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ABSTRACT 

The dissertation aimed at the establishment of blood-based microRNA and protein signatures 

for prediction and early detection of tumour recurrence in patients who had undergone resection of 

pancreatic ductal adenocarcinoma (PDAC). Utilising a microarray of 2,977 antibodies, variations were 

detected in the protein content of serum samples collected from 101 patients, who had experienced 

tumour recurrence or not, including consecutively collected samples from the same patients. Secretome 

analyses of non-tumours and cancer cells indicated tumour-related variations. Selected biomarkers were 

utilised to train support vector machine classifiers. They were validated on new, prospectively collected 

samples from 36 patients in order to document applicability. By combination of biomarkers selected by 

both a focussed tumour-centred approach and a broader systemic analysis, a classifier of 10 proteins 

was defined that discriminated patients with recurrence from those without at 91% accuracy. Validation 

on prospectively collected samples achieved an accuracy of 85%. Recurrence detection was on average 

3.5 months earlier than that with current processes. Besides diagnosis, protein signatures were 

established that allow predicting the period, after which tumour recurrence is likely to occur.  

I studied the microRNA (miRNA) content of 149 serum samples by means of small RNA 

sequencing. For the discovery phase, 75 serum samples were analysed. Libraries were prepared and 

sequenced at the sequencing core facility of DKFZ. Data was obtained in Fastq files and processed using 

the Heidelberg Unix System Analysis Resource (HUSAR). In total, I analysed 135 miRNA variations 

between recurrence and nonrecurrence samples using logistic regression and selected informative 

miRNA biomarkers after removal of unnecessary covariates by Least Absolute Shrinkage Selection 

Operator (LASSO) regression. To find the best possible miRNA combination, I used Recursive Feature 

Elimination (RFE) with 5-fold cross validation. A miRNA classifier made of hsa-mir-100, hsa-mir-215, 

hsa-mir-3916, hsa-mir-484, hsa-mir-6752, hsa-mir-6773, hsa-mir-6883-5P was constructed and trained. 

The algorithm parameters were optimized to avoid over- or underfitting. The signature was validated in 

an independent cohort with all parameters being fixed. The miRNA classifier could discriminate 

between recurrence from nonrecurrence at an accuracy of 97% and 91% in the discovery and validation 

cohort, respectively. Furthermore, I established four miRNAs classifiers that accurately predicted the 

time when recurrence is likely to happen.  
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Combining both miRNAs and proteins was done using the samples that were tested 

simultaneously by antibody microarray and small RNA sequencing. The data was randomly divided into 

a training and validation cohorts and RFE with 5-fold cross validation was applied to the 17 miRNAs 

and protein markers. Using a marker signature of two miRNAs and two proteins, I was able to detect 

pancreatic cancer recurrence at 91% accuracy, which was slightly reduced to 83% upon validation. 

Analysis of the protein and miRNA contents of blood permits prediction and detection of tumour 

recurrence in PDAC patients after curative surgery with an accuracy that substantially surpasses the 

performance of currently used processes, in particular CA19-9 testing. The analysis also indicated the 

existence of changes that are either directly due to the tumour’s presence or based on the body’s systemic 

reaction to it. Combining both miRNA and proteins reduced the number of molecules required to achieve 

an accurate and robust diagnosis. The results could have a direct and immediate benefit for patients with 

pancreatic cancer and could be translated to clinical practice quickly. In addition, the process could proof 

the applicability of the signatures for early diagnosis of the primary tumour. Thus, the results could be 

applied to screening individuals who are at high risk of pancreatic cancer, potentially having a clinical 

impact beyond the detection of tumour relapse. In addition, the established assays could serve as a means 

for monitoring disease progression during chemotherapeutic treatment.
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1. INTRODUCTION 

Pancreatic tumours are two types: Endocrine and exocrine. Endocrine tumours start in hormone-

producing cells and are quite rare whereas exocrine lesions originate from enzyme-producing glands or 

pancreatic ducts. A relatively scarce exocrine tumour is acinar carcinoma. A likely uncommon are 

malignant pancreatic intraepithelial neoplasms (PanINs), intraductal papillary mucinous neoplasms 

(IPMNs) and mucinous cystic neoplasms (MCNs). The three are non-malignant lesion that become 

PDAC if they undergo a transformation process. Pancreatic ductal adenocarcinoma (PDAC) is the most 

common exocrine neoplasm accounting for 90–95% of all pancreatic cancer cases (Hidalgo et al., 2015), 

from which 10% of them have a familial background. Due to its aggressiveness and frequency, PDAC 

is a primary reason for pancreatic cancer dismal prognosis. 

 

1.1. Pancreatic cancer epidemiology 

The seventh leading cause of mortality in developed countries is pancreatic cancer and the third 

most common one in the Western world (Bray et al., 2018). Globally, pancreatic cancer is the 11th 

common cancer entity accounting for 458,918 new cases; 432,242 of them die from the disease (Bray 

et al., 2018). Irrespective of the advancement in the awareness of the disease risk factors and new 

detection and treatment strategies, pancreatic cancer incidence is expected to increase by 355,317 new 

cases in 2040 (Rawla et al., 2019). In Germany, roughly 19,685 people were diagnosed with pancreatic 

cancer and almost the same number of people died from this disease in 2019(“Krebs - Cancer in 

Germany,” n.d.). The disease is multifactorial and has a complex molecular and cellular biology. 

However, chronic pancreatitis, smoking and familial history are dominant risk factors (Cid-Arregui, 

2015).  

The survival rate of pancreatic ductal adenocarcinoma (PDAC) is 8%, which is the lowest 

among all malignancies worldwide, making PDAC a devastating disease with a projection that in 2030 

pancreatic cancer will be the second most common cause of cancer related mortality (Rahib et al., 2014). 

This dismal prognosis is due to ineffective screening procedures, late diagnosis, high metastatic rate and 

inefficient systemic therapy (Neoptolemos et al., 2017; Wolfgang et al., 2013). For up to 20% of the 

patients, in whom the tumour is identified early, there is a better chance of cure through radical surgery 
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(Aier et al., 2019). Unfortunately, however, 80% of the patients have recurrent tumour within the next 

two years after surgery (Groot et al., 2019a). For the lack of sensitive diagnostic methods, the recurrent 

tumour is also frequently diagnosed late. However, if the recurrent tumour is found early, surgical 

resection can be repeated with high chances of a good outcome (Strobel et al., 2013). 

 

1.2. Classification of recurrence 

Histopathological and molecular analyses can determine the metachronous lesion type in the 

pancreatic residues. An amiable agreement in both histological and molecular patterns between the 

primary and the relapse lesion is defined as a “true” recurrence of PDAC primary tumour. In contrast, 

the lesion is defined as “second primary” when it presented distinct morphological and molecular 

features. The third type of recurrent tumour is classified as “undetermined” since it has not met any of 

the above criteria (Luchini et al., 2019). 

 

1.3. PDAC recurrence patterns and timing 

Retrospective studies estimated that PDAC recurrence patterns after resection include both local 

and distant metastases (Groot et al., 2018; Hishinuma et al., 2006). These findings have been confirmed 

with data collected prospectively in the first trail conducted by European Study Group for Pancreatic 

Cancer (ESPAC) (Neoptolemos et al., 2004). In a large retrospective analysis that included 1103 patients 

at John Hopkins Medical school, 531 patients had recurrence (76.7%). Out of them local recurrence was 

in 126 (23.7%) patients and metastases were detected in 307 (57.8%) patients. About  98 (19%), 

however, experienced local recurrence and distant metastases (Groot et al., 2018). This study and other 

retrospective series are limited by a significant amount of missing data and other biases (Groot et al., 

2018; Hishinuma et al., 2006; Johnstone and Sindelar, 1993; Suenaga et al., 2014). These limitations 

were minimized in a large prospective multicentre study conducted by ESPAC (Neoptolemos et al., 

2004). The study involved 730 patients, from whom 479 patients experienced recurrence. Local 

recurrence occurred earlier than distant recurrence, but the survival remains the same. Key message 

from this clinical trial is that there is no correlation between the overall survival time and recurrence 
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pattern since pancreatic cancer is a systemic condition that requires efficient systemic therapy (Jones et 

al., 2019). 

To improve pancreatic cancer management after surgery, robust molecular diagnostics to detect 

tumour recurrence early and personalized therapeutics to overcome chemotherapy resistance and 

unfavourable side effects are required. A key step beforehand is understanding the disease biological 

characteristics. Our understanding about pancreatic cancer recurrence molecular drivers indicates that 

pancreatic cancer recurrence is initiated by genomic alterations and cancer stem cells. The recurrence 

progression is also driven by epithelial mesenchymal transition (EMT), treatment failure, 

immunological suppressive tumour microenvironment, metastasis, and tumour dormancy (Fig. 1). 

 

Figure 1. Mechanisms involved in pancreatic cancer recurrence. Therapy induced genetic 

rearrangements and cancer stem cell (CSCs) are important hits for tumour relapse. In addition, CSCs 

develop EMT and treatment resistance. The immunological suppressive nature of pancreatic cancer, 

metastasis and dormancy are also important characteristics for recurrent tumours at distant sites. 

 

1.4. Genomic and clonal landscape 

In comparison to treatment-naïve, recurrent tumour displayed different genomic features with 

huge heterogeneity, especially at metastatic sites, variable clonality, and higher mutational load 

(Sakamoto et al., 2020). By combining targeted and whole-exome sequencing with phylogenetic 

analysis of resected primary tumours and relevant recurrences, Sakamoto and colleagues suggested two 

methods by which tumours relapse: A monophyletic and polyphyletic recurrences. In the monophyletic 

recurrence, a single sub-clone is the source of recurrence; whereas multiple sub-clones produce multiple 
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recurrences and this is called polyphyletic recurrence (Fig. 2). Additional complex genomic alterations 

(e.g. KRAS allele gain and allelic imbalance) lead to metastases compared with the resected primary 

tumours. In addition, changes to the distribution of chromatin regulators and transcription (e.g. GATA6 

and MYC) advance PDAC evolution (Bednar and Pasca di Magliano, 2020; Hayashi et al., 2020; 

Mueller et al., 2018; Cancer Genome Atlas Research Network. Electronic address: 

andrew_aguirre@dfci.harvard.edu and Cancer Genome Atlas Research Network, 2017). 

 

 

Figure 2. Modes of pancreatic cancer recurrence. Mutations induced by chemotherapy in various 

subclones initiates new oncogenic drivers. The recurrent tumour genetic heterogeneity enables 

metastatic potentials. 

 

Progressive loss of the acinar cell compartment and cystic lesions progression is correlated with 

mutation in Arid1a (Wang et al., 2019). In addition, the majority of specimens from patients with distant 

recurrence are SMAD-deficient (Yamada et al., 2015). Polyclonal development within the tumour 

potentiates the ability to metastasize. Therefore, curative resection timing determines the mode of 

recurrence (Fig. 2) (Bednar and Pasca di Magliano, 2020). Phylogenetic analysis suggested that 

squamous differentiation arises from classic glandular tumours, but metastases stems from clones of 

both subtype, since the metastatic phenotype acquisition is associated with mutant p53-driven secretome 

stimulation (Butera et al., 2020; Hayashi et al., 2020). 
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1.5. Cancer stem cells 

The main drivers of pancreatic cancer recurrence are cancer stem cells (CSCs) (Li et al., 2007). 

CSC essential genes are ALDH1, CD44, CD133, NANOG, and SOX2 (Fu et al., 2017b). Transcription 

factors such as Zeb1, Snail (Zhou et al., 2014) and SOX2 (Herreros-Villanueva et al., 2013) are crucial 

to maintain and impart stem cell phenotype in pancreatic cancer. An important event for robust 

transcriptional activation of genes implicated in CSCs stemness is the loss of p53, which induces Zeb1, 

Twist, and Snai1 in p53-depleted cancer cells (Singh et al., 2015).  

In hypoxia, CSCs display resistance to hypoxic exposure by inducing the expression levels of 

SOD1, SOD2, GPX1 and GPX4, regulators of oxidative homeostasis and effectors of cell viability (Peng 

et al., 2019). Oxidative phosphorylation promotes the stemness and immunoreactive properties of 

pancreatic cancer stem cells via increasing mitochondrial function and upregulating stemness related 

genes (e.g., SOX9) or pluripotency (e.g., NANOG) (Valle et al., 2020). Stemness in human pancreatic 

cancer is also stimulated by a STAT3‑dependent mechanism (Panni et al., 2014) and LIV-1, which 

upregulates cancer stem cell molecules e.g. LIN28 and ATP-binding cassette sub-family G member 2 

(Unno et al., 2014), EMT-ATF (Kaşıkcı et al., 2020), Linc-ROR (Fu et al., 2017b), HOXB5 (Li et al., 

2020), NR5A2 (Luo et al., 2017), HOTTIP (Fu et al., 2017a), and NFATc1 (Singh et al., 2015) (Fig. 3). 

In contrast, miR-200a overexpression in CSCs resulted in the up-regulation of mRNA level of E-

cadherin but down-regulates ZEB1, N-cadherin and vimentin. Loss of miR-200a is crucial for EMT 

phenotypes (Lu et al., 2014). 
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Figure 3. Pancreatic cancer stem cell stimulation mechanism. The desmoplastic tumour microenvironment of 

pancreatic cancer induces transcriptional activation leading stem cells activation. Activated CSC promotes 

chemotherapy resistance and epithelial mesenchymal transition.  

 

1.6. Epithelial mesenchymal transition 

In the process of epithelial-mesenchymal transition (EMT), the basal polarity as well as their 

tight cell-to-cell junctions in pancreatic epithelial cells are lost. Mesenchymal cells acquire fibroblast 

like phenotype instead. The mesenchymal markers (e.g. E-cadherin) are predominant instead of 

epithelial markers (e.g. vimentin) (Thiery, 2002). Activated stem cells (e.g., CD133+) induce EMT 

predominantly in pancreatic cancer. Critical transcription factor for CSC stimulation is Zinc Finger E-

Box Binding Homeobox (ZEB1) (Fig.4). ZEB1 promotes EMT via activation of stemness transcription 

factors Snail, Sox2, Bmi1 and p63 and inhibition of stemness inhibiting miRNAs (Wellner et al., 2010). 

ZEB1 is also activated by NF-κB (Nomura et al., 2015), STAT3 (Panni et al., 2014), SHh (Tang et al., 

2012), WNT (Ilmer et al., 2015), NOTSCH, miRNA200 (Brabletz et al., 2011), DCAMKL-1 (Sureban 

et al., 2011), CD44 (Preca et al., 2015), OSM (Smigiel et al., 2017) and VASH2 (Zhang et al., 2018) 

(Fig.4).  

The EMT phenotype of pancreatic stem cells is also maintained in hypoxia, which induces the 

upregulation of glutathione peroxidase (GPX4) and N-cadherin in pancreatic stem cell (Peng et al., 

2019). In addition, HIF-α in CD133+ promotes the upregulation of Slug (Maeda et al., 2016), VEGF, IL-

6 (Bao et al., 2012), and RER1. Overexpression of RER1 upregulates N-cadherin, vimentin, and snail 
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in one hand, and downregulates E-cadherin and claudin-1 on the other hand. Markers relevant to 

stemness and EMT phenotypes e.g. Sox2, Bmi1, Lin28 and Nanog were suppressed in RER1 

knockdown cells (Chen et al., 2019).  

Intermittent hypoxia increases HIF-1α-induced autophagy, which endorses human pancreatic 

cancer cells migration and invasion (Zhu et al., 2014). HIF-1α upregulates β-catenin via Wnt3a, which 

increases vimentin expression and reduces expression of E-cadherin (Zhang et al., 2017). Another 

paracrine osteopontin/integrin αvβ3 signalling mechanism promotes EMT by modulating fork-head box 

protein M (Cao et al., 2019). Cyr61/CCN1 signalling is crucial for epithelial-mesenchymal transition as 

it cooperates with mesenchymal/stem cell molecules (i.e., Vimentin, Notch-1, Oct-4, ABCG2 and 

CD44) (Haque et al., 2011). Downstream from CCN1 is MAZ transcription factor, a stimulator of  

pancreatic cancer cell invasion via CRAF-ERK signalling (Maity et al., 2018).  

Canonical Wnt signalling is heterogeneously activated in PDAC. However, stemness-identical 

genes (e.g., SNAI1, NANOG, and ZEB1) and Wnt targets/enhancers (AXIN2, LGR5, RSPO2) are 

upregulated in pancreatic cancer cells. Significantly, higher expression of Wnt enhancer gene RSPO2 in 

PDAC tumours is correlated with ZEB1 overexpression (Ilmer et al., 2015). MTDH is overexpressed in 

metastatic PDAC cells. MTDH aides EMT by abolishing Twist1 in metastatic PDAC cells since the 

expression of Twist1 is significantly increased at EMT initiation only (Suzuki et al., 2017). 

CCL21/CCR7 enhances CD133+ pancreatic cancer stem cell metastasis and migration potential 

to lymph node or distant sites via EMT and Erk/NF-κB Pathway (Zhang et al., 2016). Nestin promotes 

tumour cell migration and induces EMT in PDAC. Nestin expression is induced by TGF-β1–Smad4 

pathway. TGF-b/Smad pathway induces Nestin expression, downregulating E-cadherin, and increasing 

protein expression of vimentin, α-SMA, and N-cadherin (Su et al., 2013). Dab2 loss of expression likely 

to  happeen early in pancreatic cancer progression, as Dab2 mRNA levels are higher in normal pancreatic 

tissue samples in comparison to pancreatic cancer stages III or metastatic tumour samples. Dab2 low 

expression affects EMT and CSC markers and stimulates TGF-β, Bmi-1 and Sox2 (Hocevar, 2019). 

Tumour-derived exosomes promote invasion of PDAC cells via enhancement of EMT and stem cell 

properties. Overexpression of Sox2ot induces mesenchymal-like morphological features in cancer cells 

and stemness properties via Sox2 activation (Li et al., 2018). Pancreatic cancer invasion ability and 
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expression of EMT-related genes is correlated with linc00675 as low levels of linc00675 decreased 

expression of mesenchymal markers N-cadherin and vimentin, and upregulated epithelial marker E-

cadherin (Li et al., 2015). 

 

Figure 4. Epithelial-mesenchymal transition molecular drivers. ZEB1 drives EMT via activation of TWIST, 

Slug, Snail and Bmi1 and inhibition of miRNAs inhibitory molecules. 

 

GM-CSF is necessary for transendothelial migration and invasion (Waghray et al., 2016). An 

RNA-Binding Protein, Hu-antigen R, enhances pancreatic cancer cell EMT, migration, and CSCs by 

upregulation of Snail (Dong et al., 2020). Aberrant co-overexpression of KLF8 and FHL2 was 

associated with tumour metastasis in pancreatic cancer. KLF8 upregulates FHL2 levels to induce EMT 

and promote cell invasion in pancreatic cancer (Yi et al., 2017). TUFT1 is involved in lymph node 

metastasis of advanced pancreatic cancer patients and overexpressed in tumour tissues compared with 

samples from adjacent normal ones. TUFT1 expression alters the expression of HIF1-Snail signalling 

in PDAC (Zhou et al., 2016).  
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MiRNAs are also involved in EMT in pancreatic cancer. For instance, miR‐10a promotes EMT 

via upregulating Hippo signalling pathway and inhibiting WWC2. A notably decreased in the protein 

levels of N‐ cadherin, Vimentin, CD44, CD24, EpCAM, Nanog, OCT, and SOX‐ 2 alongside with an 

elevated E‐cadherin level is observed upon miR‐10a inhibition (C. Wang et al., 2020). In addition, MiR-

100 and miR-125b levels proportionally increased with the cell mesenchymal status and antagonizes the 

CDH1expression. TGF-β treatment induces miR-100 and miR-125 through SMAD2/3 (Ottaviani et al., 

2018). ANX2 and TNC high expression is associated with peritoneal recurrence and poor prognosis in 

PDAC. Mechanistically, ANX2‑TNC functional role is to maintain mesenchymal phenotype and fosters 

neoplasia (Yoneura et al., 2018). 

Twist1 is a direct substrate of AURKA. AURKA associates with Twist1 and regulate subcellular 

localization and levels of N-cadherin, CD44, Slug and Snail levels (Wang et al., 2017). Secretome of 

mutant p53 cancer cell sparks migration and epithelial-to-mesenchymal transition (Butera et al., 2020). 

EMT genes expression patterns were altered once MEG3 was knocked down in PANC‑1 cell e.g. 

cadherin, Vimentin and Snail (Ma et al., 2018). SALL4 is also involved in EMT genes upregulation and 

therefore enhancement of cancer metastasis. A positive correlation with vimentin, N-cadherin 

concordant with a negative correlation with E-cadherin and ZO-1 expression have been observed in 

URG11 (Peng et al., 2014).  

 

1.7. Cancer stem cell and therapy resistance 

About 80% of PDAC patients are diagnosed very late and therefore chemotherapy/ radiotherapy 

is the only treatment option left for them. However, resistance is a major challenge for all types of 

therapy either adjuvant, after intended curative surgery or the one intended for advanced disease (Van 

den Broeck et al., 2009). Resistance in pancreatic cancer is due to tumour microenvironment low 

permeability or efficient efflux mechanism of chemotherapeutic agents (Olive et al., 2009; Olson and 

Hanahan, 2009). In pancreatic cancer, cells displaying properties of cancer stem cells (CSC) known as 

side population (Haraguchi et al., 2006). They represent the tumour’s subpopulation responsible for 

therapy resistance and disease recurrence (Clarke et al., 2006). The side population (SP) resistant cells 

are CD45+ and CD31+ cells and resistant to Gemcitabine. Three significantly upregulated pathways in 
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the SP involved in chemoresistance conceded by KEGG pathway analysis: stem cell factor; regulation 

of apoptosis; and epithelial-mesenchymal transition (Van den broeck et al., 2012). Upregulation of stem 

cell markers (CD24, CD44, CD144 or EpCAM) and associated genes (PDX1, SHH, CBX7 or OCT4) as 

well as EMT regulator group (SNAI1/Snail, SNAI2/Slug, TWIST) was observed (Quint et al., 2012). 

Gemcitabine treatment induces the expression of ITGA1, which promotes therapy resistance and 

metastasis (Fig.5). ITGA1 is required for PDAC cell survival and for collagen induced PDAC cell 

attachment, which is induced by PEAK1, BMPR2, COL4A1 and ZEB1 as well as ITGA1. ITGA1 also 

may regulate TGF-β responses in pancreatic cancer, that upregulates ZEB. Overall, the absence of 

ITGA1 decreases gemcitabine potency by nearly 10-fold (Gharibi et al., 2017). 

Epithelial-mesenchymal transition changes induced by gemcitabine are preserved phenotypes 

in pancreatic cancer (El Amrani et al., 2019). ATP-binding cassette subfamily G member 2 expression 

is high in pancreatic cancer and a correlation between ALDH1, CD44v9, OCT4, SOX2, and NESTIN 

was found in ABCG2+ cells but not in ABCG2- cells (Sasaki et al., 2018). MSX2, for instance, is a 

chemosensitivity determinant factor regulating the function of ABCG2 gene. MSX2 controls ABCG2  

via SP1 recruitment toward its SP1-binding elements within the ABCG2 promoter (Hamada et al., 2012). 

The epithelial-mesenchymal transition phenotype acquisition of gemcitabine-resistant pancreatic cancer 

cells is combined with notch-signalling pathway activation. Downstream target, NF-KB, and its 

cascades commit to EMT (Wang et al., 2009). Besides, ZNF32 overexpression reversed inhibitory effect 

of gemcitabine-resistant pancreatic cancer cells on the malignant progression of persuaded by 

microRNA-136-5 (Xu et al., 2020). SATB2 is another molecule that is highly expressed in CSCs. 

SATB2 exerts its stimulatory effect by binding to Bcl-2, Bsp, Nanog, c-Myc, XIAP, Klf4 and Hoxa2 in 

CSCs. 

SATB2 overexpression is in association with Zeb1 and N-cadherin, and inhibition of E-cadherin 

(Yu et al., 2016). Gemcitabine resistance of pancreatic cancer is enhanced by PVT1, which activates a 

Wnt/β-catenin and autophagy pathways via miR-619-5p/Pygo2 and miR-619-5p/ATG14 axe (Fig.5) 

inflecting (Zhou et al., 2020). Glycolysis governs DCLK1 expression via downregulating ROS 

production in GR cells with CSC and EMT features (Zhao et al., 2017). Pancreatic Stellate Cells(PSC) 

embellished CSC phenotype and radio-resistance of pancreatic cancer cells by promoting relevant 
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markers (Al-Assar et al., 2014). Therapy-associated cell death activates HMGB1-TLR2 signalling via 

CD133 and EMT-related genes e.g. more than eight times increase in Snail and Slug mRNA expression 

levels were observed (Chen et al., 2018). MiR-210 resolves BxS resistance GEM, by means of  

exosomes derived from BxR-CSCs (Yang et al., 2020). Pancreatic cancer cells that are resistant to 

gemcitabine exhibit elevated EMT and CSC characteristics. In pancreatic cancer cell lines with intrinsic 

gemcitabine resistance, high expression of ZEB1 and vimentin was confirmed, but poor expression of 

E-cadherin was found. Targets of MiR-145 Linc-DYNC2H1-4 induces upregulation of MMP3, Oct4, 

Lin28, Nanog, Sox2, and ZEB1 in pancreatic cancer cells (Gao et al., 2017). A phenotype resembling 

EMT is associated with decreased GPx1 expression in PDAC cells. Abrogation of GPx1 expression 

increases pancreatic cancer cell resistance to GEM via increased Snail, ZEB 1, and Vimentin level 

(Meng et al., 2018). Irradiation-induced cell death promotes CD133− dedifferentiation into CSCs. In 

CD133-cancer cells, HMGB1+ significantly increased the expression of the stem cell markers Oct4, 

Sox2, and Nanog, as well as their capacity to form spheres(Zhang et al., 2019). 

Gemcitabine resistance in pancreatic cancer cells is induced by MiR-365, which baits directly 

Src Homology 2 Domain Containing 1 (SHC1) and BAX. MiR-365/SHC1/BAX axis has an effect on 

pancreatic cells survival since the knockdown of SHC1 and BAX increases gemcitabine resistance. In 

addition, miR-365 upregulates cancer-promoting molecules such as DNA-binding inhibitor 2 and 

S100P, suggesting the existence of interactions with other cancer-promoting signals. Moreover, miR-

365 promotes the expression of molecules that are linked to cancer, including DNA-binding inhibitor 2 

and S100P, indicating that it may interact with other cancer-promoting signals (Hamada et al., 2014). 

Both stromal and tumour cells express CD90, and a high level of CD90 expression is associated with a 

poor prognosis in PDAC patients. Drug resistance decreased when EMT-ATF was silenced. Drug 

resistance and survival gene expressions reduced in tandem with the decrease in Snail, Slug, and Twist 

expressions (Survivin, Muc1, and ABCG2)(Kaşıkcı et al., 2020). In the 5-FU-resistant cells, L1CAM 

expression is increased. The chemoresistant cells are moderately protected from the 5-FU-induced 

apoptosis by L1CAM, which is also implicated in the proliferation and invasiveness of the 5-FU resistant 

clones.(Lund et al., 2015). 
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Figure 5. Chemotherapy resistance molecular mechanism in pancreatic cancer stem cells. The drug (e.g., 

gemcitabine) induced ITGA1, which activation pancreatic stem cell transcriptional machinery.  

 

1.8. Metastasis 

A discrete fraction of CD133(+) CXCR4(+) cancer stem cells was found in invasive pancreatic 

tumours, and these cells control the metastatic phenotype of the particular tumour. The metastatic 

phenotype of pancreatic tumours was virtually eliminated when the cancer stem cell pool for these 

migratory cancer stem cells was depleted, but their tumorigenic potential was unaffected. CD133 (+) 

CXCR4(+) cancer stem cells that migrate are necessary for tumour metastasis (Hermann et al., 2007). 

LOXL2-positive tumours displayed a considerably greater rate of distant recurrence patterns. Also, there 

is proof that reactive oxygen species (ROS), which is a hallmark for successful distant metastasis, affect 

metastasis and self-antioxidant capacity. Researchers have discovered that the Spalt-like protein 4 

(SALL4) regulates mitochondrial ROS via the FoxM1/Prx III axis at the molecular level. It's probable 

that SALL4 primarily promotes ROS and the endothelial-mesenchymal transition (EMT) phenotype in 

PDAC cells to increase metastatic effectiveness. (Huynh et al., 2018). In pancreatic cancer, the EMT-
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activator Zeb1 plays a critical role in cell plasticity and metastasis. Reduced grading, invasion, and 

distant metastases in PDAC are caused by Zeb1 deletion (Krebs et al., 2017). Besides, LOXL2 

overexpression enhanced the migration potential via upregulating Snail expression and phospho-

FAK/phospho-SRC and decreasing the expression of CDH1 (Park et al., 2016). Overexpression of 

SERPINB5 correlated with increased metastasis scores. In contrast, overexpression of AKAP12 was 

correlated with lower metastasis and invasion scores (Mardin et al., 2010). The expression of Hh 

molecules in cancer tissues and non-tumour tissues differed noticeably. The PANC-1 cell line, which 

exhibits poor differentiation and invasiveness, had high GLI1 expression. (Hao et al., 2013). 

SMARCAD1 enhances migration and invasion in PANC-1 cells. SMARCAD1 overexpression 

considerably aided PANC-1 cells' capacity to create wounds and migrate (Liu et al., 2019). REST was 

knocked down, which inhibited the ability of PANC-1 and AsPC-1 cells to proliferate, migrate, and 

invade, as demonstrated in vitro studies (Jin et al., 2019). 

Epithelial-mesenchymal transition (EMT), loss of E-cadherin expression, and up-regulation of 

mesenchymal genes like Snail were brought about by the in vivo selection of highly metastatic cancer 

cells. EMT and metastasis were induced in vivo when E-cadherin was genetically inactivated in parental 

cells. Snail, histone deacetylase 1 (HDAC1), and histone deacetylase 2 (HDAC2) are all components of 

a transcriptional repressor complex that controls the expression of E-cadherin in highly metastatic cells. 

In line, mesenchymal pancreatic cancer tissues and primary cell lines from genetically altered (KRAS 

G12D) mice revealed HDAC-dependent downregulation of E-cadherin and strong metastatic potential. 

Ultimately, HDAC activity is required for EMT and E-cadherin silencing by transforming growth factor 

beta in human pancreatic cancer cells. (von Burstin et al., 2009). As demonstrated in CP and PDAC, 

low miR-192 expression may help to either start or maintain an EMT phenotype and hence promote 

metastasis, which reduces patient survival periods (Botla et al., 2016). 

Slower growth rates, higher sensitivity to apoptosis-inducing drugs, and reduced motility and 

invasiveness were all characteristics of the low RAS activity of KRAS gene. Clones with lower RAS 

activity also had a lower propensity to form tumours in mouse xenograft models and had higher survival 

rates in mouse orthotopic pancreatic cancer models, according to in vivo tests (Padavano et al., 2015). 

There is a downregulation of MiR-4282 in pancreatic cancer samples. Low levels of miR-4282 

indicate a poor prognosis for pancreatic cancer patients as well as a high incidence of lymphatic and 
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distant metastases. MiR-4282 overexpression significantly reduced the capacity of PANC-1 and BxPC-

3 cells to migrate. Via certain binding sites, ABCB5 specifically targeted MiR-4282. In pancreatic 

cancer tissues, ABCB5 level is inversely associated to that of miR-4282. The inhibitory effects of miR-

4282 overexpression on the growth of pancreatic cancer might be eliminated by overexpressing ABCB5. 

(Li and Hou, 2020). For invasion and metastasis caused by fructose substitution, ST6Gal1 is necessary 

(Hsieh et al., 2017).  

HMGB1 is released from dying cells both in vitro and in vivo following radiation. The EMT 

program and TLR2 PI3K/Akt pathway, which are involved in HMGB1-mediated cell invasion, govern 

tumor cell motility (Chen et al., 2018). The human PDAC-CSCs' in vivo tumour growth and metastasis 

is significantly influenced by the CD95/CD95L system. Via Sck, CD95 activates the PI3K and 

MAPK/ERK pathways (Teodorczyk et al., 2015). Nodal expression levels were inversely associated to 

the degree of pancreatic cancer differentiation, with weaker nodal expression observed in pancreatic 

cancer tissues as opposed to those with high levels of differentiation. As nodal promotes pancreatic 

cancer cell motility and invasion, nodal signalling in pancreatic cancer cells stimulates the Smad2/3 

pathway. Nodal signalling promotes MMP2 and CXCR4 expression and causes EMT. (Duan et al., 

2015). Pancreatic ductal adenocarcinoma proliferation, migration and invasion are promoted by PCAT6 

via regulating miR-185-5p/CBX2 axis (W. Wang et al., 2020). Compared to nearby normal tissue 

samples, pancreatic cancer tissues displayed a considerably increased expression of the lncRNA LINP1. 

Patients with highly expressed lncRNA LINP1 demonstrated a higher frequency of distant metastases, 

but a poorer overall survival rate. LINP1 knockdown significantly reduced the capacity of pancreatic 

cancer cells to proliferate, invade, and migrate. (Chen et al., 2020). OCT4 promotes progression of 

pancreatic cancer. By inhibiting OCT4, MiR-335 prevents pancreatic cancer cells from metastasizing. 

(Gao et al., 2014). In pancreatic cancer cell lines and tumour tissue samples, MALAT-1 expression is 

increased.MALAT-1 suppresses cell migration and invasion. MALAT-1 facilitates tumour progression 

by inducing EMT. Cancer stem-like cell markers are expressed less frequently when MALAT-1 is 

knocked down (Jiao et al., 2014). Snail, Slug, and Twist-1 inhibition decreases PC cells' capacity for 

cellular migration. PC cells become less invasive and less able to adhere to laminin when Slug, Snail, 

and Twist are silenced (Kaşıkcı et al., 2020). Pancreatic cancer cell migration, invasion, and EMT are 

controlled by Linc-ROR (Fu et al., 2017b). Cdk4/6 upregulates the expression of genes promoting 
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invasion and metastasis. Marked induction of b-catenin, Slug, Twist, N-cadherin, and vimentin (Liu and 

Korc, 2012). In vitro, LIFR adversely controls the invasion and metastasis of PC cells. The PATU-

8988/LIFR cells' overexpression of LIFR dramatically reduced the expression of vimentin, beta catenin, 

and slug while inducing the expression of E-cadherin. (Ma et al., 2016).  

 

1.9. Immunological suppression 

PDAC cells population highly expressing CD90 possess significant stemness characteristics and 

tumorigenicity. A physical contact between CD90 positive cells and monocytes/macrophages is made 

possible by CD90 acting as an anchor for monocyte/macrophage adherence. In response, 

immunosuppressive properties of immune cells are promoted by the interaction between CD90 positive 

cells and monocytes/macrophages, which improves the stemness and epithelial-mesenchymal transition 

(EMT) of PDAC cells. Moreover, the majority of the CD90 positive population expresses PD-L1, giving 

these cells another way to elude immune monitoring (Shi et al., 2019). Significant relationships have 

been found between TNFSF9 and the genes STAT4, STAT1, TNF, IFNG, FOXP3, TGF, CTLA4, and 

TIM-3, which are markers for T helper 1, Treg, and T cell exhaustion (Wu et al., 2021). As evidenced 

by the considerably elevated levels of Snail, Slug, Twist, Zeb-1, Nanog, and Oct-4, monocytic myeloid-

derived suppressor cells accelerate EMT via activation of STAT3 (Panni et al., 2014). 

 

1.10. Cellular dormancy 

Dormancy is the process by which pancreatic cancer cell as a single cell or as micrometastases 

become nonproliferative (Wikman et al., 2008). The absence of growth factor signalling and the activity 

of metastatic suppressor genes cause cellular dormancy in pancreatic cancer, whereas the absence of an 

activated angiogenic switch at the secondary site causes angiogenic dormancy, or the presence of 

immunological factors causes angiogenic dormancy (immunologic dormancy) (Páez et al., 2012). A 

wide range of the cell cycle machinery is downregulated when SOX2 is elevated in different types of 

tumour cells, which suppresses both tumour growth and quiescence. (Metz et al., 2020). The biological 

underpinning for cancer recurrence upon oncogene reactivation is the survival of dormant pancreatic 

cancer cells that retain oncogenic KRAS expression. In cancer cells that are quiescent, killing oncogenic 
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KRAS activates AKT and increases IGF-1R signalling as a form of compensation.(Rajbhandari et al., 

2017).  

 

1.11. Tumour secretome 

Cellular components of PDAC tissue, such as cancer-associated fibroblasts or immune and 

tumour cells, release molecular information into the tumour microenvironment as part of their 

secretome; the relevant proteins also end up in the peripheral blood (Grønborg et al., 2006; Truong and 

Pauklin, 2021). The protein composition of the secretome is highly sensitive to pathological changes in 

the tumour and could thus provide an early picture of tumour development (Dowling and Clynes, 2011; 

Mustafa et al., 2011). Detecting variations in the abundance of cancer-associated proteins in blood may 

therefore provide a non-invasive process for sensitive and possibly early diagnosis. Another advantage 

would be that it could be repeated in short intervals as part of the normal follow-up after surgery without 

much extra burden to the patient (Qi et al., 2018). Quite a few blood-based PDAC markers have been 

reported overall (Al-Shaheri et al., 2021), only CA19-9 is being utilised on a routine basis for the 

management of pancreatic cancer patients (Poruk et al., 2013). 

 

1.12. MicroRNAs 

Non-coding RNAs called microRNAs (miRNAs) have a length of 22 nucleotides. MiRNAs 

interact with target mRNA of genes, resulting in their reduced translation or degradation. About 700 

miRNAs identified so far representing about 3% of the human genome (Ambros, 2004). MiRNAs 

control the expression of 60% of the protein-coding genes in humans (Friedman et al., 2009). They serve 

as gene expression regulators and control a wide range of cellular processes, including growth, 

differentiation, proliferation, and apoptosis. In cancer, miRNAs play oncogenic or tumour-suppressive 

functions including pancreatic cancer (Esquela-Kerscher and Slack, 2006). They regulate KRAS family 

and their downstream genes e.g. miR-96, miR-126, and miR-217 and therefore act as oncogenes (Jiao 

et al., 2012; Zhao et al., 2010). They also modulate the function of tumour suppressor genes, stemness 

and epigenetic pathways (Tesfaye et al., 2019). Circulating miRNAs are also attractive potential 
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molecular markers because of their stability, abundance, and technical ease of their isolation and 

amplification with inexpensive and non-invasive methods (Visani et al., 2015).  

 

1.13. Early detection of pancreatic cancer recurrence 

A blood-based assay for the detection of PDAC recurrence would be advantageous since it may 

yield early diagnosis. Also, it could be repeated in short intervals as part of the normal follow-up after 

surgery without any extra burden to the patient (Qi et al., 2018). Quite a few blood-based PDAC markers 

have been reported (Al-Shaheri et al., 2021), except CA19-9 that is currently used on a routine basis for 

the management of pancreatic cancer patients (Poruk et al., 2013). There have been few publications 

about blood-based detection or prediction of PDAC recurrence, dealing with different molecule classes. 

The presence of circulating tumour DNA (ctDNA) was reported as a predictor of decreased recurrence-

free survival (Groot et al., 2019b). Since ctDNA concentration is extremely low and varies substantially 

between patients, it may be missed for technical reasons, however. With respect to protein biomarkers, 

blood samples from 14 patients were studied and compared to the protein content of organoids derived 

from patients with early or late recurrence. Only very few samples were analysed in this study. Also, 

comparison of the protein content of blood and organoids may not be relevant. Last, there was no 

validation of potential protein biomarkers (Rittmann et al., 2021). Another investigation found six 

exosomal miRNAs that discriminated patients with recurrence from those without recurrence with an 

accuracy of 72% to 78% (Nishiwada et al., 2022).  

 

1.14. Dissertation objectives 

This dissertation aimed at establishing a blood-based assay that allows diagnosis of PDAC 

recurrence at high accuracy and also early enough so that the recurrent tumour is small enough to be 

removed successfully by surgery. In addition, the work defined the frequency and the intervals at which 

a diagnostic blood analysis must be carried out.  

Previous work in the division of functional genome analysis has shown that protein analysis of 

peripheral blood from patients or healthy individuals – additionally compared to the secretomes of 

tumour or non-tumour cells – identified protein variations, which distinguish at high sensitivity and 
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specificity between healthy people and patients with chronic pancreatitis or PDAC (Mustafa et al., 

2017). On the basis of these results, I set out to detect tumour recurrence by studying abundance 

variations of proteins in patient sera. The aim was to detect and predict tumour recurrence in PDAC 

patients after surgical resection earlier and with better accuracy than currently possible. Since many 

cancer-associated proteins are circulating in low concentrations, their analysis requires a highly sensitive 

process (Skalnikova et al., 2011). Also, detection of tumour protein markers in serum is obscured by 

highly abundant proteins, such as albumin and globulins; their depletion could introduce biases in the 

abundance measurements of other proteins (Govorukhina et al., 2003). Immunoassays allow 

circumventing these technical challenges. I utilized a microarray made of 2977 antibodies that detect 

2,286 proteins. Also consecutively collected blood samples from the same patients were analysed so as 

to look at changes over time.  
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2. MATERIALS AND METHODS 
 

2.1 Materials 

2.1.1 Software 

Table 1: Software 

 

2.1.2 Equipment 

Table 2: Equipment 

Equipment Name/Reference Company 

Pipettes Pipetman P1000,  

No.: FA10006M, 

Pipetman P200,  

No.: FA10005M, 

Pipetman P20, 

No.: FA10003M, P10, 

No.: F144802 

Gilson Inc. (Middleton, USA) 

Pipetting aid (Pipetboy) - Integra Bioscience (Hudson, USA) 

Multi-channel pippet 5-100 µl 7059567 Biohit (Darmstadt, Germany) 

Multichannel pipet 50-1000 µl - Gilson Inc. (Middleton, USA) 

Microarray spotter MicroGrid MGII600 BioRobotics (Cambridge, UK) 

SMP3B stealth pins 101092-942 Telechem (CA, USA) 

Microarray scanner Power Scanner V1.2  Tecan Group Ltd.  
(Männedorf, Switzerland) 

Epoxysilane-coated slides - Nexterion-E Schott (Jena, Germany) 

Centrifuge Centrifuge Sigma 2K15 Sigma (Osterode am Harz, Germany) 

Centrifuge  Biofuge  Heraeus (Hanau Germany) 

Name Company 

Genepix Pro 6.0 Molecular Devices (Sunnyvale, CA, USA) 

Power scanner v1.2 Tecan Trading AG (Switzerland) 

R Studio https://rstudio.com/ 

PubMed https://pubmed.ncbi.nlm.nih.gov/ 

Fluostar Galaxy 4.11-0 BMG Labtech (Offenburg, Germany) 

Ingenuity pathway analysis Qiagen (Venlo, Netherlands) 

Bioinformatics and evolutionary genomics VIB/ UGent (Gent, Belgium) 

AzureSpot Azure Biosystems (Dublin, USA) 

Uniprot https://www.uniprot.org 

2100 Expert Agilent (Santa Clara, California) 

HUSAR https://w2h2.dkfz.de/menu/cgi-bin/w2h/w2h.start 
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Thermal cycler  685112 Biozyme GmbH  
(Oldendorf, Germany) 

ELISA plate reader Fluostar Galaxy BMG Labtech (Offenburg, Germany) 

Shaker BUEH_14003 Edmund Bühler GmbH 

(Bodelshausen, Germany) 

Freezer - Bosch GmbH (Gerlingen, Germany) 

CO2-Incubator,  No.: MCO-19AIC Sanyo (Moriguchi, Japan) 

Laminar flow workbench, 

Class II 

- The Baker Company (Sanford, USA) 

Inverted microscope L-J0202-000-GE HUND (Wetzlar, Germany) 

Vortex Z258423 Scientific industries Genie-2  
(New York, USA) 

Quadrichem chamber - Vivascience (Hannover, Germany) 

Slide booster hybridization 

station 

- Advalytix (Munich, Germany) 

Cylinders and flasks - - 

Bioanalyzer 2100 G2939BA Agilent (Santa Clara, California) 

Qubit flourometer 4 Q33238 Invitrogen (California, USA) 

Electrophoresis power supply - E-C apparatus corporation (USA) 

MultiskanFC microplate reader 51119000 Thermo Fischer Scientific  
(Waltham, USA) 

Block thermostat CX112016 Eppendorf (Jülich, Germany) 

 

2.1.3 Chemicals 

Table 3: Chemicals 

Chemical Reference Company 

Tris-Hydrochloride 167620010 Fisher Scientific (Schwerte, Germany) 

Tris-Base T1503-1KG Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

Sodium Chloride 7647-14-5  Fisher Scientific (Schwerte, Germany) 

Sodium Azide A1430,0100 AppliChem GmbH (Darmstadt, Germany) 

Sodium Hydroxide 655104 Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

Tween 80  P1754-500ML Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

Skim milk powder 1602.0500 Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

Bicine B3876-250G Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

DMSO 276855 Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

Glycine 33226 Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 
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NP-40 (20%) 85124 Thermo Fisher Scientific (Waltham, USA) 

Na-Cholate (10%) C1254 Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

ASB-14 (5%) A1346 Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

12-Maltoside D4641 Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

Glycerol (99%) G5516 Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

EDTA 8040.3 Carl Roth GmbH (Karlsruhe, Germany) 

PMSF 1111 Gerbu Biotechnik GmbH  
(Heidelberg, Germany) 

Protease & Phosphatase 

inhibitor 

78440 Thermo Fisher Scientific (Waltham, USA) 

Benzonase 70664-3 Merck Life Science GmbH  
(Eppelheim, Germany) 

IMDM growth medium 21980-032 Thermo Fisher Scientific (Waltham, USA) 

1x PBS-Buffer (pH 7.4) 10010-015 Thermo Fisher Scientific (Waltham, USA) 

0.05% Trypsin-EDTA 25300-062 Thermo Fisher Scientific (Waltham, USA) 

Foetal Bovine Serum 26050-070 Thermo Fisher Scientific (Waltham, USA) 

Penicillin/Streptomycin mix 15140-122 Thermo Fisher Scientific (Waltham, USA) 

2-Propanol 33539-2,5L Thermo Fisher Scientific (Waltham, USA) 

6-Aminocaproic acid A7824-100G Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) 

Ammonium persulfate A1142,0250 AppliChem GmbH (Darmstadt, Germany) 

Trypsin 15090046 Gibco/Invitrogen, Karlsruhe, Germany 

L-Glutamine 25030149 Gibco/Invitrogen, Karlsruhe, Germany 

Foetal Bovine Serum (FBS) 11573397 Gibco/Invitrogen, Karlsruhe, Germany 

Methanol M/4000/PC17 Thermo Fisher Scientific (Waltham, USA) 

Agarose for molecular biology 

EEO  

SLCH6024 Sigma-Aldrich Chemie GmbH (Steinheim, 

Germany) 

 

 

2.1.4 Antibodies and Kits 

In total, 2,977 antibodies are used for antibody microarrays production and listed in Suppl. Tab. S1. 

Table 4: Kits 

Name Reference Company 

Pierce BCA Protein Assay 

Kit 

23227 Thermo Scientific (Rockford, USA) 

Dy-549-NHS 549P1-01 Dyomics (Dresden, Germany) 

Dy-649-NHS 649P1-01 Dyomics (Dresden, Germany) 
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DNAJC3 ELISA Kit MBS9336160 my BioSource (San Diego, USA) 

BRD3 ELISA Kit MBS9500849 my BioSource (San Diego, USA) 

miRNA easy kit  172041013 Qiagen (Hilden, Germany) 

RealSeq-Biofluids NGS 

Library Preparation Kit  

600-00048-SOM (Biosciences, Santa Cruz, USA) 

Qubit dsDNA HS assay kit 2174889 Life Technologies (Oregon, USA) 

Agilent DNA High 

Sensitivity Kit 

50674620 Agilent Technologies (Waldronn, Germany) 

Nucleospin Gel and PCR  740609.50 Machery-Nagel (Düren, Germany) 

GeneRule Low range DNA 

ladder 

SM1193 Thermo Fisher Scientific (Waltham, USA) 

Qubit RNA HS assay 2159938 Life Technologies (Oregon, USA) 

 

2.1.5 Consumables 

Table 5: Consumables 

Name Reference Company 

Centrifuge tube PP with screw cap 

PE, 15 mL 

02-502-3001 Nerbe plus (Winsen/Luhe, Germany) 

Centrifuge tube PP with screw cap 

PE, 50 mL 

02-572-3001 Nerbe plus (Winsen/Luhe, Germany) 

Safe-Lock tubes 1.5 mL 2027-12-28 Eppendorf (Hamburg, Germany) 

Safe-Lock tubes 0.5 mL amber 2022-01-28 Eppendorf (Hamburg, Germany) 

96-well flat bottom microplate 655101 Greiner Bio-One International GmbH 

(Kremsmünster, Austria) 

SurPhob tips reload, 1250 µL VT0173 Biozym Scientific GmbH  
(Hessisch-Oldendorf, Germany) 

SurPhob tips reload, 200 µL VT0143 Biozym Scientific GmbH  
(Hessisch-Oldendorf, Germany) 

SurPhob tips reload, 10 µL VT0113 Biozym Scientific GmbH   
(Hessisch-Oldendorf, Germany) 

T75-Flask 658 175 Greiner Bio-One GmbH  
(Frickenhausen, Germany) 

Serological pipette 5 mL 4487 Corning Incorporated (Corning, USA) 

Serological pipette 10 mL 4488 Corning Incorporated (Corning, USA) 

Serological pipette 25mL 4489 Corning Incorporated (Corning, USA) 

Vivaspin centrifugal Concentrators VS2091 Sartorius AG (Bretten, Germany) 

Coculture 6-well plates with inserts 140640 Thermo Fisher Scientific (Waltham, USA) 

RNAZAP spray SLBQ7780 Sigma-Aldrich Chemie GmbH 

(Steinheim, Germany) 

https://www.mybiosource.com/dnajc3-human-elisa-kits/dnaj-hsp40-homolog-subfamily-c-member-3/9336160
https://www.mybiosource.com/human-mouse-elisa-kits/brd3/9500849
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PCR tubes 0.2 ml thin-welled with 

flat-cup (RNase free) 

60431117 Thermo Fisher Scientific (Waltham, USA) 

Feather disposable scalpel 02.001.30015 Feather (Osaka, Japan) 

 

2.1.6 Cell lines 

Table 6. Cell lines whose secretome was analysed. 

Cell line Gender Cell source Histology Grade Patient age 

(years) 

AsPC-1 Female Ascites Adenocarcinoma/ Well-

moderately differentiated  

G2 62 

BxPC-3 Female Primary tumour Adenocarcinoma/ 

Moderately differentiated  

G2 61 

Capan-2 Male Liver metastasis - - 56 

MIA PaCa-

2 

Male Primary tumour Adenocarcinoma/ Poor-

moderately differentiated  

G3 65 

PANC-1 Male Primary tumour Ductal epithelioid 

carcinoma/ Poorly 

differentiated 

G3 56 

Suit2-020 Male Liver metastasis - - 73 

HPDE Female Immortalised 

human pancreatic 

duct epithelial cell 

Acute and chronic 

pancreatitis  

- 51 

 

Table 7: Cell lines whose proteome was used to prepare the antibody microarray common reference.  

Description of established cell lines 

Cell line Patient 

gender 

Cell source Disease/ grade of differention Patient age 

(years) 

BxPC-3 Female Primary tumour Adenocarcinoma / 
moderately differentiated 

61 

FAMPAC Female Primary tumour Adenocarcinoma: cystic fibrosis / 
poorly differentiated 

43 

IMIM-PC1 Male Primary tumour Adenocarcinoma / 
moderately differentiated 

- 

MIA PaCa-

2 

Male Primary tumour ductal carcinoma / 
poor-moderately differentiated 

65 

PANC-1 Male Primary tumour ductal epithelioid carcinoma / 
poorly differentiated 

56 

SK-PC-1 Female Primary tumour Adenocarcinoma / 
well differentiated 

- 
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SU.86.86 Female Primary tumour Ductal carcinoma / 
moderately differentiated 

57 

Capan-1 Male Liver metastasis Adenocarcinoma / 
well differentiated 

40 

Capan-2 Male Liver metastasis Adenocarcinoma / 
well differentiated 

56 

CFPAC-1 Male Liver metastasis Adenocarcinoma: cystic fibrosis / 
well differentiated 

26 

Suit-2 Male Liver metastasis Adenocarcinoma / 
well differentiated 

73 

Suit-007 Male Liver metastasis Adenocarcinoma /  
moderately differentiated 

73 

Suit2-020 Male Liver metastasis Adenocarcinoma /  
moderately differentiated 

73 

Suit-028 Male Liver metastasis Adenocarcinoma /  
moderately differentiated 

73 

Colo357 - Lymph node 

metastasis 

Adenocarcinoma /  
well differentiated 

- 

T3M4 Male Lymph node 

metastasis 

- /  
moderately differentiated 

56 

A818-1 Female Ascites Adenocarcinoma /  
moderately differentiated 

75 

A818-4 Female Ascites Adenocarcinoma /  
moderately differentiated 

76 

A818-7 Female Ascites Adenocarcinoma /  
moderately differentiated 

77 

AsPC-1 Female Ascites Adenocarcinoma /  
moderate-well differentiated 

62 

HPAF-II Male Ascites Adenocarcinoma / 
moderate-well differentiated 

44 

 

2.1.7. Buffers and solutions 

Table 8. Buffers and Solutions 

Buffer or solution Components 

3 L 10x TBS 94.56 g Tris HCl  

240 g NaCl 

3 g NaN3  

Dissolve in ddH2O and pH 7.6 

1 L 10x TBE 108 g Tris base 
55 g Boric acid 

7 g EDTA 

Dissolve in ddH20 and pH: 8.0 
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20% Tween 80 20 ml of Tween 80 in 80 mL ddH2O 

Sterile to 100 mL bottle through 0.22µl filter 

10x TBST TBS with 0.1% (v/v) 20% Tween 80 

Lysis buffer for protein isolation 500 μl of NP-40  

1000 μl of Na-Cholate  

1000 μl of ASB-14 

1000 μl of 12-maltoside  

2000 μl of glycerol (99%) 

1000 μl Bicine (0.5M, pH8.5)  

1000 μl EDTA.2Na (0.02 M)  

1000 μl of NaCl (1.50 M)  

50 μl of PMSF (200 mM in isopropanol)  

100 μl of protease and phosphatase inhibitor cocktail  

0.4 μl of Benzonase (100 U/μl)  

1346 μl of ddH2O 

Milk blocking buffer for microarray 10% milk powder in 1XTBST 

Spotting buffer 100 mM bicine 
0.05% Tween-20 

0.05% sodium azide 

5% trehalose 

5 mM magnesium chloride 

 

 

2.2. Methods 

2.2.1. Patients’ samples 

10 ml tubes containing blood samples were taken from each patient, and centrifuged at 1,600 g 

for 10 min. at 4°C. The serum was stored immediately at -80°C until use. For biomarker discovery, 149 

serum samples from 101 individuals were obtained from the Pancobank repository of the European 

Pancreas Centre at the Department of Surgery, University Hospital Heidelberg; Pancobank is a member 

of the Biomaterial Bank Heidelberg. I analysed the serum samples only, whose pathological diagnosis 

from resected material was confirmed to be PDAC. Serum samples were collected at the time of surgery 

and during post-operative clinical follow-up every three to six months until the patient died, or the 

follow-up was stopped for another reason. For validation, an independent cohort of 60 serum samples 

was collected prospectively from 41 patients to document the diagnostic performance of the biomarker 

signature at real clinical conditions. Informed consent in writing had been obtained from participants 

and the ethics committee of Heidelberg University has given the ethical approval (ethics votes 159/2002, 
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708/2019 and S-508/2022). The work described here was performed in compliance with provisions of 

the Declaration of Helsinki. 

 

2.2.2. Protein profiling by antibody microarray 

2.2.2.1. Production of antibody microarrays 

Antibody microarrays were produced using a well-established protocol described earlier 

(Alhamdani et al., 2012; Mustafa et al., 2017). Briefly, the antibodies were spotted at a concentration of 

1 mg/ml antibody in 100 mM bicine buffer (pH 8.5), 0.05% Tween-20, 0.05% sodium azide, 5% 

trehalose, 5 mM magnesium chloride, 137 mM sodium chloride onto epoxy-coated slides (Nexterion-

E; Schott, Jena, Germany) using a MicroGrid MGII600 contact printer (BioRobotics, Cambridge, UK) 

with SMP3B pins (Telechem, Sunnyvale, USA) at an humidity of 55% to 65%. I spotted each antibody 

in duplicates, included positional markers and controls and allowed an overnight equilibration at room 

temperature and 55%-65% humidity followed by a long-term storage in dark and dry conditions at 4C°. 

Initially, microarrays containing all 2,977 antibodies were produced. For validation, the number of 

antibodies was reduced to 568, which targeted 355 informative biomarker candidates and 213 non-

informative proteins.  

 

2.2.2.2 Preparation of common protein reference sample 

A common protein reference sample was studied in parallel to each actual sample, providing an 

internal control of experimental performance and quality. At the same time, it was serving as a reference 

for data normalization between the individual experiments. Preparation of the sample has been described 

in detail before (Alhamdani et al., 2012). In short, 22 pancreatic cancer cell lines (Tab. 7) were cultivated 

for 24-36 hours and then split into six plates. At 80% confluency, all cells were harvested, mixed, and a 

single protein extraction was performed as described earlier (Alhamdani et al., 2010b). The protein 

sample was labelled with fluorescent dye (Dyomics, Jena, Germany) and stored in aliquots at -20°C 

until use. For all experiments described here, aliquots of the very same protein reference sample were 

used. 

 



29 

2.2.2. 3. Cell culture and secretome collection 

The non-cancerous, immortalized human pancreatic duct epithelial cell line HPDE-E6E7 (Tab. 

6) and the pancreatic cancer cell lines PANC-1, BxPC-3, AsPC-1, Capan-2, MiaPaCa-2, and Suit2-020 

were acquired from ATCC and verified by the DKFZ Genomics Core Facility. Regular checks for 

mycoplasma infection were performed for all cells. I used Iscove's Modified Dulbecco's Medium 

(IMDM) with 10% foetal bovine serum, 100 U/ml penicillin and 100 μg/ml streptomycin to cultivate 

cells (Invitrogen, Darmstadt, Germany) at 37°C in a humidified atmosphere of 5% CO2 until they reach 

85-90% confluency. I used Phosphate-buffered saline (PBS) to wash the cells three times, and serum-

free media for additional two washes. Cells were cultivated for a further 48 hours after being incubated 

in serum-free media for 12 hours to synchronize cell growth. The medium was then taken out, 

centrifuged for 10 minutes at 3,500 g, filtered through 0.22 M nylon filters, and kept at -80°C. 

To study the secretome of cancer-associated fibroblasts, human immortalized pancreatic stellate 

cells (PSCs) were co-cultivated with PANC-1, BxPC-3, AsPC-1, Capan-2, MiaPaCa-2 and Suit2-020, 

respectively, using 6-well co-culture inserts (Thermo Fischer Scientific, Waltham, USA) under the same 

growth conditions described above. The PSC cell line was a kind gift from Ralf Jesnowski from 

Mannheim University Hospital in Germany (Jesnowski et al., 2005). PSC cell was also co-cultivated 

with HPDE in the same conditions. 

I isolated peripheral blood mononuclear cells (PBMCs) from blood samples taken from healthy 

donors at Heidelberg Blood Bank. All donors had provided written informed consent, and the local 

ethics commission had approved the analysis (ethical vote 2016-615N-MA). In short, 15 ml blood were 

added to the SepMate-15 system (Stemcell Technologies, Cologne, Germany) and diluted with 15 ml 

PBS. The manufacturer's instructions were followed during the cell purification process. After 

centrifugation at 1,200 g for 15 min, the top layer of buffy coat was collected. Centrifuged again at 300 

g for 8 min, the mononuclear cells were washed with 25 ml PBS twice and resuspended in PBS, 0.5% 

BSA, 2 mM EDTA. The enriched monocytes were counted and co-cultured with PANC-1, BxPC-3, 

AsPC-1, Capan-2, MiaPaCa-2, Suit2-020, respectively, as described above.  PBMCs was co-cultivated 

with HPDE in the same co-culture condition described above.  
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2.2.2.4 Preparation of conditioned media 

According to the manufacturer's instructions, I utilized vivaspin-20 tubes with a molecular 

weight cut-off value of 3 kDa (Sartorius, Göttingen, Germany) for secretome preparation. Each tube 

was filled with 20 ml of growth medium from each separate cell culture and spun in a swing bucket 

centrifuge at 5,000 g for two hours at 4 °C (Thermo Fisher Scientific). Using the same centrifugation 

settings, I used 20 ml of 0.1 M bicine buffer (pH 8.5) for desalting twice. A bicinchoninic acid protein 

assay reagent kit was used to assess the protein concentration in the final ultrafiltered solution (Thermo 

Fisher Scientific). SDS gel electrophoresis was used to evaluate the overall protein integrity, and 

samples were stored at -80°C until use. 

2.2.2.5 Antibody microarray analysis 

The protein concentration of serum samples was adjusted to 4.0 mg/ml using phosphate buffer 

(pH 7.2). The proteins in the serum samples or the common reference were labelled with the fluorescent 

dyes DY649 or DY549 (Dyomics, Jena, Germany), respectively, at a molar protein/dye ratio of 7.5 in 

PBS (pH 7.2) at 4°C for 2 h. Subsequently, 10% glycine in PBS was used to quench unreacted dye. 

Microarray analyses were performed as previously described in detail (Alhamdani et al., 2010a). Prior 

to incubation, the microarrays were equilibrated in 20 mM Tris (pH 7.6), 150 mM NaCl (TBS) and then 

washed twice with TBS containing 0.05% Tween 80. The microarray surface was blocked with 10% 

non-fat dry milk (BioRad, Munich, Germany) in TBS, 0.05% Tween 80 for 3 h at room temperature. 

The blocked slides were incubated with 25 µg/ml each of labelled serum protein and the common 

reference at 4°C in the dark overnight. The slides were washed four times with TBS, 0.05% Tween 80 

for 5 min, rinsed in deionized water and air-dried in a ventilated oven at 37°C. A PowerScanner system 

(Tecan, Männedorf, Switzerland) was used for image capture at constant laser power and photo-

multiplier tube gain. Image analysis was performed with GenePix Pro 6.0 software (Molecular Devices, 

Sunnyvale, USA) generating numerical values of signal intensities. 

 

2.2.2.7 Enzyme linked immunosorbent assays (ELISAs) 

Serum levels of the proteins DNAJC3 and BRD3 were determined by quantitative ELISA using 

commercially available kits from myBiosource (San Diego, USA) and abbexa (Cambridge, UK), 
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following the manufacturers’ instructions. Optical density was measured at 450 nm using a MultiskanFC 

microplate reader (Thermo Fischer Scientific). 

 

2.2.2.8 Microarray data analysis 

The data from the microarray experiments were analysed using a very well-established 

bioinformatic pipeline described before (Zhang et al., 2022). In short, LIMMA package in R was utilised 

to study differential protein abundance (version 4.0.4) (Ritchie et al., 2015). Using the function 

"backgroundCorrect," the Loess method was used to normalize the data with an offset for the 

background correction (0.50) (Ritchie et al., 2007). Variations within and between microarrays were 

corrected by applying the functions ‘normalizeWithinArrays,’ and ‘normalizeBetweenArrays.’ Multiple 

testing was done using the Empirical Bayes test and the Bonferroni-Hochberg adjustment (Smyth, 

2004). An adjusted p-value of less than 0.05 was considered significant. For evaluating the diagnostic 

power of individual proteins, univariate logistic regression combined with ROC analysis was done in R 

using the pROC package (Robin et al., 2011). Least absolute shrinkage and selection operator (LASSO) 

regression based on the R package ‘glmnet’ (v. 4.1-3, 34) (Friedman et al., 2022) and recursive feature 

elimination (RFE) with 5-fold cross validation of the R package ‘caret’ (v. 6.0-91) were applied feature 

selection to enhance predictive accuracy (Kuhn, n.d.). The identified marker molecules were used to 

train an SVM classifier with the ‘e1071’ package (version 1.7-9)  (Pisner and Schnyer, 2020). Classifier 

parameters were optimized by an exhaustive search approach to avoid over- or underfitting. Using the 

SVM decision values, a ROC curve and the respective AUC value were calculated. The classifier was 

then used with fixed parameters to evaluate its diagnostic performance using information derived from 

samples of the validation cohort that were prospectively gathered. The Ingenuity Pathways Analysis 

(IPA) software package (version 6.3; Ingenuity Systems, Redwood City, USA) was used to predict 

functional characteristics of differentially expressed proteins. With the use of UniProt's web-based Gene 

Ontology tool, component annotation was mapped (www.uniprot.org). 
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2.2.3. Serum miRNA profiling by small RNA sequencing 

2.2.3.1. MiRNA extraction  

Total RNA including miRNAs were extracted from 200µl serum using miRNAeasy kit (Qiagen, 

Germany) according to the manufacturer’s instructions. Extraction efficiency was assessed by qPCR 

using standard curve obtained from spike in control according to manufacturer’s instructions. Also, the 

quantity of extracted RNA was assessed by Qubit high sensitivity RNA kit (Life Technologies, USA).  

 

2.2.3.2. Library preparation 

In the discovery phase, 149 Individual libraries were prepared from 5µl extracted miRNA using 

Real-Seq Biofluids NGS library preparation Kit (Biosciences, Santa Cruz, USA) according to the 

manufacturer’s instructions. After the PCR amplification, each library PCR products was run in 4% 

agarose gel electrophoresis for two hours at 80 V. The library band of 140-145 bp were excised using 

sterile surgical scalpel (Feather, Japan) under UV transilluminator using the 366-nm wavelength. The 

DNA was then extracted from the gel using Nucleospin Gel and PCR kit (Machery-Nagel, Germany) 

according to the manufacturer’s instruction. Libraries concentration was measured by Qubit DNA high 

sensitivity kit (Life Technologies, USA), and the concentration in ng/µl was converted into molar 

concentration. I also checked the size of the miRNA libraries using the Bioanalyzer 2100 and DNA high 

sensitivity kit (Agilent, USA). Using the molar concentration and library size, I normalized each library 

concentration to 10 nM/µl. Libraries were pooled at equal concentration (10nMµ) and volume (10 µl) 

and sent to the DKFZ core facility for small RNA sequencing, where additional quality control of the 

molar concentration and fragment size were done by Tapstation (Agilent, USA). For prospective 

validation, I also prepared 76 small RNA sequencing libraries using the same protocol described above.  

 

2.2.3.3. Small RNA sequencing 

The 149 libraries generated during at the discovery cohort were multiplexed in 10 lines and 

sequenced by Hiseq2000 v4 single read 50bp with 51 cycles. Additional 76 libraries, generated for 

prospective validation, were multiplexed in 4 lines and sequenced utilizing Nextseq 550 single read 

75bp. 
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2.2.3.4. Quantitative PCR (qPCR) 

miRNA biomarker candidates emerging from small RNA sequencing were further verified by 

quantitative PCR (qPCR) testing. Using the miRCURY LNA RT Kit for RNA isolated with the 

miRNeasy Serum/Plasma kit, reverse transcription was carried out. To convert the results of each qPCR 

reaction into the number of copies, a standard curve based on cel-miR-39-3p was created. Then, 5µl of 

the 2x miRCURY SYBR Green Master mix and 1µl of the PCR primer mix were added to 4µl of the 

cDNA template, which had been diluted 1:20. The PCR procedure includes an initial 95°C heat 

activation for 2 minutes, followed by 45 cycles of primer annealing and extension at 56°C for 1 minute 

and denaturation at 95°C for 10 seconds. QPCR reactions were run on a Life Technologies 480 machine 

based on the miRNA assays guidelines.  

2.2.3.5. Small RNA sequencing data analysis 

Data in FastQ file format was obtained from DKFZ data management repository, where also 

reads quality control check was performed. The data was analysed using HUSAR (Heidelberg Unix 

Sequencing Analysis Resources), which is a very well-established bioinformatics platform at DKFZ  

(“https://www.dkfz.de/en/forschung/zentrale_einrichtungen/cfomics/login.html?m=1543423542&,” 

n.d.). In short, sequencing reads were mapped using “sRNAMapper” tool after trimming the sequencing 

adapter to human genome (Chr38) with default parameters. The clean Fastq files were then annotated 

for ncRNA using “ncRNAannotator” that utilize bowtie for annotation of Homo sapiens precursor 

miRNAs. Data bases used for the annotation are Ensemble 85, GtRNAadb2011, Rfame 12.1, miRbase 

21, piRNA 2012 and piRNABank 2.0. For differential expression analysis of annotated miRNAs, the 

tool “CompaRNA” in HUSAR was used. The parametric hypothetical test for DeSeq at 0.01 threshold 

of p value was used with a minimum negative fold change of -1 and a minimum positive fold change of 

1 in algorithmic scale. The count reads of differentially expressed miRNA were extracted and converted 

into logarithmic scale and used for the biomarker selection process. For evaluating the diagnostic power 

of individual miRNA, univariate logistic regression combined with ROC analysis was done in R using 

the pROC package (Robin et al., 2011). Least absolute shrinkage and selection operator (LASSO) 

regression based on the R package ‘glmnet’ (v. 4.1-3, 34) (Friedman et al., 2022) and recursive feature 

elimination (RFE) with 5-fold cross validation of the R package ‘caret’ (v. 6.0-91) were applied for 
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feature selection to enhance predictive accuracy (Kuhn, n.d.). The identified marker molecules were 

used to train an SVM classifier with the ‘e1071’ package (version 1.7-9; (Pisner and Schnyer, 2020)). 

Classifier parameters were optimized by an exhaustive search approach to avoid over- or underfitting. 

Using the SVM decision values, a ROC curve and the respective AUC value were calculated. The 

classifier was then applied with fixed parameters to assess its diagnostic performance with the data 

resulting from the prospectively collected samples of the validation cohort.  

 

2.2.4. Combining protein and miRNA biomarkers 

Protein and miRNA tested samples were divided randomly into a training cohort and a 

validation cohort. Empirical Bayes test and Student's t-test were employed, respectively, to confirm 

significant changes in protein and miRNA abundance. I used Recursive Feature Elimination with 5-fold 

cross validation to build a SVM classifier using the R package e1071(Pisner and Schnyer, 2020). The 

classifier with fixed parameters was then applied to the data resulting from the validation samples for 

the confirmation of the model prediction and classification potential and to determine the diagnostic 

value of the combined biomarker panel. 
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3. RESULTS 
 

3.1. Clinical patient information 

Biomarker discovery was performed on 149 serum samples obtained from 101 patients, who 

had undergone curative surgical resection of a primary PDAC tumour at the Surgery Department of 

Heidelberg University Hospital between April 2008 and March 2018. Adjuvant chemotherapy had been 

prescribed to 87% of them. The blood samples were collected during routine clinical follow-up visits 

and stored at the Pancobank repository of the European Pancreas Centre (EPZ) at the surgery department 

of Heidelberg University Clinics. Patients’ demographic characteristics, pre-operative symptoms, 

radiological findings, laboratory data and pathologic factors were collected; also, results were recorded 

of pre- and post-operative cross-sectional imaging (CT and MRI) and measurements of CA19-9 or CEA 

blood levels (Tab. 9). Some 65% of the patients had tumour recurrence within two years after surgery, 

while no evidence of recurrent tumour was detected in the others during this period. The recurrence 

status was determined by standard diagnostics at Heidelberg University Hospital, in particular CA19-9 

levels and CT or MRI imaging, according to the NCCN clinical practice guidelines (Tempero et al., 

2017). For validation, I used prospectively collected samples in order to demonstrate the power of the 

biomarker classifiers in a setting close to the real clinical situation. These samples came from 36 patients 

of the EPZ, who had tumour resection done between February 2020 and June 2021. Three quarters of 

the patients underwent adjuvant chemotherapy. The recurrence status was monitored every three months 

for a period of two years or until recurrence was detected. 

3.2. Serum protein profiling 

For the identification of protein biomarker candidates, I studied the protein content of serum 

samples from patients with and without clinically confirmed tumour recurrence; the design of the overall 

analysis is shown in Fig. 6. A microarray made of 2,977 antibodies targeting 2,286 proteins was used 

for the analysis. First, 149 serum samples were studied. Sixty-seven of them came from patients who 

had experienced recurrence at the time of blood collection according to radiological and laboratory 

evidence produced during the clinical follow-up. 

Table 9. Clinico-pathological characteristics of PDAC patients. 
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Variable 
Discovery cohort 

 (n = 101) 

Prospective cohort 

 (n = 36) 

Sex 

Male 

Female 

 

46 / 46% 

55 / 54% 

 

24 / 66% 

12 / 33% 

Age at surgery in years 

Median 

Range 

 

62,4 

36-83 

 

63 

39-82 

Tumour location 

Head 

Body 

Tail 

Other 

 

68 / 67% 

20 / 20% 

12 / 12% 

1 / 1% 

 

22 / 61% 

5 / 14% 

3 / 8% 

6 / 17% 

Neoadjuvant 

chemotherapy 

Yes 

No 

 

10 / 10% 

91 / 90% 

 

4 / 11% 

32 / 89% 

T stage 

T1 

T2 

T3 

T4 

10 / 10% 

17 / 17% 

71 / 70% 

3 / 3% 

6 / 17% 

22 / 61% 

5 / 14% 

3 / 8% 

- 

N stage 

N0 

N1 

N2 

 

33 / 32% 

36 / 36% 

32 / 32% 

 

13 / 36% 

12 / 33% 

11 / 31% 

M stage 

M0 

M1 

 

97 / 96% 

4 / 4% 

 

34 / 94% 

2 / 6% 

Tumour recurrence 

Yes 

No 

 

 

66 / 65% 

35 / 35% 

 

 

22 / 61% 

14 / 39% 

Recurrence type 

Local 

Liver 

Lung 

Others 

Multiple loci (>2) 

 

36 / 54% 

12 / 18% 

7 / 11% 

3 / 5% 

8 / 12% 

 

5 / 23% 

4 / 18% 

2 / 9% 

5 / 23% 

6 / 27% 

Adjuvant chemotherapy 

Yes 

No 

Unknown 

 

88 / 87% 

12 / 12% 

1 / 1% 

 

30 / 83% 

6 / 17% 

- 

R status 

R0 

R1 

R2 

Unknown 

 

43 / 43% 

54 / 54% 

1 / 1% 

3 / 3% 

 

28 / 78% 

7 / 19% 

1 / 3% 
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Figure 6. Scheme of the overall protein analysis pipeline. The workflow for the selection and validation of 

serum protein biomarker classifiers is displayed. 

 

The other 82 samples were grouped into the norecurrence group because of the lack of any such 

evidence. In the analysis, 957 proteins exhibited a significant difference in abundance between the 

recurrence and norecurrence group. This relatively high number is not surprising, since many antibodies 

had been selected based on the likelihood that the targeted proteins could be relevant to pancreatic cancer 

or at least involved in tumorigenesis overall.  

 

3.2.1. Recurrence classifier made of tumour-associated proteins 

To focus on variations in protein abundance that are directly associated with the tumour, I 

compared the serum results to a list of proteins that were found to be secreted by tumour cells. The 

rationale was that protein abundance variations in the cell secretome also affect the protein content of 

the serum. Secretome samples were prepared from individual cultures of the PDAC cell lines AsPC-1, 
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BxPC-3, Capan-2, MiaPaCa-2, PANC-1 and Suit2-020 as well as co-cultures with either pancreatic 

stellate cells (PSCs) or peripheral blood mononuclear cells (PBMCs). The cell lines represent tumours 

that originate from both male and female patients as well as primary tumour and metastasis (Tab. 6). 

The PDAC secretome samples were pooled and protein abundances were compared to those in pooled 

secretomes isolated from non-cancerous HPDE cells that were also co-cultured with PSCs or PBMCs. 

Several independent secretome preparations were analysed (Fig. 6), yielding 617 proteins that exhibited 

significant differences between PDAC and HPDE secretomes. Functional annotation of the candidate 

proteins showed that they are associated with a reduction of apoptosis and a simultaneous increase in 

cell proliferation and migration (Tab. 12). The fact that some proteins are also linked to an increase in 

immune cell trafficking and inflammatory response to tumour suggests that biomarker candidates may 

not only originate from tumour cells but might also be released by other cell types within the tumour 

microenvironment. 

There was an overlap of 159 proteins that were detected to be differentially abundant in both 

serum and secretome analysis; only changes were taken into account that were similar in direction in 

both studies, namely both significantly increased or decreased, respectively. The likelihood of these 

molecules to be PDAC-associated is higher than that of the other 798 proteins which also exhibited 

variations in serum. Receiver operating characteristic (ROC) analysis was individually performed with 

each of the 159 biomarker candidates and the resulting area under the curve (AUC) value was taken as 

a measure of performance. No single protein was found to produce an AUC value higher than 90%. 

Furthermore, enormous variation in the actual performance became apparent once candidates were 

validated in an independent set of 60 validation samples, which had been collected prospectively during 

the follow-up after surgical removal of a primary PDAC tumour (Fig. 7A).  

Given the molecular complexity and heterogeneity of PDAC, a biomarker panel rather than an 

individual molecular marker is likely to be superior for an accurate and particularly also a robust assay. 

Therefore, I applied absolute shrinkage and selection operator (LASSO) regression and recursive feature 

elimination (RFE) with 5-fold cross validation, which are robust procedures for marker selection und 

deleting unnecessary covariates (Jeon and Oh, 2020; Tibshirani, 1996). The resulting protein panel was 

used to train a support vector machine (SVM) classifier. The algorithm draws a hyperplane into the 
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multi-dimensional protein space, by which the samples get separated into two groups in the best possible 

way (Pisner and Schnyer, 2020). To prevent over- and underfitting, a combination of three parameters 

(cost, gamma, and epsilon) was tuned during the procedure. The final classifier consisted of 8 proteins 

– BRD3, CYP3A5, DDI2, GCA, HM13, OSMR, PIGK and RIFK – and distinguished patients with 

recurrence from those without recurrence with AUC value of 89% (Tab. 10). For validating the 

performance, the classifier was applied to the 60 separate serum samples, yielding an AUC value of 

76%; in particular sensitivity was low with 67%. 

 

 

Figure 7. AUC values of individual serum markers. ROC curve analyses were performed for protein markers 

individually; the respective AUC values are shown. (A) The left panel shows the results calculated from the 

discovery analysis of the tumour-centred approach. At the right panel, the AUC values are shown that were 

calculated for the same 51 proteins using the validation samples. The order of proteins is identical to that in the 

left panel. (B) Identical presentation of the results obtained with 341 proteins that were found by the systemic 

approach. 
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Table 10. Protein classifier identified for the diagnosis of PDAC recurrence. 

Protein classifier 
Number of 

biomarkers 

Selection 

process 

Parameters of 

SVM classifier  
Sensitivity Specificity AUC 

         

BRD3, CYP3A5, DDI2, HM13, 

OSMR, PIGK, RIFK, GCA 
8 Tumour-centred 7.0 0.01 0.30 0.81 0.67 0.88 0.79 89% 76% 

ALG2, DNMT1, GCA, IGFBP3, 

IL23A, SPDL1, TMCC1, VPS4B 
8 Systemic 6.0 0.03 0.50 0.84 0.61 0.89 0.71 92% 68% 

ALG2, BRD3, DNMT1, HM13, 

IL23A, OSMR, PIGK, RIFK, 

SPDL1, VPS4B 

10 Combined 7.0 0.01 0.30 0.90 0.88 0.77 0.78 91% 85% 

AUC: area under the curve; SVM: support vector machine. 
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Table 11. Protein classifiers identified for the prediction of PDAC recurrence.  

Protein classifier 
Panel 

size 

Predicted time 

to recurrence 

Selection 

process 

Parameters of 

SVM classifier 
Sensitivity Specificity AUC 

         

FZR1, GFRP, INPP5D, MART, 

XMRVP12 
5 

within 

3 months 

Tumour-

centred 
8.0 0.10 0.10 0.91 0.91 0.83 0.89 90% 86% 

ACTL7A, ACTR10, CD7 3 Systemic 0.5 0.80 0.01 0.87 0.82 1.00 1.00 95% 93% 

ACTL7A, ACTR10, CD7, GFRP 4 Combined 0.5 0.50 0.01 0.95 0.91 1.00 1.00 99% 97% 

CTPS, HM13, MMD2, NQO1, 

RPL7A, SCG2, SFXN4 
7 

within 

3 - 6 months 

Tumour-

centred 
0.4 0.02 0.50 0.87 0.66 1.00 0.87 94% 81% 

SDCBP, SERPINE1, SLC1A6, 

TNFAIP1, WNK1, XBP1 
6 Systemic 0.1 0.10 0.90 0.89 0.77 0.83 1.00 87% 87% 

HM13, SDCBP, SERPINE1, 

SLC1A6, TNFAIP1, WNK1, XBP1 
7 Combined 0.4 0.02 0.50 0.90 0.77 0.83 0.86 85% 85% 

IFNGR1, OTUB1, YIPF6 3 

within 

6 - 12 months 

Tumour-

centred 
7.0 0.20 0.80 0.96 0.91 0.88 1.00 96% 96% 

CCNA2, FLRT1, FLT1, NUSAP1, 

UBE2T, UBE2W, WNK1 
7 Systemic 4.0 0.10 0.07 0.96 0.78 0.88 1.00 93% 92% 

NUSAP1, OTUB1 2 Combined 10.0 0.20 0.90 0.67 0.73 1.00 0.86 88% 86% 

IFNGR1, NUSAP1, OTUB1, YIPF6 4 Combined + 10.0 0.10 0.90 0.96 1.00 0.88 1.00 0.96 100% 

IL18, PTPRS, VCAM1 3 

later than  

12 months 

Tumour-

centred 
7.0 0.40 0.03 0.96 0.77 0.83 1.00 90% 89% 

ARHGEF18, CALML5, CDC34 3 Systemic 0.7 0.01 0.90 0.91 1.00 0.83 0.75 92% 89% 

CALML5, CDC34, PTPRS, 

VCAM1 
4 Combined 7.0 0.30 0.01 0.98 1.00 1.00 0.75 99% 93% 
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Table 12. Most frequently predicted functions associated with proteins that differed significantly in abundance in the secretome of pancreatic cancer cell lines 

compared to non-tumour cells. 

Functions annotation p-value 
Predicted 

activation state 

Activation 

z-score 
Molecules 

# 

Molecules 

Apoptosis 3.7 E-14 Decreased -3.390 

AKT3, BAX, BCL2L1, BMX, CBX3, CDC25A, CDKN1A, CSTA, CSTB, CYSLTR1, 

DDIT3, DKK1, DLG1, ECT2, EFEMP1, FUS, FUT4, GCLM, GMNN, GPM6B, 

GRB10, GSN, HSH2D, IL10, IL6, ITGA1, KRAS, MAD2L1, MDH1, MSN, MYD88, 

NRAS, ODC1, OGG1, OTUB1, PLK1, PMAIP1, PTPN1, PTPN6, RELT, SALL1, 

TAF4, THOC1, TNFRSF9, TOP1, YWHAB, ZFAND6 

47 

Proliferation of 

tumour cell 
1.6 E-12 Increased 2.272 

AKT3, BAX, BCL2L1, BMX, CBX3, CDC25A, CDKN1A, DDIT3, DKK1, DLG1, 

DUSP19, ECT2, EFEMP1, FABP2, FUS, FUT4, GMNN, IL10, IL6, ITGA1, KRAS, 

MAD2L1, MDH1, MSN, MTA1, MYD88, NRAS, ODC1, OGG1, OTUB1, PLK1, 

PTPN1, PTPN14, PTPN6, RAD52, THOC1, TOP1, UBE2A, UBE2J1 

39 

Abdominal neoplasm 8.9 E-08 Increased 2.073 

AFDN, AKR1C1/AKR1C2, AKT3, AOC1, BAX, BCAS1, BCL2L1, BMX, CBX3, 

CD58, CD7, CD8A, CDC25A, CDKN1A, CHN1, CHST4, CLDN16, CSTB, CXCL9, 

CYSLTR1, DDI2, DDIT3, DKK1, DLG1, DLG2, DUSP19, ECT2, EFEMP1, FABP2, 

FUS, FUT4, GCLM, GMNN, GPM6B, GRB10, GSN, GTF2E2, HMGN2, IL10, IL1R2, 

IL6, ITGA1, KRAS, MAD2L1, MDH1, MSN, MTA1, MYD88, NBR1, NRAS, ODC1, 

OGG1, OTUB1, PLK1, PMAIP1, PTPN1, PTPN14, PTPN6, RAD52, RELT, RPL3, 

SALL1, STK19, TAF4, TCF25, THOC1, TM4SF4, TNFRSF9, TOP1, UBE2A, 

UBE2E1, UBE2E3, UBE2J1, UBE2T, YWHAB, ZNF124 

76 

Pancreatic cancer 5.8 E-06 Increased 2.763 
AKR1C1/AKR1C2, BAX, BCL2L1, CD7, CDKN1A, CSTB, CXCL9, DDI2, DKK1, 

DLG1, ECT2, GRB10, IL10, IL6, KRAS, MAD2L1, MSN, MYD88, NRAS, PLK1, 

PMAIP1, PTPN1, PTPN14, PTPN6, SALL1, TAF4, TCF25, TOP1, UBE2J1 
29 

Inflammation 3.9 E-06 Increased 2.068 
BAX, BCL2L1, CDKN1A, CYSLTR1, IL10, IL6, KRAS, MYD88, NBR1, PTPN6, 

TNFRSF9 
11 

Invasive tumour 3.3 E-06 Increased 2.291 
AFDN, AKR1C1/AKR1C2, AKT3, BAX, BCL2L1, CDC25A, CDKN1A, CSTB, 

CXCL9, DKK1, EFEMP1, FUS, IL6, KRAS, MTA1, NRAS, OGG1, PLK1, PTPN1, 

PTPN14, RPL3, TAF4, TOP1 
23 

Quantity of myeloid 

cells 
1.4 E-06 Increased 2.446 

BCL2L1, CD8A, CDKN1A, DDIT3, DKK1, FUT4, GSN, IL10, IL6, KRAS, MSN, 

MYD88, PTPN6, TNFRSF9, UBE2W 
15 

IPA software was used to construct the prediction z-score (positive for activation, negative for inhibition), as explained in the Materials and Methods section.  
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3.2.2. Diagnostic performance based on a systemic analysis 

Alternatively to the approach of comparing serum and secretome data for the selection of 

tumour-associated informative proteins, I performed the same analysis process described above without 

any initial filtering of the 957 proteins that exhibited significantly differential abundance in sera from 

patients with PDAC recurrence compared to the norecurrence group. The rationale here was that the 

entire body reacts to the re-emergence of the tumour so that also changes in the abundance of proteins 

released to the blood stream by cells and tissues other than the actual tumour could be indicative of 

disease (Hiam-Galvez et al., 2021; Paul, 2020). Also, the body might sense the tumour earlier than 

diagnostic processes. As for the tumour-associated proteins, no individual molecules exhibited sufficient 

accuracy (Fig. 7B). A functional annotation of the serum biomarker candidates revealed much more 

immunologically relevant aspects compared to the tumour-associated functions, which is in agreement 

with the assumption that a more global response to the tumour is represented in serum. 

The biomarker selection process resulted in an SVM classifier of again 8 proteins – ALG2, 

DNMT1, GCA, IGFBP3, IL23A, SPDL1, TMCC1 and VPS4B. Remarkably, only protein GCA was 

part of this classifier and the one created from the tumour-associated proteins. In the discovery sample 

cohort, the marker panel produced an AUC value of 92%, slightly better than the tumour-centred 

classifier. However, discrimination power was worse upon validation with the abundance data from the 

independent 60 sera, yielding an AUC value of only 68% (Tab. 10). Again, sensitivity was particularly 

low with a value of 61%. 

 

3.2.3 Combined analysis 

With both approaches yielding classifiers of limited performance, I hypothesized that a 

combination of both may actually improve accuracy. I therefore took the total of 15 protein markers and 

performed another round of RFE with 5-fold cross-validation. The remaining proteins were used for 

training an SVM classifier that was made of 10 proteins: ALG2, BRD3, DNMT1, HM13, IL23A, 

OSMR, PIGK, RIFK, SPDL1 and VPS4B. Applying this protein panel resulted in an AUC value of 85% 

upon validation (Fig. 8), much better than the 67% and 76% obtained earlier. This improvement was 

particularly due to a much-increased sensitivity of 88% (Tab. 10). Five proteins each of the two initial 
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classifiers were selected by the process, suggesting similar relevance of both tumour-specific and 

systemic factors. Protein GCA was not included although it had been part of both initial classifiers, 

indicating that a combination of complementary rather than supplementary aspects is critical for 

improving the quality of diagnosis. 

 

 

Figure 8. Performance of the 10-protein combined SVM classifier in diagnosing pancreatic cancer 

recurrence. As determined by the discovery and validation sample cohorts, the results are shown as ROC curves 

with relevant AUC values. 

 

3.2.4 Early detection of recurrence  

Detecting tumour recurrence earlier than currently possible could substantially affect the 

outcome. If diagnosed early enough, a recurrent tumour could be removed by another surgical 

intervention resulting in a substantially better prognosis to a patient (Strobel et al., 2013). I used 59 

consecutively collected samples from individual patients who had blood samples taken at or close to the 

dates of their clinical follow-up to see how much earlier the established 10-marker classifier would be 

able to detect disease compared to clinical diagnosis (Fig. 9). An annotation of recurrence was only 

considered as such, if the following sample or diagnostic analysis confirmed the result. On average, the 

blood-based classifier detected tumour recurrence nearly 3.5 months earlier than the standard clinical 

procedures, which included CT imaging. 
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Figure 9. Comparison of detecting recurrence with either the 10-protein classifier or current clinical 

standard procedures. Several blood samples were drawn from individual patients after tumour resection until 

recurrence was clinically confirmed. In parallel, standard diagnostics was applied. The time span prior to clinically 

confirmed recurrence and the respective diagnosis are shown. 

 

3.2.5. Tumour recurrence prediction  

Predicting the time of tumour recurrence after surgery could substantially influence PDAC 

patients’ management. It would allow identifying patients at high risk and defining appropriate treatment 

options (Sugawara et al., 2021). Therefore, in addition to establishing a classifier for diagnosis, I aimed 

at defining protein signatures that could predict the time to recurrence. To this end, I took again 

advantage of the consecutively collected samples from individual patients. I defined the date of clinically 

confirmed recurrence as endpoint and calculated the time from that endpoint backward. Pairwise 

comparison was performed of serum samples collected at the time of diagnosing recurrence versus those 

collected prior to recurrence at time intervals of 1 to 3 months, 3 to 6 months, 6 to 12 months, or more 

than 12 months. The serum analyses yielded 425, 421, 414 and 125 protein biomarker candidates, 

respectively. As for diagnostics, three approaches were followed, looking for tumour-associated 

markers, systemic marker molecules or merging the two classifiers for the definition of a combined 
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predictive protein panel. In most cases, the combined approach produced the best classifier (Fig. 10; 

Tab. 11). Only four proteins predicted with high accuracy (AUC values of 99% and 97% in the training 

and validation analyses) that a tumour could be expected to recur within three months. For the period of 

3 to 6 months, a classifier of 7 proteins was required to yield an AUC value of 85%. Only two proteins 

– NUSAP1 and OTUB1 – were informative as a combined classifier to predict recurrence within 6 to 

12 months (Fig. 10). However, performance was worse than that of the tumour-centred or the systemic 

classifier. Most obviously this was due to the very low number of proteins. Therefore, I doubled the 

number of markers to four by adding the two remaining molecules of the tumour-associated approach 

(Tab. 11) to create a protein panel made of IFNGR1, NUSAP1, OTUB1 and YIPF6, raising the AUC 

value at validation to 100% (Fig. 10). Also, the prediction of a longer-term lack of recurrence (more 

than 12 months) by a classifier of four proteins was found to be rather accurate with an AUC value of 

93% upon validation. 

 

 

Figure 10. Performance 

of PDAC recurrence 

prediction. For the 

identification of predicting 

classifiers, pairwise 

comparisons were done 

between the protein 

content of serum samples 

collected at the time of 

recurrence versus 

samples, which had been 

collected 1-3 months, 3-6 

months, 6-12 months, or 

more than 12 months 

before. The results, as 

determined by the 

discovery and validation 

sample cohorts, are shown 

as ROC curves with 

relevant AUC values. 
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3.2.6. ELISA validation  

No antibody microarray, such as the one used in this study, will be applicable in clinical routine 

testing. Other immunoassay formats will have to be used instead. ELISA, for example, is well 

established in clinical diagnostics. To test the robustness of my results, I employed commercially 

available ELISA kits in order to confirm the variations in serum abundance observed with the antibody 

microarray analyses. Besides representing a platform that is in widely spread use in clinical diagnostics, 

the kits also utilised other antibodies targeting the same proteins, thereby checking if bias was introduced 

that was based on the antibodies. More than 50 individual patient samples were analysed with the 

respective ELISA. In all cases, high concordance with the data from the antibody microarray analyses 

was found (e.g., Fig. 11). The results nevertheless also exhibited the substantial variation in the 

abundance of individual markers in different patients, corroborating the need for marker classifiers 

instead of individual biomarker molecules for an accurate diagnosis. Rather than focussing only on 

proteins, whose serum levels had been found to vary, I also studied molecules, for which no significant 

change had been recorded on the microarrays. The ELISAs confirmed these results too (Fig. 11), 

indicating the high degree of reproducibility. 

 

 

Figure 11. Typical results of validating microarray results with ELISAs. The serum levels of proteins 

BUD31 and BRD3 were analysed in 16 serum samples from patients with recurrence and 35 samples from patients 

without recurrence two years after surgery. In addition, the protein levels of DNAJC3 and NQO2 were determined 

in 35 samples from patients, who had experienced tumour recurrence, and another 21 patients with no recurrent 

tumour. All analyses were performed with commercially available ELISA kits that used antibodies which are 

different from the ones used on the antibody microarrays but target the same proteins. In accordance with the 

microarray results, the variation was highly significant (p ≤ 0.001) for BUD31 and BRD3, while no significant 

change could be observed for DNAJC3 and NQO2. 
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3.3. Serum miRNA analysis 

For miRNA analysis, total RNA was isolated from serum samples used for protein analysis. The 

overall analysis pipeline is shown in Fig. 12. Briefly, NGS libraries were prepared using Real Seq 

Biofluids NGS library Preparation Kit (Biosciences, Santa Cruz, USA). After quality control, the 

concentration was adjusted to 10 nM/µl. Sequencing was performed in the Core Facility at DKFZ using 

High-Seq 2000 V4 single read 50 bp. Due to the relatively small number of human miRNAs, 15 samples 

were sequenced in one lane. The resulting depth of 10 million reads per sample is sufficient for a 

statistical analysis of the frequency of each miRNA. Sequencing outputs were mapped and annotated to 

the recent version of miRBase (Kozomara et al., 2019). In total, 1829 precursor miRNAs were detected 

at least once across all samples. The count reads were filtered for miRNAs that showed at least 10 reads 

in all samples. Based on these criteria, 850 mature miRNAs were identified across all the samples, which 

were used for further analysis. To identify miRNA signatures capable of detecting and predicting tumor 

recurrence, first the miRNA contents of 75 samples was studied and compared serum samples defined 

with recurrence with those samples without recurrence at respective endpoint. The statistical analysis 

identified 153 miRNAs that showed a significant difference in the abundance between the two groups 

(Fig. 12). 

 

3.3.1. miRNAs-based recurrence classifier  

To the end of defining a PDAC-specific miRNA signature capable to discriminate between 

samples with recurrence from those without recurrence, the focus was on 100 miRNAs that showed 

significant P-value on logistic regression analysis (Fig. 12). I first looked at the accuracy performance 

of individual miRNAs molecules. Although some individual miRNAs showed an accuracy of 90% on 

the discovery analysis, they accuracy dropped significantly upon validation indicating that the individual 

information is not sufficient for robust and reproducible diagnosis (Fig. 13). Using LASSO and RFE 

with 5-fold cross validation, a classifier made of 7 miRNAs (hsa-mir-100, hsa-mir-215, hsa-mir-3916, 

hsa-mir-484, hsa-mir-6752, hsa-mir-6773, hsa-mir-6883) was identified, which were utilized to 

construct a SVM-based miRNA signature. Interestingly, the 7 miRNAs classifier performance was 

superior to that of protein signatures achieving 97% accuracy based on the discovery analysis. Upon 

validation, the classifier accuracy remained at 90% (Fig. 14 & Tab.12). 
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Figure 12. Scheme of the overall miRNAs analysis pipeline. The workflow is shown of the processes for the 

identification of serum miRNAs classifiers and their validation. 

 

3.3.2. Tumour recurrence prediction using miRNAs 

I also aimed to use miRNA information to predict tumour recurrence time taking the advantages 

of consecutively collected blood samples and detailed clinical information of the patients. The pairwise 

comparisons of miRNA contents in serum samples collected at the time of recurrence with samples 

collected in a time frame between 1-3 months, 3-6 months, 6-12 months or > 12 months prior to 

recurrence yielded 33, 79, 34 and 101 miRNA variations. Using the same approach in Fig. 12, a 

predictive classifier consisted only of four miRNAs (hsa-mir-3620, hsa-mir-3665, hsa-mir-495, hsa-mir-

129-1) predicted at robustly reproducible accuracy the recurrence that likely to happen within 3 months’ 

time (Fig. 15 & Tab.12). Less accurate but similarly robust and reproducible predictive accuracy was 

obtained from the model aimed to prognose the recurrence time within 3-6 months. The model consisted 

of hsa-mir-3614, hsa-mir-184, hsa-mir-218-2, hsa-mir-6752 and yielded 85% accuracy at the discovery 
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analysis and upon validation (Fig. 15 & Tab.12). Out of 34-miRNA variations between samples 

collected at time of recurrence versus those collected within 6 to 12 months prior to recurrence only 

three miRNAs namely hsa-mir-3178, hsa-mir-658, hsa-mir-6752 could work together and yielded a 

moderate accuracy on validation (82% and 70%) (Fig. 15 & Tab.12). Predicting tumour recurrence in 

time-window beyond the 12 months was the most difficult to achieve. Although the 13-miRNA classifier 

accuracy was 100% in the discovery analysis, the model yielded 80% accuracy upon validation (Fig.15). 

 

 
Figure 13. AUC values of individual miRNA markers. ROC curve analyses were performed for miRNA markers 

individually; the respective AUC values are shown. (A) The left panel (A) shows the results calculated from the 

discovery analysis. At the right panel (B), the AUC values are shown that were calculated for the same miRNAs 

using the validation samples. The order of miRNAs is identical to that in the left panel. (B) Identical presentation 

of the results obtained with 100 miRNAs that showed a significant p value in the logistic regression analysis. 

 

 

 

Figure 14. Performance of the 7 miRNAs classifier 

in diagnosing pancreatic cancer recurrence. 
Findings are shown as ROC curves and associated 

AUC values, as determined by the discovery and 

validation sample cohorts, respectively. 
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Table 13: List of serum-based miRNA classifiers 

Biomarker names 
Diagnostic 

objective 
Panel size 

SVM 

classifier 

parameters 

 

Discovery Validation 

Sens Spec AUC Sens Spec AUC 

hsa-mir-100, hsa-mir-215, hsa-mir-

3916, hsa-mir-484, hsa-mir-6752, 

hsa-mir-6773, hsa-mir-6883-5P 

Recurrence vs. 

nonrecurrence 
7 

Cost: 3 

Gamma: 0.02 

Epsilon: 0.08 

0.96 0.91 0.97 0.83 0.85 0.90 

hsa-mir-3620, hsa-mir-3665, hsa-

mir-495, hsa-mir-129-1 

Recurrence 

vs.1- 3 months 

 

4 

Cost: 0.1 

Gamma: 0.01 

Epsilon: 0.9 

0.84 1.00 0.90 1.00 0.67 0.90 

hsa-mir-3614, hsa-mir-184, hsa-

mir-218-2, hsa-mir-6752 

Recurrence vs. 

3-6 months 
4 

Cost: 3 

Gamma: 0.02 

Epsilon: 0.06 

0.96 0.67 0.86 0.92 0.68 0.85 

hsa-mir-3178, hsa-mir-658, hsa-

mir-6752 

Recurrence vs. 

6-12 months 3 

Cost: 0.4 

Gamma: 0.04 

Epsilon: 0.01 

0.67 1.00 0.83 0.60 0.83 0.70 

hsa-let-7i, hsa-mir-127, hsa-mir-

1273d, hsa-mir-1303, hsa-mir-

133a-1, hsa-mir-133a-2, hsa-mir-

134, hsa-mir-1976, hsa-mir-486-1, 

hsa-mir-566, hsa-mir-654, hsa-mir-

7108, hsa-mir-7851 

Recurrence 

vs.> 12 months 

13 

Cost: 9 

Gamma: 0.1 

Epsilon: 0.8 

1.00 1.00 1.00 1.00 0.80 0.82 

     AUC: area under the curve; ROC: Receiver Operating Characteristics; RFE: Recursive Feature Elimination; SVM: support vector machine.
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Figure 15. Performance of miRNAs recurrence prediction classifiers. For the identification of predicting 

classifiers, pairwise comparisons were done between the protein content of serum samples collected at the time of 

recurrence versus samples, which had been collected 1-3 months, 3-6 months, 6-12 months, or more than 12 

months before. The findings are shown as ROC curves and related AUC values that were obtained from the 

discovery and validation sample cohorts, respectively. 

 

3.3.3. RT-PCR validation  

I aimed at confirming the clinical utility of miRNAs signatures described here using quantitive 

RT-PCR. The rationale was demonstrating the usefulness of simple, cheap, and robust qRT-PCR-based 

assays that could be easily translated in clinical settings. Also, for the purpose of technical validation of 

our observations from the small RNA sequencing. I utilized miRCURY LNA to validate the abundance 

variations of hsa-mir-625 and hsa-mir-6883-5P. Locked Nucleic Acid (LNA) technology allows an 
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effective and highly accurate discrimination between different miRNA molecules (Rasmussen and 

Roberts, 2007). In concordance with the data obtained from small RNA sequencing, high variations in 

the abundance of has-mi-6883-5P between recurrence and non-recurrence was observed while no 

significant difference was seen in the sera contents of has-mir-625 (Fig. 16).  

 

 

Figure 16. Typical results of validating miRNAs with RT-PCR. The serum levels of has-miRNA 6883-

5P and has-miRNA-625 were analysed in 15 serum samples from patients with recurrence and 35 samples from 

patients without recurrence two years after surgery. In accordance with the small RNA sequencing, the variation 

was highly significant (p ≤ 0.0001) for has-miRNA 6883-5P, while no significant change could be observed for 

has-miRNA 625. 

 

3.4. Combining miRNA and proteins for early detection of tumour recurrence in PDAC 

Although the discrimination between recurrence from nonrecurrence samples achieved 

relatively high accuracy using either a protein or miRNA classifiers, the number of molecules included 

in the signatures is relatively high (10 for protein signature and 7 for miRNA classifier). Also, for clinical 

use, it will be easier to analyse less marker molecules assuming that they are sufficiently informative. 

Our hypothesis was that a multi-parametric assay might improve further the accuracy of the assay 

assuming that the information from miRNAs would supplement or complement the diagnostic 

information obtained from the protein biomarkers. Therefore, I tried to develop a classifier that 

incorporates differentially abundant proteins and miRNAs to further enhance the performance. The 17 

marker molecules were combined and Recursive Feature Elimination with 5-fold validation was used to 

find the best combination. A four markers classifier made of proteins BRD3, PIGK in combination with 



54 

hsa-mir-6773, hsa-mir-6883-5P yielded an accuracy of 91% and 83% on the training and validation 

cohort respectively (Fig. 17).  

 

Figure 17. Diagnostic ability to distinguish between samples with recurrence and samples without 

recurrence using a panel of two proteins and two miRNA biomarkers. As determined by the training 

and validation cohorts, the results are shown as ROC curves and related AUC values. 
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4. DISCUSSION 
 

Tumour resection is the best treatment option for PDAC patients at tumour stages I or II. Since 

the majority of patients experience a relapse in the following two years, it is crucial to have robust and 

effective diagnostic means to detect recurrence accurately and while the tumour is still small enough to 

be surgically removed again with then high chances of good outcome (Strobel et al., 2013). Post-

operative monitoring of PDAC patients currently includes CT scans and testing of CA19-9 levels 

(Tempero et al., 2017) but frequently fails to detect a recurrent tumour early (Daamen et al., 2018a, 

2018b). Moreover, homozygous mutations in the gene FUT3 result in a lack of fructosyltransferase 

activity, which prevents CA19-9 from being detected in 5–10% of patients. (Yue et al., 2011). Due to 

its accessibility and durability, blood is a desirable source for biomarkers. As a result, over the past ten 

years, a tremendous amount of liquid biopsy research has been conducted on blood-based 

biomarkers(Mattox et al., 2019). Serological biomarkers also have the benefit of being able to be 

longitudinally evaluated over the course of an illness. Yet, a challenge could be that not all molecular 

markers react right away to the excision of the main tumour or reappear upon recurrence.  

Here, I firstly investigated the diagnostic utility of changes in protein abundance in serum. The 

non-invasiveness of blood-based diagnosis ensures minimal impact on the patient and thereby permits 

its repeated application and thus a close monitoring of disease progress. The analysis would fit into the 

existing clinical diagnostic environment. Two approaches were executed and evaluated – analysis in a 

tumour-centred or a more systemic manner – for their potential to identify relevant protein biomarkers. 

Both yielded similarly effective protein classifiers. By combination of the two, better performance was 

achieved even with only 10 of the 15 proteins of the original classifiers, indicating the value of 

combining complementary rather than supplementary factors for enhancing and refining diagnostic 

performance. Similar effects have been reported by combining biomarkers of different molecular classes 

toward the same end (Al-Shaheri et al., 2021). The point was further emphasized by the fact that the one 

protein contained in both the tumour-centred and the systemic classifiers was not part of the final, 

combined protein marker signature. 
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A validated AUC value of 85% would not be sufficient for randomly screening individuals with 

no risk or strong suspicion of disease. However, the specifications for diagnostic precision are strongly 

dependent on the overall setting and diagnostic objectives. Basically, all PDAC patients, who undergo 

resection of the primary tumour, will experience recurrence and usually within some two years after 

surgery. In consideration of the dire consequences if recurrence is diagnosed too late, picking it up with 

the accuracy achieved by this assay could make a big difference in patient survival. Of a more tentative 

nature is the average time span of about 3.5 months by which the protein classifier detected tumours 

earlier than current processes. While the result is encouraging, more analyses have to be performed in 

order to refine and confirm it. The time gained by the protein classifier seems to differ substantially 

between patients. Many factors and parameters, such as size and location of the resected tumour, were 

not taken into consideration but may make a significant difference. Additionally, the presence of co-

existing clinical diseases such as diabetes and obstructive jaundice could have an effect. For 

confirmation, a study is required that consists of more samples so as to check for any co-founding 

factors. 

The studies described here were done with serum samples from a single clinical source: the EPZ 

at the surgery department of Heidelberg University Clinics. For classifier development, I used selected, 

well-annotated samples that had been collected and stored for research purposes over several years. On 

purpose, however, I used blood samples for validation that were collected during ambulant outpatient 

visits that are part of the routine follow-up at EPZ after tumour resection, lacking prior knowledge about 

sample quality or patient outcome. These samples represent the clinical situation in which any classifier 

has to perform. This may have contributed to the slightly lower AUC values upon validation. All 

variations due to reasons other than biology, such as sample handling, should be minimal since only 

samples from EPZ were used. Prior to any clinical application, the classifiers need to be validated in a 

wider, multicentre study in order to accommodate also aspects such as different handling procedures. 

Nevertheless, the study results are likely to be robust since the data was evaluated on an adequate number 

of samples for both marker identification and validation. In addition, the technical confirmation with 

ELISA using other antibodies in a different assay format confirmed the solidity of the results. 
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The annotation of samples as “recurrent” or “non-recurrent” was based on the standard 

diagnostic processes applied in clinical routine. We cannot exclude that samples may have been falsely 

annotated as “non-recurrent”, for example, since the tumour was missed for technical limitations of 

routine diagnostics. This would introduce a bias insofar as the distinction of the samples into two groups, 

which were used to define the protein signatures, would be less stringent and thus affect the 

discrimination power of the resulting classifiers. This possible bias, however, would reduce the apparent 

accuracy of our analysis, so the actual accuracy would be higher than what is reported here. 

Besides diagnosis, the protein abundance variations also allowed at high accuracy to predict the 

period until recurrence is likely to happen. In combination with the ability of detecting actual recurrence, 

this could have substantial consequences on patient management. For example, blood samples could be 

collected at longer or shorter intervals, which are adapted to the time-frame predicted for the respective 

patient. Thus, the results could have an immediate impact on individual patients. Besides using the 

scheme of training and validation in the assay development, I tested four markers molecules using 

ELISA that utilized independent antibodies. The significant and non-significant observations I have seen 

in the antibody microarray were confirmed by ELISA illustrating high degree of reproducibility. 

Furthermore, ELISA is established technique in clinical laboratories, and this could facilitate the 

translation of the results into clinical practice. 

Next to analysing serum proteins, I used Next Generation Sequencing for profiling the miRNAs 

variations in order to define recurrence-specific miRNA signatures. Although NGS is powerful 

technology for miRNA expression profiling, poor accuracy is likely to happen due to biases that stem 

from sequence-dependent variability in the enzymatic ligation reactions (Sorefan et al., 2012). To reduce 

the bias risk, miRNA molecules were ligated using a single adapter, circularized, and circular fragments 

were selected using magnetic beads. This process greatly reduced biases in library preparation and 

sequencing, allowing the identification of a large variety of miRNAs from only 200 µl serum and 

increased the sequencing output 1,000-fold (Barberán-Soler et al., 2018). I improved the protocol further 

to get rid of adapter dimers as well as other fragments that may affect the sequencing depth or introduce 

sequencing bias. To this end, I ran libraries for 2 hrs on 4% agarose gel and the libraries corresponding 

to miRNAs (143bp) only were excised and extracted from the agarose gel. Libraries qualities were 
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checked by two independent methods: First, at the division of functional genome analysis utilising the 

Bioanalyzer 2100 and DNA high sensitivity kit and second, at the sequencing core facility of the DKFZ 

using tap-station. Only libraries of high quality were quantified and pooled. Since it is unlikely that a 

single marker would be enough for accurate diagnosis looking at the AUC values of individual miRNAs 

markers, a combinatory of several molecules is a better alternative. A classifier consisted of 7 miRNAs 

was constructed and trained with all parameters being optimized to avoid under or over fitting. To 

confirm the utility and reproducibility of the data generated in the discovery cohort, I analysed the 

miRNA contents of serum samples from independent using the same protocol. The 7-marker classifier 

was tested with all parameters being fixed. Remarkably, the classifier achieved high accuracy upon 

validation indicating that the classifier is reproducible and robust and that there was no under or 

overfitting problem in the SVM model. The classifier sensitivity and specificity are very high that 

warrant clinical application. Since miRNAs are stable marker molecules, testing can be easily 

performed. I confirmed the utility and applicability of RT-PCR based-testing as well. 

Using longitudinally collected serum samples together with detailed monitoring information, I 

established miRNA-based algorithms for predicting the time when recurrence is likely to happen. The 

prognostic information derived from these classifiers would substantially guide oncologists to draw 

appropriate personalised treatment plans for individual patients. The prediction models developed in 

this dissertation would improve substantially the risk assessment and survival of PDAC patients. 

Patients could be classified as high risk, if recurrence is predicted to likely happen within the next 3-6 

months. In this case, a closer follow up and treatment plans should be adjusted to the risk level. In 

contrast, patients in whom non-recurrence is predicted, unnecessary invasive procedures should be 

avoided. In comparison to other clinical (e. g NCCN guidelines) and pathological process, the classifiers 

are more accurate in the recurrence risk assessment providing prognostic information about the disease 

progression in the next 2 years. In other words, the classifiers would provide optimal indication for 

surgical re-resection of the tumour while it is still small, substantially improving the patients’ survival. 

They could also help oncologists to make decisions to continue chemotherapy or not and reduce 

ineffective and invasive surgeries performed for occult metastases. Since the panels can be used at 

multiple time points, this will allow clinicians to continuously evaluate the patients’ clinical course.  
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A review published in the journal Cancer Treatment Review comprehensively summarized and 

compared biomolecules in many investigations (Al-Shaheri et al., 2021). Global processes for biomarker 

discovery processes, such as mass spectrometry or antibody-microarrays, analysed few thousand 

molecules (Hoheisel et al., 2013; Liu et al., 2017), which is only a small percentage of the total number 

of produced proteins assuming that one gene only encodes one protein, which is not a true assumption 

in fact. Therefore, many studies have no or only little overlap with others. Furthermore, it is likely that 

different sample preparation protocols and detection methodologies introduced discrepancies between 

studies, although it is difficult quantify this. Comparing miRNA content in whole-blood samples with 

that of plasma (Johansen et al., 2016; Schultz et al., 2014) highlights that effect this can have. Blood 

circulation throughout the body is a biological, not a technical, difficulty, since biomarker levels changes 

seen in the cancer secretome are more difficult to detect in blood as many other cells besides the tumour 

cells release the same chemicals, masking the result. This influence could also be different from one 

person to the other. Blood collection via the portal vein may solve the issue, however there is currently 

little evidence for this. (Chapman et al., 2019) and such approach would be even more difficult and 

invasive.  

Another barrier to clinical utility is a concrete definition of biomarkers. The use of diagnostics 

that are more binary in nature, such as those that are present in cancer but absent in healthy or vice versa, 

or that look for specific mutations, methylation variations in DNA or RNA, or the presence of circulating 

tumour cells or protein isoforms, may improve their accuracy. Moreover, a significant fluctuation in a 

certain molecule's concentration could be employed as a marker. (Brosseau, 2018). As DNA methylation 

has proven to be an effective diagnostic tool for identifying other tumour entities, it may potentially be 

a good candidate for recurrence although there isn't much information accessible right now. It is 

challenging to make an accurate diagnosis using ctDNA and CTC analyses because of insufficient 

sensitivity and specificity. Nonetheless, they may be beneficial for monitoring recurrent diseases, 

prognosis, and risk stratification(Pécuchet et al., 2016). Such molecules may also be suitable for reliable 

diagnosis once a profiling procedure by alternative ways that decreases the degree of freedom for the 

specific patient that is being looked at (Neumann et al., 2018). CTCs have mostly been employed in 

cell-based analysis for recurring tumour identification, prognosis, and treatment monitoring. Yet, 
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numerous cell types both inside the microenvironment and far outside the histological tumour 

boundaries undergo significant molecular changes (Bauer et al., 2018). Once procedures for their 

enrichment alongside that of tumour cells are in place, they might also be used for diagnostic purposes, 

giving a much more detailed and individualized image of the particular tumour. 

Exploring the molecular underpinnings of PDAC recurrent development is a critical first step 

in the identification and evaluation of biomarkers. Instead of concentrating on internal pathways and 

processes, attention should be paid to intercellular communication and substances that affect a recipient 

cell after uptake in the development of blood-based molecular diagnostics. For discriminatory detection, 

the relevant molecules are more likely to end up in the blood when present in appropriate quantities. 

Since PDAC is a highly aggressive, detecting these changes early in the carcinogenesis process- possibly 

before the tumour relapses—is essential for successfully catching recurrent tumours. Also, more 

emphasis should be given to how co-occurring clinical diseases like diabetes and obstructive jaundice 

affect the performance of biomarkers (Botla et al., 2016; Rhim et al., 2012). 

Molecular signature will be adopted in clinical routine diagnosis only, if its performances is 

obviously superior to the existing procedures, particularly CA19-9, and if it is available in a manner that 

matches the current testing processes. Given the apparent molecular diversity of PDAC, a marker panel 

is probably necessary for such accuracy and robustness, creating a new challenge. However, it could be 

helpful to make incremental progress in the direction of the requested precision for clinical value. To do 

this, it is important to define the diagnostic objectives clearly, moving from the simplest ones—like 

recurrence—through the more challenging ones, such early primary tumour diagnosis.  
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5. CONCLUSIONS 

For detecting tumour recurrence following surgical excision we deal only with a very narrowly 

defined patient population, thus tumour specificity is not a concern. Moreover, most patients experience 

recurrence within two years of surgery. Hence, even a relatively unreliable diagnosis of recurrence can 

be enough to justify clinical action. The analysis of the protein and miRNA contents of blood permits 

prediction and detection of tumour recurrence in PDAC patients after curative surgery with an accuracy 

that substantially surpasses the performance of currently used processes, in particular CA19-9 testing. 

Serum proteins analysis indicated the existence of changes that are either due to the tumour’s presence 

or based on the body’s systemic reaction to it. Combining both miRNA and proteins reduced the number 

of molecules required to achieve an accurate and robust diagnosis. The results could have a direct and 

immediate benefit for patients with pancreatic cancer and could be translated to clinical practice quickly. 

In addition, the process could proof the applicability of the signatures for early diagnosis of the primary 

tumour. Thus, the results could be applied to screening individuals who are at high risk of pancreatic 

cancer, potentially having a clinical impact beyond the detection of tumour relapse. In addition, the 

established assays could serve as a means for monitoring disease progression during chemotherapeutic 

treatment. Further studies are required to confirm the clinical utility of the biomarkers taking into the 

account other cofounding factors. Prior to any clinical application, the classifiers need to be validated in 

a wider, multicentre study in order to accommodate also aspects such as different handling procedures.  

I propose a pipeline consisting of triple-meta-analysis approach for transition from laboratory-

based research toward translational investigations that are focused on the actual requirements in clinical 

settings: The best markers within each molecular category are first chosen. Second, all marker types are 

integrated to define the overall most informative markers; for example, they might eventually just 

include a small number of marker types, one molecular class, such proteins and miRNAs, or a 

combination of both classes. Thirdly, the data is contrasted with comparable information received from 

different tumour entities. The outcome of this procedure should then be verified in a multi-centre study 

using a huge variety of distinct samples that are obtained under standard clinical circumstances. These 

particular processes should be standardised using procedures that are already established in routine 

diagnostics. However, technical improvements should be taken into consideration to improve 
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performance. However, the current scientific environment is not set up to make it simple for this method 

to exist halfway between research and clinic. Also, a study of this nature is typically viewed as being 

quite unimportant and unfancy enough to receive the scalable funding required for such 

accomplishment. Yet, without such a procedure, it is highly improbable that the very numerous marker 

molecules discovered in research projects can be successfully chosen and translated into a practical 

diagnostic procedure that can be used on patients. 
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Ziel der Dissertation war eine blutbasierte Vorhersage und Früherkennung eines Tumorrezidivs 

bei Patienten zu etablieren, die sich einer Resektion des duktalen Adenokarzinoms der 

Bauchspeicheldrüse (PDAC) unterzogen hatten. Unter Verwendung eines Mikroarrays mit 2.977 

Antikörpern Variationen im Proteingehalt von Serumproben festgestellt, die von 101 Patienten 

entnommen wurden, bei denen ein Tumorrezidiv aufgetreten war oder nicht, einschließlich 

nacheinander entnommener Proben derselben Patienten. Sekretomanalysen von nicht-tumorösen und 

Krebszellen zeigten tumorbedingte Variationen. Ausgewählte Biomarker wurden verwendet, um 

Support-Vektor-Maschinen-Klassifikatoren zu trainieren. Sie wurden an neuen, prospektiv 

gesammelten Proben von 36 Patienten validiert, um die Anwendbarkeit zu dokumentieren. Durch die 

Kombination von Biomarkern, die sowohl durch einen fokussierten tumorzentrierten Ansatz als auch 

durch eine breite angelegte systemische Analyse ausgewählt wurden, wurde ein Klassifikator von 10 

Proteinen definiert, der Patienten mit Rezidiv von Patienten ohne Rezidiv mit einer Genauigkeit von 91 

% unterscheidet. Die Validierung an prospektiv gesammelten Proben erreichte eine Genauigkeit von 85 

%. Die Rezidiv Erkennung erfolgte im Durchschnitt 3,5 Monate früher als bei aktuellen Verfahren. 

Neben der Diagnose wurden Proteinsignaturen ermittelt, die es erlauben, den Zeitraum vorherzusagen, 

nach dem eine Rezidiv des Tumors wahrscheinlich ist.  

Ich untersuchte auch den miRNA-Gehalt von 149 Serumproben mittels Small-RNA-

Sequenzierung. Für die Entdeckungsphase wurden 75 Serumproben analysiert. Sie wurden in der 

Sequencing Core Facility des DKFZ sequenziert. Insgesamt wurden 135 miRNA-Variationen zwischen 

Rezidiv- und Nicht-Rezidiv und mit Logistik Regression, LASSO-Regression und RFE mit 5-Fold 

Kreuzvalidierung zur Auswahl informativer miRNA-Biomarker und zum Entfernen unnötiger 
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Kovariaten getestet. MiRNA-Klassifikator von hsa-mir-100, hsa-mir-215, hsa-mir-3916, hsa-mir-484, 

hsa-mir-6752, hsa-mir-6773, hsa-mir-6883-5P wurde konstruiert und trainiert. Die Algorithmus-

Parameter wurden optimiert, um eine Über- oder Unteranpassung zu vermeiden. Ich habe die Signatur 

in einer unabhängigen Kohorte validiert, wobei alle Parameter festgelegt wurden. 

Bemerkenswerterweise konnte der miRNA-Klassifikator in der Entdeckungs- bzw. Validierungskohorte 

mit einer Genauigkeit von 97 % bzw. 91 % zwischen Rezidiv und Nicht-Rezidiv Proben unterscheiden. 

Die Kombination von miRNAs und Proteinen erfolgte unter Verwendung der Proben, die 

gleichzeitig durch Antikörper-Microarray und Small-RNA-Sequenzierung getestet wurden. Die Daten 

wurden zufällig in eine Trainings- und Validierungskohorte aufgeteilt und RFE mit 5-Fold 

Kreuzvalidierung wurde auf 17 miRNA- und Proteinmarker angewendet. Unter Verwendung von nur 

vier Marker Signaturen, zwei miRNAs und zwei Proteinen konnte ich das Rezidiv der 

Bauchspeicheldrüsenkrebs mit einer Genauigkeit von 91 % nachweisen. Die Signaturgenauigkeit betrug 

bei der Validierung 83 %. 

Die Analyse des Protein- und miRNA-Gehalts im Blut erlaubt die Vorhersage und den 

Nachweis eines Tumorrezidivs bei PDAC-Patienten nach kurativer Operation mit einer Genauigkeit, 

die die Leistung derzeit verwendeter Verfahren, insbesondere des CA19-9-Tests, deutlich übertrifft. Die 

Analyse zeigte auch das Vorhandensein von Veränderungen, die entweder direkt auf das Vorhandensein 

des Tumors zurückzuführen sind oder auf der systemischen Reaktion des Körpers darauf beruhen. Die 

Kombination von miRNA und Proteinen reduzierte die Anzahl der Moleküle, die für eine genaue und 

robuste Diagnose erforderlich sind. Die Ergebnisse könnten einen direkten und unmittelbaren Nutzen 

für Patienten mit Bauchspeicheldrüsenkrebs haben und schnell in die klinische Praxis übertragen 

werden. Darüber hinaus konnte das Verfahren die Anwendbarkeit der Signaturen für die Früherkennung 

des Primärtumors belegen somit könnten die Ergebnisse auf das Screening von Personen angewendet 

werden, die ein hohes Risiko für Bauchspeicheldrüsenkrebs haben, was möglicherweise über die 

Erkennung eines Tumorrezidivs hinaus klinische Auswirkungen haben könnte. Darüber hinaus könnten 

die etablierten Assays als Mittel zur Überwachung des Krankheitsverlaufs während einer 

chemotherapeutischen Behandlung dienen.  
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