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Abstract
A Software Ecosystem for Remote Analysis

of Mass Spectrometry Imaging Data

In many areas of biomedical research, images are crucial for scientific progress. Interactive
access to these images is essential, enhancing understanding and facilitating advancements,
particularly in fields like pathology, radiology, and cellular biology. As imaging techniques
continue to advance, generating ever more detailed datasets, the amount of data to be stored
and processed will continue to grow. Consequently, data and computationally intensive
processes are being increasingly relocated to centralized resources with substantial storage
and processing capabilities. However, large, multidimensional and multi-modal biomedical
images, such as those generated in experiments with mass spectrometry imaging, pose a
major challenge for fast, comprehensive and interactive remote access. Processes as image
data exploration, image analysis, the development of new image analysis methods, and
interdisciplinary collaboration of domain experts can be hampered if data-intensive transfers
to local systems are required, e.g. for processing of images with interactive applications
domain experts are familiar with. Current efforts to utilize remote resources focus on pro-
viding integrated environments for remote development and applications for execution of
reproducible image analysis, while lacking comprehensive interactive capabilities to work
with high-dimensional image data.

The first part of this work introduces advanced interactive access strategies for multi-
modal 2D/3D mass spectrometry imaging (MSI) datasets. Concepts for fast, memory-efficient
interactive access to imzML mass spectrometry imaging datasets are presented, which fa-
cilitate advanced interactive workflows such as multi-modal image fusion and 3D image
reconstruction. The effectiveness of the concepts are demonstrated within the context of the
novel and openly accessible desktop application called Mass spectrometry imaging Applications
for Interactive Analysis in MITK (M²aia). Furthermore, concepts for a programming language-
independent integration of third-party command-line applications via Docker (mitk-docker)
into the interactive framework of M²aia are presented. Finally, concepts for an optimized MSI
data access for deep learning are proposed and shown in combination with the data handling
and processing capabilities of M²aia as part of a python package (pyM²aia).

The second part of this thesis proposes a versatile and efficient interactive remote working
environment. It relies on interactive containerized applications that can be deployed with
Docker and accessed using a web browser. The effectiveness of the concept is demonstrated
by applying it to a diverse set of biomedical image processing applications, M²aia for MSI data,
MITK for clinical images, ImageJ for microscopy images, QuPath for manual segmentation of
histology images, and ilastik for semi-automatic segmentation of a wide range of biomedical
imaging modalities. Access to these remote-controlled applications facilitates a variety of
interactive tasks on remote image data such as image analysis, method development and
collaboration with experts.

In both parts of this work, diverse use-cases are elaborated to show the capabilities of the
respective concepts. Use-cases demonstrate the advanced interactive capabilities of M²aia
with respect to multi-modal image fusion and 3D image reconstructions. A comprehensive
set of MSI-based deep learning use-cases is realized to showcase the data access capabilities
of pyM²aia. Furthermore, the seamless integration of Docker-based applications into the
interactive environment of M²aia is demonstrated. Finally, capabilities of the interactive
remote working environment are demonstrated.

In summary, this thesis introduces comprehensive concepts for processing and interactive
analysis of multi-modal 2D/3D mass spectrometry image data as well as additional concepts
for a general support of interactive remote working applying to a wide range of interactive
biomedical image processing tasks.
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Chapter 1

Introduction

1.1 Motivation

In many areas of biomedical research, images are crucial for scientific progress.
Interactive access to these images is essential for exploration and diagnosis, enhancing
understanding, particularly in fields such as pathology, radiology, and cell biology.
As imaging techniques continue to advance, generating ever more detailed datasets,
the amount of data to be stored and processed will continue to grow. Consequently,
data and computationally intensive processes are being increasingly relocated to
centralized resources with substantial storage and processing capabilities. However,
large, multidimensional and multi-modal biomedical images, such as those generated
in experiments with Mass Spectrometry Imaging (MSI), pose a major challenge
for fast, comprehensive and interactive remote access. Processes as image data
exploration, image analysis, the development of new image analysis methods, and
interdisciplinary collaboration of domain experts can be hampered if data-intensive
transfers to local systems are required, e.g. for processing of images with interactive
applications the domains expert are familiar with. Current efforts to utilize remote
resources focus on providing integrated environments for remote development and
applications for execution of reproducible image analysis workflows, while lacking
comprehensive interactive capabilities with those images.

The methods presented in this work are the results of an inspiring collaboration
with members from the research projects "Multi-modal Analytics for the Life Science
- Pharmaceutical - Chemical Industry" (M²Aind) and "Mannheim Molecular Inter-
vention Environment" (M²OLIE). A core objective of M²Aind is the development of
new image analysis methods and the analysis of molecular features of biological
samples. Structural and molecular imaging features are captured using different
imaging modalities, including molecular imaging such as MSI and various optical
imaging methods such as Fourier-Transform Infrared Spectroscopy (FTIR), Immuno-
Fluorescence Microscopy (IF), Immunohistochemistry (IHC) and e.g. light microscopy
imaging of Hematoxylin and Eosin (H&E) stained samples. The aim of the project
M2OLIE is to explore, conceptualize and establish optimized treatment cycles for can-
cer patients (oligometastatic liver cancer) in order to accompany them as efficiently
and purposefully as possible in the shortest possible time from examination, diagno-
sis and up to an intervention. Important aspects of this treatment cycle are the initial
multi-modal imaging, subsequent minimally invasive, robot-guided biopsies and
molecular characterization of the tissue samples. The multi-modal imaging strategy
includes Magnetic Resonance Imaging (MRI), Cone-Beam Computed Tomography
(CBCT), and Computed Tomography (CT) for initial diagnosis, biopsy planning, and
intervention support. New interaction and visualization tools are required for the
process of deformable multi-modal image fusion and examined for their integrability
in clinical routine. The molecular characterization process of the biopsies includes
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molecular imaging techniques such as MSI. The molecular information obtained
has the potential to differentiate tumours and tumour subtypes in order to improve
diagnostics and individualized patient treatment.

M²Aind and M²OLIE include several sub-projects targeting a broad range of sci-
entific questions based on different imaging modalities that generate a significant
volume of data and require interdisciplinary development of new or adapted image
analysis methods. The barrier of shifting the image data analysis process entirely to
centralized resources could be substantially reduced if a software ecosystem with all
required components such as solutions for remote development, remote execution
of analysis workflows, remote interactive image exploration, and remote collabo-
ration of domain experts was established. Such a software ecosystem would allow
researchers to focus on the scientific question, by enabling seamless use of centralized
computing resources, faster interactive exploration of input and output data, and
avoiding the burden of repeated data transfer for computationally intensive analysis
or collaboration. In addition, specifically regarding MSI, interactive applications of
such an ecosystem must be tailored to the requirements of the rapidly developing
field of multi-modal and large-scale MSI experiments.

Working with images requires a wide range of processing and visualization capa-
bilities offered by typical image processing applications. These features include the
ability to adjust visualization parameters such as intensity ranges and color represen-
tations. Additionally, the applications are equipped with navigation tools, enabling
detailed examination. The complexity increases when handling hyperspectral and 3D
imaging data, due to their additional dimensions. This necessitates more substantial
controls, such as selecting 2D projections from hyperspectral or 3D images, to achieve
suitable visualizations. Depending on the complexity and size of the images to be
processed, comprehensive interactivity is limited in remote scenarios. The familiar
interactive desktop applications are no longer available to the user and repetitive
data transfers from remote to local systems are often impractical depending on the
size of the data. However, experience has shown that a lack of comprehensive interac-
tivity makes it difficult to carry out a more detailed inspection and quality control of
imaging dataset as a whole and that a superficial examination of the data can lead to
misinterpretations of input or output data, making troubleshooting time-consuming
and costly.

Remote working can already be implemented with a variety of tools, including
terminal or remote desktop applications that allow users to access and control a
computer or virtual machine from another location via a network connection. There
are also tools that address remote developing by providing specialized graphical user
interfaces and targeted user experiences. Several open-source and web-based Inte-
grated Development Environments (IDE) such as JupyterLab (Jupyter Trademark)i,
RStudio Serverii, and Visual Studio Code (VS Code)iii provide powerful tools for
remote development. In contrast, web-based software platforms such as the Galaxy
Projectiv,1 and the Joint Imaging Platform (JIP)2 provide remote access to tools for
managing data and to create reproducible processing pipelines. The Open Microscopy
Environment Remote Objects (OMERO) offers a specialized data management for
biomedical imaging data including a wide range of imaging modalities (e.g. fluores-
cence and electron microscopy, histological imaging and clinical imaging data). The

ihttps://jupyter.org; accessed April 2024
iihttp://www.rstudio.com/; accessed April 2024

iiihttps://code.visualstudio.com; accessed April 2024
ivhttps://galaxyproject.org/; accessed April 2024

https://jupyter.org
http://www.rstudio.com/
https://code.visualstudio.com
https://galaxyproject.org/
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web-interface of OpenMSI3 provides fast and convenient access to MSI data, meta-
data, and derived analysis results stored remotely to facilitate high-performance data
analysis and enable implementation of web-based data sharing, visualization, and
analysis. Projects such as Dugong4 provide a monolithic virtual machine-like desktop
environment based on Dockeri specialized for biomedical data analysis. However,
setting up and maintaining such platforms can be difficult, and implementing new
features can require a high level of expertise due to the complexity of the framework.
In context of biomedical imaging in multi-modal setups, the above approaches are

FIGURE 1.1. The interactive remote working environment for the processing and development
of biomedical imaging applications.

either limited in their capabilities to instantaneously view, process, or share images
interactively at remote sites, and are often rather complex to install, manage and
maintain. These limitations indicate a need for a more general, easy-to-maintain
concept for remote working that provides access to interactive tools and is adapt-
able to individual needs and custom tasks. In broad terms, these concepts need to
cover a diverse landscape of requirements for the generation of new insights. This
is illustrated in Figure 1.1 Overview of an Interactive Remote Working Environment and
includes (i) support for heterogenous biomedical imaging data and file formats; (ii)
remote image analysis and visualization including interactive tasks like exploration,
multi-modal image registration, and the creation of spatial annotations; and (iii)
remote development capabilities, preferably programming language independent,
that integrate with the remote interaction capabilities, facilitating use of remote stor-
age and computing resources for large data and compute intensive tasks like deep
learning. In addition, (iv) it can be assumed that a lightweight environment that
does not require expert knowledge for installation and maintenance is of advantage.
Furthermore, centralized data management processes can greatly facilitate the regular
backup, retrieval and sharing of data and strengthen institutional competencies.

Overall, the benefits of integrating remote resources into workflows and establish-
ing them as a standard in research institutes often remain unrealized. Opportunities
to save costs, make better use of data resources and establish closer collaboration
between different disciplines and individuals such as physicians, experimenters and
computer scientists are missed.

ihttps://docs.docker.com/engine/; accessed April 2024

https://docs.docker.com/engine/
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1.2 Objectives

The main goal of this work is to lay the foundations for an advanced software ecosys-
tem that supports interactive processing and remote analysis of biomedical imaging
data, especially in the context of MSI. It introduces concepts for the unique challenges
of interactive processing of MSI data, which include large data sets, handling multiple
modalities, and the need for efficient and scalable solutions for data access and pro-
cessing. To differentiate from existing solutions, lightweight, flexible and responsive
solutions are sought to enable interactive exploration and analysis of multi-modal
2D/3D MSI data. This work places a particular emphasis on providing supporting
concepts for the development of deep learning applications in MSI.

1.2.1 Processing multi-modal 2D/3D MSI datasets

A key objective is to create an interactive processing framework that allows for the
efficient handling and analysis of multi-modal 2D/3D MSI and related data. The
application and development of new methods to analyze MSI often benefit from
incorporating imaging data from other modalities. This integrated approach provides
additional contextual information that MSI alone might not offer. It enhances the
perception of spatial features and allows researchers to analyze molecular conditions
in the context of complementary imaging modalities. Furthermore, it facilitates
the creation of spatial annotations, which are often required, e.g. in the context of
biomarker identification or for the evaluation of newly developed applications and
methods, for example in the context of supervised machine learning.

Despite advances in MSI technology, such as increasing spatial resolution, mass
resolution and acquisition speed5, there is a notable lack of open-source applications
that provide interactive processing of multi-modal 2D and 3D MSI data6,7. This gap
underscores the growing need for a user-friendly interactive, open-access software
solution that facilitate the integration of advanced algorithms for MSI as well as their
development.

Therefore, novel interactive concepts tailored to 2D and 3D MSI datasets in
multi-modal setups are presented. This includes a fast raw data import, which is
essential for interactivity, fast data processing, and interactive utilities for multi-modal
image fusion. Additionally, methods for the interactive evaluation and correction
of unsatisfactory fusion results are explored. One challenge is the simultaneous
interaction with multiple large 2D MSI datasets for 3D image reconstruction tasks.
This requires not only fast, but also memory efficient data import and access structures
for MSI datasets. Another challenge is the integration of multiple images from
different modalities with diverse image properties, like varying spatial resolutions
and pixel types. The goal is to integrate these features into an open-accessible and
fully interactive desktop application.

In addition, concepts to support working with deep learning approaches on MSI
data are proposed. As deep learning in this area is still at a relatively early stage,
dedicated, fast and memory-efficient data interfaces to MSI datasets and related data
are missing. The proposed concepts are intended to optimize the data preparation,
training and inference processes of deep learning models in MSI, and to be used in
combination with the interactive methods outlined above. The hypothesis is that
development of DL applications can be improved if interactive processing and visu-
alization of MSI data are applied in combination with scripting for DL. In order to
demonstrate the performance of the developed concepts, state-of-the-art deep learn-
ing methods from the literature for different MSI analysis tasks, like peak picking and



1.3. Thesis Structure 5

dimensionality reduction, are adapted to the new interfaces. The developed methods
are made openly available to the MSI community so that the implementations of the
deep learning approaches can be used as blueprints.

In order to facilitate the combination of the developments based on the aforemen-
tioned objectives, another objective emerges: Concepts for seamless integration of
script-based DL and other image processing methods into the newly created interac-
tive framework, independent of the programming language the DL script or image
processing method is implemented in.

Diverse use-cases and example applications are to be elaborated for the individual
objectives to demonstrate the developed concepts.

1.2.2 Interactive Remote Working

It is hypothesized that the interactive, responsive and ad-hoc accessibility of biomedi-
cal images on remote resources can significantly accelerate the pace of development
and deployment of new scientific methods and innovations. This is especially true
for large and processing intensive datasets, such as generated by MSI. With imme-
diate access to remote image data, developers can iteratively test and refine image
processing algorithms and tools, receiving immediate feedback on their performance.
This rapid research environment is essential for agile research practices, which rely
on quick iterations and continuous improvements based on actual user experiences.
Additionally, by removing the need to physically handle samples or relocate data to
various sites for analysis, remote access minimizes the risk of data corruption and
loss, ensuring high integrity and reliability of the data throughout the development
process. Furthermore, remote access to images facilitates significantly collaboration
among researchers and developers in different locations. By enabling a shared remote
access to image data, experts from various disciplines can view, analyze, and discuss
the same images in real-time, without the need for physical presence in a lab. This
can lead to faster consensus and decision-making, as well as the integration of diverse
and interdisciplinary expertise.

This research examines the potential of developing an interactive, fast, and
lightweight remote processing and development environment for multi-modal biomed-
ical imaging datasets. The objective is to create an environment that enables work
to be carried out as independently of location as possible. This can be achieved
by using a central server infrastructure or even by outsourcing to the cloud. The
overarching objective is to facilitate interactive access to hyperspectral and biomedi-
cal two-dimensional (2D) and three-dimensional (3D) image datasets or collectives,
thereby enabling the utilization of central resources, such as hard disk space and cen-
tral processing unit (CPU) and graphics processing unit (GPU) computing capacity.

1.3 Thesis Structure

This thesis is comprised of seven sections. Following this introductory chapter,
which outlines the motivation for the work presented in this thesis, the theoretical
background will be outlined in chapter 2. This includes an overview of the basics
of data generation, used software and processing methods in MSI. In Chapter 3,
the concepts for processing of multi-modal 2D/3D MSI datasets are introduced.
These include interactivity, programming language independent integration of image
processing methods into an interactive context, and methods to facilitate developing
of deep learning models for MSI. In Chapter 4, concepts for interactive remote
working are introduced with a focus on remote analysis of MSI and image related
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datasets. The results of the introduced concepts are presented in Chapter 5 and
discussed in detail in Chapter 6. The thesis is concluded with a summary of the work
presented in this thesis in Chapter 7.
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Chapter 2

Background

This chapter presents the necessary background for this work. It is structured as
follows: In section 2.1 Mass Spectrometry Imaging, a brief overview of MSI is given,
including basics such as sample preparation, ionization, mass analyzers, batch effects,
data structures and file formats. Furthermore, data processing including signal
processing, data compression, spatial co-localization and molecular annotations, and
the basics of deep learning methods in MSI are introduced.

The fundamentals of image based registration are introduced in section 2.2 Image-
based Registration. section 2.3 Bioinformatics briefly introduces software packages
related to the field of biomedical image processing. The basics of the Medical Imaging
Interaction Toolkit (MITK) are introduced in section 2.4 Medical Imaging Interaction
Toolkit as well as the principles of containerization in section 2.5 Containerization with
Docker.

2.1 Mass Spectrometry Imaging

Image-based analysis of tissue sections is a fundamental tool in biomedical research.
The current development is to complement classical histological imaging methods
with methods of spatial molecular imaging. By combining morphological and func-
tional features with molecular features, deep insights into the complexity of biological
systems and diseases can be gained8–11. Here, Mass Spectrometry Imaging (MSI)
stands at the forefront of untargeted molecular imaging techniques, providing a pow-
erful means of spatial mappings of the molecular composition of tissue samples.12–16.
At its core, MSI spatially maps the distribution of molecules within a tissue section,
providing researchers with molecular images (ion-images) that can be used to com-
plement the classical histological imaging methods10. It provides spectral information
of the analyzed pixels with high chemical specificity. The MSI technique utilizes
the principles of Mass Spectrometry (MS) to measure the relative abundance of ions
(intensity) for a given mass-to-charge ratio (m/z) and spatial position (pixel) (see
Figure 2.1), converting complex mixtures of molecules into spatially resolved mass
spectra12,17,18. This process results in memory-demanding and high-dimensional
datasets (hyperspectral images). Its capability of mapping the spatial distribution of
molecular species in a variety of biological samples supports applications in various
fields, including biology, environmental science, materials science, pharmacokinetics,
toxicology, and personalized medicine5,17,19. In spatial metabolomics and proteomics,
spatial molecular features of the proteome or the metabolic system are acquired to
derive biological insights of pathways and structure of those systems5,20–22.

MSI is commonly categorized as an untargeted molecular imaging method, but
depending on the MSI method chosen, a class of molecules is targeted. This enables
the detection of specific morphological or functional spatial features related to the
targeted molecular class. Examples of MSI devices and corresponding molecular
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FIGURE 2.1. MSI data acquisition and ion-images. A tissue section is scanned with an
ionization source in a regular grid. The relative abundances of molecules are detected for each
pixel to generate a plot of mass-to-charge ratio (m/z) values to intensities (mass spectrum).
The intensity values of these mass spectra can then be spatially visualized as ion-images, e.g.
by mapping intensities or intensity ranges for a specific m/z value (molecule of interest) to

the corresponding pixel position.

classes are: Matrix-Assisted Laser Desorption/Ionization (MALDI) Time-of-Flight
(TOF) is a versatile mass spectrometry technique capable of analyzing a wide range of
biomolecules. It is particularly adept at targeting lipid species, peptides, and proteins
within biological samples8,20. Desorption Electrospray Ionization (DESI) offers an
approach, specializing in the analysis of lipids, metabolites, and drugs23. On the
other hand, Secondary Ion Mass Spectrometry (SIMS) excels in providing detailed
information on elemental distribution and isotope labeling within samples24 - all
methods offering insights into the molecular composition and structure of diverse
materials and biological specimens. However, the imaging of a single targeted
molecular class may not reflect important morphological features of a tissue section
and, therefore, MSI is often used in combination with other imaging modalities for
a joined analysis (image fusion). Thus, a variety of imaging modalities is combined
with MSI, including optical microscopy or spectroscopy imaging techniques like
FTIR, IF or Imaging Mass Cytometry (IMC), as well as clinical modalities such as
MRI or CT25,26. Furthermore, the collection of multiple MSI datasets focusing on
different classes of molecules are also used to obtain a feature-rich representation
of tissue samples27. The main challenge in image fusion is the transfer of images
into a shared image space to spatially align structural and molecular image features.
Image fusion includes the application of image-based registration methods, that are
substantial research subject in MSI and other disciplines6,28,29. A related topic in MSI,
is the 3D image reconstruction. Image-based registration methods are used to arrange
several neighboring 2D MSI images of the same sample in such a way that a digital
volumetric MSI dataset is created. The result of this process can then be used to study
molecular features in their three dimensional (3D) environment. Various strategies
for image reconstruction, visualization and analysis of 3D MSI datasets have already
been applied7,30–34.

The use of MSI techniques will increase significantly in future applications due
to advances in acquisition speed and device precision, resulting in ever-increasing
amounts of data, often exceeding several tens of gigabytes for a single MSI dataset.
MSI technology not only enables a new understanding of biological processes in their
spatial context, but also poses new challenges for the interpretation and manage-
ment of the complex, high-dimensional and memory-intensive datasets it generates.
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Existing open software packages are often limited by time-demanding image ini-
tialization procedures, computer memory-intensive implementations, and a lack of
interactive capabilities, especially for simultaneous visualization of multiple images
and modalities (MSI-to-MSI; MSI-to-Microscopy) in a shared space and for displaying
a potential high number of 2D MSI datasets for 3D image reconstructions. In this
context, taking a closer look at required capabilities of interactive applications for
image-based registration tasks in MSI seems promising for several reasons:

• Interactive applications allow researchers to fine-tune the registration process
by visually inspecting the alignment of images35. This level of control can
significantly improve the accuracy and precision of image registration, ensuring
that image features are correctly aligned across different datasets.

• MSI datasets often exhibit variability in terms of sample preparation, tissue mor-
phology, and imaging conditions36. Interactive applications provide flexibility
to adjust signal processing and registration parameters based on the specific
characteristics of each dataset.

• Registration algorithms may struggle with certain types of datasets or regions
within the sample. Interactive applications allow researchers to quickly identify
and correct misalignments in problematic areas.

• Researchers often possess valuable domain-specific knowledge about the bio-
logical samples being studied37. Interactive applications empower researchers
to leverage their expertise by incorporating qualitative assessments and domain-
specific criteria into the registration process, further improving the accuracy
and reliability of the results.

• Interactive applications serve as valuable tools for training and education in the
field of MSI. By allowing users to interactively explore the registration process
and visualize the effects of parameter adjustments, these applications facilitate
hands-on learning and skill development for both novice and experienced
researchers.

With the future development of instrumentation, data analysis and methodology
in the field of MSI, the possibilities for its application in medical and biological
research are promising. However, challenges such as data complexity, standardization
and integration with other imaging modalities remain. By overcoming these obstacles,
MSI could further revolutionize our understanding of the molecular characteristics of
disease and biological processes. Based on the lack of open-source software solutions
for image-based registration tasks, there is an increasing demand for user-friendly
and fully interactive software solutions.

The fundamentals of MSI are introduced by starting with sample preparation and
device specificities in subsection 2.1.1 Fundamentals, batch effects in subsection 2.1.2
Batch effects, the data processing in subsection 2.1.3 Data Processing and deep learning
methods in subsection 2.1.4 Deep Learning for Mass Spectrometry Imaging.

2.1.1 Fundamentals

Sample Preparation

Proper sample preparation is crucial for analytical success, especially in MSI. Even
subtle differences in sample integrity or molecular density can significantly impact
the measured signal intensity, types of molecules detected, and spatial mapping in
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MSI experiments17,36. Before analysis, samples are prepared to facilitate ionization
and improve detection sensitivity. Figure 2.2 illustrates the sample preparation steps
for MALDI MSI. These steps include the collection of tissue samples followed by
a procedure to stop enzyme activity to reduce degradation and delocalization of
molecules. This is done by flash-freezing or Formalin Fixation Paraffine Embedded
(FFPE). Next, thin sections (6-20 µm thickness) are mounted on an appropriate surface
(e.g. microscopy slide). Further details on the sample preparation can be found
in Buchberger et al. (2018)1717. In MALDI MSI, for example, a matrix is applied
to the sample, promoting the desorption and ionization of molecules upon laser
irradiation12,15,38.

FIGURE 2.2. Illustration of Sample Preparation Steps for MALDI MSI: The process begins with
the embedding and mounting of the tissue sample, followed by the application of the matrix.
This sequence sets the stage for the MALDI MSI technique (First Column). Subsequent
steps involve the acquisition of spectra, signal processing, visualization, and comprehensive

analysis of the data (Second Column)

Ionization

The mass spectrometer can be separated in three parts. The ion source, the mass
analyzer, and the detector. Commonly used ionization methods for different surfaces
are SIMS, MALDI MSI, and DESI. The ionization method determines the spatial
resolution and type of analytes that can be detected38. In SIMS a focused primary ion
beam is used to irradiate, e.g. solid surfaces or thin films, analyzing ejected secondary
ions39. DESI imaging utilizes the application of an electrically charged solvent mist
(electrospray) causing ionization and desorption of surface molecules40. On the
other side, MALDI MSI, uses a laser beam to irradiate biological tissue surfaces
which have being homogeneously coated with a matrix across the tissue surface.
The matrix crystallizes together with tissue bio-molecules (co-crystals) and helps to
absorb the laser energy to support molecular ionization and desorption from the
surface. Depending on the chosen metrices, different classes of bio-molecules can be
targeted41. All ionization methods commonly generate a cloud of ionized molecules
which are then transported into the mass analyzer inlet of the MSI device.
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Mass Analyzer

The mass analyzer can measure ionized molecules based on there m/z property.
Different types of analyzers exists, including TOF and Fourier-transform ion cy-
clotron resonance (FTICR)42. A TOF mass analyzer measures the time it takes for
ions to travel a known distance. By determining the time of flight, the m/z ratio of
ions can be accurately calculated, enabling precise mass analysis in a wide range
of applications41. A detailed view on a MALDI based TOF analyzer is illustrated
in Figure 2.3. FTICR mass analyzer utilizes a strong magnetic field to trap ions in
a cyclotron motion. By measuring the frequencies of the ion cyclotron resonances,
FTICR provides high-resolution mass spectrometry data, enabling accurate mass
determination and structural analysis of molecules43.

FIGURE 2.3. Drawing of the principal mechanism of a MALDI-TOF device in posi-
tive ionization and reflector mode. The basic principle of matrix-assisted laser desorp-
tion/ionization time-of-flight (MALDI-TOF) process occurring in the mass spectrome-
ter for positive ionization. The mass resolving power can be improved by further ex-
tending the flight path using an electrostatic mirror (reflector). Illustration created by
Leopold et al.41 under the conditions of the Creative Commons Attribution (CC BY) li-

cense (http://creativecommons.org/licenses/by/4.0)

Figure 2.3 illustrates the principle mechanisms of a MALDI-TOF device. Positive
charged ions are accelerated towards a detector utilizing an electric field. After
acceleration those ions move in a field-free space (drift-zone), where the separation of
ions is achieved depending on their m/z. Lower mass ions reach the detector faster
(linear mode). The peak resolution of TOF mass analyzers can further be enhanced by
extending the flight path of the ionized molecules. This can be realized by reflecting
ions to a second detector (reflector mode)41.

Predominantly, MALDI MSI is used in the biomedical research due to its capability
of generating high spatial resolution images and its flexibility in the bio-molecular
classes to be investigated13,17. It is considered as a soft ionization process with
minimal fragmentation of the analyzed bio-molecules44.
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Mass Resolving Power

Different mass analyzers can be specified by their Mass Resolving Power (MRP). This
is a crucial parameter in analytical techniques like mass spectrometry, denoting the
instrument’s capability to distinguish closely spaced masses of ions. It is defined as
the ratio of the mass of a peak in the mass spectrum to the difference in mass between
two peaks that are just resolved. A higher MRP signifies a superior ability to separate
ions with similar masses. The MRP is defined as MRP = m/∆m, where m represents
the mass of the peak of interest, and ∆m is the minimum mass difference between
two peaks that can be resolved45. The common MRP for a TOF device lies in the
range between 10k-50k46 and for FTICR devices at m/z 400 greater than 1.5 million47.

2.1.2 Batch effects

There are many effects that influence the quality and content of the MSI results
and are related to the technical implementation of the MALDI-MSI11. These effects,
which currently represent the greatest challenges in the field of MALDI-MSI, include
ion suppression, the homogeneity of the matrix used, enzymatic processes, and the
delocalization of analytes. Additionally, validated and standardized protocols are
missing or just in the early stage of development13,36.

On top of these effects, the so called Batch Effects, already known from other omics
disciplines48 and digital pathology49, are influencing the reliability and interpretabil-
ity of MSI results. Batch effects are effects that accumulate and inflate the variance
or introduce noticeable differences between samples. Special batch effects related to
MALDI MSI specifically were introduced by Balluff et al. (2021)3636. Different scales
or layers of batch effects were identified, reaching from pixel, section, and slide to
time and location related factors.

MALDI mass spectrometry (Matrix-assisted Laser Desorption/Ionization Mass
Spectrometry Imaging, MALDI-MSI) is a powerful tool for analysing the spatial
distribution of molecules in tissue samples. However, its utility can be compromised
by batch effects, which manifest as variations in signal intensity and quality between
individual pixels and tissue sections. Pixel-to-pixel batch effects are primarily due
to sample preparation. The application of the MALDI matrix results in uneven
distribution and crystallization, which leads to spatially uneven suppression of the
analytes. In addition, differences in tissue properties and biological content can
affect ion extraction and ionization efficiency, which is particularly pronounced with
MALDI-based ionization. Acquisition biases, such as decreasing detector sensitivity
or matrix evaporation during longer sessions, exacerbate these batch effects. In
addition, uneven sample topology and stage tilt contribute to mass shifts between
pixels, affecting mass resolution and accuracy. Discrepancies in tissue topology also
lead to spatially varying laser focus and ablation spot sizes, resulting in non-uniform
ionization.

Section-to-section batch effects have a similar origin to pixel-to-pixel effects, but
are specific to differences between tissue sections positioned at different locations
on the measurement slide. Variations in laser irradiation and/or matrix application
between sections as well as differences in tissue section thickness, processing and stor-
age contribute to systematic differences. In addition, these effects are compounded
by laboratory-level variability resulting not only from differences in the preparation
of individual pixels and sections, but also from overall sample preparation protocols
and time-related factors. These cumulative batch effects can obscure actual biological
responses, which is particularly problematic in biomarker discovery applications
where ion intensities are highly sensitive to perturbations.
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To overcome these challenges, much research has focused on improving the re-
producibility of MSI experiments. Studies have compared the results of clinical tissue
samples from different facilities and sites using standardized protocols50. Hardware
advances have also been made, including modifications to the optics to correct for
height differences and the development of new hardware configurations that enable
MALDI-based imaging of tissue under atmospheric pressure conditions51,52. The
overall goal of these efforts is to reduce batch effects and technical variability and ulti-
mately improve the reliability and interpretability of MALDI-MSI data for biomedical
research and clinical applications.

Data Structure and File Formats

Mass spectrometry imaging (MSI) datasets typically contain two main components:
spatial information and mass spectra.

The spatial information component describes the spatial coordinates of each data
point within the sample being analyzed. It is represented as x-y-z coordinates of the
sampled positions of a regular grid. This information allows to visualize the spectral
information in the spatial domain.

For each spatial coordinate, a mass spectrum is recorded. A mass spectrum is a
plot of intensity versus mass-to-charge ratio (m/z) and represents the ions detected
at that particular location. Each peak in the mass spectrum corresponds to a specific
molecule or fragment, and its intensity indicates the abundance of that molecule or
fragment at that location.

MSI datasets can be stored in various formats, including proprietary formats
specific to the instrument manufacturer, as well as open-source formats such as
imzML (imaging mass spectrometry markup language)53. These formats typically
include metadata describing experimental parameters, such as instrument settings,
sample preparation methods, and data processing steps, in addition to the spatial
information and mass spectra.

MSI acquisitions usually result in memory-intensive hyperspectral data sets, also
known as hyperspectral data cubes. Depending on the MSI device, the number of
different values on the m/z axis for the individual spectra (bins) may range from
103 for TOF devices to over 104 for FTICR20. Device manufactures often include
a centroiding strategy (the process of reducing a profile spectrum into a spectrum
containing only peak information) into their data acquisition pipelines, that reduces
the final data size and makes data storage and processing easier, especially for
analyzers with very high MRP analyzers such as FTICR. Figure 2.4 illustrates these
different spectrum types.

MSI datasets are complex collections of information generated by the spatially
resolved detection of molecules in a sample. These datasets typically consist of mass
spectra acquired at multiple locations across a sample surface. In two-dimensional
MSI datasets, each spectrum corresponds to a spatial point in two dimensions, while
in Three-Dimensional (3D) MSI datasets, additional dimensions such as depth are
considered. Open file formats like imzML53 are commonly used for storing MSI
data, providing compatibility across different software platforms. Vendor-specific
formats, such as file formats for Bruker or Thermo Fisher instruments, are also
prevalent. MSI data sets contain not only mass spectra and spatial coordinates
but also potentially additional metadata describing the sample and experimental
conditions. Collaboration and standardization efforts aim to improve data sharing
and reproducibility in the MSI field, facilitating the exchange of information between
researchers and advancing our understanding of complex biological systems.
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FIGURE 2.4. Conceptual illustration of profile and centroid spectrum types as they were
stored in MSI datasets in each pixel position. For profile spectrum (A) the intensity values at
each sampling position on the m/z axis are stored. For centroid spectra (B) only the mean

m/z value and the peak intensity is stored. Original illustration.
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2.1.3 Data Processing

Signal Processing

A fundamental step for accurately reporting the identity and quantity of observed
molecules in MSI datasets is the spectrum-wise processing of the acquired mass
spectra. Signal processing methods are used to remove noise and artifacts from
the spectral information. A typical workflow includes baseline correction, spectral
binning, smoothing, mass alignment, normalization, peak picking, and peak bin-
ning. Signal processing methods have been discussed in detail by Buchberger et al.
(2018)1717, Ràfols et al. (2016)1818 and Hu & Laskin (2022)5454. The following listing
provides a brief overview of approaches for the different steps of a signal processing
pipeline.

• Baseline Correction methods are utilized to remove unwanted background
signals and distortions from spectral data. These methods involve modeling and
subtracting baseline signals, which may arise from factors like electronic noise,
chemical interferences, or instrumental artifacts. Common techniques include
sliding-window based filtering, polynomial fitting, asymmetric least squares
smoothing, and wavelet-based methods, which aim to accurately estimate and
remove baseline components.

• Spectral Binning involve grouping m/z values into discrete bins to simplify
and reduce the dimensionality of spectral data. By aggregating adjacent m/z val-
ues into bins, spectral binning improves signal-to-noise ratio and facilitates
downstream analysis such as peak picking and statistical comparisons.

• Spectral Smoothing methods are employed to reduce noise and enhance the
quality of spectral data. These methods typically involve applying mathemat-
ical filters or algorithms to attenuate high-frequency noise while preserving
underlying molecular signals (peaks). Common techniques include moving
average, Savitzky-Golay55, Gaussian smoothing, and approaches including
neighboring spectra. Spectral smoothing helps to enhance the visualization and
interpretation of molecular features, particularly in complex MSI datasets. How-
ever, careful consideration must be given to the choice of smoothing parameters
to avoid distortion or loss of important spectral information.

• Mass Alignment aims to correct for mass shifts in the m/z values across spectra,
ensuring accurate spatial alignment and comparison of molecular features.
These methods typically involve aligning peaks or mass channels across spectra
by applying mathematical transformations such as interpolation or warping.
Peak-based alignment techniques identify common peaks in spectra and adjust
for mass shifts to align them. Alternatively, warping-based methods utilize
algorithms to deform spectra to match a reference spectrum. Accurate mass
alignment is essential for precise spatial mapping and comparative analysis in
MSI studies, facilitating the identification of biomarkers and molecular patterns.

• Spectral Normalization aims to correct variations in ion intensity across spectra,
enabling more accurate quantification and comparison of molecular signals
and ion-images. These methods typically involve dividing each spectrum by a
normalization factor, often derived from internal standards or reference peaks.
One common approach is total ion count (TIC) or root mean squared (RMS)
normalization, where each spectrum is divided by its total ion intensity. Another
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method involves normalization to a reference peak or set of peaks, ensuring
consistency across samples. Spectral normalization helps mitigate technical
variability, improving the reliability and reproducibility of MSI data analysis.

• Peak Picking methods are employed to identify and extract peaks representing
molecular ions from spectral data. These methods involve algorithms that
automatically detect peaks based on characteristics such as intensity, shape,
and signal-to-noise ratio. Common peak picking algorithms include threshold-
ing, local maximum identification, and wavelet-based methods, which can be
tailored to different types of spectra and analytical objectives. Peak picking
is crucial for quantifying molecular abundance and identifying biomarkers or
molecular features in MSI datasets. However, selecting an appropriate peak
picking method requires careful consideration of factors such as spectral com-
plexity, noise level, and desired sensitivity.

Data compression

A MSI dataset is represented by a high-dimensional 3D data cube. Data compression
methods include dimensionality reduction techniques, that aim to reduce the complex-
ity of data by transforming high-dimensional mass spectra into lower-dimensional
representations17,54. One common method is principal component analysis (PCA),
which identifies orthogonal components capturing the most variance in the data.
PCA can help visualize sample variations and highlight significant features. Another
approach is non-negative matrix factorization (NMF), which decomposes mass spec-
tra into non-negative components, aiding in feature extraction and interpretation.
T-distributed stochastic neighbor embedding (t-SNE) is a popular non-linear dimen-
sionality reductio technique for visualizing high-dimensional data in two or three
dimensions. It preserves local structure and is particularly useful for clustering and
identifying spatial relationships in MSI datasets.

Data compression methods also include the spatial grouping of spectra into re-
gions with similar characteristics. Clustering methods group similar mass spectra
into clusters based on various similarity metrics56. K-means clustering partitions
spectra into k clusters by minimizing the within-cluster sum of squares. Hierar-
chical clustering organizes spectra into a tree-like structure, revealing hierarchical
relationships among samples. Density-based spatial clustering of applications with
noise (DBSCAN) identifies clusters based on regions of high density, making it
robust to outliers. Gaussian mixture models (GMM) assume that the data is gener-
ated from a mixture of several Gaussian distributions, allowing for flexible cluster
shapes. Self-organizing maps (SOM) are neural network-based methods that map
high-dimensional data onto a low-dimensional grid, preserving topological relation-
ships between spectra. Overall, dimensionality reduction and clustering methods
play crucial roles in simplifying and extracting meaningful information from complex
MSI datasets.

Spatial Co-localization

Spatial co-localization in MSI refers to the detection of two or more ion-images
within similar spatial analyte distributions. This technique is particularly useful
for studying protein-protein interactions, protein-lipid interactions, and molecular
assemblies. A study, published by Ovchinnikova et al. (2020)57 compares different
spatial co-localization measures including, Pearson correlation, Spearman correlation
and cosine similarity for flattened ion-image pairs (1D vectors of pixel intensities)57,58.
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Molecular annotations

Understanding the molecular composition is essential for extracting meaningful bio-
logical insights from MSI data. Traditionally, peak annotation in MSI experiments
relies on accurate mass determination obtained either directly from tissue or through
off-line bulk analysis. The integration of ion mobility spectrometry with MSI has en-
hanced isomeric and isobaric separation, providing additional structural information
for analyte identification. Furthermore, MS/MS imaging allows for the simultaneous
visualization and identification of biomolecules within tissues17. Beside improved
analysis techniques, community resources have been developed to facilitate the iden-
tification of various molecular classes, including metabolites, lipids, glycans, and
proteins, utilizing accurate mass, MS/MS, or collision cross-section (CCS) measure-
ments. Database searching and scoring algorithms play a pivotal role in this process.
Palmer et al. devised an false discovery rate (FDR)-controlled metabolite annotation
method specifically tailored for MSI data, incorporating accurate mass, isotopic pat-
tern, and spatial distribution into a joint match score to enhance search performance59.
Additionally, rMSIannotation utilizes isotopic pattern coherence, image correlation,
and mass error for the annotation of isotopic and adduct ions in MSI data60.

2.1.4 Deep Learning for Mass Spectrometry Imaging

Recent advances in deep learning have revolutionized various fields, particularly in
medical image processing. Artificial neural networks (ANNs) and convolutional neu-
ral networks (CNNs) have significantly contributed to tasks such as image detection,
recognition, segmentation, and computer-aided diagnostics in medical imaging. Deep
learning, a subset of machine learning, encompasses supervised, semi-supervised,
and unsupervised learning paradigms. Supervised learning involves providing both
input and desired output data during training, allowing the algorithm to learn the
relationship between them, such as pixel-class pairs. Unsupervised learning involves
finding structure in input data without explicit output guidance. Semi-supervised
learning lies between these two approaches, incorporating limited prior informa-
tion. These learning concepts are integral to deep learning, which relies on ANNs
inspired by the brain’s information processing. By mimicking biological learning
processes, deep learning algorithms can extract meaningful structures from input
data. Understanding how these algorithms uncover internal representations within
data is crucial for their effective application. Deep learning techniques have been
increasingly applied in medical and biomedcial image processing due to their ability
to handle large datasets and extract complex features. They have shown promise in
tasks such as tumor detection, organ segmentation, disease classification, treatment
planning, and tissue classification.

The enormous feature density of the spectral information provided by MSI offers
an interesting basis for deep learning applications54. Compared to other disciplines
where deep learning was successfully applied, only a comparatively slow progress
for MSI datasets is recognizable. This may be attributed to the lack of benchmark
datasets20, high data variance within and between acquisitions as a consequence of
batch effects36, and a diverse landscape of MSI processing utilities. Additionally, most
deep learning code is written in Python, whereas most MSI data science packages
are written in R. Feeding data to neural networks is a bottleneck in MSI processing
and optimized Python packages for MSI data access and processing are rare. While
deep learning offers significant potential for MSI, as in other disciplines, there are
still challenges, such as the need for annotated datasets, interpretability of model
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predictions, and generalization to diverse subject populations. Addressing these
challenges presents opportunities for further research and development in the field20.

Deep Learning models using spectral data

CNN architectures, particularly utilizing 1D convolution computations, have shown
promise in extracting and processing molecular information from correlated mass
spectral data. For instance, Behrmann et al. employed convolution kernels of size
3 with a small receptive field to discern isotopic patterns in IsotopeNet61. Similarly,
dilated convolutions were utilized to capture both locally and globally distributed
spectral patterns. Despite their potential, the limited amount of MSI training datasets
poses a significant bottleneck to the utilization of deep learning approaches. Various
strategies have emerged to address this challenge. One such strategy involves the use
of multiple manually annotated datasets to train the same representation learning
model in a supervised manner. Seddiki et al. implemented a cumulative learning
strategy, sequentially training the same CNN model with MSI datasets acquired from
different organisms, optimizing the model parameters for learning spectral represen-
tations from diverse MSI data62.Building upon the success of msiPL63, Abdelmoula et
al. developed massNet64, utilizing the msiPL autoencoder to train the neural network
for learning mass spectra representations. Leveraging the pretrained encoder, they
trained a classification model to distinguish between tumor and healthy tissues.

Deep Learning models using spatial data

Recently, CNN models have become increasingly popular, especially in the study
of molecular co-localization. For example, Zhang et al. applied a transfer learning
technique to extract spatial features from ion-images using a pre-trained Xception
CNN model. Their approach outperformed UMAP in clustering analysis and pro-
vided better classification of ion-images65. Ovchinnikova et al. tackled this challenge
through supervised learning by creating a sizable number of gold standard ion-
images manually curated by experts from the METASPACE knowledge base. Using
this baseline data, they developed a deep learning-based Pi model to quantify colocal-
ization between ion-images. Furthermore, they trained a ResNet-50 CNN model with
a labeled dataset and achieved a 98% recognition rate in identifying ion-images that
do not correspond to the sample57. Despite the successes of these studies, a notable
challenge arises from the limited size of MSI data for traditional deep neural network
training frameworks, which necessitate extensive annotated ion-images. To address
this challenge, self-supervised learning emerges as a promising approach. Hu et al.
introduced a self-supervised clustering method for MSI spatial data compression us-
ing contrastive learning and image augmentation58. Employing a simple framework
for contrastive learning of visual representations (SimCLR66), they trained a deep
CNN encoder using MSI data from a single experiment without manual annotations.
This model effectively learned spatial features from ion-images and classified them
based on molecular colocalizations, visualized in a 2D space using t-SNE.

2.2 Image-based Registration

The fundamentals of image based registration methods are introduced in subsec-
tion 2.2.1 Basic Concepts, followed by an overview of applied algorithms in subsec-
tion 2.2.2 Registration Algorithms and validation and evaluation strategies in subsec-
tion 2.2.3 Validation and Evaluation.
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2.2.1 Basic Concepts

Image-based registration is a fundamental process in biomedical imaging that in-
volves aligning and merging multiple images obtained from different modalities,
time points, or spatial domains. It plays a crucial role in clinical applications such as
image-guided surgery, treatment planning, and disease monitoring. Also in biomed-
ical imaging applications, and especially in MSI, these methods are required to
create image fusions for co-localized representation of image features and 3D image
reconstructions. An extensive summary of image-based registration is given in29,67,68.

Image registration refers to the spatial alignment of two or more images to es-
tablish a correspondence between their pixel or voxel locations. In the context of
biomedical imaging, image-based registration involves the fusion of anatomical or
functional information from various imaging modalities, including clinical modalities
like Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), as well as
microscopy modalities like light-sheed, ImmunoFluorescence Microscopy (IF), optical
tissue scanners, con-focal light microscopy, or spectrometry/spectroscopy modalities
like Mass Spectrometry Imaging (MSI), Fourier-Transform Infrared Spectroscopy
(FTIR), Raman spectroscopy6.

Image registration involves finding an optimal transformation T that aligns the
images (Transformation Models). This is illustrated in Figure 2.5 Optimization process
in image based registration. Commonly used transformation models include rigid,
affine, deformable, and non-rigid models. Rigid transformations preserve shape
and do not allow for local deformations, while affine transformations allow scaling,
rotation, translation, and shearing. Deformable models provide more flexibility by
allowing local deformation. Non-rigid models offer even greater freedom by allowing
non-linear deformations.

To quantify the alignment between images, similarity measures are used. These
measures assess the correspondence between pixel or voxel intensities, image gradi-
ents, or higher-order image features. Commonly used similarity measures include
Sum of Squared Differences (SSD), Normalized Cross-Correlation (NCC), and Mutual
Information (MI). The choice of similarity measure depends on the imaging modality,
image characteristics, and registration goals35,69,70. Multi metric approaches are used
to optimize the registration problem with two or more similarity measures. Most of
the similarity measures are based on corresponding characteristics of the fixed and
moving image. To help the registration, corresponding point pairs in the fixed and
moving images can be defined. A metric that minimizes the distance of two point
sets with known correspondence can be used to help in a difficult image registration
task that fails if performed fully automatically.

2.2.2 Registration Algorithms

Intensity-based registration methods use the similarity measures to optimize the
transformation parameters iteratively. These approaches aim to minimize the dissim-
ilarity between images by adjusting the transformation parameters until convergence
is reached. Optimization techniques such as the gradient descent method are com-
monly employed. The accuracy and efficiency of these algorithms depend on the
chosen optimization strategy, initialization, and convergence criteria.

Deformable registration methods are used when significant morphological (i.e.
anatomical or pathological) variations exist between images. These algorithms aim to
model and incorporate spatial deformations into the registration process. Common
approaches include B-spline-based registration, free-form deformation, or deformable
image registration based on biomechanical models. These methods often employ
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FIGURE 2.5. Schematic illustration of the optimization process of a transformation T so
that corresponding features in the images overlap. The depicted H&E stained images and
DESI-MSI dataset was published by Oetjen et al. (2015)33 and is available in the MetaboLights

repository [MTBLS282]ii.

regularization techniques to balance the smoothness of deformation and the goodness
of fit to the data.

Many deep learning-based methods for image-based registration have been devel-
oped in recent years. With methods based on deep learning, the iterative optimization
of the transformation parameters during the application of these models is no longer
necessary; instead, the optimization of the model parameters for a transformation is
shifted to the training phase of these models. This leads to considerable time savings
in the inference phase. A detailed summary of deep learning models for image-based
registration can be found in Boveiri et al. (2020)7171.

2.2.3 Validation and Evaluation

Validation and evaluation of registration results are critical to ensure the accuracy
and reliability of the registration process. Various validation metrics, such as target
registration error (TRE), landmark-based evaluation, or overlap measures, can be
used to quantify the registration accuracy. Additionally, visual assessment and expert
judgment play a crucial role in assessing the quality of registration results35.

2.3 Bioinformatics

A variety of software tools have been developed to help researchers and health-
care professionals in analyzing, interpreting, and visualizing complex biomedical
imaging datasets. These tools cater to specific modalities such as MSI, microscopy
imaging, and clinical imaging data. Each software tool is used for specific purposes
within its respective domain, facilitating analysis, interpretation, and visualization of
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biomedical imaging data. Overall, biomedical imaging analysis plays a crucial role in
advancing research and enhancing diagnostic and therapeutic capabilities in the field
of biomedicine.

A brief overview of what biomedical images are, is given in subsection 2.3.1
Biomedical Images, followed by a brief introduction of mass spectroscopy imaging ap-
plications in subsection 2.3.2 Mass Spectroscopy Imaging Applications, packages for MSI
data processing in subsection 2.3.3 Mass Spectroscopy Imaging Packages, microscopy
imaging software tools in subsection 2.3.4 Microscopy Imaging Applications, as well as
clinical imaging software tools in subsection 2.3.5 Clinical Imaging. Additionally, bioin-
formatics packages for image based registration are introduced in subsection 2.3.6
Frameworks for Image-Based Registration. Finally, the Medical Imaging Interaction
Toolkit (MITK) is introduced in section 2.4 Medical Imaging Interaction Toolkit and
containerization in section 2.5 Containerization with Docker.

2.3.1 Biomedical Images

In biomedical science, digital images are typically defined as representations of bi-
ological specimens or medical data captured in a digital format. These images are
composed of discrete pixels arranged in an isotropic or anisotropic potentially multi-
dimensional grid, where each grid position contains numerical values representing
the intensities or color of the corresponding portion of the specimen. These grid
positions are called pixels in Two-Dimensional (2D) and voxels in 3D image datasets.
The values associated with a grid position can also be a sequence of intensity values
(e.g. three values are stored for colored images representing the red, gree, and blue
color channels). Hyperspectral imaging methods provide spectral intensity values
(e.g. often sequences with more then 103 values) for each grid position. In order to
visualize and interpret image data correctly, real world properties are stored along-
side the pixel intensity values. Pixel/voxel spacing, origin, and dimension are key
elements in this contextiii.

• Pixel/voxel spacing refers to the physical distance between the centers of
adjacent pixels or voxels in each dimension. This metric is crucial for accurate
measurements and rendering, especially in medical imaging where precision
matters for diagnosis and treatment planning.

• Origin, in image data, specifies the coordinate in the image that corresponds
to a known physical location, typically the corner of the scanning field. This
allows the imaging system to map pixel data to a real-world coordinate system,
facilitating integration with other spatial data sets.

• Dimension indicates the number of grid positions along each spatial axis and
determines the overall size of the image or volume.

Together, these properties ensure that digital image data can be accurately related
back to physical space, enabling effective analysis, manipulation, and interpretation
in a variety of applications. The describing properties of digital images are illustrated
in Figure 2.6 Schematic Illustration of 2D Images.

Image Segmentation Segmentations, or spatial annotations, in the context of image
processing and analysis refer to the process of dividing an image into multiple
segments or regions, each representing a meaningful part of the image. This technique

iiihttps://docs.mitk.org/nightly/GeometryOverviewPage.html; accessed April 2024

https://docs.mitk.org/nightly/GeometryOverviewPage.html
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FIGURE 2.6. Schematic illustration of 2D images. The image properties are showing the
image dimensions (d), spacing (s) and the same origin (o) in the world coordinate system. In
addition the index coordinates of image grid are included in the pixels. Each pixel position

provides intensity information in a specific format (pixel type).

is often used to isolate specific objects or features within an image for further analysis,
processing, or understanding. Typically, segmentation images use non-floating point
intensity values, where each value correlates with specific spatial image features.

2.3.2 Mass Spectroscopy Imaging Applications

Mass spectrometry is a high-throughput measurement methods. These methods
perform a large number of measurements in a short time, resulting in a huge amount
of data. Bioinformatic software solutions help with the analysis. As the algorithms
and data formats used are often not open, the integration of new methods or the
evaluation of different approaches is impossible. To address these problems, efforts
were made to develop standardized formats and open algorithms that facilitate
interoperability and transparency in the analysis of mass spectrometry data.

The steadily increasing influence of MSI in various fields of science has encour-
aged the development of analysis and processing tools that focus on the use of those
hyperspectral and memory-intensive MSI datasets17,54. Numerous open-source and
vendor-specific software tools have been developed to overcome challenges posed
by increasing data volume and improving data quality. Open-source MSI tools and
packages in different programming languages, including R, Python, C++, and Matlab,
are available targeting the raw data access, signal processing, spatial annotations
(e.g. clustering), molecular annotations, dimensionality reduction, image-based reg-
istration, and quality control of MSI dataset59,72–76. In addition, there are several
interactive applications with Graphical User-Interface (GUI) that enable the viewing
and editing of MSI data sets3,18,60,76–86. Except for the software developed on the basis
of the concepts proposed in this thesis, there are still no interactive applications for
(semi-)automatic 3D reconstruction or multimodal MSI experiments in an openly
accessible and mature form. The currently most advanced commercial solution is
SCiLS Lab (Bruker Daltonik GmbH, Bremen, Germany). Open-source toolkits and
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command-line applications targeting intensity-based image registration are available,
e.g., the Insight Toolkit (ITK)87 and elastix88.

rMSI: rMSI is an R package tailored for MSI data analysis, featuring an efficient
data management system and an integrated GUI within the R environment60,78,79.
It utilizes a custom format to minimize memory usage while ensuring fast spectra
access. The GUI facilitates easy data exploration and visualization. Additionally,
rMSI provides a library of functions for seamless integration with other R packages,
enabling convenient sharing of MS data.

OpenMSI: OpenMSI is an open-source platform for visualization, analysis, and
sharing of mass spectrometry imaging data3. It offers a web-based interface for
managing, storing, visualizing, and analyzing MSI data and supports various data
formats.

METASPACE: METASPACE is a platform designed for the analysis of MSI data84.
METASPACE simplifies MSI data interpretation with its user-friendly web interface
and advanced algorithms. It enables easy uploading, processing, and analysis, aiding
in molecule identification and mapping. The platform offers visualization and analy-
sis tools for deeper insights into molecular composition and supports collaboration
through data sharing. Valuable for researchers in biology, medicine, and environ-
mental science, METASPACE facilitates exploration of spatially resolved molecular
information.

2.3.3 Mass Spectroscopy Imaging Packages

There are only a few open-source software packages available for the analysis of MSI
data. These packages provide tools for data processing, visualization, and analysis,
enabling researchers to extract valuable insights from complex MSI datasets. Some of
the popular open-source MSI packages include:

Cardinal: Cardinal is an R package tailored for analyzing MSI datasets73. It offers
efficient tools for signal processing, spatial segmentation, and classification of MSI
data.

MALDIquant: MALDIquant is an R package designed for the analysis of MSI72.
MALDIquant provides non-interactive functions for signal processing, visualization,
and analysis of MSI data.

pyImzML: pyImzMLiv is a Python library specifically designed for handling the
import and export of raw imzML data53. This package facilitates seamless integration
with Python-based data analysis workflows, enabling researchers to process and
analyze MSI data.

2.3.4 Microscopy Imaging Applications

A wide range of software tools is available for the analysis of microscopy imaging data,
catering to various imaging modalities and research applications. These tools provide
functionalities for image processing, segmentation, quantification, visualization, and

ivhttps://github.com/alexandrovteam/pyimzML; accessed April 2024

https://github.com/alexandrovteam/pyimzML
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data analysis, enabling researchers to extract valuable information from microscopy
images. Some of the popular (open source) microscopy imaging software tools
include:

ImageJ: it provides a user-friendly interface for various image analysis tasks, includ-
ing image processing, segmentation, quantification, and visualization, particularly in
the field of biomedical research and microscopy89.

CellProfiler: designed for high-throughput image analysis, CellProfiler features
a graphical interface for creating and executing pipelines to analyze large sets of
biological images, commonly used in cell biology and high-content screening90.

Icy (Image Analysis Software): Icy provides a user-friendly interface for image
analysis and visualization, with a wide range of plugins and tools for tasks such as
object tracking, segmentation, and 3D visualization91.

2.3.5 Clinical Imaging

Clinical imaging software tools are essential for the analysis and interpretation of
medical images, aiding healthcare professionals in diagnosis, treatment planning,
and patient care. These tools provide functionalities for viewing, processing, and
analyzing medical images from various modalities such as MRI, CT, and ultrasound.
Some of the popular clinical imaging software tools include:

MITK (Medical Imaging Interaction Toolkit): MITK is an open-source toolkit for
the development of interactive medical image processing software92,93. It provides
functionalities for loading, processing, and analyzing medical images in various
modalities such as MRI, CT, and ultrasound. MITK is often used for research and the
development of medical image analysis applications.

3D Slicer: 3D Slicer is a free, open-source software platform for medical image
informatics, image processing, and three-dimensional visualization94. It is widely
used in the medical community for tasks such as image segmentation, registration,
visualization, and quantitative analysis. 3D Slicer is highly extensible and supports a
wide range of medical imaging modalities.

OsiriX: OsiriX is a DICOM viewer for medical images with advanced visualization
and analysis capabilities95. It is commonly used by healthcare professionals for
viewing and analyzing medical images such as CT scans and MRI.

2.3.6 Frameworks for Image-Based Registration

Image based registration methods are available in a wide range of different soft-
ware packages, including open-source and commercial tools. These tools provide
functionalities for aligning and merging multiple images obtained from different
modalities, time points, or spatial domains. Image-based registration plays a crucial
role in various biomedical imaging applications, including image-guided surgery,
treatment planning, and disease monitoring. Some of the popular software tools for
image-based registration include:
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Elastix: Elastix is an open-source software package for image registration, widely
used for its flexibility, efficiency, and ease of integration into existing workflows88.
Elastix provides various transformation models, similarity measures, and optimiza-
tion strategies for accurate image alignment. It is commonly used in medical imaging
applications for aligning images from different modalities or time points.

ITK (Insight Segmentation and Registration Toolkit): ITK is an open-source soft-
ware toolkit for image analysis, including image registration, segmentation, and
visualization87. ITK provides a wide range of algorithms and tools for processing and
analyzing medical images, making it a popular choice for researchers and developers
in the medical imaging field.

3D Slicer: 3D Slicer provides functionalities for image registration, segmentation,
and visualization, making it a versatile platform for medical image analysis94. It
offers a wide range of tools and algorithms for aligning and merging images from
different modalities or time points, enabling researchers and healthcare professionals
to analyze complex medical imaging datasets.

The accurate alignment of images is crucial for various applications such as image-
guided interventions, disease diagnosis, and treatment planning. Image registration,
the process of aligning two or more images into a common coordinate system, plays
a fundamental role in achieving this alignment. Among the tools available for image
registration, Elastix stands out as a powerful and versatile toolkit widely used for its
flexibility, efficiency, and ease of integration into existing workflows.

Transformation Models: Elastix employs various transformation models to align
images accurately. These models include rigid, affine, and non-linear transformations.

Rigid transformation: preserves the shape of objects in an image, allowing only
translation and rotation. Affine transformation: Adds scaling and skewing to the
transformations allowed by rigid transformations. Non-linear transformation: En-
ables more complex deformations to align images, crucial for capturing non-linear
anatomical changes.

Similarity Measures: Elastix utilizes different similarity measures to quantify the
alignment quality between images. Common similarity measures include mutual
information, normalized cross-correlation, and mean square error. These measures
help Elastix optimize the transformation parameters to maximize alignment accuracy.

Optimization Strategies: Elastix implements optimization strategies such as sto-
chastic gradient descent and quasi-Newton methods to iteratively refine transforma-
tion parameters. These strategies aim to minimize the discrepancy between images
based on the selected similarity measure.

Configuration: Elastix offers a flexible configuration framework, allowing users
to define their registration pipeline by selecting appropriate transformation models,
similarity measures, and optimization strategies. Configuration files in Elastix are
written in a human-readable format, making customization straightforward.
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Registration: the registration process in Elastix involves iteratively optimizing
transformation parameters to align the moving image with the fixed image. This
optimization process is guided by the selected similarity measure and optimization
strategy specified in the configuration.

2.3.7 Remote Image Processing and Developing Applications

In this section, applications for remote working with biomedical image data are
briefly introduced to provide the reader with an overview of available open source
solutions for dedicated remote applicable tasks.

Terminal Applications: applications like SSH (Secure Shell) allow users to access
remote servers directly from the command-line. This is often used for processing of
large datasets stored on remote computing resources. Users can execute scripts, run
software, and manage data without needing a graphical interface, which is especially
useful for automated or batch processing tasks.

Remote Desktop Applications: remote desktop applications such as Virtual Net-
work Computing (VNC) and Remote Desktop Protocol (RDP) provide a graphical
interface to a remote desktop, offering the full utility of remote systems. These tools
are essential for tasks that require interaction with GUI-based applications for image
processing, facilitating a seamless workflow as if one were physically present at
the remote computer. Main limitations typically refer to the latency issues, lower
responsiveness, and sometimes a less intuitive control over applications than when
they are run locally. Such issues can interrupt the workflow, especially in tasks re-
quiring high precision, such as detailed image manipulation. The effectiveness of
remote desktop solutions heavily depends on the quality and stability of the internet
connection. Poor connectivity can lead to disconnections, lag, or even loss of unsaved
work, which can be detrimental in critical processes. Setting up a secure and efficient
remote desktop environment often requires significant administrative expertise and
continuous management, which can be a barrier for smaller teams or institutions
without sufficient administrative resources.

JupyterLab: JupyterLab is an interactive development environment that facilitates
the creation and sharing of documents that include live code, equations, visualiza-
tions, and narrative text. Especially useful for collaborative research, it supports
a multitude of data science and imaging libraries in Python such as NumPyv and
Matplotlibvi, allowing for on-the-fly analysis and visualization of biomedical imaging
data96.

RStudio Server: RStudio Server enables users to run R and RStudio directly within a
web browser, providing a powerful platform for statistical analysis and graphics. This
server-based version is particularly beneficial for remote collaboration and accessing
R’s powerful suite of tools for image processing and data analysis, ensuring that
computational resources are centralized and more easily manageable97.

vhttps://numpy.org/; accessed April 2024
vihttps://matplotlib.org/; accessed April 2024
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Visual Studio Code: Visual Studio Codevii, (VS Code) with its remote development
extension, allows developers to use VS Code on their local machine to connect to
and edit code stored on remote servers, containers, or Windows Subsystem for Linux
(WSL). This setup is particularly advantageous for developing and debugging image
processing applications that need to run close to the data residing on remote servers,
minimizing data transfer times and enhancing security.

Joint Imaging Platform (JIP): the Joint Imaging Platform (JIP) offers a suite of tools
designed specifically for collaborative medical image analysis and processing2. JIP
enables seamless integration of image data with analytical tools and supports remote
access, allowing researchers to work on complex imaging datasets from anywhere,
fostering collaboration across different institutions.

Open Microscopy Environment Remote Objects (OMERO): OMERO is a client-
server software platform that enables users to visualize, manage, and share biolog-
ical image data remotely98. Particularly relevant in multi-user, multi-site projects,
OMERO handles a wide range of bio-imaging data formats, providing an indispens-
able tool for remote collaborations in biomedical research.

Galaxy Project: the Galaxy Project provides a web-based platform for accessible,
reproducible, and transparent computational biomedical research1,76. Galaxy facili-
tates data integration and provides tools for image analysis, which are accessible via
a web browser without the need for programming knowledge, making it ideal for
educational purposes and democratizing access to sophisticated data analysis tools.

Dugong: Dugong is an open-source tool designed to provide a reproducible and
Docker-based environment for scientific software, including image processing4. It
offers a containerized solution that ensures consistency across different computing
environments, making it highly suitable for developing, testing, and deploying
biomedical imaging applications and workflows remotely.

2.4 Medical Imaging Interaction Toolkit

This section introduces Medical Imaging Interaction Toolkit (MITK), an open source
software and modular development framework for interactive medical imaging
applications. MITK, developed by the German Cancer Research Center (DKFZ),
is a versatile platform designed for the processing, visualization, and analysis of
medical image data. This includes 2D/3D imaging techniques like MRI, CT and
ultrasound92,93,99. It provides a robust infrastructure for creating interactive medical
imaging applications that meet the complex requirements of healthcare professionals
and researchers.

2.4.1 2D/3D Visualization and Rendering

MITK offers advanced 2D/3D visualization and rendering tools for interactive ex-
ploration and analysis of medical images. The Multiplanar Reconstruction (MPR)
capabilities enhance visualization, allowing users to view cross-sectional images in
various planes (axial, sagittal, and coronal). This aids in precise anatomical local-
ization and facilitates a comprehensive examination of medical images. Moreover,

viihttps://code.visualstudio.com/; accessed April 2024

https://code.visualstudio.com/
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MITK includes color maps and 3D image volume visualization features for a better
comprehensive visualization of complex anatomical structures.

Appropriate colormaps are essential for an accurate visualization of image data
and support to quickly interpreted and easily understood essential aspects of the
visualized data100,101. MITK provides a set of color maps including GrayScale, Inferno,
HotIron, Jet, Magma, Plasma, Turbo102, and Viridis. Multiple transparent versions
exist, where low values are made transparent.

MITK supports the level window approach for image visualization. This involves
adjusting the intensity range to enhance specific features within an image. It consists
of selecting a window width to control the range of pixel values and a window level
to determine the center of this range. By manipulating these parameters, radiologists
can optimize the visibility of structures.

2.4.2 Image Segmentation

One of MITK’s key strengths lies in its advanced image segmentation capabilities. Seg-
mentation, the process of partitioning an image into meaningful regions, i.e. to specify
anatomical structures or pathological anomalies. MITK offers a comprehensive set of
tools for various segmentation approaches, including manual, semi-automatic, and
automatic segmentation103.

MITK excels in advanced interactive image segmentation, annotating images for
anatomical or pathological analysis. It provides manual, semi-automatic, and auto-
matic segmentation tools. Manual segmentation in MITK involves user interaction
via an intuitive interface, allowing precise delineation of structures. This hands-on
approach is ideal for intricate anatomical features. In semi-automatic segmentation,
MITK combines user input with automated algorithms, reducing manual effort and
is particularly useful for large datasets or repetitive tasks104.

Automatic segmentation in MITK utilizes advanced algorithms like machine
learning for analyzing and segmenting images without direct user intervention.
Effective in diverse scenarios, it identifies pathological regions, classifies tissues, and
extracts anatomical structures. State-of-the art Deep Learning (DL) methods like the
TotalSegmentator105 and nnU-Net106 were recently added to MITK’s GUI.

2.4.3 Image Registration

MITK facilitates image registration, a crucial process in aligning and comparing
different medical images. This capability is essential in various medical scenarios,
including image-guided surgery, treatment planning, and monitoring disease pro-
gression. Image registration is realized using the MatchPoint107 registration module
of MITK.

2.4.4 Modular Developer and Application Framework

The modular developer framework lies at the core of MITK, playing a pivotal role
in enhancing the toolkit’s flexibility and extensibility. This architecture empowers
developers to craft custom applications tailored to specific use cases and requirements.
MITK’s module system organizes functionality into discrete modules, each addressing
a specific aspect of medical image processing, thereby enhancing code maintainability
and scalability while facilitating the seamless integration of new features.

The MITK can be separated in two parts. A developer framework, that is called
MITK and an interactive desktop application called MitkWorkbench. The developer
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framework is written in C++ and depends on several open libraries as illustrated in
figure 2.7.

FIGURE 2.7. MITK uses the following libraries. The Insight Toolkit, which provides regis-
tration and segmentation algorithms, but is not designed for visualization or interaction87.
The Visualization Toolkit, which provides powerful visualization capabilities and low-level
support for interaction such as picking methods, rotation, movement and scaling of objects108.
The Common Toolkit, which focuses on Digital Imaging and Communications in Medicine
support and a plug-in framework109. The Qt Cross-platform application and User-Interface
(UI) framework (Qt) as a framework for User-Interface (UI) and application support110.These
are the main libraries MITK is based on. For more functionality you can optionally include

other libraries as well.

The MitkWorkbench is an interactive desktop application supporting a wide range
of default image processing tools. The application is based on the above mentioned
MITK developer framework. The user interface is based on a OSGi-inspired plugin
framework, that is part of CTK. Open Services Gateway initiative (OSGi) stands
for Open Services Gateway initiative, which is a specification defining a dynamic
plugin system for Java111. The whole user interface is realized with those plugins
- which were called "views" in the MITK context. The default user interface of the
MitkWorkbench is illustrated in figure 2.8

MITK Superbuild The Superbuild automates the process of downloading, con-
figuring, and building all the dependencies required by MITK, making it easier for
developers to set up and compile the MITK framework on various platforms. By
encapsulating all dependencies and configurations within a single build system, the
Superbuild simplifies the setup and maintenance of the MITK project, ensuring that
all required components are correctly built and integrated for efficient development
and deployment of medical imaging applications.

MITK ProjectTemplate The MITK ProjectTemplate is a predefined structure for
creating new projects within MITKviii. It provides a starting point for developers to
create customized medical image processing or analysis applications using MITK. The
template typically includes necessary directory structures and basic code examples to
help developers get started quickly. By using the MITK ProjectTemplate, developers

viiihttps://github.com/m2aia/MITK-ProjectTemplate; accessed April 2024

https://github.com/m2aia/MITK-ProjectTemplate
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FIGURE 2.8. The MitkWorkbench’s default user interface is a composition of multiple views,
the menu bar (on the top) and the status bar (on the bottom). Main views required in each
MITK based application are the DataManager and ImageNavigator. Custom views can be
enabled, e.g. including segmentation and measurements. The standard display is a custom
view tailored for image rendering for multi planar reconstructions of volumetric image data.

A clinical CT image is shown in the standard display.

can ensure consistency in project structure, utilize best practices, and leverage com-
mon functionality provided by MITK, thereby accelerating the development process
and enabling easy integration with the MITK Superbuild.

2.4.5 Base Image Class

In MITK, images are managed using the mitk::Image data structure. This class not
only encapsulates the actual image data but also integrates information about the
image’s geometry. The pixel data within MITK images are stored as a contiguous
memory block, supporting various data types.

The geometry of an image in MITK is defined by key spatial characteristics,
including the origin, spacing, orientation, and size of the image. These properties are
essential for correctly interpreting the image within a physical space context. The
mitk::BaseGeometry class plays a crucial role here, as it houses the transformation
matrix responsible for mapping pixel indices to physical coordinates, thereby bridging
the gap between digital image data and real-world measurements. This integration
of image data and geometry is fundamental to the robust processing and analysis
capabilities in MITK.

• Origin: It defines the location of the first voxel in physical space.

• Spacing: It represents the physical distance between adjacent voxels in each
dimension.

• Orientation: It describes how the image is oriented relative to the coordinate
system (e.g., patient orientation in medical images).

• Size: It specifies the number of voxels along each dimension.
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The integration of image data and image geometry in MITK forms a comprehen-
sive representation of the image, crucial for enabling a wide range of visualization
and analysis operations. MITK provides an extensive array of functionalities that
allow for the manipulation of both image data and geometry. These capabilities are
particularly vital in the field of medical image processing, supporting critical tasks
such as image registration, which aligns multiple images into a single coordinate
system, segmentation, which isolates specific anatomical structures for detailed study,
and quantitative analysis, which extracts numerical data from images.

2.5 Containerization with Docker

Containerization enables the wrapping of a wide range of applications, providing
developers with a seamless and efficient way for packaging, distributing, and run-
ning their applications. By encapsulating applications and their dependencies into
lightweight, portable containers, Docker enables consistency across different envi-
ronments. This approach improves the deployment process, reduces compatibility
issues, and enhances scalability. With Docker’s robust features such as version con-
trol, networking, and orchestration capabilities, developers can manage complex
application architectures while ensuring flexibility and reliability. Some alternatives
like Podmanix or LinuxContainers (LXC)x are available but rarely used.

Docker is an open-source platform that automates the deployment of applications
within lightweight containers112. It provides a way to package and distribute applica-
tions and their dependencies as portable, self-sufficient containers that can run on
any system supporting Docker. Docker utilizes operating-system-level virtualization
to enable isolated environments for applications without the overhead of traditional
virtual machines. Overall, Docker containerization empowers also biomedical sci-
entists and developers to deliver applications faster, iterate efficiently, and maintain
consistency across diverse deployment environments2,4,113.

FIGURE 2.9. The plot above illustrates the number of publications referencing Docker in
biomedical research by year, as recorded in the data. This visual representation clearly shows
the presence and possibly growing interest in using Docker within the field over the time

period 2010-2023114.

Docker has become an increasingly valuable tool in biomedical research, offering
a range of benefits that facilitate the development, testing, and deployment of medical
software applications and research environments. The illustration (Figure 2.9 PubMed
Search Results (Keywords: Docker)) demonstrates a notable presence and possibly an
increasing trend in the adoption of Docker in biomedical research, over the time

ixhttps://podman.io/
xhttps://linuxcontainers.org/

https://podman.io/
https://linuxcontainers.org/
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period 2010-2023114. The use of Docker in this field can be attributed to several factors
of containerization technologies:

• Reproducibility and Consistency: Docker ensures that computational research
and experiments can be reproduced across different computing environments
without discrepancies, which is crucial in validating scientific findings.

• Collaboration and Sharing: Researchers can easily share their Docker contain-
ers that encapsulate all necessary code, data, and dependencies, facilitating
collaborative research and peer reviews.

• Scalability and Resource Management: With Docker, biomedical researchers
can efficiently scale their applications across multiple environments—from local
machines to cloud systems—optimizing resource usage and processing times
for large datasets, such as genomic data.

2.5.1 Docker Images

Docker images are the building blocks of containers. They contain everything needed
to run an application, including the code, runtime libraries, and dependencies. Images
are created using Dockerfiles, which are text files that specify the configuration and
instructions for building the image. For example, to create a simple Docker image that
runs a script written in Python, the Dockerfile starts with a FROM statment inheriting a
base image, copies the script into the image, and specifies the ENTRYPOINT command
to start the script.

# Sample Dockerfile
FROM python:3.8
COPY . /app # copy data from disk to image
WORKDIR /app # set current working directory
RUN pip install -r requirements.txt # install dependencies
ENTRYPOINT ["python", "app.py"]

2.5.2 Docker Containers

Docker containers are lightweight, portable, and isolated runtime environments
that run instances of Docker images. Each container is an instance of an image and
runs as a separate process with its own file system, network, and resources. Using
volume mapping, a directory on the host machine can be linked to a directory in the
container, allowing for persistent or shared data between the host and the container.
For example, to run a container from the previously created image and map a host
directory to the container, a container can be started using the Docker CLI with a
volume argument. This setup allows the container to run in isolation while still
interacting with specific areas of the host file system.

# Command to run a container from the image with volume mapping
docker run --name image-processing \

-v /path/to/host/directory:/path/in/container image-processing

In this command, ‘-v path-host:path-container‘ specifies the volume mapping. The
‘path-host‘ is the path on the host machine that is linked, and ‘path-container‘ is the path
inside the container where the host directory will be accessible. This is particularly
useful for applications that need to preserve data between container restarts, or
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for development environments where code on the host needs to be tested inside
a container. Docker can map volumes as read-only to protect specific folders, ‘-v
path-host:path-container:ro‘.

2.5.3 Docker CLI

Docker provides a command-line interface (CLI) that allows users to interact with
the Docker daemon and manage containers, images, volumes, networks, and other
Docker objects. The CLI provides a set of intuitive commands for building, running,
and managing Docker containers and images. For instance, the Docker CLI can be
used to build an image from a Dockerfile, list all running containers, and inspect the
details of a specific container.

# Example CLI commands
docker build -t my-image .
docker ps
docker inspect my-container

2.5.4 Docker Registry

A Docker registry112 is a storage and content delivery system that holds named
Docker images, available in different tagged versions. Users interact with a registry
by using Docker push and pull commands to upload and download images. Here is
a breakdown of its core functionalities:

Storage of Images: the registry stores Docker images, which are pre-built appli-
cation environments that users can download and use. These images can include
everything needed to run an application, such as the code, runtime, libraries, envi-
ronment variables, and configuration files.

Version Control: each image in the registry can have multiple versions, each tagged
with a unique identifier. This makes it easy to release and track different versions of
an application, facilitate rollbacks, and support multiple versions simultaneously.

Access Control: Registries can control who has access to upload or download
images, which is crucial for private or proprietary applications where access needs to
be restricted.

There are public and private Docker registries. The Docker Hubxi is the default
public registry that anyone can use to find and share container images. For private or
internal distribution, organizations can host their own registries using third-party
solutions like JFrog Artifactoryxii or Githubxiii.

xihttps://hub.docker.com/; accessed April 2024
xiihttps://jfrog.com/de/artifactory/; accessed April 2024

xiiihttps://ghcr.io; accessed April 2024

https://hub.docker.com/
https://jfrog.com/de/artifactory/
https://ghcr.io
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Chapter 3

Interactive Multi-Modal 2D/3D MSI
Data Analysis

In this chapter, the contributions of this thesis to the research fields of hyperspectral
2D/3D MSI processing in multi-modal setups are presented. The chapter is organized
as follows: an overview and scope of the application, including necessary consid-
erations about the used software frameworks and the graphical user-interface, are
introduced in section 3.1. The data handling concepts for MSI datasets and related
data are introduced in section 3.2 and, based on these concepts, interactive image
registration tasks including multi-modal image fusion, 3D image reconstruction, as
well as the evaluation and correction of registration results are introduced in section
3.3. Concepts for the programming language independent integration of third-party
image processing methodsi into M²aia are introduced in section 3.4 as well as concepts
for the advanced data access focusing MSI deep learning applications in section 3.5.

Parts of this chapter have been published in:

• Cordes et al., “M²aia—Interactive, Fast, and Memory-Efficient Analysis of 2D and 3D
Multi-Modal Mass Spectrometry Imaging Data.” GigaScience (2021)115

• Cordes et al., “M²aia Extension for Accessible Annotation Creation and Annotation
Transfer for Mass Spectrometry Imaging in Multi-Modal Setups.” International Mass
Spectrometry Conference (2022)116

• Cordes and Wolf, “MITK Docker: An Open, Language-Independent Interface for
Integrating Image Processing Pipelines into MITK.” 6TH Conference on Image-guided
Interventions (2023)117

• Cordes et al. pyM2aia: Python Interface for Mass Spectrometry Imaging with Focus
on Deep Learning. Bioinformatics (2024)118

3.1 Overview

MSI datasets are multidimensional, capturing detailed molecular information across
spatially resolved samples. Understanding the structure of these datasets is crucial for
researchers who analyze the molecular composition of tissue sections, cells, and other
biological samples. The Mass Spectrometry Imaging (MSI) process is introduced in
detail in section 2.1 Mass Spectrometry Imaging. Briefly, the data collection process
involves a raster scan of the sample surface, which systematically covers the entire
area and gathers data at each point. This approach creates a two-dimensional array

iThe term ’third-party image processing methods’ is used here to refer to command-line applications
(scripted) that execute an image processing method and are not integrated directly into the code base of
an interactive application.
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where each pixel represents a unique location on the sample. Associated with each
pixel is a mass spectrum that captures the relative abundance of ions for a given range
of mass-to-charge ratios (m/z). The increasing lateral resolutions of the acquisition
devices pose challenges in handling large MSI datasets.

Working with MSI data requires significant interactivity at various stages. Re-
searchers need to select and control preprocessing steps, inspect spectra, and generate
ion images. Interactive tools are essential for these tasks, enabling users to explore
data and adjust parameters, based on responsive image visualizations.

Multi-modal MSI involves the integration of multiple MSI contrasts or the com-
bination of MSI with other imaging modalities6. This approach is frequently used,
especially for adding annotations from other modalities such as histology. Creating
and working with annotations is yet another interactive task that underscores the
necessity of interactivity in MSI data processing. The ability to correlate and analyze
data from different sources enriches the interpretation of the biological context. In or-
der to integrate multi-modal data, image-based registration techniques are employed,
which spatially align image features in a common image space. Thus, these tech-
niques facilitate the integration of corresponding anatomical and molecular features
for integrated analysis.

Image registration is also critical for 3D reconstruction. As MSI is intrinsically a
spatially 2D method, 3D reconstruction involves stacking separate 2D slices, which
must be correctly aligned spatially6. To achieve accurate 3D reconstructions, image
registration is used to align these slices properly. This step is similar to multi-modal
registration, but is applied to reconstruct the spatial organization of the sample in
three dimensions.

Interactivity is crucial for image registration, at least for visual inspection and
utilization of the results, and often for initialization as well. Interactive tools allow
users to manually adjust alignments, place control points, and evaluate registration
accuracy. These tools are especially useful in challenging cases where automated
methods may struggle, providing flexibility and precision in the registration process.

In summary, it can be concluded that interactivity is central to working with
MSI, especially for multi-modal 2D/3D MSI. Existing open-source applications (see
subsection 2.3.2 Mass Spectroscopy Imaging Applications) are limited in their capabilities
to process multi-modal data or struggle to simultaneously process multiple MSI
datasets, especially MSI datasets with different m/z ranges, and do not provide
comprehensive 3D visualization features, such as multi-planar reformations, volume
rendering and surface reconstruction, which are essential for 3D MSI.

The objective of this work is to introduce concepts for the advanced interactive
processing of multi-modal 2D/3D MSI dataset, ultimately to support the creation of
MSI-based deep learning applications.

Based on a review of existing open-access MSI applications (see subsection 2.3.2
Mass Spectroscopy Imaging Applications), the following research questions will be
addressed: (1) Can an application framework be provided that allows researchers
comprehensive interactive access to MSI datasets, simultaneously for multi-modal
and 3D MSI? (2) Can this framework be used to implement the lacking capabilities
of advanced interactive concepts for multi-modal image fusion and 3D image recon-
structions? (3) Is it possible to use this framework for common workflows in the field
of MSI, such as a rapid data exploration and creation of spatial annotations? (4) Is it
possible to facilitate the integration and development of the more advanced processes
of the molecular analysis workflow, such as the identification of relevant peaks and
biomarkers?
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The basic idea behind an interactive application for processing of multi-modal
2D/3D MSI is summarized within the illustration Figure 3.1 Key Aspects of an Interac-
tive Research Application for Multi-Modal 2D/3D MSI.

FIGURE 3.1. Key aspects of the concept for an interactive research application designed for
multi-modal 2D/3D MSI. The application should facilitates dynamic exploration and analysis
of both two-dimensional and three-dimensional MSI data, allowing researchers to intuitively
navigate through complex biological samples. Enhanced visualization tools and analytical
functionalities should be integrated to support comprehensive multi-modal investigations.

3.1.1 Application Scope

The primary objective is to provide an interactive and user-friendly interface that
facilitates the manipulation and exploration of both multi-modal and 3D MSI data.
Ensuring compatibility with various biomedical image data formats, such as those
used in MSI or microscopy, is crucial for seamless data integration and analysis in
multi-modal MSI. Furthermore, the application must be capable of fast and memory-
efficient data processing and analytical tools, in order to accommodate the increasing
size of biomedical datasets and to guarantee the responsiveness of visualizations,
effective processing, and scalability of the application. The provision of correspond-
ing capabilities would enable the development of process-intensive and interactive
applications, such as those expected in the context of 3D reconstructions.

The functional scope of the conceptualized application is illustrated in Figure 3.2
Scope of the Application. Data Import/Export as well as the Hyperspectral Data
Processing are introduced in section 3.2 Concepts for MSI Data Processing. Concepts for
Image Registration are introduced in section 3.3 Concepts for Image-based Registration
in MSI. Additionally, the Integration of Third-party Image Processing Methods is part
of the concepts introduced in section 3.4 Concepts for Integration of Third-Party Image
Processing Methods. Finally, the concepts for MSI-based deep learning are introduced
in section 3.5 Concepts for Deep Learning on MSI data.

3.1.2 Architecture

In order to determine suitable software components to realize the previously men-
tioned required capabilities, interactive frameworks for 3D image processing were
examined, and here primarily interactive open-source toolkits typically used in medi-
cal image processing of clinical images, such as CT or MRI. This approach was chosen
because it promises long-term support for the visualization and manipulation of 3D
image data. It is also expected that the use of 3D MSI will increase in the future. Most
openly accessible interactive MSI applications focus on the analysis of 2D images,
since the majority of MSI experiments are still designed to be purely 2D. Open-source
application frameworks that are used in the clinical field and were considered in the
course of the work include 3D Slicer and the Medical Imaging Interaction Toolkit
(MITK). However, these toolkits have often limited support for biomedical images
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FIGURE 3.2. Scope of an interactive application that can handle hyperspectral and multi-
modal imaging data in 2D and 3D. The boxes indicate individual features which are pursued
in this work. The boxes with dashed lines indicate additional concepts that may be employed

to facilitate the development of deep learning applications.

like high resolution microscopy images or the hyperspectral datasets generated by
MSI. After careful consideration and based on the author’s experience, the C++ appli-
cation framework MITKi is the candidate of choice. MITK has a long history in the
research and clinical image processing communities and has proven its abilities in
various clinical disciplines92,93,107,119,120. It is maintained by the German Cancer Re-
search Center (DKFZ) in Heidelberg as an open source project under a 3-Clause-BSD
license. For a clean separation for the development of the MITK-based application,
the MITK-ProjectTemplateii provides a reliable starting point. The implementation
of a MITK project template is then called an extension that can be easily integrated
in the build process of the MITK superbuild. The MITK developer framework is
described in more details in the background section 2.4 Medical Imaging Interaction
Toolkit. The MITK framework provides a completely open-source code base built
on top of ITK87iii, VTK108iv, and Qt110v. The working name for the extension is MSI
Applications for Interactive Analysis in MITK (M²aia)115.

The following paragraphs provide an overview of the individual topics illustrated
in Figure 3.2 Scope of the Application. From left to right the topics Data Import/Export,
General, Hyperspectral Data, and Image Registration are discussed one after the
other.

Data Import/Export: in order to gain access to hyperspectral datasets, image file
format support for MSI and FTIR datasets is required. Two data access strategies are
considered:

1. Import entire data into the computer memory to support an instantaneously
access to the spectral data. This is possible if the amount of spectral data is
manageable, otherwise memory-limitations can become a problem.

ihttps://www.mitk.org/
iihttps://github.com/MITK/MITK-ProjectTemplate

iiihttps://itk.org/
ivhttps://vtk.org/
vhttps://www.qt.io/

https://www.mitk.org/
https://github.com/MITK/MITK-ProjectTemplate
https://itk.org/
https://vtk.org/
https://www.qt.io/
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FIGURE 3.3. Architecture of the interactive application for processing hyperspectral and
multi-modal 2D/3D imaging datasets. The application is based on the MITK framework
and provides a set of modules and plugins for data import/export, data processing, image
registration, and visualization. The modules provides data structures and import/export
functionalities for the hyperspectral images and processing. The plugins provide interactive
utilities for data import and image-based registration methods including multi-modal image

fusion and 3D image reconstruction.

2. Import parts of the data using lazy-loading, a strategy in which data is only
read from the hard disk when it is actually requested by the application at
runtime.

The main challenge by working with MSI datasets is their potential huge data
sizes121. To reduce the required amount of memory, a lazy-loading strategy is concep-
tualized for large hyperspectral datasets as those generated by MSI in subsection 3.2.3
Ion Image Generation. This is used to access spectral raw data on disk. The principle
idea is to use the power of current computing capabilities, highly optimized code
and the powerful read rates from solid state drives to omit to load entire datasets or
to create interim data formats, as used by others3,63. Therefore, providing access to
MSI datasets in ImzML format without interim conversions are of particular focus
of this work53. It is an open-standard file format and is commonly used in open sci-
ence projects, MSI applications and online databases like METASPACE84 or Galaxy76.
Optimized import routines for large imzML datasets is described in subsection 3.2.1
Hyperspectral data import. For the much smaller FTIR images in the proprietary but
open file format FSM (PerkinElmer Inc.) the data import is realized by loading the
full spectral dataset into the computer’s memory.

In order to provide data for subsequent statistical analysis applications, it is
required to export image data related artifacts. This includes images of all kind and
image related data as peak lists or point sets. The native export utilities of MITK for
gray value 2D/3D images is already supported by ITK’s file writers. These include
support for a wide range of standard file formats like jpg and png, but also file formats
used in the medical image processing domain like NRRDi and Niftiii. Point sets are
used for image registration evaluation and in multi metric image-based registration
approaches. Here, MITK’s point set import and export is used. Peak lists support
is provided by readers for import and exported of Comma-Separated Values (CSV)
files.

The handling of high resolution image data generated by microscopy modalities
including H&E stained whole slide imaging is challenging, due to to immense number

ihttps://teem.sourceforge.net/nrrd/index.html
iihttps://nifti.nimh.nih.gov/

https://teem.sourceforge.net/nrrd/index.html
https://nifti.nimh.nih.gov/
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of pixels generated. The image dimensions quickly reaches the maximum texture
size of a system (e.g. 8192x8192 pixels) and tiling strategies are required. However,
due to the relative low spatial resolution of MSI compared to microscopy imaging,
a representation of these images in a lower resolution could be sufficient for such a
workflow. The integration of such images is described in subsection 3.2.6 Data import
of whole slide images.

General Image Interaction: the aim of M²aia includes to process 3D and multiple
images, possibly from different multi-modal sources. For the interactive implemen-
tation of interactive applications, such as 3D image reconstructions or multi-modal
image fusion, appropriate visualization and interaction options must therefore be
provided. By choosing MITK, which originates from the clinical field, correspond-
ing functionalities can also be adopted for handling biomedical data. Additionally,
with the advanced interaction and visualization concepts of MITK, the set of inter-
active tools provided by MITK itself can be used to support the desired workflows.
Tools like interactive semi-automatic segmentation creation and interaction with
point sets are inherited tools of the system and will be integrated within MSI related
workflows (compare subsection 3.3.2 Multi-modal Transfer of Image Annotations and
subsection 3.3.4 Evaluation and interactive correction).

Hyperspectral Data: for the processing of hyperspectral data generated by MSI,
signal processing is an important part of the analysis workflow. It is required to
reduce the influence of batch effects and includes processing steps like spectrum-
wise normalization, smoothing, and baseline correction. This is described in more
details in subsection 3.2.2 Signal Processing. Peak picking provides a first selection
of molecular features and is described in subsection 3.2.4 Peak picking. Furthermore,
dimensionality reduction methods are used in order to reduce the data volume while
preserving structural features of the samples. The integration of dimensionality
reduction methods is described in subsection 3.2.5 Data Compression.

Image Registration: the above mentioned capabilities of an interactive application
for the processing of hyperspectral 2D/3D image data are targeting the main goals of
providing concepts for interactive image-based registration scenarios. This interaction
is necessary for a wide range of activities before and after an image registration task
(subsection 3.3.1 Multi-modal image fusion; subsection 3.3.3 3D Image Reconstruction).
The first inspection of unseen data, the selection of valid images, image content, or re-
gions, and a potentially required manual alignment can benefit if full comprehensive
interaction with the targeted biomedical datasets can be provided. Comprehensive
interaction can be provided by user-based navigation capabilities and tools for ma-
nipulate image properties, such as position or orientation, and image-related data
generation, such as the ability to generate point-sets. The visual evaluation of image-
based registration results can also benefit from interactions with images, either for
result overlays or for interactive correction strategies (subsection 3.3.4 Evaluation and
interactive correction).

Integration of Third-Party Image Processing Methods: Third-party image pro-
cessing methods are command-line applications (scripted) that execute an image
processing method and are not integrated directly into the code base of an interactive
application. The incorporation of image processing methods into MITK’s C++ envi-
ronment is a time-consuming process. Consequently, one objective of this research is
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to develop concepts for integrating programming language-independent image pro-
cessing methods into the interactive graphical user interface of M²aia. The concept is
described in section 3.4 Concepts for Integration of Third-Party Image Processing Methods.

Integration of Third-Party Image Processing Methods:

3.1.3 Graphical user-interface

M²aia introduces Graphical User-Interface (GUI) elements to the MITK application
framework that extends its functionality for analyzing a large number of MSI datasets
and multi-modal biomedical datasets. These GUI elements are specifically tailored to
support complex analytical tasks and provide the user with intuitive tools for efficient
processing and interpretation of large datasets. The main goal of M²aia is to streamline
the analysis workflow for researchers and clinicians working with MSI and multi-
modal biomedical data. M²aia aims to simplify the process of data manipulation,
visualization and interpretation and reduce the time and effort required for analysis
tasks. It is designed to enable the analysis of a potentially large number of MSI
datasets. The concept emphasizes scalability and flexibility to ensure that users can
work seamlessly with different data sets while maintaining high performance and
ease of use. The concept aims at three main goals:

• Custom data processing perspectives for a tailored arrangement of workflow-
related views: Different researchers may have specific preferences or require-
ments for how they organize and visualize their data during analysis. Offer-
ing customizable perspectives allows users to arrange the User-Interface (UI)
according to their specific workflows and analytical needs. This flexibility
enhances user experience and facilitates more efficient data analysis. Essen-
tial views for the interactive navigation with MSI datasets are illustrated in
Figure 3.4 Spectrum Imaging Perspective.

• Tailored views for the application of workflow-related methods: MSI data anal-
ysis often involves applying various computational methods and algorithms
to process and interpret the data. A UI that provides tailored views for dif-
ferent analysis steps makes it easier for researchers to apply these methods
effectively. For example, views optimized for signal processing, peak picking,
data compression, and visualization can streamline the workflow and improve
productivity.

• Intuitive and fast navigation for exploring MSI datasets: MSI datasets contain
spatial information as well as mass spectra, which can be available in different
forms depending on the type of pre-processing. For example, unprocessed
spectra are provided as continuous-profile data, where each pixel contains an
equal number of spectral intensities. In contrast, processed-centroid spectra
represent a more complex scenario where each pixel contains a variable number
of peak intensities. A well-designed user interface is essential to allow users
to navigate through this data both intuitively and efficiently. This capability is
crucial for researchers who want to examine the spatial distribution of molecules
in a sample and pinpoint areas of interest for detailed analysis.
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FIGURE 3.4. Proposed GUI layout: (a) Positioning of views on M2aia’s default perspective are
illustrated. The default MITK Workbench window is in the background. Placeholders for the
Spectrum View (yellow), Data View (green) and two ion-image of MSI datasets are added as
overlay. Data nodes in Data Manager View correspond to the ion-images. Two red horizontal
lines highlight the latest selected range used for ion-image creation. The Spectrum View
should be located at the bottom of the application in order to provides the user with overview
spectra, such as the maximum spectrum and average spectrum, and interactive utils in terms
of ion-image generation. Additionally, it should be able to show multiple overview spectra
provided by multiple MSI datasets focusing on different molecule classes, such as lipids or
peptides. The Data view should offer controls for defining signal processing methods and
parameters for the ion-image generation process. Section (b) shows the first steps of loading
MSI datasets. In step (1) the signal processing parameters are specified in the Data View; in
(2) the MSI datasets are loaded; and in (3) the generation of ion-images can be triggered by

interaction with the Spectrum View, e.g. by selecting m/z areas along the m/z axis.
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3.2 Concepts for MSI Data Processing

This section introduces the concepts for the raw data import of hyperspectral images
in subsection 3.2.1 Hyperspectral data import, as well as the lazy-loading strategy for
parallel processing of hyperspectral data in subsection 3.2.3 Ion Image Generation and
subsection 3.2.3 Ion Image Generation. With these strategies, the signal processing
pipeline can be introduced in subsection 3.2.2 Signal Processing. The detection of peaks
is described in subsection 3.2.4 Peak picking, which than can be used to apply data
compression methods as described in subsection 3.2.5 Data Compression. The import
of whole slide images of non-hyperspectral modalities is described in subsection 3.2.6
Data import of whole slide images.

3.2.1 Hyperspectral data import

Rapid response is key in user interactions. If interactive applications lag, user frustra-
tion increases, and conducting thorough analyses becomes a lengthy and expensive
task. In scenarios like processing several large MSI datasets concurrently, for purposes
such as 3D image reconstruction, massive data processing is inevitable. The most
time-consuming phase is usually importing data. Presented here are optimized data
import strategies aimed at accelerating the visualization of required elements in a
collective, interactive image space.

Image Classes

To facilitate the integration of image data into MITK’s interactive framework, com-
patible classes have been developed. The class hierarchy, focusing on image classes,
is depicted in Figure 3.5 Class diagram of handling hyperspectral images in M²aia. At the
core of this hierarchy lies the spectrum image base classi, which inherits functionali-
ties from the standard MITK image class. This inheritance allows leveraging MITK’s
extensive image processing capabilities, such as segmentation, measurements, and
versatile visualization features in both 2D and 3D, including a diverse array of color
maps and window-level adjustments. The class of spectral images serves as a proxy
for hyperspectral datasets, which represent a single-channel image with spatial di-
mensions (width, height, depth) adapted to the MSI dataset. This proxy image can be
used to store hyperspectral data processing results, primary for generated ion-images.
In addition, the properties of the spectral images have been developed to optimize
access to the spectral data. These properties include helper images such as the mask
image for highlighting valid spectra, the index image for spatial representation of
imzML dataset spectral indices and several normalization images with pixel-wise
normalization constants for different normalization methods (subsection 3.2.2 Signal
Processing). Furthermore, the provision of overview spectra, including mean and
maximum spectra, is paramount for effective spectral navigation.

Two image classes inherit from the spectrum image class: the imzML spectrum
imageii and the fsm spectrum imageiii. The imzML spectrum image introduces
properties designed for accessing spectral data stored in .ibd files. It employs a lazy-
loading strategy (subsection 3.2.3 Ion Image Generation) to efficiently retrieve spectral
data from disk. Through metadata parsing during data import (subsection 3.2.1
Hyperspectral data import), dedicated properties such as the file path to the .ibd file,

iModules/M2aiaCore/include/m2SpectrumImage.h
iiModules/M2aiaCore/include/m2ImzMLSpectrumImage.h

iiiModules/M2aiaCore/include/m2FSMSpectrumImage.h
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FIGURE 3.5. Class diagram of handling hyperspectral images in M²aia. Square brackets
indicate the memory usage in bytes. Spectrum depth S ranges between 103 up to over 105.
The number of pixels D = width ∗ height ∗ depth in the MSI dataset. The number of valid
spectra N ranges between 103 up to over 107. The number of normalization methods M, e.g.
M = |{TIC, maximum, sum, mean, RMS}| in M²aia. Boxes indicate classes. Dashed boxes

indicate nested data structures.
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a data-type generic data source, and information for accessing binary data for each
spectrum are provided. In contrast, the fsm spectrum image does not employ a
lazy-loading strategy. Instead, it loads the entire dataset into computer memory. This
approach is suitable for smaller image sizes as typically generated by FTIR.

An essential aspect of the imzML spectrum image is its data source. This source
facilitates access to .ibd intensity and mass data in a data type-independent manner.
This is achieved through a templated classi capable of managing various data types
for intensities and masses. The data type specification dictates the binary offsets and
the interpretation of read bytes.

ImzML Metadata Parsing

The first step of each image analysis is the import of data into the application. One
focus in this work is on optimizing the import of MSI data in format imzML, an open
format for MSI datasets53. The image format is divided into two parts, which are
stored in two separate files within the same folder: the file that describes imaging
metadata uses the XML markup language (with .imzML file extension) and the file
that provides the data in binary format (with .ibd file extension). In the further work
imzML means the file format standard in entirety and a dot in front of .imzML or
.ibd indicates one of the files of an imzML image. Here, the optimization of the
metadata reader is particularly important in order to support the potentially large
XML structures of the .imzML files, e.g. with regard to 3D MSI datasets that can
contain huge number of pixels in a range from 103 up to over 107. Thus, .imzML
files may contain several hundred thousand lines and XML elements. Typical XML
readers now try to rebuild the hierarchical XML structures to represent these as an in
memory object tree. These trees can then be used to query necessary imzML XML
elements in order to access metadata image properties. These large .imzML files easily
overwhelm some XML readers. To solve this problem, an optimized line-wise parsing
for imzML XML elements is used. The final parsing procedure of the .imzML file is
split into two steps. In the first step, all image related metadata elements are read
from the .imzML file, which are used to describe the image dimension, pixel size,
image position, as well as processing, device and acquisition details. In the second
step, all spectrum-access metadata are parsed, providing access information to the
data contained in the .ibd file. These are data offsets and data length information
used to read spectrum-wise defined m/z-axis and corresponding intensity data.

The structure of .imzML files is hierarchical and consists of context elements and
self-closing elements, which utilize associated controlled vocabularies (CV) to ensure
consistency and interoperability in the data. Controlled vocabularies are a crucial
part of the imzML format. They provide a standardized set of terms that can be
used to describe the various aspects of the data and metadata. This standardization
is key for ensuring that data from different sources can be compared or integrated
effectively. CVs in imzML are used to ensure that terms used in the file are consistent
and universally understandable.

iModules/M2aiaCore/include/m2ImzMLSpectrumImageSource.hpp
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. . .
< f i l e D e s c r i p t i o n >

< f i l e C o n t e n t >
<cvParam cvRef="MS" a c c e s s i o n=" MS:1000294 " name=" mass spectrum " value=" "/>
<cvParam cvRef="MS" a c c e s s i o n=" MS:1000128 " name=" p r o f i l e spectrum " value=" "/>
<cvParam cvRef="IMS" a c c e s s i o n=" IMS:1000030 " name=" continuous " value=" "/>
<cvParam cvRef="IMS" a c c e s s i o n=" IMS:1000080 " name=" u n i v e r s a l l y unique i d e n t i f i e r " value=" 643 cf9e0

−2151−4999−a2ba−b765ad18a296 "/>
<cvParam cvRef="IMS" a c c e s s i o n=" IMS:1000091 " name=" ibd SHA−1 " value=" 78243

ada1f9bcb34f7bedb982b5c59b126d53cf6 "/>
</ f i l e C o n t e n t >

</ f i l e D e s c r i p t i o n >
. . .

LISTING 3.1. Exemplary context and CV elements in imzML. CV elements referes to different
CVs called MS and IMS.

• Context Elements: These are the major sections of the file that define the overall
framework. They include metadata about the experiment, such as the instru-
ment used, the settings of the experiment, and the sample details. Context
elements provide a structured way to store this information, making it easy for
other researchers or software tools to understand and process the data.

– FileDescription: Contains information about the .imzML file, including
metadata like the software version and other descriptive elements.

– ReferenceableParamGroupList: A container for groups of parameters that
can be referenced multiple times throughout the document to reduce
redundancy by grouping frequently repeated parameters and their values.

– SampleList: Details about the samples analyzed, with each sample de-
scribed by specific attributes that include information about the origin of
the sample and any special treatments or preparations it underwent.

– SoftwareList: Lists the software used for data collection, processing, or
analysis, aiding in the reproducibility of experiments and the validation of
results.

– ScanSettingsList: Describes the specific settings of the scanning instru-
ments or devices used for imaging, including aspects like scan speed,
resolution, and other relevant technical parameters.

– InstrumentConfigurationList: Provides information about the configura-
tion of the mass spectrometry instruments used, including details about
detectors, sources, and other critical hardware components.

– DataProcessingList: Describes various data processing steps applied to
transform raw data into the final form stored in the file, such as normal-
ization, baseline correction, noise filtering, and other relevant processing
steps.

• Self-Closing Elements: These elements are typically used to represent specific
data points or attributes within the larger context elements. They are "self-
closing" in XML terminology, meaning they do not contain nested elements but
instead directly include data or references to data, often utilizing attributes to
store the values. The self-closing CV elements in imzML, named ’cvParam’,
must provide multiple attributes:

– cvRef: A CV reference that defines the attributes of this element.

– accession: A unique identifier for the element as defined in the CV, which
begins with ’MS’ or ’IMS’ followed by a seven-digit integer number, sepa-
rated by a colon.
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– name: The name of the element as specified in the CV.

– value: An attribute that remains empty for boolean-like flags; otherwise, it
contains a value with a data type specified by the CV.

The values assigned to these attributes are governed by established controlled
vocabularies specific to imzMLi and .mzMLii, saved in the OBO format 1.2iii. In listing
3.1 an exemplary imzML context and CV elements are shown.

// ’ data ’ i s a m2 : : ImzMLSpectrumImage *
using namespace std ;
using FunctionType = std : : funct ion <void ( const std : : s t r i n g &) >;
std : : unordered_map<std : : s t r i n g , FunctionType > accession_map ;
std : : unordered_map<std : : s t r i n g , FunctionType > context_map ;
auto stod = [ ] ( const s t r i n g &s ) −> double { re turn std : : stod ( s ) ; } ;
s td : : i f s t r e a m f ( data −>GetImzMLDataPath ( ) , s td : : ios_base : : binary ) ;
// shared v a r i a b l e s
std : : s t r i n g l i n e , context , tag , name , value , a c c e s s i o n ;

// This funct ion ‘ ValueToProperty ‘ uses a lambda express ion to convert the a t t r i b u t e ’ s value
// from a s t r i n g to a s p e c i f i c type determined by the conver ter ’ s re turn value . The converted
// value i s then stored in the property l i s t with t h a t type . Lambda express ions provide a conc i se
// and f l e x i b l e way to wri te i n l i n e f u n c t i o n s t h a t can capture v a r i a b l e s from t h e i r enc los ing scope .
//
// Parameters :
// l i n e − the s t r i n g from which the value i s e x t r a c t e d
// conver ter − a lambda or funct ion pointer t h a t s p e c i f i e s how to convert the s t r i n g value
// d e f a u l t − an opt iona l d e f a u l t value to use i f the conversion f a i l s or i f the l i n e i s empty
//
// The map ‘ accession_map ‘ uses lambda express ions to def ine how each s p e c i f i c a t t r i b u t e
// i d e n t i f i e d by i t s a c c e s s i o n number ( l i k e "IMS : 1 0 0 0 0 4 6 " f o r p i x e l s i z e x ) should be handled .
// Each lambda i s designed to pass i t s l i n e of t e x t to ‘ ValueToProperty ‘ , u t i l i z i n g an appropriate
// conversion funct ion ( ‘ stod ‘ in these cases to convert s t r i n g to double ) .
//
// Example lambda usage f o r a t t r i b u t e conversion :
const auto ValueToProperty = [&] ( const s t r i n g &l i n e , auto converter , const s t r i n g &d e f a u l t = { } ) { . . . }
accession_map [ "IMS:1000046 " ] = [&] ( auto l i n e ) { ValueToProperty ( l i n e , stod ) ; } ; // p i x e l s i z e ( x )
accession_map [ "IMS:1000047 " ] = [&] ( auto l i n e ) { ValueToProperty ( l i n e , stod ) ; } ; // p i x e l s i z e y
// . . .
// Example lambda usage f o r contex t a t t r i b u t e conversion :
context_map [ " software " ] = [&] ( auto &l i n e )
{

a t t r i b u t e V a l u e ( l i n e , " id " , name) ;
a t t r i b u t e V a l u e ( l i n e , " vers ion " , value ) ;
contex t = name + " " + value ;

} ;
// . . .
while ( s td : : g e t l i n e ( f , l i n e ) )

i f ( IsContextElement ( l i n e ) )
UpdateContext ( l i n e , context_map ) ;

e l s e i f ( IsAccessionElement ( l i n e ) )
ParseAccession ( l i n e , accession_map ) ;

LISTING 3.2. Exemplary code snippet for defining custom parsing rules of accession elements.
Here shown for the pixel size with explicit conversion to a double type.

A line-wise parsing can be effectively implemented for both context and CV
elements through a sequential search process. When a context element is encountered,
the parser tracks the current line’s context by pushing the element’s name onto a
stack. Conversely, exiting a context element triggers the removal of the top element
from the stack. For CV elements that contain an accession attribute, these are typically
parsed as strings and subsequently stored in a property list associated with the image.

The property list of an mitk::Image, which acts as a key-value store, can be ac-
cessed through the MITK user interface. Each property is added using a string key
that combines the accession number with the name of the CV element. Additionally,
custom parser functions can be defined to handle specific attributes of context ele-
ments or to apply special type conversion rules for attributes of CV elements. This
customization allows for more tailored data handling, enhancing the flexibility and
functionality of the parsing process.

ihttps://github.com/m2aia/imzML; accessed April 2024
iihttps://github.com/m2aia/psi-ms-CV; accessed April 2024

iiihttps://obofoundry.org/; accessed April 2024

https://github.com/m2aia/imzML
https://github.com/m2aia/psi-ms-CV
https://obofoundry.org/
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A parser functions is demonstrated in listing 3.2. Spectrum-wise access informa-
tion is stored in a list of metadata objects in the spectrum image see listing 3.3.

using BinaryDataOffsetType = unsigned long long ;
using BinaryDataLengthType = unsigned long ;

// BinarySpectrumMetaData s t r u c t u r e holds metadata f o r a s i n g l e spectrum .
s t r u c t BinarySpectrumMetaData
{

BinaryDataOffsetType mzOffset ; // s t a r t of the mz values
BinaryDataOffsetType i n t O f f s e t ; // s t a r t of the i n t e n s i t y values
BinaryDataLengthType mzLength ; // number of mz values
BinaryDataLengthType intLength ; // number of i n t e n s i t y values

i t k : : Index <3> index ; // x , y , z index coordinates
s t r u c t { f l o a t x , y , z ; } world ; // x , y , z world p o s i t i o n in mm
m2 : : NormImagePixelType i nF i l eNo rm al iza t i on Fac to r = 1 . 0 ; // normal izat ion f a c t o r in f i l e

} ;

LISTING 3.3. Metadata structure for storing spectrum-wise access information.

Initialization

Based on the information parsed from the .imzML file, a spectrum image can be
initialized. The initialization process is illustrated in Figure 3.6 Image Initialization
Strategy. This image initialization aims to provide necessary data for signal processing,
image access, and spectral navigation of MSI data. It involves the creation of several
helper images and the generation of overview spectra.

Helper Images:

• Mask Image: This image provides labels indicating valid pixels (intensity values
>= 1) and background pixels and can be modified using MITK’s segmentation
tools. It is used to mask the image area used for ion-image generation. Type:
mitk::LabelSetImage with pixel type unsigned short.

• Index Image: The index image provides a visual representation of the indices of
the spectra as they were captured sequentially by the MSI device, and is used
to facilitate regional queries. Type: mitk::Image with pixel type unsigned int.

• Normalization Image: The normalization image provides normalization factors
for each spectrum. Type: mitk::Image with pixel type double.

• Ion Image: The ion-image is used for visualization. Only the image geometry is
initialized for the ion-image. Type: m2::SpectrumImage with pixel type double.

Continuous-Profile Overview Spectra:

• Mean Spectrum: This spectrum is computed by averaging the spectral data
across all pixels or a defined subset of pixels. The mean spectrum provides
a general representation of the typical spectral features present in the entire
sample, useful for identifying common peaks or trends across the dataset. Type:
std::vector<double>.

• Centroid Spectrum/Maximum Spectrum: This spectrum is derived by taking
the maximum intensity value at each m/z across all spectra. It highlights the
most intense ions detected in the sample, regardless of their spatial distribution,
which is particularly useful for spotting dominant compounds or contaminants.
Type: std::vector<double>.
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FIGURE 3.6. After the imzML data import and metadata parsing, image geometries are ini-
tialized for the mask image, normalization image, index image and ion-image. Subsequently,

images are filled with data supporting the image access for subsequent processing.
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FIGURE 3.7. Schematic illustration of a MSI data analysis procedure. After data are accessible,
signal processing steps are applied to the individual spectra.

Centroid Overview Spectra: each spectrum at each pixel is in centroid mode, mean-
ing it only provides the peak locations (m/z) and intensities, not the full profile of the
signal. Two different modes for centroid data in imzML file format exist:

• Continuous-Centroid: In this mode, each spectrum has the same m/z-axis,
enabling direct calculation of the overview spectrum, and is derived by taking
the average of intensity.

• Processed-Centroid: Since each spectrum can have different m/z-axis, direct
summation is not feasible. In order to provide an overview spectrum for
processed-centroid spectra, binning is applied by dividing the full m/z range
into bins of equal size. The number of bins can be specified in the settings of
M²aia. For each centroid spectrum, the intensities are mapped to the bins. For
each bin the average intensity is calculated and is represented by its center
m/z value. This provides a fast overview of processed-centroid spectra, but,
depending on the size of the bins, it is possible that multiple peaks fall within a
single bin, thus not every peak within the MSI dataset is reproduced exactly.

During the initialization of the image access, spectra are processed in parallel using
the proposed map-reduce approach (see subsection 3.2.3 Ion Image Generation) under
the utilization of the lazy-loading strategy (see subsection 3.2.3 Ion Image Generation).
During accessing continuous-profile spectra, signal processing is applied (see subsec-
tion 3.2.2 Signal Processing). The result of this process is that the overview spectra and
helper images are filled with appropriate values.

3.2.2 Signal Processing

Spectral analysis is a critical component of MSI as it can be influenced by various
factors such as sample preparation, acquisition techniques, chemical interferences,
fluctuating intensities due to matrix or surface non-uniformities, electronic varia-
tions and ionization phenomena36,122. Signal processing endeavors to mitigate these
influences. Therefore, a signal processing workflow is implemented that includes nor-
malization, noise reduction, baseline correction and intensity transformation methods.
In Figure 3.7 Signal Processing Procedure a typical signal processing chain is illustrated.

The intensities of all spectra must be adjusted for better comparability (normal-
ization). This is followed by variance stabilization and smoothing of the spectra
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(smoothing). In order to minimize matrix effects and chemical contamination, the
baseline of the spectrum is corrected (baseline correction).

Normalization/Calibration is used to compensate pixel-to-pixel intensity variations
(see subsection 2.1.2 Batch effects). Intensity values of a spectrum S are normalized by

S(j) = Sorig(j) ∗ f−1
S , (3.1)

where Sorig(j) and S(j) are the original and normalized intensities, respectively, f is
the normalization value and j is the index related to the m/z position in a spectrum.
The set of normalization strategies18 include the total-ion-count (TIC) sum, mean,
maximum, and root mean square (RMS). Calibration generally yields superior results
compared to not using it123. The commonly employed TIC method is robust despite
its simplicity124, particularly in rectifying inequalities between technical replicates
within the same measurement process.

Noise reduction/Smoothing Raw spectral data often contain various sources of
noise, including electronic noise, background interference, and fluctuations unrelated
to the analyte of interest. Spectrum-wise noise reduction using the Savitzky and
Golay filter method55 and Gaussian filter method, are implemented.

Baseline Baseline correction significantly improves the quality and clarity of spec-
tral data by eliminating background noise and irrelevant signals. In Mass Spectrome-
try Imaging (MSI), raw spectra frequently include low-frequency signals unrelated to
the target analytes. These baselines may originate from a variety of sources such as
chemical noise, detector artifacts, or environmental influences. Without appropriate
adjustment, these baselines can mask low-intensity peaks, distort quantitative analy-
ses, and result in erroneous interpretations of the spatial distribution of molecules.
The primary goal of baseline correction is to adjust the baseline towards zero, thereby
enhancing the visibility and accuracy of spectral peaks. Ideally, the baseline correction
should not influence the peaks height or the shape. As there is still no suitable method
for measuring the baseline correction quality, an option is visual inspection125. Two
common methods for achieving this are the running median filter and the TopHat
transformation, illustrated in Figure 3.8 Baseline Correction Example.

The running median filter is a non-linear digital filtering technique exceptionally
adept at reducing noise without substantially altering the signal’s true peaks126. It
operates by replacing each data point with the median of a predefined neighboring
window that shifts continuously across the signal. The resulting running median
signal is subtracted from the original to produce the baseline-corrected output. Simi-
larly, the TopHat transformation employs morphological operations to emphasize
small features and details in spectra that are smaller than the window size of the filter.
This transformation is achieved by first eroding (applying a running minimum) and
then dilating (applying a running maximum) the signal127. The resulting transformed
signal is subtracted from the original to produce the baseline-corrected output.

Intensity Transformation: transformation of the intensity data facilitates the graph-
ical representation and also serves to stabilize the variance. Intensities can be trans-
formed by logarithmic transforms129,130 or square root transform131 to reduce the
dynamic range of the data. These transformations are useful for visualizing and
analyzing data with a wide range of intensities. It is applied after all other signal
processing steps has taken place.
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FIGURE 3.8. Exemplary, the raw signal (violet) is compared to baseline corrected signals:
TopHat (red) and running median (blue). The half-window size is set to 50. Raw signal is
derived from Slice 8 of the Peptide MALDI-TOF Mouse Brain Dataset128 (see subsection 5.1.1

Lipid/Peptide 3D APP NL-G-F Mouse Brain) .

Sliding Window Approaches: baseline correction and noise reduction are imple-
mented using a sliding window approach. The width of the sliding window is
defined by the half-window size (hws) as w = 2 ∗ hws. When using sliding window
approaches, a common problem known as the ’border region problem’ arises. This
problem occurs due to the edges of the signal segments being processed differently
from the interior regions. There are a few specific issues associated with the border
region problem: At the borders of each window, incomplete data may be present,
leading to inaccurate results. This is because the processing operation, which may
involve convolution with a kernel or applying a feature extraction algorithm, assumes
that the data within the window is complete. When processing near the edges, this
assumption is violated, leading to artifacts or errors in the output. Portions of the sig-
nal near the edges of the windows may not be fully captured in the analysis. This loss
of information can lead to biased or incomplete results, particularly in applications
where accurate representation of the entire signal is important. Handling the border
regions often requires special treatment, such as applying padding or using specific
boundary conditions. Choosing the appropriate boundary conditions can be challeng-
ing and may depend on the specific characteristics of the signal and the processing
operation being applied. The choice of window size can exacerbate the border region
problem. If the window size is too small, the border regions become a significant
portion of the analyzed signal, increasing the impact of edge effects. Conversely, if
the window size is too large, it may obscure important spectral details in the signal.
Addressing the border region problem typically involves careful consideration of the
window size, choice of boundary conditions, and potentially applying techniques
such as signal padding to mitigate the impact of edge effects. To handle this in M²aia,
padding according to the window size is added to the signal including replicas of the
first/last value of the spectral signal.

Order of Signal Processing Steps: effective signal processing is crucial for extracting
meaningful data from MSI spectra. Key processing steps include smoothing, baseline
correction, intensity transformation, and normalization. However, the order and
implementation of these steps significantly influence the integrity and utility of the
data.

1. To ensure the normalization factors reflects only instrument-introduced errors
and not those introduced by data processing, it may be advantageous to calcu-
late these immediately after data acquisition and before other preprocessing
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steps. This preserves its integrity as a normalization standard.

2. Smoothing is typically applied after the normalization to reduce noise and
enhance signal clarity, which aids in distinguishing peaks.

3. Baseline correction follows smoothing to eliminate background noise.

4. Intensity transformations are applied last.

3.2.3 Ion Image Generation

Generating ion-images using techniques like lazy-loading and map-reduce can sig-
nificantly enhance the efficiency and speed of the process, particularly in scenarios
involving large datasets or high-resolution images. Both strategies are described in
the upcoming paragraphs within the context of image generation.

Lazy-loading Strategy: lazy-loading is a strategy primarily used to defer the loading
of resources until they are actually needed. Loading tens of gigabytes of data into the
computer’s memory would be, at best, depending on the steps involved for signal
processing, time consuming. To face this challenge, we follow the strategy of lazy-
loading, resulting in minimal memory overhead during runtime. The lazy-loading
is implemented for files in imzML format. The .imzML files contains all necessary
information to define an image object in MITK with valid geometry (section 2.4
Medical Imaging Interaction Toolkit) and to define spectrum-wise metadata objects
providing binary access information in the corresponding .ibd files (Figure 3.6 Image
Initialization Strategy). Based on these information a lazy-loading mechanism can be
implemented. As a lazy-loading strategy is intended to prevent large amounts of data
from being held in memory, data read from the .ibd file is discarded immediately
after processing. To further reduce the amount of data to be loaded, it is also possible
in narrow applications to load only sub-ranges of the spectra.

Map-reduce Strategy: the map-reduce programming model is known to efficiently
utilize available parallel computing resources by breaking down a large data pro-
cessing task into smaller sub-tasks (mapping), distributing them across the parallel
computing resources, and then combining the results (reducing) to produce the final
output132. This strategy is applied to increase the performance of processing spectral
data. Here, an equal number of spectra is mapped to individual threads, depending
on the number threads used. If it is not possible to split without remainder, the
remaining spectra are assigned to the last thread. Each thread processes the mapped
spectral data and calculates desired intermediate results. Finally, the intermediate
results are collected in the main thread and are reduced to the final results.

Generation Procedure: querying an ion-image requires to define an m/z value (cen-
ter), a range around the center in Dalton (tolerance), the signal processing parameters,
and the pooling strategy:

• Molecule of Interest: In order to generate a spatial distribution image for a
molecule of interest, an associated m/z value x is required.

• Query Tolerance: The tolerance is used to take into account mass shifts caused
by the imaging device. Typical values for the tolerance are associated with
the peak width. Tolerance t can be a fixed value in Dalton or expressed as
parts-per-million of the center value t = 10−6x.
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FIGURE 3.9. Illustration of spectral processing using map-reduce and lazy-loading. After a
region of interest has been determined by the region offset and region length, data are read
from disk and handed over to the signal processing. Subsequently, a pooling operation is
applied to the modified signal. The final intensity value is returned and assigned as intensity
to the spectrum-associated pixel position of the ion-image. Square boxes are data objects.

Rounded boxes are processing steps.

• Signal Processing: Parameters and used methods of the signal processing
pipeline are selected within the Data View.

• Pooling operations are used to reduce intensity values to a single value that can
be used, e.g. for the generation of ion-image pixel data. Pooling operations are
sum, mean, maximum and median for a given list of intensities.

User-actions within M²aia (see subsection 3.1.3 Graphical user-interface), can trigger
the ion-image generation process:

• Data View: The Data view provides text input for center m/z value and toler-
ance.

• Center Selection: The center can interactively selected by double-click within
the Spectrum View.

• Range Selection: The tolerance and center can interactively selected by drawing
a rectangular selection in the Spectrum View. The m/z value of the molecule of
interest is the mid-point and tolerance is the distance from center to the range
border.

The process steps for the ion-image generation, illustrated in Figure 3.9 Spectral data
access during ion-image generation, are:

1. Mapping Step: In the mapping step, an equal number of spectra is assigned to
worker threads. Each of the worker threads processes the spectra assigned to it
sequentially and performs the following steps:

(a) Finding the Signal Region: Only a fraction of the intensity ranges are re-
quired for ion-image generation. These are typically around the m/z value
of the molecule of interest and are defined by centers and the tolerance.
In case of processed-centroid imzML data, where each spectrum has its
own m/z-axis, the entire m/z-axis is read for each spectrum from disk in
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order to be able to identify the positions of the required intensity values.
Otherwise, for continuous-profile or continuous-centroid imzML data, the
m/z-axis is queried only once.

(b) Determine Region Offsets: The region limits can be extended with addi-
tional values from the spectrum, in order to support signal processing
operations, based on sliding-window approaches (subsection 3.2.2 Signal
Processing).

(c) Lazy-loading: The intensities are read from the .ibd based on the identified
intensity positions defined by the signal region and the region offsets.

(d) Signal Processing: The intensities loaded into memory are modified based
on the defined signal processing settings.

(e) Pooling: A pooling operation is applied to reduced the modified intensities
to a single value, such as the sum or average, in order write it to the
spectrums pixel position in the ion-image.

2. Reduce Step: This step is skipped when generating ion-images, but can be
relevant if the values of the mapping step are to be reduced, such as in creating
overview spectra.

3.2.4 Peak picking

Peak picking involves identifying peaks within a spectrum, which provides valuable
information about the m/z values and their corresponding intensities. In MSI, peaks
are typically detected by locating local maxima that surpass a predefined noise
threshold, often using a sliding window approach. This process ensures that only
significant peaks are captured while minimizing the inclusion of noise. To determine
this noise threshold, the median absolute deviation (MAD) of the spectrum intensities
is commonly employed as an estimate. Moreover, the identification of monoisotopic
peaks, which are the peaks corresponding to the most abundant isotopes of a given
molecule, is enabled by automatic Poisson peak harvesting133. This method is used
to detect and differentiate monoisotopic peaks from other peaks in the spectrum.
Exemplary results of both strategies are shown in Figure 3.10 Peak picking strategies.

3.2.5 Data Compression

Data compression includes techniques for reducing data size. These are crucial
for the visualization of high-dimensional hyperspectral data and provide a tool to
make relationships in the data comprehensible. These techniques primarily include
dimensionality reduction and clustering (see subsection 2.1.3 Data Processing).

Ion Images: even if it is a very basic type of dimensions reduction, the ion-image
generation can also be seen as such. This approach simplifies the hyperspectral
dataset into a 2D image, typically used to spatially visualize molecular distributions.
This is described in detail, with focus on process optimization by parallelization, in
subsection 3.2.3 Ion Image Generation.

Dimensionality Reduction: advanced unsupervised techniques for dimensionality
reduction are used in visualizing hyperspectral data through spectral correlations
depicted in (colored) multi-channel images. Techniques such as Principal Compo-
nent Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) are
provided. PCA transforms correlated variables into a set of linearly uncorrelated
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FIGURE 3.10. The mean overview spectrum is shown in both plots and is derived from Slice
5 of the Lipid MALDI-TOF Mouse Brain Dataset128 (see subsection 5.1.1 Lipid/Peptide 3D APP
NL-G-F Mouse Brain) . In plot (a), local maxima are marked with red dots and lines. In plot

(b), only monoisotopic peaks are shown in.

variables known as principal components17,134. t-SNE is designed to generate low-
dimensional visualizations that retain the local structure of high-dimensional data135.
Typically, a preliminary PCA reduction is employed to prepare data for t-SNE, opti-
mizing processing time. The PCA and t-SNE workflows in M²aia are illustrated in
Figure 3.11 Dimensionality Reduction Strategies.

FIGURE 3.11. PCA and t-SNE dimensionality reduction strategies are illustrated. Strategy
(a) uses the ion-image generation for multiple peaks to generate the required data matrix to
apply a PCA. Strategy (c) uses the result of a PCA, which can be reduced in spatial resolution
to speed-up the process, is used to apply the t-SNE in order to generate a three component
image (RGB). Yellow shaded background highlight the dimensionality reduction method.
Colored frames highlight the usage of the results of one approach in a subsequent approach.

Unsupervised Clustering: clustering methods, such as k-means, facilitate image
segmentation by categorizing spatio-spectral data into discrete labels. K-means
clustering assigns pixels to a predefined number of clusters, grouping them based on
the spatial proximity of their mass spectra. Each pixel is assigned to the cluster with
the closest mean, effectively segmenting the image into similar regions.



3.2. Concepts for MSI Data Processing 57

Details on Data Input for Data Compression Methods: in order to start a data
compression method, a data matrix is prepared, based on a user-defined list of
m/z values. This list can be generated interactively, using the peak picking utilities
provided by M²aia (see subsection 3.2.4 Peak picking), or it can be loaded from disk.
Ion-images are generated for each m/z value. The pixels of the ion-images are
used to fill the data matrix. This has two advantages: first, it avoids problems with
processed centroid data. Since an ion image is defined over a m/z range, even slight
variations of the centroids in each spectrum can be compensated. Second, it is often
not necessary and not always useful to use the full spectral depth of a data set, as the
limits of memory requirements are quickly exceeded.

3.2.6 Data import of whole slide images

Importing whole slide images presents unique challenges due to their immense file
sizes and high resolutions. Modern graphics hardware is limited by the maximum
texture size it can handle, often making it impossible to render these images directly,
as they can reach gigabytes in size with dimensions of tens of thousands of pixels.
Consequently, it is impractical to display such large images as single textures. This
limitation typically requires implementing strategies for on-demand loading and
creating image pyramids. Image pyramids store multiple resolutions of the image,
allowing for efficient zooming and panning by loading only the necessary resolution
segments. Additionally, techniques like data streaming and caching are essential
for managing memory effectively, ensuring that only needed parts of the image are
retained in memory at any given time136. Major modifications in MITK’s software
architecture would be essential to incorporate these required features for visualizing
whole slide images.

Nevertheless, the high spatial resolution differential between MSI datasets and
whole slide images suggests that supporting the extreme resolutions of whole slide
images might not offer significant benefits. Instead, selecting spatial resolutions that
match critical features of the MSI datasets, such as outlines and structural charac-
teristics of tissue sections, and that remain within manageable memory limits, are
sufficient to support the workflows described in the upcoming section 3.3 Concepts
for Image-based Registration in MSI. To accommodate a variety of whole slide image
formats, the OpenSlidesi library is employed, supporting file formats such as ndpi,
svs, and tiff137. When corresponding files are loaded into M²aia, a dialog appears that
offers the user a selection of internal image pyramid representations based on the file
format. If the selected resolution exceeds the maximum texture size, the image will
be represented by multiple images within MITK, each representing a portion of the
image at the selected spatial resolution.

The typically colored images are composed of three channels for red, gree, and
blue (RGB) or with a four’th alpha channel (RGBA). During the import of whole slide
images the image data can be processed. The channels can be imported separated,
picked individually, or processed in order to combine the three/four channels into
one representative image. To combine RGB values, the luminance image method is
used. It calculates a weighted combination of the RGB values in each pixel to create
a gray-value representation. The luminance formula was used as it is defined in
VTK138,139.

ihttp://openslide.org; accessed April 2024

http://openslide.org
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3.3 Concepts for Image-based Registration in MSI

In this section, the interactive concepts for the image registration workflows are
introduced for multi-modal image fusion (subsection 3.3.1 Multi-modal image fusion)
and the 3D image reconstruction (in subsection 3.3.3 3D Image Reconstruction). Fur-
thermore, interactive concepts for the evaluation and correction of image-registration
results are described in subsection 3.3.4 Evaluation and interactive correction.

3.3.1 Multi-modal image fusion

The integration of MSI data with images from a different modality can be used to
gain deeper insights into biological samples. MSI offers spatial mapping of molecular
species within a sample, providing information about the distribution of various
compounds. Conversely, other imaging modalities may offer detailed structural and
cellular context to complement MSI data. The fusion of MSI and other imaging modal-
ities involves image-based registration, allowing for the visualization and analysis
of molecular distributions within the context of cellular and tissue structures. This
integration enables to correlate molecular signatures with specific cellular features,
such as cell types, providing insights into biological processes, disease mechanisms,
and drug responses.

In this context, the development of utilities for interactive fusion of multi-modal
images becomes paramount. The interactive concepts aim to facilitate exploration
and analysis of fused datasets, so that researchers can extract meaningful information.
The image fusion procedure uses image-based registration methods to determine
parameters of the desired transformation.

The key challenge in multi-modal image fusion with MSI is to find representative
structural images for the hyperspectral datasets that can be used for image-based
registration. There are two main strategies: In the first strategy, the MSI dataset is
represented by a proxy image generated from the hyperspectral data itself. These
images are bound to the relatively low spatial resolution of MSI devices and may
not represent the whole structural complexity and features of a biological sample.
Dimensionality reduction methods are used to generate, for example, an ion-image, a
single principal component image, or another image using the applicable methods.
In the second strategy, an optical image (typically used for MSI device calibration)
is used to realize an indirect image fusion with MSI data. This requires, knowledge
about the transformation from the optical image to the MSI image space, typically
provided by the raw data output of MSI devices. The whole interactive image-
based registration workflow for multi-modal image fusion with MSI is illustrated in
Figure 3.12 Image registration workflow.

3.3.2 Multi-modal Transfer of Image Annotations

Parts of this subsection have been published in:

• Cordes et al., “M²aia Extension for Accessible Annotation Creation and Annotation
Transfer for Mass Spectrometry Imaging in Multi-Modal Setups.” International Mass
Spectrometry Conference (2022)116

The primary challenge in multi-modal image registration lies in the inherent
differences in image characteristics and the information each modality conveys.
For example, MSI provides molecular information, while histological images offer
structural details. Pathology and histology involve the microscopic examination of
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FIGURE 3.12. Illustration of the image registration with input and output data. Gray arrows
show optional paths. Blue involves interactive steps within M²aia. A and B highlight the

imaging modalities.

tissue samples to diagnose disease. These modalities typically use stains and dyes to
highlight structures within tissues, providing crucial information on morphological
and structural contexts10.

The task is to align these images accurately to correlate molecular features with
morphological and structures features. In order to transfer annotations between
MSI and histology images, rigid, affine, or non-rigid transformations can be applied,
adapting to the specific needs of the modalities involved. For the realization of the
multi-modal image fusion in M²aia see the concepts as introduced in subsection 3.3.1
Multi-modal image fusion.

Once images are aligned, spatial annotations from one modality (e.g., regions of
interest identified in histology images) can be transferred and superimposed onto
the MSI images within the interactive framework of M²aia. This is realized by re-
applying the same transformation parameters of the multi-modal image fusion to the
annotated image. The only condition is that the annotated image and the image on
which annotations have been made share a common location in the world-coordinate
space (see section 2.4 Medical Imaging Interaction Toolkit).

Post-registration, the accuracy of the overlay and the transferred annotations are
assessed through qualitative and quantitative means, ensuring that the molecular
and structural correlations are accurately represented (see subsection 3.3.4 Evaluation
and interactive correction).

This facilitates a comprehensive understanding of the spatial distribution of mole-
cules in relation to the tissue structure and opens up new avenues in research and
clinical applications, such as correlating histopathological findings with molecular
imaging biomarkers, enhancing tumor margin assessments, and facilitating more
precise and targeted therapies.

3.3.3 3D Image Reconstruction

Interactive 3D reconstruction is used to create a 3D MSI volume by aligning consecu-
tive 2D MSI datasets to each other. This is realized by applying subsequent rigid and
deformable image-based registration steps. The concept of the interactive 3D image
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reconstruction is illustrated in Figure 3.13 3D image reconstruction workflow. Technical
challenges are the provisioning of multiple MSI data at the same time, the choice of
which image content is used for registration, and the parameterization of the rigid
and deformable registration steps. The complete 3D image reconstruction process
can be separated into three steps.

First (a) 2D MSI datasets are imported and due to the previous described capa-
bilities of the optimized data import (subsection 3.2.1 Hyperspectral data import), a
simultaneous and interactive access to a large number of 2D MSI datasets can be
achieved. A dimensionality reduction method is used to reduce the hyperspectral
data set into a 2D image, such as an ion-image or a principal component image. At
this point it is important to select a structural-rich image content, that can be used
for a image-based registration. These images are used for a first user-driven and
interactive inspection of the image contents in M²aia.

3D image reconstruction often necessitates capturing and registering a substantial
number of 2D MSI datasets. However, variations in sample preparation, matrix
application (MALDI MSI), and instrumental settings can lead to inconsistencies across
datasets. Such heterogeneity can complicate data integration and analysis during the
reconstruction process. At this stage, users have several options to streamline the
process:

• Organizing Images in a Matrix: Images can be systematically arranged in an
image matrix. This arrangement aids in visualizing the sequence and spatial
orientation of the images, facilitating easier manipulation and analysis.

• Excluding Images: It is possible to exclude certain images from the dataset,
including calibration images or any images deemed unsuitable for registration.
This step ensures that only relevant and high-quality images contribute to the
3D reconstruction.

• Manual Alignment: To improve the 3D reconstruction result, users can man-
ually align images based on the content of neighboring images. This manual
intervention allows to align image features across a series of images, in order
to provide optimal start-conditions for the automatic image registration steps
with elastix.

• Selection of Start Images for 3D Reconstruction: Users can select a specific
image as starting point for 3D reconstruction. This selection is crucial as it
determines the foundation upon which the entire 3D structure will be built.

In the second step (b), the selected and structural-rich images are used to find
transformations between the images. To create a 3D MSI volume, consecutive slices
are aligned to each other, applying subsequent rigid and deformable image-based
registration steps in a fully automated way. At the beginning of the procedure
the registration parameters are defined. In each iteration a fixed image is selected
(manually in the first iteration of step (a)) and a neighbor image (e.g. the next image
in ascending or descending order) is assumed to be the moving image. Before a
registration is started, pre-registration transforms are applied to the selected fixed
image (section 2.2 Image-based Registration; Figure 2.5 Optimization process in image
based registration). This is illustrated in detail in Figure 3.14 Registration steps for the 3D
image reconstruction.

In the final third step (c), a 3D ion-image is generated by using the pairwise trans-
formations and 2D images of the MSI datasets. For each 2D image, the transformation
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FIGURE 3.13. Three steps of the 3D image reconstruction workflow are illustrated. In (a), the
preparation process is shown. In sub-illustration (b), the actual reconstruction is shown with
respect to inputs and outputs. In (c) the 3D image is filled with data based on the results of
step (a) and (b). In (d) an optional refinement workflow is illustrated. Gray shows that it is

optional. Blue involves interactive steps. Stacks represent multiples of named objects.

is applied to warp the image content of the 2D images. The image content is copied
slice-wise into a 3D dedicated image volume.

In cases when the results of individual registrations are not sufficient accurate,
a refinement step (d) can be added to the workflow (subsection 3.3.4 Evaluation
and interactive correction). This is realized by adding corresponding points in both
modalities which are used for a multi metric registration approach that includes an
image similarity metric (e.g. Mutual Information) in weighted combination with
corresponding points Euclidean distance metric.

3.3.4 Evaluation and interactive correction

The registration results from the multi modal image fusion and the 3D image recon-
struction are evaluated interactively by visualization and/or by calculation of the
Target Registration Error (TRE). Visual inspection is based on MITK functionalities
including the interactive visualization of 2D/3D images. For the visual evaluation of
registration results, superimposed image visualizations are used. Available method
include blending, checkerboard, color blending, difference and wiping. In 3D recon-
structions, the volume is inspected slice by slice to detect misalignments between
adjacent slices.

For quantitative evaluation, corresponding pairs of points can be set within the
fixed and moving image using the point set interaction tools provided by MITK.
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FIGURE 3.14. Registration steps for the 3D image reconstruction. Upper case letters indicate
the downward branch of subsequent image registrations and lower case letters indicate the
upward branch of subsequent image registrations. T/t are transformations, M/m are moving

images, and F/f are fixed images.

Based on these point pairs, the TRE140 can be calculated (Figure 5.5 Target registration
error (TRE)).

3.3.5 Registration Backbone

The image registration is based on the elastix toolkit (subsection 2.3.6 Frameworks for
Image-Based Registration). The elastix registration utilities are used for this process,
providing access to appropriate transformation models and similarity metrics. For
instance, mutual information is a common choice for multi-modal registration due
to its effectiveness in measuring statistical dependence between datasets. Image
registration utilities are realized within a separate MITK external project called mitk-
elastixi. This external project is independent of MSI utilities of the M²aia project,
creating a more general solution to image-based registration problems in MITK. This
includes helper classes for developers and a view for image selection and parameter
tuning. Default parameters for rigid and deformable parameters are chosen according
to previous work115.

The image-based registrations are realized with the help of the command-line
tools provided by elastix, called elastix and transformix. For this purpose, images
and parameter files are temporarily stored on disk in a dedicated workspace folder
before a registration step or, if the data is already stored on disk, corresponding file
system-links are provided.

3.4 Concepts for Integration of Third-Party Image Processing
Methods

Parts of this section have been presented in:

• Cordes and I. Wolf, “MITK Docker: An Open, Language-Independent Interface for
Integrating Image Processing Pipelines into MITK.” 6TH Conference on Image-Guided
Interventions (2023)117

ihttps://github.com/m2aia/mitk-elastix

https://github.com/m2aia/mitk-elastix
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3.4.1 Overview

Innovative data analysis techniques are revolutionizing numerous fields, with MSI
proving to be a particularly dynamic area. MSI involves image data, the effective
processing and analysis of which is crucial. The way researchers interact with data
has a major impact on their ability to gain insights and make informed decisions.

However, novel methods are often distributed as executable scripts, posing signif-
icant challenges for researchers who are not proficient in scripting languages. They
may struggle with the lack of required scripting environments and the complexity of
setting up software dependencies. Objective is the integration of advanced tools into
existing applications and should be accomplished in a manner that allows both novice
and experienced researchers to access these tools through the graphical user interface
and interact with image inputs and processing results. One potential ad hoc solution
could be the integration of these novel methodologies into interactive applications
such as MITK or M²aia. A review of current efforts to successfully integrate new
tools into existing applications reveals two potentially restrictive conditions. Firstly,
executable scripts or command-line applications must be installed locally and all
required dependencies must be configured correctly. Secondly, these tools must be
integrated into the graphical user interface of the application. The integration of
advanced tools into existing applications must be accomplished in a manner that
allows both novice and experienced researchers to access these tools through the
graphical user interface and interact with image inputs and processing results.

M²aia in its current state, focuses primarily on providing various interactive
processing concepts for MSI datasets in imzML format. The scope of M²aia is there-
fore limited to the previously introduced MSI-related operations, such as the signal
processing and 2D/3D MSI data interaction, and newly introduced concepts for
interactive methods of multi-modal image fusion and 3D reconstruction. Neverthe-
less, there are many other interesting methods that would benefit from integration
into the advanced interactive context of M²aia. For example, many specific tools
for MSI data processing have been developed in R72,73, while many deep learning
approaches have been realized in Python54,58,61,63,64,141. Therefore, a programming
language-independent integration of these methods into a platform such as M²aia
would represent a considerable gain for the future development of the application.

This chapter presents a concept for integrating image analysis and processing
methods into existing interactive frameworks to facilitate the adoption of cutting-
edge technologies and improve the usability and functionality of applications in areas
such as MSI. To achieve this, a solution is proposed that focuses on containerization.
Containerization provides a robust framework for deploying and managing software
without the hassle of dependency conflicts and environment setup issues. It allows
for the consistent operation of applications across different computing environments,
making it an ideal solution for integrating diverse (non-interactive) image analysis
tools into interactive frameworks. These containerization technologies have matured
significantly in the last few years, with Dockeri, as a prominent representative of this
technology. Docker is openly accessible and is supported on Unix-based operating
systems as well as on Windows. Details on Docker can be found in section 2.5
Containerization with Docker.

In addition to leveraging container technology, the proposed concepts include
standardized interfaces for designing the user interface. These standardized inter-
faces ensure that new tools can be integrated with a consistent look and feel, which is
crucial for maintaining a seamless user experience and control processing parameters

ihttps://www.docker.com/; accessed April 2024

https://www.docker.com/
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through the graphical user interface. Furthermore, the concept defines the mecha-
nisms for transferring parameters and data required for the execution of these tools.
This involves specifying how data is passed to and from the containerized tools.
Overall, the proposed integration strategy not only aims to simplify the incorporation
of new image analysis methods into existing frameworks but also ensures that these
powerful tools are more accessible to researchers in MSI and related areas.

3.4.2 Concept

This section outlines a concept for integrating third-party methods into interactive
applications, regardless of the programming language used. The approach focuses
on using file system operations to facilitate the transfer of runtime objects such as
images from interactive applications to processing containers through intermediate
data export operations. In the first part of the following description, the individual
operational components necessary for this integration are described. The second part
provides an overview of the operational workflow and introduces concepts of how
these components interact to provide a seamless and efficient workflow for integrating
third-party image processing methods into existing interactive frameworks.

Operational Components: the concept is built around four key components, each
playing a critical role in the integration and execution of third-party imagei processing
methods:

1. Method-of-Interest: This is the specific image processing method that needs to
be executed during the interactive processing session. It can be any algorithm
or processing technique that enhances or analyzes the image data.

2. Process Docker Image: A custom Docker image that creates the environment for
the process execution. It acts as the execution environment for the method-of-
interest, ensuring that all operations are performed in an isolated and controlled
setting. The process Docker image includes:

• Dependencies: all the necessary dependencies required by the method-of-
interest, eliminating the need for users to manually set up their systems.

• Entrypoint Script: a script that facilitates process communication, manag-
ing the interaction between the container and the interactive application,
and executes the image processing.

3. Interactive Application: the software used for image visualization and image
processing, such as M²aia or MITK. This application is where users first interact
with image data, performing tasks such as visualization, preliminary analysis,
and data manipulation.

4. Custom View: A specifically designed interface within the interactive applica-
tion that provides:

• User Input: input elements for users to specify parameters and select
runtime data, tailoring the processing to their specific needs.

iIn the rest of this work, the term "image" is ambiguous. It can refer to an image of spatially
distributed intensities, as in the context of image processing. Alternatively, it can refer to the definition
of containerized runtime environments as used by Docker. Consequently, the term "Docker" is employed
to describe any Docker-specific image.
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• Process Trigger: initiate the execution of the process image, effectively
linking user input with the method-of-interest.

• Data Handling: logic for preparing data for export to the Docker container
and for managing the processed results once they are returned to the
application.

Operational Workflow: the integration concept operates on a simple yet effective
principle: if runtime data objects have an on-disk representation, entire folders
containing these persistent data can be mapped as read-only into the container,
allowing the container to access the data instantly without the need for copying. This
setup is particularly beneficial for MSI datasets, where quick access to large-scale
data is crucial.

FIGURE 3.15. The figure outlines the concept of third-party method integration. Three main
areas are shown: the interactive application on the left (gray), Docker-enabled processing on
the right (blue), and the shared file system in the middle. Green dots indicate non-persistent
runtime data generated by the interactive application. Red dots are runtime data objects with
persistent representation. Blue dots are result data objects generated by the executed method-
of-interest. Dashed lines/boxes are read/write operations on the shared file system. Red
boxes indicate requirements/parameters related to the method-of-interest. The operational

workflow is described in detail in subsection 3.4.2 Concept.

The interaction of the components that are essential for the integration of third-
party methods in M²aia is illustrated in Figure 3.15 Integration of Third-Party Image
Processing Methods. This illustration provides a comprehensive overview of how
each component functions within the framework to facilitate Docker-based image
processing methods using the interactive application, exemplarily demonstrated with
M²aia:

• Interactive Application:
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– The process begins with (1) user interactions within M²aia, where images
and associated files such as annotations or point sets can be visualized and
manipulated interactively.

– After successful completion of subsequent steps, the results become inter-
actively available and can also serve as inputs for further executions.

• Custom View:

– Once the decision has been made to initiate process execution, users can set
parameters (red box) and select runtime data objects through the custom
view’s input UI elements. When a trigger event occurs, the process is
initiated and the (2) custom view logic is executed. In a crucial initial
phase, the data objects are exported and written to disk in a process-
specific workspace folder (e.g., with a randomly generated ID), which can
also be temporary (e.g., as a subfolder of the system’s temporary data
folder). It then compiles an executable Docker command. This command
consists of command-line parameters used to run Docker and program
arguments used to run the method-of-interest. The parameters defined in
the Custom View are used. The Docker command is then executed.

– In addition, the result data returned by the process container is also im-
ported by the view logic and added to the interactive application as run-
time objects.

• Process Container:

– In the previous step, you requested execution of the Processing Container
by running the compiled Docker command. This command requests a
Docker image. If the Docker image does not exist, the requested Docker
image is retrieved from a Docker image registry. This Docker image is then
used to instantiate a process container. During instantiation, the compiled
Docker command includes instructions to map individual folders from the
host system to the container, such as the project and workspace folders.
When the process container is started, the (3) entrypoint script is executed.
It is used to facilitate communication based on command-line arguments
(upper red box) and to execute the method of interest within the process
container (lower red box).

– Once the entry point script is started, the processing data is imported. In
this step, the entrypoint script is used to prepare the data for the final
execution of the method-of-interest. This script can access persistent data
in read-only mappings (red dots) and data stored in the workspace folder
(green dots). The data can optionally be converted to appropriate formats.
Once the method of interest has been successfully executed, the entry-
point script is used to manage the final export of data (blue dots) to the
workspace folder.

– The results are written directly to the workspace folder.

3.4.3 Data Exchange Interface

To effectively integrate containerized applications within the graphical user interface
of M²aia, a unified data access strategy is proposed. This strategy will facilitate
the transfer of runtime data objects from M²aia to the containerized applications.
Runtime data objects may have either a persistent representation (e.g. an imzML
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image defined by the .ibd and .imzML files) or no persistent representation, thus only
be accessible during its lifetime in M²aia.

In order to provide access to data within a containerized application, Docker’s
volume mapping is utilized. Volume mapping enables access to specific filesystem
directories by mapping the content of one directory to one directory within the
container. For standard data exchange an user-definable workspace folder is created,
for each execution of a containerized application, on the local file system (e.g. in the
system’s temporary files directory) and is mapped into the container by default.

Furthermore the following key principles guide the development of this data
interface:

• Direct Mapping of Unchanged Data: If a runtime data object in M²aia needs
to be accessed by a containerized application without modification, the entire
directory containing the original file is mapped into the container as read-only.
This ensures that the original data can be utilized directly by the containerized
application without any copy-overhead.

• Storing Processed Data: Runtime data objects (without persistent representation
on the disk), e.g. results of processing steps generated within M²aia, are saved
in the workspace directory. In order to write an object to disk, MITK’s dynamic
file writer utilities are used. The file is written to disk given a file format ending
(like *.nrrd or *.png for images).

• Workspace for Output: Any results produced by a containerized application
are saved by writing to the mapped workspace directory.

• Format Compatibility: It is essential that the data transferred between M²aia and
the containerized applications be in compatible file formats. The responsibility
for converting data to these compatible formats lies with the developers, who
must decide whether the conversion will occur within the container or within
M²aia.

These principles ensure a seamless integration of containerized applications with
M²aia, allowing for efficient data exchange and processing continuity.

3.4.4 Process Integration

The process interface is based on passing command-line arguments to a containerized
application using the docker run commandi. The docker run command is separated
into three parts. The first part contains Docker related attributes, like the instructions
for volume mapping and graphic card usage flags. The second part is defining a
Docker image. The third part contains the command-line arguments for the con-
tainerized application. A Docker image is defined for each containerized application,
which provides a runtime environment tailored to an executable script (e.g. a Python
or R script). This application image contains all required dependencies for execution.

These containers are only used once and removed after execution. The application
images are to be designed in such a way, that the executable script is executed directly
after the container startup was successfully. This can be realized by using the execu-
tion command of the script as an entrypointii. This enables the parametrization and

ihttps://docs.docker.com/engine/reference/run/; accessed April 2024
iihttps://docs.docker.com/reference/dockerfile/#entrypoint; accessed April 2024

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/reference/dockerfile/#entrypoint
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execution of a script via the command-line by adding file paths and other parameters
directly to the docker run command as additional arguments.

In order to run an application container a helper class is conceptualized, sup-
porting the afore mentioned principle for data exchange and the execution of an
application image in a developer-friendly way. The main task of the helper object is
to provide an intuitive interfaces to prepare and execute an application image specific
docker run command. The usage of this helper object is demonstrated exemplary
in Listing 3.4 Exemplary usage of the Docker helper class and demonstrates how the
docker image parameters are set. The executed docker run command is shown for
this example in Listing 3.5 Exemplary docker run command generated by the docker helper
class shown in Listing 3.4.

Finally, the helper class runs the application image and tracks the status of the
execution. Once the execution has ended, a list of mitk::BaseData objects is created,
by loading the defined output files from disk. These objects can be added to the
DataStorage view to enable interactive access within M²aia.

Although the focus is on M²aia, the concepts are also transferable to other ap-
plications. The concepts presented here (and their implementation) can be used
as a blueprint for corresponding developments. All features for the integration of
third-party applications within a MITK-based interactive application such as M²aia
are realized as an external project using the MITK project template. The respective
MITK extension will be referred to as mitk-dockeri.

// Docker image used f o r image process ing
std : : s t r i n g image = " ghcr . io/m2aia/anyimage : l a t e s t "

// The docker helper c l a s s prepares and executes the docker run command
mitk : : DockerHelper helper ( image ) ;

helper . EnableAutoRemoveContainer ( t rue ) ; // d e l e t e the c on ta in er a f t e r i t was executed
helper . EnableGPUs ( f a l s e ) ; // enable usage of graphic cards within the c on ta in er

// c on ta i ne r input
helper . AddAutoSaveData ( imzMLDataNode−>GetData ( ) , "−−imzml " , " f i l e _ m s i " , " . imzML" ) ;
helper . AddAutoSaveData ( centroidNode −>GetData ( ) , "−− c e n t r o i d s " , " f i l e _ c e n t r o i d s " , " . c e n t r o i d s " ) ;

// c on ta i ne r output
helper . AddAutoLoadOutput ( "−−output_0 " , " output_0 . nrrd " ) ;
helper . AddAutoLoadOutput ( "−−output_1 " , " output_1 . nrrd " ) ;

helper . AddApplicationArgument ( "−−param_0 " , m_Controls . param_0−> t e x t ( ) . t o S t d S t r i n g ( ) ) ;
helper . AddApplicationArgument ( "−−param_1 " , m_Controls . param_1−> t e x t ( ) . t o S t d S t r i n g ( ) ) ;
helper . AddApplicationArgument ( "−−param_2 " , m_Controls . param_2−> t e x t ( ) . t o S t d S t r i n g ( ) ) ;
helper . AddApplicationArgument ( "−−param_3 " , m_Controls . param_3−> t e x t ( ) . t o S t d S t r i n g ( ) ) ;

// s t a r t process ing
const auto r e s u l t s = helper . GetResul ts ( ) ;

f o r ( auto r e s u l t : r e s u l t s ) { // do something with the r e s u l t s . . . }

LISTING 3.4. Exemplary usage of the Docker helper class. This C++ code snippet
demonstrates the use of the mitk::DockerHelper class to prepare and execute a Docker
container. It configures the container to automatically remove itself after execution and
disables GPU usage. The script sets up input data files with specific arguments and specifies
the output files to be automatically loaded after processing. Application-specific parameters
are passed to the container, and finally, the results of the container execution are retrieved.

ihttps://github.com/m2aia/mitk-docker

https://github.com/m2aia/mitk-docker
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docker run [OPTIONS] IMAGE [ :TAG|@DIGEST] [COMMAND] [ARG . . . ]

docker run −−rm \
−−volume / l o c a l /absolute/path/to/workspace :/ co nt a i ne r/workspace \
ghcr . io/m2aia/anyimage : l a t e s t \
−−param_0 value_0 \
−−param_1 value_1 \
−−param_2 value_2 \
−−imzml /c on ta in er/workspace/ f i l e _ m s i . imzML \
−− c e n t r o i d s /c on ta in er/workspace/ f i l e _ c e n t r o i d s . c e n t r o i d s \
−−output_0 /c on ta in er/workspace/ r e s u l t s /output_0 . nrrd \
−−output_1 /c on ta in er/workspace/ r e s u l t s /output_1 . nrrd

LISTING 3.5. Exemplary docker run command generated by the docker helper class shown in
Listing 3.4.

3.5 Concepts for Deep Learning on MSI data

In this section the imzML image access capabilities are extended for deep learning
applications. In section 3.5.1 an problem overview is introduced along with general
concept details in 3.5.2. Further specified are concepts for data access strategies in
section 3.5.3, key features of the batch generators in 3.5.4 and the complementary
details for shared library access in section 3.5.5.

Parts of this section have been published in:

• Cordes et al. pyM2aia: Python Interface for Mass Spectrometry Imaging with Focus
on Deep Learning. Bioinformatics (2024)118

3.5.1 Overview

The slow development of deep learning in the processing of MSI data can be attributed
to various factors. These include the lack of standardized benchmark datasets20,
inconsistent data quality due to batch effects36, a wide range of signal processing
approaches for MSI data18,54, challenges arising from the curse of dimensionality, and
the untraceability of deep learning models that lack explainability and interpretability
(often referred to as "black box" models). Furthermore, the state-of-the-art in deep
learning often relies on widely used deep learning frameworks in Python, such as
TensorFlowi or pyTorchii. However, Python packages for the specific provision of
spectral data in the context of deep learning model development for MSI do not exist.
There are two packages for loading imzML data in Python142. These are pyImzMLiii

and imzml-rsiv. pyImzML is an optimized package for raw imzML53 data import
and export, but is lacking signal processing capabilities. It is used by the well known
METASPACE84 online platform for molecular annotations.

Previous Python-based open source implementations of deep learning applica-
tions in the field of MSI have explored various approaches to address data access.
Abdelmoula et al. (2021)63 realizes an unsupervised method for the identification
of peaks which is based on an upstream conversion step of the MSI data into the
hdf5v format63,64. Hu et al. (2022)58 and Ovchinnikova et al. (2020)57 use databases of
already exported 2D ion-images for training of deep learning models for ion-image

ihttps://www.tensorflow.org/; accessed April 2024
iihttps://pytorch.org/; accessed April 2024

iiihttps://github.com/alexandrovteam/pyimzML; accessed April 2024
ivno documentation found; April 2024
vhttps://www.hdfgroup.org/; accessed April 2024

https://www.tensorflow.org/
https://pytorch.org/
https://github.com/alexandrovteam/pyimzML
https://www.hdfgroup.org/
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co-localization tasks57,58. Li et al. (2023)141 also uses a preprocessed dataset in com-
bination with OpenCVi to load data for the training of a deep learning model for
accelerating 3D image reconstructions. All of the methods avoid the direct use of
imzML data. In addition, the reproducibility of the pre-processing of MSI data is
often impaired by a lack of documentation or the use of unpublished processing
techniques. It would therefore be advantageous to process raw data directly.

The hypothesis is that employing fast and memory-efficient processing techniques
tailored to the imzML file format could significantly enhance the training and devel-
opment of deep learning models by supporting optimized and convenient data access
interfaces. The imzML standard not only allows for the storage of raw data but also
facilitates the documentation of preprocessing steps directly within the file format.
As a well-established community standard, imzML offers extensive capabilities for
FAIR (Findability, Accessibility, Interoperability, and Reusability) data exchange, as
highlighted in the literature76,143.

3.5.2 Concept

A unified code base that spans interactive exploration and scripting applications can
ensure consistent data visualization and processing across both domains. By enabling
seamless transitions of data between interactive applications and a Python-based
scripting environment, tasks such as the interactive creation of spatial annotations
and interactive visualization of image inputs, intermediate results, and outputs are
streamlined. This integration could be achieved by encapsulating M²aia’s optimized
imzML data import strategies within a Python framework. Consequently, image data
examined in the interactive M²aia application should be accessible in Python and vice
versa, ensuring a fluid interchange of data between these platforms. This facilitates
a more integrated workflow, allowing for both detailed analysis within M²aia and
flexible scripting and automation in Python.

To optimize deep learning implementations for MSI, the integration of M²aia’s
imzML import directly into a Python based environment could offer significant bene-
fits. The goals of this integration are: (i) Enabling efficient access to individual spectra
and ion-images so that deep learning models can process the data with increased
speed and flexibility; (ii) utilising M²aia’s advanced signal processing capabilities,
which are closely related to lazy loading techniques; (iii) streamlining metadata
queries directly from the imzML format to ensure that relevant data attributes can be
retrieved quickly and easily; and given that MSI datasets are represented as a three-
dimensional data cube—with two spatial dimensions and one spectral dimension,
which can expand extensively due to substantial spectral bandwidth—it is crucial to
(iv) define and develop tools that realize data access strategies that support targeted
queries. Such data access strategies are essential in deep learning methods to reduce
the data in the input layers of the networks. Focusing on reducing the field-of-view
can significantly enhance data management, enabling more efficient processing and
analysis for deep learning applications. This approach narrows down the amount of
data that needs to be processed at any one time, potentially speeding up computations
and reducing the resource load. However, this method also introduces a trade-off:
while it decreases the data load, it simultaneously requires a compromise between
the completeness of the data and its manageability. By limiting the field-of-view,
important features or patterns could be omitted, which might impact the accuracy
or the effectiveness of the deep learning models. Thus, finding the right balance
between reducing the field-of-view and maintaining the integrity and completeness

ihttps://pypi.org/project/opencv-python/; accessed April 2024

https://pypi.org/project/opencv-python/
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of the data is crucial for optimizing both performance and outcomes in deep learning
tasks.

By utilizing the memory-efficient and fast imzML import functions of M²aia
together with the computationally intensive signal processing functions, Python-
based access to imzML data can be enabled. This is achieved by integrating the
shared library functions of M²aia directly into a Python context. For this purpose, a
wrapper class is designed that enables functions from the M²aia shared library to be
called.

This wrapper object is designed to provide convenient access to essential elements
in imzML datasets (points i-iii), such as metadata, spectra and ion-images, while
providing advanced signal processing techniques. By integrating these functionalities
into a single wrapper class, users can effortlessly interact with MSI datasets. This
optimized approach not only simplifies the handling of large datasets in Python, but
also improves the efficiency of data analysis and processing, making it a powerful
tool for researchers and developers.

Additionally, classes that enable deep-learning-oriented data access (point iv) are
crucial. These classes should support targeted queries to reduce the field-of-view
and also be capable of performing data transformations, augmentations, and batch
generation. In order to work out the classes in more detail, the concepts for data
access are explained in the following section. The class concepts and the resulting
Python package are referred to as pyM²aia118.

3.5.3 Data Access Strategies for MSI Data

As discussed in the previous section, the complexity of MSI poses a challenge for
its use in training deep learning models. Looking at the current state-of-the-art in
MSI data handling, different access strategies have been identified. These include
strategies that only access spectra, those that only retrieve ion images, and hybrid
approaches that allow combined access to spatial-spectral sub-cubes. These strategies
are important to reduce the amount of data for training, as complete datasets, as
mentioned, cannot yet be used directly as input for deep learning models due to
their size. These access strategies for MSI have not yet been formally documented.It
is hypothesized that categorization of methods according to these access strategies
benefits the communication about MSI deep learning approaches. The following
basic data access strategies are proposed:

Spectral Strategy The spectral strategy uses spectral information only and discards
the spatial relationships between spectra. Different models exist utilizing this strategy,
including spectrum-wise peak picking and classification by Abdelmoula et al. (2021)63

or dimensionality reduction methods by Thomas et al. (2016)144. The spectral strategy
is illustrated in Figure 3.16 Spectral Strategy. This strategy actually pursues the use of
entire spectra, but it can also be useful to consider only predefined positions on the
m/z axis, e.g. to reduce the amount of data or to find specific correlations within a
selection of m/z positions.

Spatial Strategy The spatial strategy addresses the spatial properties of a molecular
distribution, but intra-spectral relationships are not taken into account. Different
models exist including the work of Hu et al. (2022)58 and Ovchinnikova et al. (2020)57

for ion-image co-localization tasks57,58. For these tasks, usually only a small subset
of the available m/z values and the corresponding intensities are relevant, which
are ultimately required for ion-image generation (see subsection 3.2.3 Ion Image
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FIGURE 3.16. Illustration of the spectral strategy within the context of batch generation in
deep learning applications. On the left, three different MSI datasets (A,B,C) are randomly
sampled in the spatial domain (colored squares). Sampled spectra are stacked to provide a

batch of elements with size B and channel size C.

Generation). A corresponding limitation could be realized by providing m/z values of
individual peaks that exceed a certain noise-to-signal ratio or that are relevant in the
context of an investigation. The spatial strategy is illustrated in Figure 3.17 Spatial
Strategy. In order to apply the spatial strategy to multiple MSI datasets simultaneously,
it is necessary to consider how to standardize the ion-images, e.g. by cropping them.

Spatio-Spectral Strategy The spatio-spectral strategy uses spatial and spectral
information simultaneously, which are computationally highly demanding and still
rare. The spatial strategy is illustrated in Figure 3.18 Spatio-spectral Strategy. As with
the spatial strategy, it often makes sense not to use the entire spectral depth and to
restrict it by specifying a list of m/z values. However, this can vary in this strategy
depending on the question. To select spatially adjacent spectra, a neighborhood can
be defined around a central pixel. Finally, this leads to spatial-spectral samples that
may not have the full spectral depth and include close neighbors.

3.5.4 Deep Learning Support by Batch Generation

To generate batches of samples for training and inference of deep learning models,
pyM²aia introduces appropriate data structures. A unified batch generation process
is based on the so-called SpectrumDataset and IonImageDataset for spectral and ion
images, respectively. The general purpose of a dataset is to generate samples that can
be compiled into batches for training/inference. These datasets are designed to handle
multiple imzML images simultaneously. The main features of the SpectrumDataset
and IonImageDataset are listed below.

SpectrumDataset The SpectrumDataset aims to provide convenient access to spec-
tral or spatio-spectral samples derived from single or multiple imzML datasets. The
concept is illustrated in Figure 3.19 Concept for batch generation using the SpectrumDataset.
The key features of the SpectrumDataset are:
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FIGURE 3.17. Illustration of the spatial strategy within the context of batch generation in deep
learning applications. On the left, a MSI datasets is illustrated. Given a user-provided list of
centroids (m/z values), ion-images are randomly sampled in the spectral domain (colored
squares). Sampling is restricted to the list of centroids. Sampled ion-images are stacked to

provide a batch of elements with size B, image width W, and image height H.

FIGURE 3.18. Illustration of the spatio-spatial strategy within the context of batch generation
in deep learning applications. On the left, a MSI datasets is illustrated. Subregions are
randomly sampled in the spatial domain (red, purple, turquoise squares) by simultaneously
sampling the spectral domain by a given user-provided list of centroids (m/z values; yellow,
green, blue squares). Sampled subregions are stacked to provide a batch of elements with

size B, channel size C, region width W, and region height H.
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• Spectral Strategy: The dataset returns multiple spectra and associated label per
query.

• Spatio-Spectral Strategy: The dataset returns a single spectrum, associated label
and adjacent neighboring spectra per query.

• Consistent Spectral Depth: In order to handle multiple imzML images a consis-
tent spectral depth across all images is guaranteed.

• Support for Labels: A label mask can be included to assign labels to each
spectral sample, facilitating the training of supervised deep learning models.

• Query Neighboring Spectra: For the spatio-spectral approach, a specific shape
element is necessary to define a neighborhood around a pixel position (patches).

• Centroid List Provisioning: Users can generate specific sub-spectra by providing
a list of m/z values. This tailored approach ensures that the generated spectra
are relevant to the user’s specific research needs.

• Spectral Buffering: For both, the spectral strategy and spatio-spectral strategy,
an in-memory buffering of sampled spectra can be enabled. This is realized
using a key-value store with the spectrum indices as keys and the intensity
values of the spectra as values. If a spectrum are is queried again, e.g. in a
subsequent training epoch, spectra can be queried directly from the key-value
store.

IonImageDataset The IonImageDataset is specifically designed to facilitate the
retrieval and manipulation of ion-image samples derived from single or multiple
imzML datasets. The concept is illustrated in Figure 3.20 Concept for batch generation
using the IonImageDataset. The following key features are summarized:

• Spatial Strategy: The dataset returns multiple ion-images per query.

• Flexible Data Handling: Continuous/processed-centroid and continuous-pro-
file imzML images with different spectral depths and non-uniform image di-
mensions are supported.

• Centroid List Provisioning: Users can generate specific ion-images by providing
a list of m/z values. This tailored approach ensures that the generated images
are relevant to the user’s specific research needs.

• Fallback for Non-existent Data: In instances where the requested m/z values
fall outside the spectral range of the imzML dataset, the dataset will generate
a blank image. This feature ensures that the dataset’s integrity is maintained
even when specific data points are unavailable.

• Image Transformation: To standardize the diverse dimensions of ion-images for
computational analysis, the dataset allows for sample transformations. These
transformations may include central cropping or resizing, adapting the images
to a uniform size suitable for further analysisi.

ihttps://pytorch.org/vision/stable/transforms; accessed April 2024

https://pytorch.org/vision/stable/transforms
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FIGURE 3.19. Schematic representation of spatial-spectral data access. In the initial phase,
(a) up to k reader objects (m2.ImzMLReader) are created. Signal processing can be config-
ured individually for each of the reader objects. The images are assigned to the dataset
(SpectrumDataset). The stack generation starts with (b) the random selection of B valid
pixel positions P = [pr1, ..., prB], across all images, with B as the batch size. To follow the
spatial-spectral strategy, patches of size [d, d] are generated around the x-y positions pr. The
index image of M²aia is used (see section 3.2 Concepts for MSI Data Processing) to select all
spectra within the patch with the centre position defined by pr. For each patch, [i1, ...id2 ]
indices are retrieved. Each spectrum index is checked to see whether it has already been
retrieved in a previous iteration. An in-memory buffer can be used to keep track of individual
queries in order to generate final query lists of indices: a list [i, ...]imzML for querying the MSI
records and a list [i, ...]bu f f er for querying from the buffer. All spectra are now either generated
by M²aia or loaded from the buffer. Once all spectra have been retrieved, the unprocessed
and unbuffered spectra (c) are stored in the buffer. Next, the spectra (d) are transformed, such
as by masking or reshaping. Masking is optional and can be used with a user-defined list
xs of m/z values. The aim is to reduce the spectral bandwidth and data load. If d > 1, the
list of spectra is reshaped to obtain patches of size [d, d]pr . Extensions (e) can be applied to
manipulate the stacks directly before (f) training the model parameters. In the case of d = 1,

the procedure corresponds to the spectral strategy.
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FIGURE 3.20. Schematic illustration of spatial data access. In the initial phase, (a) up to k
reader objects (m2.ImzMLReader) are created. Signal processing can be configured individually
for each of the reader objects. The images are assigned to the dataset (IonImageDataset). The
stack generation starts with (b) the random selection of B m/z values [cr1, ..., crB]xs, from the
user provided list xs, with B as the batch size. To follow the spatial strategy, ion-images are
generated for each cr. The ion-image generation capabilities of M²aia are used (see section 3.2
Concepts for MSI Data Processing) to generate ion-images. An in-memory buffer can be used
to keep track of generated ion-images: a list [i, ...]imzML for querying the MSI records and a
list [i, ...]bu f f er for querying from the buffer. In order to handle the different image sizes of
ion-images generated by the different reader objects, (c) ion-images are transformed using
methods such as central cropping. The results of the transformation is a uniform batch of
ion-images. Additionally, the ion-images from the buffer have now the same shape and can
be concatenated. Unbuffered ion-images are (d) written to the buffer. Image augmentations
(e) can be applied to manipulate the stacks directly before (f) training the model parameters.
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• Augmentations: The application of augmentations is supported. These augmen-
tations can enhance the dataset’s utility in deep learning models by introducing
variability that helps in generalizing the model’s performance across different
data scenarios.

• Ion Image Buffering: The ion-image buffering is realized as on-disk buffering.
Ion-images are drawn from the imzML images and the image transformations
are applied, e.g. in order to generate ion-images with similar shape. These
transformed ion-images are stored on disk, e.g. as numpy binary files. If an ion-
image is queried again, e.g. in a subsequent training epoch, the ion-image can
be loaded from disk. This way, the, possibly data and computation intensive,
ion-image generation process (see subsection 3.2.3 Ion Image Generation) and the
image transformations are skipped.

Both the IonImageDataSet and the SpectrumDataset classes are designed to han-
dle multiple imzML images, facilitating a comprehensive approach to data manage-
ment in deep learning MSI applications. Access to M²aia-based m2::SpectrumImages
— detailed in section 3.2 Concepts for MSI Data Processing and illustrated in Fig-
ure 3.5 Class diagram of handling hyperspectral images in M²aia—is integrated into the
m2.ImzMLReader. This class serves as the interface to these datasets, covering aspects
(i-iii; defined in Figure 3.21 Access to shared library) which include the efficient extrac-
tion and handling of metadata, spectra, and ion-images from imzML datasets. This
structured approach ensures that all data types necessary for comprehensive analysis
and machine learning applications are readily accessible and efficiently managed
within the Python environment. An overview of the concept of using pyM²aia for the
training of deep learning models is illustrated in Figure 3.21 Access to shared library.

3.5.5 Access to imzML Datasets

The Datasets described in subsection 3.5.4 Deep Learning Support by Batch Generation
utilize the m2.ImzMLReader component of pyM²aia, a specialized reader designed
to handle imzML files efficiently. This reader integrates the shared functions from
M²aia’s C++ libraries, enabling data processing capabilities directly in the Python
environment. The m2.ImzMLReader offers a comprehensive set of features, allowing
users to access the imzML spectral formats, such as continuous and processed profiles
or centroids. It supports all of M²aia’s imzML import and data access concepts as the
signal processing options, accesses to overview spectra and helper images, and the
ion-image generation as well as querying single spectra using indices. Additionally,
the metadata of imzML datasets can be accessed rapidly ensuring applicability to
data management processes. The integration with Python is facilitated by ctypesi,
a library used for calling functions from DLLs or shared libraries. Setting up the
M2AIA_PATH environment variable is critical as it defines the search path for these
libraries, allowing users to utilize either the pre-packaged binaries or customized
versions of the M²aia libraries. Summarized, the key features of m2.ImzMLReader are:

• Supports all imzML-defined spectrum formats.

• Provides extensive signal processing capabilities.

• Efficient access to overview and individual spectra.

• Rapid ion-image generation capabilities.

ihttps://docs.python.org/3/library/ctypes.html; accessed April 2024

https://docs.python.org/3/library/ctypes.html
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FIGURE 3.21. This illustration highlights the shared-library access during batch generation for
the spatio-spectral (see Figure 3.19 Concept for batch generation using the SpectrumDataset) and
spatial (see Figure 3.20 Concept for batch generation using the IonImageDataset) access strategies.
On the left side, the functions of the shared library are illustrated (yellow boxes). These are
used by pyM²aia objects to query data from imzML reader objects within the scope of M²aia.
In order to execute appropriate queries, the (1) initialization of Python package (import
m2aia) is used to check for a valid shared library object (using system variable M2AIA_PATH)
and further evaluates all required dependencies. ImzML reader objects (m2.ImzMLReader)
are (2) initialized with a given file path variable. These readers can be configured in order to
execute signal processing steps during the access of the imzML data. The created (A) image
address is returned and stored as access point within the reader object. In (3.1) an ion-image
dataset (m2.IonImageDataset) and in (3.2) an spectrum-dataset (m2.SpectrumDataset) are
created and initialized with multiple reader objects Ri, with i = 1, ..., n. During the sampling
of the reader objects (B.1) the shared library is used to execute the ion-image generation
in order to provide access to the intensity matrix. In (B.2) multiple spectra are queried
simultaneously for data sampling using the spectral strategy. The black lines with circles

indicate at which step of the sampling data are queried from M²aia.
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• Fast access to imzML metadata facilitating data management processes.
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Chapter 4

Concepts for
Interactive Remote Working

In this chapter, the concepts for an interactive Remote Working Environment (RWE)
are introduced for processing of MSI datasets. An overview of the problem and
research objectives are provided in section 4.1, the targeted user-group and require-
ments are introduced in section 4.2. The platform architecture is introduced in section
4.3 and the packaging of interactive applications for the biomedical image processing,
based on the containerization technology Docker, in section 4.4. The use concept of
these applications is finally described in section 4.5.

4.1 Overview

In the rapidly evolving field of biomedical research, the ability to interactively access
images is crucial for effective analysis, methodological innovations and collabora-
tive endeavors. As imaging techniques continue to advance, generating ever more
detailed datasets, the amount of data to be stored and processed will continue to
increase. As a result, data and computationally intensive processes are therefore
increasingly being shifted to remote resources. Large, multidimensional and multi-
modal biomedical images, as generated by Mass Spectrometry Imaging (MSI) (see
section 2.1 Mass Spectrometry Imaging), pose major challenges to a fast, comprehensive
and interactive access of remote images. Processes as image analysis, development of
new methods, and interdisciplinary collaboration of domain experts can be hampered
if data-intensive transfers to local systems are required, e.g. for processing of images
with interactive desktop applications the domain experts are familiar with. Current
efforts to utilize remote resources focus on providing IDEs for remote development
and applications for execution of reproducible image analysis workflows (see sec-
tion 2.3 Bioinformatics). However, the alternating steps of a development process,
which include code generation, code execution, and full interactive validation of
images and image-related inputs and results, are difficult to perform completely on
remote resources. One reason for this is that interactive applications in the field of
biomedical image processing are often not designed for remote working. Experi-
ence, interviews with researchers and analysis of existing workflows show that a
comprehensive interactive remote access, particularly to complex data sets such as
those generated by MSI, would be beneficial. Therefore, in this work the provision of
suitable solutions that can help us to carry out the entire development and analysis
processes remotely, focusing on MSI-related applications, is pursued.

The following three research questions are addressed: (1) Can interactive appli-
cations, like M²aia, be hosted on remote resources to process image data for which
there are no interactive remote solutions yet, e.g. MSI data? (2) Can the interactive
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image exploration and thereby the development process of new image-based process-
ing methods be supported or/and completely shifted to remote resources? (3) Can
interactive access to image processing applications be realized in a simple, efficient
and user-friendly way?

In this chapter, the concept of a flexible and extensible remote working environ-
ment is introduced, where method development, data processing, collaboration, and
especially interactive processing tasks, are performed by users directly on a remote
machine (server or in the cloud). This developer-friendly environment should result
in the complete avoidance of transferring entire data sets to the user’s local system.

Definition: An interactive Remote Working Environment (RWE) is a software
eco-system that enables interactive and collaborative development tasks on remote
resources. Remote working includes the following tasks:

• Remote Execution: permits the execution of source code, processing appli-
cations and the management of interactive applications. They can run com-
putationally intensive tasks, avoiding the limitations of local machines and
improving overall efficiency. Execution privileges are to be regulated by server-
execution-policies.

• Remote Interactivity: provides users and collaborators to access interactive
applications, allowing for rapid data exploration, image annotation, and easier
sharing of data related processing tasks, insights and results. The interactive
applications can be hosted in read-only mode to act as a viewer application or
in read-and-write mode for data related processing.

• Remote Development: aims to develop new methods directly on remote located
resources. This may require utilization of remote interactivity and remote
execution tasks. The entire source code, application dependencies and required
(image) datasets are provided on the server side. During development, it may
be necessary to make corresponding data interactively accessible, for example
to view new data immediately after it has been recorded, to verify intermediate
results of remote executions, or to make individual data objects or collections
available to collaborators.

4.2 User Groups

The interactive RWE is primarily aimed at two user groups: Data Analysts and Data
Users. A Data User is a person who focuses on specific interactive tasks, including
the exploration of existing datasets or the generation of new data such as image
annotations. A Data Analyst, on the other hand, is a specialized Data User who
follows a research question, that often additionally requires the creation or adaption
of source code for new algorithms and applications. In addition, Data Analysts are
able to transfer data to and from remote storage devices. They may provide interactive
access to images or image-related data, both for themselves and for collaborators,
through interactive applications. In Figure 4.1 Interactive Remote Working Environment
- User Groups, user actions for remote developing, remote execution and remote
interactivity are illustrated.

The basic idea behind the interactive RWE is to provide interactive access to
imaging and related data during all stages of the method development process. A
typical user scenario that should be targeted is remote collaborative method develop-
ment with biomedical imaging datasets as illustrated in Figure 4.2 Interactive Remote
Working Environment - User Scenario.
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FIGURE 4.1. Interactive Remote Working Environment - User Groups: actions are executed
within different interactive interfaces. The server interface application is the primary interface
for remote developing and remote execution is also used to manage interactive applications
(green). Interactive applications are remote executed applications that can be accessed using

a standard web browser (blue).
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FIGURE 4.2. Interactive Remote Working Environment - User Scenario: This example user
scenario illustrates actions proposed for a development process of new image-based methods
using collaboratively generated data. A task sequence for the Data Analyst is shown on
the left. The Data Users and a task matrix for completed, pending, and support tasks are
shown on the top right. On the lower right are the centralized resources, showing hosted
applications, image datasets, and the hosting service for the applications on a server. Data
Analyst: once the data transfer to the server is complete (A), an interactive application can be
hosted on the server to explore the image datasets (B). The process can now be split (C) into
two parallel paths: following the left path, the Data Analyst can start remote development
processes (D-F), including alternating steps of development, interactive exploration, and
method evaluation. During development, the Data Analyst can access intermediate results
of annotations generated by Data Users (raters 1 to N). Following the right path, the Data
Analyst can (G) host interactive applications (Application 1 through N) for each Data User
using a hosting service (ii) to provide the Data Users with access to all image datasets (Data
1 through M). The Data Analyst can simultaneously access the Data Users’ applications to
(H) assist in the image annotation process, e.g. when questions arise. Once the annotation
process is completed for all image datasets, the final method evaluation can be realized (I).
Finally, the results of the developed method (J) can be made available to other Data Users for
demonstration purposes. Data Users: receive a web addresses to remotely hosted applications
to start annotation processes. Data Users can request assistance from the Data Analyst. The

annotation task matrix (i) indicates the status of the collaborative process.
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Requirements

Based on the exemplary user scenario (see Figure 4.2 Interactive Remote Working
Environment - User Scenario) and analysis of existing workflows and with regard to
the research environment this work was created, the proposed interactive RWE is
conceptualized with the following requirements in mind:

Integrability The interactive RWE should be designed as an extension of the labora-
tory or institute infrastructure, ensuring seamless integration with existing systems.
The software should have minimal administrative and learning overhead to facilitate
easy adoption and use.

Data Accessibility The interactive RWE should prioritize the use of existing file
systems to avoid the need for databases that usually require expert knowledge to
setup, maintain and extend.

Interactivity The interactive RWE should instantaneously allow users to remotely
explore existing 2D/3D multi-modal images and create new image related data, such
as image annotations, in an interactive manner. In addition, the interactive RWE
should eliminate the need for large data transfers.

Scalability The interactive RWE should ensure scalability, allowing multiple users
to work on the same resources simultaneously without encountering conflicts.

Maintenance To ensure long-term sustainability of the algorithms and workflows,
the interactive RWE should be designed for easy maintenance, updates, and expan-
sion. This includes the ability for non-specialized technical staff to install components.
The interactive RWE should be adaptable to meet new developments and changing
requirements.

Collaboration The interactive RWE should encourage collaboration by providing
any number of interactive applications to multiple Data Users or Data Analysts.

4.3 Platform Architecture

The main goal is to facilitate functions that support the remote development process
in the context of MSI. Since the development of new methodologies represents the
most complex and demanding aspect of the platform, other functionalities, such
as remote exploration, viewing utilities, and collaborative tasks, naturally extend
from this foundation. These capabilities are designed to enhance the user experi-
ence, promote efficiency, and support collaborative efforts among researchers and
developers working in different locations. This holistic approach ensures that the
platform not only meets the core requirements of method development but also
provides comprehensive tools for the broader scope of remote biomedical research
activities. This section outlines the general architecture of the platform, as depicted
in Figure 4.3 Platform Architecture of the Interactive Remote Working Environment. The
two main components of the platform architecture are:
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FIGURE 4.3. Interactive Remote Working Environment - Platform Architecture: On the Local
Operating System (OS) VS Code and a web browser are required. On the Remote OS, VS
Code Server and a Docker Host are required. Users can conveniently access a server by
using the Remote SSH extension (or Remote Tunnels). All required extensions for application
development, like specific programming language support and other features, are installed
as Workspace Extensions on the Remote OS. The Application Controller extension provides
convenient management of Applications Containers directly from within the VS Code’s user
interface. VS Code has the opportunity to access remote allocated data and manage Terminal
Processes. Access to an interactive application is realized web browser-based by bringing
remote hosted interactive desktop applications like M²aia, MITK, ImageJ, QuPath, ilastik and

others, ie. community contribution, directly to the Local OS.

Remote Integrated Development Environments (IDE): the desired architecture
includes a dual-interface approach consisting of a remote Integrated Development
Environment (IDE) server and a corresponding IDE server interface on the local
site. The server interface can be a web-service such as JupyterLab145, RStudio97 or a
desktop client application such as Visual Studio Code (VS Code)146. This interface is
central and primarily serves Data Analysts developing new methods by using the
code editor. It also includes tools for managing data transfers and remote processing
tasks. Visual Studio Code (VS Code) is chosen in the further conceptualization as
the primary server interface for the local and server operating system because of its
extensive support for remote development and the execution of tasks. It provides
an efficient coding environment and integrates seamlessly with many differed pro-
gramming languages and development tools. Besides the wide range of excellent IDE
functionalities and supported programming languages, a whole set of community
driven extensions for all kind of tasks exists. In this work we encourage the use of VS
Code extensions supporting remote access to server resources.

The Remote Development extension pack is utilized to streamline the remote
development process. This extension pack includes two extensions that facilitate
access to centralized resources, namely the Remote SSH and Remote Tunnel exten-
sions. Both extensions offer mapping of remotely located folder structures to the local
system, thereby emulating a local development environment that leverages remote
resources.

Docker-Based Application Container: Docker is a containerization platform that
allows software developers to package their applications and dependencies into
portable containers that can be easily deployed across different environments. These
containers provide a consistent and reliable environment for running applications,
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making it easier to develop, test, share, and deploy software. In the proposed concept
Docker112 is installed on the server side as application provider service (see section 2.5
Containerization with Docker).

The packaging of interactive applications in a Docker containerScherer et al.,
(2020, )2,147 is an important concept of this work and realizes the proposed capabilities
of remote interactive access to image dataset. The design of these containers focuses
on hosting a single interactive application that is accessible from outside the container
using web-based communication. Packaging a single application within a container
optimize both performance and resource utilization. The concept for the interactive
application container includes three essential components:

• A Unix-based desktop environment, such as GNOME Shell, LXQt, LXDE, Xfce,
or MATE, to facilitate the execution of interactive applications148.

• An interactive desktop application specifically designed for visualizing and
processing biomedical image data.

• A remote desktop service that enables access to the Unix desktop and its appli-
cations via a web browser.

An additional (optional) components in order to facilitating the user-interaction
on the management level can be realized:

Application Controller: to facilitate the use of application containers, container
management plug-ins are beneficial. For example, convenient access to an IDE-
integrated utility to create, remove, observe, configure and share containers directly
within the remote IDE’s UI is a helpful tool for the Data Analyst. Alternatively, it
would be possible to manually launch the application containers directly using the
Docker Application Programming Interface (API), but this would make it much more
difficult to manage the applications if it does not exist. A custom VS Code extension
is implemented for the proposed platform architecture, that is based on VS Code,
allowing for a streamlined management of remote applications. More details on can
be found in section 4.5 Application Controller

In summary, this architecture is designed to provide a robust, scalable, and user-
friendly environment for remote processing of biomedical image data using Docker, a
remote IDE, and the optional proposed Application Controller, ultimately providing
convenient access to the component of the RWE.

4.4 Remote Interactive Applications

This section describes the application containers that provide access to the interactive
applications. These application containers are designed for rapid deployment and are
particularly beneficial in development scenarios, as they provide direct interaction
with imaging datasets while taking advantage of the full processing capabilities of
CPUs and GPUs. At its core, access to containerized applications can be realized
through Video Network Computing (VNC) capabilities that capture the desktop
screen running inside the container. This setup can be accessed externally through
an HTML5 compliant web interface. The concept of these interactive application
containers is further elaborated in Figure 4.4 Interactive Remote Working Environment -
Application Container.
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FIGURE 4.4. Interactive Remote Working Environment - Application Container: Docker is
used to start an Application Container using port and volume mappings. The application
container is providing an Ubuntu Desktop (e.g. LXDE/LXQt). At startup, the web-server
and the VNC interface (yellow box) as well as the observer process (red box) are started as
background processes. Additionally, the interactive desktop application (blue box) is started
in full screen mode. The observer process (bash script) checks the window status and forces

the container to shut down if the application crashes.

Application Images: a Docker-based image hierarchy is proposed to create new
interactive applications. This is illustrated in Figure 4.5 Hierarchy of Docker Images
to Encapsulate Interactive Applications and shows the dependencies of the Docker
images used to build and package new applications. The base image local/vnc-base
provides the desktop runtime environment and interactive web browser access149. A
new application Docker image is created by inheriting from this base image. The new
image uses instructions to provide all runtime dependencies and downloads/copies
the image processing application into the Docker image. Installed applications are
set up as the startup application of the desktop environment using a supervisordi

config file and startup script.

iSupervisord is a process control system for UNIX-like operating systems that allows users to
monitor and control processes on UNIX and Linux systems. It is commonly used to start, stop, and
restart background daemon processes as defined in a configuration file. Example file on Github https:
//github.com/m2aia/m2aia-docker/blob/main/applications/m2aia/files/supervisord.conf; accessed
April 2024

https://github.com/m2aia/m2aia-docker/blob/main/applications/m2aia/files/supervisord.conf
https://github.com/m2aia/m2aia-docker/blob/main/applications/m2aia/files/supervisord.conf
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FIGURE 4.5. Hierarchy of Docker images used to encapsulate interactive applications - The
base of the hierarchy is an Ubuntu based Python image in order to support pyM²aia by
default. The openly accessible Docker registries docker.io and ghcr.io are used to pub-
lish the images. Local build images are marked with local/. The local/m2aia/vnc-base
provides the Desktop environment and the VNC server. The local/m2aia/vnc-mitk pro-
vides all runtime dependencies for MITK and M²aia. In order to provide a application exe-
cutable, it either can be download from a web-source as shown for ghcr.io/m2aia/ilastik,
ghcr.io/m2aia/qupath, and ghcr.io/m2aia/imagej, or compiled by a build image such
as highlighted by local/build-mitk adn local/build-m2aia. Colored images are made

publicly accessible.

# Use the vnc-base image from the
FROM l o c a l /m2aia : no−vnc−base

# Add labels to identify the image and its version
LABEL IMAGE="image-processing-application"
LABEL VERSION="0.x.y"
RUN mkdir −p / s r c /app

RUN apt −get update && apt −get i n s t a l l dependency_a dependency_b

# Download the image-processing-application installation package from Github and extract it to the /new_app
directory

RUN wget ht tps :// github . com/app/app/ r e l e a s e s /download/v0 . x . y/image−processing −appl ica t ion_0_x_y . t a r . xz \
−O / s r c /app . t a r . xz && \
t a r −xvf / s r c /app . t a r . xz −− s t r i p 1 −C /app/ && rm − r f / s r c /app . t a r . xz

# Make the image-processing-application_0_x_y executable
RUN chmod +x /app/bin/image−processing −appl ica t ion_0_x_y

# Copy a shell script that starts the application to the Desktop folder and make it executable
COPY f i l e s /s t ar ta pp . sh /root/Desktop/
RUN chmod 0777 /root/Desktop/s tar ta pp . sh

# Set the working directory to /data
WORKDIR /data

# Copy a supervisord config file that manages the application
COPY f i l e s /supervisord . conf / e t c /supervisor/conf . d/

LISTING 4.1. A definition of a Docker image to create an interactive application image.

Start an Application Container: to start an application container, the command,
shown in Listing 4.2 Docker command to start an application container can be executed
using the Docker API. The application can be accessed by the container address using
a web browser.
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FIGURE 4.6. Data analyst tasks in the remote working environment. Tasks associated with
Data Analysts (left column), which can result in the "finished" or "running" state (middle
column) of an interactive application. Data Users can be part of a task when collaboration is

focused, for example, by receiving an application address.

docker run −−rm −d\
−P \ # ass ign a random f r e e port
−e USER=$ {USER_NAME} \ # user name
−e USERID=$ { USER_ID } \ # user id
−e GROUPID=$ {USER_GROUP_ID} \ # users group id
−e RESOLUTION=$ {RESOLUTION} \ # screen r e s o l u t i o n
$ {VOLUME_MAPPINGS} \ # e . g −v /my/data/d i r :/ data/d i r/in/co nt a i ne r
$ {IMAGE_NAME} # e . g ghcr . io/m2aia/m2aia : v2023 . 1 0

LISTING 4.2. Docker command to start an application container.

4.5 Application Controller

The management of Docker-hosted interactive applications includes the creation,
status tracking, and configuration of different application containers. Tasks in order
to provide a flexible environment for remote image processing with interactive
applications are shown in Figure 4.6 Tasks of Data Analysts in the Remote Working
Environment. The controller should provide a streamlined workflow specifically
designed for managing application containers within the remote IDE and offer utilities
to control, monitor, and adjust Docker-based interactive applications directly from
within the interface. The objective of these interactions is to enhance productivity and
facilitate the utilization of the software ecosystem for Data Analysts, both during the
development process and subsequent analysis phase. In this work, a newly developed
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VS Code extension named vcM²aia is introduced following these principlesi.

ihttps://m2aia.de; accessed April 2024.

https://m2aia.de
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Chapter 5

Results

This chapter presents the results of the different research projects presented in the
chapters 3 and 4. The chapter consists of six parts. The first part in section 5.1
corresponds to the datasets used for the experiments. The second part corresponds to
the results obtained for the concepts of the interactive 2D/3D MSI data processing
application in section 5.2. The third part demonstrates the processing of MSI datasets
with Python with a focus on deep learning in section 5.3. The fourth part demonstrates
several different integrations of third-party methods in section 5.4. The fifth part
includes demonstrations of the remote working capabilities in section 5.5. The sixth
and final part contains the data and code availability statements.

5.1 Materials

5.1.1 Lipid/Peptide 3D APP NL-G-F Mouse Brain

To demonstrate the capabilities of M²aia a lipid 3D and a peptide 3D MSI dataset
is made publicly availablei. The dataset consists of 10 consecutive sections of brain
tissue taken from an APP NL-G-F mouse model. Briefly, the sample was cut with
a thickness of 10 µm and sections were placed on a single Bruker indium-tin oxide
slide. Subsequently, lipid and peptide MALDI-TOF-MSI acquisitions were made.
In between the data acquisition for lipids and peptides, the matrix and most of the
lipids remaining on the tissue sections were washed away before the peptide acqui-
sition protocol was applied. The lipid and peptide datasets share a common lateral
resolution of 20 µm and a spot size of 20 x 20 µm. The dataset and this description is
published in Cordes et al. (2021)115 under the conditions of the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). Unless
otherwise described, this dataset will be further referred to as Mouse Brain Dataset.

5.1.2 Adult Earthworm (L. rubellus)

The second dataset comprises four sections (sections 1-4) of an adult earthworm
(L. rubellus) and was published by Geier et al.26. Key imaging details from the
original publication are summarized as follows: MALDI-MSI was performed using
a 7 mg·mL−1 α-cyano-4-hydroxycinnamic acid matrix in a 70:30 acetonitrile/water
mixture containing 0.2% trifluoroacetic acid, applied with SunCollect’s automated
spray-coating system. Key parameters included a capillary z-distance of 25 mm,
compressed air pressure of 2 bar, and flow rates varying from 15 µL·min−1 for the
first layer to 20 µL·min−1 for layers 2-8. The imaging was conducted using an Autoflex
speed LRF MALDI-TOF with a smartbeam-II 1 kHz laser, a 25 µm spot size, and a
"random walk" pattern. Acquisition involved 500 shots per sampling point (100 shots

ihttp://gigadb.org/dataset/100909; accessed April 2024

http://gigadb.org/dataset/100909
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per location within the spot), covering a mass detection range of m/z 100 to 1,280
with an accuracy of 200 ppm. Unless otherwise described, this dataset will be further
reffed to as Earthworm Dataset. The dataset is publicly available in the MetaboLights
repository [MTBLS2639].

5.1.3 3D Reference Datasets

The study published by Oetjen et al. (2015)33 focuses on providing multiple benchmark
datasets for 3D MALDI-MSI. These datasets are intended to stimulate computational
research in 3D MSI. The reference datasets are publicly available in the MetaboLights
repository [MTBLS176]. The individual datasets are summarized in the following list:

• 3D Mouse Kidney Dataset: this dataset comprises 75 sections from a central
part of a mouse kidney that was fixed and embedded in paraffin. Spectra were
acquired from the 3.5 µm thick sections. This process resulted in a total of
1,362,830 spectra, with each spectrum containing 7,680 data points. The data
were preprocessed with Gaussian spectral smoothing and baseline reduction,
and then registered using SCiLS Lab software to reconstruct the original 3D
structure of the kidney and exported to imzML. The total size of the data set is
44.2 GB, of which the .imzML file is 2.4 GB.

• 3D Mouse Pancreas Dataset: the pancreas from a C57BL/6 mouse was fixed
and embedded in paraffin. Spectra from 29 sections (5 µm thick) were acquired.
The dataset includes 497,225 spectra with 13,312 data points per spectrum.
Data were processed and visualized using SCiLS Lab software, with image
registration and conversion into imzML format for further analysis. The total
size of the data set is 27.3 GB, of which the .imzML file is 0.86 GB.

• 3D Human Oral Squamous Cell Carcinoma (OSCC) Dataset: Tissue sections
(10 µm thick) from a patient with OSCC. 58 sections were analyzed, producing
828,558 spectra with 7,680 data points per spectrum. Spectral data were prepro-
cessed and registered using SCiLS Lab software to produce a 3D volume, then
exported to imzML format. The total size of the data set is 26.8 GB, of which
the .imzML file is 1.4 GB.

• Microbe Interaction Time Course Data: the time course data involves analyz-
ing metabolic exchanges between Streptomyces coelicolor A3(2) and Bacillus
subtilis PY79 over time. Spectra were acquired at three time points (days 1, 4,
and 8 post-inoculation). The dataset includes 17,672 spectra with 40,299 data
points per spectrum, which were processed and registered using SCiLS Lab
software to create 3D volumes. The total size of the data set is 2.9 GB, of which
the .imzML file is 0.03 GB.

3D reconstruction of the image volume was realized with the so-called user-guided
rigid registration. These datasets are made available in imzML format, facilitating
their use in developing and testing new computational methods for 3D imaging MS.

5.2 Interactive 2D/3D MSI Data Processing Application

The results of the concepts introduced in chapter 3 Interactive Multi-Modal 2D/3D MSI
Data Analysis are presented in this chapter and is structured as follows: The results
of the data import are presented in subsection 5.2.1. Based on the ability to import
MSI data, features required for general interactions with MSI data are presented
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in subsection 5.2.2. The next three subsections present use-cases for biomarker
identification in subsection 5.2.3, multi-modal 3D reconstruction in subsection 5.2.4,
and multi-modal image fusion in subsection 5.2.5. All features and use-cases shown
are realized in the in this work realized stand-alone desktop application called Mass
Spectrometry Imaging Applications for Interactive Analysis in MITK (M²aia)116.

5.2.1 Data Import and Performance

The importation of data and the subsequent performance of the system are two key
areas of focus. In this subsection the concepts (introduced in section 3.2 Concepts for
MSI Data Processing) for data import are presented. The following two paragraphs
describe the results of data access experiments to metadata and spectral data stored
in imzML format.

Access to Metadata: The metadata contained in imzML files is essential for detailing
a wide range of experimental parameters and conditions. This metadata encompasses
various aspects, including the specification of the instrumentation used, the param-
eters set during the data acquisition process, and the processing steps performed
during the experiment. Accessing these detailed data points is made straightforward
through the imzML reader provided by M²aia.

Metadata is accessed in the form of a dictionary, making it easy to navigate
and retrieve specific pieces of information. For example, users can quickly extract
details about the type of mass spectrometer used, the settings applied during data
acquisition, and any preprocessing steps that were executed. This capability is
critical for researchers who need to ensure that their analyses are transparent and
reproducible, as they can precisely document the experimental conditions under
which their data was generated.

In C++, metadata access can be realized using the concepts and classes introduced
in subsection 3.2.1 Hyperspectral data import. These classes provide a structured
approach to handling metadata, allowing developers to integrate metadata retrieval
seamlessly into their data processing pipelines. The C++ implementation ensures
high performance and is suitable for applications requiring efficient data handling.

For scripted metadata retrieval applications, such as those involving large data
collections, the pyM²aia-based access is described in detail in subsection 5.3.2 Meta-
data Extraction. PyM²aia offers a user-friendly interface for scripting in Python,
enabling researchers to automate the extraction and analysis of metadata across
numerous datasets. This automation is particularly beneficial when dealing with
high-throughput experiments, where manually accessing metadata for each dataset
would be impractical.

By leveraging pyM²aia, researchers can create scripts that systematically retrieve
and analyze metadata, facilitating large-scale studies and meta-analyses. This ap-
proach supports the organized retrieval of information regarding the experimental
setup, ensuring that all relevant details are captured and can be easily referenced
in future studies. Ultimately, the ability to efficiently access and utilize metadata
enhances the reproducibility and transparency of scientific research.

Import of imzML MSI Datasets: an important aspect of M²aia is to provide a fast
and memory-efficient access to one or multiple 2D/3D MSI datasets at the same
time. To demonstrate the capabilities of M²aia in handling imzML MSI datasets,
performance metrics are presented in Table 5.1 Timing experiments on reference dataset.
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The metrics utilize publicly available 3D reference datasets from Oetjen et al.33, acces-
sible through the MetaboLights repository [MTBLS176]. The performance evaluation,
including processing times and memory usage, was averaged over three separate
runs to ensure reliable data. This assessment was performed on two distinct system
configurations: a mobile setup with an Intel® Core™ i7-8750H CPU and a desktop
setup featuring an AMD® Ryzen 9 5900x CPU. The detailed processing included
total-ion-count (TIC) normalization. This paragraph has been published in Cordes
et al. (2021)115 under the conditions of the Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0).

TABLE 5.1. Timing experiments on mobile and desktop systems using 3D reference data. The
table lists the file names, number of spectra, depth of a spectrum and the average time in
seconds and memory usage, for three manually repeated runs. Applied signal processing
includes total-ion-count (TIC) normalization. Data generated using the 3D reference datasets
published by Oetjen et al.33 and available in the MetaboLights repository [MTBLS176]. System
configuration A: mobile PC, Intel® Core™ i7-8750H CPU @ 2.20GHz 6-core processor, 16
GB physical memory and SSD. System configuration B: desktop PC, AMD® Ryzen 9 5900x
CPU @ @ 3.7GHz 12-core processor, 32 GB physical memory and M.2 SSD. Table in Cordes
et al. (2021)115 under the conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0)

File Name System Size Spectra/Depth Parsing metadata Initialization Create ion-image RAM usage

3D Mouse Kidney A 44.2GB 1362830/7671 24.9s 26.27s 10.9s 435.1MB
3D Mouse Kidney B 44.2GB 1362830/7671 5.7s 2.1s 0.6s 435.1MB
3D Mouse Pancreas A 27.3GB 497225/13297 9.4s 13.14s 2.8s 292.4MB
3D OSCC A 26.8GB 828558/7665 14.9s 13.4s 4.04s 323.5MB
Microbe Interaction
3D Timecourse A 2.9GB 17672/40299 0.4s 0.9s 0.08s 231.8MB

5.2.2 Individual Features for MSI Data Exploration and Processing

The concepts of data import (see subsection 3.2.1 Hyperspectral data import), signal
processing (see subsection 3.2.2 Signal Processing), peak picking (see subsection 3.2.4
Peak picking), and data compression (see subsection 3.2.5 Data Compression) have been
integrated into M²aia and will be demonstrated in the following sections. Each para-
graph refers to one or more of the methods presented there, defining a comprehensive
set of features for MSI data exploration and processing. Parts of this section have been
published in Cordes et al. (2021)115 under the conditions of the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).

User interface: The user interface was designed to facilitate easy navigation and
interaction for users conducting MSI data analysis. The primary goal was to create
an intuitive, responsive, and visually appealing interface that enhances user expe-
rience. The user interface has a clear, modular layout and is orientated towards the
application design of the MITK Workbench. It is divided into three columns. The left
column contains elements for the data management (Data Manager view), the center
column displays the main content (Standard Multi Widget view with render windows
for displaying image data in 2D and 3D), and the right column provides views for
processing of MSI data. This layout is dynamic an can be rearranged according to the
needs. Views can be detached from the main window. The UI was built using MITK’s
concepts for creating new views and perspectives. M²aia is complied for multiple
operating systems, including Windows- and Unix systems. In Figure 5.1 Graphical
user-interface of M²aia, the default startup MSI processing perspective is shown on
Ubuntu 22.04, after four MSI datasets were loaded.
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FIGURE 5.1. The graphical user interface of M²aia introduces MSI processing utilities and
interactive workflows for 3D reconstruction and multimodal image registration. Rendered
images show four slices of the Earthworm Dataset (see subsection 5.1.2 Adult Earthworm (L.
rubellus)) published by Geier et al.26. Ion-images show intensities of m/z 250.13 ± 0.4 Da. The
data view is shown on the right, the data manager on the left, and the spectrum view on the

bottom (showing the average overview spectrum of all four MSI datasets).
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Segmentation Tools: M²aia provides access to MITK’s segmentation utilities. Seg-
mentations are used to annotate structures in the data. In Figure 5.2 Utilizing MITK’s
Image Segmentation View a manual segmentation was created using the 2D tool. The
ability to use the mature segmentation utilities of MITK for the new MSI based images
enables advanced integrated workflows. The annotations created can be utilized for
analysis within M²aia, thereby providing an indispensable tool for image-based work-
flows. This will become even more apparent with the integration of MSI-based meth-
ods into the interactive context of M²aia, as described below. This is related to concepts
proposed in this thesis, such as the Python-based deep-learning concepts, which can
benefit from annotations to realize supervised tasks (see [chapter/results:pym2aia-
example-VII]). Thus, segmentations generated by integrated automatic methods
such as k-means clustering or the hotspot/coldspot segmentations generated by
MoleculaR150 (subsection 5.4.5 moleculaR - Collective Projections of Metabolites) are
fully compatible with MTIK’s segmentation view, demonstrating the integrability
of new MSI-based concepts with the existing segmentation capabilities of the MITK
framework.

FIGURE 5.2. Illustration of M²aia showing the usage of MITK’s segmentation utilities for MSI
datasets. The segmentation view is on the right with image selection (green box), label editor
(blue box), and tool selection (red box). MSI dataset shows an ion-image at m/z 266.13 ± 0.4 Da

of slice 3 of the Earthworm Dataset26 (see subsection 5.1.2 Adult Earthworm (L. rubellus)) .

Data Visualization and Interaction: all images loaded into M²aia are integrated
within a unified world coordinate system that defines a virtual environment. This vir-
tual space is accessible through several rendering windows, each presenting distinct
planar slices of the virtual environment, a technique known as multi-planar recon-
structions (see section 2.4 Medical Imaging Interaction Toolkit). Volume visualizations
can be realized by using approperiate features of MITK. This is shown for 3D MSI
data as a result in subsection 5.2.4 Use-case: Multi-modal 3D Image Reconstruction in
Figure 5.10 Visualization of 3D MSI datasets.
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FIGURE 5.3. Visual demonstration of dimensionality reduction methods PCA and t-SNE.
Input for all methods is an MSI dataset and peak picking to generate a list of centroids. The
data used in this figure are generated using the Section 1 of the Earthworm Dataset26 (see
subsection 5.1.2 Adult Earthworm (L. rubellus)) . Local maxima peak picking was used (SNR=3;
hws=5) to reduce the profile overview spectrum to 1324 centroids. Ion-images were generated
with a tolerance of 175 pmm,TIC normalization, maximum pooling, and square root intensity
transformation. The first 9 of 15 principal component images of the PCA are shown. The
t-SNE (perplexity=5; iterations=200; theta=0.5; shrink-factor=1) based on the PCA reduction is
shown in the middle. Reference ion-images for individual m/z values as published by Geier

et al. (2021)26 for musculature, gut content, and nematode cysts are shown at the bottom.
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Data Compression: data compression methods (in subsection 3.2.5 Data Compression)
include PCA, t-SNE and k-means clustering. All methods are made accessible within
the implemented DataCompression view. The proposed concepts for the conversion
of MSI data into ion-images (see subsection 3.2.3 Ion Image Generation) based on cen-
troids generated with the provided peak picking (see subsection 3.2.4 Peak picking) is
able to provide the respective data compressed representations of MSI datasets. This
is illustrated for the PAC and t-SNE methods in Figure 5.3 Data compression methods in
M²aia.

Image-based Registration Utilities: The image-based registration has been realized
in an independent mitk project called mitk-elastix. It provides easy-to-use elements
to implement the registration in the M²aia user interface. This includes data import
and export functions as well as utilities for running the elastix command-line tools.
These elements were used to implement the subsection 5.2.4 Use-case: Multi-modal 3D
Image Reconstruction and subsection 5.2.5 Use-case: Semi-automatic multi-modal image
registration use-cases. For the evaluation of the results in the context of image-based
recording with MSI data, additional tools were made available, which are described
in the next section.

Image-based Registration Evaluation: to evaluate image-based registrations, fused
results can be evaluated using the MatchPoint107 utilities of the MITK framework.
These tools provide a wide range of subjective evaluation strategies that can be
applied to visually assess the quality of a registration. The generated ion-images (see
subsection 3.2.3 Ion Image Generation) were used to execute multi-modal registration
of two MSI datasets of the Mouse Brain Dataset128 (see subsection 5.1.1 Lipid/Peptide
3D APP NL-G-F Mouse Brain) . The MatchPoint tools were used to demonstrate
the evaluation within the context of MSI data processing, illustrated in Figure 5.4
Visual Evaluation of Image Registration Results. Beside the qualitative assessment,
quantitative evaluation could be realized using the point set interaction tools of MITK
to place landmarks within both modalities and evaluate the TRE. This is shown from
an interactive perspective in Figure 5.5 Target registration error (TRE). Quantitative
evaluation of the proposed registration strategies is part of subsection 5.2.4 Use-case:
Multi-modal 3D Image Reconstruction. In both figures ion-images were generated using
the TIC normalization and maximum pooling.

5.2.3 Use-case: Biomarker Identification

This use-case was published in Cordes et al. (2021)115 under the conditions of the
Creative Commons Attribution (CC BY) license (http://creativecommons.org/li-
censes/by/4.0).

A publicly available N-linked glycan MALDI-TOF dataset151,152 is re-analyzed
to demonstrate the applicability for biomarker identification task in M²aia. The
dataset is available in the PRIDE repository with accession code PXD009808. The
dataset is used to examine an automated sample preparation approach for MALDI-
TOF/TOF imaging of N-linked glycans on formalin-fixed paraffin-embedded (FFPE)
murine kidney tissue. PNGase F was printed on two FFPE kidney sections to release
N-linked glycans from proteins. A part of the third kidney was covered with N-
glycan calibrants and another part with buffer to serve as a control. Imaging was
performed with a spatial resolution of 100 µm. Using M²aia, three datasets (PNG1,
PNG2 and control; in total approx. 6.4 GB; skipping the calibrant area) were loaded
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FIGURE 5.4. Visual evaluation of registration results offered by MITK. Multi-modal input
ion-images of the Mouse Brain Dataset128 (see subsection 5.1.1 Lipid/Peptide 3D APP NL-G-F
Mouse Brain) . The input images for the registration are: red peptide MALDI MSI at m/z 8281
and green lipid MALDI MSI at m/z 866.9 from two different MALDI MSI acquisitions of the

same sample.
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FIGURE 5.5. Set of pair-wise defined points for the quantification of the Target Registration
Error (TRE). Points can be set interactively using the point set interaction view of MITK.
Multi-modal input ion-images of the Mouse Brain Dataset128 (see subsection 5.1.1 Lipid/Peptide
3D APP NL-G-F Mouse Brain) : right peptide MALDI MSI at m/z 8281 and left lipid MALDI

MSI at m/z 866.9 from two different MALDI MSI acquisitions.

and TIC normalization, Savitzky-Golay smoothing and Top-Hat baseline correction
were applied (Figure 5.6 Biomarker Identification, Data preparation). Peak picking
with monoisotopic peak identification was applied to the mean spectrum of each
image, respectively. The peak results of the datasets were combined into a common
peak list. Peak binning was applied to remove duplicates, resulting in a list of
107 m/z (candidate) peaks (Figure 5.6 Biomarker Identification, Feature extraction).
To demonstrate how M²aia is used in combination with other tools, the processed
data were exported as a single imzML file to continue the processing with Cardinal
(2.6.0)73. Providing the list of common peak features during the export process allows
to store the data in continuous centroid format. Using Cardinal, the two PNGase
F treated kidney tissue sections are compared with the control tissue section for
the identification of discriminant m/z candidates that are potentially related to N-
linked glycans. N-linked glycan m/z candidates were selected by the supervised
spatial shrunken centroids (SSC) algorithm153,154 (Figure 5.6 Biomarker Identification,
Analysis). Therefore, all pixels were separated into the classes "treated" (for PNG1
and PNG2) or "untreated" (for Control). By mapping the treated features selected by
the SSC to the original publication of Gustafsson et al.151, 16 N-linked glycan related
m/z candidates were identified, as listed in Table 5.2 Potential m/z-candidates related
to N-linked glycans. PCA images including the first three principal components and
a t-SNE image (Figure 5.7 Dimensionality Reduction) were calculated based on the
common peak list in M²aia.

For reproducibility purposes, protocols of the interactive steps from loading to
exporting155 and for dimensionality reduction156 are available. The R-based process-
ing of the intermediate results is available as a CodeOcean capsule157,158. An addi-
tional CodeOcean capsule implements the described workflow as a command-line
application159,160, demonstrating the possibility to develop M²aia-based applications
for batch-processing and porting them to a server infrastructure.
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FIGURE 5.6. Typical steps to transform an MSI dataset into discriminating information in
M²aia, exemplified by images from the re-analysis process of a N-glycan MALDI-TOF MSI
dataset. Illustration in Cordes et al. (2021)115 under the conditions of the Creative Commons

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).
a) b)

FIGURE 5.7. Results of two dimensionality reduction methods after performing the pipeline
shown in Figure 5.6 Biomarker Identification. In a) the three principal components with the
largest eigenvalues of a PCA and in b) results of a t-SNE with a target dimension of three are
shown. Illustration in Cordes et al. (2021)115 under the conditions of the Creative Commons

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).
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FIGURE 5.8. Steps for 3D reconstruction of consecutive MSI image slices in M²aia, exemplified
by images from the 3D reconstruction and registration of the publicly available MALDI-TOF
lipid and peptide dataset. Dashed boxes are possible additional processing steps that were not
applied to the data shown. Illustration in Cordes et al. (2021)115 under the conditions of the Cre-
ative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0)

FIGURE 5.9. Maximum intensity projection of the multi-modal 3D reconstructed dataset at
m/z 865±0.65 Da. Peptide (blue crosses) and lipid (red circles) reference points are shown for
the mid-slice of the stack. Illustration in Cordes et al. (2021)115 under the conditions of the Cre-
ative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).
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TABLE 5.2. Potential m/z-candidates related to N-linked glycans. By the re-analysis of the
data published by Gustafsson et al.151 in M²aia, a set of 16 discriminating m/z features (col.
2) was identified and mapped to the LC-MS/MS experiment Gustafsson et al.151 (col. 6) for
the treated kidney sections. Errors are listed for M²aia (col. 4) and Föll et al.76 (col. 5) for
comparison. Compositions (col. 7) as identified by Gustafsson et al.151 of the corresponding
m/z features. t-Statistics of the supervised spatial shrunken centroids algorithm (col. 3).
Identifier (id, col. 1) for sorted features by descending t-statistics. Hex: Hexose, Man:
Mannose, GlcNAc: N-Acetyl-D-glucosamine, HexNAc: N-Acetyl-D-hexosamine. Table in
Cordes et al. (2021)115 under the conditions of the Creative Commons Attribution (CC BY)

license (http://creativecommons.org/licenses/by/4.0).

Id m/z t-Statistics Error (ppm)
Error (ppm)
Föll et al.76

LC-MS/MS
M+NA+ Composition

1 1257.4730 63.79 50 51 1257.41 (Hex)2+(Man)3(GlcNAc)2
2 1419.5177 60.62 33 59 1419.47 (Hex)3+(Man)3(GlcNAc)2
3 1743.6281 54.50 33 67 1743.57 (Hex)5+(Man)3(GlcNAc)2
4 1905.6748 50.93 23 30 1905.63 (Hex)6+(Man)3(GlcNAc)2
5 1581.5697 50.58 25 61 1581.53 (Hex)4+(Man)3(GlcNAc)2
6 2304.8962 47.12 28 36 2304.83 (Hex)2(HexNAc)3(deoxyhexose)3+(Man)3(GlcNAc)2
7 1850.7140 46.86 34 34 1850.65 (Hex)1(HexNAc)3(deoxyhexose)1+(Man)3(GlcNAc)2
8 1809.6975 45.44 37 52 1809.63 (Hex)2(HexNAc)2(deoxyhexose)1+(Man)3(GlcNAc)2
9 2158.8425 38.62 33 54 2158.77 (Hex)2(HexNAc)3(deoxyhexose)2+(Man)3(GlcNAc)2
10 1663.6324 35.92 37 58 1663.57 (Hex)2(HexNAc)2+(Man)3(GlcNAc)2
11 1485.5967 33.83 44 63 1485.53 (HexNAc)2(deoxyhexose)1+(Man)3(GlcNAc)2
12 1688.6586 31.59 28 62 1688.61 (HexNAc)3(deoxyhexose)1+(Man)3(GlcNAc)2
13 2012.7717 26.88 30 37 2012.71 (Hex)2(HexNAc)3(deoxyhexose)1+(Man)3(GlcNAc)2
14 1647.6444 26.83 45 - 1647.57 (Hex)1(HexNAc)2(deoxyhexose)1+(Man)3(GlcNAc)2
15 2816.1882 24.31 63 63 2816.01 (Hex)3(HexNAc)4(deoxyhexose)1+(Man)3(GlcNAc)2
16 2067.7292 19.00 28 43 2067.67 (Hex)7+(Man)3(GlcNAc)2

5.2.4 Use-case: Multi-modal 3D Image Reconstruction

This use-case was published in Cordes et al. (2021)115 under the conditions of the
Creative Commons Attribution (CC BY) license (http://creativecommons.org/li-
censes/by/4.0).

The objective is to demonstrate the applicability of M²aia for mono- and multi-
modal 3D image reconstructions by showing how to embed the peptide information
into the lipid structural context in three dimensions. The dataset in this use-case
consists of 10 consecutive brain slices of the Mouse Brain Dataset128 (see subsection 5.1.1
Lipid/Peptide 3D APP NL-G-F Mouse Brain), imaging both lipid and peptide features
(in total approx. 80 GB in size). To demonstrate mono-modal 3D reconstruction, all 10
slices of the lipid and the peptide datasets were loaded into M²aia, respectively, and
lipid datasets used for slice-wise reconstruction of 3D image stacks. For multi-modal
3D-reconstruction, the peptide dataset was pair-wise registered with the respective
lipid slices of the previously reconstructed 3D lipid image stack. Each of the 10 lipid
imzML binary files is about 4.9 GB on disk and each of the 10 peptide imzML binary
files is about 2.8 GB. Loading and initialization of a single lipid image into M²aia took
3.26 ± 0.67 seconds for the lipid data and 2.06 ± 0.45 seconds for the peptide data on
system B as described in Table 5.1 Timing experiments on reference dataset. During the
initialization, TIC normalization factors and mean overview spectra are created for
each dataset.

Successful image-based registration requires images that are rich and similar in
structural features. This can be done in M²aia by fast and interactive exploration of
ion-images. For the example data, structure-rich images in the lipid dataset were
found at m/z 865±0.65 Da and for the peptide dataset at m/z 2250±50 Da. For a
rough initial alignment of considerably rotated tissue sections, interactive capabilities
to rotate the slices by ±15 degrees around the center were used. Additionally, the non-
tissue areas were removed from the ion-image generation process by segmentation
of the respective areas, using the segmentation tools provided by M²aia. For mono-
modal 3D reconstructions, a reference slice was first selected in the corresponding
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M²aia plugin from the list of ordered slices. Starting from this reference slice, adjacent
slices were automatically aligned to each other by rigid and deformable image-
based registration. The process is applied to the image stack in both downward
and upward directions (see 3D reconstruction section of Figure 5.8 Multi-modal 3D
image reconstruction). Rigid registration is based on a multi-resolution registration
strategy (Gaussian pyramid with three levels and downsampling factors of 4,2,1).
Advanced Mattes Mutual Information is used as metric for the optimization of a Euler
transformation using linear interpolation and 250 iterations88. For the subsequent
deformable registration steps, the same multi-resolution scheme and metric are
applied. As deformable transformation, a recursive B-Spline transformation is used
with final grid spacing on the original resolution set to 0.8mm, with scaling factors per
pyramid level of 2, 1.5 and 1, respectively. Interpolation is performed by third-order
B-Splines. The optimization is run for 750 iterations. Figure 5.8 Multi-modal 3D image
reconstruction summarizes the workflow. To quantify the accuracy of the registration,
an interactive selection of seven reference points were made in each slice and in both
modalities independently (a subset of points share a common anatomical location
in both modalities), resulting in 70 reference points per set. In Figure 5.9 Target
Registration Error - Reference Points the reference points of both modalities are shown
in context of the reconstructed lipid dataset for the mid-slice of the stack. For the
mono-modal 3D reconstructions of the lipid and peptide datasets, a TRE of 28 ± 8 µm
and 35 ± 5 µm were obtained, respectively, and for the multi-modal reconstruction a
TRE of 39 ± 4 µm. A protocol showing how to perform the interactive steps in M²aia
of the workflow as described above is available on protocols.io161. In addition to
the traditional 2D and 3D perspectives MITK provides, volume rendering for three-
dimensional image data is also supported. This feature enhances the visualization of
spatial relationships within the data, as demonstrated in Figure 5.10 Visualization of
3D MSI datasets.

FIGURE 5.10. 3D reconstruction of lipid MALDI-MS TOF images of 10 consecutive brain tissue
sections of the Mouse Brain Dataset128 (see subsection 5.1.1 Lipid/Peptide 3D APP NL-G-F Mouse
Brain) . (A) Multi-planar reconstruction of the 3D MS image showing ion-images at m/z 865.05
± 0.1 Da. (B) Volume visualization of different mass features. High intensities (green)
and low intensities (red) in ion-image at m/z 865.05 ± 0.1 Da are visualized. Additionally,
the cortex is highlighted by high intensities at m/z 868.76 ± 0.1 Da (black). Processing
and visualization have been performed completely within M²aia. Illustration in Cordes
et al. (2021)115 under the conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0).
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5.2.5 Use-case: Semi-automatic multi-modal image registration

To demonstrate the capabilities of M²aia in a multi-modal image fusion use-case,
the application of the provided interactive multi-modal capabilities were used to
support a co-authored publication published by Abu Sammour et al. (2023)150. As
stated in this work, the data acquisition and processing were in concordance with
the declaration of Helsinki and was approved by the Ethics Committee at Heidelberg
University, Germany (applications S130/2022 and AFmu-207/2017)150.

In this use-case, annotations were created by an expert neuropathologist on H&E
stained images of human glioblastoma specimens. The research of which this thesis
is a part required the transfer of these annotations to the MSI datasets. This was done
using the methods available in M²aia, which allowed the integration of the optical
images previously used for MSI device acquisition with the H&E stained images. The
optical images had an spatial resolution of 5 µm and are intrinsically registered with
the MSI data. To provide data within M²aia for the image-fusion, the whole-slide
image import utilities (see subsection 3.2.6 Data import of whole slide images) are used
to convert the RGB channels of the H&E stained and optical images into luminance
images. The whole-slide import dialog is shown as an example in Figure 5.11 Import
dialog for whole-slide images.

FIGURE 5.11. Import dialog for whole-slide images. The depicted H&E stained images and
DESI-MSI datasets were published by Oetjen et al. (2015)33 and is available in the Metabo-

Lights repository [MTBLS282]i

Before image registration, the images are cropped by using an minimal bounding
box around the sample region in order to facilitate the registration process (removing
irrelevant parts of the otherwise larger image regions). Furthermore, the resolution of
all images were reduced by resampling to a lateral resolution of 7.5 µm. The image-
based registration process was then performed as it is described in Abu Sammour et al.
(2023)150: "The full registration is composed of a rigid step, followed by a deformable
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step. Each registration results in a set of parameters describing the transformation
from the H&E to the MSI image domain. Those parameters are used to transform
point information accordingly. Transformed polygons and corresponding annotation
labels were written to mis-files. Rigid registration is based on a multiresolution
registration strategy (Gaussian pyramid with three levels and down-sampling factors
of 4,2,1, each of which represents pattern information at a different scale allowing
for a course-to-fine image registration paradigm). The Advanced Mattes Mutual
Information in elastix was used as multimodal metric for the optimization of a rigid
transformation using linear interpolation and 250 iterations. For the subsequent
deformable registration steps, the same multiresolution scheme and metric were
applied. For the deformable transformation, a recursive B-Spline transformation was
used with interpolation using third-order B-Splines. The optimization was run for
750 iterations."

In some cases of the used dataset, the registration failed due to overlapping
tissue regions and displacements. Based on the proposed concepts for registration
evaluation and interactive corrections (see subsection 3.3.4 Evaluation and interactive
correction), the registration process was successfully guided by manually placing
pair-wise landmarks in both image modalities.

5.3 Python-based Access to imzML for Deep Learning Applications

The results of this chapter were originally published in Cordes et al. (2024)118 under
the conditions of the Creative Commons Attribution (CC BY) license (http://creative-
commons.org/licenses/by/4.0).

Exemplary applications of increasing complexity have been realized to showcase
the capabilities of pyM²aia, utilizing openly available MSI datasets published by
Geier et al. and introduced in subsection 5.1.2 Adult Earthworm (L. rubellus). Each
application is realized as an iPython Notebook145 and are available open accessible on
Github162. The examples provided demonstrate the practical application of pyM²aia’s
API and focus on the generation of MSI data samples for deep neural networks
based on the strategies described in subsection 3.5.3 Data Access Strategies for MSI
Data. It is important to note that these examples do not explain or evaluate the
methods themselves. Detailed discussions of the methods can be found in the original
publications.

A feature comparison is shown that contrasts the capabilities of pyM²aia to py-
imzML in section 5.3.1. In the first example (section 5.3.2), the use of pyM²aia to
retrieve imzML metadata is demonstrated. The second example (section 5.3.3) demon-
strates the application of pyM²aia’s signal processing methods. The third example
(section 5.3.4) explains the generation of ion-images and demonstrates how to overlay
multiple ion-images to show co-localization of ions. Subsequent examples are demon-
strated that focus on deep learning applications using pyM²aia. The fourth example
(section 5.3.5) showcases a spectral strategy of an autoencoder model for peak learn-
ing, the fifth example (section 5.3.6) demonstrates a spatial strategy of an ion-image
clustering approach, and in the the sixth and seventh example spatio-spectral strate-
gies are demonstrated for an unsupervised auto-encoder and a supervised model for
pixel-wise classification (section 5.3.7).

Availability of supporting source code can be found in section 5.6 Code and Data
Availability. In all examples the Earthworm Dataset26 (see subsection 5.1.2 Adult Earth-
worm (L. rubellus)) is used.
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5.3.1 Feature Comparison: pyM²aia vs. pyimzML

Table 5.3 provides a comparison between pyM²aia and pyimzML, as far as this is
possible: pyimzML supports only loading of imzML datasets, whereas pyM²aia
additionally supports signal-processing (different methods for baseline correction,
normalization, smoothing), the access to helper images (normalization image, index
image, mask image) and provides data structures for the spectra, spatial and, spatio-
spectral strategies.

5.3.2 Metadata Extraction

The pyM²aia package enables the extraction of crucial image and imaging related
metadata from MSI datasets, a feature particularly valuable for researchers analyzing
existing data collectives or unseen data in imzML format. The metadata accessible
through pyM²aia includes:

• Pixel Spacing (Spot Size): This refers to the distance between the centers of
adjacent pixels in an image, which is critical for understanding the resolution
and spatial accuracy of the MSI data.

• Image Dimensions: pyM²aia can retrieve the total number of pixels in the spatial
dimensions of the MSI dataset, providing insights into the overall size and scale
of the sample being analyzed.

• Spectrum Depth: This attribute describes the number of data points in each
spectrum, which can indicate the level of detail captured in each pixel’s spectral
data.

• Spectrum Type: The library supports distinguishing between continuous, pro-
cessed profile, and centroid spectrum types, as outlined in the imzML standard53.
Each type represents different methods of spectrum representation and data
processing:

– Continuous Spectrum: A complete representation of the spectral data often
without any processing to reduce data size.

– Processed Profile Spectrum: Spectrum data that has been processed to
enhance certain features or reduce noise.

– Centroid Spectrum: A form of spectrum where data points are condensed
into peaks, representing the most significant parts of the spectrum.

Additionally, pyM²aia provides access to image context metadata, which includes
all in the data available tags and values as defined in the imzML specification53. These
tags can contain a wealth of information about the sample, such as the type of tissue,
experimental conditions, and specific annotations relevant to the study, enhancing
the richness of data available for analysis. The iPython notebook for example I can be
found on Github162.

5.3.3 Signal Processing

pyM²aia provides access to M²aia’s optimized signal processing utilities section 3.2
Concepts for MSI Data Processing. Example II outlines how to configure the signal
processing pipeline. Results of several signal processing configurations are shown in
Figure 5.12 Example II: comparison of mean overview spectra from the same dataset using
different signal-processing methods. Mean overview spectra for Section 1 within the range
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Feature pyM²aia pyimzML
Lazy loading (low
memory profile)

yes yes

Spectrum access yes yes
Create ion-images yes yes
Signal processing Normalization, Baseline cor-

rection, Smoothing, Intensity
transformations

no (*)

Overview spectra Mean, Max no (*)
Normalization
maps

TIC, Sum, Mean, Max, RMS,
Internal

no (*)

Spectrum Genera-
tors (Spectral and
spatio-spectral
strategy)

continuous profile and cen-
troid data

no (*)

Ion-image Genera-
tors

Spatial strategy, continu-
ous/processed centroid and
continuous profile data

no (*)

Average time
to load all four
datasets (**)

5.2 [seconds] 14.6 [seconds]

Average maxi-
mum memory
usage (**)

640 [Megabyte] 577 [Megabyte]

ImzML metadata
queries

All XML elements with
"IMS:.." and "MS:..." tags

Tags related to correctly repre-
sent the image (max count of
pixels x/y, max dimension x/y,
pixel size x/y/z)

Notes * Not in scope of the package
** by default, M²aia performs a full parse of imzML xml tags, cre-
ates an index image, normalization images (for all implemented
normalization methods) and overview spectra (max/mean). For
comparison with pyimzML, we implemented these functionali-
ties directly in Python with numpy. All four data sets were loaded
sequentially. The runtime and maximum memory usage was av-
eraged over 50 repetitions.

TABLE 5.3. Feature Comparison: pyM²aia vs. pyimzML. System configuration: desktop PC,
Ubuntu 22.04, AMD R © Ryzen 9 5900x CPU at 3.7 GHz 12-core processor, 32 GB physical
memory, M.2 SSD, and Nvidia Titan RTX. Table in Cordes et al. (2024)118 under the condi-
tions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/li-

censes/by/4.0)
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of m/z 200 to m/z 270 are shown for the Earthworm Dataset26 (see subsection 5.1.2 Adult
Earthworm (L. rubellus)) . Illustration in Cordes et al. (2024)118 under the conditions of the
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).
Currently, different types of baseline-correction, signal smoothing, normalization,
pooling and intensity transformations are supported as introduced in subsection 3.2.2
Signal Processing. The iPython notebook can be found on Github162.

5.3.4 Ion image Generation

Ion-image generation and how to combine multiple ion-images into a colored image
(see Figure 5.13 Creating ion-images with pyM²aia: Example III) is demonstrated in
example III. Generated images can be written in common image formats (e.g., Nearly
Raw Raster Data [*.nrrd] image file format) that are compatible with M²aia, enabling
interactive exploration of image artifacts generated with pyM²aia using the desktop
application M²aia. The iPython notebook can be found on Github162.

5.3.5 Spectral Strategy - Autoencoder for Peak Learning

The fourth example showcases a spectral strategy (see subsection 3.5.3 Data Access
Strategies for MSI Data) employing pyM²aia to feed spectra to adapted versions of
an autoencoder model for peak learning, as proposed by Abdelmoula et al. (2021)63.
The TensorFlow163 implementation of the original approach, which loads datasets
in HDF5164 format, has been adapted by replacing the HDF5 input with pyM²aia’s
imzML reader. The training stability on the dataset by Geier et al. has been improved
by replacing the originally used categorical cross-entropy loss with mean-squared
error loss and removing the sigmoid activation function of the output layer. This
example also highlights the use of pyM²aia’s spectrum batch generators (Figure 5.14
Spectral Strategy: Example IV - Concept Implementation) and demonstrates how to train
models individually for each imzML image and how pyM²aia facilitates processing
multiple images simultaneously to create a single model for all inputs. Results of the
peak learning process are shown in Figure 5.15 Spectral Strategy: Example IV – Peak
Learning and Figure 5.16 Spectral Strategy: Example IV - Latent Space. All changes to
the original peak learning code-base of Abdelmoula et al. (2021)63, are available in a
Github fork165. The iPython notebooks can be found on Github162.

5.3.6 Spatial Strategy - Ion-image-based Co-localization

The fifth example demonstrates the spatial strategy (see subsection 3.5.3 Data Access
Strategies for MSI Data) by adapting a PyTorch166 implementation of an ion-image
clustering approach proposed by Hu et al. (2022)58. This approach uses a pre-trained
EfficientNet model167, fine-tuned with contrastive learning (SimCLR66), which relies
heavily on data augmentations added to pyM²aia’s ion-image batch generator. The
model’s input channels were reduced from three (RGB) to one (gray-scale) to suit the
dataset’s requirements, and augmentation methods were adapted for single-channel
inputs (see Figure 5.17 Spatial strategy: Example V). The iPython notebooks can be
found on Github162.

5.3.7 Spatio-spectral Strategies

Spatio-spectral strategies (see subsection 3.5.3 Data Access Strategies for MSI Data)
are demonstrated in the sixth and seventh examples, where pyM²aia’s spectrum
batch generator is used to generate spatio-spectral samples by providing additional
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FIGURE 5.12. Example II: comparison of mean overview spectra from the same dataset using
different signal-processing methods. Mean overview spectra for Section 1 within the range of
m/z 200 to m/z 270 are shown for the Earthworm Dataset26 (see subsection 5.1.2 Adult Earth-
worm (L. rubellus)) . Illustration in Cordes et al. (2024)118 under the conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0)

FIGURE 5.13. Example III: sections 1-4 shown for the Earthworm Dataset26 (see subsection 5.1.2
Adult Earthworm (L. rubellus)) - combining ion-images for metabolites located within the
musculature m/z 1088.868, gut content m/z 177.919, and nematode cysts m/z 262.177 to a
single multi-colored representation. Illustration in Cordes et al. (2024)118 under the condi-
tions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/li-

censes/by/4.0)
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FIGURE 5.14. Spectral Strategy: Example IV – pyM²aia implementations of a spectral strat-
egy for peak learning by Abdelmoula et al. (2021)63. Target objective is to learn how to
reconstruct individual spectra of a set of MSI datasets In (four in the example) using an
autoencoder model M. The result of the peak learning procedure is a list of centroids. Two
different variants are illustrated. The upper blue path shows how to train four independent
models Mn using four independent (individual) spectrum batch generators Gn of pyM²aia.
The lower orange path uses a single instance Gall of a pyM²aia spectrum batch generator to
process multiple images at the same time (combined). Illustration in Cordes et al. (2024)118

under the conditions of the Creative Commons Attribution (CC BY) license (http://creative-
commons.org/licenses/by/4.0)

FIGURE 5.15. Spectral strategy: Results of example IV – Peak Learning. Each row represents
a single MSI dataset. Absolute errors between reconstructed mean profile spectra (individual
models: blue lines; combined model: orange lines) and the original mean profile spectrum
(gray lines) are shown for each slice. All values are normalized to 5% of the maximum of the
respective original mean spectrum. Mass range m/z 220 - m/z 240. Learned peaks are shown
for individual models (blue markers) and the combined model (orange markers). Illustration
in Cordes et al. (2024)118 under the conditions of the Creative Commons Attribution (CC BY)

license (http://creativecommons.org/licenses/by/4.0)
.
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FIGURE 5.16. Spectral strategy: Results of example IV – Peak Learning. Recovered structures
of the original high-dimensional MSI dataset visualized with the represented values of the
encoded spectra (latent variable z) of variational autoencoders. Each row represents a single
slice. Each column represents one component of the encoded latent variable z. From left to
right, each row represents the respective component of the latent variable z0, z1, z2, z3, z4. In A)
individual models and in B) the combined model is used to encode each spectrum of each MSI
dataset. Displayed values represent data between the 1st and 99th percentiles. Illustration in
Cordes et al. (2024)118 under the conditions of the Creative Commons Attribution (CC BY)

license (http://creativecommons.org/licenses/by/4.0).
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FIGURE 5.17. Spatial strategy: Example V - pyM²aia implementation of a spatial strategy
for self-supervised clustering of ion-images by Hu et al. (2022)58. pyM²aia’s ion-image batch
generator of MSI dataset I3 is utilized to feed (1.) a pre-trained EfficientNet Mpre model167 to
generate a lower (1024) dimensional embedding AM of all ion-images generated with respect
to a user defined list of centroids C. For (2.) fine-tuning of the model, unsupervised SimCLR66

training is applied, resulting in (3.) a refined embedding ÂM. Subsequently (fourth column
in the figure), UMAP168 is applied to embed AM and ÂM in two dimensions. Each embedded
point refers to one ion-image. Spectral clustering169 was applied to ÂM. The resulting clusters
are color-coded in the figure. To visually demonstrate that the clustering in the space ÂM was
successful, the ion-images corresponding to the cluster are marked with red crosses in the
UMAP visualisations and are shown in the last column. As expected, the images are visually
similar. Without finetuning, these images would not form a cluster, as can be seen by the wide
distribution of the marked cluster instances in the UMAP(AM) visualization. Illustration in
Cordes et al. (2024)118 under the conditions of the Creative Commons Attribution (CC BY)

license (http://creativecommons.org/licenses/by/4.0).
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FIGURE 5.18. Spatio-spectral strategy: Example VI/VII - Variational Autoencoder/pixel-wise
classification. Generators can be initialized using label images (L) and/or centroid lists (C). For
the description of the two examples, see the text. pyM²aia enables individual as well as com-
bined spatio-spectral processing of MSI datasets (as demonstrated for the spectral strategy in
Example IV, see Fig. S3). Illustration in Cordes et al. (2024)118 under the conditions of the Cre-
ative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).
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FIGURE 5.19. Spatio-spectral strategy: Results of example VI – Variational Autoencoder.
Latent variable z of the variational autoencoder using the spatio-spectral strategy. Each row
represents the respective components of the latent variable z0, z1, z2, z3, z4 from left to right.
Displayed values represent data between the 1st and 99th percentiles. Illustration in Cordes
et al. (2024)118 under the conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0).
.
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neighboring spectra for a given sample location (Figure 5.18 Spatio-spectral strategy:
Example VI/VII).

Spatio-spectral Strategies - Variational Autoencoder: in example VI, the 3x3 spatial
neighborhood of randomly selected spectra are used to train a variational autoencoder.
Results of encoded spectra (latent variable z) are shown in Figure 5.19 Spatio-spectral
strategy: Example VI Results. The iPython notebooks can be found on Github162.

Spatio-spectral Strategies - Pixel-wise Classification: example VII demonstrates
the training of a pixel-wise classification model using spatial annotations on one
MSI dataset, applying the trained model on unseen data of all four MSI datasets,
and storage of the results including metadata for spatially correct display or further
processing. Manual annotations were interactively created for a single sample (slice
3) and exported as a labeled image in NRRD formati. Additionally, centroid lists were
generated for each sample (slice 1-4) and combined into a single centroid list, exported
in text format as comma-separated values (CSV). M²aia was utilized for the interactive
creation of labeled images and centroid lists. In the Python notebook of Example
VII, all four imzML MSI datasets are loaded, including the labeled image (using
SimpleITKii) and the combined centroid list (using NumPyiii). The list of centroids
and the labeled image are then passed to the spectrum generator, generating batches
of the form [X=[B,C,H,W], Y=[B]] (see Figure 5.18 Spatio-spectral strategy: Example
VI/VII). Here, X represents the spectral data, and Y denotes the labels for each sample
in the batch. The convolutional neural network for classification was build using
categorical cross entropy, a 9x9 spatial neighborhood, and randomly selected spectra
from the provided annotated regions. Results of the classification approach are shown
in Figure 5.20 Spatio-spectral strategy: Pixel-wise Classification Results of Example VII.
The iPython notebooks can be found on Github162.

5.4 Integration of Third-Party Image Processing Methods

The main goal of the experiments is to test the applicability of the concepts (see
section 3.4 Concepts for Integration of Third-Party Image Processing Methods) for the inte-
gration of third-party methods. Thus, the perspective of a developer (in subsection
5.4.1)and an user (in subsection 5.4.2) is explored in more detail. The applicability of
the concepts is observed from these perspectives and generalized observations were
documented, based on the experience of several integrations. Subsequently, exem-
plary integrations of image processing methods into the UI of M²aia are shown. Pub-
licly available state-of-the-art methods written in different programming languages
such as Python and R are encapsulated within Docker-based processing containers
and made accessible within the interactive environment of M²aia. The Python-based
integration of the UMAP168 method for dimensionality reduction is demonstrated
in subsection 5.4.3. In subsection 5.4.4, the integration of the TotalSegmentator105 as
an MSI-independent deep learning method for segmenting clinical image modalities
is demonstrated. MIS-related methods as the moleculR150 framework for creating
Molecular Probabilistic Maps (MPMs), are shown in subsection 5.4.5, as well as the
deep learning method Peak Learning63 for MSI datasets (in subsection 5.4.6).

ihttps://teem.sourceforge.net/nrrd/; accessed April 2024
iihttps://simpleitk.org/; accessed 2024

iiihttps://numpy.org/; accessed April 2024

https://teem.sourceforge.net/nrrd/
https://simpleitk.org/
https://numpy.org/
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FIGURE 5.20. Spatio-Spectral Strategy: Results of Example VII – Pixel-Wise Classification.
Training labels are generated for section 3 of the Earthworm Dataset26 (see subsection 5.1.2
Adult Earthworm (L. rubellus)) . For the pyM²aia-based approach, the classification model was
successfully applied to section 4 (technical perspective). Illustration created by using figures of
the example VII notebook published in Cordes et al. (2024)118 under the conditions of the Cre-
ative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).

.
.

5.4.1 Developer Perspective

From the developer perspective, the integration concept of the new image-processing
methods was readily achievable and applicable. The following steps were generally
identified: first, the method of interest has to be selected.

Using Third-party Docker Images: in the ideal scenario, a publicly available Docker
image already exists (provided by the method creator) and provides a well-defined
command-line interface. If the interface accepts data in M²aia-compatible image
or image-related data file formats, the development of the GUI integration can be
realized directly. This supposes that the Docker image and the image processing
method implemented within it have already been designed in such a way that they
can be executed via command-line arguments. Furthermore, it is also necessary to pay
attention to compatible image formats and, in case of doubt, to make the necessary
adjustments in the custom UI on the M²aia side. The utilization of a predefined Docker
image is exemplified in the mitk-dockeri application and subsequently delineated in
subsection 5.4.4 TotalSegmentator - Segmentation of Clinical Images.

Creating Docker Images: in the case that no Docker image exists, a custom Docker
image has to be defined. The main objective of the Docker image is to provide a
runtime environment for the method of interest, that could be provided by choosing
predefined Docker images for a specific runtime from Docker Hub or by defining
it yourself. For example, well defined Docker-based runtime environments exists
for Pythonii or Riii. These Docker images can be extended with custom instructions

ihttps://github.com/m2aia/mitk-docker; accessed April 2024
iihttps://hub.docker.com/_/python; accessed April 2024

iiihttps://hub.docker.com/u/rocker; accessed April 2024

https://github.com/m2aia/mitk-docker
https://hub.docker.com/_/python
https://hub.docker.com/u/rocker
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tailored to the needs of the third-party method being integrated. A custom Docker
image based on python:3.10-bullseye for integrating pyM²aia-based applications
is shown in code listing 5.1.

FROM python :3 .10 − bul l seye

RUN apt −get update
RUN apt −get i n s t a l l −q −y −−no− i n s t a l l −recommends \ # install dependencies for pyM2aia

l ibg lu1 −mesa−dev \
libgomp1 \
l i bo p e ns l i d e −dev

RUN pip i n s t a l l m2aia
COPY app . py /app . py
ENTRYPOINT [ "python" , "app.py" ]

LISTING 5.1. This Dockerfile sets up an environment for running pyM²aia by starting from
the python:3.10-bullseye base image. It updates the package lists and installs necessary
dependencies (libglu1-mesa-dev, libgomp1, and libopenslide-dev). The Python package
m2aia is installed via pip. Finally, it copies the app.py script (implements the execution of
the method-of-interest) into the container and sets the entry point to execute this script using

Python.

Data Conversion Strategies: the necessity for data format conversion may arise
depending on the image processing method employed. This may necessitate the
implementation of new read and write methods, which could be implemented by
M²aia or through conversion strategies within the Docker container. As a guideline,
the implementation of new data conversion strategies should be carried out by
the Docker-image and use widespread and open data formats on the side of the
interactive application, to facilitate the reusability of the created Docker images. As
an example, a Docker-based data conversion strategy is carried out for the integration
of a dimensionality reduction method and is delineated in subsection 5.4.3 UMAP -
Dimensionality Reduction of MSI Datasets.

Custom User Interface: integration into the UI of the interactive application is done
by creating a custom view. This view implements the execution logic within the
interactive application and is responsible for data conversions and parameter parsing
to the Docker-based processing container. It is required to parse command-line
arguments and to control the execution. The creation of new UI elements is highly
dependent on the interactive application. Within M²aia, custom views were created
using the Qt UI framework and are integrated via the superbuild mechanism of MITKi.
An example of a M²aia-based custom view for the integration of a dimensionality
reduction method can be found in Figure 5.21 UMAP - Dimensionality Reduction for
MSI Datasets.

5.4.2 User Perspective

From the user perspective, the deployment and operation of all integrated applica-
tions within the M²aia platform demonstrated uniformity and robust functionality.
The typical workflow begins with the user launching the M²aia application. Subse-
quently, data are loaded into the system’s interactive environment. Users can then
explore and manipulate the datasets according to their specific requirements, such
as creating spatial annotations or identifying ion-images and peaks in MSI datasets.
Upon completion of data processing, the custom view for the integrated applications
can be started, presenting user interface elements for input data selection and method

ihttps://docs.mitk.org/nightly/NewViewPage.html; accessed April 2024

https://docs.mitk.org/nightly/NewViewPage.html
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configuration. Finally, the resulting data are not only presented for exploration but
are also interactively accessible in conjunction with the original data used at the start
of the process.

The aforementioned steps are in more detail explained in the following subsec-
tions, with the aid of four illustrative examples.

5.4.3 UMAP - Dimensionality Reduction of MSI Datasets

UMAP, short for Uniform Manifold Approximation and Projection168, is a dimension-
ality reduction technique commonly used in various fields of data analysis, including
MSI. In the context of MSI, UMAP serves several important purposes54,58,170,171:

• Visualization of Complex Data: Mass spectrometry imaging generates vast
amounts of data, where each pixel can contain information on thousands of
m/z values. UMAP helps in reducing the dimensionality of this data to two or
three dimensions, which makes it possible to visualize the spatial distribution
of molecular species across the sample in a more interpretable form.

• Highlighting Spatial Patterns: by reducing dimensions while preserving the
structure of the data, UMAP can highlight subtle spatial patterns and correla-
tions in the dataset that might not be apparent in the original high-dimensional
space. This is crucial for identifying areas with distinct molecular compositions.

• Comparative Analysis: UMAP can be used to compare different regions of a
sample or even different samples by visually clustering similar features. This
is particularly useful in studies involving disease diagnostics, where affected
tissues may show distinct molecular signatures compared to healthy tissues.

• Integration of Data: in studies where multiple imaging modalities are used,
UMAP can help integrate and analyze data from different sources or different
experimental conditions. This assists in obtaining a holistic view of the sample
being studied.

UMAP is an interesting method for processing MSI datasets and the integration
of this method provides a first example of the potential of the implemented strategy.
The data processing in this context adheres to the conceptual framework proposed in
subsection 3.2.5 Data Compression.

The Docker image is based on ubuntu and provides a runtime environment for
Pythoni. The entrypoint scriptii is written in Python and uses the UMAP Python
package for dimensionality reduction172. When carrying out an experiment, parame-
ters and runtime-objects within M²aia are made available to the processing container.
These are the reference to the folder containing the MSI dataset, a list of centroids
generated by peak picking (local maxima; SNR=5), and the parameters for signal
processing (maximum pooling; square root intensity transformation; tolerance of
175ppm) of the MSI data and the parameters for UMAP. The list of centroids is used
to generate ion images within the processing container, which can then be used in the
UMAP method after they have been converted into a feature matrix. After generation,
the resulting image is made available by the processing container on the hard disk in
the corresponding writable area (workspace) and automatically loaded into M²aia (if
output argument was specified as "autoload"; see subsection 3.4.4 Process Integration)
after the container is closed. The image is at this time point a vector image with three

ihttps://tinyurl.com/m2aia-dockerfile-umap; accessed April 2024
iihttps://tinyurl.com/m2aia-docker-umap; accessed April 2024

https://tinyurl.com/m2aia-dockerfile-umap
https://tinyurl.com/m2aia-docker-umap
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FIGURE 5.21. Dimensionality Reduction for MSI Datasets using UMAP. The custom UMAP
view, spectrum view, inputs and output images of the Docker-based integration are shown.
The segmentation view shows the mean overview spectrum (red) and peak picking results

(green). The bottom row shows the three channels of the dimension reduced image.

components, which is converted to an RGB image and added to the visualization
pipeline within M²aia. The custom view for providing controls and parameters and
inputs and outputs are illustrated in Figure 5.21 UMAP - Dimensionality Reduction for
MSI Datasets.

5.4.4 TotalSegmentator - Segmentation of Clinical Images

TotalSegmentator is a deep learning segmentation model for the automatic and
robust generation of segmentations of all major anatomical structures in body CT
images published by Wasserthal et al. (2023)105. Since parts of this work were also
motivated by a clinical environment (see introduction "Project M2OLIE") and an MSI-
independent realization of the integration capabilities was aimed at, a corresponding
procedure was provided as a proof-of-concept in this integration task.

In this demonstration the Docker image was already published by the authors
of the TotalSegmentator and used directly173. The Docker image is provided by the
authors of the published method and can be found in the publicly available container
registry as announced on the Github project page174. The Docker image is based on
pyTorch166 and can be started with the following command (adapted version of the
command; on the Github project page174):

docker run −v /tmp/m2_frLd8h :/ m2_frLd8h −−gpus device =0 −−ipc=host \ # Docker ’ run ’ arguments
−−rm wasserth/to ta l segmenta tor : 2 . 0 . 0 \ # Docker image
TotalSegmentator −−ml \ # TotalSegmentator arguments
− i /m2_frLd8h/input_image . n i i . gz \
−o /m2_frLd8h/ r e s u l t s . n i i

LISTING 5.2. Docker run command to start the TotalSegmentator Docker image173.

When carrying out an experiment, objects from the M²aia runtime environment
are made available to the processing container. This is the reference to the folder
containing the CT image and the parameters for the TotalSegmentator. The provided
Docker image can be configured to use a GPU for model prediction. After generation,
the resulting segmentation image is made available by the processing container on the
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FIGURE 5.22. The TotalSegmentator View, MITK’s Segmentation View, and input and output
images of the Docker-based integration are shown. The Segmentation View shows the
numerical object labels corresponding to the TotalSegmentator output labels. The liver

segmentation is highlighted (red arrows).

hard disk in the corresponding writable area (workspace) and automatically loaded
into M²aia after the container is closed.

A CT image from the test data project of MITKi,175 is used to test the integration.
The TotalSegmentator view, MITK’s segmentation view, and the input and output
images are shown in Figure 5.22 TotalSegmentator - Deep Learning segmentation of a CT
image. The execution code of the integrated TotalSegmentator view can be found in
the mitk-docker repository176.

5.4.5 moleculaR - Collective Projections of Metabolites

The moleculaR R package by Abu Sammour et al. (2023)150 provides a computational
framework that introduces probabilistic mapping and point-by-point statistical test-
ing of metabolites in tissue via MSI. It enables collective projections of metabolites
and consequently spatially-resolved investigation of ion milieus, lipid pathways or
user-defined biomolecular ensembles within the same image.

ihttps://phabricator.mitk.org/source/mitkdata/; accessed April 2024

https://phabricator.mitk.org/source/mitkdata/
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FIGURE 5.23. The moleculaR view, MITK’s segmentation view, input and output images of
the Docker-based integration are shown. The Segmentation View shows the output hotspot/-
coldspot labels of the moleculaR package. The coldspot segmentations are highlighted in

blue (red arrows).

In this demonstration, the R package is integrated into a Docker image that sup-
ports an R runtime environmenti. Additionally, an entrypoint scriptii was composed
in R to execute the appropriate method-of-interest. It realizes the command-line argu-
ment parsing, image import, data processing, and export of results. Both files are part
of M²aia’s Github repository177. This realizes the objective of programming language
independent integration of state-of-the-art methods into M²aia. The custom view
of the moleculaR integration, MITK’s segmentation view, and the input and output
images are shown in Figure 5.23 moleculaR - Collective Projections of Metabolites. Results
of moleculaR, which include labeled images of hot and cold spots, are incorporated
into M²aia, thereby becoming accessible to MITK’s segmentation utilities.

5.4.6 Peak Learning - Unsupervised Peak Identification

The peak learning proposed by Abdelmoula et al. (2021)63 was realized as pyM²aia
based deep learning application (see subsection 5.3.5 Spectral Strategy - Autoencoder

ihttps://tinyurl.com/m2aia-dockerfile-molecular; accessed April 2024
iihttps://tinyurl.com/m2aia-docker-molecular; accessed April 2024

https://tinyurl.com/m2aia-dockerfile-molecular
https://tinyurl.com/m2aia-docker-molecular
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FIGURE 5.24. Peak learning method proposed by Abdelmoula et al. (2021)63 is integrated via
the Docker-based system. This figure displays three components: the peak learning view, the
spectrum view, and the input image. The spectrum view shows the output mean overview

spectrum in red, alongside peaks identified in green.

for Peak Learning) and is integrated in the interactive environment of M²aia, as shown
in the previous subsection 5.3.5 Spectral Strategy - Autoencoder for Peak Learning. In this
example, the integration is based on the nvidia/cuda:11.8.0-runtime-ubuntu22.04
Docker image in order to support the utilization of GPUs. According to the previous
examples, a dedicated UI for parameter and runtime-object parsing was realized. The
UI, workflow, and results are illustrated in Figure 5.24 Integration of the Deep Learning
based Peak Learning. The Docker image and the application code can be found in the
Github repository of M²aiai.

5.5 A Software Ecosystem for Image-based Development, Pro-
cessing and Collaboration

Thus far, the presented results have demonstrated a variety of concepts for the process-
ing of multi-modal 2D/3D MSI data. Consequently, these implementations provide
a feature-rich environment in which advanced MSI questions can be processed on
local systems. This section presents the results of complementary concepts for a re-
mote working environment as introduced in chapter 4 Concepts for Interactive Remote
Working. The objective of these concepts is to provide strategies that facilitate the
transition of the previously described MSI data processing concepts to centralized
resources. These include, but are not limited to, (i) interactive image analysis (in-
troduced in section 3.3), (ii) the integration of programming language-independent
image processing methods (introduced in section 3.4), and (iii) the creation of deep
learning models (introduced in section 3.5), (iv) the remote development of image
processing method, and (v) collaboration with domain experts. These concepts are
demonstrated through a series of use-cases that illustrate the potential applications
of the proposed remote working strategies, thus building a software ecosystem for
remote analysis of MSI data.

ihttps://tinyurl.com/m2aia-docker-peaklearning; accessed April 2024

https://tinyurl.com/m2aia-docker-peaklearning
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The individual components of the software ecosystem are shown in subsection
5.5.1 and the structure of the software ecosystem in 5.5.2. Based on the components
of the software ecosystem, a remote developing use-case is outlined in 5.5.4, followed
by an collaborative use-case of an multi-rater image annotation workflow in 5.5.4 and
a remotely executed 3D reconstruction of MSI data in 5.5.5.

5.5.1 Components of the Software Ecosystem

The components of the remote interactive working environment includes multiple
software solutions for the concepts introduced in chapter 4 Concepts for Interactive
Remote Working. In the following paragraphs, the implementations of the components
are described in more detail.

Application Controller: the Application Controller utilities (see section 4.3 Platform
Architecture) are of central meaning to facilitate the user-interactions with remote
resources. In context of the proposed software component VS code as a versatile
tool for accessing the centralized resources, an Application Controller extension
called vcM²aia was created. This Application Controller realizes the management of
interactive applications via convenient UI integrations. The UI components of the
VS Code extension are illustrated in Figure 5.25 Illustration of the vcM²ia Application
Controller.

Remote Interactive Applications The interactive applications (see section 4.4 Re-
mote Interactive Applications) are Docker-based virtual desktops that can be rapidly
deployed, providing a single interactive image processing desktop application. To
illustrate the potential for packaging interactive applications into Docker images
with regard to the use-cases of multi-modal biomedical image processing, a set of
application containers for interactive image processing has been implemented:

• M²aia115: provides, as described in section 3-3.3, fast, memory-efficient and
interactive access to 2D/3D MSI and MSI related datasets. It supports inter-
active tasks like 3D reconstruction and multi-modal image fusion as well as
non-interactive tasks including signal processing and dimensionality reduction.
Additionally, it provides comprehensive image visualizations in 2D and 3D and
access to inherited methods of MITK including interactive spatial segmentation
and further processing utilities for 2D/3D clinical imaging data. Parts of this
application were published in the GigaScience journal115.

• QuPath178: tailored for digital pathology image analysis, QuPath features an
intuitive interface for analyzing whole-slide images, with tools for segmenta-
tion, classification, and biomarker quantification. This application is used for
annotation/segmentation of 2D optical microscopy imaging data. It serves
as a sharable annotation software used for multi-modal and interdisciplinary
workflows.

• ilastik179: it is a software tool designed for interactive image analysis. It provides
a user-friendly interface for users to perform tasks such as image segmentation
and classification. One of its key features is its ability to combine machine learn-
ing algorithms with user input to achieve more accurate and efficient results.
ilastik is commonly used in fields such as biology, neuroscience, and materials
science for tasks like cell tracking, object detection, and image segmentation.
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FIGURE 5.25. Illustration of the vcM²ia Application Controller. This illustration of the vcM²ia
Application Controller is divided into three sections (A), (B), and (C). VS Code is situated in
the center of section (B) and comprises three highlighted areas. The green rectangle represents
M²aia, which is currently running on a server and is displayed within VS Code’s Simple
Browser. A rectangle in the lower left corner in red shows the status symbols of multiple
VS Code extensions, which are currently active in the illustrated session. A rectangle in the
upper center shows the menu for running interactive applications. Upon right-clicking on
a data item or folder within the explorer view of VS Code (accessible via the menu on the
left), a context menu will appear. With a blue rectangle highlighted, the quick-access option
allows the user to initiate a new remote hosted interactive application by selecting one of
the images from the list (blue rectangles). The lower part of this figure (C) shows a detailed
view of the VS Code extension status bar. The red rectangle indicates the status of the Remote
Development extension of VS Code, which is currently displaying that the active session
is remotely accessing a server with the name "jc." The green rectangle indicates the status
of vcM²aia, which is currently displaying that two remote applications are running that are
associated with the current user. Clicking on the vcM²aia symbol will open the running

application menu shown in the upper part of this figure (A).
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• ImageJ89: an open-source image processing program designed for scientific
multidimensional images, ImageJ offers extensive functionality through its
modular architecture. It supports a wide range of image formats and provides
powerful tools for image manipulation, segmentation, and analysis. ImageJ is
widely used in various scientific disciplines, including biology, physics, and
materials science, for tasks such as measuring areas, counting particles, and
performing complex mathematical operations on image data.

All applications were integrated using the concepts introduced in section 4.4 Re-
mote Interactive Applications and are publicly available as part of the Github repository
of M²aia177.

Remote Development Utilities VS Code is a widely-used code editor known for
its extensive support for various programming languages through a rich ecosystem
of extensions. One of its key features is robust remote development capabilities,
which enable seamless coding, debugging, and deployment workflows on remote
servers. This functionality is increasingly important for developers who require
powerful computing resources or who collaborate within distributed teams. While
other solutions, such as JupyterLab and R Studio, also offer remote development
capabilities, they lack the proposed Application Controller utilities that are integral
for the efficient image-oriented development process.

5.5.2 The Software Ecosystem

The components described in subsection 5.5.1 Components of the Software Ecosystem are
composed to a software ecosystem. The resulting composition can handle a variety of
use-cases. The base structure of this software ecosystem is illustrated in Figure 5.26
The Software Ecosystem for Remote Analysis of MSI Data. The illustration shows three
distinct section such as (i) the client system, (ii) the remote system, and (iii) the
external system of potential Data Users who are located, for example, outside the
institute’s own network. These illustrative sections are delineated in the following:

• Local System: the (i) local system of a Data Analyst who is acting as the main
driver of coordinating individual tasks, requires installations of a VS Code
instance and a standard web browser. VS code is used extensive throughout
this work and the upcoming use-cases (as mentioned before, other remote IDEs
can also be used). VS Code is used as the main interface to centralized resources
for remote developing, the remote execution of code and to control the hosting
of the interactive applications. The proposed VS code extension vcM²aia (see
subsection 5.5.1 Components of the Software Ecosystem) offers convenient man-
agement capabilities of the interactive application containers. No additionally
software components or datasets have to be present on the local system to
enable full control of the components of the software ecosystem.

• Remote System: on the (ii) remote system , e.g. a server that holds centralized
resources within a research institute, has to provide installations of Docker
and the server sided counterpart of the involved remote integrated developing
environment. Interactive application images for M²aia, imageJ, ilastik, and
QuPath are downloaded to the server on request, that are accessible in the
Docker image distribution registry of the Github projecti.

ihttps://github.com/orgs/m2aia/packages

https://github.com/orgs/m2aia/packages
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• External System: the (iii) system of an external collaboration partner has to be
able to access the network infrastructure of the remote system, e.g. by using
a virtual private network connection, in order to access the shared interactive
applications. These applications are to be provided by the Data Analyst for
a specific dataset using a standard web browser in order to interact with the
application containers’ HTML5 interface.

The repetitive steps of developing new image processing methods necessitate
alternating access to source code, executables, image inputs, and results. The pro-
posed components facilitate the validation of datasets and, based on gained insights,
enable the modification of source code and the adjustment of important experimental
parameters. This becomes even more important in the event that data size and data
access complexity increase, as is the case with hyper-spectral 2D/3D imaging datasets
generated by various MSI methods. The proposed software ecosystem provides utili-
ties to rapidly initiate instances of interactive applications on remote-located image
data, thus streamlining the aforementioned remotely executed alternating steps. This
configuration thereby emulates a local development and image analysis experience.
Furthermore, the execution of collaborative tasks with Data Users is supported due
to the provided strategies for initializing multiple instances of interactive applica-
tions simultaneously on project datasets. To facilitates the monitoring of running
interactive applications, the Application Controller (see subsection 5.5.1 Components
of the Software Ecosystem) offers an intuitive and user-friendly management system.

5.5.3 Use-case: Remote Development of Image Processing Methods

The strategies for the remote development of image processing methods were applied
to a range of use-cases delineated in previous sections of the results.

• All examples of creating new deep learning applications using pyM²aia were
realized using the software ecosystem (see result section 5.3 Python-based Access
to imzML for Deep Learning Applications). VS Code was used as a server interface
and IDE for creating the comprehensive examples using IPython-based note-
books. The image data were processed and explored using remotely hosted
interactive application instances of M²aia, which could be created rapidly on
demand. Throughout the development process, the Data Analyst had access
to the image data. Centralized GPU resources were utilized during the model
training and inference phases.

• The annotation transfer of histological annotations to MSI datasets for the
creation of moleculaR150 (see subsection 5.4.5 moleculaR - Collective Projections of
Metabolites) was realized remotely in a collaborative setup.

• Furthermore, remote development environments across VS Code, JupyterLab,
and R Studio were set up to evaluate their performance and integration capabil-
ities. The following IDE configurations were used:

– VS Code was configured for remote development using the Remote - SSH
extension.

– JupyterLabi and R Studioii were set up for remote development on similar
remote servers using Docker images.

ihttps://docs.docker.com/guides/use-case/jupyter/; accessed April 2024
iihttps://rocker-project.org/images/versioned/rstudio.html; accessed April 2024

https://docs.docker.com/guides/use-case/jupyter/
https://rocker-project.org/images/versioned/rstudio.html


5.5. A Software Ecosystem for Image-based Development, Processing and
Collaboration

129

FIGURE 5.26. This diagram provides an overview of the key actions of a Data Analyst that
can be realized by using the components of the software ecosystem (see subsection 5.5.1
Components of the Software Ecosystem), highlighting the collaborative aspects between Data
Analysts and Data Users. The illustration is divided into three areas. The local system of the
Data Analyst is on the left, the centralized resources are represented by the institute server
in the middle, and on the right, the external system operated by an externally located Data
Users. The primary functions of the software ecosystem are illustrated for the roles of Data
Analysts and Data Users. As an example, a virtual private network (VPN) connection is
depicted to facilitate access to the interactive applications hosted within the institute network.
The Data Users can utilize the server address and a password for an application, which can
then be opened in a standard web browser. Single dashed line indicates institute-internal
access to the remote resources. Double dashed line indicates institute-external access to the

remote resources.
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The availability and functionality of Application Controller utilities in VS Code
were tested. A similar assessment was conducted for JupyterLab and R Studio,
but without the convenient access to an Application Controller. The developing
of MSI oriented processes showed that VS Code provides seamless support for
Python, R, C++, and other programming languages, with straightforward setup
and integration for remote development. The VS Code Application Controller
utilities, significantly enhance the development workflow by providing rapid
access to remote image data. In contrast, JupyterLab and R Studio, while
adequately supporting their primary languages (Python for JupyterLab and
R for R Studio), exhibited more complex or limited integration processes for
the development with support of remote interactive applications, which had
to be controlled on the command-line by the Docker API. Additionally, these
platforms require a greater initial installation and configuration effort compared
to VS Code.

5.5.4 Use-case: Multi-rater Image Annotations

This use-case focuses on the involvement of external collaborators in order to create a
multi-rater spatial annotation database of H&E stained histology images. An impor-
tant aspect of the proposed concept is that desktop applications can be shared online
while datasets are never leaving the centralized resources. Since the web browser ac-
cessed applications do not offer the download of datasets to the system of end-users,
unwanted data access violations are excluded. The download of imaging datasets
is only possible by accessing the centralized resources using server credentials, that
are trustworthy permitted on individual basis by the administrative personal of the
research institution.

Four QuPath application containers were provided, one for each of the four
Data Users. Imaging datasets are loaded read-only, while resulting annotations can
be written to a dedicated workspace area. After the application container server
addresses were shared with the Data Users, user-support was provided utilizing the
simultaneous accessibility of application containers for Data Analyst and Data Users.
This facilitated the communication process and upcoming questions regarding the
annotation instructions, usage of QuPath and targeted annotation quality could be
answered rapidly and interactively.

The task was to create multi-rater ground truth for further analysis. The Data
Analyst shared the application addresses (e.g. http://<server-ip>:<port>) to the
raters, which then can use a standard web browser to access and manipulate a
given dataset. No extra software has to be installed for the raters. The interactive
applications provide a direct access to the data that is stored on the server and does
not need to be fully transferred to a raters system, reducing time, cost and prevents
data inconsistencies. Results of the interactive actions are stored on the server for
further analysis. Compare Figure 5.26 The Software Ecosystem for Remote Analysis of
MSI Data and Figure 4.2 Interactive Remote Working Environment - User Scenario for this
collaborative scenario.

5.5.5 Use-case: 3D Reconstruction of 3D-Cell Cultures

For a study on an integrated platform for 3D reconstructions of 3D-cell cultures by
Iakab et al. (2022)180, co-authored by the author, 3D-printed metal casting molds for
freezing and embedding (see Figure 5.27 Sample preparation protocol) are introduced.
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The objective is to assess the platform’s capability for preparing spheroid MSI sam-
ples with the necessary precision for subsequent 3D reconstruction. Several lipids
selectively associated with different cell types or cell-cell interactions within fibroblast
and colon cancer biculture spheroids were investigated at a spatial pixel resolution
of 20 µm. To achieve this, 100 serial cryosections were prepared and analyzed using
MSI. The data was then processed and explored interactively using M²aia to identify
structural-rich images suitable for 3D reconstruction (see section 3.3 Concepts for
Image-based Registration in MSI).

The software ecosystem was prepared for internal collaboration with Data Users.
In this case, the Data Users acquired the MALDI-TOF MSI datasets and converted the
serial sections into individual imzML files. Data transfer was achieved by uploading
files using a web-frontend to a key-value store (database) and was hosted on the
institutional server. The Data Analyst provides an instance of the key-value store
and one interactive application on the remote system offering access to M²aia via a
web browser. The Data Users were able to realize the 3D reconstruction within the
interactive framework of M²aia.

Data collected from consecutive sections were normalized by root mean square
(RMS) during the import of the individual imzML files (see section 3.2 Concepts for
MSI Data Processing). The structural-rich ion image at m/z 863.5 was chosen (see
subsection 3.2.3 Ion Image Generation) for the 3D reconstruction procedure (illustrated
in Figure 5.28 3D reconstruction strategy). Default parameters were used with a
maximum of 20 rigid iterations and 400 deformable iterations. 3D stacks were
then exported from M²aia as NRRD181 files, downloaded to a local system for 3D
visualizations as shown in Figure 5.29 Representation of region-specific ion distributions
in space.

5.6 Code and Data Availability

The contributions of the work are created with the idea of open-source and open-data
in mind. This is of central interest in this work and of central importance for the
future development of this field of research.

Multi-modal 3D MSI Dataset

• The Mouse Brain Dataset128 (see subsection 5.1.1 Lipid/Peptide 3D APP NL-G-F
Mouse Brain) is available for download at http://gigadb.org/dataset/100909

M²aia: Source Code Repositories and Desktop Application

• Project home page: https://m2aia.github.io/m2aia
• Biotools (biotools:m2aia): https://bio.tools/m2aia
• The M²aia application (biotools:m2aia) is available at https://m2aia.de
• The M²aia desktop application is an open-source software project in the sense

of a 3-clause BSD license. Installer for te application (windows/linux) can be
found on Github https://github.com/m2aia/m2aia

• The image-based registration utilities are part of the mitk-elastix extension, an
open-source software project in the sense of a 3-clause BSD license. It can be
found on Github https://github.com/m2aia/mitk-elastix

http://gigadb.org/dataset/100909
https://m2aia.github.io/m2aia
https://bio.tools/m2aia
https://m2aia.de
https://github.com/m2aia/m2aia
https://github.com/m2aia/mitk-elastix
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FIGURE 5.27. Sample preparation protocol. Spheroids grown in a 96-well plate are harvested,
then embedded in HPMC-PVP-filled gelatin cryo-molds, snap frozen in liquid nitrogen, and
finally cryo-sectioned. Inserts showcase pictures from the CeMOS laboratory. Illustration
created by Iakab et al. (2022)180 under the conditions of the Creative Commons Attribution

(CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

FIGURE 5.28. 3D reconstruction strategy. Slide layout with consecutive sections (A);
Consecutive sections illustrated by the ion images of m/z 863.56 (B); automatic stack-
ing and registration of consecutive ion images using M²aia software: illustrative stack-
ing (C) and cross-sectional view of stack (D); volume visualization of different ions of in-
terest, in red m/z 863.56 and in blue m/z 885.53 (E). Illustration created by Iakab et al.
(2022)180 under the conditions of the Creative Commons Attribution (CC BY-NC-ND) license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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FIGURE 5.29. Representation of region-specific ion distributions in space. The illustration
shows frames from a 3D reconstruction video182 with m/z 498.26, m/z 835.56, and m/z 885.55
describing the exterior layer (yellow), the cancer cells (black), and the fibroblasts (cyan).
Illustration created by Iakab et al. (2022)180 under the conditions of the Creative Commons
Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

• The third-party method integration utilities are part of the mitk-docker exten-
sion, an open-source software project in the sense of a 3-clause BSD license. It
can be found on Github https://github.com/m2aia/mitk-docker

pyM²aia: Source Code Repositories and Package

• The pyM²aia package was published in the Python Package Index (PyPI) reposi-
tory for (windows/linux) on https://pypi.org/project/m2aia/ (accessed April
2024).

•
• Biotools (biotools:pym2aia): https://bio.tools/pym2aia
• The source code for pyM²aia can be found on Github

https://github.com/m2aia/pyM2aia
• The pyM²aia based examples can be found on Github

https://github.com/m2aia/pym2aia-examples
• msiPL - Github fork: https://github.com/m2aia/pym2aia-examples-msiPL
• MSI-self-supervised-clustering - Github fork: https://github.com/m2aia/pym2aia-

examples-MSI-self-supervised-clustering

Docker Images for Remote Interactive Applications:

• The Docker Image for M²aia is part of M²aia’s Github:
https://ghcr.io/m2aia/m2aia

• The Docker Image for MITK is part of M²aia’s Github:
https://ghcr.io/m2aia/mitk

• The Docker Image for QuPath is part of M²aia’s Github:
https://ghcr.io/m2aia/qupath

• The Docker Image for ilastik is part of M²aia’s Github:
https://ghcr.io/m2aia/ilastik

• The Docker Image for fiji is just imageJ (fiji) is part of M²aia’s Github:
https://ghcr.io/m2aia/fiji

https://github.com/m2aia/mitk-docker
https://pypi.org/project/m2aia/
https://bio.tools/pym2aia
https://github.com/m2aia/pyM2aia
https://github.com/m2aia/pym2aia-examples
https://github.com/m2aia/pym2aia-examples-msiPL
https://github.com/m2aia/pym2aia-examples-MSI-self-supervised-clustering
https://github.com/m2aia/pym2aia-examples-MSI-self-supervised-clustering
https://ghcr.io/m2aia/m2aia
https://ghcr.io/m2aia/mitk
https://ghcr.io/m2aia/qupath
https://ghcr.io/m2aia/ilastik
https://ghcr.io/m2aia/fiji
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All of these guarantees availability, comparability and usability of the developed
methods and datasets. All listed web addresses accessed in April 2024.
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Chapter 6

Discussion

In this chapter, the findings presented in the previous chapter will be reviewed and
their implications for the field of biomedical image processing discussed. The chapter
is divided into three parts. The first section of this chapter provides an overview
of the results presented in the previous chapter and considers them in the context
of the overall concept of the thesis. The second section provides a discussion of the
concepts for interactive processing of multi-modal 2D/3D MSI dataset with M²aia, the
Python-based access to MSI datasets with pyM²aia and its implications for the filed
of deep learning in MSI, and the integration of programming language independent
image processing methods into an interactive application context. The third section
includes a review of the developed software ecosystem for remote working with
biomedical images and its potential applications are reviewed.

6.1 Overview

The primary objective of the present thesis was the development of a software ecosys-
tem for supporting remote executed interactive processes related to multi-modal
2D/3D MSI. All developed software solutions were created with the challenges
related to deep learning applications in MSI in mind.

To achieve this objective, an interactive analysis and processing framework for
multi-modal 2D/3D MSI was designed. Consequently, the Medical Imaging and
Interaction Toolkit (MITK) was extended by the incorporation of MSI data import
and processing functionalities, thereby creating the Mass Spectrometry Imaging
Applications for Interactive Analysis in MITK (M²aia). The processing of MSI data
was enabled within M²aia by implementing an efficient access to MSI data in imzML
format (see subsection 5.2.1 Data Import and Performance) and commonly used MSI
data processing capabilities (see subsection 5.2.2 Individual Features for MSI Data
Exploration and Processing), including signal processing, visualizations, and analysis
steps required in MSI experiments.

The capabilities of M²aia in handling a variety of data processing tasks related to
MSI were demonstrated. A biomarker identification use case (see subsection 5.2.3
Use-case: Biomarker Identification) was implemented to showcase M²aia’s ability to
execute a common MSI-related task. This thesis placed a particular emphasis on
the implementation of advanced interactive concepts for image-based registration
tasks. These included concepts for 3D image reconstructions and visualizations
(see subsection 5.2.4 Use-case: Multi-modal 3D Image Reconstruction) and concepts
for multi-modal image fusion, with the aim of facilitating correlated multi-modal
image analysis and annotation transfers (see subsection 5.2.5 Use-case: Semi-automatic
multi-modal image registration).

A flexible, user- and developer-friendly concept for the programming-language
independent integrations of third-party image processing methods was implemented.



136 Chapter 6. Discussion

This enables the customization of processing workflows by integrating new image
processing capabilities within the interactive environment of M²aia (see section 5.4
Integration of Third-Party Image Processing Methods).

MSI dedicated deep learning utilities were implemented in Python, which are
based on the previously introduced memory-efficient access to MSI datasets in imzML
format. Python was chosen to support the widely used Python-based frameworks for
deep learning, including PyTorch and TensorFlow. Therefore, the shared library of
M²aia was incorporated into a Python context and extended to support the different
access strategies, namely the spectral strategy, spatial strategy, and spatio-spectral
strategy. These strategies were demonstrated by extensive examples in section 5.3
Python-based Access to imzML for Deep Learning Applications on basis of supervised and
unsupervised deep learning models.

To enable the transfer of MSI analysis, processing, and development tasks to
remote/centralized resources, concepts were implemented that enable interactive
remote access to image data, not only for MSI but also for MSI-related imaging modal-
ities. These capabilities were implemented by different software components, collec-
tively forming a software ecosystem for remote working with MSI datasets (see sec-
tion 5.5 A Software Ecosystem for Image-based Development, Processing and Collaboration).
To demonstrate the remote working capabilities, three MSI-related use cases were
presented, including remotely executed use cases for collaborative tasks, 3D image
reconstruction, and development.

In the following sections specifically important aspects are discussed in more
detail.

6.2 Interactive 2D/3D MSI Data Processing Application

Interactive access to image data is a key concept in image analysis and provides
users with tools for exploration and processing. The objective of this thesis was to
create an interactive platform that would facilitate the exploration of multi-modal
and 3D MSI-related problems. This would enable users to gain a comprehensive
understanding of the data and to facilitate the selection of strategies for solutions on
an individual basis.

The proposed concepts make it possible to realize complex/advanced interactive
workflows for multi-modal and 3D MSI data visualization and processing, which are
dependent on the efficient implementation for imzML data access. This was enabled
building upon the advanced software-solutions offered by MITK92,93. Although MITK
was developed specifically for the processing of clinical images, the potential of MITK
is widely utilized and extended by the proposed interactive concepts for MSI-related
questions. In contrast to previous approaches, that realize open-source desktop
applications for interactive access to MSI datasets78, the unique characteristics are the
strong focus on multi-modality (MSI-to-MSI or MSI-to-Histology) and the interactive
concepts for supporting MSI data exploration, analysis, multi-modal image fusion,
and 3D image reconstruction.

6.2.1 Interactive Features of M²aia

Parts of the following discussion points were published in Cordes et al. (2022)116 under
the conditions of the Creative Commons Attribution (CC BY) license (http://creative-
commons.org/licenses/by/4.0).

M²aia’s multi-threading and lazy-loading concepts enable memory-efficient ex-
ploration of datasets that are far larger than the system’s actual working memory.



6.2. Interactive 2D/3D MSI Data Processing Application 137

As shown in Table 5.3 Feature Comparison: pyM²aia vs. pyimzML, loading a 44.2-GB
dataset requires <500 MB of RAM. This allows even complex MSI analysis tasks
to be performed on local systems. This was demonstrated on the mobile system
for m/z candidate detection on an N-linked glycan MALDI-TOF dataset (see sub-
section 5.2.3 Use-case: Biomarker Identification) and 3D multi-modal registration of
a lipid and peptide dataset (see subsection 5.2.4 Use-case: Multi-modal 3D Image
Reconstruction).

Image-to-image registration requires structure-rich images that include common
characteristic features between tissue slices or, for the multi-modal case, between
modalities. This may require a user-driven search for structure-rich images across the
m/z dimension, which is facilitated by M²aia’s fast and interactive ion-image gener-
ation. Because different masses are intrinsically registered, it is irrelevant whether
the structures visible in an image are meaningful entities or imaging/normalization
artifacts. To demonstrate this, an unusually wide mass range of 50 Da at m/z 2,250
was chosen to generate a structure-rich image. This was successfully used in sub-
section 5.2.4 Use-case: Multi-modal 3D Image Reconstruction for the 3D reconstruction.
Disabling TIC normalization for the same m/z-range leads to a noisy image without
structures, not usable for image-based registration—suggesting that the contrast is
actually caused by a TIC normalization artefact. Other challenges for purely auto-
matic image registration approaches are significantly misaligned, especially heavily
rotated, or, even worse, flipped images. The interactive environment of M²aia makes
it possible to quickly obtain a rough pre-alignment of the images that is sufficient
as initialization for subsequent automatic refinement. With the possibility to edit
the elastix parameter file, M²aia offers unrestricted access to the full potential of the
elastix toolkit to enable problem-specific customization of image registration.

Evaluation of registration results is yet another task that requires interaction. It is
performed either qualitatively by visualization methods (like blending or checker-
board visualization) or quantitatively by comparing corresponding landmarks or,
less accurately, segmentations. Both methods typically require interactive tools, e.g.,
to select the appropriate parameters for visualization, to define corresponding land-
marks, or to perform (or at least verify) segmentations. MITK, the toolkit that M²aia is
based on, offers such tools. The applicability of these tools to hyperspectral MSI data,
enabled by the data access concepts of M²aia, was demonstrated in subsection 5.2.2
Individual Features for MSI Data Exploration and Processing (Image-based Registration
Evaluation).

With rare exceptions, transforming an image to another coordinate system re-
quires interpolation of image data. If interpolation is applied to spectral data, the
interpolated spectra must be interpreted with caution. To avoid possible misinterpre-
tation of interpolated spectra, M²aia currently calculates only interpolated ion-images
and allows the transformation parameters to be stored for use together with the
unmodified MSI data. To avoid interpolation of spectra in a multi-modal registration
task with MSI and non-MSI data, the MSI image domain should be used as the fixed
image domain.

Multi-modal MS imaging refers to approaches with different MSI contrasts (like
lipid and peptide MS imaging), as well as combined MSI and non-MS imaging meth-
ods, e.g., MSI combined with microscopy. M²aia’s capabilities for the former scenario
were demonstrated in subsection 5.2.4 Use-case: Multi-modal 3D Image Reconstruction.
Combining MSI and microscopy is a common multi-modal MSI experiment with its
own challenges in interactive visualization. Owing to the high lateral resolution of
microscopy images, memory-efficient handling of microscopy datasets requires pyra-
midal and tiled storage approaches. To enable this in M²aia an interface for reading
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whole-slide images by utilizing the OpenSlide library137 was implemented as demon-
strated in subsection 5.2.5 Use-case: Semi-automatic multi-modal image registration.

6.2.2 Integration of Third-party Image Processing Methods

In cases where novel image processing methods have been developed in isolation
from an interactive context, it can be of great benefit to the users and developers
of these processing methods to be able to integrate them into an interactive context
by using the proposed interfaces. The interfaces offer a way of integration that is
independent of the programming language of the method of interest. The proposed
command-line-based implementation of image processing methods in Docker images
facilitates the reusability of these Docker-based applications. If the resulting Docker
images are publicly available, they can be used in a standalone scenario via the
command-line or integrated into applications that follow a similar strategy to the
proposed one.

These capabilities has been demonstrated in several use cases that show the
integrability of such applications, not only for MSI data processing, as shown for
UMAP (see subsection 5.4.3 UMAP - Dimensionality Reduction of MSI Datasets) and
MoleculaR (see subsection 5.4.5 moleculaR - Collective Projections of Metabolites), but
also for deep learning applications (see subsection 5.4.6 Peak Learning - Unsupervised
Peak Identification) and clinical imaging (see subsection 5.4.4 TotalSegmentator - Seg-
mentation of Clinical Images). Furthermore, the use-cases demonstrate the generic
ability to include processing methods independent of the programming language
in which they are implemented. The implementation of the concepts in M²aia was
straightforward, thanks to the generic concepts of MITK for reading and writing data
in provided image formats. If similar concepts, as in MITK, are available in third-
party applications, the integration and utilization of the implemented and future
Docker-based image processing methods can be similarly seamless and efficient.

The integration concept have been implemented as a standalone project called
mitk-docker117, and was used for the integration of MSI-based processing methods,
among others. Previous work, such as that proposed by Razeghi et al. (2020)183,
which provides the MITK-based CemrgApp for visualization and manipulation of
cardiovascular data, does not follow a generic approach for integrating Docker-based
image methods, but only uses the Docker API within the code execution. This was
identified by analyzing the project’s Github repositoryi. The proposed solution in this
thesis focuses on a minimal set of generic programming utilities/classes to integrate
new Docker-based (image) processing methods into MITK, thus clearly differentiating
itself from this previous work. Moreover, the solution as stand alone external project
of MITK does not come with any unwanted overhead.

The presented integration concept is general and open in the way it can be imple-
mented. For this work the interactive application M²aia were chosen for implementa-
tion of the concept. The author believes that the concept of integration can be used in
other applications, while keeping the Docker-based processing containers unmodified
between different interactive applications, reducing the integration efforts overall.

6.2.3 Supporting ImzML-based Deep Learning in Python

pyM²aia was developed as an open-source Python package for processing and ana-
lyzing MSI data, with a particular focus on deep learning applications. The package
provides researchers working in the field of MSI with a comprehensive toolkit in

ihttps://github.com/OpenHeartDevelopers/CemrgApp; accessed April 2024

https://github.com/OpenHeartDevelopers/CemrgApp
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Python and enables the processing, visualization, and analysis of large and complex
data sets in imzML format. pyM²aia employs the same import routines as M²aia and
thus forms an interface to this application. This interface ensures the interchangeabil-
ity of data elements with M²aia, thus facilitating the exploration and annotation of
MSI data and MSI-related image data.

The package thus facilitates memory and computationally efficient loading of
imzML datasets and enables the processing of large MSI datasets without excessive
memory consumption. This efficiency is crucial for feeding large amounts of data
into deep neural networks during training. pyM²aia is optimized for DL tasks and
provides batch generators for typical MSI data access strategies, enabling the creation
of readable and maintainable DL pipelines. The package is compatible with a number
of popular deep learning libraries, including TensorFlow/Keras and PyTorch. The
proposed package supports various strategies for handling MSI data:

• Spectral Strategy: Uses spectral information without considering spatial rela-
tionships between spectra.

• Spatial Strategy: Focuses on the spatial properties of molecular distributions
without intra-spectral relationships.

• Spatio-Spectral Strategy: Utilizes both spatial and spectral information simul-
taneously, which is computationally demanding but provides comprehensive
data analysis.

Supporting these strategies underscores the flexibility of pyM²aia and its potential to
advance MSI research.

The presented exemplary applications, such as the generation of ion images and
the training of DL models, demonstrate the practical use of pyM²aia. The examples
presented not only serve to illustrate the capabilities of the package, but also provide
valuable resources for researchers wishing to perform similar analyses. Querying
imzML metadata, applying signal processing methods, and generating ion images are
fundamental tasks in MSI research, and thus a prerequisite also for new MSI-based
deep learning models. In addition, the imzML file format standard for MSI data can
be used to provide raw data or, if processed, detailed information about the signal
processing steps applied. In contrast to other open standards for the conversion of
proprietary file formats from device manufacturers, the handling and provision of
this information is already specified by the imzML standard, which is crucial for
enhancing reproducibility.

Although pyM²aia facilitates the development of DL approaches for MSI, DL
for MSI still faces a number of inherent challenges and limitations. The high com-
putational requirements of DL, coupled with the significant size of MSI datasets,
can overwhelm even advanced hardware resources. Furthermore, while pyM²aia
provides a robust framework for data processing and DL integration, the quality and
consistency of MSI data remain critical factors. Batch effects, fluctuations in data
quality and the “curse of dimensionality” are persistent problems in MSI research that
cannot be solved independently by pyM²aia. Overcoming these challenges requires a
combination of optimized data acquisition techniques, standardized pre-processing
protocols and continuous advances in DL methods.

Potential avenues for future development include encouraging contributions from
the community to expand the library with example applications and processing func-
tions. Another important direction is the promotion of interdisciplinary collaboration
between computer scientists, biologists, and chemists to develop more sophisticated
models and applications.
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In summary, pyM²aia provides essential tools for efficient data processing, es-
pecially in the context of deep learning integration. The evolution of the package
promises to remain a valuable resource for the MSI community, driving innovation in
both data analytics and deep learning applications.

6.2.4 Answers to the Posed Research Questions

The performed use-cases support the following research questions as posed in chap-
ter 3 Interactive Multi-Modal 2D/3D MSI Data Analysis:

• Can an application framework be provided that allows researchers comprehen-
sive interactive access to MSI datasets, simultaneously for multi-modal and 3D
MSI?

– The framework successfully provides comprehensive interactive access to
MSI datasets, enabling simultaneous multi-modal and 3D analysis. This
is achieved through the development of intuitive visualization and inter-
action tools that support dynamic exploration of both 2D and 3D MSI
data. The framework handles large datasets efficiently, maintaining perfor-
mance and scalability, which is crucial for responsive data manipulation
and visualization. The integration of support for various biomedical image
formats ensures broad compatibility, allowing researchers to seamlessly
navigate and analyze complex MSI datasets.

• Can this framework be used to implement the lacking capabilities of advanced
interactive concepts for multi-modal image fusion and 3D image reconstruc-
tions?

– The framework implements advanced interactive concepts for multi-modal
image fusion and 3D image reconstruction. It provides tools for accurate
alignment and fusion of images from different modalities, such as com-
bining MSI data with histological images. The image-based registration
methods supported by the framework allow precise alignment, and interac-
tive tools enable users to assess and correct registration results dynamically.
Additionally, the framework supports both rigid and deformable image
registration techniques for creating comprehensive multi-modal image
fusions or 3D reconstructions.

• Is it possible to use this framework for common workflows in the field of MSI,
such as rapid data exploration and creation of spatial annotations?

– The framework supports common workflows in MSI, facilitating rapid
data exploration and the creation of spatial annotations. It provides effi-
cient data handling capabilities, enabling quick loading, processing, and
visualization of MSI datasets. The framework also includes intuitive tools
for creating and manipulating spatial annotations, allowing researchers
to mark regions of interest and link them to specific molecular features.
This streamlines the workflow for researchers, enhancing the usability and
efficiency of MSI analysis.

• Is it possible to facilitate the integration and development of the more advanced
processes of the molecular analysis workflow, such as the identification of
relevant peaks and biomarkers?
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– The framework facilitates the integration and development of advanced
molecular analysis processes, including peak identification and biomarker
discovery. The framework also supports the integration of custom ana-
lytical methods through programming language-independent interfaces,
allowing researchers to develop and incorporate their own tools. This
flexibility enhances the accuracy and depth of molecular investigations,
fostering innovation in MSI research.

• Can fast and memory-efficient processing techniques tailored to the imzML
file format enhance the training and development of deep learning models by
supporting optimized and convenient data access interfaces?

– The framework demonstrates that using fast and memory-efficient process-
ing techniques tailored to the imzML file format supports the training and
development of deep learning models. The imzML standard, which al-
lows for the storage of raw data and documentation of preprocessing steps
within the file format, promotes FAIR (Findable, Accessible, Interopera-
ble, and Reusable) data exchange. By facilitating direct processing of raw
data, the framework avoids the pitfalls associated with using preprocessed
datasets, such as loss of reproducibility and undocumented preprocessing
steps. The optimized data access interfaces ensure that large volumes of
MSI data can be efficiently processed, enabling the effective training of
deep learning models. This efficiency is crucial for researchers aiming to
leverage machine learning techniques to extract meaningful patterns and
insights from MSI data.

6.3 A Software Ecosystem for Remote Analysis of MSI Data

The proposed software ecosystem addresses a critical need in biomedical research
for efficient, interactive, and remote access to large and complex imaging datasets.
The motivation behind this work is rooted in the exponential growth of imaging
data and the increasing complexity of image analysis tasks. Traditional methods of
data transfer and local processing are becoming increasingly impractical, especially
for data-intensive processes such as those involved in MSI. This ecosystem aims to
alleviate these challenges by leveraging centralized resources, thereby enhancing
collaborative research efforts, and streamlining workflows and development of data
analysis methods.

Biomedical imaging is foundational in fields such as pathology, radiology, and
cell biology. As imaging techniques continue to evolve, they produce datasets that
are not only larger in size but also more detailed and complex. The sheer volume
of data necessitates advanced computational resources for storage and processing.
The conventional approach of transferring these massive datasets to local systems
for analysis is not only inefficient but also impractical for many research settings.
This inefficiency can hinder scientific progress, especially when quick and accurate
data interpretation is required, as in the multidisciplinary projects like M²Aind and
M²OLIE, where timely insights can significantly influence clinical outcomes.

The ecosystem’s capabilities are multifaceted, focusing on remote interactive
access, scalable architecture, and enhanced collaboration. One of the key features
is the ability to explore and analyze biomedical images interactively from remote
locations. This capability is crucial for tasks such as image fusion, spatial annotation,
and deep learning model development. The interactive nature of the tools allows
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researchers to adjust visualization parameters, perform complex image processing
tasks, and create detailed annotations without the need for local data storage. This
remote access is particularly beneficial for handling hyperspectral and 3D imaging
data, which require substantial computational power and sophisticated visualization
tools.

The ecosystem’s architecture is built on Docker-based containers, ensuring consis-
tency and reliability across different environments. This containerization approach
simplifies the deployment process and supports a variety of applications essential
for biomedical imaging. For instance, applications like M²aia, QuPath, ilastik, and
imageJ are packaged into Docker containers, allowing them to be easily deployed
and managed on centralized servers. This approach not only enhances performance
and resource utilization but also provides a scalable solution that can accommodate
the growing demands of biomedical imaging research.

Integrated Development Environments (IDEs) such as Visual Studio Code (VS
Code), JupyterLab, and RStudio play a crucial role in the ecosystem by providing
robust platforms for remote development. Among these, VS Code is particularly
notable for its extensive support for various programming languages and its efficient
remote development capabilities through extensions provided by the Visual Studio
Code Remote Developmenti project. The Application Controller utilitiesii integrated
into VS Code further enhance the development workflow by providing rapid access to
remote interactive image processing applications and streamlining the management
of these interactive applications.

The ecosystem also fosters enhanced collaboration among researchers. By allow-
ing multiple users to work simultaneously on the same datasets without conflicts,
it promotes interdisciplinary collaboration and ensures that diverse expertise can
be integrated into the research process. This collaborative capability is particularly
important in multidisciplinary projects where the integration of different perspectives
can lead to more comprehensive and accurate data interpretations. Furthermore, by
keeping datasets on centralized servers and providing remote access via web inter-
faces, the ecosystem ensures data security and integrity, preventing risks associated
with data corruption or loss during transfers.

A comparison between the proposed ecosystem and Galaxy1, the Kaapanaiii/Joint
Imaging Platform (JIP)2, OMERO98, and OpenMSI3 highlights several distinct differ-
ences in design, functionality, and overall objectives. While both platforms aim to
provide robust solutions for biomedical imaging, they cater to different needs and
offer unique features.

1. Interactive Remote Access and Scalability: a major strength of the proposed
ecosystem is its provision of interactive remote access to imaging datasets. This
allows researchers to explore and analyze images interactively from remote
locations, enabling tasks such as image fusion, spatial annotation, and deep
learning model development without the need for local data storage. The
ecosystem’s tools support complex image processing tasks and enhance the
handling of hyperspectral and 3D imaging data. This level of interactivity is
crucial for responsive data exploration and immediate feedback, which are
essential for agile research and development practices.

• In contrast, JIP is primarily focused on providing a centralized platform
for managing and processing biomedical imaging data and workflows.

ihttps://github.com/Microsoft/vscode-remote-release; accessed April 2024
iihttps://m2aia.github.io/m2aia; accessed April 2024

iiihttps://www.kaapana.ai/; accessed April 2024

https://github.com/Microsoft/vscode-remote-release
https://m2aia.github.io/m2aia
https://www.kaapana.ai/
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While it supports remote access to some extent, its primary emphasis
is on creating reproducible processing pipelines rather than interactive
exploration. JIP’s architecture is designed to integrate various imaging
modalities and support standardized workflows.

• In contrast, the Galaxy platform focuses on providing a robust, repro-
ducible, and scalable environment for data analysis and workflow manage-
ment. Galaxy is well-known for its web-based interface that allows users
to create, share, and execute data analysis workflows without needing
extensive programming knowledge. It excels in managing and processing
large-scale data through a web interface and supports a wide range of
bioinformatics tools and applications. However, its primary focus is on
batch processing and reproducibility rather than interactive data explo-
ration.

• OpenMSI also supports remote access to 2D MSI data, which are stored
in HDF5 format, but with a specific focus on providing a web platform
for data visualization and a Python-based interface to platform internally
stored MSI data. OpenMSI enables fast and convenient access to the plat-
form integrated MSI data, metadata, and derived analysis results stored
remotely. It provides web-based tools for data sharing, visualization, and
analysis, ensuring that large MSI datasets can be accessed and processed
efficiently. However, OpenMSI primarily emphasizes batch processing
and basic visualization rather than the level of ad-hoc interactivity and
immediate feedback offered by the proposed ecosystem.

• OMERO, in contrast, is designed primarily for managing and sharing large
sets of scientific image data. It provides robust data management capa-
bilities, including the storage, retrieval, and sharing of diverse imaging
data across various modalities. While OMERO supports remote access,
its primary focus is on data management and integration rather than on
interactive exploration. OMERO excels in providing a centralized reposi-
tory for image data, facilitating data sharing, collaboration, and long-term
storage.

2. Docker-Based Containers and Application Flexibility: the proposed ecosystem
employs Docker-based containers to ensure consistency and reliability across
different environments. This containerization approach simplifies deployment
and supports a wide range of applications essential for biomedical imaging,
such as M²aia, QuPath, ilastik, and imageJ. These applications are packaged
into Docker containers, allowing them to be easily deployed and managed on
centralized servers. This approach enhances performance, resource utilization,
and scalability, making the ecosystem adaptable to the growing demands of
biomedical research. The proposed ecosystem, with its focus on interactive
applications and remote data processing, provides a flexible environment for
tasks requiring direct interaction with data.

• JIP also utilizes containerization but focuses more on providing a stable
and reproducible environment for data processing workflows. While JIP
supports a range of applications, its emphasis is on maintaining standard-
ized processing pipelines and ensuring reproducibility across different
datasets and studies. This focus on reproducibility is crucial for ensuring
the integrity of biomedical research.
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• Galaxy also utilizes containerization and virtualization technologies like
Docker and Kubernetes to ensure scalability and reproducibility. However,
Galaxy’s emphasis is on creating a seamless user experience for running
standardized workflows. While it supports a broad array of tools and
allows for the integration of custom tools, the flexibility of deploying and
managing interactive applications is not its primary strength.

• OpenMSI, while not specifically focused on containerization, provides
a robust platform for managing and analyzing MSI data. It integrates
various tools for data processing and visualization but does not empha-
size the same level of flexibility in deploying and managing interactive
applications as the proposed ecosystem.

• OMERO also supports the use of containerization technologies but focuses
on providing a stable and scalable environment for data management
rather than for deploying interactive applications. OMERO’s architecture
is designed to integrate with various image analysis tools and workflows,
providing a centralized platform for managing and sharing imaging data.
While OMERO can integrate with analysis tools, its primary emphasis is
on data storage, metadata management, and ensuring data integrity across
different projects and studies.

3. Integrated Development Environments and Developer Support: the proposed
ecosystem leverages Integrated Development Environments (IDEs) such as
Visual Studio Code (VS Code), JupyterLab, and RStudio for remote develop-
ment. VS Code, in particular, offers extensive support for various programming
languages and efficient remote development capabilities through extensions
like Remote SSH and Remote Tunnels. The ecosystem also includes Applica-
tion Controller utilities that enhance the development workflow by providing
rapid access to remote image data and streamlining the management of inter-
active applications. The proposed ecosystem’s emphasis on integrating with
widely-used IDEs and providing robust developer tools makes it more versatile
and user-friendly for researchers who need to develop and test new image
processing methods remotely.

• JIP, while providing tools for remote development, primarily focuses on
web-based interfaces and platforms like the Galaxy Project for creating
and managing data processing workflows. These tools are highly effective
for creating reproducible pipelines but may not offer the same level of
integration with popular IDEs or the extensive developer support found
in the proposed ecosystem.

• Galaxy, while providing a comprehensive environment for creating and
managing workflows, does not focus on integrating popular IDEs for code
development. Galaxy’s strength lies in its ability to simplify the process of
running complex bioinformatics analyses through a graphical interface,
making it accessible to researchers with limited programming skills.

• OpenMSI focuses more on providing a platform for analyzing and visual-
izing MSI data rather than integrating popular IDEs for code development.
It offers a web-based interface that simplifies the process of accessing and
analyzing MSI data but does not provide the same level of integration with
development environments that support extensive coding and method
development.
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• OMERO, while providing extensive support for image data management,
does not focus on integrating IDEs for code development. OMERO’s
strength lies in its ability to manage large-scale image data and metadata,
providing tools for data annotation, tagging, and linking with experimental
metadata.

4. Enhanced Collaboration and Data Security: the proposed software ecosystem
is designed to enhance collaboration by allowing multiple users to work si-
multaneously on the same datasets without conflicts. This capability promotes
interdisciplinary collaboration and ensures that diverse expertise can be in-
tegrated into the research process. The ecosystem also ensures data security
and integrity by keeping datasets on centralized servers and providing remote
access via web interfaces, preventing risks associated with data corruption
or loss during transfers. The proposed ecosystem’s emphasis on interactiv-
ity and immediate feedback makes it more suitable for collaborative research
environments where rapid iteration and real-time data sharing are crucial

• JIP also supports collaborative efforts but emphasizes standardized work-
flows and reproducibility to ensure data integrity across studies. While JIP
provides tools for data sharing and collaboration, its primary focus is on
creating reproducible pipelines rather than facilitating real-time interactive
collaboration.

• Galaxy also supports collaboration through its platform, allowing users to
share workflows, histories, and datasets easily. It provides a reproducible
environment where analyses can be shared and rerun by different users,
ensuring transparency and consistency in research. However, Galaxy’s
collaboration features are geared towards sharing reproducible workflows
rather than facilitating real-time interactive collaboration on image data.

• OpenMSI also supports collaboration by providing a centralized platform
for accessing and sharing MSI data and analysis results. It enables re-
searchers to share datasets and results through its web interface, ensuring
that data can be collaboratively analyzed and interpreted. However, Open-
MSI’s primary focus is on providing data access and visualization of MSI
data rather than facilitating real-time interactive collaboration.

• OMERO also supports collaboration by providing a centralized repository
for imaging data, enabling researchers to share datasets, annotations, and
analysis results. OMERO’s data management capabilities facilitate collabo-
ration by ensuring that data is consistently organized and easily accessible
to all members of a research team. However, OMERO’s focus is more on
the management and sharing of data rather than on providing interactive
tools for real-time collaboration.

5. User Accessibility and Administrative Overhead: The proposed ecosystem is
designed to be user-friendly with minimal administrative and learning over-
head. This design ensures that researchers with varying levels of technical
expertise can easily adopt and use the platform. The integration of remote
execution, development, and interactive capabilities within a scalable and user-
friendly framework positions this ecosystem as a valuable tool for a wide range
of biomedical research applications. The proposed ecosystem’s flexibility and
ease of use make it more accessible for researchers who require a dynamic and
adaptable platform. With its Docker-based deployment and robust developer
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support, the ecosystem aims to reduce overhead and provide a more seamless
experience for end-users.

• JIP, while user-friendly, may require more initial setup and configuration,
particularly for integrating new tools or adapting existing workflows. The
focus on reproducibility and standardization in JIP can sometimes lead
to a more rigid framework, which may not be as easily adaptable to the
specific needs of individual researchers or projects.

• Galaxy is also known for its user-friendly interface, which allows re-
searchers to perform complex analyses without needing extensive bioin-
formatics training. Its web-based platform reduces the need for local soft-
ware installation and simplifies the management of bioinformatics tools.
However, setting up and maintaining a Galaxy instance, especially for
large-scale data processing, can require significant administrative effort.

• OpenMSI is also user-friendly, particularly in its provision of a web-based
platform that simplifies the access and analysis of MSI data. However,
setting up and maintaining an OpenMSI instance, particularly for large-
scale data processing, can require significant administrative effort. The
proposed ecosystem, with its Docker-based deployment and robust devel-
oper support, aims to reduce this overhead and provide a more seamless
experience for end-users.

• OMERO is also user-friendly, particularly in its provision of a centralized
data management platform that simplifies the storage, retrieval, and shar-
ing of imaging data. However, setting up and maintaining an OMERO
instance can require significant administrative effort, especially when
integrating with external analysis tools or adapting to specific research
workflows.

The proposed software ecosystem, Joint Imaging Platform (JIP), Galaxy, OMERO,
and OpenMSI each provide distinct advantages for biomedical imaging data man-
agement and analysis. The proposed ecosystem excels in interactive remote access,
flexibility through Docker-based containers, and robust developer support, making
it ideal for real-time data exploration and agile research practices. JIP focuses on
creating reproducible workflows and integrating various imaging modalities, offering
stability and consistency for data processing. Galaxy simplifies complex bioinformat-
ics analyses through a web interface, emphasizing reproducibility and accessibility for
researchers with limited programming skills. OMERO provides comprehensive data
management and integration capabilities, ensuring organized, searchable, and share-
able imaging data across projects. OpenMSI specializes in high-performance data
processing and visualization for MSI data, facilitating efficient access and analysis.

In the opinion of the author, the potential impacts of this software ecosystem are
significant. It promises to enhance the efficiency and speed of biomedical research
by enabling rapid iteration and testing of new image processing methods. This
agility is crucial for advancing scientific discoveries and innovations. Moreover,
the ecosystem minimizes the need for large data transfers, thereby reducing time
and resource consumption and allowing researchers to focus more on analysis and
method development. The user-friendly design and minimal administrative overhead
ensure that the ecosystem is accessible to researchers with varying levels of technical
expertise, making it a valuable tool across the biomedical research community. Due
to its flexibility in how to deploy and utilize the proposed tools, the integration of
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individual components or a concurrent usage of the proposed system with other
systems, as those described above, is possible and desirable.

In conclusion, the proposed software ecosystem represents a substantial advance-
ment in the field of biomedical imaging. By leveraging remote resources and provid-
ing interactive tools, it addresses the critical challenges posed by large and complex
datasets, particularly in MSI. The ecosystem not only enhances the efficiency of data
analysis but also fosters interdisciplinary collaboration and innovation, ultimately
contributing to the advancement of biomedical research and clinical practice. The
integration of remote development, execution, and interactive capabilities within a
scalable and user-friendly framework positions this ecosystem as a pivotal tool for
future biomedical research endeavors.

6.3.1 Answers to the Posed Research Questions

The performed use-cases support the following research questions as posed in chap-
ter 4 Concepts for Interactive Remote Working:

• Can interactive applications, like M²aia, be hosted on remote resources to
process image data for which there are no interactive remote solutions yet, e.g.,
MSI data?

– Yes, interactive applications like M²aia can indeed be hosted on remote
resources to process image data, including MSI data, for which there are
currently no comprehensive interactive remote solutions. The proposed
software ecosystem leverages Docker-based containerization to encapsu-
late these interactive applications, ensuring consistency and reliability
across various environments. By hosting M²aia on remote servers, the
ecosystem enables researchers to interact with complex MSI datasets re-
motely, providing tools for visualization, processing, and analysis that are
typically limited to local systems. This approach not only addresses the
lack of existing interactive remote solutions for MSI data but also enhances
accessibility and usability, allowing researchers to perform sophisticated
image analysis tasks without the need for extensive local computational
resources.

• Can interactive image exploration and thereby the development process of new
image-based processing methods be supported or/and completely shifted to
remote resources?

– The interactive image exploration and development process of new image-
based processing methods can be fully supported and even completely
shifted to remote resources. The proposed ecosystem integrates power-
ful Integrated Development Environments (IDEs) such as Visual Studio
Code (VS Code), JupyterLab, and RStudio, which are tailored for remote
development. These IDEs provide robust tools for coding, debugging, and
deploying new image processing methods directly on centralized servers.
Additionally, the ecosystem includes Application Controller utilities that
facilitate the management of remote applications and streamline the de-
velopment workflow. This setup allows researchers to iteratively test and
refine their algorithms in a real-world setting, receiving immediate feed-
back on their performance. By providing interactive access to image data
and enabling remote execution of development tasks, it is expected that the
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ecosystem significantly accelerates the pace of innovation and enhances
the efficiency of the development process.

• Can remote interactive access to image processing applications be realized in a
simple, efficient, and user-friendly way?

– Interactive access to image processing applications can indeed be realized
in a simple, efficient, and user-friendly way through the proposed soft-
ware ecosystem. By employing Docker-based containers, the ecosystem
simplifies the deployment and management of interactive applications,
ensuring that they are accessible via standard web browsers. This ap-
proach eliminates the need for complex installations and configurations on
local systems, making it easier for users to interact with the applications.
The ecosystem is designed with minimal administrative overhead and
includes intuitive interfaces that cater to researchers with varying levels of
technical expertise. The integration with popular IDEs and the provision
of robust developer tools further enhance the user experience, allowing
researchers to focus on their scientific tasks without being burdened by
technical complexities. Overall, the ecosystem provides a seamless and
accessible environment for remote interactive image processing, making
advanced biomedical research more accessible and efficient.
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Chapter 7

Summary

In many areas of biomedical research, images are crucial for scientific progress. Inter-
active access to these images is essential, enhancing understanding and facilitating
advancements, particularly in fields like pathology, radiology, and cellular biology.
As imaging techniques continue to advance, generating ever more detailed datasets,
the amount of data to be stored and processed will continue to grow. Consequently,
data and computationally intensive processes are being increasingly relocated to
centralized resources with substantial storage and processing capabilities. However,
large, multidimensional and multi-modal biomedical images, such as those generated
in experiments with mass spectrometry imaging, pose a major challenge for fast, com-
prehensive and interactive remote access. Processes as image data exploration, image
analysis, the development of new image analysis methods, and interdisciplinary
collaboration of domain experts can be hampered if data-intensive transfers to local
systems are required, e.g. for processing of images with the interactive software the
domain expert is familiar with. Current efforts to utilize remote resources focus on
providing integrated environments for remote development and applications for
execution of reproducible image analysis, while lacking comprehensive interactive
capabilities to work with high-dimensional image data. Due to the increased com-
plexity of remotely executed image related workflows and related research problems,
re-usability and interoperability of solutions in the form of software components
becomes essential.

The primary objective of this thesis was to develop concepts for interdisciplinary
research that facilitate remote image analysis and remote development in the field of
MSI data processing and beyond. The proposed concepts form a software ecosystem
of interacting components.

In the following paragraphs, the main contributions of this thesis are summarized.

A Novel Openly-accessible Interactive Application for Processing of MSI Datasets

A requirements analysis and review of established technologies lead to the design
and creation of the interactive application M²aia, which stands for Mass spectrometry
Imaging Application for Interactive Analysis in MITK. It is a novel C++ based modu-
lar extension of the MITK framework and designed for the exploration and processing
of multi-modal 2D/3D MSI datasets in the imzML file format. It enables users to
realize customizable workflows and provides fast and memory-efficient MSI data
processing, such as signal processing and ion-image generation, realized as multiple
plug-in views. A special focus is on providing interactive capabilities to image-based
registration concepts for 3D image reconstruction and multi-modal image fusion.
Since image-based registration is highly sensitive to initial configuration, qualitative
and quantitative registration-result evaluation and interactive correction strategies
were implemented. To fully support multi-modal workflows, strategies have been
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developed to transfer annotations from structure-rich optical images to the molecular
images captured by MSI.

The features-rich interactive capabilities of M²aia were demonstrated by two
use-cases. A 3D reconstruction of a multi-modal mouse brain dataset demonstrates
the efficiency of importing data in imzML format and shows the applicability of the
proposed image-based registration strategies. Additionally, a use-case demonstrating
a biomarker identification procedure was realized and compared to reference data,
showing the validity of the implemented signal processing methods. Performance
tests showed the efficiency of the import of multiple large MSI data in imzML format.

Programming Language Independent Integration of Third-party Applications

A novel strategy for the integration of third-party image processing methods into
interactive environments was proposed and successfully demonstrated. It is based
on Docker and enables the programming language-independent integration of image
processing methods. This can be realized fast and flexible with a high degree of
freedom due to the Docker based containerization. It allows researchers the creation
of highly customized image processing applications and workflows according to their
needs.

A proof-of-concept for the integration of third-party image processing methods
was demonstrated by integrating cutting-edge technologies into the interactive appli-
cation M²aia. The integration of the Deep Learning and Python-based TotalSegmentator
for segmentation of clinical images as well as, for MSI datasets, the UMAP dimen-
sionality reduction, the moleculaR R package for molecular probabilistic maps, and
the pyM²aia based unsupervised peak learning were realized.

A Novel Python Package for the Development Support of Deep Learning Applica-
tions in MSI

Based on the import capabilities of M²aia, a Python package (pyM²aia) has been
designed and implemented to support the development and creation of new Deep
Learning applications in the field of MSI. To facilitate efficient data access to MSI
datasets, the spectral, spatial, and spatio-spectral strategies were defined and imple-
mented as batch generation utilities. Extensive Deep Learning example applications
showed the applicability and validity of the implemented strategies.

The importation of datasets was conducted according to the imzML standard, a
widely recognized and adopted file format. This approach contrasts sharply with the
less transparent, in-house data conversion methods that often lead to the creation of
potentially altered datasets with undocumented processing steps. By using data in
imzML format, the reproducibility of experiments is enhanced, as it standardizes the
data handling process across different studies and labs.

A Software Ecosystem for the Remote Analysis of MSI Data

Novel strategies for remote interaction with image data have been implemented
with a focus on remote processing of multi-modal MSI datasets. Special attention
was paid to providing a flexible system for the development of new image-based
processing methods, while at the same time facilitating collaboration by access to
remote image data collections. A containerization strategy was developed and several
image processing applications were packaged for remote interactive access using
a standard web browser. A container management extension was designed and
implemented to facilitate the use of application containers during development.
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To demonstrate the capabilities of the proposed software ecosystem for remote
multimodal image data analysis, several use cases were realized, two of which
were published in two co-authored articles. For this purpose, several interactive
applications such as MITK, M²aia, fiji/imageJ, and ilastik were packaged in Docker
images, providing a diverse set of tools for remote interactive analysis in multimodal
research questions. Specifically, focusing on the remote development cycle for image
processing method, the system provides exceptional flexibility and usability of rapid
handling of remote MSI and biomedical imaging data.

Designing individual workflows on remote or centralized resources demonstrated
the dynamic and adaptable capabilities of the software ecosystem for remote analysis
and development. The Application Controller utilities facilitate the management of
individual interactive applications in a way that is both user- and developer-friendly.
The lightweight set of software components requires a minimal effort for installation
and administration, which is a clear advantage over comparable systems.

In conclusion, the software ecosystem for remote analysis and development, as
presented in this thesis, has demonstrated substantial extensibility and flexibility,
making it highly suitable for executing complex MSI and image-related workflows.
Given its open-source nature, this ecosystem not only facilitates widespread adapta-
tion and customization by researchers but also promotes collaborative enhancements
and innovations. These characteristics significantly enhance its applicability across
diverse research domains, thereby justifying the expectation of a high impact on
future research projects.
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