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Chapter 1

Introduction

1.1 Background

In recent years the role of immunotherapy with its aim to harness and augment the immune
system gained more and more importance in cancer drug development. As outlined by Zhang
and Zhang (2020) these oncological immunotherapies can be divided into the following five

categories with description of their mechanism of action:

1. Oncolytic virus therapies: Possibly genetically modified viruses are used to target

and attack tumor cells and stimulate antitumor immune response.
2. Cancer vaccines: Tumor-specific markers (antigens) are used as vaccines.

3. Cytokine therapies: Cytokines are messenger molecules that regulate communication
of the immune system and are mostly used in combination with other immunotherapies

due to the poor tolerability as monotherapy.

4. Adoptive cell transfer: Own immune cells are isolated, expanded in number and

reinfused to eliminate cancer cells.

5. Immune checkpoint inhibitors: Immune checkpoints that are frequently manipu-
lated by tumors to inhibit tumor response are blocked so that immune-mediated elim-

ination of cancer cells can be promoted.
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Although these therapies have shown to be tremendously successful in clinical trials, their
unique mechanism of action is posing challenges to the statistical analysis of randomized
clinical trial (RCT) data. This is especially the case in oncological trials where the outcome
of interest is very often a time-to-event endpoint. The standard analysis of such endpoints -
the logrank test and Cox model - relies on the proportional hazards (PH) assumption, which
means that the hazard, i.e. the instantaneous rate at which an event of interest occurs,
is proportional between the treatment arms. As the focus throughout this thesis lies on
methods to analyze two-arm trials, this assumption implies that the instantaneous event rate
in the experimental arm is accelerated or in case of negative events ideally decelerated by a

time-independent constant factor compared to the instantaneous rate in the control arm.

For many applications the Cox model has been of great use and the PH assumption can rea-
sonably be considered to hold true, but this is unfortunately not the case when investigating
immunotherapeutic agents. One commonly observed feature of these treatments is a delayed

onset of treatment effect, as the immune system needs time to respond to this therapy.

This feature has, for example, been observed in the CHECKMATE trials, a number of 21
trials on non-small-cell lung cancer (NSCLC) and 3 trials focusing on small-cell lung cancer
(SCLC) evaluating the immune-checkpoint inhibitor Nivolumab developed by Bristol-Myers
Squibb. Of these CHECKMATE trials, two trials will be used as an illustrative example in

this thesis and presented in the following.



1.1. Background

CHECKMATEO067 A multicentre, randomised, controlled, double-blind phase 3 trial

where 945 patients have been randomly assigned 1:1:1 to receive either nivolumab plus ip-

ilimumab or nivolumab alone or ipilimumab alone.

containing groups were compared to the ipilimumab alone group for the co-primary end-
points progression-free survival (PFS) and overall survival (OS) with an « allocation of 0.01

and 0.04. The results at the 4 years follow-up were published by Hodi et al. (2018) and can

be seen in Figure 1

For the final analysis the nivolumab

A
1003 —+ Nivolumab plus ipilimumab
90— 2+ Nivolumab
-2~ Ipilimumab
~ 80+
# HR for nivolumab plus ipilimumab vs ipilimumab:
T 70 0-42 (95% C1 0-35-0-51); p<0-0001
g HR for nivolumab vs ipilimumab:
z 60— 053 (95% C1 0-44-0-64); p<0-0001
£ 504
s
7 404
=
g 304
a
20~
10+
0 T T T T T T T T T T T T T T T T T T 1
3 6 9 12 15 18 21 24 37 30 33 36 39 4 45 48 51 54 57
Number at risk
(number censored)
Mivolumab plusipilimumab 314 218 175 155 136 131 124 117 110 104 101 95 93 89 88 &1 53 19 3 0
(0) (16) (27) (28) (30) (31) (31) (33} (33) (38) (40) (42) (44) (47) (47) (54) (80) (114) (129) (132)
Nivolumab 316 177 151 132 120 112 106 103 97 88 84 79 77 75 72 66 50 18 0 ]
() (19) (24 (25 (29) (32) (34) (35 (35 (40) (41) (43) (43) (45) (45 (51) (67) (97) (115) (115)
Ipilimumab 315 136 78 58 46 42 34 322 31 29 28 26 19 18 16 16 11 7 1 0
(0 (250 (30) (30} (33) (33) (34 (4) (4) (4 (35) (36) (4) (42) (43) (43) (47) (50) (56) (57)
B
1007
90+
80
_ 704
&
E 60|
S 5o
g 40
304
HR for nivolumab plus ipilimumab vs ipilimumab:
204 .54 (95% C1 0-44-0-67); p<0-0001
104 HR for nivolumab vs ipilimumab:
0-65 (95% C1 0.53-0-79); p<0-0001
0 T T T T T T T T T T T T T T T T T T 1
3 6 g 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57
Niimber at sk Time since randomisation (months)
(number censored)
Nivolumab plusipilimumab 314 292 265 247 226 221 209 200 198 192 186 180 178 171 166 160 154 96 13 0
© @3 @ (6 (5 (5 (6 (5 (5 5 (5 (5 (6 (6) (9 (10) (15} (71} (154) (167)
Nivolumab 316 292 266 245 231 214 201 191 181 175 171 164 158 150 144 140 135 85 18 0
© ) @ (B (5 (6 (6) (B (6 (6) (6) (6) (6 (7 (9 (1) (15 (63) (130) (148)
Ipilimumab 315 285 253 227 203 181 163 148 135 128 113 107 9y 94 93 90 86 50 11 0
© @ @ @ (9 (9 (@ (9 (10 (1) (1) (1) (13) (14) (14) (14) (15 (48) (86) (97)

Figure 1: Results of the CHECKMATE 067 trial for PFS (panel A) and OS (panel B) (Hodi

et al., 2018). Figure used with permission of Elsevier.
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As one can see from these plots the curves are identical up to 3 months after start of treat-
ment and then slowly start to diverge, which shows the delayed onset of treatment effect at
approximately 3 months. This effect is even more pronounced for PFS (Figure 1, panel A)

as the phase of slow divergence is preceded by a drop in PFS of 20%-50%.

CHECKMATEO078 A multicentre, randomised, controlled, open-label phase 3 trial in
chinese and russian patients with NSCLC that had progressed after chemotherapy. In total
504 patients have been randomly assigned 2:1 to receive either nivolumab or docetaxel and
the primary endpoint was overall survival. Although the results of the primary endpoint did
not reveal any indication for a delayed treatment effect the secondary endpoint PFS shown

in Figure 2 does (Wu et al., 2019).

1.0 4y Nivolumab  Docetaxel
(n = 338) (n = 166)
0.9 4
Median PFS, mo 28 28
G5 (95% CI) (2.4-3.4) (1.6-2.0)
HR (95% CI) 0.77 (0.62-0.95)
0.7 4 p valug? 0.0147
o
L
& 06 -
=]
£ 05 -
=
‘E 0.4 4
o w 6-mo PFS = 29%
0.3 4 5
0.2 4 G-mo PFS = 23% 1
Nivolumab
0.1 4 |
0.0 T f T T T T 1
0 3 -] g 12 15 18 21
Months
No. at risk
Nivolumab 338 145 80 62 42 20 5 0
Docetaxel 166 57 27 i) 2 1 o 4]

Figure 2: Results of the CHECKMATE 078 trial for PES (Wu et al., 2019). Figure used
with permission of Elsevier.

Based on this plot it seems as if the PH assumption is clearly violated for PFS where again

a delay of approximately 3 months is revealed.
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1.2 Previous work

In their groundbraking paper Peto and Peto (1972) investigated the close relationship between
the logrank test and the PH assumption. They showed that a weighted logrank test is
most powerful if the weights are chosen to be proportional to the logarithmic hazard ratio,
implying that an unweighted logrank test achieves the highest power if the alternative under
investigation has a constant hazard ratio over time, i.e. the proportional hazards assumption

is fulfilled.

This work inspired many other authors to propose different weighting schemes adjusted to
specific use cases of which the Fleming-Harrington class of weights is probably the best known
(Fleming and Harrington, 1981). But not only weighted logrank tests but also other tests
to deal with non-proportional hazards were developed based on a comparison of the Kaplan-

Meier estimator, different regression approaches for time-to-event data and other tests.

Two articles (Ananthakrishnan et al., 2021; Klinglmiiller et al., 2023) were published recently
which give a good overview of the methods that are available at the moment. The first is a
review by Ananthakrishnan et al. (2021) which is an excellent reference on suitable methods
for designing and analyzing a trial when a deviation from the proportional hazards assumption
is anticipated. However, although the nature of PH violations should be considered at the
design stage of a trial, the authors point out that to their knowledge there is no clinical
example in which this has been done yet. In a comprehensive simulation study by Klinglmiiller
et al. (2023) the performance of multiple methods under different general NPH scenarios such
as a delayed onset of treatment effect, patient subgroups with heterogeneous treatment effects
or heterogeneous patient frailty was investigated. They concluded that methods that are
specifically tailored to specific deviations from the PH assumption can achieve higher power
but lack robustness to different PH violations. The use of robust methods can therefore
be adivsable if the focus is the testing of statistical hypothesis, but might fall short of an
easily interpretable summary measure. However, in their simulation study the methods under
consideration are restricted to the most important ones and the delayed onset scenarios are

all based on constant hazards in the control arm.
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1.3 Aim and structure of this thesis

The aim of this thesis is to investigate the performance of a variety of alternatives to the
commonly used logrank test to compare a time-to-event endpoint between two groups. Mo-
tivated by the observed traits of the CHECKMATE trials the focus of this thesis lies solely
on scenarios where the treatment effect is delayed. In contrast to the simulation study by
Klinglmiiller et al. (2023) the impact of the extent of delay will be investigated systematically.
It is intended to give an overview of all methods that have been proposed in the literature and
to elaborate on the families under which these methods can be subsumed so that connections

between methods become more apparent.

In addition to that the power and type I error of these methods will be investigated in
an extensive simulation study with particular attention to assessing how susceptible these
methods are to violations of the proportional hazards assumption which is caused by the
treatment effect being delayed. Furthermore, the impact of the form and extent of this
delay is also under investigation. To ensure transparency a simulation plan was published
in advance on zenodo.org (Behnisch, 2023). The overall motivation is to make different
methods more accessible and to provide an informed basis to select an adequate method for

the situation at hand.

This thesis is structured as follows. In Chapter 2, the approach for the systematic literature
review is laid out and the basic concept of time-to-event data as well as the methods mentioned
in this chapter and used within this thesis are provided in detail. The results are presented
in Chapter 3. In Chapter 4, it is discussed how the results contribute to current research and
limitations and directions for further research are outlined. In Chapter 5 and 6, a summary
of this thesis is given, once in English and once in a translation to German. Reference to an

online repository containing the used R program code is given in the Appendix.



Chapter 2

Methodology

This chapter first describes the literature search performed to assess the different methods
that were already suggested to compare two-arm trials with time-to-event endpoints and to
investigate which of these methods were already considered in simulation studies to assess
their performance in a non-proportional hazards setting. Next, an introduction to the topic
of time-to event endpoints will be given starting with general properties of time-to-event data
and then different approaches to model such data will be presented. In the then following
section, methods to analyze this kind of data are presented with a special focus on methods
to handle non-proportional hazards that have been identified in the systematic literature
search. Lastly, this chapter concludes with a description of the extensive simulation study to

evaluate the performance of the different methods.

2.1 Literature search

As a first step a literature search had been performed to get an overview of all currently
proposed methods for the analysis of time-to-event data in the presence of a delayed treatment
effect or more generally of non-proportional hazard scenarios. In addition it was identified
which methods have already been compared in simulation studies in this setting in order to
see how an own extensive simulation study can contribute to the current research. In this
section the process of identifying the relevant articles is described. The methods used in

these articles will be explained later in Section 3.1. For the literature search performed on

7
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Identification of studies via databases J

l

- Articles identified from®:
G PubMed (n = 387)
" Web of Science (n = 476) Articles removed before
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=
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o
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l

¥

Articles included in review
(n=42)
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Figure 3: Combined flowchart of the systematic literature search

April 25th, 2022, 4 electronic databases were considered: Web of Science, PubMed, arXive
and MathSciNet.

Since the delayed treatment effect is one of many examples for the violation of the proportional
hazards assumption, the first step was to search for all publications dealing with the evaluation
of non-proportional hazards (NPH). This was done because there are simulation studies in
which methods for different NPH scenarios were compared without using the term "delayed
treatment effect” in the abstract or title, but only representing a possible NPH scenario of
the simulation. Thus, limiting the search to "delayed treatment effects" would fall short. In
addition, a specific search for "delayed effects" and "immuno-oncology" or "immunotherapy"
was performed to ensure that the search for "non-proportional hazards" did not miss any

publications in this area. Figure 3 shows the combined results of both search strategies.

In total 596 unique articles were identified and further screened for eligibility. Abstract
screening revealed that 184 of 596 (~ 31%) articles were clinical examples of non-proportional

hazards or delayed treatment effects and did not include different statistical methods to
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handle it. Of the remaining 412 articles, 228 (~ 55 %) did not compare the performance of
the methods under consideration in simulations, resulting in a total of 184 articles assessed
for eligibility. Reading the articles in detail revealed that 142 did not deal with hypothesis
testing but with estimation approaches which resulted in an absolut number of 42 articles
of which the methods used in the simulation studies were extracted and will be presented in
the next chapter in Section 3.1. Figure 4 shows how many of the 42 articles were published
in each year between 1992 and 2022. It can be seen that the need for methods to deal with
non-proportional hazards has increased over the last 10 years which is possibly due to the
advances in the field of immuno-oncology that were already described in the introduction of

this thesis.

2.2 Time-to-event data

As the name suggests time-to-event data is defined as the time from an objectively defined
starting point (e.g. time of randomization in RCTs, time of exposure in case-control studies,
etc.) until an event of interest occurs. The best known types of time-to-event endpoints

are survival endpoints, where the event of interest is the death of a patient (overall survival
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(OS)) or a combined endpoint of death and progress of the underlying disease (progression-free
survival (PFS)). These endpoints are commonly used in oncological studies as they provide
meaningful evidence to measure the benefit of cancer therapy. The problem that arises with
time-to-event data is that the event of interest cannot always be observed due to the limited
observation period and hence incomplete data must be incorporated in the analyses since it
carries information on how long a patient was event-free. This incomplete data is called a
censored observation. To limit the amount of censoring the length of the observation period
for each patient must be chosen with caution depending on the time necessary to recruit all
patients, the rate the disease progresses and must be balanced with regulatory and economic

considerations.

To formulate time-to-event data the following two latent /unobservable random variables need
to be defined: Let T',; denote the underlying time to the event of interest (often failure of a
treatment) and Tie,s the underlying censoring time. The following two assumptions on these
two distributions are often imposed, which are crucial for analyzing time-to-event data and

making valid inference:

1. Independence: T, is (stochastically) independent of T',; conditional on possible
explanatory variables.

2. Uninformativeness: T,..,s contains no information on the distribution of T’

The observed data consists then of the observed time 7" = min(T'q, Teens) together with
the event indicator D = 1(T" = Tyq;). Moreover, let X denote the vector of covariates
of each patient which in the setting of a two arm comparison is a one-dimensional vector
containing only the treatment indicator, i.e. X = 0 indicates that the patient receives the
control treatment and X = 1 indicates that the patient receives the experimental treatment.

The n observations are then given by triples (¢1,d1,x1),. .., (tn, dn, Ty).

In the following basic concepts of time-to-event data such as the survival and hazard function
will be introduced. Furthermore, it will be illustrated how time-to-event data can be modelled
by fully parametric distributions and in the framework of delayed treatment effects. The
statistical methods to analyze time-to-event data with delayed treatment effects are then

introduced and finally the structure of the simulation study is described in more detail.
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2.2.1 Basic concepts

To describe the underlying failure time distribution of a time-to-event random variable T it is
often convenient to use the survival function S(t), which is complimentary to the cumulative
distribution function F'(t), i.e. S(t) =1 — F(t). If T has a continuous distribution, which is
often the case, the survival function S(¢) is continuous and differentiable. Another character-
istic function that is used extensively in survival analysis is the hazard function A(¢), which

sometimes is also called (instantaneous) failure rate and is defined as

>
A = tim P(T <t 4d-tdt|T >1)
%

It is easy to see that this is exactly the negative logarithmic derivative of the survival function,

_ S8t dIn(S(@))
)\(t)__S(t) T dt

and hence the survival function can be obtained from the hazard function via
t
S(t) = exp (- / A(t’)dt’) .
0

The integral in the above formula is called the cumulative hazard function and is often denoted
with A(¢). Note that although S(¢) is a monotonically decreasing function with S(0) = 1 and

S(00) = 0 the hazard function A\(¢) can attain any positive value.

For the analysis of survival data one often assumes that the individual hazard functions \;(t)
are proportional to a baseline hazard function Ao(¢) which is left unspecified. That is one
assumes that there exists a constant ¢; > 0 such that \;(t) = ¢;\o(t). A direct consequence
of this assumption is that the hazard ratio is constant and for two individuals (i # j) the

survival functions fulfill the following property:

c; ¢4

S;(t) = exp (—cjAo(t)) = exp (—gciAo(t)> = exp (—ciMo(t)) s = Si(t) <.

Hence, for the proportional hazards assumption to hold, the survival functions can not cross

nor be parallel (except for the case where they are identical). The appeal of this assumption,
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that made it widely popular within the statistic community and the cornerstone of the famous
Cox model, is that if it holds the hazard ratio is constant over time and hence it is sufficient to
quantify the difference between the survival distributions. However, there are various reasons
why this assumptions can be violated in a two arm trial such as: long-term survivors in the
treatment arm, subgroups for which treatment is harmful or beneficial, treatment effect is

diminishing over time or treatment effect is delayed.

The latter reason is the focus of this thesis and statistical methods to deal with it will be

investigated more thoroughly.

2.2.2 Parametric distributions and their application

To model time-to-event data there exist a variety of parametric distributions on [0, c0) that
can be used. These distributions and their properties shall be explained in more detail in the

next sections.

(Piece-wise) Exponential distribution

Most frequently used is the exponential distribution (Exp(A)) which is defined by the so
called rate parameter A > 0, which quantifies the rate at which the events of interest occur,

and has the following survival function

S(t) = e M.

Intuitively, if A is the rate at which events occur, the expected time between events is given
by % The variance of this distribution is % so that the standard deviation equals the mean
of this distribution. The median survival of this distribution, i.e. the time at which the
survival probability is 50%, is then @ Figure 5 shows the survival and hazard function for

three exemplary exponential distributions.

Based on the definition of the (cumulative) hazard one can easily see from the survival function
that the hazard function is exactly the rate parameter A and hence constant over time. This
has the direct implication that for two different exponentially distributed survival times with

rate parameter A, Ao the hazards are always proportional and the proportionality factor is
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Survival Hazard
1.00 2.0
0.75 1.5
0.50 1.0
0.25 0.5
0.00 0.0

0 2 4 6 8 10 0 2 4 6 8 10

Figure 5: FExemplary plot of the survival and hazard functions of different exponentially
distributed survival times

the ratio ﬁ—; Hence the exponential distribution can only be used to simulate survival times
that meet the proportional hazards assumption and the simulations could therefore not solely
rely on this distribution except for the simulation of censoring times. To simulate failure times
with non-proportional hazards piece-wise exponentially distributed failure times were used
which are a simple extension of the exponential distribution and assume a piecewise constant

hazard.

To define the piecewise exponential distribution let 0 = 79 < 71 < ... < 775 = o be a
partitioning of [0, c0) into J intervals. Based on this partition the hazard is assumed constant

within each interval, so that the hazard function is given by the following step function
A(t) = /\j,fOI‘ t in [Tj_l,Tj),
for given parameters Ay,...,A; > 0.

The cumulative hazard function is then by definition given as
¢ J
A(t) = / A(s)ds = 3 Aj(min(, ;) — min(t, t; 1))
0 ‘
7j=1

resulting in a survival function of S(t) = exp(—A(t)).
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Survival Hazard
1.00 1.00
0.75 0.75
0.50 0.50
0.25 0.25
0.00 0.00
0 2 4 6 8 10 0 2 4 6 8 10

Figure 6: FExemplary plot of survival and hazard functions of piecewise exponentially dis-
tributed survival times

It is well known that every continuous and bounded function can be approximated by step
functions so the piecewise exponential distribution can be used to approximate arbitrary haz-
ard functions. Figure 6 shows the survival and hazard function for two exemplary piecewise

exponential distributions.

Weibull distribution

In contrast to the exponential distribution the Weibull distribution, named after the swedish
mathematician Waloddi Weibull and denoted with Wei(\, k), allows to model event times that
do not necessarily have proportional hazards. The survival function of a Weibull distribution
depends on two parameters, the scale parameter A > 0 and the shape parameter k > 0, and
is given by

S(t) = e~ 0",

As one can see the choice of £ = 1 reduces the Weibull distribution to an exponential distri-
bution with the scale parameter A as rate parameter. The cumulative hazard derived from

this survival function is then A(t) = (At)¥ and hence the hazard function is

At) = %A(t) = Me(At)F L
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This function is monotonically decreasing for k < 1, constant for £k = 1 and monotonically
increasing for k > 1. The ratio of the hazard of two different Weibull distributions with

parameters (A1, k1) and (Mg, k2) is given by

Mk MD)R T AR,
Agka(Agt)k2=1  \b2p,

and hence it can be seen that the proportional hazards assumption is satisified if and only
if these two distributions have the same shape parameter, i.e. k; = ko = k. In this case the

k
hazard ratio is given by ()‘1) .

Mean and variance of a Weibull distributed random variable T can not be expressed in a

closed form but in terms of the Gamma function.

-1+

1
—.T
)\
Var[T )\1[ ( )—F2<1+;>}
1n(2)1/k

The median survival can be expressed in terms of the shape and scale parameter as —=

Survival and hazard functions for Weibull distributions with different shape parameters k

can be seen in Figure 7.

Survival Hazard
1.00 5
4
0.75
k 5 k
0.5 0.5
0.50 -1 -1
-1.5 -1.5
5 2 5
0.25
17
0.00 0
0 2 4 6 8 10 0 2 4 6 8 10

Figure 7:  Ezxemplary plot of survival and hazard functions of different Weibull distributed
survival times
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The hazard and survival functions together with the mean and median of the three above

mentioned distributions is summarized in Table 2.

Table 2: Summary of the exponential, piecewise exponential and Weibull distribution

Exponential piecewise Exponential Weibull
Hazard \(t) A YL Nl <t <) Me(At)F—1
Survival S(t) e N e > Mslmin(t,rs)—min(t,r; ) e~ ()"
Expected value AL % -T (1 + %)
Median @ ln(Q/\)l i
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2.2.3 Simulating delayed treatment effects data

As explained in the Introduction, one common feature of immuno-oncology trials is that the
onset of the treatment effect is often delayed due to the indirect mechanism-of-action. For the
analysis of time-to-event endpoints this poses a challenge since the often made assumption
that the hazards are proportional is violated in this scenario. Two models that arise from
this delayed onset of treatment effect and how these models can be used to simulate data for
the extensive simulation study will be presented. Both models have in common that there
is no treatment effect during the first phase of the study, i.e. hazard ratio equal to 1, which

increases to the full treatment effect of a hazard ratio of § < 1 and stays constant thereafter.

Denote the hazard in the control arm with A¢ and the hazard in the experimental arm with
Ag. The simplest model to describe a delayed treatment effect is the threshold lag model
(TLM) where one assumes that there is no effect up to a change point t*, and then the full

effect 6 sets in, i.e. the hazard ratio is given as

with @ < 1. This sudden onset of the full treatment effect is weakened in the generalized
linear lag model (GLLM), where one assumes that after a first phase of no effect up to a

lag time t7, the effect linearly increases until it reaches the full effect 8 at the delay time ¢3.

This leads to the following hazard ratio function:

1, t <t
)\E(t) t—1*
g _ 1 * *
o) (100 H<t<H
0, t>t;

= 1—1(t) + 01(1),

where [(t) = (ﬂﬂ(t’{ <t<ty)+1(t > t§)> As can be seen from this expression, the

ta=t]

generalized linear lag model simplifies to the threshold lag model if the parameters ¢] and ¢35
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GLLM TLM \

t, t, t, t,

Figure 8: [Ilustration of a generic GLLM and TLM scenario assuming equal full effect 0,
study duration T, lag t5 and changepoint t7. The black lines are the survival in the control
arm (solid line) and the experimental arm (dashed line) and the red line is the hazard ratio.

coincide and to the proportional hazards model if both parameters are set to 0. The survival
and hazard ratio functions resulting from these models are displayed in Figure 8 for a generic

TLM and GLLM scenario.

To simulate data based on the generalized linear lag model the survival times in the treatment
arm have to be generated based on the hazard that is derived from the control arm hazard
by application of this model. For t5 = 0 the model reduces to a proportional hazards model
Ag(t) = 0-Aco(t). Assuming a general Weibull distribution Wei(A¢, k¢) for the survival times

in the control arm and plugging in the hazard A\¢(t) = )\]é,c kctke=1 yields
Ap(t) = OAc(t) = ONF kotho™ = (9/ko \p)ke kotho 1

and hence the failure times in the experimental arm are Wei(8'/*c \¢, k¢) distributed. If

the changepoint ¢5 # 0 then based on this model the hazard in the treatment arm can be
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expressed as

Ap(t) = [1=1(t) + 0Lt Ac(t)
[z <;__E*I(t; <t<th)+I(t 2?53)) +9<
L 2 1

t—t;
ty — 1]

I <t<t5)+I(t> t;)ﬂ Aolt)

I t—
=|1+(0-1) = tl*I(t’{<t<t§)+(9—1)[(t>t§)} Ao(t)
L 2 U1
_ <1+(9_1)1(t>t2)_ ‘ *tll(t1<t<t2)>+ =L 1 <t <) t] aclt)
t2_t1 t2_t1

(A(t)

(A@®) + BO)t)Ac (1),

:B(t)

where the newly defined time-dependent functions A(t) and B(t) can be rewritten as

1 st <]
At = A=1-F=ktr ti<t<ty
0 Lt >t
where A+ Bt} =

<<

, else

1 and A+ Bt3 = 6 due to continuity of Ag(t). To simulate the survival times

in the treatment arm, the inversion method (Kolonko, 2008, chapter 8, pg. 85-95) will be

applied and to this end the inverse of the probability distribution function has to be derived.

The probability distribution function is given as

Fp(t) =1—=Sp(t) =1 — exp(=Ag(t))

and hence to find the inverse of Fg(t) this equation needs to be solved for t. The above

equation can be rearranged to

y="Fp(t)=1—exp(-Ap(t)) & exp(—Ap(t)) =1 -y < Ap(t)

—In(1 —y)
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so that the inverse of F evaluated at y is the same as the inverse of Ap evaluated at In(1—y)

and hence it is sufficient to find an inverse of the cumulative hazard function Ag(t).

£ = / g ()dz

_/ Vo)A (x)de

min(¢,t7 ) min(t,t5) t
- / e + (A+ Ba)ho(2)dz + / A (2)dr

min(t,t7) min(t,t5)
min(t,t%)
= Ac(min(t,#)) + 6(Ac(t) ~ Ac(min(t. ) + | ) (A+ Bx)Ac()dz
min(z,t]
min(t£* min(t,t3)
— Ac(min(t, ) + 8(Ac(t) ~ Ac(min(t, 5))) + [(A+ Bo)Ac@)mmid) - [ oy Bhc(@)d
min(t,t]
= Ac(min(t,17)) + 0(Hc(t) — Ac(min(,13))) + (A + Bmin(t, t3))Ac(min(t, £3))
min(t,t%)
— (A + Bmin(t, t}))Ac(min(t, £)) — B * Ao(z)da
min(t,t})

Assuming that the survival times in the control arm are Wei(A¢, ko) distributed its cumula-

tive hazard function is given by Ac(t) = (Ac - t)*¢ and hence the last integral becomes

min(¢,t3) min(t,t5) )\kc min(t,3) 1 min(t,t3)
/ ’ Ac(x)dx :/ ’ (Aoz)fcdr = € ghotl = Ao (x) ’
min(t,t}) min(t,t7}) ke +1 min(t,t7) ko +1 min(t,t})

_ kcl+ - (min(, £5) Ac (min, £5)) — min(t, ) Ac (mint, £])))

Putting this all together this expression can be reformulated piecewise as

Ac(t) ,t<t>f
Ap(t) =S (A+ Bt)Ac(t) — w21 (the(t) — tAc () 1 <t <t3.

A (t) — g (tB5Ac(t3) — tHAC(t])) s t=> 1
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Combining all constant terms and all terms that depend on t the following equation needs to

be solved:

AC(t) , T < t;
2= Ap(t) = Ltiho(®) + [(A+ £ BOAC®)| L1 <t <t

s Jrl (tsAc(t5) — tiAc(t])) + OAc(t) ,t > t5

This equation can be solved analytically for ¢t < ¢] and ¢ > ¢35 which yields:

%zl/kc , 2 < Ap(t))
t=Ap'(2) = qt € [t],13): (A+ EgBH(Aet)™e = 2z — 2 23ti(\cti)Pe | Ap(t) <z < Ap(t3)
2B _(tx(\ * ko g% by *\k 1/kC
% ( e Cti Clen) C)) z = Ag(t3)

In the special case of a threshold lag model (¢7 = t5 = t*) this expressions simplify to

Ac(t) St <t
Ap(t) =
0Ac(t) + (1 — Q)Ac(t*) ,t >t
. %zl/kc , 2 < Aco(t)
AE (Z) - 1 z—(l—@)(/\ot*)kc l/kc "
Ao ( 0 ) - AC(t )
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2.3 Analyzing time-to-event data

As explained in the Introduction of this thesis a problem that is often encountered in immuno-
oncological studies with time-to-event endpoints is that the power of commonly used statis-
tical methods for two arm comparisons can be heavily decreased due to the distinctive mech-
anism of action of these drugs. A particular mechanism, which was observed in many studies
in this area and forms the basis of this thesis, is the delayed onset of treatment effect. In this
section the methods that have been identified in the systematic literature search presented

in the Section 2.1 shall be explained in more detail.

As for all analyses of time-to-event data the main challenge is to incorporate censored ob-
servations in the analysis since these observations carry at least in part information on the
event of interest. To do so one has to acknowledge that time-to-event data is not rigid but

changes over time and hence must be modelled as a stochastic process.

First, this stochastic process notation as well as basic concepts for analyzing time-to-event
data will be presented and then the focus will be laid on inferential two arm comparisons as
these shall be evaluated in the simulation study. It has to be noted that the different methods
do not always target the same global null hypothesis HglObaI: Sc(t) = Sg(t) of equal survival
or equivalently equal hazard functions, but the null hypothesis related to each method is

always a superset or implication of this global null.

2.3.1 Fundamental concepts and estimators
Stochastic process notation

Let (t1,d1,x1),. .., (tn, dn, x,) denote the observations of n patients. The following processes

describe how many patients (per arm) are at risk at time ¢.
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Furthermore, the processes

denote how many failures (per arm) occur up to and including time ¢. The number of failures
in arm g at a given time ¢ is denoted with AN, (t) = Ny(t) — Ny(t—). The total number in
both arms will again be denoted without index. Theses two processes are right-continuous,
non-decreasing step functions with Y () having jumps at t1,...,t, and N(¢) having jumps at
{tild; = 1,i=1,...,n}. Asit is needed for future calculations the Lebesgue-Stieltjes integral

is defined as follows:

Suppose G(.) is a right-continuous, nondecreasing step function with jumps at ¢i,...,%,.

Then for any function f(.) the Lebesgue-Stieltjes integral is defined as:

[ 10ac = X 1)@ -6y = X f9AGH)

a<t;<b a<t;<b

Kaplan-Meier estimator

The most common estimator for the survival function is the Kaplan-Meier estimator (Kaplan

and Meier, 1958), which is obtained as the product limit of simple binomial proportions

1-— A}—/N(it(?)i) of patients alive just after ¢;_; that survive beyond ¢; and is defined as

. AN (t;
Skm(t) = tgﬁ (1 - Y(t(it))> :

For the standard error of this estimator Greenwood (1926) derived the following formula

AN (t;)
Y (t:)(Y(t:) — AN (t;))

Var(S’KM(t)) = S’KM(t)2 Z

i<t

(2.1)
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Deriving an estimate of the hazard function from the Kaplan-Meier estimator is difficult since
the Kaplan-Meier estimator is a non-differentiable step function and hence some smoothing
would be necessary. However, it is often satifactory to estimate the cumulative hazard func-

tion A(¢) which can be estimated by plugging the Kaplan-Meier estimator into the relation
A(t) = —1log(5(1)).

This gives i
A & AN (t;
Ay (t) = —log(Skm(t)) = — Z log (1 — <l)> ,
i<t Y(t:)
and the variance of this estimator can be obtained with the functional delta method from

the Greenwood formula.

Nelson-Aalen estimator

Alternatively, Nelson (1969) and Aalen (1975) developed a more direct estimator of the

cumulative hazard function and its variance as

N th S AN i
ANA(t) = 0 )7((3)) = ; Y(t(j))’
 «— AN(t)

Var(Aya(t) =

ti<t

Y2(t;)

In most settings the difference between these two estimators is small if the sample size is

sufficiently large.

2.3.2 Basic inferential methods

The logrank test

The basic idea of the logrank test is similar to the y?-test, i.e. to compare the observed
number of events with the expected number of events at each timepoint under the global null

hypothesis HOgIObaI: Sc(t) = Sg(t).

Let t(1) < ... < () denote the k distinct, ordered event times, allowing for tied events and

hence k < n. At each failure time ¢(;) one can construct the following contingency table:
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Failure No failure Total

Control arm Aﬁc(t(i)) YC(t(i)) — ANc(t(i)) YC(t(i))
Experimental arm ANE (t(l)) YE(t(z)) — ANE(t(Z)) Y (t(l))

Total A]\_f(t(z)) Y(t(l)) — AN(t(Z)) Y(t(l))

The number of failures in the control arm at time £ ANC(t(i)) given the total number of

failures AN (t(s)) then follows a hypergeometric distribution Hyp (?(t(i)), Yo(t(i)), AN (t(i))>,

Yo (b)) AN (t;)

with an expected number of failures of and a variance of

Y (ts))
- Yo(t) Ye(ta)\ Y(ta) — AN ()
AN(tp)=—+ (11— = = ,
Y(t)) Y (t)) Y(tp) —1

where the last fraction is called finite population correction factor and cancels when there
are no tied event times, i.e. no two patients have the event at the same time (AN (tw) =

1, for all ¢;)). Summing over all observed event times gives the well known logrank statistic:

k _ Yot AN (t;
W=y (A ol — g—ﬁiw( ”)>
B k _ N ?C(t(i))A C(t(z))) _ ?C(t(z))A 7E(t(z))
— ; (A c(tuy) Y(t(l-)) Y(t(i))

_/oo Yu(t)Yo(t) (dNc(t)  dNg(t) (2.2)
Jo Y (t) ) |

By the central limit theorem this statistic is asymptotically normally distributed under the

global null hypothesis H§1°bal with mean 0 and its variance can be estimated as

o [ Ye(t)Ye(t) AN(t) -1\ (dNg(t)  dNg(t)
S (O =Y I6 Ty
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and hence the standardised test statistic is U = %

The Cox model

The Cox model belongs to the class of survival regression models that are based on modeling

the hazard function

At) = Ao(t) exp(5X),

making different assumptions on the baseline hazard function A\o(t).

The appeal of the Cox model is its flexibility which it gains from leaving the baseline hazard
function completely unspecified. It was introduced by Cox (1972) who developed the notion
of a partial likelihood which made estimation of the coefficients 8 possible. In his original
paper Cox derived the partial likelihood using a conditioning argument which gets overly
complicated in the presence of ties. In his discussion of Cox’s paper Breslow suggested a
profile likelihood approach to overcome this obstacle which will be presented here following the
presentation by van Houwelingen and Stijnen in the Handbook of survival (van Houwelingen

and Stijnen, 2020).

As censored observations do not contain information on when the event occurred but on how
long the subject was event-free their contribution to the likelihood is the survival function
S, whereas non-censored events contribute the full information which can be expressed as

f=A-5. The overall likelihood is hence given as
L(,8) =[] S(t:) = H exp (—Ao(ti) exp(B:)) - (Ao(t:) exp(Ba;))™
i=1

and the overall log-likelihood as

100.8) = 3 [~Ao(t) exp(Bry) + di(ln(hot)) + Bs)].
=1

As time intervals in which no events occur do not provide any information it is plausible to
concentrate all the risk in the event times and assume that the baseline hazard is discrete
with non-zero mass at the event times. The cumulative hazard can then be expressed as

the sum Ag(t;) = >, Yi(t)ho(t), where Y;(t) = 1(¢; > t) is the individual at-risk indicator of
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observation i. For the second summand instead of summing over all individual observations
one can sum over time and weighting the log-baseline hazard at each time point by the

number of events at the same timepoint, i.e. 3, d;In(Ao(t;)) = 32y AN(t) In(Ao(2)).

Plugging this into the overall log-likelihood gives

-

.
Il
—

[(Mo, B) = ) [—Ao(t:) exp(Bz;) + di(In(Xo(ti)) + )]

—Ao(t;) exp(Bz;) +Zdln Ao (t; +Zdﬂxl

I

i=1 i=1
= i Z Yi(t)\o(t) exp(Bx;) + Z AN () In(Xo(t)) + i Z AN;(t)px;
=1t =1 t

I
~[~]

(—Aoa) znj Yi(t) exp(Frs) + AN (1) + AN@(t)ﬁxi)
=1

=1

Breslow (1974) derived an estimator for the baseline hazard which maximizes this expression

for fixed value of g and is given by

Ao(t]B) =

i1 Yi(t) exp(Bz:)

The resulting profile log-likelihood for § is then

exp(Bi) ' N 0
=3 [T (s o ) N S (-ANG) (AN )

=pl(B)

with pl(8) being Cox’s partial likelihood. Now to obtain an estimator for § this profile
likelihood needs to be maximized. Note, that by definition of the integrating process N;(t)
the integral simplifies to evaluating the integrand at ¢; so that the derivative of the partial

likelihood becomes:

Opl(B) _ 0§~ exp(fz;)
op 0B ;1 (EJ 1 Yj(t )exp(ﬂxj)>
ti)z; exp(Bx;)

_ - "y ] 1 J
_Z ’ ( )eXP(BxJ) 1

=1
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Setting this first partial derivative to zero gives the so called score equation. As for standard
MLE it can be shown that these estimators are asymptotically normal and inference is usually

done using the Wald test for 3.

Another approach is to perform a score test, i.e. to use the test statistic

8})1 zn: - n Y'(ti)xj
i=1 ' Y; (t )

j 1

which interestingly is exactly the test statistic of a logrank test, if the covariate x; is simply

a binary treatment indicator.

As can be seen from the model formulation the Cox model implicitly relies on the proportional
hazards assumption and a variety of approaches - both graphical and testing - has been
suggested to check this. As for linear regression models the graphical approaches rely on
residual plots, which in case of time to event data were introduced by Schoenfeld (1982) and
hence called the Schoenfeld residuals. The idea of these residuals is based on the partial
(Cox, 1975) or marginal (Kalbfleisch and Prentice, 1973) likelihood argument used to make
inference for the Cox model as explained above. The Schoenfeld residuals r; are defined as the
difference between the observed value of x; and its conditional expectation given the patients

at risk at this time and are given by the summands of the score function, i.e.

j—1Yj(ti)x; exp(Bz;)
j—1Yj(t:) exp(Bz;)

ri(B) = |zi —

and can be estimated by substituting the MLE B for 5. By construction of the Schoenfeld
residuals 7; := rl(ﬁ) their expectation is E[#;] = 0 so to assess if the proportional hazards
assumption holds the these residuals should be plotted against ¢; and if it does should be
centered about 0. Furthermore, Schoenfeld (1982) has shown that the variance covariance
matrix of 7; and 7; is asymptotically 6ijﬁi — ﬁ,U _IUJ-T where UZ is the Jacobian matrix of

ri(3) evaluated at 3, i.e.

U-:% _ ?:1}/}(751')%37?6}(13(3%)_ ?:1}/3( )%QXP( J)] [Z] 1Y3(tz)$yeXp( J)
0Bl Y V() exp(Bay) S Yi(t) exp(Bry) | | S0y Yi(t) exp(Bz;)
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and U = Z?Zl dzUz

Based on the work of Schoenfeld, Grambsch and Therneau (1994) proposed a goodness-of-fit
test to test the null hypothesis of proportional hazards versus the alternative of time-varying

coefficients of the form

B(t) = B+ 0G(t),

where G is a p x p diagonal matrix with possibly different transformations of the time scale for
each predictor as diagonal entries G;;(t) = ¢;(t). Now to test the null hypothesis Hy : 0 =0
Grambsch and Therneau (1994) derived the following test statistic based on generalized least

squares
T
T(G) = <Z G(ti)ﬁ) D! (Z G(ti)ﬁ) :
where

T
D =Y Gt)UiG(t;)" — <Z G(E)@) vt (Z G(h)@)

and which under Hy is asymptotically x? distributed with p degrees of freedom. They note
that this test statistic is the same as the score test statistic of Hy : (3,6) = (3,0). Commonly
used transformations g;(t) of the survival times, that are also implemented in the coz.zph
function in the survival package in R (Therneau, 2023), are the Kaplan-Meier transform,
the rank transform and the identity transform. For the simulation study the Kaplan-Meier

transform was used which is the default in R.

2.3.3 Advanced inferential methods

In this section more advanced inferential methods for two-arm comparisons are introduced and
grouped into the five categories: weighted logrank tests (W1-W10), combinations of weighted
logrank tests (C1-C12), Kaplan-Meier based tests (K1-K4), tests based on regression models
(R1-R7) and other tests (O1-O7).

Each item in the list starts with the name of the test, followed by the abbreviation used in this
thesis in parantheses, if this abbreviation differs from the methods name. The description
of each test contains the test statistic together with its distribution under the null and, if

applicable, the local null hypothesis as well as a measure for the treatment effect. For methods
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that were not self implemented the R package that was used is referenced. R program code

implementing all methods can be found in an online repository referenced in the Appendix.

Weighted logrank tests

Introducing a weight function K (t) to the logrank statistic leads to a generalization which

places different weights on each event time

[ e YE@M)Yo(t) (dNc(t)  dNg(t)
Wi = [ KOG (%(t) mw)‘

global
H 0

The variance of this test statistic under can be estimated as

&% = Var[Wk] = /OOO K2(t)YE(t)(t)c(t) (1 _ AN - 1) (dNC(t) + dNE(t))

Y Y(t)—1 Y () Y (t)

leading to the standardised version of this test statistic Ux = 12/—? which is asymptotically
standard normal distributed under Hy. It can be easily seen that for K = 1 this is exactly

the standard logrank test, which will hence be denoted as Uj.

Although the introduction of weights makes these tests more sensitive to detect specific
alternatives, the null hypothesis that is assessed with these tests is the global null of equal
survival curves. For an estimator of treatment effects the most direct approach is to exploit
the relationship between the Cox model and the logrank test as the score test based on the
partial likelihood of this model. To do so Schemper (1992) describes how the weights of
the weighted logrank test can be introduced into the estimation procedure of the Cox model

which results in the average hazard ratio.

Alternatively, Lin and Leén (2017) proposed to derive an effect estimate from a Cox model
with a time-varying covariate X*(t) = A(t)X, where A(t) = % is called the effect
adjustment factor. Based on this Cox model the exponentiated coefficient e represents

the full effect and the hazard ratio for the comparison of two groups can be expressed as

HR(t) = (e/)4®).

The following weighted logrank statistics were considered in this thesis:
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(W1)

(W2)

(W3)

Fleming-Harrington (G(.,.)):

The Fleming-Harrington family of weighted logrank tests is given by G(p,v) := Uk
with weight K (t) = S(t—)°- (1 —8(t—))" for p,v > 0 where S(t—) is the Kaplan-Meier
estimate in the pooled sample (Fleming and Harrington, 1981). Since the Kaplan-
Meier estimator is a monotone decreasing function with a range in [0, 1] a non-zero p
places more weight on early timepoints whereas a non-zero v places more weight on late
timepoints and if both parameters are non-zero then middle timepoints are upweighted.

The following weights were suggested in literature:

(p,7) = (0,1),(1,0), (1,1), (0,0.5), (0,2), (0.5,0.5)

Gray-Tsiatis test (G(-1,0)):

Gray and Tsiatis (1989) proposed to use the inverse of the Kaplan- Meier estimator
in the pooled sample as weight, i.e. K(t) = S’(t—)_l, when studying diseases with a
non-zero probability of being cured. This corresponds to the Fleming- Harrington test
with weight (—1,0).

Modestly weighted logrank test (MWLRT):

In their paper Magirr and Burman (2019) pointed out that there is an interesting
correspondence between weighted logrank tests and so called score tests. This corre-
spondence was first shown by Letén and Zuluaga (2001). To construct a score test let
again () < ... <t denote the k distinct, ordered event times and let l;; denote the
number of censored observations in group ¢ that fall in the interval [t(j),t(j+1)) and

l; = lpj + 11, i.e. based on the definition of the number at risk

L =Y (tg) = Y (tgs1) — AN ()

The score test then gives scores c; to each uncensored and C} to each censored obser-

vation resulting in the following test statistic

k k
S = Z CjAN()(t(j)) + Z Cjl;.
j=1

J=1
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As shown by Let6on and Zuluaga (2001) the score test and the weighted logrank test

with weights K (t(;)) are equivalent if the following equivalent conditions are met

Cj = - ZK(t(z’))"))v K(tg) =c¢ —C; (24)

Y (t;
K(t(j_,,_l)) = (K(t(j)) +¢jr1 — Cj) (Y(t(j_ﬂ))((]le)(;(t(j_,’_l)))’ K(t(j)) =cj— Cj (2.5)

where the first condition is used to translate K(t;)) — C; — c; and the last to translate
cj — K(t(;)) = Cj. As can be seen from (2.4) the scores ¢; and C; associated with the
standard logrank test are nonincreasing, which means that later events get lower, that
is, "better" scores than early events.

In a more recent paper Magirr (2021) showed that the associated scores of the Fleming-
Harrington test G(0, 1) are, contrary to the standard logrank test, increasing over time
which is not acceptable.

To resolve this problematic behavior they proposed to start with a score statistic and
keep the scores c¢; = 1 fixed for events prior to a prespecified time t*. After this time the
weight is kept constant at K (f(;«)) where t;«) := max{t(;) | t;) < t*}. Using formula
(2.4) this test can be formulated as a weighted logrank statistic and it downweights
events before t* and keeps the weight constant afterwards. This results in the weights

K to be
1

max ($(1), $(t))

K(t) =

where S is again the Kaplan-Meier estimate in the pooled sample. This method has
been implemented in R within the modest WLRT package (Magirr, 2022).
Threshold lag (Thres) and generalized linear lag (GenLin) test:
Xu et al. (2017, 2018) investigated different modelling assumptions for the delay in
cancer immunotherapies and derive optimal weights for these two models based on
the result by Peto and Peto that optimal weights need to be proportional to the true

logarithmic hazard ratio. The first model (Xu et al., 2017) assumes that the delay is



2.3. Analyzing time-to-event data 33

fixed at ty for all patients and the hazard ratio is of the form

0, t>tg

with the treatment effect # < 1. The optimal weights then result in the threshold lag
test with K (t) = 1(t > to) and the delay tp must be presepcified.

The second model (Xu et al., 2018) relaxes the assumption that the delay is fixed for
all patients to a subject specific delay time ¢ ; which follows a distribution Fy on the
interval [Th,T5]. Conditional on the observed subject-specific delay time the hazard

ratio is the same as for the first model, i.e.

Ap(t |t L t<t,
HR( | 1,0) = 20| fna) ‘

)‘C(t ’ ti*nd) 4 t> t* 4
’ ind*

Integrating over the distribution of ¢} ; Xu et al. show that the marginal hazard ratio
is given by
1 t<T

HR(t) = 1090, Ty <t < T
where ¢(t) is a monotone, increasing function that converges to the cumulative distri-
bution function F,. Hence, the asymptotically optimal weights are given by

0, t<Th

and in the special case of the delay time being uniformly distributed on [T7,7T%] the

asymptotically optimal weight in this interval is given by Fi(t) = YEQ__TTll. Based on

this model the generalized linear lag test uses the weights K (t) = %;_T%l (T <t <

TQ) + II_(T2 < t).
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(W5) Gehan-Breslow (GB):
The modified Wilcoxon test statistic was derived by Gehan (1965) and Breslow (1970)
and places more weight on early timepoints by considering the number at risk in the
pooled sample as weight function, i.e. K(t) = Y (t).

(W6) Tarone-Ware (TW):
The Tarone-Ware test is very similar to the Gehan-Breslow test but with K () = /Y (¢)
(Tarone and Ware, 1977).

(W7) Peto-Peto (PP) and modified Peto-Peto (mPP):
The weights of these tests are derived from the Kaplan-Meier product estimator and
are chosen to be K(t) = [[;. .« (1 - ?A(]thﬁ) or K(t) = ;. ¢« (1 - %),
respectively (Peto and Peto, 1972).

(W8) Asymptotic logrank test (asymLR):
Moreau et al. (1992) proposed the asymptotic logrank test with weights given by K (t) =

(W9) Logit and modified Logit (mLogit):
The logit weight function K (t) = Logit, ,(t) = % with parameters 7 defined
as the middle point of the prespecified transition period [t1,t2] was introduced by Yu
et al. (2021). The scaling parameter a is chosen such that the prespecified weight
w = 0.1 at t; (and due to symmetry 1 —w = 0.9 at t2) is achieved. Based on this a
modified logit weight version is defined as K (t) = Esggiit‘;“:(g)__lfoggiitt‘zTT((t tll))

(W10) Maximin efficiency robust test (MERT): | |

The MERT test tries to find the weighted logrank statistic which maximizes the min-
imum asymptotic relative efficiency over a class of lag functions (Ye and Yu, 2018).
This class is denoted with L£(f1,%2) and contains all lag functions that are 0 before t1,
monotone and nondecreasing in [t1,#3) and 1 lateron. The asymptotic relative efficiency
of W to the optimal test W, is denoted as p?(Wx, W;) and the weight of the MERT
test as

W; : = argmax min 2W,VV.
t1,t2 g KlGL(fl,fg)p ( K Z)

It was shown by Ye and Yu (2018) that this weight function is given as follows:

) — -1/2 = wE)) -
b)) 1<£1<t<52>+2(m> 1(t > )
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where 7 is the study duration and ¥(¢) is estimated by

B(t) = :L/Ot WCZNW).

Combinations of weighted logrank statistics

Considering a specific weight has the disadvantage that the test is tailored to detect a very
specific alternative and has low power to detect a difference in situations where the distri-
butions are different but follow another alternative. To overcome this drawback mutiple
procedures have been suggested that combine different weighted logrank statistics. Most
of these methods inccorporate statistics of the Fleming-Harrington family G(p,~) (W1) for

different choices of p and ~.

To make inference in this situation one needs to know the multivariate distribution of the

weighted logrank statistics under consideration.

By Theorem 7.5.1 in Fleming and Harrington (Fleming and Harrington, 1991, chapter 7,
pg. 278-80) it can be shown that for different weight functions K7, ..., K,, the test statistics
(Wk,,...,Wk,,) are m-variate normally distributed N'(0, X,,, = (07)1j=1,....m) with estimated

covariance between Wy, and Wk;

8y = /0 KK (2t

|
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under the null hypothesis of equality of the survival distributions . Consequently, the

Hglobal
standardised test statistics (Uk,, ..., Uk,,) are also m-variate normally distributed N (0, P,,, =

(p1j)ij=1,...m) and the correlation can be estimated as p;; = U,G,—LZ
L33

This multivariate normal distribution can be used to calculate the p-value or critical value of

a test based on combinations of weighted logrank statistics.

In their article Roychoudhury et al. (2021) note that for the MaxCombo test the average
hazard ratio can be calculated as an effect measure as explained for single weighted logrank

tests. The weight used to calculate the AHR is then the weight corresponding the weighted
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logrank statistic which maximized the MaxCombo test. This can be extended to every
other combination test that uses the maximum of weighted logrank tests. However, the
interpretation of this measure is difficult and not applicable to all combinations of weighted
logrank tests so following the recommendation of Roychoudhury et al. (2021) one should use

supportive measures such as the Kaplan-Meier plot and milestone survival rates.

(C1l) Adaptively weighted logrank test (YP):
Yang and Prentice (2005) introduced the following semiparametric model for the haz-
ards of two samples

B 0105
01+ (02 — 01)Sc(t)

Au(t) Ao(t)  (t <o),

where 79 = sup{t: Sc(t) > 0} and 61,02 > 0. Since the survival function has the
property that S-(0) = 1 and Sc(79) = 0 the parameter 6; and 6, can be interpreted
as the short-term and long-term hazard ratios, respectively. To derive an estimator
for this hazard ratio, the modelling equation will be reformulated in terms of the odds

function of the control group defined as R(t) = 1;5%(;), whose derivative is given by

dR(t) _ —=Sg(t)Sc(t) = Se()(1 = Sc(t) _ Ac(t)
dt c 5%(% = So) Ac(t)(1+ R(t)).

Combining this the model translates to

0105
= Aot
01 + (62 — 61)Sc(t) o(t)
_ 0169 Ac(t)
%1@) + (62 — 61) Sc(t)
_ : 0102 R(t)
Ol(m —1)+ 6
6
~ O1R(t) + 05

(505
1

= (exp(—p2)R(t) + exp(_ﬂl))R’(t)a

Ag(t)

R(t)

where 3; = log0; for j = 1,2.
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(C2)

Based on this Yang and Prentice derive pseudo maximum likelihood estimators for
B = (51, B2) by constructing an estimator }A%(t;ﬁ) for fixed 5. Now if L(8, R) denotes
the likelihood function based on this model, the pseudo maximum likelihood estimator

for 8 is defined as B = argmaxg L(j3, R(t; B)) or equivalently as the zero of the score

_ 0log L(p3, R)

o) 8 Irw=Rup)

This approach is very similar to the approach of the Cox model where first the unknown
baseline hazard in the likelihood function is replaced by the Breslow estimator for
fixed coefficients 8 and then maximized in 5. The difference is, however, that in the
approach for the Cox model the Breslow estimator maximizes the likelihood for fixed
B, which leads to a profile likelihood, and the estimator for the odds function R in
the Yang and Prentice model has no such optimality property. Nevertheless, Yang
and Prentice showed that under certain regularity conditions, the pseudo maximum
likelihood estimator B is consistent for 5 and that first the score \/nQ(fS) converges in
distribution to a zero mean bivariate normal distribution with covariance matrix V' (53)
and second /n(f — 8) converges in distribution to a bivariate normal distribution with
zero mean and covariance matrix U(/3).

Based on this model Yang and Prentice (2010) suggested to use an adaptively weighted

logrank test, with the estimated hazard ratio as weight, i.e. the weights are

N

Dy(t) = - L+ Rt )A ——— and
exp(—p1) + exp(—fF2) R(t; B)

The test then uses a combination of the weighted logrank statistics Up, and Ug,.
Since under non-proportional hazards either one of these weights can be expected to
be more sensitive to departures from the null hypothesis, they proposed the following
combination of these statistics max(|Ug,|, |Us,|). Estimation procedure of this model
has been implemented in the YPmodel package in R (Yang and Prentice, 2011) and
was used to construct the test statistics.

Maximum combination test (MaxCombo):

The Max-Combo test is defined as Zy,.x = max(|G(0,0)[,|G(0,1)],|G(1,0)|,|G(1,1)|).
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(C3)

(C5)

Based on the observed realization Z,.x = 2 of this test statistic the p-value is given by

b= PHo[maX(‘G(()?O)’? ’G(Ov 1)|7 ’G(170)|7 |G(17 1)‘) > Z]
= 1 = Py [max(]G(0,0)|,|G(0, 1)[,[G(1,0)],|G(1,1)]) < 2]
1 - Py [|G(0,0)] < 2, G(0,1)] < 2 [G(1,0)] < = G(1, 1)| < 2

= / / / ¢(0’P4)($1,$2,l’3,$4)dl’1d$2d$3dl’4,

where ¢(,, 5) denotes the density of a multivariate normal distribution with mean vector
wu and covariance matrix 3.

Modified MaxCombo test (mMaxCombo):

Cheng and He (2021) proposed a modified version of the MaxCombo test to improve
power in detecting crossing hazards by replacing G(1,1) by a weighted logrank test
with weight

Here the parameter 6 € (0, 1) represents the survival rate at the point where the crossing
occurs. If no previous data is available one should chose the uninformative parameter
0 = 0.5, reducing to the weight Ko5(t) = 25(t—) — 1.

Zm3 test:

The Zm3 test is defined as Z,,, = max(|G(0,0)|,|G(0,1)|,|G(1,0)|) (Karrison, 2016).

Similar to the Max-Combo test the p-value is given by

p:/ / b0,y (71, T2, ¥3)dT1dT2dT3.

Modified Zm3 test (mZm3):

Royston and Parmar (2020) proposed a modified version of Z,,,, which they call "mod-
ified versatile weighted logrank test" replacing G(1,0) by a weighted logrank test with
weight K(f) = max (0.001, W) The reason to do so is that if an early

effect with a low event rate is present the weights of G(1,0) are too close to 1 and hence

G(1,0) closely resembles the standard logrank test which diminishes the gain in power.
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(C6) Versatile tests by Lee (Leel, Lee2, Lee3):

Lee (2007) proposed the following versatile combinations of the Fleming-Harrington

test statistics

|G(0,1) + G(L,0)]
5 :

|G(0,1)] + |G(1,0)|
: :

max(|G(0,1)],|G(1,0)]),

and

which are abbreviated with Leel, Lee2 and Lee3, respectively.
The critical values or equivalently p-values can be derived from the multivariate distri-

bution as follows.

e Let z be the observed realization of the Leel test statistic. With p being the

correlation between G(0, 1) and G(1,0) it then holds asymptotically that (gg?ég) ~

N (8), P . Hence by the transformation rule (asymptotically)

p

G(0,1) + G(1,0) = (1,1) - (gg 3) ~ N (0,201 + p)) .

The p-value is then given by

. [|G(O, D+ GO Z}

2
=1-Pp[|G(0,1) + G(1,0)] < 22]

=1-Pg,[-22 < G(0,1) + G(1,0) < 27]
2z —2z
:1_@< %1+m>+@< %1+m>
99 (—2)
2(1+ p)

e Let z be the observed realization of the Lee2 test statistic and let p again denote the

correlation coefficient between G(0,1) and G(1,0). The conditional distribution
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(C7)

(C8)

in this case is then given by
G(0,1) | G(1,0) ~ N'(pG(1,0),1 = p?)

Applying the law of total probability the p-value can then be calculated as

IR R

=1-P[G(0,1)] + |G(1,0)| < 2z]
2z

= % PG 1) +160,0) < 22 6(1,0) = u] - o(w)dw

= /_2; P[—2z + |w| < |G(0,1)| < 2z — |w| | G(1,0) = w] - p(w)dw

Y P e T W e AT |

_/2z[®< V1=p? ) (I)< Ny )] p(w)d

e Similar to the Max-Combo test the p-value for an observed realization z of the

Lee3 test is given by

P :/ B(0,py) (1, T2)dT1dT>.

Modified Lee tests (mLee2, mLee3):

Yang and Zhao (2007) considered the sum |G(0,0)| 4+ |G(1,0)| as a modification of the
Lee2 test. Callegaro and Spiessens (2017) proposed to use the standard logrank test
G(0,0) instead of the G(1,0) statistic in the versatile test Lee3.

Projection test (ProjTest):

Additionally to the modified Max-Combo test Cheng and He (2021) proposed a projection-
type test based on the weighted logrank statistics (G(0,0),G(1,0),Uk, ) which are
trivariate normally distributed and let P denote their correlation matrix. The idea
of projection-type tests was introduced by Brendel et al. (2014) and the test can be

constructed as

(G(O7 0)7 G<17 O)a WK0.5> ’ p_l ’ (G(O, 0)7 G(l, 0)7 WKo.s)t
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(C10)

(C11)

which is Xfank (-1

Modified Score test (mScore):

distributed and P! denotes the Moore-Penrose inverse of P.

Similarly, one can construct a projection test based on the bivariate normal distribution
of the logrank test and the weighted logrank test with weight K (£) = log(14 Ay a(t—)).
This approach was proposed by Bagdonavicius et al. (2004).

VO test:

As explained above, Ye and Yu (2018) have derived the MERT test over the class
L(t1,12) of lag functions. In a previous work Zucker and Lakatos (1990) derived the
maximin efficiency robust statistic V* over a different family £(¢3) of all functions which
are monotone and nondecreasing on [0, ¢5] and equal to one afterwards. They had shown
that this statistic can be expressed as the limit as £ — oo of the linear combination
statistic:

2k—1

_ 1/2k
vk_U1+th;+(1—p/ ) Zl Uiy, »
]:

where p? = p*(U1, Uu,) = %f])%)

test statistic of a weighted logrank test with threshold lag wj(¢t) = 1(¢ > t). This rep-

b = \I/fl(\Il(T)(l—pj/zk_l)) and Uy, denotes the

resentation inspired Ding and Wu (2020) to consider the sum of logrank and threshold
lag test as an approximated version of the MERT test called VO test.

Partially grouped logrank test (ParGroup):

The partially grouped logrank test proposed by Sposto et al. is a hybrid between
the fixed-time analysis and the usual logrank statistics (Sposto et al., 1997). Given a
predetermined grouping time ¢, and the numbers Ng, N¢ initially at risk one defines

an analogous to the number of events at t. as:

ANg(t.) = Ng - (1 — Sg(t.))

ANe(te) = No - (1= Seo(te))

As for the logrank statistic one can determine that the distribution of AN¢(t.) given
AN (t,) is approximately normal. For times after t. the logrank statistic is employed,

i.e. a weighted logrank test with threshold lag Ky (t) = 1(¢t > t.). The total test
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statistic is then given as
- N N 2
[(ANc(te) — E (ANG(te) | AN(L))) + Wi, |
ParGroup = - -
Var (ANo(te) | AN(t)) + Var (W, )
(C12) Kolmogorov-Smirnov tests (KS LR, KS FH, KS GB, KS Cheng):

Instead of taking the integral over the whole time period, one could also restrict the
integration interval to [0,¢], which makes W a time-dependent test statistic W ().
The idea of the so called Kolmogorov-Smirnov or Renyi type test statistics is to take
the supremum over all these test statistics sup, Wi (t)/6k, which can be shown to
be asymptotically distributed as the supremum of a Brownian motion supyc,<; B(?)
(Fleming et al., 1987). Inference can then be made using this asymptotic distribution

and the following result given by Fleming et al. (1987). Given a Brownian motion B

. % i (—1)* exp (_ﬁ(zk + 1)2>

then

822

P [ sup |B(t)| > =
0<t<1

Alternatively, one can choose a permutation approach. Cheng and He (2021) considered
the following weighted logrank tests: standard logrank, Gehan-Breslow (GB), G'
and the modified weighted logrank test Ky 5(t) introduced by Cheng for the modified

MaxCombo test.
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Kaplan-Meier based tests

These tests are all based on the Kaplan-Meier estimator of the survival function

Sr B AN(s)
St =]] (1 7o) ) :

s<t

which was already introduced at the beginning of Section 2.2.1. It has to be noted that this

estimator drops to 0 only if at the last event time all patients in the risk set have an event.

Otherwise, the Kaplan-Meier estimator is only defined up to this point and extensions beyond

this point are invalid. The variance of the Kaplan-Meier estimator is given by Greenwood’s

formula (2.1). Based on this estimator and its variance one can construct the following tests:

(K1)

(K2)

Milestone survival test (Mile, MileCLL):

Milestone survival tests assess the null hypothesis H)'®: Sc(tg) = Sg(to) of equal
survival rates at a fixed timepoint ty by using Kaplan-Meier estimates: S¢(to) —Sg(to).

The test statistic is then given by

(to) — Sk(to))?

—

)
(t0)] + Var[Sp(to)]

(Sc
c

Var[S

which under the null has an asymptotic x? distribution with one degree of freedom.
Klein et al. (2007) have been shown that applying a transformation to the Kaplan-
Meier estimates can give a better asymptotic and hence the identity (Mile) and cloglog
(MileCLL) transformation were considered. The natural effect measure is then the
difference of the survival rates.

Weighted Kaplan-Meier test (WKM):

The weighted Kaplan-Meier test compares the integrated weighted difference between
the Kaplan-Meier estimates, i.e. for a given estimator @ of a deterministic weight

function w(t) and a truncation time 7 the test statistic is given as

WKM(7) = |12 /0 “i(t) (Sp(t) - Se(n) d.

Pepe and Fleming (1989) showed that under certain constraints on the weight function

and its estimator, that will ensure stability of the WKM statistic, it is asymptotically
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normally distributed under the global null hypothesis HglObalz Sc(t) = Sg(t) = S(t),
ie. WKM(7) % N(0,0%(7)), where

02(7.) - _ /T (ftTw(ugS(u)du)Q ncScens,E(t) + NEScens,c(t) ds(t)
0 S (t) nScens,C(t)Scens,E(t)
The weight function considered by Pepe and Fleming (1989) is based on the Kaplan-
Meier estimator for the censoring times S’CBHS in both groups
w(t) _ ZﬁLS’cens,CS’censA,E ‘
nCScens,E + nEScens,C
Within this thesis the implemented wkm.Stat function in the nphsim package in R
(Wang et al., 2017) was used.
(K3) Restricted mean survival time tests (RMST, MaxRMST):

In the special case of w = 1 the weighted Kaplan-Meier statistic reduces to the difference
of the estimates of the so called restricted mean survival time RMST(7).

The RMST can be interpreted as the mean of the survival time min(7’, 7) and hence be
expressed as RMST(7) = E[min(T, 7)] = [y S(t)dt and naturally estimated by plugging
in the Kaplan-Meier estimator. As outlined by Huang and Kuan (2018) the estimator
WT(T) = Jy S(t)dt is approximately normal and making use of the Greenwood

formula its variance can be estimated by

([’ AN
VarfRMST(7)} = 2 Ut 5 (t)dt] Y (t:) (Y (t:) — AN ()

Taking all this together the null hypothesis of equal restricted mean survival times

Hg{MST: RMST¢(7) = RMSTE(T) can be tested with the test statistic

1§ (S5() = Se(®) dt
Var[mc(T)] + Var[mE(T>] 7

which is asymptotically standard normally distributed under the null hypothesis. The
appeal of the RMST approach, which made it popular in the statistics community lately,

is that the difference in RMST is an easily interpretable and natural effect measure.
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(K4)

For the simulation study the rmst2 function of the survRM2 package (Uno et al., 2022)
has been adapted.
Furthermore, Royston and Parmar (2016) suggested to use the maximum RMST dif-
ference over all possible cutoff values 7 and make inference through a permutation test
approach. To obtain the maximum RMST difference they found that a grid search
within the interval of the 30th percentile of the event times and the largest (uncen-
sored) event time gives reasonable results and recommend a number of 10 points for
this grid.
Area between curves test (ABC):
The area between curves test statistic is very similar to that of the RMST and defined
by

-

7, = Vi |

S(t) - Sc(t)] d,

where 7 denotes the largest censoring time. Lin and Xu (2010) postulated asymptotic
normality of the standardized statistic (T}, — E(T},))/ \/@(Tn) under the global null
hypothesis of equal survival curves HglObal. Liu et al. (2020) used a resampling approach
to approximate the residuals S’g(t) — S4(t) in each group (¢ = E,C) and with that

estimated the test statistic T},, which - under the null hypothesis - can be written as

Tn:\/ﬁ/OT

(82() = 82()) = (Se(t) = So() |z

For the simulation study the LinStatABC function of the RBT/TCSC package available
on github (https://github.com/LTTGH/RBT4TCSC.git) has been adapted.


https://github.com/LTTGH/RBT4TCSC.git
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Tests based on regression models

Many of the following models are based on modeling the hazard function as

A(t) = Mo(t) exp(BX).

As elaborated in Section 2.3.2 the Cox model leaves the baseline hazard function A\o(t) com-

pletely unspecified and the coefficients 5 are estimated via the partial likelihood approach.

There are various approaches to extend or generalize the standard Cox model by specifying

a baseline hazard function, introducing a function to weigh the observations or allowing the

covariates or coefficients to vary with time. In addition, other alternatives are considered

that model either the cumulative hazard function or the failure time directly.

(R1)

(R2)

Average hazard ratio test (AHR):
The AHR is obtained by introducing a weight function w(t) to weigh the contributions
to the log partial likelihood and derive the weighted maximum likelihood estimates as

solutions to the weighted score equations

=0.

A 2= (> )z exp(Bay)
2wt (7= S S ) exp(Ba)

5(t)
Scens (t) ’
of censoring weighting is used to compensate the attenuation in observed events due to

Schemper et al. (2009) proposed to use w(t) = where the inverse probability
carlier censoring. The MLE 3 is then an estimator of the average hazard ratio (AHR)
and inference of the null hypothesis Hy: 5 = 0 which is equivalent to the global null

HglObaI can be made by Wald-type tests for which robust estimators for the

hypothesis
variance of B are available. This approach is implemented in the corphw function in
the corphw package in R (Dunkler et al., 2018).

Landmark test:

The landmark model considers only events after a prespecified assumed landmark time
tLandmark Dy resetting the origin to this time, i.e. only observations with ¢; > t[andmark

are considered with observed time #; = t; — tLandmark- Based on this transformed data

the usual inference is made with the Wald test of the Cox model targeting the local null
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(R3)

(R4)

hypothesis that the survival distributions are equal beyond the Landmark timepoint
Hlandmark. g (4) = Sp(t) for all t > tLandmark-
Time-dependent treatment effect test (CoxTD):
If it can not be assumed that the effect of X is constant over time, one can employ
a time-varying effect 5(¢). by adding an interaction between X and log(t + 1) which
yields the model

A(t) = Ao(t) exp(B1 X + B2 log(t + 1) X).

This then becomes a model with a time-dependent coefficient 5(t) = 51 + B2 log(t + 1)
which can be estimated using the partial likelihood approach. The resulting estimator
B(t) = B+ B log(t + 1) represents the time-dependent logarithmic hazard ratio. In
this time-dependent Cox model inference can be made by using the likelihood ratio
test to test the null hypothesis Hy: (f1, 52) = 0 which is equivalent to the global null
hypothesis HglObal. This can be done in R by using the time-transform functionality of
the cozph function in the survival package (Therneau, 2023).

Piecewise exponential (lag) model test (PWExp, PWExpLag):

For the piecewise exponential models one assumes that given a partition of the time
interval 0 = tg < t; < ty = oo, the baseline hazard is constant within the interval

[ti—1,t;) (j =1,2). The resulting model is then given by

At) = (ZQ: Ajl(tj—1 <t < tj)) exp(BX)

which is fully parametric. An estimate of the treatment effect /3 can hence be obtained
by usual maximum likelihood methods and inference can be made with Wald-type tests
to assess the global null hypothesis H§10bal. Additionally, a lagged piecewise exponential
model, which only considers events after a prespecified assumed lag time t},, by resetting
the origin to this time, is considered, assessing the same null hypothesis as the Landmark
model, i.e. HEandmark: G () = Sp(t) for all t > t,e. It is implemented in the pchreg

function in the eha package in R (Brostrom, 2020).
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(R5)

Additive hazard model test(Aalen):

The Aalen additive model assumes that the hazard function A(¢) can be expressed as

Estimators for the cumulative coefficient B(t) = [f B(s)ds can be obtained by a least
squares approach making use of the counting process formulation as shown by Scheike
and Martinussen (2006, Chapter 5). It has been shown that these estimators are asymp-
totically normal and hence inference on the global null hypothesis H§1°bal can be made
using the Wald test. This approach is implemented in R in the aalen function in the
timereg package (Scheike and Martinussen, 2006).

Royston/Parmar spline model test (RP.PH/RP.TD):

Royston and Parmar (2002) proposed to model the logarithmic cumulative hazard func-

tion using restricted cubic splines

s(log(t)|v, k) = vo0 + 71 log(t) + yov1(log(t)) + ... + vrvr—1(log(t)),

with a prespecified number of knots k and where 7, . . ., 7% denote the spline coefficients
and vj(z) the j-th basis function. They found that ky = 4 knots are sufficiently flexible

which results in the following PH model

log(A(t)) = 70 + 71 log(t) + v2v1(log(t)) + v3v2(log(t)) + yavs(log(t)) + BX.

If again the treatment effect can not be assumed to be independent of time, the spline
coefficient y; can be modelled to depend on treatment X, i.e. v = v1(X) = y10+711X.
To assess the global null hypothesis HglObal which is equivalent to Hy: 5 = 0 in the PH
model and to Hp: (8,711) = 0 in the time-dependent model a likelihood ratio test is
used. This functionality is implemented in the flexsurvspline function in the flexsurv
package (Jackson, 2016).

Accelerated failure time model test (AFT):

The (semi-)parametric accelerated failure time models pose a well-known alternative to

the Cox model and the effect of the covariates is assumed to accelerate or decelerate
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the time to event relative to a baseline distribution Sy, which yields the model
S(t)X) = Sp(tePX).

In case of the semiparametric AFT model the distribution of Sy is left unspecified
and two different approaches have been developed to tackle this problem. The first
approach is based on another commonly used reformulation of the model in terms of
the logarithmic failure time

log(T) = X +«.

Based on this formulation the least squares approach of classical linear regression was
extended to time-to-event analysis by incorporating censoring. This was first done by
Miller (1976) and later by Buckley and James (1979) and many other authors.

The second approach is based on the hazard which can be expressed as
At X) = Ao(tePX)ePX.

Inference on 3 is then based on a partial likelihood similar to the Cox model, but can
also be motivated by classical testing theory (Tsiatis, 1990).

For the fully parametric approach one assumes different distributions for Sy (e.g. Weibull,
exponential) resulting in AFT Wei, AFT exp, etc. These parametric models are all con-
sidered in the simulations and for inference the Wald test is used to assess the global
null hypothesis H§1°bal.

These methods are implemented in the survreg function in the survival package (Th-

erneau, 2023).

Other tests

This section comprises all methods that cannot be subsumed under the previous sections.

(O1) Milestone test based on the Nelson-Aalen estimator (MileNA):
This Milestone survival test also assesses the null hypothesis H)" !¢ but based on Nelson-

Aalen estimates of the cumulative hazard rates at a fixed timepoint ¢3. Together with
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(03)

the variance of the Nelson-Aalen estimator (2.3.1) the test statistic is then

Axa.c(to) — Axa g (to)
\/\//va\I'[[A\NAc(to)] + @[ANA,E(tO)]

Zna(to) =

)

which is asymptotically standard normal distributed under the null hypothesis. The
estimated difference of cumulative hazard rates at ¢ty can be translated into a ratio of
survival proportions by exploiting the relationship S(t) = exp(—A(t)) as
A A Sna,k(to)
exp (Ana,c(to) — Anae(to) ) = =———.
( ) Sna,c(to)
Linear and Quadratic combination test (LLRNA, QLRNA):
Logan et al. (2015) proposed a combination test by decomposing the global null hy-

pothesis into two subhypotheses and applying a test to each test statistic. Their de-

composition of the global null hypothesis is
{H()l: SE(to) = Sc(t(])} N {H()QZ )\E(t) = Ac(t),t > to}.

Now the first subhypothesis is tested using the Milestone survival test based on Nelson-
Aalen estimates and for the second subhypothesis the logrank test left truncated at

to, i.e. the integration in (2.2) starting at ¢, is used. Denoting the standardized test

Zna(to)+ZLr(to)

7 and a

statistic of the latter with Zpr(t9) both a linear combination
quadratic combination Z% 4 (to) + Z# p(to) were proposed. The former is asymptotically
standard normally distributed under Hy; and the latter is X% distributed under Hys.
To quantify the survival differences the effects for both subhypotheses can be used.
Checking PH approach test (CheckPH):

Campbell and Dean (2014) proposed a two-stage approach to assess the global null

hypothesis H, §1°ba1:

o Test the PH assumption using Grambsch-Therneau (GT) test, which was intro-
duced in section 2.3.2, at level agr
o If GT is not significant use Cox, otherwise CoxTD, to test for a treatment effect

at level o = 0.05.
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(04)

(05)

(06)

The performance of this approach depends on the choice of agy, which for this sim-
ulation was taken to be 0.05. This is expected to lead to an inflated type I error due
to multiple testing, and Campbell and Dean (2014) suggest that this can be remedied
by a permutation test approach. However, this was not implemented in the simulation
study as permutational approaches lead to a substantial increase of run-time which was
not feasible.

Joint test (jointTest):

Royston and Parmar (2014) proposed a joint test to assess the global null hypothesis
HglObal as the sum of the Grambsch-Therneau test statistic and the Cox test statistic.
They investigated that these two test statistics are independent and hence the joint test
is x? distributed with 2 degrees of freedom.

Combined test (combTest):

In a later paper Royston and Parmar proposed another test to assess the global null
hypothesis Hogk)baLl called the combined test (Royston and Parmar, 2016). This test is
based on the maximum RMST which was described in the Kaplan-Meier based methods
section. However, instead of calculating the p-value (pperm) by @ permutation approach
an approximation based on the naive x? p-value (pmax) of the maximum RMST is used.
Fitting a Box-Tidwell model they derived the formula

Pperm = 1.762p%3% — 0.802p2547.

max

In a next step this p-value is combined with the p-value from a Cox model (pcox) by
taking the minimum ppin, = min(pPperm, Pcox). Finally, the null distribution of ppin is
approximated by a Beta distribution yielding the final p-value pcomb = FBeta(1,1.5) (Pmin)
Cauchy changepoint test (CauchyCP):

Zhang et al. (2021) proposed the CauchyCP method. This method is based on the single
changepoint Cox model, which assumes that the effect of treatment is time dependent
and changes at a pre-specified changepoint t*, i.e. [(t) = Bi1ljgp)(t) + B3 11 o0 (F)-
For the CauchyCP test one combines multiple such single changepoint Cox models as

follows:

(a) For prespecified timepoints t7,...,t* , fit a single changepoint model with change-

point ¢}
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(b) To test the null hypothesis that 8 = £ = 0 which is equivalent to the global
null hypothesis H§10bal perform a likelihood ratio test. The p-value of the test
corresponding to changepoint ¢; is denoted with p;.

(¢c) An omnibus test statistic is constructed using the Cauchy combination method
as CCP = L7 tan(m(0.5 — p;)) and the final p-value is then calculated as
pccp = 0.5 —arctan(CCP) /7.

Zhang et al. note that specifying too many candidate changepoints without prior knowl-

edge might lower statistical power and suggest to use t] = 0 and the 25th, 50th and
75th percentiles of the event times. This method is implemented in the CauchyCP

package in R (Zhang, 2022).

Table 3 summarizes the methods that were introduced above.
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Table 3: Structured overview of all methods used in this thesis and their abbreviations

Class No. Abbreviation Name
B1 Logrank logrank test
Basic
B2 Cox Cox model test
W1 G(p,v) Fleming-Harrington test
W2 G(-1,0) Gray-Tsiatis test
W3 MWLRT modestly weighted logrank test
W4 Thres/GenLin threshold test or generalized linear lag test
Weighted
W5 GB Gehan-Breslow test
logrank
W6 ™ Tarone-Ware test
tests
W1 PP/mPP (modified) Peto-Peto test
W8 asymLR asymptotic logrank test
W9 Logit/mLogit (modified) logit test
W10 MERT maximin efficiency robust test
C1 YP adaptively weighted logrank test
C2 MaxCombo maximum combination of weighted logrank tests
C3 mMaxCombo modified MaxCombo test
C4 Zm3 Zm3 test
Combinations Cb5 mZm3 modified Zm3 test
of weighted ~ C6 Leel/Lee2/Lee3 versatile tests by Lee
logrank c7 mLee2/mLee3 modified versatile tests by Lee
statistics C8 ProjTest projection test
C9 mScore modified score test
C10 Vo approximation of MERT
C11 ParGroup partially grouped logrank test
C12 KS LR/FH/GB/Cheng Kolmogorov-Smirnov tests based on the logrank

/ Fleming-Harrington / Gehan-Breslow / Cheng

test statistic
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Class No. Abbreviation Name
K1 Mile/MileCLL milestone survival test
Kaplan-
K2 WKM weighted Kaplan-Meier test
Meier
K3 RMST restricted mean survival time test
based tests
K4 ABC area between curves test
R1 AHR average hazard ratio test
R2 Landmark landmark test
Tests based
R3 CoxTD time-dependent treatment effect test
on
R4 PWExp/PWExpLag  piecewise exponential (lag) model test
regression
R5 Aalen additive hazard model test
models
R6 RP.PH/RP.TD Royston-Parmar spline model test(PH or time-
dependent)
R7 AFT accelerated failure time model test
01 MileNA milestone test based on Nelson-Aalen estimator
02 LLRNA/QLRNA linear and quadratic combination test
03 CheckPH checking PH approach
Other tests
04 jointTest joint test by Royston and Parmar
05 combTest combined test by Royston and Parmar
06 CauchyCP Cauchy changepoint test
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2.4 Design of the simulation study

As outlined in the previous section, a plethora of methods exists to analyze time-to-event
data some of which are specifically tailored to handle non-proportional hazards and some are

not. Although not all methods are tailored to target the global null hypothesis
HEP: So(t) = Sp(t) for all ¢,

their individual null hypothesis is a superset or implication of it, e.g. the null hypothesis
H)e: So(tg) = Sg(tg) for tg > 0 of the Milestone methods. Hence, the rejection of these
individual null hypotheses can be seen as a surrogate for the rejection of H§10bal, so that in
the simulation study the control of type I error and the influence of the delayed onset of
the treatment effect on the power of testing this global null hypothesis can be investigated.
The simulation study is planned in accordance with the ADEMP structure as introduced by
Morris et al. (2019) and to ensure transparency a simulation plan was published in advance on
zenodo.org (Behnisch, 2023). The acronym ADEMP stands for the five aspects that should
be covered in the description of a simulation study: Aims, Data-generating mechanisms,
Methods, Estimands and Performance measures. The next sections describe the ADEMP
structure for the examination of power and type I error of the methods. Here, the structure
of the simulation study to assess the power is described first since the scenarios of the data-
generating mechanisms for the type 1 error are deduced from the scenarios considered for the

assessment of the power.

2.4.1 Assessment of Power
In the following the ADEMP structure of the power assessment is described in detail.
Aim

To systematically assess the power of the different methods in settings with a delayed treat-

ment effect and investigate how the duration of the delay impacts the power of the method.

Data-generating mechanism

For the data-generating mechanism the following parameters were chosen:
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As can be seen from results of clinical trials in the field of immuno-oncology the study
duration and accrual is quite heterogeneous. For example in the CHECKMATE 078
trial patients were enrolled for 12 months (December 2015 to November 2016) and the
database was locked on October 27, 2017, so that the total duration of the study was
23 months and hence the proportion of accrual on the study duration was approx. 50%.
In contrast the CHECKMATE 067 trial enrolled patients for 9 months (July 3, 2013 to
March 31, 2014) but had a total study duration of 58 months (database lock on May
10, 2018) giving proportion of approx. 16% if the accrual on the total study duration.

To take this into account the study duration was taken to be
T =12,24,48,60 months

Uniform accrual over the interval [0, a], where a is expressed as fraction of the total

study duration 7, i.e. a = acc -7 where acc € {0.2,0.4}.

The delayed treatment effect occurs with a delay of t5 = lag, -7, where lag, € {0,0.1,0.2,0.3,0.4}.
The hazard ratio 8 of the full treatment effect varies 8 = 0.5,0.6,0.7,0.8

The hazards Ao (t) and Ag(t) of the control and experimental arm, respectively, can be

expressed in terms of a general lag model, i.e.

Ap(t) = [L=1(t) + 0L(t)]Ac(?),

with a monotone non-decreasing lag function 0 < I(¢) < 1. The lag function is taken to

represent the following three delay patterns:

— Threshold lag with a change point t*: I(t) = I(t > t*),
— Linear lag with change point t*: I(t) = £1(t < t*) + I( ) or
— Generalized linear lag with change points 1, ¢5: [(t) = t* t* Ity <t<ty)+I(t>
t3).
It can easily be seen that the linear lag and the threshold lag are contained in the
generalized linear lag pattern by choosing ¢] = 0 or ¢} = t3, respectively. The change

point t] will be chosen as proportion of the lag ¢35, meaning

t1 = lag; -t5, with lag; € {0.3,0.7,1}.
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e The distribution of survival times in the control group is chosen to be Weibull dis-

tributed Wei(A¢, ko) with shape parameter k¢ reflecting the following types of hazards:
— decreasing hazard: ko = 0.5
— constant hazard (exponential): ko =1
— (linearly) increasing hazard: ko = 2
and scale parameter A¢ chosen in dependence on the aspired median survival times.
Since the observed median survival times in the control arms of the above mentioned
CHECKMATE trials ranges from 2.3 to 4.2 months in PFS and from 5.1 to 19.9 months

in OS, we considered median survival times of

mede = 5,15,20

(In(2))!/*c

and calculated the scale parameter as Ao = =~ i

To calculate the total number of scenarios one has to keep in mind that if t5 = 0, i.e. no
delay is assumed, there will also be no changepoint present and hence ¢t] = 0. Thus the total
number of simulated scenarios described above will be 4-2-4-4-3-3-3+4-2-4-3-3 = 3744.

For this thesis it is assumed that only administrative censoring is present in the data.
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Sample size calculation

To set a benchmark for the analysis sample size calculation was performed using the rpact
package based on the sample size calculation method by Schoenfeld (Wassmer and Pahlke,
2023). In case of PH scenarios this yields the necessary sample size to achieve a power of

80% based on the full effect 9.

In case of NPH scenarios two different strategies for sample size calculation were investigated

based on different calculations of the following overall treatment effect:

« the naive average effect 2 [ igg; dt

 the average effect % o ig Eg Sp(t)dt based on the pooled survival function in both arms,

ie. Sp(t) = 2(Sp(t) + Sc(t))

Examples of the resulting effect sizes are displayed in Figures 9, 10 and 11, where the first
plot illustrates the behavior in case of decreasing hazards (k¢ = 0.5), the second plot in case
of constant hazards (k¢ = 1) and the last plot in case of increasing hazards (k¢ = 2). For all
three plots a study duration of 7 = 24 months, a maximum effect of # = 0.5 and a median

survival of medc = 15 months in the control arm was assumed.

£0=e

0= 2Be|

0 5 10 15 20 25 0 5 10 15 20 2% 0 5 10 15 20 25

Figure 9: Aweraged treatment effects in gray for a scemnario with decreasing hazard, a study
duration of 24 months and a median survival of 15 months in the control arm (naive average
HR = dashed, average HR = dotted). Black lines represent the survival curves in the experi-
mental (dashed) and control arm (solid) and the red line represents the hazard ratio.
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Figure 10: Awveraged treatment effects in gray for a scenario with constant hazard, a study
duration of 24 months and a median survival of 15 months in the control arm (naive average
HR = dashed, average HR = dotted). Black lines represent the survival curves in the experi-
mental (dashed) and control arm (solid) and the red line represents the hazard ratio.
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Figure 11: Awveraged treatment effects in gray for a scenario with increasing hazard, a study
duration of 24 months and a median survival of 15 months in the control arm (naive average
HR = dashed, average HR = dotted). Black lines represent the survival curves in the experi-
mental (dashed) and control arm (solid) and the red line represents the hazard ratio.

Based on this average hazard ratio the necessary number of observations ng,s needed to

achieve a power of 80% was then again calculated using the Schoenfeld formula and assuming
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proportional hazards. As these exemplary plots suggest, the calculation based on the average
effect led to higher sample sizes than for the naive average approach in a majority of scenarios
(2713/3744 ~ 72%) and only in cases with increasing hazards (k¢ = 2) the sample size was
smaller (734/3744 ~ 20%). The calculated sample size based on the naive average hazard
ratio approach ranged from 66 to 13604 whereas the sample size for the average hazard ratio

approach reached up to 6.9 - 1012,

As the power in time-to-event analyses is mainly driven by the number of events it had to
be expected that the sample size is high in scenarios with a combination of a short study
duration and a big median survival in the control group as only a little proportion of subjects
will have an event during the short observation period. In case of the average hazard ratio
the converse was also unfavorable for the sample size calculation. Here, a long study duration
combined with a short median survival in the control group, which results in a fast declining
pooled survival curve, leads to an downweighting of later timepoints and hence the average
hazard ratio is shifted more towards the early effect which for the delayed treatment effect

scenarios is the null effect.

As the sample sizes based on the average hazard ratio approach tend to be much bigger or
even computationally not feasible in some scenarios and the focus of this simulation is not
the compensation of power loss but the comparison of the power of different methods, the

simulation study is based on the naive average effect.

Sample size calculation in PH scenarios

Based on the structure of the data-generating process the PH scenarios correspond to the
scenarios where neither a delay nor a lag is present, i.e. lag, = lag; = 0. This results
in a total of 288 scenarios. First the Schoenfeld formula calculates the number of events
(Nevents) Necessary to detect the assumed treatment effect. In the next step the distributional
assumption is exploited to calculate the number of observations (n,ps) needed to observe the
necessary number of events. Hence the results of the sample size calculation are split into

four tables, one for each assumed treatment effect 8 and shown in tables 4, 5, 6 and 7.
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Table 4: Sample size for PH scenarios with a hazard ratio of 0.5 to achieve a power of
80%. medc = median survival in control arm, acc = accrual proportion, ko = Weibull shape
parameter in control arm, Nevents = number of events, nops = number of observations, T =
overall study duration

Tlobs 10T Tgbs fOor  ngps for  ngps for

medc  acc ko Mevents =12 =924 T = 48 7 =60

) 0.2 0.5 66 126 104 88 84
5 04 0.5 66 132 108 90 86
15 0.2 05 66 188 146 116 108
15 04 0.5 66 198 152 120 112
20 0.2 0.5 66 210 162 126 118
20 04 05 66 222 168 132 124
5 0.2 1.0 66 102 76 68 68
5 04 1.0 66 108 80 70 68
15 0.2 1.0 66 214 128 88 82
15 04 1.0 66 236 140 94 86
20 0.2 1.0 66 272 156 102 92
20 0.4 1.0 66 302 172 108 96
5 02 20 66 76 66 66 66
5 04 20 66 82 66 66 66
15 0.2 20 66 280 104 68 66
15 0.4 2.0 66 342 120 72 68
20 0.2 20 66 468 148 76 70

20 04 20 66 o976 176 82 72
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Table 5: Sample size for PH scenarios with a hazard ratio of 0.6 to achieve a power of
80%. medc = median survival in control arm, acc = accrual proportion, ko = Weibull shape
parameter in control arm, Nevents = number of events, nons = number of observations, T =
overall study duration

A
9 0.2 0.5 121 220 180 154 148
5 04 0.5 121 230 186 158 152
15 0.2 0.5 121 326 252 202 190
15 04 0.5 121 342 264 210 196
20 0.2 0.5 121 364 280 220 206
20 04 0.5 121 384 292 230 214
5 0.2 1.0 121 176 136 124 122
5! 04 1.0 121 190 142 124 122
15 0.2 1.0 121 370 224 156 144
15 04 1.0 121 408 242 164 150
20 0.2 1.0 121 470 272 176 160
20 04 1.0 121 520 298 190 168
5} 0.2 20 121 134 122 122 122
5 04 20 121 144 122 122 122
15 0.2 20 121 486 182 124 122
15 04 20 121 992 208 128 122
20 0.2 2.0 121 808 258 134 124
20 04 20 121 994 306 144 130
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Table 6: Sample size for PH scenarios with a hazard ratio of 0.7 to achieve a power of
80%. medc = median survival in control arm, acc = accrual proportion, ko = Weibull shape
parameter in control arm, Nevents = number of events, nops = number of observations, T =
overall study duration

Tlobs 10T Tgbs fOor  ngps for  ngps for

medc  acc ko Mevents =12 =924 T = 48 7 =60

) 0.2 05 247 430 354 304 292
) 0.4 0.5 247 448 366 312 298
15 0.2 05 247 632 492 396 372
15 0.4 0.5 247 664 514 410 384
20 0.2 05 247 708 544 430 402
20 04 05 247 744 570 448 418
) 0.2 1.0 247 348 272 250 248
) 04 1.0 247 372 280 252 250
15 0.2 1.0 247 720 436 306 284
15 04 1.0 247 794 474 324 296
20 0.2 1.0 247 910 530 348 314
20 0.4 1.0 247 1010 o978 372 332
) 0.2 20 247 268 248 248 248
5) 0.4 2.0 247 288 248 248 248
15 0.2 2.0 247 942 356 250 248
15 04 20 247 1146 408 258 250
20 0.2 2.0 247 1564 502 268 252

20 04 2.0 247 1922 594 288 262
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Table 7: Sample size for PH scenarios with a hazard ratio of 0.8 to achieve a power of
80%. medc = median survival in control arm, acc = accrual proportion, ko = Weibull shape
parameter in control arm, Nevents = number of events, nons = number of observations, T =
overall study duration

Tlobs 10T Mgbs fOor  ngps for  ngps for
medeace ko Mevems ' yp 194 r—_4g =G0
5 0.2 05 631 1056 872 754 728
5 04 05 631 1098 900 772 744
15 0.2 05 631 1540 1202 970 914
15 04 05 631 1614 1254 1006 946
20 0.2 05 631 1720 1328 1056 988
20 04 05 631 1808 1388 1098 1026
5 0.2 1.0 631 858 680 636 632
5 04 1.0 631 914 702 638 634
15 0.2 1.0 631 1748 1070 760 710
15 04 1.0 631 1926 1158 800 738
20 0.2 1.0 631 2210 1292 858 780
20 04 1.0 631 2448 1410 914 822
5 0.2 20 631 672 632 632 632
5 04 20 631 718 632 632 632
15 0.2 20 631 2284 876 636 632
15 04 20 631 2776 1002 650 636
20 0.2 20 631 3786 1226 672 640
20 04 20 631 4650 1450 718 660
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Sample size calculation in NPH scenarios

The naive average hazard ratio fnaive is obtained by integrating the assumed general linear

lag model function, i.e.

— 1 7—/\E(t) 1/7
enaivezf dtzf 1—lt +9lt dt
v e M ORY0)
1 T t_ *
:—/ [1+(9—1)(* l*I(t’{<t<t’2‘)—|—I(t>t’§)>]dt
—1 [t ¢ — ¢ —1 /7
14! /” gy ? dt
T t; t2_t1 T t;
L b-nm-n  0-nr-1n)
2T T

Hence the calculation of the naive average hazard ratio depends on the maximum effect 6, the
delay t5 and the changepoint ¢]. As the delay and changepoint are expressed as proportions
of the overall study duration 7 the naive average hazard ratio is independent of it. The
sample size was then calculated with the Schoenfeld formula based on this naive average
hazard ratio for all 3456 NPH scenarios. The results are summarized in the following Tables
8, 9 and 10 for decreasing, constant and increasing hazards, respectively. In these tables for
each combination of 0, t5 and ¢] the naive average hazard ratio and the number of events are
presented. The resulting sample sizes are then summarized per study duration and only the
range of sample sizes over median survival mede and accrual proportion acc is given.

Table 8: Results of the sample size calculation based on the naive average hazard ratio énaive
in NPH scenarios with decreasing hazard. 6 = mazimum treatment effect, lagy = delay

proportion, lag; = changepoint proportion, Nevents = number of events, ngns = number of
observations, T = overall study duration

_ Tobs fOT Tlobs fOT Tlobs fOT Tobs for
0 lagg lagl Hnaive Nevents
T=12 T=24 T =48 7 =60

0.5 01 03 0.5325 80 150 - 262 122 - 200 104 - 156 100 - 146
0.5 01 0.7 0.5425 84 158 - 276 130 - 212 110 - 166 106 - 154
05 01 1.0 0.5500 88 166 - 288 136 - 220 114 - 172 110 - 160
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_ Nobs 10T Nobs 10T Nobs 10T Nobs 10T

0 lagy lag; Onaive Mevents
T=12 T=24 T =48 T =60

0.5 02 03 0.5650 97 180 - 314 148 - 240 126 - 188 120 - 174
0.5 02 07 0580 110 202 - 350 166 - 268 140 - 210 134 - 196
0.5 02 1.0 0.6000 121 220 - 384 180 - 292 154 - 230 148 - 214
0.5 03 03 05975 119 218 - 378 178 - 288 152 - 226 146 - 210
0.5 03 0.7 0.6275 145 262 - 454 214 - 346 182 - 272 176 - 254
0.5 03 10 0.6500 170 302 - 524 248 - 400 212 - 314 204 - 294
0.5 04 03 06300 148 266 - 460 218 - 352 186 - 276 178 - 258
0.5 04 0.7 06700 196 346 - 600 284 - 458 244 - 360 234 - 336
0.5 04 1.0 07000 247 430 - 744 354 - 570 304 - 448 292 - 418
0.6 01 03 06260 144 258 - 448 212 - 344 182 - 270 174 - 252
0.6 01 0.7 06340 152 272 - 472 224 - 360 190 - 284 184 - 264
06 01 10 0.6400 158 284 - 490 232 - 376 198 - 294 190 - 274
0.6 02 03 06520 172 306 - 530 252 - 406 216 - 320 206 - 298
0.6 02 0.7 0668 193 342 - 590 280 - 452 240 - 356 230 - 332
0.6 02 10 0.6800 212 372 - 642 306 - 492 262 - 388 252 - 360
06 03 03 0.6780 208 366 - 634 302 - 484 258 - 382 248 - 356
0.6 03 07 07020 251 438 - 754 360 - 578 308 - 456 296 - 424
0.6 03 1.0 0.7200 291 504 - 868 414 - 664 356 - 524 342 - 488
0.6 04 03 07040 255 444 - 766 366 - 586 314 - 462 302 - 432
0.6 04 0.7 0.7360 335 574 - 988 472 - 758 408 - 598 392 - 558
06 04 1.0 0.7600 417 710 - 1218 584 - 934 504 - 738 486 - 688
0.7 01 03 07195 290 502 - 864 412 - 662 354 - 522 342 - 486
0.7 01 0.7 07255 305 526 - 906 434 - 694 372 - 548 358 - 510
0.7 01 10 07300 317 546 - 940 450 - 720 386 - 568 372 - 530
0.7 02 03 07390 344 590 - 1014 486 - 776 418 - 612 402 - 572
0.7 02 07 07510 383 654 - 1124 538 - 862 464 - 680 448 - 634
0.7 02 10 07600 417 710 - 1218 584 - 934 504 - 738 486 - 688



2.4. Design of the simulation study

67

6 lag, lag, B e Nobs for Nobs for Nobs for Nobs for
T=12 T=24 T =48 T =160

0.7 03 03 0.7585 411 700 - 1202 576 - 922 498 - 728 480 - 680

0.7 03 0.7 0.7765 491 830 - 1422 684 - 1092 590 - 862 570 - 806

0.7 03 1.0 0.7900 566 950 - 1628 784 - 1250 678 - 988 654 - 922

0.7 04 03 0.7780 499 842 - 1442 694 - 1108 600 - 876 578 - 818

0.7 04 0.7 0.8020 645 1078 - 1846 892 - 1418 772-1122 744 -1048
0.7 04 1.0 0.8200 798  1324-2264 1096 - 1740 950 - 1376 916 - 1286
08 0.1 03 0.8130 733 1220-2086 1010- 1604 874 - 1268 844 - 1186
0.8 0.1 0.7 0.8170 769 1278 -2186 1058 - 1680 916 - 1330 884 - 1242
0.8 0.1 1.0 0.8200 798  1324-2264 1096 - 1740 950 - 1376 916 - 1286
0.8 0.2 0.3 0.8260 860 1424 - 2432 1180 - 1870 1022 - 1480 986 - 1384
0.8 0.2 0.7 0.8340 953 1576 - 2688 1304 - 2066 1132 - 1638 1092 - 1530
0.8 0.2 1.0 0.8400 1033 1704 -2906 1412 - 2234 1224-1770 1182 - 1656
0.8 03 0.3 0.8390 1019 1682-2868 1392 -2206 1208 - 1748 1166 - 1634
0.8 0.3 0.7 0.8510 1207 1982- 3376 1644 - 2598 1426 - 2060 1378 - 1926
0.8 03 1.0 0.8600 1381 2260 - 3848 1876 - 2962 1630 - 2348 1574 - 2196
0.8 04 0.3 0.8520 1224 2010 - 3424 1666 - 2634 1448 - 2088 1398 - 1954
0.8 04 0.7 0.8680 1567 2558 - 4352 2124 - 3350 1846 - 2658 1784 - 2486
0.8 04 1.0 0.8800 1922 3124 - 5310 2596 - 4090 2258 - 3246 2182 - 3036
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Table 9: Results of the sample size calculation based on the naive average hazard ratio Opaive in
NPH scenarios with constant hazard. 0 = mazimum treatment effect, lagy = delay proportion,
lag, = changepoint proportion, Nevents = number of events, nons = number of observations,
7 = overall study duration

_ Nobs 10T Nobs 10T Nobs 10T Nobs 10T
0 lagy  lag;  Onaive  Tevents
T=12 T=24 T =48 7T =60

05 01 03 0.5325 80 120 - 356 92 - 204 82 - 128 80 - 114
0.5 01 0.7 0.5425 84 128 - 376 96 - 214 86 - 136 86 - 122
0.5 0.1 1.0 0.5500 88 132 - 392 102 - 224 90 - 142 90 - 126
05 02 0.3 0.5650 97 144 - 426 110 - 244 100 - 154 98 - 138
0.5 02 0.7 0.5850 110 162 - 478 124 - 272 112 - 174 110 - 154

0.5 0.2 1.0 0.6000 121 176 - 520 136 - 298 124 - 190 122 - 168
05 03 03 05975 119 174 - 514 134 - 294 122 - 186 120 - 166
0.5 03 0.7 0.6275 145 210 - 616 162 - 352 148 - 224 146 - 200
0.5 03 1.0 0.6500 170 244 - 712 188 - 406 172 - 260 170 - 232
05 04 03 06300 148 214 - 626 164 - 358 150 - 228 148 - 204

05 04 0.7 06700 196 280 - 814 216 - 466 198 - 298 198 - 266
05 04 1.0 07000 247 348 - 1010 272 - 578 250 - 372 248 - 332
06 01 03 06260 144 208 - 610 160 - 348 146 - 222 144 - 198
06 01 0.7 06340 152 218 - 642 170 - 366 154 - 234 152 - 210
06 01 10 0.6400 158 228 - 666 176 - 382 160 - 244 160 - 218

06 02 03 06520 172 246 - 720 192 - 412 174 - 264 174 - 236
0.6 02 0.7 0668 193 276 - 802 214 - 460 196 - 294 194 - 264
0.6 02 1.0 0.6800 212 300 - 872 234 - 500 214 - 320 212 - 286
06 03 03 0678 208 296 - 860 230 - 492 212 - 316 210 - 282
0.6 03 0.7 07020 251 354 - 1024 276 - 588 254 - 376 252 - 338

06 03 10 07200 291 406 - 1178 318 - 676 294 - 434 292 - 390
06 04 03 07040 255 358 - 1040 280 - 596 258 - 382 256 - 342
06 04 07 07360 335 464 - 1340 364 - 770 338 - 496 336 - 444
06 04 1.0 07600 417 574 - 1652 452 - 950 420 - 612 418 - 550
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_ Nobs 10T Nobs 10T Nobs 10T Nobs 10T

0 lagy  lag;  Onaive  Tevents
T=12 T=24 T =48 7 =60

0.7 0.1 0.3 0.7195 290 406 - 1172 318 - 672 294 - 432 292 - 388
0.7 0.1 0.7 0.7255 305 426 - 1230 334 - 706 308 - 454 306 - 408
0.7 0.1 1.0 0.7300 317 442 - 1276 346 - 732 320 - 472 318 - 422
0.7 0.2 0.3 07390 344 476 - 1374 374 - 790 346 - 508 346 - 456
0.7 0.2 0.7 0.7510 383 530 - 1524 416 - 876 386 - 564 384 - 506
0.7 0.2 1.0 0.7600 417 574 - 1652 452 - 950 420 - 612 418 - 550
0.7 03 0.3 0.7585 411 566 - 1630 446 - 936 414 - 604 412 - 542
0.7 03 0.7 07765 491 672 - 1928 532 - 1110 494 - 716 492 - 644
0.7 03 1.0 0.7900 566 770 - 2204 610 - 1270 570 - 822 568 - 738
0.7 04 0.3 07780 499 682 - 1956 540 - 1126 502 - 728 500 - 654
0.7 04 0.7 0.8020 645 876 - 2502 696 - 1442 650 - 934 646 - 840
0.7 04 1.0 0.8200 798 1078 - 3064 858 - 1768 802 - 1148 800 - 1034
0.8 0.1 0.3 0.8130 733 992 - 2826 788 - 1630 738 - 1056 734 - 952
0.8 0.1 0.7 08170 769 1040 - 2960 826 - 1706 774 - 1108 770 - 998
0.8 0.1 1.0 0.8200 798 1078 - 3064 858 - 1768 802 - 1148 800 - 1034
0.8 0.2 0.3 0.8260 860 1158 - 3294 924 - 1900 864 - 1234 862 - 1112
0.8 0.2 0.7 0.8340 953 1282 - 3638 1022 - 2100 958 - 1366 956 - 1230
0.8 0.2 1.0 0.8400 1033 1388-3932 1108 -2272 1038 - 1476 1036 - 1332
0.8 0.3 0.3 0.8390 1019 1368 - 3882 1092 - 2242 1024 - 1458 1022 - 1314
0.8 0.3 0.7 0.8510 1207 1614 - 4568 1292 - 2640 1212- 1718 1208 - 1550
0.8 0.3 1.0 0.8600 1381 1844 - 5206 1476 - 3010 1388 - 1962 1382 - 1770
0.8 04 0.3 0.8520 1224 1638-4634 1310-2678 1230- 1744 1226 - 1572
0.8 04 0.7 0.8680 1567 2088 - 5886 1674 - 3406 1574 - 2220 1570 - 2004
0.8 04 1.0 0.8800 1922 2552 - 7178 2048 - 4156 1930 - 2714 1924 - 2450
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Table 10: Results of the sample size calculation based on the naive average hazard ratio
Onaive in NPH scenarios with increasing hazard. 8 = mazimum treatment effect, lagy = delay
proportion, lag; = changepoint proportion, nevents = number of events, nens = number of

observations, T = overall study duration

_ Nobs for Nobs 10T Nobs 10T Nobs 10T

0 lago  lag;  Onaive  Tevents
T=12 T=24 T =48 T =60
0.5 0.1 0.3 0.5325 80 90 - 682 80 - 210 80 - 98 80 - 88
0.5 0.1 0.7 0.5425 84 96 - 718 84 - 220 84 - 104 84 - 92
0.5 0.1 1.0 0.5500 88 100 - 748 88 - 230 88 - 108 88 - 96
0.5 0.2 0.3 0.5650 97 108 - 814 98 - 250 98 - 118 98 - 106

05 02 0.7 0580 110 122 - 910 110 - 280 110 - 132 110 - 118

0.5 0.2 1.0 0.6000 121 134 - 994 122 - 306 122 - 144 122 - 130
0.5 03 03 05975 119 132 - 980 120 - 302 120 - 142 120 - 128
05 03 0.7 0.6275 145 160 - 1174 146 - 362 146 - 172 146 - 156
0.5 03 1.0 0.6500 170 186 - 1356 170 - 418 170 - 200 170 - 182
0.5 04 03 0.6300 148 162 - 1194 148 - 368 148 - 174 148 - 158

0.5 04 0.7 0.6700 196 214 - 1552 196 - 478 196 - 230 196 - 208
05 04 1.0 07000 247 268 - 1922 248 - 594 248 - 288 248 - 262
06 01 0.3 0.6260 144 158 - 1164 144 - 358 144 - 170 144 - 154
0.6 01 0.7 0.6340 152 166 - 1224 152 - 376 152 - 180 152 - 162
0.6 0.1 1.0 0.6400 158 174 - 1272 158 - 392 158 - 186 158 - 170

0.6 0.2 03 0.6520 172 188 - 1374 172 - 424 172 - 202 172 - 184
0.6 02 0.7 0.6680 193 210 - 1530 194 - 472 194 - 226 194 - 206
0.6 0.2 1.0 0.6800 212 230 - 1662 212 - 514 212 - 248 212 - 224
06 03 03 06780 208 226 - 1640 208 - 506 208 - 244 208 - 222
0.6 03 0.7 07020 251 272 - 1952 252 - 604 252 - 292 252 - 266

06 03 1.0 0.7200 291 314 - 2240 292 - 694 292 - 338 292 - 308
0.6 04 03 07040 255 276 - 1980 256 - 612 256 - 296 256 - 270
06 04 0.7 07360 335 360 - 2550 336 - 792 336 - 386 336 - 352
06 04 1.0 0.7600 417 448 - 3140 418 - 976 418 - 478 418 - 438
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_ TNobs for Nobs for Nobs for Nobs for
0 lago  lag;  Onaive  Tevents
T=12 T=24 T =48 7 =160
0.7 0.1 03 0.7195 290 314 - 2232 290 - 692 290 - 336 290 - 306
0.7 0.1 0.7 0.7255 305 330 - 2342 306 - 726 306 - 352 306 - 322
0.7 0.1 1.0 0.7300 317 342 - 2428 318 - 752 318 - 366 318 - 334
0.7 0.2 03 0.7390 344 370 - 2616 344 - 812 344 - 396 344 - 362
0.7 0.2 0.7 0.7510 383 412 - 2900 384 - 900 384 - 440 384 - 404
0.7 0.2 1.0 0.7600 417 448 - 3140 418 - 976 418 - 478 418 - 438
0.7 0.3 0.3 0.7585 411 440 - 3098 412 - 962 412 - 472 412 - 432
0.7 0.3 0.7 0.7765 491 524 - 3664 492 - 1140 492 - 562 492 - 514
0.7 0.3 1.0 0.7900 566 604 - 4190 566 - 1306 566 - 644 566 - 592
0.7 0.4 03 07780 499 532 - 3718 500 - 1158 500 - 570 500 - 522
0.7 0.4 0.7 0.8020 645 688 - 4752 646 - 1482 646 - 734 646 - 674
0.7 04 1.0 0.8200 798 848 - 5820 798 - 1818 798 - 904 798 - 832
0.8 0.1 0.3 0.8130 733 780 - 5366 734 - 1676 734 - 832 734 - 766
0.8 0.1 0.7 0.8170 769 818 - 5618 770 - 1754 770 - 872 770 - 802
0.8 0.1 1.0 0.8200 798 848 - 5820 798 - 1818 798 - 904 798 - 832
0.8 0.2 0.3 0.8260 860 912 - 6252 860 - 1954 860 - 974 860 - 896
0.8 0.2 0.7 0.8340 953 1010 - 6906 954 - 2160 954 - 1078 954 - 994
0.8 0.2 1.0 0.8400 1033 1094 - 7462 1034 - 2334 1034 - 1166 1034 - 1076
0.8 0.3 0.3 0.8390 1019 1080 - 7364 1020 - 2304 1020 - 1152 1020 - 1062
0.8 0.3 0.7 0.8510 1207 1276 - 8666 1208 - 2714 1208 - 1360 1208 - 1256
0.8 0.3 1.0 0.8600 1381 1460 - 9872 1382 - 3094 1382 - 1554 1382 - 1436
0.8 04 03 0.8520 1224 1296 - 8788 1224 - 2752 1224 - 1380 1224 - 1274
0.8 0.4 0.7 0.8680 1567 1656 - 11160 1568 - 3502 1568 - 1762 1568 - 1628
0.8 0.4 1.0 0.8800 1922 2028 - 13604 1922 - 4272 1922 - 2156 1922 - 1996
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Estimand and Methods

This simulation study is designed to assess the power of the different methods to compare two
groups that were introduced in Section 2.3. Some of these methods require that parameters
for analysis are prespecified and hence different restrictions on the choice of these parameters

must be met:

For the RMST and milestone methods, as mentioned above, the null hypothesis is only a
superset of the global null hypothesis HglObal so that for the scenarios under consideration
in this simulation study, the parameters of these methods must be chosen carefully ensuring
that the scenario is not part of the local null hypothesis. Take for example the threshold lag
scenario with a study duration of 60 months, where the survival functions are equal during
the first 0.4 - 60 = 24 months and then start to diverge. This is a scenario of the global
alternative hypothesis H?Obalz Sc(t) # Sg(t) for some ¢, but when considering the 1-year
or 2-year milestone survival the survival rates are identical and hence it is a scenario under
the local null hypothesis. Hence, for the scenario under consideration to fall under the local
alternative the truncation time 7 and the time point ¢y must be chosen to be bigger than the
changepoint t7. A further restriction is that these methods are based on the Kaplan-Meier
estimator, which poses a practical difficulty since the Kaplan-Meier estimate is only defined
up to the longest observed time if this time is censored. Hence both the truncation time 7 for

the RMST as well as the timepoint ¢y used for rate comparisons must be chosen to be before

the minimum of the last observed times in each treatment group of each simulated dataset.

The Landmark and GenLin methods downweight early events to improve the power to detect
specific alternatives and hence target null hypotheses of the form Hy: Sc(t) = Sg(t) for
all t > ty based on a prespecified timepoint ty. As all scenarios in this simulation study
are scenarios with delayed treatment effect this imposes no restriction on the choice of the
timepoint t3. However, calculation of these methods can be problematic when no or only few
events occur after the timepoint tg so it should be chosen reasonably small. Based on the
choice of tg these methods can appear to be superior to all other methods if the weights chosen
correspond to the true alternative under consideration and it should hence be investigated
whether they are susceptible to parameter misspecification. Now, to take all of this into

account, the following choices have been implemented and are summarized in Table 11.
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« RMST and milestone: As mentioned before for each simulated dataset j = 1,..., Ngim
the truncation time for RMST and the time point for rate comparisons should lie within

the interval (¢%, min (¢’ t )], where ¢/ t denote the maximum observed

max,C Umax,T max,C 'max,T
times in the respective group of dataset j. As the power of the test increases the more
information after the assumed changepoint is taken into account a value was chosen
that was close to the upper limit of all of these ng,, intervals. To do so, for each simu-
lated dataset this upper limit was calculated and the minimum over all datasets of the
same scenario was taken, i.e., the truncation time and milestone time was chosen to be:

. (g j
min <m1n (tmax,C" tmax,T))

J=1,...,nsim

e Landmark analysis: Landmark analysis considers only those individuals who have
survived until a pre-specified landmark time and ignores the data before that time.
Since the survival curves are identical until the change point t], the data before this
time should not contribute to an estimated difference between treatments. Hence, for
the choice of the landmark times in the main analysis the true change point ¢} is used
in scenarios in which a delay exists and 0.27 in scenarios with proportional hazards.
As a sensitivity analysis misspecification of this parameter was investigated by choosing
the landmark time too early or too late in scenarios in which a delay exists or by ignoring
more of the early events in proportional hazards scenarios without delay. This yields

the following parameters for sensitivity analyses:

— PH scenarios: 0.17,0.37

— Non-PH scenarios: 0.9¢] (too early) and 1.1t} (too late)

e Generalized linear lag model: The aim of the models in this class is to mimick
the course of the hazard ratio by downweighting early events, increasing the weights
during a transition period and giving full weight for all events thereafter. To do so the
assumed start and end of the transition period must be prespecified and for the main

analysis was taken to be close to the true parameter, i.e.

— PH scenarios (t5 = 0): [0,0.27]
— Threshold lag scenarios (t5 # 0,t] = t3): [0.9¢5, 1.1¢3]

— Generalized linear lag scenarios (t45 # 0,t] # ¢5): [tT, t5].



74 Chapter 2. Methodology

To assess the robustness of the analysis against misspecification the following intervals
are specified as sensitivity analyses:
— PH scenarios (t5 = 0): [0,0.37],[0.1,0.37]
— Threshold lag scenarios (t5 # 0,t] = t3): [0.8t5,1.2t5],[0.7¢5, 1.3t5]
— Generalized linear lag scenarios (3 # 0,1} # t3):
1. Too big: Take the midpoint of the interval @ and increase the width by

10%. This gives the interval [tI;tS + 1.1(t5 — t’{)}

2. Too small: Take the midpoint of the interval @ and decrease the width by

10%. This gives the interval [q;t; +0.9(t5 — t’{)}

Table 11: Parameters for analysis in each power scenario. t},,, , = mazimum observed time
el

in simulated dataset j and treatment arm g, T = overall study duration, t] = changepoint in
GLLM, t5 = delay in GLLM

Method  Also applied to Parameter
RMST Mile, ABC |minj—1, . ngw (min (tﬂlax’c,tfmxj))J
0.17,
MWLRT, PH scenarios: 0.27,
Thres, VO, 0.37
Landmark PWExp, . * 1
ParGroup, 0.9 -¢7, too early
LLRNA, NPH scenarios: t], correct
QLRNA 1.1-17, too late
[0,0.3- 7],
PH scenarios: [0,0.2- 7],
[0.1-7,0.3-7]
9-t5,1.1-t5
PWExpLag, ' 0-9 tz’ ti]
GenLin  MERT, Threshold lag scenarios: { [0.8 - ¢5,1.2 - 3]
(m)Logit [0.7-%5,1.3 - t3]

ti+t3 * *
Linear lag scenarios: [T, t5]
(152 0.9 (55— 1])]

Performance measure

The power was chosen as performance measure to evaluate the different methods and calcu-

lated as the proportion of rightly rejected null hypotheses within each simulated scenario. To
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control the Monte-Carlo standard error the number of simulated datasets ng;,, was calculated

as described by Morris et al. (2019).

The Monte-Carlo standard error for the power is given by

B —5)
Nsim
As it is the goal of this thesis to assess the power of the different methods in the different
scenarios, the power is unknown a priori and hence the number of simulation runs is deter-

mined for the worst case of 50% power. To keep the Monte-Carlo standard error below 1% a

total of ng;m, = 2500 simulated datasets are needed in this case.
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2.4.2 Assessment of Type I error

In the following the ADEMP structure of the power assessment is described in detail.

Aim

To assess the type I error of the different methods in scenarios comparable to the scenarios

considered in the power simulation.

Data-generating mechanism

The null scenarios, i.e. scenarios with equally distributed survival times in both arms, were
chosen to be comparable to the power scenarios of the previous section. This reduces the

parameters to

e the study duration 7 = 12, 24,48, 60 months

o uniform accrual over the interval [0, a], where a = 0.27, 0.47.

o Weibull distributed Wei(A¢, k¢) survival times with shape parameter ko = 0.5,1,2
and scale parameter A¢ chosen in dependence on the median survival times of med¢o =

5,15, 20.

This results in total number of 4 -2 -3 -3 = 72 scenarios. n.,s was chosen to be the same as

the sample size calculated for the PH scenarios of the maximal treatment effect 6 = 0.5.

Estimand and Methods

The choice of the parameters for analysis is somewhat arbitrary since there is no meaningful
choice for null scenarios where survival times are equally distributed in both arms. However,
as the choice of the parameters for analysis should not influence type I error they were set

based on the choice of the parameters in the power scenario and are summarized in Table 12.

Performance measure

The type I error rate o was chosen as performance measure to evaluate the different methods

and as for the power the number of simulated datasets was chosen to be ng, = 2500.



2.4. Design of the simulation study

7

Table 12:  Parameters for analysis in each null scenario. t

J
max,g

= maximum observed time

in simulated dataset j and treatment arm g, T = overall study duration

Method Also applicable to Parameter
RMST Mile, ABC |minj—1, . nm (min (tfnax,c,tfnaxj))J
Landmark MWLRT, Thres, 0.27
PWExp, V0, Par-
Group, LLRNA,
QLRNA
GenLin Model PWExpLag, MERT, [0,0.2 - 7]

(m)Logit

The Monte-Carlo standard error is then sufficiently small and given as

a(l - a)

Nsim

~ 0.0044,

in case all methods control the assumed two-sided level of o = 0.05. If methods do not

control type 1 error the Monte-Carlo standard error is bounded by 1% as outlined for the

power above.
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Chapter 3

Results

In this chapter the results of the objectives under investigation for this thesis are presented.
In the first section the results of the systematic literature search are shown. The following
sections present the results of the simulation study elaborating on the impact of a potentially
delayed treatment effect on the rejection rate of the different methods identified in the sys-
tematic literature search, which were explained in detail in the previous chapter. At first the
results for the type I error are presented and discussed in Section 3.2. Then the results for
the power of the different methods are shown and examined under various aspects in Section
3.3. Lastly, a ranking system summarizes the performance of the methods under different
assumptions to facilitate the choice of an appropriate method at the planning stage in Section
3.4. For ease of comprehension, methods are always given with their abbreviation, that is

used in the plots and was summarized in Table 3, in italic throughout this chapter.

3.1 Literature search

The aim of the literature search was to identify methods that have already been proposed
to analyze time-to-event data in non-proportional hazard scenarios. To see how the present
extensive simulation study can contribute to the current research only articles have been
included in which the methods have already been compared in simulation studies in NPH
settings. In Section 2.1 the general approach of the literature search and the number of

identified and further screened articles have already been described. In this section the focus
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lies on the presentation of the methods that have been examined in the simulation study of
the final 42 articles and to describe which of these methods were further considered in the
simulation study of this thesis and why. A description of the used methods was given in the
previous chapter in Section 2.3.3. The following Figure 12 shows the methods used in each
article and if a delayed treatment effect scenario was considered in the simulation studies of

the article or not.

modiﬂgd LR~
mScore -

sﬁablﬁr}(K%J.
én

Method used

No
Yes, but no delay

B ves

>>>>>>
cccccc

Figure 12: Results of the systematic literature search showing which method has been used
in which publication and if delayed treatment effect scenarios have been considered

As can be seen the standard logrank test was considered in almost all (38/42) of the simulation
studies. With 50% the second most used class of methods were combination tests, i.e. tests
based on the combination of different weighted logrank statistics (KS LR, Leel, Lee2, Lee3,
mLee2, mLee3, MaxCombo, mMaxCombo, mZm3, ParGroup, ProjTest, VO, YP, Zm3). A
third of the publications used Kaplan-Meier based tests (AWKM, MazRMST, RMST, WKM)
and in 26% of the publications tests based on regression models (AFT, AHR, Breslow, Coz,
CoxTD, Landmark, PWExp, PWEzpLag, RP.PH, RP.TD) were considered.

Implications for simulation study: Although it was endeavored to include all methods

in this simulation study, the following three were not applicable in this simulation setting.
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Firstly, the Stablein-Koutrouvelis method by Stablein and Koutrouvelis (1985) is only ap-
plicable for singly censored data, which is data where only the first » < n of the ordered
survival times are observed. This can, for example, occur if all subjects are recruited at the
same time and observed for a fixed study duration without any drop-outs. In this simulation
it was assumed that subjects are recruited linearly over a given accrual period and are then
censored at the end of the study given by the time after start of accrual at which the study
is terminated. Hence there are indeed no censorings of early survival times, but it can and
will happen that the censorings occur although the highest survival time itself is uncensored.
Secondly, the Mazimum BEP method by Arfe et al. (2021) was developed as a test that max-
imizes the Bayesian expected power (BEP) given early-stage data, which was not available in
this simulation study. Lastly, the LR interim, MaxCombo final method by Chen et al. (2022)
was not applicable as it is designed for group-sequential trials where at interim a standard

logrank test and for the final analysis the MaxCombo test is used.

Furthermore, some methods were excluded as they were too complex and not implemented
in any statistical software. These methods include all the methods based on the approach by
John O’Quigley (AOC (O’Quigley), AUC (O’Quigley), DFO (O’Quigley), RAT (O’Quigley))
(Chauvel and O’Quigley, 2014; Flandre and O’Quigley, 2019), the Koziol-Petkau method
by Koziol (1978), the complete binary and censored binary method by Sooriyarachchi and
Whitehead (1998), the optimally weighted logrank test (Optimal WLR) by Lin and Leén
(2017), the two-stage change point approach ( ChangePoint) by He and Su (2015) and modified
logrank type test (modified LR) by Bagdonavicius et al. (2004).
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3.2 Typel error

As explained in Section 2.4.2 the assessment of type 1 error rate was done for 72 scenarios
comparable to the power scenarios. For each of these scenarios ng, = 2500 datasets have
been simulated to keep the Monte-Carlo standard error below 0.44% and the methods have
been applied to each dataset. However, some of the methods were not evaluable in some of the
simulated datasets. This happened primarily for methods for which parameters for analysis
had to be chosen if the data was incompatible with the chosen parameter. For example,
in case of the methods of the Landmark type this happened if no event occurred after or
in case of the Milestone type methods if the Kaplan-Meier estimator was not evaluable at
the specified timepoint. If at least 25% of the simulated datasets were evaluable this was

considered sufficient as the Monte-Carlo standard error then doubles and is still below 1%.

The following Table 13 shows for each shape of the hazard function in how many of the 24
scenarios the method was non-evaluable at least once. In parentheses the range of the number

of non-evaluable datasets is given.

For the 24 decreasing hazard scenarios all methods could be evaluated sufficiently often,
which is defined as being evaluable in more than 1875, i.e. 75% of the 2500 simulated
datasets. The AHR, RP.PH and RP.TD method produced missings in all 24 scenarios
ranging from 94 (3.76%) to 210 (8.4%) missings for the AHR method and from 14 (0.56%)
to 29 (1.16%) missings for the Royston-Parmar models. Milestone survival (Mile, MileCLL)
was not evaluable for 2 (0.08%) datasets in the scenario with a long study duration of 7 = 60
months, a median survival of medc = 5 months in the control arm and an accrual period of

0.4 - 7 = 24 months.

As for decreasing hazards all methods could be evaluated sufficiently often for constant hazard
scenarios. Missings occurred less often than for decreasing hazards ranging from 1 (0.04%)
to 8 (0.32%) datasets where missing results were produced. In contrast to decreasing hazards

this only happened in at most 10 of the 24 scenarios and not in all.

With increasing hazards in the control group methods produced missing results more often

than in the decreasing and constant hazards scenarios. This is due to the fact that the
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Table 13: Number of scenarios in which each method was non-evaluable at least once for the
assessment of type 1 error. Additionally, the number of scenarios in which more than 75%
of datasets were not evaluable is given, indicated by an asterisk. Given in parentheses is the
range for the number of non-evaluable datasets.

Decreasing hazard Constant hazard Increasing hazard

Method (n=24) (n=24) (n=24)
AHR 24 (94 - 210) 1 (1) ]
LLRNA ; 2 (5 - 8) 4/2* (334 - 1993)
Landmark ; 2 (5 - 8) 4/2% (334 - 1993)
MERT ; 2 (5 - 8) 11/2* (1 - 1993)
MWLRT ; ; 4 (7 - 721)
Mile 1(2) 4(1-1) 5(1-2)
MileCLL 1(2) 4(1-1) 5(1-2)
PWExp - - 7 (1-25)
ParGroup - 2(5-38) 4/2* (334 - 1993)
QLRNA ; 2 (5 - 8) 4/2% (334 - 1993)
RMST . 1(1) i
RP.PH 24 (14 - 29) 10 (1-2) 11 (1 - 4)
RP.TD 24 (14 - 29) 9 (1-2) 13 (1 - 4)
Thres ; 2 (5 - 8) 4/2* (334 - 1993)
VO ; 2 (5 - 8) 4/2% (334 - 1993)

parameters for analysis are chosen based on the overall study duration 7 and the delay and
changepoint parameters t3,¢] and not taking the failure time distribution into account. As
the failure rate accelerates over time events occur at early timepoints and therefore in many

cases before the parameter of analysis which causes the methods to be incalculable.

In total missings occurred in at most 13 of the 24 scenarios and in case of low median survival
of 5 months in the control group and a long overall study duration of 7 = 60 months 8 methods
produced more than 25% missings ranging from approx. 700 not evaluable datasets for the
MWLRT method up to approx. 2000 non-evaluable datasets for the Landmark, LLRNA,
QLRNA, MERT, ParGroup, Thres and V(0 method. All these methods have in common that
the chosen parameter for analysis was 12 months, which corresponds to 20% of the overall
study duration, but is also the 98% quantile of the survival time distribution. Furthermore,
all of these methods produced missings in 2 other scenarios (7 = 48 and med¢ = 5) with
the exception of the MERT method which produced missings in 9 other scenarios. The
number of missings produced ranged from 1 to 334 for the MERT method, the MWLRT
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produced 7 and 18 missings and all other methods 334 in both additional scenarios. The
remaining methods produced almost no missings: 5 scenarios with up to 2 (0.08%) missings
for the Milestone survival rate (Mile, MileCLL), 7 scenarios with up to 25 (1%) missings
for the piecewise exponential model (PWEzp) and 11 and 13 scenarios with up to 4 (0.16%)
missings for the Royston-Parmar model with constant and time-dependent treatment effect

(RP.PH, RP.TD), respectively.

The following plots show the type I error for the null scenarios considered separately for
decreasing (Figure 13), constant (Figure 14) and increasing (Figure 15) hazards. In each plot
the calculated type I error values are displayed by a boxplot together with the 24 points for
each scenario. Within each plot the logrank test is highlighted by a vertical dashed reference
line and the nominal « level of 5% by a horizontal solid reference line. Type I error values for
methods that were not evaluable in more than 25% of the simulated datasets are indicated
by a square instead of a dot as this corresponds to a twice as high Monte Carlo standard
error. The colors show if the method was conservative (yellow), i.e. stayed below the nominal
level by more than the Monte-Carlo standard error, had inflated type I error (red), i.e. the
estimated type 1 error exceeds the nominal level by more than the Monte-Carlo standard

error, or controlled type I error (green).

3.2.1 Decreasing hazards

As can be seen in Figure 13 the Aalen additive model and the Milestone rate comparison
based on the Nelson-Aalen estimator (MileNA) tend to be more conservative than the other
methods. This is especially the case if the sample size is low. In contrast, the AFT model
based on the exponential and logarithmic error distribution (AFT (exp), AFT (log)), the
naive PH check procedure (CheckPH), the Yang and Prentice model (YP), the Royston-
Parmar model with time-dependent treatment effect (RP.TD), the ABC method as well as

the piecewise exponential method (PWEzp) tend to inflate type I error.

In case of the AFT (exp) model this is the most severe with a type 1 error inflation in all
24 scenarios ranging from 7.2% up to 20.5% followed by the piecewise exponential model

(PWEzp) exceeding the nominal level in 23 scenarios ranging from 5.2% to 11.9% and the
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Figure 13: Type 1 error rates in scenarios with decreasing hazard. The logrank test is high-
lighted by a vertical dashed reference line and the nominal « level of 5% by a horizontal solid
reference line. The colors indicate if type I error is controlled taking the Monte-Carlo stan-
dard error into account (yellow=conservative, red=inflated, green=controlled)

naive PH check procedure (CheckPH) ranging from 6.3% to 8.7% in all scenarios. The other

three methods showed a type 1 error inflation of at most 8.3%.

3.2.2 Constant hazards

As shown in Figure 14 the ABC method and the Milestone rate comparison based on the
Nelson-Aalen estimator (MileNA) tend to be more conservative than the other methods.
In contrast to decreasing hazard scenarios, the AFT model based on the exponential error
distribution (AFT (exp)) performs well as the distributional assumption of this model is
satisfied. Again the naive PH check procedure (CheckPH), the Yang and Prentice model
(YP), the Royston-Parmar model with time-dependent treatment effect (RP.TD) and the
AFT model with logarithmic error distributions (AFT (log)) had a slightly increased type 1
error. This occurred in 24, 22, 19 and 17 scenarios with a maximal type I error of 8.7%, 7.9%,
6.8% and 7.3%, respectively. Additionally, the Gray-Tsiatis test (G(-1,0)) revealed a type 1

error inflation in 12 scenarios with the most severe type 1 error increase of up to 11.4%.
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Figure 14: Type 1 error rates in scenarios with constant hazard. The logrank test is highlighted
by a vertical dashed reference line and the nominal o level of 5% by a horizontal solid reference
line. The colors indicate if type I error is controlled taking the Monte-Carlo standard error
into account (yellow=conservative, red=inflated, green=controlled)

3.2.3 Increasing hazards

Concerning type 1 error the AFT model with exponentially distributed error terms (AFT
(exp)), the QLRNA test and the piecewise exponential model (PWEzp) tend to be more
conservative than the other methods as shown in Figure 15. Additionaly this is also the case
for the ABC method and the Milestone rate comparison based on the Nelson-Aalen estimator

(MileNA), which has already been observed in the decreasing and constant hazards scenarios.

The naive PH check procedure ( CheckPH), the Royston-Parmar model with time-dependent
treatment effect (RP.TD), the Yang and Prentice model (YP) and the AFT model with
logarithmic distributed error terms (AFT (log)) had inflated type 1 error in at least 20 of
the 24 scenarios with a type 1 error of up to 8.4%. Two methods occassionally had type 1
error over 10%, which are the modestly weighted logrank test (MWLRT) with type 1 error
of 9.4% to 11.7% in 4 scenarios and the Gray-Tsiatis test (G(-1,0)) with type 1 error of 8.8%

to 11.4% in 13 scenarios.
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Figure 15: Type 1 error rates in scenarios with constant hazard. The logrank test is highlighted
by a vertical dashed reference line and the nominal o level of 5% by a horizontal solid reference
line. Square shape indicates that the method was not evaluable in more than 75% of scenarios.
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3.3 Power

In this section the results of the assessment of power of the methods will be presented. This
was done for the 3744 scenarios outlined in Section 2.4.1 of the previous chapter. These 3744
scenarios can be further divided into 1248 scenarios for decreasing, constant and increasing
hazard respectively and further into 96 PH scenarios and 1152 NPH scenarios. As for the
assessment of type 1 error some of the methods were not evaluable in some of the simulated
datasets. Again methods were considered sufficiently often evaluable if the number of missings
did not exceed 625, i.e. 25% of the simulated datasets. The following tables present for each
shape of the hazard function in how many of the scenarios the method was non-evaluable
at least once for PH scenarios (Table 14) and NPH scenarios (Table 15). In parentheses
the range of the number of non-evaluable datasets is given. In contrast to the assessment of
type 1 error, Milestone comparison of survival rates (Mile, MileCLL) and RMST were always
evaluable and did not produce any missings in any of the scenarios.

Table 14: Number of PH scenarios in which each method was non-evaluable at least once for

the assessment of power. Given in parentheses is the range of the number of non-evaluable
datasets.

Decreasing hazard Constant hazard Increasing hazard

Method (1=96) (n=96) (n=96)
AHR 96 (67 - 1264) 15 (1 - 3) -
LLRNA - 2 (2-3) 12 (6 - 1393)
Landmark - 2(2-3) 12 (6 - 1393)
MERT ; 2 (2-3) 25 (1 - 1393)
MWLRT ; ; 4 (3 - 11)
PWExp - ; 3(1-68)
PWExpLag - - 3 (1-68)
ParGroup - 2(2-3) (6 1393)
QLRNA ; 2 (2-3) 2 (6 - 1393)
RP.PH 96 (9 - 185) 21 (1 - 3) 15 (1-4)
RP.TD 96 (9 - 185) 21 (1 - 3) 15 (1 - 5)
Thres - 2(2-3) 12 (6 - 1393)
VO ; 2 (2-3) 12 (6 - 1393)

In case of constant hazard in the control arm all methods were almost always evaluable and

missings occurred in not more than 3 (0.12%) datasets of any scenario. The Royston-Parmar
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models (RP.PH, RP.TD) were non-evaluable in 21 scenarios and the AHR was non-evaluable
in 15 scenarios. All other methods were non-evaluable only in the 2 most extreme scenarios
with overall study duration of 7 = 60 months, a median survival of medc = 5 months in the

control arm and an treatment effect of 8 = 0.5.

For decreasing hazard only 3 methods (AHR, RP.PH, RP.TD) produced missings which
happened in all 96 scenarios. For the Royston-Parmar models the number of non-evaluable
datasets was at most 185 (7.4%) and therefore sufficiently small. The AHR method on the
other hand was more difficult to evaluate and produced missings in up to 1264 (50.56%)
datasets. This was negatively correlated with the treatment effect, i.e. the higher the hazard
ratio 6 , that is the lower the treatment effect, the more datasets were non-evaluable. For
the lowest treatment effect of § = 0.8 the number of non-evaluable datasets ranged from 611

(24.44%) to the maximum of 1264 (50.56%).

With increasing hazard there were seven methods with a very high number of non-evaluable
datasets of up to 1393 (55.72%): LLRNA, Landmark, MERT, ParGroup, QLRNA, Thres,
V0. Such high numbers of missings above 25% of all simulated datasets occurred only in
four scenarios, which were the most extreme scenarios with overall study duration of 7 = 60
months, a median survival of medc = 5 months in the control arm and a treatment effect of

0 =0.50r0=0.06.

Now for NPH scenarios the pattern is very similar. Again for constant hazard scenarios
the number of non-evaluable datasets was sufficiently low for all methods with at most 332
(13.28%) for the MERT method. For decreasing hazard AHR, RP.PH and RP.TD were non-
evaluable in at least one dataset in all 1152 NPH scenarios. The number of non-evaluable
datasets was at most 553 (22.12%) for the Royston-Parmar models whereas the AHR method
exceeded the 25% threshold in 521 of the 1152 NPH scenarios. The number of non-evaluable
datasets increased the higher the hazard ratio starting with 114 (4.56%) to 673 (26.92%) non-
evaluable datasets for # = 0.5 up to 779 (31.16%) to 2257 (90.28%) non-evaluable datasets
for § = 0.8. As before increasing hazard scenarios revealed to be more difficult to handle
for many methods. For the Royston-Parmar models (RP.PH, RP.TD) the number of non-
evaluable datasets was very small and at most 3 (0.12 %). The most troublesome method was

the MERT method which was not evaluable in 303 scenarios at least once and completely
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Table 15: Number of NPH scenarios in which each method was non-evaluable at least once
for the assessment of power. Additionally, the number of scenarios in which more than 75%
of datasets were not evaluable is given, indicated by an asterisk. Given in parentheses is the
range of the number of non-evaluable datasets.

Method Decreasing hazard Constant hazard Increasing hazard

(n=1152) (n=1152) (n=1152)

AHR 1152/30* (114 - 2257) 428 (1-9) -

GenLin - 3(1-1) 60/28" (1 - 2500)
LLRNA - 8 (1-52) 69/38* (1 - 2500)
Landmark - 8 (1-52) 69/38" (1 - 2500)
MERT 60 (1 - 13) 79 (1 - 332) 303/92* (1 - 2500)
MWLRT - 1(1) 58/30* (1 - 2500)
PWExp - (1-53) 293/13* (1 - 2210)
PWExpLag 60 (1 - 13) 50 (1 - 74) 226/28* (1 - 2500)
ParGroup - 8 (1-52) 69/38" (1 - 2500)
QLRNA - 8 (1-52) 69/38* (1 - 2500)

RP.PH 1152 (14 - 553) 56 (1 - 2) 55 (1 - 3)

RP.TD 1152 (14 - 553) 63 (1 - 2) 59 (1 - 3)
Thres - 8 (1-52) 69/38* (1 - 2500)
Vo0 - 8 (1-52) 69/38" (1 - 2500)
mLogit - 3(1-1) 60/28* (1 - 2500)

non-evaluable for all datasets in 51 scenarios. For the piecewise exponential models (PWEzp,
PWEzxpLag) the number of scenarios in which at least one dataset was non-evaluable was
also high, but it only happened in six scenarios that all datasets were not evaluable and this
were the most extreme threshold lag scenarios with overall study duration of 7 = 60 months
and median survival of medc = 5 months in the control arm. All other methods in Table 15
except AHR produced at least one missing in less than 70 scenarios of which at most in 15

scenarios no dataset was evaluable.

Before the results of the power evaluation are presented the impact of parameter misspecifica-
tion will be provided (Section 3.3.1). The choice of the parameters for analysis were explained
in the paragraph on "Estimand and Methods" within Section 2.4.1 and summarized in Table

11.
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3.3.1 Parameter misspecification

As outlined in Section 2.4.1 it is distinguished between methods of the Landmark type for
which only one parameter needs to be prespecified for the analysis and methods of the GenLin
type for which two parameters need to be prespecified. For the former methods a timepoint
tLandmark i85 specified and all events prior to this timepoint are ignored whereas all events
after that timepoint contribute fully to the test statistic. This is reasonable when a delayed
treatment effect is anticipated, but problematic when none is present. Hence for PH scenarios
there is no right choice of the Landmark parameter and therefore the timepoints were chosen
arbitrarily as 10%, 20% and 30% of the overall study duration 7. For these scenarios the

impact of the different parameter choices is shown in the following boxplot (Figure 16).
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Figure 16: Bozplot over all scenarios of the power of the Landmark type methods based on
the different choices of the parameter tLandmark in PH scenarios arranged by the shape of the
hazard.

As can be seen in this plot the impact of the different choices of the parameter t1.andmark o0 the
modestly weighted logrank test (MWLRT') and the partially grouped logrank test ( ParGroup)
is negligible and the impact on the V@ test and the linear or quadratic combination of logrank
and Nelson-Aalen estimator (LLENA, QLENA) is also minor and only occurs in scenarios

with a very low median survival in the control arm of med, = 5 months in combination
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with a very high overall study duration of 7 = 48 or 7 = 60 months. The impact on the
Landmark and Thres method is as expected where the power of the single methods is reduced
the more early events are ignored. The piecewise exponential model shows a somewhat
contradictory behavior of increasing power the later the specified Landmark parameter. This
can be explained by the model structure, which does not simply ignore early events but
allows different constant hazards before and after the prespecified parameter. To estimate
these parameters, events before the Landmark timepoint must be observed which is improved
by choosing later timepoints for the analysis. Next for the NPH scenarios it makes more
sense to assess parameter misspecification as the true parameter is the changepoint ¢] up
to which survival in both arms is equal and then starts to diverge. To assess the impact of

misspecification the Landmark parameter was chosen to under- and overestimate the true

changepoint by 10%.
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Figure 17: Borplot over all scenarios of the power of the Landmark type methods based on
different choices of the parameter tLandmark in NPH scenarios arranged by the shape of the
hazard.

In Figure 17 it can be seen that the impact of misspecifying the parameter is negligible for
all methods. Detailed investigation of the methods showed that differences become more
apparent when the delay and changepoint proportion are bigger as this leads to an greater

changepoint ¢ and with that the misspecification becomes more severe. In these cases un-
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derestimation of the true changepoint ¢] led to an decrease in power so that it is beneficial

to ignore slightly more events than necessary.

For the GenLin type methods an interval [ty ,f4] is specified and all events prior to timepoint
1w are ignored while the weights for events within the interval are increasing and events after
tup get full weight. The correct choice of these parameters is [t],25] in linear lag scenarios
but somewhat arbitrary in PH and Threshold lag scenarios. For PH scenarios the impact of

the different parameter choices is shown in the following boxplot (Figure 18).
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Figure 18: Borplot over all scenarios of the power of the GenLin type methods based on the
different choices of the interval [ty , t,,] in PH scenarios arranged by the shape of the hazard.

For the Genlin, Logit and modified logit method (mLogit) the worst choice of parame-
ters is the one where events within the first 10% of the overall study duration are ignored
([0.17,0.37]). Of the other two choices where no events are ignored the one performs better
where the phase of increasing weights is smaller, i.e. the choice [0,0.27]. The remaining
two methods (MERT, PWEzrpLag) showed a different effect. For decreasing and constant
hazards [0.17,0.37] also was the worst choice of parameters followed by [0,0.27] and then
[0,0.37], which is in line with the observation for the piecewise exponential model previously.
For increasing hazards the two parameter choices with the later upper GenLin parameter

of t,, = 0.37 were very similar and better than the choice t,, = 0.2 except for scenarios
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with very low median survival in the control arm of meds = 5 months and late overall study
duration of T = 48, 60 months. For threshold lag scenarios intervals of increasing width were
chosen centered around the true delay ¢5. The impact of these choices on the power of the
GenLin type methods is displayed in Figure 19.
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Figure 19: Bozplotover all scenarios of the power of the GenLin type methods based on the

different choices of the interval [tiyy,t,y,| in threshold lag scenarios arranged by the shape of
the hazard.

As for PH scenarios the GenlLin, Logit and modified logit method (mlogit) performed very
similar but were not affected by the different choices of parameters. The MERT and PWEzpLag
method showed again to benefit from a wider interval, i.e. a wider timeinterval to estimate
the initial exponential parameter. Lastly, the power of the methods in NPH scenarios was

not impacted by the different choices of analysis parameters as shown in Figure 20.

The results for the assessment of the power of the methods are then structured by the shape of
the underlying hypothetical distribution of the survival times in the control arm distinguishing
between decreasing (Section 3.3.2), constant (Section 3.3.3) and increasing hazards (Section
3.3.4). Within each part the PH scenarios are reported first as they can be understood as

benchmark for all other scenarios where the proportional hazards assumption is violated.
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Figure 20: Bozrplot over all scenarios of the power of the GenLin type methods based on the

different choices of the interval [tigw,tup| in linear lag scenarios arranged by the shape of the
hazard.

3.3.2 Decreasing hazards

In this section the power of the methods is compared if the hazard in the control arm is
decreasing. The section commences with a direct comparison of the methods to the logrank
test by calculating in how many of the 1248 simulated scenarios each method exceeds the
power of the logrank test by more than the Monte-Carlo standard error given the number of
evaluable datasets. This is displayed in a bar chart in Figure 21. A green bar indicates that
the method exceeds the logrank test in all NPH scenarios and a proportion of zero indicates

that the method has lower power than the logrank test in all NPH scenarios.

The AFT model with exponentially distributed error terms (AFT (erp)) outperforms the
logrank test in all scenarios - even in the 96 PH scenarios - which can be explained by the
inflated type 1 error of this method. As has been seen in the previous section the Yang and
Prentice model ( ¥FP) and the naive PH check procedure ( CheckPH) have also inflated type 1
error. Expectedly, they outperform the logrank test in 22 and 16 PH scenarios, respectively.
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Figure 21: Proportion of 1248 scenarios in which each method exceeds the power of the logrank
test in decreasing hazard scenarios. Green bars indicate that method outperforms the logrank
test in all NPH scenarios.

Of the remaining methods which have been seen to control type 1 error, none had higher
power than the logrank test in the PH scenarios, which is in line with the result by Peto
and Peto (1972). The following methods, however, outperform the logrank test in all NPH
scenarios: CauchyCP, Gray-Tsiatis test (G(-1,0)), Fleming-Harrington test for late differ-
ences (G(0,0.5), G(0,1), G(0,2)), Generalized linear model (GenLin), Landmark analysis,
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(modified) Lee3, (modified) Logit, (modified) MaxCombo test, Threshold test (Thres), VO
and (modified) Zms3.

These methods are followed closely by the modestly weighted logrank test (MWLRT), projec-
tion test (ProjTest), joint test (jointTest), modified Score test (mScore), time-dependent Cox
model (CoxTD), partially grouped test (ParGroup), time-dependent Royston-Parmar model
(RP.TD), quadratic combination of logrank and Nelson-Aalen (QLRNA), Milestone survival
(Mile, MileCLL, MileNA) and the other combinations by Lee (Leel, Lee2) all exceeding the

power of the logrank test in more than 90% of scenarios.

3.3.2.1 PH scenarios

Based on the data-generating process the PH scenarios are those scenarios where no delay
and hence no changepoint is present (t5 = ¢7 = 0). Considering only the scenarios with
decreasing hazard results in 96 scenarios defined by the combination of median survival in
the control arm medc, the accrual proportion acc, the overall study duration 7 and the
maximum treatment effect . For the methods for which parameters had to be chosen the
results displayed here are based on the moderate parameter value, i.e. 20% of the overall
study duration for the methods using the Landmark cutoff and an interval of [0,0.27] for the

methods using the GenLin parameter.

As a sample size calculation tailored to this test has been performed, the logrank test should
achieve approximately 80% power in each scenario. Figure 22 shows all methods on the x-axis
and the power of the method in all 96 scenarios summarized in a boxplot with the Logrank
test highlighted in red, which - as expected - achieves the targeted power. It can be seen
that for most of the methods the power is similar throughout the different scenarios, but
the asymptotic logrank test (asymLR), the Kolmogorov-Smirnov type test based on Cheng
(KS Cheng), the Milestone survival (Mile, MileCLL, MileNA) and the piecewise exponential
model (PWEzp) have more spread out boxplots with an interquartile range of more than 5
percentage points. The former two having really low power and even less than 50% power
in some of the 96 scenarios. The Landmark and Threshold test stay below 50% power
throughout all scenarios, which shows that for proportional hazards the loss in power can be

severe when early events are ignored.
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The best of the Kolmogorov-Smirnov type tests is based on the logrank statistic (KS LR)

which has a stable power of approximately 74% to 79%.

Royston-Parmar PH model (RP.PH) performs really good with a power of approx. 78%
to 82% which is always higher than the Royston-Parmar TD model (RP.TD, 69% to 73%).
Power of rate comparisons (Mile, MileCLL, MileNA) ranges from approx. 55% to 78%.
RMST obtained a power of approx. 80% throughout making it competitive with the logrank

test.
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Figure 22: Boxplot of power in PH scenarios with decreasing hazard for all 96 scenarios.
Logrank is highlighted in red.

For the aforementioned methods with very variable power, i.e. an interquartile range of more
than 5 percentage points, a nested loop plot was created to identify the cause of this behavior
(Figure 23). A nested loop plot is a tool to visualize the performance measure of interest
for all combinations of parameters of the data-generating process. In this plot the power
of the method is displayed on the y-axis with a reference line for the target power of 80%
and the x-axis is defined by the overall study duration clustered by the remaining simulation
parameters med¢c and acc, whose values are displayed in the bottom part of the plot as steps.
For each treatment effect 6 a plot was created and these four plots are combined in a grid.

Due to the performed sample size calculation ngpg increases the larger the median survival in
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the control group and for fixed median survival it gets smaller the longer the study duration
and the smaller the accrual period.
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Figure 23: Nested loop plot of power in PH scenarios with decreasing hazard for methods with
variable power with overall study duration T on the r-aris and clustered by median survival in

the control arm med- and duration of accrual acc. The panels are arranged by the treatment

effect 8.

The worst performance revealed the asymptotic logrank test (asymLR) of which the power
increased with increasing sample size, but stayed below the power of all other tests through-
out. Its variability is affected by all simulation parameters except the accrual proportion acc.
As can be seen the range of the power values increases with lower study duration 7, greater
treatment effect or equivalently lower & and greater meds. The Kolmogorov-Smirnov type
test based on the weighted logrank test by Cheng (KS Cheng) has been seen to perform worse
than the other Kolmogorov-Smirnov type tests, but gains power with increasing sample size
up to a power of approximately 72%. The piecewise exponential model (PWEzp) revealed
a contradictory behavior in that the power increases the longer the study duration and the
shorter the median survival in the control group, which corresponds to a decrease in sample
size. This might be due to the fact that the piecewise exponential model assumes that the

hazard is piecewise constant and changes at the prespecified parameter, which in case of PH
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scenarios was taken to be 20% of the overall study duration. For the estimation of the hazard
before this time enough events must have occurred. This number of events increases the
longer the study duration and with that the later this timepoint or the shorter the median
survival and with that the more likely the occurence of early events. These patterns are the
same within each row and hence the effect of 6 is negligible. The variability of KS Cheng
and PWEzp is mainly driven by the study duration and increases with bigger 7. Milestone
rate comparisons (Mile, MileCLL, MileNA) perform better than the other methods except
for the piecewise exponential model. The variability of these methods is mainly caused by
the treatment effect 6, which can be explained by the fact that these methods compare the
estimated survival rates at the latest possible timepoint which is biggest if the treatment

effect is big.

3.3.2.2 NPH scenarios

In total there are 1152 NPH scenarios with decreasing hazard uniquely defined by the com-
bination of median survival in the control arm med¢, the accrual proportion acc, the overall
study duration 7, the maximum treatment effect § and the delay t5 and changepoint ¢]. For
the methods for which parameters had to be chosen the results displayed here are based on
the correct specified parameter, i.e. t] for the methods using the Landmark cutoftf and an
interval of [¢],t5] in case of linear lag scenarios for the methods using the GenLin parameter.
In case of threshold lag scenarios (tj = t3) there is no correct interval for the latter methods

and the interval [0.8 - ¢5,1.2 - 3] was chosen.

Overall power of all methods: Figure 24 shows all methods on the x-axis and the
power of the method in all NPH scenarios summarized in a boxplot with the logrank test
highlighted in red. For comparison grey boxplots are added that represent the power in
PH scenarios as shown in the preceding section. It can be seen that the boxplots are much
wider than in the PH scenarios since the accumulated scenarios are much more heterogeneous
and differ in the extent they deviate from the PH assumption. Interestingly, this is not the
case for the asymptotic logrank test (asymLR) the Kolmogorov-Smirnov type test based on
the weighted logrank statistic by Cheng (KS Cheng) and the piecewise exponential models
(PWExp, PWExpLag). These four methods were already seen in the previous section to have

very variable power values which is now reduced in case of NPH. As expected Landmark and
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Threshold test (Thres) achieve higher power than in the PH scenarios as ignoring early events
in the phase where the groups are equal enhances power. For all other methods the violation
of the PH assumption results in a sometimes drastic loss in power, with the power in the
NPH scenarios being always below the power in the PH scenarios except for the Fleming-
Harrington test for late difference (G(0,2)), the generalized linear model (GenLin), and the
Logit tests (Logit, mLogit) for which both boxplots overlap.
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Figure 24: Boxplot of power in NPH scenarios with decreasing hazard in black and for com-
parison the power in PH scenarios in grey. Highlighted in red is the logrank test.

To disentangle the effect of the different delay and changepoint combinations the following
Figure 25 is similar to the previous one but with the NPH scenarios arranged by delay and
changepoint proportion. The grey boxplots of PH scenarios are the same in each panel.
Similar to Figure 24 the Landmark and Thres method perform better than in PH scenarios
and always outperform the logrank test. The power of each method decreases with increasing
delay t5 and changepoint ¢} but as before the power of the GenLin and (modified) Logit stays

relatively stable.
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Power of single methods: The impact of the different simulation parameter on the power
of the single methods is displayed in a nested loop plot. In this plot the power of the method
is displayed on the y-axis and the x-axis is defined by the overall study duration T clustered
by the remaining simulation parameters medg, acc, lag, and lag;, whose values are displayed
in the bottom part of the plot as steps. A reference line is given at the target power of 80%.
For each maximum treatment effect # a plot was created and these four plots are combined

in a grid.
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Figure 26: Power of the logrank test in NPH scenarios for decreasing hazards with the overall
study duration T on the T-aris and further clustered by median survival time in the control
arm medc, the accrual proportion acc, the delay proportion lags and changepoint proportion
lag,. The panels are arranged by the marimum treatment effect 8.

Figure 26 displays the behavior of the well established logrank test. Although the power
of the logrank test has been seen to be relatively stable at 80% in PH scenarios this drops
to approx. 53% to 8% in NPH scenarios. With increasing study duration and therefore
decreasing sample size the power is reduced drastically. This reduction is further driven by
the delay proportion lag,, whereas the changepoint proportion lag;, the median survival in

the control group med- and the accrual proportion acc play a minor role.
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As has been shown at the beginning of section 3.3.2 there are 17 methods which control
type 1 error and outperform the logrank test in all NPH scenarios. Of these, four methods
dominate the other methods in power, i.e. achieve the highest power among these methods.
These methods are all parametric methods: the generalized linear model ( GenLin), the logit
and modified logit model ( Logit, mLogit) and the threshold model | Thres). As expected the
latter has the highest power in threshold lag scenarios (lagy = 1) and falls short against the
other methods in other scenarios which all perform very similar. The difference between the
power of the logrank test and these methods grows bigger the greater the changepoint 3.
The four methods are displayed against the logrank test in the following nested loop plot for
NPH scenarios (Figure 27).
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Figure 27: Power in NPH scenarios of the parametric methods that outperform the logrank
test in all NPH scenarios for decreasing hazands together with the power of the logrank test for
comparison. The plots show the overall study duration T on the r-aris and are further clustered
by median survival time in the control arm medy, the accrual proportion acc, the delay
proportion lag, and changepoint proportion lag,. The panels are arranged by the mazimum
treatment effect 8.

Although these methods perform very well in NPH scenarios with a power between 24.7%
and 73.1%, their performance in PH scenarios is poor since all of these methods ignore or

downweight data based on the prespecified parameters of analysis. To see how much the
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power is reduced if one uses these methods although the PH assumption is not violated, their

performance in PH scenarios is shown in Figure 28,
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Figure 28: Power in PH scenarios of the parametric methods that outperform the logrank test
in all NPH scenarios for decreasing hazards together with the power of the logrank test for
comparison. The plots show the overall study duration T on the T-aris and are further clustered
by median survival time in the control arm medo. the accrual proportion acc, the delay
proportion lag, and changepoint proportion lag,. The panels are arranged by the marimum
treatment cffect 8.

The power of the Threshold test ( Thres) is the lowest throughout all PH scenarios and ranges
from 31.5% to 48.3%. GenLin and both Logit models have very similar power between 53.3%
and 68.8% but with the power of the Logit model being higher than the power of the GenLin
model which in turn is higher than the power of the mLogit model.

Another drawback of these methods is that their performance depends on the parameters
chosen for the analysis and they can be susceptible to misspecification as shown in Section
3.3.1. The following plot (Figure 29) shows nonparametric alternatives which also outper-
formed the logrank test in all NPH scenarios but do not achieve such a high power than the

correctly specified parametric methods.
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Figure 29: Power in NPH scenarios of non-parametric methods that outperform the logrank
test in all NPH scenarios for decreasing hazands together with the power of the logrank test for
comparison. The plots show the overall study duration T on the r-aris and are further clustered
by median survival time in the control arm medy, the accrual proportion acc, the delay
proportion lag, and changepoint proportion lag,. The panels are arranged by the mazimum
treatment effect 8.

The power of these nonparametric methods ranges from 10.1% to 64.8% where the Fleming-
Harrington test G/(0,1) shows best performance in a majority of scenarios. For low median
survival of medc = 5 months the Gray-Tsiatis test (G(-1,0)) scores second but is outper-
formed by the Cauchy changepoint model (CauchyCP) and the MarCombo test for greater
median survival.

For these methods the performance in PH scenarios is also displayed in Figure 30 and it can
be seen that the power is similar to that of the logrank test and the methods show a smaller
reduction in power than the parametric methods. In PH scenarios the Fleming-Harrington
test G(0,1) expectedly performs worst with a power of 65.4%-70.1%. The other tests perform
very similar and are close to the logrank test except for the Gray-Tsiatis test (G(-1,0)) in
scenarios with low median survival of med- = 5 months and a high overall study duration of
7 = 48, 60 months.
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Figure 30: Power in PH scenarios of non-parametric methods that outperform the logrank
test in all NPH scenarios for decreasing hazards together with the power of the logrank test for
comparison. The plots show the overall study duration T on the T-aris and are further clustered
by median survival time in the control arm medo. the accrual proportion acc, the delay
proportion lag, and changepoint proportion lag,. The panels are arranged by the marimum
treatment cffect 8.

Order of the methods: From a general overview over the different methods and a com-
parison of these methods to the logrank test the focus will now be on investigating the effect
of the different delay patterns.

The following scatterplots show the power of the different methods arranged by the delay
and changepoint used in the generalized linear lag model for the data generating process.
Separate plots for the study duration 7, the median survival in the control arm medqo, the
maximum treatment effect # and the accrual proportion acc were created which resulted in
96 plots. In contrast to Figure 25 the focus does not lie on an overall comparison of the
methods across all scenarios but on the impact of the delay and changepoint parameter on
the relationship between the power of the methods. Therefore, the methods displayed on the
x-axis are ordered by the power of the methods in the upper left panel of the plot to see if
the ordering remains the same throughout the different delay and changepoint combinations.
Although the order of the methods is slightly different in each plot, the quality of it is the
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same and hence only the plot for an overall study duration of 7 = 48 months, an accrual
of 0.2 - 7 = 9.6 months, and a median survival in the control group of meds = 15 months
is shown both for the maximum effect § = 0.5 (Figure 31) and the minimum effect § = 0.8

(Figure 32).
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Figure 31: Power of the different methods for a study duration of 48 months, an accrual of
9.6 months, median survival of 15 months and mazimum effect of HR 0.5 when hazards are
decreasing. Triangular shape indicates that the power exceeds the power of the logrank test
by more than the Monte-Carlo standard error based on the evaluable datasets. Panels are
arranged by delay proportion (lags) and changepoint proportion (lag,). The logrank test is
highlighted in red.
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Figure 32: Power of the different methods for a study duration of 48 months, an accrual of
9.6 months, median survival of 15 months and minimum effect of HR 0.8 when hazards are
decreasing. Triangular shape indicates that the power exceeds the power of the logrank test
by more than the Monte-Carlo standard error based on the evaluable datasets. Panels are
arranged by delay proportion (lags) and changepoint proportion (lag,). The logrank test is
highlighted in red.
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As can be seen in these figures the overall order of the methods based on their power is not
preserved between the different delay patterns. Of the methods that had lower power than
the logrank test in the upper left panel, the linear combination of the logrank test with the
Milestone survival based on the Nelson-Aalen estimator (LLRNA) sticks out, as its power
is relatively stable or even increasing with increasing deviations from the PH assumption,
so that it exceeds the power of the logrank test in more extreme scenarios. The remaining
methods with lower power decrease uniformly so that order of the methods does not change
much, which is completely different for the methods with higher power, which spread out
much more the extremer scenarios get. As seen before the generalized linear lag model
(GenLin) and the Logit models are always on top throughout all scenarios. Furthermore,
the quadratic combination of the logrank test and Milestone survival (QLRNA), the V0 test
and the Landmark and Thres methods do not only keep their power above the power of the
logrank test but do also decrease less than the other methods the bigger the deviation from

the PH assumption gets.

Chance of rejection of each method: Furthermore, to quantify the impact of the delay
and changepoint parameter a logistic regression model is calculated for each combination of
med¢, acc, T, 6 and for each method separately. To do this the independent variables are taken
as proportions of the overall study duration 7 and then transformed on a base 2 logarithm

scale so that with binary rejection indicator ¥ := 1(p — value <= 0.05) the model becomes

logit(P(Y = 1)) = Bo + B1logy(lagy +1) + f2 logy(lag, - lagy +1),

where the independent variables were treated as continuous variables. The logarithmic trans-
formation has the appeal that the resulting odds ratio can be interpreted as the effect per
doubling of the independent variable, which is better interpretabel than an increase of 1 in
case of proportions. Adding 1 before logarithmic transformation has the effect that setting
the independent variables to 0 again corresponds to the PH scenario so that the intercept By

represents the log odds of rejection for PH scenarios.

Figure 33 shows the results of these logistic regression models with the estimated odds ratio

on the y-axis and the different methods on the x-axis. The boxplots summarize the results
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for the different combinations of medg,acc, 7 and 6 and are arranged by the independent

variable. The logrank test is again highlighted in red.

2.00

Jdeoseul

1.50

—-
-
-
—T—
{1~
-~
_Dj_
-1
-1
—1-
x!
-
-
o}
-1
—T—
_Dj_
-1
—{1
—{-
-1
-
-
—{T—
-
—
—-
_m_
_m_
-
-
—I-
—I—
-
-
-
-
—T—
-
-
—1-
-
-1
_Dj_
-
-
-

{ t H
Wi T % fffffffffffffffffffffffffffffffffffffffffffff i
g Fetantort éééﬁééé é-‘-é-x- %ﬁ-jééé Rt ﬁéééﬁ Lys 4-é...é$v

O
——
_m_
!
_m_
—{I+— .
—I—
—1— [
——
Be|Zbey)26o)

(1. +BejeBe|)%6o)

P
g

2 ki

g

JO\MT&SQ
KS Cheng-

Figure 33: Results from logistic regression models for rejection of the null hypothesis under the
alternative for the single methods in decreasing hazard scenarios with independent variables
delay proportion (lag,) and changepoint proportion (lag,). The logrank test is highlighted in
red.

The first row of Figure 33 shows the chance of rejecting the null hypothesis if no delay and
changepoint are present, which corresponds to the PH scenarios. As was already observed
in the section on power in the PH scenarios the asymptotic logrank test (asymLR), the
Kolmogorov-Smirnov type test based on the weighted logrank statistic by Cheng (KS Cheng)
and the piecewise exponential models (PWEzp, PWEzpLag) have a very low chance of reject-
ing the null hypothesis. This is also true for the MERT test, with a chance of approximately
5:4. The impact of the delay proportion is shown in the second row of Figure 33. For most
methods it is similar to the impact of the delay proportion on the logrank test where a twice
as high delay halves the chance of rejection. The asymptotic logrank test (asymLR) and the
Fleming Harrington test for late difference (G(0,2)) seem to be less affected by the delay
proportion as there are scenarios where the chance of rejection does not change. In addition

the GenLin, the Logit and modified Logit (mLogit) method also seem to be less affected than
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most methods by the delay proportion. The effect of the changepoint proportion is shown in
the third row of Figure 33 and has a lesser effect on most methods than the delay proportion
as the odds ratio is closer to one but for most methods below one hence reducing the chance
of rejection. For GenLin, Landmark, LLRNA, Logit, mLogit, QLRNA, Threshold (Thres)
and V0, however, the effect of the changepoint proportion is reversed leading to an increase

of the chance of rejection which is highest for Landmark, Threshold (Thres) and QLRNA.
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3.3.3 Constant hazards

Now the power of the methods is compared if the hazard in the control arm is constant.
Again it was calculated in how many of the 1248 simulated scenarios each method exceeded
the power of the logrank test by more than the Monte-Carlo standard error given the number
of evaluable datasets. This is displayed in a bar chart in Figure 34. A green bar indicates that

the method exceeds the logrank test in all NPH scenarios and a proportion of zero indicates

that the method has lower power than the logrank test in all NPH scenarios.
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Of the five methods which were identified in Section 3.2.2 to have increased type 1 error
(CheckPH, YP, RP.TD, AFT (log), G(-1,0)), only CheckPH outperformed the logrank test
in all NPH scenarios and in 18 of 96 PH scenarios. Even the Gray-Tsiatis test (G(-1,0))
which had an type 1 error inflation of up to 11.4% outperformed the logrank test only in
1074 (86.06%) of the 1248 scenarios. The other five methods that outperform the logrank
test in all NPH scenarios are all parametric methods which control type 1 error: GenLin,
Logit, mLogit, VO and Thres. As for nonparametric methods which control type 1 error,
the following methods outperform the logrank test in more than 80% of the scenarios: the
Fleming-Harrington tests for late differences (G(0,0.5), G(0,1)), the combinations tests by
Lee (Leel, Lee2, Lee3, mLee3), the MazCombo test and the Zm3 test.

3.3.3.1 PH scenarios

Based on the data-generating process the PH scenarios are those scenarios where no delay and
hence no changepoint is present (5 = ¢t7 = 0). Considering only the scenarios with constant
hazard results in 96 scenarios defined by the combination of median survival in the control arm
med¢, the accrual proportion acc, the overall study duration 7 and the maximum treatment
effect 0. For the methods for which parameters had to be chosen the results displayed here
are based on the moderate parameter, i.e. 20% of the overall study duration for the methods
using the Landmark cutoff and an interval of [0,0.27] for the methods using the GenLin

parameter.

As a sample size calculation tailored to this test has been performed, the logrank test should
achieve approximately 80% power in each scenario. Figure 35 shows all methods on the x-axis
and the power of the method in all 96 scenarios summarized in a boxplot with the Logrank
test highlighted in red, which - as expected - achieves the targeted power. Compared to
the decreasing hazard scenarios the boxplots are for many methods much bigger and 20 of
the 63 methods have an interquartile range of more than 5 percentage points. However, the
asymptotic logrank test (asymLR), the Kolmogorov-Smirnov type test based on Cheng (KS
Cheng), the Milestone survival (Mile, MileNA) and the piecewise exponential model (PWEzp)
have again very variable power with an interquartile range of more than 10 percentage points.

For constant hazard this is also true for the MERT test.
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For all these methods except the Milestone survival (Mile, MileNA) the median power in the
PH scenarios was below 50%. Compared to the decreasing hazard scenarios the Landmark

and Threshold (Thres) test improved achieving a median power of over 60%.

The best of the Kolmogorov-Smirnov type tests is again based on the logrank statistic (KS
LR) which has a stable power of approximately 71% to 79%.

Royston-Parmar PH model (RP.PH) performs really good with a power of approx. 77% to
82% which is always higher than the Royston-Parmar TD model (RP.TD) with a power of
69% to 73%. Power of Milestone survival rate comparisons (Mile, MileNA, MileCLL) ranges
from approx. 37% to 77%. RMST obtained a power of approximately 54% to 80% which is

not as stable as in the decreasing hazard scenarios.
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Figure 35: Boxplot of power in PH scenarios with constant hazard for all 96 scenarios.
Logrank is highlighted in red.

For the aforementioned methods with very variable power, i.e. an interquartile range of more
than 10 percentage points, a nested loop plot was created to identify the cause of this behavior
(Figure 36). In this plot the power of the method is displayed on the y-axis with a reference
line for the target power of 80% and the x-axis is defined by the overall study duration
clustered by the remaining simulation parameters medc and acc, whose values are displayed

in the bottom part of the plot as steps. For each treatment effect 6 a plot was created and
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these four plots are combined in a grid. Due to the performed sample size calculation ngne
increases the larger the median survival in the control group and for fixed median survival it

gets smaller the longer the study duration and the smaller the accrual period.
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Figure 36: Nested loop plot of power in PH scenarios with constant hazard for methods with
variable power. The overall study duration T is plotted on the T-aris and clustered by median
survival in the control arm medo and duration of accrual acc. The panels are arranged by
the treatment effect 8.

Milestone survival rate comparisons (Mile, MileNA) performed best in scenarios with longer
median survival in the control arm. In the scenario with meds = 5 months they are outper-
formed by the piecewise exponential model and the MERT test if the overall study duration
is high. The variability of their power values increases with decreasing £ as explained for de-
creasing hazards. Again the piecewise exponential model ( PWEzp) revealed a contradictory
behavior that the power increases the longer the study duration and the shorter the median
survival in the control arm, which corresponds to a decrease in sample size. This could also
be observed for the MERT test which performed very similar. The power values of these two
methods were more spread out the higher the study duration 7 or the smaller the median

survival med.
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The worst performance revealed the asymptotic logrank test of which the power increased
with increasing sample size, but stayed below the power of all other tests except for the case
of very low study duration (7 = 12 months) and a median survival of more than 5 months
in the control arm. The variability of the power values is driven by increasing medo and

decreasing 7 and 6.

3.3.3.2 NPH scenarios

The 1152 NPH scenarios with constant hazard are uniquely defined by the combination of
median survival in the control arm medc, the accrual proportion acc, the overall study
duration 7, the maximum treatment effect 6 and the delay ¢4 and changepoint ¢;. For the
methods for which parameters had to be chosen the results displayed here are based on the
correct specified parameter, i.e. ¢] for the methods using the Landmark cutoff and an interval
of [t},t5] in case of linear lag scenarios for the methods using the GenLin parameter. In case
of threshold lag scenarios (¢] = t3) there is no correct interval for the latter methods and the

interval [0.8 - t5,1.2 - t5] was chosen.

Overall power of all methods: Figure 37 shows all methods on the x-axis and the power
of the method in all NPH scenarios summarized in a boxplot with the Logrank test highlighted
in red. For comparison grey boxplots are added that represent the power in PH scenarios as
shown in the preceding section. It can be seen that the boxplots are much wider than in the
PH scenarios with a mean interquartile range of 24.4 and a mean overall power range of 71.5
percentage points ranging from an average minimum power of 5.4% to an average maximum
power of 76.9%. This is due to fact that the NPH scenarios are much more heterogeneous

and differ in the extent they deviate from the PH assumption.

In contrast, the MERT test and the piecewise exponential models (PWEzp, PWEzpLag) have
the lowest interquartile range of up to 5.5 percentage points and an overall range of up to 20.3
percentage points which is due to the overall poor power of at most 23%. Another method
with a comparatively low range of 38.3 percentage points is the asymptotic logrank test
(asymLR) ranging from 4.1% to 42.4% power. The range of all other methods is more than
60 percentage points. Again Landmark and Threshold test (Thres) as well as the Fleming-
Harrington test for late difference (G(0,2)) achieve higher power than in the PH scenarios
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as ignoring early events in the phase where the groups are equal enhances power. For all
other methods the power in the NPH scenarios is reduced compared to the power in the PH
scenarios but as the power range of each method is very wide the differences between NPH

and PH scenarios are not that accentuated.
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Figure 37: Boxplot of power in NPH scenarios with constant hazard in black and for compar-
ison the power in PH scenarios in grey. Highlighted in red is the logrank test.

To disentangle the effect of the different delay and changepoint combinations the following
Figure 38 is similar to the previous one but with the NPH scenarios arranged by delay ¢35 and
changepoint ¢J. The grey boxplots of PH scenarios are the same in each panel. As can be
seen the variability of the power of the methods icnreases with increasing delay t5 and is very
low for lag, = 0.1. Then GenLin model and both Logit methods are relatively stable with
high power in each panel but have outliers with very low power which makes them appear

less stable in the overall boxplot in Figure 37.
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For comparison the power in PH scenarios is

portion lag, and changepoint proportion lag; .

given in grey and the same in each panel and the logrank test is highlighted in red.



3.3. Power 121

Power of single methods: The impact of the different simulation parameter on the power
of the single methods is displayed in a nested loop plot. In this plot the power of the method
is displayed on the y-axis and the x-axis is defined by the overall study duration T clustered
by the remaining simulation parameters medg, acc, lag, and lag;, whose values are displayed
in the bottom part of the plot as steps. A reference line is given at the target power of 80%.
For each maximum treatment effect # a plot was created and these four plots are combined

in a grid.
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Figure 39: Power of the logrank test in NPH scenarios for constant hazards with the overall
study duration T on the r-aris and further clustered by median survival time in the control
arm medg, the accrual proportion acc, the delay proportion lag, and changepoint proportion
lag;. The panels are arranged by the marimum treatment effect 0.

Figure 39 displays the behavior of the well established logrank test. Although the power
of the logrank test has been seen to be relatively stable at 80% in PH scenarios this drops
to approx. 78% to 5% in NPH scenarios. With increasing study duration and therefore
decreasing sample size the power is reduced drastically in scenarios with med- = 5 months
but less so for scenarios with longer median survival. This reduction is further driven by the
delay proportion lag,, whereas the changepoint proportion lag;, the median survival in the

control group med and the accrual proportion acc play a minor role.
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As has been shown at the beginning of section 3.3.3 there are five methods which control
type 1 error and outperform the logrank test in all NPH scenarios. These methods are all
parametric methods: the generalized linear model (GenlLin), the logit and modified logit
model (Logit, mLogit), the threshold model ( Thres) and the V@ test. The five methods are
displayed against the logrank test in the following nested loop plot for NPH scenarios (Figure
40). As can be seen all methods perform very similar and their power as well as the power of
the logrank test is increasing the higher the median survival in the control arm (medg). For
scenarios with an medo of more than 5 months the power loss due to the higher overall study
duration is smaller. Additionally, the power in threshold lag scenarios (lag; = 1) increases
the bigger the delay lag,. For the methods the GenLin and (m)Logit methods often perform
best except for threshold lag scenarios where they are outperformed by the Thres test. The
V0 test has the lowest power in most of the methods but still outperforms the logrank test

as mentioned before.
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Figure 40: Power in NPH scenarios of the parametric methods that outperform the logrank
test in all NPH scenarios for constant hazards together with the power of the logrank test for
comparison. The plots show the overall study duration T on the r-aris and are further clustered
by median survival time in the control arm medy, the accrual proportion acc, the delay
proportion lag, and changepoint proportion lag,. The panels are arranged by the mazimum
treatment effect 8.
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Although these methods perform very well in NPH scenarios with a power between 9%
and 949, their performance in PH scenarios is poor since all of these methods ignore or
downweight data based on the prespecified parameters of analysis. To see how much the
power is reduced if one uses these methods although the PH assumption is not violated, their

performance in PH scenarios is shown in Figure 41.
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Figure 41: Power in PH scenarios of the parametric methods that outperform the logrank
test in all NPH scenarios for constant hazards together with the power of the logrank test for
comparison. The plots show the overall study duration T on the T-aris and are further clustered
by median survival time in the control arm medo. the accrual proportion acc, the delay
proportion lag, and changepoint proportion lag,. The panels are arranged by the marimum
treatment cffect 8.

Of these parametric methods the Thres test performs worst and shows a to have heavily
reduced power in PH scenarios ranging from approximately 25% to 69%. The best performing
method is the V0 test which achieves between 66% and 78% power in PH scenarios. The
other parametric methods are comparable to the V0 test and only slightly inferior, but have
the disadvantage that two parameters for analysis have to be specified. It is hence remarkable
that the V@ test performs that well although the GenlLin model is much closer to the data

generating process.
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Their dependence on the choice of parameters for analysis and with it their possible sus-
ceptibility to parameter misspecification can make their uasge difficult in practice and hence
nonparametric methods might be more robust. As mentioned at the beginning of Section
3.3.3 none of the nonparametric methods outperformed the logrank test in all NPH scenarios
with constant hazard. However, of the methods that outperform the logrank test in more
than 80Y% of the scenarios the following were chosen for comparison: the Fleming-Harrington
tests for late differences (G(0,1)), the combination test by Lee (Lee2), the MazCombo test
and the Zm3 test. Their performance in NPH scenarios is given in the following plot (Figure
42).
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Figure 42: Power in NPH scenarios of non-parametric methods that outperform the logrank
test in 80% of NPH scenarios for constant hazard together with the power of the logrank
test for comparison. The plots show the overall study duration T on the r-azis and are
further clustered by median survival time in the control arm mede, the accrual proportion
acc, the delay proportion lag, and changepoint proportion lag,. The panels are arranged by
the mazimum treatment effect 6.

In the majority of scenarios the Fleming-Harrington test G(0,1) achieves the highest power.
The overall power of the methods ranges from 5% to 83% and of the combination tests
the tests that consider more Fleming-Harrington weighted logrank statistics perform slightly

better than those that use less.
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For these methods the performance in PH scenarios is also displayed in Figure 43. As the
MazCombo test performs very similar as the ZmJ3 test it is covered entirely by the line of
the latter. This shows that inclusion of a further Fleming-Harrington test does not give any
power benefit in PH scenarios. The Fleming-Harrington test for late differences (G(0,1))
expectedly performs worst as it downweights early events and achieves only a power of 65%
to 71%. Quite surprisingly the Lee2 test with a power between 75% and 82% performs better
than the MazCombo and Zm3 test although the logrank statistic is, in contrast to the other

two tests, not considered in the construction of the Lee2 test.
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Figure 43: Power in PH scenarios of non-parametric methods that outperform the logrank
test in 80% of NPH scenarios for constant hazard together with the power of the logrank
test for comparison. The plots show the overall study duration T on the T-aris and are
further clustered by median survival time in the control arm meds, the accrual propertion
acc, the delay proportion lag, and changepoint proportion lag;. The panels are arranged by
the marimum treatment effect 6.

Order of the methods: Figures 44 and 45 show the power of the different methods but
arranged by the delay t5 and changepoint ¢] used in the generalized linear lag model of the
data generating process. Separate plots for the study duration 7, the median survival in
the control arm med,~, the maximum treatment effect # and the accrual proportion acc were

created which resulted in 96 plots. In contrast to Figure 38 the focus does not lie on an
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overall comparison of the methods across all scenarios but on the impact of the delay and
changepoint parameter on the relationship between the power of the methods. Therefore,
the methods are displayed on the x-axis ordered by the upper left panel of the plot to see if
the ordering remains the same throughout the different delay and changepoint combinations.
Although the order of the methods is slightly different in each plot, the quality of it is the
same and hence only the plot for an overall study duration of 7 = 48 months, an accrual of
acc = 0.2 -7 = 9.6 months, and a median survival in the control group of meds = 15 months
is shown both for the maxmimum effect § = 0.5 (Figure 44) and the minimum effect § = 0.8

(Figure 45).
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Figure 44: Power of the different methods for a study duration of 48 months, an accrual
of 9.6 months, median survival of 15 months and maximum effect of HR 0.5 when hazards
are constant. Triangular shape indicates that the power exceeds the power of the logrank test
by more than the Monte-Carlo standard error based on the evaluable datasets. Panels are
arranged by delay proportion (lags) and changepoint proportion (lag,). The logrank test is
highlighted in red.
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Figure 45: Power of the different methods for a study duration of 48 months, an accrual
of 9.6 months, median survival of 15 months and minimum effect of HR 0.8 when hazards
are constant. Triangular shape indicates that the power exceeds the power of the logrank test
by more than the Monte-Carlo standard error based on the evaluable datasets. Panels are
arranged by delay proportion (lags) and changepoint proportion (lag,). The logrank test is
highlighted in red.
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As can be seen in these figures the overall order of the methods based on their power is
not preserved between the different delay patterns. The overall number of methods that
outperform the logrank test increases with increasing deviation from the PH assumption, i.e.
with increasing delay and changepoint proportion. Furthermore, there are almost no methods
that outperformed the logrank test in the upper left panel and dropped below the power of
the logrank test in the other panels. The methods with lower power than the logrank test in
the upper left panel split up into methods whose power decreases and methods whose power

stays stable the stronger the deviation from the PH assumption gets.

Chance of rejection of each method: Figure 46 shows the results of the logistic regres-
sion models with the estimated odds ratio on the y-axis and the different methods on the
x-axis. The boxplots summarize the results for the different combinations of med¢, acc, 7 and
f and are arranged by the independent variable. The logrank test is again highlighted in red

and a reference line for an odds ratio of 1 is given.
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Figure 46: Results from logistic regression models for rejection of the null hypothesis under
the alternative for the single methods in constant hazard scenarios with independent variables
delay proportion (lagy) and changepoint proportion (lag,). The logrank test is highlighted in
red and for an odds ratio of 1 a reference line is given.
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The first row of Figure 46 shows the chance of rejecting the null hypothesis if no delay and
changepoint are present, which corresponds to the PH scenarios. As was already observed
in Section 3.3.3.1 the asymptotic logrank test (asymLR), the MERT test and the piecewise
exponential models (PWExzp, PWExpLag) have a very low chance of rejecting the null hy-
pothesis. As already seen in Figure 35 the width of the boxplots is bigger than in decreasing
hazard scenarios. The impact of the delay proportion lagy is shown in the second row of
Figure 46. For most methods it stays below an odds ratio of one indicating that the chance
of rejection is smaller the bigger the delay proportion. The asymptotic logrank test (asymLR)
and two of the Fleming Harrington tests for late difference (G(0,1), G(0,2)) have an odds
ratio greater than one in more than 50% of scenarios and hence benefit from increasing delay
proportions. The effect of the changepoint proportion is shown in the third row of Figure
46 and has a similar effect on most methods with and odds ratio below one. For GenlLin,
Landmark, LLRNA, Logit, mLogit, QLRNA, Threshold (Thres) and V0, however, the effect
of the changepoint proportion is reversed leading to an increased chance of rejection which

is highest for Landmark, Threshold (Thres), LLRNA, QLRNA and V0.
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3.3.4 Increasing hazards

Lastly, the power of the methods is compared if the hazard in the control arm is increasing.
Again it was calculated in how many of the 1248 simulated scenarios each method exceeded
the power of the logrank test by more than the Monte-Carlo standard error given the number
of evaluable datasets. This is displayed in a bar chart in Figure 47. As no method exceeds

the logrank test in all NPH scenarios, no bar is colored green.
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Of the four methods which were identified in Section 3.2.3 to have increased type 1 error in
increasing hazard scenarios (CheckPH, YP, RP.TD, AFT (log)), CheckPH performed best
outperforming the logrank test in 821 of the 1248 scenarios. Only the Logit and GenLin

method achieved a higher power than the logrank test in more than 80% of scenarios.

3.3.4.1 PH scenarios

Figure 48 shows all methods on the x-axis and the power of the method in all 96 scenarios
summarized in a boxplot with the Logrank test highlighted in red. As a sample size calculation
tailored to this test has been performed, the logrank test should achieve approximately 80%
power in each scenario. For the methods for which parameters had to be chosen the results
displayed here are based on the moderate parameter, i.e. 20% of the overall study duration
for the methods using the Landmark cutoff and an interval of [0,0.27] for the methods using

the GenLin parameter.

For increasing hazards the AFT model based on exponentially distributed error terms (AFT
(exp)), the Kolmogorov-Smirnov type test based on Cheng (KS Cheng), the MERT test, the
Gray-Tsiatis test (G(-1,0)) and the piecewise exponential model (PWEzp) have very variable

power with an interquartile range of approximately 20 percentage points.

For all these methods except the Gray-Tsiatis test (G(-1,0)) the median power in the PH
scenarios was below 50%. The Landmark and Threshold (Thres) test had very extreme
outlier with power below 25% which occurred in scenarios with very low median survival of
medo = 5 months and high overall study duration of 7 = 48,60 months. This is due to the
fact, that the parameter for analysis was chosen based on the study duration 7 and is hence
quite high. This is problematic in these scenarios where events occur very early on in the

study as the methods then ignore too many events.

Again the Royston-Parmar PH model (RP.PH) performs really good with a power of approx.
78% to 82% which is always higher than the Royston-Parmar TD model (RP.TD) with a
power of 68% to 74%. Power of Milestone survival rate comparisons (Mile, MileNA, MileCLL)

ranges from approx. 38% to 77%. RMST obtained a power of approximately 43% to 78%.
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Figure 48: Boxplot of power in PH scenarios with increasing hazard for all 96 scenarios.
Logrank is highlighted in red.

For the aforementioned methods with very variable power, i.e. an interquartile range of
approximately 20 percentage points, a nested loop plot was created to identify the cause of

this behavior (Figure 49).

The MERT test and the piecewise exponential model PWEzxp perform very similar in sce-
narios with high median survival in the control arm medc = 15,20 months where the power
ranges from 0.2% to 37.6%. For small medc = 5 months the MERT test is better than the
PWEzp model and the power difference increases the longer the overall study duration 7. The

maximum power achieved in these scenarios is 73.4% which explaines the high variability.

The Gray-Tsiatis test (G(-1,0)) performs best in scenarios with higher med¢, while in the
scenarios with medc = 5 months it is often outperformed by the MERT test. In all scenarios,
however, it performs better than the AFT model with exponentially distributed error terms
(AFT (exp)) and the Kolmogorov-Smirnov type test based on the weighted logrank statistc
by Cheng (KS Cheng). For medc = 5 months scenarios the power of these three methods
was relatively stable, but in the other scenarios higher overall study duration lead to an big
decrease in power. These patterns are the same within each row and hence the effect of 6 is

negligible.
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Figure 49: Nested loop plot of power in PH scenarios with increasing hazard for methods with
variable power. The overall study duration T is plotted on the r-aris and clustered by median
survival in the control arm med. and duration of accrual acc. The panels are arranged by
the treatment effect .

3.3.4.2 NPH scenarios

The 1152 NPH scenarios with increasing hazard are uniquely defined by the combination
of median survival in the control arm med., the accrual proportion ace, the overall study
duration 7, the maximum treatment effect # and the delay t5 and changepoint 7. For the
methods for which parameters had to be chosen the results displayed here are based on the
correct specified parameter, i.e. ] for the methods using the Landmark cutoff and an interval
of [t],%3] in case of linear lag scenarios for the methods using the GenLin parameter. In case
of threshold lag scenarios (t] = t5) there is no correct interval for the latter methods and the

interval [0.8 -£3,1.2 - t3] was chosen.

Overall power of all methods: Figure 50 shows all methods on the x-axis and the power
of the method in all NPH scenarios summarized in a boxplot with the Logrank test highlighted
in red. For comparison grey boxplots are added that represent the power in PH scenarios as
shown in the preceding section. It can be seen that the boxplots are much wider than in the

PH scenarios with a mean interquartile range of 36.7 and a mean overall power range of 89



3.3. Power 135

percentage points ranging from an average minimum power of 3.4% to an average maximum
power of 92.3%. This is due to the fact that the NPH scenarios are much more heterogeneous
and differ in the extent they deviate from the PH assumption. For 26 of 64 methods the

median power is above 80%.

In contrast, the MERT test and the piecewise exponential models (PWEzp, PWExpLag)
have the lowest interquartile range of up to 10.2 percentage points and an overall range of up
to 35.6 percentage points which is due to the overall poor power of at most 36%. These are
also the methods that show a lower average power in NPH scenarios than in PH scenarios.

All other methods have a range of more than 70 percentage points.
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Figure 50: Boaxplot of power in NPH scenarios with increasing hazard in black and for com-
parison the power in PH scenarios in grey. Highlighted in red is the logrank test.

To disentangle the effect of the different delay and changepoint combinations the following
Figure 51 is similar to the previous one but with the NPH scenarios arranged by delay ¢35 and

changepoint ¢]. The grey boxplots of PH scenarios are the same in each panel.

As can be seen in this figure, the range of the power values for each method increases the
greater the deviation from the PH assumption, i.e. the greater the dealy and changepoint
proportions. In the upper left panel the boxplots are considerably more narrow with more
outlier values. With increasing changepoint and delay the boxplots widen and the power de-

creases which makes the outlier more extreme. In the bottom row with greatest delay, there
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is only a small number of methods whose power values do not spread out across such a wide
range and have hence no outliers. Of these methods the Fleming-Harrington tests for detect-
ing late differences (G(0,1), G(0,2)), the GenLin method and the Logit and mLogit methods
have relatively high power values when the changepoint proportion is low (lag; = 0.3). For
threshold lag models (lag; = 1) the Landmark model, the threshold test ( Thres), the V0 test
and the quadratic combination of logrank and Nelson-Aalen test at fixed timepoints (QL-
RNA) also have high power and few outliers. The MERT test and the piecewise exponential
(PWEzp, PWEzpLag) methods have low power throughout all scenarios.
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Figure 52: Power of the logrank test in NPH scenarios with increasing hazards with the overall
study duration T on the r-aris and further clustered by median survival time in the control
arm medc, the accrual proportion acc, the delay proportion lags and changepoint proportion
lag,. The panels are arranged by the marimum treatment effect 8.

Power of single methods: Figure 52 displays the behavior of the well established logrank
test in nested loop plots arranged by the maximum treatment effect #. In these scenarios the
power of the logrank test is very variable ranging from 4.3% to 96.8%. The high variability
mainly occurs for scenarios with very low median survival of med- = 5 months where the
power decreases drastically the longer the study duration T with power ranging from 4.3%
to 88.3%. This is remedied with increasing med revealing power values from 11% to 96.8%
for med = 15 months and 38.4% to 96.5% for med~ = 20 months. The loss in power with
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increasing study duration can be explained as this leads to a decreased sample size due to the
sample size calculation. The other parameters delay proportion lags, changepoint proportion

lag,, accrual proportion acc and maximum treatment effect # play a minor role.
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Figure 53: Power in NPH scenarios of the parametric methods that outperform the logrank
test in appror. 80% of scenarios with increasing hazards together with the power of the
logrank test for comparison. The plots show the overall study duration T on the T-aris and
are further clustered by median survival time in the control arm mede, the accrual proportion
acc, the delay proportion lags and changepoint proportion lag,. The panels are arranged by
the mazimum treatment effect 6.

As has been shown at the beginning of section 3.3.4 no method outperforms the logrank test
in all NPH scenarios. However, three methods outperform the logrank test in approximately
80% of the cases which are: the generalized linear model (GenLin) and the logit and modified
logit model (Logit, mLogit). The three methods are displayed against the logrank test in the
following nested loop plot for NPH scenarios (Figure 53).

As can be seen all methods perform very similar and their power as well as the power of
the logrank test is increasing the higher the median survival in the control arm (medg). For
scenarios with low overall study duration T the power gain compared to the logrank test is

very small to non-existent and gets bigger with increasing study duration. Additionally, the
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power gain for high study duration is small in scenarios with low meds and increases for
higher mede to approx. 40%. For scenarios with meds = 20 months all methods have a

power of at least 80% while the power of the logrank test goes down to 38.4%.

For comparison their performance in PH scenarios is shown in Figure 54.
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Figure 54: Power in PH scenarios of the parametric methods that outperform the logrank
test in approz. 80% of NPH scenarios with increasing hazards together with the power of the
logrank test for comparison. The plots show the overall study duration T on the T-aris and
are further clustered by median survival time in the control arm mede, the accrual proportion
acc, the delay proportion lags and changepoint proportion lag,. The panels are arranged by
the marimum treatment effect 6.

The methods again perform very similar and for longer median survival in the control arm
there is almost no difference to the power of the logrank test of 80%. For low median survival
of med- = 5 months the difference to the logrank test becomes more apparent and increases
with higher study duration as well as the difference between the methods. The biggest
difference is achieved at a study duration of T = 60 months and with a power of 66.4% for
the modified Logit model (mLogit).

Although nonparametric methods are more robust to parameter misspecification, no non-

parametric method outperformed the logrank test in all NPH scenarios. The best method
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compared to the logrank test were the Fleming-Harrington test for late differences (G(0,0.5))
and the modified Lee3 test (mLeed), which outperformed the logrank test in 57% and 51%
of the scenarios, respectively. Due to this low number of outperforming scenarios the non-

parametric methods were not investigated more deeply for the increasing hazard scenarios.

Order of the methods: Figures 55 and 56 show the power of the different methods.
The plots are arranged by the delay ¢35 and changepoint ¢] used in the generalized linear lag
model of the data generating process. The methods are ordered by the upper left panel of the
plot to see if the ordering remains the same throughout the different delay and changepoint
combinations. This is done for an overall study duration of 7 = 48 months, an accrual of
acc = 0.2-7 = 9.6 months, and a median survival in the control group of medc = 15 months.
Figure 55 shows the results for the maxmimum effect § = 0.5 and Figure 56 for the minimum

effect 6 = 0.8.

As before the overall order of the methods based on their power is not preserved between the
different delay patterns. Many of the methods with higher power than the logrank test in
the upper left panel do not only keep their power above the power of the logrank test but do
also decrease less than the other methods the bigger the deviation from the PH assumption
gets. Of the methods that had lower power than the logrank test in the upper left panel,
there are many with relatively stable or even increasing power such as Fleming-Harrington
weighted logrank test for late differences (G(0,1), G(0, 0.5), G(0,2)) and regression models
with time-dependent treatment effects (CozTD, RP.TD) but mainly combination tests (e.g.
MazxCombo, Zm3, mZm3). But also the Cauchy changepoint method ( CauchyCP) performed
really well. The remaining methods with lower power decrease uniformly so that order of the
methods does not change much, which is completely different for the methods with higher
power, which spread out much more the extremer scenarios get. As seen before the generalized

linear lag model (GenLin) and the Logit models are always on top throughout all scenarios.

Chance of rejection of each method: Figure 57 shows the results of the logistic regres-
sion models with the estimated odds ratio on the y-axis and the different methods on the

x-axis. The boxplots summarize the results for the different combinations of med¢, acc, 7 and
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Figure 55: Power of the different methods for a study duration of 48 months, an accrual of
9.6 months, median survival of 15 months and mazimum effect of HR 0.5 when hazards are
increasing. Triangular shape indicates that the power exceeds the power of the logrank test
by more than the Monte-Carlo standard error based on the evaluable datasets. Panels are
arranged by delay proportion (lags) and changepoint proportion (lag,). The logrank test is
highlighted in red.
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Figure 56: Power of the different methods for a study duration of 48 months, an accrual of
9.6 months, median survival of 15 months and minimum effect of HR 0.8 when hazards are
increasing. Triangular shape indicates that the power exceeds the power of the logrank test
by more than the Monte-Carlo standard error based on the evaluable datasets. Panels are
arranged by delay proportion (lags) and changepoint proportion (lag,). The logrank test is
highlighted in red.
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# and are arranged by the independent variable. The logrank test is again highlighted in red

and a reference line for an odds ratio of 1 is given.
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Figure 57: Results from logistic regression models for rejection of the null hypothesis under the
alternative for the single methods in increasing hazard scenarios with independent variables
delay proportion (lag,) and changepoint proportion (lag,). The logrank test is highlighted in
red and for an odds ratio of 1 a reference line is given.

The first row of Figure 57 shows the chance of rejecting the null hypothesis if no delay
and changepoint are present, which corresponds to the PH scenarios. Again the asymp-
totic logrank test (asymLR), the MERT test and the piecewise exponential models (PWEzp,

PWEzpLag) have a very low chance of rejecting the null hypothesis.

The impact of the delay proportion lags is shown in the second row of Figure 57. For almost
all methods the box of the boxplot contains an odds ratio of one indicating that the chance
of rejection is not influenced by lag, or gets even bigger the bigger the delay proportion in at
least a quarter of the scenarios. The Fleming-Harrington test for late difference ( G(0,2)), the
MERT test and the piecewise exponential lag model (PWEzpLag) have an odds ratio greater

than one in more than 75% of scenarios and hence benefit from increasing delay proportions.

The effect of the changepoint proportion is shown in the third row of Figure 57 and has a

similar effect on most methods with and odds ratio below one. For Landmark, QLRNA and
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the Threshold (Thres) method the effect of the changepoint proportion is reversed in more
than 75% of scenarios leading to an increased chance of rejection. Additionally, there are
scenarios where the chance of rejection of the asymptotic logrank test (asymLR) and the
Kolmogorov-Smirnov type test based on the weighted logrank test by Cheng (KS Cheng) is

approximately doubled when the changepoint proportion is doubled.
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3.4 Recommendation at planning stage

To conclude this chapter it was endeavored to give guidance on the choice of approppriate
methods when a new trial is designed. To do so the results of the previous sections are weighed
up and a ranking system is introduced depending on the amount of knowledge available at
the time of planning the new study. For the ranking system the three methods that showed
an inflated type 1 error in all scenarios, i.e. CheckPH, YP and AFT (log), were not taken
into consideration. For all other methods the ranks based on their power are calculated for
each scenario contributing lower ranks to higher power and then averaged across all scenarios
corresponding to the planning assumptions. For the planning assumptions the following four
were considered: assuming proportional hazards (PH), assuming a delayed treatment effect
without specific knowledge of the delay (NPH), assuming a delayed treatment effect with
knowledge of the timepoint when the full effect is achieved (TLM), and assuming a delayed
treatment effect with full knowledge of the timepoint the treatment effect increases and the
timepoint when the full effect is achieved (GLLM). All of these four planning assumptions are
further refined by the shape of the hazard, which corresponds to knowledge on the disease
progression and it was distinguished between no previous knowledge, decreasing, constant

and increasing hazard. The planning assumptions are summarized in Table 16.

Table 16: Summary of the planning assumptions

Assumption Excluded methods Simulation scenarios

Landmark, MWLRT, Thres, VO,
PWExp, ParGroup, LLRNA,
QLRNA, PWExpLag, MERT,
(m)Logit, GenLin (lagy = lag, = 0)
Landmark, MWLRT, Thres, VO,
PWExp,  ParGroup, LLRNA,
QLRNA, PWExpLag, MERT,

No delay (PH) all PH scenarios

General delay without fur- all NPH scenarios

ther knowledge (NPH) (m)Logit, GenLin (lagy # 0)

Delay with known onset of ICD}WE?chag, MERT,  (m)Logit, TLM scenarios
delay (TLM) enLa (lagy # 0,lag; = 1)
Delay with full knowledge all methods GLLM scenarios

(GLLM) (lagy # 0,lag; # 1)
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The results are shown in Figures 58, 59, 60 and 61. Each figure displays the results of the
PH, NPH, TLM and GLLM planning assumption and is subdivided into four panels based
on the shape of the hazard. In each panel the results are summarized as barplots with red
bars indicating that the method showed a type 1 error inflation in this situation and green

bordered bars indicating the five methods with the lowest rank.

Assuming PH If there is no indication that the PH assumption is violated at the planning
stage specification of the parameters for analysis of the Landmark and GenLin type methods
is not possible and hence these methods were excluded. The ranks of the remaining methods

are then averaged over all PH scenarios and the results are shown in Figure 58.

Al scenarios (nyce, = 288) Decreasing hazard (nsce, = 96)

Constant hazard (e, = 96) Increasing hazard (nycen = 96)

Average rank

RP.PH

Logrank -
Zm3
mLee3
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Figure 58: Barplot of the mean rank of each method averaged over all PH scenarios and
over all PH scenarios with decreasing, constant and increasing hazard separately. A red bar
indicates that this method showed inflated type 1 error in this setting and green bordered bars
indicate the five methods with the best rank. As methods of the Landmark and GenLin type
were excluded the number of methods was 48. Nscen 1S the number of scenarios considered in
each plot.

As expected the Logrank, Cox and Royston-Parmar model for proportional hazards (RP.PH )

are among the five best performing methods in each panel. Although the Royston-Parmar
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model achieves a better average rank than the logrank test, this is within the Monte-Carlo

standard error and hence the logrank test can be recommended.

Assuming NPH If, at the planning stage, there is an indication that a delay will be
present but no data is available to quantify it, specification of the parameters for analysis of
the Landmark and GenLin type methods is not possible and hence these methods were again
excluded. The ranks of the remaining methods are then averaged over all NPH scenarios and

the results are shown in Figure 59.

All scenarios (ngcen = 3456) Decreasing hazard (e, = 1152)

30

=)

)

Constant hazard (e, = 1152) Increasing hazard (nycen = 1152)

Average rank
]
]
]
1|

20

AFT (gau)
AFT (gau)

Figure 59: Barplot of the mean rank of each method averaged over all NPH scenarios and
over all NPH scenarios with decreasing, constant and increasing hazard separately. A red bar
indicates that this method showed inflated type 1 error in this setting and green bordered bars
indicate the 5 methods with the best rank. As methods of the Landmark and GenLin type were
excluded the number of methods was 48. Nscen s the number of scenarios considered in each
plot.

The modified versatile test by Lee (mLee3) which is the maximum of the logrank and the
Fleming-Harrington test for late differences is in all scenarios among the best five methods
and the best method if no knowledge on the shape of the hazard is available. If it is known a
priori that the underlying hazard is decreasing or constant it is better to choose the Fleming-

Harrington test for late differences (G(0,1)).
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Assuming TLM Assuming that it is known when the full treatment effect will set in allows
specification of the parameters for analysis of the Landmark type methods but not of the
GenLin type methods and hence these were excluded. The ranks of the remaining methods

are then averaged over all TLM scenarios and the results are shown in Figure 60.

Al scenarios (Nycen = 1152) Decreasing hazard (nce, = 384)
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Figure 60: Barplot of the mean rank of each method averaged over all TLM scenarios and
over all TLM scenarios with decreasing, constant and increasing hazard separately. A red
bar indicates that this method showed inflated type 1 error in this setting and green bordered
bars indicate the 5 methods with the best rank. As methods of the Landmark and GenLin type
were excluded the number of methods was 56. Ngcen 1S the number of scenarios considered in
each plot.

In all scenarios the threshold test (Thres), the Landmark test and the V0 test are the three
best performing methods. If a method is to be used which does not require the specification of
the delay, the Fleming-Harrington test for late differences can be used. However, the amount
of weight placed on late timepoints should be chosen depending on the shape of the hazard,
i.e. G(0,1) if the hazard is constant, G(0,2) if the hazard is decreasing, and G(0,0.5) if the

hazard is increasing.

Assuming GLLM If the exact structure of the delay, i.e. the time when the treatment

effect increases and the time when the full effect sets in, is known, all methods can be used.
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The ranks are then averaged over all GLLM scenarios and the results are shown in Figure

61.

Al SCenarios (Nyces = 2304) Decreasing hazard (nce, = 768)

60 -

40

)

Constant hazard (nycen = 768) Increasing hazard (nycen = 768)

Average rank
1

40

20

S22 02O S OOM SR TH ON OO =< SOTOT C 31X X SN G LSOOG 0 S GIOET O D0 CEE 0-XOM T3 0MOSIN O
SRR s e S S Ry e g RE SR ER el SO RE SRRl SR nEet e
—; LS | eSS 6 o 00 3% 5 22150 = = Ou)c — = S e
$TET E0SG SOGEGOS 2 QEPZION. ¥ 29 S epe- SEo- 206USEE §TEEE 2003 05t

c 9 E YoasC ' wa c

s O% 2 =% (S=} =1 <" § L 0 s O 2

3 3 § o8 T < < z 8 < e E 5 3 8

<
E

Figure 61: Barplot of the mean rank of each method averaged over all GLLM scenarios and
over all GLLM scenarios with decreasing, constant and increasing hazard separately. A red
bar indicates that this method showed inflated type 1 error in this setting and green bordered
bars indicate the 5 methods with the best rank. As no methods were excluded the number of
methods was 61. ngcen s the number of scenarios considered in each plot.

As expected the best performing methods are the GenLin test and the Logit and modified
logit (mLogit) test. A good alternative presents the threshold test ( Thres) which only requires

the specification of the time when the full effect sets in for analysis.
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Chapter 4

Discussion

In this chapter the contribution of this thesis to current research is presented as well as

limitations and directions for future research.

4.1 Contributions to research and discussion

Handling of non-proportional hazards has become increasingly important due to recent ad-
vances in oncological immunotherapies. The choice of an appropriate statistical method to
assess superiority of a new treatment is essential to the success of a clinical trial. It was
shown by Peto and Peto (1972) that a rank-invariant test such as a weighted logrank test is
most powerful if the weights are proportional to the logarithmic hazard ratio. This makes
the standard logrank test unappealing if a delayed onset of treatment effect can be expected
in advance. Hence, the selection of an appropriate statistical method should be made with
careful consideration of the underlying mechanism of the oncological entity as was already

stressed by many authors, e.g. Ananthakrishnan et al. (2021), Mukhopadhyay et al. (2020).

The aim of this thesis was to systematically evaluate the performance of alternatives to the
commonly used logrank test, that were identified in a systematic literature search, when
comparing a time-to-event endpoint between two groups in settings where the proportional
hazard assumption is violated. For these methods a comprehensive overview is given and

if possible R packages in which these methods are implemented as well as own code in an
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online repository referenced in the Appendix to facilitate their application. Comparison of
these methods was done in an extensive simulation study assessing type 1 error and power
under a variety of scenarios in a concise and structured manner allowing to disentangle the
impact of different aspects such as the study duration, accrual time or the extent and form

of the delay.

In the systematic literature search 42 articles published before 2022 on the general topic of
non-proportional hazards were identified of which only 22 considered non-proportional haz-
ard scenarios with delayed treatment effects in their simulation study. However, in most
cases this was only a single scenario among other non-proportional hazard scenarios and not
a systematic approach to investigate the effect of the delay in detail. Due to this limited
number of methods considered in these articles and the relatively simple structure of de-
layed treatment effect scenarios, this thesis can be understood to extend the work of already
published simulation studies by investigating a greater number of available methods. It is
found that the performance of the single methods highly depends on the constellation of
simulation parameters. For type 1 error the Milestone survival rate comparison based on
the Nelson-Aalen estimator was overly conservative whereas the naive procedure of checking
the PH assumption, the time-dependent Royston-Parmar model and the model by Yang and
Prentice showed an error inflation throughout all simulated scenarios. For accelerated failure
time models control of type 1 error for different distributional assumptions depended on the
shape of the underlying hazard of the data generating process, e.g. assuming a exponentially
distributed error term in the AFT model controlled type 1 error for constant hazard scenarios
and led to an error inflation if the hazard was decreasing or an overly conservative test if
the hazard was increasing. Now throughout this thesis the best performing methods in NPH
scenarios with respect to power were the generalized linear lag model (GenLin) and the Logit
models (Logit, mLogit) since these models are very close to the data generating process and
their parameters for analysis were chosen to correspond to the true parameters. This has
also been observed by Xu et al. (2018) and Yu et al. (2021) who invented these methods.
Although it was assessed that these methods are robust against misspecification of their pa-
rameters in NPH scenarios it might be desireable to use methods for which no parameters
must be chosen of which the Fleming-Harrington test for late differences stood out in terms

of power. This has also been observed by many other authors, e.g. Arfé et al. (2021), Flandre
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and O’Quigley (2019), Jiménez (2022), Lin and Le6n (2017), Tang (2022) and Yang et al.
(2020). Mukhopadhyay et al. (2020) also observed that this test achieves very high power in
delayed treatment effect scenarios but caution to use it thoughtless as its power can decrease
drastically if no or another type of non-proportional hazards is observed. In this thesis the
Fleming-Harrington test for late differences also performed better than the logrank test in
all NPH scenarios with decreasing hazards and in most of the NPH scenarios with constant
and increasing hazards if the median survival was low and the overall study duration high,
but showed a power loss of 10%-15% compared to the logrank test in PH scenarios. Another
quite elaborated simulation study was performed by Jachno et al. (2021) who considered
decreasing, constant and increasing hazard situations but only for threshold lag scenarios
with a single maximum treatment effect comparing 13 methods in their simulation study.
They concluded that the best performing test was the Zm3 test as it maintained power. The
combination of weighted logrank tests of the Fleming-Harrington family was also advocated
by other authors depending on which combinations were considered in the simulation study.
Chen et al. (2022), Cheng and He (2021) and Ristl et al. (2021) observed that the MazCombo
test represents a robust variant whereas Royston and Parmar (2020) preferred their modified
version of the Zm3 test, the mZm3 test. For Lin et al. (2020) general combination tests are a
useful tool if no prior knowledge is available to select optimal weigthed logrank tests. In this
thesis it was also observed that these combined tests are very similar to the logrank test in PH
scenarios with only marginal power loss. In NPH scenarios, however, the advantage of these
methods over the logrank test depends on the shape of the underlying distribution. While
for decreasing hazards the logrank test was always outperformed by the combination tests,
this reduced to approx. 80% of scenarios with constant hazards and further to approx. 40%
of scenarios with increasing hazards. It should be mentioned, however, that Magirr (2021)
criticized the use of Fleming-Harrington family of weighted logrank tests since this choice of
weights can be problematic as it downweights early events so much that early detrimental
effects of the new treatment can be rewarded by these statistics. This was not observed in

this thesis as all scenarios assumed equality of the survival distributions before the delay.

Furthermore, a more recently published simulation study by Klinglmiiller et al. (2023), which
was mentioned in the introduction but not considered in the literature search within this

thesis, also investigated delayed treatment effect scenarios but considered only a constant
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hazard. As a result of their simulation study the modestly weighted logrank test showed
to be a viable and robust choice which was also favored by Magirr and Burman (2019) who
proposed this test. This recommendation is based on the fact that, although this test achieves
lower power than weighted logrank test alternatives specifically tailored to detect delayed
treatment effects, such as the Fleming-Harrington test for late differences, the MWLRT
loses less power in PH scenarios. In general this is in line with the findings of this thesis.
However, for increasing and constant hazard NPH scenarios with low median survival and
high overall study duration the power of the MWLRT dropped below the power of the
Fleming-Harrington test for late differences. Furthermore, the modestly weighted logrank
test showed inflated type 1 error in some scenarios with increasing hazard. Another aspect
touched by Klinglmiiller et al. (2023) is treatment effect estimation where they investigated
confidence interval coverage for three available summary measures (AHR, median difference,
and RMST difference) which they found to be close to the nominal level. The disadvantage of
many methods considered in this thesis is that either no statistical measure, that is equivalent
to the test decision, is available to quantify the treatment effect or, if it is, it is not easily
interpretable. This was not further investigated in this thesis, but, if possible, equivalent

measures were given for the methods described in Section 2.3.

The final conclusion drawn in this thesis is a recommendation on the choice of the most
powerful method based on different assumptions made at the planning stage of a trial. This
was done by implementing a ranking system which ranks all methods with no type 1 error
inflation with respect to their power within each scenario and averages over all scenarios
corresponding to the knowledge at planning stage. It showed, that in PH scenarios the
logrank test, together with the Cox and Royston-Parmar PH model tests performs best and
all alternative methods reduced power in PH scenarios what is in line with the result by Peto
and Peto (1972). In the unlikely case that the underlying data-generating process is known
a priori, the use of GenLin type methods that exploit the full knowledge is advised. More
interesting, however, is the case that it is known in advance that the treatment effect will be
delayed but no further knowledge on when the delayed effect sets in is available. In this case

the use of the modified versatile test by Lee (mLee3) is a robust choice for analysis.
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4.2 Limitations and directions for future research

Although the simulation study presented in this thesis extends the number of methods and
scenarios of recent simulation studies, it has its limitations which can give rise to future re-
search. One limitation that is often present in analyzing time-to-event data is that the tests
considered in this simulation study were used to test the null hypothesis of equal survival
distributions versus the alternative hypothesis of unequal survival distributions. This, how-
ever, cannot be translated to uniform superiority of one group over the other. This again
highlights that caution is needed to analyze and interpret time-to-event data and that careful

inspection of the survival distributions is necessary.

Not only the final phase of evaluating and summarizing collected trial data needs careful
consideration, but also during the design and planning phase of a trial different aspects
should be decided thoughtfully. The aspect of sample size calculation has been touched in
this thesis, but was not investigated more deeply. Sample size calculation in PH scenarios
allowed to set a benchmark for the logrank test which facilitated the comparisons to other
methods. For NPH scenarios sample size calculation is more difficult and in this thesis the
approach based on the naive average hazard ratio was pursued. It has been observed that this
works reasonably well in scenarios with increasing hazards and longer median survival. For
other scenarios different approaches such as the average hazard ratio or approaches presented
by Ananthakrishnan et al. (2021) or the flexible method proposed by Lakatos (1988) could be
a field of further investigation. Another aspect for future research could be to explore ways
to exploit adaptive or group-sequential design tools in context of delayed treatment effects.
Some authors (e.g. Chen et al. (2022), Magirr and Jiménez (2022)) have already investigated
application of group-sequential designs but these only scratch the surface of possibilities.
Further topics of research could be whether an optimal statistical test for final analysis based
on the results of an interim analysis could be chosen or, if the test for final analysis is already
specified, if certain methods increase the chance of predicting the final test decision if applied

at interim analysis.



156 Chapter 4. Discussion

4.3 Conclusion

A strength of this thesis is that it provides an extensive overview of proposed methods to deal
with NPH when analyzing time-to-event data, which were compiled through a comprehensive
literature search. Not all of these methods could be considered for the simulation study, as
was already explained in Section 3.1, but references are given to revise the details of these
methods. For the methods included in the simulation study, detailed information is given
in this thesis, and the methods are presented in a well-structured way. If available the R
package in which the method is implemented is referenced. All other methods have been self-
implemented and the R code is provided in an online repository referenced in the appendix
which makes these methods more easily accesible for future investigation. Another strength
is the comprehensive simulation study which allows to assess various aspects of oncological
trials with delayed treatment effects, which hopefully facilitates the choice of an appropriate

statistical test.

To conclude, this thesis contains a comprehensive investigation of the performance of alter-
natives to the logrank test in NPH scenarios with delayed treatment effect. It provides a
detailed and structured description of these methods together with details or references of
their implementation. The results of the extensive simulation study can bee seen as a basis
to choose the most appropriate method with respect to type 1 error control and power when
planning future trials. Furthermore, the general structure and ideas of this thesis might also

build a foundation for future investigations.



Chapter 5

Summary

This thesis is motivated by recent advances in oncology, where therapies rely on the acti-
vation and augmentation of the immune system to identify and fight tumor cells. These
immunotherapeutic approaches come with own characteristics and one commonly observed
trait is that the observable treatment effect is delayed by the time needed to train the re-
sponse of the immune system. Especially for time-to-event endpoints such as overall survival
or progression-free survival this demands careful consideration with respect to the statistical
evaluation as commonly used methods rely on the assumption of proportional hazards. This
assumption is violated if the treatment effect is delayed and the usual methods have reduced
power to detect a difference between therapies. The aim of this thesis was hence to investigate
the performance of various alternatives to the commonly used logrank test in terms of type

1 error and power in this setting.

Firstly, a systematic literature search was performed to identify statistical methods that
have been suggested to analyze time-to-event data and especially if these methods have been
developed to handle non-proportional hazards. The methods were then compared in an
extensive simulation study taking the following parameters into account: the overall study
duration 7, the accrual proportion acc, the shape of the Weibull hazard k- and median
survival medc in the control arm and the maximum treatment effect 6§ as well as the delay t5
and changepoint ¢] of the generalized linear lag model. As performance measure type 1 error

and power of the methods was assessed and the effect of the different simulation parameters
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on these performance measures was examined. For methods where parameters for analysis

had to be chosen the effect of misspecifying these parameters was also investigated.

Most of the methods controlled type 1 error and those that did not were already known
from previous publications. With respect to power the methods that come close to the
data-generating process performed best in the simulation studies and were not sensitive to
parameter misspecification at least in non-proportional hazard scenarios. However, the spec-
ification of these parameters requires knowledge of the form and extent of the delay that
can be expected in advance. If this is not available other alternatives such as the Fleming-
Harrington test for late differences or combinations of weighted logrank statistics can be used.
Their power, however, depends on the underlying distribution of the data. For proportional

hazard scenarios the logrank test is the most powerful of all tests that control type 1 error.

Application of the presented methods is facilitated by referencing the R package in which
the method is implemented or providing own code in an online repository referenced in the
Appendix. The interpretation of the results of these methods is, however, often complicated
due to the absence of interpretable summary measures of the detected treatment effect. It is
also pointed out that some aspects of this thesis such as sample size calculation or application

of the methods in adaptive or group-sequential designs could be worth future research.

It is concluded that this thesis provides a detailed and well structured compilation of al-
ternative methods to the logrank test when analyzing time-to-event data in the presence of
non-proportional hazards. Furthermore, the extensive simulation study together with the
ranking system can help to make a substantiated choice of an appropriate method for analy-
sis of future studies. In case of proportional hazards the logrank test remains the method of
choice and in case the data-generating process of the non-proportional hazard is completely
understood methods should be chosen that exploit this additional knowledge. If, however,
the exact structure of the delay is unknown versatile methods that combine weighted logrank

statistics should be resorted to.



Chapter 6

Zusammenfassung

Die jungsten Fortschritte in der Onkologie zu Therapien, die auf der Aktivierung und Ver-
starkung des Immunsystems Tumorzellen zu erkennen und zu bekdmpfen beruhen haben diese
Arbeit motiviert. Eine haufig beobachtete Eigenschaft dieser immuntherapeutischen Anséitze
ist, dass der beobachtbare Behandlungseffekt um die bendtigte Zeit eine Immunantwort zu
trainieren verzogert wird. Insbesondere bei Ereigniszeitendpunkten wie dem Gesamtiiber-
leben oder dem progressionsfreien Uberleben muss dies bei der statistischen Auswertung
sorgfaltig beriicksichtigt werden, da die tblicherweise verwendeten Methoden auf der An-
nahme der proportionalen Hazards beruhen. Diese Annahme ist verletzt, wenn der Behand-
lungseffekt verzogert eintritt und die herkoémmlichen Methoden haben eine geringere statis-
tische Power einen Unterschied zwischen den Therapien zu erkennen. Ziel dieser Arbeit war
es daher, die Performance verschiedener Alternativen zum héaufig verwendeten Logrank-Test

in Bezug auf den Fehler 1. Art und die Power in dieser Situation zu untersuchen.

In einer systematischen Literaturrecherche wurden zuerst statistische Methoden identifiziert,
die fiir die Analyse von Ereigniszeitdaten vorgeschlagen wurden, und ob diese insbesondere
entwickelt wurden, um nicht-proportionale Hazards umzugehen. Die Methoden wurden dann
in einer umfangreichen Simulationsstudie unter Berticksichtigung der folgenden Parameter
verglichen: die Gesamtstudiendauer 7, der Anteil des Rekrutierungszeitraums acc, die Form
des Weibull-Hazards k- und das mediane Uberleben medc im Kontrollarm und der maxi-

male Behandlungseffekt 6 sowie die Verzogerung t5 und der Zeitpunkt der Anderung t} des
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generalisierten linearen Lag-Modells. Als Giitemafl wurde der Fehler 1. Art und die Power
der Methoden und der Einfluss der verschiedenen Simulationsparameter auf diese Giitemafle
untersucht. Bei Methoden, bei denen Analyseparameter gewéhlt werden mussten, wurde

auch die Auswirkung einer falschen Spezifikation dieser Parameter untersucht.

Die meisten Methoden kontrollierten den Fehler 1. Art, und die dies nicht taten, waren bere-
its aus fritheren Veroffentlichungen bekannt. In Bezug auf die Power schnitten dem daten-
generierenden Prozess nahekommende Methoden in der Simulationsstudie am besten ab und
waren zumindest in Szenarien mit nichtproportionalen Hazards nicht anféllig gegeniiber einer
falschen Spezifikation der Analyseparameter. Die Spezifikation dieser Parameter erfordert je-
doch die Kenntnis von Form und Ausmafl der zu erwartenden Verzogerung im Voraus. Ist
dies nicht der Fall, konnen andere Alternativen wie der Fleming-Harrington Test fiir spéte
Unterschiede oder Kombinationen von gewichteten Logrank-Statistiken verwendet werden.
Thre Power héngt jedoch von der zugrundeliegenden Verteilung der Daten ab. Fiir Szenarien
mit proportionalen Hazards hat der Logrank-Test die grofite Power unter allen Tests, die den

Typ 1 Fehler kontrollieren.

Durch einen Verweis auf das R-Paket, in dem die Methode implementiert ist, oder durch
die Bereitstellung eigenen Codes im Anhang wird die Verwendung der vorgestellten Meth-
oden erleichtert. Die Interpretation der Ergebnisse dieser Methoden ist jedoch durch das
Fehlen interpretierbarer Effektmafle oft schwierig. Einige Aspekte dieser Arbeit, wie z.B. die
Berechnung des Stichprobenumfangs oder die Anwendung der Methoden in adaptiven oder

gruppensequentiellen Designs konnten zukiinftige Forschung wert sein.

Diese Arbeit liefert eine detaillierte und gut strukturierte Ubersicht alternativer Analysemeth-
oden zum Logrank-Test, wenn Ereigniszeitdaten mit nichtproportionalen Hazards vorliegen.
Dartiber hinaus kann die umfangreiche Simulationsstudie zusammen mit dem Platzierungssys-
tem helfen geeignete Methode zur Analyse zukiinftiger Studien fundiert auszuwéhlen. Im
Falle proportionaler Hazards bleibt der Logrank-Test die Methode der Wahl, und sofern der
Datenerzeugungsprozess bei nichtproportionalen Hazards vollstdndig verstanden ist, sollten
Methoden gewahlt werden, die dieses zusétzliche Wissen nutzen. Falls jedoch die genaue
Struktur der Verzdgerung nicht bekannt ist, sollte auf vielseitige Methoden zuriickgegriffen

werden, die gewichtete Logrank-Statistiken kombinieren.
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Appendix

Implementations in R

To ensure reproducibility and make the implemented methods easily accessible R program
code that was used in this thesis was uploaded to an online repository on github and can be
accessed at https://github.com/BeRouven/Methods-T2E-DelayedTreatment. The repos-

itory contains the following R-Code-Scripts:

e Costume functions: The first script "0_ CostumeFunctions_DataGeneration.R" con-
tains the implementation of the inverse cumulative hazard function AEl needed to gen-
erate the survival times by applying the inversion method as outlined in Section 2.2.3.
The second script "0__CostumeFunctions_Analysis.R" contains the function "weight-
edLR" to calculate all weighted logrank statistics and, if needed, their correlation for
combinations of these statistics as described in 2.3.3. The function "MethodsSurvival" is
used to apply these methods together with methods from publicly available R packages.

e Data Generation: These scripts conduct the data generation for the type 1 error
("1__DataGeneration_ T1E.R") and power ("1__DataGeneration_ Power.R") scenarios.

e Data Analysis: The scripts "2_ DataAnalysis_ T1E.R" and "2_ DataAnalysis_ Power.R"
conduct the data analysis of the generated data for all scenarios. As this calculation is
computationally very expensive, the analysis was parallelized and multiple cores were

used to reduce runtime.
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To reproduce the results from this thesis the data need to be generated first which for
type 1 error assessment can be done by simply running the "1_DataGeneration_T1E.R"
script. To generate the data for the power assessment the functions defined in the script
"0__CostumeFunctions DataGeneration.R" need to be loaded first and then the "1 Data-
Generation_ Power.R" script can be run. To analyze the data the analysis function from
the "0_ CostumeFunctions_ Analysis.R" script need to be loaded before the "2 DataAnaly-

sis. T1IE.R" and "2_ DataAnalysis_ Power.R" scripts can be run.
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