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“I believe that, so far as geometry is concerned, we
need still another analysis which is distinctly
geometrical or linear and which will express
situation directly as algebra expresses magnitude
directly”

— Leibniz, Gottfried, Letter to Christian Huygens.
8 September 1679, [Loemker and Leibniz, 1975]

“Theories of the known, which are described by
different physical ideas, may be equivalent in all
their predictions and are hence scientifically
indistinguishable. However, they are not
psychologically identical when trying to move from
that base into the unknown. For different views
suggest different kinds of modifications which might
be made and hence are not equivalent in the
hypotheses one generates from them in one’s
attempt to understand what is not yet understood.”

— Richard Feynman, Nobel Lecture.
December 11, 1965





Abstract

Abstract (English)

In this thesis, I develop a novel framework for General Relativity (GR)
by combining tetrads with Geometric Algebra (GA), addressing some of the
limitations present in traditional formalisms. GR is an inherently geometric
theory, yet its conceptual clarity is often obscured by complicated notation
and formalism. Tensor calculus, for instance, focuses on component-wise
calculations rather than the abstract geometric structure of objects, while
differential forms suffer from cumbersome notation and insufficient geomet-
rical interpretation.

The motivation behind this novel approach stems from the success GA
has shown in other areas of physics, combined with the underutilized use
of tetrads in place of traditional coordinate frames. The reliance on coor-
dinate frames unnecessarily complicates expressions and obscures physical
insights. By leveraging tetrads within GA, I introduce a more intuitive and
powerful approach to GR, offering clearer interpretations and computational
advantages. These benefits are demonstrated through applications to FRW
spacetimes, the Raychaudhuri equation, and precessing gyroscopes around
black holes.

This new formalism captures the underlying geometry of physical objects
in a more compact, intuitive, and computationally efficient manner. A key
advantage lies in the geometric product, which naturally generalizes com-
plex numbers to spaces of arbitrary dimension and signature. This greatly
simplifies the treatment of Lorentz transformations, as exemplified in the
case of gyroscopic precession. Here, the novel approach reduces the problem
from solving a set of four coupled partial differential equations to a single,
trivial differential equation in flat spacetime.

This thesis lays the groundwork for further exploration of GA in GR,
offering new tools that could enhance both theoretical understanding and
practical computations in the field.
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Zusammenfassung (Deutsch)

In dieser Arbeit entwickele ich einen neuartigen formalismus für die All-
gemeine Relativitätstheorie (GR), indem ich Tetraden mit Geometrischer
Algebra (GA) kombiniere, um einige der in dem konventionellen Formal-
ismus vorhandene Einschränkungen zu überwinden. Von Natur aus ist
GR eine geometrische Theorie, deren konzeptionelle Klarheit jedoch oft
durch komplizierte Notationen und Formalismen verdeckt wird. Das Tensor-
Kalkül konzentriert sich beispielsweise auf komponentenweise Berechnungen,
anstatt die abstrakte geometrische Struktur von Objekten zu berücksichti-
gen, während Differentialformen unter umständlicher Notation und einer
unzureichenden geometrischen Interpretation leiden.

Die Motivation für diesen neuen Ansatz ergibt sich aus dem Erfolg, den
GA in anderen Bereichen der Physik gezeigt hat, und der untergenutzten
Verwendung von Tetraden anstelle traditioneller Koordinatensysteme. Die
Abhängigkeit von Koordinatensystemen verkompliziert unnötig die mathe-
matischen Ausdrücke und verschleiert physikalische Einsichten. Durch den
Einsatz von Tetraden in Kombination mit GA präsentiere ich einen intuitiv-
eren und leistungsstärkeren Ansatz für GR, der eine klarere physikalische In-
terpretation und rechnerische Vorteile bietet. Diese Vorteile werden anhand
von Anwendungen auf FRW-Raumzeiten, die Raychaudhuri-Gleichung und
präzedierende Kreisel in Orbits um Schwarze Löcher veranschaulicht.

Dieser neue Formalismus erfasst die zugrunde liegende Geometrie physikalis-
cher Objekte in einer kompakteren, intuitiveren und rechnerisch effizientere
Weise. Ein wesentlicher Vorteil liegt im geometrischen Produkt, das kom-
plexe Zahlen auf natürliche Weise auf Räume beliebiger Dimension und
Signatur verallgemeinert. Dies vereinfacht die Behandlung von Lorentz-
Transformationen erheblich, wie am Beispiel der Präzession von Kreiseln
gezeigt wird. Hier reduziert der neue Ansatz das Problem von der Lösungeines
Systems aus vier gekoppelten partiellen Differentialgleichungen auf eine einzige,
trivial zu lösende Differentialgleichung in einem flachen Raum.
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Introduction

Geometric Algebra (GA) is a powerful language capable of describing a
wide range of physical phenomena [Doran and Lasenby, 2013, Doran, 1994,
Lasenby et al., Lasenby and Doran, 2009, Hestenes, 2003b, 1986a]. Beyond
its unifying capacity, GA can simplify descriptions and improve physical
insights compared to conventional approaches. Traditional mathematical
tools in General Relativity (GR), such as tensor calculus, often lead to cum-
bersome calculations and lack a direct geometric interpretation of physical
quantities. GA offers an alternative with its compact, coordinate-free for-
malism, making it a promising tool for GR. Significant progress has already
been achieved with GA in fields such as electromagnetism [Dressel et al.,
2015], quantum mechanics [Doran et al., 1996], and quasicrystals [Hestenes
and Holt, 2007], while its applications to GR remain relatively underex-
plored.

The initial attempts to apply GA to GR were made by Hestenes [2015,
§21], who sought a direct translation of conventional GR formalism into GA,
and by Lasenby et al. [1998], who developed a Gauge Theory of Gravity1

within this framework. Hestenes’ approach laid the groundwork by refor-
mulating GR concepts using GA, while Lasenby’s work took this further by
describing gravity as a gauge field, which has implications for understand-
ing GR through a new lens. Since then, however, limited progress has been
made.

In this context, the aim of this work is to expand and deepen these initial
efforts, using the tools of GA to improve our description of GR and extend
the range of differential geometry tools available. In particular, this thesis
focuses on practical applications and the physical interpretation of quantities
within GA, while maintaining the GR framework. The formalism I present,
which I term tetrad-GA, represents a natural integration of tetrads with

1Such theory has been criticized by Fernández and Rodrigues [2010, Appendix F] for
containing a fundamental error in its formulation originating in a confusion between holo-
nomic and non-holonomic indices, which makes it non compatible with GR.
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GA, resulting in a framework particularly effective for describing GR. The
specific contributions of this work are twofold: developing the tetrad-GA
formalism and demonstrating its utility through applications to well-known
physical systems, showcasing its advantages over conventional techniques.

Several reasons justify the use of tetrad-GA in GR. Among them, the
following are particularly noteworthy:

• Efficiency and simplification: GA offers a compact mathemati-
cal formalism, where objects inherently reflect physical and geometric
meanings, simplifying both notation and calculation. The unification
of differential operators and the introduction of the geometric product
result in shorter, more transparent calculations.

• Coordinate-free expressions and covariant formulation: Unlike
tensor calculus, GA represents objects in contracted, “abstract” forms
rather than component-wise expressions, e.g., representing a vector as
a = aµgµ instead of merely its components aµ. This feature facilitates
a formulation of physical laws that connects physical objects directly,
without reliance on specific coordinate systems.

• Enhanced geometric interpretation: The above points lead to a
formalism that provides clearer geometric interpretations of equations
than tensor calculus or differential forms, aiding in the understanding
of physical phenomena.

• Unified framework: Working within a single mathematical frame-
work enables the integration of diverse fields, such as electromagnetism
and quantum mechanics, into a coherent structure.

• Decoupling of frame and coordinate choices: The use of tetrads
allows meaningful interpretations of objects by working with orthonor-
mal frames, which correspond to the frames of inertial observer. This
approach separates the degrees of freedom associated with frame se-
lection from those related to coordinate choice, revealing the intrinsic
dependencies of objects and facilitating their analysis.

To explore this topic, this thesis is divided into six chapters. Chapter 1
presents the basics of GA and applies them to Minkowski spacetime and the
description of electromagnetic phenomena. The goal here is not an exhaus-
tive introduction to GA but rather to lay the groundwork and provide the
essential tools necessary for understanding the subsequent chapters. Chap-
ter 2 introduces the use of tetrads in GR and combines them with the GA
of Minkowski spacetime established in the previous chapter. This chapter
aims to rigorously present the mathematical foundation of the tetrad-GA
formalism.

Chapter 3 serves as a bridge chapter, comparing GA with differential
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forms by highlighting their similarities and differences. Both frameworks
employ the exterior algebra of Minkowski spacetime and share commonal-
ities, yet GA introduces the geometric product, which allows for enhanced
treatment of rotations and boosts, compact expressions, and improved ge-
ometric interpretation of objects. Differential forms, on the other hand,
are particularly suitable for pre-metric geometry and benefit from extensive
literature, which is a key challenge when dealing with advanced topics in
GA.

In Chapter 4, I present the first practical application of our formalism
by analyzing FRW spacetimes from various perspectives. Testing new tools
on well-known systems allows us to evaluate their capabilities in comparison
with traditional methods. This chapter begins with a metric-based anal-
ysis and progresses to exploring the relationship of FRW spacetimes with
the Raychaudhuri equation, as well as their conformal properties and sym-
metries via the Lie derivative. The chapter concludes with an analysis of
quintessence inflationary models.

In Chapter 5, I utilize GA’s generalization of complex numbers to refor-
mulate the Fermi-Walker transport equation in terms of rotors, yielding a
powerful technique where the dynamics of a transported frame relate to the
local frame via Lorentz transformations encoded in a rotor. The rotor-based
analysis is simpler and more geometrically intuitive than component-based
analysis. I illustrate these techniques with an example of a spaceship moving
along an accelerated path near a wormhole’s throat.

Finally, Chapter 6 investigates another application of the rotor-based
techniques: the precession of gyroscopes around black holes. Beginning
with the Schwarzschild case and extending to the Kerr-Newman black hole, I
demonstrate how rotor-based calculations provide a straightforward method
for determining the precession angle of gyroscopes. This approach involves
solving a single first-order differential equation rather than a set of cou-
pled partial differential equations, yielding equivalent results with clearer
geometric insights.

In summary, this thesis aims to not only develop the mathematical tools
of the tetrad-GA formalism but also to demonstrate its advantages and
potential applications. Through specific examples, I show that this formal-
ism is valuable for students and researchers alike, offering multiple benefits
and a compelling alternative to conventional methods in GR and related
fields. By highlighting its practical applications, I hope this work establishes
tetrad-GA as a viable and valuable tool for advancing our understanding of
gravitational phenomena and beyond.
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Chapter 1

The Geometric Algebra of
spacetime

In this chapter, I present an elementary construction of the Geometric Alge-
bra (GA) of spacetime, along with several illustrative examples and common
manipulations. For readers who are entirely new to the topic of GA, I recom-
mend beginning with the series of pedagogical articles by Hestenes [2003b,a]
and the more rigorous introduction by Macdonald [2010]. Conversely, read-
ers who are already familiar with GA can explore more advanced discussions
in [Macdonald, 2012, Doran and Lasenby, 2013, Hestenes and Sobczyk, 1987,
Snygg, 2012, Kanatani, 2015], depending on their specific interests and pre-
ferred learning style.

Section 1.1 will present the constituting elements of the GA, which con-
stitute the bases of this work. Then, in Section 1.2, I will use those tools
to present the GA description of spacetime called Space-Time Algebra. I
conclude the chapter with Section 1.3, in which I use electrodynamic theory
as an example of a relativistic theory elegantly described by GA.

1.1 Introduction to GA

We denote the GA of a vector space V with dimension n and signature (p, q),
where p+ q = n, as G(p, q), and construct it as a direct sum of its exterior
k-spaces for k = 0, 1, . . . , n:

G(p, q) =
n⊕
k=0

k∧
(V). (1.1.1)
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This algebra is equipped with a bilinear form g between two vectors u, v ∈ V,
defined as

g(u, v) = u · v, (1.1.2)

which is known as the inner product of the space.
The dimension of G(p, q) is

∑n
k=0

(
n
k

)
= 2n, and its elements are referred

to as multivectors. A multivector M is a linear combination of k-vectors,
which are elements of the k-th exterior power of V, denoted as

∧k(V):

M = α+ βiei +
1

2!
γijei ∧ ej + . . .+

1

n!
δij...nei ∧ ej ∧ . . . ∧ en, (1.1.3)

where {α, βi, γij , . . .} ∈ R.
Each k-vector represents an oriented geometric object in the space. There-

fore, G(p, q) can be understood as the space comprising all possible geometric
elements of V.

The number of k-vectors in a GA of dimension n is given by the binomial
coefficient

(
n
k

)
, which can be visually represented using Pascal’s triangle, as

shown in Figure 1.1.
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Figure 1.1: The number of k-vectors in a GA, G(p, q), of dimension n =
p+ q is given by the binomial coefficient

(
n
k

)
. The element with the highest

dimensionality in each space is called the pseudoscalar.

Because multivectors are composed of elements of different grades, cer-
tain equalities might initially appear confusing or incorrect. For instance,
expressions like eiei = 1 or eiejejek = eiek may seem to equate elements
of different grades. This confusion is resolved by recognizing that these
equalities represent equivalence relations between multivectors, where null
components are omitted.
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The algebra G(p, q) is endowed with a bilinear operation, indicated by
the absence of a symbol between vectors u, v, w ∈ V, which satisfies the
following properties:

• Associativity: (uv)w = u(vw).
• Left-distributivity: u(v + w) = uv + uw.
• Right-distributivity: (v + w)u = vu+ wu.
• Relation to the inner product: u2 = g(u, u).

This operation is known as the geometric product and can be expressed as
the sum of the inner and outer products of two vectors u, v ∈

∧1(V):

uv := u · v + u ∧ v. (1.1.4)

Various aspects of this expression are noteworthy. First, u · v and u ∧ v
have different grades, 0 and 2, respectively. Second, the inner product and
the outer product correspond to the symmetric and antisymmetric parts of
the geometric product:

u · v =
1

2
(uv + vu) (1.1.5)

u ∧ v =
1

2
(uv − vu). (1.1.6)

Third, the geometric product is neither commutative nor anticommutative.
If the vectors are parallel (u ∝ v), the geometric product reduces to the
inner product and becomes commutative. Conversely, if the vectors are
orthogonal (u · v = 0), the geometric product reduces to the outer product
and becomes antisymmetric. In general, the geometric product does not
possess a defined symmetry.

It is important to note that the geometric product is initially defined
by its action on vectors. Although generalizing this product to multivectors
is non-trivial, it is possible; see [Macdonald, 2002] for details. However, in
practice, this is often unnecessary because the associativity of the geometric
product allows us to convert outer products into geometric products and
then apply the associative property.

An essential characteristic of the geometric product, which is not shared
by the inner or outer product, is its potential invertibility. For a non-null
vector a ∈

∧1(V), where a2 = a ·a ̸= 0, we can define the inverse a−1 ≡ a/a2

such that aa−1 = 1. The key properties enabling the existence of a−1 are the
associativity of the geometric product and the possibility of adding elements
of different grades in a multivector structure.

From a geometric standpoint, the inability to define an inverse using
the inner or outer product arises because knowing solely the projection or
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area that two vectors span is insufficient to determine one, given the other.
In contrast, Equation (1.1.4) encapsulates both element, thereby containing
complete geometric information about their relative positions.

1.1.1 Conventions

To simplify expressions by removing unnecessary parentheses, I will adopt
the common convention in GA of performing inner and outer products before
geometric products. For instance, the following expressions are significantly
simplified:

(a · b)c = a · bc, (a ∧ b)I = a ∧ bI. (1.1.7)

I will also use angle brackets to denote the projection into a specific
grade, indicated by a subscript:

a ∧ b = ⟨a ∧ b⟩2 = ⟨ab⟩2, a · b = ⟨ab⟩0 = ⟨ab⟩. (1.1.8)

The scalar projection will be written without a subscript.
This notation sometimes offers the additional benefit of simplifying ex-

pressions by converting inner or outer products into geometric products,
allowing us to utilize the associative property within the grade operation.

1.1.2 Complex numbers and rotor techniques

The use of the geometric product as the foundation of GA may initially
appear to be a mere formal exercise. However, it significantly enhances
the power of the formalism. Two notable examples are its application to
complex numbers and rotations.

Let us begin with the GA of the Euclidean space E2, denoted by G(2).
Consider an orthonormal basis {ei}, from which we construct the k-vector
basis {1, e1, e2, e1 ∧ e2}. We now calculate the square of the bivector e1 ∧ e2:

(e1 ∧ e2)2 = e1e2e1e2 = −(e1e1)(e2e2) = −1. (1.1.9)

Here, we used the orthonormality of the basis to replace the outer product
by a geometric product, reordered the expression, and then applied the
associativity property to convert the geometric products into inner products.

Next, we can construct a general element of the even subalgebra of G(2),
called G(2)+, as

z = α+ βe1e2, (1.1.10)

where α, β ∈ R. Given Equation (1.1.9) and the choice of notation, it is
evident that z is isomorphic to the complex number α+ βi.
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Furthermore, the bivector e1e2 can be used as a generator of rotations
in the e1e2-plane. For example, right multiplication by e1e2 results in the
expected π/2-rotations, analogous to multiplication by the complex unit:

e1(e1e2) = e2, e2(e1e2) = −e1. (1.1.11)

A rotation by an angle different that π/2 is achieved with an exponential
function. We can define the exponential of a bivector using its series expan-
sion, and construct an object called a rotor [Hestenes, 2003b]:

R(θ) = exp

(
−1

2
θe1 ∧ e2

)
= cos

θ

2
− e1 ∧ e2 sin

θ

2
. (1.1.12)

Because |e1 ∧ e2| = 1, the rotor R is normalized, meaning

RR† = 1. (1.1.13)

Where the dagger symbol denotes the reversion operation, which reverses
the order of all geometric products. Thus, R†(θ) = exp

(
−1

2θe2 ∧ e1
)
=

exp
(
1
2θe1 ∧ e2

)
.

The double-sided action of R and R† on a multivector M ∈ G(V) gener-
ates a rotation of an angle θ in the e1 ∧ e2-plane:

M ′ = R(θ)MR†(θ). (1.1.14)

Note that we have not imposed any restrictions on the dimension or
signature of the space. Therefore, Equations (1.1.4, 1.1.14) are valid in
spaces of any dimension and signature.

Moving to a higher dimension, we observe another remarkable isomor-
phism when examining the squares and permutation properties of the bivec-
tor basis generated by an orthonormal basis of E3:

e1 ∧ e2 ↔ i, e2 ∧ e3 ↔ j, e3 ∧ e1 ↔ −k. (1.1.15)

Apart from a sign difference in k,1 the (oriented) planes of E3 are isomorphic
to the quaternions. This is a special case of a more general phenomenon in
which the even subalgebra of a space provides a proper generalization of
complex numbers.

The even subalgebras of GA provides a geometric interpretation that
imaginary numbers inherently lack. Moreover, GA allows for the extension

1This sign discrepancy, originating from Hamilton’s original left-handed basis, has
caused considerable confusion.
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of complex numbers and complex calculus theory to spaces of any dimen-
sion and signature [Hestenes and Sobczyk, 1987], granting access to powerful
integral theorems that were previously achievable only through the complex-
ification of spaces. This establishes a profound connection between complex
numbers and geometry. We will further explore these topics in Sections 1.2.4
and 1.3 and chapter 6.

1.1.3 Pseudoscalar and duality

A k-vector with a grade equal to the dimension of the space, n, is called a
pseudoscalar and we denote it by

e =
n∧
k=1

ek. (1.1.16)

As the highest-grade element in the space, it is unique up to a sign and
scaling, meaning that any n-volume V can be expressed as V = αe, where
α ∈ R.

Since the pseudoscalar is constructed from the coordinate basis, it is gen-
erally position-dependent, denoted as e(x), and non-unitary, e2 ̸= 1. How-
ever, in orientable spaces, it is always possible to define a unit pseudoscalar
I such that

I =
e

|e2|
, I2 = ±1. (1.1.17)

The pseudoscalar is of particular importance in GA because it deter-
mines the handedness of the space and enables the definition of the duality
operation, which is performed in GA by right or left multiplication with the
unit pseudoscalar I =

∧n
k=1 êk, where êk represents an orthonormal set of

basis vectors.
The duality operation is equivalent to the Hodge dual of differential

forms up to a sign, as explained in Section 3.2.1.
The commutation properties of the pseudoscalar depend on both the

dimension of the other object and the dimension of the space: I commutes
with odd k-vectors in spaces of odd dimension and anticommutes with them
in spaces of even dimension. However, I always commutes with even k-
vectors.

1.2 Space-Time Algebra

The GA of Minkowski spacetime was developed by Hestenes [2015], who
coined the term Space-Time Algebra (STA). It has the metric ηµν = diag(+,−,−,−)
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and basis vectors {γµ}.2 These vectors satisfy the relationship:

γµ · γν = ηµν . (1.2.1)

The basis vectors are combined to construct the basis elements of G(1, 3),
as shown in Table 1.1.

Scalars 1
4 Vectors γ0 γ1 γ2 γ3
6 Bivectors γ10 γ20 γ30 γ23 γ31 γ12
4 Trivectors γ123 γ230 γ310 γ120
1 Pseudoscalar γ0123

Table 1.1: Basis elements of G(1, 3). The notation γµν ≡ γµ ∧ γν is used.
Notice the dual relationship between scalars and pseudoscalars, vectors and
trivectors, and between the first three bivectors and the last three bivectors.

The reciprocal basis, {γµ}, is defined by the relationship:

γµγ
ν = δνµ. (1.2.2)

Due to the orthonormality of the basis vectors, the reciprocal basis coincides
with the coordinate basis, differing only in the signature:

γµ = ηµνγν . (1.2.3)

It is noteworthy to remark here that the reciprocal and coordinate bases
span the same space. See Figure 2.2 for an example with non-orthonormal
basis vectors.

In G(1, 3), multivectors have 24 = 16 components, and their general form
is given by:

M = α+ vµγµ +
1

2
Bµνγµ ∧ γν +

1

6
Tµ(Iγµ) + PI, (1.2.4)

where I = γ0 ∧ γ1 ∧ γ2 ∧ γ3 is the pseudoscalar. The sixteen elements
correspond to one scalar, four vectors, six bivectors, four trivectors, and one
pseudoscalar. The duality operation, explained in Section 1.1.3, is used to
conveniently represent the trivector elements.

2This choice of notation for the basis vectors of the STA is non-standard. However,
it is particularly suitable when considering the reformulation of Dirac theory developed
by Hestenes [1975, 1997, 2003c], where the Dirac gamma matrices are isomorphic to the
basis vectors of spacetime, and the pseudoscalar plays the role of γ5.
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1.2.1 Bivectors and rotations

Due to the mixed signature of the space, G(1, 3) contains two types of basis
bivectors: spatial bivectors, which have negative squares, (γij)

2 = −1, and
spacetime bivectors, which have positive squares, (γ0i)

2 = +1. The notation
γµν ≡ γµ ∧ γν is introduced here, and is valid only for orthogonal frames.

The bivectors of a space are the generators of its Lorentz group. In the
STA case, with spatial bivectors generating spatial rotations and spacetime
bivectors producing boosts.

To perform a Lorentz transformation on a multivector M , we consider
the relevant bivector γµν and apply the rotor techniques presented in Sec-
tion 1.1.2. By sandwiching M between the corresponding rotor R we obtain
the rotated multivector M ′, as illustrated in Figure 1.2:

M ′ = RMR† = e−
θ
2
γµνMe

θ
2
γνµ , (1.2.5)

where θ is the parameter of the transformation, and R is given by:

R = e−
θ
2
γµν = cos

θ

2
− γµν sin

θ

2
. (1.2.6)

For example, a boost along the γ1 axis with velocity v⃗ ∈ R3 in the
direction of γ1 is calculated as follows:

γ′1 = e−γ01α/2γ1e
γ01α/2

= e−γ01αγ1 = coshαγ1 + sinhαγ0,
(1.2.7)

where α = tanh−1(|v⃗|/c), and we have used the anticommutativity of γ1
with γ01.

The exponential treatment of boosts and rotations is analogous to quater-
nionic rotations in E3, providing simpler operational rules when compared
to the 4 × 4 matrices from conventional tensor treatment, especially when
dealing with their composition.

Note that the decomposition of the geometric product into scalar and
bivector parts is the key element in the construction of rotors. This property
distinguishes GA from other formalisms, such as differential forms, and is a
major source of its powerful capabilities.

1.2.2 Time-Split

A remarkable feature of STA is the nested structure of subalgebras it gen-
erates3, see Table 1.2. The even subalgebra of G(1, 3), denoted as G(1, 3)+,

3In most GA literature, the signature (+,−,−,−) is used to define STA. This choice is
motivated by the natural emergence of nested subalgebra structures under this signature
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u

v

M
−uMu

M ′ = vuMuv

u ∧ v

Figure 1.2: The rotation of the multivector M with the bivector u ∧ v is
performed by reflecting M with respect to the plane perpendicular to u and
then reflecting the resulting vector with respect to the plane perpendicular
to v (Equation (1.2.5)). This construction easily demonstrates that two
reflections are equivalent to a rotation. See [Hestenes, 2003b] for details.

is isomorphic to G(3) by identifying the spacetime bivectors of G(1, 3) with
the basis vectors of G(3):

σi ≡ γi ∧ γ0. (1.2.8)

This identification enables the so-called time-split of a vector p. Consider
an observer moving with a 4-velocity given by the time-like basis vector γ0.
By right-multiplying the abstract vector p by the observer’s 4-velocity, we
obtain the projection of p into the observer’s frame:

pγ0 = ρ+ piγi ∧ γ0 = ρ+ p⃗. (1.2.9)

Where we used the arrow to denote the 3-dimensional components of p,
p⃗ = piσi.

The identification of the observer’s frame {σi} with the bivectors {γi∧γ0}
explicitly shows a dependence on the 4-velocity of the observer, which is not
present in conventional tensor calculus.

[Dressel et al., 2015]. However, Wu [2022] has shown that a similar structure can be
obtained for the opposite signature by making a different isomorphism between the even
subalgebra G(3, 1)+ and G(3).
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Cl1,3 Space-Time Algebra
Cl3,0 Relative 3-Space (E3)
Cl0,2 Quaternions
Cl0,1 Complex Numbers
Cl0,0 Real Numbers

Table 1.2: Clifford Ladder. Each algebra is isomorphic to a subalgebra of
the higher algebra.

1.2.3 Vector derivative operator

The calculus tools based on GA are known as Geometric Calculus (GC)
and were developed by Hestenes and Sobczyk [1987]. In this section, I will
review the main derivative operations, and in the next, I will present the
primary integral theorems.

The fundamental derivative operator in G(1, 3) is the vector derivative,4

denoted by ∇. It is defined in terms of the reciprocal basis {γµ} and the
directional derivatives ∂µ = ∂/∂xµ as

∇ = γµ∂µ. (1.2.10)

A crucial feature of ∇ is that it possesses the algebraic properties of a
vector, allowing it to be treated as such in operations. This implies that the
algebraic rules governing interactions between vectors and multivectors also
apply to ∇, resulting in a wide range of differential properties.

For example, we can derive familiar differential operations by applying
it with the inner and outer products to a vector field v = v(x) = vµ(x)γµ:

• Geometric derivative: ∇v = ∇ · v +∇∧ v.
• Divergence: ∇ · v = ∂µv

µ.
• Curl/Exterior derivative:

∇∧ v = ∂νv
µγν ∧ γµ

• Laplace-Beltrami Operator:

∇2v = ∇(∇v) = ∇ · ∇v = ∂µ∂µv
νγν .

For more algebraic differential identities and their corresponding counter-
parts in vector calculus and differential forms, see Tables 3.1 to 3.3.

4This notation is chosen due to its correspondence with Dirac theory, where it is referred
to as the Dirac operator.
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Two particularly noteworthy aspects of these expressions are the con-
structions of the curl and the Laplace-Beltrami operator. In the case of the
curl, the use of the outer product enables a consistent definition in spaces
of any dimension. For the Laplace-Beltrami operator, the associativity of
the geometric product allows ∇ to act on itself, forming a scalar operator
capable of acting on any multivector field:

∇(∇M) = (∇)2M = (∇ · ∇)M

= ∂µ∂µα+ (∂µ∂µβ
i)ei +

1

2
(∂µ∂µγ

ij)ei ∧ ej + . . .
(1.2.11)

Here, ∇∧∇ = 0 due to the commutativity of partial derivatives.

The ability to derive all differential operators from a single one is unique
to Geometric Calculus. It greatly simplifies calculations, enhances the ge-
ometric interpretation of equations, and unifies algebraic and differential
identities. For more details, see [Hestenes and Sobczyk, 1987, Ch. 2].

Finally, it is worth mentioning that∇ has an inverse operator in the form
of a first-order Green’s function, analogous to the inverse of a vector. This
property is fundamentally tied to the geometric product. Because it will
not be necessary for the remainder of this work I will note expand further,
but the interested reader can find the mathematical details in [Hestenes and
Sobczyk, 1987, §7-3], and an elegant application to Dirac’s and Maxwell’s
equations in [Gull et al., 1993].

1.2.4 Fundamental theorem of Geometric Calculus

Integration in GC offers two primary advantages over traditional vector cal-
culus: directed integration and compact expressions. The first, directed
integration, is a feature shared with differential forms, allowing significant
simplification when dealing with geometric, oriented elements. The second
advantage, unique to GC, is the use of the geometric product to combine
multiple integral theorems into a single expression called Fundamental the-
orem of Geometric Calculus.

The fundamental theorem of geometric calculus is stated as follows by
Macdonald [2012] and Hestenes [2015]: Consider a closed p-dimensional sur-
face5, Ω, bounded by the (p− 1)-dimensional surface ∂Ω. We can represent
a differential oriented element of Ω by the p-vector dxp, and the differen-
tial oriented element of the boundary by dxp−1 (see Figure 1.3). If M is a

5Non-necessarily simply-connected.
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Ω

∂Ω
dxp

dxp−1

Figure 1.3: Depiction of a p-dimensional surface Ω with oriented differential
element dxp, bounded by the (p− 1)-dimensional surface ∂Ω with oriented
differential element dxp−1.

differentiable multivector function on Ω, then we can write

ˆ
Ω
dxp · ∇M =

˛
∂Ω

dxp−1M. (1.2.12)

Notice that dxp is a p-vector, which can be decomposed as the outer
product of differential vectors dx(i) = dxiêi:

dxp = dx(1) ∧ . . . ∧ dx(p) = dx1 . . . dxpI(p), (1.2.13)

where I(p) = ê1 ∧ . . . ∧ êp is the unitary pseudoscalar of the surface Ω, and
dxi are the scalar integration elements. The same decomposition applies for
dxp−1.

In Equation (1.2.12), ∇ =
∑p

i=1 ê
i∂i is the vector derivative in Ω. It is

important to note that dxp ∧ ∇ = 0 because dxp has the same dimension
as Ω, and therefore dxp · ∇ = dxp∇. The inner product with the vector ∇
lowers the grade of dxp by one, making dxp · ∇ of the same grade as dxp−1,
which is essential for Equation (1.2.12) to hold.

The fundamental theorem of geometric calculus applies to manifolds of
any dimension, admits the presence of holes, and applies to non-scalar geo-
metric objects. For more details, see [Macdonald, 2012, Part IV].

In Chapter 3, I will provide a detailed comparison between differential
forms and GC. However, it is worth noting here the key differences between
Equation (1.2.12) and the generalized Stokes’ theorem of differential forms:

• In Equation (1.2.12), the product between dxp · ∇ and M is a geo-
metric product, which decomposes in two parts corresponding to the
generalized Stokes’ theorem and its dual.

• M is not restricted to being a scalar-valued function, as in differential
forms. It is a general map from multivectors to multivectors. This
allows Equation (1.2.12) to incorporate Cauchy’s integral theorem.
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The simplicity of Equation (1.2.12) may obscure its power. To illustrate
it, we will apply it to various manifolds to derive the fundamental theo-
rem of calculus, the Divergence theorem, Curl theorem, Green’s theorem,
and Cauchy’s integral theorems of complex analysis, as demonstrated by
Macdonald [2012, Part IV].

Fundamental Theorem of Calculus If p = 1, Ω is a line and dω → ds⃗ is
a vector. M is a scalar function, ∂Ω represents the endpoints of the segment,
and integration over them consists of multiplying by 1 or −1, depending on
the orientation of the segment. Thus, Equation (1.2.12) reduces to the
standard fundamental theorem of calculus:

ˆ x2

x1

ds⃗ ·M =M(x2)−M(x1). (1.2.14)

Divergence Theorem LetM be a vector field v on a bounded p-dimensional
manifold Ω in Rp. Setting dσ = n⃗dp−1x, Equation (1.2.12) becomes:

ˆ
Ω
∇ · v dpx =

˛
∂Ω
v · dσ. (1.2.15)

In a E3, this corresponds to Gauss’ theorem. However, this only covers the
inner product part of Equation (1.2.12). The outer product part, along with
the dual operation, relates outer and cross products in E3, yielding:

˚
V
∇× v dV =

‹
S
dσ × v. (1.2.16)

Curl Theorem Let M be a (p − 1)-vector valued field on an oriented,
bounded p-dimensional manifold Ω ∈ Rn, where p ≤ n. Then, Equa-
tion (1.2.12) is:

ˆ
Ω
dpx · (∇p ∧M) =

˛
∂Ω

dp−1x ·M. (1.2.17)

In a 3-dimensional manifold, with a 2-dimensional surface Ω, differential
area element dσ, boundary ∂Ω as the enclosing curve, and M as a vector
field v, this becomes the Curl theorem, commonly known as Stokes’ theorem:

¨
S
(∇× v) · dσ =

˛
C
v · ds. (1.2.18)



14 THE GEOMETRIC ALGEBRA OF SPACETIME

Green’s Theorem Let R be a region in the xy-plane with boundary C
oriented counterclockwise. Let M be a vector field P (x, y)x̂ + Q(x, y)ŷ on
R. Then: ¨

R
(∂xQ− ∂yP ) dA =

˛
C
(Pdx+Qdy). (1.2.19)

Cauchy’s Theorem The concept of analytic functions in the complex
plane can be generalized in GC to multivector fields M that satisfy the
condition:

∇M = 0. (1.2.20)

For such analytic functions, Equation (1.2.12) simplifies to:˛
∂Ω

dxp−1M = 0, (1.2.21)

which is called the Generalized Cauchy’s Theorem.
As shown by Hestenes [1986a], GC also encompasses the residue theorem:

IfM is analytic except at a pole x′ with residue q in the 2-dimensional surface
A, then ∇M = 2πqδ(x−x′), and substituting into Equation (1.2.12) yields:˛

dxM = 2πq

ˆ
A
e1 ∧ e2|dA(x)|δ(x− x′) = 2πe1 ∧ e2q. (1.2.22)

Note how e1 ∧ e2 plays the role of the imaginary unit i.
Details on the derivation of Cauchy’s theorem for integral functions can

be found in [Dressel et al., 2015, §4], [Doran and Lasenby, 2013, Ch. 4], and
[Hestenes and Sobczyk, 1987, §7.3]. However, we would like to highlight
three key points about this result:

• The theorem is derived without introducing complex numbers, as the
complex plane is isomorphic to G(2).

• The result is applicable to spaces of arbitrary dimension.
• The theorem has a clear geometric interpretation.
• GC unifies the theory of poles and residues with that of Green’s and
delta functions.

The unifying power of the fundamental theorem of geometric calculus is
unique to GC, providing a clear geometric interpretation of most integral
theorems.

1.3 Electrodynamics

Geometric calculus offers a powerful framework for describing the laws of
electromagnetism, as shown by Dressel et al. [2015]. In GA, the electro-



1.3. ELECTRODYNAMICS 15

magnetic field is represented by the bivector field F (x) ≡ F , which can be
expressed in components as follows:

F = Fµνγµν

= E1γ10 + E2γ20 + E3γ30 +
(
B1γ10 +B2γ20 +B3γ30

)
I.

(1.3.1)

The components Fµν correspond to the entries of the Faraday electromag-
netic tensor Fµν , and I used the duality operation to express spatial bivec-
tors as duals of spacetime bivectors. This formulation relates the spacetime
components of the electromagnetic bivector to the electric field F i0 ↔ Ei

and the spatial components to the magnetic field F ij ↔ Bi. By encoding
the electromagnetic field in a bivector field, we can immediately identify its
tracelessness and antisymmetric nature.

The time-split of F into the observer’s frame6 with 4-velocity γ0 produces
the E⃗ and B⃗ fields as measured in the local frame {σi}:

F = E1σ1 + E2σ2 + E3σ3 +
(
B1σ1 +B2σ2 +B3σ3

)
I = E⃗ + B⃗I. (1.3.2)

In this 3-dimensional subspace, the electromagnetic bivector F decom-
poses into a vectorial electric field and the dual of the magnetic field. This
vector-bivector representation of the electric and magnetic fields explains
their different behavior under parity transformations and clarifies the clas-
sical distinction between axial and polar vectors.

Furthermore, noting that I2 = −1 in Minkowski spacetime, we rec-
ognize that Equation (1.3.2) is precisely the Riemann-Silberstein vector,
E⃗+ iB⃗. This complex vector form of the electromagnetic field simplifies the
treatment of certain electromagnetic systems and aids in the formulation
and interpretation of quantum electrodynamics (QED) [Silberstein, 1907,
Bialynicki-Birula and Bialynicka-Birula, 2013]. This underlying “complex”
structure is not apparent when using the tensor components Fµν or the
Faraday two-form F.

We now proceed to derive Maxwell’s equations in GA as the simplest
differential equation for a bivector field:

∇F = ȷ, (1.3.3)

where ȷ is a multivector composed of grades 1 and 3, resulting from the
geometric product between a “vector” and a bivector.

6Since F is a bivector, it does not need to be right-multiplied by γ0 to decompose it
into the observer’s frame.
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To show that Equation (1.3.3) is equivalent to the standard Maxwell
equations, let’s expand its left-hand side using the time-split of the vec-
tor derivative ∇ = γ0(∂0 + ∇⃗) and the time-split of F , as given in Equa-
tion (1.3.2):

∇F = γ0(∂0 + ∇⃗)(E⃗ + B⃗I)

= γ0

[
∇⃗ · E⃗ + ∂0E⃗ − ∇⃗ × B⃗

]
+ γ0

[
∇⃗ · B⃗ + ∂0B⃗ + ∇⃗ × E⃗

]
I.

(1.3.4)

Where × means the usual cross-product which we obtained by using the
algebraic property between vectors in E3: a × b = −I(a ∧ b). Therefore
∇⃗ × B⃗ is the 3-dimensional curl of B.

For the right-hand side of Equation (1.3.3), we write ȷ as the sum of a
vector field ȷe and a trivector field ȷmI:

∇F = ∇ · F +∇∧ F = ȷe + ȷmI. (1.3.5)

The vector fields ȷe and ȷm can be decomposed into the observer’s frame as:

ȷe = cρeγ0 + ȷieγi = (cρe + J⃗e)γ0,

ȷm = cρmγ0 + J imγi = (cρm + J⃗m)γ0.
(1.3.6)

The time component of ȷe and ȷm represents the electric and magnetic
charges, respectively, while the spatial components correspond to their cur-
rents. If we set ȷm = 0, thereby assuming no magnetic monopoles, and
match terms by their grade between Equation (1.3.4) and Equation (1.3.6)
we obtain the non-homogeneous Maxwell equations in the local observer’s
frame:

∇⃗ · E⃗ = ρe,

∂0E⃗ − ∇⃗ × B⃗ = J⃗e,

∇⃗ · B⃗ = 0,

∂0B⃗ + ∇⃗ × E⃗ = 0.

(1.3.7)

The constants in SI units can be recovered by setting:

E⃗ 7→
√
ϵ0 E⃗,

B⃗ 7→ B⃗/
√
µ0,(

ρe, J⃗e

)
7→ √

µ0

(
ρe, J⃗e

)
,(

ρm, J⃗m

)
7→ √

µ0/c
(
ρm, J⃗m

)
.

(1.3.8)
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Equation (1.3.3) is not just an aesthetic exercise. The invertibility of
∇ allows us to directly obtain the fields from the sources without involving
second-order derivatives, providing an expression where Huygens’ principle
of re-radiation is directly applicable and evident, and without ambiguities
for the obliquity factor; see Gull et al. [1993] and Doran and Lasenby [2013,
§7.5] for details.

The correct expressions for the interaction between charged particles and
the field emerge naturally by contracting the bivector field F with the 4-
current of a particle ȷ = qu, where q is the charge of the particle and u is
its 4-velocity:

dp

dτ
= F · ȷ

= (E⃗ · ȷ⃗)γ0 +
[
qE⃗ + ȷ⃗× B⃗

]
γ0.

(1.3.9)

Here, p = ξγ0 + piγi is the 4-momentum of the particle, and ȷ⃗ = qu⃗ is its
3-velocity. The first term, (E⃗ · ȷ⃗)γ0, represents the power of the interaction,
i.e., the rate at which energy is transferred from the electromagnetic field to
the particle, and the second term is the Lorentz force

This compact and elegant formulation extends to other aspects of elec-
tromagnetism, such as potentials and the Poynting flux among others. A
comprehensive and precise exposition of electromagnetism using GA can
be found in [Dressel et al., 2015]. The first pages provide an impressive
list of 33 characteristic advantages of using geometric calculus to describe
electromagnetism.

Finally, it’s worth mentioning that Gull et al. [1993] also showed that
the GA formulation of Maxwell’s equations can be mathematically solved
as a particular case of Dirac’s equation. This is the case because in the
Dirac-Hestenes formulation of Dirac’s theory, a spinor is described as an
even element of G(1, 3), composed by one scalar, six bivectors and one
pseudoscalar, and the Dirac-Hestenes equation is mathematically similar to
Equation (1.3.3)-illustrating the benefits of having a unified formalism for
physics, where the same mathematical techniques can be applied to study
different phenomena.

1.4 Conclusions

In this chapter, I introduced the basics of GA for a vector space. We explored
its key features, such as the geometric product, the geometric interpretation
of k-vectors, their generalization of complex numbers, and their simplified
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approach to handling rotations. For the sake of brevity and focus, I only
covered those elements essential for the subsequent chapters of this work.
However, GA encompasses many other fascinating and relevant aspects, and
interested readers are encouraged to consult the referenced literature for a
more comprehensive understanding.

I specifically focused on the GA of Minkowski spacetime, known as STA,
where bivectors serve as generators for rotations and boosts, and the time-
split operation plays a crucial role.

I then provided an overview of GC, including derivative and integral
techniques that stem from GA. The vector derivative operator is central
to these techniques, and many integral theorems traditionally seen in the
literature are elegantly unified under the fundamental theorem of geometric
calculus.

Lastly, I demonstrated the power of STA by reviewing the classical for-
mulation of the laws of electromagnetism within the GA framework.

In the next chapter, I will extend these techniques to the tangent space of
manifolds, developing a local STA that will enable us to apply the mathemat-
ical methods discussed here to a broader range of geometrical and physical
problems.
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Chapter 2

Space-time Algebra in
curved space times

The extension of the techniques from Chapter 1 to curved manifolds is
achieved by constructing a STA at every tangent space TpM. The basis vec-
tors for TpM are typically the generally non-orthonormal coordinate basis
vectors. Although GA can handle these non-orthonormal bases effectively,
introducing orthonormal frames (tetrads) to describe manifolds is particu-
larly advantageous. It simplifies expressions and calculations, enhances the
interpretation of quantities, and, as we will demonstrate, aligns seamlessly
with GA techniques.

Therefore, I dedicate Section 2.1 to introduce tetrads, and integrate them
in Section 2.2 with the GA formalism. Once the basic construction has been
set up, I proceed by deriving the essential elements of differential geometry,
such as the covariant vector operator, Section 2.3, the Riemann, Ricci and
energy-moementum tensors, Section 2.4. Forming what I refer to as the
tetrad-GA formalism. I conclude in Section 2.5 with a formulation of Ein-
stein’s equations in GA. The results in this chapter were originally presented
in [Pérez and DeKieviet, 2024a].

2.1 The Lorentzian Spacetime

From this point forward, we will consider M to be a 4-dimensional, real-
valued, differentiable manifold, with its tangent space at each point p de-
noted by TpM. The elements of TpM are called vectors, and the union of
all tangent spaces forms the tangent vector bundle TM =

⋃
p∈M TpM. The

sections of TM are referred to as vector fields.
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We denote by
∧
TM =

⊕4
i=0

∧i TM the direct sum of exterior algebras
over the tangent spaces, which we call the bundle of multivector fields.

It is useful to note that
∧0 TpM = R,

∧1 TpM = TpM, and that
the dimension of each exterior algebra of the tangent space is given by
dim

∧i TpM =
(
4
i

)
.

We equip M with a Lorentzian metric g, which is a bilinear map g :
TpM× TpM → R with signature (1, 3), and we refer to the pair (M, g) as
a Lorentzian manifold.

We extend this Lorentzian manifold to a Lorentzian spacetime by adding
the following structures to the pair (M, g): a linear connection D satisfying
Dg = 0 (the metric compatibility condition), an oriented volume element
I ∈ sec

∧4 TM, and an oriented time direction ↑. Altogether, these define
the Lorentzian spacetime, denoted by the pentuple (M, g,D, I, ↑), within
which we will work.

We will also assume that the torsion of the connection D vanishes, align-
ing our framework with GR rather than the Einstein-Cartan theory.

2.1.1 Coordinates and coordinate frames

As it is customary, we consider (U,φ) to be a coordinate chart of the maximal
atlas A ofM, where U is an open set ofM, and φ is a differentiable mapping
from U to an open set of R4. We denote the coordinate functions of (U,φ)
by xµ : U → R, with µ = 0, 1, 2, 3 (Figure 2.1).

M

U

φ(p)

φ φ(U)
x2

x1
p

Figure 2.1: Two-dimensional depiction of a manifold M with an open subset
U and a coordinate map {U,φ}. Each point p ∈ U maps to a point φ(p) ∈
φ(U) ⊂ R2.

From the coordinate chart, we obtain a particularly important type of
vector field, which forms a basis of the subbundle TU ⊂ TM, called the
coordinate basis vector. A set {gµ} ∈ secTU , with µ = 0, 1, 2, 3, is called a
coordinate basis vector of TU if there exists a coordinate chart (U,φ) and
coordinate functions xµ such that, for each differentiable function f : M →
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R,

gµ(f)|p = gµ · ∇f |p =
∂

∂xµ
(
f ◦ φ−1

)∣∣∣∣
x=φ(p)

=
∂f(x)

∂xµ
. (2.1.1)

It is common practice to identify gµ with ∂µ, but to maintain a clear dis-
tinction between vectors and operators, we will avoid this identification.

From the coordinate basis vector, we can uniquely define a frame called
the reciprocal coordinate frame (Figure 2.2), which we denote by {gµ} ∈
secTU . It is defined by the relationship:

gµ · gν = g(gµ, g
ν) = δνµ. (2.1.2)

e2

e1

e2

e1

a

a1

a1

a2

a2

Figure 2.2: A non-orthonormal basis of R2, denoted by {ei}, and its recipro-
cal basis, denoted by {ei}, are depicted in black and red, respectively. Both
bases are related by an orthonormality condition ei · ej = δji . A vector a
is shown in blue, with components ai in the {ei} basis, and components ai
in the reciprocal {ei} basis. Note that both bases span the same physical
space.

At this point, one could introduce the dual space, dual basis, and their
corresponding reciprocal frame, as done in other works such as [Rodrigues
and de Oliveira, 2007]. However, since the presence of the metric induces
a musical isomorphism relating the dual and tangent spaces, we can forgo
this distinction and focus solely on the coordinate and reciprocal coordinate
bases without losing generality or limiting the formalism. This decision
follows the principle of parsimony in the construction of this framework.

The coordinate basis vectors {gµ} are generally non-orthonormal, and
their inner product gives the components of the metric g in the particular
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coordinate chart we are using:

gµ · gν |x = g(gµ, gν)|x = gµν(x). (2.1.3)

Similar considerations apply to the reciprocal basis, producing the compo-
nents of the inverse metric:

gµ · gν |x = g(gµ, gν)|x = gµν(x). (2.1.4)

For simplicity, we will omit the x-dependence of the metric in our notation.

It is straightforward to show that the components of the metric and the
inverse metric satisfy the condition:

gµνg
µσ = δσν . (2.1.5)

2.1.2 Tetrads

From the coordinate basis vectors {gµ}, it is possible to perform an orthonor-
malization procedure12 to obtain an orthonormal frame {γm} ∈ secTU , with
m = 0, 1, 2, 3, called a tetrad. Physically, a tetrad represents the frame of
reference of a local, inertial (free-falling) observer at point p, as shown in
Figure 2.3.

The choice of tetrad is not uniquely determined by the coordinate frame,
as there are infinitely many tetrads at each point p, related by local Lorentz
transformations. In this work, I will restrict myself to right-handed tetrads
with a positive time-orientation, all related by proper orthochronous Lorentz
transformations. This choice ensures consistency in the orientation and time
direction of the spacetime across different observers.

It is worth noting that in the gravitational literature, there exists a set
of tetrads that do not satisfy these requirements. These are used in the
Newman-Penrose formalism and are characterized by having a null “time”
component (other null components are also possible). Such frames are very
useful for describing gravitational radiation, but they will not be considered
in this work see [Newman and Penrose, 1962, Hamilton, 2020] for details.

1The extension of the Gram–Schmidt procedure to pseudo-Riemannian spaces depends
on the existence of a non-degenerate basis for the vector space. See Lee for comments on
his book [Lee, 2019, p.30].

2Hestenes and Sobczyk [1987, §1-3] presents the Gram-Schmidt orthonormalization
procedure in GA. However, due to the simplicity of the cases presented in this work, it is
not necessary to resort to the general procedure to obtain an orthonormal basis.
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g1

g0
γ0

γ1

x0

x1

Figure 2.3: Manifold mapped with coordinates (x1, x2) and two bases for
the tangent space at each point: in red, the coordinate tangent vectors {gµ};
in black, an orthonormal set of basis vectors {γm}, forming a tetrad.

Each choice of tetrad allows inertial observers to define four local coordi-
nate maps xm, forming an adapted coordinate system, such that for a given
differentiable function f(x) : M → R,

γm · ∇f(x) = ∂

∂xm
f(x). (2.1.6)

The components of the metric in the adapted coordinate system are
given by

γm · γn = ηmn, (2.1.7)

where ηmn = diag(+1,−1,−1,−1) is the Minkowski metric. For tetrads
representing the frame of inertial observers, Equation (2.1.7) implies that
in a sufficiently small neighborhood, the perceived spacetime of an inertial
observer is always flat.

Analogous to the reciprocal coordinate frame {gµ}, we can define the
reciprocal tetrad frame {γm} ∈ secTU by the relationship

γm · γn = δnm. (2.1.8)

Since the tetrad frame is orthonormal, the components of the inverse metric
in the reciprocal tetrad frame are also given by ηmn = diag (+1,−1,−1,−1):

γm · γn = ηmn. (2.1.9)
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In the preceding discussion, I have adopted the convention, common
in tetrad literature, of using middle Latin indices, {m,n, l, . . .}, to refer to
tetrad components, ranging from 0 to 3. Greek indices {µ, ν, λ, . . .} will refer
to coordinate indices, also ranging from 0 to 3, while other Latin indices,
{i, j, k, . . .}, will be used for spatial coordinate indices, running from 1 to 3.
In cases where we refer to specific coordinate directions, such as {t, r, θ, ϕ},
a hat will denote the corresponding tetrad components {t̂, r̂, θ̂, ϕ̂}. See Ap-
pendix A for a more detailed explanation of our notation choices.

The tetrad and coordinate frames are related by a transformation called
the vierbein, denoted by emµ:

gµ = emµγm. (2.1.10)

The components of the vierbein are determined by the metric gµν and the
chosen tetrad. Often, when a “natural” choice of tetrad is available, the
components of the vierbein can be read directly from the line element when
written in an appropriate form:

ds2 = gµνdx
µdxν = ηmne

m
µe
n
νdx

µdxν . (2.1.11)

In practical terms, the vierbein can be considered as the “positive square
root” of the metric, as its elements correspond to the square roots of the
metric components in diagonal metrics with the tetrad frame aligned with
the coordinate frame.

The vierbein contains 16 degrees of freedom: 10 corresponding to the
choice of coordinates, encapsulated in the metric, and 6 corresponding to
the choice of tetrad. Therefore, in general, the vierbein does not possess
symmetric or antisymmetric properties.

Using the reciprocal coordinate frame, we can define the inverse vierbein,
e µ
m in components. The vierbein and inverse vierbein satisfy the following
relationships:

emνe
µ

m = δµν , emµe
µ
n = δmn . (2.1.12)

We will use the inverse vierbein to relate the reciprocal coordinate and tetrad
bases:

gµ = e µ
m γm, (2.1.13)

as well as to invert the relationship in Equation (2.1.10):

γm = e µ
m gµ. (2.1.14)

The choice of which transformations define the vierbein and which define
the inverse vierbein, as in Equation (2.1.10) or Equation (2.1.14), is a matter
of convention and may vary among different authors.
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Compared to the traditional coordinate approach to GR, the use of the
tetrad formalism offers the following advantages:

• Separation of coordinate and frame-related degrees of free-
dom: The tetrad formalism clearly distinguishes between coordinates,
coordinate frames, and inertial frames. This separation helps isolate
the degrees of freedom associated with coordinate choice from those
related to frame choice, which is particularly useful in, for example,
differentiating between physical and non-physical perturbations. For a
comprehensive treatment of perturbations using the tetrad formalism,
see [Hamilton, 2020, Ch. 26-30].

• Local Lorentz invariance: Tetrads provide a local description of
spacetime geometry in terms of inertial frames at each point, making
the local Lorentz invariance of spacetime explicit. This simplifies the
analysis of physical quantities in different frames.

• Treatment of spinors: The tetrad formalism is essential for handling
spinors in curved spacetimes, as spinors cannot be directly described
in the coordinate basis.

• Simplification of certain calculations: In the tetrad frame, many
tensors take on simpler forms, or even become trivial. This is because
tensor components in the coordinate frame must compensate for the
local variation of the coordinate basis vectors, leading to apparent,
non-physical variations in tensor components.

• Numerical relativity: Tetrads are fundamental in some numerical
approaches to GR, such as the ADM formalism, where they facilitate
the separation of spatial and temporal components.

• Extensions of GR: Tetrads are crucial in various reformulations and
extensions of GR, such as teleparallel gravity, the Einstein-Cartan the-
ory, and some approaches to Quantum Gravity.

A more comprehensive treatment of the tetrad formalism in GR can be
found in several texts, like [Misner et al., 1973, §6.4] or [Carroll et al., 2004,
Appendix J].

2.2 Tetrads with GA

The tetrad formalism is further enhanced by promoting the local vector
space TpM to a GA, similar to the process described in Chapter 1 for
Minkowski spacetime. This promotion of the tangent space TpM to a GA
is referred to as the geometric tangent space at p, denoted by GTpM =
G(TpM). We define the Clifford bundle as the collection of geometric al-



26 SPACE-TIME ALGEBRA IN CURVED SPACE TIMES

gebras GTM =
⋃
p∈MGTpM. Locally, GTpM is isomorphic to the exte-

rior algebra
∧
TpM =

⊕4
k=0

∧k TpM, where
∧k TpM represents the

(
4
k

)
-

dimensional space of k-vectors (also known as k-blades). The sections of
GTM are called multivector fields.

We can use the outer product of the tetrad field {γm} to construct the
basis of k-vector fields of

∧k TM, which locally correspond to those pre-
sented in Table 1.1.

The extension of the geometric product between two vector fields a, b ∈
secTM , as defined in Equation (1.1.4), is achieved by interpreting the scalar
product as the metric product, a · b = g(a, b):

ab = g(a, b) + a ∧ b, (2.2.1)

where the position-dependence is implied.
The term g(a, b) can be calculated in the coordinate basis frame {gµ} as

g(a, b) = a · b = aµgµ · bνgν = gµνa
µbν , (2.2.2)

or in the tetrad frame as
a · b = ηmna

mbn, (2.2.3)

where ηmn = diag(+1,−1,−1,−1), and am, bn are the components of a and
b in the tetrad frame {γm}.

2.2.1 Connection bivectors

When we parallel transport a tetrad frame {γm} from point p to point q, the

relationship between the local tetrad at q, {γ(q)m }, and the transported tetrad

{γ′(q)m } is necessarily a restricted Lorentz transformation. As described in
Section 1.2, a Lorentz transformation in GA is performed by sandwiching
vectors with the corresponding rotor R(x):

γ′(q)m = R(x)γ(q)m R̃(x). (2.2.4)

If the generator of the transformation is the bivector ωµ(x) = ωµ and
the transformation is infinitesimal with a parameter ϵ, we can express the
rotor R as

R(x) = exp
( ϵ
2
ωµ

)
≈ 1 +

1

2
ϵωµ, (2.2.5)

and expand Equation (2.2.4) to first order as

γ′(q)m = γ(q)m +
ϵ

2

[
ωµ, γ

(q)
m

]
, (2.2.6)
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where the brackets denote the commutator between multivectors, [A,B] =
AB −BA.3

We can use this result to express the action of the directional covariant
derivative on a vector field a ∈ sec

∧1 TM. Typically, such a covariant di-
rectional derivative accounts for the variation of both the field components
and the local basis. However, by decomposing the vector field in the tetrad
frame, a = amγm, the infinitesimal variation of the tetrad from point to
point is a restricted Lorentz transformation, which can be expressed as the
commutator of the tetrad basis vectors with the generator of the transfor-
mation—the bivector field ωµ ∈ sec

∧2 TM:

Dµa = (Dµa
m)γm + amDµγm

= (∂µa
m)γm + am

1

2
[ωµ, γm]

= ∂µa+
1

2
[ωµ, a] .

(2.2.7)

In the last line, it is understood that ∂µ acts only on the components of
a, not on the basis vectors γm. This definition of the directional covariant
derivative applies similarly if a is a multivector field because the directional
covariant derivative Dµ is a scalar differential operator, meaning it does not
alter the grade of the object it acts upon.4

The field ωµ, which we call the bivector connection, is the result of ap-
plying the map ω to the coordinate vector field gµ. This map is linear and
defined as:

ω : sec
∧1

TM → sec
∧2

TM, ω : gµ 7→ ω(gµ) = ωµ. (2.2.8)

The bivector ωµ is determined by solving the equation Dµγm = ωµ ·γm, and
it depends entirely on the metric and the choice of tetrad field:

ωµ =
1

2

(
gλ ∧∇gµλ + gα ∧ ∂µgα

)
, (2.2.9)

where ∇ = gµ∂µ is the flat spacetime vector derivative operator, and the last
term is computed as ∂µg

α = γm∂µe
α

m . The derivation of Equation (2.2.9)
is provided in Appendix B.

In the case of a diagonal metric, where the coordinate basis vectors
are orthogonal, Equation (2.2.9) simplifies considerably if we choose the

3The commutator [A,B] is not the Lie bracket, which is often denoted with the same
symbol.

4It is easily shown that the commutator of any multivector with a bivector is a grade-
preserving operation.
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tetrad frame to be aligned with the coordinate frame.5 In this case, e µ
m =

diag(|g00|−1/2, |g11|−1/2, |g22|−1/2, |g33|−1/2), making the second term in Equa-
tion (2.2.9) vanish, and the computation of the first term consists of a maxi-
mum of 12 derivatives—three for each coordinate direction of spacetime—to
obtain all necessary connection coefficients

Physically, the map ω represents the Lorentz transformation experienced
by an inertial frame when parallel transported along the integral lines of
the µ-coordinate. This means that a free-falling observer moving along a
worldline c(λ) with tangent vector field K = ∂c(λ)/∂λ will experience a
rotation (or boost) of the frame attached to it, generated by the connection
bivector ω(K).

Compared to the Christoffel symbols, Equation (2.2.9) is more straight-
forward to apply and, compared to the guess-and-check method used with
differential forms [Misner et al., 1973, §14.6], they are systematic and clearer.

The decoupling of coordinate and frame-related degrees of freedom brought
by the use of tetrads also has significant consequences in the number of con-
nection coefficients at our disposal. In a torsion-free space, the Christoffel
symbols have 40 degrees of freedom, whereas the bivector connections, map-
ping vectors to bivectors, have a maximum of only 4 × 6 = 24 coefficients,
corresponding to the 3 proper Lorentz transformations and 3 rotations in
each of the 4 possible directions of displacement. If the metric is diagonal
and the tetrad is aligned with the coordinate axes, the maximum number
of connection bivectors reduces to 12.

From the 24 degrees of freedom in the bivector connection, the remaining
16 needed to account for all 40 degrees of freedom in the Christoffel symbols
are encoded in the vierbein e µ

m . These additional degrees of freedom relate
to changes in the norm and relative position of the coordinate basis vectors,
an issue not present in the tetrad formalism.

To connect with the tetrad literature, we can expand ωµ in the tetrad
basis and identify its components as the spin connection coefficients:

ωµ =
1

2
ωmnµγ

m ∧ γn. (2.2.10)

Since ωµ is a bivector field, its components are automatically antisymmetric
in their first two indices, ωmnµ = −ωnmµ, which is the expected symmetry
for the generator of a Lorentz transformation.

5Some sources, such as [Hestenes and Sobczyk, 1987, p.235] and [Hestenes, 1986b],
claim that this simplification occurs for any orthogonal coordinate frame. However, this
is incorrect; the alignment of the tetrad with the coordinate frame is also necessary.
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Finally, to relate the connection bivectors ωµ with the Christoffel symbols
Γκµν in the coordinate approach to GR, we note that the Christoffel symbols
are not tensors and therefore are not directly related to the components ωmnµ
through a simple change of basis using the vierbein e µ

m :

ekκe
m
µωkmν = ωκµν ̸= Γκµν . (2.2.11)

The relationship between these quantities is more complex and involves
derivatives of the vierbein:

Γκµν = e κl ∂ν e
l
µ + emµe

n
νω

κ
mn. (2.2.12)

Detailed calculations are provided in Appendix C.

2.3 Covariant vector derivative operator

Analogous to the vector derivative in flat spacetime, ∇, we define6 the co-
variant derivative operator acting on multivector fields in secGTM as:

D = gµDµ. (2.3.1)

Being {gµ} the reciprocal coordinate frame, andDµ the covariant directional
derivative defined in Equation (2.2.7). The covariant derivative operator, D,
behaves algebraically as a vector, allowing us to apply the same techniques
presented in Section 1.2 for the vector derivative operator to obtain a variety
of first-order covariant differential operators. Consider the vector fields a, b ∈
sec

∧1 TM:
• Covariant directional derivative in the a-direction: It is given
abstractly by a ·D, and it is a scalar operator, meaning that it does
not change the grade of the objects that it acts upon. Its action over
a multivector M ∈ secGTM is given by:

a ·DM = a · ∇M +
1

2
[ω(a),M ] . (2.3.2)

6An alternative route at this point is to avoid introducing the covariant derivative and
instead apply the chain rule of the directional derivative ∇ to the components and basis
of objects. This procedure is permissible due to the abstract representation of the objects
we are using and naturally and consistently yields all necessary tensors of differential
geometry. This approach is explored in more detail in Appendix D.

The reason I have chosen to use the covariant derivative in the remainder of this text is
primarily to maintain consistency with the conventions of the broader general relativity
literature.
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Decomposing a ·D and M in different frames yields various forms of
the covariant directional derivative found in the literature. Consider
the vector fields a, b ∈ sec

∧1 TM:
– (Plain) Covariant directional derivative: Obtained when
D = gµDµ, a = aµgµ, and b = bµgµ are decomposed in the coor-
dinate frame. The connection is given by the Christoffel symbols,
and it is not possible to form any geometric structure over the
connection. In this case, the components of the covariant direc-
tional derivative of a vector field b in the direction of the vector
field a are:

a ·Db = aµ
(
∂µb

α + Γαβµb
β
)
gα. (2.3.3)

– Fock-Ivanenko derivative: Obtained when D = gµDµ and
a = aνgν are decomposed in the coordinate frame, and b = bmγm
is decomposed in the tetrad frame. Then, ωµ is defined by Equa-
tion (2.2.9), and the components of the covariant directional
derivative of a vector field b in the direction of the vector field a
are:

a ·Db = aµ
(
∂µb+

1

2
[ωµ, b]

)
. (2.3.4)

– Tetrad covariant derivative: Obtained when D = γmDm,
a = anγn, and b = blγl are decomposed in the tetrad frame.
Then ωµ → ωm = 1

2ωlnmγ
l ∧ γn, ωlnm are called the Ricci rota-

tion coefficients, and the components of the covariant directional
derivative of a vector field b in the direction of the vector field a
are:

a ·Db = am
(
∂mb+

1

2
[ωm, b]

)
. (2.3.5)

Being ∂m = e µ
m ∂µ and ωlnm = e µ

m ωlnµ.
• Covariant divergence: Obtained as the inner product between the
covariant derivative operator and a vector field a. It is a scalar and
independent of the frame in which it is calculated:

D · a = Dµa
µ = Dma

m. (2.3.6)

• Covariant curl: Obtained as the outer product between the covariant
derivative operator and a vector field a:

D ∧ a = Dµaνg
µ ∧ gν =

1

2
(Dµaν −Dνaµ) g

µ ∧ gν . (2.3.7)

An equivalent expression can be derived in the tetrad frame.
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In practice, I have found that decomposing D into the coordinate frame
{gµ} and expressing the objects it acts on in the tetrad frame {γm} is the
most insightful combination. This approach clearly represents that the man-
ifold is mapped by coordinates along which the geometric objects of GTpM
are displaced, while the transported objects are expressed in an orthonormal
frame, eliminating non-physical variations due to changes in the coordinate
frame.

The action of D on k-vector fields M ∈ sec
∧k TM is straightforwardly

obtained by decomposing M into its corresponding basis and applying the
commutation rules of GA. For brevity, I will only explicitly provide the
expressions for the covariant divergence and curl of M in the coordinate
frame, where

M =
1

k!
Mλµ...ν

k elements︷ ︸︸ ︷
gλ ∧ gµ ∧ ... ∧ gν (2.3.8)

• The covariant divergence of a k-vector M ∈ sec
∧k TM, is denoted as

D ·M ∈ sec
∧k−1 TM, and it is expressed in the coordinate frame as:

D ·M =
1

(k − 1)!
gµ ∧ ... ∧ gνDλMλµ...ν . (2.3.9)

• The covariant curl of a k-vector M ∈ sec
∧k TM, is denoted as D ∧

M ∈ sec
∧k+1 TM, and it is expressed in the coordinate frame as:

D ∧M =
1

(k + 1)!
gκ ∧ gλ ∧ gµ ∧ ... ∧ gνD[κMλµ...ν]. (2.3.10)

The extension to multivector fields is straightforward by applying the
distributive property of D over the individual k-vectors.

The covariant directional derivative in GA provides a compact and in-
tuitive way of expressing the parallel transport equation of a vector a along
a curve c(λ) with tangent vector t = dc(λ)

dλ :

(t ·D)a = 0. (2.3.11)

The geodesic equation is then given by:

(t ·D)t = 0. (2.3.12)

Squaring the covariant derivative operator yields two second-order dif-
ferential operators:

D2 = D ·D +D ∧D. (2.3.13)
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The first term, which we denote by D · D ≡ ∆, is a scalar operator that
does not change the grade of the objects it acts on. It is equivalent to
the Laplace-de Rham operator of differential forms, which we can see by
expanding it in the coordinate frame to obtain the familiar form:

∆ = DµDµ − gµνΓσµνDσ. (2.3.14)

The second term of Equation (2.3.13), D∧D, is a second-order diferential
bivector operator, whose behavior is more interesting because it has no direct
analog in differential forms or other formalisms. It is sometimes referred to
as the Ricci operator [Rodrigues and Gomes de Souza, 2005], and expanding
it in the coordinate frame, we can express it as the commutator of covariant
directional derivatives:

D ∧D = gµ ∧ gν [Dµ, Dν ]. (2.3.15)

Expansion of D ∧D into the tetrad frame would introduce a term −f lmnDl,
where f lmn are the structure coefficients, due to the anholonomy of the frame.
Such term can be interpreted as a non-physical torsion originated in the non-
closure of parallelograms formed by the adapted coordinates.

When acting on a vector field a, it is easy to show that D∧D yields the
Ricci tensor acting on a, justifying its name:

D ∧Da = gµ ∧ gν(DµDν −DνDµ)a
mγm

= gµRmµa
m = R(a).

(2.3.16)

In GA, the Ricci tensor is a map from vector fields to vector fields:

R : sec
∧1

TM → sec
∧1

TM, a 7→ R(a), (2.3.17)

where R(a) = Rµνa
µgν and Rµν are the usual components of the Ricci

tensor, as in the tensor formalism.

The geometric interpretation of the Ricci tensor emerges when consid-
ering its effect on a congruence of geodesics and its relation to the Ray-
chaudhuri equations, as shown in Section 4.2. In brief, just as the geodesic
deviation is governed by the Riemann tensor, the Ricci vector R(a) quanti-
fies the variation due to curvature of a small volume when displaced along
the lines of the vector field a. The detailed proof can be found in [Loveridge,
2004], although I have not yet converted it into a simpler proof using GA.
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2.4 Riemann map and Ricci scalar

2.4.1 The Riemann map

Applying the operator D∧D to a multivector field M , we obtain the action
of the Riemann tensor in GA as follows:

D ∧DM = gµ ∧ gν [Dµ, Dν ]M = gµ ∧ gν [R(gµ ∧ gν),M ]. (2.4.1)

Here, we have defined the Riemann bivector map R(gµ ∧ gν) in terms of the
connection bivectors as:

R(gµ ∧ gν) = Rµν = ∂µων − ∂νωµ + [ωµ, ων ]. (2.4.2)

The Riemann bivector in GA is a map from bivector fields to bivector
fields, defined as:

R : sec
∧2

TM → sec
∧2

TM, B 7→ R(B), (2.4.3)

with R(B) = BµνRµνmnγ
m ∧ γn.

Since bivectors represent areas and serve as the generators of rotations,
the geometric meaning of the Riemann tensor becomes clear: it relates a
differential area to the rotation experienced by a vector when parallel trans-
ported along its contour, as illustrated in Figure 2.4.

We can expand the Riemann bivector in either the coordinate or tetrad
basis, obtaining the usual tensorial expression of the Riemann tensor, Rµναβ ,
or a mixed-index expression, Rµνmn:

R(gµ ∧ gν) = Rµν =
1

2
Rµναβg

α ∧ gβ =
1

2
Rµνmnγ

m ∧ γn. (2.4.4)

When expressed in the mixed-index form Rµνmn, the Riemann tensor
reveals some of its symmetries immediately:

1. The first two indices, related to the coordinate area, must be antisym-
metric.

2. The second pair of indices, representing the basis expansion of the
bivector, must also be antisymmetric.

The calculation of its degrees of freedom is also simplified. Since R
maps bivectors to bivectors, in a 4-dimensional space it can have at most
6 × 6 = 36 degrees of freedom. This number is reduced by considering the
protractionless property of the Riemann tensor:

∂a ∧R(a ∧ b) = 0. (2.4.5)
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A = a ∧ b

R(a ∧ b)

a

bb

a

v

vba

vab

Figure 2.4: Representation of the effect of transporting a vector v to the
same point through two different paths. When transported through the red
path, a → b, the resulting vector is vab. When transported through the
blue path, b → a, the resulting vector is vba. The vectors vab and vba are
related by a rotation that depends on the area spanned between the paths,
A = a ∧ b. This rotation is described by the Riemann tensor.

Equation (2.4.5) imposes a restriction on the function that maps vector
fields b to trivector fields, resulting in a total of 4× 4 = 16 equations, which
reduce the number of degrees of freedom of the Riemann tensor from 36
to 20. The protractionless properties of the Riemann are explored in more
detail in [Hestenes and Sobczyk, 1987, §3.9 and §5.1].

Equation (2.4.5) is equivalent to stating that R is symmetric under the
pairwise interchange of indices and satisfies the algebraic Bianchi identity:

R(a ∧ b) · c+R(c ∧ a) · b+R(b ∧ c) · a = 0. (2.4.6)

The differential Bianchi identity can be compactly written as:

D́ ∧ Ŕ(a ∧ b) = gµ (DµR(a ∧ b)−R(Dµ(a ∧ b))) , (2.4.7)

where I used the accent to denote the action of the covariant derivative
operator on the Riemann tensor, but not on its arguments [Hestenes and
Sobczyk, 1987, §5.1]. Although the presence of the accent can be confusing,
it is necessary because the vector nature of the derivative operator prevents
it from generally commuting with multivectors.

The components of the Ricci tensor are obtained from the Riemann
tensor by contraction, which reduces the grade of the object it acts upon by
1. In our formalism, this is performed using the inner product:

Rµ = gµ ·Rµν . (2.4.8)
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The contraction and protraction properties of a tensor can be combined
into the traction operation, defined as:

∂aR(a ∧ b) = ∂a ·R(a ∧ b) + ∂a ∧R(a ∧ b) = R(b) + 0. (2.4.9)

As demonstrated with the Riemann tensor, many symmetries and alge-
braic properties of tensors can be derived from their traction operations.

2.4.2 The Ricci scalar

The Ricci scalar R ∈ sec
∧0 TM is a scalar field that provides a measure of

the curvature of the manifold M at a point p. It has a geometric interpre-
tation analogous to the Gaussian curvature in two-dimensional surfaces but
generalized to four-dimensional spacetime. The Ricci scalar can be obtained
by contracting either the Ricci vector or the Riemann tensor as follows:

R = gµ ·Rµ = (gν ∧ gµ) ·Rµν . (2.4.10)

This contraction can be performed in any desired frame, but it is often
much simpler to compute in the tetrad frame, where the basis vectors are
orthonormal.

2.5 Einstein’s equations

Like the Ricci tensor, the Einstein tensor is a map from vector fields to
vector fields:

G : sec
∧1

TM → sec
∧1

TM, a 7→ G(a). (2.5.1)

Here, G(a) is defined as the combination:

G(a) = R(a)− 1

2
aR, (2.5.2)

where R(a) represents the Ricci vector, and R is the Ricci scalar. The
physical interpretation of the Einstein tensor is that it encodes the curvature
of the various 3-dimensional subspaces of the manifold [Loveridge, 2004].
However, I have not found significant advantages in using its GA description
for obtaining this interpretation.

The distribution of energy and momentum in spacetime is described by
the energy-momentum tensor T (a), which, similar to the Einstein tensor, is
a map from vector fields to vector fields:

T : sec
∧1

TM → sec
∧1

TM, a 7→ T (a). (2.5.3)
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The physical interpretation of T (a) ∈
∧1 TM is that it represents the flux

of 4-momentum passing through a hypersurface perpendicular to a [Doran
and Lasenby, 2013, §7.2.3].

Using the Einstein tensor and the energy-momentum tensor, Einstein’s
Field Equations can be formulated in GA as:

G(a) = κT (a) + aΛ, (2.5.4)

where κ is the Einstein gravitational constant, and Λ is the cosmological
constant. The trace-reversed form of these equations is given by:

R(a) = D ∧Da = κ

(
T (a)− 1

2
aTr(T )

)
+ Λa, (2.5.5)

with Tr(T ) = ∂a · T (a) being the trace of the energy-momentum tensor.

2.6 Conclusions

In this chapter, I presented the tetrad-GA formalism of GR. I started by pre-
senting the usual tetrad formalism and continue by generalizing the tangent
space at point p, TpM to a GA and form a bundle called GTM. This con-
struction properly generalizes the tools and objects presented in Chapter 1
to curved manifolds.

In deriving the most common objects of GR with GA, I found out that
many of them emerge rather naturally when considering the different actions
of the covariant vector D over vector and multivector fields. In the next
chapters we will see that their explicit form gets also considerably simplified
for the use of tetrads.

In this discussion, bivectors were particularly useful. Because of their
role as generators of rotations, they allowed us to express the connection
coefficients in as geometric objects, and interpret their action as restricted
Lorentz transformations between observers.

The geometric interpretation of the Riemann tensor was also consid-
erably enhanced by describing it as a map between bivector fields which
relates areas to rotations. However, I found limited benefits in describing
the Ricci and Einstein tensors, which I expected to reveal their geometric
content more clearly in the tetrad-GA formalism.

The tools developed in this chapter lay the foundation for the subsequent
chapters. However, since differential forms share many features with GA,
and are widely used to describe GR, in the next chapter I will compare both
formalisms as a bridge for the reader before delving into the applications of
the tetrad-GA formalism.
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Chapter 3

Differential Forms and
Geometric Algebra

Differential forms are one of the most popular geometric formalism in physics,
with applications spanning from electrodynamics to GR. Its framework ex-
tends vector calculus, providing a richer structure, simplified calculations
and powerful integral theorems, particularly when dealing with fields on
manifolds. They also allow for a formulation of physical laws relating ab-
stract objects, instead of their components in a particular frame, and the
properties of the exterior derivative provides a compact and natural way of
dealing with gauge transformations.

Building on the discussion of GA in previous chapters, in this chapter I
aim to bridge the gap between GA and differential forms. In Section 3.1 I
will start with a brief historical note regarding the foundations and evolution
of vector calculus, differential forms and GA, and in Section 3.2 I present a
side-by-side comparison between differential forms and GA. On it, we will
look at differential identities, integration theorems, and algebraic structures.
Afterwards, in Section 3.3, I will use electrodynamics, already described in
Section 1.3 in GA, as an example of application of both formalisms in flat
spacetime. Finally, in Section 3.4 I will compare the tools introduced in
Chapter 2 with those offered by differential forms in the context of GR,
highlighting their respective strengths and weaknesses. The results in this
chapter were originally presented in [Pérez and DeKieviet, 2024b].



38 DIFFERENTIAL FORMS AND GEOMETRIC ALGEBRA

3.1 Historical context

In 1870, William Kingdon Clifford [1878] laid the foundations of GA, build-
ing on the work of Hermann Grassmann . Clifford introduced the geometric
product, correctly identified the geometrical nature of the algebra’s elements,
and incorporated quaternions and rotors. However, his early death in 1879,
at the age of 33, kept his work from reaching a wider scientific community,
which only gained wider recognition in the late 20th century, thanks to the
revival by Hestenes [2002], Hestenes and Sobczyk [1987] and the Cambridge
group led by Anthony and Joan Lasenby, Chris Doran, and others [Doran
and Lasenby, 2013]. While GA and GC are rooted in Clifford’s work, they
have evolved by incorporating ideas from other mathematical frameworks,
as illustrated in Figure 3.1.

Meanwhile, O. Heaviside [1893] and J. W. Gibbs andWilson [1901] devel-
oped and popularized Vector Calculus, which was based on the quaternions
developed by Hamilton [1844], and it became the most widespread math-
ematical formalism for expressing physical laws for over a century. The
success of Vector Calculus was not only due to its suitable description of the
three-dimensional space, the early death of Clifford combined with the pop-
ularity of Gibbs seems to have played a crucial role in its diffusion [Chappell
et al., 2016].

At the same time, Élie Cartan [1899] developed the formalism known
as differential forms, a geometrically sophisticated framework that proved
to be especially effective for field theory on manifolds. Differential forms
provided coordinate-independent descriptions, simplifying the formulation
of physical laws such as Maxwell’s equations and addressing some of the
limitations inherent in vector and tensor calculus.

Because the connection between Vector Calculus and Differential forms
is well known, see for example the didactic, though somewhat outdated,
comparison made by Schleifer [1983], in this chapter I will focus on the
comparison between GA and differential forms, a topic which has already
been touched in literature [Hestenes, 1993], [Hestenes and Sobczyk, 1987,
§6-4], [Francis and Kosowsky, 2003], although not always in a comprehensive
or practical manner.

3.2 Differential Forms in Geometric Calculus

The correspondence between differential forms and geometric calculus can
be confusing because differential forms are used in literature in two distinct
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Figure 3.1: Diagram of the various mathematical frameworks that are part
of Geometric Calculus [Rossi, 2012]

ways: As elements of the cotangent space and as differential elements for
integration. Because the treatment in this chapter is not restricted to curved
Riemanninan (1 + 3)-dimensional manifolds, I will use {ei} to refer to a
general base of a given space with dimension n and êi to denote a general
orthonormal base of such space.

In the case, where a differential form is used to express a geometric
element of the cotangent space, we can identify it with a k-vector expressed
in the reciprocal frame. Then, a k-form represents a geometric object of
dimension k:

• zero-form ↔ Scalar.
• one-form ↔ Vector a = aiei = aiê

i

• two-form ↔ Bivector A = Aijei ∧ ej .
The basis of the cotangent space in differential forms is {dxi} and it acts

over the basis of the tangent space {∂j} as

dxi(∂j) = δij . (3.2.1)

This definition is equivalent to Equation (2.1.2), which we used to define the
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reciprocal base {ei} in terms of the base {ej}. Therefore, we identify

dxi ↔ ei (3.2.2)

when {dxi} is used as basis for forms.
Note that the presence of a metric is a necessary requirement to define

a GA, and therefore in GA there is always a musical isomorphism between
the tangent and cotangent elements. If this requirement is not fulfilled, we
cannot define a GA and Equation (3.2.2) is not valid. In this sense, differ-
ential forms provide more general framework because they do not strictly
require the presence of a metric. Nonetheless, in such case they are also
limited in their power, since many of their applications and theorems rely
on the Hodge star operator which is a metric-dependent operation.

The second use of differential forms is as directed integration elements,
in this case we identify them with differential multivectors representing dif-
ferential oriented geometric elements,

• zero-form ↔ Scalar.
• one-form ↔ Differential vector dx = dxiei
• two-form ↔ Differential of area dA = dx(1) ∧ dx(2) = dx1dx2e1 ∧ e2.

Where dxi are the scalar coordinate differentials, and dx(i) are differential
vectors in the i-direction.

E.g., In spherical coordinates, the differential of the rϕ-area is given
by the outer product of the differential vectors dx(r) = drer and dx(ϕ) =
dϕeϕ = dϕrêϕ,

dx(r) ∧ dx(ϕ) = dr dϕ er ∧ eϕ = dr dϕ êr ∧ rêϕ = r dr dϕ êr ∧ êϕ. (3.2.3)

Geometric interpretation Differential one-forms are typically depicted
as surfaces that are pierced by vectors, as illustrated in Figure 3.2, while two-
forms are often interpreted as “tubes” resulting from the intersections of two
one-forms [Misner et al., 1973, §2.5 and Ch. 4]. Although this description is
often regarded as intuitive in the literature, in my opinion, it is challenging
to visualize and even more difficult to attribute a physical interpretation
to it. This difficulty only increases with higher-dimensional forms, which
become even harder to conceptualize.

Moreover, this description is vague and lacks the precision required for
purely geometrical calculations, as the distance between surfaces is not de-
termined, nor is there a clear way to account for how vectors pierce the
surfaces. Thus, even though one can become accustomed to thinking about
forms in this way with sufficient practice, this interpretation remains neither
intuitive nor quantifiable.
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In contrast, geometric calculus offers a direct and quantifiable geometric
interpretation of objects and operations. Vectors are directed lines, bivectors
represent directed planes, and trivectors correspond to oriented volumes, as
shown in Figure 3.3. The outer product is a direct geometric combination
of these elements, while the inner product represents the projection of one
object onto another. Based on the experience in our group teaching GA,
this approach is generally more intuitive and easier to grasp than differential
forms. Students who have received minimal exposure to geometric algebra
can often quickly explain the geometric meaning of various elements and op-
erations, which is rarely the case with differential forms and their associated
operations.

Positive sense of ω

v

ω

Figure 3.2: Depiction of a one-form ω pierced by the vector v. The resulting
scalar, ω(v), is ”equivalent” to the number of surfaces that v intersects.

Consider the inner product of a vector a = ê1 + ê3 with a bivector
B = ê1 ∧ ê2, both expressed in the general orthonormal basis {êi}. This
operation can be carried out algebraically as:

a ·B = (ê1 + ê3) · ê1 ∧ ê2 = ê2, (3.2.4)

Figure 3.3: Geometrical elements of G(3). From top to bottom: scalars,
vectors, bivectors, and trivectors (volumes). Note that k-vectors contain
information only about the “area/volume” and its orientation, not the shape.
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or geometrically, by projecting a onto the plane defined by B, and rotating
it by π/2 in the direction defined by B, as shown in Figure 3.4. While the
rotation might be surprising, recall that bivectors also serve as generators
of rotations, which implies they contain orientation. Note that the resulting
vector, a ·B, lies in the plane defined by B and is always orthogonal to a.

e1

e2

e3a

a ·B

B

Figure 3.4: In red: the inner product of the vector a = ê1 + ê3 with the
bivector B = ê1 ∧ ê2.

The equivalent operation in differential forms cannot be visualized, as
the piercing analogy of one-forms and vectors is limited to scalar quantities.

3.2.1 Operations

In this section, we will explore several common operations in differential
forms and their counterparts in GC.

Duality operation The duality operation in differential forms is per-
formed using the Hodge star operator. In GC, the dual of an object is
obtained by multiplying it by the pseudoscalar I. Depending on the grade
of the object and the side on which I is multiplied, a minus sign may be
involved according to the commutation rule for the pseudoscalar with a k-
vector Ak in an n-dimensional space given by

IAk = (−1)k(n−k)AkI. (3.2.5)

For instance, in E3:

• The dual of a zero-form: ⋆f = fdx1 ∧ dx2 ∧ dx3 ↔ If = fê1 ∧ ê2 ∧ ê3.
• The dual of a one-form: ⋆dx1 = dx2 ∧ dx3 ↔ Iê1 = ê1I = ê2 ∧ ê3.
• The dual of a two-form: ⋆(dx1 ∧ dx2) = dx3 ↔ Iê1 ∧ ê2 = ê1 ∧ ê2I =
−ê3.
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It is important to emphasize that both the Hodge dual and the duality
in GC are metric-dependent operations. In GC, this is evident since the
inner product is needed to contract with the pseudoscalar. Similarly, in
differential forms, where the metric is an explicit part of the definition of
the Hodge dual:

α ∧ (⋆β) = ⟨α, β⟩(e1 ∧ · · · ∧ en), (3.2.6)

where α and β are k-forms.

Outer product: The outer product in differential forms is equivalent to
the outer product in GC. Both are superior to the cross-product in conven-
tional vector calculus, as they are defined for spaces of any dimension. This
allows the definition of the curl/exterior derivative in spaces with dimen-
sions greater than one, and in GC, it is also the basis for its treatment of
rotations.

For a pair of one-forms σ and ω, and their corresponding vectors a and
b, the outer product is given by

σ ∧ ω = (σ1ω2 − σ2ω1)dx
1 ∧ dx2

+ (σ2ω3 − σ3ω2)dx
2 ∧ dx3

+ (σ3ω1 − σ1ω3)dx
3 ∧ dx1

⇕
a ∧ b = (a1b2 − a2b1)ê

1 ∧ ê2

+ (a2b3 − a3b2)ê
2 ∧ ê3

+ (a3b1 − a1b3)ê
3 ∧ ê1.

(3.2.7)

In three dimensions, the relationship with the cross-product in vector
calculus involves a duality operation:

a× b⇔ ⋆(a ∧ b) ⇔ −I(a ∧ b). (3.2.8)

Inner product The inner product in differential forms is identical to the
inner product in GC1:

⟨σ, ω⟩ = σ1ω1 + σ2ω2 + σ3ω3

⇕
a · b = a1b1 + a2b2 + a3b3.

(3.2.9)

1In older texts on differential forms, the inner product was not incorporated directly,
and the equivalent expression ⋆(σ ∧ ⋆ω) was used.
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In differential forms, sometimes it is important to distinguish between
the inner product and the interior product. The interior product, defined
as the action of a one-form on a vector, is metric-independent, whereas the
inner product is the usual metric-based product between two vectors. In a
metric space, where there is an isomorphism between vectors and one-forms,
both products are equivalent.

From the perspective of GC, the difference between the inner and interior
products lies in the frame in which vectors are expressed. For example, given
a = aiei = aie

i:

a · b = aibj(ei · ej) = aibjgij = aib
j(ei · ej) = aib

jδij = aibi. (3.2.10)

Differential operations

In this section, I will demonstrate how the main differential operations in
differential forms relate to their counterparts in GA. The fundamental differ-
ential operator in GA is the vector derivative, and various differential opera-
tions arise by performing different products or applying algebraic identities,
as discussed in Section 1.2.

Exterior derivative: The exterior derivative of a k-form corresponds to
the curl of a k-vector in GA. Consider a one-form ω = ωidx

i ∈
∧1 (E3

)
and

its corresponding vector field a = aiê
i ∈

∧1 (E3
)
. Their exterior derivative

and curl are given by:

dω = (∂1ω2 − ∂2ω1)dx
1 ∧ dx2

+ (∂2ω3 − ∂3ω2)dx
2 ∧ dx3

+ (∂3ω1 − ∂1ω3)dx
3 ∧ dx1

⇕
∇ ∧ a = (∂1a2 − ∂2a1)ê

1 ∧ ê2

+ (∂2a3 − ∂3a2)ê
2 ∧ ê3

+ (∂3a1 − ∂1a3)ê
3 ∧ ê1.

(3.2.11)

The identity d2 = 0 in differential forms is equivalent to ∇ ∧ ∇ = 0
in GA. Both identities reflect the commutativity of coordinate directional
derivatives, indicating the absence of torsion.

In three dimensions, the curl as defined in vector calculus is obtained
using the dual operation over Equation (3.2.11),

∇⃗ × a⇔ −I(∇∧ a) ⇔ ⋆dω. (3.2.12)
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Codifferential: The definition of divergence in differential forms is some-
what intricate, and has its roots in the original construction of the inner
product in differential forms1. This operation, known as the codifferential,
is denoted by δ. Its action on a k-form α ∈

∧k (V), where V is a space of
dimension n is defined as

δα = (−1)n(k−1)+1 ⋆ (d ⋆ α). (3.2.13)

The equivalent operation in GA is the inner product of the vector deriva-
tive, which we call divergence. For the a vector field a = aiei it reads

∇ · a =
∑
i

∂ia
i, (3.2.14)

and in the case of a k-vector field M , applying the commutation properties
of the basis vectors we obtain:

∇ ·M =
∑
i,j

(−1)j+1∂jM
1...j...k
(i) e1 ∧ ... ∧ ej−1 ∧ ej+1 ∧ ... ∧ ek. (3.2.15)

Therefore, the codifferential equals the divergence in GA up to a sign
which depends on the dimension of the space and the power, or grade, of
the form.

Gradient: The gradient of a scalar function, or zero-form, f , corresponds
to its exterior derivative and to its curl in GA:

df = ∂1fdx
1 + ∂2fdx

2 + ∂3fdx
3

⇕
∇f = ∇∧ f = (∂1f) e

1 + (∂2f) e
2 + (∂3f) e

3.

(3.2.16)

Laplacian: In differential forms, the Laplace-de Rham operator is ex-
pressed as a combination of the codifferential and exterior derivative. In
GA, it is derived by acting twice with ∇ and applying the associativity
property of the geometric product:

(dδ + δd)f =
3∑
i=1

∂2i f

⇕

∇2f = (∇ · ∇)f =

3∑
i=1

∂2i f.

(3.2.17)



46 DIFFERENTIAL FORMS AND GEOMETRIC ALGEBRA

Where we used the property ∇∧∇ = 0.

It is worth noting the consistency in treating ∇ as a vector. The outer
product of a vector with itself vanishes, while its inner product produces a
scalar, i.e. the squared norm. Indeed, the Laplacian is a scalar operator in
that it does not change the grade of the element it acts upon.

∇2 correctly reproduces the Laplacian, d’Alembertian, or Laplace-de
Rham operator, depending on the signature of the space in question.

3.2.2 Identities

This section lists a series of algebraic identities and their respective formula-
tions in vector calculus, differential forms, and geometric calculus (GC). In
cases where the cross-product appears in vector calculus, I will omit the dual
operation in GC to produce algebraic relationships valid in any dimension.

Let f and g be scalar functions, σ and ω be differential one-forms, and
a and b be vector fields. The symbol ∇⃗ will represent the vector differen-
tial operator in vector calculus, while ∇ will denote the vector derivative
operator in GC.

Vector calculus

(1) ∇⃗(fg) = (∇⃗f)g + f(∇⃗g)
(2) ∇⃗ · (fa) = (∇⃗f) · a+ f(∇⃗ · a)
(3) ∇⃗ · (a× b) = b · (∇⃗ × a)− a · (∇⃗ × b)

(4) ∇⃗ × (fa) = ∇⃗f × a+ f(∇⃗ × a)
(5) a · (b× c) = c · (a× b) = b · (c× a)
(6) a× (b× c) = b(a · c)− c(a · b)
(7) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

Table 3.1: Some algebraic identities in vector calculus. Corresponding iden-
tities in differential forms are shown in Table 3.2, and in GC in Table 3.3.

From these identities, we can observe that geometric calculus serves as
a language that combines the best aspects of both vector calculus and dif-
ferential forms. From vector calculus, it borrows geometric intuition and
clarity. From differential forms, it incorporates the power of exterior alge-
bra, computational efficiency, and directed integration. However, this fusion
goes beyond a simple addition of features: the unification in GC enhances
computational power and provides deeper insights into geometric structures.
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Differential forms

(1) dfg = (df)g + f(dg)
(2) ⋆(d ⋆ (fω)) = ⋆(df ∧ ω) + f ⋆ (d ⋆ ω)
(3) ⋆(d ⋆ ⋆(σ ∧ ω)) = ⋆(ω ∧ dσ)− ⋆(σ ∧ dω)
(4) ⋆(d(fω)) = ⋆(df ∧ ω) + f ⋆ (dω)
(5) ⋆(σ1 ∧ σ2 ∧ σ3) = ⋆(σ2 ∧ σ3 ∧ σ1) = ⋆(σ3 ∧ σ1 ∧ σ2)
(6) ⋆(σ1 ∧ ⋆(σ2 ∧ σ3)) = σ2 ⋆ (σ1 ∧ ⋆σ3)− σ3 ⋆ (σ1 ∧ ⋆σ2)
(7) ⋆(⋆(σ1 ∧ σ2) ∧ ⋆(σ3 ∧ σ4)) = ⋆(σ1 ∧ σ3) ⋆ (σ2 ∧ σ4)− ⋆(σ1 ∧ σ4) ⋆ (σ2 ∧ σ3)

Table 3.2: Some algebraic identities in differential forms. Corresponding
identities in vector calculus are shown in Table 3.1, and in GC in Table 3.3.

Geometric calculus

(1) ∇(fg) = (∇f)g + f(∇g)
(2) ∇ · (fa) = (∇f) · a+ f∇ · a
(3) ∇ · (a ∧ b) = (∇ · a)b− a(∇ · b)
(4) ∇∧ (fa) = (∇f) ∧ a+ f(∇∧ a)
(5) a ∧ b ∧ c = b ∧ c ∧ a = c ∧ a ∧ b
(6) Same as (3): a · (b ∧ c) = a · bc− a · cb
(7) (a ∧ b) · (c ∧ b) = (a · (b · (c ∧ b))) = (a · d)(b · c)− (a · c)(b · d)

Table 3.3: Some algebraic identities in geometric calculus. Corresponding
identities in vector calculus are shown in Table 3.1, and in differential forms
in Table 3.2.

3.2.3 Theorems

In this section I will present some common theorems in differential forms
and how do they relate to their corresponding versions in GC.

Poincaré Lemma: If a k-form ω satisfies dω = 0 ⇒ ∃ a (k − 1)-form α
such that dα = ω.

In GC: If a k-vector field E has null curl, ∇ ∧ E = 0, then ∃ a (k − 1)-
vector field, ϕ such that ∇ϕ = ∇∧ ϕ = E.

Poincaré Lemma for the codifferential: If a k-form ω satisfies δω = 0,
then ∃ a (k + 1)-form β such that ω = δβ.

In GC: If a k-vector field B has null divergence, ∇ · B = 0. Then ∃ a
(k + 1)-vector field A such that ∇ ·A = B.
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Decomposition theorem: For any p-form ω ∈
∧p (V), ∃ α ∈

∧p−1 (V),
β ∈

∧p+1 (V) and γ ∈
∧p (V) with (dδ + δd)γ = 0, such that

ω = dα+ δβ + γ (3.2.18)

In GC [Roberts, 2022, Robson, 2023]: For any k-vector Ak, ∃ Bk−1,
Ck+1, Dk, with ∇2Dk = 0 such that

Ak = ∇∧Bk−1 +∇ · Ck+1 +Dk (3.2.19)

Generalized Stokes Theorems: In the language of differential forms,
the main integral theorems can be elegantly expressed using the generalized
Stokes theorem and the Hodge star operator as follows:ˆ

D
dω =

ˆ
∂D

ω (3.2.20)

ˆ
D
d(⋆ω) =

ˆ
∂D

⋆ω (3.2.21)

In geometric calculus (GC), Gauss’s and Stokes’s theorems correspond
to two parts of the fundamental theorem of calculus Equation (1.2.12) when
applied to scalar-valued functions. We obtain Equation (3.2.20) by con-
sidering the outer product, (dxp · ∇) ∧ M , in the geometric product of
Equation (1.2.12), and Equation (3.2.21) by considering the inner product,
(dxp · ∇) ·M .

A key distinction between Equations (3.2.20, 3.2.21) and Equation (1.2.12)
lies in their respective scopes of applicability. The generalized Stokes the-
orem in differential forms applies exclusively to scalar-valued differential
forms, whereas the fundamental theorem of geometric calculus applies to
multivector-valued fields, encompassing scalars, vectors, bivectors, and higher
k-vectors. Thus, Equation (1.2.12) extends the applicability of the general-
ized Stokes theorem by allowing it to address a broader range of geometric
entities, rendering it a more versatile tool in contexts where multivector
fields naturally arise.

It is worth noting that both theorems hold in manifolds of any dimension
and signature. However, while the applications of the generalized Stokes
theorem to gravitational theories is a topic thoroughly investigated, the
application of the fundamental theorem of geometric calculus to geometric
problems in gravitational theories, to the best of my knowledge, has not
been extensively explored, and it could open up intriguing possibilities. In
particular, it could yield relevant insights in the study of gravitational waves,
black hole spacetimes, and highly geometrical models beyond GR.
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3.3 Electrodynamics

In Section 1.3, we briefly reviewed the description of electromagnetism with
GC. We recall that, in this framework, the electric field is described by space-
time bivectors, while the magnetic field is described by space-space bivectors,
accounting for their different behaviors under spatial parity transformations.
These are the components of the electromagnetic bivector field F , whose
geometric derivative produces Maxwell’s equations, Equation (1.3.3). The
time-split of F naturally takes the form of the Riemann-Silberstein vector,
Equation (1.3.2), without the need for complex numbers. Altogether, this
provides an intuitive, elegant, and geometric description of electromagnetic
phenomena.

To compare this description with that of differential forms2, we begin
by considering the Faraday two-form F = Fµνdx

µ ∧ dxν , which is evidently
equivalent to the electromagnetic bivector field F = Fµνg

µ∧gν . The formu-
lation of Maxwell’s equations for F is not as straightforward as for F , but
ultimately they reduce to a pair of equations which are directly relatable to
the decomposition into trivector and vector part of Equation (1.3.3):

dF = 0 ↔ ∇∧ F = 0,

⋆d ⋆ F = J ↔ ∇ · F = ȷe,
(3.3.1)

where J = −Jµ ⋆ (dxµ) is a 3-form representing the currents and charges,
which is the dual of the vector ȷe.

As mentioned in Section 1.3, a key advantage of the unification provided
by GC is the possibility of a direct inversion of ∇, enabling the calculation
of F from the potentials without second-order derivatives.

While the introduction of the Lorentz force in GC is simple and straight-
forward, Equation (1.3.9), its formulation in differential forms is somewhat
cumbersome. To properly define it, we need to introduce the interior prod-
uct ιX (not to be confused with the inner product), where X is a vector field.

2There has been a debate about the need to introduce twisted forms, also called impair
forms, to properly describe EM, as twisted differential forms are necessary for integrations
in non-orientable manifolds. If this would be the case, the GA description of electromag-
netism would be incomplete, as defining a Clifford algebra on a non-orientable manifold
presents challenges.

The debate is divided into two camps: one led by Itin, Obukhov, and Hehl, arguing for
the necessity of twisted forms and the incompleteness of the GA description, and another
led by Roldao da Rocha and Waldyr A. Rodrigues Jr., defending the non-necessity of
twisted forms (since we live in an oriented universe) and the validity of GA. The debate
is outlined in the following articles [da Rocha and Rodrigues Jr., 2010, Itin et al., 2010,
da Rocha and Rodrigues Jr, 2010].
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The interior product is a map that transforms a p-form ω into a (p−1)-form,
ιXω, such that

ω (X,X1, . . . , Xp−1) = (ιXω) (X1, . . . , Xp−1) (3.3.2)

for any vector fields X1, . . . , Xp−1.

In tensor notation, it is written as

(ιXω)β...µ = ωαβ...µX
α. (3.3.3)

In a metric space, we can define a musical isomorphism, making the
interior and inner product equivalent. Since we always work within a metric
space when dealing with GAs, both operations are equivalent to the inner
product · that we have been using so far. The complexity of defining the
inner and interior product arises from working in tangent and cotangent
spaces in a metric-free manner.

Once the interior product is defined, the Lorentz force can be expressed
in the differential forms formalism in a manner similar to Equation (1.3.9):

dp

dτ
= qιuF, (3.3.4)

where u is the 4-velocity of the particle.

To conclude this section, we’ll examine the different geometric interpre-
tations of the electromagnetic field in both formalisms. In GA, the elec-
tromagnetic bivector field follows the same geometric principles that we
discussed previously: it is composed of two types of bivectors—spacetime
for E and space-space for B, see Figure 3.5. Such interpretation allows to
resolve geometrically electromagnetic phenomena, such as the interaction of
a charged particle with the field.

In the differential forms formalism, the electromagnetic 2-form F is vi-
sualized as tubes formed by the intersection of two planes, see Figure 3.6.
The “area” of these tubes is associated with the sense of rotation of the
2-form. This depiction arises from the sometimes-confusing description of
1-forms as surfaces. More importantly, and beyond the lack of intuition it
offers, this approach fails to provide a geometrically quantifiable method for
determining interactions with other phenomena.

In summary, description of electromagnetic phenomena by GC is clearly
superior to that of differential forms in several respects including computa-
tional power and physical and geometric intuition.
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Figure 3.5: Depiction of the electric and magnetic field as interpreted by the
Geometric Algebra formalisms. The electric field is a time-space bivector,
while the magnetic field is a space-space bivector.

Figure 3.6: Depiction of the electromagnetic field as interpreted by the
differential forms formalisms.

3.4 General Relativity and Cartan’s formalism

Another domain where differential forms are widely used is GR. There, and
in comparison to tensor formalism, it is undeniable that differential forms,
together with Cartan’s structure equations, provide an efficient way to de-
scribe the dynamics of curved manifoldas. But how does differential forms
compare to the tetrad-GA formalism presented in Chapter 2? That is the
aim of this section.

3.4.1 Frames

In both formalisms, the use of orthonormal frames is prevalent. These are
denoted as {θâ} in differential forms and {γm} in the tetrad-GA formalism.
They relate to the coordinate frame, denoted as {∂µ} in differential forms
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and {gµ} in tetrad-GA, via the vierbein emµ as follows:

gµ = emµγm ↔ ∂µ = eâµθâ, (3.4.1)

with the inverse vierbein relating the reciprocal frames:

gµ = e µ
m γm ↔ dxµ = e µ

â θ
â, (3.4.2)

and allowing for the inverse transformations, from the tetrad back to the
coordinate frame. The coordinate one-forms are denoted as {dxµ} in the
differential forms formalism, while in GA they are denoted by gµ.

Non-holonomic frames and differential forms are sometimes used in the
set up of the ADM formalism, so we will briefly explain its relation to our
tetrad-GA formalism. The ADM formalism assumes that spacetime is foli-
ated into a family of spacelike hypersurfaces Σt with induced metric gij . So
we can write the spacetime metric as

gµν = ±
(
1 0
0 gij

)
. (3.4.3)

The spatial metric gij together with the conjugate momenta πij , constitute
the variables of the theory.

The spatial metric gij is generally not orthonormal, however one of the
most common choices is

gij =

−1 0 0
0 −1 0
0 0 −1

 , (3.4.4)

which corresponds to the same tetrad choice of inertial observers that we
use in the tetrad-GA formalism. However, note that there is no restriction
on choosing a different gij in the ADM formalism, or selecting a different
local metric in the tetrad-GA formalism.

3.4.2 Connection elements

Given an arbitrary basis for vector fields {ea} and for one-forms {θa}, the
connection one-forms ωab are defined in terms of the covariant directional
derivative in the u-direction, Du, as

Duea = ωba(u)eb, (3.4.5)

where ωba(u) ∈ R, and thus ωba ∈
∧1, with no a priori symmetry properties.
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For the tetrad-GA formalism we defined the connection bivectors ω(u)
similarly in Equation (2.2.7). The relationship between both objects is sim-
ple: the components of ω(γl) =

1
2ωmnlγ

m ∧ γn in the tetrad basis {γm} are
the same as the components of the connection one-forms in the orthonormal
frame of the cotangent space {θâ}, with ωâ

b̂
= ωâ

b̂ĉ
θĉ.

ω
âb̂ĉ

= ωmnl. (3.4.6)

In terms of interpretation, the bivectorial nature of the connection bivec-
tor ω(u) provides a clearer geometric picture. As seen in Section 2.2.1, when
expressed in the orthonormal frame of an inertial observer, ω(gµ) serves as
the generator of the Lorentz transformation that such a frame experiences
when parallel transported in the µ-direction. A similar geometric direct
interpretation is missing for the connection one-forms.

For practical calculations, in torsion-free spaces, connection one-forms
are typically obtained using Cartan’s first structure equation:

dθb = −ωba ∧ θa, (3.4.7)

often through a guess and check method, as described in [Misner et al., 1973,
§14.6].

In the tetrad-GA formalism, we obtain the connection bivectors using
Equation (2.2.9). Which, in comparison to the guess and check method, has
the advantage of being systematic, while providing a considerable reduction
in calculation effort when compared with the Christoffel formula.

3.4.3 Curvature two-form

In differential forms, the curvature of the manifold is characterized by the
curvature two-form Ωab, given by

Ωab = dωab + ωac ∧ ωcb. (3.4.8)

It relates to the components of the Riemann tensor in the tetrad frame as

Ωab =
1

2
Rabcdω

c ∧ ωd. (3.4.9)

This curvature two-form is completely equivalent to the Riemann tensor
bivector discussed in Section 2.4.

The difference between these objects only lies in their interpretation. In
the tetrad-GA formalism, the Riemann tensor is a linear map connectiong
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a coordinate area A = gµ ∧ gν to a bivector generator of the rotation ex-
perienced by a frame when transported around A. This interpretation is
not feasible with differential forms, as only with the geometric product we
can formulate a generalized version of complex numbers, which allows us
to exponentiate bivectors and use them as generators of rotations. Thus,
while the two objects are mathematically equivalent, only the tetrad-GA
formalism provides a clear physical interpretation of it.

The description of the Ricci tensor R and energy-momentum tensor T
illustrate a problem concerning both formalism, which is symmetric tensors.
In GA we circumvent the problem by defining linear maps which satisfy the
condition

R(a) · b = R(b) · a. (3.4.10)

And we obtain the Ricci tensor by contracting the Riemann, Equation (2.4.8).

Differential forms has an equivalent expression using the inner product
to define the Ricci one-form

Ricb = ιaΩ
a
b, (3.4.11)

while other texts simply restore to component tensor calculations when hav-
ing to deal with symmetric tensors.

To conclude this section we can say that the treatment of differential
geometry in differential forms and tetrad-GA is very similar. The main
differences lying in their geometric interpretation and calculation methods,
with the latter offering a clearer physical meaning and simpler calculation
procedure. However, both formalisms can become a bit cumbersome when
dealing with symmetric tensors.

3.5 Conclusion

In this chapter, we presented the fundamental elements of differential forms
and their connections to their counterparts in GA and GC. The identification
of differential forms with elements of GA depends on their application, as
they can correspond either to the basis elements of the reciprocal space or
to differential k-vectors.

While differential forms and GA share many similarities and both offer
substantial improvements over traditional vector or tensor calculus, GA and
GC provide several distinct advantages:

1. GA offers a more intuitive interpretation of quantities and operations.
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2. The unification of the inner and outer products into the geometric
product leads to more compact and cohesive expressions and integral
theorems.

3. Integral theorems in GC are more general, containing more informa-
tion than the generalized Stokes’ theorem in differential forms.

4. An isomorphism between even subalgebras and complex numbers in
any dimension extends the theory of analytic functions to spaces of
arbitrary dimensions.

5. The unification of Cauchy’s theorem from complex analysis with other
integral theorems, along with its clear geometric interpretation, is
unique to GC.

6. GC significantly simplifies the treatment of rotations and spinors com-
pared to differential forms.

On the other hand, differential forms benefit from a well-established
formalism with extensive literature, including numerous applications and
textbooks. This maturity makes it accessible and widely used. In contrast,
GA and GC suffer from a lack of comprehensive didactic materials, which
can lead to a steeper learning curve for beginners.

As a concrete example, we compared the fundamental equations of elec-
trodynamics in both formalisms. In differential forms, Maxwell’s equations
reduce to a pair of differential equations involving the Faraday two-form.
In GC, however, Maxwell’s equations achieve a higher level of unification,
combining into a single differential equation that can be directly solved with-
out requiring second-order derivatives (see Gull et al. [1993] and Doran and
Lasenby [2013, §7.5] for details). An interesting connection, which is not
present in differential forms, emerges when projecting the electromagnetic
bivector in GC into the observer’s frame: it takes the form of the Riemann-
Silberstein vector, offering a neat geometric explanation and interpretation.

Furthermore, we found that relativistic electromagnetic fields are more
intuitively understood through GC’s interpretation of lines and planes, as
opposed to the surfaces and tubes pierced by vectors in the differential forms
formalism.

We also connected Cartan’s formalism of GR with our tetrad-GA for-
malism, reaching conclusions similar to those in the electrodynamics case.
While both formalisms can effectively describe GR, the tetrad-GA formalism
better captures the symmetries of the involved objects and offers a clearer
geometric understanding of physical processes.

However, both formalisms face challenges when dealing with symmetric
tensors, particularly compared to the flexibility of tensor calculus. Tensor
calculus, by working directly with coordinates without imposing constraints,
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is more adaptable but at the cost of cumbersome notation and a lack of clear
geometric or physical interpretation.

This raises an important question: What should we expect from a for-
malism? From my perspective, more flexibility is not always the answer.
Beyond accurately describing physical phenomena, a good formalism should
provide a robust set of tools that minimize the need for external input.
Ideally, a mathematical framework should handle the physical content auto-
matically, deriving consequences with minimal ambiguity and computation.
Additionally, a formalism should guide us towards meaningful and signifi-
cant modifications of a theory, while restricting unhelpful ones.

In this light, I believe GC offers the best of all possible options. As
noted in [Gu, 2018], “Clifford algebra faithfully and exactly reflects intrinsic
symmetry of spacetime and fields with no more or less content, and auto-
matically classifies the parameters in field equations by grade, which is a
definite guidance to set up dynamical equations and compatible constraints
of fields.” Conversely, tensor calculus provides maximum flexibility, though
often at the expense of clarity and comprehension. Differential forms oc-
cupy a middle ground: their exterior algebra simplifies calculations, but
their geometric interpretation of quantities is less transparent, which can
present a barrier to newcomers and hinder a deep physical understanding of
phenomena.
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Chapter 4

The FLRW and
Raychaudhuri Equations

As a first application of the tetrad-GA formalism, it might be a good idea to
apply it to a well-studied system. This serves two purposes: to compare our
formalism with traditional methods and to explore lesser-known aspects of
the tetrad-GA formalism in a familiar context. With this scope in mind, I de-
cided to investigate its description of Friedmann-Robertson-Walker (FRW)
spacetimes and their relation with Raychaudhuri equations.

While the underlying theory remains unchanged, the GA approach offers
a clear comparison with the standard Riemannian formulation, particularly
highlighting the transparent geometric properties of FRW spacetimes as
symmetric and solvable solutions in relativity.

In Section 4.1, I reiterate the standard approach to FRW spacetimes
within GA, using comoving coordinates to derive Friedmann’s equations and
compare GA with tensor and differential form approaches. In Section 4.2 I
employ the Raychaudhuri equations to derive Friedmann’s second equation.
Because the Raychaudhuri equations are naturally geometric, GA offers for
each quantity a clear physical interpretation. Then, motivated by their im-
portant relationship to FRW-spacetimes, in Section 4.3 I explore conformal
transformations in GA, with insights similar to those in Riemannian geom-
etry regarding the Weyl tensor and spatial flatness.

Section 4.4 discusses spacetime symmetries and conservation laws, ex-
pressing Lie derivatives and Killing vectors in GA, noting that a general
definition of Lie derivatives is problematic except for Killing fields. Lastly,
Section 4.5 addresses scalar field dynamics in FRW backgrounds, showing
how quintessence models can be easily expressed in GA and provide an alter-
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native method to derive the slow-roll conditions for accelerated expansion.

The content of this chapter was originally published in [Pérez et al.,
2024].

4.1 Friedmann’s Equations with Coordinate Intu-
ition

4.1.1 Choice of frame

We start with the FRW metric expressed in hyperspherical (or curvature-
normalised) coordinates obtained under the assumptions of homogeneity and
isotropy of the universe,

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
. (4.1.1)

Our hyperspherical coordinates are (t, r, θ, ϕ), and k is the usual constant
quantifying the curvature of the universe, with the three cases k = +1
(open), k = 0 (flat) and k = −1 (closed).

Suggested by the line element, Equation (4.1.1), the usual choice of basis
for the tangent space TpM is the coordinate basis {gµ}. This choice of basis
has the problem of not being orthonormal, as it can be seen by projecting
them into each other, Equation (2.1.3).

To highlight the Minkowskian geometry of the tangent space TpM, sim-
plify contractions and get a clear distinction in the dependence of objects
on coordinates or on vector basis, which remains a problem frequently en-
countered in GR literature, we make a change of basis in TpM to a tetrad,
orthonormal, basis.

We recall from Chapter 2, that the transformation relating the coordi-
nate and tetrad basis of TpM is called the vierbein and is determined by
Equation (2.1.10).

In the FRW case, the coordinate basis vectors are already orthogonal,
so we simply need to normalize them to obtain the tetrad base. The matrix
form of the vierbein for our FRW spacetime is

[emµ] =


1 0 0 0
0 a√

1−kr2 0 0

0 0 ar 0
0 0 0 ar sin θ

 . (4.1.2)
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From the conditions in Equation (2.1.12) we can obtain the inverse vierbein

[e µ
m ] =


1 0 0 0

0
√
1−kr2
a 0 0

0 0 (ar)−1 0
0 0 0 (ar sin θ)−1

 . (4.1.3)

All this considered, the tetrad frame {γm} can be obtained in terms of
the coordinate base as

gµ · gν = gµν

gµgν = δµν

γm · γn = ηmn

γmγn = δmn

gµ = emµγm


⇒

γt = gt

γr = a√
1−kr2 g

r

γθ = argθ

γϕ = ar sin θgϕ

 (4.1.4)

The tetrad basis vectors {γm}, and their reciprocals, {γm}, are related by
the Minkowski metric ηmn = diag(+1, -1, -1, -1), in our choice of signature,
γm = ηmnγ

n.

4.1.2 Connection bivectors

The next element needed to obtain Friedman’s equations are the connection
bivectors, which we will obtain by direct application of Equation (2.2.9)

ωt =
1

2
gt ∧ gλ∂λgtt = 0

ωr =
1

2
gr ∧ gλ∂λgrr =

ȧ√
1− kr2

γt ∧ γr

ωθ =
1

2
gθ ∧ gλ∂λgθθ =

√
1− kr2γr ∧ γθ + ȧrγt ∧ γθ

ωϕ =
1

2
gϕ ∧ gλ∂λgϕϕ

= r sin(θ)ȧγt ∧ γϕ + sin(θ)
√

1− kr2γr ∧ γϕ + cos(θ)γθ ∧ γϕ.

(4.1.5)

The overdot here represents a derivative with respect coordinate time ȧ =
∂ta.

In an FRW universe in GA, we have 3 connection bivectors, with a
total of 6 coefficients. A noticeable reduction in comparison with the 13
Christoffel symbols of tensor calculus.
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γr(p)

γr(q)

γt(p)
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γt(q)
γ′t(q)
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α

r

Figure 4.1: Picture to illustrate the transformation of a frame when parallel-
displaced in the r direction. At point p we have an inertial frame {γµ(p)}.
The relationship between the local frame at q, {γµ(q)} and the parallel-
displaced frame {γ′µ(p)} in grey, is a Lorentz transformation with rapid-

ity α = ȧ√
1−kr2 , which is generated by the connection coefficient ωr =

ȧ√
1−kr2γ

t ∧ γr

As an example of the geometric interpretation of the connection bivectors
let’s consider the parallel transport of a tetrad frame along the r-coordinate.
The infinitesimal transformation that it will experience when moving from
a point p to the neighbor point q is given by the ωr bivector. Since ωr
only has γt ∧ γr components, the transformation will be solely a boost with
rapidity ȧ√

1−kr2 , see Figure 4.1. Notice that ωt = 0, meaning that frames

parallel-displaced in the t direction will experience no rotation or boost.

4.1.3 Riemann curvature, Ricci vector, Ricci scalar and Ein-
stein tensor

From the connection bivectors we can directly use Equation (2.4.2) to obtain
the components of the Riemann, Rµν .

In the case of the FRW universe, the components of the Riemann take
a particularly compact form in the tetrad basis. Which we obtain with
Rmn = e µ

m e ν
n Rµν

Rt̂m = − ä
a
γ t̂ ∧ γm, m = r̂, θ̂, ϕ̂

Rmn = −
(
ȧ2 + k

)
a2

γm ∧ γn, m, n = r̂, θ̂, ϕ̂

(4.1.6)

We now obtain the components of the Ricci map by contracting Equa-
tion (4.1.6), as shown in Equation (2.4.8). This task can be performed easily
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in the tetrad frame due to its orthonormality

Rt̂ = γn ·Rnt̂ = −3
ä

a
γt

Rm = γn ·Rnm =

(
aä+ 2

(
ȧ2 + k

))
a2

γm, m = r̂, θ̂, ϕ̂.

(4.1.7)

To obtain the Ricci scalar, we can perform either a second contraction
of the Ricci vector or a direct bivector contraction with the Riemann, Equa-
tion (2.4.10). Just as before, contraction in the tetrad frame is easier

R = (γn ∧ γm) ·Rmn = −6

(
aä+ ȧ2 + k

)
a2

(4.1.8)

which recovers the correct result obtained from tensor calculus. Notice that,
because the products in GA are non-commutative in general, one should be
careful and perform the contractions in the right order, (γn ∧ γm) ·Rmn =
− (γm ∧ γn) ·Rmn.

We are now in disposition to calculate the Einstein vector using Equa-
tion (2.5.2), for which we obtain

Gt̂ = 3
(k + ȧ2)

a2
γt

Gm = −
(
2aä+ ȧ2 + k

)
a2

γm, m = r̂, θ̂, ϕ̂

(4.1.9)

Remember from Section 2.5 that the Einstein tensor gives the different 3-
dimensional subspaces of the manifold. In the FRW case, it means that the
3-space has curvature given by

G(gt) · gt = G(et̂tγt) · (et̂tγt) = Gt̂ · γt = 3
(k + ȧ2)

a2
. (4.1.10)

The fact that G(gt) ·gt only depends on t, means that, for a given time slice,
the curvature of the 3-space is constant in all directions.

4.1.4 Gravitational field equations

As defined by Doran and Lasenby [2013, §12.4.2], the expression for the
energy-momentum tensor of a perfect-fluid in GA is

T (a) = (ρ+ p)a · uu− pa. (4.1.11)

Where ρ is the energy density, p the pressure, and u is the 4-velocity of the
fluid. We can make a particular choice of a frame where the fluid is at rest
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and therefore u = γt. From the time component of Einstein’s equations,
Equation (2.5.4), we get the first of Friedmann’s equations

γt

(
3

(
ȧ

a

)2

+ 3
k

a2

)
− Λγt = 8πργt ⇒

(
ȧ

a

)2

=
8π

3
ρ− k

a2
+

Λ

3
. (4.1.12)

And taking any spatial component of Einstein’s equations(
2
ä

a
+ a−2

(
k + ȧ2

))
γi − Λγi = −8πpγi, (4.1.13)

we get the second of Friedmann’s equation

2
ä

a
+

(
ȧ

a

)2

+
k

a2
= −8πp+ Λ (4.1.14)

4.2 Friedmann’s equations from Raychaudhuri con-
gruences

An alternative and geometrically intuitive way of obtaining Friedmann’s
equations is from Raychaudhuri’s equation, which describes the evolution
of a congruence of geodesics by quantifying the evolution of their enclosed
volume. We would like to point out that the Raychaudhuri-equation is
simply a statement about the motion of a bundle of test particles through
spacetime. How they will actually evolve and be accelerated relative to each
other will be determined by the geometrical properties of the spacetime,
which in turn are determined by the field equations.

In the FRW-case, the Raychaudhuri congruence has an intersection point
as a→ 0 in the finite past, and given the current values of the densities and
equations of state of the cosmological fluids, no further intersection point
in the future. In an FRW-universe, shear and vorticity vanish due to the
cosmological symmetries, as these terms effectively introduce anisotropies.
Writing Raychaudhuri’s equation as the evolution of the volume θ = ∇µu

µ

with proper time τ leads to:

dθ

dτ
= −θ

2

3
−Rµνu

µuν +∇µ(u
ν∇νu

µ), (4.2.1)

where in FRW-spacetimes proper time is equal to the coordinate or cosmic
time t.
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In Raychaudhuri’s equation, the decomposition of the Riemann curva-
ture into the Ricci- and Weyl-tensors has a particular intuitive interpreta-
tion, as only the Ricci curvature can change the enclosed volume. Weyl-
curvature, which is absent in FRW spacetimes, would be responsible for a
change in the shape of the enclosed volume, in violation of the cosmological
symmetries. The Hubble expansion causes volumes to change proportion-
ally to a3(τ) = a3(t), where a(t) as a function depends on the densities
and the equations of states of the cosmological fluids as encapsulated by
the energy-momentum tensor, and by virtue of the field equation, by the
Einstein-tensor, which reflects only Ricci-curvature.

4.2.1 Raychaudhuri congruences

The direct reformulation of Equation (4.2.1) in terms of GA is

dθ

dτ
= −θ

2

3
−R(gt) · gt +D · (u ·Du) , (4.2.2)

with u being a vector field tangent to a geodesic congruence. The divergence
of the vector field u is denoted by θ

θ = D · u = Dmu
m = Dµu

µ

=
1√
|g|

∂
(√

|g|uµ
)

∂xµ
= uµ

∂ ln
√

|g|
∂xµ

=
d ln

√
|g|

dτ
,

(4.2.3)

where
√

|g| is the square root of the determinant of the metric.
In GA, the covolume

√
|g| can be derived by considering the two relevant

frames: the coordinate frame {gµ}, and the orthonormal tetrad frame {γm}
so that the unity pseudoscalar can be constructed with the tetrad vectors
as

I = γt ∧ γ1 ∧ γ2 ∧ γ3, |I| = 1. (4.2.4)

Because there is only one pseudoscalar element in a space, the volume ele-
ment of any coordinate basis vectors, denoted by e, must be a scalar multi-
plication of I, and its value will be |e|.

e = gt ∧ g1 ∧ g2 ∧ g3 = |e|I, |e| = |gt ∧ g1 ∧ g2 ∧ g3|. (4.2.5)

We can explicitly obtain |e| using Equation (2.1.10), and obtaining
√
|g| =

|e| [Hamilton, 2020], which is consistent with the view of the vierbein as the
“square root of the metric”. Thus, we can write Equation (4.2.3) as

θ =
d ln

√
|g|

dτ
=

1

|e|
d|e|
dτ

=
|e|′

|e|
. (4.2.6)
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paving the way to interpreting θ as the relative variation of the volume
element of the coordinate basis with respect to the proper time. In this
way, one arrives at the geometric interpretation of the left-hand side of
Raychaudhuri’s equation as

dθ

dτ
=

d

dτ

(
1

|e|
d|e|
dτ

)
=

1

|e|
d2|e|
dτ2

− 1

|e|2

(
d|e|
dτ

)2

=
1

|e|
d2|e|
dτ2

− θ2. (4.2.7)

The derivative of θ with respect to the proper time is composed of two
terms, the first one is the relative acceleration in the change of the volume
element, and the second one is the square of the relative variation of the
volume element. With these geometric elements at hand, one can substitute
Equations (4.2.6, 4.2.7) into Equation (4.2.2) and re-write Raychaudhuri’s
equation in a manner that fully reflects its geometric content and turns to
be highly similar to the second Friedmann equation, Equation (4.1.14).

|e|′′

|e|
=

2

3

(
|e|′

|e|

)2

−R(gt) · gt +D · (u ·Du) (4.2.8)

with |e|′ = d|e|/dτ the derivative of the covolume with respect to the proper
time.

4.2.2 Friedmann’s second equation as a particular case

In an FRW-universe, the last term in Equation (4.2.8) vanishes due to ho-
mogeneity. In fact, the Euler-equation for the motion of the cosmological
fluids is trivially fulfilled as there are no pressure gradients on spatial hyper-
surfaces. As a consequence, all fluid elements need to follow geodesics, which
are defined through the autoparallelity condition u ·Du = 0, uν∇νu

µ = 0 in
tensor notation, producing

|e|′′

|e|
=

2

3

(
|e|′

|e|

)2

−R(gt) · gt. (4.2.9)

which requires the determination of |e| and R(gt) · gt. For obtaining |e|,
one can consider for simplicity the vierbein of a FRW-spacetime in FRW-
coordinates with a tetrad field aligned with the coordinate frame,

[
emµ

]
=


1 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

 . (4.2.10)
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and the determinant |e| can be derived immediately from Equation (4.2.5),
giving

|e| = a3 (4.2.11)

such that volumes increase proportionally to a3 in the Hubble-expansion, as
intuitively expected. Furthermore, FRW-spacetimes possess the peculiarity
that proper time and coordinate time are equal, τ = t: The evolution of the
volume element |e| solely depends on time, and one can change the deriva-
tives with respect to proper time time in Equation (4.2.9) by derivatives
with coordinate time, |e|′ → ˙|e|, resulting in

3
ä

a
= −R(gt) · gt, (4.2.12)

with the curvature term, R(gt)·gt, given from Equations (2.5.2, 2.5.4) applied
to gt, and projecting into the observer’s 4-velocity gt,

R(gt) · gt = κT (gt) · gt + Λ+
R
2
, (4.2.13)

where we used gt · gt = gtt = +1. For continuing, one requires explicit ex-
pressions for T (gt) · gt and R. The former term, T (gt) · gt, results directly
from the expression of the energy-momentum tensor of a perfect fluid, Equa-
tion (4.1.11). For an FRW-universe in comoving coordinates, the fluid is at
rest with respect to the observer’s frame, which means v = gt. Therefore,
one immediately arrives at

T (gt) · gt = ρ. (4.2.14)

The latter term, R, requires the calculation of the trace of Einstein’s field
equations, which in GA is computed as

gµ ·
(
R(gµ)−

R
2
gµ = κT (gµ) + Λgµ

)
→ −R = κ tr(T ) + 4Λ (4.2.15)

relating, as expected, the Ricci-scalar with the trace of the energy-momentum
tensor. This trace in particular reads as

tr(T ) = gµ · T (gµ) = gµ ((ρ+ p)gt · gµgt − pgµ)

= (ρ+ p)− p+ (−pgigi) = ρ− 3p.
(4.2.16)

Combining both results implies for the Ricci scalar the well-known result

R = −κ tr(T )− 4Λ = −κ(ρ− 3p)− 4Λ. (4.2.17)
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The projection R(gt) · gt in Equation (4.2.13) can be obtained using Equa-
tions (4.2.14, 4.2.17) and Equation (4.2.13) as

R(gt) · gt = κρ+
1

2
(−κ(ρ− 3p)− 4Λ) + Λ =

κ

2
(ρ+ 3p)− Λ. (4.2.18)

Combining all these results in Equation (4.2.9) produces exactly second’s
Friedmann’s equation, with the substitution of ȧ from Equation (4.1.12), as
a particular case of Raychaudhuri’s equation:

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (4.2.19)

4.2.3 Varying the Friedmann action

A third method to obtain Friedmann’s equations is by performing variations
on the gravitational action, which is already symmetry reduced according to
the cosmological principle. Interchanging variation and symmetry reduction
is permissible under certain assumptions, the most notable being a compact
symmetry group, but this condition is only necessary and not sufficient [Fels
and Torre, 2002, Torre, 2011]. The action of a FRW-spacetime is given by
the Ricci-scalar Equation (4.1.8) with a term called lapse function N .

S =
1

8πG

ˆ
d(4)x

[
N

(
Λ− 3k

a2

)
+

3ȧ2

Na3

]
(4.2.20)

so that variation with respect to a and N as degrees of freedom recovers the
Friedmann equations.

The purpose of the lapse function is to introduce the freedom to choose
the time parameterization, and it is put in place as the gtt-term of the
metric. At first sight, Equation (4.2.20) looks the same as in conventional
tensor formalism. However, notice the absence of

√
|g|. This is because

d(4)x is an oriented differential, which means that we can decompose it as

d(4)x = g0 ∧ g1 ∧ g2 ∧ g3 dx0dx1dx2dx3 = |e|I d4x. (4.2.21)

Where g0 ∧ g1 ∧ g2 ∧ g3 is the pseudoscalar construced from of the coordi-
nates frame and dµx are the coordinate differentials used to perform the
integration. From Section 4.2.1 we recall that the scale factor is the volume
element encased by our coordinate basis vectors |e| = |g0 ∧ g1 ∧ g2 ∧ g3|, ac-
cording to Equation (4.2.5). In FRW-coordinates |e| = a3 and in conformal
coordinates |e| = a4.
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Because I is constant, it can be pulled out of the integral and we are left
with the same scalar integral as in the usual treatment whose variation to
recover Friedmann’s equation we will note repeat here but can be found in
[Düll, 2020].

4.3 Conformal flatness of FRW-spacetimes

FRW-spacetimes are conformally flat, meaning that their metric gµν result
from the Minkowski metric ηµν by scaling with a position dependent, strictly
positive factor α2(x),

gµν = α2(x)ηµν . (4.3.1)

This implies that, due to the symmetries of the problem, the tetrads can
be derived as a scaling from a particular set of coordinates. This is not a
general result, and usually an orthonormal frame needs to be defined locally
as a transformation of the coordinate frame.

In particular, null-geodesics, characterised by a vanishing line element
ds2 = 0, are invariant under conformal transformations, and conformally flat
spacetimes allow a coordinate choice with manifestly Lorentzian light cones:
The FRW-line element is commonly expressed in comoving coordinates and
physical (or cosmic) time, as it measures the length of the world lines of
comoving observers, as

ds2 = dt2 − a2(t)
[
dr2 + r2dΩ2

]
. (4.3.2)

Introducing conformal time dη through

dη =
dt

a(t)
, (4.3.3)

the line element is reduced to that of Minkowski-spacetime. Here, in spher-
ical coordinates,

ds2 = a2(η)
[
dη2 − dr2 + r2dΩ2

]
(4.3.4)

with the scale factor a(η) playing the role of the conformal factor α(x), which
only depends on time in this case. This reduction can be done in curved
FRW spacetimes as well; spatial flatness is not a necessity for conformal
flatness.

4.3.1 Weyl curvature

Conformal transformations leave the Weyl curvature invariant, and confor-
mal flatness implies a vanishing Weyl curvature. These two properties have
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particular relevance to FRW-spacetimes, as the symmetries of the cosmolog-
ical principle, spatial homogeneity and isotropy, require the Weyl tensor to
vanish. Because the dynamics with the scale factor a(t) is a mere conformal
transformation, the Weyl-tensor remains zero in time evolution. This is just
another way of expressing the fact that the Hubble expansion maintains
the FRW symmetries, commonly formulated in the way that the cosmolog-
ical fluids remain at rest in the comoving frame. The condition for spatial
flatness, i.e. that the densities of the fluids add up to 3H(t)2/8πG, is in-
dependent of the cosmological symmetries, so it is no surprise that spatial
flatness and conformal flatness are two independent concepts.

In GA, the Weyl tensor is derived from algebraic arguments [Todoroff,
Lasenby et al., 1998]. A possible starting point is considering the following
property of the Ricci tensor:

∂a · (R(a) ∧ b) = ∂a ·R(a)b− b · ∂aR(a) = Rb−R(b), (4.3.5)

with ∂a being the derivative with respect to the vector a, not to be confused
with a · D, which is the directional derivative in the a direction. ∂a is
mathematically equivalent to ∇, but with the argument where it acts upon
made explicit.

Because the Riemann tensor is a function of a∧b such that ∂a ·R(a∧b) =
R(b), one term must be R(a) ∧ b, and to satisfy the anti-symmetry of the
argument, it must have also a term a∧R(b). Applying ∂a· to this term one
gets

∂a · (R(a) ∧ b+ a ∧R(b)) = 2R(b) + bR. (4.3.6)

Furthermore, noting that

∂a(a ∧ b) = 4b− b = 3b, (4.3.7)

one arrives at

∂a · [
1

2
(R(a) ∧ b+ a ∧R(b)− 1

6
Ra ∧ b] = R(b) = ∂a ·R(a ∧ b). (4.3.8)

Therefore, it is possible to rewrite the Riemann tensor as

R(a ∧ b) = 1

2
(R(a) ∧ b+ a ∧R(b))− 1

6
Ra ∧ b+ C(a ∧ b), (4.3.9)

where C(a ∧ b) is an arbitrary traceless, ∂a · C(a ∧ b) = 0, function called
the Weyl tensor. Then we can proceed by isolating this particular tensor,

C(a ∧ b) ≡ R(a ∧ b)− 1

2

(
R(a) ∧ b+ a ∧R(b)− 1

6
a ∧ bR

)
. (4.3.10)
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and, as it is shown in [Hestenes and Sobczyk, 1987, §5-5], its traceless and
protractionless properties can be expressed as

∂aC(a ∧ b) = ∂a · C(a ∧ b) + ∂a ∧ C(a ∧ b) = 0. (4.3.11)

Its application to the coordinate bivector gµ ∧ gν and its decomposition
into a coordinate base provides the conventional components of the Weyl
tensor in tensorial formalism

C(gµ ∧ gν) = Cµν =
1

2
Cµναβ g

α ∧ gβ. (4.3.12)

Unfortunately, there does not seem to be a computational advantage over
conventional Riemannian geometry to prove that the Weyl-tensor is zero for
FRW-spacetimes, nor to show its invariance under conformal transforma-
tions.

4.3.2 Conformal transformations in GA and conformal flat-
ness

There is a notational advantage in GA with respect to conformal transfor-
mations, though: The relative change of the coordinate basis vectors {gµ}
due to curvature can be easily written as

gµν = gµ · gν , (4.3.13)

where each of the basis vectors is obtained by applying the directional deriva-
tive on the coordinate function x,

gµ =
∂x

∂xµ
= ∂µx, (4.3.14)

such that we can obtain their reciprocal frame by applying the vector deriva-
tive ∇ = gµ∂µ to each of the inverse scalar mappings xµ = xµ(x)

gµ = ∇xµ. (4.3.15)

Therefore, the line element is the product of two differential vectors,

ds2 = gµνdx
µdxν = dx(1) · dx(2), with dx(i) = (dxµ)(i)g(i)µ (4.3.16)

where dx(i) is a differential vector with scalar components dxµ. Conformal
transformations of the metric with a conformal factor α2(x) are now equiva-
lent to transformation of the coordinate differential dx as a GA-vector with
a single power of α(x):

x 7→ x′ implies g′µ = ∂µx
′ = α(x)gµ (4.3.17)
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for any α(x) ∈ R. Then, we can write the new metric as a scalar multipli-
cation of the old one,

g′µν = g′µ · g′ν = α(x)2gµν . (4.3.18)

We can also straightforwardly obtain the change in the volume element
after a conformal transformation. As explained in Section 4.2.1, the coordi-
nate volume element

√
|g| is equivalent to the determinant of the vierbein

|e|. After a conformal transformation, the new volume element e′ is given
by the outer product of the new coordinate basis vectors, and we can write
it in terms of the old coordiante basis volume element e as

e′ = g′0 ∧ g′1 ∧ g′2 ∧ g′3 = α(x)4g0 ∧ g1 ∧ g2 ∧ g3 = α(x)4e. (4.3.19)

Where we can see that a conformal transformation changes the volume ele-
ment as

√
|g′| → α(x)4

√
|g|.

In the FRW universe, the volume element e in FRW-coordinates was
obtained in Section 4.2.2, with determinant |e(t)| = a3(t). Under the con-
formal transformation Equation (4.3.3), the new volume element will be

|e′(η)| = a(η)4. (4.3.20)

In both cases, we can see that the volume element only depends on the time
parameter, reflecting the isotropy and homogeneity assumptions.

4.4 Spacetime symmetries and conservation laws

FRW spacetimes are highly symmetric due to the shift- and rotation in-
variance required by the cosmological principle. There are different possible
interpretations of how these symmetries are maintained in the course of
the time evolution, or equivalently, how the Hubble expansion is the only
dynamical evolution of FRW-spacetime that is compatible with the cosmo-
logical symmetries: From a geometric point of view one could argue that the
scale factor introduces a conformal scaling of the metric leaving the Weyl-
curvature invariant and in fact zero, making sure that the FRW-spacetime
pertains only Ricci-curvature in agreement with the cosmological principle.
From the point of view of fluid mechanics, diluting the cosmological fluids
with the scale factor would lead to the only admissible continuity equation
that would not change the spatial uniformity of the fluids, ensured by a
trivially fulfilled Euler-equation.
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4.4.1 Energy-momentum conservation, continuity and Euler
equations

Conservation of energy and momentum can be expressed in terms of a con-
tinuity equation, which in GA takes on the form

D · T (a) = 0. (4.4.1)

Because T (a) is a symmetric tensor, T (a) and its adjoint T (a), are identi-
cal1. By using the identity, T (a) · b = T (b) · a = T (b) · a one can rewrite
Equation (4.4.1) as

D · T (a) = a · T (D) = 0 ⇒ T (D) = 0. (4.4.2)

Specifying for the energy-momentum tensor of a perfect fluid, Equation (4.1.11),
and making D act left and right, we obtain

(u · D́)(ρ́+ ṕ)u+ (ρ+ p)u(D́ · ú) + (ρ+ p)(u · D́)ú−Dp = 0 (4.4.3)

Where we used the tilde to denote over which terms D acts. Notice that all
terms are vectors, including last term which is the gradient of p.

We can reduce this expression by making the following considerations:
third term vanishes due to geodesic equation (u ·D)u = 0, expanding the co-
variant divergence in second term, with Equation (4.2.6), choosing in FRW-
coordinates with |e| = a3, being u = γt a 4-velocity and considering that
the gradient of p reduces to its time derivative due to isotropy. Then, we
obtain the continuity equation for FRW

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (4.4.4)

4.4.2 Lie derivatives

The point of whether spacetime exhibits certain symmetries is independent
of the coordinate choice, which might or might not be adapted to the symme-
tries at hand. In either case, due to the diffeomorphism invariance, general
relativity is perfectly capable to determine the geometric and dynamical
properties of spacetime. It is possible, though, to find directions in which a
geometric object like the metric is shift-invariant, and this invariance corre-
sponds exactly to a vanishing Lie derivative.

1See [Hestenes and Sobczyk, 1987, §2.1] for details about the adjoint map defined in
GA.
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Because the Lie derivative is a pre-metric construction and Clifford bun-
dles depend on the metric to be defined, defining Lie derivatives on a Clifford
bundle in general is a subtle issue. The reason is that varying the metric
modifies the inherent structure of the Clifford bundle, which depends funda-
mentally on the metric. Another important point to consider is that when
working with a pre-metric structure, one must differentiate between tangent
and cotangent spaces, as the musical isomorphism also relies on the met-
ric. Consequently, different Lie derivatives must be defined for multivector
and co-multivector fields(or forms). For more details, see [Rodrigues and
de Oliveira, 2007, §4.1 and 9.5], [Leão et al., 2017], and [Heisler, §4.6].

All problems that arise from defining the Lie derivative for general multi-
vector fields vanish if we restrict ourselves to derivatives along Killing vector
fields, in the direction of which the metric remains invariant. In this setting,
we define the Lie derivative of a vector field a, in the direction of the Killing
vector ξ, as

Lξa = ξ · ∇a− a · ∇ξ, (4.4.5)

where ξ ·∇, understood as an interior (not inner) product between the vector
field ξ and the vector operator ∇ = γµ∂µ, is equivalent to the directional
derivative in the ξ-direction.

If the spacetime is torsion-free and metric-compatible, one can choose the
Levi-Civita connection and write the Lie derivative in terms of the covariant
derivative D

Lξa = ξ ·Da− a ·Dξ. (4.4.6)

This definition can be generalised to obtain the Lie derivative of multivector
fields, which we will need to find the Lie derivative of the metric [Wilson,
2022],

LξA = ξ ·DA− ξ́ ∧ (D́ ·A). (4.4.7)

Because, in general, the Lie derivative does not commute with the metric,
it does not follow the Leibnitz rule either with the inner or the geometric
product. However, it does so with the outer product because it is a metric-
independent operation.

Lξ(A ∧B) = (LξA) ∧B +A ∧ (LξB). (4.4.8)

We can use the Lie derivative of a multivector to define its action on a
tensor field T (a, b) as

LξT (a, b) = L̇ξṪ (a, b) = Lξ[T (a, b)]− T (Lξa, b)− T (a,Lξb) (4.4.9)
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where Lv[T (a, b)] means evaluating the derivative as a tensor function – that
is, deriving also the arguments.

An interesting application of the Lie derivative is that of the metric
tensor g(a, b) along with the killing vector ξ

Lξg(a, b) = ξ ·D(a · b)− g(Lξa, b)− g(a,Lξb)
= (ξ ·Da) · b+ a · (ξ ·Db)
− b · (ξ ·Da− a ·Dξ)− a · (ξ ·Db− b ·Dξ)
= a · (b ·Dξ) + b · (a ·Dξ).

(4.4.10)

Spacetime symmetries would now correspond to directions along which
the metric does not change. Observing Equation (4.4.10), we see that
Lξg(a, b) = 0 if and only if ξ satisfies

a · (b ·Dξ) + b · (a ·Dξ) = 0, (4.4.11)

which is known as Killing equation. The usual form of it can be obtained
replacing (a, b) → (gµ, gν)

gµ · (gν ·Dξ) + gν · (gµ ·Dξ) = 0 ⇒ (∂νξ)µ + (∂µξ)ν = 0, (4.4.12)

As such, the Killing equation is an eigenvalue equation. This allows us to
isolate the symmetries of spacetime in terms of the Killing vectors. Then,
we can use that knowledge to choose a coordinate system where one of the
killing vectors is a coordinate basis. In that coordinate system, the metric
would not depend on that particular coordinate.

4.4.3 Killing vectors

From the GA framework, we can obtain some of the properties of Killing
vectors fields immediately. First, Equation (4.4.11) means that a · Dξ is
antisymmetric. Therefore, Dξ is completely determined by its protraction,
resulting in the bivector Ω,

Dξ = D ∧ ξ = 2Ω. (4.4.13)

By recalling that bivectors are the generators of the Lorentz group, it follows
that the the bivectors Ω are the generators of the symmetries associated with
ξ.

Equation (4.4.13) automatically means that Killing vectors are divergence-
free,

D · ξ = 0. (4.4.14)
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This reflects that Killing vector fields are the associated with of a one-
parameter family of curves, the trajectories of the isometry, along which the
geometry is invariant. If the Killing vector field would not be divergence-free,
the trajectories of the isometry may converge or expand, and thus would not
keep lengths invariant.

This can be seen by exploring the Lie Derivative of the pseudoscalar I
along a vector field v. By applying Equation (4.4.7) we obtain

LvI = −ID · v. (4.4.15)

Meaning that the variation in the pseudoscalar I along the direction of v is
governed by the divergence of the vector field v.

From Equation (4.4.13) we see that Killing’s equation is equivalent to
the requirement of ξ to satisfy

a ·Dξ = a · Ω. (4.4.16)

This can easily be checked by expanding in coordinates,

Ω =
1

2
(Dµξν −Dνξµ) g

µ ∧ gν

gα · Ω =
1

2
(Dαξν −Dνξα) g

ν = Dαξνg
ν = Dαξ

(4.4.17)

in the last step, we used Killing’s equation Equation (4.4.11).

As a note, Sobczyk [1986] used Equation (4.4.16) to define the Killing
vector fields in GA, which is a different route to the one taken here of deriving
them from the requirement of vanishing Lie derivative of the metric.

Killing vectors of FRW-spacetimes

Solving Killing’s equation for a given spacetime is in general a difficult task.
However, we can use the known symmetries of the spacetime to try to guess
its Killing vectors. For FRW this is an easy task. Due to the cosmological
assumptions of isotropy and homogeneity, we know that the 3-dimensional
time slices are maximally symmetric. Therefore, we can use the Killing
vectors of the Euclidean space E3, which are easily obtained in cartesian
coordinates, and transform them to spherical coordinates [Deruelle et al.,
2018].

The FRW universe exhibits 6 Killing vectors, corresponding to 3 trans-
lations and 3 rotations in each time slice. Any linear combination of Killing
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vectors is a Killing vector, so we can express the general Killing vectors of
FRW as

ξ =

3∑
i=1

αiξ
(i) +

3∑
j=1

βjξ
(j) (4.4.18)

where ξ(i) are the Killing vectors related to translations and ξ(j) are related
to rotations.

For the flat FRW universe, the components of the general Killing vector
ξ are

ξt = 0

ξr = α3 cos(θ) + sin(θ) (α2 sin(ϕ)

+ cos(ϕ)(α1 + 2β3r cos(θ)))

ξθ =
1

r
(cos(θ)(α1 cos(ϕ) + α2 sin(ϕ))− α3 sin(θ)

+β2r sin(ϕ) + β3r cos(2θ) cos(ϕ))

ξϕ =
1

r sin θ
(− sin(ϕ)(α1 + β3r cos(θ)) + cos(ϕ)(α2 + β2r cos(θ))

+β1r sin(θ)) .

(4.4.19)

Notice that there is no time-like Killing vector, reflecting the fact that
the FRW universe is curved in the time direction.

As an example, we show the case for α1 = 1, αi ̸=1 = βi = 0, which
corresponds to a constant translation in the cartesian x-direction,

ξ(1) = sin(θ) cos(ϕ)gr +
cos(θ) cos(ϕ)

r
gθ −

csc(θ) sin(ϕ)

r
gϕ. (4.4.20)

And we obtain the corresponding bivector by rising the indices of ξ(1) and
using Equation (4.4.13)

Ω(1) = aȧ sin(θ) cos(ϕ)gt ∧ gr

+ aȧr cos(θ) cos(ϕ)gt ∧ gθ

− aȧr sin(θ) sin(ϕ)gt ∧ gϕ.
(4.4.21)

Conserved quantities

By Noether’s theorem, we know that any continuous symmetry is associated
with a conserved quantity. For an isometry of the metric, the conserved
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quantity associated with it is the projection of the Killing vector along a
geodesic with tangent vector v,

v ·D(v · ξ) = (v ·Dv) · ξ+ v · (v ·Dξ) = v · (v ·Ω) = (v ∧ v) ·Ω = 0. (4.4.22)

where (v ·Dv) · ξ vanishes due to auto-parallelity expressed by the geodesic
equation, v ·Dv = 0. The last term vanishes too because v ∧ v = 0.

The prior example provides an illustrative case. If we express ξ(1) in
cartesian coordinates (t, x, y, z), ξ(1) = gx. For a geodesic with tangent
vector v

v ·D(v · ξ) = v ·D(vx) = 0. (4.4.23)

Meaning that the vx component is conserved along the geodesic. If we
take into account that free-falling bodies follow geodesics, Equation (4.4.23)
means that the momentum in the x-direction is conserved.

Repeating the argument for the general Killing vector ξ in Equation (4.4.19)
we find that linear and angular momentum are conserved for each time slice
of the FRW universe.

Another conserved quantity along Killing vector fields was obtained in
Equation (4.4.15), where we saw that by taking into account that Killing
vector fields are divergence-less we obtain

LξI = −ID · ξ = 0. (4.4.24)

Meaning that, along Killing vector fields, the spacetime geometry is invariant
and therefore the pseudoscalar is conserved.

Tensor symmetries

Another important consequence of the existence of Killing vector fields is
the restriction that they impose on the degrees of freedom of the Riemann
tensor. Consider the following equation relating covariant derivatives and
the Riemann tensor,

R(a∧ b) · c = b ·D(a ·Dc)− a ·D(b ·Dc)− (Lab) ·Dc = c;ab− c;ba. (4.4.25)

Where we have introduced the common notation, a ·Dc = c;a.
If choose c to be a Killing vector ξ, we obtain

R(a∧ b) · ξ = b ·D(a ·Dξ)−a ·D(b ·Dξ) = b ·D(a ·Ω)−a ·D(b ·Ω). (4.4.26)

Dotting with a general vector c and using R(A) ·B = R(B) ·A we arrive at

R(a ∧ b) · (ξ ∧ c) = (a ∧ b) ·R(ξ ∧ c) = a · (Ω;b) · c− b · (Ω;a) · c. (4.4.27)
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By taking derivatives with respect to a, followed by derivatives with respect
to b and then using

D ∧D ∧ ξ = 0 ↔ Ω;a + ∂b ∧ (Ω;b · a) = 0, (4.4.28)

we find

R(c ∧ ξ) = −∂b ∧ (Ω;b · c) = −(∂b ∧ Ω;b) · c+Ω;c = c ·DΩ. (4.4.29)

From this relation, it is straightforward to recover the known equation re-
lating the second directional covariant derivative of Killing vectors and the
Riemann tensor

R(ξ ∧ c) · a = ξ;ac = c · D́(a ·Dξ́). (4.4.30)

Another useful equation relating the Ricci tensor and the Laplacian of
Killing vector fields can be obtained by contracting Equation (4.4.29)

R(ξ) = D · Ω = DΩ = D2ξ. (4.4.31)

The last proof that we present here is that the Lie derivative of a Killing
vector is also a Killing vector,

ξ3 = Lξ1ξ2 = ξ1 ·Dξ2 − ξ2 ·Dξ1 = ξ1 · Ω2 − ξ2 · Ω1. (4.4.32)

Calculating now the directional derivative of ξ3,

a ·Dξ3 = (a · Ω1) · Ω2 − (a · Ω2) + ξ1 · Ω1;a − ξ2 · Ω2;a

= a · (Ω1 × Ω2) + ξ1 ·R(a ∧ ξ2)− ξ2 ·R(a ∧ ξ1)
= a · (Ω1 × Ω2) + a · 2R(ξ1 ∧ ξ2) = a · Ω3,

(4.4.33)

one sees that ξ3 is a Killing vector with bivector Ω3 = (Ω1×Ω2)+2R(ξ1∧ξ2).

4.5 Quintessence Lagrange density

The formalism of GA is foremost a tool for geometric objects with inter-
nal degrees of freedom and has limited additional power over conventional
methods when dealing with scalar quantities. Nevertheless, because of the
importance of scalar fields in cosmology, in particular at early times driv-
ing cosmic inflation and at late times in the context of quintessence dark
energy, we revisit their fundamental constructions [Wetterich, 1988, Peebles
and Ratra, 1988, Ratra and Peebles, 1988, Peebles and Ratra, 2003] from
the point of view of GA.
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4.5.1 Quintessence equation of motion

The field equation of a scalar field ϕ is given by

□ϕ = D2ϕ = D(Dϕ) = D · v =
1

|e|
∂ (|e|(Dϕ)µ)

∂xµ
. (4.5.1)

Where one can write D2ϕ = D · v because D ∧Dϕ = 0, which is equivalent
to chosing the torsion-free condition D ∧ gµ = 0, and requiring integrability
condition for scalar fields [Hestenes, 2020]:

D ∧Dϕ = D ∧ gµ∂µϕ = gν ∧ gµ∂ν∂µϕ
!
= 0 → ∂ν∂µϕ = ∂µ∂νϕ (4.5.2)

For the particular case of FRW spacetimes in FRW-coordinates, one has
|e| = a3 and the homogeneity assumption only allows time derivatives, ∂µ →
∂t, such that one can write Equation (4.5.1) as

D2ϕ =
1

a3
∂t

(
a3ϕ̇
)
=

1

a3

(
3ȧa2ϕ̇+ a3ϕ̈

)
= 3

ȧ

a
ϕ̇+ ϕ̈, (4.5.3)

where the dot represents derivatives with respect to cosmic time, ∂t.

As shown by Lasenby et al. [1993], the Euler-Lagrange equations for
multivector fields ψ are

∂ψL − ´(∂DψL)D́ = 0, (4.5.4)

which, in the case of scalar fields ϕ, reduces to the familiar result

∂ϕL −D (∂DϕL) = 0. (4.5.5)

Then, for a standard Lagrangian defining the dynamics of the scalar field ϕ

L = L(ϕ,Dϕ) = 1

2
(Dϕ)2 − V (ϕ) (4.5.6)

with V (ϕ) being a potential. Evaluation of the Euler-Lagrange Equation (4.5.5)
yields

∂L
∂ϕ

= −V (ϕ)

∂ϕ
and

∂L
∂(Dϕ)

= Dϕ. (4.5.7)

Which immediately suggests that the equation of motion for ϕ is,

ϕ̈+ 3
ȧ

a
ϕ̇ = −dV (ϕ)

dϕ
. (4.5.8)
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4.5.2 Slow-roll conditions

Accelerated expansion takes place if the equation of state of the dominating
cosmological fluid is sufficiently negative, w = p/ρ < −1/3, and for solving
the flatness problem one needs this accelerated expansion to be maintained
for a sufficiently long time. Both conditions can be formulated in terms of
derivatives of the quintessence potential V (ϕ), which becomes quite apparent
in the Raychaudhuri equation, which relates the acceleration in the change
of the volume element |e| to the Ricci-curvature

dθ

dτ
=

d2 ln |e|
dτ2

= −θ
2

3
−R(gt) · gt. (4.5.9)

As the Ricci-curvature is determined by the energy-momentum tensor, one
can use Equation (4.2.9) to obtain constraints on ϕ: Specifically, rewriting
the energy-momentum tensor of the field ϕ = ϕ(t) in the language of GA
yields

T ϕ(a) = Dϕ(a ·D)ϕ− aL. (4.5.10)

From this expression, one can recover the usual tensorial components as

T ϕµν = gµ · T ϕ(gν) = (gµ ·D)ϕ(gν ·D)ϕ− gµ · gνL. (4.5.11)

By component-wise comparison of Equation (4.5.10) with the energy-momentum
tensor of a perfect fluid, Equation (4.1.11), it is possible to identify the en-
ergy density and pressure associated with the scalar field ϕ,

ρ = gt · T ϕ(gt) = (∂0ϕ)
2 − 1

2
(Dϕ)2 + V (ϕ) =

1

2
ϕ̇2 + V (ϕ) (4.5.12a)

p =
1

3
tr(T ϕ) =

1

3
gi · T ϕ(gj) =

1

2
ϕ̇2 − V (ϕ). (4.5.12b)

Where, in the particular case of a spatially homogeneous scalar field ϕ, it can
only depend on time. Combining Equation (4.2.13) with Equation (4.5.12a)
and Equation (4.2.17) yields an expression for the Ricci-curvature that di-
rectly depends on the scalar field ϕ and its derivative ϕ̇,

R = κ(ϕ̇2 − 4V (ϕ))− 4Λ, (4.5.13)

and similarly, one can obtain the Ricci vector over gt as

R(gt) · gt = κT (gt) · gt +
R
2

+ Λ = κ(ϕ̇2 − V (ϕ))− Λ. (4.5.14)
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Therefore, the evolution of the volume element as given by Equation (4.5.9)
results in

d2 ln |e|
dτ2

= −θ
2

3
− κ(ϕ̇2 − V (ϕ)) + Λ, (4.5.15)

with accelerated expansion taking place under the condition that Λ > 0
or that the kinetic energy ϕ̇2 of the quintessence field is smaller than its
potential energy V (ϕ),

ϕ̇2 ≪ V (ϕ), (4.5.16)

for obtaining the right sign in equation Equation (4.5.15).

4.6 Conclusions

In this chapter we presented the description of Friedmann-Robertson-Walker
spacetimes in the language of geometric algebra. GA simplifies many calcu-
lations and allows for a clear interpretation of the physical situation. We did
not aim for finding unknown physical properties of FRW-spacetimes, which
would be a surprise given that they are well-known and well-investigated.
Rather, our intention was to apply the formalism of GA to a simple, physi-
cally well-defined system in order to demonstrate the power of the formalism
and its geometric concepts.

This is particularly true for the Raychaudhuri-equation for the evolution
of congruences, i.e. of spacetime volumes bounded by geodesics. Within
GA the velocity divergence θ = ∇µu

µ turns out to be the relative expansion
of the spacetime volume element, as influenced by the presence of Ricci-
curvature, while vorticity and shear are absent in FRW-spacetimes. It is
possible to recast the Raychaudhuri-equation into a form highly similar to
the second Friedmann’s equation, with the interpretation of volume evolu-
tion as a consequence of the Hubble-expansion.

The cosmological principle imposes a very high level of symmetry onto
FRW-spacetimes and renders them conformally flat. Unfortunately, there
does not seem to be a computational advantage to using GA in terms of
conformal invariance of the Weyl-tensor. However, the discussion showed
that the square root of the determinat of the metric,

√
|g|, is simply the value

of the coordinate volume element within GA. Given the highly symmetric
nature of FRW-spacetimes, the role of Lie-derivatives and Killing-vectors
should be clarified: One can not define a general Lie derivative due to the
necessity of having to fix the metric prior in order to define a Clifford space.
In Clifford spaces, the Lie derivative can be properly defined only for Killing
fields. Effects of repulsive gravity caused by scalar, self-interacting fields in a



4.6. CONCLUSIONS 81

state of slow roll can easily be described in GA. In particular, in combination
with Raychaudhuri’s equations, the slow-roll conditions are recovered.

In summary, GA proved to be an excellent coordinate-free formalism to
deal with the geometry and dynamics of FRW-spacetimes. It is concise and
helps could help both students and researchers to develop better intuition for
the topic. In the next chapter we will explore another well-known system, the
Morris-Thorne wormhole and use it to explore the Fermi transport equations
in GA.
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Chapter 5

Fermi-Walker transport and
frame rotations

Among the various advantages of the tetrad-GA formalism discussed in
Chapter 1, one of the most distinct and powerful features is its handling
of rotations and Lorentz transformations using bivectors and rotors. In this
chapter, we will further explore these techniques, starting with an exami-
nation of the Fermi-Walker equations within the tetrad-GA framework in
Section 5.1. We will then apply these concepts to determine the acceleration
required to keep a spaceship in orbit around the throat of a wormhole, as
detailed in Sections 5.2 and 5.3.

We will demonstrate that the bivector formulation of the tetrad-GA for-
malism is particularly effective in describing non-geodesic motion by intro-
ducing a general bivector term into the geodesic equation, which naturally
accounts for external rotations or boosts experienced by the transported
frame.

This chapter will establish the foundation and set the stage for calculat-
ing the frame precession of an observer as it orbits a Schwarzschild and a
Kerr black hole in the following chapter.

5.1 Rotor techniques and Fermi-Walker transport

The method for describing the transport of frames along curves using rotors
was originally developed by Hestenes and Sobczyk [1987, §6-3], and we will
follow their derivation. We begin by considering a time-like curve c = x(τ)
with tangent vector u = dx/dτ , where u2 > 0. By the chain rule, the
directional covariant derivative along the curve is equivalent to the total
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u = dx
dτ

e0

e1e2

c = x(τ)

Figure 5.1: Orthonormal frame {ek} along the curve c, aligned such that
e0 ∝ u = ċ = dx/dτ .

derivative with respect to the affine parameter τ ,

u ·D =
dx

dτ
g0 · gµDµ =

d

dτ
. (5.1.1)

Now, suppose we have an orthonormal frame {ek} with one of its axes
aligned with the tangent vector of the curve,

e0 = u =
dx

dτ
. (5.1.2)

See Figure 5.1. We aim to transport this frame along the curve such that
the vector e0 remains tangent to the curve.

We write this condition as the directional covariant derivative of the
frame {ek} along c(τ). To maintain the orthonormality of the frame, the
variation of the frame must correspond to a proper, orthochronous Lorentz
transformation. Following the approach used to derive connection bivectors,
we can express this variation as the inner product of the frame with a general
bivector Ω = Ω(τ), which we seek to determine:

(u ·D)ek =
d

dτ
ek = ėk = Ω · ek. (5.1.3)

Solving for Ω is straightforward by right-multiplying by ek and using the
property eke

k ·Mr = rMr (where Mr is a blade of grade r),

Ω =
1

2
ėke

k =
1

2
ėk ∧ ek. (5.1.4)

Since our curve is time-like, u represents the 4-velocity of the particle
describing the curve, and thus ė0 = u̇. This allows us to expand Ω to include
both time and space components:

Ω = u̇ ∧ u+B, (5.1.5)
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c = x(τ)

e0 = u = dx
dτ

Ω = u ∧ u̇
u̇ = du

dτ

Figure 5.2: A time-like curve c(τ) with its corresponding tangent vector
u = dc

dτ . The angular acceleration required to keep e0 tangent to c = x(τ) is
given by the bivector Ω = u ∧ u̇.

whereB = ėi∧ei is a general spatial bivector satisfyingB·u = 0, representing
the spatial rotation of the frame.

A key physical element of this approach is the normalization of the 4-
velocity. With this normalization, the 4-acceleration is always orthogonal
to the 4-velocity, enabling us to represent it as a rotor that changes the
direction of the tangent vector to the worldline of the particle; see Figure 5.2.
Techniques for handling non-constant 4-velocities remain to be developed.

In the case where B = 0, meaning transport without any additional
spatial rotation, the bivector Ω = u̇ ∧ u acts as the generator of the trans-
formation along the curve and represents the angular velocity necessary to
keep e0 tangent to the curve. When this condition is met, we say that {ek}
is Fermi-Walker transported along the curve, and Equation (5.1.3) becomes
the Fermi-Walker transport equation in GA.

If we describe our spacetime using local orthonormal frames (tetrads)
{γk}, we can relate the transported frame {ek} to the local tetrad at each
point by another Lorentz transformation, given by

ek = R(τ)γkR(τ)
†. (5.1.6)

It is important to note that this is a local equation, valid at each point of
the trajectory, but not globally.

Therefore, the dynamics of {ek} are entirely contained in the rotor R(τ),
allowing us to focus on the dynamics of R(τ) rather than analyzing the
evolution of each axis individually. This significantly simplifies calculations.

To begin, we express the variation of {ek} along the curve x(τ) as a
covariant directional derivative and as a rotation with the bivector Ω:

u ·Dek = ∂uek +
1

2
[ω(u), ek] = Ω · ek, (5.1.7)

where ∂u = u · ∇ = uµ∂µ is the partial derivative in the u-direction.
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We obtain an expression for ∂uek by differentiating Equation (5.1.6) with
respect to the proper time τ and substituting the result into Equation (5.1.7),
yielding a differential equation for the rotor R(τ):

Ṙ(τ) =
1

2
(Ω− ω(u))R(τ). (5.1.8)

This is the central equation we need to solve in the following sections. For-
tunately, because ∂uγm = 0 by definition, the techniques for solving this
equation locally are identical to those used on a flat manifold, which further
simplifies the calculations. Furthermore, as we will see in the following sec-
tions, it is often the case that ω(u) and Ω are independent of τ , making the
solution to Equation (5.1.8) straightforward.

The advantages of this approach become evident when compared to the
conventional formalism of tensor or differential forms, where considerable
index manipulation is required to describe frame precession. These com-
plexities arise not only from component-based descriptions but also from
the use of cross products and the representation of rotations and angular
velocities as vectors, rather than bivectors.

To circumvent these difficulties, conventional methods project into three-
dimensional subspaces, introduce pseudovector notation, and use the cross
product. These approaches hinder a fully covariant treatment and obscure
the geometric and physical significance of the equations.

A particularly illuminating example is the calculation of the Lense-
Thirring effect. In [Straumann, 2013, p. 57], for example, the one-form
representing the spin rotation in a stationary field is given by

Ω =
1

2

⋆ (K ∧ dK)

⟨K,K⟩
, (5.1.9)

where K = ∂/∂t (or gt in our notation) is a Killing vector field, and K =
g00 dt + g0i dx

i is the corresponding differential form. The derivation of
Equation (5.1.9) is lengthy and involves several pages of differential form
manipulations.

For instance, consider the long-distance approximation of a stationary
field:

gtt ≈ 1, gij ≈ −δij ,
gti
gtt

≪ −1. (5.1.10)

In the tensor or differential form formalism with adapted coordinates,1 Equa-
tion (5.1.9) reduces to

Ω ≈ 1

2
∇⃗ × g⃗, (5.1.11)

1These are local coordinates induced by the local tetrad.
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the curl of the three-dimensional gravitational field in vector notation.

The same calculation becomes significantly simpler using the GA tech-
niques. First we note that in adapted coordinates, the orbiting body only
moves in the gt-direction, so the only relevant connection coefficient is ω(gt) =
ωt, describing frame rotation when displaced along the t-direction.

To obtain ωt, we observe that because the metric is static, the second
term of Equation (2.2.9) vanishes:

ωt =
1

2

(
gν ∧∇(gtν) + gσ ∧���*

0
∂tgσ

)
. (5.1.12)

The remaining term simplifies to a curl that matches Equation (5.1.11):

ωt =
1

2
gν ∧∇(gtν)

=
1

2

(
gt ∧����:0∇(gtt) + gi ∧∇(gti)

)
≈ 1

2
∇∧ (gigti)

=
1

2

(
gt������:0
∂t ∧ (gigti) + ∇⃗ ∧ g⃗

)
=

1

2
∇⃗ ∧ g⃗.

(5.1.13)

In the third step, we pushed gj inside the derivative because the Lens-
Thirring metric is asymptotically flat in the long-distance regime and there-
fore the coordinate basis vectors are approximately constant. Also, we de-
fined g⃗ := gigti with i = 1, 2, 3 and used ∇⃗ = gi∂i.

We can obtain the rotor responsible for the frame rotation with respect
to the local tetrad by integrating Equation (5.1.8). Since nothing depends
on t, the integration is straightforward:

R(τ) = exp

(
−1

2
ωtτ

)
. (5.1.14)

Equation (5.1.14) allows us to determine the orientation of the orbiting frame
at any point along its trajectory.

To visualize the field’s curl as experienced by a local orbiting frame see
the following figures: Figure 5.3a illustrates the far field approximation of
the Lens-Thirring while Figure 5.3b shows only the angular component.Then
Figure 5.4a illustrates the angular part in adapted coordinates and arbitrary
units obtained by substracting the angular velocity of the orbiting particle
to the angular component of the field. Evidently, the field obtained by such
operation is only valid in the neighborhood of the orbit, which is showed in
Figure 5.4b, and from where we can see that the orbiting body experiences
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(a) Full field. (b) Angular part of the field.

Figure 5.3: Graphical depiction of the distant gravitational field generated
by a slowly rotating massive source. The solid line, represents the orbit and
the dashed line the boundary of the source of the field.

(a) Angular part of the field with the
angular velocity of at the orbit sub-
stracted.

(b) Local field as experienced by the
orbiting particle

Figure 5.4: Graphical depiction of the angular part of the distant field gen-
erated by a slowly rotating massive source in adapted coordinates as expe-
rienced by an orbiting particle. The solid line, represents the orbit and the
dashed line the boundary of the source of the field.
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a local field with a non-zero curl due to the radial gradient of the field’s
angular component.

As an example of the application of these techniques, in the following
sections, I will examine the acceleration necessary to maintain a spaceship’s
orbit around a wormhole.

5.2 Traversable wormhole

In the following two sections, I draw inspiration from the influential pa-
per Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool
for Teaching General Relativity [Morris and Thorne, 1988]. Michael Morris
and Kip Thorne’s 1987 article is a pedagogical gem that employs wormhole
metrics to teach basic GR concepts interactively and intuitively. The sim-
plicity of their models facilitates physical intuition in GR, and their rigorous
yet intuitive presentation mirrors the style of their classic book Gravitation
[Misner et al., 1973]. Their use of tetrads, while not standard in initial GR
expositions, effectively illustrates physical effects and simplifies the treat-
ment of spacetime by decoupling coordinate from frame degrees of freedom.
Building on these pedagogical strengths, I apply the tetrad-GA formalism
to their wormhole models, aiming to recreate a compelling and educational
resource for teaching and familiarizing students and researchers with this
formalism.

Utilizing the tools introduced in Chapter 2, I derive the connection bivec-
tors, Riemann tensor, Ricci tensor, Ricci scalar, and Einstein tensor for a
general wormholes solution and arrive at the same set of scalar equations
governing the wormhole characteristics. Then, I specify our calculations
for a particularly simple and analytical case which I use to illustrate the
Fermi-Walker transport techniques that I presented before. This section
benefited greatly from the contributions of Cheyenne Leize, as part of her
bachelor thesis [Leize, 2022]. Her exceptional work, especially given her ini-
tial lack of experience in GA and GR, highlights both her capabilities and
the pedagogical effectiveness of our approach.

As it was originally explained in [Morris and Thorne, 1988], we require
the following characteristics to the metric for it to describe the geometry a
traversable wormhole:

• To simplify calculations, we require the metric should be spherically
symmetric and static.

• The solution must have a throat connecting two flat regions of space-
time.
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Figure 5.5: Diagram of a toy model wormhole with metric corresponding to
Equation (5.3.3) in the text. Notice that the system is spherically symmetric,
even though the depiction is cylindrical. Image retrieved from [Morris and
Thorne, 1988].

• There should be no horizon, since the presence of one would impede
two-way traveling.

• The experienced tidal gravitational forces must be bearable for hu-
mans.

• A trip through the wormhole should be of the order of a year both for
the traveler and outside observers.

• The energy-momentum tensor generating the desired geometry should
have a positive energy-density, as measured by any observer.

• The solution must be perturbatively stable.
• The creation of the wormhole must be relatively feasible. That is,
it must requires less energy and mass than that in the universe, and
should take less time than the age of the universe.

By requiring the solution to be spherically symmetric, we can write the
metric as

ds2 = e2Φdt2 − dr2

1− b/r
− r2(dθ2 + sin θdϕ2). (5.2.1)

Where Φ = Φ(r), called the redshift function, and b = b(r), called the shape
function, are two functions of r, whose properties need to be determined.
The coordinates here, {t, r, θ, ϕ}, correspond to the usual spherical coordi-
nates, except for the radial coordinate r, which in our case is non-monotonic
ranging from −∞ to a minimum value r0 and then increases again to +∞.
r is the radial coordinate in a diagram like the one presented in Figure 5.5.

Because the chosen coordinates naturally produce an orthogonal coor-
dinate frame {gµ}, the natural choice of tetrad frame is the one resulting
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from a simple normalisation procedure of the coordinate frames. Resulting
in a frame with local Minkowski metric ηmn = diag(+1,−1,−1,−1) and
axes aligned with the coordinate frame. Because the metric is diagonal, we
can immediately obtain the vierbein relating both frames (and its inverse)
as the square-root (and its inverse) of the metric elements

[
emµ

]
=


eΦ 0 0 0
0 1√

1−b/r
0 0

0 0 r 0
0 0 0 r sin(θ)

 , (5.2.2)

[e µ
m ] =


e−Φ 0 0 0

0
√

1− b/r 0 0
0 0 r−1 0
0 0 0 r−1 sin(θ)−1

 . (5.2.3)

With Equation (2.2.9) we obtain the connection coefficients,

ωt = −eΦ
√

1− b

r
Φ′γt ∧ γr

ωr = 0

ωθ =

√
1− b

r
γθ ∧ γϕ

ωϕ =

√
1− b

r
sin(θ)γr ∧ γϕ + cos(θ)γθ ∧ γϕ

(5.2.4)

Where the primed quantities represent derivatives with respect to r, Φ′ =
∂rΦ and b′ = ∂rb.

Observing the connection bivectors, we notice that spacetime is curved
in the time direction, as evidenced by the non-null bivector ωt, which is a
function of the redshift function Φ. However, it is “flat” along the radial
coordinate, contrary to what we might naively expect from observing Fig-
ure 5.5. This implies that an observer traveling along the radial direction,
while also displacing in the t dimension, would experience a boost in the
radial direction governed by the Φ function.

The displacement in the angular directions is governed by the bivectors
{ωθ, ωϕ} and it has components both from the spherical coordinates and the
shape function b.

From the connection bivectors we obtain the Riemann tensor for the
spacetime with Equation (2.4.2), which we will express in the tetrad frame
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for simplicity.

Rt̂,r̂ =
Φ′ (−rb′ + 2r(r − b)Φ′ + b) + 2r(r − b)Φ′′

2r2
γt ∧ γr

Rt̂,m̂ =
(r − b)Φ′

r2
γt ∧ γm, m = θ̂, ϕ̂

Rr̂,m̂ =
b− rb′

2r3
γr ∧ γm, m = θ̂, ϕ̂

Rθ̂,ϕ̂ = − b

r3
γθ ∧ γϕ.

(5.2.5)

To obtain the Ricci vector we contract the components of the Riemann
tensor in the tetrad frame, Equation (2.4.8),

Rt̂ =
Φ′ (−rb′ + 2r(r − b)Φ′ − 3b+ 4r) + 2r(r − b)Φ′′

2r2
γt

Rr̂ =
1

2r3
(
−rb′

(
2 + rΦ′)+ b

(
r
(
−2rΦ′′ − 2rΦ′2 +Φ′)+ 2

)
+2r3

(
Φ′′ +Φ′2)) γr

Rm = −rb
′ + 2r(b− r)Φ′ + b

2r3
γm, m = θ̂, ϕ̂.

(5.2.6)

A second contraction provides us withe to the Ricci scalar

R =
−b′ (rΦ′ + 2) + (4r − 3b)Φ′ + 2r(r − b)

(
Φ′′ +Φ′2)

r2
. (5.2.7)

Finally the calculation of Einstein’s tensor produces

Gt̂ =
b′

r2
γt

Gr̂ =
2r(b− r)Φ′ + b

r3
γr

Gm =
(1 + rΦ′) (rb′ + 2r(b− r)Φ′ − b) + 2r2(b− r)Φ′′

2r3
γm, m = θ̂, ϕ̂

(5.2.8)
The resulting components of the Riemann, Ricci and Einstein tensor

might look complicated, but nonetheless they are considerable simpler than
in the coordinate frame.

5.2.1 Energy-momentum vector

By virtue of Birkhoff’s theorem, we know that any exterior vacuum solution
of Einstein’s equations must be given by the Schwarzschild metric. This
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solution corresponds to what is called a Schwarzschild wormhole, which is
non-traversable [Morris and Thorne, 1988, §1-B]. Therefore, it follows that
a traversable wormhole must be created by a non-zero energy-momentum
tensor.

Because Einstein’s equations relate the geometry to the energy-momentum
tensor, we can use the Einstein tensor to impose constraints on the energy-
momentum tensor of the matter required to create a wormhole. Since all
quantities are expressed in the tetrad frame, and they have simple interpre-
tations as the energy density ρ̂(r), radial tension τ̂(r), and lateral pressure
p̂(r) that a local observer would experience, and therefore we hat following
the tetrad convention. Thus, we can write the energy-momentum tensor of
a spherically symmetric system as

T (a) = ρ̂(r)γt + τ̂(r)γr + p̂(r)(γθ + γϕ). (5.2.9)

By using Einstein’s equations, Equation (2.5.4), we immediately obtain
the following relationships:

8πGρ̂(r) =
b′

r2
, (5.2.10a)

8πGτ̂(r) =
2r(b− r)Φ′ + b

r3
, (5.2.10b)

8πGp̂(r) =
(1 + rΦ′) (rb′ + 2r(b− r)Φ′ − b) + 2r2(b− r)Φ′′

2r3
. (5.2.10c)

First order differential equations for b and Φ are obtained directly:

b′ = 8πGρ̂(r)r2, (5.2.11a)

Φ′ =
8πGτ̂(r)r3 − b

2r(b− r)
, (5.2.11b)

while a first-order differential equation for τ ′(r) requires additional work.
First, we derive Equation (5.2.10b). To eliminate Φ′′, we perform a second
derivative of Equation (5.2.11b), and substitute b′ from Equation (5.2.11a)
and b from Equation (5.2.10b). After a considerable amount of algebra, the
result simplifies to

τ̂ ′ = (ρ̂− τ̂)− 2

r
(p̂+ τ̂). (5.2.12)

Given that we have three equations for five functions, we need to decide
which to fix and which to derive. Following the original paper, we fix the
geometry of the system by choosing the redshift Φ and shape function b in
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advance, and derive from them the characteristics of the matter {ρ̂, τ̂ , p̂}.
With this approach in mind, we rearrange Equations (5.2.11, 5.2.12) as

ρ̂ =
b′

8πGr2
, (5.2.13a)

ˆ̂τ =
b/r − 2(r − b)Φ′

8πGr2
, (5.2.13b)

p̂ =
r

2

(
(ρ̂2 − τ̂)Φ′ − τ̂ ′

)
− τ̂ . (5.2.13c)

From here, what remains is to choose our Φ(r) and b(r) functions and
study their effect on the components of the energy-momentum tensor and
on the travelers. Because such analysis only involves scalar quantities, our
formalism provides no further advantage in either the computational or geo-
metrical aspects. Therefore, I refer the reader to [Morris and Thorne, 1988,
§4 and onward] for the analysis and various reasonable choices for Φ(r) and
b(r).

5.3 Wormhole - Toy model

To illustrate the methods used to describe Fermi-Walker transport presented
in Section 5.1, let’s consider the following choice of the redshift and shape
functions:

Φ(r) = 0, b(r) =
b20
r
, (5.3.1)

where b0 is a constant, and perform a radial coordinate change r → l with

l2 = r2 − b20, (5.3.2)

such that −∞ < l < ∞, with positive values corresponding to the upper
universe, and negative values to the lower universe.

Under these assumptions, Equation (5.2.1) reads

ds2 = dt2 − dl2 − (b20 + l2)(dθ2 + sin2 θ dϕ2). (5.3.3)

This metric corresponds to a simplified model of a wormhole presented in
Box 2 of the original paper and it is known as the Morris-Thorne wormhole.

Equation (5.3.3) describes a static and spherically symmetric system.
Here, t is the coordinate time, θ and ϕ are the usual spherical coordinates,
and l serves as the radial coordinate. The spacetime is asymptotically flat
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as l → ±∞ and has a throat with radius b0 (in the original radial coordinate
r) at l = 0; see Figure 5.5.

We obtain the vierbein and the inverse vierbein transformations, which
correspond to a change from coordinate to the stationary tetrad frame
aligned with the coordinate vectors, directly from Equations (5.2.2, 5.2.3):

[
emµ

]
=


1 0 0 0
0 1 0 0

0 0
√
b20 + l2 0

0 0 0
√
b20 + l2 sin(θ)

 , (5.3.4)

[e µ
m ] =


1 0 0 0
0 1 0 0
0 0 1√

b20+l
2

0

0 0 0 csc(θ)√
b20+l

2

 . (5.3.5)

For this choice of functions, the expression for the connection bivectors
in Equation (5.2.4) simplifies to

ωt = 0,

ωl = 0,

ωθ =
l√

b20 + l2
γl ∧ γθ,

ωϕ =
l sin(θ)√
b20 + l2

γl ∧ γϕ + cos(θ) γθ ∧ γϕ.

(5.3.6)

Observing the new form of the connection bivectors, we see that an ob-
server parallel-displaced in the t or l directions would experience no rotation
or boost. However, an inertial frame parallel-transported in the θ direction
would rotate in the l−θ plane at a rate of l/

√
b20 + l2 with respect to the lo-

cal tetrads. Similarly, in the ϕ direction, parallel-transported frames would
rotate in the l − ϕ and θ − ϕ planes.

This presents an interesting view of spacetime with metric Equation (5.3.3).
As in the general case, the radial coordinate is “flat”, but now the time co-
ordinate is also flat. This implies that observers traveling in the radial
direction would not “fall” through the wormhole, as there is no force pulling
them in; they would move as in a perfectly Minkowskian spacetime. This
result is counterintuitive when considering the embedded depiction of the
metric in Figure 5.5.
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The components of the Riemann tensor Rµν are also considerably sim-
plified, and we can express them in the tetrad frame as

Rmn =
b20(

b20 + l2
)2 γm ∧ γn, m, n = l, θ, ϕ, m ̸= n. (5.3.7)

To obtain the Ricci vector, we simplify Equation (5.2.6) or contract
Equation (5.3.7), producing only one non-zero term:

Rl̂ =
2b20(

b20 + l2
)2 γl. (5.3.8)

Further contraction yields the Ricci scalar R = γm ·Rm,

R =
2b20(

b20 + l2
)2 . (5.3.9)

And finally, the Einstein vector reduces to

Gm = − b20(
b20 + l2

)2 γm, m = t̂, θ̂, ϕ̂,

Gl̂ =
b20(

b20 + l2
)2 γl. (5.3.10)

5.3.1 Energy-momentum tensor

Because the redshift and shape functions are so simple, we can immediately
obtain expressions for the components of the energy-momentum as measured
by local observers:

ρ̂(l) = − b20

8πG
(
b20 + l2

)2
τ̂(l) =

b20

8πG
(
b20 + l2

)2
p̂θ(l) = p̂ϕ(l) = − b20

8πG
(
b20 + l2

)2
(5.3.11)

One immediate element that should get our attention is that to create this
particular geometry we would need matter with negative energy-density,
therefore making it an non-viable possibility to create a wormhole. And as
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a second observation we notice that the radial tension is positive, meaning
that an observer would feel a stretch in the radial direction. Such radial
tension vanishes as l → ±∞, but it would mean that even though there is
no “in-falling” for radial observers, their experience would not be completely
equivalent to a flat spacetime. Third, the lateral pressure is also positive,
representing the curvature in the angular dimensions, meaning that com-
pressive forces are experienced by the observer. Those forces tend also to
zero the further we are from the center, in the asymptotically flat region.

5.3.2 Free-falling observers

Because of the flatness of the time and radial dimensions, free-falling ob-
servers maintain their original velocity. To investigate the experience of
such observers, we perform a Lorentz transformation from stationary to
free-falling frames. This transformation is generated by the bivector γl ∧ γt
and has ξ = tanh−1 |v| as the rapidity parameter. Therefore, we can imme-

diately construct the rotor R(ξ) = − exp
(
ξ
2γl ∧ γt

)
and obtain the compo-

nents of the free-falling frame {γ′m} in terms of the resting frame {γm} using
Equation (1.2.5).

γ′m = e−
ξ
2
γl∧γtγme

ξ
2
γl∧γt

= e−ξγl∧γtγm

= (cosh ξ − γl ∧ γt sinh ξ) γm.

(5.3.12)

Taking into account the permutation properties of {γm}, this results in

γ′t = cosh ξγt − sinh ξγl = γγt − |v|γγl,
γ′l = cosh ξγl − sinh ξγt = γγl − |v|γγt,
γ′θ = γθ,

γ′ϕ = γϕ,

(5.3.13)

where γ = cosh ξ, denotes the Lorentz factor of the transformation.
To obtain the forces that the free-falling observer experiences, we use

the geodesic deviation equation, which in GA reads

d2η

dτ2
= v ·D (v ·Dη) = R′ (v ∧ η) · v, (5.3.14)

where η is the separation vector between two geodesics, and R′ is the Rie-
mann tensor experienced by the free-falling observer. We could obtain
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its components by inverting Equation (5.3.13) and substituting into Equa-
tion (5.3.7). However, we can also exploit the fact that Equation (1.2.5)
applies to any multivector to express the transformation as

R′
mn = e−

ξ
2
γl∧γtRmne

ξ
2
γl∧γt . (5.3.15)

This yields

R′
lθ =

b20(
b20 + l2

)2 (γγ′l + |v|γγ′t
)
∧ γ′θ,

R′
lϕ =

b20(
b20 + l2

)2 (γγ′l + |v|γγ′t
)
∧ γ′ϕ,

R′
θϕ = Rθϕ.

(5.3.16)

Specifying Equation (5.3.14) for v = γ′l, corresponding to radial in-fall,
we obtain

d2η

dτ2
= R′ (γ′l ∧ η) · γ′l
= R′

lm · γ′l

=
|v|2

1− |v|2
b20(

b20 + l2
)2γ′m, m = θ, ϕ.

(5.3.17)

This means that, in the free-falling observer’s local frame, the only nonzero
tide-producing components of the Riemann tensor are R′

lθ and R′
lϕ. Thus,

the observer would experience compressive forces only in the spatial direc-
tions perpendicular to the direction of travel. These forces vanish when
the observer is far enough from the wormhole and reach their maximum
when traveling through the throat at l = b0. The forces also tend to zero
as the velocity decreases, indicating that one could always travel through
the wormhole regardless of the throat size b0, provided the journey is slow
enough.

5.3.3 Accelerated observers

The trajectory of non-inertial observers (meaning those not in free-fall) is
not determined by the parallel transport equation; instead, it is governed by
the Fermi-Walker transport, Equation (5.1.3). In this section, I will use the
Morris-Thorne metric to illustrate the techniques presented in Section 5.1
and calculate the acceleration needed to maintain a spaceship circling the
throat of a wormhole.

The reason I chose the Morris-Thorne metric, Equation (5.3.3), as an
example is that it does not have any stable circular orbit. The only possible
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circular orbit is unstable and located at l = 0, right at the throat [Müller,
2008]. Therefore, if an observer wants to circle around the wormhole at l ̸= 0
with a constant angular velocity, to obtain information about it without
crossing the throat, they would need to constantly accelerate to correct
their direction.

Because the 4-velocity is normalized, the acceleration a = u̇ is orthogonal
to it, and we can construct the 4-acceleration bivector with Equation (5.1.5)
as

Ω = u ∧ a. (5.3.18)

where we consider, for simplicity, that no extra spatial rotation takes place
and thus we set B = 0.

The desired trajectory is a circular motion determined by the constraints
ṙ = l̇ = 0, and we choose θ = π

2 for simplicity. If we parametrize the
curve with the coordinate time, we can describe it using the function ϕ(t).
Therefore, the 4-velocity vector tangent to the trajectory is

u = utgt + uϕgϕ = ut(gt +Ωogϕ), (5.3.19)

where we have defined the angular velocity of the orbit as Ωo = uϕ/ut =
dϕ/dt, which is a free constant. With the help of the normalization condition
of the 4-velocity, we obtain ut as a function of l and Ωo:

ut =
1√

1− Ω2
o

(
b20 + l2

) . (5.3.20)

To obtain the 4-acceleration a, we calculate the directional covariant
derivative of u in the u-direction,

a = u ·Du =
(
utDt + uϕDϕ

)
(utgt + uϕgϕ)

=
(
utDt + uϕDϕ

)
ut (gt +Ωogϕ)

=
(
ut
)2

(Dt +ΩoDϕ)
(
γt +Ωoe

ϕ
ϕγϕ

)
=

(
ut
)2
2

(
[��>

0
ωt , γt] + Ωo����:0

[ωϕ, γt] + Ωoe
ϕ
ϕ

(
[��>

0
ωt , γϕ] + Ωo [ωϕ, γϕ]

))
= −

(
ut
)2

Ω2
oe
ϕ
ϕγl

= − Ω2
ol

1− Ω2
o

(
b20 + l2

)γl,
(5.3.21)
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where we have used the fact that ut, Ωo, and e
ϕ
ϕ are independent of t and

ϕ to pull them out of the derivatives, and that ∂mγn = 0.
As we would expect, a is negative and oriented in the radial direction

and it vanishes for l → 0, corresponding to the middle of the throat. This
is expected because, in that case, the observer would be in an orbit and no
acceleration would be needed to maintain the movement.

We can now construct the 4-acceleration bivector Ω using the outer prod-
uct between Equation (5.3.19) and Equation (5.3.21):

Ω(l,Ωo) = u ∧ a =
Ω2
olγl(

1− Ω2
o

(
b20 + l2

))3/2 ∧
(
γt +Ωo

√
b20 + l2γϕ

)
, (5.3.22)

where we can see that the 4-acceleration bivector Ω depends solely on the
free parameters: radial distance l and angular velocity Ωo.

The second term in Equation (5.1.8), corresponding to the non-accelerated
transport of the frame, ω(u), is easily obtained because the connection bivec-
tors are a linear map:

ω(u) = utωt + uϕωϕ = utΩoωϕ

=
Ωo√

(b20 + l2)
(
1− Ω2

o

(
b20 + l2

))γl ∧ γϕ. (5.3.23)

And because neither Ω nor ω(u) depend on t, the integration of Equa-
tion (5.1.8) is straightforward, allowing us to obtain an expression for the
rotor R(t) as a simple exponential:

R(t; l,Ωo) = exp

(
− t

2
(Ω(l,Ωo)− ω(u))

)
, (5.3.24)

which relates the local tetrad {γk} frame with the traveling frame {ek} via
Equation (5.1.6), and has a contribution due to the accelerated motion and
another due to the local rotation of tetrads.

Comparing the usual 4-acceleration approach with the GA approach,
the bivector Ω provides more geometrical information, as it directly gives
the planes of rotation of u, and, by observing their coefficients, the angular
velocity on each plane independently.

Note that because R(t) is a normalized bivector, it only modifies the
direction of u, which is convenient in the relativistic treatment of problems
where the 4-velocity is normalized. However, in cases involving a system
with tangential acceleration, the approach needs to be modified by dropping
the normalization condition on R, which would lead to both rotation and
scaling of the velocity.
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5.4 Conclusions

In this chapter, I presented the formulation of the Fermi-Walker transport
equation within the tetrad-GA formalism and explored its application to
a wormhole model. The description of non-geodesic motion with this for-
malism is particularly insightful because, due to the normalization of the
4-velocity, the 4-acceleration can be expressed as a bivector. This allows us
to gather all the dynamic properties of the system in a rotor relating the
tetrad and transported frames.

As an application of these techniques, I investigated the 4-acceleration
required to maintain a spaceship in orbit around a wormhole described by
the Morris-Thorne metric. While the calculations were not significantly sim-
plified relative to the conventional tensor approach, the bivector description
of the 4-acceleration provides geometrical insights into the planes of rotation
and their angular velocities.

In the next chapter, I will apply the same techniques to calculate the
angular precession of a gyroscope around various black hole models. In this
case, the calculations are significantly simplified, and we gain substantial
geometrical insights.
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Chapter 6

Gyroscopic precession

In this chapter, I apply the Fermi-Walker techniques developed in Section 5.1
to obtain the precession angle of a gyroscope orbiting various black hole
models.

In Section 6.1, I begin with the simple and well-known Schwarzschild
black hole and present the procedure to obtain the precession angle using
both the conventional tensor formalism and the tetrad-GA formalism. As
we will see, the ability to encode the dynamics into a rotor greatly simplifies
the calculations, reducing the set of four coupled differential equations of
the tensor formalism to a single, first-order differential equation.

In Section 6.2, I apply the same techniques to the Kerr-Newman black
hole, where we can easily obtain an expression for the precession angle. The
result is remarkably simple given the complexity of the system and provides
a clear example of how the tetrad-GA formalism simplifies the calculations
and offers numerous geometric insights.

6.1 The Schwarzschild black hole

The metric describing a Scharwzschild black hole in Schwarzschild coordi-
nates, (t, r, θ, ϕ) is

ds2 =
(
1− rs

r

)
dt2 −

(
1− rs

r

)−1
dr2 − r2dθ2 − r2 sin2(θ)dϕ2 (6.1.1)

where rs = 2GM is the Schwarschild radius corresponding to the position
of the horizon in Schwarzschild coordinates.

Choosing a tetrad frame aligned with the coordinate frame, we read the
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elements of vierbein directly from the metric, Equation (2.1.11),

e0µdx
µ =

(
1− rs

r

)1/2
dt

e1µdx
µ =

(
1− rs

r

)−1/2
dr

e2µdx
µ = rdθ

e3µdx
µ = r sin θdϕ.

(6.1.2a)

(6.1.2b)

(6.1.2c)

(6.1.2d)

And we can write the vierbein in matrix form as

[
emµ

]
=


(
1− rs

r

)1/2
0 0 0

0
(
1− rs

r

)−1/2
0 0

0 0 r 0
0 0 0 r sin θ

 . (6.1.3)

The inverse vierbein follows immediately, and in matrix form reads,

[e µ
m ] =


(
1− rs

r

)−1/2
0 0 0

0
(
1− rs

r

)1/2
0 0

0 0 r−1 0
0 0 0 (r sin θ)−1

 . (6.1.4)

Such a tetrad choice naturally emerges from Schwarzschild coordinates.
Nonetheless, other interesting orthonormal frame choices exist. One no-
table option is to select orthonormal frames that are free-falling at each
point with a velocity corresponding to an observer who would begin trav-
eling from infinity with zero initial velocity. These observers are known as
“Gullstrand-Painlevé fishes” because they are the natural choice of tetrad
for the Gullstrand-Painlevé metric. The term fishes emerges from the anal-
ogy of the Gullstrand-Painlevé coordinates with a river, which flows into the
black hole with velocity dependent on the radius and reaches the speed of
light at the black hole horizon. At that point, free-falling observers, which
“swim” through the space-time river, cannot resist the inflow of spacetime
anymore and are no longer able to escape the gravitational pull.

Remarkably, and contrary to what one might expect, the relationship
between static tetrads (as chosen here) and the Gullstrand-Painlevé tetrads
is not a Lorentz transformation but a Galilean one, which leaves the time
component invariant. Thus, the Gullstrand-Painlevé metric can be under-
stood as a Galilean river of space flowing into the black hole, with observers
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moving in the river according to the rules of special relativity. See [Hamilton
and Lisle, 2008] for more details.

Because the metric is diagonal, the application of Equation (2.2.9) is
particularly simple and we obtain the connection bivectors:

ωt = − rs
2r2

γt ∧ γr

ωr = 0

ωθ =

√
1

1− rs
r

γr ∧ γθ

ωϕ = cos(θ)γθ ∧ γϕ + sin(θ)

√
r − rs
r

γr ∧ γϕ

(6.1.5a)

(6.1.5b)

(6.1.5c)

(6.1.5d)

The calculation of the Riemann, Ricci and Einstein tensor follow the
same procedure than in the previous cases. Because they are not relevant
to the current discussions I will leave their result to Appendix E.

6.1.1 The parallel transport of the angular momentum

The conventional approach to obtain the precession of a gyroscope around a
Schwarzschild black hole consists of representing the angular velocity of the
gyroscope by a 3D vector s⃗, which we then promote to a 4-vector to parallel
transport along the orbit. The result is a set of four coupled differential
equations, one for each component of the angular momentum, which we
must solve.

The same result in the tetrad-GA approach can be obtained in two dif-
ferent ways: one by following the parallel-transport steps and the other by
using rotors. To compare both methods side by side, I present the former
here and, in Section 6.1.2, the latter.

The resolution of this problem using the conventional tensor formalism,
without tetrads, can be found in [Hobson et al., 2006, §10.5].

We start by considering a test particle orbiting a Schwarzschild black
hole. The test particle has negligible mass and angular momentum compared
to the mass of the black hole. Therefore, it can be treated as a small
gyroscope whose movement does not affect the metric under consideration.

For the purpose, of parallel transporting the angular momentum 4-vector
s along the trajectory we use Equation (2.3.11). For simplicity, we will
choose a circular orbit in the equatorial plane, θ = π/2. The path of this



106 GYROSCOPIC PRECESSION

orbit is a spiral with tangent vector u = utgt + uϕgϕ, with components

ut =
dt

dτ
=

(
1− 3rs

2r

)−1/2

, uϕ = utΩo = ut
(
dϕ

dt

)
= ut

√
rs
2r3

, (6.1.6)

where Ωo = rs/2r
3 is the orbital angular velocity of the gyroscope [Hobson

et al., 2006, §9.8 and §10.5].
Specifying Equation (2.3.11) to our case and expanding in components,

we obtain

(u ·D)s = (utDt + uϕDϕ)(s
mγm)

= (ut∂t + uϕ∂ϕ)s+
ut

2
[ωt, s] +

uϕ

2
[ωϕ, s] = 0.

(6.1.7)

Since our path is a geodesic curve, u is a 4-velocity, and we can also express
the left-hand side as a total derivative with respect to proper time, u ·D =
d/dτ . By separating the components of the angular momentum 4-vector in
Equation (6.1.7), we obtain the system of four coupled differential equations:

dst

dτ
+ utsr

rs
2r2

= 0,

dsr

dτ
+ utst

rs
2r2

− uϕsθ
√
1− rs

r
= 0,

dsθ

dτ
= 0,

dsϕ

dτ
+ uϕsr

√
1− rs

r
= 0.

(6.1.8a)

(6.1.8b)

(6.1.8c)

(6.1.8d)

This system of differential equations is similar to the one obtained by
tensor calculus and should be solved using standard techniques. If we assume
initial conditions with the angular momentum oriented in the r-direction,
s(0) = sr(0)γr, the solution to the system of equations is:

st(t) =
−rs

2
√

rs
2 (r −

3rs
2 )

sr(0) sinΩt,

sr(t) = sr(0) cosΩt,

sθ(t) = sθ(0),

sϕ(t) = −
√

1− rs
r

Ωo
Ω
sr(0) sinΩt,

(6.1.9a)

(6.1.9b)

(6.1.9c)

(6.1.9d)
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where Ω =
√

rs
2r4

(
r − 3rs

2

)
is the precession angular velocity of the angular

momentum with respect to the coordinate frame.
To obtain the precession angle α after one orbit, we first note that one

orbit takes a coordinate time

t =
2π

Ωo
= 2π

√
2r3

rs
. (6.1.10)

During this time interval, the angular momentum will have precessed by an
angle 2π + α. Equating time expressions, we obtain α as a function of the
orbital radius:

2π

Ωo
=

2π + α

Ω
⇒ α = 2π

(
Ω

Ωo
− 1

)
= 2π

(√
1

r

(
r − 3rs

2

)
− 1

)
. (6.1.11)

Notably, α acquires an imaginary component if r < 3rs/2, as 3GM is the
radius below which no stable circular orbits exist.

6.1.2 Schwarzschild precession in GA

An alternative procedure to obtain the precession angle α, which does not
involve solving Equation (6.1.8), is to exploit the techniques from Section 5.1.
The key element is identifying that the precession of the angular momentum
vector is equivalent to the precession of the gyroscopic frame. Thus, we can
relate the gyroscopic frame at each point of the orbit {ek(τ)} with the local
tetrad {γm} by a Lorentz transformation. This Lorentz transformation is
determined by a rotor satisfying Equation (5.1.8). By changing variables
from proper time to coordinate time and considering that the gyroscope is
in free-fall u̇ = 0, the resulting rotor equation reads

ut
d

dt
R(t) = −1

2
ω(u)R(t). (6.1.12)

With ω(u) being the connection bivector along the trajectory, which we can
expand by linearity as

ω(u) = utωt + uϕωϕ = ut (ωt +Ωoωϕ) , (6.1.13)

where ωt = ω(gt) and ωϕ = ω(gϕ) are given by Equation (6.1.5).
Because neither ωt, ωϕ, u

t, nor uϕ depend on t, the integral in Equa-
tion (6.1.12) is straightforward, and the rotor governing the frame’s preces-
sion along the orbit is

R(t) = exp

(
−1

2

ω(u)

ut
t

)
. (6.1.14)
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To obtain the total rotation after one orbit, we start by calculating the
magnitude1 of ω(u) as

|ω(u)| =
√
(ut)2ωtω

†
t + (uϕ)2ωϕω

†
ϕ,

=ut
√

(Ωo)
2 |ωϕ|2 − |ωt|2,

=ut

√
rs
2r4

(
r − 3rs

2

)
.

(6.1.15)

Thus, we can identify |ω(u)|/ut as the angular velocity of the parallel
transported angular momentum, which in Equation (6.1.9) we called Ω.

From this, the precession angle follows immediately by the same consid-
erations as before:

αS = 2π

(
ω(u)/ut

Ωo
− 1

)
= 2π

(√
1

r

(
r − 3rs

2

)
− 1

)
. (6.1.16)

With this approach, we replicated the previous result while only needing
to solve a single, first-order differential equation in flat spacetime, Equa-
tion (6.1.12), instead of a system of four coupled differential equations,
Equation (6.1.8). As in the previous example in Section 5.3, this procedure
also directly provides geometric information about the involved planes of
rotation and their corresponding angular velocities, which would be difficult
to recover directly from Equation (6.1.9).

In the following section, we will apply this same technique to the general
case of a Kerr-Newman black hole.

6.2 The Kerr-Newman black hole

To further investigate the capabilities of this method, I used it to explore
the precession around the most general asymptotically flat and stationary
solution of Einstein’s equations: the Kerr-Newman metric, which describes
the dynamics of a charged, rotating black hole. We will express the metric
of this system using the Boyer-Lindquist coordinates. The reasons being
that they adapt properly to the geometry of the system, making expressions
relatively simple, and that they easily reduce to Schwarzschild coordinates

1Because in spacetime the square of bivectors can be positive or negative, the magnitude
of a bivector B is defined as |B| =

√
BB†, with the dagger representing the reversion

operation defined in Section 1.1.2.
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when a → 0 and Q → 0, allowing for simple checks of our results. The
Kerr-Newman metric in Boyer-Lindquist coordinates reads

ds2 =
R2∆

ρ2
(
dt− a sin2 θdϕ

)2 − ρ2

R2∆
dr2

− ρ2dθ2 − R4 sin2 θ

ρ2

(
dϕ− a

R2
dt
)2
.

(6.2.1)

Where a = J/M is a constant parameter representing specific angular mo-
mentum of the system, and we have employed the following definitions

R2 = r2 + a2, ρ2 = r2 + a2 cos θ, ∆ = 1− 2Mr

R2
+
Q2

R2
. (6.2.2)

We also employed the convention c = G = 1, and we should remark that
the coordinates {r, θ, ϕ} correspond to oblate-spheroidal, and not spherical,
coordinates.

From the condition ∆ = 0, we obtain the position of the horizons

r± ≡M ±
√
M2 − a2 −Q2. (6.2.3)

With r+ and r− representing the radius of the outer and inner horizons. The
horizons are only real if M2 > a2 + Q2. If M2 < a2 + Q2, ∆ has no zeros
meaning that there are no horizons. In this case, the spacetime corresponds
to a naked ring singularity located at

r2 + a2 cos2 θ = 0. (6.2.4)

More details about the Kerr-Newman metric in Boyer-Lindquist coordinates
can be found in [Misner et al., 1973, §33.2] and [Straumann, 2013, §7.3].

With the metric written in the form of Equation (6.2.1), and by choosing
a Minkowskian metric to conform our tetrad frame, ηmn = diag(+1,−1,−1,−1),
we can immediately obtain the elements of the vierbein by using the equation
Equation (2.1.11):

e0µdx
µ =

R
√
∆

ρ
dt− a sin2 θR

√
∆

ρ
dϕ,

e1µdx
µ =

ρ

R
√
∆
dr,

e2µdx
µ = ρdθ,

e3µdx
µ =

sin θ

ρ

(
−adt+R2dϕ

)
.

(6.2.5)
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Which we can express in matrix form as

[
emµ

]
=


R
√
∆
ρ 0 0 −a sin2 θR

√
∆

ρ

0 ρ

R
√
∆

0 0

0 0 ρ 0

−a sin θ
ρ 0 0 R2 sin θ

ρ

 . (6.2.6)

With the inverse vierbein being determined by Equation (5.2.3),

[e µ
m ] =

1

ρ


R√
∆

0 0 a
R
√
∆

0 R
√
∆ 0 0

0 0 1 0
a sin θ 0 0 1

sin θ

 . (6.2.7)

Similarly to the previous case, where we discussed two relevant tetrad
choices for Schwarzschild geometry, in the Kerr-Newman spacetime there are
also two primary tetrad options. The one we selected here, which naturally
emerges from Equation (6.2.1), is commonly referred to in the literature as
a static tetrad. This choice corresponds to the frames of static observers as
perceived by distant observers. These observers remain stationary relative to
the Boyer-Lindquist coordinates, implying that they must constantly apply
force to counteract the rotational frame-dragging effect induced by the Kerr-
Newman black hole.

An alternative and physically significant tetrad choice was introduced by
Bardeen et al. [1972], representing observers who co-rotate with the black
hole at the precise angular velocity of the surrounding spacetime. These
frames are known as locally non-rotating frames and are particularly well-
suited for examining energy-extraction processes, accretion disk dynamics,
and similar phenomena.

In this study, we choose the static tetrad to facilitate direct comparison
with the Schwarzschild case.

From the vierbein, the connection coefficients can be directly calculated
using Equation (2.2.9). While the calculations for previous examples were
manageable by hand, this is not feasible with the Kerr-Newman metric due
to its complexity. Consequently, I developed a code based on the Mathe-
matica package BasicClifford [Aragon-Camarasa et al., 2018] to facilitate
GA calculations in curved spacetimes. The code is publicly accessible in
[Pérez].

Because the complete expressions for the connection bivectors are alge-
braically convoluted and we will be considering a gyroscope orbiting in the



6.2. THE KERR-NEWMAN BLACK HOLE 111

equatorial plane, I will only give the result of the connection bivectors for
the case of θ = π/2:

ωt
∣∣
θ=π/2

= −Q
2 −Mr

r3
γt ∧ γr

ωr
∣∣
θ=π/2

=
a

rR
√
∆
γt ∧ γϕ

ωθ
∣∣
θ=π/2

=
R
√
∆

r
γr ∧ γθ

ωϕ
∣∣
θ=π/2

=
a
(
r(r +M)−Q2

)
r3

γt ∧ γr +
R
√
∆

r
γr ∧ γϕ

(6.2.8a)

(6.2.8b)

(6.2.8c)

(6.2.8d)

The Riemann, Ricci tensor, Ricci scalar and Einstein tensors, also present
a particularly simple form when expressed in the static tetrad, however they
play no role in the following derivation and thus I leave their expression to
Appendix E.

6.2.1 Orbiting angular velocity

Our goal in the following sections is to obtain precession angular velocity of
the transported frame with respect to the static tetrads. Fortunately, the
derivation in Section 6.1.2 is independent of the metric, and the necessary
expression is given by

|ω(u)|
ut

=

√
(Ωo)

2 |ωϕ|2 − |ωt|2. (6.2.9)

Once we have the connection bivectors, the next element needed is the
coordinate orbital angular velocity of the gyroscope, defined as Ωo = dϕ/dt.
To obtain it, we will analyze the potential experienced by the orbiting par-
ticle and identify the locations of its minima. This process will yield the
energy and angular momentum of a particle orbiting at a particular radius,
from which we will obtain an expression for the orbital angular velocity for
both co- and counter-rotating cases.

The procedure is significantly simplified by a series of transformations
presented in [Ulbricht and Meinel, 2015]: First, we cast the metric into a di-
mensionless form by dividing byM , and then, we reduce it to the equatorial
plane by setting θ = π/2. The resulting metric is:

ds′ = g11dx
2 + g33dϕ

2 + 2g34dϕdt
′ + g44dt

′2, (6.2.10)
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where x = r/M , t′ = t/M , ds′ = ds/M , and the metric coefficients are given
by

g11 =
x2

x2 − 2x+ a′2 + q2
,

g33 = x2 + a′2 +

(
2x− q2

)
a′2

x2
,

g34 = −
(
2x− q2

) a′
x2
,

g44 = −x
2 − 2x+ q2

x2
.

(6.2.11)

Here, q = Q/M and a′ = a/M . The values of q and a′ are constrained to
the parameter space {(a′, q) | a′2 + q2 ≤ 1 and a, q ≥ 0} to keep ∆ real and
prevent naked singularities.

Since the metric is independent of t′ and ϕ, we can define the conserved
quantities E and L, associated with the specific energy and angular momen-
tum of the orbiting particle, as

E = −g44ṫ′ − g34ϕ̇, L = g33ϕ̇+ g34ṫ
′, (6.2.12)

where dotting denotes differentiation with respect to proper time.
For circular orbits, we analyze the potential V (x) and its derivative V ′(x)

to locate values of the reduced radius x that minimize V (x). Substituting
those results into Equation (6.2.12), we obtain algebraically complex expres-
sions for E and L. These, however, can be compactly expressed in terms of
ξ = x− q2 to obtain polynomials of

√
ξ:

E±(ξ, a, q) =
q4 + q2(2ξ − 1) + ξ2 − 2ξ ± a

√
ξ

(ξ + q2)
√
q4 + q2(2ξ − 1) + ξ2 − 3ξ ± 2a

√
ξ
,

L±(ξ, a, q) = ±
a2
√
ξ +

√
ξ
(
ξ + q2

)2 ∓ a
(
2ξ + q2

)
(ξ + q2)

√
q4 + q2(2ξ − 1) + ξ2 − 3ξ ± 2a

√
ξ
.

(6.2.13)

Here, the upper sign corresponds to co-rotating orbits, while the lower sign
corresponds to counter-rotating orbits.

We can now obtain the coordinate orbital angular velocity as a function
of E and L by solving Equation (6.2.12) for ϕ̇ and ṫ′, and applying the chain
rule:

Ωo =
ϕ̇

ṫ′
=

dϕ

dt′
= −g44L+ g34E

g33E + g34L
. (6.2.14)

Finally, by substituting the values for E and L from Equation (6.2.13) we
obtain a surprisingly simple expression for the coordinate orbital angular
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velocity as a function of the orbital radius and the parameters of the space-
time

Ω±
o (ξ, a

′, q) = ±
√
ξ

(q2 + ξ)2 ± a′
√
ξ
. (6.2.15)

6.2.2 Kerr-Newman precession

At this point, it is convenient to define the reduced version of the connection
coefficients from Equation (6.2.8):

ω′
t =Mωt =

(
q2 − x

)
x3

γt ∧ γr,

ωϕ =
a′
(
x(x+ 1)− q2

)
x3

γt ∧ γr +
(x2 + a′2)

√
∆

x
γr ∧ γϕ.

(6.2.16)

The square magnitudes of these are

|ω′
t|2 = ω̃′

tω̃
′†
t = −

(
q2 − x

)2
x6

,

|ωϕ|2 = ωϕω
†
ϕ =

x(x− 2) + q2

x2
− a′2

x6
(
q2 − x2

) (
q2 − x2 (2x+ 1)

)
.

(6.2.17)

Now, we can calculate the magnitude of the precession angular velocity
from Equation (6.2.9) in terms of the reduced quantities {x, q, a′}:

|ω′±(u)|
ut

=

√(
Ω±
o

)2 |ωϕ|2 + |ω′
t|2

=

(
x− q2

)
x3

×√√√√±x
4 (q2 + (x− 2)x)− a2q(q − x) (q2 − x(2x+ 1))

(x− q2)
(
x2 ± a

√
x− q2

)2 − 1.

(6.2.18)

Once we have the orbital and precession angular velocities of the gyro-
scope, we can obtain the precession angle around a Kerr-Newman black hole
as:

αKN = 2π

(
|ω′±(u)|/ut

Ω±
o

− 1

)
. (6.2.19)

And since all quantities are in their reduced, dimensionless form, we can
plot the precession angle αKN as a function of the reduced radius for various
values of a′ and q: Figures 6.1 to 6.3.
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Figure 6.1: Frame precession around a Kerr-Newman black hole with
a/M = 0 (Reissner-Nördstrom solution), for various values of q =
{0, 0.2, 0.4, 0.6, 0.8, 1}. The upper branch corresponds to particles rotat-
ing counter-clock, and the lower branch to particles rotating clock-wise in
the equatorial plane. The r/M axis starts at 2.

3 4 5 6
r/M

-12

-10

-8

-6

-4

-2

0

α

0

0.2

0.4

0.6

0.8

1

Figure 6.2: Frame precession around a Kerr-Newman black hole with Q = 0
(Kerr solution), and various values of a/M = {0, 0.2, 0.4, 0.6, 0.8, 1}. The
upper branch corresponds to particles co-rotating with the black hole, and
the lower branch to particles counter-rotating in the equatorial plane. The
r/M axis starts at 2.
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Figure 6.3: Frame precession around a Kerr-Newman black hole with
a = 0.8, and various values of q = {0, 0.2, 0.4, 0.6}. The values of q are
constrained to avoid a naked singularity, so q ∈ {0,

√
1− a2}. The upper

branch corresponds to particles co-rotating with the black hole, and the
lower branch to particles counter-rotating in the equatorial plane. The r/M
axis starts at 2.

As expected, increasing the angular momentum of the black hole, a,
increases the asymmetry between co- and counter-rotating orbits, resulting
in different precession angles at the same radius. For a given a and r, the
counter-rotating orbit will accumulate a greater precession angle than the
co-rotating one. This phenomena can be understood by noting that the
counter-rotating orbit travels through “more spacetime” before returning to
its original position.

The electric charge parameter q has a distinctly different effect, creating
an isotropic distortion that equally affects the precession angle of both the
co-rotating and counter-rotating orbits. As the electric charge increases,
both orbits shift closer to the origin. However, they never reach the outer
event horizon r+.

This leads to another observation: the orbits cease to exist well be-
fore reaching the outer event horizon r+. This feature is analogous to the
Schwarzschild case, where orbits exist only for r > 3rs/2, and are stable
only if r > 3rs. In the Kerr-Newman case, Liu et al. [2017] showed that the
location of the last stable orbit varies from r = M to r = 9M , depending
on a, q, and the orbit’s direction.

Two important limits are worth noting: First, both the counter- and co-
rotating solutions converge to the Schwarzschild solution when both charge
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and angular momentum vanish:

αKN

∣∣∣ q=0
a′=0

= 2π

(√
1− 3rs

2r
− 1

)
. (6.2.20)

Second, at distances sufficiently far from the black hole, the co-rotating
solution tends to zero, while the counter-rotating solution approaches 4π,
indicating that, far from the black hole, there is no frame precession, reflect-
ing the fact that the Kerr-Newman spacetime is asymptotically flat.

As in the previous case, the rotor method presented here not only pro-
vides the frame precession but also directly gives the planes of rotation
involved in the motion, γt ∧ γr and γr ∧ γϕ, as well as the angular velocities
within these planes, |ωt| and ωϕ.

6.3 Conclusions

In this chapter, we obtained the precession angle of a gyroscope orbiting both
Schwarzschild and Kerr-Newman black holes along their equatorial planes.
As a novel approach, we performed these calculations using the tetrad-GA
formalism, where, through a wise choice of tetrads and the application of
rotor techniques, we were able to considerably simplify the computations.

To connect with the conventional approach, we examined the precession
around a Schwarzschild black hole using two methods. First, we solved the
parallel-transport equation within our formalism, obtaining a set of four cou-
pled differential equations analogous to those derived using standard tensor
calculus. Second, in a more geometric approach, we related the gyroscope
frame to the local tetrad frame via rotor transformation, and then solved
the governing rotor’s single differential equation.

Because the tetrad is a locally defined orthonormal frame, the integration
of the relevant differential equation could be carried out as if it were in
flat space, considering that the solution applies only locally. Additionally,
since the rotor depends solely on the coordinate time, and the system is
t-independent, the integration was straightforward.

We then applied the same technique to calculate the gyroscopic pre-
cession around a Kerr-Newman black hole. Due to similar symmetries as
in the Schwarzschild case, the rotor differential equation remained equally
solvable. The primary challenge here arose from the inherently lengthy alge-
braic expressions for the connection bivectors and the complexity involved
in determining the orbital angular velocity.
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Overall, this new approach was shown to significantly simplify the cal-
culation of orbital precession around massive objects, while also providing
more geometric insight into the rotational planes of the transported frame.
In summary, the tetrad-GA formalism offers powerful tools for addressing
systems involving rotations or Lorentz transformations. This is because it
exploits the system symmetries, decouples coordinate degrees of freedom
from those of the frames, and directly reveals geometric behavior, thereby
enabling a powerful relativistic treatment of rotations.
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Chapter 7

Conclusions and outlook

In this dissertation, I presented the basics of the tetrad-GA formalism and
applied it to GR. Compared to the usual approach that employs coordi-
nate frames, using tetrads removes undesired degrees of freedom from the
local decomposition of objects. These orthonormal frames represent local
observers, meaning that the decomposition of quantities corresponds to the
results of local measurements. The definition of tetrad frames from the co-
ordinate frame is not unique, with different tetrads being related by Lorentz
transformations—a feature that we thoroughly exploited throughout this
work.

The use of GA, on the other hand, provides a powerful set of mathemat-
ical tools for describing geometrical objects. Among the multiple benefits of
GA, its description of rotations and Lorentz transformations through rotors,
rather than 4× 4-matrices, stands out. The efficiency of GA directly results
from the geometric product, which immediately extends tools that were pre-
viously limited to the complex plane to spaces of arbitrary dimension and
signature.

Besides this advantage, GA’s compact notation tends to simplify cal-
culations and offers greater geometrical insights than either tensor calculus
or differential forms. However, this concise description can sometimes be
challenging to understand and relate to other formalisms, especially given
the limited literature on the field.

This work began by defining GA, presenting some of its properties and
providing some introductory examples in Chapter 1. We then extended its
application to curved manifolds in Chapter 2, demonstrating that it aligns
particularly well with the tetrad description of GR. In this new framework,
the various differential operations in GR are condensed into a single operator
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that possesses the algebraic properties of a vector. This approach allowed us
to derive the connection elements as bivectors, which generate the Lorentz
transformations of frames moving through the manifold, and naturally ob-
tain other objects like the Ricci vector or the Riemann tensor, which got
reinterpreted as a map from bivectors to bivectors–providing a direct con-
nection between areas and rotations and revealing some of its symmetries
in a particularly clear way.

To clarify its similarities and differences with another popular formalism,
differential forms, and to provide a bridge for new readers, I compared both
formalisms side-by-side in Chapter 3. I found that although GA and differ-
ential forms share many tools, the geometric product provides GA with a
clear computational advantage. Furthermore, GA also tends to offer a more
intuitive geometric interpretation of objects.

Moving to applications of the tetrad-GA formalism, in Chapter 4 I ex-
plored its use in the well-known FRW spacetimes. We derived Friedmann’s
equations in two ways: from the metric and from Raychaudhuri’s equation.
The latter took on a particularly suggestive form in the tetrad-GA formal-
ism, directly relating the relative acceleration of the volume element to the
Ricci tensor in a form highly similar to the second Friedmann equation. We
also examined the conformal properties of the spacetime, finding no mean-
ingful advantage over tensor calculus or differential forms. Subsequently,
we analyzed the spacetime symmetries via the Lie derivative and Killing’s
equation. Here, in agreement with other literature, we found that defining
the Lie derivative for general vector fields within a Clifford bundle is prob-
lematic due to its dependence on the metric. However, the Lie derivative can
be defined properly for Killing vector fields, along which the metric remains
invariant. Finally, we discussed scalar inflationary models, finding no major
differences from the conventional treatment, as GA is most advantageous in
describing higher-dimensional fields. Nonetheless, the covariant description
proved to be both elegant and concise.

In Chapter 5, I examined the formulation of Fermi-Walker transport
within the tetrad-GA formalism. Since in GR, 4-acceleration is always or-
thogonal to the 4-velocity, its effects can be encoded in a rotor that modifies
the direction of the 4-velocity. And given that orthonormal frames are re-
lated by Lorentz transformations, we can use the rotor constructed from the
4-acceleration to encapsulate the dynamics of non-geodesic motion, simpli-
fying the analysis of certain problems.

To assess the efficacy of this approach, I applied it to describe the 4-
acceleration needed for a spaceship to orbit a Morris-Thorne wormhole. In
comparison to the conventional description, the tetrad-GA treatment proved
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to be powerful, concise and particularly insightful by separating contribu-
tions to the rotation of the frame originating from the accelerating motion
from those coming from spacetime curvature.

Finally, in Chapter 6, I used similar techniques to describe the precession
angle of a gyroscope around a black hole. I began with the Schwarzschild
solution and then explored the more general Kerr-Newman case. In both
cases, the problem reduced to a single differential equation, which could
be solved immediately and analytically due to the system’s symmetries.
Compared to the tensor formalism approach, the tetrad-GA method was
shown to be simpler, more manageable, and more insightful geometrically.

From the perspective provided by this work, I can confidently assert that
the tetrad-GA formalism is significantly easier to handle than tensor calcu-
lus, it provides a clearer geometric interpretation than differential forms,
it effectively decouples the degrees of freedom corresponding to coordinate
choice from those corresponding to frame choice, and provides a robust set
of tools for differential geometry.

Nonetheless, it is essential to highlight some of GA’s limitations. Pri-
marily, GA has a steep learning curve due to the limited literature and
worked examples available. This is especially relevant for advanced topics
in physics. Those interested in applications not present in the GA literature
could benefit from exploring the more abstract and mathematical field of
Clifford Algebras.

Other challenges to GA include the high level of abstraction within the
formalism, which can make it difficult to directly relate to practical ap-
plications. Additionally, there is the scarcity of computational programs
specifically designed for handling multivectors and geometric products, and
the rapidly growth of the dimensionality of the algebra with the dimension
of the space.

Potential applications of the tools presented here are as vast as physics
itself. However, I believe that fields of particular interest include theoreti-
cal work with substantial geometric content, as well as fields where tensor
calculus and differential forms already play a fundamental role.

In gravitation, specifically, the extension of complex numbers that GA
provides to spaces of arbitrary dimension is a tool whose full potential re-
mains largely untapped. This is particularly promising for applications in-
volving integral theorems, such as those on the boundaries of black holes.
Another interesting avenue, given GA’s elegant description of electromag-
netism, would be extending its description to curved spacetimes with the
tetrad-GA formalism.

Beyond GR, there are many theories that could benefit from these tools,
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including modifications of the kind similar to Scalar–Tensor–Vector models
or others like Loop Quantum Gravity.

Finally, I would like to stress that while the physical content of a theory
remains unchanged when written in GA, the endeavor can still offer an
improved description and enhanced geometric insights, even in already well-
known fields. Whether these insights could deepen the understanding of a
field and inspire further theoretical expansions is an intriguing possibility
that should not be dismissed.
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Appendix A

Notation

Using the appropriate notation can be as important as using the proper
formalism. The notation that we use in this thesis has been carefully selected
and crafted to be as meaningful, simple and intuitive as possible. We also
tried to use a common notation with other fields where GA has been applied
to make the connection between fields as seamless and intuitive as possible.
In this section, we will argue our choice of notation and briefly connect with
other fields.

• Our choice of notation for the inner, outer and geometric product
follows the usual convention in GA [Doran and Lasenby, 2013].

• For the coordinate frame we chose {gµ} because their inner product
produces the components of the metric, gµ · gν = gµν .

• For the tetrad frame we chose {γm} because the most common tetrad
frame is Minkowskian and because it establishes a nice correspon-
dence between Greek and Latin letters to change between coordinate
and tetrad quantities. The choice of {γm} as the basis frame for the
Minkowski space-time might seem arbitrary until one realizes that the
basis vectors of flat space-time can be identified with the Dirac ma-
trices and that allows for a neat interpretation of Dirac theory with-
out complex numbers[Hestenes, 1975, Doran et al., 1996]. In the GR
context, this choice of notation creates a nice correspondence with the
treatment of spinors in curved backgrounds, which necessitates tetrads
to be properly included.
This notation is also in line with other work treating electromagnetism
with GA[Dressel et al., 2015] and facilitates the treatment of electro-
magnetism in curved space-times

• The indices follow the opposite correspondence than the gammas,
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Latin middle indices {m,n, l, ...} refer to tetrad indices while their
Greek counterparts, {µ, ν, λ, ...} refer to coordinate indices. This is in
line with the conventional treatment of GR and some of the literature
on tetrads.
A problem in notation arises when an index takes a particular value.
For these situations, we hat the tetrad indices, ar̂, and leave un-hatted
the coordinate ones, ar.

• The choice of ω(gµ) = ωµ for the connection bivectors follow two pur-
poses. One, to distinguish them from the Christoffel symbols, denoted
by Γ, and two, to reflect the fact that they are the generators of ro-
tations and their value corresponds to the angular velocity of rotation
of a frame displaced in the gµ direction.

• The choice of D = gµDµ for the covariant vector derivative might seem
strange, but it follows when considering that ∇ is used ubiquitously
in the GA literature as the vector derivative in flat space-time. The
reason for this choice being that ∇ can be identified with the Dirac
operator and it neatly matches our current notations for gradient,
divergence and curl: ∇⃗ϕ,∇ · a,∇∧ a.

• The use of three different fonts to describe the Riemann, Ricci vector
and Ricci scalar, is necessary because, in the treatment that I present,
confusion can arise when referring to them in their abstract form where
indices are not present.
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Appendix B

Derivation of connection
coefficients

As far as I am aware of, the first appearance of the following derivation was
by Snygg [2012]. The following is a slight modification of his steps.

To obtain an expression to calculate directly the connection coefficients
we’ll start with a tetrad basis frame expressed in the basis of our coordinate
frame

γm = e µ
m gµ. (B.0.1)

We perform a covariant directional derivative in the gα direction,

Dαγm = e µ
m Dαgµ + (∂αe

µ
m ) gµ. (B.0.2)

Where we wrote ∂α when Dα acts over a scalar.
We can write on the left-hand side as 1/2[ωα, γm] = ωα ·γm, by definition

of ωα, Equation (2.2.7). And, on the right-hand side, Dαgµ = Γβµαgβ, from
the Christoffel symbols definition.

Now we need to left multiply by γm to isolate ωα

γmωα · γm = γme µ
m Γβµαgβ + γm (∂αe

µ
m ) gµ. (B.0.3)

We use the GA identity γm (γm ·Ar) = rAr, being Ar a multivector
of grade r, to simplify the left-hand side, and, on the right-hand side, we
expand the Christoffel symbols into the derivatives of the metric.

−2ωα = e µ
m γm

gβλ

2
(∂µgαλ + ∂αgµλ − ∂λgαµ) gβ + ∂α (e

µ
m γm) gµ (B.0.4)

Because γm is constant we pulled it inside of the derivative in the last
term, and now we can identify the terms e µ

m γm = gµ. And, considering that



126 DERIVATION OF CONNECTION COEFFICIENTS

ωα is a bivector, we discard terms of grade other than 2 on the right-hand
side, and write the geometric products as outer products to get

−2ωα =
1

2
gµ ∧ gλ (∂µgαλ + ∂αgµλ − ∂λgαµ) + (∂αg

µ) ∧ gµ. (B.0.5)

The only remaining step is to realize that the ∂αgµλ cancels with gλ∧ gµ
due to symmetry. And the remaining term (∂µgαλ − ∂λgαµ) can be written
as the vector operator acting on the metric. All in all we obtain:

ωα =
1

2

(
gλ ∧∇gαλ + gµ ∧ ∂αgµ

)
(B.0.6)

This is our final expression to obtain the connection coefficients from the
metric and the vierbein, which is hidden in the last term as ∂αg

µ = γm∂αe
µ

m ,
and where ∇ = gν∂ν is the flat spacetime vector derivative operator.

In the case of having a diagonal metric, where the coordinate basis vec-
tors are orthogonal, Equation (B.0.6) simplifies considerably if we choose
the tetrad frame to be aligned with the coordinate frame.1

In this case

e µ
m = diag(|g00|−1/2, |g11|−1/2, |g22|−1/2, |g33|−1/2), (B.0.7)

making the second term in Equation (B.0.6) vanish

gµ = |gµ|γm ⇒ gµ ∧ ∂αgµ =
∑
µ

|gµ|
(
∂α|gµ|−1

)
ηmmγm ∧ γm = 0. (B.0.8)

In this case the first term also gets simplified, because gµ ∧ gµ = 0, and
its computation reduces to a maximum of 12 derivatives—three for each
coordinate direction of spacetime.

In an abuse of notation, we can write the vierbein as emµ = diag((gµµ)
1/2)

and its inverse as e µ
m = diag((gµµ)1/2) = diag((gµµ)

−1/2). Then, Equa-
tion (B.0.6) reduces to

ωα =
1

2
gα ∧∇gαα =

1

2
gα ∧ gµ∂µgαα, (B.0.9)

where α is not a summed index.
Equation (B.0.9) contains a maximum of 12 derivatives and is, by far,

the fastest way of computing the connection coefficients that I am are aware
of.

1Some sources, such as [Hestenes and Sobczyk, 1987, p.235] and [Hestenes, 1986b],
claim that this simplification occurs for any orthogonal coordinate frame. However, this
is incorrect; the alignment of the tetrad with the coordinate frame is also necessary.
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Appendix C

Relation between Ricci
rotation coefficients,
Christoffel symbols and spin
rotation coefficients.

Because the Christoffel symbols Γκµν are not tensors, it is not possible to
change their indices using the vierbein e µ

m to relate them with the connec-
tion coefficients ωkmν ,

Γκµν ̸= ekκe
m
µωkmν . (C.0.1)

To obtain their relationship, we start with the definition of the Christoffel
symbols and expand in the tetrad frame

Γκµνgκ = ∂νgµ = ∂ν e
m
µγm

= (∂ν e
m
µ)γm + emµ∂νγm

= (∂ν e
l
µ)γl + emµω

n
m νγn

= (∂ν e
l
µ)γl + emµω

n
m νe

κ
n gκ

=
[
e κl ∂ν e

l
µ + emµe

κ
n ω n

m ν

]
gκ.

(C.0.2)

Thus, we obtain the relationship between the Christoffel symbols and the
rotation coefficients as:

Γκµν = e κl ∂ν e
l
µ + emµe

κ
n ω n

m ν . (C.0.3)
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We can invert Equation (C.0.3) with the inverse vierbein to obtain the
connection coefficients in terms of the Christoffel symbols:

ω n
m ν = enκe

µ
m Γκµν − enκe

µ
m e κl ∂ν e

l
µ. (C.0.4)

The relationship between the spin rotation coefficients ωknµ and the
Ricci connection coefficients ωknm, corresponding to the covariant direc-
tional derivative in the tetrad frame

Dmγn = ωm · γn = (e µ
m ωµ) · γm, (C.0.5)

and it is a direct transformation with the vierbein:

ωknµ = e m
µ ωknm. (C.0.6)
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Appendix D

On the necessity of covariant
derivatives

When working with non-flat manifolds, or non-cartesian coordinates in flat
manifolds, it is customary to introduce the covariant derivative operator D
to account for the local variation in basis vectors, which the conventional
directional derivative does not address. However, as I will show in this
appendix, this step can be bypassed by using contracted, abstract objects
rather than their component forms. Although this approach is rarely dis-
cussed in existing literature, it warrants consideration for its simplicity and
coherence.

In Section 2.3, I defined the covariant derivative D and applied the rule
that partial derivatives ∂µ do not act on basis vectors. Instead, one could
avoid introducing a distinct covariant derivative operator and use ∇, as
defined in Section 1.2, applying partial derivatives to both components and
basis vectors directly.

This raises the question: why introduce the covariant derivative at all?
The answer lies in the component-based formalisms of tensor calculus, where
the covariant derivative becomes necessary because basis vectors are omitted
from expressions. This omission precludes deriving connection coefficients
from basis vector variations, thus requiring the covariant derivative opera-
tor. This approach, still prevalent even in modern texts, underscores the
traditional view that treats objects and components interchangeably. See
for example [Carroll et al., 2004, p. 484]: “In accord with our usual practice
of blurring the distinction between objects and their components...”

Although the concept of a connection is standard in mathematics, it
remains a source of confusion in many physics texts. For clarity, this section
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demonstrates how various covariant operators and tensors naturally emerge
from different applications of ∇, offering a unified perspective that applies
to both flat and curved spacetimes. This method enhances consistency,
provides correct ordering in expressions involving second-order derivatives,
and inherently satisfies covariance requirements without additional checks.
In the following, ∇ is defined as in Equation (1.2.10).

D.1 First order derivative operators

We begin by examining various forms of the directional derivative, a scalar
operator, and how multiple covariant derivatives arise from selecting differ-
ent decomposition bases for the vector derivative and the object upon which
it acts:

• Covariant derivative The standard covariant derivative, ∇̃µ, is ob-
tained by projecting the vector derivative ∇ and decomposing the
vector a in the coordinate basis {gµ}:

gµ ·∇a = ∂µ(a
νgν) = ∂µ(a

ν)gν +a
ν∂µgν = (∂µa

ν +aλΓνλµ)gν . (D.1.1)

The connection coefficients Γνλµ are called the Christoffel symbols.
• Fock-Ivanenko covariant derivative The Fock-Ivanenko covariant
derivative is introduced to define a covariant derivative for spinors
[Capozziello et al., 2022, Aldrovandi and Pereira, 2012].
The Fock-Ivanenko derivative is obtained by projecting the vector
derivative ∇ into the coordinate frame and expanding the vector a
in the tetrad basis {γm}:

gµ · ∇a = ∂µ(a
mγm) = (∂µa

m)γm + am∂µγm

= (∂µa
m + anωmnµ)γm.

(D.1.2)

These connection coefficients are called the spin connection coefficients
ωmnµ.

• Tetrad covariant derivative The tetrad covariant derivative is less
common and corresponds to projecting the vector derivative in the γl
direction and expanding a in the tetrad basis {γm}:

γl · ∇a = ∂l(a
mγm) = ∂l(a

m)γm + am∂lγm

= (∂la
m + anωmnl)γm.

(D.1.3)

These connection coefficients are called the Ricci rotation coefficients
ωmnl , and are given by ∂lγm = ω m

nl γm. They are related to the spin
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connection coefficients by the vierbein:

ωmnl = eλlω
m
nλ. (D.1.4)

In some texts, such as [Capozziello et al., 2022], these three objects
are treated as distinct operators, whose equivalence is asserted only by the
tetrad principle. This equivalence principle is unnecessary and ambiguous
and has been criticized in [Rodrigues and Gomes de Souza, 2005]. In his text,
W.A. Rodrigues rigorously presents several misconceptions and ambiguities
regarding the definition and treatment of tetrads in the literature.

We proceed with differential operators resulting from different operations
involving ∇:

• Exterior derivative The exterior derivative of differential forms, d,
is equivalent to the curl of the vector derivative ∇∧ in flat space.
When acting on a scalar field ϕ, it produces the gradient:

dϕ = ∂µϕg
µ = ∇∧ ϕ = ∇ϕ = gµ∂µϕ, (D.1.5)

and when acting on a vector field, in the reciprocal coordinate basis
a = aµg

µ, equivalent to a 1-form, it produces the curl of a:

da = ∂νaµg
ν ∧ gµ = ∇∧ a. (D.1.6)

The condition d2 = 0 is equivalent to ∇∧∇ = 0 for torsion-free spaces.
• Exterior covariant derivative The exterior covariant derivative D
is also equivalent to ∇∧ in non-flat spaces, where we also derive the
coordinate basis {gµ}:

∇∧ a = (∂νaµ)g
ν ∧ gµ + aµg

ν ∧ (∂νg
µ)

= ∂νaµg
ν ∧ gµ + aµΓ

µ
νλg

ν ∧ gλ

= (∂νaµ + aλΓ
λ
νµ)g

ν ∧ gµ.
(D.1.7)

• Covariant Divergence The operator ∇ produces the correct diver-
gence in both flat and non-flat spaces when applied with the inner
product. If a = aνgν is a vector field in a curved manifold, its covari-
ant divergence is:

∇ · a = ∇ · aνgν
= gµ∂µ · (aνgν) = gµ · ∂µ(aνgν)
= gµ · (∂µaν + aλΓνλµ)gν

= δµν (∂µa
ν + aλΓνλµ)

= ∂µa
µ + aλΓµλµ.

(D.1.8)
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• Covariant Curl The operator ∇ produces the correct curl in both
flat and non-flat spaces when applied with the outer product. This
operation is equivalent to the covariant exterior derivative. If a = aνgν
is a vector field in a curved manifold, its covariant curl is:

∇∧ a = ∇∧ aνgν
= gµ∂µ ∧ (aνgν) = gµ ∧ ∂µ(aνgν)
= (∂µa

ν + aλΓνλµ)g
µ ∧ gν .

(D.1.9)

From this perspective we conclude that the only relevant, first-order,
physically meaningful derivative operations are:

• Directional derivative in the direction of the vector field b, b·∇ = ∂b.
• Geometric derivative resulting from applying the geometric product
of ∇, which decomposes into divergence, ∇·, and curl, ∇∧.

The gradient is obtained if ∇ acts over is a scalar field ϕ, in which case
its divergence is zero and the application of the geometric derivative reduces
to the curl, ∇ϕ = ∇∧ ϕ.

D.2 Derivative of linear functions

To describe the derivative of multilinear maps, or tensors, we introduce a
notational tool called the overdot convention1. Since the vector derivative
operator is algebraically a vector, it does not generally commute with geo-
metric objects. Therefore, we need a method to denote the derivative of an
object that is not immediately adjacent to it. This is achieved by using the
overdot notation:

∇(AB) = (∇A)B + ∇̇AḂ. (D.2.1)

This indicates that one must permute the basis vectors of ∇ across the basis
vectors of A to obtain the desired result.

∇̇AḂ = γλAab...γa ∧ γb . . . ∂λBcd...γc ∧ γd . . . . (D.2.2)

With this tool, we can express the derivative of a linear function T (A)
as:

∇̇Ṫ (A) = ∇T (A)− ekT (∂kA). (D.2.3)

Here, the term ∇T (A) represents the derivative applied to the geometric
object T (A) (without differentiating the argument). Thus, ∇̇Ṫ (A) only

1In the main text, an accent is used to avoid confusion with time derivatives. However,
the overdot notation is more common in GA texts.
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differentiates the positional dependence within the function and not within
the argument [Doran and Lasenby, 2013, §6.1.3].

As an example, consider the directional derivative of T , where T is a
linear map from vector fields to vector fields, such that T (a) = Tµα aαgµ:

∂̇µṪ (gα) = ∂µ(T
λ
αgλ)− T (∂µgα)

= (∂µT
λ
α )gλ + T λα∂µgλ − T (∂µgα)

= (∂µT
λ
α )gλ + T λαΓ

ν
λµgν − T (Γλαµgλ)

= (∂µT
ν
α + T λαΓ

ν
λµ − T νλΓ

λ
αµ)gν .

(D.2.4)

As demonstrated, we recover the usual rule of contracting with the connec-
tions: using a “+” sign for each contravariant index and a “−” sign for each
covariant index. Although this procedure may seem intricate, it is equiva-
lent to the tensor formalism. The complexities arise from the fact that the
general procedure for representing tensors in GA is not straightforward, and
its theory of linear functions, while powerful, is not trivial.

D.2.1 Second order derivatives

In this section, I will demonstrate how various tensors, such as the tor-
sion, Riemann, and Ricci tensors, naturally emerge from the commutation
properties of second-order derivatives.

Consider M to be a multivector field in GTpM. Due to the associativity
of the geometric product, we can express its second derivative as:

∇(∇M) = ∇2M = (∇ · ∇+∇∧∇)M. (D.2.5)

In this form, we can independently analyze the actions of the scalar and
bivector operators. To proceed in the most general manner, let us consider
a general basis of TpM, {ea}, that satisfies the symmetric relationship:

ea · eb = ĝab. (D.2.6)

To distinguish these indices from the coordinate indices (represented
with Greek symbols) and the tetrad indices (represented with middle Latin
indices), we use early Latin indices for the general coordinates {a, b, c, . . . },
running from 0 to 3.

In this basis, the directional derivatives in the ea direction are denoted
as ∂a = ea · ∇. The basis has the connection coefficients Υ such that:

∂aeb = Υc
baec. (D.2.7)
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We assume no symmetry in Υc
ba, aside from the condition relating to

the derivative of the reciprocal basis:

∂ae
b = −Υb

cae
c, (D.2.8)

which arises from the usual procedure of considering the derivatives of the
reciprocal basis ea, constructed such that ea · eb = δab .

D.2.2 The scalar operator

Starting with the scalar term of Equation (D.2.5), ∇ · ∇, we can observe
that it corresponds to the Laplace-de Rham operator:

∇ · ∇ = (ea∂a) · (eb∂b)

= ea ·
[
(∂ae

b)∂b + eb∂a∂b

]
= ea ·

[
(−Υb

cae
c)∂b + eb∂a∂b

]
=
(
∂a∂a − ĝcbΥa

cb∂a

)
= ∆.

(D.2.9)

In the coordinate basis ea → gµ and Υa
cb → Γσµν , we have:

∆ = ∂µ∂µ − gµνΓσµν∂σ. (D.2.10)

It is noteworthy that due to the associativity of the geometric product
we obtain the Laplace-de Rham operator, which acts on multivector fields,
rather than the Laplace-Beltrami operator, which is defined solely on twice-
differentiable real-valued functions.

D.2.3 The Ricci operator

The bivector term of our second-order derivative operator, ∇∧∇, represents
the curl of the vector derivative, and as we will see it is related to the
commutation of directional derivatives. When applied to a scalar field, we
obtain the torsion tensor, while the Ricci tensor appears when it is applied
to a vector, hence its name its name. And the Riemann tensor only arises
when applied to a multivector.
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To analyze this, we expand ∇ in the general basis {ea}:

∇∧∇ = (ea∂a) ∧ (eb∂b)

= ea ∧
[
(∂ae

b)∂b + eb∂a∂b

]
= ea ∧

[
(−Υb

cae
c)∂b + eb∂a∂b

]
= ea ∧ eb (∂a∂b −Υc

ba∂c) .

(D.2.11)

Because ea ∧ eb is antisymmetric, we can rewrite Equation (D.2.11) as:

∇∧∇ = ea ∧ eb ([∂a, ∂b] + (Υc
ab −Υc

ba) ∂c) , (D.2.12)

where [∂a, ∂b] = ∂a∂b − ∂b∂a is the commutator of directional derivatives,
and we proceed to analyze each term separately.

The commutator of directional derivatives, [∂a, ∂b], can be expanded in
terms of the coordinate frame and the vierbein, gµ = eaµea, along with
similar relations, to obtain the commutator of coordinate derivatives and
the coefficients of anholonomy :

[∂a, ∂b] = [e µ
a ∂µ, e

ν
b ∂ν ]

= e µ
a (∂µe

ν
b )∂ν + e µ

a e
ν
b ∂µ∂ν

− e ν
b (∂νe

µ
a )∂µ − e ν

b e
µ
a ∂ν∂µ

= e µ
a (∂µe

ν
b )ecν∂c − e ν

b (∂νe
µ
a )ecµ∂c

+ e µ
a e

ν
b (∂µ∂ν − ∂ν∂µ)

= e µ
a e

ν
b (∂νe

c
µ − ∂µe

c
ν)∂c + e µ

a e
ν
b [∂µ, ∂ν ]

= f cab∂c + e µ
a e

ν
b [∂µ, ∂ν ].

(D.2.13)

The coefficients of anholonomy, or structure coefficients, f lab, represent the
non-closure of a circuit using steps the size of the basis {ea}, while [∂µ, ∂ν ]
denotes the commutator of coordinate directional derivatives.

In GR we set torsion to zero, consequently the Christoffel symbols of
second kind are symmetric in their lower indices and the commutator of di-
rectional derivatives, when acting over scalar fields, is zero. This is carelessly
extended to the rule that coordinate directional derivatives commute.

The approach presented here is more consistent: When setting torsion
to zero, directional derivatives only commute when acting over scalar fields
because those contain no basis vectors,

[∂µ, ∂ν ]ϕ = 0. (D.2.14)



136 ON THE NECESSITY OF COVARIANT DERIVATIVES

But when acting over vector or multivector fields there is a dependence on
the path taken and coordinate derivatives do not commute. In fact, by
following the chain rule and expanding such operation we obtain the Ricci
and Riemann tensors.

[∂µ, ∂ν ]a = (∂µ∂ν − ∂ν∂µ)a
mγm

=
�����������:0

(∂µ∂νa
m − ∂ν∂µa

m) γm

+
�������
(∂νa

m)ωlmµγl −
XXXXXXX(∂µa

m)ωlmνγl

+
XXXXXXX(∂µa

m)ωlmνγl −�������
(∂νa

m)ωlmµγl

+ amγn(∂µω
n
mν)− amγn(∂νω

n
mµ)

+ ωnmνω
l
nµa

mγl − ωnmµω
l
nνa

mγl

= amγn(∂µω
n
mν)− amγn(∂νω

n
mµ)

+ ωlmνω
n
lµa

mγn − ωlmµω
n
lνa

mγn

=
(
∂µω

n
mν − ∂νω

n
mµ + ωlmνω

n
lµ − ωlmµω

n
lν

)
amγn

= Rnmµνa
mγn = [Rµν , a] = Rµν · a.

(D.2.15)

Here, Rnmµν are the components of the Riemann tensor in mixed coordi-
nates, and Rµν denotes the Riemann tensor as defined in Section 2.4. The
final step holds only for a being a vector field. Following the same steps for
a multivector field M , we obtain:

[∂µ, ∂ν ]M = [R(gµ ∧ gν),M ]. (D.2.16)

Meaning that the commutator of coordinate directional derivatives is equiv-
alent to the commutator of the Riemann map, acting over the coordinate
bivector gµ ∧ gν , with the multivector M .

Notice, however, that in Equation (D.2.12), [∂µ, ∂ν ] appears contracted
with gµ ∧ gν . This contraction further simplifies Equation (D.2.15) by the
first Bianchi identity, Equation (2.4.6), and the definition of the Ricci vector,
Equation (2.4.8), as follows:

gµ ∧ gνRαβµνaβgα = Rαβµνa
β (gµ ∧ gν · gα + gµ ∧ gν ∧ gα)

= Rαβµαa
βgµ +

�����������:0

Rαβµνa
βgµ ∧ gν ∧ gα

= Rβµa
βgµ = R(a).

(D.2.17)

Thus, we obtain the action of the Ricci tensor on the vector field a.
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By decomposing the commutator of directional derivatives into the com-
mutator of coordinate directional derivatives plus the structure coefficients,
we can rewrite Equation (D.2.11) as:

∇∧∇ = ea ∧ eb (e µ
a e

ν
b [∂µ, ∂ν ] + (f cab +Υc

ab −Υc
ba) ∂c) . (D.2.18)

Examining the second term on the right-hand side, we can directly iden-
tify it with the torsion tensor:

(f cab +Υc
ab −Υc

ba) ∂c = (f cab +Υc
ab −Υc

ba) ec · ∇ = Sab · ∇. (D.2.19)

In GA, the torsion tensor is a map from bivectors to vectors, such that
it takes an bivector area a ∧ b and returns the corresponding non-closure
vector S(a ∧ b) = Sab = Scabec:

S : Λ2 ∈ GTpM → Λ1 ∈ GTpM. (D.2.20)

This construction of torsion gives immediately its antisymmetric character
in its bottom two indices.

We can express the torsion tensor in components as:

S = gµ ∧ gν ∧ gαSαµν . (D.2.21)

The torsion tensor acts as a first-order differential operator. Therefore,
the variation due to torsion of a vector field a, as a result of transporting it
around a coordinate area gµ ∧ gν , is given by:

Sµν · ∇a = Sαµν∂αa = Sαµν (∂αa
β + aλΓβλα)gβ. (D.2.22)

The torsion tensor quantifies the non-closure of parallelograms, as illus-
trated in Figure D.1. From Equation (D.2.19), we see that this dislocation,
which is analogous to the Burgers vector in solid-state physics, can have two
distinct origins.

First, torsion may arise from the choice of an anholonomic basis, in which
case f cab ̸= 0. This type of torsion is not physical, as evident from its appear-
ance in flat spaces when constructing an orthonormal tetrad in cylindrical
coordinates and transporting a vector around a loop taking normalized steps
along the coordinate grid.

Second, torsion, like in solid-state physics, can originate from “defects”
in spacetime, which impede loops from “closing” everywhere. This type
of torsion is physically meaningful. In the Einstein-Cartan theory of grav-
itation, spin generates this torsion in the same way that mass generates
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p q

r

bp

ap

b
||
r

a
||
q

S(a ∧ b)

Figure D.1: Representation of torsion. Given two vector fields a and b that
coexist at point p, we can parallel-transport one along the other to obtain

a
||
q and b

||
r . The failure of the transported vectors to close is quantified by

the torsion vector S(ap ∧ bp).

curvature. In such cases, it is impossible to globally close parallelograms by
changing the choice of frame, just as curvature effects cannot be globally
removed by changing coordinates.

In GR, we axiomatically set torsion to zero. Gravitational theories
that include both curvature and torsion are called Einstein-Cartan theo-
ries. As they are currently developed, such theories predict torsion to be
non-propagating outside of sources, making it either non-measurable or ir-
relevant for current gravitational calculations.

Finally, we can elegantly express the action of the second derivative of a
vector field as:

∇2a = ∆a+R(a) + Sbc · ∇a, (D.2.23)

where Sbc = S(b ∧ c) is the torsion tensor applied to the corresponding
bivector, as defined in Equation (D.2.19).

D.2.4 Einstein Equations

Under these considerations, we can recast the Einstein tensor to highlight
its second-order nature. To do so, we introduce the following notation for
the derivative with respect to a vector:

∂(a) = gµ
∂

∂aµ
. (D.2.24)

This operator is analogous to ∇, with the difference that ∇ = ∂µ ∂
∂xµ per-

forms derivatives with respect to coordinates, while ∂(a) operates with re-
spect to the components of a vector.
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Using this, we can remove the a dependence from the Ricci vector in a
contraction operation:

∂(a) ·R(a) = ∂(a) · (∇∧∇a) = R, (D.2.25)

to obtain the Ricci scalar.
Thus, we can express the Einstein tensor as:

G(a) = R(a)− 1

2
aR = ∇∧∇a− 1

2
a ∂(b) · (∇∧∇b). (D.2.26)

This form of the Einstein tensor makes its second-order nature explicit and
shows its relationship to the circulation of vector fields.

Einstein’s equations then take the form:

∇∧∇a− 1

2
a ∂(a) · (∇∧∇a) = T (a), (D.2.27)

where T (a) denotes the energy-momentum tensor of the system as defined
in Section 2.5.

D.3 Conclusions

Based on these calculations, we conclude that when physical laws are ex-
pressed in their abstract, contracted form, they do not require alteration for
application to curved manifolds. The systematic application of the chain rule
to directional derivatives acting on the components and corresponding basis
vectors of objects naturally produces all necessary connection terms. There-
fore, theminimal coupling principle can be viewed as a non-fundamental rule
that does not need to be imposed, but rather arises from using an inadequate
formalism.

An illustrative example of this is the expansion of Maxwell’s equations,
Equation (1.3.3), into components using these rules. Following this ap-
proach, it yields all the correct terms for its generalization to curved man-
ifolds. Moreover, all connection terms emerge without ambiguity in their
order, unlike with the minimal coupling procedure.

Even if this presentation may seem trivial, it is noteworthy how smoothly
the results are obtained. I believe we should adhere to the principle of
parsimony when selecting formalisms, introducing new operators and rules
only when strictly necessary. In this regard, the approach developed here
proves to be remarkably simple and consistent.



140 ON THE NECESSITY OF COVARIANT DERIVATIVES



141

Appendix E

Schwarzschild and
Kerr-Newman tensors

In this appendix, I present the Riemann tensor for the Schwarzschild and
Kerr-Newman black holes as calculated using the tetrad-geometric algebra
(GA) formalism presented in Chapter 2.

Since we are dealing with multiple bases, and the mixture of indices and
abstract notation can be confusing, it is helpful to clarify the components
of the Riemann tensor explicitly.

The Riemann tensor is a multilinear function between bivectors, meaning
it acts on a bivector and returns another bivector. We can express its action
over the bivectors a ∧ b ∈

∧2GTpM as:

R(a ∧ b) = aµbν (R(gµ ∧ gν))αβ eα ∧ eβ. (E.0.1)

Where we decomposed a∧b in the coordinate base and expressed R(gµ∧gν)
in the general base {eα}.

We usually denote the bivector resulting of making the Riemann act
over the coordinate bivectors as R(gµ ∧ gν) = Rµν , and its expansion in the
coordinate base,

Rµν = (Rµν)αβ g
α ∧ gβ, (E.0.2)

gives back the components (Rµν)αβ corresponding to the expression of the
Riemann tensor in conventional tensor calculus Rµναβ .

In this context, confusion can arise when discussing a change of basis,
as it is possible to change either the bivector on which the Riemann tensor
acts or the basis in which it is expanded.

Another common choice is,R(γm∧γn) = Rmn, representing the bivectors
resulting of making the Riemann map act over the tetrad bivectors. The
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decomposition of this bivectors in the tetrad frame is what is refer to in
literature as the Riemann tensor in the tetrad frame Rmnab.

E.1 Schwarzschild black hole

By working in Schwarzschild coordinates and choosing a tetrad with a
minkowski metric whose axes are aligned with the coordinate axes we obtain
the following expressions

The Riemann tensor over the coordinate bivectors, Rµν = R(gµ ∧ gν),
as expressed in the tetrad and the coordinate frame is

Rtr = −2GM

r3
γt ∧ γr = −2GM

r3
gt ∧ gr (E.1.1)

Rtθ =
GM

r2

√
1− 2GM

r
γt ∧ γθ =

GM

r3
gt ∧ gθ (E.1.2)

Rtϕ =
GM sin(θ)

r2

√
1− 2GM

r
γt ∧ γϕ =

GM

r3
gt ∧ gϕ (E.1.3)

Rrθ =
GM

r2
1√

1− 2GM
r

γr ∧ γθ =
GM

r3
gr ∧ gθ (E.1.4)

Rrϕ =
GM sin(θ)

r2
1√

1− 2GM
r

γr ∧ γϕ =
GM

r3
gr ∧ gϕ (E.1.5)

Rθϕ = −2GM sin(θ)

r
γθ ∧ γϕ = −2GM

r3
gθ ∧ gϕ (E.1.6)

The Riemann tensor over the tetrad bivectors, Rmn = R(γm ∧ γn) as
expressed in the tetrad frame are

Rt̂r̂ = −2GM

r3
γt ∧ γr (E.1.7)

Rt̂m =
GM

r3
γt ∧ γm, m = θ, ϕ (E.1.8)

Rr̂m =
GM

r3
γr ∧ γm, m = θ, ϕ (E.1.9)

Rθ̂ϕ̂ = −2GM

r3
γθ ∧ γϕ (E.1.10)

Note that the components of the Riemann acting over the coordinate
bivectors expressed in the coordinate frame has the same components than
the Riemann acting over the tetrad components expressed in the tetrad
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basis. This is a consequence of the high degree of symmetry of the system
and it is not a general result.

Because the Schwarzschild metric is a vacuum solution of Einstein’s equa-
tions, the Ricci vector, Ricci scalar and Einstein tensor are identically zero.

E.2 Kerr-Newman

For simplicity I will only present the components of the Riemann tensor
for the equatorial plane θ = π/2 as calculated from the Boyer-Lindquist
coordinates, Equation (6.2.1). As explained in Section 6.2, we choose tetrads
which are static with respect to the background stars as observed by distant
observers. This is known in literature as static tetrads.

The Riemann over the coordinate bivectors, Rµν = R(gµ ∧ gν), as ex-
pressed in the tetrad frame and coordinate frame is

Rtr =
3Q2 − 2Mr

r4
γt ∧ γr +

a
(
Mr −Q2

)
r4R

√
∆

γr ∧ γϕ (E.2.1)

=
a2
(
4Q2 − 3Mr

)
+ r2

(
3Q2 − 2Mr

)
r6

gt ∧ gr

+
a
(
3Mr − 4Q2

)
r6

gr ∧ gϕ

Rtθ =

(
Mr −Q2

)
R
√
∆

r4
γt ∧ γθ +

a
(
Q2 − 2Mr

)
r4

γθ ∧ γϕ (E.2.2)

=
a2
(
3Mr − 2Q2

)
+ r2

(
Mr −Q2

)
r6

gt ∧ gθ

+
a
(
2Q2 − 3Mr

)
r6

gθ ∧ gϕ

Rtϕ =

(
Mr −Q2

)
R
√
∆

r4
γt ∧ γϕ =

Mr −Q2

r4
gt ∧ gϕ (E.2.3)

Rrθ =
Mr −Q2

r2R
√
∆
γr ∧ γθ =

Mr −Q2

r4
gr ∧ gθ (E.2.4)

Rrϕ =
a
(
3Q2 − 2Mr

)
r4

γt ∧ γr +
(
Mr −Q2

)
R

r4
√
∆

γr ∧ γϕ (E.2.5)

=
a
(
a2 + r2

) (
4Q2 − 3Mr

)
r6

gt ∧ gr

+
a2
(
3Mr − 4Q2

)
+ r2

(
Mr −Q2

)
r6

gr ∧ gϕ
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Rθϕ =
a
(
Mr −Q2

)
R
√
∆

r4
γt ∧ γθ +

R2
(
Q2 − 2Mr

)
r4

γθ ∧ γϕ (E.2.6)

=
a
(
a2 + r2

) (
3Mr − 2Q2

)
r6

gt ∧ gθ

+
a2
(
2Q2 − 3Mr

)
+ r2

(
Q2 − 2Mr

)
r6

gθ ∧ gϕ

The Riemann acting over the tetrad bivectors, Rmn = R(γm ∧ γn) as
expressed in the tetrad frame is

Rt̂r̂ =
3Q2 − 2Mr

r4
γt ∧ γr (E.2.7)

Rt̂m =
Mr −Q2

r4
γt ∧ γm, m = θ, ϕ (E.2.8)

Rr̂m =
Mr −Q2

r4
γr ∧ γm, m = θ, ϕ (E.2.9)

Rθ̂ϕ̂ =
Q2 − 2Mr

r4
γθ ∧ γϕ (E.2.10)

The expressions in the tetrad base are more compact and observing the
θ−ϕ symmetry in the Rt̂m and Rr̂m we can see that they also reflect better
the spherical symmetry of the system.
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