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Abstract

Orbital-free density functional theory (OF-DFT) is a cost-effective framework for elec-
tronic structure calculations. We demonstrate the feasibility of machine learning accu-
rate and generalizable density functionals, particularly comprising the kinetic energy
required for OF-DFT.

We introduce KineticNet, a deep neural network tailored to predict the kinetic en-
ergy density. Trained on varied data generated with a novel scheme based on sampling
the external potential, KineticNet achieves chemical accuracy on small molecules and
reproduces chemical bonding in orbital-free density optimization.

Expanding this success, we transition from grid-based density representations to
the more efficient linear combination of atomic basis functions Ansatz. Adapting and
improving our external potential sampling strategy, we achieve state-of-the-art results
for OF-DFT on the QM9 dataset of organic molecules, in both energy and density
prediction. Crucially, we address a key limitation of previous approaches by enabling
convergent density optimization with chemical accuracy.

Finally, we propose surrogate functionals, enabling optimization of electron densi-
ties without directly replicating physical energy functionals. By integrating surrogate
loss functions and a novel train-time density optimization scheme, we further boost
the accuracy of density predictions while reducing training data requirements. This
innovative approach opens new avenues for efficient and scalable energy functional
development.
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Zusammenfassung

Orbitalfreie Dichtefunktionaltheorie (OF-DFT) ist ein kostengünstiger Ansatz zur
Berechnung elektronischer Strukturen. Wir zeigen, dass mittels maschinellen Ler-
nens präzise und generalisierbare Dichtefunktionale entwickelt werden können, welche
insbesondere die für OF-DFT benötigte kinetische Energie enthalten.

Wir stellen KineticNet vor, ein tiefes neuronales Netzwerk zur Vorhersage der
kinetischen Energiedichte. Trainiert mit neuartigen variierten Daten welche mithilfe
von Störungen des externen Potentials generiert wurden, erreicht KineticNet chemis-
che Genauigkeit auf kleinen Molekülen und reproduziert chemische Bindung in or-
bitalfreier Dichteoptimierung.

Darüber hinaus wechseln wir von gitterbasierten Dichte-Repräsentationen hin zur
effizienteren Linearkombination atomarer Basisfunktionen. Mit einer für diesen Ansatz
angepassten und verbesserten Strategie zur Störung des externen Potentials erzielen
wir erstklassige Ergebnisse für OF-DFT auf dem QM9-Datensatz organischer Moleküle
für Energie- und Dichtevorhersagen. Ein entscheidender Fortschritt ist die stabil kon-
vergente Dichteoptimierung mit chemischer Genauigkeit.

Abschließend führen wir Surrogat-Funktionale ein, welche die Optimierung von
Elektronendichten ohne direkte Nachbildung physikalischer Energiefunktionale er-
lauben. Durch die Integration von Surrogat-Kostenfunktionen und einem neuartigen
Optimierungsschema für Dichten während des Trainings steigern wir die Genauigkeit
der Dichtevorhersagen weiter und verringern den Datenbedarf für das Training. Dieser
innovative Ansatz eröffnet neue Möglichkeiten für die effiziente Entwicklung von
skalierbaren Energie-Funktionalen.
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Chapter 1

Introduction

More than 50 years ago, Hohenberg and Kohn proposed a groundbreaking insight:
The electron density ρ(r) is sufficient to describe a quantum chemical system in its
ground state, and there exists an energy functional E, mapping electron densities ρ
to their corresponding energies E[ρ]. These energies can be minimized to find the
ground state electron density ρ∗, see figure 1.1. Hence, Density Functional Theory
(DFT) was born [1].

The energy functional E can be decomposed into a sum of several terms: The
kinetic energy T [ρ], the electron-electron interaction energy Vee[ρ], and the external
potential energy Vext[ρ]. While an analytic expression exists for the external potential
energy, and generations of chemists have been developing ever more accurate approx-
imations for the electron-electron interaction energy, computing the kinetic energy at
chemical accuracy from the electron density alone remains a challenge [2].

This is why shortly after the original Hohenberg-Kohn theorems, Kohn and Sham
proposed a practical solution: Instead of computing the kinetic energy directly from
the electron density, they side-stepped the problem by introducing a set of auxiliary,
non-physical orbitals ϕi which are used to compute the total kinetic energy as a sum
of the kinetic energies of the individual orbitals: T [ρ] =

∑
i
1
2

∫
|∇ϕi|2d3r. This Kohn-

Sham Density Functional Theory (KS-DFT) [3] has since become the workhorse of
computational quantum chemistry and materials science. KS-DFT has been used to
predict the properties of a wide range of systems, from small molecules to proteins,
and from semiconductors to metals [4]. However, taking the detour of reintroducing
orbitals comes at a cost: The computational scaling of KS-DFT is cubic with the
number of atoms in the system, which limits its applicability to systems with a few
hundred atoms at most.

Meanwhile, the original version of DFT, now known as Orbital-Free DFT (OF-

1
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Figure 1.1. Orbital-Free Density Functional Theory. The functional E[ρ,M]

(blue) maps electron densities ρ and molecules M (in general: external potentials) to
their corresponding energies. Utilizing its functional derivative (purple), this energy
functional can be minimized (brown), yielding ground state energies ρ0(M) and den-
sities E0(M). In chapters 4 and 5, we will present our efforts to approximate E[ρ,M],
while we present an alternate approach in chapter 6, compare with figure 6.1.
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DFT)1, holds the promise of linear scaling with system size. However, even though
Hohenberg and Kohn already knew that a kinetic energy functional of the electron
density alone exists, OF-DFT has been held back. Decades of research have not yet
yielded a practical recipe to compute the kinetic energy from only the electron density,
at chemical accuracy and across a wide range of chemical systems.

Today however, we are at the brink of a new era in quantum chemistry: Geomet-
ric deep learning [5] has enabled us to design neural networks that can operate on
molecular graphs, exhibit the non-local nature of the kinetic energy functional, and
are equivariant to rotations and translations, thereby respecting the symmetries of
the underlying physical system. Equipped with these tools, we can now attempt to
learn the energy functional from data, and are closer than ever to bridging the gap
between the accuracy of KS-DFT and the improved scaling of OF-DFT.

In this thesis, we will present our efforts to develop machine-learned energy func-
tionals for OF-DFT.

A recurring theme will be the challenge of density optimization: In order for the
functional to be useful, it must not only generalize across the training distribution
(as can be tested by validation accuracy), but must also have a minimum at the
ground state of a system, i.e. it must not assign a lower energy to a non-ground state
density than to the ground state density. Achieving this form of robustness in the
high dimensional space of electron densities is a key challenge in the development of
machine-learned energy functionals [6, 7, 8, 9].

In chapters 2 and 3, we will introduce the theoretical background of the two
disciplines coming together in this thesis: Density functional theory and geometric
deep learning, respectively. Chapter 4 will introduce KineticNet, the first deep neural
network architecture which predicts the kinetic energy with chemical accuracy across
a number of small molecules, generalizing over input densities and geometries, and
reproducing a chemical bonding in orbital free density optimization, thereby serving as
a proof of principle for machine-learned OF-DFT. In chapter 5 we describe the seminal
work by Zhang, Liu, You, Liu, Zheng, Lu, Wang, Zheng, and Shao, M-OFDFT [9],
and build upon it to alleviate some of its key shortcomings, in particular its lack of
proper convergence in density optimization.

Chapter 6 will introduce the concept of surrogate functionals, whose goal is to re-
place the exact, physical, energy functional in density optimization without attempt-
ing to perfectly mimic it. Finally, in chapter 7, we will summarize the key findings of
this thesis and give an outlook on future work.

Over the course of this thesis, I co-advised a number of master and bachelor stu-
1Sometimes also pure DFT
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dents, who performed numerous experiments and contributed to the overall progress
of the project. Specifically, Tim Ebert implemented and profiled density fitting (sec-
tion 5.1.1), Manuel Klockow worked on the enhanced data generation of section 5.5,
Dominik Geng on the natural reparametrization described in section 5.2.1, and finally,
Mats Kothe has conducted many of the experiments presented in chapter 6..



Chapter 2

Density Functional Theory

Density functional theory (DFT) is a quantum mechanical method to describe the
electronic structure of many-body systems. It is based on the insight that the ground
state electron density ρ(r) is sufficient to describe a quantum chemical system, and
that an energy functional E, mapping electron densities ρ to their corresponding
energies E[ρ], exists, which can be minimized to find the ground state electron density
ρ∗.

In this chapter, I will review the theoretical background of DFT, focusing on the
Hohenberg-Kohn theorems (section 2.1), the Kohn-Sham DFT Ansatz (section 2.3),
and the orbital-free DFT approach, in particular focussing on the variuos density
representations used in this work (section 2.4). Please note that this chapter does
not aim to provide a comprehensive introduction to DFT, but rather to sketch the
basics and introduce the required notation for this thesis. For the former, we refer the
interested reader to the many excellent textbooks on the subject, such as [10].

r

ρ(r)

Figure 2.1. Cusp of the electron density at a nucleus. The electron density
ρ(r) has a cusp at each nucleus, whose shape uniquely determines the nuclear charge.

5



6 The Hohenberg-Kohn theorems and the energy functional

2.1 The Hohenberg-Kohn theorems and the energy
functional

A central goal of computational quantum chemistry is solving for the ground state of
the electronic Schrödinger equation for a given system with Hamiltonian

Ĥ = T̂ + V̂ee + V̂ext , (2.1)

where T̂ is the kinetic energy operator, V̂ee is the electron-electron interaction operator,
and V̂ext is the external potential operator, respectively given by

T̂ = −1

2

N∑
i=1

∇2
i , (2.2)

V̂ee =
1

2

∑
1≤i<j≤N

1

|ri − rj|
, (2.3)

V̂ext =
Ne∑
i=1

Vext(ri)
(∗)
=

Ne∑
i=1

A∑
a=1

Za
|Ra − ri|

, (2.4)

with the local external potential Vext(r), and the final equality (∗) in 2.4 holding in the
case of a molecular system M with N electrons and A nuclei at positions {Ra}a=1,...,A

and charges {Za}a=1,...,A. While all the operators have exact closed-form expressions,
actually solving for the ground state wave function ψ0 quickly becomes computation-
ally infeasible for systems of more than a few electrons, because the dimensionality of
the wave function scales exponentially with the number of electrons.

The two Hohenberg-Kohn theorems [1] lay the foundation for a way out of this
conundrum: Instead of the wave function, they show that the one-particle electron
density

ρ(r) = N

∫
|ψ (r, r2, . . . , rN)|2 dr2 . . . drN , (2.5)

is sufficient to describe a quantum chemical system:
The first theorem states that for each ground state electron density ρ0(r), an

external potential Vext(r) exists which is unique up to an additive constant. For
molecular systems, this can be seen intuitively. The ground state electron density
has cusps at the nuclei, and the shape of these cusps can be used to determine the
nuclear charges via Kato’s theorem [11] (illustrated in figure 2.1). Together with their
locations, this uniquely determines the external potential.

As the external potential determines the Hamiltonian Ĥ of the system, which
in turn determines the ground state wave function ψ0, from which all ground state
properties such as the total energy can be computed, this theorem implies that the
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electron density uniquely determines the ground state energy E0 by following the
chain

ρ0 → Vext → Ĥ → ψ0 → E0 . (2.6)

The second theorem states that the ground state energy E[ρ] is a unique functional
of the electron density ρ(r), i.e. there exists a functional E[ρ] such that the ground
state density is its minimizer, being mapped by the functional to the ground state
energy.

This motivates the search for the exact energy functional E[ρ] which, when mini-
mized, yields the ground state electron density (The chain of implications 2.6 is of no
use for this, as the third step is solving the Schrödinger equation).

The energy functional E can be decomposed into several terms: The kinetic energy
T [ρ], the electron-electron interaction energy Vee[ρ], and the external potential energy
Vext[ρ]:

E[ρ] = T [ρ] + Eee[ρ] + Eext[ρ] . (2.7)

The kinetic energy is oftentimes replaced with its non-interacting counterpart TS, and
the electron-electron interaction approximated by the Hartree energy EH . To keep
the expression exact, the exchange-correlation functional Exc is defined to absorb the
differences, leading to the familiar decomposition of the total energy functional:

E[ρ] = TS[ρ] + EH [ρ] + Exc[ρ] + Eext[ρ] . (2.8)

For the external potential and the Hartree energy, there exist analytic expressions. For
a system in the Born-Oppenheimer approximation, under which we operate through-
out this thesis, and nuclei at positions {Ra}a=1,...,A and charges {Za}a=1,...,A, they are
given by:

Eext[ρ] =

∫
ρ(r)Vext(r)dr = −

∫
ρ(r)

A∑
a=1

Za
|r − Ra|

, (2.9)

EH [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)
|r − r′| drdr

′ . (2.10)

The exchange-correlation energy Exc[ρ] makes up a relatively small part of the total
energy, but is still crucial for the accuracy of DFT calculations. A multitude of ap-
proximations for this term exist, ranging from simple local density approximations [12]
via generalized gradient approximations [13] to highly sophisticated hybrid [14], and
even double hybrid functionals [15].
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2.2 Levy-Lieb constrained search
The original work of Hohenberg and Kohn has some shortcomings, for instance the
fact that in their formulation the energy functional is only defined for so-called ν-
representable densities, i.e. densities which can be obtained as the ground state density
of some external potential Vext (sometimes called ν).

Levy-Lieb constrained-search [16, 17] provides a formulation of DFT which allows
the energy functional to be defined for all N -representable densities, i.e. densities re-
sulting (via eq. 2.5) from some antisymmetric wave function representing N electrons.
Let us follow their construction:

E∗ = min
ψ:antisym,⟨ψ|ψ⟩=1

〈ψ| T̂ + V̂ee + V̂ext |ψ〉 . (2.11)

Using the definition of the external potential operator (eq. 2.4) as well as that of the
electron density (eq. 2.5), we can readily express the external energy as

〈ψ| V̂ext |ψ〉 =
∫
ρ(r)Vext(r) dr =: Eext[ρ], (2.12)

thereby demonstrating equation 2.9 and allowing us to rewrite the minimization as a
two-level problem:

E∗ = min
ψ:antisym,⟨ψ|ψ⟩=1

〈ψ| T̂ + V̂ee |ψ〉+ Eext[ρ] (2.13)

= min
ρ:ρ≥0,

∫
drρ(r)=N

(
min

ψ:antisym,ρ[ψ]=ρ
〈ψ| T̂ + V̂ee |ψ〉

)
+ Eext[ρ] (2.14)

= min
ρ:ρ≥0,

∫
drρ(r)=N

(U [ρ] + Eext[ρ]) . (2.15)

Here, ρ[ψ] denotes the electron density resulting from the wave function ψ and where
we have defined the universal functional U [ρ] as the result of the inner minimization1:

U [ρ] = min
ψ:antisym,ρ[ψ]=ρ

〈ψ| T̂ + V̂ee |ψ〉 . (2.16)

The contribution to U [ρ] from the electron-electron interaction operator V̂ee is approx-
imated by the Hartree energy EH [ρ] (eq. 2.10), and the kinetic energy operator T̂ is
approximated by the non-interacting kinetic energy functional TS[ρ]:

TS[ρ] := min
ψ:antisym,ρ[ψ]=ρ

〈ψ| T̂ |ψ〉 . (2.17)

To keep the theory exact, the errors of both approximations are absorbed into the
exchange-correlation energy Exc[ρ]:

Exc[ρ] = U [ρ]− TS[ρ]− EH[ρ]. (2.18)
1Detailed analysis of the optimization spaces in this two-level optimization and its equivalence to

the original constrained search 2.11 was performed by Lieb in [17].



Kohn-Sham DFT 9

Adding the external energy back in, we once more arrive at the familiar decomposition
of the energy functional (eq. 2.8) into kinetic, Hartree, exchange-correlation (xc), and
external energy, now defined for all N -representable densities:

E[ρ] = Ts[ρ]︸︷︷︸
kinetic,

unknown

+EH [ρ]︸ ︷︷ ︸
Hartree,
known

+Exc[ρ]︸ ︷︷ ︸
xc,

approx.
known

+Eext[ρ]︸ ︷︷ ︸
external,
known

. (2.19)

The glaring problem is the non-ineracting kinetic energy functional Ts[ρ], for which no
exact, or even satisfactory approximate, expression for molecular systems is known.

The first widely applicable method addressing this problem was introduced by
Kohn and Sham and is the subject of the next section.

2.3 Kohn-Sham DFT
The Kohn-Sham DFT Ansatz [3] side-steps the problem of computing the kinetic en-
ergy from the electron density alone by reintroducing an auxiliary, non-physical wave
function describing Ne non-interacting electrons, from which Ts[ρ] can be computed
as the sum of the kinetic energies of the individual orbitals. This wave function is
expressed by a single Slater determinant of Ne orbitals {ϕi}i=1,...,Ne :

ψ(r1, . . . , rNe) :=
1√
Ne!

det (ϕi(rj))ij , ρ(r) =
Ne∑
i=1

|ϕi(r)|2 , (2.20)

from which the non-interacting kinetic energy can be computed as

TS[ρ] = min
Φ:ρ[Φ]=ρ

Ne∑
i=1

〈ϕi| T̂ |ϕi〉 . (2.21)

Using this expression for the non-interacting kinetic energy allows us rewrite the
expression for the energy as

E∗ = min
ρ:ρ≥0,

∫
drρ(r)=N

(
min

Φ: orthonormal, ρ[Φ]=ρ

[
N∑
i=1

〈ϕi| T̂ |ϕi〉

]
+ EH[ρ] + Exc[ρ] + Eext[ρ]

)

(2.22)

= min
Φ: orthonormal

[
N∑
i=1

〈ϕi| T̂ |ϕi〉+ EH[ρ[Φ]] + Exc[ρ[Φ]] + Eext[ρ[Φ]]︸ ︷︷ ︸
=:Eeff[ρ]

]
(2.23)

= min
Φ: orthonormal

[
N∑
i=1

〈ϕi| T̂ |ϕi〉+ Eeff[ρ]

]
, (2.24)

where we went back to a formulation as a constrained single-level optimization prob-
lem, now over the Kohn-Sham orbitals Φ = {ϕi}i=1,...,Ne , which are orthonormal and
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minimize the sum of the kinetic energy (computed directly from the orbitals) and
the effective potential Eeff[ρ] (computed via the electron density generated by these
orbitals). Solving this minimization lies at the core of Kohn-Sham DFT.

To solve equation 2.24, we consider the variation of the energy functional with
respect to the orbitals ϕi:

δE[Φ]

δϕi
=
δ 〈ϕi| T̂ |ϕi〉

δϕi
+

∫
δEeff

δρ[Φ](r′)
δρ[Φ](r′)
δϕi(r)

dr. (2.25)

= 2T̂ ϕi + 2Veff[ρ[Φ]]ϕi (2.26)

= F̂[ρ[Φ]]ϕi , (2.27)

where we have defined the Fock operator F̂[ρ[Φ]] = T̂ +Veff[ρ[Φ]] as the sum of the kinetic
energy operator and the effective potential:

Veff[ρ](r) :=
δEeff[ρ]

δρ(r) = VH[ρ](r) + Vxc[ρ](r) + Vext(r). (2.28)

VH[ρ](r) :=
δEH[ρ]

δρ(r) =

∫
ρ(r′)

‖r − r′‖ dr′ (2.29)

Vxc[ρ](r) :=
δExc[ρ]

δρ(r) . (2.30)

Introducing Lagrange-multipliers ϵ = {ϵi}i=1,...,N for the normalization part of the
orthonormality constraint yields a Lagrangian

L[Φ, ϵ] = E[Φ]−
Ne∑
i=1

ϵi (〈ϕi|ϕi〉 − 1) , (2.31)

and substituting equation 2.27 yields the Kohn-Sham equations:

F̂[ρ[Φ]]ϕi =
(
T̂ + Veff[ρ[Φ]]

)
ϕi = ϵiϕi . (2.32)

Since the Fock operator is Hermitian, solving these equations automatically yields
orthogonal orbitals, such that the orthogonality part of the orthonormality constraint
does not need to be enforced explicitly. The fact that the Fock operator depends on
the orbitals themselves makes these equations non-linear, and renders solving them
more challenging than a simple diagonalization. The typical approach is to solve
them iteratively in a self-consistent field (SCF) procedure, using the orbitals from the
previous iteration n to construct the Fock operator for the next iteration n + 1 (see
also the diagram in figure 2.2):

F̂[ρ
[Φ(n)]

]ϕ
(n+1)
i = ϵ

(n+1)
i ϕ

(n+1)
i (2.33)

Convergence is reached when the change in the orbitals between two iterations falls
below a certain threshold, i.e. they are consistent with the Fock operator generated by
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them. For the first SCF step, an initial guess for the density is required, for which we
utilize the MINAO method [18, 19] throughout this work. In practice, the convergence
of the SCF procedure is far from guaranteed, and many tricks and tweaks have been
developed to improve it, such as the DIIS method [20], see section 2.3.2.

ρn=0 initial guess

F̂[ρ[Φ]] = T̂ + Veff[ρ[Φ]]

solve 2.33 for {ϕi}i=1,...,Ne

converged?

done

no

yes

Figure 2.2. Schematic of the SCF procedure. The SCF procedure iterates over
the Kohn-Sham equations, updating the orbitals ϕi until convergence is reached. In
the inital step, the effective potential Veff is constructed from the initial guess for the
density ρn=0.

2.3.1 Formulation under an atomic basis

In order to solve the Kohn-Sham equations 2.32 computationally, the orbitals must
be represented numerically in a form suitable for algorithmic optimization. To this
end, the ϕi are expanded in a basis set of atom-centered basis functions2 {ηα(r)}Bα=1,
leading to the expansion

ϕi(r) =
B∑
α=1

Cαiηα(r) . (2.34)

2Sometimes also called “atomic orbitals” because of the similartiy of their angular part to physical
orbitals of atoms. In this work, we use atom-centered basis function to avoid confusion with Kohn-
Sham or the physical molecular orbitals.
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This electron density is then expressed as

ρ(r) =
N∑
i=1

|ϕi(r)|2 =
∑
α,β

Ne∑
i=1

CαiCβi︸ ︷︷ ︸
=:Γαβ

ηα(r)ηβ(r) =
∑
α,β

Γαβηα(r)ηβ(r) , (2.35)

where we have defined the one-particle density matrix Γαβ. The number of parameters
in this representation scales as O(NB), hence quadratic with system size.

Inserting the basis expansion of the Kohn-Sham orbitals into the Kohn-Sham equa-
tions 2.32 yields ∑

β

F̂ (n)C
(n)
βi ηβ(r) = ϵ

(n)
i

∑
β

C
(n)
βi ηβ(r), (2.36)

where we use the shorthand F̂ (n) for the Fock operator F̂[ρ
[Φ(n)]

] of the n-th SCF
iteration. We multiply with ηα(r) and integrate over r to project onto the basis
functions and obtain ∑

β

F
(n)
αβ C

(n)
βi =

∑
β

Sαβϵ
(n)
i C

(n)
βi , (2.37)

where we introduced

F
(n)
αβ := 〈ηα| F̂ (n) |ηβ〉 (2.38)

Sαβ := 〈ηα|ηβ〉 , (2.39)

allowing us to write the Kohn-Sham equations in matrix form as

F(n)C(n) = SC(n)ϵ(n), (2.40)

with the Fock matrix F(n), overlap matrix S and a diagonal matrix ϵ(n) containing the
orbital energies:

ϵ
(n)
i =


ϵ
(n)
1

. . .
ϵ
(n)
N

 . (2.41)

Each step in the SCF procedure now consists of solving this generalized eigenvalue
problem for the new orbitals C(n+1), which are then used to construct the Fock matrix
for the next iteration.

Prior to introducing a basis, the Kohn-Sham procedure is in principle exact except
for the need to approximate the exchange-correlation functional. Notably, the basis-
set representation introduces an approximation, as solving this matrix-form is only
guaranteed to provide an exact solution of the original Kohn-Sham equations 2.32 in
the limit of an infinite, complete basis set.

The number of basis functions directly impacts the size of the matrices which are
diagonalized in the SCF iteration, and thereby the computational cost of the method.
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Hence, choosing an appropriate basis set is crucial, and this explains why dozens of
basis-sets with different tradeoffs between precision and performance, specialized to
different applications were developed [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

We perform all KS calculations using the PySCF library [33, 34, 35].

Gaussian Basis Functions

A commonality between the basis sets which are most frequently used for molecular
applications in practice is the functional form of the basis functions: Atom-centered
Gaussian basis functions are given by the product of a Cartesian spherical harmonic
and a linear combination of Gaussians:

ηα(r) = ‖r − Ra‖lYlm(
r − Ra

‖r − Ra‖
)

NGauss∑
i=1

ci exp
(
−αi ‖r − Ra‖2

)
, (2.42)

with the spherical harmonic Ylm, for a basis function centered at position Ra with
angular momentum quantum numbers l and m, and NGauss Gaussians with exponents
αi and contraction coefficients ci.

The immense popularity of this type of basis function can be explained by the fact
that it allows for highly efficient computation of the required spatial integrals, e.g. for
constructing the overlap matrix S, via analytical expressions.

For most practitioners of DFT, this efficiency and the relative ease of use resulting
from the popularity of the Ansatz outweigh its prime disadvantages: Gaussians are
ill-suited to accurately represent the cusps at the nuclei, due to their smoothness
around zero. Contraction of multiple Gaussians in the radial part partially alleviates
this problem, but never solves it completely. Furthermore, the actual ground-truth
density decays exponentially with distance to the molecule far from the nuclei, not
like the squared exponentials of the Gaussians. Basis sets which are better adapted
to both of these aspects exist, but are less frequently used due to various reasons, for
instance their typically higher computational cost (e.g. Slater type orbitals [36, 37])
and complexity (e.g. Muffin tin orbitals [38]).

2.3.2 Direct inversion of the iterative subspace

Directly implementing the SCF procedure as described above leads to computations
that can be slow to converge, and in some cases fail to converge at all. One method
to greatly improve the convergence is the direct inversion of the iterative subspace
(DIIS) method [20]. The idea is to use the history of the SCF procedure to construct
a linear combination of previous Fock matrices, as the best guess for the ground
state Fock matrix in the next iteration, instead of simply using the Fock operator
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constructed from the current orbitals. Under the assumption that the errors lie in a
linear subspace, a least-squares fit is performed to find the coefficients π(n)

k of the linear
combination such that the expected error according to the linear model is minimized,
for details see [20]. This amounts to an adjusted update rule for the Fock matrix:

F(n) =
n−1∑
k=0

π
(n)
k F[ρ

[Φ(k)]
] . (2.43)

2.3.3 Scaling considerations

The re-introduction of the auxiliary wave function in Kohn-Sham DFT, comes with
a cost: The time-scaling of the method becomes O(N3), cubic with system size3, as
in every step, the Fock matrix has to be constructed and diagonalized. Furthermore,
naive implementation of the Hartree term in a finite basis even results in a complexity
of O(N4), as it includes all combinations of four basis functions. This can however
be mitigated using density fitting, which can reduce the number of basis functions in
the integral from four to two, but entails cubic scaling in the fitting procedure itself.

Overall, the cubic scaling of Kohn-Sham DFT is a major bottleneck for the method,
and has motivated the search for alternative formulations of DFT which avoid this
scaling, such as orbital-free DFT, which we will discuss in the next section.

Attempts which aim to improve the scaling behavior within the framework of KS-
DFT have been made ([39, 40, 41, 42]), but they entail disadvantages in precision and
generality, and have not yet been able to replace the standard Kohn-Sham DFT in
most applications. Here, we instead choose to pursue the development of the pure
form of DFT that does not require the introduction of auxiliary orbitals, which we
will describe in the next section.

2.4 Orbital-free DFT
Orbital-free DFT (OF-DFT), sometimes also “pure DFT”, aims to avoid the cubic
scaling by finding the ground state by direct optimization of the energy functional
2.19 in terms of the electron densty ρ(r):

ρ∗ = argmin
ρ:

∫
ρ(r)dr=Ne

E[ρ] . (2.44)

The prime challenge in this approach is the kinetic energy functional Ts[ρ]. If an
exact or satisfactory approximate expression for this functional is known, its favorable
scaling might grant OF-DFT the potential to match and even surpass the role of
Kohn-Sham DFT as the workhorse of quantum chemistry.

3Think N = Ne or N = A.
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2.4.1 The kinetic energy functional

Above, we stated that no exact expression for the kinetic energy functional Ts[ρ] is
known. While true in general, there are some notable special cases where an exact
expression is known:

Thomas-Fermi kinetic energy

The simplest approximation to the kinetic energy functional is the Thomas-Fermi
kinetic energy functional, which is based on the Thomas-Fermi model of the free
electron gas [43, 44]:

TTF[ρ] =
3

10

(
3π2
)2/3︸ ︷︷ ︸

cTF

∫
ρ(r)5/3 dr . (2.45)

This functional is exact for the kinetic energy of a free electron gas, i.e. spatially
constant electron density. For inhomogeneous systems, it is on its own a poor approx-
imation not accounting for the spatial variation of the electron density and failing to
reproduce molecular bonding.

von-Weizsäcker kinetic energy

The von-Weizsäcker functional [45] is another special case where an exact expression
for the kinetic energy functional is known. It describes single-orbital systems with at
most two electrons:

TvW[ρ] =
1

8

∫
(∇ρ(r))2

ρ(r) dr . (2.46)

Similar to the Thomas-Fermi functional, this functional does not provide a good
approximation outside its original domain of validity. Scaled versions of the von-
Weizsäcker functional have been used as corrections to the Thomas-Fermi model.

Classical approximations

Countless further attempts to approximate the kinetic energy functional have been
made. The classical, not machine-learned approaches fall in two classes, namely one-
and two-point approximations. The former express the kinetic energy density based
on the electron density and its derivatives at a single point, while the latter involves
two-point spatial integrals. Generalized Gradient Approximations (GGA) [46] are a
popular type of approximations among the former. They employ the dimensionless
reduced energy gradient

s(r) = ‖∇ρ(r)‖
(3π2)1/3ρ4/3(r) (2.47)
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to approximate the kinetic energy by parametrizing an enhancement factor F (s) to
the Thomas-Fermi kinetic energy density (see 2.4.1):

TS, GGA[ρ] = cTF

∫
ρ5/3(r)F (s(r)) dr (2.48)

One instance of this class is the APBEK functional [47], which we employ in chapter
5 as a reference functional for ∆-learning.

Up to fourth-order gradient expansions have been employed to approximate the
kinetic energy functional, however they have proven inferior to their second-order
counterparts regarding generalization across systems [7].

Classical approximations have demonstrated success in certain areas such as metals
and semiconductors [48, 49] or warm dense matter [50]. So far, no satisfactory approx-
imation achieving chemical accuracy for general molecular systems has been found,
hindering the applicability of OF-DFT in many fields. For an extensive comparison of
classical approximations to the kinetic energy functional and their respective merits,
we refer the interested reader to [2].

2.4.2 Density representations for OF-DFT

Just as for KS-DFT (section 2.3.1), the quantity to be optimized over, here the electron
density ρ(r), must be represented in a numerical form.

Using the same density representation as in Kohn-Sham DFT (equation 2.35) may
be technically possible, and even has appealing aspects such as simplifying training
data generation with KS-DFT. However, it is not available here if one hopes to achieve
linear scaling with system size.

There are multiple ways to represent the electron density ρ(r) in orbital-free DFT
which do not rely on the Kohn-Sham orbitals, and scale linearly with system size,
some of which I will describe and discuss in the following, including their implications
for the efficiency and accuracy of OF-DFT calculations.

Integration grids

Possibly the most straightforward way to represent a given electron density is to
evaluate it on a grid of points in space. Formally, let {rk}k=1,...,Ngrid be a set of points
in space. Then, the electron density can be represented as a vector ρ ∈ RNgrid with
components ρi = ρ(ri). In order to compute integrals of quantities defined on the grid,
the grid points can be equipped with weights {wk}k=1,...,Ngrid , to define a quadrature
grid such that the integral of a quantity f(r) over space can be approximated as∫
f(r)dr ≈

∑
k f(rk)wk.
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Cartesian grids

This approach has successfully been used with a simple uniform on simple 1D systems
[51], and with a Cartesian three-dimensional grid in a study of machine-learned OF-
DFT on graphene [6].

For three-dimensional molecular systems however, the number of grid points re-
quired to represent the electron density with sufficient accuracy on a Cartesian grid
can quickly become prohibitively large, as the cusps at the nuclei require a high density
of grid points to resolve.

Radial grids

An alternative approach is to use radial quadrature grids, where grid points are placed
on a set of concentric spheres around the nuclei. This has the great advantage that,
by using a smaller spacing of shells near the nuclei, the grid resolution can be adapted
to be high around the nuclei, where the electron density has cusps, and lower further
away, where the density is smoother, allowing for a much lower number of required
grid points. Regarding the exact placement of shells, the sampling of points on each
shell, and the weights of the grid points, there are multiple choices to be made. Here,
we will draw from prior work and use Treutler-Ahlrichs radii for the shells [52], and
the Lebedev quadrature for the sampling of points on each shell [53].

We will take this approach to present the electron density to the machine learning
model in chapter 4.

Scaling considerations

While radial grids are typically much more efficient than Cartesian grids for molecular
systems, and their number of grid points scales linearly with system size, dealing with
them still becomes very expensive for larger systems especially when computations
should utilize limited GPU memory. Below I will discuss some alternative represen-
tations of the electron density which can be more efficient in terms of memory usage.

Notably, the computation of most classical approximations to the exchange-correla-
tion energy also require evaluations on a quadrature grid. Hence, if one wants to run
OF-DFT on systems so large that the use of a grid becomes prohibitively expen-
sive, one has to find approximations not only of the kinetic energy, but also for all
contributions that usually require a grid to evaluate.



18 Orbital-free DFT

Square of single “orbital”

Another way to represent the electron density is to use the square of a single “orbital”
ϕ, which is not an orbital in the Kohn-Sham, or even a physical sense, but rather a
simple function which is used to represent the electron density:

ρ(r) = ϕ(r)2 =
(∑

ν

cνχν(r)
)2

. (2.49)

Here, the χν(r) are a set of atom-centered Gaussian basis functions, and cν are co-
efficients representing the electron density. Other than being more memory efficient
than a grid, this representation has the advantage that any set of coefficients leads to
strictly positive density, such that no un-physical negative densities can occur during
optimization.

However, this potential advantage is offset by a disadvantage: If, e.g. at some point
during density optimization, the “orbital” ϕ has nodal planes, i.e. its sign changes
somewhere in space, the electron density will have a cusp at this nodal plane, which is
unphysical. Furthermore, local optimization techniques such as gradient descent may
fail to get rid of this nodal plane, since the required flip of the sign of the orbital in
some regions of space is a large change in the parameter space which well may lead
to worse (i.e. higher energy) intermediate densities.

This approach has been used in prior work, e.g. [8].

Linear combination of atomic basis functions

A third way to represent the electron density is to use a linear combination of atomic
basis functions (LCAB):

ρ(r) =
∑
µ

pµωµ(r) =
A∑
a=1

∑
µ∈Aa

pµωµ(r) , (2.50)

with a set of atomic basis functions {ωµ(r)} and coefficients p = (pµ)µ. In the sec-
ond expression, we have made the decomposition of the basis by atom explicit, by
introducing index sets Aa of basis functions centered on atom a (these depend on the
molecule M at hand).

Like the square of a single “orbital” representation (see section 2.4.2), this approach
is memory efficient. However, it does not have the issue of nodal planes: As the relation
between electron density ρ(r) and the coefficients p is linear, convex functionals in ρ
lead to convex functions in p, and the density optimization problem (see section 2.4.3
below) is better-behaved4. A drawback is that the electron density is not guaranteed

4The true energy functional may be non-convex globally, however convexity holds in a neighbor-
hood of its global minimum.
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to be positive, which may raise the issue of negative densities during optimization.
We take no explicit measures to prevent this, but note that if the ground state density
is approximated precisely, the total negative density must be negligible.

This approach has been previously used to fit KS-DFT densities in a procedure
called density fitting [54, 55, 56] to cheapen the computation of certain integrals,
e.g. the coulomb integrals in the calculation of the Hartree energy.

2.4.3 Density optimization

After the electron density has been represented in a suitable form, and the energy
functional, in particular its kinetic part, has been approximated, the optimization
problem 2.44 can be solved.

In comparison to KS-DFT, where SCF iterations are used to solve for the Kohn-
Sham orbitals in a self-consistent manner, the optimization problem in OF-DFT is
much more straightforward: Besides non-negativity, only a single constraint, the cor-
rect normalization of the electron density, has to be fulfilled.

Depending on the order of accessible and reliable derivatives of the density func-
tional, different optimization algorithms can be used, such as simple gradient descent,
or higher-order method. Enforcing the normalization constraint can be achieved via a
Lagrange multiplier µ (which is also the electronic chemical potential), as we describe
in more detail in section 4.4. Depending on the density representation, an alternative
is to enforce the constraint across optimization steps by projection the updates. This
option is used in [9], and we describe it in detail in section 5.3.

Depending on the functional approximations used, the energy functional is not
guaranteed to be globally convex. Thus, in order for density optimization with a local
optimization algorithm to find the global minimum corresponding to the physical
ground state, a good initialization of the density optimization process is important.
We comment on this issue of finding initial guesses for the density in section 5.4, where
we also introduce our own version of the classical Superposition of Atomic Densities
(SAD) approach.

In summary, to make OF-DFT successful, the key challenge lies in accurately
approximating the total energy functional in a differentiable form that ensures a min-
imum near the true ground state density. Once this is achieved, finding this minimum
by optimizing the density becomes a relatively straightforward task.





Chapter 3

Geometric deep learning for
atomistic systems

In this chapter, we will introduce the field of geometric deep learning, and discuss
some of the methods which apply it to atomistic systems. First, we will introduce
the concept of message passing graph neural networks, which are the most widely
used architecture for learning from graph-structured data in section 3.1. Then we
will introduce the concept of equivariance in section 3.2, and discuss two methods for
building equivariance into neural networks, tensor fields and local frames. Finally, we
will introduce a list of desiderata for a machine-learned energy functional for orbital-
free density functional theory in section 3.3, which will guide our architectural choices
in the following chapters.

For a systematic introduction to the field of geometric deep learning we refer the
reader to [5], and to [57] for a recent overview of its applications to atomistic systems.

3.1 Permutation invariance for graphs

In machine learning sense, a molecule M can be seen as a point-cloud, an unordered
collection of points Ra in R3, possibly each equipped with some features. For a
molecule, these features at least include the atomic numbers Za. Either explicitly
by e.g. inferring chemical bonds, or implicitly inside the network e.g. via a distance
cutoff, the point cloud is typically equipped with a graph structure, connecting certain
points and thereby defining neighborhoods.

When designing machine learning models for this input modality, special care has
to be taken in order to guarantee that the order of the points (atoms) does not matter.
Graph Neural Networks (GNNs) [58, 59] obey this property. They rely on the concept
of message-passing: The features fa of some node a are processed jointly with those of
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neighboring nodes b to yield messages ma,b(fa, fb) which are then accumulated in an
permutation-invariant manner, e.g. by summation over b. The resulting feature vector
is used to update the features at node a, and the process is repeated for all nodes.
Multiple such message-passing layers are stacked on top of each other, yielding a deep
neural network which is agnostic to the order in which the nodes are presented. If a
graph-level prediction, such as the energy of a molecule, is required, a final aggregation
layer summarizes the node-level features. For extensive properties such as the energy,
an appropriate choice is to simply sum up the contributions of the individual nodes
(i.e. atoms).

In recent years, attention mechanisms [60] have been successful in many disciplines
of machine learning. Two architectures which employ attention for graph learning and
have been shown to work well for atomistic data are the Graphformer [61] and the
EquiformerV2 [62], which we will use in chapters 5 and 6 of this work.

3.2 Equivariance
Symmetry is a key concept in physics, widely used to simplify problems and to make
predictions. Molecular systems are no exception: Additionally to the discrete per-
mutation symmetry discussed in the previous section, the energy of a molecule is
invariant under rotations and translations, and the potential is equivariant to them.
In the context of machine learning, it has been shown that integrating such symmetries
in neural networks can lead to more data-efficient learning and better generalization
[63].

Formally, a function f : V → W between two vector spaces on which a group G
acts via representations RV and RW is equivariant with respect to G if

f(RV v) = RW (g)f(v) ∀v ∈ V, g ∈ G , (3.1)

i.e. transforming the input by g and then applying the function is the same as applying
the function and then transforming the output by g. If the representation RW is the
trivial representation, i.e. RW (g) the identity on W for all g, the function is invariant
to the group action, which is a special case of equivariance.

There are multiple ways to build equivariance into neural networks, two of which
we will discuss in the following subsections.

3.2.1 Tensor fields

One way to build equivariance into neural networks is demanding that all operations
are equivariant, giving rise to equivariant features in all layers of the network and
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ultimately guaranteeing an equivariant output.
This approach was pioneered in [64] in the context of image processing, and later

adapted to 3D data [65, 66]. A Python library implementing this framework, e3nn,
has been developed, see [67]. These approaches decompose the features into groups
which each transform according to some irreducible representation of the rotation
group, i.e. tensor fields.

A more recent architecture utilizing this framework and incorporating attention
layers which has shown impressive results on atomistic data is the EquiformerV2 [62],
which we adapt to the task of learning energy functionals (see section 5.6.2) and use
to great effect in chapter 6.

One disadvantage of this approach is that equivariant replacements for most stan-
dard operations such as convolutions and nonlinearities are necessary, which tend to
be both computationally expensive and may restrict the expressiveness of the model.
Canonicalization, which we will introduce in the following section, avoids these prob-
lems, while introducing its own challenges.

3.2.2 Canonicalization via local frames

An alternative approach to equivariance is canonicalization. The idea is to define a
canonical representation of the input data, which renders the features invariant to
the symmetries of the problem. These invariant features can then be processed using
arbitrary operations, yielding an invariant output. If the target transforms under a
non-trivial representation, the invariant output is subsequently mapped back from the
canonical frame to the original frame, resulting in an equivariant output [68]

For rotational equivariance of atomistic systems, this amounts to defining one or
multiple coordinate frames that rotate along with the molecule. In these local frames,
the input features (such as density coefficients in the LCAB Ansatz, see 2.4.2 and 5.2)
are invariant to rotations, and arbitrary models can be used.

One way to canonicalize features associated with the individual atoms in a molecule,
is to choose a local frame for each atom. In [9], this is done by pointing the first axis
towards the closest non-hydrogen atom, the second axis towards the second-nearest
neighbor (while orthogonal to the first), and completing to a right-handed coordinate
frame via a cross-product. See figure 3.1 for an illustration of the resulting frames for
an ethanol molecule.

A conceptual disadvantage of rotational equivariance via canonicalization is that it
necessarily introduces discontinuities in the input geometry [69]. As long as geometries
are treated independently, this is likely no major issue, but it might prove detrimental
to geometry optimization.



24 Architectural desiderata

Figure 3.1. Local frames for an ethanol molecule. At each atom, a local frame
is defined by the three nearest non-hydrogen neighbors. The first axis (red) points
towards the nearest neighbor, the second (green) is orthogonal to the first and points
towards the second nearest neighbor, and the third (blue) is orthogonal to the first
two.

3.3 Architectural desiderata for modelling E[ρ]

There are a number of criteria that a machine learning model for the energy functional
should satisfy, which we used to guide our architectural choices.

Non-locality

In the quantum chemistry community, functional approximation is called “local”, if it
is computed as the spatial integral over an energy density t(r) which depends only on
the electron density ρ(r) at the respective point r in space. If also derivatives of the
density at r are included, the functional is called “semi-local”.

While much effort has been put into fitting the kinetic energy functional in such a
local or semi-local manner (see section 2.4.1), no such functional has been found that
works well for general molecular systems. Furthermore, one can include higher order
derivatives in semi-local approaches, but this is already numerically challenging for
the 4th order [7] and going beyond does not improve the results.

This is why we turn to a non-local approach, where the energy is predicted as a
functional of the whole density, and not just its local properties.
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Locality

While we expect the energy functionals that we aim to learn to be non-local in the
sense described above, we do expect some degree of locality in a different sense: For
most chemical systems, chemists are able to make predictions based on “local” struc-
tures spanning only a couple handfuls of atoms, such as functional groups. Thus, it
is reasonable to expect that, for such systems, the energy functional can be learned
from local structures without the need to consider the whole system at once (except
in a final step, where the local predictions are combined to a global one, e.g. by
summation).

We hence aim to design our model in such a way that it can learn from local
structures. A secondary motivation for this lies in the fact that this is especially
important for generalization in system size, as a model with a limited field of view
is likely to also work well on larger systems, as long as the local structures in these
systems are well represented in the training data.

Variational prediction

Ideally, the gradient of the total energy functional δE[ρ]
δρ(r) should be predicted in a vari-

ational manner, i.e. as the actual gradient of the total energy functional, including
the machine-learned part. This is desirable on a theoretical level, since the variational
principle lies at the heart of DFT, and learning a “potential” independently of the
density would be a step away from this. Furthermore, for orbital-free geometry opti-
mization, ground state electron densities in the sense of δE

δρ
= 0 are required, because

otherwise the analytical nuclear gradients cannot be calculated.

Equivariance

The true energy functional is invariant to rotations and translations of the electron
density, and the potential ∂E[ρ]

∂ρ(r) is equivariant to them. Hence, it is natural to require
the same of the machine-learned part of the energy functional, especially as machine-
learning methods have been developed to handle these symmetries (see section 3.2).
Apart from the general motivations for building equivariance into models, in the case of
an energy functional it is additionally clearly advantageous to fulfill these symmetries
as precisely as possible, as a method which depends on the orientation of the input
molecule would be at least inconvenient, if not unusable in practice. That being said,
it may be feasible to learn very precise functionals without building in equivariance.
For the aforementioned reasons, we still consider it a desideratum.





Chapter 4

Learning a transferable kinetic
energy functional on quadrature
grids

This chapter is based on the article “KineticNet: Deep learning a transferable kinetic
energy functional for orbital-free density functional theory” [70], which is the result
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4.1 Introduction
Kohn-Sham density functional theory (KS-DFT, see section 2.3) has become the
workhorse of quantum chemistry thanks to its appealing trade-off of computational
cost vs. accuracy of molecular property predictions. Even so, its use of orbitals and
resulting cubic scaling with system size precludes its application to larger systems
with thousands of atoms that are needed to faithfully model, e.g., macromolecules in
solution. The main reason that KS-DFT needs orbitals in the first place is that,
despite decades of theoretical work, a concrete recipe to accurately compute the
non-interacting kinetic energy Ts[71] from the electron density has remained elusive;
whereas it can be computed from Kohn-Sham orbitals ϕi via Ts =

∫
ts(r)d3r with a

kinetic energy density

ts(r) = 1
2

∑N
i=1 |∇ϕi(r)|2 . (4.1)

Yet, the mesmerizing promise of the Hohenberg-Kohn theorems is that it suffices to
solve a single integrodifferential equation for the density ρ(r) to find the ground state
of a system, provided we find a concrete means to compute Ts and the kinetic potential
(its functional derivative with respect to the electron density δTs

δρ
) as a functional of

the electron density only.
Extensive theoretical and experimental work has shown that the kinetic energy

density is not merely local or “semi-local”, i.e., ts(r) is not a function of the electron
density ρ(r) and its spatial derivatives only. On the other hand, aromatic systems
and conductors aside, chemistry exhibits a large degree of locality, suggesting that it
should be possible to learn a kinetic energy density functional that generalizes across
relevant swathes of chemical space.

In response, we here propose a deep equivariant neural network architecture to
approximate the kinetic energy density ts(r). Specifically, in this chapter we make the
following contributions:

• We propose an equivariant deep architecture ingesting an electron density rep-
resented on a quadrature grid along with nuclear locations and charges, and
predicting a kinetic energy density on the same grid.

• We show how to generate varied electron densities and associated kinetic energy
potentials needed to achieve convergence when initiating density optimization
far from the ground state.

• We demonstrate orbital-free density optimization in systems with two electrons,
reproducing bonding with chemical accuracy.
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• We offer machine learned functionals for the kinetic energy density and gradient
which yield chemical accuracy in OF-DFT calculations, generalizing over input
electron densities, external potential and molecular geometry.

Related Work

Machine learning has been used to improve DFT pipelines before. A large number
of works[72, 73, 74, 75, 76, 77] focus on learning an approximation to the exchange
correlation (XC) functional, where Kirkpatrick et al.[72] recently demonstrated im-
pressive results. Dick and Fernandez-Serra[75] use an architecture that is similar in
some respects to learn the XC functional. However, they move to invariant features
early on in their model and do not learn the atomic representations, relying instead
on hand-crafted features to encode the atomic environments. They train their model
to only predict the total XC energy as a scalar, and compute the XC-potential in
a variational manner by back-propagating through their model. A number of works
demonstrate the potential of ML for OF-DFT on one-dimensional data sets, such as
Snyder et al.[78] Meyer et al.[51] and Saidaoui et al.[79]. The approach of Ghasemi
and Kühne[80] works in 3D, but on single, rotationally symmetric atoms only, effec-
tively reducing the dimensionality to one. Golub and Manzhos[7] take a semi-local
approach to the 3D problem as they train a neural network that takes five features
reflecting the electron density, its gradient as well as its Laplacian to model the kinetic
energy density, which they apply to each grid point individually. Seino et al.[81] and
Fujinami et al.[8] show promising results for learning the kinetic energy and potential
for molecules, however their models generalize only over different densities and hence
only work for a single molecule with fixed geometry at a time. Ryczko et al.[6] learn
the kinetic functional on a voxel-grid representation that works well for their applica-
tion to graphene lattices, but is less suited for molecules. They present one of the few
approaches with successful density optimization, however only for a learned functional
that is trained to mimic the flawed Thomas-Fermi approximation. The most extensive
results including density optimization are presented by Imoto et al.[82]. Like Golub
and Manzhos, they use a simple neural network applied pointwise and learn an en-
hancement factor to the Thomas-Fermi (TF) functional in a way that guarantees both
correct scaling and asymptotic behaviour. They outperform classical approximations,
but not by the extent required to reach chemical accuracy.
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atomic encoder atom-atom interactions decoder
×L

Figure 4.1. The proposed KineticNet architecture is an equivariant deep neural
network with three types of layers: First, an atomic encoder relying on point con-
volutions (eq. 4.2) to summarize the density information on the quadrature grid in
terms of tensorial features associated with the nuclei; then a number L of atom-atom
interactions layers; and finally a decoding layer making predictions at all grid points.

4.2 KineticNet: a deep equivariant architecture
When developing the architecture for our machine learning model (figure 4.1), we were
guided by a number of physically motivated constraints: Firstly, input and output
should be represented on the quadrature grid (consisting of grid points evenly dis-
tributed on each of a number of spherical shells arranged around each atomic nucleus),
such that it can seamlessly replace existing functional approximations. Secondly, the
model should be equivariant with respect to the group E(3), i.e. rotations and trans-
lations of the input molecule should not change the predicted kinetic energy, and the
predicted kinetic potential should be transformed in accordance with the input. Fi-
nally, the field of view, i.e. the spatial extent of the input grid points that influence
the output at a given point, should span several bond lengths. On the other hand, the
model should still be local in the sense that for very big molecules, only nearby atoms
influence the prediction, thus conceptually allowing for the generalization towards
bigger molecules.

We guarantee translational equivariance by only using relative positions in our
model, and rotational equivariance by using equivariant convolutions as presented in
Tensor Field Networks [65] and implemented in the e3nn library [67]. This amounts to
decomposing convolutional filters F into a radial part R depending on the distance r =
‖r‖ and an angular part Y , depending on the direction r̂ = r/r. The former is learned
and the latter is given by the spherical harmonics (depending on the representation
of the in- and output features of the convolution):

F
(lf ,li)
cm (r) = R

(lf ,li)
c (r)Y

(lf )
m (r̂) (4.2)

with non-negative integer rotation orders of the input and filter li and lf , channel index
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c and order inside the representation m ∈ {−lf , .., lf}. Multiplying the filters with
the input features and computing a certain linear combination, using Clebsch-Gordan
coefficients as weights, yields equivariant output features of the point convolution. We
learn separate convolutional filters for each element and use tensorial features up to
order l = 4.

To achieve a sufficient field of view while keeping the computational cost tractable,
we use an encoder-decoder structure: In a first atomic encoding layer, we use a point
convolution to compute features at every atom of the molecule (and not every input
grid point). This is followed by a number of atom-atom interaction layers, each
of which consists of a point convolution with the atomic nuclei positions as in- and
outputs, followed by a nonlinear activation function. These layers are computationally
cheap and greatly increase the field of view. Finally, a decoding layer, again a single
point convolution, propagates the information back to the quadrature grid. This
architecture has a sufficient field of view to capture functional groups and some of
their context in molecules, while still being local and allowing for the generalization
over molecule compositions. The learned atomic encoding layers are one advantage
over prior work, as most commonly[75, 83] handcrafted features are used to encode the
local environments of the atoms. When predicting energy densities, we additionally
scale the output with a Superposition of Atomic Densities (SAD) (commonly used
as an initial guess in KS-DFT), allowing the model to predict the correct asymptotic
behaviour for larger distances from the atoms. In particular, the prediction of very
small values becomes possible in low-density regions without extremely precise tuning
of the parameters of the radial models, which would otherwise be necessary.

As a loss we use a smooth L1-loss, applied to the point-wise difference between
the kinetic energy density and potential predictions and the corresponding ground
truth on the grid. We use an adaptive scale parameter for the transition between the
quadratic and linear regimes of the loss, the parameter grows linearly with the target
value, but we threshold this value with 10−6 Ha/Bohr3 from below, such that the
quadratic region can be reached even at grid locations with very small target values
(e.g. far away from the nuclei).

As mentioned above, the parameters of KineticNet lie in the radial models. We
parameterize them as Weiler et al.[84], by a 3-layer fully connected MLP applied to the
radius encoded by a set of cosine basis functions. For the initial atomic encoding and
final decoder layer, we additionally transform the input distances r with the inverse of
the Treutler-Ahlrichs[52] map fTA before feeding them to each radial model Ri (where
i is a shorthand for indices c, lf , li in eq. 4.2):

R̂i(r) = Ri

(
f−1

TA(r)
)

. (4.3)
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Figure 4.2. Schematic of the radial basis to model R in eq. 4.2, with and without
transformation to adjust to the Treutler-Alrichs shells, as used in the atomic encoding and
decoding layers. We apply a smooth cutoff towards the maximum radius.
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This effectively changes the radial model to have a distance-dependent spatial resolu-
tion (see figure 4.2), exactly in correspondence to the spherical shells of the quadrature
grid around the atoms.

One feature of our method is that the learning of a spatial filter in terms of absolute
distances allows us dealing with varying grid resolutions, i.e. spacing of radial shells
and angular grids. We do not exploit this explicitly in this work, but it can be useful
to speed up the training by first utilizing lower-resolution samples before fine tuning
in the high resolution setting, as well as granting the added flexibility of allowing a
single model to be deployed at multiple grid resolutions.

4.3 Training data generation
Sufficiently large and representative data sets are as decisive for the success of a
machine learning approach as the training setup and architecture. We use KS-DFT
employing the BLYP XC functional[85, 86] with the cc-pVDZ basis set[87, 88] to
generate ground truth data for the supervised training of our functionals. Generating
a large number of training samples is easy, but to ensure sufficient variability in the
data, we had to employ a new technique that we discuss in this section.

We use eq. 4.1 to generate ground truth kinetic energy density. Many other def-
initions exist, in particular any additive constant to ts that integrates to zero yields
the same total kinetic energy. That said we choose eq. 4.1 over other formulations for
the kinetic energy density as its values lie in a smaller range, which is preferred for
machine learning models. The kinetic potential δTs

δρ
can be computed[89] from

δTs
δρ

− µ =

∑N
i −1

2
ϕi(r)∇2ϕi(r)− ϵiϕ

2
i (r)

ρ(r) (4.4)

where ϵi stands for the eigenvalue/orbital energy of the i-th KS-Orbital, ρ for the
electron density and µ for the chemical potential, which is assumed equal to the
energy of the highest occupied molecular orbital ϵHOMO.[89]

The derivation by King and Handy[89] equates parts of the Euler and Kohn-Sham
equations, suggesting that the equation is only valid for stationary states. Yet any OF-
DFT algorithm will encounter non-stationary electron densities on its way from the
initial guess to the true ground state. As generalization from ground state densities to
these intermediate states cannot be expected, it is crucial to also include non-ground
state electron densities in the training set. Such training makes the model sufficiently
robust to achieve convergence of the iterative density optimization. This necessity
has also been noted by Ryczko et al.[6] who observe convergence only for a functional
trained to mimic the TF approximation on a varied data set, but not for the functional
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trained on KS ground truth at ground states only. In summary, the paradoxical task
is to compute the kinetic potential for densities other than the true ground state while
at the same time eq. 4.4 holds only for stationary states. This is where our second
contribution lies.

The first Hohenberg-Kohn theorem states that a one to one mapping exists be-
tween the external potential and the ground state electron density of a system.[1]
Thus, slightly perturbing the external potential of a molecule will lead to a different
electron density as ground state and thereby enable the use of eq. 4.4. Exploiting
this observation, we perturb the external potential vmol

ext (r) in KS-DFT by adding a
randomly sampled symmetric matrix M with an appropriately chosen norm to the
matrix representation of the external potential in the atomic basis {χν} to generate
our training data:

[vext]µν = 〈χµ|vmol
ext |χν〉+Mµν (4.5)

vext = vmol
ext + M (4.6)

The pyscf software package[90, 91] is used for this purpose as it is efficient and well
suited for the integration of ML models trained with python.

For our model, as with most neural networks, it is useful if the inputs and targets
have similar scales, and that their values do not vary over many orders of magnitude
within a single sample (and between samples). Hence, an important detail in the
training data generation is how we deal with the cusps at the atoms, of both the
input electron density and the output energy density and its potential. Here, we take
the approach of subtracting spherically symmetric “Atomic Contributions” (ACs) for
each atom and each of the fields. We compute them by applying restricted or restricted
open shell KS-DFT to each atom type, and spherically symmetrizing the result, for
details see appendix A.4 (in the few cases, in which KS-DFT did not converge, these
non-converged solutions still fulfill their purpose). This greatly reduces the magnitude
of the cusps, see figure A.3.

Another relevant detail is the choice of target for the kinetic potential: We follow
Ryczko et al.[6] and do not directly predict the kinetic potential δTs

δρ
, but rather √ρ δTs

δρ
,

its product with the square root of the electron density. They report that this gives a
lower training error, and we have two additional reasons to make this choice: On the
one hand, the denominator in eq. 4.4 leads to numerical problems for small densities,
e.g. far from the atomic nuclei, which are alleviated by taking this product. On the
other hand, in our OF-DFT calculations, the kinetic potential is multiplied with the
square root of the density whenever evaluated, due to our Ansatz (eq. 4.7), see section
4.4 below, hence directly predicting this quantity is natural.
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We generate data sets for a number of different atoms and molecules: First, the
two-electron systems He, H2 and H +

3 , and furthermore the molecules HF, H2O as
well as two neon atoms in the vicinity of each other as an instance of a non-binding
system, which we label as Ne2. We sample the perturbation of the external potential
and the molecule geometry independently for each training instance. For the linear
molecules, we sample the inter-atomic distance uniformly in a range from around
0.4 Å to around 2.0 Å, thus covering both strongly compressed structures as well as
nearly dissociated ones. For H +

3 , we arrange the nuclei in an equilateral triangle of
side length

√
2 Å and perturb the position of each atom by a random vector with a

length that is sampled uniformly in [0, 0.5Å]. Lastly, for water, we apply the following
procedure: Each O−H bond length is uniformly sampled between 90% and 110% of
its equilibrium value. The bond angle is varied by uniformly sampling each O−H
“vector” from a 10° conus.

For each system, we generate 8000 training samples, 2000 to use for validation and
an additional 1000 for testing.

4.4 Density optimization

After successfully training these models, the next logical step is to use them “in the
wild”, i.e. in an actual OF-DFT calculation to compute the ground state of a geometry
not seen at training time. To this end, we have implemented an OF-DFT solver based
on the work of Chan et al.[92] and Ryley et al.[89] to see if density optimization is
possible. We use the approach in which the density ρ is represented as the square of a
single “orbital”, or more precisely of a linear combination of atomic basis functions χν :

ρ(r) =
(∑

ν

cνχν(r)
)2
. (4.7)

The coefficients cν are the variables which are optimized to minimize the energy func-
tional while ensuring the correct normalization of the density. This approach allows
the use of well established quantum chemical libraries for the evaluation of many of
the integrals.

To achieve this optimization of the total energy w.r.t. the electron density under
the constraint of its normalization to the correct number of electrons Ne, a Lagrange
multiplier µ is introduced:

L =Ts[ρ] +

∫
vext(r)ρ(r) dr + J [ρ] + Exc[ρ]

− µ

(
Ne −

∫
ρ(r)dr

) (4.8)
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where Ts is the non-interacting kinetic energy, J the classical electron-electron inter-
action, and Exc the exchange correlation energy. The ground state electron density is
then given by the global minimum of this equation. Therefore, its functional derivative
w.r.t. the electron density gives us the stationarity condition

δL
δρ

= 0 =
δTs
δρ

+ vext(r) +
δJ

δρ
+
δExc

δρ
− µ . (4.9)

Introducing the basis expansion, the gradient w.r.t. the expansion coefficients is then
given by

∂L
∂cσ

= 2〈χσ | δTs
δρ

+ vext(r) +
δJ

δρ
+
δExc

δρ
− µ|

∑
ν

cνχν〉 . (4.10)

Furthermore, the Lagrange multiplier µ, which corresponds to the chemical potential,
needs to be optimized:

∂L
∂µ

= Ne −
∫
ρ(r) dr . (4.11)

To iteratively solve this constrained optimization problem, we use the SLSQP solver
[94] as implemented in the scipy package [95].

For the initial guess in our optimizations we use an adapted version of a SAD guess.
For this we use the atomic KS-DFT densities and fit OF-DFT density coefficients to
it. Those coefficients are then used to construct a guess by simply placing them at
the position of the corresponding atomic basis functions.

4.5 Computational experiments

4.5.1 Training details

We train, simultaneously but independently, two models: One to predict the kinetic
energy density ts (to be integrated to the kinetic energy Ts) and one for the kinetic
potential δTs

δρ
. Each of these models is trained on the union of all data sets. We train

our models using the Adam optimizer[96] using default parameters and a learning rate
of 0.01 that we decay exponentially after 105 training iterations. We use a batch size
of 64 and train until convergence. We observe some amount of overfitting in the sense
that the loss is greater during validation than training, however both decrease during
the whole training procedure which allows us to simply evaluate the final saved model.

4.5.2 Test results

For all data sets the mean absolute error (MAE) of the predicted kinetic energy over
100 samples from the test set falls below the threshold of chemical accuracy, 1 mHa
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Figure 4.3. Total ground state energy of HF at different bond lengths, as computed
by KS-DFT as well as the prediction of our ML functional on the KS ground state
densities (without orbital-free density optimization).
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Figure 4.4. Total ground state energy of Ne2 at different “bond” lengths, as com-
puted by KS-DFT as well as the prediction of our ML functional on the KS ground
state densities (without orbital-free density optimization).
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Figure 4.5. Comparison between predicted and KS kinetic energies for H +
3 on 100

samples from the test set, and representative electron densities (minus SAD).

Table 4.1. Kinetic energy mean absolute error for our model (KineticNet) and
classical functionals on test sets consisting of KS solution densities (for varying vext).
Errors are given in mHa.

He H2 H +
3 HF Ne2 H2O

Ours 1.3× 10−1 6.4× 10−1 4.7× 10−1 2.0 1.0× 101 1.3

TF 2.9× 102 2.1× 102 2.8× 102 9.1× 103 2.2× 104 6.9× 103

vW 0 0 0 2.6× 104 7.8× 104 1.9× 104

MGE2 7.9× 101 1.0× 102 1.6× 102 7.8× 102 2.6× 103 8.1× 102
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Figure 4.6. Slices through input, prediction, and error for H +
3 , on three test samples.

From left to right: Electron density, electron density minus AC, predicted kinetic
energy density minus AC, error of the electron density, predicted kinetic potential
times square root of electron density and lastly its error.

per electron, see table 4.1. We compare these results to three classical approximations
of the kinetic energy functional, the first-order Thomas-Fermi (TF) functional, the
second order von Weizäcker (vW) correction and the MGE2 functional which is a
linear combination of the two former approximations and which performed best in the
extensive comparison by Fujinami et al.[8]. The superiority of the ML functional in
this metric is very obvious as it outperforms the classical approximations by more than
two orders of magnitude throughout, however with one exception: The vW functional
is exact for two electron systems, hence its MAE is zero for He, H2 and H +

3 . One
could argue that the learning task for the ML model in these cases is also much easier
for the ML functional, as the semilocal expression of the vW functional is already
exact, but on one hand our model by construction cannot simply reproduce this term,
and on the other hand we demonstrate a similar accuracy (per electron) on the bigger
systems, where vW alone fails spectacularly.

For HF and Ne2 we additionally demonstrate that our model is accurate enough
to model chemical bonds (or the absence thereof) by evaluating it on the KS ground
states for varying inter-atomic distances, and plotting the resulting dissociation curves
in figures 4.3 and 4.4. Note that none of the geometries, nor any ground states (without
a perturbed external potential) were part of the training sets. For H +

3 , a comparison
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Figure 4.7. Total ground state energy of H2 at different bond lengths, as computed
by KS-DFT as well as OF-DFT using our machine learned functionals.

between predicted and target kinetic energies is shown in figure 4.5.

4.5.3 Density optimization

The results of applying our machine learned functionals in OF-DFT are summarized in
table 4.2. We evaluated each of our models on 100 geometries from the corresponding
test set (except of course for He, where only a single geometry is available), setting
the SLSQP convergence threshold to 10−4 and allowing a maximum of 100 steps.
While we always observe convergence using the classical functional approximations,
in the few cases when no convergence is reached using our model, we evaluate the
best solution obtained so far. To quantify the results, we compute the mean over the
absolute energy errors, as well as the L1 density deviation

‖ρ− ρKS‖1 =
∫

|ρ(r)− ρKS(r)| dr (4.12)

between the KS density ρKS and the result of the OF calculation ρ.
For He, H2 and H +

3 , we obtain errors of less than 1 mHa and L1 density deviations
on the order of 10−2 electrons, see table 4.2. This is more than precise enough to
correctly model the H2 bond, see figure 4.7.

Furthermore, the way our learned functionals generalize allows us to apply them in
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Table 4.2. Density optimization results for two electron systems using our ML
functional (KineticNet) as well as classical functionals. Note that the vW functional
is exact for these systems, the small deviations are due to the limited steps and finite
convergence threshold in our OF-DFT implementation.

vext = 0 vext from test with solvation model
Data set ∆E ∆ρ ∆E ∆ρ ∆E ∆ρ

[mHa] [a.u.] [mHa] [a.u.] [mHa] [a.u.]
He 0.02 0.0004 0.10 0.0028 0.02 0.0004

Ours H2 0.34 0.0016 0.74 0.0162 0.34 0.0043

H +
3 0.44 0.0055 0.43 0.0105 0.44 0.0054

He 381.64 1.4937 1022.02 1.6558 381.90 1.4962

TF H2 305.30 0.1282 305.26 0.1317 305.30 0.1282

H +
3 685.25 1.2828 727.40 1.3489 691.82 1.3057

He 0.00 0.0001 0.17 0.0024 0.01 0.0001

vW H2 0.00 0.0000 0.00 0.0003 0.00 0.0000

H +
3 0.02 0.0007 0.02 0.0008 0.02 0.0007

He 116.36 0.5778 531.88 1.3410 116.03 0.5802

MGE2 H2 76.73 0.1367 76.52 0.1366 76.73 0.1367

H +
3 371.15 1.0247 411.11 1.1091 373.69 1.0459

He 153.65 0.7310 756.51 1.5467 153.27 0.7336

LC H2 5.45 0.0878 5.83 0.0879 5.45 0.0878

H +
3 485.17 1.1877 535.98 1.2742 490.23 1.2150

different settings: Just as KS-DFT during data generation, we can apply orbital free
density optimization on molecules in the presence of an additional external potential.
For this, we use potentials from the test set and observe that the accuracy of our
model is still good, see middle two columns in table 4.2.

We can also apply solvation models that simulate a chemical environment by a
density-dependent contribution to the external potential. To this end we employ
the ddCOSMO solvation model [97, 98, 99] as implemented in pyscf with default
parameters, i.e. simulating a solution in water, see the two rightmost columns of table
4.2.

Note that none of these modifications would have been possible if we took a very
direct black-box ML approach of e.g. directly predicting the ground state electron
density.

The reason why we only present density optimization results for the two electron
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systems He, H2 and H +
3 is that only for those there is an exact correspondence between

the possible KS densities and the Ansatz we use in our OF calculations (eq.4.7, for
details see appendix A.3). Hence, for these systems densities close to the KS ground
state are obtainable. On the other hand, in the cc-pVDZ basis that we are using, it
is impossible to model densities close to the KS ground state using the OF Ansatz,
even fitting the coefficients to best mimic the KS density leads to an L1 deviation
of multiple electrons. So while OF-DFT calculations using our learned functionals
sometimes converge for these larger systems, either a sufficiently larger basis, maybe
optimized for this application, or an entirely different Ansatz are required to reach
quantitatively interesting results.

4.6 Conclusion
In this chapter, we presented KineticNet, a new equivariant machine learning model
adapted for the prediction of molecular properties on quadrature grids. Using the
electron density on the grid and the positions of all nuclei as input, it can successfully
predict the corresponding non-interacting kinetic energy density for a variety of sys-
tems such as HF, H2O and Ne2. The new functional correctly describes both chemical
bonding (as well as the absence of it in Ne2). We offer proof of principle that this
architecture can predict the kinetic potential with sufficient accuracy to allow actual
OF-DFT density optimization to reach the respective KS-DFT ground state for the
model systems H2, H +

3 and Ne. Additionally, we show that the generation of varied
training data, by invoking fundamental concepts of DFT, allows training models with
minimal overfitting which generalize over densities arising in the presence of differ-
ent external potentials. This also includes simple solvent models such as ddCOSMO
which can be applied out of the box without any additional retraining.

Given these encouraging results, the next step is to generalize the entire workflow
to afford density optimization for more than two electrons. We conjecture that the
principal obstacle in the setup described in this chapter is that the KS-DFT ground
state cannot be represented by our combination of basis and description of the density.
To overcome this limitation, we turn to the LCAB Ansatz for describing the density
(see section 2.4.2) in the next chapter, in which Kohn-Sham ground densities can be
represented accurately via density fitting.



Chapter 5

Orbital-free DFT using a linear
combination of atomic basis
functions

In March 2024, the Article “Overcoming the barrier of orbital-free density functional
theory for molecular systems using deep learning” by Zhang et al. [9] was published
in Nature Computational Science. They present remarkable results, achieving chem-
ical accuracy in orbital-free density optimization for two datasets, namely ethanol
structures from MD17 [100, 101] and the QM9 dataset [102, 103] of small organic
molecules of up to nine heavy (i.e. non hydrogen) atoms. They use the LCAB Ansatz
(see section 2.4.2) to represent the electron density, and pair it with a Graphormer
architecture [61] which uses local frames (see section 3.2.2) to achieve rotational in-
variance. However, their work, albeit impressive, leaves some questions open, and
has some key limitations, the most glaring being the lack of proper convergence in
their density optimization process. Using their learned functionals does not result in
local minima in the energy landscape, hence, density optimization tends to eventu-
ally diverge to energies far below the true minimum value. They address this with
a complex hand-crafted criterion which picks an intermediate density from the opti-
mization trajectory as the final result, based on the trajectories of both the energy
and gradient norm. This is not only unsatisfactory from a theoretical standpoint, but
also limits the applicability of their method because computation of nuclear gradients
for geometry optimization requires a variational ground state in the sense of δE

δρ
= 0

[104], see section 3.3 for details. Furthermore, there are practical advantages to proper
convergence: It allows stopping density optimization early when the gradient norm
falls below a certain numerically-sound threshold. In case this does not happen, it
serves as a valuable indication that the given system is not well represented by the

43
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Figure 5.1. Variational prediction in the LCAB Ansatz. The electron density
ρ(r) is represented via coefficients p as a Linear Combination of Atomic Basis func-
tions (LCAB), which are fed into a deep atomistic neural network to predict the total
energy E[p] (possibly contributions such as EH are added, not show). The variation-
ally predicted gradient ∇pE[p] guides density optimization. Figure drawn by master
student Johannes Schmidt.
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model.
Hence, we set out to improve upon the results of Zhang et al. [9], in particular

addressing the central issue of convergence. In this chapter, we will describe the
method resulting of these efforts to train a variational model for OF-DFT (see figure
5.1) in detail, mostly following Zhang, Liu, You, Liu, Zheng, Lu, Wang, Zheng, and
Shao [9] in parts of the pipeline that we have changed only in minor ways, and compare
the results.

In the following three sections, we will describe the data generation process in
the LCAB density representation (see 2.4.2), largely following [9]. However, we will
be more explicit about the optimization target in density fitting (see 5.1.1), and the
role of basis transformations (see 5.2). In section 5.3, we provide a more thorough
description of gradient projection to deal with the offset in the gradient labels, and
discuss the interplay of this projection with basis transformations.

Afterward, we present our improvements: In section 5.5, we introduce a novel
method to generate perturbed data, refining the external potential perturbation in-
troduced in chapter 4 (see section 4.3) in the context of the LCAB Ansatz. Section
5.4 then describes the generation of a cheap but accurate initial guess for density op-
timization. After discussing a number of conceptually minor, but practically relevant
architectural improvements to the Graphormer architecture as utilized by [9], and how
we adapted the Equiformer architecture [62] to our setting in section 5.6, we describe
and discuss our experimental results, see sections 5.8 and 5.9.

5.1 Generating labels with KS-DFT

Zhang et al. [9] demonstrated how to generate a label for the kinetic energy functional
TS[ρ] and its gradient δTS[ρ]

δρ(r) from each iteration in a Kohn-Sham DFT procedure. The
key insight is that Φ(n), the result of any SCF iteration

F̂[ρ
[Φ(n−1)]

]ϕ
(n)
i = ϵ

(n)
i ϕ

(n)
i , (5.1)

describes the ground state of a certain non-interacting system (i.e. without EH and
Exc), by choosing the external potential V (n)

eff = Veff[ρ
[Φ(n−1)]

]. Indeed, if one follows the
derivation of the Kohn-Sham equations for this non-interacting system starting at

E∗(n) = min
Φ: orthonormal

[
N∑
i=1

〈ϕi| T̂ |ϕi〉+
∫
ρ[Φ](r)V (n)

eff (r) dr
]
, (5.2)

one finds equation 5.1 as the optimality condition. As the kinetic energy operator is the
only contribution to the minimized energy in equation 5.2 which explicitly depends on
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the orbitals Φ and not the electron density alone, it follows that the resulting kinetic
energy is the minimal one for the given density ρ[Φ(n)]. This, however, is precisely how
the non-interacting kinetic energy functional is defined (see equation 2.17), and hence
the kinetic energy found in each SCF iteration can be used as a label for it.

Furthermore, the variation of equation 5.2 with respect to the density ρ gives rise
to the optimality condition

δTS[ρ]

δρ
+ V

(n)
eff = µ(n) ⇔ δTS[ρ]

δρ
= µ(n) − V

(n)
eff , (5.3)

with the Lagrange multiplier µ(n) enforcing the density normalization constraint, also
called the chemical potential. Hence, we also obtain labels for the kinetic potential,
up to a scalar offset µ(n). How to deal with the offset in the gradient labels will be
discussed in section 5.3.

We follow [9] and use the 6-31G(2df,p) basis set [105, 106, 107, 108] and the PBE
exchange-correlation functional [13] in the Kohn-Sham calculations.

5.1.1 Density fitting

Density fitting is necessary, as we generate labels using Kohn-Sham DFT where den-
sities are represented via a set of molecular orbitals, but we want to make OF-DFT
work in the LCAB Ansatz for the electron density. The first step to mediating be-
tween these two density representation is density fitting: Its goal is to map density
matrices Γ (see eq. 2.35) to LCAB coefficients p (compare eq. 2.50).

Outside OF-DFT, density fitting is used for approximating e.g. the electron repul-
sion integrals in Hartree-Fock and Kohn-Sham DFT methods, improving the quartic
scaling of their naive computation to cubic [56].

Naively, one might think that the best way to fit the density is to minimize some
distance measure, such as the L2 norm ‖ρp − ρKS‖2, between the two densities. How-
ever, if one also cares about energies, this is not the best choice, as they tend to
deviate substantially if only the density difference is minimized.

Hence, we follow Zhang et. al. [9] in minimizing both the Hartree energy of
the residual density, EH[ρp − ρKS] as well as the squared residual external energy,
(Eext[ρp] − Eext[ρKS])

2. After writing both error measures as quadratic forms in the
density coefficients p (this involves computing coulomb integrals between pairs of basis
functions), the optimization problem is solved with a least-squares solver. We follow
[9] and use an even-tempered basis set for density fitting.

A systematic comparison of different optimization targets was performed by Tim
Ebert and is presented in his master thesis.
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5.2 Basis transformations
As described above, after generating the training data using KS-DFT, we transform
into the density fitting basis, expressing the density in an LCAB Ansatz (see eq. 2.50).

This density basis is optimized to express the density as precisely as possible. As
the Ansatz for the density is linear, given an invertible basis transformation matrix A
we can define a vector of new basis functions ω and coefficients p′ according to

p′ = Ap (5.4)

ω′ = A−⊤ω (5.5)

without changing the density:

ρ′ = ω′⊤p′ = ω⊤A−1Ap = ω⊤p = ρ . (5.6)

In other words, the sets of densities expressible in both basis sets is identical. It is
straightforward to calculate how other quantities which depend linearly or quadrati-
cally on the basis functions, such as the basis integrals w, gradient labels g, overlap
matrix W and coulomb matrix C, transform.

Why would we want to perform such basis transformations? The two main reasons
lie on the machine learning side: First of all, basis transformations can be used to
achieve equivariance by transforming features into local frames, see section 3.2.2.
Secondly, utilizing the fact that basis transformations change the overlap matrix W,
natural reparametrization is a basis transformation that diagonalizes W. We motivate
and describe it below, see section 5.2.1.

5.2.1 Natural reparametrization

In the standard, atom centered and axis-aligned density-fitting basis used in the LCAB
Ansatz, the overlap matrix Wµν =

∫
ωµ(r)ων(r) dr is not diagonal. When a vector of

density coefficients p is perturbed by some ∆p, the change in density can be quantified
via ∫

|∆ρ(r)|2 dr =
∑
µ,ν

∫
∆pµωµ(r)∆pνων(r) dr = ∆p⊤W∆p . (5.7)

Hence, if W is not diagonal, the magnitude of the change in density will depend on
the direction of the perturbation in coefficient space. For instance, if the overlap
matrix has very small eigenvalues, even significant change of the coefficients in the
corresponding directions will have little effect on the density. This is suboptimal for
machine learning, as very similar densities may be assigned very different energies by
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the model, if their coefficients are very different. This adds to the original motivation
for diagonalizing the overlap matrix given in [9], which is reducing the variance in
coefficient and gradient scale across coefficients.

From equation 5.7 we can see that transforming the coefficients p by a matrix
A = M⊤

p′ = M⊤p (5.8)

with MM⊤ = W will result in an isotropic change in density
∫
|∆ρ(r)|2 dr = ∆p′⊤∆p′

as the overlap matrix is diagonalized. The transformation matrix M is not unique,
but only determined up to an orthogonal transformation, i.e. rotation in coefficient
space. One natural choice was first described by Löwdin [109], which minimizes the
distance between original and transformed basis functions. This also leads to the
procedure to be equivariant to permutations of the basis functions, which is critical as
we want our model to fulfill this symmetry (the order of atoms in the molecule should
not matter). Following [109] and [9]1, we compute the eigenvalue decomposition of
the overlap matrix W = UΛU⊤ and set M = UΛ−1/2U⊤.

A conceptual disadvantage of this basis transformation is the cubic scaling of the
required eigenvalue decomposition. While it is only necessary once per molecule,
this still is prohibitive for true linear scaling. Hence, local versions of the natural
reparametrization which diagonalize the overlap matrix only for a subset of the basis
functions while scaling linearly might be a promising avenue for future research.

5.3 Gradient projection

Introducing a gradient projection is motivated by two reasons: Firstly, as described in
section 5.1 and visualized in figure 5.2, while we can use KS-DFT to generate labels
on an absolute scale for the different contributions to the total energy, our gradient
labels only reflect the true values of δEtarget

δpµ (Etarget being the contribution to the total
energy including TS which we try to learn, e.g. TS or TS +Exc) up to a scalar multiple
of the vector of basis integrals w. Hence, to train a model on ∇pEtarget, we should not
require it to exactly match our gradient labels g. Rather, we should allow an offset in
the direction of w. Below, we will demonstrate how this can be incorporated in the
loss function using a projection.

Secondly, orbital-free density optimization (equation 2.44) is a constrained prob-
lem: The total electron number is given, and we are only searching the space of

1They specify M = UΛ−1/2 in their paper, but do use the symmetric variant we describe here in
their code.
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Figure 5.2. The need for gradient projection. As we only know the kinetic
potential up to a constant offset µ (left, illustrated in 1D), our gradient labels g only
agree with the true gradients ∇pT up to an offset of µw (right, illustrated for two
coefficient components).

densities that match it. One approach is using a constrained optimization algorithm,
such as SLSQP [94] as we chose to do in KineticNet, see section 4.4. However, in the
LCAB Ansatz for the density we have another, more direct, option: As the electron-
number constraint is linear in the coefficients p (explicitly: w⊤p = Ne), we can use an
iterative optimization procedure where we linearly project the update steps in coeffi-
cient space such that they leave the electron number invariant. For gradient-descent,
this amounts to projecting the gradients before taking the step, hence we find the sec-
ond motivation to introduce a gradient projection. This approach was first used in the
context of OF-DFT by M-OFDFT [9]. Below, we will derive the advantageous prop-
erties of this projection, and expand on how it interacts with basis transformations in
section 5.3.1.

Let us make the gradient projection explicit: We project along w onto its orthog-
onal complement 〈w〉⊥ with the projection matrix

Pw = 1− ww⊤

w⊤w . (5.9)

It is easy to check that indeed,

Pww = w − ww⊤w
w⊤w = w − w = 0 ⇒ Pw〈w〉 = 0 , (5.10)

∀a ∈ 〈w〉⊥ : Pwa = a − ww⊤a
w⊤w = a ⇒ ImPw = 〈w〉⊥ . (5.11)
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Let us now demonstrate how this projection solves the two problems mentioned above.
Firstly, in the loss function, one can use Pw(ĝ − g) = Pw(ĝ − g + µw) to compare

(variationally) predicted gradients ĝ to label gradients g only up to a scalar multiple
of µw:

Lgradient = ||Pw(ĝ − g)||1 (5.12)

= ||Pw(ĝ − g + µw)||1 . (5.13)

Secondly, in density optimization, the projection can be used exactly as described
above: For an iterative optimization procedure, we modify the update rule to first
project the step ∆pt:

p(t+1) = p(t) +∆p(t) 7→ p(t+1) = p(t) + Pw∆p(t) . (5.14)

As the projection is onto the orthogonal complement of w, updates of this form do
not change the electron number:

w⊤p(t+1) = w⊤p(t) + w⊤(Pw∆p(t)) = w⊤p(t) . (5.15)

Hence, if the initial guess is normalized correctly, w⊤p(0) = Ne, it follows by induction
that the final density with coefficients p(T ) is as well. A conceptual illustration of
using the projection in density optimization can be seen in figure 5.3.

5.3.1 Interplay of basis transformation and projection

We have detailed in section 5.2 that it can be useful to linearly transform the basis
functions for canonicalization via local frames (see section 3.2.2) or natural reparametriza-
tion (section 5.2.1). How should we project gradients in this new basis? One approach
is to follow the chain of thought presented above with the transformed basis functions
ω′
µ, leading to transformed basis integrals w′ and an associated projection matrix Pw′ .

Alternatively, one could argue that the original projection matrix Pw should simply
be transformed into the new basis, i.e that

(Pw)
′ := A−⊤PwA⊤ = 1− A−⊤ww⊤A⊤

w⊤w (5.16)

should be used2.
It turns out that, in general, Pw′ and (Pw)

′ are not equal. This discrepancy arises
because Pw′ is the unique projection along w′ onto its orthogonal complement. In
contrast, (Pw)

′ also projects points along the vector w′, but onto the subspace 〈Aw〉⊥,
2A⊤ is multiplied on the right to first transform gradients from the new to the original basis,

where the coefficients are projected, and then transformed back into the new basis with A−⊤.
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Figure 5.3. Preserving electron number in density optimization. By pro-
jecting the offset vector ∆pt to be orthogonal to the weight vector w, the electron
number stays invariant in density optimization.

which differs from 〈w′〉⊥ for any non-orthogonal basis transformation A (see figure
5.4):

(Pw)
′w′ = (A−⊤PwA⊤)(A−⊤w) = A−⊤ Pww︸︷︷︸

=0

= 0 , (5.17)

and

∀a ∈ 〈Aw〉⊥ : (Pw)
′a = a − A−⊤ww⊤A⊤a

w⊤w = a − A−⊤w(Aw)⊤a
w⊤w = a (5.18)

⇒ Im(Pw)
′ = 〈Aw〉⊥ . (5.19)

Thus, while either projection could be used in the loss function (both map the true
∇pE and the label g to the same point), only the first version, Pw′ , is appropriate to
use in density optimization in the transformed basis to preserve the correct electron
number. Since accurate density optimization is what we aim for, we also use this
version in the loss function, as this aligns the loss with the final goal as closely as
possible. To the best of our knowledge, this is the same choice as in [9], but we are
not certain as they do not discuss this interaction of basis transformation and gradient
projection.
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w′〈w′〉⊥

〈Aw〉⊥
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Figure 5.4. Orthogonal projection and basis transformation. (a) Orthogonal
projection in the original basis with Pw is along w onto 〈w〉⊥ (blue line). (b) After a
non-orthogonal basis-transformation, the image of the original projection (blue line)
is no longer orthogonal to w. Hence, Pw′ should be used to project onto 〈w′〉⊥ (orange
line).

5.4 SAD guess

A multitude of established methods for generating initial guesses for KS-DFT exist,
such as the MINAO initialization [18, 19], which is used in M-OFDFT [9]. However,
while it is cheap compared to the Kohn-Sham iterations because of the minimal basis
that it utilizes, it is unaffordable if one aims for linear scaling of the whole method,
as it scales cubically with system size. Furthermore, it is only implemented in the
KS basis, and hence density-fitting is required to express the guess in the LCAB
Ansatz. This step becomes expensive for larger systems as well. Therefore, the need
arises for a cheaper alternative. One simple, linearly scaling, but still accurate option
is a Superposition of Atomic Densities (SAD). The idea is to compute spherically
symmetric densities for each atom type, and then superpose them to get the total
density. There are established procedures for this in the KS case, e.g. spherically
averaged Hartree-Fock. If density-fitting is done once for each atom-type, the guess
can be generated in linear time.

However, here we choose another way to generate the atomic densities, enabled by
the fact that we have datasets with ground state LCAB density coefficients at hand, as
they are required for training: We take all instances of each atom type (i.e. chemical
element) in the dataset, and take the average of the corresponding coefficients over
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all these instances. For any certain molecule M, the SAD p̄ is then constructed
by concatenating these averages for all atom types in the molecule. However, this
superposition of atomic densities is not necessarily normalized to the correct electron
number. Since the electron number stays invariant during density optimization, we
need to normalize the guess. We will discuss two methods for this in the following
sections.

Normalization by simple scaling

One approach is to scale the coefficients linearly to the correct electron number Ne,
leading to

pscaled = p̄ Ne

w⊤p̄ . (5.20)

While simplicity is certainly one advantage of this method, it has a major shortcoming:
The largest part of the electron density lies close to the cores, and this core density
varies only very little between different instances of the same atom type between
molecules. Thus, the SAD guess describes it very precisely. The coefficients of the
inner l = 0 basis functions largely describe this core density and should hence be
varied very little in the normalization. However, scaling all coefficients by the same
factor to achieve normalization does not respect this. For example, the core density
of atomic species with high electronegativity (whose corresponding coefficients, on
average, describe a higher number of electrons than their atomic number indicates),
would be scaled down and hence underestimated. This motivates the need for a more
sophisticated normalization procedure.

Variance adapted normalization

To alleviate the problem described above, we propose a normalization procedure that
takes into account the variance of the coefficients over the dataset: Coefficients with
high variance should be scaled more than those with low variance, as they are more
likely to be far from the mean. In order to quantify this likelihood, we assume that
the coefficients are normally distributed over the dataset. As the mean p̄ and variance
σµ of each coefficient are known, we can formulate this as an optimization problem,
where we aim to find the coefficients pnormalized that maximize the Gaussian likelihood
of the coefficients over the dataset, given a constraint on the electron number (see also
figure 5.5):



54 SAD guess

w

wTp = Ne

p̄ (before normalization)

pscaled

pnormalized

Figure 5.5. Different methods for normalizing the initial guess. Simply
scaling the atomic initial guess leads to pscaled, which can be quite different to the
most likely normalized guess, pnormalized, in accordance with a Gaussian distribution
deduced from the dataset statistics (grey ellipses).

pnormalized = argmax
p, w⊤p=Ne

P (p) = argmax
p, w⊤p=Ne

∑
µ

(pµ − p̄µ)
2

2σ2
µ

(5.21)

= p̄ + argmax
d, w⊤p=∆Ne

∑
µ

d2µ
2σ2

µ

(5.22)

with ∆Ne = Ne − w⊤p̄, the difference between the desired electron number, and that
corresponding to the mean coefficients. Introducing a Lagrange-multiplier λ, we get:

L(d, λ) =
∑
µ

d2µ
2σ2

µ

+ λ

((∑
µ

wµdµ

)
−∆Ne

)
, (5.23)

and can solve first for d:

∂L
∂dµ

=
dµ
σ2
µ

+ λwµ
!
= 0 (5.24)

⇒ dµ = −λσ2
µwµ , (5.25)

and then for λ:

∂L
∂λ

=
(∑

µ

wµdµ

)
−∆Ne

(5.25)
= −λ

∑
µ

σ2
µw

2
µ −∆Ne

!
= 0 (5.26)

⇒ λ = − ∆Ne∑
µ σ

2
µw

2
µ

. (5.27)
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Finally, we plug the result for λ into the one for d, equation (5.25), and that into
equation (5.22) to finally find

(pnormalized)µ = p̄µ +∆Ne
σ2
µwµ∑
µ σ

2
νw

2
ν

. (5.28)

This result matches the intuition established above: The correction to each component
of the average coefficients p̄ is proportional both to the variance of it over the dataset,
and the weight of its corresponding basis function. An illustration of this method
compared to simply scaling the guess is shown in Figure (5.5).

One could either apply this normalization for the whole molecule at once, or for
each atom separately. While the former may be slightly more precise, since it is more
flexible, the latter is more intuitive and easier to implement. Hence, we normalize
the electron number per atom and before applying any basis transformations such as
natural reparametrization. This makes the guess a superposition of atomic densities
in the truest sense, even after the normalization: The density coefficients placed at
each atom only depend on its type, not on all atom types present in the molecule, as
would be the case were one to choose to normalize the whole molecule at once.

We evaluate the accuraccy of this SAD guess and compare it to the MINAO guess
in section 5.8.1.

5.5 External potential perturbation

We aim to solve the convergence issues of the M-OFDFT method [9] by extending
the idea of perturbing the external potential to generate training data we pioneered
in chapter 4: We propose a similar method which not only generalizes our approach
to the LCAB Ansatz but also improves it by generating an independently perturbed
data point for each step of the KS-DFT procedure.

This is achieved by sampling a perturbation δV (n)(r) in each SCF iteration n, and
adding it to the effective potential:

V
(n)

eff (r) 7→ V
(n)

eff (r) + δV (n)(r) . (5.29)

This perturbation is sampled via coefficients δV (n)
µ in the density basis:

δV (n)(r) =
B∑
µ=1

δV (n)
µ ωµ(r). (5.30)

To incorporate this perturbation into the SCF iteration, we calculate its influence on



56 External potential perturbation

the Fock matrix:

F(n)
αβ 7→ F(n)

αβ +
〈
ηα
∣∣δV (n)

∣∣ ηβ〉 = F(n)
αβ +

∫
δV (n)

µ ωµ(r)ηα(r)ηβ(r)dr (5.31)

= F(n)
αβ + δV (n)

µ Wµαβ , (5.32)

with the three-function overlap between density basis and Kohn-Sham basis functions
Wµαβ =

∫
ωµ(r)ηα(r)ηβ(r)dr.

As the external potential enters the calculation of our gradient labels (eq. 5.3),
we have to adjust the gradient labels accordingly:

δTS
[
ρ[p(n)]

]
δρ

= −V (n)
eff, unperturbed − δV (n) + µ(n). (5.33)

In components, this implies

∂TS[ρ[p(n)]]

∂pµ
=

∫ (
µ(n) − V

(n)
eff (r)

)
ωµ(r) dr︸ ︷︷ ︸

gradient without perturbation

−
∫
δV (n)(r)ωµ(r)dr (5.34)

and we can compute the adjustment to the gradient labels due to the perturbation as

δv(n)µ :=

∫
δV (n)(r)ωµ(r)dr = δV (n)

ν

∫
ωµωνdr = δV (n)

ν Wµν , (5.35)

with the overlap matrix of basis functions in the LCAB ansatz Wµν . One subtlety of
this procedure is its interaction with DIIS (see section 2.3.2): We choose to sample
the perturbation and make the according adjustments after the DIIS extrapolation
and caching of the Fock matrices, such that the unperturbed Fock matrices are used
in the DIIS procedure.

5.5.1 Details of sampling δV (n)

We sample the coefficients δV (n)
µ from a centered normal distribution. To generate

perturbations of varying strength, we adjust the standard deviation of the distribution
according to the SCF iteration number n: In the first five iterations, no perturbation
is added. Perturbations start at iteration 6 with a standard devation of 0.102, which
is linearly decayed to 0.002 until iteration 26. In the final iterations until convergence,
again no perturbation is added. This delayed start of perturbations is motivated by
the fact that if the perturbation is applied immediately, densities very far from the
ground state are generated which are likely not useful for training the model. Also,
it oftentimes leads to non-convergent SCF procedures. Some example densities with
and without perturbation from the dataset are shown in figure 5.6.

Figure 5.7 shows distributions of the difference between non-interacting kinetic
energy labels from samples, relative to the corrsponding ground state labels, for the
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Figure 5.6. Slices of densities. Left: A slice through the ground state density for
an ethanol molecule. Right: The same slice for samples from our dataset. Plots in
the grid show differences between the ground state density at ten SCF iterations. For
iterations zero to four, shown in the top row, no perturbation is applied yet, whereas
to generate the densities of SCF iterations seven to eleven, the external potential is
perturbed in every iteration. Figure created by master student Tim Ebert.
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Figure 5.7. Perturbed vs. unperturbed energy difference histogram. The
histogram shows distributions of the differences between label kinetic energies from all
SCF iterations and the corrsponding ground state, for the perturbed and unperturbed
QM9 datasets. While the distribution without perturbation has gaps with almost no
data, the perturbed data is more evenly distributed around the ground state. Figure
created by master student Manuel Klockow.
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Figure 5.8. Distances of perturbed and unperturbed samples to ground
state densities. For all molecules of the QM9 validation set, we plot the L2 dis-
tance to their ground state density for each SCF iteration, both for the unperturbed
data and our perturbed datasets. Without perturbations (blue), the KS procedure
usually converges by iteration 20, with few outliers. For the perturbed data (red),
the magnitude of the perturbation of the external potential is reflected in the plot:
the L2 norm jumps up when the first and largest perturbation is applied in iteration
6, and then decreases roughly linearly until iteration 26, when the final and smallest
perturbation is applied. Most samples then converge in about 10 iterations. Figure
created by master student Manuel Klockow.

perturbed and unperturbed QM9 dataset.They indicate that the perturbed data is
more evenly distributed around the ground state, without the obvious gaps that can
be seen in the histogram of the unperturbed data.

Figure 5.8 shows the influence of the perturbation schedule on the L2 norm of the
difference between the sample coefficients and the ground state coefficients, demon-
strating a clear correlation between the perturbation strength and the resulting dis-
tance to the ground state.

Finally, figure 5.9 shows that the gradients of the perturbed data points are more
aligned with the direction to the ground state, as measured by the cosine similarity
between the total gradient labels and the vector pointing from the ground state to the
coefficients. This is a curious observation, for which we have no clear explanation. We
will revisit it in the discussion, as this might play a role in the success of our method.

We note that a multitude of different perturbation schemes are conceivable, and
the one we chose is only one of many possible choices. For instance, sampling pertur-
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Figure 5.9. Gradients of perturbed data point are more aligned with di-
rection to ground state. Histograms of the cosine similarities between the total
gradient labels ∇pEtot and the vector pointing from the ground state p∗ to the co-
efficients p for QM9 validation data, with the unperturbed data generated following
[9] (top), and our dataset generated with perturbed Veff (bottom). Cosine similarities
are computed in the orthogonalized natural reparametrization basis. Histograms are
coloured by SCF iteration. For the perturbed data set, perturbations are applied
at iterations 6 to 26, and the resulting samples exhibit a higher similarity than the
unperturbed samples.

bations in the natural reparametrization basis might yield even better results, as the
orthogonality of basis functions in this basis might lead to more evenly distributed
labels around the ground state. Another conceivably useful and more physical ap-
proach would be to place point charges with randomized positions and strengths, and
calculate the perturbed potential from these charges.

A more detailed description of external potential sampling for varied data gen-
eration, including consistency checks to verify the correctness of generated labels, is
given in the master thesis of Manuel Klockow.
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5.6 Architectural improvements

5.6.1 Graphormer

Zhang et al. [9] adapt the Graphormer architecture [61], a transformer-like architecture
for graph data, for the task of learning energy functionals and achieve rotational
invariance via local frames (see section 3.2.2)

We follow their lead and use the same architecture, but find that some simple
modifications improve its performance. Firstly, in preliminary experiments we have
found the original Graphormer architecture to be prone to overfitting. This problem
is alleviated by reducing the number of G3D layers (the self-attention blocks mak-
ing up the main part of the model) quite drastically from 12 to just 4, without a
significant drop in performance. Hence, we use this reduced number of layers in all
our experiments. Secondly, after reducing the number of layers, disabling all dropout
layers in the model further improved the results, which is why we do not use dropout
in our model.

Learned initial guess

In [9], the Graphormer is equipped with an additional output head to predict the
difference between the input density coefficients and the ground state coefficients
p∗. This is then used in density optimization to “project” the MINAO guess to an
improved, learned initial guess which is already very close to the ground state. We
have found that this learned guess can be further improved by only training the
respective head on the MINAO samples on which it is actually used, and, if one really
wants to get the best guess possible, by training a model exclusively for this task.
The potential benefits of multitask learning do not seem to be realized in this case.
Once we realized that our method achieves proper convergence, we dropped the initial
guess head from the model compeletely, as we achieve identical results with a classical
SAD guess (see section 5.4).

Conceptual disadvantages

The Graphormer is a powerful architecture which has shown to be capable of learning
accurate energy functionals for OF-DFT. However, it is not without its shortcomings:
On one hand, achieving invariance via local frames comes with the cost of accepting
discontinuities at configurations where the nearest-neighbor atoms change. While
unobtrusive for density optimization of single geometries, this could become a serious
problem for geometry optimization, where geometries are updated in small steps, and
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flips of local frames will occur. Furthermore, the information which is passed between
atoms consists of only invariant quantities, and also the relative orientation of local
frames does not enter the model. The Graphormer architecture could be adapted
facilitating the method introduced in [68] to allow the passing of geometric features
between frames. However, we here attempt to mitigate both problems at once: We
have adapted the EquiformerV2 [62] architecture to our task, as we describe in the
next section.

5.6.2 Equiformer

The EquiformerV2 architecture [62], in the following simply “Equiformer”, is an equiv-
ariant neural network for graph data where geometric features (equivariant tensor
fields) are communicated between neighboring nodes via a local attention mechanism.
Like the Graphormer, it has been shown to perform well on a variety of equivariant
graph-learning tasks, so we set out to adapt it to the task of learning energy func-
tionals for OF-DFT. Manuel Klockow has implemented the required changes to the
Equiformer architecture which we describe in the following.

Firstly, we of course drop the local-frame mechanism, as the Equiformer is equipped
to deal with features transforming under irreducible representations of the rotation
group, just as the density coefficients do.

Node embedding

In the original Equiformer, the input to the model consists of the molecular structure
M alone, while in our case we also pass the density coefficients p. Hence, a first layer
processing these additional features and joining them with the features encoding the
molecular structure has to be added, mirroring the Node Embedding module in the
Graphormer. This layer is shown in figure 5.10. We apply the atom-hot encoding as
in the Graphormer, and then pass the density coefficients through a linear layer which
only mixes tensor fields of the same order. The resulting features are added to the
standard Equiformer embedding, which encodes the molecular structure.

Feature-wise rescaling

Unlike for the Graphormer, we do not use local frames for canonicalization. Thus, the
input features are no longer invariant under rotations, and special care to preserve
their transformation behaviour has to be taken in all layers that modify the input
features, in particular the three enhancement modules introduced in [9]. While the
natural reparametrization of the density coefficients (see section 5.2.1) does not have
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Figure 5.10. Adapted embedding module for the EquifomerV2 model. Af-
ter the initial atom-hot encoding, a linear layer, which only mixes tensor fields of
the same order, transforms the density coefficients to match the shape of the stan-
dard Equiformer embedding. This encodes the molecular structure M, consisting of
atom posistions and types. The sum of both, xi, is the input to the subsequent first
Equiformer block (not shown). Figure created by master student Manuel Klockow.

to be adapted as it already transforms the features in an equivariant manner, the two
other modules have to be adjusted.

The dimension-wise rescaling module as used in the Graphormer shifts and scales
each coefficient for each atom-type independently. This is in general not equivariant,
hence we introduce a similar feature-wise rescaling module as a replacement, which
scales all coefficients belonging to the same tensorial feature jointly. Furthermore, the
shift operation is only applied to scalar features, as it would otherwise break equiv-
ariance as well. The parameters of the feature-wise rescaling module are determined
almost identically as for the dimension-wise rescaling module in the Graphormer,
with the only difference being that the standard deviations and maximal gradients
are calculated over all atoms and coeffiecients belonging to a certain tensorial feature.

Atomic reference module

The fact that the atomic reference module as introduced in [9] is generally not equivari-
ant can be seen by considering the predicted gradients: The atomic reference module
effectively adds the gradient ḡM, constructed from the per-coefficient means over the
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training to the model gradients. This gradient does not change when the input features
are rotated, and hence breaks the transformation behaviour of gradient prediction, if
any non-scalar components of ḡM are non-zero.

Hence, we make the adjustment of only considering the mean gradient for scalar
features. In practice this is easily implemented by setting the average gradients ḡl>0 to
zero. This version with l > 0 features zeroed out is then also used in the computation
of the per-atom and global biases for the atomic reference module.

As a side note, observe that if the orientations of the molecules in the training set
is random, the expected mean gradient for l > 0 features is zero anyways, hence this
adjustment does not diminish the effectiveness of the atomic reference module in the
case of equivariant features.

5.7 Implementation details

Implementing the method was a joint effort: PhD students Marc Ickler and Tobias
Kaczun as well as master students Tim Ebert, Christof Gehrig, Dominik Geng, Gerrit
Gerhartz, Manuel Klockow and Johannes Schmidt collaborated with the author of
this thesis in the implementation.

As [9] does not provide training code, we started by reimplementing their method.
We wrapped the trained model provided by them to work with our evaluation code,
in order to be able to compare our results to theirs on metrics not provided in their
article. In the results section, we have marked results obtained with the model trained
by them, but evaluated with our implementation of density optimization as such. All
other scores and data used for figures are obtained either straight from the paper or
their model and their evaluation code.

We implemented the machine-learning part in the PyTorch framework, using the
PyTorch Geometric library [110] for graph neural networks and the PyTorch Lightning
library [111] for training. Data generation was done using the pyscf library [90, 91],
on which we also based our code for Orbital-Free DFT.

For basis transformations such as local frames and natural reparametrization, we
took a different approach than [9]: Instead of computing them on the fly inside the
neural network (as we have deduced they do, inspecting their provided model), we
instead precompute them and store them on disk. This is faster and decreases load
during training, with the slight downside of increased disk space usage.
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Table 5.1. Density errors of initial guesses. We compare the accuracy of the
MINAO guess [18, 19] and our SAD (see section 5.4) on 1000 molecules from the QM9
dataset.

∥ρguess−ρ∗∥2
Ne

∥ρguess−ρ∗∥1
Ne

mean [%] std [%] mean [%] std [%]
MINAO 0.54 0.03 7.80 0.74
SAD 0.40 0.03 7.34 0.70

5.8 Results

In the following, we present the results of our experiments. We take the molecular
geometries from the QM9 dataset [102, 103], consisting of 134 thousand small organic
molecules with up to 9 heavy atoms, following [9].

For all experiments utilizing the Graphormer architecture, we configure it as [9]
with the changes discussed in section 5.6.1. We utilize a cosine learning rate schedule
[112], interpolating between an initial learning rate of 7 × 10−5 and a final one of
zero. The AdamW optimizer [113] is used with a minor weight decay of 1 × 10−10

and a batch size of 128. The complete list of hyperparameters used for training the
Equiformer models are given in the appendix, see table B.2.

5.8.1 SAD guess

We evaluate the accuracy of the SAD guess on 1000 molecules from the QM9 dataset,
and compare it to the MINAO guess, results are shown in table 5.1. The SAD guess is
slightly more accurate than the MINAO guess, both in terms of the L2 and L1 norm
of the difference to the ground state density. More critically, the SAD guess can be
computed cheaply even for large molecules. However, that the accuracy of the initial
guess is not the most important factor for the success of our method. If it were, then
a learned initial guess, as proposed in [9] and discussed in section 5.6.1, would be
neccessary.

5.8.2 Tuning loss weights

As we found the ratio of loss weights between the L1 energy and gradient loss to be
crucial for the performance of our models, we conducted a systematic hyperparameter
search to find the optimal ratio. To this end, we have trained a Graphormer model on
the QM9 dataset with varying ratios of loss weights, while keeping their sum fixed to
1, and compared the resulting models by evaluating the mean absolute errors (MAEs)
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Figure 5.11. Loss weights tuning. Validation gradient- and energy mean absolute
errors are plotted against the ratio of corresponding loss weights used during training.
Expectedly, in most cases, increasing a contributions relative loss weight improves
it. The energy loss however displays a plateau between ratios of 0.1 and 10, where
increasing the gradient loss weight even leads to a slightly decreasing energy loss.
Hence, we choose the last point on this plateau, a ratio of 10 to train our models.

of the energies and gradients on the validation set. The results are shown in figure
5.11. In general, increasing the loss weight of a contribution leads to a decrease in the
corresponding error, with one curious exception: The energy loss plateaus between
ratios of 0.1 and 10, where we even observe a slight decrease in MAE with increasing
gradient loss weight. We choose the rightmost point on this plateau, corresponding
to loss weights of 0.1 for the energy loss and 0.9 for the gradient loss for training our
models.

One might argue that this tradeoff between energy and gradient loss should not
be neccessary, as for the true energy functional both objectives would be perfectly
fulfilled. However, the two tasks of precise energy and gradient prediction on some
finite training set do not align perfectly, models that solve one but fail at the other are
conceivable in both directions. Instead, the need for this tradeoff can be seen as an
indication that our training procedure and model still fail to capture the true energy
functional, possibly because of a lack of expressivity or a lack of data.

This hyperparameter search was conducted once, and the resulting loss weights
kept for all subsequent experiments in this chapter. In particular, the Equiformer
models were trained with these loss weights as well. The experiments for this hyper-
parameter search were conducted by master student Dominik Geng.
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Table 5.2. Training data ablations. We compare the performance of Graphormer
models trained on different datasets: The unperturbed QM9 dataset (as described in
[9]), and three subsets containing different SCF iterations of our perturbed version
(see section 5.5.1). Density optimization was performed on 500 randomly chosen but
fixed molecules from the validation set. The mean absolute energy errors of different
energies at the predicted vs the label ground state density are given in mHa, as well
as the mean L2 density deviation and percentage of converged molecules is reported.

Training Dataset |∆Etot| |∆EH | |∆(TS + Exc)| |∆Eext| ‖∆ρ‖2 conv. [%]
unperturbed 33.20 119.25 665.64 703.97 0.283 0

perturbed, all it. 1.60 29.29 20.73 41.56 0.0393 99
perturbed, it. ≥15 4.08 46.14 16.85 43.61 0.0454 100
perturbed, it. 5-26
+ ground state.

0.77 21.46 7.85 24.51 0.0225 100

5.8.3 Perturbed training data

Having fixed the loss weights to 0.1 for the energy loss and 0.9 for the gradient loss,
we now investigate the effect of the perturbed training data on the performance of
our models.

We compare the performance of Graphormer models trained on different datasets:
The unperturbed QM9 dataset (generated directly following [9]), and three subsets
containing different SCF iterations of our perturbed version (see section 5.5.1):

1. Perturbed, all iterations: Contains all samples of the perturbed dataset,
including the initial and final SCF iterations at which no perturbation is applied.
This dataset is the most diverse, but also contains samples far from the ground
state.

2. Perturbed, iterations ≥ 15: Contains the samples of SCF iteration 15 and
higher, including the final iterations before convergence with no perturbations.
This dataset is most concentrated around the ground state.

3. Perturbed, iterations 6-26 + ground state: Samples from the 5th to the
26th SCF iteration, and the ground state. This datasets includes all itera-
tions where perturbations are applied, but excludes the first iterations which
are typically very far from the ground state (see figure 5.8), and the last set of
unperturbed SCF iterations to avoid oversampling of the ground state.

The number of training epochs is adjusted for each dataset to ensure that a similar
number of training steps are performed for each dataset, resulting in 161 epochs for
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the untransformed data, and 58, 90 and 99 epochs for the three perturbed datasets,
respectively.

After training, the models are deployed in density optimization on a random sub-
set of the QM9 validation set consisting of 500 molecules. Density optimization is
performed with gradient descent with momentum ([114]) as implemented in PyTorch
([115]). Each density optimization run is terminated if the gradient norm either falls
below a threshold of 1 × 10−4 or the maximum number of iterations, set to 10 000 is
reached, which we classify as failure to converge.

The results are shown in table 5.2, listing the mean absolute energy errors of
different contributions to the total energies, evaluated at the coefficients resulting
from density-optimization vs. the label at the true ground state density, as well as
the mean L2 density deviation and percentage of converged molecules. As expected,
the model trained on the unperturbed data performs poorly, never converging in
density optimization. There, the resulting metrics at the end of the optimization
run are insatisfactory, with a mean absolute energy error of 33.20 mHa, and a mean
L2 density deviation of 0.283. The model trained on the perturbed data set with
iterations 6-26 and the ground state yields the best results in all metrics, with the
lowest mean absolute energy error of 0.77 mHa, thereby achieving chemical accuracy.
A more detailed view on these density optimziation runs is presented in figure 5.12: All
density optimization on the 500 random molecules from the QM9 validation set using
this model reliably converge within 1000 steps, consistent with the steady decrease of
gradient norm over the course of the optimization run.
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Figure 5.12. Density optimization on 500 QM9 Molecules. The model used
here is the best-performing one shown in table 5.2, i.e. a Graphormer trained on SCF
iterations 6 to 26 the perturbed data plus the ground states, on the target (TS +Exc).
In the box-plot (a), absolute errors of the individual contributions to the energy are
shown, medians are marked by vertical bars and means are annotated with numeric
values. The summarized optimization trajectories of absolute energy error (b), L2
density error (c), and gradient norm (d) all rapidly decrease in the first 100 iterations.
The gradient norm decreases steadily until the convergence threshold of 10−4 is reached
between 600 and 1000 iterations. Already converged samples are excluded from the
plots in later iterations, which leads to the visible jumps in means and quantiles.
Figure created by master student Manuel Klockow.
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5.8.4 Training target

We train density functionals with three different targets: The residual kinetic energy
to its APBE approximation [47], TS − TS, APBE, the sum of the kinetic energy and
exchange-correlation energy TS + Exc, and the total energy Etot. While we have
considered learning the kinetic energy alone as in chapter 4, this leads to suboptimal
results in preliminary experiments, most likely to larger gradient scales, which is why
we stopped pursuing this target. Learning the residual energies is attractive as it
entails a smaller range of values, which in principle facilitates precise predictions.
However, the evaluation of TS, APBE becomes expensive for larger systems, since it is
evaluated on an integration grid.

We evaluate the accuracy of energy and gradient predictions of Graphormer and
Equiformer models on ground state label coefficients p∗ from the QM9 validation set.
The energy error is measuerd by the mean absolute error of the predicted energy, and
the gradient error by the mean L1 norm of the corresponding deviation of gradient
coeffiecients. Results are shown in tables 5.3 and 5.4. For both architectures, the
model trained on the total energy Etot achieves the best accuracies, with the lowest
energy and gradient errors. The metrics of the Graphormer for targets TS − TS, APBE

and TS + Exc are similar, with the former achieving slightly better results (see table
5.3).

However, the ultimate goal is density optimization, and there we find a different
trend: All models trained on targets TS −TS, APBE and Etot fail to converge in density
optimization. On the other hand, the Graphormer models trained on the sum of
kinetic and exchange-correlation energy TS + Exc reliably converge, while the models
trained on the other targets fail to do so.

5.8.5 Training without natural reparametrization

As the natural reparametrization comes with a cubic time scaling in the system size,
we attempt to train a model without it. We use the same settings for our best
model, hence train to predict TS + Exc. The resulting validation metrics are worse:
The mean absolute energy error at the ground state is 1.46 mHa (0.75 with natural
reparametrization), and the corresponding gradient error is 5.24 (2.67 with natural
reparametrization).

More importantly, we find that the models trained without natural reparametriza-
tion fail to converge in density optimization.
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Table 5.3. Graphormer ground state errors. We compare the performance
of Graphormer models trained with different targets on the perturbed QM9 dataset.
The mean absolute energy errors at the ground state as well as the mean L1 gradient
errors of the model are reported.

(TS − TS, APBE) (TS + Exc) Etot

Energy error [mHa] 0.61 0.75 0.84
Gradient error [Ha] 2.49 2.67 0.90

Table 5.4. Equiformer ground state errors. We compare the performance of
Equiformer models trained with different targets on the QM9 dataset. Note that the
run with target Etot was trained on the unperturbed data (marked with an asteriks).
The mean absolute energy errors at the ground state as well as the mean L1 gradient
errors of the model are reported.

(TS + Exc) Etot

Energy error [mHa] 1.703 0.202*
Gradient error [Ha] 5.024 0.068*

5.8.6 Convergence and comparison to M-OFDFT

In table 5.5, we compare our best performing model to the state-of-the-art OF-DFT
method M-OFDFT [9] on density optimization on the QM9 test set. Additionally,
figure 5.13 shows a radar plot comparing the performance of our model to M-OFDFT
on the QM9 test set.

The most striking difference is the convergence behaviour: While none of the M-
OFDFT density optimization runs converge, with the final gradient norm consistently
above 3 × 10−3, our model reliably converges to a gradient norm below 1 × 10−4 in
the first 1000 iterations. In figures 5.14 and 5.15, we demonstrate this qualitative
difference by plotting the gradient norm and energy error during extended density
optimziation runs for our best model and the model provided by [9]. If density opti-
mization with the M-OFDFT model is continued for a longer time, many of the runs
will diverge completely to energies and densities far from the ground state. In con-
trast, if we let density optimziation with our model continue even after the gradient
norm falls below 1× 10−4, it will continue to decrease below 1× 10−11, demonstrating
convergence to a stationary point in the energy landscape. We computed Hessians of
our total energy functional at some of the predicted densities, and found that all of
their eigenvalues are positive, confirming that they are indeed minima.

To make sure that our best model was not a fluke, we trained two additional
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Figure 5.13. Radar plot. We compare our best model (see last row in table
5.2) to M-OFDFT [9] on density optimization on the QM9 dataset. The values for
the yellow model are generated with our OF-DFT code, using the model provided
by [9]. The magenta dot marks their best energy error, as reported in their paper.
Our model, shown in blue, outperforms M-OFDFT in all three metrics, in particular
achieving consistent convergence on all molecules of the QM9 test set using our SAD
initialization.

models with identical hyperparameters but different random seeds. The performance
of those models in density optimization is shown in table 5.5. One of the models
is worse, not achieving reliable convergence in density optimization, while the other
achieves similar results to the original model.

Using an elaborate “stopping criterion”, M-OFDFT is able to pick-out precise
ground state energies and densities from the density optimization trajectory. With
our model, employing such a criterion is not neccessary, and we can simply stop the
optimization after the gradient norm falls below a chosen threshold. Still, our resulting
energies and densities are more precise than those obtained by M-OFDFT, see figure
5.13.
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Figure 5.14. Gradient norm during density optimization, comparing M-
OFDFT to ours. Shown are 50 exemplary density optimization runs with our
best model (blue), and the model provied by [9] using our OF-DFT code (red), for
a maximum of 6000 iterations. After the iteration which their “stopping criterion”
picks out, their cuves are dashed. While none of the M-OFDFT runs converge (final
gradient norm consistently above 3×10−3), all of our runs converge to a gradient norm
below 1× 10−4 in the first 1000 iterations, and to a gradient norm below 1× 10−11 at
the final step. Figure drawn by master student Dominik Geng.
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Figure 5.15. Total energy error during density optimization comparing
M-OFDFT to ours. Shown are 30 exemplary density optimization runs, comparing
our best model (blue) to the model provided by [9] using our OF-DFT code (red),
with the same settings as in figure 5.14. While our runs converge to stable final energy
errors, many of theirs diverge to huge energy errors. Figure drawn by master student
Dominik Geng.
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Table 5.5. Comparison of OF-DFT methods on QM9 density optimization.
We compare our models to the state-of-the-art OF-DFT method M-OFDFT [9], as
well as to the difference between our labels (KS-DFT with PBE exchange-correlation)
and KS-DFT with the R2SCAN functional. We report the mean absolute error in
the total energy Etot and the mean per-electron L1 and L2 density errors. The last
column shows percentage of samples for which the gradient norm fell below 10−4 in
density optimziation.

Method Target ∆E ∥ρ−ρ∗∥1
Ne

∥ρ−ρ∗∥2
Ne

conv.
[mHa] [%] [%] [%]

M-OFDFT [9] TS − TS,APBE 1.397 0.551 0.0419 0

M-OFDFT [9] TS + Exc 1.163 N/A N/A N/A
KS-DFT with R2SCAN - 0.052 0.064 0.0015 -
Ours, full test set TS + Exc 0.753 0.336 0.0333 100

Ours, seed 42 TS + Exc 0.702 0.464 0.0316 100

Ours, seed 43 TS + Exc 1.214 1.015 0.2867 61.4

5.9 Discussion

Building upon [9], we have for the first time presented a machine-learned energy
functional which achieves chemical accuracy in convergent orbital-free density opti-
mization on the varied organic molecules contained in the QM9 dataset [102, 103].
This was achieved using a supervised training paradigm similar to [9], but with a
more diverse training set generated by adapting and improving the external potential
sampling scheme introduced in chapter 4. This proved pivotal for proper convergence,
as demonstrated by the ablations in section 5.8.3.

For all runs, ground state energy errors on the individual contributions (EH , TS +

Exc, Eext) after density optimization are significantly larger than the total energy error
(see e.g. table 5.2), which is to be expected: As the ground state lies at a minimum
of the total energy functional, the error of the total energy scales quadratically with
small deviations from the true ground state coefficients. The individual contributions
do not have a minimum at the ground state and consequently their errors scale linearly
in the vicinity of ρ∗ and mostly cancel out. Converging to ground state densities which
reach chemical accuracy also in these individual contributions would be a significantly
more challenging task which we have to leave for future work.

Investigating three different training targets, TS − TS, APBE, TS + Exc, and Etot

in section 5.8.4, we have found that the TS + Exc target yields the best results in
density optimization, with a mean absolute energy error of 0.70 mHa and a mean
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L2 density deviation per electron of 0.032%. Conceptually, TS + Exc might also be
the most appealing target, as it entails exactly the contributions to the total en-
ergy for which no tractable analytical expressions are known. TS − TS, APBE has the
additional downside of requiring the evaluation of both the APBE kinetic energy
and the exchange-correlation functional (in our case PBE[46]) on a quadrature grid,
which, while technically scaling linearly with system size, still becomes computation-
ally expensive for larger systems. A possible reason for why the TS + Exc models
perform so well in density optimization might be explained by the only other nonlin-
ear density-dependent part of the functional: The Hartree energy EH(p) = p⊤Cp with
the coulomb matrix C. If C is positive definite, then even a simple linear approxima-
tion of TS+Exc that accurately captures the gradient at the ground state would ensure
a local minimum of the total energy at that state. At this point, the total gradient
would vanish, and the Hessian would correspond exactly to C. Of course, we do not
learn a linear function, but adding the convex Hartree energy to the learned functional
may lead to a similar effect, aiding convergence during density optimization.

Furthermore, we adapted the EquiformerV2 [62] architecture, which has some
conceptual advantages over the Graphormer (see section 5.6.2) to the task of learning
energy functionals for OF-DFT, but as of now cannot claim that it outperforms the
Graphormer architecture on this task. However, to keep training times managable and
similar to the Graphormer models, we quite drastically reduced the number of layers
and dimensionality of the features in the Equiformer model compared to its original
hyperparameter settings. We also used a smaller number of training epochs compared
to the Graphormer. Hence, larger Equiformer models trained for longer durations may
still outperform the Graphormer models, an avenue we might investigate in future
work.

Regarding the bottlenecks in computational scaling of the method, we have made
some progress by introducing an accurate superposition of atomic densities (SAD) as
an initial guess for the density optimization. This is significantly faster to compute
than the minimal atomic orbital (MINAO) guess (which also has to be fitted in the
LCAB Ansatz) used in [9]. We showed that it provides just as, if not slightly more
accurate initial guesses for density optimization (see sec 5.8.1) However, the natu-
ral reparametrization (see section 5.2.1) is still a bottleneck regarding the scaling, as
it requires the inversion of the overlap matrix, which scales cubically with system
size. Finding a solution to this problem should be one of the prime foci of future
work, as, even though the prefactor of its cubic time scaling is relatively small, it will
stand in the way of applying the method once a certain size is reached. We see two
possible approaches to this problem: Either, one could attempt to simply make den-
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sity optimization work in the standard basis, rendering the natural reparametrization
unnecessary, or one could try to identify the key features of the natural reparametriza-
tion which are crucial for the success of the method. Then, one could try and find
an alternative reparametrization, possibly of a local kind, which can be computed in
linear time.

Another important avenue for future work is the investigation of the generalization
capabilities of the model. On the one hand in regards to the chemical surroundings
e.g. represented as solvation models like in chapter 4, and on the other hand towards
larger system sizes. Hence, we are currently working on evaluating the performance
of the model on the larger systems in the QMUGS [116] dataset, and adapting the
architectures to favour generalization over system size by making the individual layers
more local. Especially promising in this regard might be adapting the Allegro archi-
tecture [117], which is designed to have a fixed and finite receptive field, independent
of the number of layers.





Chapter 6

Surrogate models to physical
functionals

6.1 Motivation

In the previous chapters, we described our efforts to learn approximations to concrete,
physical energy functionals for OF-DFT. The explicit goal was to obtain a machine-
learning model that mimics a well-defined physical functional as precisely as possible,
ideally on large swathes of chemical space and arbitrary electron densities.

However, taking a step back, one might formulate a higher-level goal: Make OF-
DFT work! At a first glance, this may seem equivalent to what we have been doing
so far. However, let us entertain the idea that less may be strictly required. Indeed,
assume we have an energy functional which satisfies the following three conditions
within a certain part of chemical space:

1. Orbital-free density optimization converges,

2. The resulting densities are accurate,

3. The resulting ground state energies are accurate.

If these conditions are met, we could claim that OF-DFT “works”: Ground state
densities and energies could be computed with the functional, and the functional
could be used in any application which relies on these properties. Depending on the
application, one might even be willing to relax the last point, e.g. if the properties of
interest are computed from the densities alone, such as dipole moments.

In this penultimate chapter, we will focus on achieving these minimal requirements,
without necessarily approximating the true energy functional. This is an attractive
avenue for several reasons: First and foremost, there may exist such functionals which

77
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Figure 6.1. Surrogate Energy Landscape. A surrogate energy functional (pur-
ple) can be used in place of the true, physical functional (gray) in density optimization
(brown). Here, a strong surrogate functional, which assigns the true ground state en-
ergy E0(M) to the ground state densities, is depicted. Compare with figure 1.1.
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are easier to learn than the physical energy functional (for a conceptual illustration, see
figure 6.1). Secondly, we only require ground state densities (and possibly energies) to
train such models, alleviating the need to generate varied densities with energy and
gradient labels for training, and allowing any method which provides ground state
densities to be used as a training data source.

We will call these functionals surrogate functionals, and will define them more
precisely in the next section 6.2. Afterward, we will propose loss-functions (section
6.3), methods for choosing training data (section 6.4), as well as certain architectural
adjustments (section 6.5) all of which are tailored to the goal of achieving the three
conditions outlined above.

The concept of surrogate functionals is closely related to that of Energy-Based
Models (EBMs) [118], where a classification or regression task is framed as an energy
minimization problem: Just as in OF-DFT, inference is performed via minimization of
an energy predicted by a model. However, this minimization is oftentimes performed
not via a gradient-based method. Surrogate functionals can be seen as a special case
of EBMs, where (at least for strong surrogate functionals, see below) also the value of
the energy functional at the minimum matters. We adapt and expand the machinery
of EBMs to the specific requirements of OF-DFT, by proposing loss functions and
training data which are tailored to the task of orbital-free density optimization.

6.2 Definitions: strong and weak

Let us define more precisely what a surrogate functional is. As the definition depends
on the context, in particular the density optimization procedure, we first specify what
this encompasses:

Definition 1 A density optimization procedure is a pair formed by an initial
guesser that maps molecules M to initial density coefficients p(0), and an optimizer,
which, given an energy functional E, maps M and p(0) to final density coefficients
p(T ).

The density optimization procedure includes the choice of initial guess (e.g. SAD
guess), as well as the choice of optimizer (e.g. gradient descent) and all of its param-
eters (e.g. learning rate, momentum). Now we can further define:

Definition 2 A surrogate functional for a given density optimization procedure
is a functional which, when used in place of the true energy functional in density
optimization, leads to the true ground state coefficients p(T ) = p∗.
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Hence, in terms of finding the ground state, a surrogate functional is at least as good
as the true energy functional, possibly even better: Since the true energy functional
might have multiple local minima, successful optimization might depend on carefully
chosen initial guesses and optimizers.

Furthermore, we can distinguish between two types of surrogate functionals:

Definition 3 A strong surrogate functional is a surrogate functional which as-
signs the true ground state energy E∗

0 to the true ground state coefficients p∗.

Hence, a strong surrogate functional can even be used to predict the true ground state
energy, and is a full replacement for the true energy functional in the most common
applications of OF-DFT.

If we do not explicitly require the ground state energy to be predicted correctly,
we sometimes call the surrogate functional a weak surrogate functional, and this
simpler requirement will be our primary focus in the following sections.

So far, we have only defined surrogate functionals to replace the total energy
functional. However, surrogate functionals which replace only parts of the energy
functional are also conceivable; pursuing this avenue is left for future work.

Here, we have defined surrogate functionals in the context of the LCAB Ansatz
(see section 2.4.2), but note that the concept is equally applicable to other density
representations.

6.3 Loss functions
Above we have motivated the use of surrogate functionals and established what they
are. Let us now turn to the question of how to train them. In a supervised setting, the
goal of reproducing the training labels is straightforward to express as a loss function
which simply compares model predictions with ground-truth labels. For surrogate
functionals, however, it is less obvious how to use only the ground state coefficients p∗

to provide useful feedback to a model which predicts the energy E[p] at coefficients
p 6= p∗.

For most optimization procedures, tackling this problem end-to-end via backprop-
agation through the density optimization procedure is infeasible due to both compu-
tational constraints and the fact that a newly initialized model may not even converge
during density optimization.

Hence, we propose conditions which facilitate successful density optimization, and
then design loss functions which enforce these conditions during training.

A commonality in the resulting losses is that they include some scalar function
L : R 7→ R. This is used to convert a discrepancy, i.e. degree of failure to fulfill some
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condition, to a loss function. It could for instance be the Mean Squared Error (MSE)
loss L2(x) = ‖x‖2, the L1 loss L1(x) = ‖x‖ or a smooth version thereof, i.e.

L1,smooth(x) =

x2/(2β), if ‖x‖ < β

‖x‖ − β/2, otherwise
, (6.1)

for some β > 0. In the following subsections, we describe several possible loss functions
which can be used to train surrogate functionals.

6.3.1 Lower bound loss

Let us describe the probably simplest surrogate loss function, motivated by the varia-
tional principle which tells us that the total electronic energy is lowest at the ground
state density ρ0. In other words, a learned functional E which respects this princi-
ple should assign any arbitrary density ρ an energy no-lower than E[ρ0]. Expressing
densities in the LCAB Ansatz, and making the models parameters θ explicit, this
motivates the Lower Bound Loss:

Llower-bound = L(max (0, E(p∗;θ)− E(p;θ))) .

Note how E(p;θ) is compared to E(p∗; θ) and not the true ground state energy E∗
0 .

We make this choice because otherwise the loss function would be zero everywhere
as long as the network never predicts values below E∗

0 . As chosen, Llower-bound ≡ 0

guarantees that the ground state coefficients p∗ are a global minimum of E.
How useful is this loss function? Certainly it is fully compatible with the true

energy functional, which obeys the variational principle. This makes it an attractive
objective to use in conjunction with supervised training. However, not every energy
functional perfectly fulfilling the lower bound loss is a valid surrogate functional: It
may have arbitrarily many local minima in which density optimization might get
stuck. Also, a constant energy functional leads to a lower bound loss of zero, and this
would be entirely unhelpful during density optimization.

In conclusion, the simple lower bound loss is not useful on its own, but might be
attractive to use in conjunction with other losses.

6.3.2 Gradient to ground state loss

The next surrogate loss function which we propose guarantees a better-behaved func-
tion. This comes with the cost of it not being fully compatible with the true energy
functional, i.e. the loss would be nonzero if the model perfectly reproduced it.
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Figure 6.2. 2D Slice of energy and gradient-norm surface trained with
gradient-to-ground-state loss alone. These plots show the energy surface (left)
and gradient norm (right) of a preliminary model trained only with the gradient-to-
ground-state loss (eq. 6.3) on a 2D slice of the input space, spanned by the directions
from the ground state to the two penultimate SCF iterations. At least restricted to
this slice, there is a minimum close to the ground state, however the gradient and
coefficient scales are huge, hindering density optimization.

If the negative gradients −∇E(p;θ) would always point directly towards the
ground state, density optimization would be straightforward. Hence, one could propse
a loss

L = L(1− cos sim(∇pE(p;θ), p − p∗)) (6.2)

which is zero only if the gradient ∇pE(p;θ) points directly away from p∗, such that
the cosine similarity is 1. However, this would drastically restrict the shape of the
energy surface and would certainly be incompatible with the true energy functional.

This motivates a similar but softer version, where the direction of the gradient is
allowed to differ from p − p∗ by some maximum angle, or, put differently, the cosine
similarity is only required to be larger than some ∆ ∈ (0, 1):

Lgradient-to-ground-state = L(max(0,∆− cos sim(∇pE(p;θ), p − p∗))) . (6.3)

If this loss is zero for all possible input densities, the energy surface will have only
a single minimum: Following the flow generated by ∇pE(p;θ) would continuously
move densities towards the ground state.

Figure 6.2 shows the energy surface and gradient norm of a preliminary model
trained with this loss function alone, on a 2D slice of the input space. This demon-
strates one possible disadvantage of the loss function: It does not restrict the norm or
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the predicted gradient at all, as it only acts on its direction via the cosine similarity.
When the gradient-to-ground-state loss is used on its own this leads to vastly vary-
ing gradient scales which may be problematic during density optimization, at least if
simple gradient descent is used there. Also, the loss is undefined if ∇pE(p;θ) is zero,
and gets numerically unstable for very small gradient predictions. Luckily, both of
these disadvantages can be mitigated by keeping the norm of the gradients in-check,
e.g. by facilitating the loss that we describe next.

6.3.3 Gradient norm range loss

This loss is one way to keep the gradients of the model in a specified range, without
dictating them precisely. Given minimum and maximum gradient norms gmin and
gmax, one can write

L = L(max(0, gmin − ‖∇pE(p;θ)‖, ‖∇pE(p;θ)‖ − gmax)) . (6.4)

At the ground state, the gradients should be zero, and increase for densities further
away from it, so in our experiments with the gradient-norm-range loss, we choose to
scale the gradient range with the distance to the ground state coefficients p∗:

Lgradient-range = L(max(0, γmin‖p − p∗‖ − ‖∇pE(p;θ)‖, ‖∇pE(p;θ)‖ − γmax‖p − p∗‖)) ,
(6.5)

with minimum and maximum distance-gradient scalings γmin and γmax.

6.3.4 Gradient descent improvement loss

If one plans to use gradient descent in density optimization, one can design a loss
function which directly optimizes for the performance of this optimizer. One way to
do this is to require that the model predicts gradients which lead to steps towards the
true ground state p∗ when used in a gradient descent step. Multiple measures for this
are conceivable, but a simple one is to require that each step reduces the distance to
the ground state by at least a certain factor β < 1:

Lgradient-descent-improvement = max
(
0, ‖p − λ∇pE(p)︸ ︷︷ ︸

coeffs after step

−p∗‖ − β‖p − p∗‖
)
. (6.6)

A great advantage of this loss is that if it is zero for all densities, density optimization
with gradient descent will not only converge to the ground state but is guaranteed to
do so quickly: If the distance of the initial guess to the ground state is d, the distance
after n steps is at most dβn. A possible disadvantage is that the loss is more restrictive
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than the losses described above, and might not be compatible with the true energy
functional for all but very conservative, i.e. high, choices of β.

For future work, on could adapt this loss to more sophisticated density optimiza-
tion algorithms, e.g. gradient descent with momentum or line-search methods.

6.4 Surrogate training data

An ideal machine-learned energy functional would perfectly generalize over all of chem-
ical space and all possible input density coefficients p. In practice however, a trade-off
between the extent of inputs which the model generalizes over and the accuracy of the
model will likely be necessary. In other words, given constraints in model capacity
and computational effort, it is unrealistic to aim at training a model which is highly
accurate for every input density. Hence, one should decide which kinds of densities
the model should excel on, and adjust the training data accordingly, as it primarily
determines where the model works well.

In the previous chapters 4 and 5, the main consideration in this regard was to
generate sufficiently varied training data, as without tricks, data from KS-DFT is
quite restricted, leading models trained on it to fail in density optimization.

Here however, we find ourselves in the opposite situation: The surrogate loss
functions introduced above (see section 6.3) are applicable to any set of coefficients
p ∈ Rn, as long as the ground state coefficients p∗ of the molecule are known. As we
cannot densely sample Rn during training, we have to decide on a subset.

To aid this decision, let us revisit the definition of surrogate functionals and thereby
our ultimate goal: successful density optimization. To achieve this, the minimal set of
densities the model has to work well on is comprised of the density optimization path
between the initial guess and the final converged coefficients, which should ideally
be close to the true ground state. Because we hope to achieve a certain degree of
robustness regarding choice of initial guess and optimizer used in density optimization,
we extend this requirement to some neighborhood of this path.

A simple subset to aim for is a ball around the ground state coefficients, since we
can assume that e.g. a learned initial guess will be quite close to the ground state
coefficients already. This gives rise to the first way of generating training data for
surrogate functionals: Sampling densities around the ground state.
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6.4.1 Sampling densities around the ground state

During density optimization with a surrogate functional, the distance to the ground
state coefficients should continuously decrease, and a high accuracy is increasingly
more important as the distance to the ground state shrinks.

Therefore, simply sampling training coefficients from gaussians centered around
the ground state coefficients might be a suboptimal choice, as the density of high-
dimensional gaussians (we are in the high-dimensional case, as the coefficients have
hundreds of components) is concentrated on a spherical shell. This would lead to
almost constant distance to the ground state and few samples substantially closer to
it.

Therefore, we propose to sample densities differently: First, sample the magnitude
of the perturbation from the ground state r ∈ R according to some distribution R,
then its direction d uniformly from the sphere:

p = p∗ +∆p , ∆p = d · r (6.7)

with d ∼ U(Sn) , r ∼ R . (6.8)

For R, many distributions with non-zero probability between zero and the expected
distance of the initial guess to the ground state would be conceivable choices; We use
a Gaussian distribution with mean and standard deviation of 0.05, truncated at zero
(i.e. assigning zero probability to all r < 0).

Some densities corresponding to coefficients sampled in this way may be unphysi-
cal, e.g. negative. But this is no flaw, rather an advantage as the learned functional
should therefore be robust to such inputs, which might be especially important if
the non-negativity is not enforced during density optimization. This is advantageous
compared to supervised training, where the model is only ever exposed to valid inputs
and hence might behave unpredictably on invalid ones.

6.4.2 Train-time density optimization via caching

Motivation

Above, we argued that it is sufficient if a surrogate functional minimizes the loss in
the vicinity of the ground state and described a method to generate training samples
from this vicinity. Does a functional trained on these samples with surrogate loss
functions lead to successful density optimization? It might be possible, but in general
(and in practice) there is a failure mode which can hinder it: When choosing and
configuring the surrogate losses, one aim was to not restrict the shape of the energy
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surface too much. This might allow the model to satisfy the condition enforced by the
loss function on almost all sampled coefficients in unexpected and undesirable ways.

Let us demonstrate this subtle but important point with an example: If we would
train a model with the “gradient to ground state” loss (see 6.3.2), we do not require the
gradient to point exactly away from the ground state, but allow the angle to differ by
some margin. Now assume that some components of p∗ are easy to estimate (e.g. co-
efficients mainly describing core electrons), while others are much more challenging
(e.g. diffuse basis functions). Then, the model might quickly learn to perfectly point
the negative gradient towards the ground state in the “easy” dimensions, while pre-
dicting zero gradient in the “difficult” ones. If half of the dimensions are “easy” and
half are “difficult”, this would lead to an expected cosine similarity of 1/2 if training
densities are sampled isotropically around the ground state as proposed above. This
would, depending on the chosen value of ∆ in the loss (see eq. 6.3), lead to zero
loss for most of the sampled densities. The situation would be even more extreme
if a smaller set of the dimensions are “difficult” to predict. In density optimization,
such a model might converge to the correct values in the “easy” dimensions, but fail
completely in the “difficult” ones. A similar example can be made for the “gradient
descent improvement” loss, described in section 6.3.4.

Hence, we propose to adapt the sampling of training densities towards the goal of
density optimization: If density optimization is already performed during training, and
the loss is ensured to be fulfilled in each step of these train-time density optimization
trajectories, the failure mode is ruled out. Moreover, this allows to sample data exactly
in the way we described as optimal above: Along density optimization trajectories.

Method

The most straightforward way to implement train-time density optimization might be
the following: Load the density coefficients (or sample them on the fly) as usual, then
conduct k density optimization steps, evaluate the model and losses on the results.
Unfortunately, this quickly becomes infeasible for moderately large k.

Therefore, we conduct only one step of density optimization per training iteration,
but cache the resulting coefficients for the next time the molecule is loaded in a training
batch. Then, the structure of a training iteration is:

1. Load a training batch {(Mi, pi, p∗
i )}i=1...B

2. Load coefficients from cache: For i = 1 . . . B: If Mi is in the cache C, overwrite
the loaded coefficients with the ones from the cache, pi 7→ C[Mi]

3. Evaluate the model, yielding energies E(pi; θ) and gradients ∇pE(pi; θ)
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Figure 6.3. Train-time density optimization via caching. A training batch is
loaded (1), updated with densities of all molecules in the batch which are present in
the cache (2), passed through the model (3) yielding energies and gradients which are
both used to evaluate the losses and update model parameters (4) as well as utilized
in a density optimization step (5). The updated densities are written to the cache
(6), before finally each molecule of the present batch is discarded from the cache with
probability q (7).
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Figure 6.4. Ideal density optimization step. The ideal step chooses the point
pideal-step on the ray anchored at p in direction ∇p

4. Evaluate losses, backpropagate, and update model parameters θ

5. Make a density optimization step: pi 7→ pi − λ∇pE(pi; θ)

6. Save the updated coefficients to the cache: C[Mi] 7→ pi

7. Discard molecules in the batch from the cache with probability qreset.

This procedure is also visualized in figure 6.3. Hence, each time a certain training
molecule is loaded, another density optimization step is conducted on its density
coefficients. Over multiple training epochs, these steps thus accumulate to possibly
very long trajectories, without having to do more than a single density optimization
step per training iteration.

The probabilistic reset in the last step prevents the model from overfitting to the
states which density optimization converges to, as it guarantees that some percentage
of training samples come straight from the originally chosen distribution around the
ground state (see 6.4.1). In our experiments, we set qreset to a value of 1%.

Note that we do not project the gradients (see section 5.3) prior to the density
optimization step, hence allow for non-normalized densities during training.

A major strength of this approach is how directly it adapts the training to the
final goal of density optimization: While density optimization is conducted across
epochs with different states of the model, a convergent density optimization at train
time of this type is much more indicative of generalization to density optimization
on test geometries than simply fitting a fixed dataset of energies and gradients in the
supervised case.
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Ideal density optimization steps

Above, we described the density optimization step as a simple gradient descent step.
However, at train-time we know the true ground state coefficients p∗, and can hence
speed up the optimization by making ideal steps in the sense of picking the step size
λ such that the distance to the ground state is minimized:

λ = argmin
λ,λ>0

‖p − λ∇pE(p; θ)− p∗‖2 . (6.9)

This amounts to moving along the ray from pi in the direction of the negative gradient
until the difference vector to the ground state is orthogonal to the gradient (see figure
6.4), and is a simple one-dimensional optimization problem whose closed-form solution
is

λ =


∇E(p;θ)·(p−p∗)

∥∇E(p;θ)∥2 , if ∇E(p; θ) · (p − p∗) > 0,

0, otherwise.
(6.10)

Above we omitted the index i for clarity, but the ideal learning rates are calculated
for each molecule in the batch individually.

This approach has two potential advantages: Fist, it takes fewer epochs to reach
the same distance to the ground state, and thereby challenging densities are sampled
more often. Second, it might lead to a more stable training process, as the densities are
always moved towards the ground state, and potential spikes in the gradient prediction
do not lead to large steps away from the ground state.

On the other hand, the ideal density optimization steps are of course not available
at test time, and the model might not generalize as well to density optimization steps
with a fixed step size.

Implementation of caching

The coefficient cache C could be implemented in a number of ways. For huge datasets
it might be required to save the cached coefficients to disk. For MD17 and QM9
however, it is feasible to keep the cached coefficients not only in RAM, but even in
GPU memory.

The loading from and saving to the cache is then performed in the main thread,
and not in the individual data loading workers. This may not be ideal, as it is less
parallelized, but still allows for decent performance (as the data is cached in GPU
memory) while being much simpler to implement.
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6.5 Surrogate architectures

While we mostly follow the architectural choices described in section 5.6, we make
some adjustments for the training of surrogate functionals, which we describe in the
following.

6.5.1 Dimension-wise rescaling

The dimension-wise rescaling module was introduced by [9] in order to optimize vari-
ational fitting of label energies and gradients. Since we do not aim to reproduce
these labels when training surrogate functionals, this motivation no longer applies.
In fact, we have found that the scaling of input coefficients can be disadvantageous
when training surrogate models, as coefficients with small prefactors are sometimes
completely ignored by trained networks.

Hence, we deactivate the per-coefficient scaling in the dimension-wise rescaling
module, and only subtract the coefficient means while scaling with a fixed scalar
factor a, which is an additional hyperparameter:

p 7→ a · (p − p̄) . (6.11)

In our experiments, we use a value of 10 for the prefactor a.

6.5.2 Atomic reference module

Similar to dimension-wise rescaling, the atomic reference module is not necessary for
training (particularly weak) surrogate functionals, hence we deactivate it.

In some experiments, however, we replace it with an isotropic parabola around p̄
(the superposition of non-normalized atomic densities, as introduced in section 5.4):

Eparabola(p) = α‖p − p̄‖22 , (6.12)

with some prefactor α ∈ R+.
This Parabolic AtomRef essentially gives the model a head start, by adding a

simple functional with a minimum at p̄, and allows the machine-learned part of the
functional to focus on moving this minimum to p∗.

While the scalar factor α could be easily converted to a learnable parameter, we
leave investigating this option to future work.
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6.6 Results

When not stated otherwise, we utilize a downsized Equiformer (see [62] and section
5.6.2) architecture, since we have found it to perform well compared to the Graphormer
in preliminary experiments. The precise hyperparameters are given in the appendix,
see table B.2. A comparison for the training of surrogate models with the Graphormer
architecture (see section 5.6.1) is given in section 6.6.3. When not stated otherwise,
we work in the natural reparametrization basis (see section 5.2.1), which lead to the
best results in 5.

Most experiments described in this section were conducted by bachelor student
Mats Kothe whom I gave detailed instructions.

6.6.1 Data-driven Hyperparameter Choices
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Figure 6.5. Data-driven choice of surrogate loss hyperparameters. In (a)
we plot the norm of the gradient label against the distance to the ground state for
samples from the unperturbed QM9 dataset. The gray lines represent the boundaries
of the gradient range we restrict our surrogate functionals to when using the gradient-
norm-range loss (eq. 6.5). In (b) we show a histogram over cosine similarities between
inverted gradient labels and directions to the ground state, motivating our choice of
∆ = 0.4 for the gradient-to-ground-state-loss (eq. 6.3).

The loss functions and architectural adjustments introduced above give rise to a
number of additional hyperparameters.

One approach to choose them is to use a data-driven method, where we estimate
which hyperparameters would be appropriate, e.g. would lead to zero loss on the
annotated training data.



92 Results

Table 6.1. Density optimization with surrogate functionals trained on
MD17. All models are trained with the gradient-to-ground-state loss (eq. 6.3) and,
all but the first two additionally with the gradient-norm-range loss (eq. 6.5). The
best-performing model is trained with α = 1 in the parabolic atom reference module
(eq. 6.12). Evaluations are conducted on the full MD17 test set.

Run LR λ converged [%] ∥ρ−ρ∗∥2
Ne

[%]
α = 0, no grad. scale 3.00× 10−5 0.00 4.07× 10−2

α = 1, no grad. scale 3.00× 10−5 0.00 2.46× 10−1

α = 0 5.00× 10−3 0.00 6.04× 10−2

α = 0.1 5.00× 10−3 0.10 5.15× 10−2

α = 1 5.00× 10−3 100.00 4.44 × 10−3

Figure 6.5 (a) shows the distribution of the cosine similarity between ground-truth
gradients and vectors pointing from the ground state p∗ to the training densities p.
Based on this, we choose 0.4 as ∆ parameter for the gradient-to-ground-state loss (see
equation 6.3), as for almost all samples from the MD17 and QM9 datasets, the cosine
similarities lie above this value.

We proceed similarly for the gradient-norm-range loss (see equation 6.5), and select
γmin = 8 and γmax = 20 based on the distributions of the ratios of gradient norms over
ground state distances, illustrated in figure 6.5 (b), as most of the ratios lie in this
range.

While the distributions of the ground-truth labels of the physical energy functional
are by no means a perfect indicator of the optimal hyperparameters for the surrogate
losses, they at least allow us to make a more informed choice than random guessing.
Additionally, this choice might become more important when combining surrogate
losses with supervised training, which we plan on pursuing in future work.

6.6.2 Training on MD17

As a first step, we train weak surrogate models on a dataset consisting of the ethanol
molecules from the MD17 database [100, 101]. The dataset consists of 10 000 ge-
ometries sampled along a molecular dynamics trajectory, for which we compute the
ground state coefficients using KS-DFT, as described in section 5.1. 8000 geometries
are used for training, 1000 for validation, and 1000 for testing.

We train the models with a sum of the gradient-to-ground-state loss (eq. 6.3)
and, except for the first two, additionally with the gradient-norm-range loss (eq. 6.5).
Following our choice in chapter 5 we use L1 versions of both losses, i.e. take L(x) = |x|.
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in both eq. 6.3 and 6.5.
Preliminary experiments without density optimization at train time (see section

6.4.2) showed no promise in density optimization (only few initial steps were towards
the ground state, before diverging completely). Therefore, we always activate it in all
subsequent experiments which we present here. When training with the gradient-to-
ground-state loss, we use ideal density optimization steps (see section 6.4.2) to update
coefficients during train time density optimization.

Density optimization is usually conducted with gradient descent with a learning
rate of λ = 5 × 10−3 for a maximum of 1000 steps, stopping early if the gradient
norm falls below 1 × 10−4. When training without the gradient-norm-range loss,
gradient norms are not restricted, and the learning rate commonly has to be lowered
to prevent jumps far away from the ground state. For each run, we progressively lower
the learning rate until this is no longer observed.

Table 6.1 summarizes the results of the density optimization experiments on the
test geometries of the MD17 dataset. The only model (last row) which achieves a con-
vergence rate of 100% is trained with the parabolic atom reference model (see eq.6.12).
Therefore, we conclude it is highly beneficial. Furthermore, the gradient-norm-range
loss seems crucial for successful density optimization with gradient descent, as the
first two models, which are trained without it, do not converge at all.

In the next section, we will transfer the parameters of the best-performing model
to the much more challenging QM9 dataset, consisting of bigger molecules of various
compositions, and evaluate its performance there.

6.6.3 Training on QM9

The best-performing hyperparameter configuration from the MD17 experiments served
us as a starting point for training on the QM9 dataset. We find that the same hyper-
parameters work exceptionally well on QM9 too, yielding an energy functional which
leads to convergent density optimization in fewer than 1000 iterations on nearly all,
99.978%, of the test geometries. The non-converged molecules are not excluded from
the evaluation of the mean L2 density error, which is 6.81×10−3 per electron, thereby
outperforming our best supervised model by more than a factor of 3 (compare with
table 5.5). Density optimization typically converges within 300 iterations, as shown
in figure 6.6.

In table 6.2, we show the results of training with different variations on this suc-
cessful hyperparameter choice. Both lowering or increasing the prefactor α of the
parabolic reference module deteriorated the performance, as did training without the
natural reparametrization basis. Employing a cosine learning rate scheduler, which
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Table 6.2. Density optimization with surrogate functionals trained on
QM9. The first row is trained with the same configuration as the best-performing
model on MD17, in the rows below individual hyperparameters are varied, as described
in the first entry of each row. Mean per-electron density errors which outperform our
supervised results from chapter 5 are underlined. Evaluations are conducted on the
full QM9 test set.

Run LR λ converged [%] ∥ρ−ρ∗∥2
Ne

[%]
Best settings on MD17 5.00× 10−3 99.978 6.81 × 10−3

α = 10 5.00× 10−3 99.910 9.10× 10−3

α = 0.1 1.00× 10−3 0.000 1.70× 10−2

w/o natrep 5.00× 10−5 0.000 5.49× 10−2

cosine scheduler 5.00× 10−3 99.970 9.16× 10−3

grad. impr. loss 5.00× 10−3 88.140 1.86× 10−1

grad. impr. loss, no grad scale 5.00× 10−3 99.955 9.18× 10−3

we found to beneficial for supervised training, did not improve the results but also
did not harm them catastrophically.

Finally, we trained models with the gradient descent improvement loss (see section
6.3.4). We set the minimum improvement factor β to 0.9, and the learning rate λ
to 0.022. The gradient-to-ground-state loss was activated, and we trained one model
with and one without the gradient-norm-range loss, the latter performing significantly
better than the former as seen in the last two rows of table 6.2.

Surrogate functionals with the Graphormer Architecture

Since we found the Graphormer to work well in supervised training, we also trained
surrogate functionals with this architecture: One with the best performing hyper-
parameters using the gradient-to-ground-state loss and the gradient-norm-range loss,
and one with the gradient descent improvement loss. However, both models perform
worse in density optimization, never converging to a gradient norm below 1× 10−4 on
the QM9 test set, and also do not achieve low density error.

Training strong surrogate functionals

To provide a proof of concept for the training of strong surrogate functionals, which
also aim to predict the correct ground state energy, we train a model where we addi-
tionally add a supervised L1 energy loss to ground state densities with a relative weight
of 0.2. The model converges on 99.918% of test molecules to an average per-electron
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Figure 6.6. Density optimization with a surrogate model on QM9. The
model used here is the best-performing one shown in table 6.2, i.e. an Equiformer
trained using the gradient-to-ground-state loss (see eq. 6.3) and the gradient-range
loss (see eq. 6.5). The L2 density error (a) and the gradient norm (b) demonstrate
the rapid convergence in fewer than 300 iterations. Compare with figure 5.12 of our
best supervised model.

L1 density error of 8.62× 10−5, thereby only slightly worse than the best-performing
model without the energy loss. However, the achieved energy error of 88.1 mHa is far
from chemical accuracy and cannot compete with our supervised models.

6.7 Discussion

In this chapter we have introduced the concept of surrogate functionals, an application
of the energy-based model framework [118], to the problem of solving for the electronic
ground state density via orbital-free density optimization.

We have demonstrated that a carefully chosen set of loss functions together with
a train-time density optimization scheme (see section 6.4.2) can lead to successful
density optimization with a surrogate functional, on ethanol geometries from MD17
as well as on the challenging QM9 dataset. Indeed, either combining the gradient-to-
ground-state loss (eq. 6.3) with the gradient-norm-range loss (eq. 6.5), or utilizing
the gradient descent improvement loss (eq. 6.6) allowed us to train surrogate models
which outperform our best supervised models in terms of density error after density
optimization by a wide margin, more than a factor of three as measured by the mean
L2 density error per electron.

A puzzling observation is that in our experiments, even for surrogate models,
transforming the atomic basis via natural reparametrization (see section 5.2.1) seems
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to be crucial for successful density optimization. This is surprising, as the main reason
for introducing it, reducing the gradient scale, does not apply to surrogate models,
because ground-truth gradients are not used during training. We do not have a sat-
isfying explanation for this observation. The way in which natural reparametrization
transforms the ground state coefficients seems to be beneficial for a model learning to
predict them.

In terms of strong surrogate functionals, which additionally should map the ground
state density to the correct energy, we present an initial proof of concept, but find
that the energy error is far from chemical accuracy and cannot compete with our
supervised models (see 6.6.3). Training more accurate strong surrogate functionals
is an interesting avenue for future work, and many approaches to improve upon our
initial foray into this direction are conceivable. Furthermore, one could try and com-
bine supervised and surrogate losses which are compatible with the physical energy
functional in a joint training scheme. Alternatively, one could fine-tune directly super-
vised models with surrogate losses after supervised training. In particular, fine-tuning
a model on larger systems where generating a sufficient amount of varied energy and
gradient labels may be prohibitively expensive could be of interest.

Indeed, a major benefit of surrogate functionals over directly supervised models,
which we have not exploited in this chapter, is the fact that only the ground state
density is needed for training. This opens the door to data-generation methods other
than KS-DFT, even if they do not yield energy or gradient labels.



Chapter 7

Contributions and outlook

In this thesis1, we have presented the development of machine-learned energy func-
tionals for orbital-free density functional theory (OF-DFT). We have shown that it
is possible to learn the kinetic energy functional from data, and that the resulting
machine-learned energy functional can be used to optimize electron densities with
chemical accuracy.

In chapter 4, we introduced KineticNet, the first deep neural network architecture
which was successfully trained to reproduce the kinetic energy with chemical accuracy
across a number of small molecules, demonstrating generalization over both input
densities and geometries, and reproducing chemical bonding in orbital-free density
optimization in two electron systems. Careful and well-motivated design choices for
the model architecture (section 4.2) required expert knowledge from both quantum
chemistry and machine learning. Paired with a novel scheme of generating labels for
the kinetic energy and gradient which augmented the width of training distribution
(see section 4.3), they allowed us to achieve this result. It served as a crucial proof
of principle for machine-learned OF-DFT, and laid the foundation for the subsequent
work on larger-scale systems.

With this goal in mind, in chapter 5, we transition from representing electronic
densities on a quadrature grid to the more efficient representation in terms of the
LCAB Ansatz (see section 2.4.2) developed independently but published before us in
the seminal work [9]. Relative to their work, we introduce a number of key enhance-

1Significant work not presented in this thesis has been done by the author on the evaluation
protocol for an imaging-based test for the presence of the Sars-CoV-2 virus. At a time when antigen
tests were not yet available, this work [119] was utilized in the study “Prevalence of SARS-CoV-2
infection in children and their parents in Southwest Germany” [120], leading to the conclusion that
during the time-frame and the surveyed region of the study, children aged 1-10 were no particular
drivers of the pandemic, an important result for decision makers who soon after decided to reopen
schools and kindergartens.
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ments. Most notable among them is an improved version of the external potential
sampling scheme that we introduced in chapter 4 (see section 5.5). Ultimately, we
outperform [9] in all metrics on the QM9 dataset, while addressing their key short-
coming: For the first time, we present a machine-learned energy functional that can
be used in properly convergent density optimization with chemical accuracy across
a wide range of molecular systems, while setting a new state of the art in OF-DFT
regarding ground state energy and density prediction.

Finally, in chapter 6, we introduce the concept of surrogate functionals, which
aim to replace the exact, physical energy functional in density optimization without
attempting to perfectly mimic it. Such a functional might be significantly easier
to learn, while still allowing to find the ground state of a system in a variational
manner, which is the baseline task of DFT. We combine surrogate loss functions
(section 6.3) with a dynamic sampling procedure which allows performing density
optimization at train time (section 6.4.2). We successfully train an energy functional
which further improves upon the best accuracy of ground state densities resulting
from variational density optimization in more orthodox OF-DFT published so far. By
relaxing the requirements on functional approximations, it opens up new possibilities
for the development of machine-learned energy functionals.

Outlook

In this thesis, we have demonstrated significant progress towards making machine
learned orbital-free Density Functional Theory on molecular systems a reality. Nev-
ertheless, in future work a number of key challenges needs to be overcome in order for
it to be adapted by practitioners: The potential of linear scaling has to be realized
and generalizability of the method has to be improved. Furthermore, the learned
functionals are limited by the accuracy of Kohn-Sham calculations which we treated
as ground-truth here.

Regarding the first point, the cubic scaling of the natural reparametrization used
in chapters 5 and 6 is the first hurdle that we aim to overcome in future work. We
believe that this is also the main obstacle, as modifying the architectures which we
currently use such that evaluation of our learned functionals scales linearly is relatively
straightforward. We could do this by introducing distance cutoffs, and the Hartree
term can also be approximated accurately in linear time due to the nearsightedness
of electronic matter, at least for gapped systems.

Secondly, improving generalizability of the learned functionals can be approached
from two sides, and we believe both are equally important: On the machine-learning
side, architectures could be further adapted to the task at hand. Incorporating exact
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relations, such as the spatial scaling relation for the non-interacting kinetic energy,
or known asymptotic behaviors of density functionals, directly into the models could
prove highly beneficial. This approach has a long tradition in classical density func-
tional approximations, and while challenging, we believe it is not infeasible to achieve
similar integration for machine-learned functionals. On the other side, we believe that
further improving data generation schemes is crucial. Generating datasets for more
varied molecular geometries including larger systems is straightforward, but was out
of scope for this thesis. Generating varied densities has proven critical for the results
presented here. Modifying parameters of the method we introduced, e.g. adapting the
way we sample external potential modifications to better cover the density coefficient
space, could be a promising step forwards.

Regarding the precision of ground-truth data, utilizing larger basis-sets and more
precise exchange-correlation functionals in KS-DFT is of course an option. In the
longer term, one might strive for more accurate but still compact representations of the
electron density, for example by employing orbital types other than Gaussian. Once
research pushes beyond KS-DFT accuracy, data generation will become even more
expensive and supplying prior knowledge to machine learning methods is known to
pay off particularly in the resulting low-data regime. Also, approaches like surrogate
functionals, whose training only requires ground-state densities, may prove useful,
especially when combined with pre-training on lower accuracy but more abundant
data.

Given the immense popularity of Kohn-Sham DFT, rightfully regarded as the
workhorse of quantum chemistry, we believe that once its orbital-free counterpart
outperforms it on a single important practical application by a sufficiently large mar-
gin, research in the area might accelerate and receive much greater attention from the
machine-learning and computational chemistry and materials science communities.

Machine-learned OF-DFT will, of course, have to compete with alternative mach-
ine-learning approaches, such as direct prediction of ground-state energies. While it
is difficult to predict which methods will prevail, we believe it will neither be those
which forego all physical knowledge and rely solely on big datasets, nor those which
aim to change as little as possible in existing quantum chemical codes, but rather the
methods somewhere in between, such as those introduced in this thesis.

Modern machine learning is still a relatively young field, and its application to
computational chemistry even more so. We believe that many breakthroughs in the
intersection of these fields are yet to happen, and that these are most likely when
expertise from both fields is tightly integrated with each other.

It is an exciting age for applications of machine learning in quantum chemistry,
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and this thesis underlines the potential of machine-learned energy functionals to rev-
olutionize the way we perform electronic structure calculations.



Chapter 8

Appendix

A Learning a transferable kinetic energy functional
on quadrature grids

A.1 Data generation

As mentioned in section 4.3, to generate the training data for our model we slightly
perturbed the external potential of our molecules to sample a diverse set of densities
as solution of Kohn-Sham-DFT and thereby calculate our targets. To achieve this we
used the pyscf package as code base and implemented our own restricted Kohn Sham
class which takes an additional Matrix and adds it to the external potential matrix in
the Hamiltonian of the SCF procedure.
For the sampling of those perturbation matrices the following approach was adopted:

1. (Relative) entries of the perturbation matrix are drawn from some random dis-
tribution and ensure a symmetric matrix

2. the norm of the perturbation matrix is drawn from some distribution and the
matrix is normalized accordingly

The distributions are chosen to ensure that a majority of data points are somewhat
close to the ground state. The reasoning being that for accurate convergence and
ground state values the machine learning model should make precise predictions in
this part of density space while far away from the solution a rough estimate of the
kinetic energy and potential should be enough to guide the OF-DFT solver in the
correct direction. Details regarding those distributions in the different basis sets are
given in table A.1. All data sets have been calculated using at the BLYP/cc-pVDZ
level of theory. The distribution of the kinetic and total energies for the H2O dataset
are shown in figure A.1.
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Table A.1. Data sets used for training KineticNet. The norm of the perturbation
matrix is sampled from a normal distribution with a minimum norm of 0.005 and the
mean and standard deviation given in the table. The relative entries of these matrices
are sampled from a normal distribution with mean and standard deviation given in
the table.

Data set
Norm Matrix elements
µ σ µ σ

HF 0.25 0.05 0.0 0.2
Ne2 0.25 0.05 0.0 0.2
H2 0.25 0.05 0.0 0.2
H +

3 0.25 0.05 0.0 0.2
He 0.25 0.05 0.0 0.2
H2O 0.00 0.10 0.0 0.2

A.2 OF-DFT implementation

Our OF-DFT implementation is based on the pyscf package, which we use to compute
all the required integrals. Density fitting as implemented in the pyscf package is used
for the calculation of the Coulomb matrix.

A.3 Correspondence between KS and OF Ansatz for two elec-
trons

Recall the equation for the electron density in terms of the coefficients cν in our OF
approach:

ρ(r) =
(∑

ν

cνχν(r)
)2

. (8.1)

In KS-DFT one can write the electron density in the basis of atomic basis functions
using the molecular orbital coefficients miν :

ρ(r) =
∑
i

(∑
ν

miνχν(r)
)2

. (8.2)

For two electron systems, there is only one molecular orbital, hence the first sum
disappears. Thus, the two expressions for the density are equal for m1ν = cν .

A.4 Atomic contributions

The atomic contributions have been calculated using either restricted or restricted
open-shell KS-DFT at the BLYP/cc-pVDZ level of theory. An “atomic” initial guess
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was used, as implemented in the pyscf package. The convergence tolerance was set to
10−4 and a grid level of 2 was used. Symmetry was employed to remove directional
bias. The usage of symmetry ensures separation w.r.t. angular momentum. This
allows the following procedure for spherical symmetrization of p type orbitals: First
the MO coefficients and energies are averaged weighted by their occupation. Next
the electrons in p-orbitals are evenly distributed over all three p-orbitals. As this
procedure has only been implemented for p type orbitals only elements up to Neon
can be used.

A.5 Model hyperparameters

We use identical hyperparameters for our model for the kinetic energy and for the
kinetic potential. Our models employ L = 5 atom-atom interaction layers. We choose
the number of features per order l such that approximately the same number of floats
are used for each l. For the encoder and decoder, we use features of type (40, 14, 8,
6, 4) (i.e. 40 scalars, 14 vectors, 8 l = 2 tensors and so on), for all layers in-between
features of type (101, 34, 20, 14, 11). We use a radial basis consisting of 32 functions
for the encoder and decoder, and 16 functions for the atom-atom interaction layers.
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Figure A.1. Distribution of the kinetic energy Ekin, the total energy without the
contribution from our perturbation to the external potential Etot−Epert and the total
energy in the H2O data set.
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Figure A.2. Distribution of steps until convergence for the three two-electron sys-
tems and different density optimization modes.
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Figure A.3. Effectiveness of subtracting atomic contributions demonstrated for
H2O. For electron density, kinetic energy density as well as our target for the kinetic
potential, subtracting the ACs decreases the value range by at least two orders of
magnitude.
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B Equiformer hyperparameters
In table B.2 we list the hyperparameters used for the EquiformerV2 architecture in
chapters 5 and 6.

Hyperparameter Value in 5.8 Value in 6.6

optimizer AdamW AdamW
weight decay 1× 10−10 1× 10−10

learning rate 1× 10−3 1× 10−3

learning rate scheduler Cosine Linear
batch size 32 90
epochs 25 45

max_neighbors 20 20
max_radius 12.0 12.0

max_num_elements 90 90
num_layers 6 4

sphere_channels 32 16
attn_hidden_channels 32 16

num_heads 4 4
attn_alpha_channels 32 16
attn_value_channels 8 8
ffn_hidden_channels 64 32

lmax_list [5] [5]
mmax_list [5] [5]

grid_resolution 18 18
num_sphere_samples 64 64

edge_channels 64 32
use_atom_edge_embedding True True
share_atom_edge_embedding False False

distance_function “gaussian” “gaussian”
num_distance_basis 128 64

attn_activation “silu” “silu”
use_s2_act_attn False False
use_attn_renorm True True
ffn_activation “silu” “silu”
use_gate_act False False
use_grid_mlp True True
use_sep_s2_act True True

alpha_drop 0.0 0.0
drop_path_rate 0.0 0.0

proj_drop 0.0 0.0

Table B.2. EquiformerV2 Hyperparameter choices. A detailed explanation of
hyperparameters in the lower part of the table can be found in the paper introducing
the architecture [62].
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