
Aus dem Lehrstuhl für Computerunterstützte Klinische Medizin
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Deep Learning based Medical Image Analysis using Small

Datasets

The emergence of deep learning (DL) has significantly improved the capabilities of
medical image analysis, providing a basis for automated and accurate interpretation
of imaging data. This work centers on the challenges and solutions related to the
use of deep learning for medical image analysis in scenarios constrained by small
datasets. DL algorithms exhibit remarkable performance when trained on large
datasets. Yet, within the medical domain, the assembly of large, annotated datasets
poses a big challenge. Obtaining such datasets is significantly impeded by privacy
concerns, the rarity of medical conditions, and the time-intensive nature of gathering
large annotated datasets. This thesis addresses these challenges by leveraging DL
techniques designed to maximize learning from limited data.

This work presents a framework that employs attention mechanisms, suitable sam-
pling strategies, modified loss functions, and optimizers to improve the effectiveness
of Convolutional Neural Networks (CNNs) on limited datasets. In addition, prepro-
cessing techniques such as resampling and histogram matching are used to mitigate
shifts in the data distribution, enhancing model generalizability across different med-
ical imaging sources.

In the first study, a deep learning methodology was devised for precise segmentation
of Total Kidney Volume (TKV) in Autosomal Dominant Polycystic Kidney Dis-
ease (ADPKD) using MRI data, addressing the challenge of accurately estimating
TKV, crucial for monitoring disease progression. This methodology incorporated
attention mechanisms, the cosine loss function, and Sharpness-Aware Minimization
(SAM) within a U-Net architecture to improve focus on relevant features, tackle
small dataset limitations, and enhance model generalizability. Validated on 100
MRI scans, it demonstrated significant accuracy improvements, achieving a Dice
similarity coefficient of 0.918, and showcased the efficacy of ensemble models for
further accuracy enhancement.

The next study was an extension of the first study, where a generalizable algo-
rithm for kidney segmentation was developed. Incorporating Nyul normalization,
resampling, and attention mechanisms, this CNN framework demonstrated high gen-
eralizability and accuracy across varied patient datasets. Validated on two separate
cohorts, it achieved significant improvements over the baseline model, underscoring
its clinical potential for precise TKV calculation.

In the next study, an approach was developed for the automated prognosis of re-
nal function decline in ADPKD patients using MRI data. Employing a dual-model
strategy that integrates a CNN for kidney volume segmentation with attention mech-
anisms and an MLP for disease progression prediction, this method combines image
and biomarker features. Validated on 135 patients, it achieved prognostic accuracies
with area under the curve (AUC) scores exceeding 0.95 for predicting various stages
of chronic kidney disease (CKD) and demonstrated a high correlation in predicting
eGFR decline.

In the third study, an algorithm employing a 3D residual U-Net architecture inte-
grated with histogram matching was developed for the detection and monitoring of
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Multiple Sclerosis (MS) through Voxel-Guided Morphometry (VGM) maps. This
model, designed to accurately highlight MS-related brain structure changes in MRI
volumes, demonstrated its adaptability and generalizability across unseen datasets.
Validated on diverse patient datasets, it achieved an average improvement of 4.2%
in Mean Absolute Error (MAE) over the reference method, confirming its robustness
and potential as a clinical tool for precise, efficient MS lesion dynamics analysis.

In the final study, a CNN-based framework was developed to automate acute Ab-
dominal Aortic Dissection (AD) detection in CT scans. This approach, trained on a
small internal dataset, was further validated using a large external set. The model
demonstrated a high AUC and sensitivity in detecting AD, confirming its reliability
and potential to transform emergency radiology through AI-assisted diagnosis.

This thesis underscores the potential of deep learning in overcoming the limitations
posed by small datasets in medical image analysis, paving the way for more accessible
and efficient AI-driven diagnostics and therapeutic planning.
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Deep Learning basierte medizinische Bildanalyse mit klei-

nen Datensätzen
Das Aufkommen von Deep Learning (DL) hat die Möglichkeiten der medizinischen
Bildanalyse erheblich verbessert und bietet eine Grundlage für die automatische und
genaue Interpretation von Bilddaten. Diese Arbeit konzentriert sich auf die Her-
ausforderungen und Lösungen im Zusammenhang mit der Verwendung von Deep
Learning für die medizinische Bildanalyse in Szenarien, die durch kleine Datensätze
eingeschränkt sind. DL-Algorithmen zeigen eine bemerkenswerte Leistung, wenn sie
auf großen Datensätzen trainiert werden. Im medizinischen Bereich stellt die Zu-
sammenstellung großer, annotierter Datensätze jedoch eine große Herausforderung
dar. Die Beschaffung solcher Datensätze wird durch den Schutz der Privatsphäre,
die Seltenheit medizinischer Zustände und den hohen Zeitaufwand für die Erfas-
sung großer annotierter Datensätze erheblich erschwert. In dieser Arbeit werden
diese Herausforderungen durch den Einsatz von DL-Techniken angegangen, die das
Lernen aus begrenzten Daten maximieren sollen.

Diese Arbeit stellt einen Rahmen vor, der Aufmerksamkeitsmechanismen, geeignete
Sampling-Strategien, modifizierte Verlustfunktionen und Optimierer einsetzt, um die
Effektivität von Convolutional Neural Networks (CNNs) auf begrenzten Datensätzen
zu verbessern. Darüber hinaus werden Vorverarbeitungstechniken wie Resampling
und Histogramm-Matching eingesetzt, um Verschiebungen in der Datenverteilung
abzumildern und die Generalisierbarkeit des Modells über verschiedene medizinische
Bildgebungsquellen hinweg zu verbessern.

In der ersten Studie wurde eine Deep-Learning-Methode zur präzisen Segmentie-
rung des Gesamtnierenvolumens (TKV) bei autosomal dominanter polyzystischer
Nierenerkrankung (ADPKD) unter Verwendung von MRT-Daten entwickelt, um
die Herausforderung der genauen Schätzung des TKV zu bewältigen, die für die
Überwachung des Krankheitsverlaufs entscheidend ist. Diese Methodik beinhaltet
Aufmerksamkeitsmechanismen, die Cosinus-Verlustfunktion und Sharpness-Aware
Minimization (SAM) innerhalb einer U-Net-Architektur, um den Fokus auf relevan-
te Merkmale zu verbessern, die Einschränkungen kleiner Datensätze zu überwin-
den und die Verallgemeinerbarkeit des Modells zu erhöhen. Bei der Validierung
anhand von 100 MRT-Scans zeigte sich eine signifikante Verbesserung der Genauig-
keit, wobei ein Dice-Ähnlichkeitskoeffizient von 0,918 erreicht wurde, und es wurde
die Wirksamkeit von Ensemble-Modellen zur weiteren Verbesserung der Genauigkeit
demonstriert.

Die nächste Studie war eine Erweiterung der ersten Studie, in der ein verallgemei-
nerbarer Algorithmus für die Segmentierung von Nieren entwickelt wurde. Durch
die Einbeziehung von Nyul-Normalisierung, Resampling und Aufmerksamkeitsme-
chanismen zeigte dieses CNN-Framework eine hohe Verallgemeinerbarkeit und Ge-
nauigkeit bei unterschiedlichen Patientendatensätzen. Bei der Validierung an zwei
separaten Kohorten wurden erhebliche Verbesserungen gegenüber dem Basismodell
erzielt, was sein klinisches Potenzial für eine präzise TKV-Berechnung unterstreicht.

In der nächsten Studie wurde ein Ansatz für die automatische Prognose der Nie-
renfunktionsverschlechterung bei ADPKD-Patienten anhand von MRT-Daten ent-
wickelt. Mit Hilfe einer Doppelmodellstrategie, die ein CNN zur Segmentierung des
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Nierenvolumens mit Aufmerksamkeitsmechanismen und ein MLP zur Vorhersage des
Krankheitsverlaufs integriert, kombiniert diese Methode Bild- und Biomarkermerk-
male. Die Methode wurde an 135 Patienten validiert und erreichte eine prognostische
Genauigkeit mit AUC-Werten von über 0,95 für die Vorhersage verschiedener Sta-
dien der chronischen Nierenerkrankung (CKD) und wies eine hohe Korrelation bei
der Vorhersage des Rückgangs der eGFR auf.

In der dritten Studie wurde ein Algorithmus entwickelt, der eine 3D-Residual-U-Net-
Architektur mit integriertem Histogramm-Matching für die Erkennung und Über-
wachung von Multipler Sklerose (MS) durch Voxel-Guided Morphometry (VGM)-
Karten verwendet. Dieses Modell wurde entwickelt, um MS-bedingte Hirnstruk-
turveränderungen in MRT-Volumina genau hervorzuheben, und hat seine Anpas-
sungsfähigkeit und Verallgemeinerbarkeit für ungesehene Datensätze bewiesen. Bei
der Validierung an verschiedenen Patientendatensätzen wurde eine durchschnittli-
che Verbesserung des mittleren absoluten Fehlers (Mean Absolute Error, MAE) von
4,2% gegenüber der Referenzmethode erzielt, was seine Robustheit und sein Poten-
zial als klinisches Werkzeug für eine präzise, effiziente Analyse der Dynamik von
MS-Läsionen bestätigt.

In der abschließenden Studie wurde ein CNN-basiertes System zur automatischen
Erkennung akuter abdominaler Aortendissektionen (AD) in CT-Scans entwickelt.
Dieser Ansatz, der an einem kleinen internen Datensatz trainiert wurde, wurde
anhand eines großen externen Datensatzes weiter validiert. Das Modell zeigte eine
hohe AUC und Sensitivität bei der Erkennung von AD und bestätigte damit seine
Zuverlässigkeit und sein Potenzial, die Notfallradiologie durch KI-gestützte Diagnose
zu verändern.

Diese Arbeit unterstreicht das Potenzial von Deep Learning bei der Überwindung
der Beschränkungen durch kleine Datensätze in der medizinischen Bildanalyse und
ebnet den Weg für eine zugänglichere und effizientere KI-gestützte Diagnose und
Therapieplanung.
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1. Introduction and Outline

1.1 Motivation
Since 2012, the rise of Deep Learning (DL), initiated by breakthroughs such as
AlexNet [1], has transformed how we analyze digital images, especially in healthcare.
The rapid adoption of emerging technologies such as Convolutional Neural Networks
(CNNs) has demonstrated the profound impact these can have on the interpretation
of medical images, including Magnetic Resonance Imaging (MRI ) and Computed
Tomography (CT ) scans [2, 3]. The quantity of these scans has steadily increased,
creating a growing demand for their expert analysis. This surge highlights the critical
need for automation in the processing and assessment of medical images, a task that
remains predominantly time-consuming due to the necessity of manual Region of
Interest (ROI ) delineation for volume-based analysis [4]. Automated algorithms
can bring improvement in this area by offering not only a reduction in analysis time
but also providing objective, reproducible measurements to assist physicians in their
assessments.

However, the integration of DL into the healthcare sector is not without its chal-
lenges. Among these, the most significant is the scarcity of large, annotated datasets,
compounded by privacy regulations, the rarity of certain medical conditions, and the
logistical hurdles involved in compiling such datasets [5, 6]. Furthermore, data orig-
inating from different sources (sites), such as different MRI machines and protocols,
introduce variability in data distributions, posing a substantial challenge for DL
models. This variability often means that models trained on data from one source
cannot be effectively generalized to data from unknown sources [7]. Consequently,
the need for large, diverse datasets for the training of effective DL models [8, 9]
becomes a bottleneck that hinders the development and deployment of automated
solutions capable of handling the intricacies of medical image analysis with the de-
sired accuracy and robustness.

This thesis aims to bridge this gap by employing DL methods that are optimized
for performance on smaller datasets. By adopting approaches such as attention
mechanisms, modified loss functions and optimizers in conjunction with preprocess-
ing methods for data harmonization, this work presents a set of methods that aim
to improve the generalizability and efficacy of medical image analysis algorithms.
These strategies are thoroughly applied across a variety of medical imaging tasks
such as segmentation, classification, and regression, demonstrating their versatil-
ity and potential to improve diagnostic accuracy, facilitate disease monitoring, and
eventually contribute to personalized patient care.

By evaluating these methodologies across diverse medical imaging tasks, including
the segmentation of Total Kidney Volume (TKV ) in Autosomal Dominant Poly-
cystic Kidney Disease (ADPKD) patients and the quantitative analysis of Multiple
Sclerosis (MS ) progression, this thesis not only highlights the practical applications
of these DL techniques but also explores their generalizability to different diseases.
This comprehensive evaluation underscores the potential of these techniques to be-
come integral components of Machine Learning (ML) in healthcare, addressing im-
portant needs for efficient, reliable, and scalable solutions for medical image analysis.
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1.2 Outline

The composition of this thesis is cumulative, covering three main areas within med-
ical image processing, namely:

1. Segmentation,
2. Classification, and
3. Regression.

Chapter 3 through Chapter 7 each present a self-sufficient scientific study. Conse-
quently, each such chapter contains an introduction, a detailed exposition of materi-
als and methods, a presentation of results, followed by a discussion, and a conclusion.
Additionally, an acknowledgment of contributions and funding support is mentioned
at the conclusion of each chapter.

Chapter 2 is designed to provide a concise overview of medical imaging, with an
emphasis on CT and MRI. It also introduces the fundamental principles of DL in
image processing and an introduction to the diseases that were analyzed in this
thesis.

In Chapter 3, the application of image segmentation is presented. This chapter de-
tails the training of various CNNs enhanced by attention mechanisms, the cosine
loss function, and Sharpness Aware Minimization (SAM ), aimed at segmenting kid-
ney volumes in patients with ADPKD through T1-w MRI. The combination of the
aforementioned methodologies facilitated achieving performance on par with that of
human experts in the estimation of TKV.

Chapter 4 presents a small expansion upon the research presented in Chapter 3.
This study details the utilization of two datasets to develop and validate a robust
algorithm for TKV segmentation in patients with ADPKD. The method incorporates
histogram matching to achieve data distribution harmonization, followed by the
training of a CNN on one dataset. The resulting algorithm demonstrates the capacity
to generalize effectively to the unseen dataset.

Chapter 5 introduces an application derived from the initial study presented in Chap-
ter 3. This subsequent study details how kidney volumes, automatically segmented
with the help of the first study, were combined with data from additional biomark-
ers. Through the integration of a CNN and a Multi-Layer-Perceptron (MLP), this
approach aids in forecasting the progression of kidney conditions in patients with
ADPKD after an eight-year period.

Chapter 6 introduces a generalizable DL algorithm capable of generating Voxel-
Guided Morphometry (VGM ) for the quantification of MS progression efficiently
and effectively across multiple MRI datasets. This research aligns the intensity dis-
tributions from disparate MRI datasets and utilizes attention-based CNNs to surpass
the existing baseline reference method in performance across all datasets. Demon-
strating robustness, the algorithm offers potential for implementation in clinical
environments to analyze MS progression and the effectiveness of treatments.

Chapter 7 presents another use case for image classification. Here, a 3D CNN was
developed to identify abdominal Aortic Dissection (AD) using CT scans. Initially,
the abdominal area is automatically isolated, followed by the extraction of the aortic
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ROI. Subsequently, the CNN discriminates between AD and non-AD cases within
the aortic ROI. The algorithm has been further validated on a substantial external
dataset, demonstrating high sensitivity. This approach holds promise for integration
into emergency clinical procedures, enabling automated detection of AD.

Chapter 8 provides a comprehensive summary of the thesis, including an in-depth
review of the outcomes from the scientific studies detailed from Chapter 3 through
Chapter 7.

Chapter 9 outlines potential avenues for future research and delves into both the
significance and the limitations of the work that has been presented.

1.3 Citations of Previous Publications

Several chapters of this thesis have already been published. The citations for these
chapters are:

Chapter 3: Raj, A., Tollens, F., Hansen, L., Golla, A. K., Schad, L. R., Nörenberg,
D., & Zöllner, F. G. (2022). Deep learning-based total kidney volume segmentation
in autosomal dominant polycystic kidney disease using attention, cosine loss, and
sharpness aware minimization. Diagnostics, 12(5), 1159, doi: https://doi.org/10.
3390/diagnostics12051159.

Chapter 4: Raj, A., Hansen, L., Tollens, F., Nörenberg, D., Villa, G., Caroli, A.,
& Zöllner, F. G. (2024). Generalizable Kidney Segmentation for Total Volume
Estimation. Proc. Bildverarbeitung für die Medizin 2024, Erlangen, Germany,
pp.285-290, doi: https://doi.org/10.1007/978-3-658-44037-4 75.

Chapter 5: Raj, A., Tollens, F., Caroli, A., Nörenberg, D., & Zöllner, F. G. (2023).
Automated prognosis of renal function decline in ADPKD patients using deep learn-
ing. Zeitschrift für Medizinische Physik, Volume 34, Issue 2, 2024, Pages 330-342,
doi: https://doi.org/10.1016/j.zemedi.2023.08.001.

Chapter 6: Raj, A., Gass, A., Eisele, P., Dabringhaus, A., Kraemer, M., & Zöllner,
F.G. (2024). A generalizable deep voxel-guided morphometry algorithm for the
detection of subtle lesion dynamics in multiple sclerosis. Frontiers in Neuroscience,
18, 1326108, doi: https://doi.org/10.3389/fnins.2024.1326108.

Chapter 7: Raj, A., Allababidi, A., Kayed, H., Gerken, A. LH., Müller, J., Schoen-
berg, S. O., Zöllner, F. G., & Rink, J. S. (2024). Streamlining acute Abdominal
Aortic Dissection management - an AI based CT imaging workflow. Journal of
Imaging Informatics in Medicine, doi: https://doi.org/10.1007/s10278-024-01164-0.

https://doi.org/10.3390/diagnostics12051159
https://doi.org/10.3390/diagnostics12051159
https://doi.org/10.1007/978-3-658-44037-4_75
https://doi.org/10.1016/j.zemedi.2023.08.001
https://doi.org/10.3389/fnins.2024.1326108
https://doi.org/10.1007/s10278-024-01164-0
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2. Background

2.1 Medical Imaging

The realm of medical imaging encompasses various techniques that utilize physi-
cal phenomena to capture detailed images of a patient’s anatomy. These images
are invaluable for diagnosis, therapeutic planning, and tracking disease progression
over time [10, 11]. Due to the unique information each imaging modality offers
about the tissues being examined, the integration of different imaging techniques is
frequently employed. This strategy ensures a comprehensive evaluation of the pa-
tient’s condition. In the sections that follow, Magnetic Resonance Imaging (MRI )
and Computed Tomography (CT ) are described as they are relevant to this thesis.

MRI CT
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A
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Figure 2.1: Example of MRI and CT scans of the brain and abdomen region.
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2.1.1 Magnetic Resonance Imaging

MRI operates on the fundamental concept of nuclear magnetic resonance. This
phenomenon involves the absorption and subsequent emission of electromagnetic
radiation by atomic nuclei when they are subjected to an external magnetic field
[12].

During an MRI procedure, a patient is positioned within a powerful magnetic field
denoted as B0. This causes the spins of the hydrogen protons in the body to align
predominantly along the magnetic field, with the B0 direction designated as the
z-axis in the MRI coordinate system. The alignment of these protons generates a
secondary magnetic field, also along the z-axis, which oscillates in sync with the
proton spins, thereby inducing an electrical current in nearby coils. The rate at
which these protons spin around the z-axis, known as the Larmor frequency ω,
is influenced by the magnetic field strength B0 and a specific constant called the
gyromagnetic ratio γ (Equation 2.1).

ω = −γB0 (2.1)

A Radio Frequency (RF ) pulse is applied to alter the axis of proton precession.
This pulse must match the proton’s Larmor frequency ω for energy absorption to
occur. The extent to which the precession axis is altered is a function of the RF
pulse’s duration. This adjustment leads to a change in the orientation of the proton’s
magnetic field. Post RF pulse application, the system’s magnetization returns to
its initial state, with proton spins realigning with B0 (known as relaxation). The
realignment speed varies across different body tissues, characterized by two primary
relaxation times: T1 and T2.

The flipping of the proton’s precession axis away from the z-axis diminishes the
z-axis magnetization (Mz). Over time, Mz gradually recovers as the spins realign
with B0, eventually restoring to its original state Mz,0 as t → ∞. This process is
described by the tissue-specific T1 time constant:

Mz(t) = Mz,0 − (Mz,0 −Mz(0)) e
− t

T1 (2.2)

Conversely, when the precession axis is adjusted by 90◦, it generates a magnetization
within the x,y-plane, orthogonal to B0. This transverse magnetization (Mx,y) fades
as the spins reorient with the z-axis, approaching zero as t → ∞, governed by the
T2 relaxation time:

Mx,y(t) = Mx,y(0) e
− t

T2 (2.3)

Spatial differentiation of the origins of the electrical currents detected in the coils
is achieved by modifying the magnetic field strength through continuous linear gra-
dient fields Gx, Gy and Gz. This variation results in a position-dependent Larmor
frequency (Equation 2.4) for each proton, enabling what is known as frequency
encoding. Phase encoding is another technique utilized to map the scan volume,
involving the temporary application of a gradient field between the RF pulse and
signal acquisition, leading to spin dephasing and varied signal measurement.
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ω = −γ(B0 +Gxx+Gyy +Gzz) (2.4)

MRI’s capability to produce images with varying contrasts depends on the sequence
of radio frequency pulses and imaging parameters used. Although MRI primarily
provides qualitative imagery, with image intensity values lacking standard measure-
ment units, quantitative MRI methods are available but less frequently applied [13].
Given MRI’s sensitivity to protons, water-rich tissues yield the strongest signals,
whereas bone and other low water-content tissues are less visible or not at all. For
instance, in Figure 2.1, a T1-w brain MRI shows high contrast among different brain
tissues with the skull appearing as a dark outline, while an abdominal T1-w MRI
reveals distinct contrasts among various soft tissues.

2.1.2 Computed Tomography

CT is an imaging technique that employs the attenuation properties of X-rays to
generate detailed images of the internal structures of the human body [14]. Unlike
traditional X-ray imaging, which can result in the overlay of images from different
anatomical features, CT technology produces three-dimensional (3D) volumetric
data, eliminating issues related to superimposition.

The core components of a CT scanner include an X-ray generator and a detection
system, both mounted on a rotating gantry. This setup encircles a patient table that
can move as required. The generation of X-rays occurs when high-speed electrons
collide with a metal anode within the X-ray tube, slowing abruptly. The resultant
X-ray photon energy is contingent on the electron’s velocity, which is influenced by
the applied acceleration voltage, typically ranging from 25kV to 150kV for medical
diagnostics [15]. The intensity of the X-ray beam produced is regulated by the
current flowing to the anode.

As X-rays traverse the body, their intensity diminishes due to attenuation, which
occurs exponentially. This attenuation is described by the Beer-Lambert law:

I = I0e
−µx

where I is the transmitted intensity, I0 is the initial intensity, µ is the linear atten-
uation coefficient, and x is the thickness of the material.

This attenuation is the result of various interactions within the body, including
Rayleigh scattering, Compton scattering, and the photoelectric effect. The extent
of attenuation is dependent on the type of material the X-rays pass through and
their wavelength. In the range of energies used for diagnostic purposes, photoelectric
absorption and Compton scattering are predominantly responsible for attenuation,
with Rayleigh scattering playing a minimal role.

• Rayleigh Scattering (Coherent Scattering): Rayleigh scattering involves the
elastic scattering of X-rays by bound electrons without a change in energy
(wavelength). This type of scattering is more significant at lower photon ener-
gies and contributes less to attenuation at the higher energies used in diagnostic
X-rays.
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• Compton Scattering (Incoherent Scattering): In Compton scattering, X-ray
photons are scattered by outer-shell electrons, resulting in a loss of energy and
an increase in wavelength. The change in wavelength (∆λ) is given by the
Compton wavelength shift equation:

∆λ = λ′ − λ = λc(1− cos θ)

where λ is the incident wavelength, λ′ is the scattered wavelength, λc =
h

mec
is

the Compton wavelength of the electron, and θ is the scattering angle. Comp-
ton scattering is significant at the photon energies typically used in medical
imaging.

• Photoelectric Effect (Photoelectric Absorption): In the photoelectric effect,
X-ray photons are completely absorbed, resulting in the ejection of electrons
from inner atomic shells. The probability of photoelectric absorption (τ) de-
pends strongly on the photon energy (E) and the atomic number (Z) of the
absorbing material, approximately following the relation:

τ ∝ Z3

E3

The overall attenuation coefficient (µ) is the sum of the contributions from these
interactions:

µ = µRayleigh + µCompton + µphotoelectric

Upon exiting the body, X-rays are captured by the detection system, where a col-
limator precedes the detector array to eliminate scatter-induced noise by filtering
out non-direct photons. The detector array consists of numerous detector elements,
each comprising a scintillator to convert X-ray photons to visible light, and a pho-
todetector to transform this light into electrical signals.

The architecture of the detector array varies with the scanner model. Multi-slice
Computed Tomography (MSCT ) scanners, for example, feature multiple rows of
detectors arranged in a curved format, working in concert with a fan-shaped X-
ray beam. The scanning process encompasses several rotational angles around the
patient, with each angle providing a distinct radiographic projection. These projec-
tions are then used to compute the spatial distribution of attenuation coefficients
across the scanned volume. For comprehensive coverage, the patient table moves
incrementally between scans.

The reconstruction of CT images from collected projections is achieved through
algorithms such as filtered back projection or iterative reconstruction techniques
[16]. This process results in a voxel-based representation of the scanned volume, with
each voxel reflecting the average attenuation coefficient of the contained subvolume,
determined by slice thickness and spatial resolution.

Radiodensity within CT images is quantified using Hounsfield Units (HUs), a scale
established by Hounsfield [14]. This scale linearly correlates a voxel’s attenuation
coefficient with those of water and air at standard conditions, facilitating uniform
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image interpretation across different CT systems. The equation for calculating HUs
is as follows:

CT-Number(µ) =
µ− µwater

µwater − µair

· 1000HU (2.5)

The HU scale effectively differentiates between various tissue types, each occupying
distinct ranges on the scale, as illustrated in Figure 2.2. This calibration allows for
the consistent comparison of CT images, regardless of the scanner used. Examples of
CT imaging, such as cranial and abdominal scans (Figure 2.1), demonstrate the con-
trast capabilities of CT, showcasing differences in tissue densities and compositions
as represented on the HU scale.

Figure 2.2: The HU scale illustrating the categorization of various tissue types.

2.2 Deep Learning

Deep learning, is a subset of machine learning that is inspired by the operational
mechanisms of the human brain’s neural networks [17, 18]. It aims at enabling ma-
chines to learn from data and make decisions without being explicitly programmed
for specific tasks. This approach leverages Artificial Neural Networks (ANNs) to
facilitate the automatic extraction and learning of complex patterns from large
datasets [18]. Unlike traditional machine learning algorithms that necessitate man-
ual feature selection, deep learning algorithms autonomously identify relevant fea-
tures through a hierarchical learning process, progressively building complex repre-
sentations.

The ANNs are composed of layers of interconnected nodes or neurons, each layer
designed to perform specific transformations on its inputs. This architecture en-
ables the modeling of complex functions through the depth of the network, which is
characterized by the number of hidden layers.

Deep learning excels in tasks that involve large-scale and high-dimensional data,
including but not limited to image and speech recognition, natural language pro-
cessing, and predictive analytics. Through its capacity to learn from experience and
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understand the world in terms of a hierarchy of concepts, deep learning can achieve
a level of accuracy that often surpasses human capability in certain domains [19].
The effectiveness of deep learning models grows with the amount of available data,
leveraging computational power and sophisticated algorithms to uncover insights
within complex data structures [9]. In the following sections, we delve into the
fundamental principles of deep learning, with a particular focus on Convolutional
Neural Networks (CNNs), which are utilized within this thesis for image analysis.

2.2.1 Mathematical Model of Artificial Neural Networks

The mathematical foundation of ANNs is predicated on the concept of simulating the
neural processing of the human brain to perform a wide array of tasks ranging from
simple to highly complex [18]. An ANN is composed of nodes (neurons) arranged in
layers: an input layer to receive the data, several hidden layers to process the data,
and an output layer to produce the desired outcome.

Mathematically, the operation within a neuron involves the weighted sum of its
inputs plus a bias term, which is then passed through an activation function to
determine the neuron’s output. For a given neuron, let x1, x2, . . . , xn represent the
inputs, with each input xi associated with a weight wi, and b denote the bias. The
weighted sum, z, is given by:

z =
n∑

i=1

wixi + b

The output of the neuron, y, is obtained by applying an activation function f to z:

y = f(z)

This process allows the network to model non-linear relationships. The choice of
activation function is crucial for the network’s ability to capture complex patterns
in the data, with common examples including the sigmoid and Rectified Linear Unit
(ReLU ) functions.

In multi-layer networks, the output of one layer serves as the input to the next.
This forward propagation of data through the network facilitates the hierarchical
learning of features, where each layer captures increasingly abstract representations
of the input data. The learning process in an ANN involves adjusting the weights
and biases to minimize a loss function that measures the difference between the
network’s predictions and the actual target values. Through techniques such as
backpropagation and optimization algorithms like gradient descent, the network
iteratively updates its parameters to improve its performance on a given task.

This mathematical framework underpins the ability of deep learning models to learn
from and make predictions on data, forming the basis for their application across a
diverse range of fields and challenges in artificial intelligence.
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Figure 2.3: An illustration of a typical CNN architecture used for image clas-
sification tasks. The CNN consists of 4 convolutional layers, 4 pooling layers
and 2 fully connected layers.

2.2.2 Convolutional Neural Networks

CNNs draw their architectural inspiration from the biological processes observed
in the visual cortex of cats, as discovered by Hubel and Wiesel [20]. This seminal
work identified that the visual cortex comprises small, specialized regions sensitive
to specific areas of the visual field, with different cells responding to various shapes
and orientations. This hierarchical and layered structure of visual processing in
mammals laid the groundwork for the development of CNNs, aimed at extracting
features from data in a similarly hierarchical manner [21, 22].

Designed to emulate this spatial organization, CNNs excel in handling data with
inherent spatial relationships, particularly image and video data. Their architecture
is structured to preserve spatial relationships across layers, ensuring that features
extracted at each layer are relevant to localized regions of the input. This is achieved
through a combination of different types of layers:

• Convolution layers perform feature extraction by applying filters that capture
spatial patterns such as edges or textures.

• Pooling layers reduce dimensionality and computational complexity by sum-
marizing the features in each region.

• Activation functions introduce non-linearity, enabling the network to learn
complex patterns.

• Fully connected layers integrate learned features across the image into a final
output, such as a class label.

CNNs are distinguished by their ability to learn hierarchical feature representations
automatically, making them highly effective for tasks like image classification, re-
gression, and beyond. Figure 2.3 illustrates a typical architecture of a CNN.

Subsequent sections (i.e., Section 2.2.2.1 to Section 2.2.2.4) will delve into the
specifics of each layer type, offering a detailed description of their roles and mecha-
nisms within the CNN framework.
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Figure 2.4: Illustration of the convolution operation showing the kernel K
applied to the input matrix I, resulting in the convolution output I ∗K.

2.2.2.1 Convolution Layer

The convolutional layer is a fundamental building block of CNNs, designed to au-
tomatically and adaptively learn spatial hierarchies of features from input images.
The convolutional layers employ a set of parameters organized into 3-dimensional
structures known as filters or kernels, predominantly square in their spatial dimen-
sions (e.g., 3 × 3 or 5 × 5), with the filter depth matching that of the layer upon
which it is applied. A mathematical operation called convolution is at the heart of
the convolution layer. It involves sliding a filter over the input image and computing
the dot product of the filter weights with the local region it covers in the input. This
process determines the spatial dimensions (i.e., height and width) of the subsequent
layer’s output.

Given an input or feature map in the q-th layer with dimensions Lq × Bq × dq
(representing height, width, and depth respectively), and assuming a filter of size
Fq × Fq × dq, the spatial dimensions of the output (or the (q + 1)-th layer) can be
defined as:

Lq+1 = Lq − Fq + 1,

Bq+1 = Bq − Fq + 1.

This configuration is depicted in Figure 2.4, illustrating how an initial input matrix I
with dimensions 6×6×1 undergoes convolution with a kernel K sized 3×3×1. This
operation yields a convolution output I ∗K, with resultant dimensions 4 × 4 × 1.
The process demonstrates the application of a single kernel, leading to a feature
map that highlights the transformation of the input matrix through the convolution
operation. The depth of the output feature map, in this scenario being 1, indicates
the number of unique kernels utilized.

The term ”parameter footprint” refers to the extent of parameters involved in con-
volution, calculated as (F 2

q ×dq× (dq+1)) for the q-th layer, directly influencing the
model’s capacity by dictating the number of learnable parameters. Filters are de-
signed to identify specific spatial patterns within small image regions, necessitating
a diverse set of filters for comprehensive feature extraction.
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Mathematically, the convolution operation from the q-th to the (q + 1)-th layer is
formalized as:

h
(q+1)
ijp =

Fq∑
r=1

Fq∑
s=1

dq∑
k=1

w
(p,q)
rsk h

(q)
i+r−1,j+s−1,k, (2.6)

∀i ∈ {1..., Lq − Fq + 1}
∀j ∈ {1..., Bq − Fq + 1}

∀p ∈ {1..., dq+1}

where h
(q+1)
ijp denotes the feature map at position (i, j) in the p-th feature map of

the (q + 1)-th layer, and w
(p,q)
rsk represents the weight of the p-th filter at position

(r, s, k) in the q-th layer. It should be highlighted that the initial layers predomi-
nantly undertake the task of identifying simpler geometric configurations, such as
edges, whereas subsequent layers progressively synthesize more complex formations
from these elementary shapes [23]. Moreover, convolution inherently demonstrates
translation equivariance, ensuring that any displacement within the input image
correspondingly shifts the feature map equivalently. A critical aspect to consider is
the expansion of the receptive field from the q-th to (q + 1)-th layer; this increment
signifies that each subsequent feature can encompass a more extensive spatial area
of the input layer, thereby capturing broader contextual information.

One challenge with convolution is the reduction in spatial dimensions from one layer
to the next, which can lead to loss of information, particularly at the borders of
the image. This is mitigated by padding the input with zeros around its borders,
ensuring the output layer maintains the spatial dimensions of the input. However,
sometimes it is not important to perform convolution at every spatial position and
so it is advisable to reduce the level of granularity of convolution. The use of strides
can adjust the granularity of the convolution operation, affecting both the receptive
field and spatial dimensions of the output. Employing a stride of Sq alters the output
dimensions to:

Height:
Lq − Fq

Sq

+ 1,

Width:
Bq − Fq

Sq

+ 1.

The primary effect of utilizing larger strides (> 1) is to swiftly expand the receptive
field while simultaneously diminishing the spatial dimensions of the layer [22].

2.2.2.2 Pooling Layer

The pooling operation functions on small grid regions of size Pq × Pq in every layer
and outputs a layer with the same depth. The most widely used pooling operation is
max-pooling, where the maximum value is returned for every region of size Pq × Pq

on the activation maps. Usually, a stride greater than 1 is used in pooling operation,
and in these events the new dimensions are given by

Height : (Lq − Pq)/Sq + 1
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Width : (Bq − Pq)/Sq + 1

The Figure 2.5 illustrates the max-pool operation. Another pooling operation is
average pooling, where the average value is returned from the region of size Pq ×Pq

on the activation maps.
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Figure 2.5: Illustration of the Max Pooling Operation. A 2x2 pooling window
(highlighted in red) is applied to the input 4x4 feature map (stride 2), resulting
in the 2x2 output map based on the maximum values in each window.

This operation greatly reduces the spatial dimensions of the activation maps [22].
Pooling layers are integral to CNNs due to their capacity to diminish the dimen-
sionality of feature maps, thereby decreasing computational demands. Additionally,
these layers enhance the network’s resilience to minor translations and facilitate the
extraction of more abstract features from the input image.

2.2.2.3 Activation Functions

Given that the majority of real-world problems exhibit non-linear characteristics,
activation functions are employed within both intermediate and final layers of a CNN
to enable the network to model non-linear behaviors. These functions are crucial
for imparting non-linearity into the convolution operations (which are inherently
linear), thereby enhancing the network’s ability to learn complex patterns.

Some of the most commonly used activation functions within the intermediate layers
of a CNN are ReLUs, Exponential Linear Units (ELUs), and Parametric Rectified
Linear Units (PReLUs).

• ReLU

ReLU(x) = max(0, x). (2.7)

This function outputs zero for any negative input and returns the input itself
for any positive input.

• ELU

ELU(x) =

{
x if x > 0,

α(ex − 1) if x ≤ 0.
(2.8)

Here, α is a constant that controls the saturation level for the ELU function
for negative inputs.
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• PReLU

PReLU(x) =

{
x if x > 0,

αx if x ≤ 0.
(2.9)

In PReLU, α is a learnable parameter, which allows the network to adapt this
aspect of the activation function during the training process.

The final layer’s activation function is chosen based on the prediction goal. For
regression tasks, a linear function f(x) = x is used, allowing for continuous output
suitable for predicting numerical values.

For binary classification, the sigmoid function σ(x) = 1
1+e−x is preferred, mapping

inputs to a probability between 0 and 1, ideal for distinguishing between two classes.

In multi-class classification scenarios, the softmax function is applied: softmax(xi) =
exi∑
j e

xj , which converts logits into normalized probabilities, ensuring the model’s out-

puts sum to 1 and are interpretable as class probabilities.

2.2.2.4 Fully Connected Layer

In CNNs, Fully Connected (FC ) layers, or dense layers, are typically positioned at
the end, serving as a crucial component for decision-making tasks like classification
and regression. Each neuron in an FC layer is interconnected with all activations
from the preceding layer, facilitating the integration and transformation of learned
features into a format suitable for making predictions.

While convolutional layers are adept at feature extraction due to their local con-
nectivity and shared weights, FC layers excel in aggregating these features into
a global representation, thereby enabling the network to understand the broader
context of the input data. This characteristic stems from their dense connectiv-
ity, which, although computationally intensive, significantly amplifies the network’s
learning capacity. It is common practice to employ multiple FC layers to enhance
the model’s computational power and to refine the abstraction levels of the features
being learned.

However, this advantage comes at the cost of an increased parameter count, leading
to a substantial parameter footprint for FC layers compared to their convolutional
counterparts. This dense interconnectivity implies that FC layers are more prone
to overfitting, especially when dealing with high-dimensional input data. As such,
regularization techniques are often applied within these layers to mitigate overfitting.

2.2.2.5 CNN Architectures

CNNs have recently seen rapid evolution since their inception in the 1980s, leading
to groundbreaking architectures tailored for diverse applications, including image
classification, object detection, and semantic segmentation. This section delves into
the pioneering architectures that have shaped the landscape of deep learning in
image processing.
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Influential CNN Architectures

• LeNet-5: Introduced by LeCun et al. [21], LeNet-5 is considered the first
CNN, designed for handwritten digit recognition. It laid the groundwork for
CNNs with its structure of convolutional, pooling, and fully connected layers.

• AlexNet: The AlexNet architecture marked a revolution in image classification
when it won the ImageNet challenge in 2012 [1]. Comprising five convolutional
layers, three max-pooling layers, and three fully connected layers, AlexNet’s
success underscored the potential of CNNs, facilitated by the growing capabili-
ties of Graphics Processing Units (GPUs) and the availability of large datasets
[24].

• VGG-16: Building on the foundations laid by AlexNet, VGG-16 further demon-
strated the importance of network depth in achieving higher accuracy in im-
age classification tasks [25]. Its architecture features sixteen convolutional and
fully connected layers, emphasizing the use of small convolutional filters for
deep networks.

• ResNet: The introduction of ResNet marked a significant advancement, en-
abling the training of substantially deeper networks through the use of residual
blocks [26]. This innovation effectively addressed the vanishing gradient prob-
lem, paving the way for networks with depths of over a hundred layers.

Extension to Semantic Segmentation

Semantic segmentation architectures are designed to classify each pixel of an image
into a predefined category, enabling the precise delineation of objects within images.
Unlike image classification models that output a single prediction for the entire
image, semantic segmentation models produce a pixel-wise map of classifications.
A typical semantic segmentation architecture comprises two main components: an
encoder and a decoder.

Encoder: The encoder part of a semantic segmentation network is responsible for
capturing the contextual information within the image. It progressively reduces
the spatial dimensions of the input image through a series of convolutional and
pooling layers, extracting and condensing feature information. This process results
in a compressed representation of the input, highlighting essential features while
reducing data redundancy.

Decoder: The decoder’s role is to reconstruct the feature information captured
by the encoder back to the original image dimensions. It progressively increases
the spatial resolution of the encoded features through upsampling or transposed
convolution layers. The decoder utilizes the condensed features to produce a dense
prediction map, where each pixel is assigned a class label. The architecture may also
include skip connections from the encoder to the decoder, allowing the decoder to
leverage both high-level semantic information and low-level details to improve the
accuracy of the segmentation.

Following the overview of how semantic segmentation architectures operate, we delve
into specific architectures adapted for this task:

• Fully Convolutional Neural Networks (FCNNs): FCNNs marked a paradigm
shift by adapting CNNs for pixel-wise predictions, making end-to-end training
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and inference on images of any size possible. This adaptation involves convert-
ing FC layers to convolutional ones, enabling the network to output spatial
maps instead of class scores [27].

• U-Net: Tailored for biomedical image segmentation, U-Net features a symmet-
ric architecture that excels in tasks with limited data. Its distinct U-shaped
design, incorporating skip connections, ensures precise localization by com-
bining high-level context with detailed spatial information, making it highly
effective for medical imaging analysis [28].

• V-Net and 3D U-Net: These architectures extend the principles of U-Net
to 3D image data, addressing the unique challenges of volumetric segmen-
tation. By adapting U-Net’s efficient encoding and decoding pathways for
three-dimensional inputs, they enable detailed segmentation of 3D medical
scans [29, 30].

The development of these architectures has significantly advanced the field of seman-
tic segmentation, enabling detailed and accurate pixel-level understanding of images
across various applications, particularly in medical imaging where such precision is
crucial for diagnosis and therapy.

2.2.3 Network Training

The training of a neural network is a process that transforms raw data into predictive
insights. This transformation is achieved through a series of steps, forming a pipeline
that encompasses data preparation, model training, and iterative optimization to
refine the model’s predictions. Here is a detailed look at each stage in the pipeline:

1. Data Collection and Preprocessing: The foundation of any neural network
model is data. The first step involves gathering a comprehensive dataset rel-
evant to the task at hand. Once collected, the data undergoes preprocessing,
which may include normalization, augmentation, and division into training,
validation, and test sets. This preparation is crucial for ensuring that the
network learns from a well-structured and representative dataset.

2. Model Architecture Definition: Before training begins, the architecture of the
neural network must be defined. This includes selecting the type of network
(e.g., CNN for image-related tasks) and designing the layer structure, including
the number of layers, the number of neurons in each layer, activation functions,
and connectivity patterns. This architectural blueprint dictates how the data
will flow through the network and how complex patterns can be learned.

3. Forward Pass: Training commences with the forward pass, where input data is
fed into the network. As the data propagates through each layer, the network
applies weights, biases, and activation functions to compute the output.

4. Loss Calculation: The output from the forward pass is evaluated against the
actual target values using a loss function, which quantifies the difference be-
tween the predicted and true values. This loss reflects the current performance
of the model; the goal of training is to minimize this value.

5. Backpropagation: With the loss computed, backpropagation calculates the
gradient of the loss function with respect to each weight in the network. This
process uses the chain rule to propagate the error backward from the output
layer to the input layer, determining how each weight contributed to the error.
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6. Optimization: Following backpropagation, an optimization algorithm updates
the model’s weights and biases to minimize the loss. This step is iterative,
with the model undergoing numerous epochs of training, progressively refining
its parameters to reduce error.

7. Regularization and Hyperparameter Tuning: Throughout the training, reg-
ularization methods are applied to prevent overfitting, ensuring the model
generalizes well to new data. Concurrently, hyperparameter tuning is con-
ducted to find the optimal settings for the network’s architecture and training
process, such as the learning rate, batch size, and number of epochs.

8. Evaluation and Iteration: After training, the model is evaluated on a separate
validation (and possibly a test) set to assess its performance on unseen data.
Metrics such as accuracy, and F1 score provide insight into the model’s effec-
tiveness (for classification tasks). Based on these results, further adjustments
to the model architecture, training process, or data preprocessing might be
made in an iterative process to enhance performance.

9. Deployment: Once the model achieves satisfactory performance, it is deployed
for making predictions on new data in real-world applications. This step often
involves integrating the model into an existing production environment, where
it can provide insights, make decisions, or automate tasks based on its learned
patterns.

Detailed descriptions of key training concepts such as backpropagation, loss func-
tions, optimization strategies, and regularization techniques immediately follow in
the subsequent subsections (i.e., Section 2.2.3.1 - Section 2.2.3.4).

2.2.3.1 Backpropagation

Backpropagation stands as a cornerstone of neural network training, instrumental
in refining the network’s parameters to minimize the loss function. This process
employs the chain rule to compute the gradients of the loss function relative to the
network’s weights, facilitating a systematic update mechanism that enhances model
accuracy.

The operation of backpropagation unfolds through two distinct stages: the forward
pass and the backward pass. In the forward pass, the network computes outputs
and the local derivatives at various nodes, setting the stage for the backward pass.
Here, gradients are calculated in reverse, from the output layer back to the input
layer, enabling the precise adjustment of weights in accordance with the computed
gradients. These adjustments are governed by an optimization algorithm, detailed
further in the Section 2.2.3.3, which methodically updates the weights to optimize
the network’s performance.

The application of the chain rule in backpropagation is pivotal for calculating the
gradients with respect to the weights across all layers. For a given sequence of
hidden layers h1, h2, . . . , hk culminating in an output O, and considering the weight
connection from layer hr to hr+1 as w(hr,hr+1), the gradient of the loss function with
respect to any weight in the network is determined through a multivariable chain
rule. This accounts for the multitude of paths from h1 to O, computing the gradient
as follows:
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∂L

∂w(hr−1,hr)

=
∂L

∂O
·

 ∑
[hr,hr+1,...,hk,O]∈P

∂O

∂hk

k−1∏
i=r

∂hi+1

∂hi

 ∂hr

∂w(hr−1,hr)

, (2.10)

where P represents the ensemble of all paths from hr to O. This nuanced approach
to gradient computation underpins the model’s learning process, ensuring that each
weight is optimally adjusted to minimize the loss and thus, enhance the model’s
predictive capability. Further exploration of this topic is available in [31].

2.2.3.2 Loss Functions

Loss functions, also known as cost functions, play a critical role in quantifying the
discrepancy between the actual outcomes (y) and the model’s predictions (ŷ). The
primary objective of optimizing a neural network is to minimize this discrepancy,
thereby enhancing the model’s prediction accuracy. A smaller loss function value
indicates a model that is better aligned with the ground truth, making loss func-
tion minimization a fundamental aspect of model training. Among the various loss
functions employed, the following are particularly noteworthy:

• Mean Squared Error (MSE) for regression quantifies the average squared
discrepancy between actual values and predictions:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (2.11)

where n is the total number of observations. MSE is sensitive to outliers due
to squaring the error.

• Mean Absolute Error (MAE) also for regression, measures the average ab-
solute difference:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (2.12)

offering robustness to outliers compared to MSE.
• Cross-Entropy Loss, essential for classification tasks, it measures the perfor-
mance of a classification model whose output is a probability value between 0
and 1. It increases as the predicted probability diverges from the actual label.
It is particularly useful for models outputting probabilities and is defined for
a multi-class classification problem with m classes as:

Cross-Entropy Loss = −
n∑

i=1

m∑
j=1

yij log(ŷij), (2.13)

• Dice Loss, particularly useful for segmentation tasks, focuses on measuring
the overlap between the predicted segmentation and the ground truth. It is
especially favored in medical image segmentation due to its effectiveness in
handling class imbalance:

Dice Loss = 1− 2

m

m∑
j=1

( ∑n
i=1(yij · ŷij) + ϵ∑n

i=1 yij +
∑n

i=1 ŷij + ϵ

)
, (2.14)

where ϵ is a small constant added for numerical stability and m is the number
of classes.
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Each of these loss functions has its unique characteristics and applications, chosen
based on the specific requirements of the task at hand, be it regression, classification,
or segmentation. The selection of an appropriate loss function is pivotal in guiding
the learning algorithm towards optimal model performance.

2.2.3.3 Optimization

Optimization algorithms play a crucial role in machine learning by iteratively re-
ducing the loss function to enhance the predictive accuracy of models. This sec-
tion outlines two fundamental optimization strategies commonly employed in model
training.

Gradient Descent Gradient Descent is a foundational optimization technique that
iteratively adjusts model parameters to minimize the loss function. The core princi-
ple involves calculating the gradient of the loss function with respect to the model’s
parameters, denoted by θ, and updating these parameters in the opposite direction
of the gradient. This process is akin to descending a hill by moving in the direction
of the steepest slope, where the magnitude of each step is governed by a hyper-
parameter known as the learning rate (η). The equation for parameter update in
gradient descent is given by:

θupdated = θ − η∇θLoss(θ), (2.15)

where ∇θLoss(θ) represents the gradient of the loss function. The choice of learning
rate is critical; too small a rate results in slow convergence, while too large a rate
can lead to divergence or overshooting the minimum.

For large datasets, computing the gradient across all data points becomes compu-
tationally intensive. To address this, Stochastic Gradient Descent (SGD) is em-
ployed, which approximates the gradient using a randomly selected subset of data
at each iteration. This approach accelerates the optimization process, albeit with
increased variance in the loss function trajectory towards the minimum.

Adam Optimizer The Adam Optimizer, an acronym for Adaptive Moment Esti-
mation [32], integrates the advantages of two other extensions of stochastic gradient
descent: Momentum and RMSProp [33]. It computes exponentially decaying aver-
ages of past gradients, mt, akin to momentum, and squared gradients, vt, similar to
RMSProp, to adaptively adjust the learning rates for each parameter, reducing the
necessity for meticulous hyperparameter tuning (η). This capability makes Adam
especially suited for handling sparse gradients on noisy problems. Adam’s update
rules at time step t are given by:

mt = β1mt−1 + (1− β1)∇θLoss(θt), (2.16)

vt = β2vt−1 + (1− β2)(∇θLoss(θt))
2, (2.17)
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where β1 and β2 are the decay rates that control the moving averages of the gradient
and its square, respectively, typically close to 1.

To correct for the initial bias towards zero, Adam adjusts both mt and vt using
bias-corrected first- and second-moment estimates:

m̂t =
mt

1− βt
1

, (2.18)

v̂t =
vt

1− βt
2

, (2.19)

Finally, the parameter update rule is:

θt+1 = θt −
η√

v̂t + ϵ
m̂t, (2.20)

where η is the learning rate, and ϵ is a small scalar added to improve numerical
stability. This demonstrates how Adam adjusts the learning rate for each parameter
dynamically, based on estimates of the first- and second-moments of the gradients,
making it an effective optimizer for a wide range of deep learning tasks.

2.2.3.4 Regularization

Deep neural networks, characterized by their extensive parameter counts, are inher-
ently prone to overfitting. Overfitting occurs when a model memorizes the training
data to the extent that its generalization capability on unseen data is compromised.
To mitigate this, regularization techniques are necessary in model training.

Early Stopping A prevalent indicator of overfitting is the divergence of training
and validation losses: while the training loss continues to decrease, the validation
loss begins to deteriorate. Early stopping addresses this by halting the training
process as soon as the validation performance starts to decline, thereby preventing
the model from overfitting.

l1 and l2 Regularization To further combat overfitting, l1 and l2 regularization
techniques are integrated into the cost function during training. These techniques
adjust the cost function by adding a penalty term, which is proportional to the size
of the coefficients:

l2 regularization, or Ridge regularization, discourages large weights through the
penalty term α

∑n
i=1 θ

2
i , effectively keeping the model weights as small as possible.

Here, α signifies the regularization strength. This method is known for its abil-
ity to handle multicollinearity, reduce model complexity, and enhance the model’s
interpretation by shrinking parameters.

Conversely, l1 regularization, or Lasso regularization, adds a penalty equivalent to
the absolute value of the magnitude of coefficients: α

∑n
i=1 |θi|. This form of reg-

ularization can lead to sparse models where certain weights can become zero, thus
performing feature selection by eliminating non-informative features from the model.
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Dropout Among the most effective regularization strategies in deep learning is
dropout [34]. This technique involves randomly omitting a subset of neurons at
each step of the training process with a probability p, known as the dropout rate.
This randomness ensures that no single neuron becomes overly dependent on its
input neurons, thus preventing co-adaptation and fostering a model that is robust
to minor variations in input data. It’s crucial to note that dropout is only applied
during training, not during model evaluation or inference.

These regularization methods are fundamental in preventing overfitting, enabling
neural networks to generalize better to unseen data. By incorporating such tech-
niques, models can achieve higher accuracy and robustness, which is crucial for
deploying reliable machine-learning solutions.

2.3 Medical Background

The medical imaging techniques developed in this thesis were applied and evaluated
in three distinct diseases, namely Autosomal Dominant Polycystic Kidney Disease
(ADPKD), Multiple Sclerosis (MS ), and Aortic Dissection (AD). They are briefly
introduced in the following:

2.3.1 ADPKD

Figure 2.6: An illustration showing a kidney with cysts in comparison to a
healthy kidney [35].

ADPKD is a genetic disorder primarily marked by the growth of numerous cysts
in the kidneys. These cysts may lead to significant enlargement and dysfunction of
the kidneys and can affect other organs including the liver, the pancreas, and the
brain. The disease is prevalent (between one in 1000 and one in 2500 individuals)
worldwide and is equally likely to affect individuals of any race or gender [36, 37].

ADPKD typically results from genetic mutations in the PKD1 and PKD2 genes,
which are critical for producing the proteins polycystin 1 and polycystin 2. These
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proteins play essential roles in the structural and functional integrity of kidney cells
and other organ systems. Mutations disrupt these functions, initiating cyst devel-
opment potentially as early as during fetal development, though symptoms may
not manifest until later decades of life [36]. Furthermore, over time, these cysts
expand, disrupting normal kidney morphology and function. An illustration of a
cystic kidney is provided in Figure 2.6.

Individuals with ADPKD commonly experience hypertension, hematuria, and pain
due to the expanding cysts. Diagnostic procedures primarily involve imaging tech-
niques. Ultrasounds are typically used to detect larger cysts (diameter> 1 cm), while
MRI or CT scans provide more detailed images necessary for identifying smaller
cysts and assessing disease progression [36]. The disease progression varies, but it
can severely impact life quality through complications like chronic kidney disease,
necessitating significant medical interventions such as dialysis or kidney transplan-
tation in severe cases. While there is currently no cure for ADPKD, treatment
strategies are aimed at symptom management and decelerating disease progression.
This includes the management of hypertension, pain relief, and the treatment of
associated complications.

2.3.2 MS

MS is an autoimmune disorder of the Central Nervous System (CNS ), characterized
by inflammatory demyelination and axonal transection. This condition leads to
severe neurological damage. MS typically manifests in young adults aged 20 to
30 years, significantly impacting physical function, cognition, quality of life, and
employment capabilities [38].

Globally, the prevalence of MS varies widely, ranging from 5 to 300 per 100,000
individuals, with higher rates observed in regions farther from the equator. This
geographical variation suggests a link between sunlight exposure, vitamin D levels,
and disease prevalence. Women are affected nearly three times more often than men,
indicating possible gender-specific genetic or hormonal factors influencing disease
susceptibility [38].

MS involves the formation of lesions within the CNS, particularly in the white mat-
ter, although gray matter and cortical lesions are also prevalent. The disease pro-
cess includes phases of active inflammation and myelin destruction (Figure 2.7)
followed by periods where the disease may be less active or in remission. The in-
volvement of both T cells and B cells in the disease development suggests a complex
immune-mediated mechanism underlying MS [38]. Clinical presentation often in-
cludes unilateral optic neuritis, partial myelitis, and various brainstem syndromes,
developing acutely or sub-acutely. The disease progresses in most patients from a
relapsing-remitting course to a more steady decline in function, known as secondary
progressive MS (SPMS) [38]. Meanwhile, the diagnosis of the disease relies on the
2017 McDonald Criteria, which requires demonstration of lesion dissemination in
both space and time within the CNS, confirmed through clinical assessments and
supported by MRI findings and cerebrospinal fluid analysis for oligoclonal bands.
Furthermore, the management of MS includes a combination of disease-modifying
therapies (DMTs), symptomatic treatments, and rehabilitative strategies. Since the
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Figure 2.7: Depiction of a nerve cell affected by MS in comparison to a healthy
nerve cell [35].

approval of the first DMT in 1993, multiple classes of DMTs have become available,
each targeting different aspects of the immune system to reduce the frequency of
relapses and slow disease progression.

2.3.3 AD

AD is a severe condition characterized by the tearing of the intima (inner layer) of
the aorta, allowing blood to enter the media (middle layer) and create a false lumen
(Figure 2.8). This process can cause the true and false lumens to separate, posing
a significant risk of rupture and life-threatening complications. It primarily affects
individuals aged 65–75, with an incidence rate that may be as high as 35 cases per
100,000 people annually in this age group [39]. Risk factors include hypertension,
dyslipidemia, and certain genetic conditions like Marfan syndrome, which affect the
connective tissues.

The disease process begins typically with an intimal tear, although in some cases,
rupture of the vasa vasorum (small vessels supplying the aorta) may initiate the dis-
section. The progression can extend both antegrade and retrograde from the initial
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Figure 2.8: An illustration of the healthy and dissected aorta with a true and
false lumen [35].

tear site, potentially involving major arterial branches and leading to varied clinical
manifestations depending on the extent and location of the dissection. Symptoms of
AD can include sudden severe chest or back pain, fainting, shortness of breath, and
symptoms of stroke or other organ impairment due to disrupted blood flow [39].

Diagnosis is based on imaging studies such as CT scans, MRI, or ultrasound, which
can identify the presence of a dissection and help differentiate the true from the false
lumen. The Stanford classification, which is widely used, categorizes dissections into
Type A (involving the ascending aorta) and Type B (restricted to the descending
aorta), each with distinct management strategies. Immediate management depends
on the type of dissection; Type A usually requires surgical intervention, while Type
B might be managed with medication or endovascular techniques depending on the
specifics of the case. Long-term management involves strict blood pressure control
and surveillance imaging to monitor the progression or resolution of the dissection
[39].
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3.1 Abstract
Early detection of the Autosomal Dominant Polycystic Kidney Disease (ADPKD)
is crucial as it is one of the most common causes of end-stage renal disease (ESRD)
and kidney failure. The Total Kidney Volume (TKV ) can be used as a biomarker
to quantify disease progression. The TKV calculation requires accurate delineation
of kidney volumes, which is usually performed manually by an expert physician.
However, this is time-consuming and automated segmentation is warranted. Fur-
thermore, the scarcity of large annotated datasets hinders the development of deep
learning solutions. In this work, we address this problem by implementing three
attention mechanisms into the U-Net to improve TKV estimation. Additionally, we
implement a cosine loss function that works well on image classification tasks with
small datasets. Lastly, we apply a technique called Sharpness Aware Minimiza-
tion (SAM ) that helps improve the generalizability of networks. Our results show
significant improvements (p-value < 0.05) over the reference kidney segmentation
U-Net. We show that the attention mechanisms and/or the cosine loss with SAM
can achieve a Dice Similarity Coefficient (DSC ) of 0.918, a Mean Symmetric Surface
Distance (MSSD) of 1.20 mm with the mean TKV difference of −1.72%, and R2 of
0.96 while using only 100 Magnetic Resonance Imaging (MRI ) datasets for train-
ing and testing. Furthermore, we tested four ensembles and obtained improvements
over the best individual network, achieving a DSC and MSSD of 0.922 and 1.09 mm,
respectively.

3.2 Introduction
ADPKD is a hereditary disorder with a slow and gradual development of cysts
in the kidneys. ADPKD leads to renal enlargement and eventually to end-stage



28 3. ADPKD Total Kidney Volume Segmentation Algorithm

renal disease (ESRD) with renal failure [40, 41]. Daalgard et al. [42] reported that
ESRD might occur within five years after detecting ADPKD. Hence, it is important
to monitor ADPKD progression in patients. The TKV increases with ADPKD
progression and, therefore, can be used as a risk predictor of disease development
[43] and to quantify disease progression [44].

Consequently, the Food and Drug Administration (FDA) has accepted TKV as
an important biomarker [45] for determining renal function in patients. Moreover,
the TKV is the only MRI-established biomarker so far [46] and can be determined
by segmenting the kidneys from the MRI volumes. Manual segmentation by an
experienced physician is, however, time-consuming and prone to observer variability
[47]. Alternatively, deep learning approaches are generally much faster and have
recently achieved state-of-the-art results in medical imaging [48].

In the past, kidney segmentation has been approached via classical image processing
techniques, such as algorithmic segmentation methods, model-based segmentation
methods, and their combinations. An overview of related work is given in two
reviews by Zöllner et al. [46, 47]. However, only a few machine learning (especially
deep learning approaches) for kidney segmentation have recently been proposed.

Kline et al. [49] approached kidney segmentation of ADPKD patients with 2000
training and 400 test cases. They employed multi-observer artificial neural networks
consisting of 11 Convolutional Neural Networks (CNNs) with variable depths and
parameters. They post-processed the prediction map using the two largest connected
components and then applied active contours and edge detection to finalize the
segmentation. The resulting average DSC was 0.97. Based on this work, van Gastel
et al. [50] used T2-weighted MR images from 440 ADPKD patients for training
and extended the method to also include liver segmentation. They added inception
blocks and residual connections to the network in [49], obtaining a DSC of 0.96. In
another approach, Bevilacqua et al. [51] implemented R-CNN to first determine the
Region of Interest (ROI ) containing kidneys and then a semantic segmentation CNN
to delineate the kidneys. Their approach reached a DSC of 0.88 with a dataset of 57
images from four patients. Mu et al. [52] employed a multi-resolution method using
a modified V-Net [29] to segment ADPKD kidneys in 305 patients. The resulting
DSC reached 0.95. Daniel et al. [53] developed an automated system using the U-Net
[28] to segment kidneys and ultimately determine TKV for renal disease detection.
They used T2-weighted MR images from 30 healthy and 30 Chronic Kidney Disease
(CKD) patients. Their system achieved a DSC of 0.93 on a test dataset consisting
of 10 patients.

The drawback of such deep learning approaches is that they require huge amounts
of data to train the networks to achieve high (segmentation) accuracy. This problem
is further escalated in the medical sector where image data are rare in most cases.
The reason is that acquiring large medical datasets is hindered by the complexity
and high cost of large-scale experiments or in the case of a rare disease, a limited
number of patients. Additionally, a class imbalance between the background and the
segmented object exists. To mitigate this problem, data augmentation techniques
[54] or approaches to generate synthetic data are proposed [55, 56].
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Our contribution in this work is to address the problem of a small dataset by in-
troducing a cosine loss function, which, to the best of our knowledge, has not been
implemented so far for medical image segmentation tasks. Moreover, we integrate
SAM [57] with the loss function to improve model generalizability. We further in-
vestigate and incorporate three attention mechanisms [58–62] with CNNs so that
the networks can focus on relevant image regions. As a final experiment, we explore
four ensembles that consist of different attention networks and loss functions with
SAM for automatic kidney volume segmentation in patients with ADPKD.

3.3 Materials and Methods

3.3.1 Image Data

The patient image data were obtained from the National Institute of Diabetes and
Digestive and Kidney Disease (NIDDK), National Institutes of Health, USA, and
were recorded in the Consortium for Radiologic Imaging Studies of Polycystic Kidney
Disease (CRISP) study [41]. It contains T1- and T2-weighted MRI scans of patients
with different stages of CKD. For this work, we retrieved 100 datasets from the
NIDDK database. The male-to-female ratio is 50:50 with an average age of 30± 10
years. It includes patients from healthy (CKD stage 1) to ADPKD (CKD stage 3)
cases. The number of cases belonging to CKD stages 1, 2, and 3 is 41, 41, and 18,
respectively. We only focused on T1-weighted MRIs. Images were recorded with
a matrix of 256 × 256 and 30–80 slices with an in-plane resolution of 1.41 × 1.41
(±0.13) mm2 and slice thickness of 3.06 (±0.29) mm. Images were recorded in the
coronal orientation. More details of the imaging protocol can be found in the original
study in [41].

3.3.2 Image Annotation

For each dataset, left and right kidneys including cysts, were segmented manually
as a reference standard. Two experienced physicians independently performed seg-
mentation on coronal MR images using an in-house developed annotation tool based
on MeVisLab SDK (MeVis Medical Solutions, Inc., Bremen, Germany), which also
allowed for an analysis of the inter-user agreement of kidney segmentations. The
mean inter-user agreement was found to be 0.91 ± 0.06 (Dice) with a coefficient of
variation of 0.07.

3.3.3 Pre-Processing

We first normalized the images using (Equation 5.1),

Î =
I − µ(I)

σ(I)
, (3.1)

where µ(I) and σ(I) are the mean and standard deviations, respectively, of the
original image I. Î is the normalized image. Furthermore, as a data augmenta-
tion technique, we used a constrained label sample mining approach where patches
were extracted from MRI slices with patch center probability of 50:50 on the la-
bel:background pixel for each batch [63]. We trained the networks on patches of size
96 × 96 and 128 × 128. For testing, we used the whole image size of 256 × 256.
The pre-processing was implemented using SimpleITK 1.2.4 [64].
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3.3.4 Attention Module

Oktay et al. [58] proposed attention gates in the U-Net to guide the network in
selecting relevant features and disregard irrelevant ones by using higher-level features
as a guide to suppress trivial and noisy responses in the lower-level skip connections.
Figure 3.1 illustrates this attention module. The gating signal g is the higher-

Figure 3.1: Attention module used in the Attention U-Net. It takes two
inputs: g and xl where g is the higher-level feature and spatially smaller
than the previous layer feature xl. g is used to guide lower-level features xl to
emphasize relevant image regions. This is achieved by calculating α coefficients
that are element-wise multiplied with xl to produce attention maps. Adapted
from [58].

level feature and xl is the corresponding previous layer skip connection. Since g
is spatially smaller and has more feature maps than xl, it is convoluted with a 1
× 1 filter to obtain the same number of features. Afterward, g is upsampled to
have the same spatial dimensions as xl. Then, both g and xl are concatenated
followed by Rectified Linear Unit (ReLU ), 1 × 1 convolution, sigmoid activation,
and eventually an upsampling layer resulting in the attention coefficients α. The
attention coefficients are then multiplied with the skip connection to obtain the final
attention feature maps.

3.3.4.1 Convolutional Block Attention Module

The Convolution Block Attention Module (CBAM ) calculates and combines both
spatial and channel attention into one network [60]. Briefly, a 1D channel attention
map and thereafter a 2D spatial attention map are computed. The spatial attention
map is generated by performing max and average-pooling operations along the chan-
nel dimension of the input feature map. The pooled feature maps are concatenated
and fed forward through a convolution layer to yield a 2D spatial attention map.
There are two versions of channel attention: 1) squeeze and excitation attention
proposed by Hu et al. [59] and 2) channel attention, as outlined in [60]:

3.3.4.2 Squeeze and Excitation Attention

This attention mechanism focuses on channel relationships in a network. Briefly,
the attention module performs two operations sequentially to form a Squeeze and
Excitation (SE ) block. First, a squeeze operation on the input layer is executed,
which is then followed by an excitation operation. The squeeze operator does a
global average-pooling of spatial information into a channel descriptor of size 1 × 1
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× C, where C is the number of channels in the input layer. This output vector is then
processed by an excitation operation that captures full channel-wise dependencies
[59]. The following equation describes the exact excitation operation,

Ex = ϕsig(W2ϕReLU(W1z)), (3.2)

where z is the output from the squeeze operation, ϕReLU the ReLU activation, W1

& W2 are two Fully Connected (FC ) layers, and ϕsig is the sigmoid activation. The
final output is obtained by multiplication of Ex and the input layer. The squeeze
and excitation operation is depicted in Figure 3.2.

Figure 3.2: Squeeze and excitation module. The module first squeezes the
input features to a vector with the shape 1xC (C: number of channels in the
input features). This is followed by the excitation operation where a multi-
layer perceptron processes the input vector. The final output feature map is
calculated by multiplication between the output vector and the input feature
map. Adapted with permission from Ref. [59]. 2018, IEEE

.

3.3.4.3 Channel Attention in CBAM

The CBAM’s channel attention [60] is calculated by squeezing the spatial dimension
of the input feature map using average and max-pooling and then feeding them
forward through a small Multi-Layer-Perceptron (MLP).

The channel and spatial attention modules used in CBAM are illustrated in Fig-
ure 3.3a. The complete CBAM block is shown in Figure 3.3b. In our experiments,
we incorporate SE and CBAM blocks in the Attention U-Net [58] encoder to imple-
ment the SE U-Net and CBAM U-Net, respectively.

3.3.5 Cosine Loss

The cosine loss has been shown to improve the image classification accuracy for
small datasets [65]. Hence, we adapt this loss function for our kidney segmentation
task. The loss is given by,

S(Ŷ , Y ) =
⟨Ŷ , Y ⟩

∥Ŷ ∥2 · ∥Y ∥2
, (3.3)

LCOS(Ŷ , Y ) = 1− S(Ŷ , Y ), (3.4)

where S and LCOS are the cosine similarity and cosine loss, respectively, between
the prediction Ŷ and the ground truth Y .
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(a) Channel and spatial attention blocks in CBAM

(b) CBAM

Figure 3.3: The scheme of the convolutional block attention module. (a)
The channel attention module implements max and average pooling along
the channel dimension. It produces a refined 1D channel attention vector.
Meanwhile, the spatial attention module applies max and average pooling
along spatial dimensions to produce a 2D spatial attention map. (b) The
CBAM combines the channel and spatial attention maps (red-colored squares)
detailed in (a) and applies them to the input feature map sequentially to
produce an output feature map, which is refined along both the channel and
spatial dimensions. Adapted with permission from Ref. [60]. 2018, Springer
Nature

.

3.3.6 Sharpness Aware Minimization

Foret et al. [57] introduced a technique called SAM that helps improve the gen-
eralizability of neural networks. Briefly, the method searches for a neighborhood
of parameters with homogeneous low loss values, signifying a wide loss curve at
the minimum, thereby, reducing the loss value and sharpness of the loss curve. A
wide minimum suggests that the parameters in the neighborhood will generally yield
consistently better predictions compared to a minimum with a sharp curve.
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3.3.7 Networks

All networks implemented in this work are based on the 2D U-Net architecture by
Ronneberger et al. [28] extended with residual connections. The baseline 2D U-
Net architecture is illustrated in Figure 3.4a. For the baseline experiments, the 2D
U-Net is used with DSC loss (cf. (Equation 3.5)) and a combination of DSC and
cross-entropy (CE) loss.

LDSC

(
Ŷ , Y

)
= 1−

2 ·
3∑

c=1

N∑
i=1

ŷi,c · yi,c
3∑

c=1

N∑
i=1

ŷi,c +
3∑

c=1

N∑
i=1

yi,c

(3.5)

The cross-entropy loss is given by,

LCE

(
Ŷ , Y

)
= −

3∑
c=1

N∑
i=1

yi,c log(ŷi,c)

3 ·N
(3.6)

where ŷi,c and yi,c correspond to the individual voxel probabilities and label, respec-
tively, with c and N being the number of classes and voxels in a batch, respectively.
(Equation 3.7) depicts the combination of LCE and LDSC where LCE is weighted
with λ = 10 [66].

LCE+DSC

(
Ŷ , Y

)
= LDSC

(
Ŷ , Y

)
+ λ LCE

(
Ŷ , Y

)
(3.7)

The Attention U-Net as introduced in Section 3.3.4, is depicted in Figure 3.4b. The
other variants that involve SE modules/CBAMs in the Attention U-Net encoder
part are shown in Figure 3.4c. In preliminary experiments, we found that modifying
baseline U-Net with only CBAMs or SE modules performed worse or similar to
the baseline. Hence, for any further experiments, we combined them only with the
Attention U-Net. All described networks were implemented using TensorFlow 2.0
and Python 3.7.

3.3.8 Training

We trained the networks on T1-weighted MR images and implemented a batch size
of 16 and 8 for patch sizes 96 and 128, respectively, using the Adam optimizer
[32] and a learning rate of 10−3. We used exponential linear units (elus) [67] as
activation functions with batch normalization, L2-regularization (10−7) and drop-
out with probability of 0.01. Furthermore, we performed 5-fold cross-validation with
a split of 70:10:20 patient image volumes in train:validation:test sets. We selected
160 samples per patient MRI volume during training.

Each network was trained for at least 20 epochs. After that, the training stopped
as soon as the difference in segmentation accuracy of each kidney in the validation
data were less than 10−4 over the last ten epochs. We then selected the network’s
weights with the highest average accuracy on the validation data from these last ten
epochs.
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(a) Baseline U-Net

(b) Attention U-Net

(c) SE or CBAM Attention U-Net

Figure 3.4: The network architectures for kidney segmentation: (a) baseline
U-Net without any attention modules, (b) U-Net with attention modules as
described by Oktay et al. [58] and (c) U-Net combining SE or CBAM [59, 60]
with attention modules from [58].

3.3.9 Ensembles

We created two ensembles from our proposed networks. The first one consists of
four networks (SE U-Net, CBAM U-Net, Attention U-Net, and U-Net) trained us-
ing cosine loss with SAM (LCOS + SAM). The second ensemble consists of seven
networks that include the four networks from the first ensemble plus three networks
(SE U-Net, CBAM U-Net, and Attention U-Net) trained using cross-entropy + DSC
loss with SAM (LCE+DSC + SAM). We selected these networks to test all attention
networks and loss functions. We employed two methods for calculating the ensemble
result: 1) simultaneous truth and performance level estimation (STAPLE) [68] and
2) majority voting.
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3.3.10 Evaluation

To compare the proposed models, we used the DSC, the MSSD, and the TKV as
evaluation metrics. Firstly, we used the DSC to assess the overlap between the
ground truth Y and the segmentation Ŷ ,

DSC
(
Ŷ , Y

)
=

2 |Ŷ ∩ Y |
|Ŷ |+ |Y |

(3.8)

Secondly, we employed the MSSD (in mm) that is more perceptive to alignment and
shape:

MSSD
(
Ŷ , Y

)
=

∑̂
y∈Ŷ

min d(ŷ, Y ) +
∑
y∈Y

min d(y, Ŷ )

|Ŷ |+ |Y |
(3.9)

Finally, we calculated the TKV (in mL) by multiplying the number of voxels be-
longing to the segmented kidneys by their voxel volume (mm3) divided by 1000 to
convert the result to mL.

We compared the TKV of the manual and the obtained segmented kidneys of our
networks using scatter plots and the coefficient of determination (R2).

Furthermore, we used a paired t-test to check for the significance between the results
from the baseline and our implemented methods. Here, the null hypothesis is that
the baseline network configuration is better than the developed methods for the
given evaluation metric. It is rejected at p < 0.05.

3.4 Results

The quantitative results for all experiments are displayed in Table 3.1 where the
DSC and MSSD values are averaged over both the kidneys for better comprehen-
sion. For the baseline U-Net (Figure 3.4a), the DSC loss (LDSC) performs worse
for all metrics and patch sizes than the combination of cross-entropy and DSC
loss (LCE+DSC). Furthermore, all proposed methods perform better than the base-
line. Post-processing employing the largest connected components further improves
the DSC and MSSD. In most cases, improvements are significant (see Table 3.2).
The best results among individual networks were obtained using the U-Net with
LCOS + SAM and patch size of 128. Here, an average DSC of 0.918± 0.044 and an
MSSD of 1.199 ± 1.525 mm were achieved. The segmentation quality was further
improved using ensembles. The DSC and MSSD of 0.922± 0.047 and 1.094± 1.376
mm, respectively, were achieved using the ensemble of seven models with the ma-
jority voting scheme. Supplement Table 11.1 displays results for the left and right
kidneys.

Examples of obtained segmentation after post-processing for each network are dis-
played in Figure 3.5. The top row depicts a case with a DSC of 0.96 (stage: 1, female,
age: 34), where the two networks (U-Net (LCOS) & Attention U-Net (LCE+DSC)) sur-
pass the baseline only by a DSC of ≈ 0.002. The lower row depicts the obtained
segmentation from a case with a high load of cysts that are distributed not only in
the kidneys but all over the abdomen (stage: 2, female, age: 32). We observe that
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Architecture Loss DSC ↑ MSSD (mm) ↓ DSC ↑ MSSD (mm) ↓
96 × 96 96 × 96 128 × 128 128 × 128

Baseline U-Net LDSC 0.789 ± 0.109 8.803 ± 5.947 0.855 ± 0.079 5.435 ± 5.257
LCE+DSC 0.865 ± 0.075 4.229 ± 4.094 0.888 ± 0.067 3.297 ± 3.951

SE U-Net LCE+DSC 0.889 ± 0.060 3.199 ± 3.941 0.892 ± 0.060 2.805 ± 3.087
LCOS 0.879 ± 0.080 3.566 ± 4.164 0.892 ± 0.057 2.654 ± 2.843
LCE+DSC + SAM 0.895 ± 0.060 2.357 ± 2.790 0.903 ± 0.052 2.248 ± 2.719
LCOS + SAM 0.902 ± 0.055 2.228 ± 3.045 0.899 ± 0.058 2.450 ± 3.272

CBAM U-Net LCE+DSC 0.878 ± 0.080 3.517 ± 4.327 0.899 ± 0.056 2.490 ± 3.013
LCOS 0.894 ± 0.056 2.636 ± 2.648 0.898 ± 0.057 2.332 ± 2.568
LCE+DSC + SAM 0.880 ± 0.064 3.689 ± 4.120 0.903 ± 0.060 2.549 ± 4.997
LCOS + SAM 0.885 ± 0.073 3.520 ± 5.274 0.902 ± 0.056 2.090 ± 2.683

Attention U-Net LCE+DSC 0.882 ± 0.069 3.331 ± 3.681 0.898 ± 0.057 3.158 ± 4.191
LCOS 0.892 ± 0.060 3.382 ± 4.790 0.901 ± 0.061 2.427 ± 3.250
LCE+DSC + SAM 0.886 ± 0.068 3.144 ± 4.266 0.903 ± 0.054 2.461 ± 2.717
LCOS + SAM 0.896 ± 0.060 2.621 ± 3.270 0.907 ± 0.057 2.338 ± 3.987

U-Net LCOS 0.885 ± 0.069 3.007 ± 3.317 0.902 ± 0.061 2.228 ± 2.856
LCOS + SAM 0.899 ± 0.056 2.754 ± 3.541 0.909 ± 0.049 2.417 ± 3.542

Ensemble-4-STAPLE LCOS + SAM 0.904 ± 0.058 2.479 ± 3.621 0.913 ± 0.052 1.967 ± 2.841
Ensemble-7-STAPLE LCE+DSC + SAM + LCOS + SAM 0.903 ± 0.059 2.472 ± 3.575 0.916 ± 0.052 1.732 ± 2.467
Ensemble-4-VOTING LCOS + SAM 0.910 ± 0.051 1.886 ± 2.615 0.914 ± 0.049 1.506 ± 2.018
Ensemble-7-VOTING LCE+DSC + SAM + LCOS + SAM 0.910 ± 0.051 1.934 ± 2.690 0.918 ± 0.048 1.484 ± 2.083

Table 3.1: The DSC and MSSD (in mm) values for various networks with
loss functions as DSC (LDSC), cross-entropy+DSC (LCE+DSC), and cosine
loss (LCOS). The experiments were performed for two patch sizes: 96 and
128, with the numbers in bold implying significant difference (p-value < 0.05)
between the baselines and the corresponding network configuration. The un-
derlined numbers signify the best in the respective category excluding ensemble
results. As can be seen, adding attention to the U-Net can improve the re-
sults significantly (Attention and CBAM U-Nets). Furthermore, cosine loss
alone (U-Net) or with Attention and CBAM U-Nets provides better DSC than
the corresponding cross-entropy+DSC loss networks. Finally, the ensembles
outperform the best model in each category. The ensembles in italics im-
ply significantly better results (p-value < 0.05) than the corresponding best
performing model.

every network has difficulties obtaining a DSC > 0.80. Nonetheless, the proposed
networks outperform the baseline U-Net by up to 18% (U-Net (LCOS + SAM)).

Investigating the cases with DSC ≤ 0.80, we observe that our proposed networks
can reduce the number of such cases by half: 13 for the baseline U-Net (LCE+DSC)
versus 5 for the other networks. It is also worth noting that these 5 cases were
among the 13 cases with low DSC of the baseline U-Net. Moreover, the ensemble
with 7 networks reduces this number to only 3 cases.

3.4.1 Attention Mechanisms

The networks SE U-Net, CBAM U-Net, and the Attention U-Net with LCE+DSC

as loss function all outperform the baseline results across all metrics (Table 3.1).
For CBAM and Attention U-Net with LCE+DSC , the results are significantly better
(p-value < 0.05) than the baseline U-Net (LCE+DSC) for 3/4 metrics (both the DSC
scores and one MSSD value). In this configuration, the SE U-Net outperforms the
other two for patch size of 96, however, for patch size of 128, CBAM and Attention
U-Net perform better in terms of the DSC (0.899 and 0.898, respectively).
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Architecture Loss DSC ↑ MSSD (mm) ↓ DSC ↑ MSSD (mm) ↓
96 × 96 96 × 96 128 × 128 128 × 128

Baseline U-Net LCE+DSC 0.880 ± 0.071 2.382 ± 2.950 0.902 ± 0.600 1.530 ± 2.542
SE U-Net LCE+DSC 0.897 ± 0.058 1.687 ± 1.970 0.899 ± 0.055 1.630 ± 2.054

LCOS 0.884 ± 0.088 2.002 ± 3.000 0.899 ± 0.051 1.579 ± 1.791
LCE+DSC + SAM 0.894 ± 0.070 1.580 ± 1.941 0.904 ± 0.057 1.290 ± 1.225
LCOS + SAM 0.902 ± 0.060 1.438 ± 1.600 0.900 ± 0.079 1.593 ± 2.912

CBAM U-Net LCE+DSC 0.890 ± 0.070 1.937 ± 2.620 0.906 ± 0.052 1.395 ± 1.480
LCOS 0.901 ± 0.057 1.367 ± 1.158 0.903 ± 0.058 1.504 ± 1.863
LCE+DSC + SAM 0.892 ± 0.059 1.947 ± 2.228 0.910 ± 0.054 1.294 ± 1.644
LCOS + SAM 0.896 ± 0.065 1.926 ± 2.717 0.908 ± 0.054 1.346 ± 1.705

Attention U-Net LCE+DSC 0.891 ± 0.076 1.794 ± 2.046 0.910 ± 0.042 1.371 ± 1.297
LCOS 0.904 ± 0.056 1.588 ± 1.912 0.910 ± 0.052 1.377 ± 1.671
LCE+DSC + SAM 0.895 ± 0.065 1.922 ± 2.757 0.911 ± 0.051 1.398 ± 1.852
LCOS + SAM 0.905 ± 0.056 1.470 ± 1.713 0.913 ± 0.051 1.312 ± 1.708

U-Net LCOS 0.896 ± 0.074 1.812 ± 2.643 0.909 ± 0.057 1.358 ± 1.970
LCOS + SAM 0.908 ± 0.054 1.480 ± 1.885 0.918 ± 0.044 1.199 ± 1.525

Ensemble-4-STAPLE LCOS + SAM 0.909 ± 0.055 1.560 ± 2.087 0.919 ± 0.048 1.204 ± 1.508
Ensemble-7-STAPLE LCE+DSC + SAM + LCOS + SAM 0.909 ± 0.054 1.534 ± 1.881 0.921 ± 0.048 1.174 ± 1.528
Ensemble-4-VOTING LCOS + SAM 0.914 ± 0.053 1.204 ± 1.367 0.917 ± 0.048 1.125 ± 1.340
Ensemble-7-VOTING LCE+DSC + SAM + LCOS + SAM 0.914 ± 0.052 1.299 ± 1.620 0.922 ± 0.047 1.094 ± 1.376

Table 3.2: Results after post-processing with the largest-connected compo-
nents. The two evaluation metrics are the DSC and the MSSD with the
bold values being significantly better (p-value < 0.05) than the corresponding
baseline network. The underlined values represent the best outcomes in their
respective category excluding ensemble results. Meanwhile, the highlighted
values in yellow imply a significantly better (p-value < 0.05) score than the re-
sults from the corresponding networks without post-processing from Table 3.1.
The ensembles in italics signify significantly better results (p-value < 0.05)
than the corresponding best performing model.

Within the test set, five cases had a DSC ≤ 0.8. The average DSC of these five
cases in baseline U-Net (LCE+DSC) is 0.638 ± 0.081, while for the Attention U-Net
(LCE+DSC), this score rises by 6% to 0.704 ± 0.072.

3.4.2 Cosine Loss

Meanwhile, for the cosine loss (LCOS), we again observe that the U-Net, the Atten-
tion U-Net, and the CBAM U-Net outperform the baselines significantly (p-value
< 0.05) over all the patch sizes and metrics. We also find that U-Net and CBAM
U-Net with LCOS provide the best DSC and MSSD values for patch sizes 128 and 96,
respectively, among the networks without SAM. Furthermore, the Attention U-Net
with LCOS surpasses its corresponding network with LCE+DSC over both the DSC
and one MSSD value (patch: 128).

For the Attention U-Net (LCOS) an improvement of 3% in DSC is recorded (from
DSC of 0.647 to 0.677) as compared to the baseline U-Net for the five cases with
DSC ≤ 0.8.

3.4.3 SAM

The application of SAM on top of the networks yields the best performance overall
for the individual networks. The SE U-Net with LCOS + SAM provides the best
DSC (0.902) and MSSD (2.228 mm) values for patch size 96. Furthermore, the U-
Net with LCOS + SAM yields the best DSC of 0.909 with patch size 128 among all
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Baseline U-Net (LCE+DSC) U-Net (LCOS) Attention U-Net (LCOS) U-Net (LCOS + SAM) Ensemble-7-VOTING

Figure 3.5: Qualitative results after post-processing (128 x 128): random slices
of the best (top row) and the worst case segmentation (bottom row) from
the baseline U-Net (LCE+DSC) compared to its corresponding U-Net (LCOS &
LCOS + SAM), Attention U-Net (LCE+DSC), and Ensemble-7-VOTING pre-
dictions. The best case has stage 1 CKD, while, the worst case has stage 2
CKD. The ground truth segmentation is colored in green and yellow, while
the network segmentations are colored in red and blue. Top row DSC (left
to right): Baseline U-Net = 0.963, U-Net (LCOS) = 0.965, Attention U-Net
(LCE+DSC) = 0.965, U-Net (LCOS + SAM) = 0.962 and Ensemble-7-VOTING
= 0.969. Bottom row DSC: Baseline U-Net = 0.606, U-Net (LCOS) = 0.713,
Attention U-Net (LCE+DSC) = 0.747, U-Net (LCOS + SAM) = 0.784 and
Ensemble-7-VOTING = 0.780. There is no significant difference between the
baseline and our modified U-Nets in the case of the best segmentation. How-
ever, there is a maximum of 18% improvement in the DSC for the worst case.
The worst case has cysts all over the abdomen region, which makes model
prediction difficult, nonetheless, the attention mechanisms, cosine loss, SAM,
and ensembles help improve the segmentation and can be useful in locating
cysts in other regions as well.

individual networks. Moreover, the overall best MSSD value of 2.09 mm is provided
by the CBAM U-Net with LCOS+SAM . We further observe that in six out of eight
cases, the LCOS + SAM performs better than the corresponding LCE+DSC + SAM
when the respective DSC and MSSD values are compared.

For cases with DSC ≤ 0.8, the Attention U-Net with LCOS +SAM produces similar
segmentation results as described before. Again, the network surpasses the baseline
U-Net.

3.4.4 Ensemble

We observe that every ensemble model achieves a higher DSC than any individual
network for the same patch size. The same is observed for MSSD values except for
the ensembles with STAPLE and the patch size of 96. The highest results are ob-
tained using ensemble with seven models and majority voting (DSC: 0.918±0.048 &
MSSD: 1.484± 2.083 mm, see Table 3.1). The DSC and MSSD after post-processing
reach 0.922 ± 0.047 and 1.094 ± 1.376 mm, respectively. We also observe that some
ensemble results are significantly better (p-value < 0.05) than the corresponding
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best individual network (marked in italic in Table 3.1 and Table 3.2). Moreover,
the ensembles with majority voting outperform those using STAPLE. No significant
differences in performance between the ensembles with four and seven models were
observed (p > 0.05).

3.4.5 Evaluation of Total Kidney Volume

Table 3.3 displays the R2 values of manual segmented TKVs (ground truth) versus
calculated TKVs from the selected networks’ segmentations. We observe that there
is a high correlation between ground truth and segmentation for smaller volumes,
while for larger volumes over- or under segmentation occurs. The R2 for all networks
is greater than 0.91, supporting the visual analysis. Furthermore, all the networks
except one (U-Net (LCOS)) outperform the baseline demonstrated by a higher R2

with less deviation in the mean TKV difference (%) values. This conforms to in-
creased segmentation accuracy in DSC and MSSD (cf. Table 3.2). The highest R2

value of 0.9626 is achieved by the Attention U-Net (LCE+DSC). It outperforms the
baseline U-Net by 5%. Furthermore, the mean TKV difference for the baseline is
−4.43 ± 18.9%. In comparison, the mean TKV difference for the Attention U-Net
(LCE+DSC) and the U-Net (LCOS + SAM) are −2.04 ± 12.2% and −1.72 ± 12.5%,
respectively. The mean TKV differences for the ensembles of 7 networks and ma-
jority voting or STAPLE are −0.65 ± 13.76% and −4.00 ± 14.82%, respectively.
Meanwhile, the mean TKV differences for four network ensembles with majority
voting or STAPLE are 2.34 ± 13.36% and −3.11 ± 14.63%, respectively.

Architecture Loss R2 ↑ Mean TKV Difference (%) ↓

Baseline U-Net LCE+DSC 0.915 −4.43 ± 18.90

Attention U-Net LCE+DSC 0.962 −2.04 ± 12.20
LCOS 0.946 −1.94 ± 16.14
LCOS + SAM 0.951 −1.63 ± 15.73

U-Net LCOS 0.914 0.16 ± 16.79
LCOS + SAM 0.958 −1.72 ± 12.50

Ensemble-4-STAPLE LCOS + SAM 0.953 −3.11 ± 14.63
Ensemble-7-STAPLE LCE+DSC + SAM + LCOS + SAM 0.957 −4.00 ± 14.82
Ensemble-7-VOTING LCE+DSC + SAM + LCOS + SAM 0.952 −0.65 ± 13.76

Table 3.3: The R2 and mean TKV difference (%) of selected network configu-
rations (post-processed, patch size: 128) for ground truth TKV v/s predicted
TKV (ml). The baseline linear fit has R2 value of 0.915. The U-Net with
LCOS and LCOS + SAM have R2 values of 0.914 and 0.958, respectively. The
Attention U-Net with LCOS and LCOS + SAM have R2 values of 0.946 and
0.951, respectively. Among the Ensembles, the highest R2 is 0.957. Mean-
while, the Attention U-Net with LCE +DSC achieves the overall highest R2

value of 0.962.

3.5 Discussion

In this work, we investigated the impact of various attention modules, cosine loss,
and SAM for improving kidney segmentation in ADPKD from T1-weighted MR
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images to estimate TKV while mitigating the problem of limited data. Thereby, our
goal was to achieve high segmentation accuracy while only using a limited number
of annotated data. Compared to other approaches reported in the literature [49, 50],
we achieved similar results but using only a fraction of the data employed by others.
We further conducted experiments with ensembles of our networks yielding more
improvements. In the following, we first discuss the impact of individual networks
and then our results combining these into ensembles.

3.5.1 Individual Networks

We found that all attention networks with LCOS and LCE+DSC outperformed the
baseline networks across all metrics (Table 3.1). Combining the baseline U-Net with
LCOS and SAM yielded the best result among the individual networks with DSC
scores of 0.918 ± 0.04 and 0.908 ± 0.05 for patch sizes 128 and 96, respectively.
Additionally, the MSSD was minimal for this combination. Generally, we observed
that patch size can play an important role. Here, most of the networks that have
been trained with a patch size of 128 significantly outperformed the networks trained
with a patch size of 96. For example, the U-Net (LCOS + SAM) with a patch size of
128 significantly outperformed the same U-Net with a patch size of 96 (p = 0.0008
for DSC, p = 0.039 for MSSD).

The impact of the Attention U-Net is more prominent for challenging cases (i.e.,
segmentations with DSC < 0.80). The number of such cases for the baseline U-Net
(LCE+DSC) was 13; however, this number is reduced to 5 in the case of the proposed
networks. These five cases were common to both networks, indicating the failure of
the U-Net architecture to accurately segment such difficult samples. These samples
contain cysts in various regions of the abdomen and less-defined kidney boundaries
and shapes.

Even though these cases were difficult to segment by all networks, we still see an
improvement of up to 6% in the DSC compared to the baseline U-Net from DSC
= 0.638 to the Attention U-Net (LCE+DSC) with DSC = 0.704. A reason might be
that the U-Net (LCE+DSC) is unable to focus on relevant image information, e.g.,
kidney boundaries with low contrast for such difficult cases. However, the attention
mechanism [58] uses higher-level features as a guide to help lower-level features to
emphasize such regions in the image. The Attention, CBAM, and SE U-Nets were
significantly better (p-value < 0.05) than the baselines, suggesting that the three
attention mechanisms can be integrated to improve performance.

Besides the attention mechanisms, we found that simply training the U-Net with
cosine loss significantly improved the performance (p-value < 0.05) over every metric
(see Table 3.1). Every voxel segmented by the U-Net with LCOS lies on a unit
hypersphere as they are l2-normalized. This way, the wrongly segmented voxels are
heavily penalized by the cosine loss leading to the adaption of the weights during
training. Results by Payer et al. support our results, though their loss function [69]
is different to the one described in [65], which is implemented here. Nevertheless,
our results show that the implemented loss function is also suitable for the medical
image segmentation task at hand. Similar results using the cosine distance function
in k-means clustering of DCE-MRI for kidney segmentation have been reported [70],
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outperforming standard cluster similarity metrics. In another work [71], the authors
used cosine similarity and attained state-of-the-art semantic segmentation results
on the following datasets: ADE20K [72], Cityscapes [73], and COCO-Stuff [74]. In
conclusion, the cosine loss function can be valuable in renal MRI segmentation.

The combination of SAM with our network architectures further boosts the perfor-
mance. This indicates the usefulness of SAM in improving the generalizability of
the models. However, a drawback is that it takes about twice the amount of time to
train such a network compared to the same network without SAM. The reason is the
need to calculate gradients twice in each iteration as it first calculates gradients for
the weights and then for the neighborhood parameters. Nonetheless, this limitation
renders minor with respect to the steadily increasing computational power available.

Furthermore, we notice that, on average, cosine loss (without SAM) brings about
0.65% improvement in DSC over the corresponding baseline as compared to 0.53%
when only using SAM. This shows that the cosine loss is more important for seg-
mentation accuracy than SAM. However, we also find that combining cosine loss
with SAM yields an average DSC improvement of 1.35%. Hence, the combination
of the two is vital for attaining best segmentation accuracy.

In comparison to other deep learning-based kidney segmentation approaches, our
methods perform similarly. The approaches by Kline et al. [49], van Gastel et al.
[50], and Mu et al. [52] report higher DSC (up to 0.97). Consequently, their mean
TKV difference is smaller than our proposed method. However, these studies use
larger datasets (up to 2400). Nonetheless, in our work, the aim was to explore and
combine techniques that could deal with limited data. In this respect, using only
a fraction of the data (100 cases), we still achieved comparable results. Increasing
the number of datasets for our method might further improve the results. However,
we explicitly aimed at investigating techniques mitigating limited data. Therefore,
such a test is beyond the aim of this study.

Daniel et al. [53] attained slightly better DSC (0.93) than our methods using a
plain U-Net on T2 images. They also used a small dataset for training and testing.
However, the major difference is that they applied their approach to healthy volun-
teers and patients with chronic kidney disease. Neither of these data contained cysts
that altered the appearance of the kidneys in the MRI drastically (see Figure 3.5).
Furthermore, they trained their network on T2-weighted images while we conducted
our study on T1-weighted images, which could also be a reason for the different
performance. Finally, we outperformed the approach in [51] with a margin of 4%;
however, they used data only from four patients.

3.5.2 Ensembles

Creating ensembles of our proposed networks further improved segmentation accu-
racy compared to the best performing individual network. The networks combined
in an ensemble are known to reduce the variance component of the prediction error
and, therefore, smooth out the predictions [75, 76]. The ensemble with seven net-
works and majority voting achieved the highest DSC and MSSD of 0.922 ± 0.047
and 1.094 ± 1.376 mm, respectively (Table 3.2). No significant differences in per-
formances of ensembles with four and seven networks could be observed (p-value >
0.05, Table 3.1).
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Our ensembles cannot outperform the ones presented by Kline et al. [49]. However,
the key differences lie in the data size and the number of networks employed. Kline
et al. used a 24-fold larger dataset and an ensemble of 11 networks. Considering
this, we believe our ensembles performed similarly.

3.5.3 Limitations

Nonetheless, our system has some limitations. For instance, there are some pa-
tients with heterogeneous distributions of cysts all over the abdomen. This makes
it difficult to distinguish kidneys from other organs. In such cases, our models
over-segment the kidneys by delineating parts of other abdominal organs that also
contain cysts (e.g., liver). However, even though under- and over segmentation oc-
cur, the differences in the obtained versus manual segmented TKVs is 5% on average
throughout all models (cf. Table 3.3). Furthermore, we have not yet demonstrated
generalization in terms of applications/transfer to other domains. We are currently
looking into exploiting publicly available data e.g., KiTS19 [77]. Initial results look
promising, but in-depth evaluation is pending.

3.6 Conclusion

In this paper, we proposed approaches to overcome the problem of limited data
for training convolutional neural networks for segmenting the TKV in kidneys with
ADPKD. We demonstrated that combining the cosine loss function and SAM could
achieve high segmentation accuracy while only using 100 datasets. Furthermore,
TKV was obtained at high accuracy compared to manual segmentation (surpassing
the inter-user agreement). Our study shows that fast and automated segmentation
and TKV estimation is possible, allowing for clinical translation in the future.

Subsequently, we plan to transfer our methods to the available T2-weighted MR
images and investigate a combination of both MR contrasts to fully exploit the
benefit of the complementary image information.
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Württemberg, Germany

4Bioengineering Department, Istituto di Ricerche Farmacologiche Mario Negri
IRCCS, Ranica (BG), Italy

4.1 Abstract

We introduce a deep learning approach for automated kidney segmentation in Auto-
somal Dominant Polycystic Kidney Disease (ADPKD). Our method combines Nyul
normalization, resampling, and attention mechanisms to create a generalizable net-
work. We evaluated our approach on two distinct datasets and found that our
proposed model outperforms the baseline method with an average improvement of
9.45 % in Dice and 79.90 % in mean surface symmetric distance scores across both
the datasets, demonstrating its potential for robust and accurate total kidney vol-
ume calculation from T1-w Magnetic Resonance Imaging (MRI ) images in ADPKD
patients.

4.2 Introduction

ADPKD is a common cause of chronic kidney disease, ultimately leading to end-stage
renal disease and kidney failure in most cases [41]. The Total Kidney Volume (TKV )
can be used to monitor ADPKD progression and is also recognized as a relevant
prognostic marker [43, 78, 79]. TKV calculation requires accurate delineation of
kidney volumes which is usually performed manually by an expert and is time-
consuming. Therefore, automated segmentation is warranted [46, 47]. However, deep
learning approaches should generalize well to unseen external datasets to become
clinical applicable. Hence, in this work, we develop an approach by combining Nyul
normalization [80], resampling, and attention mechanisms to create a generalizable
neural network for ADPKD kidney segmentation.

4.3 Materials and Methods

4.3.1 Patient Data

The patient T1-w MRI data were obtained from two different sources. The first
dataset was obtained from the National Institute of Diabetes and Digestive and
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Kidney Disease (NIDDK), National Institutes of Health, USA, and was collected
in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease
(CRISP) study [41]. The second dataset was collected in the context of the Eu-
roCYST Initiative (ClinicalTrials.gov Identifier: NCT02187432). From here on, we
call the first and second Datasets A and B, respectively. Both MRI datasets were
acquired in coronal orientation from ADPKD patients with Chronic Kidney Disease
(CKD) stages 1 to 3. Tab. Table 4.1 depicts the characteristics of each dataset.

Characteristic Dataset A Dataset B
Patient count 93 41
Male:female ratio 50:50 46:54
Average age (years) 30 ± 10 44 ± 11
Image size 256 × 256 × [30-80] 512 × 512 × [40-66]
In-plane resolution (mm2) 1.41 × 1.41 (±0.13) 0.73 × 0.73 (±0.03)
Slice thickness (mm) 3.06 ± 0.29 4 ± 0.00
TKV (ml) 1311 ± 977 1582 ± 970

Table 4.1: Descriptive statistics from both ADPKD datasets.

4.3.2 Image Annotation

Dataset A was annotated by two physicians with experience of 1 and 3 years, re-
spectively [81]. The mean inter-user agreement for Dataset A was 0.91±0.06 (Dice)
with a coefficient of variation of 0.07. Dataset B was annotated by a single expert
with 4 years of experience in manual tracing of renal ADPKD.

4.3.3 Image Pre-Processing

We first resampled both datasets to a uniform resolution of 1.4×1.4×3.0 mm3.
We further resized Dataset B’s image size to 256×256 voxels to keep it in line
with Dataset A. Furthermore, to create similar histogram distribution between the
two datasets, we trained Nyul normalizer [80] on Dataset A. Then we transformed
Dataset B using the trained normalizer to align the image intensity distributions of
both datasets. Next, we normalized intensities using volume-wise z-score normal-
ization. These steps bring the distributions of both the datasets closer and help in
network generalizability.

4.3.4 Network Architecture

We implemented two U-Net [28] based architectures for kidney segmentation. The
first is nnUNet [82], which we used as a baseline model. The second is based on a
combination of CBAM [60] and Attention U-Net [58]. The attention mechanisms
help in extracting relevant image regions from spatial and channel dimensions of the
feature maps. The CBAM and Attention modules were combined to form CBAM-
Attention U-Net as described in [81]. Fig. Figure 4.1 depicts the network architec-
ture of CBAM-Attention U-Net.
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Figure 4.1: Convolution Block Attention Module (CBAM )-Attention U-Net
with Convolution Block Attention Modules in encoder path and attention
gates in decoder path of a U-Net architecture.

4.3.5 Training

We trained both baseline (nnUNet) and CBAM-Attention U-Net for 100 epochs
with 5-fold cross-validation on Dataset A and then make prediction on Dataset B
and vice versa for testing model generalizability on unseen datasets as a function of
training size. The nnUNet was trained with its standard settings [82]. The CBAM-
Attention U-Net was trained with a patch size of 128×128 with a combination of
cross-entropy and dice loss and the image preprocessing as described in sub-section
Section 4.3.3. The training:validation:test split for Dataset A for each fold consisted
of 73:2:18 patients. For Dataset B the split was 31:2:8, respectively. Further training
details can be found in [81].

4.3.6 Evaluation

We employed two metrics to compare the network predictions to the ground-truth;
the Dice Similarity Coefficient (DSC ) score for assessing the overlap and the Mean
Symmetric Surface Distance (MSSD) (in mm) which is more perceptive to alignment
and shape.

4.4 Results

Histograms of pre- and post-Nyul normalization are shown in Fig. Figure 4.2. The
quantitative segmentation results are given in Tab. Table 4.2.

Network Training
dataset

DSC ↑ MSSD (mm) ↓ Volume difference (%)
Dataset A Dataset B Dataset A Dataset B Dataset A Dataset B

Baseline A 0.914±0.057 0.896±0.098 2.89±4.39 8.64±14.21 1.95±11.77 -0.41±5.21
B 0.521±0.255 0.885±0.122 17.00±15.01 8.95±14.76 40.72±36.70 -0.24±5.66

CBAM
U-net

A 0.910±0.054 0.898±0.052 1.21±1.45 1.64±1.38 1.06±13.76 -0.35±11.85
B 0.800±0.160 0.915±0.044 3.33±6.90 1.35±1.30 18.77±22.73 2.86±7.98

Table 4.2: Quantitative results comparing the baseline nnUNet to our CBAM-
Attention U-Net. All the scores are obtained by combining results from each
test fold in 5-fold cross validation so that whole dataset is covered in testing.
The best results are highlighted in italics. The up and down arrows indicate
that higher and lower values denote better performance.
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Figure 4.2: Histograms of datasets before (a) and after Nyul normalization
(b), with Wasserstein distances of 227.5 and 2.4, respectively.

Figure 4.3: Qualitative results with the best predictions from both networks
trained on Dataset A and B, respectively. For Dataset A DSCs are 0.966 and
0.963 for nnUNet and CBAM-Attention U-Net and for Dataset B 0.931 and
0.959, respectively.

For Dataset A, CBAM-Attention U-Net attains the best MSSD (1.21±1.45 mm)
and volume difference (1.06±13.76%), while the baseline attains the best DSC
(0.914±0.057) when trained on Dataset A. For Dataset B, the best DSC (0.915±0.044)
and MSSD (1.35±1.30 mm) are obtained by the CBAM-Attention U-Net, however,
the baseline provides the best volume difference of -0.24±5.66 % (here, both trained
on Dataset B). Moreover, the CBAM-Attention U-Net attains a DSC of 0.898±0.052
on Dataset B when trained exclusively on Dataset A. Finally, qualitative results from
the best and worst predictions are visualized in Figs. Figure 4.3 and Figure 4.4.
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Figure 4.4: Qualitative results with the worst predictions from both networks
trained on Dataset A and B, respectively. The bad performance of networks
is due to the presence of cysts in the liver.

4.5 Discussion

This study aimed at creating a generalizable kidney segmentation algorithm for T1-
w MRI images of patients with ADPKD. Similarity of data distribution is important
to create a robust algorithm that can generalize to data from multiple sources. To
achieve this, we made intensity distributions of the datasets similar by using re-
sampling and Nyul normalization and then training CBAM-Attention U-Net. The
CBAM-Attention U-Net outperformed nnUNet [82] (4/6 metric values), a common
medical segmentation baseline. It exhibited generalization when trained on Dataset
A, performing well on both sets (DSC ≈ 0.90). However, training on Dataset B (41
patients) showed reduced generalizability on Dataset A, indicating a likely depen-
dence on training dataset size. Compared to other works [49, 83] (2000 and 400 cases,
respectively), our approach attains lower DSC (v/s >0.97). However, they used a
significantly larger training data than our study. To explore the impact of training
dataset size on generalizability, additional external datasets would be necessary. In
conclusion, we demonstrated that with enough data, we can create a generalizable
ADPKD kidney segmentation algorithm. This approach can be helpful in reliably
and automatically calculating TKV for ADPKD patients.
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5.1 Abstract

An accurate prognosis of renal function decline in Autosomal Dominant Polycystic
Kidney Disease (ADPKD) is crucial for early intervention. Current biomarkers used
are Height-adjusted Total Kidney Volume (HtTKV ), estimated Glomerular Filtra-
tion Rate (eGFR), and patient age. However, manually measuring kidney volume
is time-consuming and subject to observer variability. Additionally, incorporating
automatically generated features from kidney Magnetic Resonance Imaging (MRI )
images, along with conventional biomarkers, can enhance prognostic improvement.
To address these issues, we developed two deep-learning algorithms. Firstly, an
automated kidney volume segmentation model accurately calculates HtTKV. Sec-
ondly, we utilize segmented kidney volumes, predicted HtTKV, age, and baseline
eGFR to predict Chronic Kidney Disease (CKD) stages >=3A, >=3B, and a 30%
decline in eGFR after 8 years from the baseline visit. Our approach combines a
Convolutional Neural Network (CNN ) and a Multi-Layer-Perceptron (MLP). Our
study included 135 subjects and the Area Under the Curve (AUC ) scores obtained
were 0.96, 0.96, and 0.95 for CKD stages >=3A, >=3B, and a 30% decline in eGFR,
respectively. Furthermore, our algorithm achieved a Pearson correlation coefficient
of 0.81 between predicted and measured eGFR decline. We extended our approach
to predict distinct CKD stages after eight years with an AUC of 0.97. The pro-
posed approach has the potential to enhance monitoring and facilitate prognosis in
ADPKD patients, even in the early disease stages.

5.2 Introduction

ADPKD, due to the growth of cysts and therefore, degeneration of renal parenchyma
leads to end-stage renal disease (ESRD) and renal failure [84]. It affects up to 12
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million people worldwide. ADPKD accounts for up to 10% of patients with ESRD
[84]. Given these numbers, early treatment of the disease when the renal parenchyma
is still preserved is warranted. However, disease progression monitoring is difficult
since kidney function may remain normal for several decades and is therefore not
informative in the earliest stages of the disease. Clinical, genetic, environmental,
epigenetic, and radiologic factors have been studied as predictors of progression to
kidney failure in ADPKD [85, 86]. On the other hand, kidney volume has been shown
to be a promising marker for disease progression [40, 41]. It is also recognized by the
Food and Drug Administration (FDA) as a candidate for a prognostic biomarker for
ADPKD progression [45] and used within recent clinical phase 3 studies (TEMPO
3/4 trial, primary outcome measure; the annual rate of change in Total Kidney
Volume (TKV ) over time) [37, 87].

MRI is recognized as an important tool to monitor the progression of ADPKD, and
the TKV or the HtTKV has been shown to predict renal function decline in ADPKD
patients [43, 85].

Thereby, complex interactions of different prognostic factors based on clinical, ge-
netic, environmental, and radiological information determine the number of kidney
cysts and their growth rates, which affect the TKV [85] and ultimately, renal function
decline [88]. Based on this, prognostic models like the Mayo imaging classification
tool [43] have been developed to stratify ADPKD patients into classes and predict
disease progression. A multiple linear regression model is generally employed for this
task. However, [89] have shown that using the conventional biomarkers (HtTKV,
age, and eGFR) may not be sufficient for accurate predictions. They reported that
for predicting eGFR decline after 8 years, a Pearson correlation coefficient ’r’ of only
0.51 could be achieved in classifying whether a patient will reach CKD stage 3A or
not (eGFR < 60 ml/min/1.73 m2), reach 3B or not (eGFR < 45 ml/min/1.73 m2),
and reach a 30% decline in eGFR or not. They improved this prediction model
by further incorporating texture features (repeating patterns of local image inten-
sity variations that provide information regarding the spatial arrangement of im-
age intensities) from T2-weighted MRI images. The texture features are extracted
from manually segmented kidneys and consist of energy, entropy, and correlation
values. By adding texture features to conventional biomarkers, the resulting Pear-
son’s r reaches -0.70. However, this approach, requiring manual segmentation of the
kidneys, is time-consuming and observer-dependent. Moreover, automated kidney
segmentation approaches are steadily proposed and are emerging into different appli-
cations in renal MRI [46, 47]. Considering this, we created a fully automated system
that can segment the kidneys automatically and can make an accurate prognosis.
More in detail, we first develop a deep learning model that segments kidneys from
T2-weighted MRI, enabling calculation of HtTKV. We then extract image features
from the segmented kidneys and combine them with the conventional biomarkers
(HTKV, age, eGFR) to predict renal function decline after 8 years, using data from
135 ADPKD patients with normal kidney function at baseline. Specifically, we clas-
sify each patient into a distinct CKD stage (CKD stages 1, 2, 3A, 3B, and 4) and
predict percent change in the eGFR.
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5.3 Materials and Methods

5.3.1 Patient Data

The patient data were acquired from the National Institute of Diabetes and Digestive
and Kidney Disease (NIDDK), National Institutes of Health, USA and were recorded
in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease
(CRISP) study [41]. The dataset consists of 241 patients in total. However, for our
work, we selected patients who underwent T2-weighted MR imaging and had eGFR
values > 70 ml/min/1.73 m2 at the baseline visit as depicted in Figure 5.1. These
criteria were selected in accordance with [43, 89]. The resulting dataset contains
information from 135 patients. Table 5.1 lists the number of patients’ CKD stages at
baseline and after 8 years alongside demographic data, eGFR, and kidney volumes.

Figure 5.1: Flow chart for patient selection based on criteria from [43, 89].

To allow for a comparison to the SOTA method [89], the patients were regrouped
into two groups based on the presence or absence of each of the following conditions
at 8 years after baseline: reaching CKD stage 3A (eGFR < 60 ml/min/1.73 m2),
reaching CKD stage 3B (eGFR < 45 ml/min/1.73 m2), and 30% decline in eGFR.
As depicted in Table 5.2, our data resembles a similar class distribution as in the
work of [89].
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Baseline 8-year Follow-up

TKV (ml) 974±585 1531±1135
HtTKV (ml/m) 559±322 880±615
eGFR (ml/min/1.73 m2) 96±25 76±28
CKD stage 1 66 46
CKD stage 2 69 44
CKD stage 3A - 24
CKD stage 3B - 14
CKD stage 4 - 7
> 30% eGFR decline - 48
Gender (M/F) 58/77 -
Age (years) 32±9 -

Table 5.1: Demographic, clinical and radiological data of the 135 ADPKD
patients included in the study. Data are shown as mean ± SD or Number (%)

Criteria Current study SOTA method

Reached CKD stage 3A 0.333 0.360
Reached CKD stage 3B 0.155 0.180
30% eGFR decline 0.355 0.385

Table 5.2: Ratio of the positive number of samples to the total number of
samples in our dataset as compared to the one in state-of-the-art (SOTA)
approach from [89]. In all three criteria, we have more imbalance as compared
to the work from [89].

5.3.2 Pre-Processing

We first normalized the renal MRIs, predicted HtTKV (ml/m) (obtained as per
Section 5.3.4.1), age (years), and eGFR (ml/min/1.73 m2) at the baseline visit using
the Z-score normalization (Equation 5.1),

Î =
I − µ(I)

σ(I)
, (5.1)

where I and Î are the original and normalized image/feature, respectively. The
T2-weighted volumes were recorded with a size of 256 x 256 pixels and 12-30 slices
[41]. However, the network for prognosis requires uniformly sized image volumes as
inputs. Hence, we center-cropped and/or padded (as required) the image volumes
to the size of 224 x 224 x 16 voxel. We ensure that complete kidney volumes were
present within this reshaped volume.

5.3.3 Image Annotation

The annotations are used from a previous study on kidney segmentation by [81].
In that study, two physicians independently performed annotation on coronal MR
images. The physicians had an experience of one and three years, respectively.



5.3. Materials and Methods 55

Figure 5.2: Segmentation network: 2D Attention U-Net with attention mod-
ules. The network is U-Net based [28] with attention gates that help the
network focus on relevant image regions, e.g., kidneys. The network is used to
segment kidneys from patient MRI volumes (baseline visit). While training,
the input to the network is a patch size of 128 x 128. During inference, each
slice of size 256 x 256 is used as input. The number of filters used in each
block is written under the corresponding convolution block. The segmented
kidneys are then used to calculate the HtTKV of the patient. Adapted from
[58, 81].

Furthermore, they were overseen by an expert abdominal radiologist with nine years
of experience. The annotations have the mean inter-user agreement of 0.91 ± 0.06
(Dice) and a coefficient of variation of 0.07.

5.3.4 Deep Learning Models

We implement two deep learning models for a fully automatic prognosis. We first
used a segmentation network called attention U-Net (Figure 5.2) [58] to extract kid-
neys from MRI volumes. Thereafter, we use the segmented kidney volumes as input
to our prognosis network (Figure 5.3) to make the final prognosis. We implement
this two-step process so that we can first derive HtTKV automatically and then
use the output from the first network and feed it to the second network for the
classification/regression task.

5.3.4.1 Segmentation Network

The first network is based on previous work utilizing the attention U-Net for renal
segmentation in ADPKD and TKV estimation from T1-weighted MRI [81]. Briefly,
this network is composed of a U-shaped encoder-decoder architecture [28] and modi-
fied with attention gates [58], which help focus the network on relevant image regions.
This is achieved by using higher-level features as a guide to suppress noise and ir-
relevant features in the lower-level features. The network architecture is illustrated
in Figure 5.2.

The network was re-trained on 100 T2-weighted volumes of our dataset for which
manually segmented kidneys were available. Kidney annotations were done similarly
as described in [81]. To obtain kidney segmentations for the remaining patients
without manual annotation, the trained network was applied. All automatically
segmented kidneys from the network are then used to calculate the HtTKV. The
HtTKV can be calculated by multiplying the number of segmented kidney voxels
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Figure 5.3: Our proposed prognosis network architecture for classification/re-
gression prognosis. The first input is patient MRI volume (baseline visit) of
size 224 x 224 x 16 that contains only segmented kidneys obtained from the
segmentation network. The convolution layers are used to extract features
from the volumes. The number of filters in each feature vector is written
under the corresponding vector. The second input consists of a vector of pre-
dicted HtTKV, age, and eGFR at the baseline visit. Here, an MLP extracts
features. Then, the features from both inputs are concatenated and used to
make the final prognosis. Every convolution, strided convolution, and linear
layer is followed by instance normalization and PReLU activation [19]. The
strided convolutions have a stride of 4. There is no final activation for the
regression task, but for classification, we use sigmoid.

by the voxel volume (in mm3) and then dividing it by 1000 and the height of the
patient (in m) to get the volume in ml/m.

5.3.4.2 Prognosis Network

Our proposed neural network architecture for predicting the final prognosis com-
prises two components: a CNN and a MLP. The CNN is employed to extract com-
prehensive image features from kidney MRI volumes. This CNN component consists
of convolutional and strided convolutional layers. The strided convolutions have a
stride of 4, resulting in downsampling the spatial dimensions of the image/features
by a factor of 4 during each operation. The decision to utilize a shallow CNN is
motivated by our limited dataset. Deeper networks typically require larger datasets
to achieve robust performance. By employing a shallow network with a stride of
4, we can aggressively downsample the spatial information from the kidneys and
extract features without resorting to a deeper network.

The MLP component comprises linear layers that generate one-dimensional feature
vectors. We opt for linear layers as they are well-suited for processing and extracting
information from structured or tabular data, such as biomarker values. The CNN
component takes image volumes as input, while the MLP component accepts a
vector composed of predicted HtTKV, age, and eGFR from the baseline visit. The
features extracted from the CNN and MLP are concatenated, and a final MLP
block is employed to make a prognosis. The concatenation of features from the
CNN and MLP enables the fusion of information derived from kidney MRI volumes
and conventional biomarkers.
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To enhance the network’s performance, we incorporate instance normalization layers
[90] and Parametric Rectified Linear Unit (PReLU ) activation functions [19] after
each convolutional, strided convolutional, and linear layer (excluding the last linear
layer). We opt for instance normalization instead of batch normalization due to the
utilization of a small batch size resulting from our limited dataset. Batch normal-
ization can introduce noise when applied to small batch sizes, thus, to mitigate this
issue, we implement instance normalization in our network.

Depending upon the task type, the last layer is followed by the softmax activation
in the case of the classification task or no activation in the case of the regression
task. The complete network architecture is depicted in Figure 5.3.

The prognosis after 8 years is divided into two tasks:

1. Multi-class classification: here, we classify each patient under a distinct CKD
stage category after 8 years (CKD stages 1, 2, 3A, 3B, and 4).

2. Regression: percent change in the eGFR.

As illustrated in Figure 5.3, we feed the segmented kidneys to a small CNN. Si-
multaneously, we use the predicted HtTKV, age, and eGFR at the baseline visit as
input to a shallow MLP. Finally, we combine the features from kidney volumes and
the MLP inputs and run them through a final MLP to make our prognosis.

For a proof-of-principle and to compare our approach to the SOTA method, we also
considered the following task:

• Binary classifications: whether a patient will reach CKD stage 3A or not
(eGFR < 60 ml/min/1.73 m2), reach 3B or not (eGFR < 45 ml/min/1.73
m2), and reach a 30% decline in eGFR or not.

Therefore, the last layer of the network is followed by a sigmoid function for each
binary classification task.

5.3.5 Network Implementations & Training

5.3.5.1 Segmentation Network

The segmentation network for kidney segmentation is trained with a batch size
of 16 and a patch size of 128. We used the adam optimizer [32] with a learning
rate of 0.001. The loss function is cosine loss [81]. As the activation function, we
employ Exponential Linear Units (ELUs) [67] with batch-normalization, dropout
(probability=0.01) and L2 normalization (10−7). Furthermore, we perform a 5-fold
cross-validation [91] (as depicted in Figure 5.4) and train for a minimum of 20
epochs. The train:validation:test split was 70:10:20 subjects in each fold without
shuffling. We employ early stopping to avoid overfitting and select the network with
the highest dice score (validation data) for testing.

5.3.5.2 Prognosis Network

The prognosis network was trained for 30 epochs with 5-fold stratified cross-validation.
The train:validation:test split was 95:13:27 subjects in each fold without shuffling.
The batch size and learning rate were 8 and 0.001, respectively. For classification
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Figure 5.4: 5-fold cross-validation scheme for training networks [91] The net-
works are trained 5 times with different training, validation and test sets in
each fold. Here, the training, validation and test sets are represented by green,
orange and blue bars, respectively. Cross-validation is useful when there is lim-
ited dataset, and it helps evaluate the algorithms over a complete dataset.

tasks, we used weighted cross-entropy (CE) loss function and area under (AUC) the
receiver operating characteristic curve (Receiver Operating Characteristic (ROC ))
to select the best network. However, for the task of classifying distinct CKD stages,
we use the f1-score to select the best network. We further use a weighted random
sampling strategy to deal with the class imbalance in the classification of distinct
CKD stages. Here, classes with less number of samples are weighted higher and
accordingly sampled more often with replacement during training. Meanwhile, for
regression, we implement Mean Squared Error (MSE ) loss and use the Mean Abso-
lute Error (MAE ) score to choose the best network [92].

5.3.6 Evaluation

5.3.6.1 Segmentation Evaluation

We evaluate the performance of the segmentation network using the Dice Similarity
Coefficient (DSC ) score and Mean Symmetric Surface Distance (MSSD). First, we
used the DSC to assess the overlap between the ground truth Y and the segmentation
Ŷ ,

DSC
(
Ŷ , Y

)
=

2 |Ŷ ∩ Y |
|Ŷ |+ |Y |

(5.2)

Then, we implemented the MSSD (in mm) that is more perceptive to alignment and
shape:

MSSD
(
Ŷ , Y

)
=

∑̂
y∈Ŷ

min d(ŷ, Y ) +
∑
y∈Y

min d(y, Ŷ )

|Ŷ |+ |Y |
(5.3)

5.3.6.2 Prognosis Evaluation

To evaluate and compare the results, we used the weighted f1-score (since we have
a high class imbalance for CKD stage 4) and the AUC of the ROC for classification
outputs. The weighted f1-score is defined as,
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Weighted f1 =
n=5∑
i=1

Supporti × f1i, (5.4)

Where Supporti is the support proportion of each class i, given by,

Supporti =
Number of instances in class i

Total number of instances
, (5.5)

and precision, recall, and f1-score are given by

Precision =
TP

TP + FP
, (5.6)

Recall =
TP

TP + FN
, (5.7)

f1 = 2× Precision×Recall

Precision+Recall
, (5.8)

The TP, FP, and FN are true positives, false positives, and false negatives, re-
spectively. In addition, we used Pearson’s correlation coefficient and Bland-Altman
plots for evaluating regression results. Furthermore, for comparison, we employed
the Mayo imaging classification tool [43, 93] to predict eGFR values at 8 years after
baseline, using the baseline HtTKV.

Differences between the Mayo classification tool and our prediction network for
eGFR was assessed by a two-sided t-test. Thereby, we compared the error in eGFR
between the predicted values and the ground truth at 8 years. The null hypothesis
that both are equal is rejected at p < 0.05.

5.4 Results

5.4.1 Kidney Segmentation

The segmentation network is able to segment kidney volumes at high accuracy. After
post-processing with the largest connected components, the DSC and MSSD attain
the values of 0.909± 0.069 and 0.721 ± 1.484 mm, respectively.

Figure 5.7 shows three examples of kidney segmentation from the proposed segmen-
tation network.

We then applied the trained segmentation network to the remaining 35 datasets for
which no ground truth annotation were available. Visual inspection of the obtained
segmentations also showed good accuracy (cf. an example case in Figure 5.7, last
row).

Inspecting the predicted HtTKV versus ground truth HtTKV a Pearson’s correlation
coefficient of 0.98 could be obtained (see Figure 5.5). In Figure 5.5, the regression
line has a coefficient of regression r2 value of 0.96. Furthermore, the mean percent
difference between the predicted and the ground truth HtTKV is 13.47 ± 13.70 %.
Also, the Bland-Altman plot (see Figure 5.6) supports this finding depicting a bias
of 66 ml/m.
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Figure 5.5: Baseline predicted HtTKV against the ground truth HtTKV. Here,
the data represents all 135 patients. The TKV ground truth values for all
patients are also provided by the NIDDK CRISP study [41]. We used these
ground truth TKV values to calculate ground truth HtTKV. The predicted
HtTKV is obtained from the segmentation network by segmenting kidneys
from T2-weighted MRI volumes. Here, we make sure that the predicted data
was not utilized during the training of the 5-fold cross-validation model, as
shown in Figure 5.4. The Pearson correlation coefficient is 0.98.

Fold no. DSC ↑ MSSD (mm) ↓

1 0.918 ± 0.030 0.367 ± 0.123
2 0.908 ± 0.047 0.845 ± 1.209
3 0.940 ± 0.018 0.332 ± 0.155
4 0.906 ± 0.091 0.688 ± 1.130
5 0.874 ± 0.107 1.410 ± 2.870

Average 0.909 ± 0.069 0.721 ± 1.484

Table 5.3: Segmentation results for each of the 5 folds after post-processing
using largest connected components.

5.4.2 Prognosis Network

Our proposed approach was tested two-fold. First, as a proof-of-concept, we pre-
dicted whether a patient reaches CKD stage 3A, 3B, or a 30% decline in eGFR
and compare the results with the SOTA method. Furthermore, we predicted eGFR
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Figure 5.6: Bland-Altman plot comparing model predicted HtTKV (ml/m)
values to the ground truth values.

values after 8 years for our patient data using the Mayo imaging classification tool
[43, 93]. Second, we predicted distinct classes of CKD after 8 years from baseline.

Table 5.4 shows the results of our approach compared to the SOTA method.

Criteria Precision Recall AUC SOTA AUC

Reached CKD stage 3A 0.951 0.866 0.965 0.940
Reached CKD stage 3B 0.900 0.857 0.957 0.960
30% eGFR decline 0.846 0.916 0.952 0.850

Table 5.4: Classification results of reaching CKD stage 3A, reaching CKD
stage 3B and having a 30% eGFR decline after 8 years. Abbreviations:SOTA
= state-of-the-art

The AUC for reaching CKD stage 3B is over 0.950 and on par with the corresponding
value from the state-of-the-art (SOTA) method (0.960) [89]. However, the AUC of
reaching CKD stage 3A is 0.965 and is higher than that of the SOTA method (0.940).
Further, the 30% eGFR decline predictions reach an AUC of 0.952 and clearly exceed
the results of the SOTA method (0.850).

Moreover, we observe that the precision and recall for each criterion is about 90%,
indicating good performance of the classifiers (Table 5.4).

Figure 5.8 depicts the predicted versus ground truth eGFR percent change after 8
years. Here, Pearson’s correlation coefficient of 0.81 is attained (SOTA method =
-0.700 [89]). The mean difference between predicted and ground truth eGFR percent
change was found to be 1.12 ± 15.58 %. Plotting the respective Bland-Altman plot
further supports this observation (see Figure 5.9). Most of the data is distributed
within the 1.96 standard deviation range with a bias of only 1.12 percent change in
eGFR, showing a small overestimation.
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MRI image Ground truth Segmentation prediction

Figure 5.7: Kidney volume segmentation results. Left: T2-weighted MRI
images, center: ground truth segmentations, and right: corresponding auto-
matically segmented kidneys. Three examples show the segmented kidneys
obtained from the segmentation network. The first two rows correspond to
the cases that had ground truth annotation available, i.e. examples from one
of the test set of 100 patients. The last row corresponds to a patient without
ground truth segmentation available.

We found that Pearson’s r for Mayo predicted eGFR was 0.64. In comparison,
our prognosis network’s predicted values had an r-value of 0.86 as shown in Fig-
ure 5.10. Furthermore, the corresponding Bland-Altman plots show that the Mayo
imaging classification tool underestimates the absolute predicted eGFR (bias of -
1.76 ml/min/1.73 m2) while our method slightly overestimates the eGFR (bias of
1.18 ml/min/1.73 m2). Moreover, our approach has a smaller range of 1.96 stan-
dard deviations (-26.87 to 29.22 ml/min/1.73 m2) compared to the Mayo imaging
classification tool (-44.88 to 41.37 ml/min/1.73 m2).

The 8-year eGFR error obtained by our method was not significantly different than
that obtained by Mayo classification (two-sided t-test, median difference [interquar-
tile range]: 0.785 [9.95, -5.74] vs 1.85 [12.46, -15.22], p = 0.0548), though the p-value
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Figure 5.8: Correlation plot for predicted eGFR percent change v/s ground
truth eGFR percent change after 8 years. The Pearson’s correlation coefficient
is 0.81.

Figure 5.9: Bland-Altman plot comparing model predicted eGFR percent
change (%) values to the ground truth values.

is very close to 0.05 and the difference between the two tools is also clearly shown
by Bland Altman plots (Figure 5.10).
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Mayo eGFR prediction Prognosis network prediction

Figure 5.10: Correlation plots showing predicted versus ground truth eGFR
values after 8 years in the first row. The left plot is obtained from Mayo
classification tool (Pearsons’s r=0.64) [43, 93] and the right plot is from our
described prognosis network (Pearson’s r=0.86). The second row depicts the
corresponding Bland-Altman plots.

Finally, our model was also trained to predict each CKD stage distinctly for each
patient after 8 years. Here, we reach a weighted f1-score of 0.851 (accuracy: 0.851)
with an AUC of 0.972. The corresponding confusion matrix is shown in Figure 5.11.
As can be seen, most of the predictions are on the diagonal of the confusion matrix.
Furthermore, the overall accuracy increases to 0.955 when we factor in misclassified
samples from adjacent stages in the confusion matrix.

5.5 Discussion

In this work, we combined T2-weighted MRIs of the kidneys with the established
biomarkers (patient age, eGFR, and predicted HtTKV at the baseline visit) to pre-
dict renal function decline. The main advantage of our approach is that our model
could classify patients into different CKD stages. This classification might better
support the diagnosis of patients with ADPKD since it allows for precisely predict-
ing the change in CKD class and therefore, the decline in renal function over time
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Figure 5.11: Confusion matrix depicting the predictions for distinct CKD
stages after eight years. Weighted f1-score and AUC are 0.85 and 0.97, re-
spectively.

rather than just predicting if a person will reach a certain CKD stage or not as
previously reported in literature [89].

Nevertheless, our model could also demonstrate that it performs at par or better
compared to the state-of-the-art method [89] for classification of reaching CKD stage
3A, 3B, and 30% eGFR decline. Furthermore, we also show that an eGFR percent
decline could be predicted at a higher rate compared to the Mayo Image Classifica-
tion tool.

5.5.1 Kidney Segmentation

From a visual inspection, it can be seen that the kidney segmentation is accurate.
However, when inspecting the predicted HtTKV vs ground truth HtTKV plot (Fig-
ure 5.5), we observed that the network predicts slightly higher values, suggesting
that it over-segments the kidneys. The mean percent difference of 13.47 ± 13.70
% between predicted and ground truth HtTKV confirms slight over-segmentation.
A reason for this variability could be the slice thickness of 9.0 mm. Nonetheless,
we still attained accurate prognosis performance with over-segmented kidneys as in-
puts to our model. Arguably, over-segmentation is better than under-segmentation
since it is more likely to include the kidneys completely. Our segmentation network
was originally established on T1 weighted MRIs and there we already showed good
performance with respect to previously published studies [81]. In that study, we
also noted that some samples contain cysts in various regions of the abdomen and
less-defined kidney boundaries and shapes that might also lower the segmentation
accuracy here. For comparison of T2 weighted segmentation, [50] achieved r2 value
of 0.99 between the predicted and ground truth TKV segmentation. In comparison,
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our approach attains a lower r2 of 0.96, however, it is worth noting that [50] em-
ployed four times more data than our method. Furthermore, [52] trained a V-Net
[29] like architecture on 305 ADPKD patients. Their study attained a DSC of 0.96,
which is higher than our DSC of 0.91. Their DSC score is better than ours since
they employ 3 times more data than our study. Nonetheless, the DSC score of our
study matches with the inter-user agreement of manual annotation (i.e. 0.91). In
another work, [53] achieved a slightly higher DSC of 0.93 using a similar data size
as our study. They employed T2-weighted images with the U-Net. The difference
in performance could be due to the subjects in that study consisting of healthy and
chronic kidney disease patients only. Those subjects did not have cysts present in
the kidney region and hence, segmentation performance would be better in such
cases.

5.5.2 Prognosis

The main objective of our proposed work was to automate ADPKD prognosis and
obtain accurate results compared to the work of [89]. Often, we observe that tackling
class imbalance is difficult for deep learning models[66, 94, 95], however, in this
study, we achieved accurate results even though the number of positive samples
was considerably less than negative samples, as seen in Table 5.1 and Table 5.2
(e.g. 23 positive samples v/s 112 negative samples for reaching CKD stage 3B). For
the classification tasks (reaching CKD stage 3A, reaching CKD stage 3B, and 30%
eGFR decline), our models obtain AUC > 0.950. Our method performs at par in the
case of reaching CKD stage 3B classification when compared to the corresponding
state-of-the-art results from [89]. Here, we achieve an AUC of 0.957. In comparison,
[89] achieve an AUC score of 0.960. It is worth noting that our dataset is slightly
more imbalanced than the one used in [89] as depicted in Table 5.2. Considering this
imbalance, our approach is still robust enough in attaining accurate results for every
criterion. Note-worthily, our method outperforms the state-of-the-art approach [89]
in the cases of reaching CKD stage 3A, 30% eGFR decline, and eGFR percent
change. For reaching CKD stage 3A and 30% eGFR decline, our AUCs of 0.965 and
0.952, respectively are higher than that of the state-of-the-art approach [89] (AUCs:
0.940 and 0.850, respectively).

Moreover, our model could be used to classify patients into the five CKD stages (1,
2, 3A, 3B, and 4) after eight years. Our network achieves an AUC and weighted
f1-score of 0.972 and 0.851, respectively. We also find that about 95.5% of the
predictions lie on the diagonal or the adjacent CKD stages in the confusion matrix
(Figure 5.11). However, the network misclassifies three cases in the CKD stage 4
category. This occurs due to the class imbalance in the CKD stage 4 category as it
consists of only seven cases. Increasing the dataset by including more samples for
this class might improve the model’s performance.

The regression task of eGFR percent change reaches a Pearson’s r value of 0.810 as
compared to -0.700 of the state-of-the-art method [89]. The features in [89] are neg-
atively correlated to the eGFR percent change, hence, the negative sign. However,
our method has a positive correlation since we directly compare the predicted eGFR
percent change with the ground truth eGFR percent change (Figure 5.8). Further-
more, the residual standard deviation of our approach was also smaller (15.584 %
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vs 17.900 %). It is clear that the networks are more accurate in predicting eGFR
change (classification or regression) after 8 years. Although most of the predicted
segmentations have higher HtTKV than ground truth HtTKV, there are 8 cases
where there is under-segmentation. This suggests that in this case, the predicted
segmentations do not cover the kidneys completely. The under-segmentation is on
average -20.25 % lesser than the ground truth HtTKV for these cases. Nonethe-
less, the average absolute difference in eGFR percent change for these eight cases
is 9.20%, while the average absolute difference for all 135 patients is 11.50%. This
suggests that even though some segmentations do not cover kidneys completely, the
other baseline inputs (age, baseline HtTKV, and eGFR) help the prognosis network
to predict robust eGFR percent change values. Compared to the Mayo imaging
classification tool [43], our algorithm reached a higher correlation of the predicted
eGFR to the ground truth eGFR (r=0.64 vs. r=0.86, Figure 5.10). However, the
8-year eGFR error obtained by our method was not significantly different than that
obtained by Mayo classification (p=0.0548). Nevertheless, in the light of the corre-
lation and the Bland Altman plot, we believe that including more data might also
show significance between the two approaches. Eventually, the main goal was to
show the feasibility of automating common approaches to predict disease progres-
sion in ADPKD patients. Til now, our tool is on par with the state-of-the-art (Mayo
Tool) but more automated.

A few other works exist that predict renal function decline but are not directly
comparable to our approach because of differences in datasets and renal function
decline definitions. [96] compared various machine learning algorithms on a dataset
of 2166 subjects. They defined renal function decline as eGFR decline of more than
3 ml/min/1.73 m2/year or follow-up eGFR < 60 ml/min/1.73 m2 (i.e., CKD stage
3A to 5). The algorithms were trained using 24 predictive variables, e.g., age and
gender. Their best-performing algorithm was gradient boosting, reaching an AUC of
0.914 on the test data. [97] explored a prediction model to predict CKD stage 3A or
positive proteinuria in a cohort of 348 subjects. Their prediction model combined a
genetic risk score model with a non-genetic risk score model by incorporating genetic
and non-genetic factors for prediction. This combined model achieved an AUC value
of 0.894.

There exist a few approaches that seek to classify distinct CKD stages automatically.
However, all approaches do not incorporate imaging data nor do a long-term (larger
than 18 months, [98]) prediction of renal function decline. [99] created a random
forest model that predicts 5 CKD stages (from 1 to 5). They achieved an f1-score of
0.778 with a dataset of 1718 samples. [100] employed a dataset of 400 instances and
predicted 6 CKD stages (stages 3A and 3B separately). They obtained an overall
accuracy of 0.855 using the J48 algorithm, a decision tree based approach. Finally,
[101] trained a network of probabilistic neural networks on a dataset of 361 patients,
achieving an overall accuracy of 0.967. Despite the difference in the underlying data
like medical records (such as age, blood pressure, hypertension, hemoglobin, etc.)
our integrated approach incorporating imaging information and clinical information
(age, eGFR) could achieve a similar or higher classification accuracy while employing
only about 3-fold fewer data and allowing for accurate kidney segmentation and TKV
estimation simultaneously.
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In the future, we plan to use T1-weighted kidney volumes and combine them with
their T2-weighted counterparts to extract better features and attempt to improve
performance. Moreover, so far we only predicted kidney function change for 8 years
in the future. Translating our method to other time ranges will be investigated in the
future. Furthermore, we plan to do multi-task learning by combining the training
of segmentation and prognosis networks.

In conclusion, we have presented an automated approach to predict disease progres-
sion in ADPKD, in terms of eGFR decline and CKD stage change by integrating
imaging information and clinical data. Simultaneously, renal segmentations are also
obtained and used in further diagnostic tasks. Our approach might improve monitor-
ing and support the prognosis of ADPKD patients from the earliest disease stages.
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1Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg
University, Mannheim, Baden Württemberg, Germany
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3Department of Neurology, University Medical Centre Mannheim, Medical Faculty
Mannheim, Heidelberg University, Mannheim, Baden Württemberg, Germany
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6.1 Abstract

Multiple Sclerosis (MS ) is a chronic neurological disorder characterized by the pro-
gressive loss of myelin and axonal structures in the central nervous system. Accurate
detection and monitoring of MS-related changes in brain structures are crucial for
disease management and treatment evaluation. We propose a deep learning algo-
rithm for creating Voxel-Guided Morphometry (VGM ) maps from longitudinal Mag-
netic Resonance Imaging (MRI ) brain volumes for analyzing MS disease activity.
Our approach focuses on developing a generalizable model that can effectively be ap-
plied to unseen datasets. Longitudinal MS patient high-resolution 3D T1-weighted
follow-up imaging from 3 different MRI systems were analyzed. We employed a 3D
residual U-Net architecture with attention mechanisms. The U-Net serves as the
backbone, enabling spatial feature extraction from MRI volumes. Attention mecha-
nisms are integrated to enhance the model’s ability to capture relevant information
and highlight salient regions. Furthermore, we incorporate image normalization by
histogram matching and resampling techniques to improve the networks’ ability to
generalize to unseen datasets from different MRI systems across imaging centers.
This ensures robust performance across diverse data sources. Numerous experi-
ments were conducted using a dataset of 71 longitudinal MRI brain volumes of MS
patients. Our approach demonstrated a significant improvement of 4.3% in Mean
Absolute Error (MAE ) against the state-of-the-art (SOTA) method. Furthermore,
the algorithm’s generalizability was evaluated on two unseen datasets (n=116) with
an average improvement of 4.2% in MAE over the SOTA approach. Results confirm
that the proposed approach is fast and robust and has the potential for broader
clinical applicability.
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6.2 Introduction

MS is a chronic neurological disorder characterized by progressive loss of myelin
and axonal structures in the central nervous system [102]. Serial MRI examina-
tions of MS patients represent an important part of the diagnostic and monitoring
workout of MS patients, including therapeutic decisions [102–104]. While the ap-
pearances of new and contrast-enhanced MS lesions are mostly related to clinical
relapses, smoldering chronic active lesions, which are often not detectable in routine
MRI scans, represent chronic inflammation and tissue destruction and may correlate
with slow and chronic disease progression [105]. Accurate detection and monitoring
of MS-related changes in brain structures are important background information for
clinical management [105]. Evaluating subtle alterations across multiple examina-
tions has become feasible to characterize disease evolution over time [105]. This
includes fine analysis of white matter lesions, enlargement of the cerebrospinal fluid
(CSF) compartment, and grey matter atrophy [106].

Traditionally, the assessment of MS disease activity has primarily relied on the
detection of new lesions [104]. Recently there has been an increasing interest in
the detection of lesion activity including even subtle changes like smoldering lesions.
There is a growing need for automated methods capable of generating complete maps
quantifying structural brain tissue changes. Such methods are VGM [107] and deep
VGM [108], where a neural network approximates a high dimensional deformation
field for detecting changes in MS lesions in longitudinal MRI scans. The deep VGM
approach by [108] is fast, however, we intended to improve its robustness making
it more applicable to a clinical setting.It is vital to develop a robust deep-VGM
approach that is independent of the MRI system used. We aimed to develop a
model that can effectively generalize to unseen datasets, allowing for fast, robust,
and reliable monitoring of subtle MS disease activity.

In summary, this paper investigates a generalizable deep learning approach for VGM
map generation, such that it provides a generalizable tool for fast, accurate, and
automated analysis of subtle MS disease activity.

6.3 Materials and Methods

6.3.1 Patient data

In this retrospective study, we analyzed two datasets of patients with MS from two
different centers, following the 2010 diagnostic criteria by [109]. These datasets are
referred to as Dataset A and Dataset B. Dataset A, which comprises 71 patients, is
the same dataset utilized in the state-of-the-art method proposed by [108]. Dataset
B consists of 97 patients. Every patient underwent two MRI examinations: one
at baseline and a follow-up scan after a 12-month period. Patient demographics of
these datasets are given in Table 6.1.

For further validation, we procured an external public dataset comprising 19 patients
from [110]. We call this Dataset C in our study. All patients were imaged with a
high-resolution T1-weighted Magnetization Prepared Rapid Gradient Echo Image
(MPRAGE) sequence. Please see the acquisition details in Table 6.2.
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Property Dataset A Dataset B

Gender (female:male) 64:13 70:27
Mean age (years) 37.67 ± 12.5 54.5 ± 14.6
PPMS 1 15
SPMS 4 19
RRMS 62 63
Mean disease duration (years) 5.71 ± 8.44 10 ± 14.32
Median EDSS (range) 2.0 (0 - 6.5) 3.5 (0 -7.5)
Treatment (DMTs) 49/67 81/97

Table 6.1: Patient demographics of Dataset A and B. In the original study that
compiled Dataset A, 4 patients were excluded, thus no patient demographics
for these 4 patients were recorded. However, in this work, the imaging data
of these patients were used. PPMS = primary progressive MS, SPMS = sec-
ondary progressive MS, RRMS = relapsing-remitting MS, EDSS = Expanded
Disability Status Scale, DMTs = individually selected immune therapies)

Property Dataset A Dataset B Dataset C

Scanner Magnetom Skyra, Siemens Magnetom Allegra, Siemens Unknown scanner, Philips
Field strength (T) 3.0 3.0 3.0
Sequence T1-w MPRAGE T1-w MPRAGE T1-w MPRAGE
TR (ms) 1900 2080 10.3
TE (ms) 2.49 3.93 6
TI (ms) 900 1100 835
Flip angle 9◦ 15◦ 8◦

Spatial resolution (mm3) 0.94 × 0.94 × 2.00 1 × 0.98 × 0.98 0.82 × 0.82 × 1.17
Volume size (voxels) 256 × 256 × 70 160 × 240 × 256 256 × 256 × 120

Table 6.2: Image acquisition characteristics for each dataset. (MPRAGE:
Magnetization Prepared Rapid Gradient Echo)

6.3.2 Ground truth VGM generation

VGM is a technique used for aligning 3D MRI images and generating maps that
reveal global and regional changes in the brain between two sets of 3D MRI data
collected at different time points. It utilizes T1-weighted MRI data. To initiate the
process, high-quality brain masks are required, which can be generated using the
FreeSurfer software package (refer to [111] for details). The VGM process unfolds
in four sequential steps:

1. Coarse Linear Alignment: In this initial step, VGM determines an affine trans-
formation that maximizes the overlap between the brain masks of the two time
points. This coarse linear alignment helps bring the images into initial align-
ment.

2. Inhomogeneity Correction: To eliminate low-frequency bias in the images, a
correction is applied by comparing the coarsely aligned images, as described
in [106].

3. Fine Linear Alignment: After inhomogeneity correction, a cross-correlation-
based technique is employed to achieve finer alignment between the images.
This step further refines the alignment achieved in the previous coarse align-
ment step.
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Figure 6.1: Three examples of VGM (ground truth) from a patient scan.
Left column: baseline image; middle column: follow-up image; right column:
corresponding VGM map. The top slice depicts a lesion decreasing in volume
(dark region). The middle slice VGM shows that one new lesion appeared
in the follow-up visit (small bright-red region). The third slice shows a lesion
with a very small change between the baseline and the follow-up visits. Arrows
indicate the location of lesions in each case.

4. The final step involves the application of a high-dimensional multiresolution
full multigrid method. This step is crucial for capturing nonlinear deformations
in the brain structures, allowing for comprehensive exploitation of information
and effective image processing, as explained in [107].

It’s worth noting that typical computation times for these four steps on a CPU are
approximately 4 minutes for steps (i) to (iii) and 7 minutes for step (iv).

In the ensuing stage, the VGM process orchestrates a guided movement for each voxel
based on its grey value, aligning it from the source to the target image. The ultimate
objective is to extract volume alterations for each voxel from the high-dimensional
deformation field. The outcome is a map that assigns a quantified value to each
voxel, indicating whether the corresponding brain region has undergone an increase
or decrease in volume.
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To illustrate the application of VGM, we provide an example case comprising a base-
line image, a follow-up image, and the resulting VGM map in Figure 6.1. Initially
designed for stroke data analysis [107, 112], recent research has demonstrated its
efficacy in the context of MS [113–116]. However, it is important to note that the
clinical utilization of VGM is currently impeded by the relatively long computation
time of approximately 11 minutes per case.

(A) (B)

Figure 6.2: Histogram of image intensities of the original data distribution (A)
and after Nyul normalization (B). The y-axis scale is in logarithms. (x-axis;
AU: arbitrary units)

6.3.3 Image Preprocessing

Initially, we perform histogram matching normalization using the Nyul normaliza-
tion technique [80]. Specifically, we train the Nyul normalizer using Dataset A. Sub-
sequently, we apply the trained normalizer to Datasets A, B, and C ensuring that
the data distributions become identical. Following this step, we resample Dataset
B and C to match the voxel spacing of Dataset A, which is 0.94 × 0.94 × 2.00
mm. Figure 6.2 illustrates the data distribution both before and after the appli-
cation of histogram matching and resampling techniques. The visual comparison
demonstrates a greater degree of similarity between the data distributions follow-
ing the implementation of these techniques. Moreover, the calculated Wasserstein
distances between the datasets A and B prior to and post-normalization are 62.77
and 25.48, respectively. Similarly, the distances between datasets A and C pre- and
post-normalization are 100.19 and 31.39, respectively.

For the purpose of network training, we apply multiple preprocessing steps to the
MRI volumes. These steps include bias correction, skull-stripping, and rigid regis-
tration (brain images of the two time points). Additionally, we adjust the image
intensities to be confined within the interval of [0, 100] and then rescale them to the
range of [-1, 1]. As for the VGM maps (labels), they are truncated to fit within the
range of [-1, 1], while any values falling within the range of [-0.01, 0.01] are set to 0.

6.3.4 Attention Mechanisms

In this work, we incorporate three attention modules into the U-Net architecture for
improved VGM map prediction. These are described briefly in the following.
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6.3.4.1 Attention Block from Attention U-Net

In their work, [58] introduced attention gates within the U-Net architecture. These
attention gates serve as a mechanism to guide the network’s decision-making process
by selectively choosing relevant features while disregarding irrelevant ones. The au-
thors achieved this by leveraging higher-level features as a guide to suppress trivial
and noisy responses present in the lower-level skip connections. By incorporating
attention gates, the network gains the ability to focus its attention on more infor-
mative features, thus enhancing its discriminative power and improving the overall
performance of the U-Net model.

6.3.4.2 Squeeze and Excitation Block

The Squeeze and Excitation (SE ) block was introduced by [59]. This block is de-
signed to enhance the representational power of Convolutional Neural Networks
(CNNs) by adaptively recalibrating feature maps. It consists of two main opera-
tions: squeezing and exciting. In the squeezing step, global spatial information is
extracted by applying global average pooling to the input feature maps. This op-
eration reduces the spatial dimensions of the feature maps. In the exciting step,
the squeezed information is used to learn channel-wise dependencies and recalibrate
the feature maps. This recalibration process enables the network to emphasize more
informative channels and suppress less relevant ones, thereby improving the discrim-
inative power of the network.

6.3.4.3 Convolutional Block Attention Module

The Convolution Block Attention Module (CBAM ) was first developed by [60]. It
consists of two attention sub-modules: the channel attention module (CAM) and
the spatial attention module (SAM). The CAM captures interdependencies between
channels by adaptively recalibrating feature maps based on channel-wise information
(similar to the SE block). It employs a combination of global average pooling and
fully connected layers to compute channel attention weights. The SAM, on the
other hand, captures spatial dependencies by adaptively highlighting informative
spatial locations within feature maps. It utilizes the max-pooling and average-
pooling operations followed by convolutional layers to generate spatial attention
weights. By integrating both channel and spatial attention, the CBAM module
enhances the discriminative power of CNNs and allows them to focus on salient
features during image classification or object detection tasks.

6.3.5 Network Architecture

We implemented three 3D U-Nets utilizing the aforementioned attention mechanisms
to compute VGM maps from input volumes [28, 81]. These U-Nets are equipped
with residual and skip connections to facilitate the seamless flow of information
and gradients. The encoder/decoder structure consists of five levels, with the first
two levels comprising two convolution layers each, and the subsequent three levels
consisting of three convolution layers each. The number of filters starts at 8 at
the initial level and progressively increases to 128 at the bottom level. The VGM
prediction map is generated through a final convolution layer of size 1 × 1 × 1,
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while all other convolutions employ 3 × 3 × 3 kernels. The inputs to the network
consist of baseline and follow-up volumes.

We trained the following networks:

1. Attention U-Net: The U-Net architecture is enhanced with attention blocks
in the decoder [58].

2. SE-Attention U-Net: The U-Net architecture incorporates SE blocks in the
encoder and attention blocks in the decoder [59, 81].

3. CBAM-Attention U-Net: The U-Net architecture integrates CBAM blocks in
the encoder and attention blocks in the decoder [60, 81].

Furthermore, we compare our trained networks’ performance with the baseline U-
Net [28] model obtained from the work of [108].

For a visual representation of these U-Net architectures, refer to Figure 6.3.

Figure 6.3: Proposed 3D U-Net incorporating attention mechanisms in the
encoder and decoder parts. The attention mechanism from [58] is part of the
decoder. The SE/CBAM blocks [59, 60] are part of the encoder of the U-Net.

6.3.6 Loss Function

The networks in our study are trained using a combination of MAE and gradient loss.
The MAE loss, defined in Equation 6.1, calculates the average absolute difference
between the predicted output Ŷ and the ground truth Y :

LMAE

(
Y, Ŷ

)
=

1

N

N∑
i=1

|ŷi − yi|, (6.1)

To further improve the training process, we incorporate the combination of MAE
and gradient loss, which is described in Equation 6.2.

LGrad

(
Y, Ŷ

)
=

1

NxNyNz

∑
i,j,k

(
|yi,j,k − yi−1,j,k| − |ŷi,j,k − ŷi−1,j,k|)2

+
1

NxNyNz

∑
i,j,k

(
|yi,j,k − yi,j−1,k| − |ŷi,j,k − ŷi,j−1,k|)2

+
1

NxNyNz

∑
i,j,k

(
|yi,j,k − yi,j,k−1| − |ŷi,j,k − ŷi,j,k−1|)2

(6.2)
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The additional gradient loss term incorporates gradient information to guide the
network’s learning:

LMAE+Grad

(
Y, Ŷ

)
= LMAE + λ · LGrad (6.3)

Where, ŷi and yi represent the predicted and label voxel values, respectively. The
total number of voxels in a batch is denoted by N , where Nx, Ny, and Nz represent
the number of voxels along each dimension of the 3D MRI volume. Additionally, the
parameter λ is set to one in Equation 6.2 to equally weight the two loss functions.
We selected the LMAE+Grad loss function based on its demonstrated effectiveness in
predicting VGM maps, as reported in [108].

6.3.7 Training and Implementation

In our study, we employed a training approach using 3D patches of size 128 × 128
× 32. The patches were sampled randomly, with the constraint that their centers lie
within the brain mask, and were oriented along the transverse plane. Each training
batch consisted of 8 samples.

For optimization, we utilized the Adam optimizer with a learning rate of 10−3. To
mitigate overfitting, we applied L2 regularization with a weight of 10−10. Each
network underwent training for a total of 860 epochs in a 5-fold cross-validation
scheme. The 5-fold cross-validation was performed on Dataset A, which was split
into train:validation:test sets with a ratio of 54:2:15 cases.

To assess the generalizability of our trained models, we applied them to Datasets
B and C. This additional evaluation aimed to determine how well the models could
perform on an independent, previously unseen dataset. It is also worth noting that
for the baseline state-of-the-art method, we use the settings described in the baseline
approach [108] to make predictions unless specified otherwise. In one scenario, we
followed the same preprocessing steps as described in the baseline approach. In
another case, we implemented our preprocessing steps, including intensity truncation
in [0, 100], Nyul normalization, and resampling, for inference using the baseline
model.

The neural networks were trained using Tensorflow 2.3.0 [117] and Python 3.6.13,
employing an Nvidia RTX A4000 as the GPU.

6.3.8 Evaluation

6.3.8.1 Quantitative Evaluation

To facilitate a more meaningful comparison, we utilize the same evaluation metrics
described by [108]. These metrics allow us to assess the performance of our approach
consistently.

The first metric we employ is the MAE, which quantifies the average absolute dif-
ference between the predicted and ground truth VGM map within the brain mask.
This metric provides insight into the accuracy of the predicted VGM values at the
voxel level. The second metric used for evaluation is the Structural Similarity Index
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Measure (SSIM ), a measure that assesses the similarity of structures between the
predicted and ground truth VGM maps. The SSIM compares three components of
images: luminance, contrast, and structure [118]. This metric provides information
about the overall structural preservation in the predicted VGM map compared to
the ground truth. We further utilize the Dice Similarity Coefficient (DSC ), specifi-
cally for non-change regions within the brain mask. The DSC is calculated for voxel
values falling within the range of [-0.01, 0.01] in both the predicted and ground truth
VGM maps. This metric allows us to evaluate the similarity and overlap between
these regions, further assessing the accuracy of the predicted VGM map. Finally, we
perform a paired t-test to find a statistically significant difference (p-value < 0.05)
between the results from the baseline and our proposed methods.

6.3.8.2 Qualitative Evaluation

Two expert neuroimagers (A.G., P.E.) performed a joined qualitative review by
consensus. The predictions from our best-performing network were compared to
conventional VGM maps (ground truth) and source T1-weighted data. The expert
checked 5 patients from each dataset by comparing the predicted VGM and ground
truth VGM in conjunction with the baseline and follow-up visits’ MRI volumes.
Based on the visual analysis, each patient’s prediction in comparison to the ground
truth VGM was categorized into 4 categories: 1. Missing information, where the
prediction does not have enough details as compared to the ground truth, 2. loss
of lesion to background contrast, where the lesion is lost to background and is not
visible in prediction, 3. original result well presented, where the prediction is of
similar quality to the ground truth, and 4. additional lesion details offered, where
the predicted VGM gives additional lesion information that might not be present in
the ground truth.

6.4 Results

6.4.1 Quantitative Results

The results for each dataset are described in Table 6.3. For Dataset A, the CBAM-
Attention U-Net attains the highest SSIM, DSC, and MAE of 0.9177, 0.9814, and
0.0335, respectively. In comparison, the baseline state-of-the-art method obtains
SSIM, DSC, and MAE of 0.9139, 0.9800, and 0.0350, respectively. For Dataset
B, the best SSIM, DSC, and MAE are 0.9416 (Attention U-Net), 0.9882 (CBAM-
Attention U-Net), and 0.0337 (SE-Attention U-Net), respectively. Moreover, each
network’s metric for both Datasets A and B surpasses the corresponding metric for
the baseline method. Furthermore, each of the proposed networks outperforms the
baseline significantly in the case of Datasets A and B (p-value < 0.05). For Dataset
C, the baseline method outperforms other networks in SSIM (0.9102) and MAE
(0.0422) metrics. However, the DSC of the baseline (0.9287) is considerably lower
than our networks’ DSCs (best:0.9784). The poor DSC of the baseline method is
due to the network outputting more values close to 0 in larger regions. The visual
results in Figure 6.4 for Dataset C also confirm this, showing that although the
baseline has slightly better metrics, the outputs are not useful for a physician.
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Dataset Network SSIM ↑ DSC ↑ MAE ↓
Dataset A U-Net (baseline) 0.9139 ± 0.0216 0.9800 ± 0.0033 0.0350 ± 0.0112

Attention U-Net 0.9172 ± 0.0213 0.9812 ± 0.0032 0.0338 ± 0.0107
CBAM-Attention U-Net 0.9177 ± 0.0212 0.9814 ± 0.0031 0.0335 ± 0.0105
SE-Attention U-Net 0.9172 ± 0.0212 0.9810 ± 0.0031 0.0337 ± 0.0106

Dataset B U-Net (baseline) 0.9207 ± 0.0187 0.9816 ± 0.0034 0.0364 ± 0.0064
Attention U-Net 0.9416 ± 0.0143 0.9881 ± 0.0023 0.0344 ± 0.0052
CBAM-Attention U-Net 0.9406 ± 0.0144 0.9882 ± 0.0023 0.0351 ± 0.0053
SE-Attention U-Net 0.9416 ± 0.0143 0.9880 ± 0.0022 0.0337 ± 0.0052

Dataset C U-Net (baseline) 0.9102 ± 0.0377 0.9287 ± 0.0093 0.0422 ± 0.0091
Attention U-Net 0.9097 ± 0.0288 0.9780 ± 0.0041 0.0465 ± 0.0087
CBAM-Attention U-Net 0.9010 ± 0.0287 0.9784 ± 0.0042 0.0519 ± 0.0112
SE-Attention U-Net 0.9091 ± 0.0291 0.9780 ± 0.0042 0.0459 ± 0.0086

Table 6.3: Results for each Dataset from networks trained on Dataset A only.
The metrics for Dataset A are congregated from the results of 5-fold training.
The metrics for Datasets B and C are calculated using an ensemble of 5 mod-
els that were trained on Dataset A. The baseline state-of-the-art method is
outperformed in each metric for Datasets A and B by CBAM- or SE-Attention
U-Net. However, for Dataset C, the SSIM and MAE of the baseline are higher
than our approach. But as can be seen in Figure 6.4, the baseline method
outputs VGM without any details. The MAE in this case is lower as most
of the predicted values from the baseline method are close to 0. Further, the
DSC of 0.92 is comparatively lower than the average 0.98 DSC from other
methods. Numbers in bold signify the best metric for each dataset for each
category. Underlined values depict significantly better metrics in comparison
to the corresponding baseline metric with p-value < 0.05.

Dataset Network SSIM ↑ DSC ↑ MAE ↓
Dataset A U-Net (baseline) 0.9071 ± 0.0227 0.9809 ± 0.0034 0.0379 ± 0.0120

Dataset B U-Net (baseline) 0.9396 ± 0.0144 0.9879 ± 0.0023 0.0348 ± 0.0054

Dataset C U-Net (baseline) 0.9063 ± 0.0300 0.9778 ± 0.0042 0.0467 ± 0.0097

Table 6.4: Results from the baseline method (ensemble) after applying image
preprocessing described in our study. As can be seen, the MAE for Dataset B
improves, however, for Datasets A and C, it gets worse. The DSC for Dataset
C increases by 6% as compared to the result in Table 6.3. The numbers in
bold depict comparatively higher metrics to the corresponding baseline method
from Table 6.3.

Furthermore, in Table 6.4, we depict results from the baseline method after applying
the preprocessing methods from our approach (Section 6.3.3; i.e. truncation in [0,
100] range instead of baseline truncation in [200, 700] range, Nyul normalization,
and resampling). In this case, the method improves on all metrics for Dataset B as
compared to the corresponding result in Table 6.3. However, for Datasets A and
C, SSIM and MAE numbers are lower in comparison. Noteworthily, the DSC of
Dataset C improves and reaches 0.9778. After applying our preprocessing approach,
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Figure 6.4: Top row: Dataset A, middle row: Dataset B, and bottom row:
Dataset C. Qualitative results for each dataset from the baseline U-Net and
our proposed approach with SE-Attention U-Net.

Figure 6.5: Visual result from the baseline U-Net for Dataset C (for the same
patient from Figure 6.4) after applying our approach’s preprocessing steps.

Dataset Missing information Loss of lesion to background contrast Original result well presented Additional lesion detail offered

Dataset A 0/5 0/5 5/5 0/5

Dataset B 0/5 0/5 5/5 1/5

Dataset C 0/5 0/5 5/5 3/5

Table 6.5: Visual inspection result by an expert neuro-radiologist for SE-
Attention U-Net predictions compared to ground truth VGM, baseline and,
follow-up MRIs.

the baseline network is able to produce meaningful predictions for Dataset C as
depicted in Figure 6.5, suggesting that our preprocessing method is important for
generalizability in this case.

The prediction of each VGM map takes approx. 2.75 seconds. With the inclusion
of preprocessing, the total time taken for VGM prediction is about 4 minutes (same
as the SOTA method [108]).

6.4.2 Qualitative Results

Table 6.5 shows the qualitative analysis result of five cases of each dataset that were
visually analyzed by the experts. Since it achieved the best mean MAE score of
0.0377 across all the datasets, we selected SE-Attention U-Net as the best network for
visual analysis. None of the predictions (0/15) showcased any missing information
details. There is also no loss of lesion to background contrast (0/15) for any case
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in each dataset. Furthermore, all the analyzed predictions (15/15) show that they
present the ground truth VGM well. Interestingly, one case in Dataset B (1/5) and
three cases in Dataset C (3/5), show additional lesion details in comparison to the
ground truth. However, for dataset A, the predicted VGMs do not offer (0/5) any
additional lesion details in comparison to the ground truth.

Visual results are depicted in Figure 6.4 and Figure 6.5. In Figure 6.4, it can be seen
that for Datasets A and B, the prediction from SE-Attention U-Net is similar to the
ground truth, having dark (Dataset A (n=1)) and bright spots (Dataset B (n=2)) for
changes in lesions in the same regions. For Dataset C, we show an example case for
which our prediction offers better detail and more lesion information as compared
to the ground truth. However, in this case, the baseline prediction is worse and
does not show any lesion details. Interestingly, when we swap the baseline method’s
preprocessing with our preprocessing approach, the output is more informative and
depicts VGM in higher quality (see Figure 6.5).

6.5 Discussion

We aimed to develop a generalizable approach to predict VGM maps for the longi-
tudinal assessment of MS patients. Our work builds upon previous research [108]
by addressing the crucial issue of generalizability. Some interesting aspects emerge
from this work. The VGM maps help to detect subtle changes in lesions between
baseline and follow-up visits. Our approach did calculate VGM maps in a short time
and across three different datasets (2/3 unseen datasets) with high accuracy.

In the development process, we integrated advanced deep-learning techniques, im-
age preprocessing, and careful model evaluation. Several steps were performed, that
appeared useful and were able to improve the process incrementally. We began by
describing the image preprocessing steps, which involved histogram matching nor-
malization and voxel spacing resampling to ensure data consistency across different
imaging centers. These preprocessing steps are crucial for enhancing the model’s
ability to generalize to diverse datasets. Our deep learning model is based on a 3D
residual U-Net architecture, which incorporates attention mechanisms to highlight
salient regions in the brain volumes. The application of attention mechanisms in MS
lesion change detection is warranted as they have been shown to enhance lesion de-
tection algorithms in previous works [119, 120].To evaluate the effectiveness of our
approach, we conducted extensive experiments using a dataset of 71 longitudinal
MRI brain volumes of MS patients. We compared our model’s performance to the
SOTA method [108]. Additionally, we evaluated the generalizability of our model
on two unseen datasets, to test its robustness and potential for broader clinical
applicability.

In our approach, we show that across all the datasets, the method attains SSIM
and DSC higher than 0.91 and 0.98, respectively. Furthermore, the differences in
the MAEs for each dataset are not considerably high. The current state-of-the-art
(baseline) for predicting VGM maps using deep learning, as proposed by [108], in-
volves the implementation of a U-Net model without attention mechanisms. This
baseline method does not adequately address the generalizability across different
scanners and sites, a limitation our approach seeks to overcome. Employing the
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trained model from [108] on Dataset A, we obtained an SSIM of 0.9139, a DSC of
0.9800, and an MAE of 0.0350 (Table 6.3) 1. In comparison, each of our proposed
networks surpassed the state-of-the-art result for Dataset A. Similarly, we extended
the baseline to Datasets B and C and found that our approach outperforms the
baseline for Dataset B. However, for Dataset C, the baseline attained higher SSIM
and MAE scores (Table 6.3). In contrast, the baseline DSC in this case is consid-
erably lower (0.92 v/s 0.97). When visually analyzed (Figure 6.4), we found that
the baseline result could not replicate the ground truth VGM and contained values
very close to 0 (therefore lower DSC), and hence it attained better MAE in com-
parison. In this case (Dataset C), the numbers did not reflect the results visually
and were deemed not useful in a clinical setting. However, when we applied our
preprocessing approach (i.e. Nyul normalization + truncation in [0, 100] range), the
baseline method yielded a much more convincing VGM map as seen in Figure 6.5.
This suggests that the preprocessing method is key to the generalizability of deep
VGM maps. The resulting average MAE is 0.0467 (Table 6.4), which is worse than
our SE-Attention U-Net. Furthermore, we found that for Datasets B and C, the
predicted VGM maps could offer extra lesion details in comparison to the ground
truth maps without the loss of important information in 4/15 cases (Table 6.5). This
also suggests that the ground truth VGM maps of Dataset A are of higher quality
and training on them could help the network learn high-quality features.

Moreover, there exist multiple automated new lesion segmentation algorithms based
on deep learning [120–127]. These methodologies primarily leverage the MSSEG-
2 dataset [128], encompassing FLAIR images from baseline and follow-up visits for
each patient, either with or without the integration of synthetic data. Notably, these
approaches focus on segmenting new lesions during follow-up visits. In contrast, our
proposed approach distinguishes itself by its fundamental objective: quantifying the
change in lesion activity between baseline and follow-up measurements. Unlike the
aforementioned methods, which aim to delineate new lesions, our approach offers a
distinctive perspective, providing quantitative insights into the variations in lesion
size between visits. This ability to quantitatively showcase the decrease or increase
in lesion activity enhances the depth and specificity of our methodology in assessing
lesion dynamics over time.

Nevertheless, methodologies analogous to ours have been proposed in the litera-
ture, specifically targeting the identification of change maps in MS patients be-
tween baseline and follow-up examinations. [129] presented an algorithm that con-
currently optimized image registration and local intensity change detection within
FLAIR volumes.[130] computed lesion changes utilizing T1, T2, and FLAIR se-
quences. Their approach involved estimating a dissimilarity map between two visits
and subsequently incorporating logistic regression with neighborhood information
and local texture descriptors. It is noteworthy that a direct comparison between our
approach and these existing methodologies is challenging due to the fact that both

1In our study, discrepancies were observed in the metric values for the baseline method when
compared to those reported in [108]. Despite employing the same trained models and adhering
to the preprocessing protocol detailed in their paper, the variation in results could be attributed
to small details in their methodology that were not described in their paper. Additionally, the
divergence in outcomes may also stem from variances in the versions of the libraries used between
the two studies.
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aforementioned approaches utilize lesion segmentation maps as the ground truth for
evaluation. In contrast, our study necessitates expert annotation and an optimal
threshold for generating lesion maps (derived from VGM maps) to facilitate segmen-
tation evaluation. Such a comparative task extends beyond the scope of the current
work.

Addressing the challenge of MRI data heterogeneity across sources is essential for
the widespread adoption of deep learning-based tools in clinical practice, and our
model’s independence from MRI sources demonstrates its potential as a versatile
clinical asset. Furthermore, the high accuracy and generalizability of our deep learn-
ing approach hold great promise for clinical practitioners, as it offers a valuable tool
for detecting and monitoring subtle changes in MS lesions, facilitating more informed
treatment decisions. The ability to identify even the most discreet changes in brain
structures could significantly impact the clinical management of MS patients, po-
tentially leading to earlier interventions and improved patient outcomes.

Nonetheless, our approach has a few limitations. Firstly, it needs accurately regis-
tered brain volumes for baseline and follow-up visits. If the registration is of low
quality, then the VGM maps will be less accurate and might display less precise
information. However, we found that all the cases in our study were registered with
high quality. Another limitation could be the (partial) loss of lesion when resampling
datasets to have the same spacing as Dataset A. Dataset A has anisotropic spacing
where the slice thickness is 2 mm. Resampling a higher-resolution MRI volume to
a 2mm slice thickness could result in partial volume effects, i.e., loss of some detail.
In this case, it would mean that the VGM maps might be less precise in detecting
some subtle lesion changes.

In future work, we will analyze if the VGM maps can be produced from a single
scan of MS patients with a comparison scan from an age- and sex-matched group
of healthy individuals for detecting lesions. Furthermore, we would also test our
algorithm for detecting structural changes in other neurological diseases such as
stroke, neurodegenerative diseases, or brain tumors.

In conclusion, we present a generalizable approach that can produce VGM maps in
a fast and robust manner across datasets from various sources. Our algorithm can
be helpful in detecting subtle lesion changes in brains of MS patients.
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7.1 Abstract

Life-threatening acute Aortic Dissection (AD) demands timely diagnosis for effective
intervention. To streamline intrahospital workflows, automated detection of AD in
abdominal Computed Tomography (CT ) scans seems useful to assist humans. We
aimed at creating a robust Convolutional Neural Network (CNN ) based pipeline
capable of real-time screening for signs of abdominal AD in CT.

In this retrospective study, abdominal CT data from AD patients presenting with
AD and from non-AD patients were collected (n: 195, AD cases: 94, mean age:
65.9 years, female ratio: 35.8%). A CNN-based algorithm was developed with the
goal of enabling a robust, automated, and highly sensitive detection of abdominal
AD. Two sets from internal (n=32, AD cases: 16) and external sources (n=1189,
AD cases: 100) were procured for validation. The abdominal region was extracted,
followed by the automatic isolation of the aorta Region of Interest (ROI ) and high-
lighting of the membrane via edge extraction, followed by classification of the aortic
ROI as dissected/healthy. A 5-fold cross-validation was employed on the internal
set, and an ensemble of the 5 trained models was used to predict the internal and
external validation set. Evaluation metrics included Area Under the Curve (AUC )
and balanced accuracy.

The AUC, balanced accuracy, and sensitivity scores of the internal dataset were
0.932 (CI: 0.891-0.963), 0.860, and 0.885, respectively. For the internal validation
dataset, the AUC, balanced accuracy, and sensitivity scores were 0.887 (Confidence
Interval (CI ): 0.732-0.988), 0.781, and 0.875, respectively. Furthermore, for the
external validation dataset, AUC, balanced accuracy, and sensitivity scores were
0.993 (CI: 0.918-0.994), 0.933, and 1.000, respectively.
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The proposed automated pipeline could assist humans in expediting acute aortic
dissection management when integrated into clinical workflows.

7.2 Introduction

Acute aortic syndrome (AAS) consists of the life-threatening conditions of AD, in-
tramural hematoma (IMH) and penetrating atherosclerotic ulcer (PAU) [131]. In
acute AD, tearing of the aortic vessel intima leads to uncontrolled blood inflow
into the aortic wall. Incidence has been reported to range from 2.6 to 7.2 cases
per 100,000 person-years and is associated with a reported in-hospital mortality of
30.1% in women and 21.0% in men, creating a substantial healthcare burden [132].

The event of acute AD can cause severe abdominal or back pain, however, in many
cases symptoms are nonspecific and driven by secondary complications like visceral
ischemia, resulting in a relatively high rate of patients not initially being suspected
of AD, thus receiving abdominal imaging for other reasons [133]. Modern medical
management of acute AD aims at early CT-based diagnosis and prompt therapy
stratification. Whereas thoracic AD including the ascending part of the vessel (type
A) typically requires immediate intervention, AD located more distally in the aorta
(type B) in the absence of complications like rupture, malperfusion of visceral organs,
spinal ischemia or lower limb ischemia [134] may be managed conservatively or with
elective intervention. In CT imaging, acute AD can in many cases be distinguished
from its chronic form [135], bearing the risk of development of Abdominal Aortic
Aneurysm (AAA), representing a chronic risk for rupture.

In many cases, the unspecific clinical symptoms and even radiological misdiagnosis
under emergency conditions which were reported at 35% for type A AD and 17%
for type B AD in a British setting [136] possibly compromise timely suspicion, diag-
nosis, and treatment of this rare but time-critical medical condition in a substantial
proportion of patients [137].

Multiple factors have been addressed to streamline AD management workflows [138].
Artificial Intelligence (AI )-based techniques have been described as promising tools,
capable of detecting critical findings, prioritizing cases accordingly and eventually
reducing delays [139]. Multiple groups have aimed to create algorithms capable of
detecting AD, mainly in thoracic CT scans. Yi et al. [140] developed a method using
a 2.5D U-Net to extract aorta masks and subsequently used a 3D ResNet34 CNN
[141], pre-trained on MedicalNet [142], for feature extraction and final prediction via
a Gaussian Naive Bayes algorithm by combining radiomics and CNN features. The
results showed high performance on internal and external datasets (AUC=0.948,
sensitivity=0.862, specificity=0.923 for internal (341 patients); AUC=0.969, sensi-
tivity=0.978, specificity=0.554 for external (111 patients)). Despite their robust
results on the internal set, they attained low specificity on a small external dataset.
Hata et al. [143] utilized a 2D Xception architecture [144], pre-trained on Ima-
geNet [145], to classify AD in non-contrast-enhanced CT scans (170 patients). They
achieved an AUC of 0.940, sensitivity of 0.918, and specificity of 0.882 by classifying
consecutive slices of the aorta. However, their study’s limitation lies in the lack
of external validation, raising concerns about the generalizability of their model.
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Huang et al. [146] proposed a 2-step hierarchical model involving an attention U-
Net for initial AD detection (AD case; if 5 or more slices were detected with AD)
followed by a ResNext model [147] for Stanford type classification. Their internal
results showed excellent performance (AUC=0.980, recall=0.960, specificity=1.000
for AD detection; AUC=0.950, recall=0.947, specificity=0.953 for Stanford types).
Despite high internal metrics, their approach was not tested on an external dataset,
questioning its robustness. Harris et al. developed a 2D five-layer CNN as a screen-
ing algorithm, yielding a sensitivity of 0.878 and a specificity of 0.960 [148] with
a training dataset of 778 patients, and demonstrated a reduction of turnover time
(395s) by prioritizing worklist in a teleradiology setting in the US. Cheng et al.
employed a U-Net to first segment the aorta and then analyze its circularity for
AD classification. They obtained a sensitivity of 0.900 and specificity of 0.800 on
a comparably small Chinese dataset of n=20 patients (10 AD) [149]. Yellapragada
et al. described a wider focussed 3D deep learning model for the detection of AAS
solely in CTA scans, trained on a dataset of 3500 cases (500 containing AAS, un-
clear number of AD cases), overall yielding promising results [150]. Guo et al. [151]
segmented the aorta ROI manually and extracted 396 radiomic features, including
texture features, gray-level co-occurrence matrix, gray-level run-length matrix, gray-
level size zone matrix, form factor features, and histograms. They selected the top
20 features using max-relevance min-redundancy and constructed a radiomic signa-
ture via LASSO logistic regression, followed by logistic regression for classification.
Their results indicated consistent performance on internal (304 patients, AUC=0.92,
recall=0.941, specificity=0.753) and external (74 patients, AUC=0.90, recall=0.857,
specificity=0.917) datasets. It is noteworthy that their method involves manual seg-
mentation of the aorta, which is time-consuming. Manual segmentation diminishes
the benefits of an automated AD detection algorithm, as the time spent could in-
stead be used by a radiologist to identify dissection cases directly. Additionally, the
unavailability of a large external dataset in these studies underscores the necessity
of developing robust algorithms that can generalize well across diverse (external)
datasets. Furthermore, in the medical domain, the availability of large annotated
datasets (for training) is particularly challenging due to factors such as patient pri-
vacy concerns, the extensive time required for expert annotation, and the variability
in imaging protocols across institutions. Hence, producing a reliable model using a
small internal dataset that can be effectively validated on a larger external dataset
without manual segmentation is vital.

The aim of this analysis was to develop an easy-to-train CNN based AI pipeline on
a small dataset that can be validated on a large external dataset and capable of real-
time screening of all intrahospital abdominal CT scans for signs of AD, even at peak
times and independent of acquired contrast phase. High robustness, efficient use of
computing power, and a high degree of automation are therefore key requirements.

7.3 Materials and Methods

Possible conflicts of interest have been stated elsewhere. This retrospective study
was approved by the local institutional review board (2021-635). Written informed
consent was not required due to the retrospective nature of the study population
enrolled.
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7.3.1 Data Collection

7.3.1.1 Internal Training and Validation Dataset

Patients presenting with acute AD with abdominal extent between 2010/01/01 and
2021/03/01 were identified in the Radiology Information System (RIS) and included
in the study, if an abdominal CT exam had been performed, intentionally regardless
of contrast phase or other parameters like image quality or presence of metallic inter-
ferences. Patients with preexisting AD and scans not covering the entire abdomen
were excluded. To include AD-negative cases, studies from patients with matching
contrast phases and patient characteristics were collected similarly, of which some
have already been used in a previous, different study [152], representing patient data
overlap (n=85). Datasets were randomly split into training (80%; 163 patients) and
validation (20%; 32 patients) datasets. The validation set is used only for testing,
and we call it internal validation dataset. Patient-specific data was removed.

7.3.1.2 External Validation Dataset

Anonymous external non-synthetic CT data containing healthy aortic vessels and
AD were created from the publicly available ImageTBAD [153], AVT [154], and
Abdomenct-1k collections [155]. To avoid data overlap, we discarded the 20 KiTS19
patients from the AVT dataset, since these were included in the Abdomenct-1k set.
Example images are displayed in Figure 7.1.

Figure 7.1: Example images from internal and external datasets. The left
column is healthy cases and the right column is AD cases.

7.3.2 Image Annotation Strategy

Annotation was performed in Aycan Osirix (Aycan Digitalsysteme, Würzburg, Ger-
many) by an attending radiologist (5 years of experience in cardiovascular imaging)
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and a separate second reading by a resident (4 years of experience). Cases with
disagreements were resolved by a senior physician with >15 years of experience.
Annotation contained age, sex, CT date, contrast phase, presence of metallic in-
terferences, presence of dissection (small and subtle AD were annotated as positive
cases), exact dissection extent, occlusion or dissection of side branches (celiac trunk,
superior and inferior mesenteric artery, renal arteries, iliac arteries), and presence of
signs of visceral ischemia, intramural haematoma or aortic thrombosis. The external
dataset and its annotations were validated.

7.3.3 Data Pre-Processing

We extract the abdominal region from each CT case using a heuristic implemented
in [152]. The algorithm analyzes Hounsfield Unit (HU ) distribution along the z-axis
in the soft tissue HU range to establish the upper and lower bounds of the abdomen,
determining the abdomen center using high HU values, and extracting a subvolume
around it. The extracted subvolumes are resampled to a size of 320 x 384 x 224 voxels
with a uniform spacing of 0.9 x 0.9 x 1.5 mm3. The intensities are windowed in the
[-200, 400] HU range, corresponding to the soft tissue domain. Next, the CT image
is rescaled to be in the range [0, 1]. Subsequently, the mask of the abdominal aorta
including iliac arteries is extracted using the TotalSegmentator algorithm [156]. To
compensate for the insufficient segmentation quality of dissected vessels, aorta masks
were dilated in 10 iterations via a square structuring element with a connectivity of
one, ensuring complete coverage. The CT image is then masked using the dilated
mask. The dissected aorta has a membrane separating the true and false lumen,
which was highlighted by extracting edges (canny detector (σ = 2)) inside the aortic
ROI. The subvolume voxels that do not belong to the edges are weighed down with a
factor of 0.6, while the edge voxels remain unchanged. We then extract the bounding
box of weighted aorta ROI using the dilated mask with a boundary margin of 5 voxels
in each direction. Finally, the bounding box is resized with padding or cropping to
a standardized size of 224 x 224 x 224 voxels (CNN input) in order to standardize
data and minimize the usage of memory. The subvolume of this size is sufficient to
encompass the entire aorta ROI (as seen in Figure 7.2). The aorta mask is used to
create a bounding box, which centers the aorta ROI within this subvolume. The
preprocessing pipeline is depicted in Figure 7.2. Further data augmentation details
are described in the supplemental material (Section 11.2).

7.3.4 Network Architecture

We construct a CNN comprising 5 convolutional blocks and 1 dense block, depicted
in Figure 7.3. The network takes as input the masked, edge-weighted aortic ROI.
Each convolution block entails a 3 x 3 x 3 convolution, followed by instance normal-
ization, dropout, and Rectified Linear Unit (ReLU ) activation. Dropout probabil-
ities for the initial to final convolution blocks are 0.00, 0.05, 0.10, 0.10, and 0.10,
correspondingly. Post each of the initial four convolution blocks, a 3D max-pooling
operation is performed to downsample the feature maps with a stride of 2. The final
feature vector of size 256 is produced using a 3D average-pooling operation with
a kernel size of 14. Lastly, the dense block processes this vector, yielding network
output through a dense layer followed by sigmoid activation, i.e., a probability score
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Figure 7.2: CT volume preprocessing pipeline. The abdominal region is auto-
matically extracted and resized. An aorta mask is generated from this region
and then dilated to mask out the aorta ROI from the abdomen region. For
highlighting aorta bifurcation in AD cases, edges are extracted using the canny
detector. The aorta ROI is weighted down by a factor of 0.6 where there is no
edge voxel present. Finally, the edge-weighted aorta ROI is standardized by
cropping / padding with the bounding box of the dilated aortic mask.

that a patient belongs to either AD or non-AD class. This network was selected
after testing various other networks, whose details are provided in the supplements
and results.

Figure 7.3: Network architecture for AD classification. The input volume
(edge-weighted aorta ROI) is processed with a CNN to produce a single out-
put in the range [0, 1]. The network consists of convolutional blocks with
convolutions of size three, followed by instance norm, dropout, ReLU activa-
tion, and max-pool of size two (except in the last convolution block (orange
block)). The final feature vector is produced by an average-pooling. It is then
processed by a dense layer and a sigmoid activation to produce the output.
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7.3.5 Evaluation

To assess the performance of all different networks, the AUCs were compared to
choose the best-performing network for further evaluation. Next, the best network’s
performance was further assessed using sensitivity, specificity, balanced accuracy
([Sensitivity + Specificity]/2; suited for high class imbalance), and the AUC with
a 95% confidence interval. We select the binary threshold of our model based on
the high sensitivity and balanced specificity on the internal cross validation dataset,
i.e. 0.45. Next, we create an ensemble of five models trained on this set to predict
the internal validation and external sets based on our set binary threshold. The
ensemble combines probabilities (average) for each case in the internal validation
and external sets, and we evaluate its performance using the same threshold.

7.4 Results

7.4.1 Patient and Dataset Characteristics

From the total of n=266 cases, n=163 scans were used for training and n=32 were
used for validation, in the rest, either images were not available, or the abdominal
aorta was not fully covered. AD patients on average were 65.9 ± 13.5 (29-93) years of
age, 36% were female. For the training cases, in 72.0%, suprarenal AD was present,
and infrarenal AD was seen in 79.3%. 9.8% presented with intramural haematoma,
and 56.1% showed partial aortic lumen thrombosis. The external public dataset used
for validation consisted of a dataset with n=1189 cases (100 AD cases). Details are
provided in Table 7.1 and patient selection criteria are shown in Figure 7.4.

Internal set Internal validation set External validation set

Data source Mannheim University Hospital, Germany

ImageTBAD, AVT dataset,
Abdomen CT-1k dataset.
Details provided in the
supplements.

Patient numbers 163 (78 AD) 32 (16 AD) 1189 (100 AD)

Patient age (years) 65.9 ± 13.5 (29-93)
AD: 52.20 ±11.30
Non-AD: unknown

% female 35,8%
AD: 40,7%
Non-AD: unknown

Contrast phase CTA 73.1%; venous: 26.9% mixed contrast

in-plane resolution (X/Y) (mm) 0.845 ± 0.106 0.845 ± 0.094 0.817 ± 0.120

Slice thickness (Z) (mm) 2.006 ± 1.341 1.836 ± 1.306 2.565 ± 1.538

Original image size (voxels) 512x512x495 ± 0x0x398 512x512x459 ± 0x0x228 512x514x224 ± 8x22x220

Table 7.1: Patient characteristics from internal and external set.

7.4.2 Classification Results

From the four tested networks, our 5-layer CNN yielded the highest AUC (0.932) in
cross-validation (Table 7.2) and was therefore chosen for further investigation. Its
performance on internal and external validation sets are provided in Table 7.3. Fur-
thermore, the confusion matrices and the AUC curves are illustrated in Figure 11.1
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Figure 7.4: Internal dataset patient selection flow-chart. Data acquisition
process. The healthy controls (n=101) were collected similarly to the included
AD cases (n=94).

and Figure 7.5, respectively. The entire workflow including preprocessing, aorta seg-
mentation, and the prediction was tested on internal training (cross-validation) and
validation dataset and takes approximately 45 seconds (model prediction ≈ 0.003
seconds).
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Network 5-layer CNN (ours) ResNet10 ResNet34 (pretrained) SEResNet50

AUC 0.932 0.796 0.520 0.869

Table 7.2: Performance comparison of four different networks on the internal
training dataset.

Dataset Sensitivity Specificity Balanced accuracy AUC (95% CI)

Internal (cross validation) 0.885 (69/78) 0.835 (71/85) 0.860 (1.720/2) 0.932 (0.891-0.963)
Internal (validation) 0.875 (14/16) 0.688 (11/16) 0.781 (1.563/2) 0.887 (0.732-0.988)
External (validation) 1.000 (100/100) 0.865 (942/1089) 0.933 (1.865/2) 0.993 (0.988-0.997)

Table 7.3: Evaluation metrics for internal and external sets. The internal
set results are from 5-fold cross-validation test sets, while the external set
results are from an ensemble of 5 models that were trained on the internal set.
Furthermore, a separate internal validation set results from the ensemble of 5
models is shown.

Figure 7.5: AUC curves for internal cross validation (CV), internal validation
(valid) and external sets. The internal set AUC is 0.93, internal validation set
AUC is 0.89, while the external set AUC is 0.99.

7.4.2.1 Internal Set

The balanced accuracy score for the internal set 5-fold cross-validation (test sets
only) is 0.860 (Table 7.3). The corresponding sensitivity value is 0.885 (69/78),
with the specificity being 0.835 (71/85) and the AUC of 0.932 (CI: 0.891 - 0.963),
which is shown in the confusion matrix (Figure 11.1 (a)) and plotted in Figure 7.5
(red). From the nine missed AD cases, six had a clearly visible AD and three
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presented with very subtle signs of AD (further described in supplement material
and Figure 11.4).

7.4.2.2 Internal Validation Set

The sensitivity and specificity for the internal validation set are 0.875 (14/16) and
0.688 (11/16), respectively, with a balanced accuracy of 0.789. The AUC value
obtained is 0.887 (CI: 0.732 - 0.988), as shown in Figure 11.1 (b) and Figure 7.5
(blues). Out of the five FP cases, two had a very subtle form of AD (examples in
supplementary Figure 11.3).

7.4.2.3 External Set

For the external validation dataset, a balanced accuracy score of 0.933 was obtained
with sensitivity and specificity of 1.000 (100/100) and 0.865 (942/1089), respectively
(Table 7.3, Figure 11.1 (c)). Furthermore, the AUC value is 0.993 (CI: 0.988 - 0.997)
(Figure 7.5 (green)).

7.5 Discussion

This study demonstrated that rapid AI-based automated aortic dissection detection
from CT images is feasible in an academic-level hospital in Germany. Overall, on all
the datasets, an AUC of > 88.7% and sensitivities and specifities of > 87.5% and >
68.8% were consistently achieved. The strengths of this study are the comparably
low training effort, and testing on a heterogeneous, real-world internal and exter-
nal datasets with good overall processing times, indicating promising potential for
clinical implementation as an alarming system for AD management.

AI-based approaches have been demonstrated to be of great potential for the detec-
tion of various pathologies in abdominal emergency imaging [139] and to support the
management of chronic and acute vascular pathologies [157]. Structured text-based
clinical data and imaging data have both been leveraged for AD detection, its rup-
ture risk assessment, segmentation, therapy planning, and prediction of mortality
[158–160]. AI-based regular chest radiography analysis has been shown to offer a pre-
cision of 90.2% in the detection of AD [141]. Early approaches of CT imaging-based
AD characterization tools used rule-based technologies and small datasets of n<20
ADs [161]. Recently, CNN based algorithms were proposed as mentioned in Sec-
tion 7.2. In contrast to most other algorithms, this study focussed on the abdominal
region and comparably heterogeneous data with respect to CT scanners, contrast
phase and morphological characteristics of AD, resulting in sensitivity from 87.5-
100% and specificity from 68.8-86.5%. It is important to mention, that when used
as a detection algorithm to improve prioritization of AD-positive cases, high sensi-
tivity remains paramount and optimizing thresholds accordingly represents a very
important design decision, but it also comes with the cost of a higher false-positive
rate. An understanding of human performance is of high interest when interpreting
AI performance. Nienaber et al. found the human sensitivity and specificity for the
detection of acute AD in the thoracic region to be 93.8% and 87.1% [162], which
is further underlined by the findings of Dreisbach et al., which describe substantial
error rates of CT reading in acute AD under emergency conditions, depending on
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reader experience [136]. An important goal for further research is therefore to create
a detailed understanding of the performance of human performance alone, but also
with AI support under realistic conditions in a prospective set-up.

Clinical implementation of AI lagged behind expectations in the past [163]. The
reasons are limited performance, lack of trust in AI systems, and poor workflow
integration, amongst others [164]. A practical way of implementing this algorithm
would be to automatically prioritize acute AD cases by re-ordering radiology reading
lists [160] which has been shown to reduce delays in pulmonary embolism manage-
ment [165] or to alarm specialized vascular care teams. Importantly, physicians
would realistically expect the algorithm to not miss any cases of AD and a failure
in this area can be expected to negatively impact trust in a clinical setting, there-
fore optimization of parameters contributing to sensitivity, but also the quality of
user training require high attention. Moreover, a broader AI solution also cover-
ing chronic AD, PAU, and IMH would increase clinical use and therefore should
be added with priority. To overcome the black box problem, a graphical visualiza-
tion of the dissection membrane within the aorta in each detected case could offer
substantial merit.

The results of this study are limited by various factors. First, due to the retrospec-
tive nature, there was an inevitable selection bias. As AD remains a rare condition,
the dataset inevitably contains a limited number of AD patient cases. This limita-
tion is particularly evident in our internal cases and extends to the variety of CT
scanners and morphological differences between cases. Even though thorough exter-
nal validation on a newly created dataset was performed, generalizability required
confirmation and prospective multicenter testing with more patient cases therefore
represents an important next goal. Additionally, the generation of synthetic training
data using latent diffusion models could contribute to overcome these limitations.
Second, even though results are promising, balancing sensitivity and specificity re-
mains a major issue. External validation demonstrated perfect sensitivity, but due
to limited specificity, over half of the positive cases would yield false-positive re-
sults. On the internal training and validation datasets, on the other hand, six and
two cases of AD were not detected. While some of these cases contained very sub-
tle ADs and may have been missed for anatomical reasons, others presented with
clear ADs where, for example, the isolation of the aortic vessel did not work cor-
rectly. Both the inclusion of larger training datasets as well as detailed refining
and improvement of automated segmentation of the aortic lumen independent of
external components like TotalSegmentator [156] or canny detector (for AD cases)
might help improve performance. Third, due to the design-decision to not create a
segmentation-based algorithm, possibilities of graphical visualization remain limited
which could in the future possibly be added. Last, the focus only on abdominal
imaging and only on AD limits clinical benefits to patients that present with ab-
dominal AD, and therefore in the future, the inclusion of the full range of vascular
pathologies and the thoracic region is needed.

7.6 Conclusion

In conclusion, the proposed algorithm yielded sensitivity >87.5% for the detection
of AD within heterogeneous abdominal CT scans, which could be confirmed on
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an internal as well as external validation dataset. It therefore seems promising
as a detection tool for AD in the abdomen which offers the potential for earlier
detection of AD, especially in patients with unclear symptoms, leading to improved
management. Further in-hospital testing is encouraged and necessary.
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8. Summary

Deep Learning (DL) has emerged as a transformative force in the realm of medi-
cal image analysis, offering unprecedented capabilities for automated, robust, and
high-accuracy image interpretation. The advent of Convolutional Neural Network
(CNN )s in recent years has proven vital for fast and automated image analysis in
natural as well as medical domains [166]. Despite the proven efficacy of DL, its
deployment in medical image analysis faces a notable challenge: the requirement for
large, annotated datasets. Reasons for difficulty in obtaining large medical datasets
include privacy concerns, the rarity of certain conditions, and the logistical difficul-
ties of gathering large annotated datasets. Therefore, this work focuses on leveraging
DL techniques for medical image analysis using small datasets.

In this work, various techniques have been employed to deal with small dataset
problems. Firstly, attention mechanisms that help in guiding the CNNs to focus
on Regions of Interest (ROIs) and discard noisy signals [58] were implemented so
that the networks learn as much as possible from small data sizes. The cosine
loss function has been shown to be more effective for image classification for small
datasets [65]. This loss function was adapted and implemented for a segmenta-
tion task. Another technique, known as Sharpness Aware Minimization (SAM ),
has shown that smoother minima are better for generalizability than sharper ones
[57]. Furthermore, to improve generalizability across datasets, image preprocessing
techniques like resampling and histogram matching were implemented. These image
processing techniques create similar image distribution among datasets that origi-
nate from different sources and hence help in avoiding/reducing data distributional
shifts that usually hinders the ability of neural networks to adapt to data from mul-
tiple sources. The data distributional shift is more important for consideration in
the medical domain due to the lack of availability of large datasets from multiple
sources for creating robust DL models.

In Chapter 3 to Chapter 7 multiple scientific studies that employed the aforemen-
tioned techniques are exhibited and have been shown to produce effective results.
These techniques have been applied across 3 sub-tasks: 1. Segmentation, 2. Classi-
fication, and 3. Regression. A comprehensive summary of each study is provided in
the following paragraphs.

Deep Learning-Based Total Kidney Volume Segmentation in Autosomal Dominant
Polycystic Kidney Disease Using Attention, Cosine Loss, and Sharpness Aware
Minimization,
Diagnostics, doi: https://doi.org/10.3390/diagnostics12051159

Chapter 3 focuses on the development of a deep learning methodology for segment-
ing Total Kidney Volume (TKV ) in patients with Autosomal Dominant Polycystic
Kidney Disease (ADPKD) using Magnetic Resonance Imaging (MRI ) data. The
significance of accurate TKV estimation is underscored by its role as a biomarker
for disease progression in ADPKD, a leading cause of end-stage renal disease. Tradi-
tional manual segmentation methods are time-consuming and subject to variability,
highlighting the need for automated techniques.

https://doi.org/10.3390/diagnostics12051159
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The proposed solution integrates attention mechanisms into the U-Net architecture,
enhancing its ability to focus on relevant features for better segmentation. The cosine
loss function is employed to tackle the challenge posed by small datasets, a com-
mon limitation in medical imaging. Furthermore, SAM is incorporated to enhance
model generalizability, a critical aspect for clinical applications. The methodology
is validated on a dataset comprising 100 MRI scans, demonstrating significant im-
provements in segmentation accuracy over the reference U-Net model. Key findings
include achieving a Dice Similarity Coefficient (DSC ) of 0.918, a Mean Symmetric
Surface Distance (MSSD) of 1.20 mm, and a mean TKV difference of -1.72%, with
an R² of 0.96, using only a limited dataset for training and testing.

The study also explores the efficacy of ensemble models, revealing further improve-
ments in segmentation accuracy, thereby underscoring the potential of combining
multiple deep learning models for enhanced performance. This study presents a
promising advancement in the field of medical imaging for ADPKD, offering a
methodology that not only improves segmentation accuracy but also addresses the
challenges associated with small datasets and model generalizability.

Generalizable Kidney Segmentation for Total Volume Estimation,
Proc. Bildverarbeitung für die Medizin 2024, doi: https://doi.org/10.1007/
978-3-658-44037-4 75

This study presents a deep learning framework designed for the automated segmen-
tation of kidneys from T1-weighted MRI scans in patients with ADPKD, aiming
to streamline the TKV estimation process - a crucial marker for monitoring disease
progression.

The proposed approach integrates Nyul normalization [80] , resampling, and atten-
tion mechanisms within a CNN framework to craft a generalizable model capable of
accurate kidney delineation.

The model’s validation was conducted using two distinct datasets (93 and 41 pa-
tients, respectively), showcasing its ability to generalize across different data sources.
The results demonstrated a significant enhancement over the baseline model, with
an average improvement of 9.45% in Dice scores across both datasets. Such im-
provements highlight the model’s potential in reliably calculating TKV from MRI
images in ADPKD patients, a task pivotal for disease monitoring and management.

The incorporation of Nyul normalization and resampling techniques plays a crucial
role in harmonizing intensity distributions across datasets, thereby bolstering the
model’s generalizability - an essential trait for clinical application.

Automated Prognosis of Renal Function Decline in ADPKD Patients using Deep
Learning,
Zeitschrift für Medizinische Physik, doi: https://doi.org/10.1016/j.zemedi.
2023.08.001

An application of classification and regression is presented in Chapter 5. It presents a
deep learning approach for predicting renal function decline in patients with ADPKD
using MRI data (135 patients). Recognizing the limitations of current biomarkers:

https://doi.org/10.1007/978-3-658-44037-4_75
https://doi.org/10.1007/978-3-658-44037-4_75
https://doi.org/10.1016/j.zemedi.2023.08.001
https://doi.org/10.1016/j.zemedi.2023.08.001
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Height-adjusted Total Kidney Volume (HtTKV ), estimated Glomerular Filtration
Rate (eGFR), and patient age, in accurately predicting disease progression, the
research implements a two-fold deep learning approach to enhance prognostic accu-
racy.

Firstly, an automated kidney volume segmentation model is developed, utilizing
a CNN equipped with attention mechanisms. This model accurately calculates
HtTKV from T2-weighted MRI images, addressing the challenge of manual mea-
surement’s time consumption and observer variability. Secondly, leveraging the
segmented kidney volumes, the study employs a Multi-Layer-Perceptron (MLP)
alongside a CNN to predict the progression to Chronic Kidney Disease (CKD)
stages >=3A, >=3B, and a 30% decline in eGFR after 8 years from baseline. This
dual-model approach integrates automatically generated features from MRI images
with conventional biomarkers, presenting a more comprehensive method for ADPKD
prognosis.

The study’s findings demonstrate high prognostic accuracy with Area Under the
Curve (AUC ) scores > 0.95 for predicting CKD stages >=3A and >=3B, and a
30% decline in eGFR. Furthermore, the research extends its analysis to predict
distinct CKD stages after eight years, achieving an AUC of 0.97.

In addition to classification tasks, the study also explores regression analysis by
predicting the percent change in eGFR after 8 years. The prognosis network attains
a Pearson correlation coefficient of 0.81 between predicted and measured eGFR
decline. This aspect of the study emphasizes the model’s versatility not only in
classification but also in providing quantitative predictions regarding eGFR changes,
surpassing the performance of existing prognostic models.

This study presents a potential to improve patient management by predicting disease
progression more accurately. The study’s findings suggest that deep learning models
can complement traditional clinical biomarkers, providing a more comprehensive and
automated approach to ADPKD prognosis.

A Generalizable Deep Voxel-Guided Morphometry Algorithm for the Detection
of Subtle Lesion Dynamics in Multiple Sclerosis,
Frontiers in Neuroscience, doi: https://doi.org/10.3389/fnins.2024.1326108

Chapter 6 introduces a deep learning algorithm designed to enhance the analy-
sis of Multiple Sclerosis (MS ) disease activity through Voxel-Guided Morphometry
(VGM ) maps generated from longitudinal MRI brain volumes. Emphasizing the
need for accurate detection and monitoring of MS-related changes in brain struc-
tures, the study focuses on creating a generalizable model capable of effectively being
applied to unseen datasets.

The study employed a 3D residual U-Net architecture integrated with attention
mechanisms. This model facilitates spatial feature extraction from MRI volumes,
with attention mechanisms highlighting salient regions critical for analysis. Image
normalization techniques like histogram matching and resampling were implemented
to bolster the model’s generalizability across different MRI systems, ensuring robust
performance regardless of the data source.

https://doi.org/10.3389/fnins.2024.1326108
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The algorithm’s effectiveness was validated on a primary dataset (Dataset A; 71 pa-
tients) and further evaluated for generalizability on two additional unseen datasets
(Datasets B and C; 116 patients), showcasing an average improvement of 4.2% in
Mean Absolute Error (MAE ) over the state-of-the-art (SOTA) method. This signi-
fies its ability to adapt and perform consistently across diverse imaging conditions.

Quantitative results from the study reveal the proposed approach’s capability to out-
perform existing methods, with the Convolution Block Attention Module (CBAM )-
Attention U-Net achieving the highest scores in structural similarity and accu-
racy metrics across multiple datasets. Qualitative evaluations by expert neuro-
radiologists confirm the high similarity of Deep VGM maps to traditional VGM
maps, further validated by the low lesion error rate and dramatically reduced com-
putation times.

The proposed model’s independence from specific MRI systems and its robust perfor-
mance across varied datasets underscore its potential as a valuable tool for clinical
practitioners, offering fast, accurate, and reliable insights into subtle MS disease
activity.

Streamlining acute Abdominal Aortic Dissection management - an AI based CT
imaging workflow,
Journal of Imaging Informatics in Medicine, doi: https://doi.org/10.1007/
s10278-024-01164-0

In Chapter 7, a CNN-based framework was developed to automate the detection of
acute Abdominal Aortic Dissection (AD) in Computed Tomography (CT ) scans,
aiming to streamline the diagnostic process for this critical condition. Utilizing a
retrospective dataset comprising 195 cases, including 94 AD instances, the study
sought to enhance intrahospital workflow efficiency through early and accurate AD
identification.

The methodology centered on a CNN architecture designed for the robust, auto-
mated detection of AD within the abdominal region. The pipeline involved prepro-
cessing steps such as abdominal region extraction, aorta ROI isolation, and edge
extraction to highlight the AD membrane, culminating in the classification of the
aortic ROI into dissected or healthy categories. The model underwent validation on
the internal set (cross-validation set; n=163, with 78 AD cases), an internal valida-
tion set (n=32, with 16 AD cases), and an expansive external set (n=1189, with 100
AD cases), testing its capability to generalize across varying datasets.

Quantitative metrics from the internal set (cross-validation) demonstrated an AUC
of 0.932, balanced accuracy of 0.860, and a sensitivity score of 0.885. While, for
the internal validation set an AUC of 0.887, balanced accuracy of 0.781, and a
sensitivity score of 0.875 was obtained. External validation further confirmed the
model’s effectiveness, with an AUC of 0.993, balanced accuracy of 0.933, and a
perfect sensitivity score of 1.000.

This study offers a possible solution for improving the efficiency and effectiveness of
AD management, paving the way for further research and development in emergency
radiology Artificial Intelligence (AI )-assisted diagnosis.

https://doi.org/10.1007/s10278-024-01164-0
https://doi.org/10.1007/s10278-024-01164-0


9. Outlook

Developing algorithms for Deep Learning (DL) based medical image analysis faces
two primary challenges: the scarcity of large, annotated datasets and the hetero-
geneity among data sources. This thesis has endeavored to address these challenges
by integrating techniques related to image normalization, attention mechanisms, and
adaptive loss functions. The work has shown that adopting techniques like attention
mechanisms, cosine loss function, Sharpness Aware Minimization (SAM ), and his-
togram matching (data harmonization) can enhance the performance and robustness
of medical image analysis algorithms. These methods have proven to be general-
izable and effective across various tasks, including segmentation, classification, and
regression, particularly in scenarios involving small datasets.

Looking ahead, to further improve the robustness and accuracy of DL models, it
is essential to focus on expanding and diversifying training datasets. This can be
achieved through collaborative efforts across institutions to collect data, leveraging
synthetic data generation, and exploring self-supervised learning methods to utilize
large amounts of unannotated data. Additionally, while normalization techniques
have improved model generalizability, incorporating advanced methods such as Gen-
erative Adversarial Networks (GANs) for data augmentation and domain adaptation
can further reduce data distributional shifts. These techniques can help models bet-
ter adapt to variations in data from different sources, enhancing their applicability
in diverse clinical environments.

Furthermore, the integration of these algorithms into clinical settings necessitates
further validation on multi-center data. Large-scale studies involving diverse clinical
environments are essential to ensure the robustness and reliability of these models.
Furthermore, developing user-friendly software tools and interfaces will facilitate the
seamless integration of DL models into clinical workflows, enhancing their practical
utility. This will not only improve the efficiency of medical image analysis but also
support clinicians in making more accurate and timely diagnoses.

While important progress has been made in this work for conditions like Autosomal
Dominant Polycystic Kidney Disease (ADPKD) and Multiple Sclerosis (MS ), future
research should extend these techniques to other medical imaging challenges, such as
oncology, cardiology, and rare diseases. By focusing on developing models that can
handle complex cases and anomalies, the scope and impact of DL in medical image
analysis can be further broadened. This will pave the way for more comprehensive
and versatile diagnostic tools, ultimately benefiting a wider range of patients.

Reflecting on the objectives set forth in this thesis, incremental progress has been
made in enhancing the performance and generalizability of DL algorithms in medical
image analysis. By addressing the challenges of small datasets and data heterogene-
ity, this work lays a foundation for future research to advance the field of automated
medical image analysis. Ultimately, these advancements will contribute to improving
patient care by offering more efficient, accurate, and scalable solutions for medical
image analysis.
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[47] F. G. Zöllner, E. Svarstad, A. Z. Munthe-Kaas, L. R. Schad, A. Lundervold,
and J. Rørvik, “Assessment of kidney volumes from mri: acquisition and seg-
mentation techniques,” Am. J. Roentgenol., vol. 199, no. 5, pp. 1060–1069,
2012.

[48] A. S. Lundervold and A. Lundervold, “An overview of deep learning in medical
imaging focusing on MRI,” Z. Med. Phys., vol. 29, pp. 102–127, May 2019.

[49] T. L. Kline, P. Korfiatis, M. E. Edwards, J. D. Blais, F. S. Czerwiec, P. C.
Harris, B. F. King, V. E. Torres, and B. J. Erickson, “Performance of an
artificial multi-observer deep neural network for fully automated segmentation
of polycystic kidneys,” J. Digit. Imag., vol. 30, no. 4, pp. 442–448, 2017.

[50] M. D. van Gastel, M. E. Edwards, V. E. Torres, B. J. Erickson, R. T. Gan-
sevoort, and T. L. Kline, “Automatic measurement of kidney and liver volumes



105

from mr images of patients affected by autosomal dominant polycystic kidney
disease,” J. Am. Soc. Nephrol., vol. 30, no. 8, pp. 1514–1522, 2019.

[51] V. Bevilacqua, A. Brunetti, G. D. Cascarano, F. Palmieri, A. Guerriero, and
M. Moschetta, “A deep learning approach for the automatic detection and seg-
mentation in autosomal dominant polycystic kidney disease based on magnetic
resonance images,” in Proc. Intl. Conf. Intel. Comput., pp. 643–649, Springer,
2018.

[52] G. Mu, Y. Ma, M. Han, Y. Zhan, X. Zhou, and Y. Gao, “Automatic mr kid-
ney segmentation for autosomal dominant polycystic kidney disease,” in Proc.
Med. Imag. 2019: Comput. Aided Diag., vol. 10950, p. 109500X, International
Society for Optics and Photonics, 2019.

[53] A. J. Daniel, C. E. Buchanan, T. Allcock, D. Scerri, E. F. Cox, B. L. Prestwich,
and S. T. Francis, “Automated renal segmentation in healthy and chronic
kidney disease subjects using a convolutional neural network,”Magn. Reson.
Med., vol. 86, no. 2, pp. 1125–1136, 2021.

[54] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.

[55] D. F. Bauer et al., “Generation of annotated multimodal ground truth datasets
for abdominal medical image registration,” Intl J. Comput. Assist. Rad. Surg.,
vol. 16, no. 8, pp. 1277–1285, 2021.

[56] T. Russ, S. Goerttler, A. Schnurr, D. Bauer, S. Hatamikia, L. R. Schad, F. G.
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11.1 Supplementary Material Chapter 3

Architecture Loss DSC (Left) ↑ DSC (Right) ↑ MSSD (mm) (Left) ↓ MSSD (mm) (Right) ↓ DSC (Left) ↑ DSC (Right) ↑ MSSD (mm) (Left) ↓ MSSD (mm) (Right) ↓
96 × 96 96 × 96 96 × 96 96 × 96 128 × 128 128 × 128 128 × 128 128 × 128

Baseline U-Net LCE+DSC 0.886 ± 0.061 0.877 ± 0.099 1.992 ± 1.828 2.578 ± 4.388 0.901 ± 0.058 0.907 ± 0.083 1.381 ± 1.121 1.447 ± 3.727

SE U-net LCE+DSC 0.899 ± 0.064 0.894 ± 0.076 1.594 ± 2.330 1.614 ± 2.123 0.900 ± 0.060 0.897 ± 0.071 1.630 ± 2.286 1.494 ± 2.232
LCOS 0.887 ± 0.111 0.882 ± 0.111 2.140 ± 4.858 1.694 ± 2.248 0.899 ± 0.059 0.901 ± 0.068 1.592 ± 2.116 1.377 ± 2.000
LCE+DSC + SAM 0.888 ± 0.080 0.900 ± 0.087 1.512 ± 1.416 1.559 ± 3.308 0.912 ± 0.044 0.893 ± 0.095 1.129 ± 0.847 1.344 ± 1.941
LCOS + SAM 0.912 ± 0.045 0.891 ± 0.099 1.222 ± 0.957 1.547 ± 2.447 0.895 ± 0.112 0.905 ± 0.077 1.813 ± 4.790 1.367 ± 2.210

CBAM U-Net LCE+DSC 0.894 ± 0.070 0.890 ± 0.098 1.682 ± 2.310 1.845 ± 3.532 0.905 ± 0.064 0.907 ± 0.064 1.285 ± 1.164 1.363 ± 2.223
LCOS 0.905 ± 0.053 0.900 ± 0.082 1.316 ± 0.984 1.293 ± 1.678 0.905 ± 0.061 0.904 ± 0.077 1.404 ± 1.727 1.429 ± 2.537
LCE+DSC + SAM 0.891 ± 0.068 0.896 ± 0.080 1.893 ± 2.575 1.709 ± 2.596 0.917 ± 0.046 0.904 ± 0.081 1.072 ± 0.889 1.346 ± 2.486
LCOS + SAM 0.897 ± 0.067 0.899 ± 0.085 1.832 ± 2.626 1.701 ± 3.604 0.910 ± 0.054 0.908 ± 0.072 1.265 ± 1.406 1.270 ± 2.429

Attn. U-Net LCE+DSC 0.894 ± 0.074 0.890 ± 0.093 1.662 ± 1.637 1.771 ± 2.655 0.914 ± 0.043 0.907 ± 0.061 1.224 ± 0.914 1.403 ± 2.080
LCOS 0.901 ± 0.057 0.907 ± 0.072 1.741 ± 2.455 1.366 ± 2.212 0.910 ± 0.049 0.909 ± 0.073 1.286 ± 1.573 1.3042.253
LCE+DSC + SAM 0.894 ± 0.058 0.897 ± 0.093 1.910 ± 2.745 1.776 ± 3.212 0.913 ± 0.051 0.909 ± 0.069 1.353 ± 1.697 1.399 ± 2.374
LCOS + SAM 0.905 ± 0.059 0.907 ± 0.075 1.442 ± 1.940 1.321 ± 2.018 0.914 ± 0.048 0.915 ± 0.072 1.184 ± 1.190 1.257 ± 2.536

U-Net LCOS 0.898 ± 0.074 0.897 ± 0.093 1.725 ± 2.479 1.794 ± 3.727 0.908 ± 0.059 0.909 ± 0.076 1.208 ± 1.104 1.342 ± 2.909
LCOS + SAM 0.909 ± 0.051 0.910 ± 0.075 1.454 ± 2.109 1.313 ± 2.326 0.921 ± 0.043 0.914 ± 0.062 1.009 ± 0.843 1.274 ± 2.331

Ensemble-4-STAPLE LCOS + SAM 0.911 ± 0.054 0.909 ± 0.077 1.556 ± 2.498 1.351 ± 2.413 0.920 ± 0.046 0.919 ± 0.068 1.112 ± 1.144 1.158 ± 2.240
Ensemble-7-STAPLE LCE+DSC + SAM + LCOS + SAM 0.911 ± 0.053 0.909 ± 0.077 1.484 ± 2.145 1.399 ± 2.343 0.923 ± 0.045 0.919 ± 0.069 1.079 ± 1.162 1.134 ± 2.224
Ensemble-4-VOTING LCOS + SAM 0.918 ± 0.048 0.910 ± 0.074 1.086 ± 1.037 1.219 ± 2.029 0.919 ± 0.050 0.916 ± 0.066 1.035 ± 0.979 1.102 ± 1.989
Ensemble-7-VOTING LCE+DSC + SAM + LCOS + SAM 0.916 ± 0.049 0.914 ± 0.073 1.238 ± 1.779 1.213 ± 2.035 0.925 ± 0.044 0.919 ± 0.067 0.993 ± 0.998 1.085 ± 2.072

Table 11.1: The Dice Similarity Coefficient (DSC ) and Mean Symmetric Surface Distance (MSSD) (in mm) values for left and right
kidneys for various networks and ensembles with loss functions as DSC (LDSC), cross-entropy+DSC (LCE+DSC), and cosine loss
(LCOS). The results are post-processed using the largest connected components.
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11.2 Supplementary Material Chapter 7

11.2.1 Methods supplement

11.2.1.1 Data augmentation

During training, we apply random rotation, zoom, and translation on the training
set. Random rotation is performed with rotation along the Z-axis in the range [-12°,
12°]. Random translation has a range of [-15, 15] voxels for both the X- and Y-axis,
while the range for the Z-axis is [-5, 5] voxels. Lastly, random zoom has a zoom
range of [0.8, 1.2]. Each linear transformation is applied with a probability of 30%
in each iteration.

11.2.1.2 Training

We tested three different networks: ResNet10 [141], ResNet34 (pretrained on Medi-
calNet [142]) and SEResNet50 [59] with varying network depths, of which all yielded
comparably inferior results to our 5 layer Convolutional Neural Network (CNN ) (Ta-
ble 7.2).

We follow a 5-fold stratified cross-validation approach to make sure that each train-
ing, validation, and test set has the same proportion of dissection and healthy pa-
tients. The data split is in a disjoint manner (patient level) with the number of
samples in train (72%), validation (8%), and test set (20%) being 117, 13, and 32-
33, respectively. We train the network (with random initialization) for 150 epochs,
with a batch size of 8. We use Adam optimizer with a learning rate of 1e-4. The
objective function is a weighted binary cross-entropy, where the weight for the Aor-
tic Dissection (AD) class is (1 - number of AD cases/total number of cases). We
further apply L2-regularization on the network weights, having a penalty term of
5e-5. Afterward, we select the model with the lowest validation loss in each fold for
application on corresponding test sets.

All the tested networks followed the same training regime, except the pretrained
ResNet34 model. Since this model was pretrained on medical data, we trained it on
whole volume instead of only aorta Region of Interest (ROI ).

11.2.1.3 Implementation

The experiments are performed using Pytorch 1.13.1 [167] with Python 3.9.15. We
use the Monai (1.0.1) framework [168] to perform data augmentation and model
development. Network training and inference were performed on the Nvidia RTX
A6000 with a VRAM of 48 GB.

11.2.2 Dataset details

Dataset details are provided in Table 11.2

11.2.3 Clinical details of AD (internal) training cases

Clinical details of AD (internal) dataset are shown in Table 11.3
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Public validation dataset

AD cases Non-AD cases

Source
ImageTBAD dataset,
Chinese Guangdong
Provincial Peoples’ Hospital.

AVT dataset [154], originating from
the KiTS19 Grand Challenge
(excluded in our study),
Rider Lung CT dataset [169]
and cases from Chinese Dongyang Hospital.
Abdomen CT-1K dataset [155]
originating from 6 sources:
Bilic et al. [170], Heller et al. [171],
Simpson et al. [172], Roth et al. [173],
Roth et al. [174], Clark et al. [175]

Number of cases n=100 n=1189

Average age 52.5 ± 11.3 unknown

% female 31% unknown

CT hardware Philips (77%) and Siemens (23%) various

slice spacing (mm) 0.75
0.5/5/5 mm and
0.625/0.625/2.5 mm and
2/3/3 mm

Voxel size 0.25 x 0.25 x 0.25 mm3

Table 11.2: Patient characteristics and technical details on external datasets.

Total cases 78
Female 35,4%

Age 66.6 ± 13.39 (29-92)

% presence of suprarenal / infrarenal AD 72,0 / 79,3%

% presence of visceral ischemia 15,9%

% Obstruction celiac trunk /
superior / mesenteric artery /
left / right renal artery /
inferior mesenteric artery /
right side / left side limb ischemia

4,9% / 1,2% / 4,9% / 9,8% / 17,1% / 2,4% / 1,2%

% presence of aortic intramural haematoma 9,8%

% presence of aortic (partial) thrombosis 56,1%

Table 11.3: Details of aortic dissection cases in the internal set.

11.2.4 Result supplement

Table 11.4 and Figure 11.2 depict ensemble performance on the external set for an
optimal threshold value of 0.745. This threshold value was determined separately
for the external dataset. Here, the sensitivity and specificity of 0.940 and 0.993 is
achieved, respectively.

11.2.5 Exemplary images of small and subtle cases

Example images containing small and subtle AD are illustrated in Figure 11.3
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Figure 11.1: Confusion matrices for internal (cross validation), internal valida-
tion and external sets. A) Internal set cross-validation, B) internal validation
set, and C) external set ensemble results.

Dataset Sensitivity Specificity
Balanced accuracy
(sensitivity + specificity / 2)

AUC
(95% CI)

External (validation) 0.940 (94/100) 0.993 (1082/1089) 0.966 (1.993/2) 0.993 (0.988-0.997)

Table 11.4: External set evaluation metrics for an optimal threshold of 0.745.

11.2.6 Analysis of false negatives on internal training set

Wrong negatives and interpretation

Of the 9 False Negatives (FNs), 3 cases had unclear dissections. In these cases,
the membrane was not clearly visible/subtle or there was no typical anatomy of
dissection visible. In one case, only a small part of the abdomen was extracted,
containing only a few slices of the dissected aorta. However, the other six cases had
clear dissections. This could be due to the similarity in the aorta size of healthy and
dissected cases in this case. The model might consider aorta of specific sizes to belong
to a particular class, making it difficult for cases where the aorta sizes are similar in
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Figure 11.2: Confusion matrix for the external dataset with the optimal
threshold of 0.745.

both the healthy and the dissected cases. The reasons behind this, however, remain
unclear. Figure 11.4 shows three example cases that were not classified as AD (FN).
Interesting findings on each case in the order they appear are:

• Case 1: Dissection anatomy is not typical.
• Case 2: Only part of the abdomen was extracted, not covering a large part of
the aorta. However, the dissection has a huge, very broad membrane.

• Case 3: The dissection is clear, and the aorta is large, yet the algorithm failed
to correctly classify it.
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Figure 11.3: Array of atypical and subtle cases from the internal training and
validation dataset.
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Figure 11.4: Example cases that were falsely classified as non-AD (FN).
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(2024). A generalizable deep voxel-guided morphometry algorithm for the
detection of subtle lesion dynamics in multiple sclerosis. Frontiers in Neuro-
science, 18, 1326108.
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F.G. (2022). Deep Learning based Total Kidney Volume Segmentation in
Autosomal Dominant Polycystic Kidney Disease. Proc. ISMRM Congress,
London, 2022.

• Caroli, A., Pasini, S., Vandelboe, T., Raj, A., Garcia-Ruiz, L., Strittmatter,
A., Echeverria-Chasco, R., Villa, G., Brambilla, P., Hansen, E., Ringgaard,
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