-processing 

techniques in Group A, may impact the efficiency of fat suppression. This confirms the ne-

cessity for standardization and stresses the crucial role of quality assurance in DWI. A more 

extensive investigation of the differences in MR sequence specifics and their potential influ-

ence on the background signal level and DKI performance may be high of interest.  

The application of the original correction factor proposed by Jensen et al. (2005) was possi-

ble only in patients from Group B. The AUC values obtained using the original approach 

with correction factor accounting for noise level were comparable with those obtained with 

Method4. In Group A, as a result of the post-processing procedure being a part of parallel 

imaging, the signal outside the patient was set to zero. Especially in this group the compari-

son between the original method and its phenomenological extension would be the most 

interesting. Iima et al. (2015) proposed another noise correction factor and observed also 

lower kurtosis values than these presented here for Method4’ with correction factor account-

ing for noise. However, in the mentioned study, a 3T scanner and broader range of b-values 

were used. 

It has to be highlighted that this study is limited by a restricted number of patients, especially 

in the stratified analysis by lesion visibility at high b-value images, where statistical signifi-

cance testing is highly affected by the small sample size. Another drawback is the lack of 

validation of the constructed logistic regression models on the independent data sets. It must 

be pointed out that the obtained AUCs may be too optimistic due to the fitting the models 

and then testing them on the same data-set. To make a well-established statement, further 

evaluation is needed. Finally, the interpretation of the signal in the segmented fatty tissue 

area as the general background signal level may me not completely justified. By assuming 

that contamination comes from artifacts and partial volume effect, the assigned level of the 

contamination may be in some cases too high. The shortcoming of the proposed methods 

accounting for residual fat signal is a possible overcorrection in patients with relatively high 

signal in the fatty area ROI in comparison to the signal in the lesion. The undesirable effect 

of very low kurtosis values may lead to false-negative results. All in all, for the preferred 
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method with the fat correction term, that is Method4, no adverse effects in the overall per-

formance were observed in comparison to the performance of the standard diffusion kurtosis 

equation in the analyzed cohort.   

6.3 Ovarian Lesions 

An accurate classification of adnexal masses may be challenging, because the benign tumor 

incidence rate is much higher than the malignant ones. In patients with equivocal radiologi-

cal finding surgical removal of adnexal masses with histologic evaluation is required as clari-

fication. As a result, many women with clinically inconsequential benign ovarian lesions, 

which could be conservatively treated, underwent unnecessary oophorectomy (Stein et al. 

2021).  

The primary sequence in the standard MRI protocol for characterization of sonographically 

indeterminate adnexal lesions is the T1-weighted, and T2-weighted sequence (Spencer et al. 

2010). If the suspicion of presence of neoplasm in solid part of the lesion cannot be dispelled 

with morphological MRI images, the further sequence of choice is gadolinium contrast-

enhanced sequence standalone or in conjunction with diffusion-weighted MRI, whereas DWI 

as a standalone problem-solving sequence is recommended only in case of lesions with low 

T2 (Forstner et al. 2017). The quantitative analysis based on the ADC values, derived by 

standard mono-exponential fitting method, may be challenging due to the fact that some 

benign ovarian lesions present low ADC values which is misleading when accepting the 

principle that diffusion restrictions are an indicator for malignancy (Agostinho et al. 2019). 

Furthermore, the results of the meta-analysis by Kim et al. (2016) suggest that the overlap in 

ADC values among benign and malignant lesions makes this parameter an inefficient as a 

standalone way for characterization of ovarian masses. However, the potential role of DKI in 

this application has been studied only in a very limited way. Therefore the aim of this study 

was to evaluate the ability of DKI in characterization of sonographically ambiguous ovarian 

lesions. 

The number of studies evaluating the role of DKI in differentiation of adnexal masses is very 

limited to date. Li et al. (2017) investigated inter alia malignant epithelial ovarian tumors and 

reported values of DKI and DWI derived parameters which are in agreement with values of 

malignant lesions observed in this study. Further, a study by Yue et al. (2019) in a control 

group with normal endometrium showed the values similar to the ones reported in benign 

lesions here. However, to date no large study has compared explicitly the diagnostic perfor-

mance in characterization of various representative types of ovarian lesions.  

In this study, the main analysis was based on the selected 1% of the voxels in the ROI, as-

suming that these represent the regions with the highest diffusion restrictions. As expected, 

Kapp was higher in malignant lesions, whereas Dapp was lower in benign lesions. Dapp exhibit-
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ed higher values than ADC in general, which is in line with theory of the correction due to 

curvature of the signal decay by non-Gaussian diffusion in biological tissue (Jensen and 

Helpern 2010). The ROC analysis showed, at the threshold at 100% sensitivity, that every 

second patient with benign lesion could be correctly diagnosed by Kapp value, whereas by 

ADC it was every fourth patient and by Dapp every fifth patient with benign lesion. Using Kapp 

as a differentiating parameter, the number of the extensive surgical procedures in the ana-

lyzed population with benign lesions could be potentially reduced by the half when compar-

ing with diagnosis based on ADC value. The analogous additional analysis, when 10% of the 

voxels were used, shows much smaller specificity for Kapp, higher for Dapp and similar for 

ADC than analysis for 1% of the  voxels. All in all, the specificity for all these three parame-

ters, that is Kapp, Dapp and ADC, was comparable with each other in the analysis based on 

10% of the voxels. Moreover, although the AUC for the Kapp reached a higher value than 

AUC for ADC or Dapp, the differences were not statistically significant (with the p-value just 

over the predetermined threshold). In the case of the mixed logistic models with two predic-

tors, the results of the analysis based on 1% of the voxels selected within the ROI outper-

formed these obtained for 10% voxels. 

It is worth mentioning that many of the analyzed lesions were solid-cystic ovarian neoplasm 

with the very large cystic component. Therefore, the approach of selecting only 1% of the 

voxels was applied instead of an analysis of the mean in the whole segmented ROI. It was 

dictated by the desire to extract the essential information from the most suspicious regions. 

In the case of lesions primarily composed of cystic component and only small solid part, 

taking 10% of the voxels in the ROI would result in an elevated ADC value approaching 

ADC of free water, masking the contribution from the area of low ADC due to diffusion re-

striction and potential malignancy. Therefore, analysis of only 1% of the voxels with the 

highest signal intensity allows better selection of the regions with diffusion restrictions and 

true low ADC. On the other hand, the high signal intensity on the high b-value image is not 

always limited to diffusion restrictions. The co-occurrence of hemorrhage and fat compo-

nents (Duarte et al. 2018) may also be manifested by strong signal intensity on high b-values 

and low ADC value which increases the number of false positive findings. Therefore the 

applied method of voxel selection inside the ROIs may raise some concerns. One hand, the 

proposed method is characterized by its simplicity and as an automated process guarantees 

the repeatability of the values of calculated quantitative parameters. On the other hand, se-

lecting a fixed percentage of voxels within the ROI might not be optimal for each lesion. 

Utilizing only 1% of the voxels within the ROI resulted in notably better outcome of Kapp 

parameter when compared to utilizing 10% of the voxels, what can suggest that more in-

formative voxels were chosen for the analysis. Therefore, additional studies for establishing 

the most appropriate method for selecting voxels in heterogenous ovarian masses are needed. 

Moreover, the segmentation was limited to only one slice displaying the highest diffusion 

restrictions in the lesion. The choice of only one slice was dictated by too time-consuming 
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procedure of manual 3D segmentation, especially in the lesions of big sizes, which might be 

difficult to incorporate in the clinical routine. 

As already mentioned in the previous chapters, the issue of frequent misdiagnosis of certain 

histopathological types of benign lesions using DWI, which can exhibit unexpectedly low 

ADC values, was addressed in several review studies (Agostinho et al. 2019; Duarte et al. 

2018; Kim et al. 2016). It was suggested that in these particular types of masses the diagno-

sis of benignity can be established by relying on standard morphological MRI sequences. 

Therefore the additional subanalysis was conducted, using the reduced cohort, after exclud-

ing the cases that are frequently misdiagnosed using DWI, like it was described in Section 

4.4. The ROC analysis, when considering selected 1% of the voxels, showed improvement in  

specificity at the sensitivity at 100% for ADC and Dapp, what is consistent with expectations. 

The performance of Kapp was also satisfactory. Kapp showed still the highest specificity at 

100% sensitivity, rendering the correct diagnosis of 6 out of 10 patients possible, whereas for 

Dapp it was 3 out of 10 and for ADC 4 out of 10. All three mentioned coefficients presented 

the same specificity for 10% voxels analysis.  

It has to be highlighted that among the limitations of this study is the small number of pa-

tients, especially those with malignant lesions. In consequence, due to the limited amount of  

data, the models were built and tested on the same data-set which is likely to pose a risk of 

overfitting. A larger study cohort is crucial for improving the precision of the analysis and 

ultimately leading to more informed conclusions. 



 

 

 

7 Summary 

 

This thesis sets out to investigate the usefulness of diffusion imaging and diffusion kurtosis 

imaging for characterization of suspicious breast and ovarian lesions. The work was divided 

into three parts. To answer the research questions, the experiments with the phantom were 

conducted, and the analysis of the clinical data from retrospective and prospective study was 

done. 

The first part of this thesis was devoted to the experiments with the phantom designed for the 

breast coil. The aim was to assess the repeatability and reproducibility of quantitative meas-

urements of apparent diffusion coefficient, which is the most commonly used quantitative 

parameter in clinical diffusion imaging of breast. The ability to control the spatial and tem-

poral uniformity of apparent diffusion coefficient was demonstrated with the semi-automated 

quality control procedure using the self-written MATLAB script. The interesting feature of 

the breast phantom is the built-in thermometer which enables the temperature correction of 

apparent diffusion coefficient values. The readout-segmented and single-shot echo-planar 

imaging sequences with various setups of diffusion sensitizing gradient and parallel imaging 

acceleration factor were used. It was shown that this simple isotropic phantom can be used to 

monitor the variability between left and right side of the breast coil and to detect the differ-

ences in measurements with various protocol setup parameters. Among the readout-

segmented echo-planar sequences, the highest spatial nonuniformity was found for bipolar 

gradient sequences, with the variability more prominent in the left side of the coil. Similarly, 

the bipolar single-shot echo-planar sequences showed higher spatial nonuniformity than the 

monopolar one, however the bigger variability was observed in the right part of the coil. 

Moreover, the spatial nonuniformity of apparent diffusion coefficient values varied with the 

parallel imaging acceleration factor. In summary, depending on the sequence parameters, 

significant inhomogeneities and right-left differences were observed, which ultimately could 

not be explained within the scope of this thesis. Therefore, due to the relatively high devia-

tion of ADC values, reaching a maximum value of coefficient of variation of 8.69%, further 

investigation of the origin of these differences seems urgently warranted, particularly regard-

ing discrepancies between the phantoms and patient measurements concerning relaxation 

times, presence of adipose tissue, and varying diffusion coefficients. As a conclusion, by 

incorporating the regular quality control procedure into the clinical routine, the variations in 

measurements can be explored, which could help to ensure the robustness of the measure-

ments of qualitative diffusion parameters. Using this simple breast phantom, the reliability of 

measured apparent diffusion coefficient values between the coil sides, measurements days, 

and acquisition among one measurement slot can be estimated. This is especially relevant if 
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the range of the values of apparent diffusion coefficient for benign and malignant lesion 

overlap, like it is in the case of breast lesions. The phantoms could potentially serve as suita-

ble tools for selecting appropriate measurement parameters to enable more homogeneous 

diffusion parameters. 

In the second part, the influence of residual fat-related signal on quantitative parameters in 

diffusion kurtosis imaging of breast was investigated. The not fully suppressed signal from 

adipose tissue may corrupt the signal in the lesion area and distort the quantitative parame-

ters. Therefore the research aim was to develop various alternative fitting models accounting 

for possible corruption with signal from fatty tissue. A data-set comprises the diffusion im-

ages of suspicious mammography findings taken in two study centers. The proposed modi-

fied fitting models performed better than the standard approaches. In the analysis by study 

site, the incorporation of fat correction terms improved the results in the first cohort of pa-

tients. In the second cohort, no improvement with the lack of adverse effect was found. This 

suggests that the proposed modified evaluation methods may potentially be applied to reduce 

the negative impact of the contamination of the signal in breast lesion with unsuccessfully 

suppressed signal from adipose tissue in quantitative diffusion kurtosis imaging. 

Finally, the last part of this thesis studies the application of diffusion kurtosis imaging in 

differentiation between benign and malignant ovarian lesions. Moreover, as the exclusion of 

malignancy is the main target of this diagnostic imaging procedure, the inconclusive findings 

need further verification through surgery and histopathological examination for definitive 

diagnosis. However, in the final diagnosis, the benign tumors outnumber malignant ones. 

Therefore the improvement of imaging techniques may avoid the unnecessary invasive man-

agement of benign adnexal masses. Although many studies showed that diffusion kurtosis 

imaging has potential for characterization of lesion in various parts of the body, it remained 

almost unexplored, to date of writing this thesis, for differentiation between benign and ma-

lignant ovarian lesions. Therefore the aim of this study was to investigate the reliability of 

quantitative kurtosis parameters for characterization of sonographically indeterminate ovari-

an lesions. Receiver operating characteristic analysis showed, that the chosen threshold 

yielded maximum sensitivity, that is all malignancies could be correctly diagnosed, and 

specificity giving an accurate classification of every second benign lesion. At the same time, 

the half of the patients could be accurately classified. This suggests that diffusion kurtosis 

imaging may have potential for reducing the number of unnecessary oophorectomies. 
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8 Zusammenfassung 

Ziel dieser Arbeit ist es, die Diffusionsbildgebung und die Diffusions-Kurtosis-Bildgebung 

zur Charakterisierung von verdächtigen Brustläsionen und Ovarialläsionen zu untersuchen. 

Die Arbeit wurde in drei Teile geteilt. In diesen werden Experimente mit einem Phantom 

durchgeführt, eine retrospektive Analyse von klinischen Daten erstellt, und eine prospektive 

Studienanalyse durchgeführt. 

Der erste Teil dieser Arbeit ist den Experimenten mit dem für die Brustspule konzipierten 

Phantom gewidmet. Ziel ist es, die Wiederholbarkeit und Reproduzierbarkeit quantitativer 

Messungen des scheinbaren Diffusionskoeffizienten zu bewerten, der am häufigsten ver-

wendete quantitative Parameter in der klinischen Diffusionsbildgebung der Brust ist. Die 

Möglichkeit, die räumliche und zeitliche Homogenität des scheinbaren Diffusionskoeffizien-

ten zu kontrollieren, wird mit einem halbautomatischen Qualitätskontrollverfahren unter 

Verwendung des selbstgeschriebenen MATLAB-Skripts demonstriert. Die Besonderheit des 

Brustphantoms ist ein eingebautes Thermometer, mit dem eine Temperaturkorrektur der 

scheinbaren Diffusionskoeffizienten möglich wird. Hierbei werden Sequenzen mit verschie-

denen Einstellungen verwendet. Es wird gezeigt, dass dieses einfache isotrope Phantom ver-

wendet werden kann, um eine Variabilität zwischen linker und rechter Seite der Brustspule 

und die Unterschiede in den Messungen mit verschiedenen Protokollen zu überwachen. Un-

ter den gemessenen Auslese-segmentierten echoplanaren Diffusionssequenzen zeigen bipola-

re Gradientensequenzen die höchste räumliche Ungleichmäßigkeit, wobei die Variabilität auf 

der linken Seite der Spule stärker ausgeprägt ist. In ähnlicher Weise zeigten die bipolaren 

Single-Shot-Echo-Planar-Sequenzen eine höhere räumliche Ungleichförmigkeit als die mo-

nopolare, jedoch wird die größere Variabilität im rechten Teil der Spule beobachtet. Darüber 

hinaus änderte sich die räumliche Ungleichmäßigkeit der scheinbaren Diffusionskoeffizien-

tenwerte mit dem parallelen Abbildungsbeschleunigungsfaktor. Abschließend, zeigen sich je 

nach Sequenzparametern deutliche Inhomogenitäten und recht-links-Unterschiede, die letzt-

lich im Rahmen dieser Arbeit nicht erklärt werden konnten. Aufgrund der erheblichen Dis-

krepanzen im ADC-Werte und dem höchsten Variationskoeffizient von 8.67% scheint jedoch 

eine weitere Untersuchung der Herkunft der Unterschiede dringend geboten, auch hinsicht-

lich der Unterschiede der Phantome im Vergleich zu Patientenmessungen hinsichtlich der 

Relaxationszeiten, Präsenz von Fettgewebe und unterschiedlicher Diffusionskoeffizienten. 

Zusammenfassend lässt sich sagen, dass durch die Einbeziehung des regulären Qualitätskon-

trollverfahrens in die klinische Routine die Variationen in der Messung untersucht werden 

können, was dazu beitragen könnte, die Robustheit der Messungen qualitativer Diffusionspa-

rameter sicherzustellen. Unter Verwendung dieses einfachen Brustphantoms kann die Zuver-

lässigkeit der gemessenen Werte des scheinbaren Diffusionskoeffizienten zwischen den Spu-
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lenseiten, den Messtagen und der Datenerfassung innerhalb des Messzeitfensters geschätzt 

werden. Dies ist besonders relevant, wenn sich die Wertebereiche des scheinbaren Diffusi-

onskoeffizienten für gutartige und bösartige Läsionen überschneidet, wie es im Fall von 

Brustläsionen der Fall ist. 

Im zweiten Teil wurde der Einfluss des Restfettsignals auf quantitative Parameter in der 

Diffusions-Kurtosis-Bildgebung der Brust untersucht. Das nicht vollständig unterdrückte 

Signal des Fettgewebes kann das Signal im Bereich von Läsionen verfälschen und die quan-

titativen Parameter verfälschen. Daher ist das Forschungsziel, verschiedene alternative An-

passungsmodelle zu entwickeln, die eine mögliche Verfälschung mit Signalen aus Fettgewe-

be berücksichtigen. Ein Datensatz umfasst die in zwei Studienzentren aufgenommenen Dif-

fusionsbilder verdächtiger Mammographiebefunde. Die vorgeschlagenen modifizierten An-

passungsmodelle schneiden besser ab als die Standardansätze. In der Analyse nach Studien-

ort verbesserte die Aufnahme von Fettkorrekturbegriffen die Ergebnisse in der ersten Patien-

tenkohorte. In der zweiten Kohorte wird keine Verbesserung bei fehlender Nebenwirkung 

festgestellt. Dies deutet darauf hin, dass die vorgeschlagenen modifizierten Bewertungsme-

thoden möglicherweise angewendet werden können, um die negativen Auswirkungen der 

Kontamination des Signals in Brustläsionen mit erfolglos unterdrückten Signalen aus Fett-

gewebe in der quantitativen Diffusions-Kurtosis-Bildgebung zu verringern. 

Schließlich untersucht der letzte Teil dieser Arbeit die Anwendung der Diffusions-Kurtosis-

Bildgebung zur Differenzierung zwischen gutartigen und bösartigen Ovarialläsionen. Da der 

Ausschluss einer Malignität das Hauptziel der diagnostischen Bildgebung ist, müssen die 

nicht eindeutigen Befunde durch eine Operation und eine histopathologische Untersuchung 

für eine endgültige Diagnose verifiziert werden. Bei der endgültigen Diagnose überwiegen 

jedoch gutartige Tumoren den bösartigen. Daher kann die Verbesserung der bildgebenden 

Verfahren die unnötige invasive Behandlung gutartiger Ovarialläsionen vermeiden. Obwohl 

viele Studien gezeigt haben, dass die Diffusions-Kurtosis-Bildgebung ein vielversprechendes 

Potenzial zur Charakterisierung von Läsionen in verschiedenen Körperteilen hat, blieb sie 

bis zum Zeitpunkt der Erstellung dieser Arbeit nahezu unerforscht, um zwischen gutartigen 

und bösartigen Ovarialläsionen zu unterscheiden. Ziel dieser Studie ist es daher, die Zuver-

lässigkeit quantitativer Parameter bei der Charakterisierung sonographisch unklarer Ovarial-

läsionen zu untersuchen. Die Receiver-Operating-Characteristic-Analyse zeigte, dass der 

gewählte Schwellenwert ermöglichte, dass alle malignen Erkrankungen korrekt diagnosti-

ziert werden können, und gleichzeitig jede zweite gutartige Läsion genau klassifiziert wer-

den kann. Dies zeigt das Potential der Diffusions-Kurtosis-Bildgebung unnötigen invasiven 

chirurgischen Eingriffen zu reduzieren. 
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