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Abstract

Designing an algorithm for quantum chemistry for a quantum computer requires a lot more than
the pure algorithmic design. Quantum computers, especially the ones that exist at the time of writing,
are not perfect and are subject to many limitations in terms of the types and amount of operations that
can be done. Due to this it is important to design resource-efficient algorithms and strategies to mitigate
the effect of noise. To do the latter it is also important to study what actually is the effect of noise on
a computation. Armed with this knowledge it is then possible to tackle the actual implementation of a
quantum algorithm on hardware.

Quantum chemistry, and specifically chemical dynamics is a particularly exciting canvas upon which to
explore the potential of quantum computing. This thesis aims to present the full journey from algorithmic
design for chemical problems to their implementation on quantum computers and the extraction of useful
values through error mitigation.

To achieve this Part I of the work introduces all the context and concepts required to follow the re-
search presented. The Chapter 1 discusses the reason why one would want to apply quantum computers
to problems in general and in chemistry. The Chapter 2 presents the foundational mathematics, quantum
theory and high level quantum computing prospects. This allows the third chapter on quantum algo-
rithms, with a focus on the variational quantum eigensolver to be followed. Because quantum algorithms
are subject to noise, Chapter 4 introduces the theory and effects of noise and a selection of fundamental
techniques used to mitigate noise or correct for errors. Chapter 5 then presents how quantum chemistry is
dealt within quantum computing.

Part II presents the research and results, beginning with Chapter 6 which presents a quantum al-
gorithm to perform non-adiabatic mixed quantum-classical dynamics with a fixed depth circuit. The
Time-Dependent Variational Quantum Propagation (TDVQP) algorithm is then tested on the Shin-Metiu
Model, where it achieves promising results as a proof of concept study. However, that study was noiseless,
so in anticipation of the inevitable hardware noise, Chapter 7 presents an error mitigation technique called
UNIfied Technique for Error mitigation with Data (UNITED) which was tested on both variational and
random circuits showing that the combination is better than the parts. To further understand the effect
of noise Chapter 8 presents a different approach to the problem; starting with a perfect quantum com-
puter, what happens when noisy qubits are added one at a time? Here it was shown that a single noisy
qubit is enough to make the whole machine behave as though it was noisy, although with an exponentially
suppressed error rate. Finally, Chapter 9 closes off this section by showing the process of implementing
TDVQP on a 4 qubit quantum computer at the Walter Meisner Institute, at the time of writing experi-
mental results were not yet available, but here all the considerations, caveats and compromises required to
run on real hardware are shown, as well as the performance of UNITED on this problem.

Closing off the work Part III holds the concluding remarks, an outlook to the future of quantum com-
puting and a reflection on the work that was done. Actually computing useful quantum chemistry on
quantum computers is a tough business, and perhaps it will require fault-tolerant machines and clever
algorithms together, but there are promising attempts at the problem with noisy machines all the same.
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Abstrakt

Die Entwicklung eines Algorithmus für die Quantenchemie für einen Quantencomputer erfordert viel mehr
als nur die reine algorithmische Entwicklung. Quantencomputer, insbesondere die, die zum Zeitpunkt der
Erstellung dieses Artikels existieren, sind nicht perfekt und unterliegen vielen Beschränkungen in Bezug
auf die Art und Menge der durchführbaren Operationen. Aus diesem Grund ist es wichtig, ressourcenef-
fiziente Algorithmen und Strategien zu entwickeln, um die Auswirkungen des Rauschens abzuschwächen.
Zu diesem Zweck muss auch untersucht werden, wie sich Rauschen tatsächlich auf eine Berechnung
auswirkt. Mit diesem Wissen ist es dann möglich, die tatsächliche Implementierung eines Quantenalgo-
rithmus auf Hardware in Angriff zu nehmen.

Die Quantenchemie, insbesondere die chemische Dynamik, ist ein besonders spannendes Feld, auf dem
das Potenzial des Quantencomputers erforscht werden kann. Ziel dieser Arbeit ist es, den gesamten Weg
vom Entwurf der Algorithmen für chemische Probleme bis zu ihrer Implementierung auf Quantencomput-
ern und der Gewinnung nützlicher Werte durch Fehlerbegrenzung darzustellen.

Um dies zu erreichen, führt Teil I der Arbeit in alle Zusammenhänge und Konzepte ein, die erforder-
lich sind, um die vorgestellte Forschung zu verfolgen. In Kapitel 1 werden die Gründe erörtert, warum
man Quantencomputer auf Probleme im Allgemeinen und in der Chemie anwenden möchte. In Kapitel
2 werden die mathematischen Grundlagen, die Quantentheorie und die Aussichten für Quantencomputer
auf hohem Niveau vorgestellt. Daran schließt sich das dritte Kapitel über Quantenalgorithmen an, wobei
der Schwerpunkt auf dem Variationsquanten-Eigensolver liegt. Da Quantenalgorithmen mit Rauschen
behaftet sind, werden in Kapitel 4 die Theorie und die Auswirkungen von Rauschen sowie eine Auswahl
grundlegender Techniken zur Rauschminderung oder Fehlerkorrektur vorgestellt. In Kapitel 5 wird dann
dargestellt, wie die Quantenchemie im Rahmen der Quanteninformatik behandelt wird.

In Teil II werden die Forschungsarbeiten und Ergebnisse vorgestellt, beginnend mit Kapitel 6, in
dem ein Quantenalgorithmus zur Durchführung einer nicht-adiabatischen gemischten quantenklassis-
chen Dynamik mit einem Schaltkreis fester Tiefe vorgestellt wird. Der Algorithmus TDVQP (Time-
Dependent Variational Quantum Propagation) wird dann am Shin-Metiu-Modell getestet, wo er in einer
Machbarkeitsstudie vielversprechende Ergebnisse erzielt. Diese Studie war jedoch geräuschlos, so dass
in Erwartung des unvermeidlichen Hardware-Rauschens in Kapitel 7 eine Technik zur Fehlerminderung
vorgestellt wird, die UNIfied Technique for Error mitigation with Data (UNITED) genannt wird und
sowohl an variablen als auch an zufälligen Schaltungen getestet wurde. Um die Auswirkungen des Rauschens
besser zu verstehen, wird in Kapitel 8 ein anderer Ansatz für das Problem vorgestellt: Was passiert,
wenn man ausgehend von einem perfekten Quantencomputer ein verrauschtes Qubit nach dem anderen
hinzufügt? Hier wurde gezeigt, dass ein einziges verrauschtes Qubit ausreicht, damit sich die gesamte
Maschine so verhält, als sei sie verrauscht, allerdings mit einer exponentiell unterdrückten Fehlerrate.
Schließlich schließt Kapitel 9 diesen Abschnitt ab, indem es den Prozess der Implementierung von TDVQP
auf einem 4-Qubit-Quantencomputer am Walter-Meisner-Institut zeigt. Zum Zeitpunkt der Abfassung
dieses Artikels lagen noch keine experimentellen Ergebnisse vor, aber hier werden alle Überlegungen, Vor-
behalte und Kompromisse, die erforderlich sind, um auf echter Hardware zu laufen, sowie die Leistung von
UNITED bei diesem Problem gezeigt.

Zum Abschluss der Arbeit enthält Teil III die Schlussbemerkungen, einen Ausblick auf die Zukunft des
Quantencomputers und eine Reflexion über die geleistete Arbeit. Nützliche Quantenchemie auf Quanten-
computern zu berechnen, ist ein schwieriges Unterfangen und erfordert vielleicht fehlertolerante Maschi-
nen und clevere Algorithmen, aber es gibt dennoch vielversprechende Versuche, das Problem mit lauten
Maschinen zu lösen.
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Throughout the text, the following notation is commonly used. Terms and uncommonly used symbols are
defined as they are introduced throughout the text. The convention that all constants are set to unity
holds, in chemistry this is often termed atomic units. Equations are referred to numbers in brackets, for
example (equation number).

Mathematical Notation

Table 1: Common mathematical notation.

(·)∗ Conjugate of (·).

|ψ⟩ , ⟨ψ| A vector and its dual, known as ’ket’ and ’bra’.

A A matrix or operator A.

⟨ψ|ϕ⟩ Inner product between |ψ⟩ and |ϕ⟩

|ψ⟩ ⊗ |ϕ⟩ Tensor product of two vectors.

|ψ⟩ |ϕ⟩ , |ψϕ⟩ Abbreviations for the above tensor product.

(·)T Transpose of (·).

(·)† Hermitian conjugate or Adjoint of (·), where (·)† = ((·)T)∗.

∥ψ∥ Norm of a vector |ψ⟩.

Notation Definition

Quantum Gates

There will also be several quantum circuits shown throughout the work. Here are several commonly used
gates, with a description on deciphering quantum gates given in section 2.4.1. It should be noted that the
matrix to diagram mapping is dependent on the ordering of the qubits, which can be little endian or big
endian ordering. This work tends to use big endian ordering, but software such as Qiskit use little endian
ordering. In practice as long as one is consistent it does not matter which is used, and the one must only
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reverse the order of the output bits to transform the output of one circuit to the other ordering. Qubits

are also normally initialized in the |0⟩⊗n state, where |0⟩ =

(
1
0

)
and |1⟩ =

(
0
1

)
. Table 2 is a reference to

circuit diagrams.

Table 2: Common qauntum gates.

n|ψ⟩ -
n qubits initialized at |ψ⟩, single lines
represent single qubits.

U

[
cos(α2 ) −eiγ sin(α2 )

eiβ sin(α2 ) ei(β+γ) cos(α2 )

]
Arbitrary single qubit gate U parame-
terized by α,β, γ ∈ R .

H 1√
2

[
1 1
1 −1

]
Hadamard gate, acts as
H |0⟩= 1√

2 (|0⟩ + |1⟩).

X

[
0 1
1 0

]
Pauli-X gate or a bit flip gate since
X |0⟩ = |1⟩.

Z

[
1 0
0 −1

]
Pauli-Z gate or phase flip gate since
Z |1⟩ = − |1⟩

Y

[
0 −i
i 0

]
Pauli-Y gate, referred to as a bit and
phase flip gate since Y |0⟩ = i |1⟩.

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT or CX gate, conditional flip
from the control qubit at • to the
target qubit at ⊕

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Swap gate which swaps two qubit
states such that SWAP |ab⟩ = |ba⟩,
equivalent to ’crossing the wires’.

U


1 0 0 0
0 1 0 0
0 0
0 0 U

 Controlled-U gate, like a CNOT but
with any unitary matrix.

n
U - Arbitrary n qubit unitary gate U .

-
Measurement of a qubit in the com-
putational basis unless otherwise
specified.

Notation Matrix Representation Notes
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Why Quantum Computing?

As hangs the flexible line, so but inverted will stand the rigid arch.
Description of Helioscopes, Robert Hooke, 1675

The first known computational device is arguably the
ancient Greek Antikythera mechanism, which through a complicated
gearing system, could predict astronomical features far in the future.
Many tools to perform and aid arithmetic and geometric compu-
tations have been invented since, but there is another approach to
solving complicated systems of equations that is perhaps somewhat
more curious. This is using another physical system with a partic-
ular physics governing it to simulate another less accessible system.
Although the differential gearing systems of these old machines are
in a sense an analog computer, just a slide rule might be considered
one, but a more interesting example for us is the hanging chain. The
shape of a hanging chain, which was ’programmable’ via hanging
weights on it is the same as the optimal shape of an arch that would
have to support those weights. This was formalized by Hooke, and
is among the first examples of a physical system that can be used to
simulate another, and it has been used to design buildings as grand
as Gaudi’s Sagrada Familia in Barcelona.

Figure 1.1: Dome of St. Pe-
ter’s in rome over a ’simula-
tion’ of its shape by a hanging
chain. (Poleni, 1748).

Before the advent of the powerful computers that we have now,
exact arithmetic computations were the singular domain of complex
mechanical calculators, but they could only compute with a limited
number of digits and with their slow manual operation, meant that
they would mostly be used for accounting. As such, more complex
system had to be modeled again by differently complex mechanisms.
Continuing in the tradition of the Antikythera mechanism, differ-
ential analyzers were dynamical mechanisms that could integrate
certain classes differential equations, with their parameters scaled
such that they could fit within the allowed ranges of motion. With
the advent of electronics, it was also possible to use an expanded
vocabulary of physics to simulate ever more complex systems, such
as alternating current power network analyzers to simulate energy
delivery networks and problems in nuclear physics. Of course, a vast
number of analogue computers were built and in use until the 1970s,
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when the digital computer became the dominant computational tool.

Quantum theory is thought to underlay all physical phenomena,
although at the moment there isn’t a quantum theory of gravity.
Both Manin, in 1980 [3] and Feynman in 1981 [4] independently
came to the conclusion that to simulate quantum mechanical phe-
nomena one must use quantum mechanical systems. This has lead
to a new field of research with one ultimate goal: creating the uni-
versal quantum simulator. Such a machine, also called a quantum
computer (QC), is able to operate on a state space that scales ex-
ponentially with respect to the number of informational units, of
which two level quantum systems called qubits are the most com-
monly used. A perfect machine would be able to explore a state
space larger than our most powerful supercomputers with only 100
qubits. In reality there are many issues plaguing the technology
from being a viable at this moment, but there are good reasons to
research alternative computational approaches.

The necessity of computation for scientific progress is undeniable,
and it would be a disservice to the reader to describe how essential
simulations, finding optimal solutions and processing data is. It fol-
lows naturally that being able to compute ever larger simulations
and to make sense of ever-growing datasets is desirable. Our ev-
eryday binary digital computers, which in the quantum computing
literature are referred to as classical computers, have been extremely
successful in all of these areas. But they are reaching fundamen-
tal limitations in growth, Moore’s law [5] , which has guided the Note: Moore’s law is not a

physical law.development of processors and planning of what computers can be
expected to do in future is no longer as valid [6]. This has lead to
a revolution of alternative computing strategies, including massive
parallelization [7], the development and implementation of advanced
coprocessors such as the graphical processing unit (GPU) to scien-
tific problems [8] and more recently, so-called tensor cores have been
added to GPUs, alongside other specialized hardware that are very
often specifically tailored to running machine learning algorithms [9].
These approaches are all transistor chip based, so do not bypass the
energy cost of ever larger computers and the physical limits of fitting
more transistors on a chip are a likely unsurmountable barrier to this
continued growth in computational power [6].

There has been an explosion of alternative computing strategies
beyond the classical paradigm which aim to augment various com-
putational tasks. Although not an exhaustive list, a very promising
candidate is neuromorphic computing, which aims to generate analog
circuits that represent neural networks, which trade machine preci-
sion (which is not essential for all machine learning tasks [10]) for
large improvements in power efficiency [11]. There are many more
physics based computational strategies, such as thermodynamic com-
puting [12], which has been shown to be able to find good approxi-
mations of matrix inverses [13], but the scaling of these approaches
is yet to be proven. These techniques all try to remove some of the
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more expensive computational burdens from the main processor,
much like a GPU, and aim to achieve at least one of two things: re-
duce power consumption and increase performance on the specific
computations they tackle. But the trend in GPUs is to use lower
precision arithmetic, which may be detrimental to non-ML scientific
computing [14].

If we remain in the world of classical computation, we are lim-
ited to binary operations. By definition, the type of problems that
are solvable in polynomial time via binary operations are within the
complexity class polynomial-time (P). Problems of higher complex-
ity can be tackled, but either the problem size must remain within
the computational constraints or heuristic techniques and various
approximations have to be made. It is definitely not out of the ques-
tion that these approximations can be good enough for all practical
purposes due to the availability and ease of use of classical hardware.

PSPACE

NP

NP Complete

P problems

BQP

Figure 1.2: A cartoon of the
complexity classes for rele-
vant problems in computing.
PSPACE is the set of decision
problems whose input and com-
putation can be solved by a
Turing machine using poly-
nomial space. NP are those
problems that are not solv-
able in polynomial time but
whose answer can be verified
in polynomial time, while P
are those that can be solved
within polynomial time. NP
complete problems are a sub-
class of NP problems whose
solutions can solve all problems
in NP. BQP is bounded-error
quantum polynomial time and
is where quantum Turing ma-
chines are thought to exist in
- where decision problems are
solved in polynomial time with
an error probability of at most
1
3 .

QCs differ from the classical methods in that the complexity of
the problems solvable with quantum computations is expected to be
higher than those of classical computers. The argument stems from
the fact that there are different classes of complexity for a problem
to be in. QCs can efficiently solve (BQP) [1]. This means that a
quantum computer can simulate a classical computer efficiently,
while the reverse is not believed to be true.

The way quantum computers are envisioned to be used is to
tackle a set of problems that quickly become intractable to classi-
cal computers. In that sense, the quantum computer will likely be
used as a coprocessor rather than a normal computer. Indeed, it is
impossible to construct a fully programmable quantum computer
[15]. This is because encoding two different unitaries in quantum
memory requires two different orthogonal program states, since there
are infinite possible unitaries. Even a single qubit "quantum com-
puter" would require an infinite number of addresses for the infinite
number of rotations that are possible. This may sound like a death-
knell, but one can reach arbitrarily precise approximations to any
desired operation with a non-complete set of operations. There is
also probabilistic computing that utilizes probabilistic bits for advan-
tages in certain algorithms [16], but this is more niche - and can be
thought of as the stage between a classical bit and a quantum bit.

To answer why quantum computers are promising then is an
easy question. They are promising because they should be able to
deal with problems with favorable asymptotic scaling since the addi-
tion of a single qubit doubles the computational space. This is not
the case with classical computing, and although the computational
space is one part, algorithmically there are proven primitives that
ensure that this is indeed the case given the current understanding of
complexity.

On the other hand, there is no reason to think that insights about
the structure of problems and better approximate techniques cannot
keep up with advances in quantum algorithms. Furthermore, at
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the moment and in the foreseeable future quantum computers also
suffer from errors that cannot easily be dealt with, and as such the
idea that an error-prone machine can give useful results is on shaky
grounds.

Whether the immense effort put into quantum computing would
better be spent elsewhere is another question entirely, and this thesis
hopes to shed light on the difficulties and considerations in develop-
ing algorithms for near term machines, including the immense work
required to mitigate errors and the compromises that have to be
made when running algorithms on actual quantum hardware.

1.1 Why Chemistry?

Theoretical chemistry and the study of quantum systems
in general is one of the most promising uses of the technology. The
original raison d’être of quantum computing were based on the idea
that to truly simulate a quantum system one would need an analo-
gous quantum system, but the relationship goes deeper than that.
Experimental quantum computing actually has a very close con-
nection to chemistry, specifically to chemical physics and nuclear
magnetic resonance (NMR) spectroscopy. The first ever quantum
computation was performed on a NMR machine by Somaroo et al.
[17] for quantum harmonic oscillators, with many other early experi-
ments being performed on these machines [18, 19].

Theoretical chemistry is a mature field of its own with numerous
techniques, both rigorous and approximate, which have notable suc-
cess in the areas of studying electronic configurations, structural op-
timization and dynamics of both the electronic and nuclei of various
molecules. Quantum chemistry is the term that is more associated
with electronic structure while theoretical chemistry encompasses
all aspects of the theoretical description of molecules, which may be
classical models as well. The degree of accuracy that can be achieved
is in general inversely proportional to the size, so a smaller system
can be studied very accurately, while larger systems must make use
of various approximations.

The Hilbert space for quantum systems scales exponentially with
the number of particles being considered, but it is clear that the
Hilbert space is unlikely to be densely occupied. Any molecule is
only able to act within the confines of physical laws and this already
cuts down on both the amount of information that is theoretically
required to be stored. If one were to have access to the manifold of
possible configurations a-priori and an efficient encoding it might be
that being able to compute on the full Hilbert space is unnecessary.
This is not the case for arbitrary molecules at the moment and hence
being able to do so is thought to be of great benefit.

Perhaps one extremely successful theory which somewhat bypasses
the complexity of accounting for the whole of the Hilbert space for
electronic problems it density functional theory (DFT) [20, 21] which
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integrates out all degrees of freedom apart from the electron density.
This is certainly correct if not for the fact that the quality of the
final solution depends on the exchange-correlation functional whose
exact form is unknown. Of course, entire books have been written
about quantum chemistry and its many techniques for electronic
structure.

Within theoretical chemistry one must also be able to describe
and compute the time evolution of chemical systems, which is the
domain of dynamics. There is the possibility of studying dynam-
ics solely within the electronic subsystem, but what is of particular
interest here is the nuclear dynamics. The latter problem is much
more complicated as one must keep a description of the full nuclear
and electronic systems and their combination. Approximations must
be made - some are trajectory based, offloading some of the complex-
ity of storing a full nuclear wavefunction on top of electronic ones by
statistically sampling many classical nuclear paths, or the electronic
potential energy surfaces can be precomputed, a step limited by the
quality of electronic structure computations, upon which the nuclear
subsystem is propagated as in (Multi-Layer) Multi-configurational
time-dependent Hartree [22, 23]. This is extremely computationally
taxing, so a simplification of the full nuclear dynamics can also be
made, which is that of using classical trajectories for the nuclei. This
is the domain of mixed quantum-classical dynamics, which is the
focus of this thesis.

It can be broadly stated that all classical techniques try and avoid
two things: maintaining the full wavefunction in memory and com-
puting and performing time evolution by matrix vector multiplica-
tion. These things are natural to do on a quantum computer, since
the first representation, although inefficient for classical computers,
is natural on quantum computers, and the operations required to
simulate time-(in)dependent Hamiltonians exists. This is why it is
believed that there is a great chance to use these machines for quan-
tum chemistry.

At the same time, exact techniques for quantum computing are
not a panacea. A common benchmark is the molecule FeMoCo which
can require at least around 5 · 1012 expensive fault-tolerant oper-
ations (T-gates) to prepare its wavefunction [24]. The number of
fault-tolerant gates is not a good proxy, since gate times vary be-
tween quantum computers and the specific error correction code.
Assuming an active space of 76 orbitals, a high quality supercon-
ducting qubit quantum computer would require on the order of 106

qubits and 3 years to compute this including the overheads of er-
ror correction [25]. As such the current state of the art generally
attempts to run algorithms on either small or model systems, as is
done here with the Shin-Metiu model [26], which is a minimal model
that captures many interesting phenomena in dynamics.
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1.2 Why this Thesis?

It is no secret that quantum computers are not ready to be
picked up and used as they currently are. For quantum chemistry
especially the algorithms which give guaranteed results, which is to
say, either probabilistic or deterministic algorithms or variational
algorithms that are guaranteed to be able to express correct solu-
tions, require huge numbers of near error free qubits and operations
to yield good results. At the moment there are no qubits that are of
high enough quality or the operations near the quality required for
useful quantum computation.

But is that truly the case? Perhaps there is some way that cur-
rent machines, despite their limitations can be used for simulating
interesting models and problems in chemistry. Or at least, algo-
rithms that could eventually do this can be promised. Although
quantum computing is arguably at a stage where the aim is to see if
classical techniques can be at least matched with existing machines.
If so how can this be done, and is it efficient?

This thesis aims to showcase the entire process of designing an
algorithm for chemical dynamics to running it on a quantum com-
puter. This includes all the considerations and technique develop-
ment required to cope with the errors and noise present on today’s
quantum computers. The research presented then consists of the
design of an algorithm to perform dynamics in first quantization for
mixed quantum-classical systems, combining disparate error miti-
gation techniques together to make one better than the sum of its
parts, and analyzing the performance of quantum computers as they
become more fault-tolerant. Finally, the process of moving a theoret-
ical algorithm to run on an actual quantum computer is presented.

Hopefully this thesis will serve as a marker for how research in
this field is done during the in between time before fault-tolerant
machines take over and before a clear pathway to quantum advan-
tage with noisy machines has been found, if it is indeed possible.
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Now what is the meaning of the terms "uncertain," "statistics," "probability"?
Die gegenwartige Situation in der Quantenmechanik, Schrödinger, 1935

This chapter begins with a brief non-pedagogical overview of the
mathematical tools and notation that will be used throughout the
work, it then introduces the specific constructions and conventions
that are used in quantum computing that will be used to build the
algorithms and error mitigation strategies in the part II of the thesis.

The NAND gate, or the not
AND gate is defined by the fol-
lowing truth table with inputs
A and B:

A B OUT
0 0 1
0 1 1
1 0 1
1 1 0

Quantum advantage, unlike spherical cows, cannot be defined
in a vacuum, and thus a baseline must be drawn. The well known
computer which from now on will be delegated to the name classi-
cal computer will be the natural comparison. A classical computer
works by processing binary data that can have two states, generally
denoted 0 and 1. Operations on classical bits are performed by logic
gates that are dictated by truth tables, they take in two bits and
output a single bit. It turns out that this single operation if done
nearly countless times in very specific patterns is enough to perform
any boolean operation of any inputs. Sets of operations with this
property are known as universal gate sets, in this case, the minimal
universal gateset for classical computing contains a single operation.

Now, a quantum computer works under slightly different rules,
a qubit does have states 0 and 1, but it can have any superposi-
tion of these two states. If it could only be a real superposition it
would be a probabilistic bit (pbit), and it would be representable as
a point on a line, but since it can have complex values a qubit it can
be represented as points on a sphere (known as the Bloch sphere).
Operations on quantum computers are different to the classical com-
puting we are used to, as qubit operations take in as many qubits as
they output. There is a classical computing paradigm that also has
this feature, which is called reversible computing, which takes in 3
bits and outputs 3 bits in its minimal universal form via a so-called
Toffoli gate.

Quantum computing performs operations through rotations of the
state on this sphere and interactions between two spheres, which,
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as will be shown, is universal. Now, reversibility does not imply a
larger computational power, as a reversible classical computer is as
powerful as a non-reversible one, but this matter of operating on
spheres holds a bit more promise. It turns out that alone, this is
also not quite enough for a computational advantage, and to truly
explain the differences there are some formalisms to dig through.

2.1 Mathematical Preliminaries

The study of quantum mechanics is the study of finite dimensional
complex vector spaces with a defined inner product. This is called ei-
ther a Hilbert space or an inner product space, which are equivalent
in finite dimensions. In the following definitions and preliminaries,
we restrict ourselves to a complex (C) vector spaces.

Definition 1 (Finite dimensional complex vector space). A finite
dimensional complex vector space V is a vector space over C with a
basis of size dim(V ) along with addition and scalar multiplication on
V .

Addition is commutative,

a+ b = b+ a and ab = ba ∀ a, b ∈ V .

Addition and multiplication are associative,

u+(v+w) = (u+ v)+w and (ab)v = a(bv) ∀ a, b ∈ C and ∀ u, v,w ∈ V .

There exist additive and multiplicative identities,

∃ 0, 1 ∈ V s.t. v+ 0 = v ∀ v ∈ V and 1v = v ∀ v ∈ V .

There exists an additive inverse such that

∀w ∈ V ∃! v ∈ V s.t. w+ v = 0.

Finally, there are the following multiplicative and distributive
properties,

a(u+ v) = au+ av and (a+ b)v = av+ bv ∀ a, b ∈ C and ∀ u, v ∈ V .

Definition 2 (Inner product space). A vector space V with a defined
function ⟨·|·⟩ : V × V → C called the inner product that satisfies the
following properties:

Positive definite,

⟨v|v⟩ ⩾ 0 and ⟨v|v⟩ = 0 ⇐⇒ v = 0

.
Additive in the first entry,

⟨u+ v|w⟩ = ⟨u|w⟩ + ⟨v|w⟩ ∀ u, v,w ∈ V .

Homogeneous in the first entry,

⟨av|w⟩ = a ⟨v|w⟩ ∀ v,w ∈ V and ∀ a ∈ C.
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Conjugate symmetric,

⟨v|w⟩ = (⟨w|v⟩)∗,

is called an inner product space or a finite dimensional Hilbert space.
The distinction between the two is only relevant in infinite dimen-
sions.

Definition 3 (Basis). A basis for a vector space V is a set of
linearly independent vectors that span V . A basis is denoted by
{|vi⟩}

dim(V )
i=1 and any vector w ∈ V can be described by a list of

tuples of coefficients ai ∈ C and |vi⟩ as

w =

dim(V )∑
i=1

ai |vi⟩ .

In quantum computing the computational basis is very often used
and as it is the natural measurement basis for qubits. It is defined
by the eigenvalues of the Z Pauli matrix.

Theorem 1 (Gram-Schmidt). If { | v1⟩, . . . , | vdimV ⟩ } is a linearly
independent set of vectors in a vector space V , then we can always
compute an orthonormal basis { | e1⟩, . . . , | edimV⟩ } inductively by

|e1⟩ = |v1⟩
∥|v1⟩∥

,

|ei⟩ =
|vi⟩ −

∑i−1
j=1 ⟨ej |vi⟩ |ej⟩∥∥∥|vi⟩ −

∑i−1
j=1 ⟨ej |vi⟩ |ej⟩

∥∥∥ .

The Gram-Schmidt theorem ensures that we are always able to
form an orthonormal basis given any linearly independent basis,
and as such whenever a basis is mentioned, it will always mean an
orthonormal basis as it is guaranteed that it can be generated.

Definition 4 (Outer Product). Given two vectors |v⟩ and |w⟩ in a
vector space V , the outer product is defined as the operator |v⟩ ⟨w|
which acts on a vector |u⟩ as |v⟩ ⟨w| |u⟩ = ⟨w|u⟩ |v⟩. For complex
vectors it can be thought as matrix multiplication with the dual as

|v⟩ ⟨w| = |v⟩ (|w⟩T )∗.

The outer product is particularly important as it is often used to
describe the measurement in a basis, acting as a projector. It is of
course also possible to describe many linear operators as a sum of
outer products, known as the outer product representation.

Theorem 2 (Completeness Relation). For any orthonormal basis
{ | ei⟩ } of a vector space V , the completeness relation states that

dimV∑
i=1

|ei⟩ ⟨ei| = I, (2.1)

where I is the identity operator. An operator that satisfies this is
said to be complete.
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This is easily seen by remembering that if there is a vector |v⟩ ∈
V which can be written as |v⟩ =

∑dimV
i=1 |ei⟩ ⟨ei|v⟩ =

∑dimV
i=1 vi |ei⟩,

this allows any operator to be written as a sum of outer products for
some map M : V → W , M = IWMIV , where IW is the identity
operation of I on the vector space W . With these facts then the
projector can be defined, which is the type of measurement most
used in this work.

Definition 5 (Projector). A projector P onto some subspace W of
dimension k of a vector space V of dimension d such that k ⩽ d is

P =
k∑
i=1

|ei⟩ ⟨ei| ,

where { | ei⟩ }ki is an orthonormal basis of W . By the Gram-Schmidt
procedure it is always possible to construct a basis for V { | ei⟩ }di
that contains the basis for W .

The projector is Hermitian, which is to say P = P †, and idem-
potent, P 2 = P . This means that the projector is a linear operator
that when applied twice gives the same result as applying it once, it
makes sense that if a projector maps something to a subspace, then
mapping the subspace to itself should not alter the state.

The next set of mathematical preliminaries are less formally pre-
sented, but are referred to often. These will be presented in the
context of quantum operations so that they can be more easily ap-
plied.

Definition 6 (Trace). The trace of an operator A can be defined as
the sum of the diagonal elements of the matrix representation of A in
some basis. The trace is denoted

Tr(A) =
∑
i

Aii.

If the trace is invariant under the action of an operator Ô, that is to
say Tr(ÔA) = Tr(A), that operator is said to be trace-preserving.

The trace map is in essence the trace multiplied by some outer
product of a basis vector in another space, and so identical to the
trace function. This makes the trace a quantum operation, but al-
lows for the definition of the partial trace, which is effectively what
happens when a subset of qubits of a larger system is measured,

Definition 7 (Partial Trace). The partial trace of a density operator
ρ over a subsystem B with basis { | bi⟩ }dim(B)

i of a composite system
AB is defined as a function takes some HAB → HA as

TrB(ρ) =
dim(B)∑

i

(Ia ⊗ ⟨bi|)ρ(Ia ⊗ |bi⟩),

for some orthonormal basis of HB |bj⟩ for j = 1, . . . , dim(B).

The partial trace is extremely important in the study of noise
and colloquially is called tracing out a subsystem. There are many
definitions and related definitions of both the trace and partial trace,
such as the trace map, but these are not used in this work.
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2.2 Fundamental Postulates

Historically quantum mechanics was not discovered linearly, unlike
the theory, and although its development is fascinating, with a very
human account of those times being given by today we have four
postulates that encompass the enormity of the field elegantly, there
is no meaning to the order these are given in. These postulates are
presented in both a pure state and density operator formalism, as
both are used frequently in this work.

Postulate 1 (State Space). Isolated systems (also known as closed
systems) have an associated complex vector space with an inner
product, termed a Hilbert Space, which is the system’s state space.
A particular configuration of a system is completely described by a
state vector |ψ⟩, which is a unit vector in this space, which we will
refer to as the "state". Equivalently there is a positive operator ρ
that describes the system, with the additional information that if the
system is in state ρi with probability pi, then the density operator
describing this is

∑
i piρi.

Quantum mechanics doesn’t tell us what this state space or asso-
ciated vector is for a given system. This is then a problem tackled
individually for any given system, be it interacting qubits as in this
work, or quantum electrodynamics in the study of light-atom inter-
actions.

Postulate 2 (Unitary Evolution). A system like those described
in postulate 1 can only change through a unitary transformation.
Although time is not essential to describe this postulate, it is helpful
to say that at time t1 we have a state |ψ⟩, and it is related to |ψ′⟩ at
time t2 by some operator U(t1, t2) by

|ψ′⟩ = U(t1, t2) |ψ⟩ ,

and in the density operator formalism,

ρ′ = U(t1, t2)ρU(t1, t2)†

Quantum mechanics imposes no restrictions beyond this in general,
and for qubits we allow ourselves to use any unitary operator, but
this is not the case for all systems. It should be added that the time
evolution of a state is always governed by the Schrödinger equation,
the equivalent expression for density operators is the Liouville-Von
Neumann equation, which famously are:

i h̄
d |ψ⟩

dt = Ĥ |ψ⟩ , (2.2)

i h̄
dρ
dt = [Ĥ, ρ], (2.3)

where Ĥ is a special fixed Hermitian operator known as the Hamilto-
nian of the system and h̄ is the reduced Planck’s constant, which in
practice is set to 1 and never thought about again.
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Postulate 3 (Measurement). Measurement of a quantum state is
described by some set of measurement operators {Mm } that act on
the state space of the system and have potential outcomes indexed
by m. The measurement operator is complete

(∑
mM

†
mMm = I

)
If

the state was |ψ⟩ before measurement, then the probability p(·) that
m occurred is

p(m) = ⟨ψ|M †
mMm |ψ⟩ ,

and the state post measurement becomes

Mm |ψ⟩√
⟨ψ|M †

mMm |ψ⟩
,

as a consequence of completeness,
∑

m p(m) = 1.
For density operators this is instead

p(m) = Tr(M †
mMmρ), (2.4)

with the post measurement system becoming

ρm =
MmρM

†
m

Tr(M †
mMmρ)

. (2.5)

Postulate 4 (Composite Systems). Distinct quantum systems
form a state space that is the tensor product of the individual state
spaces, this is also the case for the density operator formalism. With
respect to the number of qubits N the number of elements of the
statevector scales as 2N and those of the density matrix scale as 22N .

2.3 The Qubit

In classical computing the bit is the minimal unit of information,
which takes one of two states, denoted 0 and 1. The quantum in-
formation equivalent is called the qubit, and is represented by a
complex two-dimensional vector |ψ⟩ ∈ C2. We choose a canonical
basis with which to represent this vector, and it makes sense that
this will be the same as the one in which the quantum computer
measures the qubits. This happens to be the Z-basis, often called the
computational basis, and borrowing from the classical representa-
tion, we denote its two eigenstates |0⟩ and |1⟩. The qubit state can
be expressed in the computational basis by applying the projector
|0⟩ ⟨0| + |1⟩ ⟨1|

|ψ⟩ = (|0⟩ ⟨0| + |1⟩ ⟨1|) |ψ⟩ ,
|ψ⟩ = ⟨0|ψ⟩︸ ︷︷ ︸

c0

|0⟩ + ⟨1|ψ⟩︸ ︷︷ ︸
c1

|1⟩ ,

|ψ⟩ = c0 |0⟩ + c1 |1⟩ ,

|ψ⟩ =

(
c0
c1

)
.

Where c0 and c1 are complex coefficients with the property that
|c0|2 + |c1|2 = 1, such that |ψ⟩ is normalized. This allows the qubit
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state to also be written (to a global phase factor) as

|ψ⟩ = cos(θ/2) |0⟩ + eiϕ sin(θ/2) |1⟩ . (2.6)

When measuring the qubit we do not have access to the coeffi-
cients, but only that we measure 0 with probability |c0|2 or that we
measure 1 |c1|2 of the time. Measurement is described in more detail
in section 2.2.

This "unobservability" of the quantum state makes it quite dif-
ferent from the usual models of computation, where there is a very
direct link between theory and implementation. Of course, it is pos-
sible to transform the state of the qubit such that a sequence of
transformations and measurements leads to a complete characteri-
zation of the qubit state. To do this we must define some allowable
operations that can be performed on the qubit, but in theory we
must simply measure in different bases to extract the complex coeffi-
cients.

All the density operators of qubit states can be represented by
density matrices built from the orthogonal basis that is a combina-
tion of the Identity and the three Pauli matrices:

σ0 := σI := I :=

(
1 0
0 1

)
, σ1 := σX := X :=

(
0 1
1 0

)
,

σ2 := σY := Y :=

(
0 −i
i 0

)
, and σ3 := σZ := Z :=

(
1 0
0 −1

)
.

(2.7)

The Pauli matrices decompose the qubit density matrix as

ρ =
1
2 (σI + aσX + bσY + cσZ), (2.8)

ϕ

θ

X

Y

Z = |0⟩

−Z = |1⟩

|ψ⟩

Figure 2.1: The Bloch
sphere, a representation of
a qubit showing and arbitrary
state |ψ⟩ and the axes defined
by the eigenvectors of the Pauli
matrices in eq. 2.7.

and the state can be written as a vector

ab
c

 with a2 + b2 + c2 ⩽

1. This is the Bloch vector and is constrained to lie within a unit
sphere. When a2 + b2 + c2 = 1, the qubit is a pure state and lies on
the sphere’s surface. This representation is called the Bloch sphere
and is shown in fig. 2.1.

When the vector does not lie on the surface of the Bloch sphere, it
can be thought of as a weighted sum of pure states. This is the most
general representation of a quantum state, and are known as mixed
states, which are described by the density matrix ρ defined in (2.8).
Each pure state is distinguishable and labelled by i as |ψ⟩i and has
an associated probability Pi. If the states were not distinguishable,
they could add coherently yielding a pure state again.

A single qubit is more useful than one might expect at first
glance, and with clever algorithms, it can be made to act as a uni-
versal classifier [27, 28] or to approximate bounded complex func-
tions [29]. As interesting as these results are, it is desirable to have
more than a single qubit for more general computations.
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2.3.1 Multiple Qubits

The real power of quantum computation comes from being able
to use multiple qubits. For a student of theoretical chemistry or
physics, it comes as no surprise that as the number, N , of qubits
is increased, the dimension, dim of the Hilbert space spanned by
the basis generated by the constituent subsystems grows as 2N .
The composition of multiple systems is simply the Kronecker tensor
product of the individual systems, as described in Postulate 4 in
section 2.2. In the standard initial state of two qubits we write

|0⟩ ⊗ |0⟩ ≡ |00⟩ (2.9)

(
1
0

)
⊗

(
1
0

)
=


1
0
0
0

 (2.10)

and will use the shorthands |0⟩⊗n or |0n⟩. Of course, it’s not un-
usual to see other common qubit initializations such as |1⟩⊗n, or
the Hadamard basis |+⟩, |−⟩. Usually alternative formulations are
defined in the literature when used.

Multiple qubits then can have any superposition of their basis
states. This is to say that for N qubits, which can be written as a
sum over 2N of the basis states, each with its own complex coeffi-
cient ai as

|ψ⟩ =
∑
i

= 02N −1ai |i⟩ , (2.11)

where |i⟩ is the binary representation of the integer i. The fact that
a quantum computer can act on this vector of all combinations of
inputs is sometimes called quantum parallelism, as one can think of
it as acting on all possible inputs at once. The reality is perhaps a
little more complex than this, but it can be said with certainty that
in some way N qubits can store exponentially more information than
N bits, since N bits can only store a single bit string of length N

rather than some arbitrary combination of all of them.
This is also when all the interesting aspects of quantum mechanics

come into play, as although a single qubit is a curious object on its
own, it is only when at least two systems come together, as the full
breadth of what makes quantum information interesting begins to
reveal itself. This is the world of entanglement, which is excellently
defined for two systems - and although it is an essential quantum
resource, it will not be discussed in detail. When moving to many
qubits, entanglement is less well-defined, and there is a measure for
the "complexity" of the entanglement termed magic which is much
more complicated to measure [30].

2.4 Operations on qubits

On a QC, the qubits are usually initialized in the |0⟩ state and then
manipulated by a sequence of quantum gates. These gates are uni-
tary operators that act on the qubit state, some important examples
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are the Pauli gates, the Hadamard gate, the single qubit rotation
gate and the CNOT gate. The Pauli matrices are the most basic
quantum gates and are defined in (2.7). The Hadamard gate is a sin-
gle qubit gate that creates superpositions of the computational basis
states, and is defined as

H =
1√
2

(
1 1
1 −1

)
. (2.12)

UU † = I (2.13)

Any operation can be composed to act on a larger qubit space by
taking the tensor product of itself with other operators until the
dimensionality is equal to that defined by the number of qubits.
Formally this means that to apply H to the second qubit in a 3
qubit system one must perform the operation

(I ⊗H ⊗ I) |000⟩ ,

this can be shortened to H1 |000⟩.
Now, the above string of operations is also shortened to a string

like IHI. Normally the identity operator isn’t written out, but this
string becomes very useful. If one consults (2.7), there will be entries
for Pauli matrices. There is a very important type of operator string
called the Pauli string, which for N qubits is usually denoted

P = σi1 ⊗ σi2 ⊗ · · · ⊗ σiN , (2.14)

where ij for j = 1, . . . ,N is an integer from 0 to 3, which are anal-
ogous to the more commonly used I, X, Y , Z. These Pauli strings
are often parts of weighted sums which represent operators. All Her-
mitian operators can be decomposed into weighted sums of Pauli
strings [1].

There are operations that act on more than a single qubit, and
although in hardware there might be physical limitations as to which
two qubits can directly interact, in theory any two systems could
interact. As such they are almost always written as a labelled oper-
ation between two of the systems (in this case hypothetical qubits 0
and 1) as

CNOT01 |000⟩ .

Unitaries can act on an arbitrarily large number of qubits, but
this can quickly get unwieldy, so it is much more common to see the
quantum circuit diagram to represent these operations.

Figure 2.2: Reading a quan-
tum circuit The circuit is
read from left to right, with
the qubits being the horizontal
lines and the operations being
the boxes. The order of oper-
ations is the opposite to linear
algebra, and the mapping is
shown in this cartoon.

2.4.1 Quantum circuit diagrams

Quantum circuit diagrams are a visual representation of the many
operations that take place over the course of a quantum program.
They help to visualize the complexity of a quantum program at a
glance. They are not the only representation nor the most useful,
indeed there is also the directed acyclic graph representation that
is much more useful in practice when programming. Nonetheless,
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circuit diagrams are the most human-friendly and readable repre-
sentations of quantum programs, and are essential to understanding
the literature. A short example circuit which produces a Bell state
from an initial |00⟩ state is shown in figure 2.2. Different qubits are
represented by wires that start at the leftmost side at some initial
state and the state ’travels’ rightward where it is acted on by la-
belled boxes called gates. Gates are then just the (usually) unitary
operations acting on the qubits over which the box is drawn.

Many commonly used gates have their own letters or symbols
(such as the CNOT as shown), and may also represent entire subpro-
cesses and subalgorithms. Because of this some multi-qubit gates do
not act on all the qubits the box is drawn over.

To compare the action of the gates to the potentially more fa-
miliar language of linear algebra, a representative mapping is also
shown in figure 2.2, everything but the equality is in opposite order
to the linear algebra representation. Another nice feature of the cir-
cuit representation is that the adjoint of a circuit is the circuit run
backwards with all operators being their adjoint as well.

It may seem that any unitary of any size can just be written and
implemented on a quantum computer, but this is not the case as
physical implementations of quantum computer only use some single
and two qubit gates. On top of this, limitations imposed by the
connectivity of the particular QC also come into play.

2.5 Towards operations on hardware

Hardware has to contend with the limits of the real world, so al-
though one would like to be able to write any unitary and have it
be implemented on some quantum state in the quantum registers of
a quantum computer, it would be impossible to encode every single
operation for an arbitrarily large number of qubits.

It is not obvious at all, but two quantum gates are all that is re-
quired to have a universal gateset for quantum computing. These
are the single qubit rotation, denoted U3, as it takes 3 parameters,
and the CNOT gate. This means that any unitary, regardless of its
size, can be factored into a sequence of these two gates [1]. Now, this
is not the only universal gateset, which is very good news for hard-
ware implementations of quantum computers, as some operations are
more natural than others.

There are two more things that are going to go in the favor of
quantum computers and one that goes against. Beginning with the
good news, single qubit rotations can be decomposed into rotations
on two axes. Specifically, one can always write

U3(a, b, c) = D(a)E(b)D(c), (2.15)

for some arbitrary parameterized unitary matrices D and E, which
represent rotations about two orthogonal axes. In hardware this may
be further decomposed into more operations, some of which are fixed
and only one of which is tunable, so that as little error as possible is
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introduced.
The second benefit is that all two qubit gates can be transformed

into any other two qubit gates. There is an optimal decomposition
of any 2 qubit gate into at most 3 CNOTS and 8 U3 gates [31].
Similarly, CNOTS can be represented by other two qubit gates with
some other specific transformation. This means that it is relatively
straightforward to go from a CNOT representation to any other 2
qubit gate - since the rotations are much more trivial to translate.
This is nothing new since in essence we are stating that there are
more than one universal gateset.

What is new is that these things can be done approximately with
discrete single qubit operations. Sequences of these discrete rota-
tions can be made to yield an operation that is arbitrarily close to
any unitary operation one would wish to implement. This is the
Solovay-Kitaev theorem [32], which although not so useful for noisy
machines, is essential for error corrected machines.

The one problem comes from decomposing larger unitaries into
the basic CNOT and single qubit rotation. It is guaranteed that it is
possible due to the universality of the gateset, but it is not efficient
[1]. Indeed, it is an NP-hard problem to do so efficiently. As such it
is always possible, but one may end up with extremely long chains of
fully connected circuits.

This is a huge area of study, which is known as compilation,
where a circuit is taken from its abstract unitary representation
and cut down and optimized as much as possible to run as quickly as
possible on a given machine. This requires taking into consideration
things like the topology of the machine in the first place, but also
error rates between the different qubits can be taken into account
[33].

2.6 Fundamental Theorems

Quantum physics has brought with it elegant theorems, such as
Bell’s theorem [34] proving that no hidden variable theorem can
describe quantum mechanics, and many others that are essential to
our understanding of quantum physics. Here, only several theorems
that are particularly relevant to quantum computing and algorithms
are presented. Many of these theorems are no-go theorems which set
fundamental limits on what can and cannot be done within quantum
information processing.

Theorem 3 (No cloning). There is no unitary operation C that can
perform the transformation C |ψ⟩ |0⟩ = |ψ⟩ |ψ⟩ for an unknown state
|ψ⟩. As such, it is impossible to clone or copy an unknown quantum
state.

The no cloning, may be thought of as straightforward since it
emerges from the linearity of quantum mechanics. Although this
was first shown in Wootters’ and Zurek’s "A single quantum state
cannot be cloned" in 1982 [35], there were multiple hints that these
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theorems were fundamental to quantum mechanics in earlier work,
notably in Wiesner’s "Conjugate Coding" [36], written in the 70’s,
but only published in ’83. Without the knowledge of such a theorem,
it is possible to incorrectly theorize superluminal communications as
in Herbert’s 1982’s “FLASH - A superluminal communicator based
upon a new kind of measurement” [37].

Proof: take an operation C which copies two orthogonal states
|ψ⟩ and |ϕ⟩ such that C |ψ⟩ |0⟩ = |ψ⟩ |ψ⟩ and C |ϕ⟩ |0⟩ = |ϕ⟩ |ϕ⟩. Here
|0⟩ represents a state that is primed for cloning. From linearity:

C(α |ψ⟩ + β |ϕ⟩) |0⟩ = αC |ψ⟩ |0⟩ + βC |ϕ⟩ |0⟩
= α |ψ⟩ |ψ⟩ + β |ϕ⟩ |ϕ⟩

but it is also true that C acting on the composite state (α |ψ⟩ +
β |ϕ⟩) |0⟩ gives

C(α |ψ⟩ + β |ϕ⟩) |0⟩ = (α |ψ⟩ + β |ϕ⟩)(α |ψ⟩ + β |ϕ⟩)
= α2 |ψ⟩ |ψ⟩ + β2 |ϕ⟩ |ϕ⟩ + αβ |ψ⟩ |ϕ⟩ + αβ |ϕ⟩ |ψ⟩ .

Since one wants the resulting state to be α |ψ⟩ |ψ⟩ + β |ϕ⟩ |ϕ⟩, then
taking the two expressions before gives

α |ψ⟩ |ψ⟩+β |ϕ⟩ |ϕ⟩ = α2 |ψ⟩ |ψ⟩+β2 |ϕ⟩ |ϕ⟩+αβ |ψ⟩ |ϕ⟩+αβ |ϕ⟩ |ψ⟩ ⇐⇒ α = β = 0.
(2.16)

Thus by contradiction, it is impossible to clone an unknown quan-
tum state. This leads to important corollaries which together can
define some limits to quantum computations. The inability to clone
alone is equivalent to not being able to copy a state to be further
processed and compared to the original without evolving two states
separately, for example.

Corollary 1 (No broadcasting). With an unknown state ρi drawn
from the set {ρi}i∈{1,2} where [ρ1, ρ2] ̸= 0, there is no method that
can create state ρ{AB} in HA ⊗HB that has partial traces TrAρAB
and TrBρAB = ρi.

The no broadcasting theorem is an extension from a pure
quantum state to mixed quantum states proven in [38]. The result
only holds for two mixed states, but given more mixed states it is
possible to violate the theorem via a process known as super broad-
casting [39]. The proof to this theorem goes beyond the scope of this
thesis.

Theorem 4 (No deleting). We define the transformation |ψ⟩ → |0⟩
as deletion. There is no unitary operation D that can perform the
transformation D |ψ⟩ |ψ⟩ = |ψ⟩ |0⟩ for an unknown state |ψ⟩.

The no deleting theorem is similar to the no cloning theorem
in the sense that it can be thought of as the time reversed version of
it. The theorem was discovered by Dieks [40] as a direct response to
the FLASH paper [37] independently of the no cloning theorem. The
proof is similar to the no cloning theorem.



2

quantum information processing 37

Theorem 5 (No programming). There is no universal finite gate
array that can implement an arbitrary quantum program. This is
because the number of possible unitary operations on even a single
qubit is infinite, and the number of possible programs is also infinite.

The no programming theorem is more subtle than the oth-
ers. It is indeed impossible to construct an arbitrarily programmable
quantum gate array that can implement any operation exactly [15].
A quantum gate array is defined as a gate that is applied given
the state of some (quantum) program register. But it is possible to
have a programmable quantum computer with some finite subset of
possible operations. It has been shown that any operation can be ap-
proximated to arbitrary precision with a finite number of gates. This
is also the basis as to why a fault-tolerant quantum computer can be
built. As we will see in section 4.3, it is possible to extend the non-
universal fault-tolerant gateset to an arbitrarily good approximation
to a universal gateset by using so called ’magic states’ to implement
a Z

1
4 gate, called the T gate [41].

Proof: Given programs |P⟩ and |Q⟩ which implement the distinct
unitary operators Up and Uq and the unitary programmable gate
array G, which encodes the total dynamics of the system, then when
operating on a state |ψ⟩:

G |P⟩ |ψ⟩ = |P ′⟩ |Upψ⟩ , (2.17)
G |Q⟩ |ψ⟩ = |Q′⟩ |Uqψ⟩ . (2.18)

The prime states are the outgoing state of the program registers,
which might have been changed by G. The inner product of the
above equations gives

⟨Q|P⟩ = ⟨Q′|P ′⟩ ⟨ψ|U †
qUp|ψ⟩ . (2.19)

We can divide by the primed registers if the inner product is not 0,
giving

⟨Q|P⟩
⟨Q′|P ′⟩

= ⟨ψ|U †
qUp|ψ⟩ . (2.20)

Since the left-hand side is not dependent on |ψ⟩, we can determine
that U †

qUp = γI, γ ∈ C. Then ⟨Q′|P ′⟩ ̸= 0 is only true if Up and Uq

are equal to a global phase, otherwise ⟨Q′|P ′⟩ = 0. This then implies
that in (2.19) ⟨Q|P⟩ = 0 and the programs are orthogonal. As such,
no universal gate array that is deterministic can be constructed.
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It can do whatever we know how to order it to perform.
"Note G" on her translation of L.F. Menabrea’s article of "Scientific Memoirs", Ada Lovelace, 1843

This chapter will briefly present the concept of quantum algorithms,
a brief history, some influential algorithms and recent developments
in their implementations. Following this, the algorithms that are
used in this thesis are presented in their own sections, so that they
may be referred to while reading the rest of the thesis.

Quantum algorithms are defined much like their mathemati-
cal/classical counterparts; perform a series of pre-defined operations
on a given input. A quantum algorithm is then an algorithm that is
designed to process quantum states mainly through quantum opera-
tions, and their implementations are meant to be run on a quantum
computer. This makes quantum algorithms a subset of all possible
algorithms, with a particular distinction between two approaches
to quantum algorithms, one that uses the quantum computer al-
most exclusively and another that uses both classical and quantum
resources.

These two high levels classifications are often called fully quan-
tum algorithms and quantum-classical algorithms respectively. Fully
quantum algorithms are those which run almost entirely on the QC
with minimal post-processing, these are the ones that usually have
clearer provable advantages over all known classical algorithms. Fully
quantum algorithms could also be used as subroutines in an other-
wise classical paradigm where the advantages of the QC are used
in conjunction with classical computers. The second approach is
with hardware efficient algorithms that are usually hybrid quantum-
classical by design. These are designed to be best suited to current
noisy intermediate-scale Quantum (NISQ) devices, but have less cer-
tain advantages over fully quantum algorithms [42, 43]. They are
characterized by a strong partition of the work between a quantum
and classical processor, generally by classically optimizing parame-
ters on a quantum circuit measured on a QC. The quantum-classical
approach is a more recent development borne of limitations in cur-
rent hardware, but the history of quantum algorithms, and likely far
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Speedup Algorithms
Exponential 3
Superpolynomial 31
Polynomial 30
Unknown or varies 5

Table 3.1: Speedups of
known quantum algo-
rithms as of November
2024 tabulated with in-
formation from the Quan-
tum Algorithm Zoo https:
//quantumalgorithmzoo.org/.
The polynomial category in-
cludes constant speedups. The
table is not exhaustive, merely
illustrative.

future, will lean more on fully quantum algorithms.
The history of quantum algorithms does not span as far back

as many other fields. Indeed, the first true quantum algorithm is
Deutsch’s algorithm in 1985 [44], which is not much later than the
first ideas on quantum computation by Feynman and Manin. This
algorithm could discover global properties of a n → 1 function in a
single query rather than two classically. From this early discovery
several other black box algorithms had been found, until a turning
point in 1994 when Peter Shor discovered his eponymous algorithm
[45]. Shor’s algorithm could factorize numbers in polynomial time
and was the first end-to-end quantum algorithm. It is this algorithm
that likely kicked off the immense interest in quantum computing
since then due to its potential to crack cryptographic protocols like
RSA. It is not the point of this thesis to give an exhaustive list of
all algorithms, but suffice it to say that the field has grown im-
mensely since then, with some excellent reviews being [46, 47, 48,
49]. According to the currently up to date Quantum Algorithm Zoo
there are around 69 fully quantum algorithms (although in some,
parameter optimization is generally done classically), not including
subvariants, with different speedups which are tabulated in table 3.1.

=

G G G† G†

a

T

T T †

H T T T † T † H

b

Figure 3.1: Illustrative de-
compositions of a Toffoli
gate with all to all connectiv-
ity (a) and linear connectivity
(b) according to [1]. It should
be noted that more optimal
decompositions could exist for
(b), but not (a) [50]. G and T

are specific single qubit gates.

These algorithms span a large set of applications in mathemat-
ics, chemistry and beyond, but there are some that should be kept
in mind, at least in name and application. Grover’s algorithm [51]
for unstructured search, the quantum Fourier transform (QFT) [52]
which does not have a speedup over the classical discrete Fourier
transform, but is an important subroutine in what are probably the
most useful or influential algorithms in the literature. It allows for
the quantum phase estimation (QPE) algorithm [53] which enables
the measurement of any value encoded in the phase of a quantum
state. This is particularly useful to measure important properties,
such as the energy, of some prepared quantum state. These subrou-
tines together are key components of Shor’s algorithm.

The key issue with fully quantum algorithms is that they disre-
gard any practical limitations of current and realistic fault-tolerant
machines. The issue that arises is due to their requirement for arbi-
trary controlled unitaries acting on many qubits, which could require
many swaps of qubit positions for computers with limited connec-
tivity, and in both cases, deep decompositions into native gate sets
for the machines in question. Figure 3.1 shows the decomposition of
a fairly basic Toffoli gate with full and linear connectivity to illus-
trate the increase in depth brought about implementing a 3 qubit
gate with two qubit operations with (a) full connectivity and (b)
linear connectivity. The larger the unitary, the higher the overhead,

https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
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especially in architectures with limited connectivity. In general the
optimal factorization of a generic unitary into two qubit gates is an
NP-hard problem [1].

The high depth requirements for these algorithms can be some-
what eased for general circuits by clever compilation and transpila-
tion [33], but due to the computational intractability of the problem
this approach cannot make significant improvements for general cir-
cuits. As such many of the most important algorithms have been
studied and re-expressed via methods that greatly reduce the gate
counts on common limited connectivity architectures. An example
of the depth reduction that is possible is the QFT algorithm, whose
depth has been reduced from an already optimized O(n2) depth
circuit to the new state-of-the-art depth of order O(n) [54]. Such
reductions in depth will be useful in both the current NISQ era and
the future fault-tolerant eras (hopefully).

As has been mentioned in passing, current machines cannot run
fully quantum algorithms well for any system size of interest, and
while the exact reasons why it will be discussed in chapter 4, this
limits the kind of algorithms that can be run on current machines.
Thus, hardware efficient algorithms are used, they are often char-
acterized by the use of shorter circuits, classical optimization and
post-processing of the QC results.

Hardware efficient algorithms are much more recent in the his-
tory of quantum algorithms, with the first example arguably being
the variational quantum eigensolver (VQE) [55] in 2013. This algo-
rithm will be described in depth later on in this chapter, but it has
spawned a plethora of derivative algorithms that try to exploit vari-
ous features of the problems that flavor of VQE is tackling. Around
the same time, the quantum approximate optimization algorithm
(QAOA) [56] was also developed, it is similar to VQE in its use of a
parameterized hardware efficient ansatz that is optimized classically,
but it is specifically designed to solve combinatorial optimization
problems.

The development of these techniques is vast for the short amount
of time they have existed, but the general family that these algo-
rithms exist in is called variational quantum algorithms (VQA), as
all members of this algorithmic class vary parameters in some pre-
defined circuit. An excellent review of many of the relevant methods
is found in [57]. To make VQAs work well, it is important to find
a statement of the problem that requires as few measurements as
possible for the expectation values, as well as the design of the vari-
ational circuits, which can be thought of as a subfield of its own
[58]. It is unknown whether variational techniques will be advan-
tageous over classical techniques as many questions remain on the
trainability of these circuits [59] and the influence of noise on the
simulability of the circuits [60, 61]. Indeed, it may be that a whole
class of ansatze are simulable even in the noiseless case [62], or that
if there are no barren plateaus, that the problem is not classically
hard [42]. Despite these fundamental challenges, research in this
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area is still active, and more thorough descriptions of the VQE and
QAOA are presented in the following sections.

3.1 Variational Quantum Eigensolver

Finding the ground state of a system is an important problem in
many areas of physics and chemistry. It can also be the initial step
in the study of more complex dynamics. It is in general a difficult
problem to solve due to many factors. For one, with limited memory
with which to store a wavefunction, one cannot accurately describe
the exact ground state for a general system. If one had enough mem-
ory to do so, the computational time required to invert a large ma-
trix would be infeasible. One can also attempt to start with some
structure to the state vector initialized in some non-ground state
and evolve it to the ground state within the limits of the expressivity
of the structure imposed on the state vector due to computational
or other constraints. On a quantum computer, this would be the
amount of time that the state may be evolved for before noise takes
over, or in the absence of noise, how patient (and rich) the user
is. Fortunately, most problems that chemistry and physics concern
themselves with have the helpful property that a given system’s
ground state is the eigenvector with the lowest eigenvalue of the
system’s Hamiltonian.

This allows for the iterative lowering of the energy on successive
trial wavefunctions via a variational method, which are based on the
well known variational principle [63].

⟨Ψtrial|H |Ψtrial⟩
⟨Ψtrial|Ψtrial⟩

⩾
⟨Ψtrue|H |Ψtrue⟩

⟨Ψtrue|Ψtrue⟩
(3.1)

Thus, one may find an upper bound for the energy of a physical
system given an appropriate Hamiltonian. The VQE in its simplest
form uses some Hamiltonian H and generates a trial wavefunction
on N qubits using some number of parameters, usually denoted as
the parameter vector θ, which are tied to gates in a quantum circuit
which acts as a trial wavefunction denoted Ψ(θ). θ generally refers
to the angle with which a particular rotation gate is applied, but
could refer to any tunable parameter. In essence the particular rota-
tions applied are not important and many schemes exist depending
on the capabilities of the quantum computer [55, 64, 65].

In the most general case, an initial circuit C with bound param-
eters is run once per term in H, and measured in a basis related to
the term. Generally, the terms require some rotations on the wave-
function to actually measure the Hamiltonian terms. Since qubits do
not necessarily share the correct statistics as the problem (although
one can have fermionic [66] or bosonic [67] qubits), some mapping
M can be applied to the Hamiltonian such that M(H) → Hq, the
standard definition Hq |Ψ(θ)⟩ = E |Ψ(θ)⟩ holds, note that the sub-
script will be dropped since it is a one-to-one mapping. Each term of
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a total of T terms of the qubit Hamiltonian

H =
T∑
i

ciHi, (3.2)

may be measured separately given that the same state is prepared,
this means that a relatively short circuit can be used rather the
same circuit tied to a direct energy measurement like with QPE
[68], which would require a lot more quantum resources than NISQ
can currently provide. The energy is the sum of each constituent
measurement related to a Hamiltonian term Hi multiplied by the
appropriate prefactor. The number of ideal measurements to resolve
the standard second quantization electronic structure Hamiltonian
grows as O(N4). One key aim is to make approximations or develop
methods to reduce the number of measurements required. This re-
quirement is further compounded in the near and midterm, as one
must take numerous measurements of each term to increase the
signal-to-noise ratio and to potentially apply quantum error mitiga-
tion (QEM)1. 1 Quantum error mitigation will be

discussed in depth in section 4.2.

Figure 3.2: The variational
quantum eigensolver
method illustrated for a sim-
ple hardware efficient ansatz
for a qubit Hamiltonian already
converted into a tensor prod-
uct of Pauli rotations before
measurement. |0⟩ represents
the initial computation state,
but could be any classically
computed initial guess [69].Algorithm 1: Variational quantum eigensolver (VQE)

1. Begin with a random choice of θ0

2. Prepare the quantum state on the quantum computer by applying
a chosen sequence of parameterized gates interspersed with
entangling operations.

3. Measure a given term of the Hamiltonian Hi. Step 2 has to be
repeated with the same parameters a chosen number of shots for
each term. The measurements for the term give an expectation
value which is multiplied with a prefactor as in (3.2), the sum of
all these measurements is the energy E(θj).

4. Input the energy into a noise resistant classical optimizer which
finds a new set of θs, this will likely require more measurements
to find ∆E. Repeat from 2. until convergence.

This approach is actually very general, and any problem that can
be mapped to some cost-function that can be translated into a sum
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of observables can in theory be solved via something like a VQE.
This is indeed what is done in research and is the family of VQAs
which are well reviewed here [57]. As such, now the algorithm will
be described in more detail to better define what is meant by a VQE
on a device with properties like a superconducting processor with a
stronger emphasis on the potential pitfalls.

3.1.1 The cost function

The cost function of the VQE is a minimization problem derived
from the variational principle (3.1), which is

E = min
θ

⟨0|⊗n U †(θ)HU (θ) |0⟩⊗n (3.3)

for some Hamiltonian H and parameterized unitary U on n qubits.
The Hamiltonian ought to be measurable on a quantum device,
and as such it should be decomposable into a sum of Pauli strings
H =

∑T
i = ciPi

, where Pi is a tensor product of single qubit Pauli
operators (2.7) with length n. Many problems must be mapped to
this form via a transformation - the oldest of which is the Jordan-
Wigner (JW) transform [70], but more efficient transformations have
been found, such as the Bravyi-Kitaev (BK) [66] and some not yet
named transformations like [71, 72]. It should be noted that the
JW is completely local but produces many Pauli terms, while the
BK is non-local. The newer methods can be thought of as compro-
mises between the two which might add additional ancillary qubits.
The state of the art [72] requires 1.016 qubits per encoded fermion.
Whatever mapping is chosen, to actually compute the cost function
one must measure all terms T as

E =
T∑
i

ci min
θ

⟨0|⊗n U †(θ)PiU(θ) |0⟩⊗n. (3.4)

The cost of this grows with the number of terms, which for chemi-
cal problems such as electronic structure is N4 [55].

The first thing that should be apparent is that one does not have
the Hamiltonian for free. Thus, it is standard that the Hamiltonian
be precomputed via ab-initio methods that are standard for the
problem at hand. This limits the accuracy of the resulting eigen-
vector to the accuracy of the method used to produce the Hamilto-
nian in the first place. As such, if an accurate physically motivated
Hamiltonian is too expensive to compute or is unavailable the re-
sulting eigenvector from a VQE calculation will be limited to being
the best eigenvector for a ’bad’ Hamiltonian. For electronic structure
methods, this means that the choice of basis set and method will
have a strong impact on the results [73].

The problems with the large number of terms can also somewhat
be mitigated by grouping commuting terms into single measure-
ments. This can require a rotation into an appropriate basis that is
diagonal with respect to all the strings in the grouping [74], which
comes at the cost of some circuit depth. Other optimizations in the
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measurements can be made, such as ignoring low weight terms and
exploiting symmetries in the problem [75]. All the mentioned pro-
cesses, except for the expectation value measurements, all require
significant classical processing. This means that the VQE is only
going to yield an advantage if the computation of the expectation
values is the most expensive part of the calculation and that the
time saved here outweighs computing the integrals on classical hard-
ware. Of course, if the calculation is much more accurate than the
classical computation then perhaps the computational time is less
relevant.

3.1.2 The ansatz

The quantum circuit ansatz is at the heart of the VQE. Although
any parameterized unitary could in theory be used, in practice one
aims to limit the number of tunable parameters to be polynomial in
qubit number. This is because if the variational space is too large it
becomes difficult to solve the minimization problem classically [76].
Another common limitation is that the circuit should be efficient on
the hardware, although this limits the physicality of the ansatz in
representing the problem. The state-of-the-art lies in balancing the
two such that the circuit is both physically motivated and efficient.

Physically motivated ansatze can be explored form the
lens of electronic structure problems, where ansatze that have been
derived from electronic structure theory have been developed. The
most widely studied is the family unitary coupled cluster (UCC)
ansatze [77] which construct their circuits based on excitation op-
erators acting on a reference state. These are the most accurate in
theory, but generate deep circuits. As such, strategies inspired by
this such as adaptive VQE (ADAPT-VQE) [78, 79] which select a
subset of UCC or other problem-dependent operators to include2. 2 The exact technique used by

ADAPT-VQE for the selection
criteria is a topic of research on its
own.

This yields a more efficient circuit that is still physically motivated
but much friendlier to hardware. Other techniques that allow for
physically motivated constructions might take information from
known correlations in the problem, such that qubits that represent
non-interacting parts are far away and weak interactions are not
represented in the circuit [80].

H H

Rx(
π
2 ) Rzθ Rx(

−π
2 )

a

U3(θ1) U3(θ4)

U3(θ2) U3(θ5)

U3(θ3) U3(θ6)

b

Figure 3.3: 3 qubit VQE
ansatze showing one of many
potential terms, ei

θ
2XZY , in a

UCC ansatz (a), and the lin-
ear connectivity efficient SU2
ansatz [81] (b).

Hardware efficient ansatze are heuristic ansatze that use
the existing connectivity and gate set of a given computer. Generally
they are constructed with single qubit rotations on one or more axes
followed by the native two qubit gate of the device in an alternating
pattern. More intricate constructions can be made, such as choosing
gates so that some properties (like particle number) are conserved
[82] with a slight cost to depth, but without additional SWAP oper-
ations. For this class of ansatz, the most important characteristic is
termed the expressivity (sometimes called expressibility) [83], which
is a measure of how much the ansatz can explore the Hilbert space.
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Figure 3.3 shows a single term that may appear in a UCC ansatz
in (a), while (b) shows a standard hardware efficient ansatz with lin-
ear connectivity. It should be noted that although the UCC ansatz
seems efficient as well, the depth and width can be very high even
for hydrogen. For example, for the standard STO-3G basis set on
hydrogen [84] one already requires a circuit depth of 97 on 4 qubits.
With higher levels of theory, these numbers easily balloon [85]3. So 3 Aug-cc-pVTZ requires 97 qubits

and circuit depths of around 1.5
million.

it is important to find balance between the two approaches. This is
what something like ADAPT-VQE attempts to do, for example.

3.1.3 Optimization

Optimization is the classical subroutine central to the algorithm.
There are different types of optimizers - continuous variable and in-
teger optimization, but this discussion restricts itself to continuous
variable optimization in the context of gradient descent as required
for understanding the VQE. As might be clear from the huge reduc-
tion in scope, the study of optimization is vast and underpins many
modern technologies, notably machine learning. The main idea is
that given a cost function C , an initial set of parameters θi and
a function of θ, f(θ), find a new set of parameters θi+1 such that
C(f(θi+1)) < C(f(θi)) [86].

This can be done by taking or estimating the gradient of the
cost function with respect to the parameters and moving in the
direction of the negative gradient. This is the basis of the gradient
descent algorithm. The size of the step taken in the direction of
the gradient and how it is efficiently estimated or computed is the
main difference between optimization algorithms. The optimization
problem in the VQE is to minimize the energy of the system (3.3)
with respect to the parameters of the ansatz. While, to give a well
known comparison, in machine learning it may be to tune the so-
called weights and biases of a neural network or other model - in this
field Adam [87] and other Adam-derived optimizers are often used
[86]. Figure 3.4: Some features of

the VQE landscape portrayed
in an illustrative manner, with
the expressivity of the ansatz
represented by a line in some
Hilbert space, where points are
the vectors. The ansatz cannot
express the true state exactly,
and features a barren plateau
and local minima which could
trap an unsuspecting optimizer.

There are two general methods of computing the gradients - for
classical computing and certain efficient circuits this may be done
analytically, but it is by far more common to use numerical methods.
The simplest case is a finite differences’ method, but these are often
prone to numerical instability. Fortunately in quantum computing
there is a parameter shift rule which gives numerically exact deriva-
tives for many parameterized gates [88]. This is a very powerful tool,
but requires many measurements of the circuit to measure the gradi-
ent. As such, stochastic techniques such as SPSA [89] and COBYLA
[90] have proven to be successful in the current NISQ era [91].

The main issue with optimization is the existence of barren
plateaus in either the cost function or the ansatz [92]. The barren
plateau is defined by a region of the cost function where the gradi-
ent becomes exponentially small. It is worsened by an increase in
the size of the system, but can also occur due to noise, in so-called
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noise induced barren plateaus [93]. Furthermore, the problem of local
minima, which trap optimizers in suboptimal regions of the param-
eter space also exist in quantum variational problems [94]. These
phenomena are illustrated in figure 3.4.

3.2 Quantum Alternating Operator Ansatz

The QAOA is not much different than the VQE or other VQAs. It
is at its essence a highly specialized ansatz that is designed to solve
combinatorial optimization problems. Its original formulation was
an improvement on the Trotterized quantum adiabatic algorithm,
where, like with the adiabatic theorem, a ground state of a time
dependent Hamiltonian will stay the ground state through the evo-
lution of the Hamiltonian if it is slow enough. It should be noted
that this is the approach taken by adiabatic quantum computing
[95]. But the straightforward Trotterization of time evolution did not
seem to function well [96].

The solution that was found [56] initially for a MaxCut problem,
but since extended to an immense amount of problems and variants
[97], was to alternate between two types of non-commuting opera-
tors, a mixing Hamiltonian HM and a cost Hamiltonian HC . In a
circuit these are applied by constructing corresponding parameter-
ized unitary evolutions of the form

UC(γ) = e−iγHC , (3.5)
UM (β) = e−iβHM . (3.6)

The complexity of the circuits is completely dependent on these
unitaries, the parameters could take any real value, but due to their
periodicity are usually constrained to be between 0 and 2π.

Now the ansatz state can be written as a number of layers L of
these alternating operators as

|ψ(γ, β)⟩ = UC(γL)UM (βL) · · ·UC(γ1)UM (β1) |+⟩⊗n , (3.7)

which when written as a circuit looks like4 including the measure- 4 It should be noted that there is
a variant of QAOA called multi-
angle QAOA [98] which uses more
parameters per layer.n

|+⟩⊗n UC(β1) UM (γ1) ...

UC(βL) UM (γL) ,

ment at the end. The measurement is actually in the computational
basis in the standard QAOA approach, and so it is unnecessary to
measure in multiple basis for each term of the Hamiltonian as in the
general case for a VQE. This is because the function being measured
is generally a function on a bitstring that represents the solution to
the problem. This could be, for example, the edges that are cut in a
graph for MaxCut.

The actual process of the algorithm is as before, where the cir-
cuit is run, then an optimizer iteratively changes the parameters to
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minimize (or maximize) some cost function. Most of the problems
that exist for VQE and VQAs in general also exist here, but due to
the ansatz being very related to the problem by construction makes
this approach more algorithmically sound - and indeed, when not
considering the impact of noise, this algorithm does have a proven
advantage for some classes of problems for variants of QAOA [97].
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Quantum Errors, their Mitigation and Correction

It can’t do anything we try to order it to perform.
After trying to use noisy quantum computers, Ada Lovelace 1842i.

This chapter introduces one of the main challenges of quantum
computing, which is the presence of errors. It begins with an intro-
duction followed by a presentation of the basic theory of errors from
a algorithmic perspective. It then continues to discuss methods of
error mitigation that have been developed, ending with a brief section
on error correction.

Current quantum computers are far from the Platonic ideal
required to implement the quantum algorithms described in the
previous section. Although the tools used in modern manufacture
are far from the tools of the 19th century, the sentiment remains
the same. Both the tools and materials used to construct quantum
computers and our control of the interactions are imperfect. This
leads to errors that occur throughout a program’s runtime, these are
generally brought about either through unwanted interactions with
the environment or imperfections with the control hardware.

To make a quantum computer functional, there are three ap-
proached to dealing with noise with varying likelihoods of success.
If probability of an error occurring per operation are miniscule (on
the order of 10−11 or below) [1], then most algorithms would have
a high enough probability of success. How is one supposed to get to
such rates? The first is to somehow minimize the amount of error in
a device via hardware design - this is limited by engineering, and is
unlikely to reach such low levels of inherent error, currently the low-
est error rates are much higher than this (10−2). As such, one can
try to measure the same properties multiple times with the hope of
strengthening the signal-to-noise ratio, known as error mitigation, or
to correct the errors as they happen on the processor, known as error
correction, which is effective at much higher hardware error rates.

Overall the high error rates of current devices do not allow for any
interesting programs to be run directly on the machine. Algorithms
for fault-tolerant devices are vanishingly unlikely to return any useful
results for any problem size of interest. For these to run successfully,
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we must run error correction. But there are ways to use current
QCs, and return useful results for much larger problem sizes. This
requires algorithms designed to fit within existing limits. These are
termed NISQ(-friendly) algorithms.

This chapter begins with a section that introduces quantum er-
rors and their associated formalisms. Then, a section on how errors
are mitigated is presented which focuses on three exemplary tech-
niques of three different schools of error mitigation. This is a distinct
practice from actually correcting errors, which is known as error
correction, which will conclude the chapter. This will be the founda-
tion for a large part of the research work presented later, and will be
referred to quite frequently throughout the work.

4.1 Errors and Noise

Although the sources of error are a very interesting field of research
on their own, the physical source of what eventually becomes noise is
very device specific. The physics that governs the different systems
also governs the specific phenomena that become errors in the com-
putation. Noise is the overall effect of accumulated errors throughout
the computations, which tend to wash out the ’signal’ that would be
the expected result from a given quantum program. From the com-
puter scientist perspective, the different physical phenomena that
lead to errors can be abstracted away into forms that are uniform
throughout the machines.

Of course, in the actual practical use of various techniques it is
indeed a benefit to design device specific techniques. This can be
achieved on an algorithmic level and in the post-processing, and
certainly to correct some very specific errors, such as physical qubit
loss in trapped ion and neutral atom systems, something that does
not happen in superconducting devices.

There are two classes of errors that can occur in a quantum com-
puter, coherent errors and incoherent errors. Coherent errors are
those that can be described by a unitary operator acting on the state
of the qubit, and incoherent errors act stochastically on the qubit.
Coherent errors are usually caused by imperfect control hardware,
and incoherent errors are usually caused by interactions with the
environment.

4.1.1 Coherent errors x

y

|0

|1

U

 U ′

Figure 4.1: Coherent errors
occur when the intended opera-
tion on a qubit is U (blue path)
but another unitary U ′ (red) is
physically applied.

As mentioned previously, coherent errors are in essence the appli-
cation of a unitary that is not the unitary that is intended. For a
single qubit the only allowed operation is an arbitrary rotation U

which is parameterized by three real variables (α,β, γ), as in table
2 this operation, if implemented perfectly, is denoted U(α,β, γ). In
the case of a coherent error we introduce ϵi where i is the relevant
parameter, and the most general effect is that the net effect on the
qubit is U ′(α,β, γ) = U(α+ ϵα,β + ϵβ , γ + ϵγ). A visualization of
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this is given in figure 4.1, the net effect of a coherent error in one
qubit is a different rotation of the vector than intended.

In the most general case the magnitude of ϵi isn’t limited. In
practice the error is relatively well controlled, especially in the single
qubit case. As such, the simplifying assumption that ϵi is small can
be made. Of course, this means that small changes in angle would
be more affected by these errors than larger changes. Another issue
is that ϵi is not a constant, it may have a dependence on the desired
angle, effectively making it some function ϵi(i). It is also known that
these are not constant from run to run, and could also change within
the runtime of a single program should the program run for long
enough. This effect is known as drift.

Figure 4.2: The fidelity of
the preparation of a qubit
in uniformly distributed
states. Color represents fi-
delity, and the states are
projected via the Mercator
projection onto the plane, with
0 at the bottom and 1 at the
top. Each point is the result
of reconstructed single-qubit
tomography at 10,000 shots
per basis on IBM Poughkeep-
sie qubit 1,2,3,4 (denoted A,
B, C, D), and the fidelity is
with respect to the ideal vector
generated by the operation
U(α,β, γ)|0⟩=|ψ⟩. The sub-
script denotes the experiment,
with 1 being done sequentially
using a Fibonacci covering of
the sphere, and 2 in a random
order via uniform sampling one
month after.

It is very difficult in a real machine to distinguish purely coherent
errors from purely incoherent errors. This is because the quantum
computer is in essence a black box with an output that is affected
by the gate errors, which can be coherent and incoherent, environ-
mental interactions that are generally incoherent, and readout errors
which are incoherent. As such, the best gauge of coherent errors is
to assume that for very short circuits, the probability of incoherent
errors is negligible, and if readout errors are corrected for (as will be
described in section 4.2.1), then it is possible to gauge the magnitude
of coherent errors. Sadly, it is difficult to truly correct for this, as
they are likely to be angle dependent and drift over time. This is
why in general, digital quantum computers will actually only tune
very specific pulses, which vary from machine to machine, and then
use tunable virtual Z gates, that alter the relative phase of the tuned
pulses, to actually implement the desired gate parameters [99].
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To demonstrate this, an experiment on real quantum hardware
has been run that prepares a qubit in states that are uniformly dis-
tributed around the Bloch sphere prepared by a single U(α,β, γ)
gate acting on a qubit initialized at |0⟩. The fidelity of the prepared
state with the ideal state is shown in figure 4.2. The fidelity is calcu-
lated as the overlap of the prepared state with the ideal state, using
the Schumacher fidelity [100]

Tr(ρ1/2
a ρbρ

1/2
a )1/2, (4.1)

although any fidelity measure is appropiate. Assuming the error is
completely coherent, the fidelity measures | ⟨0|U †(α,β, γ)U ′(α,β, γ) |0⟩ |2

for values of α,β, γ that are uniformly distributed around the sphere
for a total of 1000 points. One was done in order following a fi-
bonacci covering of the sphere, and the other was done in a random
order via uniform sampling of the angles at a different time.

Figure 4.3: Job structure for
state preparation. The job is
divided within the limit of the
runtime as shown. R is the first
readout and pulse calibration,
S is the state preparation to-
mography, followed by a pulse
calibration round C.

It is clear from figure 4.2 that the state preparation is not uni-
form, with some bands appearing of high fidelity and others of poor
fidelity - this strongly implies that the error rates are highly angle
dependent, as a constant angle error would make the low angle ro-
tations have a lower fidelity to the high angle rotations, which is not
the case. It is also clear that the two timepoints have very different
charachteristics with regards to the error, notwithstanding the differ-
ence between the qubits. This is a clear demonstration of the drift of
the error rates and charactersitics on top of the error. It should be
noted that it is nearly impossible to characterize the ϵi(i) properly,
as an additional rotation is required to perform tomography which is
usually performed as a modification to the desired U , but this anal-
ysis shows the magnitude of the coherent errors as well as possible.
To mitigate all possible other sources of error, the experiment run
in sets within the IBM job limit a structure like that of figure 4.3.
This means that the readout error should be accounted for as well
as possible, as well as a pulse calibration sequence to minimize pulse
errors based on a previous work [101]. Irrespective of this, it is clear
that the errors persist and that different qubits have very different
inherent errors. Qubit B in figure 4.2 was likely a bad qubit since it
has a much lower overall fidelity, but the bands are likely the result
of coherent errors.

Coherent errors are very tricky to work with, and there are pa-
pers dealing with them specifically [102], and are not truly possible
to mitigate directly. Even in quantum error correction codes, if a
coherent error were to somehow enter the system, it would not be
possible to correct for it as it would still be within the code-space
of the error correction. This was hinted at when another previous
work [103] implied that combining a physical qubit with coherent
and non-coherent errors with a perfect logical qubit would eventually
lead to the complete deterioration of the whole computer’s state, this
will be discussed in depth in chapter 8. A follow up work with the
Steane code also showed this to be the case [104]. As such, strategies
have been developed to turn coherent errors into incoherent errors
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via techniques like Pauli-twirling [105, 106]. There is another layer of
coherent errors that somewhat overlaps with incoherent errors if one
assume they have a true qubit, which is that of leakage into higher
energy states, such as |2⟩ and above. This is beyond the scope of
what is considered in this thesis, but it is worth keeping in mind.

4.1.2 Incoherent Errors

Incoherent errors are errors that are not unitary, but rather stochas-
tic. The physical sources of incoherent errors are unintended inter-
actions with the environment or control hardware. These may be
spurious excitations or relaxations of the qubit, or in atomic based
hardware, even the physical loss of a qubit. Errors are generally
modelled as quantum channels which perform operations on a sys-
tem as it is ’sent’ through them, and the channel can mix in other
systems. Note that the mathematical formalism used to describe in-
coherent processes is powerful enough to encompass both incoherent
and coherent errors.

The word channel in this context comes from communication the-
ory. Here Alice attempts to send ρ through some means to Bob, who
recieves ε(ρ), where ε is a superoperator, also called the quantum
channel. It is a completely positive, trace preserving map completely
positive, trace preserving (CPTP) that acts on the density matrix
of the qubit. The description of used in this work for a quantum
channel is the Kraus representation [107], which is a sum of oper-
ators acting on the qubit. Some other commonly used equivalent
representations are the Choi or relative state representation, or the
(Stinespring dilated) unitary representation [108].

The simplest way to study incoherent errors when one only has
access to the system of interest is within the density matrix formal-
ism, since incoherent errors lead to a classical mixture of states with
the form ρ = pρ1 + (1 − p)ρ2. ρ1 is our desired (likely pure) state
and ρ2 is the error state, which may itself be an ensemble. p ∈ [0, 1]
is the probability that the state is in ρ1. This arises from a process
that takes place in the Church of the Higher Hilbert Space, which
is a tongue in cheek name for the fact that many ’noisy’ processes
can be imagined as a unitary process to an n dimensional environ-
ment, where n is the number of error types that are captured by this
transition. Both approaches will be described, beginning with the
treatment of density matrices.

The Kraus formalism introduces Kraus operators {Ki } , i =
1, 2...,m with the trace preserving property

∑m
i=1 K

†
iKi = I and

complete positivity. They map some state ρ as

ρ →
∑
i

KiρK
†
i . (4.2)

The channel can be represented by a non-unique sum of operators
that are all related by a unitary basis transformation Vab, where |a⟩
is the basis of the system of interest that lives in A and |b⟩ is the
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basis of the auxilliary system B acting on the system |ψ⟩a |0⟩b such
that

|b⟩ =
∑
a

|a⟩Vba. (4.3)

Any Kraus operators acting on the joint state AB are related by the
above via ∑

a,b
Ka |ψ⟩A |b⟩B Vba =

∑
b

K̃i |ψ⟩A |b⟩B , (4.4)

where K̃a =
∑

aKaVba are the ’new’ Kraus operators, note that
the Ks are not necessarily unitary. This Kraus map is general in the
sense that any physical map on finite dimensional Hilbert spaces can
be represented by it. As the representation is not unique, the art of
creating noise models is to find the simplest physically motivated set
of Kraus operators that can represent the expected error channels.

This is because a channel that maps a system on A of dimension
d to A′ of dimension d′ (note, in general the dimensionality consid-
ered here in quantum computing is the same) requires d2(d′2 − 1)
parameters. This is because (dd′)2 parameters are required to define
a density operator, but there are d2 constraints due to the trace pre-
serving property for the d2 inputs. For a qubit this happens to be 12
parameters, and this grows quickly with more qubits. Compared to
a unitary map for a qubit, which has 3 parameters, it is clear that
completely characterizing noise channels is computationally impossi-
ble for larger systems, and this is why the incoherent errors must be
approximated by a small number of expected phenomena. A formal
proof for the number of parameters required to fully characterize a
quantum channel is beyond the scope of this thesis, but it can be
found in [109]. Intuitively this is similar to the minimal number of
pure states required to represent an ensemble of states for a density
operator. Hence even though this number is minimal, a good model
that uses even less parameters must be found to be practical.

Stinespring dilation is paradoxically easier to explain with
Kraus operators and explains Kraus operators. Starting with a
operator-sum representation of a channel εA→A′ an equivalent uni-
tary map may be written that acts on an external system with some
orthonormal basis |i⟩ for i = 1, ...,n, where n is the number of Kraus
operators. Thus the additional environment system E has the same
dimension as the number of Kraus operators, and an unitary isome-
try U can be written as

UA→A′E : |ψ⟩ →
n∑
i

Mi |ψ⟩ |i⟩ . (4.5)

Here the Kraus operators Mi are complete and due to the existence
of the environment, the fact that they could be non-unitary for a
map of εA→A′ , a trivial extension to unitary operators is possible
with the extended Hilbert space with the environment. Now taking
the environment is traced out returns the original map as

TrE [UA→A′E(|ψ⟩)] = εA→A′(|ψ⟩). (4.6)
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This is the reason why when access to the environment is impossible
the unitary evolution on the product space of the system and envi-
ronment can only be described by a generally uninvertable quantum
channel, unless it is unitary (and thus coherent).

This is quite an abstract take, but by studying some important
error channels that are referenced in this work the effect of this
unitary perspective should be more clear. There are many error
channels that are important to characterising noise in quantum
computers, and some important (although not exhaustive) errors
and their Kraus operators are tabulated in table 4.1, but only a
more thorough analysis of the depolarizing channel will be presented,
where Kraus operators are constructed from these more basic error
types. The identity is always included in the set of Kraus operators
and represents the absence of an error.

Table 4.1: Common Single Qubit Errors

Bit flip
(

0 1
1 0

)
, also denoted as X and σ1.

Phase flip
(

1 0
0 −1

)
, also denoted as Z and σ3.

Phase and bit flip
(

0 −i
i 0

)
, also denoted as Y and σ2.

Dephasing
(

1 0
0 0

)
and

(
0 0
0 1

)
.

Amplitude damping
(

1 0
0

√
1 − p

)
and

(
0 √

p

0 0

)
.

Phase damping
(

1 0
0

√
1 − p

)
and

(
0 0
0 √

p

)
.

Name Kraus Operators

4.1.3 Local Depolarizing Noise

The local depolarizing error channel is the most commonly used
worst case scenario in theoretical work [110, 111, 104] as if a model
is able to mitigate local depolarizing noise, it is able to mitigate any
Pauli channel [1]. Indeed, the depolarizing channel consists of three
types of errors that are characterized by the first three entries table
4.1, the bit, phase and bit-phase flips which are all represented by
the three corresponding Pauli matrices.

If a state is initialized perfectly into |ψ⟩ and a depolarizing error
occurs, then it evolves into an ensemble of states σ1 |ψ⟩, σ2 |ψ⟩ and
σ3 |ψ⟩ with equal probability, with the remainder staying as I |ψ⟩.
As mentioned, it can be beneficial to consider an environment with
the same number of states as the number of error types plus the
identity. As such, the minimal environment E has 4 states labelled
|0⟩E , |1⟩E , |2⟩E , |3⟩E . The unitary channel is then represented as an
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isometry (or a unitary operator acting on both the system and the
environment) as

Udepol : |ψ⟩ →
√

1 − p |ψ⟩A |0⟩E +

√
p

3 (σ1 |ψ⟩A |1⟩E + σ2 |ψ⟩A |2⟩E + σ3 |ψ⟩A |3⟩E) .

(4.7)
If one had access to the environment it would be possible to re-

verse the effect of this, as each of the basis states of the environment
could be measured and would yield whether the error had occurred
or not, which could be reversed. When only system A is accessible
though, this is the same as taking the partial trace over E, which
will derive the operator-sum or Kraus representation. Defining

Mi =E ⟨i|Udepol, i = 0, 1, 2, 3, (4.8)

yields

M0 =
√

1 − pI, M1 =

√
p

3σ1, M2 =

√
p

3σ2, M3 =

√
p

3σ3. (4.9)

Since all Pauli matrices are self adjoint then the completeness rela-
tion and normalization are preserved and

3∑
i=0

M †
iMi = I. (4.10)

As the Kraus operators evolve a state as ρ →
∑

iMiρM
†
i , the gen-

eral density matrix for a single qubit evolves as

ρ → (1 − p)ρ+
p

3

3∑
i=1

σiρσi. (4.11)

Usually this noise channel is applied to all qubits individually
with no correlation. More advanced noise models and simulations are
essential to a complete understanding of the hardware and are the
realm of open system dynamics [1], which is another fascinating field
of study.
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4.2 Quantum Error Mitigation

The presence of noise does not allow us to run arbitrary quantum
algorithms and expect a useful result. As such, both algorithms
and sampling must be tailored to work within the NISQ hardware
limitations. Although designing noise resilient or noise minimizing
algorithms is essential for this class of algorithms, these are accom-
panied by one or more error mitigation techniques. These allow us to
strengthen the signal-to-noise ratio and compute better expectation
values from the experiments. This section will describe the error mit-
igation techniques used in this work in detail which are: zero-noise
extrapolation (ZNE) [112], Clifford data regression (CDR) [113] and
virtual distillation (VD) [114, 115].

The question quantum error mitigation tries to answer is if we
can hope to achieve quantum advantage before the arrival of fault-
tolerant quantum computers. Quantum hardware has seen major
improvements in both the quality and control of many qubit sys-
tems. A full list would be too long to include, as it spans different
quantum platforms with multiple fronts and directions. The idea is
to translate this continuous progress into immediate advantages for
quantum computations, while accepting limits in the complexity of
the algorithms used.

The main tools of error mitigation require algorithms to be of
short depth, as to not allow errors to accumulate and bring the com-
puter into the fully mixed state, which when measured will return
a random bit string. This is why current hardware is mostly used
for variational type algorithms such as the family of VQAs like VQE
[55] and QAOA [56], which use short, hardware efficient circuits. The
second point is that the output of the algorithm should be a small
set of observables of the prepared state compared to full tomography.
The expectation values of these observables must then be estimated
to a good enough precision to be useful, such as within chemical
accuracy for chemistry problems. Thus, the goal of QEM for NISQ
machines is to reduce the error-induced bias in expectation values.

A moment should be taken to define the overall benefit and cost
of using QEM. This description is foundational knowledge and the
following paragraphs will follow a similar language and presentation
of the problem as [116]. Ideally a QC running some program would
produce a perfect state ρ0, but with noise the output will instead
be the noisy state ρ. In most cases, the actual value of interest is
that of some observable of interest O of ρ0. Even in the ideal case,
we would need to run a number of experiments to approximate the
expectation value of O. Each experiment is called a shot, and the
number of shots is S will always be a finite number in practice. This
finite S implies a finite accuracy on the expectation value, and is
called shot noise. If there were no noise, there would be no bias and
the precision would scale as 1√

S
. Noise induces a bias in the mea-

surement, and this is the bias that QEM aims to reduce. Formally
this means that given an estimator Õ of the true value Tr[Oρ0],
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QEM wishes to reduce the mean square error, angle brackets denote
the expectation value,

MSE[Õ] = ⟨Õ− Tr[Oρ0]⟩2 = Bias[Õ] + Variance[Õ] (4.12)

Figure 4.4: Bias-variance
tradeoff for a constant num-
ber of shots. Units and exact
values are not shown as this
plot is only meant to illustrate
the various terms used. The
leftmost Gaussian represents
the noisy expectation value,
the middle the error mitigated
one and the leftmost line is the
ideal value.

Bias and variance are defined in the usual way as Bias[Õ] =

⟨Õ⟩ − Tr[Oρ0] and Variance[Õ] = ⟨Õ2⟩ − ⟨Õ⟩2. Measuring O on
ρ0 will yield the unmitigated estimator. This will yield a biased
estimator of Tr[Oρ0], and at the limit of many shots, the error will
tend towards being dominated by the bias. QEM techniques all aim
to fulfill the condition Bias[ÕQEM] ⩽ Bias[Tr[Oρ]]. The construction
of the error mitigated estimator ÕQEM is generally more complex,
and will always lead to an increase in variance when S is constant,
namingly Variance[ÕQEM] ⩾ Variance[Tr[Oρ]].

It should be mentioned that QEM is somewhat ill-defined. This
thesis will use the term algorithmic QEM to refer to algorithmic
techniques that construct circuits and estimate error-mitigated ex-
pectation values by combining the results of various experiments.
Single circuits that are run within a QEM technique will not be less
noisy, and may indeed be noisier than without algorithmic QEM, as
in the case of ZNE. The thesis will explore ZNE and CDR as exam-
ples of this. The alternative approach which will be referred to as
coherent QEM or error suppression, and also that of quantum error
correction (QEC), is to make any single run of a circuit be less ef-
fected by noise. A classic technique for this is dynamical decoupling
[117], alongside others which come from optimal quantum control
theory. One can also run circuits that exploit subspace expansions
or purify the desired state, with VD being an example of this - al-
though the proof of this is subtle [118].

In the above paragraphs a lot of classifications and types of QEM
were shown, but it is important to classify and name representative
techniques that are commonly used in the field. A thorough de-
scription of each is beyond the scope of this thesis, but the following
paragraphs will separate the different families of error correction and
give a short description, some representative techniques and refer-
ences so that the rest of the work can be put in context. In addition
to this, a more detailed description of readout error mitigation is
given - usually this is done separately from the other techniques, as
the correcting the readout process is more like tuning the measure-
ment apparatus than mitigating the errors in the computation, and
this is usually abstracted away from the rest of the error mitigation
process. Indeed, readout ’correction’ is almost always performed
before any other processing is done.

Post selection is another important and conceptually simple
tool in an error mitigation toolkit. If it is known that the output
must obey certain properties, as for example, a certain parity in bits
or a known number of 1’s in the output, one may opt to throw out
results that do not obey these rules [119]. This can be done with or
without measurement error mitigation and to filter a dataset before
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any other techniques are applied [120]. It should be noted that to
then accurately gauge the performance of a given algorithm on a
given machine, one must consider the ratio of post-selected shots
from the total number of shots.

Learning based mitigation is perhaps the currently more
studied area of QEM. The idea of all of these techniques is to pre-
pare a model of the noise that is valid for long enough that after the
model is prepared, experiments can be run and mitigated with the
technique. There are noise agnostic techniques like CDR, which will
be covered in depth in a later section, and noise model dependent
techniques like probabilistic error cancellation (PEC), which require
some theoretical model of the noise a-priori. PEC is the reference
method in this category. PEC attempts to alter the circuit with ad-
ditional gates that probabilistically cancel out noise channels. This
involves running the circuit many times with a different random
placement of these gates [121]. Tensor-network error mitigation is
a more recent development that reverses the effect of the noise in
post-processing via a purpose built tensor-network on the output
of the QC [122]. The general idea for all of these techniques is that
they must learn a parameter for an idealized model of the noise and
correct for it, or learn a map from noisy to ’exact’ results. The issues
come from whether the idealized model of the noise adequately cap-
tures the true device noise and whether the tunable parameters can
be learned efficiently and accurately.

Subspace expansion techniques cover a vast array of techniques
that have been used throughout many fields over many years. In
this section, we limit ourselves to their use in quantum error miti-
gation. It was recently shown that many techniques once thought
disparate can be described under a framework called generalized sub-
space expansion [118]. The general idea is that a subspace may be
spanned by some set of expansion operators. These are applied to
the quantum state of interest and the relevant expansion operator
expectation values are measured. This allows for the construction
of matrices that allow for the solution to the generalized expectation
value problem, whose solution can be computed classically due to
the much smaller size of these matrices compared to the full Hilbert
space. Finding this after the construction of a state can give much
better results than measuring the state directly either due to addi-
tional symmetries being present in a ’symmetry expansion’ [123], or
as in VD which will be covered later in this section.

4.2.1 Measurement error mitigation

Measurement error is the conceptually simplest error to mitigate,
but has its subtleties. Measurement errors arise in the readout
phase, where the qubit measurement is classified as having been a 1
or 0. Since the output of these measurements is analogue (although
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the specifics vary from platform to platform), classifiers are trained
on the output voltages [124], but these aren’t perfect. The difficulty
in readout error mitigation lies in the fact that separating the errors
occurring during the operation of an algorithm and those errors that
occur solely during readout while only having access to the readout.

Nonetheless, the simplest method is to build a confusion matrix1 1 A confusion matrix A1 for one

qubit is
[
P (0|0) P (0|1)
P (1|0) P (1|1)

]
, where

P (E|M) is the probability of mea-
suring M when one would have
expected E.

where one prepares every possible bitstring on their quantum com-
puter, which can be done with depth 1 and a negligible error rate,
and measure it until a reasonable map to the probability of all possi-
ble outputs is gained. The full confusion matrix for N qubits would
be 2N × 2N . In general, one might take the single qubit matrix or
clusters of few qubits and prepare tensor products of the smaller
confusion matrices to mitigate error on larger systems. This is, how-
ever, not state of the art, with more intricate techniques focusing
on two major approaches: more efficient constructions of the confu-
sion matrix that use neural networks [125] or known noisy subspaces
[126], and tomography of the measurement process called detector to-
mography which involves use of the positive operator-valued measure
(POVM) formalism [127, 128] to decouple the readout mechanism
from other errors. Nonetheless, this is an essential component of us-
ing actual quantum computers, and so a recipe is provided below to
describe how this would be done in practice.

1. A single qubit i (or if assuming uncorrelated readout error, many
qubits, either simultaneously or in sequence) is (are) sequentially
prepared and then measured in the |0⟩ and |1⟩ states.

2. The frequency at which |0⟩ states give a readout of 0 over the
total readouts is P0; P1 is analogously defined, building the confu-
sion matrix.

3. From this the confusion matrix for a single qubit i is

Mi =

[
P i0 1 − P i1

1 − P i0 P i1

]
. This is optimal and can be built from

measuring probabilities only from the |0⟩ and |1⟩ states.

4. For multiple qubits one may use a tensor product of the form
M0,1,...,i = M0 ⊗ M1 ⊗ . . .⊗ Mi. Getting the measurements to
construct the tensor product matrix can be done in O(1).

5. To correct some result vector v, one would multiply it by the
correction matrix, which is the inverse of the confusion matrix,
M−1v = vmitigated.

The reason why one would need to construct the full matrix is
that true measurement procedure couples the qubits to a resonator,
and in the case of multiple qubits one cannot ignore crosstalk (spu-
rious correlations between different qubits induced by operations
that ought to be localized to a select number of qubits) [129]. Al-
though we will not concern ourselves with this directly, it is worth
noting that the solution to this is to measure the probabilities of all
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combinations of |0⟩ and |1⟩ states. Assuming no additional state de-
pendence then a matrix of the kind below (shown for two qubits)can
be constructed in O(2N ) time, where N is the number of qubits.

P00→00 P00→01 P00→10 P00→11
P01→00 P01→01 P01→10 P01→11
P10→00 P10→01 P10→10 P10→11
P11→00 P11→01 P11→10 P11→11

 .

This type of matrix (where P10→01 represents the probability of
qubit 0 with value 1 flipping to 0 and qubit 1 with value 0 flipping
to 1) can be mixed with itself or the single qubit matrix using the
tensor product procedure described in entry 3. of the previous list.
There is the possibility that the confusion matrix is not invertible,
in which case one must use a pseudo-inverse or some more physically
motivated technique, such as bounded least squares optimization:

min
vcorrected

|Mvcorrected − vexperimental|, (4.13)

here conditions can be put to ensure that the probabilities of vcorrected
are positive and normalized. Of course, significant errors in state
preparation will make M contain incorrect probabilities. Generally
state preparation errors and readout errors are ignored in other error
mitigation techniques, and as such it is often seen in QEM and QEC
papers that state preparation and measurement (SPAM) errors are
ignored.

4.2.2 Zero Noise Extrapolation

ZNE takes the noisy expectation values of desired observables O
from a quantum circuit C that is run at various controlled noise
levels in the QC which allows one to extrapolate to the noiseless
limit. To increase the error rate in a controlled manner there are two
main techniques. The most accurate but time-consuming method
is to increase the length and decrease the amplitude of the pulses
which form the gates of the quantum circuit as with the first large
scale experiment that utilized this technique [75], illustrated in figure
4.5. This requires fine-tuning every gate pulse used such that the
increase in error follows some known relation, in general this tries to
be linear. The second method is to add multiple copies of the same
gate preceding or following any desired gate such that the overall
action of these added gates forms an identity operation, known as
gate repetition [130] and is shown in figure 4.6.

Figure 4.5: Pulse stretching
to controllably increase the
error rate of a quantum gate.
The amplitude of the pulse is
decreased, and the length is
increased to preserve the in-
tended action of the gate, but
to increase the error rate. λi
are the error rates of the gate
at each level.

The goal of ZNE is to estimate the noise-free expectation value µ
on an N qubit QC

µ = ⟨0|⊗N C†OC |0⟩⊗N

from measurements on a device initialized at ⟨0|A ⊗N subject to
noise. As such µ is inaccessible, and we must estimate it from the
noisy expectation values µ̃j obtained from the physical device. ZNE
assumes that the noise strength can be characterized by a single
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parameter λ. There is no way to decrease the error rate below a
machine’s characteristic error rate λ0 easily, but it can be increased
somewhat controllably within some range. A number n of noise
levels are chosen, and we alter the parameter λ such that the noise
strength is increased by monotonically increasing factors cj , j =

1, 2, . . . ,n from the base level λ0 to λj = cjλ0. The n + 1 noisy
expectation values µ̃j are then obtained from the noisy device at
each noise level. The noiseless expectation value µ is then estimated
by extrapolating the noisy expectation values to the noiseless limit
via some extrapolation technique, with Richardson extrapolation
being widely used [131]. We create the dataset DZNE = {µ̃ZNE

j }nj=0.
Richardson extrapolation gives the estimated noise-free value µ via
DZNE as

λ0

λ1

λ2

I

I I

Figure 4.6: Gate repetition
to controllably increase error
rates. This is done by append-
ing copies of the desired gate
such that the action of the
added gates would ideally be an
identity.

µZNE
n =

n∑
j=0

γj µ̃
ZNE
j , (4.14)

where
n∑
j=0

γj = 1,
n∑
j=0

γjc
k
j = 0 for k = 1, . . . ,n. (4.15)

The noiseless value µ is approximated with an error |µZNE − µ| ∈
O(λn+1

0 ) [112]. The order that the error can be suppressed depends
directly on the number of noisy observables computed. By writing
the series expansion of the noisy observable dependent on λ, with
expansion coefficients αi we get

µ̃(λ) = µ+
∞∑
i=1

αiλ
i, (4.16)

µ̃ZNE
j = µ̃(λj) = µ+

∞∑
i=1

αiλ
i
j . (4.17)

Given two noisy observables µ̃ZNE
0 and µ̃ZNE

1 , at error rates c0 and
c1, we can write the expansion of the noisy observables, as

µ̃ZNE
0 = µ+ α0λ0 + O(λ2

0), (4.18)
µ̃ZNE

1 = µ+ α0λ1 + O(λ2
1). (4.19)

We can now assign some arbitrary coefficients γj to the expectation
values and see that we can cancel some terms

µZNE
1 = γ0µ̃0 + γ1µ̃1

= (γ0 + γ1)µ+ α0λ0(γ0 + c1γ1) + O(λ2
0), (4.20)

up to an order O(λ2
0) with

γ0 + γ1 = 1, (4.21)
γ0 + c1γ1 = 0. (4.22)

For an arbitrarily large number of error rates, one takes the com-
bination of n+ 1 µ̃ZNE

j observables

µZNE
n =

n∑
j=0

γj µ̃
ZNE
j . (4.23)
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This can be expanded into powers of λj

µZNE
n =

n∑
j=0

γjµ+
n∑
j=0

γj

∞∑
i=1

αiλ
i
j

=
n∑
j=0

γjµ+
∞∑
i=1

αi

n∑
j=0

γjλ
i
j . (4.24)

In terms of error rates this becomes

µZNE
n =

n∑
j=0

γjµ+
∞∑
i=1

αiλ
i
0

n∑
j=0

γjc
i
j . (4.25)

This allows for the error to be suppressed to O(λn+1
0 ). γj are chosen

to cancel the leading n orders of the error in (4.25), leading to the
linear equations for γj

n∑
j=0

γj = 1,
n∑
j=0

γjc
i
j = 0 for i = 1, . . . ,n. (4.26)

ZNE has proven itself to be very valuable in NISQ workloads due
to its relative simplicity and its ability to be combined with many
QEM techniques with relative ease [110, 132, 133, 134, 135, 136], but
it is limited in scaling to larger system sizes and very sensitive to the
noise amplification coefficients, which when not estimated correctly
can lead to large errors in the final result, but variants have of course
been used in large 127 qubit experiments [137].

4.2.3 Clifford Data Regression

G1 G3

G2 G4

C1a|C1b C3a|C3b

C2a|C2b C4a|C4b

Original Circuit

↓ Clifford Circuit ↓

Figure 4.7: Clifford projec-
tion of a circuit formed by
arbitrary gates Gi to one of
their closest corresponding Clif-
ford gates Cix, one would sam-
ple the gates since most gates
might be between two Clifford
gates Cia or (|) Cib. It is also
possible to retain some orig-
inal gates G and still remain
simulable.

Although a traditional regression based approach to error mitiga-
tion such as ZNE can be effective on smaller circuits, there is an
alternative approach which attempts to learn the noise in the ma-
chine indirectly, which is the class of learning-based error mitigation
techniques.

CDR [113] is a framework that uses classically simulable training
circuits to build a mapping between the noisy expectation values
of a quantum circuit C and the noiseless expectation values. The
set of Nt training circuits {Ti}Nt

i=1 are generally composed of mostly
Clifford gates, but in principle, any classically simulable circuit class
could be used. The training circuits are run on the quantum com-
puter, and their expectation values alongside the exact classical
simulation results, are used to train a regression model. This model
is then used to predict the noiseless expectation values of the quan-
tum circuit. The training circuits are chosen to be a projection of
the actual circuit of interest onto the Clifford group. This ensures
that the topology and number of gates match the desired circuit of
interest, with the intuition being that the noise channels experienced
by the device is not dependent on whether the gate is Clifford or
not, thus allowing for the trained regression model to be transferred
to the unsimulable circuit results.



4

64
Quantum Chemistry on Quantum Computers

The Clifford circuits, known as training circuits are ensured to
be classically computable via the Gottesman-Knill theorem [138],
which allows us to compute noiseless expectation values at scale for
our chosen observable O as µi = ⟨0|⊗N T †

i OTi |0⟩⊗N and our noisy
expectation values µ̃i = ⟨0|⊗N T̃ †

i ÕT̃i |0⟩⊗N . This creates the dataset
DCDR = {(µ̃i,µi)}Nt

i=1 which forms the training set for a function f

that maps expectation values E as fCDR : Enoisy → Enoiseless. f can
be as simple as linear regression, or as complex as a neural network.
It turns our that the simplest model, linear regression, is effective
and thus the relation that approximates the noiseless expectation
value from the noisy expectation value is

fCDR(x) = a1x+ a2, (4.27)

where a1 and a2 are the regression coefficients which are found via
least squares regression on the dataset DCDR:

arg min
a1,a2

Nt∑
i=1

(µi − (a1µ̃i + a2))
2 . (4.28)

Figure 4.8: Clustering of
near-Clifford circuits. (a)
plots the relative frequencies
of exact expectation values of
an observable in a sample of 30
4 qubit, 4 layer random quan-
tum circuits. (b) shows 3000
derived near-Clifford circuits.
For each random circuit, 100
near-Clifford circuits are gen-
erated. Reproduced from [110]
under CC4.

In practice, it is possible to use some non-Clifford single qubit
gates and still have a simulable circuit, these near-Clifford circuits
are used as they greatly enhance the spread of the possible expec-
tation values [113]. The problem with this is that then CDR suf-
fers from a problem inherent to near-Clifford circuits, which is that
when they are randomly constructed, the expectation values cluster
around 0, as shown in figure 4.8.

The clustering of expectation values is detrimental to scaling
of CDR since it means that many shots are required to properly
estimate distinct expectation values [139]. As such, it is important
to ensure that the variance of the expectation values of O is wide
enough to train the regression model with a reasonable number of
shots. There is no solution to build such training circuits at the
moment, but one can post select a good set of training circuits from
a larger set of randomly generated circuits [110], but this is likely
not scalable, and so more clever constructions such as Markov Chain
Monte Carlo [113]. There is as of now no general solution to this
problem [110].

4.2.4 Virtual Distillation

N

N

N

|0⟩ H H

ρ1

M = 3ρ2

ρ3 O

Figure 4.9: VD circuit with
M = 3 copies of ρ that each
live on N qubits. The ancilla
qubit is prepared in the |0⟩
state and the copies of ρ are
prepared in MN qubits. The
ancilla controls a swap gate
between the copies of ρ and
finally a controlled gate for de-
sired observable, followed by a
measurement of the ancilla. Al-
though it may look like only M
controlled swaps are necessary,
each one is acting on a cluster
of N qubits, hence why MN

two qubit controlled swaps are
required.

VD [115, 114] is a coherent method of error suppression, unlike the
previous ones which rely mostly on post-processing of the data, and
it belongs in the class of subspace expansion methods, as it relies on
powers of the state. We have a circuit we want to mitigate C which
produces a noisy state described by a density matrix ρ on N qubits.
VD instructs us to prepare more than one (M ) copies of ρ, which
will not be prepared identically. These are then distilled so that we
may obtain expectation values of an observable O on this purer state
via

µ̃VD =
Tr[ρMO]
Tr[ρM ]

. (4.29)
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We use the ordered eigen-decomposition of the density matrix
ρ =

∑2N−1
i=0 pi |ψi⟩ ⟨ψi|, where pi decreases as i increases. Then (4.29)

can be rewritten as

µ̃VD =
⟨ψ0|O|ψ0⟩ +

∑2N −1
i=1 (pi/p0)M ⟨ψi|O|ψi⟩

1 +
∑2N −1

i=0 (pi/p0)M
. (4.30)

In (4.30) ψ0 is called the dominant eigenvector, and assuming that
p0 > pi>0, the contributions from ψi>0 are exponentially supressed
with respect to the number of copies M .

The dominant eigenvector is not necessarily the desired noiseless
state |ψexact⟩, but it is assumed that it is very close to it. As such,
there is a fundamental noise floor that limits the correction that can
be achieved with VD. The error in the expectation value ε is given
by

ε = ⟨ψ0|O|ψ0⟩ − ⟨ψexact|O|ψexact⟩, (4.31)

which is bounded as |ε| ⩽ ||O||∞2
√

1 − |⟨ψexact|ψ0⟩|2. Here ||O||∞
is the operator norm of O, i.e. the norm of largest eigenvalue of O
[140]. If ψ0 happens to be an eigenvector of O then the bound is
tighter, but within the constraints of NISQ hardware, ε is greater
than 0 [115]. Nonetheless, even current error rates are sufficiently
small that the noise floor is not the limiting factor for VD [140].

To prove this, we must perform an eigendecomposition of (4.29),
rewritten here for convenience. Yielding

µ̃VD
M =

Tr[ρMO]
Tr[ρM ]

=

∑2N −1
i=0 pMi Oi∑2N −1
i=0 pMi

, (4.32)

for some observable O with expectation values Oi = ⟨ψi|O|ψi⟩.
With some algebraic manipulation,

µ̃VD
M =

pM0 O0 +
∑2N −1

i=1 pMi Oi

pM0 +
∑2N −1

i=1 pMi

= O0 +

∑2N −1
i=1 pMi (Oi −O0)

pM0 +
∑2N −1

i=1 pMi

. (4.33)

Now extract the difference between the dominant noisy eigen-
vector’s expectation value O0 and our mitigated expectation value
as

|µ̃VD
M −O0| =

∑2N −1
i=1 pMi |Oi −O0|
pM0 +

∑2N −1
i=1 pMi

≤
2∥O∥∞

∑2N −1
i=1 pMi

pM0 +
∑2N −1

i=1 pMi

, (4.34)

now the following can be stated,∑2N −1
i=1 pMi

pM0 +
∑2N −1

i=1 pMi

≤
∑2N −1

i=1 pMi
pM0

≤
(
∑2N −1

i=1 pi)M

pM0
, (4.35)

which leads to

|µ̃VD
M −O0| ≤ 2∥O∥∞ξM

(1 − ξ)M
. (4.36)
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Where ξ = 1 − p0 =
∑2N−1

i=1 is the sum of mitigated eigenvalues
except for the dominant one. Assuming ∥O∥∞ is finite, then

|µ̃VD
M −O0| = |µ̂VD

M − µ− ε| ∈ O(ξM ), (4.37)

which finally proves the exponential error suppression of VD [115,
110].

What makes VD difficult to implement experimentally is the fact
that one must prepare M copies of ρ that itself consists of N qubits.
All of these copies must be connected to an ancilla that performs a
controlled swap of the copies with each other. A direct implemen-
tation of VD requires NM + 1 qubits which then implement NM
controlled swaps to permute all the positions of the copies, as seen
in figure 4.9. This brings an additional layer of errors to the sys-
tem which is not accounted for in the error suppression of VD. To
mitigate this, one may need to use algorithmic QEM to supplement
VD [115]. This interconnected circuit topology makes such a scheme
unwieldy for superconducting processors which are limited to two
dimensions, but might be quite natural for trapped ion or neutral
atom systems, which can implement all to all connectivity.

4.2.5 The Limits of Error Mitigation

It is well known within the quantum computing literature that quan-
tum error mitigation is limited. It is commonly agreed that due to
the bias-variance tradeoff of QEM shown in figure 4.4, that not only
does one need to increase the number of shots to reduce the vari-
ance for a given system size, all mitigation techniques also have a
penalty of an exponentially growing shot cost with respect to the
system size, and more efficient techniques tend to merely decrease
the prefactor of this scaling [116]. Techniques that perform error
suppression like VD do not suffer from this, as they suppress errors.
More recently, it has been discovered that there are potentially more
fundamental limitations to how well QEM can mitigate errors [141,
142].
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4.3 Quantum Error Correction

Error correction has long been known to be necessary for most quan-
tum algorithms that have proven quantum advantages. The over-
heads brought on by implementing quantum error correction codes
are high, and are more expensive the worse the underlying physical
qubits are. Although it is thought that practical quantum computers
that implement fault tolerance are always 5 years away, impressive
developments in both theory and experiment have been made in
the field [143, 144, 145, 146]. This paves the way to building what
is known as a fault-tolerant quantum computer. The particular ex-
periments and their importance will be presented as the necessary
background is introduced.

This section is intended to introduce some core concepts of fault
tolerance, including the fundamental ideas of error correction, the
all important threshold theorem and the limitations imposed by
error corrections, alongside the proposed strategies to overcome these
limitations. A thorough pedagogical introduction to the formalisms
of error corrections can be found in the following works [147, 148].
A thorough treatment of error correction is beyond the scope of this
thesis, but it is an essential component to the future of quantum
computing, and it is made use of in the research presented in chapter
8.

It is important to keep in mind that to perform any existing
quantum algorithm error probabilities must be kept very low in the
absence of QEC, around the order of 10−15 [149]. The most promis-
ing technology in terms of inherent error rate is the trapped ion
architecture which might achieve error rates of 10−6 [150]. There is a
little bit of terminology that must be introduced - a logical qubit and
logical operation are the qubits and operations that are encoded in
via a quantum error correction code. They consist of multiple phys-
ical qubits and operations which are mapped in a code-specific way.
For any given QEC code, there is a threshold error rate pth, which is
the maximum error rate that can be tolerated before the error cor-
rection code fails to correct the errors and error correction becomes
a hindrance. This threshold is dependent on the particular error
correction code and the number of physical qubits used to encode
the logical qubit. This is true for both classical [151] and quantum
error correction and is known as the threshold theorem [152, 153].
Indeed, it experimentally verified that it is true that below threshold
correction is possible [144, 143].

It is assumed that any operation in a circuit will fail with some
probability, so every operation within a circuit must be encoded as
well as the underlying qubits. This encoding will be represented
by a bar over the component, so a fault-tolerant circuit C will be
denoted C. Although the specifics are code dependent, in general
this means that there must be rounds of syndrome measurements
that determine if and what error occurred followed by a recovery
round if an error did indeed occur. The encoding and QEC come at
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some additional overhead cost associated with each operation, which
are known as fault-tolerant gadgets. Figure 4.10 shows the high level
costs associated with applying QEC to a circuit. Notably, after any
operation a cycle of QEC must be applied to each qubit, and each
operation must likewise be encoded.

|1⟩
CX

Z

|0⟩ T

Z a,
|1⟩ QEC

CX

QEC I QEC
Z

|0⟩ QEC QEC T QEC
Z b

Figure 4.10: The effect of
applying QEC on circuit C at
a, giving the encoded circuit C
at b. To perform error correc-
tion every qubit is encoded and
every operation, including the
identity, is also encoded. These
are called fault-tolerant gad-
gets and can incur significant
overhead if the operation is not
native to the error correction
code, such as T .

There are some operations that are native to a given error cor-
rection code, which are known as transversal gates, and these are
just multiple copies of the underlying physical operation acting on
some or all of the physical qubits of a logical qubit. But, transver-
sal gates alone for any QEC code are not universal, which is to say
that one cannot run a general quantum algorithm with any potential
for advantage using only transversal gates. This result is known as
the Eastin-Knill theorem [154], and the reason why only transversal
gates cannot give quantum advantage is due to the Gottesman-Knill
theorem [155] as they are equivalent to the Clifford group which is
classically simulable.

So to implement something like the T gate to give an arbitrarily
close to universal gateset (guaranteed by the Solovay-Kitaev theo-
rem [32]), one must use alternative techniques. There are a variety
of ways to go about this, but one that has been demonstrated ex-
perimentally is via the use of magic state distillation [146], which
involves the preparation of many of these so-called magic states that
must be purified and teleported to the logical qubit. This is perhaps
one of the most expensive parts of any error correction procedure.
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’You can’t always get what you want, but if you try sometimes you might find you get what you need.’
Rolling Stones, 1969

This chapter will introduce how electronic structure and dynamics
are currently being researched in quantum computing with a strong
focus on NISQ machines, beginning with a short introduction to the
general problems and discussing a brief history and current state of
the art quantum algorithms. This is followed up by the particular
complexities of studying quantum chemistry on quantum computers.
It should be noted that all parts quantum chemistry can be treated
in what are called the first and second quantization, but in practice
certain phenomena are studied almost exclusively with one or the
other, this thesis presents electronic structure in second quantization
and then dynamics in first quantization.

Quantum chemistry is one of the areas in which quantum com-
puters are expected to be able to bring novel insight and improved
performance in either the accuracy or speed of computations. This
is in line with the original idea from Feynman and Manin that one
needs a quantum device to simulate the quantum physics which
underlies all chemical processes. The field of theoretical and com-
putational chemistry attempt, in different but related ways, to
simulate everything from molecules to materials with an optimal
tradeoff between the accuracy of the result and its computational
cost. Through this it is possible to predict properties of interest or
outcomes of various processes, such as in a reaction between two
molecules or an interaction such as the absorption of a photon.

Although the equations and numerical techniques exist to solve
these problems perfectly, the memory and time requirements for
these scale unfavorably with the number of electrons. Even the
smallest molecules beyond simple diatomics quickly begin to have
such large numbers of electrons that make the dimensionality of the
problem beyond the reach of computers without the use of various
simplifying assumptions and approximations. Herein lies the art of
the fields of theoretical chemistry, which has found multiple tailored
approaches that make different compromises to solve very large
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problems with lower accuracy or smaller problems with a high level
of accuracy.

The knowledge built by the decades of research in this field has
shed light on the structure of chemical problems and there is a gen-
eral understanding of what effects are important for given classes
of problems. Quantum computing jumped into this field with quite
high expectations that have been tempered over the last few years as
it is clear that if the machines do end up working, they will augment
the computational capabilities and perhaps also lead to new discov-
eries thanks to the loosening of computational boundaries and a new
approach to encoding problems.

5.1 A Brief History

Although the main driver of NISQ research has been various versions
of the VQE introduced in section 3.1, it is important to visit the
early work on quantum chemistry which assumed more idealized ma-
chines. These were the first algorithms to be designed which hinted
at the power of quantum computing, although they are as of now,
still unachievable on existing hardware. It is either surprising or un-
surprising that the first quantum algorithm to show a theoretical
exponential speedup was discovered in 1998 [156] to find eigenvectors
and eigenvalues via QPE. This was shortly followed up on with an
algorithm for the thermal rate constant [157]. The authors in both
works acknowledged the importance of noise and error correction, in
1999 the first ever quantum simulation experiment was run [17] on
NMR machines was run, so the extent of this enterprise was as yet
unknown.

It was very quickly clear that quantum algorithms would need to
be tailored to work with existing machines, and the most promising
candidate algorithm was theorized to solve pairing Hamiltonians via
the adiabatic theorem [158]. Here, one can also find the first reply
from the tensor network community called the claimed advantage
of the technique into question. An experiment implementing this
algorithm on a NMR machine was published in 2006 [19]. In these
early days adiabatic relaxation was expected to be a very promis-
ing approach, and algorithms were expected to run on adiabatic
quantum computers. The first experiments performed these types
of algorithms in what is termed adiabatic state preparation on NMR
machines for hydrogen was performed in 2010 [18] and on a photonic
QC [159]. Of course, digital QCs were still being studied, notably
around 2005 early numerical results of the ideas brought forth in
[156] and extensions of said algorithm to compute energies [160].
Furthermore, the first algorithms for chemical dynamics using a
split-operator approach were also presents [161].

The problem with a quantum annealer or any annealing strat-
egy for finding ground states is that as the energy gap between the
ground state and the next lowest lying states becomes small, the
adiabatic algorithm must be run proportionally longer such that the
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system always stays in the ground state [1]. As such, early reviews
and proposals [162, 163] also started considering digital quantum
computers more seriously. Some early examples focused on finding
efficient gate based algorithms for molecular states that need only
polynomially many gates [164] and early ideas for simulating open
system dynamics [165].

The algorithm that very directly kicked off a veritable race for
quantum chemistry was developed in 2014 and is the VQE [55],
which was proposed and experimentally tested for hydrogen. This
technique is described in detail in section 3.1, it was hardware ef-
ficient, extensible and was thought to be able to converge to the
full configuration interaction (FCI) solution. These properties pro-
pelled it to be one of the most studied quantum algorithms and
generated a whole family of related algorithms known as VQAs [57].
Although quantum annealers were commercially usable in 2011 (from
D-Wave), the first easily accessible quantum computers was IBM’s
Quantum experience in 2016, which was well timed with this devel-
opment of efficient digital QC algorithms.

Classically the era of VQEs can be compared to variational meth-
ods often found in tensor network techniuqes like density matrix
renormalization group [166] and variational Monte-Carlo [167]. The
advantage was later formalized as coming from the higher potential
expressivity of quantum circuits as opposed to low-rank tensor ap-
proximaitons [83], hence the early ideas of FCI-like results. However,
with a focus on these hardware-friendly algorithms that were meant
to be rin came a much stronger focus on the handling of errors and
being efficient with the shot noise. It is around this time that it was
announced to be the start of the NISQ era [168].

Although research in more fault tolerant algorithms did not stop,
the amount of research that has gone into NISQ algorithms alone
is immense and can hardly be covered in a single review paper or
thesis, but several specific reviews exist from around this time that
give an excellent overview when read together [169, 170, 171, 172,
57]. NISQ algorithms also could not be truly useful alone, and here
is where the study of error mitigation took a central role with the
introduction of ZNE, which was first showcased on a VQE [75].
Section 4.2 is dedicated to error mitigation techniques for more
information.

The study of VQE split off into many branches focusing on the
different constituent parts of the algorithm. This includes the cir-
cuits which aim to be both efficient and physics constrained [173] of
which a first example is the ADAPT-VQE [79] introduced in 2019,
which itself became a subject of study [174, 175]. A plethora of vari-
ants to prepare excited states [176, 177], do real-time dynamics [178,
179, 180] and many other facets.

This explosion of interest is however being dampened by the first
hints of fault-tolerant quantum computers could be possible was in
2021 with the first realization of the surface code [181], but beyond
break even performance has been achieved only as recently as 2024
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[143, 144, 145, 146] and indeed it has been shown that many NISQ
algorithms, but specifically VQAs suffer from likely insurmountable
problems. These can stem from the noise leading to barren plateaus
[111] which stop the optimizer, to noise in the measurements leading
to issues with optimization. Not even error mitigation is expected
to solve this [182]. As such, the future will likely look more towards
making efficient fault tolerant algorithms, which will need to restrain
themselves to limitations that the early pioneers did not attempt to
do1. 1 Although they were aware that

this would be the case, and some
early papers mention estimating the
quantum resources required [183].5.2 The Electronic Structure Problem in Second Quantiza-

tion

Many molecular properties arise from electronic structure alone. If
one had access to the eigenstates of the Hamiltonian is an important
step in the prediction of reaction rates, structural optimization and
optical properties [184]. Electronic structure calculations are usually
taken under the Born-Oppenheimer approximation (BOA). This is
much simpler to solve than the full Hamiltonian, and is where early
research in quantum algorithms focused. The question to solve is:
given a static nuclear potential, compute the ground state energy E
of a Hamiltonian Hel acting on a system of interacting electrons. Ψ:

Hel |Ψ⟩ = E |Ψ⟩

The electronic Hamiltonian is usually introduced in its first quan-
tization form, and although first quantization will be revisited in
more depth, for now a brief presentation suffices. Taking the ∇ as
the partial derivative with respect to the coordinates, Ri as the po-
sition vector of the ith nucleus and ri as the position vector for the
ith electron in atomic units, the simplest BOA Hamiltonian that is
generally considered is, in atomic units, 2 2 Many terms such as Zeeman,

spin-orbit, spin-spin, orbit-orbit
and diamagnetic interactions and
relativistic effects are completely
ignored [184].

Hel = −
∑
i

∇2
ri

2 −
∑
i,j

Zi
|Ri − rj |

+
∑
i,j>i

1
|ri − rj |

. (5.1)

In this form of the Hamiltonian, of an N particle system, defined
as Ψ(1, 2, . . . ,N) = |1, 2, . . . ,N⟩ must be expanded into a com-
plete set of symmetric and antisymmetric wavefunctions to solve the
Schrödinger equation. Thus, to prepare the molecular state one must
encode the appropriate symmetries in the wavefunction directly.
Several algorithms exist that achieve this, but current publications
favour encoding fermionic statistics directly into the operators. This
is known as the second quantized representation. The form of the
Hamiltonian from Eq. (5.1) in second quantization requires a defini-
tion based fermionic creation and annihilation operators a†, a which
will be described in more detail in the next section, but for now the
following equalities and definitions should be kept in mind

H =
∑
ij

hija
†
iaj +

1
2
∑
ijkl

hijkla
†
ia

†
jakal (5.2)
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with hij =
∫
ϕ∗
i (r)

(∇2
ri
2 −

∑
i

Zi
|Ri−r|

)
ϕj(r)dr,

hijkl =
∫ ϕ∗

i (r1)ϕ∗
j (r2)ϕk(r1)ϕi(r2)

|r1−r2| dr1dr2

and {a†
i , aj} = δi,j {a†

i , a
†
j}+ = {ai, aj}+ = 0 (5.3)

hij and hijkl are the one and two electron integrals over the nth

spin orbital ψn(ri) occupied by electron i which is expressed through
its spatial degrees of freedom, { ·, · } is the anticommutator3 . These 3 {A,B } := AB +BA

N orbitals are generated through a classical mean field theory, such
as Hartree-Fock and act as a basis for the molecular system. This
Hamiltonian contains N4 terms, which will become relevant later.
Unlike the first quantization Hamiltonian, the correspondence of
the second quantization representation with qubits is evident in
the form of the wavefunction, which is a number state in the form
|np1 ,np2 , . . . ,npN ⟩. Here npi represents the number n of particles
with property pi. In the qubit case, n can be a seen as an occupation
of an orbital: α |0⟩ + β |1⟩. The creation and annihilation operators
are also simply representable in the qubit basis as σ+ = |1⟩ ⟨0| ,σ− =

|0⟩ ⟨1|. When dealing with a fermionic qubit, this would be sufficient
to represent a†, a but in the case of superconducting qubits one must
enforce fermionic parity. To this end, the operator must be encoded
through mappings such as the Bravyi-Kitaev (BK) or the Jordan-
Wigner (JW) transformations [66, 70].

1S
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σ*

H           H2            H

E
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e
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Figure 5.1: The molecular di-
agram for hydrogen. The σ
and σ∗ orbitals are shown. The
electrons may occupy one of
two orbitals, with spin being
denoted by an arrow.

An informative exercise is to go through a simple example for
hydrogen with a minimal basis set. If one pictures the molecular dia-
gram as in Figure 5.1 for hydrogen then we know there is a σ and σ∗

bonding/anti-bonding orbital. The electrons may occupy one of two
orbitals, with spin being denoted by an arrow - a total of four states:
{|σ↑⟩ , |σ↓⟩ , |σ∗

↑⟩ , |σ∗
↓⟩}. Together these states can be combined in

six ways (due to the Pauli exclusion principle forbidding the same
quantum state for more than one fermion). These six combinations
have total spin numbers S↑↑ = S↓↓ = 1,S↑↓ = S↓↑ = 0. To reduce
the amount of qubits we choose to only focus on the S = 0 (singlet)
states, which leave us with only four fermionic states which we may
map onto two qubits as follows:

|σ↑σ↓⟩ → a†
σ↑a

†
σ↓ |vac⟩ → |00⟩ |σ↑σ

∗
↓⟩ → a†

σ↑a
†
σ∗↓ |vac⟩ → |01⟩

|σ∗
↑σ↓⟩ → a†

σ∗↑a
†
σ↓ |vac⟩ → |10⟩ |σ∗

↑σ
∗
↓⟩ → a†

σ∗↑a
†
σ∗↓ |vac⟩ → |11⟩

If one applies the Hamiltonian in (5.2) and transforms it using any
parity mapping it is possible to arrive to a qubit Hamiltonian Hq

that consists of the integral prefactors followed by a series of Pauli
matrices. By exploiting symmetries in the one and two electron
integrals and discarding any 0 values the potential N4 measurements
that appear to be necessary to perform can be reduced to as few
as five [185] [186]. In the now also used BK transformation, which
is carried through explicitly in Seeley et al. [187], this results in a
Hamiltonian

HqH2 = c0I ⊗ I+ c1σ
1
z ⊗ σ2

z + c2σ
1
z ⊗ I+ c3I ⊗ σ2

z + c4σ
1
x ⊗ σ2

x1 (5.4)
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where ci are coefficients given by the overlap integrals hij and hijkl
in (5.2). Each therm represents a measurement that must be taken
on the machine and although any commuting observables can be
read out on the same run, the quantum state degrades between
these operations. Thus, it is important to reduce the total number of
measurements.

5.2.1 Fermion to Qubit Mappings

There is some choice on how the fermionic creation and annihilation
operators are translated to spin operators as those found in many
classes of qubits. As with any mapping there are tradeoffs to be
made which impact the practical cost of implementing them. The
oldest and most well known has already been introduced in passing
and is the Jordan-Wigner mapping [70]. Originally it was proposed
to map spin operators onto fermionic ones, but it was inverted to use
in quantum computing applications.

Any system with N fermionic modes has a set of annihilation
operators of the same number which are commonly denoted ai for
= 0, ...,N − 1 which satisfy the anticommutator relations presented
in 5.3

This leads to some interesting consequences, such as the fact
that [a†

iai, a
†
jaj ] = 0 and have eigenvalues 0, 1 - this leads to the

occupation number operator which is often used. There is also a so-
called vacuum state denoted |vac⟩ which the same as a 0 occupation
number on all modes. On a quantum computer this is commonly
going to be the |0⟩⊗N state. But perhaps the two most pertinent
consequence is that the sign of the wavefunction changes upon anni-
hilation (or creation) of two fermions (and thus also for exchanges,
which are composites of creation and annihilation operators) as

ai |. . . ,ni−1, 1,ni+1, . . .⟩ = (−1)
∑i−1

j=0 nj |. . . ,ni−1, 0,ni+1, . . .⟩ , (5.5)
ai |. . . ,ni−1, 0,ni+1, . . .⟩ = 0 . (5.6)

Furthermore, any (a
(†)
i )2 = 0, which means that for a given

mode one cannot annihilate or create a fermion twice. All of these
are direct consequences of the anti-commutator relations, but are
perhaps the most complex to map as these are not the properties
of spin chains, which are distinguishable and do not follow these
statistics.

Algorithm 2: Fermion to qubit mapping checklist
1 If the qubit at ni = 0, return |0⟩⊗n due to an invalid

operation.
2 Else ni = 1 and this can be flipped to be ni = 0, then
3 potentially update all other bits, nj , for j ̸= i, depending on

the encoding rules.
4 Finally update the parity by some function of

∑i−1
j=0 nj
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Then there is a simple algorithm any mapping must perform with
any computational statevector |·⟩ its mapped fermionic annihilation
operator ai as shown in algorithm 2.

The Jordan-Wigner Transform [70] maps the annihilation
operator as

ai → 1
2 (Xi + iYi)Z0 . . . Zi−1. (5.7)

This transformation leads to comparable basis vectors in the qubit
computational basis (Z) in exactly the same way as (5.5) and (5.6)
by redefining ai to what is shown in 5.7. One important thing to
note is that the fermionic operators are local for both occupancy
(the flipping of a 0 to a 1) and in parity (the whole state doesn’t
need to be acted on for the sign to switch). In the JW transform
is still local in the occupancy, the chain of Z operators in 5.7 is
non-local. This is a problem since it necessitates many gates to im-
plement or more measurements to estimate the mapped expectation
values.

In terms of the algorithm 2 checklist, steps 1,2, and 3 are repre-
sented by Xi + iYi, which is more evident when one realizes that the
operator may be written as the projector (|0⟩ ⟨1|)i, where the sub-
script i is the index of the qubit. The parity of step 4 is maintained
by the string of Z operators, and this step is linear in the number of
operations with the number of qubits. It is also linear in the number
of sites as the number of qubits. It should be noted that there is a
parity transform that is instead linear with the number of occupa-
tions but constant in parity operators (in essence the ’opposite’ of
the JW).

The Bravyi-Kitaev transform [66, 188] is an attempt to find
a better than linear scaling. This is the case, but there is an initial
overhead that makes this technique only practically useful at more
than around 32 orbitals, and specifically at powers of 2 [189].

This was done by working with the Majorana operators ci =

ai + a†
i and di = −i(ai − a†

i ) with some algebra the annihilation
operator can be written as

ai =
1
2 (ci + idi), (5.8)

with the adjoint merely flipping the sign of the second term. The ac-
tion of both ci and di on a fermionic string are identical to a change
in phase brought about by the imaginary part in the parity multi-
plier. This is then for ci going to be

ci |. . . ,ni−1,ni,ni+1, . . .⟩ = (−1)
∑i−1

j=0 nj |. . . ,ni−1, 1 − ni,ni+1, . . .⟩ .
(5.9)

This operator combines both a flip of the occupation site i and
also multiplies it by the parity. Since the action is more akin to
an update of the occupation rather than a flip, steps 1,2 and 3 of
algorithm 2 can be combined to be one step that updates a string
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|·⟩ → |·′⟩ and then updates the parity. Thus, the mapping can be
written as

ci → XF (i)ZP (i−1) (5.10)

where F (i) is a precomputed set of bits that must be flipped given
an index and P (i− 1) is the same for the parity. For JW and the
parity transform these are F (i) = iandP (i) = 0, . . . , i − 1, for
example. The opposite goes for the parity transform. But for the
brilliance of the BK it was discovered that using a Fenwick tree
[190], which is a type of indexed binary tree, both could be encoded
with O(log(N)) qubits. The specifics of the encoder are important
for the optimal depth, but the true insight comes from looking at
the problem through the lens of Majorana operators and this simpler
string update operator to an occupation change.

Now, since then there have been other types of transformations
that have been discovered and studied. Although a short table is
provided to allow a quick comparison of the techniques discussed,
other works should be consulted when choosing a mapping for an
actual problem, for example the work of O’Brien et al. [72] which is
currently the most efficient mapping, but various approaches exist
[189, 71, 191, 192]. It should be noted that some mappings lead
to controlled unitaries being required, and potentially less qubits
than the one-to-one qubit occupancy tradeoff in the examples given,
making them interesting but potentially inefficient for near term
devices.

Table 5.1: Basic Fermion to Qubit Mappings

JW [70] O(1) O(N) Pauli

Parity [187] O(N) O(1) Pauli

BK [66, 188] O(logN) O(logN) Pauli

Name Occupancy Parity Gate type

5.3 First Quantization

Although traditionally first quantization is briefly introduced before
second quantization, most research in both classical and quantum
quantum4 chemistry focuses on electronic structure (and sometimes 4 Sorry, this was necessary.

dynamics) in second quantization. This might not necessarily always
be so, and certainly it is not the case for nuclear dynamics , but re-
gardless, a small reminder of first quantization methods is required.
In first quantization the parity is not held within the operators’ ac-
tion on a particular wavefunction, but the wavefunction is explicitly
anti-symmetrized to ensure the exchange symmetry. This leads to
a (discretized) representation, where for simplicity, one can assume
that each spatial dimension is discretized into P points and the sys-
tem contains N particles.

|Ψ⟩ =
max∑

x1,...,xN

ci(x1, . . . , xN )A(|x1, . . . , xN ⟩) (5.11)
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is the wavefunction with each position vector

|xi⟩ = |xi, yi, zi, si⟩


i ∈ { 1, ...,N }
xi, yi, zi ∈ { 1, ...,P }
si ∈ { 0, 1 } for electrons

(5.12)

representing the 3D position in space x, y, z on the discretized
grid and the particle spin s. Although nuclei do have spin, this is
generally ignored. A is then the anti-symmetrization. This leads to
a very large set of amplitudes required to describe the wavefunction
of 2NP 3N . Of course, in practice one can confine nuclei to a much
smaller (but potentially denser) space in which they can move and
techniques like discrete variable representation can be used to greatly
reduce the number of grid points required in the classical case [193].

That being said, usually a full nuclear-electron grid representa-
tion is not done in practice, and in techniques for nuclear quantum
dynamics such as the multi-configurational time-dependent Hartree
(MCTDH) family of approaches [23] generally precompute elec-
tron potential energy surfaces and focus on the nuclear dynamics.
Nonetheless, in this high level picture one must apply the full Hamil-
tonian or the electronic Hamiltonian or just the nuclear Hamiltonian
depending on which system or subsystem one wishes to study. An
alternative representation in first quantization also uses a proper
basis much like in second quantization, with plane waves being par-
ticularly studied in the QC literature [194].

5.3.1 Mapping the first quantization representation

There are two main ways one can think of when mapping the first
quantization representation to a quantum computer. For a grid
based mapping it is sufficient to assign each grid point to a string
of qubits which immediately leads to representing the entire state
with 3N log2(P ) +N qubits. There is no doubt that there are clever
ways to decide which grid point to map to which qubit string to
simplify operations, but in essence one simply needs to perform some
mapping |x1, . . . , xN ⟩ → |q1, . . . , q(3N log2(P )+N )⟩, remembering
that the position vectors themselves have to be expanded, qj , j ∈
{ 1, ..., (3N log2(P ) +N) } is the qubit state which can be 0 or 1.

Next, and important step and a great advantage to using the
first quantization approach is that although there is an associated
cost to anti-symmetrize (or symmetrize) the wavefunction, once it
is prepared, the action of any valid Hamiltonian will preserve the
symmetry property, removing the expensive overhead brought by
the various mappings required in the second quantization case. This
requires on the order of O(Q logQ log P), where Q is the number
of qubits used and P is the total number of grid points or basis
functions [195]. This is in general a much shorter procedure than
any following valid time evolution or operation that might follow the
initial setup of the (anti)symmetrized state.
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5.4 Some Algorithmic Primitives

5.4.1 State Preparation

Quantum state preparation is the first step and sometimes only step,
besides the measurement of observables, in many problems that deal
with studying specific states. This is definitely the case with ground
states, since excited states sometimes are found as an evolution
from the ground state [177]. The most widely used algorithm is the
VQE5. Almost all other algorithms for near term state preparation 5 See section 3.1

are variants or extensions thereof [196].
However, the feeling amongst many researchers, including one

of the creators of the VQE algorithm, is that it is probably best to
leave this technology behind. Indeed, for larger scale experiments
it appears that newer subspace expansion and sampling based tech-
niques are taking over for larger experiments with a much larger
dependence on supercomputing power, in particular sample-based
quantum diagonalization [197, 198] is now able to solve for active
spaces of 36 orbitals on 77 qubits, and their electronic excitations.

Other alternatives that can, but do not have to, use something
like VQE include imaginary time evolution

5.4.2 Dynamics

Chemical dynamics is an exciting field which often touches the edge
of computability. This is doubly true when the BOA does not hold,
as here so-called non-adiabatic transitions can occur, as well as cou-
pling of the electrons to nuclear motion. The first step in any such
system is to prepare an initial state on which the dynamics play out.

Although a lot can and has been said about state preparation
in the previous sections and chapters, sometimes it is interesting or
important to do something with the initial state. This is then the
realm of dynamical simulation - where many techniques are shared
with state preparation algorithms and are generally referred to as
Hamiltonian simulation algorithms [199].

If one begins by the assumption that most Hamiltonians are not
dense in their Pauli string representation, which is to say that when
decomposing a Hamiltonian H as H =

∑
i hiPi, where Pi is a ten-

sor product of Pauli operators and hi is a real number, most will be
Identity. This ensures that many approximations hold better, and a
very common one is the so called Trotterization, which is a unitariza-
tion of a sum of products that can be implemented as a gate.

Trotterization is a fundamental approximation in dynamics as
it is impossible to implement a non-unitary operation on a quantum
computer. The specific proof as to why the approximations work is
available [200], but it is known that the traditional time evolution
operator for a Hamiltonian has the form e−iHt, but H is a sum of
potentially non-commuting matrices. If this point is brushed aside,
the exponentiation of a matrix is then eA = UeDU †, where U is



5

quantum chemistry on quantum computers 79

some unitary and D is the diagonalization of A, which is inefficient.
But by the definition of the exponential and for large N it can be
said that eA/N ≈ I + A

N . Then some sum of non-commuting matrices
(two are shown as an example) can be approximated as

eA+B ≈
(
eA/NeB/N

)N
≈
[(
I +

A

N

)(
I +

B

N

)]N
≈

I + A+B

N
+
�
�
�7

0
AB

N2


N

.

(5.13)
This fact was exploited for a long time to theoretically understand
the action of Hamiltonians but also in the earlier days of quan-
tum computing [201]. The actual form that used in practice is the
Suzuki-Trotter formula [202] in various orders, but for the near term
the first order approximation is mostly used, which gives a unitary U
for a Hamiltonian with K terms,

U(t) =

(
K∏
i

e−i t
N Hi

)N
. (5.14)

From here there is a standard construction that leads to simple
looking but deep circuits of a form as shown in figure 5.2.

U0 U†
0

U1 U†
1

U2 Rz2θ U†
2

Figure 5.2: One term of a
Suzuki-Trotter circuit on
3 qubits, showing the general
ladder construction and param-
eterized rotation. The Unitaries
are a rotation that depends on
which Pauli string is applied,
and CNOTs may be between
different qubits depending on
the weight of the Pauli string.

From the trotter decomposition there are many tricks that can be
played to get lower depths. The first is to optimize the order of the
Pauli terms in the sum so that as many gates cancel out as possible
[203], this can also include optimizing the order of the approximation
[204]. One can also probabilistically choose what terms to use over
many simulations forming more of a time evolution channel than an
approsimate unitary evolution in a technique called qDRIFT [205]
and a variant known as qSWIFT [206].

Of course, many other techniques also exist in this area. Many are
variational, either exploiting a variational principle such as adaptive
Hamiltonian simulation [207], and others taking more complicated
approaches such as variational fast forwarding [208]. Then there are
approximate diagonalization techniques such as Variational Hamil-
tonian Diagonalization [209]. This topic will be discussed in greater
depth in chapter 6.

5.5 Problems and Pathways

If the aim is a perfect simulation of electronic structure, the clos-
est numerical approximation we have is the FCI. This is a problem
which, as mentioned before, grows so quickly that the current max-
imum number of active electrons and orbitals that has been simu-
lated is 24 for only a single iteration, a simulation requiring close to
10 trillion Slater Determinants [210]. Such growth in size is what
limits the level of study to small molecules or single atoms. As such
the gold standard of electronic structure calculations is the coupled
cluster method (CC) with more excitations being more accurate.
Here, a reference wavefunction |Φ⟩ is acted upon by the exponential
operator T based on a number of electron excitations, leading to a
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variational ansatz eT |Φ⟩. In the classical case, T is not necessarily
Hermitian nor unitary and the resulting expression is not guaranteed
to be amenable to the variational method. In quantum computers
it has been shown that it is possible to efficiently prepare a UCC
operator [211], something that is intractable classically [212], as the
necessary truncation of the expression (eT−T † = e−iH) leads to
uncontrollable errors. So, in electronic structure at least, there is a
very clear standard that can be improved upon, and for ground state
calculations at least, it is possible with certainty to say when one
has overcome classical simulation techniques for the time. Of course,
classical simulation can always improve.

However, it must always be remembered that for many of these
electronic structure techniques the Hamiltonians are still gener-
ated via classical methodology and matrix elements are computed
from classical basis functions that themselves are approximations
[184]. Perhaps it will be the case that everything will be quantum
from the computation of the matrix elements to state preparation
and subsequent dynamics. For now though, the darling of quantum
computing, VQAs is finding a lot of resistance and potentially in-
surmountable problems for as long as there is noise. This has been
spoken about before, but noise induced barren plateaus [60] which
get worse as system sizes increase will be problems for larger VQAs.
Alternatives have since been developed, such as sample-based quan-
tum diagonalization [197].

For dynamics the question is more difficult, without good state
preparation one cannot truly do useful dynamics. For certain classes
of Hamiltonians with low weight Pauli strings it is possible to have
quite efficient algorithms, and indeed, with good error mitigation
strategies, some of the largest so-called utility scale quantum com-
putations have been performed with various flavours of Ising models
[213, 214], but chemical simulations are still beyond the scope of
having advantage over state-of-the-art classical techniques like multi-
layer multi-configurational time-dependent Hartree [215, 22].
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Mixed Quantum-Classical Dynamics for the NISQ
era

Everything changes and nothing stands still.
Heraclitus, as quoted in Plato’s Cratylus, 402a.

This chapter presents the construction and study of a newly pro-
posed NISQ algorithm for chemical dynamics in first quantization
in a mixed quantum classical setting. It begins with an introduction
to the problem it is trying to solve, followed by the algorithm and
its ability to solve a model system. Results are then presented and
discussed. The work was published in [180]. Contributions: This work

was ideated together with and
discussed at length with Oriol
Vendrell. Although the major-
ity of the writing, development,
simulation and algorithmic
ideation was carried out by my-
self, the use of the Shin-Metiu
model in particular and many
small technicalities would have
not been noticed or resolved
if it were not for the advice of
Oriol.

Quantum computers have found great success in electronic struc-
ture theory through the variational quantum eigensolver [55] and
subsequent algorithms known as variational quantum algorithms
(VQAs) [216]. Adding additional electrons to a system greatly in-
creases its complexity, this is something quantum computers are
expected to handle. If one were to also consider the full nuclear dy-
namics, the problem becomes unmanageable much faster, potentially
even for quantum computers [217]. One way to reconcile this is to
partition the system into interacting quantum and classical parts.
This is the realm of mixed quantum-classical (MQC) approaches,
which are a widely used set of tools for understanding chemical sys-
tems [218, 219]. In quantum computing, this area is less researched
than the electronic structure problem, but it is actively being ex-
plored [220, 217, 221]. Here, a NISQ friendly algorithm that can be
used to study mixed quantum-classical (MQC) dynamics is presented
and explored.

Using quantum computers alongside classical computers is the
backbone of VQAs, but splitting a system into sections treated sep-
arately by each machine is not new. A DFT embedding scheme
with a quantum computer expansion of the active space [222] and
has been found to outperform certain types of state-of-the-art ap-
proximate techniques such as CASSCF [223] in finding ground state
energies. Furthermore, ground state dynamics, geometry relaxation,
and force measurements for MD applications have been explored
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with success in [221]. In [217], dynamics are explored in both first
and second quantization, but using a time-independent Hamiltonian.
This is also the case for various other time propagation techniques
[224, 225, 226]; drawing inspiration from and use projected varia-
tional quantum dynamics (p-VQD) [225] in this work.

Here, a general algorithmic structure to tackle non-adiabatic
molecular dynamics (NAMD) by offloading the QM part to a quan-
tum computer and evolving the classical system by the Ehrenfest
method is presented. Observables from the quantum mechanical
(QM) subsystem are measured and used to update the classical sys-
tem, which in turn will update the time-dependent Hamiltonian
that is used to evolve the QM state in turn. This is all done in first
quantization, which saves the algorithm from needing to measure
nonadiabatic couplings, as these are treated directly within the wave
function and its evolution in this setting. The algorithm is demon-
strated in the Shin-Metiu model [26], which is often used to test
various non-adiabatic techniques [227, 228, 229, 230]. This is mod-
ified to be a NAMD-like problem by partitioning the system into a
classical nucleus and quantum electron. The major contribution is
the study of how the interaction between observable measurement
and system updates play out as well as introducing a scheme that is
suited to begin exploring other time-dependent phenomena on NISQ
machines.

The theoretical advantage of using quantum computers is that
they have access to an exponentially growing computational space
for each additional qubit in the system [1]. Current machines have
access to hundreds of qubits, which would ideally allow them to al-
ready outperform current supercomputers. This is not the case due
to noise coming from interactions with the environment and imper-
fect gate implementations. As such, NISQ algorithms [231] have to
contend with limits on the number of imperfect operations that can
be made. But even if this were not the case and full quantum dy-
namics could be simulated, researchers probably will always want to
tackle a problem bigger than current machines can handle, so these
kinds of approximations will always be used.

It should be noted that existing supercomputers by far out-
perform existing quantum computers in handling large quantum-
chemistry problems, and applications to chemical problems will have
to be deferred until there is a provable quantum advantage. Ap-
proximations like limiting the simulation to a selected active space
[222] can extend the reach of quantum computers, but analogues of
these ideas apply to classical computers as well. For now, quantum
algorithms in chemistry mostly study systems that are comfortably
computable on current classical hardware.

6.1 The Shin-Metiu Model

The Shin-Metiu model is a numerically exactly solvable minimal
model which captures essential nonadiabatic effects [26]. It is often
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Figure 6.1: Illustration of
the Shin-Metiu model with
fixed ions at −L

2 , L
2 as sta-

tionary boundaries, the mobile
ion p of mass M at distance R
from the origin and the elec-
tron e− at distance r from
the origin. Rl, Rr and Rf are
constants for the regularized
Coulomb potential in (6.1).
Reproduced from [180] under
CC4.

used as a benchmark system for new techniques and is used to study
the effects of different environments as has been done for polaritonic
dynamics, coupling to cavities, and the effect of electromagnetic
fields [227, 228, 229, 232]. It is simple to change its parameters for it
to exhibit adiabatic to strongly non-adiabatic dynamics.

In its simplest and original conception, the model shown in Fig.
6.1 consists of two stationary ions separated by a distance of L,
specifically located at L

2 and −L
2 . These enclose a mobile ion p of

mass M at distance R from the origin and an electron e− at dis-
tance r. The modified Coulomb potential is parameterized by the
constants Rl, Rr and Rf , as shown in Eq. 6.1. This is done to avoid
singularities and make the system numerically simpler to simulate.

The full Hamiltonian of the system is

H = − 1
2M

∂

∂R2 +He(r,R),

with the electronic part being

He = − 1
2m

∂2

∂r2 +
1∣∣L

2 −R
∣∣ + 1∣∣L

2 +R
∣∣−

− erf(| L
2 −r|/Rr)∣∣L
2 − r

∣∣ − erf(| L
2 +r|/Rl)∣∣L

2 + r
∣∣ − erf(|R−r|/Rf )

|R− r|
.

(6.1)

The equation uses atomic units, setting e = Z = h̄ = 1, in ad-
dition m = 1 and M = 1836 in the simulation. The constants
Rl, Rr and Rf , as shown in Figure 6.1 are chosen to create specific
adiabatic surfaces with interesting transitions, as in Figure 6.2.

Figure 6.2: Potential energy
surfaces of the Shin-Metiu
Model for the coefficients
Rf=5.0, Rl=4.0 and Rr=3.2
showing the avoided crossing
around position R=−2 with
L=19. Reproduced from [180]
under CC4.

The values Rf = 5.0, Rl = 4.0 and Rr = 3.2 are chosen, which
result in an avoided crossing around R = −1.9 when the distance
between the ions is L = 19. These parameters were chosen to be
similar to those used in several studies of the model [230, 227]. The
shape of the Born-Oppenheimer potential energy surfaces (BOPES)
can be seen in Fig. 6.2

6.1.1 Ehrenfest propagation of the Model

To perform Ehrenfest propagation of the Shin-Metiu model, the sys-
tem is split in two. The nucleus (p ) and the electron (e− ). The
electron subsystem is treated as a quantum particle described by
Hamiltonian 6.1, where He is parameterized by the nuclear posi-
tion (R). The nuclear subsystem is treated classically by tracking
parameters of position (R) and velocity (Ṙ).
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For initial coordinates R0 and Ṙ0, first prepare the electronic
Hamiltonian He(R0), which is used to compute the initial state
of the electron |ψ0⟩. Thanks to the simplicity of the model, exact
diagonalization can be used to compute the eigenvectors and choose
any arbitrary superposition of eigenvectors as the initial state.

The nucleus is evolved using the velocity Verlet method [233] with
the acceleration being computed from the Coulombic repulsion from
the fixed ions and the force from the electronic state. The electronic
state is evolved by unitary time evolution with the Hamiltonian
at the nuclear position. Setting a timestep ∆t, the system state at
timestep i is denoted by under scripts i, where the time is simply
i · ∆t. Initial conditions are defined at timestep 0, and for the ith

step, compute

Fe(R, |ψ⟩) = − ⟨ψ| ∂He(R)

∂R
|ψ⟩ , (6.2)

Ri = Ri−1 + Ṙi−1∆t+
Fe(Ri−1, |ψi−1⟩)

M
∆t2, (6.3)

|ψi⟩ = e−iHe(Ri−1)∆t |ψi−1⟩ , (6.4)

Ṙi = Ṙi−1 +
Fe(Ri−1, |ψi−1⟩) + Fe(Ri, |ψi⟩)

2M ∆t. (6.5)

6.2 Time-Dependent Variational Quantum Propagation

The TDVQP algorithm builds on the circuit compression idea of p-
VQD [225] by allowing the Hamiltonian to be time-dependent. For
many large problems of interest to theoretical chemistry, especially
in MD, it is impossible to fully simulate the system of interest quan-
tum mechanically. As such, the system is subdivided into classical
and quantum components. The evolution of both systems occurs in
locked steps, with the classical system defining the Hamiltonian for
the quantum evolution, and the quantum system then feeding back
into the classical system in the way of some observable, usually the
energy gradient (force). One mustn’t limit themselves to molecular
or even physical systems, as this algorithm would work with any set
of observables that can be used to update the classical system of
interest.

The algorithm begins with a parameterized circuit initialized to
some desired state. This is denoted as |ψ0⟩, which will have been
generated according to a Hamiltonian based on an initial vector
of classical parameters q0 of the classical coordinates, denoted
H(q0) := H0. This is done by choosing some sufficiently expres-
sive parameterized circuit ansatz Ĉ(θ) which takes the quantum
computer’s initial state, denoted |0⟩, to |ψ0⟩. This can be done us-
ing a VQA to find a chosen state with respect to H0, which returns
the circuit parameters θ0. Then |ψ0⟩ = Ĉ(θ0) |0⟩. A chosen set of
observables {Ô(s)(q0)} := {Ô(s)

0 } are measured from |ψ0⟩, which
yield a set of expectation values {O(s)

0 }. These observables are used
to evolve the classical state of the system, generating a new vector of
classical parameters q1. These can then be used to generate H1 and
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{Ô(s)
1 }. Now, one evolves the state from |ψ0⟩ to |ψ1⟩ by applying the

time evolution operator to the state, |ψ1⟩ = exp (−iĤ0∆t) |ψ0⟩.

|0⟩ C(θi) e−iHi∆t C(θi)† ≈ |0⟩

|0⟩ C(θi) e−iHi∆t C(θ′
i)

† |0⟩

When optimized θ′
i = θi+1

|ψi⟩ |ψi+1⟩

|0⟩ C(θi+1) Ô

|ψi+1⟩

Figure 6.3: Sketch of the
TDVQP process with slices
showing the state after each
gate at the initial condition
and final condition. The initial
guess for the parameter vector
θ′
i is θi and its final value is de-

noted θi+1. Then observables Ô
can be measured on |ψi+1⟩ to
update the Hamiltonian or the
classical state of the system.
Reproduced from [180] under
CC4.

The physical implementation of the time evolution can either be
the Trotterized form of the operator or some other approximate time
evolution. This work uses Ĥ0 to evolve the state with a first-order
trotter expansion. The Hamiltonian used for the time evolution
could be of higher order. For example, (Ĥ0 + Ĥ1)/2 can be used
with no extra cost in this scheme, but higher-order integrators will
require an additional evolution and observable measurement for each
timestep beyond H1. In return, one gets higher-order symplectic
integration. Now a single step of the p-VQD algorithm is applied
which generates the new circuit parameters θ1 such that |ψ1⟩ ≈
Ĉ(θ1) |0⟩ to some desired threshold. This process is repeated until
the desired timestep is reached. The entire process is more precisely
described in Algorithm 3, and a depiction of the quantum circuit
can be seen in Fig. 6.3. The overall number of circuit evaluations is
linear with respect to the number of iterations, circuit parameters,
timesteps and Pauli terms of the observables. This is treated in
greater depth in 6.2.2.

TDVQP should be thought of as a meta-algorithm that has re-
placeable components. The most directly replaceable part is the
choice of ansatz Ĉ(θ), which at the moment is generally a heuristic
choice for most problems in NISQ devices. More advanced ansatze
such as the family of adaptive ansatze, which changes the ansatz
throughout the evolution would work, but could not use the previous
step’s θ parameters as effectively. The very costly time evolution
is currently a Trotterized form of the time evolution operator, as
in this work, and in [225, 226]. This can be replaced by a plethora
of more NISQ-friendly time evolutions as is done in [234, 208] if
the form of the Hamiltonian allows this. The limit is the no-fast
forwarding theorem [235, 199, 236], which states that one cannot
achieve a time evolution of time t in a sublinear gate count for a
general Hamiltonian, but for shorter time evolutions, limited sizes
and specific cases of Hamiltonians, including the sparse Hamiltonian
using short time evolutions, this likely is not the case [208].

In the classical evolution, the choice of integrator and the actual
Hamiltonian used in the time evolution will depend on the type of
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Algorithm 3: Time-Dependent Variational Quantum Propa-
gation (TDVQP)

Input: Ĥgen(q ), C(θ) , {Ô(s)
gen(q)}, EvalCost, q0

1 Function VQE (Ĥgen(q), C(θ), q):
2 θ′ = minθ ExpectationValue ((Ĥgen(q),C(θ)));
3 return θ′

4 Function UpdateParameters (O(q ), q):
5 q′ = UpdateFunction (q, O(q ));
6 return q′

7 Function UpdateAngles (C(θ ), Ĥ, ∆t):
8 θ = minθ′

i
EvalCost (C(θ′

i ) exp(iĤ∆t)C(θi)†) ;
9 return θ

10 Function MeasureObs ({Ô(s)
gen(q)}, C(θ )):

11 for s in number of observables repeat
12 O(s) = ExpectationValue (Ô(s)

gen(q ), C(θ )) ;
13 return O

(s)
i

14 Function TDVQP(Hgen(q ), C(θ), q0):
15 store all θi, {O(s)

i }, qi in arrays θ, O, qθ, O, qθ, O, q ;
16 θ0 = VQE (Ĥgen(q0), C(θ)) ;
17 {O(s)

0 } = MeasureObs ({Ô(s)
gen(q0)}, C(θ0));

18 for i = 1 to nt timesteps repeat
19 qi = UpdateParameters ({O(s)

i−1}, qi−1) ;
20 θi = UpdateAngles (C(θi−1), Ĥgen(qi−1), ∆t) ;
21 {O(s)

i } = MeasureObs ({Ô(s)
gen(qi)}, C(θi));

22 return θ, O, qθ, O, qθ, O, q
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problem and desired accuracy. Integrators like the Velocity Verlet
algorithm require no additional resources. TDVQP becomes exact
when Ĉ(θ) can express the system perfectly for any configuration
of classical parameters q, given that the exact parameters θ can be
found by optimization. This is only a statement of the best-case
scenario. In reality, finding a good ansatz, VQA and shot-efficient
optimizer is at the forefront of research in this area [216], and it is
out of scope for this work.

6.2.1 Circuit Compression

A key building block of the presented algorithm and a fundamen-
tal aspect of quantum circuit optimization is the concept of circuit
compression [237]. Any operation on a quantum computer must be
a unitary operation Û , but the quantum computer only has a finite
set of few qubit gates. An arbitrary Û must be expressed, or com-
piled, into a set of native gates [1], this can always be done, but it
is an NP-hard problem. If one were to implement an approximation
of Û within some threshold, one may find Ũ which might have a
shorter circuit length than even an optimal decomposition of Û . This
latter definition is what is generally known as circuit compression,
although the term is sometimes used to refer to more optimal perfect
decompositions [238].

With an error-corrected quantum computer, one could use arbi-
trary circuit depths, but NISQ hardware benefits from using short
circuits to minimize errors from occurring. But designing hardware
efficient ansatze for VQAs is an unsolved problem [239]. This means
that for most purposes a heuristic ansatz Ĉ parameterized by some
vector θ brings the initial computational state |0⟩ to a desired state
|ψ⟩ via Ĉ(θ) |0⟩ = |ψ⟩. The defining property of unitary matrices,
namely

UU † = U †U = I, (6.6)

ensures that C(θ)† reverses the action of C(θ). If a unitary Û is
added, then it may be possible to find some parameters θ′ such that
Û Ĉ(θ) |0⟩ ≈ Ĉ(θ′) |0⟩, thus compressing the action of the unitary
back into the same quantum circuit, at least approximately. This is
what is exploited by [224, 225, 226].

Another approach is to approximate an initial state with such an
ansatz and then perform a short-time evolution via Trotterization of
the time-evolved operator as is done in [82, 232, 233]. The adjoint
of the ansatz is appended to the circuit and its parameters varied
such that the machine state is ’uncomputed’ to its initial state. If
one must assume that the chosen circuit ansatz is expressive enough
to capture the entire state’s time evolution, then such an approach is
guaranteed to work. One then simply needs this new set of parame-
ters and the original ansatz to express the new timestep without the
time evolution operator, hence compressing the circuit. This idea has
been implemented almost concurrently by Lin et al. [224], and by
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Barison et al.’s "projected variational quantum dynamics" (p-VQD)
algorithm [225]. Subsequent works, for example, [226], have built on
the circuit compression idea.

6.2.2 Resource Cost of TDVQP

To determine the overall number of circuit evaluations required by
the algorithm, the analysis is split into two parts. The first one-time
cost is in finding the initial state circuit parameters. This is the
same as in VQE and is O(NH), where NH is the number of Pauli
strings required to express the Hamiltonian. The propagation then
consists of finding the maximal overlap between the time-evolved
state and its approximation, which only requires a single circuit to
evaluate for the maximum number of iterations Niter, and is thus
O(Niter). The underlying optimizer will require O((Nn

param), where
Nparam is the number of circuit parameters, and n is generally small.
The observable measurement requires the most circuit evaluations
and is O(Nobs), where Nobs is the number of Pauli strings required
to express the observable in question. The whole propagation is
linear in the number of timesteps desired Nsteps. Thus, the circuit
evaluation cost is O(NH + Nsteps(NiterNn

param + Nobs)). In this
example, omitting the first step, there is Nobs = 7 which grows either
linearly with grouped observables or exponentially without, then
Nparam = 70 and Niter = 100, which are set by choice. This gives an
overall cost of around 7 · 103 circuits per timestep.

6.2.3 Error propagation of TDVQP

The TDVQP algorithm inherits all the errors of its constituent parts.
This includes the chosen circuit compression algorithm, time evolu-
tion approximation, and in the classical propagator. Nonetheless, it
is important to have an intuition of the potential pitfalls of the algo-
rithm. This section illustrates the sources of error in the wavefunc-
tion and observables and their interaction velocity Verlet integrator.
A more thorough derivation and explanation can be found in section
A.3.

When running the algorithm, any coherent error on the wavefunc-
tion representation in the quantum computer |ψ̃⟩ can be represented
as a superposition of the desired state |ψ⟩ and some combination of
undesired orthogonal states |ϕ⟩, such that |ψ̃⟩ =

√
1 − I2 |ψ⟩ + I |ϕ⟩,

where I is the infidelity. When the expectation value of a Hermitian
observable O on |ψ̃⟩ is measured the result is

⟨ψ̃| O |ψ̃⟩ =
(
1 − I2) ⟨ψ| O |ψ⟩ + I2 ⟨ϕ| O |ϕ⟩ . (6.7)

How this translates to the actual measured observable used here
is completely system dependent. This will lead to an error in the
observable, which in the case of the velocity Verlet integrator with a
force error Fiϵ ∝ I2 in 1 dimension will give a new position R̃i of

R̃i = Ri +
Fiϵ
M

∆t2, (6.8)
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shifted from the expected true position Ri. This is linear in the
error of the force and quadratic with respect to the timestep ∆t.
The following time evolution Hamiltonian and observable operator
will be based on this position with an error, which is again, system
dependent. The effect is illustrated by the equations

|ψ̃1⟩ = exp(−iHel(R0)∆t) |ψ̃0⟩ , (6.9)
|ψ̃i⟩ = exp(−iHel(R̃i−1)∆t) |ψ̃i−1⟩ . (6.10)

Even in the one-dimensional model used in this work, this effect
is not analytically computable, but it is small if the timesteps are
sufficiently small. This then enters the velocity (Ṙ) update as

˜̇Ri+1 = Ṙ(i+1) +
Fiϵ + F(i+1)ϵ

2M ∆t, (6.11)

which is linear in the error and timestep. Assuming a constant error
over all time of Fϵ, that is to say, that the force deviates from the
correct one by a constant offset - this is equivalent to having an
additional linear term on the potential. This has the overall effect on
the position at iteration i of

R̃i = Ri + Ṙi−1∆t+
(i2 + i)Fϵ

2M ∆t2. (6.12)

This expression is quadratic in i and quadratic in timestep. The
effect on the fidelity of the TDVQP wavefunction compared to an
exact propagation is nontrivial, but numerical examples are provided
in section A.3.

The other main source of error inherent to the p-VQD algorithm
is that the optimizer never finds a perfect representation of the time-
evolved wavefunction, but rather an approximation that meets some
fidelity threshold T < 1. If this threshold is met exactly at each
p-VQD step, assuming all observable measurements are unaffected,
then the decrease in the fidelity is modelled by

Fidelity(i) = T i. (6.13)

When the algorithm is run under limited quantum resources and
thus subject to finite sampling noise, both the observable and p-
VQD step fidelity measurements will have some Gaussian distri-
bution, which will feed into the errors above on a simulation by
simulation basis. The effect of this has been analyzed numerically in
the case of the modified Shin-Metiu Model.

6.2.4 Grid-based Mapping to Qubits

The Shin-Metiu system is treated on the quantum computer in first
quantization. A finite difference method on an equidistant grid is
used. For low-dimensional problems, this is an appropriate approx-
imation, but in general discrete variable representations (DVR)
are a better choice for problems in higher dimensions. In quantum
computing DVRs have been used to explore first quantization simu-
lations in [240] using the Colbert and Miller DVR [241]. Issues exist
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with using DVRs on quantum computers as they generally require a
full matrix Hamiltonian which is costly to measure and implement
on quantum computers, and alternatives have been proposed [242].

Quantum computing in first quantization has the advantage that
ng grid points can be represented by N = log2(ng) qubits. Choosing
ng = 2N to maximize the use of the N available qubits. In the
simplest finite differences method each position is an integer multiple
L/ng. The grid point g is by the quantum state |g⟩ and mapped as

|g⟩ = |j0⟩ ⊗ · · · ⊗ |jk⟩ ⊗ · · · ⊗ |jN ⟩ , (6.14)

where jk is the kth bit value of the binary representation of g. The
potential operator V̂ is diagonal in this representation, simply sam-
pling the potential at each grid point. The kinetic energy Hamil-
tonian is not diagonal in the position representation, and although
one could use the split operator method [243] to make it diagonal in
momentum space would require a quantum Fourier transform im-
plementation, which, cannot be effectively implemented on existing
quantum devices at the time of writing.

All the issues above are sidestepped by using the finite differences’
method, in which the one-dimensional potential and the Laplacian
form of the kinetic energy can be written as

Vj,j′ = V (xj)δj,j′ (6.15)

Tj,j′ =
−∂2

∂r2
1

2mel
f , f

{
−2, if j = j′;
1, if j = j′ ± 1.

(6.16)

(6.17)

The tridiagonal matrix that results has the same value on the
off-diagonal terms, which allows them to be decomposed into fewer
Pauli strings than a full matrix via an elegant recursive form that
is described in 6.2.5 following from [244]. This is important because
the number of non-zero entries is related to the number of terms in
the Pauli decomposition, which should be kept minimal to reduce
the length of the Trotterized time evolution operator and observable
measurements. The finite difference method does require high grid
densities to be accurate (although this depends on how oscillatory
the system in question is), but this requirement will likely be met by
the doubling of grid points per additional qubit.

Although not implemented in this paper, some algorithms can
make the time evolution of Hamiltonians with this form more effi-
cient on near-term devices [245]. Depending on the particular Hamil-
tonian one chooses to study in this way, different efficient algorithms
exist to lessen the cost of the time evolution such as variational fast
forwarding and qubitization [208, 234]. It is also possible to effi-
ciently solve for the eigenstates of tridiagonal matrices on quantum
computers [246].
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6.2.5 Pauli String Representation of a Tridiagonal Hermitian Ma-
trix

The real-space Hamiltonian for the Shin Metiu model is tridiagonal.
There is a recursive solution to expressing tridiagonal Hermitian ma-
trices in the Pauli basis. The off-diagonal matrices can be expressed
as:

A1 = X

An = I2 ⊗An−1 + (X ⊗ I2n−1)⊗ 1
2n

⌊n/2⌋∑
t=0

(−1)t
∑
π

Sπ

(
X⊗(n−2t) ⊗ Y ⊗2t

)⊗

(X ⊗ I2n−1),

Where X and Y are the Pauli matrices, and Sπ is the permutation
function that returns a unique combination π of the Pauli string.
That is to say, given the string XY Y the result is the sum XY Y +

Y XY + Y Y X. This grows exponentially, but with a qubit-wise
recursive largest first commutator, it grows as O(2n/2) and if one
takes at the fully commuting largest first approach, then the number
of terms grows as O(n). The diagonal matrix is then the 2n term
weighted linear combination of all possible n length Pauli strings
consisting of I and Z matrices.

Figure 6.4: The number of
grouped terms in a Her-
mitian tridiagonal matrix
using different grouping strate-
gies. If no strategy is used
(solid blue) then the number
of terms grows exponentially,
which is also the case when
using qubit-wise commuting
groups (dashed orange). If one
uses word-wise grouping then
the number of terms grows
linearly (dotted green). Repro-
duced from [180] under CC4.

Using either qubit-wise commutation relations or Pauli-word
wise commutation relations, the number of Pauli strings required to
implement and measure tridiagonal Hamiltonians is greatly reduced.
Analyzing systems of up to 10 qubits via Qiskit and grouped the
Pauli string decomposition through the above methods hints that
this is indeed the case. These groupings can be used to reduce the
number of measurements that have to be made, but the results are
only presented here for completeness with no comment on how these
measurements will be done in practice. Figure 6.4 shows the number
of grouped terms using different existing techniques. These are not
necessarily realizable on current machines.

6.3 Numerical Simulations

To gauge the performance of the scheme the Shin-Metiu model as
described in Section 6.1 is implemented. In the BOPES there is
avoided crossing at around R = −1.9 a.u. The system is initialized
with the nucleus at an initial position of R = −2 a.u. and an initial
velocity of v0 = 1.14 · 10−3 a.u., the average nuclear velocity from the
Boltzmann distribution at 300K. The electronic system is initialized
through the VQE with a random set of parameters and is allowed
300 iterations to approximate the ground state. The system is then
evolved through the TDVQP algorithm with a timestep of ∆t = 0.5
a.u. Each quantum time evolution step attempts to reach a fidelity
threshold of 1 − 10−5 or up to 100 iterations of stochastic gradient
descent [247]. To find the optimal circuit parameters to approximate
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the previous time evolved state. Gradients were computed through
the parameter shift rule [88]. All simulations are done on 16 grid
points that can be represented by 4 qubits.

Two situations are examined. First, keep the initial conditions
constant but sample different VQE ground state approximations,
called the "Single Initial Condition" case. In the second case, the
MD-type approach is examined in depth, where a normal distribu-
tion of initial conditions is sampled for the initial velocity of the
nucleus and allow one TDVQP evolution per sample. The velocity
distribution is sampled from the Boltzmann distribution, only keep-
ing positive velocities so that the nuclei approach the avoided cross-
ing. The results shown are 100 samples that are evolved for 1000
timesteps which bring the classical trajectory beyond the avoided
crossing point.

Additional examples are provided for longer-time evolutions as
well as for non-ground state evolution in Appendix A. Excited states
and superpositions are prepared by using the uncomputation step of
the TDVQP, but instead of starting the state with a known circuit
from the VQE, the simulator is simply initialized to a desired arbi-
trary state, and the optimizer attempts to uncompute it with the
ansatz and then those parameters are used as the initial step in place
of the VQE. Various techniques to prepare excited states exist [248,
249], but are not the focus of this work.

Two different metrics to establish the accuracy of the TDVQP
algorithm are used: the so-called "Ideal" evolution begins at the
desired state to numerical precision and is evolved by exact diago-
nalization. But, precise state preparation is another area of intense
study [250]. To better gauge the performance of the TDVQP in
isolation, an "Exact" evolution is performed, which uses the VQE-
optimized initial state for evolution via exact diagonalization. This
allows the removal of any bias from a poorly optimized ground state.

The VQE uses an ansatz of the form shown in Figure 6.5, which
was heuristically chosen as it can achieve ground state infidelities of
up to 10−5 on this system with 4 layers. The same ansatz as in [225]
is used, but various ansatze can be used, and for first quantization
problems, in particular, there are some examples of how several dif-
ferent heuristic ansatze perform in [242]. The number of repetitions
of the Trotterization layer is another important parameter, but as
the decomposition of the Trotterized operator into native gates is
deep, so a single one is used. Although for full quantum dynamics,
this would be very inaccurate for larger timesteps, the interaction
with a classical system necessitates the use of short time steps, so
that the Hamiltonian of the system is kept up to date with the clas-
sical state of the system. This means that a single trotter step is all
that is needed, and the number of layers of the ansatz can compen-
sate as shown in 6.3.1.

The simulations were run on the Qiskit state vector simulator
(version 0.28) [251] using the parameter-shift rule [252, 88] to de-
termine the analytic gradients required for gradient-descent based
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Figure 6.5: One layer of the
ansatz used for the VQE
and TDVQP for three
qubits. If multiple layers are
used then the above circuit is
repeated. If more qubits are
used then the vertical motif is
continued. In both cases, more
parameters can be added as
needed and θ refers to the list
of all parameters. The ansatz
features x rotations and the
parameterized ZZ rotation.
Reproduced from [180] under
CC4.

optimization. Numpy [253] was used for the exact numerical simula-
tions, to prepare the Hamiltonian and to compute the velocity Verlet
steps.

6.3.1 Hyperparameters: Trotterization and Ansatz Depth

0 2 4 6 8 10
Time [a.u.]

0.92

0.94

0.96

0.98

1.00

|
ex

ac
t(t

)|
TD

VT
E(

t)
|2

Effect of Ansatz Depth and Trotter Steps on Fidelity

Depth
3
4
5

Trotter Steps
1
2
3
4

Figure 6.6: Mean fidelity
with respect to the depth
of the ansatz and the num-
ber of trotter steps in the
evolution for 10 samples of 200
timesteps. The lowest depth is
3 (blue), while the next step
is of depth 4 (orange), and the
deepest is 5 (green). The differ-
ent Trotter approximations are
various dashed or solid lines,
but since the time evolution
is short, this has little effect
compared to the depth of the
ansatz. Reproduced from [180]
under CC4.

Although one can have a near infinite amount of variability in the
heuristic form of the ansatz, which has been chosen to be the that of
Figure 6.5. But even for a single ansatz it is important to find what
the optimal depth is for a given problem, and in this algorithm, the
number of steps in the Trotter approximation is an important choice.
Figure 6.6 shows the effect of that choice in the modified Shin-Metiu
model with a timestep of 0.05 a.u. the order of the Trotterization
has a small effect compared to the depth of the ansatz. This is not
unexpected, as the timestep is very small. For the simulations, a
depth of 5 and a single Trotter step was found to be a good compro-
mise between depth and precision.

Another important point is whether it is beneficial to use longer
timesteps within the limits of the chosen Trotterization depth or to
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use conservatively short steps. To see the effect of this, observe the
fidelity of the same simulation as the single case in the main text
but with 500 steps of ∆t = 0.5 [a.u.] and 5000 steps of ∆t = 0.05
[a.u.]. Both have a total time of 250 [a.u.], but as should be evident
from Figure 6.7 the two approaches show very different behaviors.
When looking at the quality over ’simulated time’, choosing larger
timesteps is obvious. But looking at fidelity over the number of
timesteps, the shorter timesteps do have an advantage. The reason
for this is that the optimizer has a fidelity threshold of ϕ compared
to its previous step; as a first approximation, one can assume this
fidelity is reached exactly at each timestep T , then after T steps,
would yield a fidelity of ϕT compared to the ideal situation.

Figure 6.7: Difference
between many small
timesteps and fewer large
timesteps. Using fewer larger
timesteps (blue, 500 steps of
0.5) compared to many smaller
timesteps (orange, 5000 steps
of 0.05) leads to an interesting
observation that smaller time
steps lose fidelity slower, but
when observing the simulated
time, it can be beneficial to
use fewer larger timesteps. The
respective standard deviations
are shown as the highlighted
areas. Reproduced from [180]
under CC4.

Realistically, the size of the timestep also has a large effect on
the iterations the optimizer must take to converge. 1, 000 steps of
∆t = 0.5 take longer than 10, 000 steps of ∆t = 0.05 given the
same threshold. There is also such a thing as a ’golden’ initial state,
which has the property that many parameters in the ansatz are
initialized so that they stay constant or vary smoothly throughout
the evolution. Such initializations optimize faster and retain higher
fidelities than initial parameters that have much more chaotic ’spiky’
evolutions. Although this is hard to quantify, it is something that
could be used to filter out badly behaving initializations early on in
the evolution.
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6.3.2 Numerical Results

The results shown in this section are the result of two types of po-
tential cases. The first, which is referred to as ’single’ is the evo-
lution of a single set of initial conditions meant to represent the
precision of this algorithm to exactly reproduce a quantum-classical
system. Although this is not the intended use case of TDVQP, it
is nonetheless the most instructive to determine its behavior. The
second, referred to as ’MD’ is the molecular dynamics-like use case,
where a single TDVQP evolution per trajectory is used. The trajec-
tories are picked from random pairs of normal thermal distributions
around the same initial state as the ’single’ simulations, with the
specific values written in Section 6.3. Their average behavior is taken
as the approximation to the true system evolution. For NISQ devices
there are some potential cases for different approaches to MD such
as those mentioned in [254].

Figure 6.8: Mean relative
TDVQP energy shown for
"Single" initialization (blue)
and for "MD" initialization (or-
ange). The highlighted areas
show the standard deviation
of the distribution of 100 sep-
arate runs of 1000 timesteps
of 0.5 a.u. at the infinite shot
limit. The other lines show
the ideal initial state energy
evolution. The energy contin-
ually increases in the TDVQP
as higher energy levels are in-
creasingly populated through
leakage. Reproduced from [180]
under CC4.

An important gauge for the validity of simulations of closed sys-
tems is whether they conserve energy or not. A symplectic integrator
is used in the classical system (velocity Verlet), and in the exact
diagonalization case, energy conservation holds for up to 50,000
timesteps. As can be seen in Figure 6.8 the TDVQP algorithm does
not conserve energy. This is because the populations are not pre-
served in the diagonal basis in the p-VQD step, as the optimization
is limited to a finite number of iterations and the ansatz is system
agnostic. The effect of this can be seen clearly in Figure 6.9, where
it can be seen that the population in higher states increases much
faster than in the ideal case. Although it is not shown, starting the
exact evolution from the VQE state does begin with some popula-
tion spread, but this does not change as the evolution progresses.
The population plot is shown at the infinite shot limit for clarity, but
the finite shot cases can be found in A.3.2.
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Figure 6.9: Time evolution
of state populations between
the ideal simulation (solid)
and 100 instances of TDVQP
evolution (dashed) over 1000
timesteps of 0.5 a.u. at the
infinite shot limit for the "sin-
gle" simulation. The populated
states are the same as those
seen in Figure 6.2. The main
graph is in logarithmic scale
showing faint lines for higher
energy levels populated by TD-
VQP, with the inset showing
a linear scale of the two most
populated levels. Reproduced
from [180] under CC4.

As a consequence of the higher energy levels being increasingly
populated as the evolution progresses, it is the case that the fidelity
decreases gradually as can be seen in Figure 6.11. This general
degradation of quality is not optimal and strategies could be em-
ployed in the optimization to mitigate this, such as measuring the
energy and allowing the cost function to penalize when the system is
not conserving energy. This would require measuring the expectation
value of the system Hamiltonian which would increase the cost of
this algorithm.

Despite the problem with energy conservation, using such an
algorithm to measure an observable such as the force exerted on
the nucleus by the electron (Fel) can still lead to reasonable results.
Figure 6.10 shows the mean of the electron force measurements
from TDVQP compared to the ideal measurements at different per-
circuit shot counts. It is clear that the mean value slowly deviates
from the ideal evolution in even the infinite shot limit, and that one
requires 105 shots per circuit to reach qualitatively relevant results
at longer times. Efficiently estimating energy gradients is a huge
undertaking, and this work does not implement some of the NISQ-
friendly techniques that have been developed [255, 256], but it is
expected to be a problem even in the fault-tolerant regime [257].

Figure 6.11 shows that the fidelity decays in all cases over time
and that for long time evolutions, one requires more than 105 shots
when not using any additional techniques to better measure the force
or better preserve the populations when not undergoing a transition.
At lower shot counts the fidelity falls quickly, following eq. 6.13 until
the equal superposition is approached, which sets a higher floor than
zero for the decay of the fidelity. The potential effects of other noise
sources are described in more detail in A.3.

Figure 6.12 zooms into the two more reasonable fidelity lines,
those of the infinite and 105 shot simulations. This shows that us-
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Figure 6.10: Electron force
observable for the single
initialization. The ideal
simulation (black) and 100 in-
stances of TDVQP evolutions
(coloured) over 1000 timesteps
of 0.5 a.u. at varying shot
counts per circuit. There is
qualitative agreement of TD-
VQP with the ideal case at
105 shots and the infinite shot
limit, with a shift downwards
due to leakage to higher energy
levels, which in this case bi-
ases the force in this direction.
Reproduced from [180] under
CC4.
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ing the multiple trajectories in an MD sense somewhat improves
the simulation fidelity compared to the single trajectory case, and
more quantum-tailored algorithms like [254] may improve this fur-
ther. In the infinite shot case, the difference is minimal - but due
to the larger variance of the MD simulations compared to the ideal
trajectory, the performance tends to be minimally worse.

Figure 6.12: Fidelity for the
MD simulation showing
the 100 instances of TDVQP
evolution (orange) over 1000
timesteps of 0.5 a.u. for 100
different ’MD’ trajectories and
’single’ simulations. The MD
simulation is of slightly higher
fidelity compared to single tra-
jectory simulations at high but
finite shot counts. At lower
shot counts the fidelity de-
creases too quickly in all cases.
Reproduced from [180] under
CC4.The relationship between shots and fidelity is also illustrated in

Figure 6.13, where one can more clearly see that the MD simulation
slightly improves the simulation at longer time evolutions when us-
ing finite shots. However, this improvement is not massive. It also
highlights the large jump in fidelity gained when using higher shot
counts. Following from the p-VQD result [225], the time evolution
evolves its system for 40 iterations (20 a.u. here), where there are
very high compression fidelities beyond 104 shots per circuit evalua-
tion.

Finally, Figure 6.14 illustrates that in the simulation the maxi-
mum number of iterations, 100, is quickly reached before the 200th

iteration at the infinite shot limit. The overall mean final infidelity
is 10−5, although the fitted threshold of eq. 6.13 for the overall algo-
rithm is slightly lower at 3 · 105. The infidelity is I = 1 − F , where F
is the fidelity. This implies there is an additional error, likely due to
the drift of the exact simulation of the system from the TDVQP sim-
ulation. This is consistent with a 10−6 to 10−7 shift in the force as
described in the numerical simulations in A.3, which is also roughly
the difference in the force observable seen in Figure 6.10.

Overall the results show some interesting behavior. The number
of timesteps modelled in this work is very high, and this results in
only qualitative agreement in the region of interest where there is a
significant population transfer. Furthermore in this simple model,
the energy levels are well separated, and the simulation begins in
the ground state. This results in a strong unidirectional contribution
from population leakage to higher energy levels. In a more complex
molecule, one would begin, for example, from a thermal ensemble of
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Figure 6.13: TDVQP Fidelity
over shots of the exact di-
agonalization evolution of the
VQE initialized state and the
TDVQP evolution over 1000
timesteps of 0.5 a.u. for 100
different MD-like trajectories
(dashed, coloured) and 100
single initializations (solid,
coloured) at different shot
counts. Reproduced from [180]
under CC4.
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Figure 6.14: Compression
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iterations per step for the
single TDVQP setup at the
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not only velocities but also states. In turn, the leakage would then
result in deviations from both higher and lower energy levels and
may be less detrimental to the ensemble average than here.

6.4 Discussion

Time-dependent evolution is a difficult problem that can be well
explored through quantum computers. Many techniques can be used
for full quantum systems [208, 240, 234, 207, 226, 225] which are
suitable to both near term and fault-tolerant machines.

Algorithms that are suitable for MQC dynamics do require effi-
cient and accurate full quantum dynamics, but the interplay between
the classical and quantum systems brings a new spate of challenges.
To exchange information, one must measure observables from the
quantum system, which is expensive and destroys the state, requiring
at minimum an efficient way to measure energy gradients, which is
an area of active research [255, 256, 258]. This is a disadvantage, but
it also means that one is limited to short-time evolutions between
measurements. This makes it possible that a single trotter step is
accurate enough [259, 260], which is beneficial to near-term devices.

Even though larger timesteps may be possible, the longer the time
evolution, the longer the optimizer takes to find the time-evolved
ansatz parameters. This is because the previous timestep parameters
are no longer as close to the evolved ones. At the same time, most
classical MQC methods do not update the parameters that govern
the classical system’s evolution at the small time intervals used
here [218]. It would be advantageous to use the largest possible
classical timestep for a given integrator. To do this, one could do
multiple compression steps with short-time Trotterizations using a
constant Hamiltonian and only measuring the desired observables
after the quantum system has evolved for the standard timestep
of the classical problem, performing updates after this point. This
will leverage the underlying compression algorithm to its fullest and
reduce the overall number of measurements required.

The algorithm takes advantage of the above facts and is highly
modular. Although the results are shown using an algorithm like
p-VQD [225] with Trotterization of the operator, there is no rea-
son that other efficient time evolution algorithms couldn’t be used.
This is especially true if the time evolution operator could be effi-
ciently represented by techniques other than the Trotterization of the
Hamiltonian. The update step used here measures the Pauli string
decomposition of the dH

dR matrix to compute forces, but other tech-
niques exist in the fault-tolerant regime [258, 257], as well as in the
NISQ regime [255, 256]. The main constraint with TDVQP is the
fact that throughout the time evolution, there are inevitable inac-
curacies in optimization, due to the compression step not preserving
the populations in the diagonal basis as would have been expected
as shown in Figure 6.9. This has the direct consequence that energy
is not conserved, even though in the ideal simulation this is the case
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as shown in Figure 6.8. Due to this accumulated error, fidelity falls
consistently, and the effect is compounded when quantum resources
are finite.

These problems might be tackled by either increasing the thresh-
old of the compression step or by measuring the energy and penal-
izing the optimizer when energy is not conserved. Another option
that may be possible is designing an ansatz with problem-specific
constraints [82]. Such an ansatz considers properties such as particle
preservation within their structure, which may remove the need for
expensive additional iteration steps or measurements. Furthermore,
it may be possible to replace the p-VQD propagation with other
compression methods [226]. Since the simulation is in the first quan-
tization representation, it may be difficult to find what properties
to conserve in the wavefunction, but the advantage comes in not
needing to measure the many non-adiabatic couplings.

It was also found that the error mostly comes from the com-
pression step or due to finite sampling effects more than from the
coupling to the classical system due to the small classical timestep.
Although it is always interesting to see how an algorithm behaves
under noisy conditions, the performance of p-VQD under noise has
been explored for full quantum dynamics in [226]. This work focuses
on the interplay between the scheme under the effect of a Hamilto-
nian which depends on the measured observables.

Overall the TDVQP algorithm has been introduced for MQC
dynamics with the quantum subsystem computed on a quantum
computer and have explored it on the Shin-Metiu model as an ex-
ample of Ehrenfest dynamics in first quantization. However, it is not
limited to this setting. It reproduces the expected observables and
state evolution qualitatively. The algorithm is modular and refine-
ments to it may be tackled in future research. Inaccuracies of the
quantum computer can also be mitigated when computing ensem-
ble averages of the classical properties. This work shows that MQC
simulations may be practically feasible on noisy quantum comput-
ers if it is proven that variational quantum algorithms can have an
advantage in chemical problems.

6.5 But What About Noise?

TDVQP does work under ideal circumstances. But these simula-
tions have all been done without the presence of errors in NISQ
machines. The algorithm is, at the time of writing, currently being
implemented at the Walter-Meisner Institute on a superconducting
quantum processor. This process necessitated the study of the per-
formance of this algorithm with much more stringent constraints
on the depth of both the ansatz and the time evolution operator.
As such, the effect of a realistic noise model on this algorithm has
been computed, and the results are shown in chapter 9, compared
to the noiseless case. As the work progresses, methodologies to deal
with this noise are introduced and to close the thesis off, they will be
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implemented on this data to show the effectiveness of the QEM tech-
niques shown here in practice. Sadly it was not possible to fully run
the algorithm on hardware at the time of writing and so the results
are still numerical and will be presented in chapter 9.

Unlike on a theoretical analysis of the algorithm, in the device
and time that are given, it is impossible to use a depth of more than
20 CNOTS in parallel for the entire circuit. As such, the trotter op-
erator was approximated by a hardware efficient variational circuit
at each timestep, and the ansatz was greatly simplified to have a low
depth and parameter count. Due to the time evolution compression,
this implementation of the algorithm is no longer scalable. Besides
the change in parameterized circuit ansatz and the time evolution
operator compression, the algorithm remained unchanged, except
that now a noise model taken from characterization of the machine
(which cannot be made public at this time) is used, and all measure-
ments are both noisy and have a finite shot count.

In addition to this, it is essential to analyze how well this noise
can be mitigated via QEM techniques. To do this for novel algo-
rithms it may be possible to exploit certain structures in the prob-
lem. The following chapter will present how one goes about design-
ing novel QEM, and at the final stage, this and more theoretical
techniques such as the clean and dirty partial error correction model
[111] will be utilized to realistically mitigate noise and perform this
algorithm.
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UNITED we Mitigate

I’d never think it possible; but I’ll do what’s feasible
Don Giovanni (translated), W.A. Mozart/Lorenzo Da Ponte, 1787

Contributions: The gen-
eral idea of the project was
conceived by Lukasz Cincio,
Patrick J. Coles, the theoretical
derivations were worked on
mostly by Max Hunter Gordon,
Piotr Czarink, myself and cor-
rected and expanded by Marco
Cerezo. The numerical simula-
tion code was written by Piotr
and Lukasz, and all the numer-
ical experiments were carried
out by me. The writing was a
joint process mostly carried out
by myself, Max and Piotr, all
other authors contributed to
proofreading and general guid-
ance. This particular rendition
of the work was re-written by
myself, reorganizing, expanding
and removing sections to fit
with the thesis.

This chapter will go through an overview of the theoretical combi-
nation of various techniques, finally ending at unified technique for
error mitigation with data (UNITED). Then, a section will be ded-
icated to the numerical experiments which involve the preparation
of realistic noise models and the analysis of different assumptions
and their effect on the various techniques. It then ends with the final
results and a discussion on the implications of the results. The whole
of this chapter is based on the work presented in [110].

As shown in the TDVQP algorithm, the introduction of
noise greatly impacts the performance of the algorithm. As such,
beyond the implementation of a hardware efficient algorithm, an
important process to designing a functional program for the NISQ
era is to also design novel error mitigation approaches that can make
such algorithms yield useful results with current hardware.

In section 4.2 several quantum error mitigation methods were
presented. A natural question to ask is "what improvements can be
gained by combining disparate techniques?". This chapter presents
the work carried out and published in [110] that aimed to explore
that question. Here we presented a strategy to combining Clifford
data regression (CDR), zero-noise extrapolation (ZNE) and virtual
distillation (VD) in a framework that should allow for other tech-
niques to be mixed and matched. It followed from the successful
result of combining CDR with ZNE that was presented in a tech-
nique called variable-noise Clifford data regression (vnCDR) [132].
The addition of a more robust framework were presented under the
name UNITED.

To properly compare the performance of the different QEM meth-
ods and their combination, each is benchmarked through numerical
studies. In particular, they mitigated local observables of a ran-
dom circuit and for a practical application on a random term of a
QAOA algorithm on the Max-Cut problem of various sizes of up
to 10 qubits and circuit depths of 128 sequential two-qubit gates.
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To properly gauge the sampling overhead associated with combin-
ing disparate QEM that are described in section 4.2, and analyze
the techniques over various fixed shot budgets ranging from 105 to
1010. Although there are intricacies to the results which depend on
the task which will be described in depth, it was found that single
QEM techniques (ZNE, CDR and VD) would converge in their error
mitigation ability well before the biggest shot budget was reached.
The combined techniques on the other hand (vnCDR and UNITED)
would be able to make use of the additional data and keep correcting
up to the largest shot budgets tested, with vnCDR being the best
until 108 and being overtaken by UNITED at 1010.

7.1 Combining Quantum Error Mitigation Techniques

Combining the disparate QEM techniques requires the careful study
of sub-combinations. This section builds on the foundational knowl-
edge given in section 4.2. The first presented combination is that
of Richardson extrapolation (4.14) with VD copies. Following this,
CDR is combined with VD, then VD and ZNE and finally the full
combination that yields UNITED. The combination of CDR and
ZNE is not presented here as it was already presented in [132].

7.1.1 Virtual Distillation and Richardson Extrapolation

Given a set of VD observables for different number of copies M , de-
noted µ̃VD

M , the different noise levels in the expression can be put
into a Richardson extrapolation (4.14) scheme with the different
number of copies, from 1, 2 . . . ,Mmax to obtain the following expres-
sion:

µ′
Mmax =

Mmax∑
M=1

bM µ̃
VD
M . (7.1)

Here bm is an unknown coefficient that characterizes the noise level
for a given number of copies. Theoretically, the larger M is, the
more accurate the estimate of the noiseless observable µ will be
[140]. However, in practice, the noise level of the VD observable will
not decrease linearly with M , and may increase at large M , when
the error from the controlled swap (CSWAP) operations exceeds the
error suppression given by VD, and the estimate will become less
accurate. The optimal value of M is therefore a trade-off between
the accuracy of the estimate and the noise level of the observable.

Equation (4.29) tells us that there is an exponential suppression
of the noise with respect to the number of copies of N qubit states,
but to accurately make an extrapolation on (7.1), the values of bM
must be estimated accurately. This requires the preparation of a toy
noise model.

Assuming that every gate has a probability λ of having an error.
The error channel is such that every different series of errors results
in orthogonal states. To ensure that there is a noise floor, it is also
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possible to append a coherent error given by some unitary U(θ) =

exp (−iθH), where H is some Hermitian operator, this ensures that
there is a noise floor when θ ̸= 0. Since all states are rotated equally,
the orthogonality relationship between the error induced states is
preserved. Given G gates, the output of some circuit can be written
as ρ can be written as

ρ = (1 −λ)Gρ0 +(1 −λ)G−1λ
G∑
j=1

ρj +(1 −λ)G−2λ2
∑
j1 ̸=j2

ρj1,j2 + · · · ,

(7.2)
when λ is small, ρ0 dominates. Now to estimate the b coefficients in
(7.1). To do this, take (4.29) and substitute ρ with (7.2):

µ̃VD
M =

Tr[ρMO]
Tr[ρM ]

=

(1 − λ)MGO0 + (1 − λ)M(G−1)λM
∑G

j=1 Tr[ρjO] + · · ·[
(1 − λ)M + λM

]G
= O0 + λMα

(M)
1 + λM+1α

(M)
2 + · · · , (7.3)

where α(M)
1 , α(M)

2 are the coefficients of series expansion in λ in Note: Oi = ⟨ψi|O|ψi⟩, and ψ0
refers to the dominant eigenvec-
tor of the noisy ρ.

µ̃VD
M . Grouping the terms via the index j in α

(M)
j gives

µ′
Mmax =

Mmax∑
M=1

bM µ̃
VD
M

= O0

Mmax∑
M=1

bM +
Mmax∑
M=1

bM

∞∑
j=1

α
(M)
j λj+M−1

= O0

Mmax∑
M=1

bM +
∞∑
j=1

Mmax∑
M=1

bMα
(M)
j λj+M−1

= O0

Mmax∑
M=1

bM +
Mmax−1∑
j=1

Mmax∑
M=1

bMα
(M)
j λj+M−1 + b1α

(1)
Mmax

λMmax + O(λMmax+1).

(7.4)

Now a system of equations for b can be written as
Mmax∑
M=1

bM = 1, (7.5)

Mmax∑
M=1

bMα
(M)
j λj+M−1 = 0 , ∀j = 1, ...,Mmax − 1 , (7.6)

which gives

µ′
Mmax = O0 + b1α

(1)
Mmax

λMmax + O(λMmax+1) . (7.7)

Taking (7.6) with small λ , the terms b1, b2λ, b3λ2,. . . ,bMmaxλ
Mmax−1 Remembering that the α(M)

j

coefficients do not depend on λ.need to have the same order, or would otherwise be overdetermined.
Furthermore, (7.5), (7.6) imply that bMmax is of order 1, which leads If (7.5) and (7.6) were an

overdetermined system of linear
equations, it would be unlikely
to be soluble.

to b1 ∈ O(λMmax−1). If the system of equations (7.5, 7.6) has a
solution gives

|µ′
Mmax −O0| = |µ′

Mmax − µ− ε| ∈ O(λMmax+1). (7.8)
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Thus, linear combination of VD error-suppressed observables im-
proves their mitigation proportional to the largest used M = Mmax.
This hints at the fact that perhaps they may be useful in addition to
other linear combinations, such as ZNE.

7.1.2 Virtual Distillation with Zero Noise Extrapolation

The problem with the linear combination of VD copies is that the
noise floor is not cancelled out as shown in (7.8). The hypothesis
is that to mitigate this, one could use a ZNE like idea and further
reduce the effect of the error by taking samples with multiple VD
copies and multiple noise levels.

To continue on this path, using the noise model in (7.3) and find
that if all gate noise is corrected for and only retain the coherent
noise given by U(θ) = e−iθE , then our extrapolated VD observable is

O0 = Tr[e−iθE |ψexact⟩⟨ψexact|eiθEO] . (7.9)

If O and E do not commute then,

µ̃VD
M (θ,λ) = Tr[e−iθE |ψexact⟩⟨ψexact|eiθEO] +

Mmax∑
j

λM+j−1α
(M)
j .

(7.10)

Rewriting (7.4) with the dependency on λ and θ gives

µ′
Mmax(θ,λ) =

Mmax∑
M=1

bM µ̂
VD
M (θ,λ) , (7.11)

and using the coefficients computed in (7.5) and (7.6) yields a simi-
lar expression to above with the error in the order of Mmax+1,

µ′
Mmax(θ,λ) = Tr[e−iθE |ψexact⟩⟨ψexact|eiθEO] + O(λMmax+1).

Since when Mmax is large and λ is small (as previously assumed),
the error term O(λMmax+1) is negligible and thus the dependence on
λ can be removed, giving a similar expression to (7.9),

µ′
Mmax(θ) ≈ Tr[e−iθE |ψexact⟩⟨ψexact|eiθEO]. (7.12)

It is now much simpler to make a MacLaurin series expansion on θ

with expansion coefficients βj to get

µ′
Mmax(θ) = Tr[|ψexact⟩⟨ψexact|O] +

∞∑
j

βjθ
j . (7.13)

Truncating the series at n+ 1 allows the use of Richardson extrapo-
lation as in ZNE if one considers c0θ0 = θ0, c1θ0, . . . , cnθ0, then the Refer to (4.14) in section 4.2.2
new mitigated observable becomes

µ′′
Mmax,n =

n∑
j=0

γjµ
′
Mmax(cjθ0) , (7.14)

Now the linear combination of VD-mitigated observables of Mmax
∑n

j=0 γj = 1 and
∑n

j=0 γjc
k
j =

0 for k = 1, . . . ,n
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different number of copies at n different coherent noise levels can
finally be written as

µ′′
Mmax,n =

n∑
j=0

Mmax∑
M=1

γjbM µ̃
VD
M (cjθ0,λ) . (7.15)

It turns out that this is the only expression required for both com- This is in effect a combination
of (7.11) and (7.13)bining ZNE and Richardson-extrapolated VD, which turns out to

be the ansatz for UNITED as well, since the training circuits would
be run at different copies and noise levels, upon which a regression
model is trained.

Now the theoretical error scaling in this simplified model can also
be computed as

µ′′
Mmax,n − µ = O(θn+1

0 ). (7.16)

If the reasonable assumption that the orthogonal errors are small,
then θ and λ can be scaled. Choosing θj = cjθ0 and λj = cjλ0,
results in

µ′′
Mmax,n =

n∑
j=0

Mmax∑
M=1

γjbM µ̂
VD
M (cjθ0, cjλ0), (7.17)

which gives the same error scaling as (7.16). This is because coher-
ent mismatch dominates at large Mmax.

7.2 UNITED

This section presents UNIfied Technique for Error mitigation with
Data UNITED, which is the combination of CDR, ZNE and VD.
Chapter 4.2 and the previous sections showed that individual QEM
and their combinations can be used to mitigate errors. UNITED is
an extension with the property that the individual QEM can be used
as a special case of UNITED. For example, using only one copy for
the VD part of UNITED would result in the vnCDR technique [132],
while using only one noise level would result in the technique pre-
sented in section 7.1.1. Technically all the combinations are always
used on the Clifford training circuits that then train an extended
CDR model, which is then used to mitigate the error on the target
circuits, bypassing this steps yields the original QEM techniques,
these combinations are summarized in 7.1.

The UNITED dataset is generated with a set of Nt near-Clifford
circuits projected from target circuit C as in CDR in section 4.2.3,
yielding {Ti}Nt

i=1. Like in CDR, the exact expectation values µi of an
observable O of these circuits are computed classically. The noisy
and VD suppressed expectation values at n different noise levels
c0, j = 0, . . . ,n and for M = 1, . . . ,Mmax different number of copies,
with M = 1 representing a standard run without VD by convention.
This generates a training set

T UNITED = {(µ̃UNITED
i ,µi)}Nt

i=1, (7.18)

with one training value for UNITED being µ̃UNITED
i = (µ̃i,0,1, . . . , µ̃i,n,Mmax).

This is a tensor of the cth
j noise level and M -copy VD suppressed
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Technique Noise Levels Copies Training
Circuits

ZNE [112] ✓ ✗ ✗

VD [115, 114] ✗ ✓ ✗

CDR [113] ✗ ✗ ✓

vnCDR [132] ✓ ✗ ✓

CDR+VD [110]* ✗ ✓ ✓

UNITED [110]* ✓ ✓ ✓

Table 7.1: Resource require-
ments for the different error
mitigation strategies, showing
the necessary resources for
QEM strategies that are unified
and benchmarked in this chap-
ter. Modified from [110] under
CC4.expectation value of O of the training circuit Ti. T UNITED trains

function fUNITED : (EVD)
Mmax(n+1) → Enoiseless which has been

chosen to be

fUNITED(x) =
n∑
j=0

Mmax∑
M=1

dj,Mxj,M . (7.19)

EVD represents the VD-suppressed expectation values, although it
does also include the standard noisy expectation values of M = 1.

The coefficients dj,M in (7.19) are determined by minimizing the
loss function with respect to T UNITED, which in this work is done
via least-squares regression. The trained model can then obtain a
mitigated expectation value O for the target circuits C by evaluating
the function fUNITED on the noisy and VD suppressed expectation
values of the target circuits.

7.2.1 UNITED for an idealized error model

To show that the UNITED combination is more effective than the
single QEM techniques, the idealized error model presented in sec-
tion 7.1.1 can be used again. In such a model, there is control of
both the orthogonal noise and coherent noise. The dataset for such a
model is as in the previous section denoted ˜̂µUNITED, now with n+ 1
distinct error rates and Mmax different number of copies. For a given
noise level cj the error rate is scaled as θj = cjθ0, where θ0 is the
inherent error coherent error in this model, parameterized by θ.

As shown in section 7.1.1, increasing the number of copies can
suppress the orthogonal errors via only the combination of VD sup-
pressed observables. Following from (7.4)

µ′
Mmax,j =

Mmax∑
M=1

bM µ̂j,M . (7.20)

Then with (7.8) error scaling is

|µ′
Mmax,j − µ− εj | ∈ O(λMmax+1

j ) , (7.21)

with εj representing the noise floor for a controllable error rate cj .
On these results, Richardson extrapolation has been shown to sup-
press the coherent noise as in section 7.1.2.

This is equivalent to section 7.1.2, and the final estimate is as
before,

µ′′
Mmax,n =

n∑
j=0

γjµ
′
Mmax,j =

n∑
j=0

Mmax∑
M=1

γjbM µ̂j,M , (7.22)
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where γj are those of (4.14), reiterating the results of section 7.1.2,
at large Mmax the error is

|µ′′
Mmax,n − µ| ∈ O(θn+1

0 ). (7.23)

So far nothing new has been shown, but the important factor that
makes determining the coefficients γ and b is that the error rates for
both the different number of copies and chosen noise amplifications
for the machine are not known. They can only be estimated, and
this is the main source of error for Richardson extrapolation when
used in this context, as it is very sensitive to inaccurate coefficients
[75]. UNITED now utilizes the training circuits to estimate these
coefficients in a noise agnostic manner.

7.2.2 Limitations of UNITED

The main driving force of UNITED is the combination of multiple
noisy observables that brought together via Richardson extrapola-
tion, whose coefficients are determined by a regression model. This
motivates the UNITED ansatz (7.19), but it is not enough to ensure
its performance. The reasons for this are that any scaling to physical
error rates are approximate when applied to hardware. This leads to
imperfect extrapolation in the case of ZNE and vnCDR, even though
both techniques are readily used to great effect [116]. Model train-
ing as in UNITED is also not identical to Richardson extrapolation,
since it is completely dependent on also having a good training set.
Yet, if such a training set is available, then fitting the coefficients
during training does not require knowledge of the noise levels, which
ideally minimizes the impact of imperfect control, as long as it is
consistent.

Errors on current devices are very frequent, and even though
hardware is continuously improving in terms of qubit and gate fi-
delity [261], the error rates are not negligible. This causes expecta-
tion values to concentrate around 0 since the output of any measure-
ments tends towards a random bit string. As such, to compensate
many shots are required to extract information [262]. As such, noise
levels cannot be increased arbitrarily high, and even VD with nu-
merous copies will introduce additional errors from the CSWAP
operations. Of course, the use of VD data within united allows for
more error rates to be included indirectly, and UNITED learns the
best combination of these disparate noisy observables.

The foundational limitation of any QEM technique is the num-
ber of shots required, not only does adding noise levels and copies
increase the number of experiments required, but these must evenly
be distributed between all the training circuits one decides to use.
Thus, any shot budget will be subdivided between all the combina-
tions of training circuits at different copy numbers and noise levels.
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7.3 Trial by Fire: Numerical Experiments

7.3.1 The Test Problems

UNITED is tested through two different metrics, one is that of mit-
igating random observables of random quantum circuit (RQC)s
which represents a hard theoretical challenge to correct in general
[263], while the other can be seen as a more practical application,
the QAOA algorithm on the Max-Cut problem. To summarize,
first problem is used to test the theoretical limits of the UNITED
technique, while the second is used to test the practical limits. The
system sizes considered range from 4 to 10 qubits Q , specifically
Q = 4, 6, 8, 10.

Random quantum circuits are investigated for circuit depths
defined by a g factor and number of qubits Q, where the depth,
given as number of layers L is

L = gQ. (7.24)

The circuits are constructed with the native gates of the chosen
trapped-ion machine with a brick-like structure of nearest-neighbour
Molmer-Sørensøn gates [264] with interlaced single qubit unitaries as
in figure 7.1.

|0⟩ U

XX

|0⟩ U U

XX

|0⟩ U

XX

U

|0⟩ U

Figure 7.1: Exemplary RQC
used in benchmark simulations
for 4 qubits. A layer is built
from two layers of alternat-
ing nearest-neighbor Molmer-
Sørensøn gates XX(δ), around
these gates the generic single-
qubit unitaries U(α,β, γ) are
inserted. The rotation angles
α,β, γ, δ are assigned randomly
for each RQC. The parame-
ters and indices are not shown
in the figure for brevity, but
each gate has a unique set of
parameters.

For such circuit structures, as L increases, RQCs are expected
to give states that converge to random states sampled via a Haar
measure, which is a uniform distribution over the Hilbert space
[265]. This property is what makes RQCs a challenging task for error
mitigation.

The Quantum Alternating Operator Ansatz is a stand
in for a practical algorithm to solve optimization problems. The
algorithm was presented in more detail in section 3.2. In this re-
search, QAOA [56, 266] is used to find a graph bipartition (cut) that
maximizes the number of edges connecting the halves, the so-called
Max-Cut problem. Formally, take the graph G = (V ,E) with V

the set of vertices and E the set of edges. The aim is to partition of
the vertices into two sets S1 and S2 such that the number of edges
connecting the two sets is maximized. In this setting, the algorithm
minimizes the energy of the Hamiltonian

HP =
∑

(i,j)∈E

σiZσ
j
Z (7.25)

defined over a number of qubits Q = |V |. In particular, the numer-
ical study focuses on Erdös-Renyi graphs [267], which form an edge
between vertices (i, j) with some probability pe. The layers of the
circuit are set as L = Q. For each Q, 28 unique graphs are con-
structed, with pe = 0.5. This ensures that the number of graphs is
consistent between the system sizes and is limited by the fact that
on 4 qubits 28 is the maximum number of non-trivial graphs that
can be constructed.
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7.3.2 Shot Budget

An essential aspect of running computations on quantum hardware
is the shot budget, or how many samples one is willing to take over
all experiments. This is simply some integer that will be referred
to as Ntot and would be distributed in some way between all the
experiments required to construct a dataset. Keeping table 7.1 in
mind, then it should be clear that the more concurrent techniques
are used, then each individual sample will have fewer shots assigned
to it.

For VD, measurements are taken for Mmax different circuits.
ZNE, requires the expectation value of n+ 1 circuits built from one
target circuit at n + 1 noise levels. vnCDR needs to evaluate Nt
training circuits at n+ 1 noise levels for a total of (n+ 1)(Nt + 1)
circuit evaluations. UNITED is the hungriest technique requiring
these observable estimates for each training circuit Nt: VD with
Mmax − 1 copies, each at n + 1 noise levels. On top of this, the
target circuit measurement is also required, giving a total number of
circuits (n+ 1)(Nt + 1)(2Mmax − 1) that must be evaluated.

7.3.3 The Noise Model

An ion-trap based quantum error model made by Trout et al. [268]
and developed in [269] is used. This is because a quantum computer
with all-to-all connectivity is required for VD. The gates RX , RY ,
RZ come with noise channels SΞ where Ξ is one of the Pauli matri-
ces, while and XX has SXX :

SΞ = Wpd ◦ Dpdep ◦ Rpα
Ξ ,

SXX =
[
Wpd1

1 ⊗ Wpd2
2

]
◦
[
Dpdep

1 ⊗ Dpdep
2

]
◦ Hpxx ◦ Hph . (7.26)

Several terms have to be clarified, with Rpα
Ξ (ρ) = (1 − pα)ρ+

pαΞρΞ, which represent errors in the angle of rotation about the
X,Y ,Z axes. The various channels are defined as:

Dp : ρ 7→ (1 − p)ρ+
p

3 (σXρσX + σY ρσY + σZρσZ), (7.27)

Wpd : ρ 7→ (1 − pd)ρ+ σZρσZ , (7.28)
Hp : ρ 7→ (1 − p)ρ+ p(σX ⊗ σX )ρ(σX ⊗ σX ) (7.29)

(7.27) is the local depolarizing channel with p = pdep representing
depolarizing gate noise and p = pidle simulating idling noise [270].
(7.28) is the dephasing channel, and (7.29) is a two-qubit channel
representing an error in rotation when p = pxx and ion heating when
p = ph. The error rates were chosen as

pd = 1.5 · 10−4, pdep = 8 · 10−4,
pd1 = pd2 = 7.5 · 10−4, pα = 1 · 10−4, (7.30)
pxx = 1 · 10−3, ph = 1.25 · 10−3,
pidle = 8 · 10−4.

No errors occur on measurement, as it is assumed that these can be
well corrected separately from circuit error mitigation [271, 272].



7

114
Quantum Chemistry on Quantum Computers

7.3.4 Finding Optimal Hyperparameters

To maximize the use of resources, it is essential to discover what
the optimal hyperparameters are for the different QEM techniques
used. Specifically, it is important to know what the optimal Mmax
VD copies, the optimal number of noise levels n and the size of the
near-Clifford training set Nt. It has already been determined in the
literature that Nt = 100 [113, 132] yields heuristically good results,
and 3 noise levels for ZNE is shown to be good in vnCDR [132], but
this was found not to be the case here. Thus, the number of copies
for VD needs to be determined. In theory, the exact distribution of
the shot budget is also an important parameter, but this requires a
more detailed study, so a strategy of evenly distributing the shots
between the different entries in the dataset is used. Figure 7.2: Convergence of

various ZNE implemen-
tations. The plot shows the
mean absolute error of ⟨σ1

Z⟩
over the shot budget. 30 RQCs
with Q = 4, 10 and L = Q are
used. Please refer to the legend
for the different ZNE imple-
mentations. Reproduced from
[110] under CC4.

To benchmark ZNE we use two different ansatze for the function,
linear and exponential. The linear ansatz can be tested with 2 and
3 noise levels, while the exponential can only be used with 3 noise
levels. These are tested with at all noise budgets. Figure 7.2 shows
that out of all combinations, the linear ansatz with 2 noise levels
performs better in almost all cases. For clarity only 4 and 10 qubit
systems are shown, but this was consistent across all system sizes.
The exponential ansatz was found to always perform around an
order of magnitude worse.

Figure 7.3: Convergence of
VD estimates with increas-
ing copies M . The results of
the mean absolute error on the
observable σX at Ntot = 1010

against of VD copies M are
shown. The M = 1 point is
equivalent to not using VD and
various depth scaling factors g
and system size Q are shown
(refer to legend). Reproduced
from [110] under CC4.

Similarly, for VD it is important to determine how many copies
are optimal. There is an additional consideration which is whether
the noise incurred in the CSWAP operations is significant. Since
the net effect of additional noise will be that the results will be
worse with respect to additional copies, the study on the optimal
number of copies is done with this noise. The results are shown in
figure 7.3, where it is found that for low depth circuits (g = 1)
the optimal number of copies is M = 2, but at higher depths the
situation is more complicated. For 4 qubits, M = 4 is optimal, and
although it is not shown, the behaviors for larger systems is more
complicated. As such, M = 3 is chosen as a compromise, since when
testing the UNITED technique, it was found that the results were
not significantly worse than with M = 4, but the computational
cost was significantly lower, as VD requires Nqubits = M ∗Q, where
Q is the size of the problem. There is a numerical trick used in the
simulation that allows for the use of Nqubtis = 2Q, but at the cost of
an M factor in depth, although it is outside the scope of this work,
the technique is called REQUEST and can be read about in [273]. In
short, instead of using M copies of the state, 2 copies are used and
one of the states is reset to |0⟩⊗Q after each CSWAP operation and
then prepared again. This has the same net effect, with the cost that
now the depth of the circuit is multiplied by the number of copies
and their respective preparation circuits.

The first is that the CSWAP operation (also known as derange-
ment) could be noisy in certain settings, as such the effect of this
must be analyzed on both VD and UNITED. Figure 7.4 shows that
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Figure 7.4: Comparing VD
and UNITED with and with-
out CSWAP (derangement)
noise . This was done on RQCs
with Q = 4 and L = 5. Both
the mitigated and noisy ⟨σ1

Z⟩
averaged over 30 RQCs are
plotted. The CSWAP noise
has an effect on both VD and
UNITED, specifically harming
both even at large Ntot. As a
comparison, unmitigated, ZNE,
and vnCDR results are shown.
Reproduced from [110] under
CC4.

there is an effect on VD and UNITED to a lesser extent when de-
rangement noise is considered. Irrespective of this, there is a 2.5
times improvement for VD with Ntot ≥ 106 and factor 1.2 improve-
ment of UNITED over vnCDR at Ntot = 1010. The unmitigated,
ZNE, and vnCDR values are shown for comparison. Linear extrapo-
lation ZNE is performed using n = 2 noise levels, which was found
to be optimal previously. VD uses M = 2 copies which is shown
to be optimal in figure 7.3, although this is not always the case, the
improvement for the high depth circuits does not justify the costs.
vnCDR uses 3 noise levels which was found to be optimal in [132].
UNITED also uses 3 noise levels to make the comparison to vnCDR
as fair as possible. UNITED does use M = 3 copies, which was
found to be optimal. The values are all summarized in table 7.2

Technique Noise Levels Copies Training Circuits Total
(near-Clifford) Circuits

ZNE 2 (linear) ✗ ✗ 2
VD ✗ 2 ✗ 2
CDR ✗ ✗ 100 (10) 100
vnCDR 3 (linear) ✗ 100 (10) 300
UNITED 3 (linear) 3 100 (10) 900

Table 7.2: Amount of com-
ponent parts for the different
error mitigation strategies
used to benchmark the various
techniques.

The last hyperparameter that is unique to vnCDR and UNITED
is the actual construction of the training set, which has its own
subtleties. The number of training circuits is one thing, but in
section 4.2.3 another problem is mentioned, specifically that the
near-Clifford circuits expectation values approach 0 as Q increases.
This requires a larger number of shots to resolve if nothing is done.
As such it would be beneficial to increase the variance of the cir-
cuits. This is particularly important for the QAOA problem, as the
structure of the ansatz is fixed and the exact expectation values are
exactly 0. RQC do not have such a problem as the varying circuit
structure lowers the probability that the expectation value is exactly
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0.

Figure 7.5: The effect of
post-selection on vnCDR
and UNITED. Plots compar-
ing the mean absolute errors of
⟨σ1
Z⟩ for random and post se-

lected CDR training circuits at
Nt=100. (a) shows the highest
shot budget Ntot=1010. While
the infinite Ntot limit is in (c).
The results are the aggregate
of 30 instances of g=1 RQCs.
Reproduced from [110] under
CC4.

Therefore, a strategy based on [139] is used. Here, 105 training
circuits are constructed and post-selected fo that the exact expecta-
tion value is roughly uniformly distributed in the interval [−0.5, 0.5]
with 10 non-Clifford gates. Since simulating Clifford and near-
Clifford circuits is classically possible, this solution is scalable. It
is also possible to use more complicated techniques such as Markov-
Chain Monte Carlo [273] to come to the same conclusion, but as the
net effect is identical, the simpler solution is used. Figure 7.5 shows
that vnCDR is not affected by post selection as much as UNITED
at finite shot budgets, but at infinite shot budgets the effect is neg-
ligible, this is expected since the main issue with the concentration
of expectation values around 0 is that the differences are small and
need to be resolved, at the infinite shot limit they are resolved, and
the issue does not exist.

7.3.5 Results

This section presents the results of the above two benchmark cases
for all techniques apart from the combination of VD and CDR which
is not shown. This is because the results of this in practice compared
to the older vnCDR and the newly presented UNITED does not
suggest that it improves greatly on CDR alone. The result is impor-
tant in deriving UNITED, but including it would make already busy
graphs become unnecessarily packed.

The plots are presented in two ways, one is the behaviour of
the technique with increasing shot budget, and the other is the be-
haviour of the technique with increasing system size. The first shows
when techniques start to stop being able to correct and the second
shows the all important scaling with system size, which as discussed
in section 4.2 is an important metric for any QEM technique. In
particular, the mean and maximal absolute errors are shown. The
former gives the expected performance of the techniques over many
applications, while the latter gives an idea of the worst case perfor-
mance.

Although another interesting comparison is the one of fixing the
number of samples per database circuit instance, but the large dis-
parity in number of shots would make this comparison not be prac-
tically useful. Since QEM is more of a practical area of application,
the total number of shots is a much more important consideration
than the number of shots per circuit.

For random circuits, There are two cases studied in RQCs,
the low depth (g = 1) case where L = Q, which is studied for
Q = 4, 6, 8, 10 and the high depth (g = 16) case where L = 16Q
for Q = 4, 6, 8. Q = 10 was not done in the high noise regime both
due to the computational cost, but also the results are too noisy
to perform any error mitigation. For each pair (Q,L), 30 random
circuits are generated, and for each one the expectation value of σZ
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Figure 7.6: Comparing QEM
methods on RQCs for layer
depth g=1, showing the mean
and maximal absolute errors of
the expectation value of σZ on
the first qubit using the differ-
ent QEM strategies, denoted
⟨σ1
Z⟩. The title refers to the

shot budget used for the given
plot results for the total num-
ber of shots per mitigated and
noisy expectation values. ZNE
is the best at 105, vnCDR for
Ntot=106 to 108 and UNITED
at Ntot=1010. Reproduced
from [110] under CC4.

on the first qubit is shown. It should be noted that in when g = 1
the clustering problem discussed in section 4.2.3 does not occur, as
this effect becomes more pronounced the deeper the circuits are.

The results for g = 1 are shown in figure 7.6, it is clear that the
QEM performance is strongly correlated to Ntot and decreases as
system size increases. ZNE always offers the best performance at low
shot budgets, with VD performing slightly worse. Although this is
more evident in figure 7.8(a) where only Q = 4 is shown, both VD
and ZNE have in essence already converged, and their performance
does not improve as Ntot increases, while vnCDR and UNITED con-
verge slower but eventually overtake the single techniques at 107 and
108 respectively. Eventually vnCDR begins to reach convergence at
108 while UNITED keeps improving, becoming the best technique at
109. Looking at the relationship with system size gives a very similar
picture, with the interesting caveat that at Q = 10 the performance
does not overtake vnCDR. This is because at larger system sizes
more shots are required to get a high quality expectation value per
circuit.
g = 16 yields a very different picture. Here ZNE does not yield

any improvements over the unmitigated value while VD always wors-
ens the results except for minimal improvements at Q = 4. This
is basically the case for all the techniques at higher shot budgets
and larger system sizes. The disappointing result is due to the face
that the unmitigated values, and the measured expectation values
for the training circuits are probably of too low quality to be able to
properly train the correction model. This is why 7.8 only compares
the Q = 4 system, as it is the only one where the error rate is not
large enough to completely wash out the mitigation ability of the
techniques.
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Figure 7.7: Comparing
QEM methods on RQCs
for g=16, showing the mean
and maximal absolute errors of
the expectation value of σZ on
the first qubit using the differ-
ent QEM strategies, deonted
⟨σ1
Z⟩ at different shot budgets.

vnCGVD was the working title
of the UNITED technique, as
this plot was not included in
the final paper. Reproduced
from [110] under CC4.

Finally, bringing all the RQC results together we can compare the
performance over shot budget of Q = 4 at g = 1, 16 shown in figure
7.8. The unmitigated results are in essence already converged at 105.
The ZNE and VD results converge at 106. Those of vnCDR converge
slower, becoming optimal over VD and ZNE for Ntot from 107 to
1010. UNITED converges slower than the others, but is the best
choice at Ntot = 109, 1010. For g = 16 ZNE and VD do not improve
over the noisy results and are worse than vnCDR and UNITED for
all considered shot budgets. UNITED improves over vnCDR for
Ntot = 109, 1010. It should be noted that these shot budgets are
exceptionally generous and are only showing that at some point
spending more shots using only a single mitigation method is not
worth the time spent, and better strategies do exist. It is worth
exploring the high noise regime a little more. It is known that here
learning-based QEM is highly susceptible to shot noise [139], since
just like in the training set problem, the values become clustered
around the desired observable’s expectation value of a random string
as noise increases. Thus, as long as the number of samples is small,
the measurements are highly susceptible to finite sample size effect.
Indeed, this can be clearly seen in figure 7.8(b) where there is a peak
in the vnCDR mitigation at Ntot = 108.

For QAOA the aim is to mitigate the expectation value of a ran-
dom term of the Hamiltonian Hp (7.25) for the Max-Cut problem of
the 28 Erdös-Renyi graphs. Figure 7.9 has the mean absolute errors
of these expectation values, and are strongly dependent on Ntot as
with RQCs. Unlike in the previous section, VD is much better at
mitigating this family of circuits as opposed to RQCs. Indeed, it
remains the best method at all system sizes until Ntot = 108, while
ZNE behaves as before, doing quite well at the lowest budget but
never improving after that. For all system sizes except for Q = 4
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Figure 7.8: Convergence
of QEM applied to RQCs
with increasing Ntot. Mean
and maximal absolute errors of
the expectation value of ⟨σ1

Z⟩
for random quantum circuits
plotted versus the shot budget.
We use 30 instances of ran-
dom quantum circuits. In (a)
Q = 4, g = 1 is shown, while
in (b) Q = 4, g = 16 is shown.
Reproduced from [110] under
CC4.

UNITED is the best at Ntot = 1010 while vnCDR is the best at
Q = 4.

Like before, it is also helpful to look at the performance of the
techniques over the shot budget. Here depth is not a variable, so
we can compare any system size. Since they all behave similarly,
Q = 8 was chosen to be shown in figure 7.10. As before, VD is the
best performer up to Ntot = 108, where it begins to converge. After
which, UNITED becomes the best performer at 109. vnCDR also
converges at 108.

It is quite strange to the uninitiated that VD could perform so
well here and so badly in the RQC case. But a small reminder of
section 4.2.4 will remind the reader that since the expectation val-
ues required of a QAOA algorithm are eigenstates of the mitigated
observables and VD specifically suppresses all states that are not
the dominant eigenvector (which is likely close to the eigenvector of
the mitigated observable), it is expected that the noise floor of the
technique is much lower than in the RQC case.

The QAOA performance of VD seems to also be a good predictor
of the performance of UNITED over vnCDR. The poor VD results
in the RQC circuits translated to slow improvement of UNITED
with respect to shot budget, but here it clearly reaches much better
results much faster. Clearly combining QEM strategies can leverage
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Figure 7.9: Comparing QEM
methods applied to Max-
Cut QAOA. Mean abso-
lute errors of the expectation
value of a random term of Hp

averaged over 28 graphs at
different shot budgets. For
Ntot = 105, 106, 108, VD is
optimal until at Ntot = 1010,
where UNITED overtakes it.
Reproduced from [110] under
CC4.

Reproduced from [110] under CC4.

Figure 7.10: Convergence of
error mitigation methods
applied to the Max-Cut
QAOA for Q = 8 with in-
creasing Ntot. Mean (a) and
maximal (b) absolute errors
of the expectation value of
a random term of the Max-
Cut Hamiltonian on 28 in-
stances of Erdös-Renyi graphs.
ZNE has already converged
at Ntot = 105, while VD is
the best performer up to its
convergence at Ntot = 108,
after which (Ntot = 109)

UNITED becomes the best
performer. vnCDR converges at
Ntot = 108.
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the strength of the individual strategies, but it is clear that poten-
tially choosing the strategies most suited for the problem at hand,
such as VD’s apparent ability to correct well when the statevector is
close to an eigenvector of the observable in the QAOA case.

7.4 Discussion

Although the usefulness of NISQ is not as clear as it was during
this work’s publication, it is still essential in this era and potentially
even in the fault-tolerant era to mitigate the errors that remain, as
error correction might not be completely perfect for a long time, and
it might be that it may be advantageous to use a mixture of error
corrected qubits and noisy qubits [111]. There have been countless
approaches and combinations of various techniques that are better,
although not exhaustively, explained in section 4.2. This particular
work discussed some now standard techniques that were once state-
of-the-art and attempted to combine them in a way that should
allow other techniques to be replaced or added - of course, the way
this could be done will always require some level of reasoning and
consideration for how to exactly combine it as was done with ZNE,
VD and CDR.

The methods and their combinations, like the older vnCDR and
the newly proposed UNITED were used to mitigate errors under a
realistic noise model to see how well they could correct a series of
RQCs and QAOA problems for system sizes from 4 to 10 qubits.
Specifically, the simulation was done for a trapped-ion device, as this
is the most natural candidate for implementing VD which greatly
benefits from the all-to-all connectivity.

UNITED was then derived by combining CDR with VD, forming
a "Clifford-guided Virtual Distillation", this was then generalized by
adding an extrapolation based on Richardson Extrapolation on the
VD results at different error rates. This combination leads to first
suppressing the effect of orthogonal errors from VD which are then
extrapolated to the zero-noise limit. Finally, the model maps these
mitigated observables to the exact observables with the hope that
the same map generalizes to circuits with a similar structure.

Although the newly proposed technique did reach the lowest error
in both benchmarks, this was at a very high number of shots (1010)
which in most cases would be unfeasible. The other techniques per-
form better with other budgets, but it is also clear from this work
that the type of problem has a strong interaction with the type of
error mitigation used in terms of quality of expectation values. Now,
training an expensive model is not necessarily out of the question in
the current experimental landscape. The issue is that the character-
istics of noise in a QC can change over time, a process called drift
[274], so an error mitigation model will not stay valid for very long,
and may indeed be training on a changing error profile.

Another lesson from this work is that it is very difficult to guar-
antee if a QEM technique has indeed reached its maximal mitigation
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ability. This is especially pertinent when there is no analytical guar-
antees, or if they exist when the error model is too simple. This lack
of guarantees will lead to more uncertainty as quantum computers
increase in size. Because although future available devices will have
more, higher quality qubits, some effects of error propagation in the
complex states and interactions that will be performed on these ma-
chines may be more insidious to the quality of result than we may
expect at this time.

Regardless it is clear that at least for the following few years af-
ter the original paper’s publication and probably that of this thesis,
error mitigation has and will continue to have a large part in the ex-
periments. This work is one of the early hybrid QEM strategies that
have become quite used in the field, notably probabilistic error am-
plification, which was used in IBM’s utility experiment [213], which
uses probabilistic error correction to amplify rather than minimize,
errors, and then uses something like Richardson extrapolation to ex-
trapolate the errors to the zero noise limit with extremely well tuned
error rates.

The work itself raised its own questions which perhaps a reader
may have thought of already. The first is why these techniques
specifically? The answer is that these that were chosen in partic-
ular all fit very well within an extrapolation strategy. VD reduces
errors in a more or less known way, while controllably adding er-
rors increases noise, and all these techniques could be blended by
something akin to Richardson extrapolation. Training a model on
exact-noisy pairs can sit above this approach. But of course, there is
no reason to not think of other forms of data and combination that
could be useful, either for specific problems or for the more challeng-
ing deep circuits. Other candidates for unification are using noise
resilient algorithms [275, 269, 276, 109, 277], quasi-probabilistic error
decomposition [112, 278], verified phase estimation [279], truncated
Neumann series [280], and perhaps even making use of problem-
specific post selection [281, 282, 283, 123].

A less complicated but more technical question is to explore the
importance of dividing the shot budget unevenly between the differ-
ent types of circuit. For example, it is well known that in VD the
higher powers of the state lead to smaller expectation values which
need higher precision/shots to measure. As such, there may be an
optimal number of shots to give the M = 1 that is different from
M = 2, and of course, this goes for the various different parameters.

Most importantly we see how large the effects of noise are, and
especially with the consideration of controlled swap noise can quite
significantly change the performance of the QEM even when trained
on simulations with that noise present, as such to understand the
potential of VD and UNITED in full, noisy classical simulation must
also be improved.
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7.5 Concluding Remarks

In retrospect, this work was quite predictive of where how the field
of quantum error mitigation would evolve beyond this point. Al-
though it was not the first to combine error mitigation techniques, it
did show that the idea of combining error mitigation techniques was
extensible to more than just two, as was done with vnCDR [132].
Indeed, the combination of error mitigation techniques, specifically
ZNE and a hijacking of PEC to very controllably increase error rates
was the basis for IBM’s landmark utility experiment [213]. Another
promising avenue is the use of multiple subspace expansions concur-
rently is another approach that is actively being explored
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8
One Bad Qubit Ruins the Bunch

The successful construction of all machinery depends on the perfection of the tools employed.
Industrial biography; iron-workers and tool-makers, Charles Babbage, 1864

This chapter follows on from the previous, looking into the potential
future after error mitigation but before error correction. It begins by
introducing the idea that error corrected and noisy qubits could be
used in conjunction. It then presents analytical derivations on the
consequences of such a system, followed by numerical results and a
discussion. Contributions: the paper,

published under the name the
battle of clean and dirty qubits
in the era of partial error cor-
rection [111] was a joint effort
split into two self contained
sections, I worked on the nu-
merics and ideation and scope
of the model (with input from
discussions of course) and the
analytical study which has been
summarized was worked on
mostly by Samson Wang, it is
present to bring a richer under-
standing to the other results.
Piotr helped immensly with
the numerics and code, while
Lukasz and Patrick took an
active suprvisory and discus-
sionary role, and proposed the
seed of the idea which was ’can
one still use physical qubits in a
fault tolerant era’?

It should be clear from the previous section that noise is very
difficult and expensive to mitigate. Although error rates are getting
lower and lower, the rate of physical error reduction will likely not
outpace the effect of larger system sizes. At the same time, error
correction requires a very large overhead in terms of the number of
additional physical qubits. This chapter answers the question from
a slightly different angle - assuming a perfect quantum computer
exists, what happens if one were to begin to add physical qubits to
it? Every additional physical qubit doubles the state-space that is
accessible, with the ability to perform arbitrary quantum operations.
This additional power and flexibility comes at the cost of introducing
noise, whose effect could or could not be corrected by the QEC code.

As this work was being published it turned out that there was an
emergent area of quantum computing research called partial error
correction, where many approaches were being taken to try and gain
some benefits from QEC without paying all the costs associated
with it. AN influential approach to this are in so called partially
error corrected quantum computing [284]. Outside an error corrected
or mitigation context, there is an algorithmic use to partitioning a
system like this. One could, for example, attach a quantum sensor
to a quantum processor directly and process the incoming state, or
make a more controlled open dynamics simulation where the noisy
qubits act as a structured bath and the error corrected qubits are
the system of interest.

One of the most important functions of quantum computing is
that of estimating expectation values of an operator following the
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preparation of a desirable state by some algorithm, be that Shor’s
factoring algorithm [45] in the distant future, or for more near term
VQAs [57, 285]. As shown in chapter 4.2, noise damages the acces-
sible state - in particular, the expectation values concentrate around
a single value [286, 287, 262, 60]. This concentration of expectation
values within VQA’s is most felt when computing gradients for the
optimizer, since this is a process that must be repeated many times
throughout the runtime of these algorithms. Thus, the algorithms
become untrainable to borrow the language of machine learning.
1. This concentration can be mitigated with (exponentially) more 1 Although now that the field of ma-

chine learning has received a Nobel
Prize in physics and chemistry, tech-
nically it’s not borrowing anymore.

resources dedicated to each measurement [110, 60, 265, 288, 289,
290, 291], but of course, this is unfeasible. This scaling has come to
be known as the Noise-Induced Barren Plateau (NIBP) [60], which
is distinct from general barren plateaus, which are an undesirable
feature of some cost functions or of the ansatze [288]. It must be
noted that QEM alone cannot solve the noise-induced barren plateau
(NIBP) problem [182]. In quantum computing specifically, general
BPs are studied thoroughly, and many subtypes exist [265, 288, 289,
290, 291, 292, 293, 294].

The academic aim of the work was mainly aimed at solving the
great barrier to practical quantum computing that is noise. The
research question was how can we mitigate, or remove, the effect of
NIBPs and exponential concentration due to noise? [111], but in this
thesis it will be presented in the tone which it was researched, which
is what happens when one starts splitting some of the logical qubits
into many noisy qubits?.

To answer these questions the Clean and Dirty model was pro-
posed, after a failed attempt at calling it the Naughty and Nice
model due to societal reasons. Irrespective of the name, clean qubits
are those that are error corrected and dirty qubits are those that are
not. In the best case, which is what is studied here, one would have
the dirty qubits have some noise channels acting on them, while the
clean qubits are perfectly noiseless2. In a more general case, clean 2 A completely noiseless qubit is like

an infinite distance QEC.qubits could be logical qubits encoded with high distance codes and
dirty qubits could be encoded on low distance codes. Alternatively,
and what has been done as a follow-up work [104], a physical qubit
connected to a system with a finite distance code.

Of course, the intersection of NISQ and error correction is not
new in of itself, and has been considered in contemporary works
[295, 296, 297]. Indeed, the name itself is not completely original,
but it is different to previous clean qubit models [298, 299, 300] that
define clean qubits as those that are in a perfect known initial state,
with the rest being in maximally mixed states. Although it is not
obvious, these systems do have computational advantage [301] in
areas such as factoring [302] and computing partition functions [303].

This setup represents a realizable and, at the time, new, model
of quantum computation. Furthermore, with the numerical and the-
oretical technology at the time it was possible to come to concrete
statements about the scaling of the concentration of expectation val-
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ues for a cost function. This is because there is an analytical deriva-
tive to a parameterized quantum circuit (within some constraints)
known as the parameter-shift rule [304] with respect to a cost func-
tion that can be both used to numerically compute and theoretically
calculate the expected effect. How this is done will be the focus of
this chapter.

8.1 Computing with Clean and Dirty qubits

The idealized clean and dirty (CnD) quantum computer consists of n
qubits which are divided into nd noisy dirty qubits and nc noiseless
clean qubits such that nd + nc = n.

...
...

...
...

nd
Dirty qubits

U N U N

U N

U N
U

N

nc
Clean qubits

U

U

U U

Figure 8.1: The clean and
dirty quantum circuit con-
sists of nc noiseless, clean
qubits and nd noisy, dirty
qubits. A clean qubit gate acts
by evolving the system via a
perfect unitary U , while gates
on dirty qubits is represented
by the same U followed by
the noise channel N . When
clean and dirty qubits interact
together, the noise channel
only acts on the dirty qubits.
Reproduced from [111] under
CC4.

A gate that is applied to the qubits with state ρ performs a uni-
tary operation U , with a noise channel N occurring when only on
the subset of qubits that are dirty as

ρ →
clean

UρU †, (8.1)

ρ →
dirty

N (UρU †). (8.2)

(8.3)

The interaction of qubits is more subtle, as the noise could act on
both qubits, neither or only the dirty qubits. Since it is important to
show the best case scenario in this theoretical study, the assumption
that the noise exclusively acts on the dirty qubit was made. As
such, figure 8.1 shows how noise is applied throughout the system.
As mentioned, the setup is representative of a quantum computer
comprised of high quality logical qubits and low quality uncorrected
or logical qubits. At the limits of this model the standard mode
of operation is recovered; ff nc = 0 then the system behaves as a
noisy quantum computer if the error rates are not negligible, while
if nd = 0 the machine acts as a fault-tolerant device or an ideal
quantum computer if the noise is 0.

In the study that will be carried out many assumptions and prac-
ticalities are ignored to make an analysis of the system possible. In
error correction codes, logical qubits are not perfect due to a myriad
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of issues that were described in section 4.3. By making the simpli-
fying assumption that the clean qubits are completely noiseless, the
fact that implementing non-Clifford gates requires techniques such as
gate teleportation [305] and magic state preparation [306], which will
lead to higher costs for using such gates in a circuit that are not con-
sidered. In the worst case, the price to pay is a higher error rate for
such gates, while in the best case it is a time cost, which would lead
to more errors occurring in the dirty qubits. As such, this model can
be used to study novel algorithms or the effect of very different error
rates in a given system.

Since the time of the article’s publication experimental error cor-
rection has been performed experimentally to a much larger extent
than before. At the time, minimal examples of error correction were
possible [307], but since then larger experiments with more complex
computations have been performed [143, 144, 145, 308]. For example,
[307] used partial error correction in the sense that the code imple-
mented was a low distance one which only detected and corrected a
subset of errors. Error rates of QEC have now been proven (which
was only expected before) to decay exponentially with distance [144],
but since the rate of improvement is related to the ratio of the phys-
ical error rate to the threshold error rate, it is still the case that
many physical qubits are required for a single logical qubit [309].

There are some practical reasons to consider the CnD setup from
a practical lens even with error correction on the horizon. To ob-
tain quantum advantage, it is still necessary to have many effective
qubits. It is also the case that gate times are much slower on er-
ror corrected devices, both due to the encoding overhead and the
physical time it takes to implement a gate on a given architecture,
which is dictated by the physics of the device [310]. As such, using
the CnD model can both increase the computational space required
for advantage, and potentially offloading some of the overheads in
implementing non-Clifford gates to the dirty qubits instead of the
clean qubits, thus a clever partition could be a good solution when
these limitations are relevant.

Even given large fault-tolerant devices, the model will be valid in
the case of high and low distance logical qubits. Such a subdivision
could be useful to optimally use the qubits in a computer given a
particular algorithm. For example, algorithms where many gates
act on a subset of qubits may benefit from better correction, while
temporary ancilla qubits that are reset could use no or little error
correction. Such algorithms already exist, like QPE, where a multi-
qubit unitary is controlled by a single ancilla [311].

8.2 Analytical study

The analytical process to deriving both the concentration of expec-
tation values and the related gradient scaling focuses on the con-
struction of general circuits on the depolarizing noise model, which
is analytically tractable. There are three levels of model that build
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on each other to show that the effect is general. Beginning with the
simplest; a CNOT ladder setup. The CNOT ladder circuit is a min-
imal example where an arbitrary perfect initial state is prepared on
all qubits appended by repeated sequential ladders of CNOT gates,
with noise applied on the dirty qubits after each CNOT. This is ex-
panded upon by preceding another CNOT construction by a perfect
global unitary which could entangle the entire system and two other
operations acting only on the CnD subsystems individually. To this,
the ladder circuit is appended before measurement. Finally, the most
general case is considered, where the previous set of gates is cast as
a parameterized operation sandwiched between the CNOT ladders,
which yields a direct comparison to the numerical study.

The ladder construction shown in figure 8.2 consists of se-
quential CNOT gates which can be easily extended to other two
qubit gates, and are used in many VQA and quantum machine learn-
ing (QML) circuits [312, 313]. Layers of linearly connected ladders
are interleaved by local depolarizing error channels (4.7) acting on
the first nd qubits.

ρ

Dp

Dp

Dp

Dp

L times - forms W (nd)
L

Figure 8.2: CNOT ladder
construction. The linearly
connected CNOT ladder fol-
lowed by a local depolarizing
noise channel Dp on the nd
dirty qubits, which is repeated
for L repetitions, called layers
followed by a projective mea-
surement on the computational
basis.

The circuit is characterized by having a probability p of the state
becoming depolarized at each noise channel Dp, which for the entire
circuit of L layers forms a channel W(nd)

L . The expectation value for
the arbitrary pure input state ρ = |ψ⟩ ⟨ψ| for a measurement on the
computational basis O is given by

Tr[W(nd)
L ρO] ⩽ (1 − p)Λ(n,nd,L) +

1
2n (8.4)

Λ(n,nd,L) =


Lnd

2 floor(log2 n)
, if nd = 1;

Lnd

2 ceil(log2 n)
, if nd > 1.

(8.5)

The proof for this can be found in [111]. The result holds for any
arbitrary input state, including an unentangled product state. Thus,
the net effect of the bound in (8.4) is that the expectation value
which would have a maximum magnitude of 1 would be scaled by
the error as 1 − p but potentially lifted by Γ. If the probability of
error is small p ≪ 1 then it is possible the use a Taylor expansion,
and making the simplifying assumption that n = 2m for some integer
m, then the scaling can be thought of as some effective number of
layers Leff = Lnd

n and to first order in p the right-hand side of (8.4),
ignoring the 1

2n system scaling term, becomes

(1 − p)Leff ≈ 1 − Lnd
n
p ≈ (1 − p

nd
n
)L. (8.6)

This simplification is very helpful, in the rightmost expansion it tells
that the system is roughly equivalent to a fully noisy system with
a noise probability scaled by the number of dirty qubits to total
qubits. From one perspective, the error is reduced uniformally for
each additional clean qubit, from another perspective, the CNOT
ladder layers, if deep enough, propagate the noise throughout the
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system thus leading to the tongue-in-cheek title of the chapter one
bad qubit ruins the bunch. The numerical results preceded these
findings, but it was great to see that the analytics were in line with
the numerics.

...

ρ W

U H

H

V

T

Em

Figure 8.3: The separated
operator construction show-
ing a circuit where a general
input state ρ is acted upon
by a perfect global operator
W followed by a channel that
acts on either nd or nc qubits,
which are defined by whether
U or V is noisy. This is then
followed by a CNOT ladder on
a subset of the two subsystems
with H gates after the controls.
These are then measured in the
computational basis.

The separated operator setting shows that local noise in
one subsystem that is entangled with the global state impacts the
whole system. The construction is shown in figure 8.3 and consists
of an input state ρ followed by a global perfect unitary operation W ,
then two arbitrary operations U , V which define the size of the two
subsystems (A,B) are applied. A subset of these are then connected
via CNOTs with a Hadamard gate after the control. W is completely
free perfect Unitary and as such could be even be a tensor product
acting on the two subsystems separately as WA ⊗WB . The oper-
ations U , V form some channel T , this can be completely noiseless
and unitary, or it could be noisy on one or both of the subsystems,
denoting such a change as U → Ũ , the local depolarizing noise is
then applied to a layered implementation as in figure 8.4, this type
of decomposition is always possible, but will have a characteristic
length LU for an optimal decomposition.

For the same assumptions as the ladder construction (8.4), with
the addition that there is an additional entanglement operator Em
representing the CNOT and Hadamard gates on m ⩾ 1 pairs of
qubits then the expectation values concentrate as

Tr[Em ◦ T ◦ WρO] ⩽ (1 − p)LT +
1
2n , (8.7)

LT =

{
LU , if T = Ũ ⊗ V;
LU + LV , if T = Ũ ⊗ Ṽ.

(8.8)

The choice of V or U as noisy is
arbitrary, and the same result
holds with a change of index.

This result is surprising there is no dependence on m, which
means even a single CNOT after the noisy operation is enough to
concentrate the expectation values. Intuitively this is not clear, so
an example is in order. If nd is small, then the operator on the noisy
subsystem Ũ will have a small LU . If the systems are of similar size,
then the low quality measurements on the dirty subsystem A will
be enough to deteriorate the whole system’s expectation values.
Nonetheless, compared to the fully noisy system which scales as
LU + LV , the scaling compared to this is exponentially suppressed

Ũ

...
...

=

. . .

Ui

Dp

...
...

Dp

Dp

LU times Figure 8.4: U is made noisy
by first decomposing U into a
number of non-parallelizabale
layers formed of factors Ui,
i=1, . . . ,L which are then in-
terleaved by local depolarizing
channels Dp, defining the depth
of U to be L. U is recovered
when p = 0.
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since the exponent in (8.7) is LU
LU+LV

. This can be further strength-
ened if one assumes a proportional relationship between the number
of qubits in the two subsystems and the layers L. For a linear rela-
tionship this is

LU ∝ nd, LV ∝ nc =⇒ LU
LU + LV

∝ nd
nd + nc

=
nd
n

, (8.9)

which is similar to the findings in the ladder construction.

The parameterized circuit setting is the final setting
which brings the results of the previous two cases together and is
the most directly comparable to the numerical results. Both the
previous results have the undesirable feature that with any noise
there are exponentially vanishing expectation values. If one were
to use parameterized unitaries this would still hold, thus barren
plateaus exist for circuits of linear depth if nd scales linearly with n.
It also follows that any higher polynomial depth circuits will have
the same if nd > 0.

|zn⟩

Dp

Y (θ)

Dp

Dp Dp

Dp Dp

Dp Dp

L1 times, - forms W(nd)†
L1

L2 times - forms W(nd)
L2

Figure 8.5: Parameterized
ladder construction. An
analytical circuit consisting
of the adjoint CNOT ladder
followed by a parameterized
unitary Y (θ) and finished by
the CNOT ladder and measure-
ment.

A trainable unitary is given as

Y (θ) = W0

K∏
k=1

e−iθkHkWk, (8.10)

where {Wk }Kk=0 are some fixed unitary operators, and {Hk }Kk=0 are
Hermitian operators. This forms a channel Y(θ) which acts on the
input state ρ, which now will be a computational basis state. This is
now inserted into the two previous constructions. Figure 8.5 shows
this for the CNOT construction, but an equivalent ’sandwiching’ can
be done for the separated operator construction.



8

132
Quantum Chemistry on Quantum Computers

Here, instead of measuring an observable in the computational
basis, some cost function C(θ) = Tr[W(nd)

L2
◦ Y(θ) ◦ W(nd)†

L1
ρO]

that comprises multiple measurements in the computational basis O.
Here, the observables of interest are partial derivatives of C, as these
are what allow the optimization of parameters in all VQAs. Thus
the expectation value for a given parameter is

∂C(θ)

∂θk
= Tr[W(nd)

L2
◦ ∂Y(θ)

∂θk
◦ W(nd)†

L1
ρO]. (8.11)

The channels W can be replaced by T ◦ Em to give the expression for
the other setting. Irrespective of the setting, this replacement yields
the following bounds on the absolute value of the gradient scaling∣∣∣∣∂C(θ)∂θk

∣∣∣∣ ⩽ (1 − p)Γ ||Hk||∞ (8.12)

Γ =


nd

2ceil(log2 n)
(L1 + L2), if CNOT ladder and nd > 1;

2LU , if separable construction with T = Ũ ⊗ V.
(8.13)

Figure 8.6: Spin chain with 8
spin sites in an arbitrary state,
depending on the interactions
between spins and boundary
conditions many different 1D
models can be studied.

Again, there is an exponential suppression of the magnitude of
the measured gradients, which leads to the NIBP effect. This is ex-
pected from the more trivial intuitive example based on the previous
construction where each individual unitary can be thought of as a
circuit giving the partial derivative of the cost function. The big dif-
ference is with the fact that the infinitum of the Hermitian operators
||Hk||∞ multiplies the previous expressions, which means that if the
largest singular values of {Hk }Kk=1 grow faster than the scaling of
the concentration with system size, it will outpace the suppression.
But since the rate of concentration is exponential if nd scales linearly
with n, this is unlikely to be the case.

8.3 Numerical Investigation

The numerical aspect of this work follows the same principle as the
parameterized circuit setting, but for a realistic VQA type circuit.
Specifically, the behavior of a cost function of a Hamiltonian varia-
tional ansatz (HVA) [56, 266] is used, beginning with a presentation
of the problem and numerical computation of the gradients. Then
the results of the simulations under the same depolarizing noise
model as the analytical investigation and a realistic noise model are
presented.

PBC

XX(θ1)

XX(θ1) RZ (θ2)

XX(θ1)

RZ (θ2)

XX(θ1)

RZ (θ2)

XX(θ1) RZ (θ2)

Figure 8.7: The HVA ansatz
showing a single layer of (8.15)
on 4 qubits with periodic
boundary conditions (dot-
ted gate). The ansatz is de-
composed to native gates of a
trapped-ion quantum computer.

8.3.1 Hamiltonian Variational Ansatz

The HVA is a specific form of ansatz to a VQE problem, which in
this case is to find the ground state of a periodic transverse field
quantum Ising model in one dimension. The Hamiltonian of the
model used for n spin sites is

H = −
n∑
i

XiXi+1 −
n∑
i=1

Zi, (8.14)
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where Xi,Zi are the Pauli matrices acting on the ith site. The rea-
son why such a simple system is chosen is because it is known that
the ansatz with the cost function has no barren plateau [314], thus
any concentration of expectation values is due to NIBP. For com-
pleteness, the ansatz used with L layers is parameterized by the
vector θ with 2L entries, which form a state

|ψ(θ)⟩ =

(
L∏
i=1

e−iθ2iHZ e−iθ2i−1HXX

)
|0⟩⊗n , (8.15)

Each HXX , HZ are the terms in the Hamiltonian, which in the
trapped ion gateset have direct translations to Molmer-Sørensøn
gates (XX) and single qubit rotations about the Z axis (RZ). A
layer of the ansatz for 4 qubits is shown in figure 8.7. The vari-
ational principle is then used to find the ground state energy by
minimizing the energy as

C(θ) = ⟨ψ(θ) |H|ψ(θ)⟩. (8.16)

This has a gradient

∇C(θ) = (∂θ1C(θ), ∂θ2C(θ), . . . , ∂θ2L
C(θ)), (8.17)

which is numerically computed through a parameter shift rule for
Pauli strings [304]3. 3 See section [88] for a description

of the parameter shift rule. In short
the parameter shift rule allows for
analytical gradients for certain
classes of circuits

8.3.2 Numerical Clean and Dirty Model

To make the results comparable to the analytical results, particularly
those in (8.12), the mean of the absolute values of the cost function’s
partial derivatives for all thetas are calculated for systems of 4, 6
and 8 qubits. The ansatze tested is comprised from 1 to 600 layers
for nd = 0, 1, . . . ,n. This is done both with a local depolarizing noise
model and a scaled trapped ion noise model [268, 269] described in
section 7.3.3. The implementation of the noise channels on the HVA
ansatz is shown in figure 8.8.

C SZ

SZ

Dirty XX(θi)

Dp XX(θi) Dp RZ(θi+1) Dp

Dp

XX(θi)

Dp RZ(θi+1) Dp

Clean XX(θi)

RZ(θi+1)

XX(θi) RZ(θi+1)

Figure 8.8: Numerical noise
placement for both the de-
polarizing case (inner channels
labelled Dp) and the trapped
ion case (outer gates labelled
C and SZ) for one HVA ansatz
layer on 4 qubits. The dashed
gates represent a single XX
gate which can act like this
due to the periodic boundary
conditions.

The way the noise channels are placed on the dirty qubits de-
mands some explanation. Referring to figure 8.8 it can be seen
that the depolarizing case follows the analytics and has a depolar-
izing channel Dp placed after each operation on a dirty qubit. The
trapped ion case includes two channels - the correlated 2 qubit error



8

134
Quantum Chemistry on Quantum Computers

C, and the single qubit error channel SZ is placed after each RZ gate
on a dirty qubit. The subtlety comes in when to add C, since the
character of a two qubit gate on hardware is to have more complex
error channels the choice was to use an arbitrary single qubit channel
on the dirty qubit, have the correlated error occur on the clean qubit
as well or to skip the noise completely on a clean-dirty connection.
The latter was chosen with the idea that the results would represent
the best case scenario - or some upper bound to performance. To
further minimize the amount of connections, the dirty qubits are
set up in a continuous block so that there are minimal connections
between the CnD subsystems as in figure 8.1.

To show that it is indeed the case that the overall effect of the
dirty qubits is the same as having an overall noisy machine with a
proportionally lower error rate per qubit on all qubits as in (8.6).
This is done for both the depolarizing and realistic noise model,
by simply altering the probabilities by some factor f to replace the
dirty qubit model with the reduced fully noisy realization as

p → pfnd
, with fnd

= nd/n. (8.18)

For the depolarizing noise, this is merely the probability of the depo-
larizing channel, and for the trapped ion, all probabilities in section
7.3.3 are scaled by fnd

.

8.3.3 Results

The results focus on the most important marker of NIBP; the scal-
ing of the mean of the absolute value of the cost function’s partial
derivative for each parameter

|∂θk
C| = 1

2L

2L∑
i=1

|∂θi
C|, (8.19)

for the cost function C in (8.16). The numerical simulations are
discussed for the 8 qubit case, but the trends are identical for the
other tested system sizes.

Figure 8.9 shows the outcome for both the depolarizing and re-
alistic cases. The relationship is very clear, the high depth of the
circuits tested clearly show the expected characteristic exponential
decay of |∂θk

C|, which is a straight line on a log linear scale. This is
the case for any number of dirty qubits, i.e. nd ⩾ 1, with the average
gradient decreasing exponentially as more dirty qubits are added.
As such the theoretical results predicted this outcome correctly, and
they extend to the realistic noise model as well.

The situation becomes more interesting when considering the first
order approximation (8.6), which says that the system is roughly
equivalent to the fully noisy machine with rescaled error rates as
(8.18). In the depolarizing noise model (figure 8.9(a)) this is a very
good approximation, although the fully noisy machine performs a
little bit worse than the equivalent CnD model. The realistic noise
model (figure 8.9(b)) shows a similar trend, but the fully noisy ma-
chine appears to perform significantly worse (as though there was
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(a) Depolarizing noise model - gradient versus number of layers

(b) Realistic noise model - gradient versus number of layers

Figure 8.9: 8 qubit HVA
gradient versus HVA lay-
ers. (a) shows results for local
depolarizing noise while (b)
shows results for the realis-
tic model. Solid lines show
the clean and dirty model for
nd = 0, 1, . . . , 8, dashed lines
show a fully noisy machine with
error rates scaled by a factor
f = nd/8. The rescaled re-
sult are always below the dirty
qubit results, this is because
the coloring scheme makes it
a little difficult to distinguish
the two. Reproduced from [103]
under CC4.
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an additional dirty qubit). The results above may not appear to be

(a) Depolarizing noise model

(b) Realistic noise model

Figure 8.10: HVA gradi-
ent versus total error rate.
Both the depolarizing noise
model (a) and the realistic
noise (b) results show an ex-
ponential decay of the mean
absolute value of the partial
derivative with the total error
rate up to small deviations.
The inset in (b) shows the error
rate for the two setups and
the realistic noise model in
relation to nd demonstrating
that it is approximately linear.
Figure (a) is a new figure from
the data in [111] and (b) is
reproduced from [111] under
CC4.

good evidence that the fully noisy approximation is correct, so it is
good to attempt to rescale the results and observe if there is a form
in which the qualitative differences between the two models can be
made more quantitative. This was done through a lot of trial and
error, but it turned out that plotting |∂θk

C| against the total error
rate 4. In the depolarizing noise case, it is easier to find an analytic 4 Defined as the sum of all error rates

of all gates in the circuitexpression for the transformation, which is to define an effective
layer Leff = Lnd

n , but for the realistic noise model this is just a sum
of the existing error rates. Under this transformation (figure ref-
fig:numericalResultScaled) the results appriximately ’collapse’ onto
a single line, which indicates that the truly important factor is the
total error rate. For the realistic noise model specifically, there is
an inset in figure 8.10(b) which shows the total error for the fully
noisy and CnD model, which explains the differences in figure 8.9(b)
a little better. In the depolarizing noise model the approximation
is also qualitatively good, with a slighly worse performance for the
fully noisy machine.

One important consideration in all quantum computing research
is the scaling with respect to system size, figures 8.11(a-d) show the
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same plots for the other tested systems with 4 and 6 qubits. The re-
sults show the same trends with smaller deviations of the scaled fully
noisy machine from the CnD model. This implies one of two things,
the first being that as the state becomes bigger the approximation
worsens or that the larger the system size, the gradients are more
sensitive to finite sample artifacts. This is likely as the deviations
(not shown for clarity) are within a standard deviation of the mean
gradient. (a) Depolarizing noise model - 4

Qubits

(b) Realistic noise model - 4 Qubits

(c) Depolarizing noise model - 6
Qubits

(d) Realistic noise model - 6 Qubits

Figure 8.11: HVA |∂θk
C|

against the total error rate
for the depolarizing noise model
(a,c) and the realistic noise
model (b,d) for 4 and 6 qubits.
The results show the same
trends as for 8 qubits, but the
fully noisy machine is more in-
distinguishable to the clean and
dirty model. Reproduced from
[103] under CC4.

Most circuits on so few qubits are generally not 600 layers deep,
so it is interesting to look at what the results would be in a practi-
cal setting. That is to say, is this a scaling that is only relevant in
the deep circuit regime or is it something that would occur at any
depth? At large circuit depths, simulations for many noisy qubits are
expensive, but at lower depths it is feasible to examine the effect on
more qubits. As such, a system of 10 qubits is shown in figure 8.12.
This exhibits similar scaling to previous examples, but with spikier
gradients due to the stronger dependence on the specific problem
instance. Nonetheless, the different values of nd do not cross each
other.

Finally, the numerical results can be summarized as showing that
indeed, the theoretical prediction is quite accurate in the first order.
To fully understand the origin of the differences between the fully
noisy and CnD model there would need to be further investigation,
especially for the depolarizing case. In the realistic case the collapse
is almost perfect. The scaling of the total error is directly propor-
tional to nd/n for the depolarizing case, while it is approximately
linear in the case of the realistic noise model (as shown in the in-
set of figure 8.10(b)). The collapses clearly show the exponential
suppression of the gradient by the predicted ratio of nd/n.

8.4 Discussion

The battle of CnD qubits has shown that a single dirty qubit will
ruin the bunch. By splitting a quantum computer into error cor-
rected clean qubits and physical dirty qubits one essentially creates
a noisy quantum computer with an error rate lowered by nd

n . The
consequence of this result is that this model exhibits the same issues
that all noisy machines exhibit, namingly exponential scaling symp-
toms like barren plateaus. Even QEM cannot truly mitigate such ef-
fects [182, 141], and this work added to the growing body of evidence
that a noiseless system might be the only way to avoid these issues.
The results are extensible to more general statements about the
concentration of arbitrary expectation values rather than just gra-
dients, as the results in both domains are proven to be transferrable
[289]. Nonetheless, an exponential suppression of the effective error
rate does mean that at finite depths and a favourable nd

n , the error
rate may be so low as to be inconsequential for many algorithms,
although this error rate will need to be on the order of 10−15 [149]
for the most demanding algorithms. In this work the error rates used
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Figure 8.12: HVA |∂θk
C|

for 10 qubits at low layer
depths. The clean and dirty
model with realistic noise is
plotted at depths of up to 30
layers, with results given for
each layer count. The same
pattern as the high depth is
also seen here, with high nd
systems’ gradients decaying
faster.

were in line with error rates of the time, but to implement such a
scheme it is necessary that the error rates will be below the thresh-
old required for fault tolerance, which would further favour such a
scheme.

Whilst the numerical analysis is within the realm of VQAs,
the analytical results are likely a general phenomenon in partially
noisy circuits. However, the setup overlooks the fact that one of the
biggest issues in quantum error correction is performing non-Clifford
gates and that the gate-dependent error rate is more relevant than
the qubit-dependent error rate. Furthermore, VQAs are not nec-
essarily the ideal scenario for the CnD setup. Algorithms can be
designed to specifically take full advantage of such a setup or sce-
narios where noise in a subsystem is unavoidable. For example, a
quantum machine learning algorithm that is using noisy experimen-
tal data [315] from an attached qubit-based quantum sensor [316,
317]. Another class of candidates is algorithms where some qubits
are acted upon much more so than others, such as in QPE [311]. Fi-
nally, algorithms could be custom-built to suit such a setup, here the
scope can be in studying open system dynamics to as yet unexplored
territory.

8.5 Concluding remarks

This work was based on very simplifying assumptions that may
either aid or hinder the real world performance of such a scheme.
Actual logical qubits are not noiseless, but are characterized by
logical error rates. The error correction codes might also be able to
act as entropy sinks that could actually reduce the effect of the noisy
qubits on the whole machine, or not. The temptation to do this
exact study was too great, and indeed, has lead to a direct follow-up
work [104].

The first problem is that this approach was so novel that the
idea of a gate between a physical or noisy qubit was not even ex-
plored. This question was solved by Nikolaos Kuokoulekidis [104]
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who showed that all that is required is a series of CNOT gates be-
tween the physical qubits and the relevant qubits of the error cor-
rection code as shown in figure 8.13 for the Steane code. Other error
correction codes have specific constructions, but it is always possi-
ble to create such a gate. This immediately shows additional issues
for such a scheme - each additional dirty-clean CNOT could intro-
duce errors which could destroy the encoding of the logical qubit,
and the larger the code, the more CNOTS are necessary. Also, for a
fully noisy machine with error correction, it is necessary to perform
syndrome measurements and then apply corrections as necessary,
something that cannot be done while the dirty-clean CNOT is ap-
plied.

dirty q

Steane code

s0

s1

s2

s3

s4

s5

s6

Figure 8.13: Logical and
dirty CNOT on the Steane
code, the dirty qubit q is con-
nected via a series of CNOT
gates to the relevant qubits
of the steane code s1,2,3, the
qubits that are not acted upon
are relevant for the logical en-
coding, but needn’t be flipped
to change state.

The second problem is numerical, since to simulate this setup
with a fully noisy machine is completely out of the realm of numer-
ical feasibility with current hardware with a classic density matrix
approach. As such, for this follow-up work it was necessary to limit
the simulation to Clifford circuits with noise models derived from
IBM Ourense process matrices [269] which were. This is a signif-
icant limitation, which limited the analysis to using randomized
benchmarking [318] and a novel mirrored random Clifford circuit
approach to determine the process fidelity. This amazing numerical
work was carried out by Piotr Czarnik and supported by Lukasz
Cincio. The work itself is an excellent extension of the original work,
and has shown one very striking difference between the theoretical
model presented and the more realistic implementation. This is that
now, instead of having a simple nd

n scaling, the fully noisy machine
outperforms unfavourable nd

n , specifically, there exists some pseudo-
fidelity function f(nc,n) with the property

f(nd,n) =


1, if nc = n;
0, if nc = 0;
< 0, if nc < nthreshhold;
> 0 if nc > nthreshhold.

(8.20)

That is to say that there is some threshold requirement nthreshhold
for the number of error corrected ’clean’ qubits nc before which the
completely uncorrected machine outperforms the system with too
many dirty qubits and too few clean qubits. Here 1 represents the
highest possible pseudo-fidelity (since some error can still occur in
the fully corrected noisy machine) and 0 is set as the uncorrected
machine with n dirty qubits. In the case of the Steane code imple-
mented in the paper [104], a single nc consists of 7 noisy qubits, so
a machine with nc = n has 7n physical qubits and one with nd = n

has only n qubits, not counting some auxiliary qubits that are re-
quired for syndrome measurement. The results for this are shown in
figure 8.14.

Although much can be said about this follow-up work, the field
of partially error corrected research has gained traction. In the first
place there are many ideas on splitting quantum circuits between
many quantum processors, which can be roughly classed as circuit



8

140
Quantum Chemistry on Quantum Computers

10 20 30 40 50
layer number L

0.4

0.6

0.8

1.0

fi
d

el
it

y

nc = 0

nc = 3

nc = 6

nc = 9

nc = 12

nc = 15

nc = 18

nc = 21

nc = 24

nc = 27

nc = 30

(a) Randomized benchmarking fidelity

5 10 15 20 25 30
n

4

8

12

16

20

n
th

re
sh

o
ld

εI/εCNOT = 0

εI/εCNOT = 0.005

εI/εCNOT = 0.01

εI/εCNOT = 0.015

εI/εCNOT = 0.02

0.00 0.01 0.02
εI/εCNOT

0.0

0.2

0.4

sl
op

e

(b) nthreshhold scaling for various error ratios.

Figure 8.14: Numerics for
the clean and dirty model
with logical qubits. (a)
shows the fidelity decay for
various numbers of clean qubits
in a n=30 qubit systems, the
thick blue line is the perfor-
mance of the fully noisy ma-
chine which is better than a
system with few clean qubits.
(b) shows nthreshhold for various
error ratios between a con-
stant CNOT error ECNOT and
varying idling error EI . The
inset shows the change of this
over the error ratio. Unpub-
lished results based on reviewer
comments for [104], under CC4.

division protocols [319]. This includes techniques such as in circuit
knitting [320], lattice surgery [321], amongst many others. Some of
these allow for the use of noisy systems connected to a logical sys-
tem, and may have some practical advantages [319]. In the second
place, there is now the exploration of using the dirty qubits to gener-
ate non-Clifford operations on logical qubits [322] with high fidelity.
As yet no algorithms have been tailored to suit such an esoteric
setup, the fact that such systems are being researched might lead to
Clean and Dirty tailored algorithms coming into existence.
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All Together Now

’Take these broken wings and learn to fly’
The Beatles, Blackbird, 1968

This chapter brings together the algorithm and error mitigation
research alongside other considerations that need to be taken when
performing actual quantum hardware experiments. It begins with a
presentation of how one can go about getting time on a quantum
computer, and goes on to describe the hardware limitations of the
machine, followed by the alterations and choices made to the ansatz
of TDVQP as well as further approximations made for the time
evolution to make the algorithm work. A simplified noise model is
used to run noisy simulations that are then mitigated. Contributions: this work is

the result of a collaboration
with Malay Singh and Federico
Roy who are working on the
experimental side, although
no experimental results are
present yet, their input and
running of the simulation code
from the TDVQP paper has
been invaluable to finding the
optimal parameters. Dominik
Tonne also has helped run a lot
of the simulations required to
find the optimal VQE ansatz
and reworked the original code
to better function with the
experimental setup.

The research presented in this thesis has had a strong focus
on either analytical or numerical processes and algorithmic design.
There is a chasm between these simulations and equations and run-
ning an algorithm on actual hardware. Although different platforms
have their own limits and peculiarities, it is difficult to implement
even conceptually simple algorithms and output a reasonable re-
sult. This work is in progress as a collaboration between the author
and Malay Singh and Federico Roy of the Walter Meisner Institute
(WMI) who want to implement the TDVQP algorithm introduced in
chapter 6 on their experimental 4 qubit quantum computer.

This machine has much higher noise levels than commercial hard-
ware, but it has one advantage, which is time. There is comparably
unlimited access to every facet of the machine that is completely
impossible to purchase from anywhere, and this allows for the im-
plementation of every trick in the book to make an algorithm work
on real hardware. As of the time of writing, there are no final results
so most of the plots presented will be of simulations, but taking into
consideration the very harsh limitations of the machine.

The first thing that one must do when attempting to run a com-
putational experiment is to justify that the time invested would lead
to some valuable scientific outcome. In the original paper [180] it
was enough to present a near term friendly algorithm for dynam-
ics on an interesting model. This is not quite enough for an actual
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experiment, so the first goal was to find an interesting physics or
chemistry phenomena that could be simulated within reasonable
constraints and in 4 qubits. Fortunately, the Shin-Metiu model1 is 1 See section 6.1.

often used as an initial model for many interesting phenomena, but
simulation for most of these require the full quantum description and
sometimes even additional interactions [323] or particles [324]. Any
increase in dimensions would make the 4 qubit machine be unable
to reasonably simulate it without major changes to the algorithm
[325], nor would an increase in complexity in the Hamiltonian. As
discussed in subsection 5.4.2 the ability to perform time evolution
efficiently is harmed by an increase of Pauli terms. What was left if
one couldn’t actually simulate a more complex system than the one
quantum electron and classical proton in a potential? Figure 9.1: The Shin-Metiu

model with labelled compo-
nents for comparison with the
PCET process shown in figure
9.2.

9.1 Proton Coupled Electron Transfer

Figure 9.2: Donor-acceptor
pathways showing a simplified
version of the potential reaction
pathways. Assuming that the
acceptor with the proton and
electron is stable, there are no
backward reactions from there,
in the half filled case there can
be a backward reaction to the
donor with a proton and elec-
tron. Since PCET is a one-step
reaction it can be faster if the
system has a pathway for it to
occur.

There is an important phenomenon in both chemical and biolog-
ical mechanisms known as the Proton Coupled Electron Transfer
(PCET) which is present in the Shin-Metiu model for certain pa-
rameterization [323]. It appears in several redox processes especially,
where it describes the coupling of an electron to the nuclear mo-
tion. This is energetically favourable to a concerted proton transfer
followed by a electron transfer (or vice versa). As mentioned, this
mechanism is present in a wide variety of systems which involve
some X-H bond, where X is most likely a C, N, O, S or metal [326].
The net effect in these reactions is that the reaction rate is faster
than if the concerted (or some other) process was taking place. Like
all things in chemistry there are many flavours of this phenomenon
in different systems [327].
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The abstract picture of the reaction can be thought of as a donor
on one side and a acceptor on the other side. In reality these can
be as complicated as they might be, but in the Shin-Metiu model
they would be assigned as the fixed right or left ions. To illustrate
this a reminder of the model is given in figure 9.1, which is labelled
so that figure 9.2 can be mapped onto locations of the electron and
proton in the model. As such the goal of the quantum simulation
is to somehow capture this transfer within the limitations imposed
by formulating it in first quantization and within the number of
iterations that are feasible to do within a reasonable timeframe.

9.2 Hardware Constraints and How to Work Around Them

Two qubit error rates in commercial hardware have fallen to the
0.1% range for superconducting devices [328], but for the experimen-
tal device at the WMI which is using a tunable coupling qubit which
is not as mature as other technologies [329], but with a high poten-
tial. The machine available for this experiment has 4 qubits with
a single gate effective error rate of 0.1% and a two qubit gate error
rate of 1%. This limits the simulation depth quite drastically. The
qubit topology is on the other hand quite friendly, being a periodic
chain as shown in figure 9.3

Figure 9.3: Topology of the
chip to be used in this work.
Qubits are the numbered circles
and lines represent the connec-
tions on which 2 qubit gates
can be performed.

Since the TDVQP algorithm at its deepest requirements 2 copies
of the ansatz circuit and the time evolution circuit, this means that
one must try to use as few layers as possible at each stage. For the
VQE ansatz this is both simple and hard, since one can choose any
circuit and test to see if it is appropriate, which is what was done.
For the time evolution, this is more subtle, since if one were to use
a traditional technique like Trotterization the depths are high since
the Hamiltonian determines the complexity. Of course, due to the
tridiagonal nature and commuting groups this is not a huge issue as
it could be, but it still leads to circuits of depth 60 on 4 qubits. This
is too much, and the whole algorithm should ideally fit to within
depth 15 at most.

To do this it is of course possible to use alternative time evolution
strategies as described in section 5.4.2. This will be important for
larger experiments, but for small machines like this it is possible to
do something even better. This is the area of approximate unitary
implementations which do not scale fantastically with the size of
the unitary, but for a 4 qubit device they are more than enough.
Such systems can be used to simplify unitary sub-blocks in larger
circuits as well - but here they can be used for the whole circuit. In
particular, approximate quantum compiling with tensor networks
was used, the so called AQCtensor algorithm [330]. The specifics of
this are beyond scope, but the traditional method of approximating
a unitary gate was to have a parameterized circuit and alter the
parameters so that the effective unitary was as close as possible
to the desired unitary. This is different from standard compilation
where the operations are optimized, but there is a guarantee that the
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output unitary is mathematically identical to the input unitary.
The integration of error mitigation techniques is essential for the

functioning of the algorithm on hardware. Due to the higher error
rates (although it likely would be important regardless) the use of
error mitigation becomes essential. To this end, it is thought that it
is a perfect test case for the UNITED technique presented in chap-
ter 7. This is in addition to the generation of a readout mitigation
routine which can be the full-inverted confusion matrix2 due to the 2 See section 4.2.1 for details

small number of qubits. This will be essential as otherwise it is very
likely that the noise would wash out any reasonable results especially
when going through the different timesteps.

Underpinning the whole experiment is the parameters chosen
for the model. Since it was decided that PCET would be the phe-
nomenon that should be observed, this means that the transfer of
the electron from the left side of the model (the donor) to the right
side (the acceptor) would need to be observed. For this it is nec-
essary to measure a PCET witness (WPCET), which is simply the
expectation value of the position (x̂) of the electron wavefunction
(|ψ⟩) as

WPCET = ⟨ψ| x̂ |ψ⟩ . (9.1)

This all has to be done within 20 timesteps, so it is necessary to
tweak all the parameters so that the effect would occur within these
timesteps. Of course this means that the model parameters would be
quite nonphysical, but since the model doesn’t actually represent a
real system this was a compromise that was deemed acceptable given
the constraints.

9.3 Finding Optimal Parameters

9.3.1 Model Parameters

As mentioned, to find the actual model parameters it is necessary
to sweep through most parameters. Although (6.1) is shown, for
convenience the model equation is repeated here:

He = − 1
2m

∂2

∂r2 +
1∣∣L

2 −R
∣∣ + 1∣∣L

2 +R
∣∣−

− erf(| L
2 −r|/Rr)∣∣L
2 − r

∣∣ − erf(| L
2 +r|/Rl)∣∣L

2 + r
∣∣ − erf(|R−r|/Rf )

|R− r|
,

(9.2)

the margin note3 contains a reminder of the physical meaning of 3 The Shin-Metiu model consists of
two stationary ions separated by a
distance of L, specifically located at
L
2 and −L

2 . These enclose a mobile
ion p of mass M at distance R from
the origin and an electron e− at
distance r. The modified Coulomb
potential is parameterized by the
constants Rl, Rr and Rf , as shown
in (9.2).

the parameters. It is the case that some parameters are dependent
on others, for example, the length of the box determines the energy
scale and thus the timescale, these are somewhat arbitrary and so
were fixed to have (in atomic units) a R parameters of Rl = Rr =

1.71, Rp = 1.818, the padding beyond the fixed nuclei was fixed
at pad = 5.7, The length was then changed at some fixed initial
position of the proton xp0 = −3.9 and initial velocity vp = 0.004
to see if the transition would occur. The potential energy surfaces of
the various tested settings are shown in figure 9.4.
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Figure 9.4: Sweep of the
PES for the Shin-Metiu model.
Credit to Malay Singh for the
visualization code.

The WPCET is hard to quantify for an optimizer to do the sweep
automatically, since it is desirable that not only does the electron
move to the right but also that there is no abrupt change in the
electronic wavefunction when the proton moves, as the electron can
stay stationary and be in an excited state as a fast proton moves
away. By analyzing the trajectories and eigenstate evolution for the
chosen lengths it was found that a length of L = 8.6 was optimal at
a time step of τ = 17.857 and yielded an evolution shown in figure
9.5. This was done on the exact ground state and with simple linear
algebra for the evolution, and is hence numerically exact. Looking at
it through the lens of the witness gives a very clear transition from
left to right, which is shown in figure 9.6. One interesting feature is
that the electron jumps from one side of the other as the proton (not
shown) is crossing the midpoint of the system.
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Figure 9.5: Evolution of the
wavefunction and eigen-
states for the Shin-Metiu
model with the candidate pa-
rameters. |ϕ⟩ represent the
(time dependent) eigenstates
of electronic system while the
dark blue line is the wavefunc-
tion |ψ⟩. The red dashed line
represents the position of the
free proton. Credit to Malay
Singh For the visualization
code.

Figure 9.6: Evolution of the
PCET witness for the dis-
covered parameters over 13
timesteps (a little more than
250 atomic time units). The
red line is the electron’s aver-
age normalized position, the
green and yellow lines measure
the amount of amplitude in
the right and left halves of the
model respectively, quantifying
the completeness of the electron
transition. Within this time
the proton smoothly transi-
tions from left to right almost
linearly, but this is not shown.
Credit to Malay Singh For the
visualization code.
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Figure 9.7: Various opti-
mizations of the candidate
ansatz each colored line rep-
resents a different optimization
trial, with the y-axis being
energy and the x-axis being
iteration. The target energy is
the dashed line. Underneath is
the circuit structure where the
red boxes are SU2 gates with 2
parameters each for 24 in total.
Credit to Dominik Tonne for
the heuristic search.

9.3.2 VQE Ansatz

To find the optimal VQE ansatz with as low a depth as practically
possible, a heuristic search over 4 qubit ansatze with 2 to 4 layers of
CNOTs was carried out with a variety of connectivities and single
qubit gate types. It turned out that the best ansatz that could be
found was the one shown in figure 9.7, although many others were
tested they either achieved comparable performance with more pa-
rameters or were worse. The ansatz has 24 parameters which is a
reasonable number, although even this requires 48 different circuits
to measure the analytical gradients required for the optimizer if that
strategy is the one that is chosen.

9.4 Preliminary Results and Conclusion

Sadly it is not possible at this time to show any of the actual ex-
perimental results at the time of writing, but it has been possible
to simulate the system with good estimates of the hardware noise.
This is still preliminary work required to show to the experimental
committee such that it will be possible to run the algorithm on real
hardware, as everything should ideally be working by the time the
machine is made available for this work, and it should be readily
comparable to the results.

To achieve this goal it was necessary to run a noisy simulation.
To do this, a noise model was prepared with local depolarizing error
after every single qubit gate with a probability of 0.003 and a two-
qubit depolarizing channel with an error probability of 0.01. The
depolarizing channel is a bit of a worst case scenario, but better
noise models for the machine were not available at the time of this
simulation. It was again performed on 4 simulated qubits through
Qiskit [251] with 105 shots per expectation value.

To perform error mitigation UNITED4 was implemented with 4 Please see section 7.2 for details on
UNITED.again 105 shots per circuit, but only at two noise levels, two copies

and 10 training circuits which lead to a total shot budget of 4 · 106.
It should be noted that it is unlikely that such an expensive error
mitigation strategy will be used in the experiment as it likely will
result in excessive measurements and fine-tuning for not such high
rewards. At 4 qubits the system is still small enough that other
techniques should work more effectively. The results from the noisy,
shot limited simulation and the mitigated results are shown in figure
9.8. These results are still preliminary, and it is possible that there
are errors in the implementation that have yet to be solved, however
they do look plausible.

The results do not look extremely promising as the number of
timesteps is actually quite small, at 14 iterations. The ideal results,
which although subject to shot noise, actually are very good, but
here the algorithm is likely only limited by the shot noise and the
optimizer limits, and in the original TDVQP paper a decay can be
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Figure 9.8: Noisy and Miti-
gated fidelities of TDVQP
with optimal parameters show-
ing 14 iterations of the algo-
rithm. The blue line is the
ideal performance, the green
line shows the raw results from
the machine and the orange
line is the UNITED mitigated
results. This all used 105 shots
per required expectation value
and was repeated 100 times
from the best starting initial
VQE state. The highlighted
areas show the standard devi-
ation of the respective means.
One particularly fun thing
to see is the increase in the
uncertainty due to the error
mitigation, leading to a larger
standard deviation of the re-
sults. This is exactly the bias-
variance tradeoff mentioned in
section 4.2.

noticed, but it is worth remembering that it had 1000 iterations.
The fidelities for the noisy and mitigated results are both promising
and not promising - they are good enough to see some qualitative re-
sults especially after mitigation. At the same time, it would be good
if something could be improved. A factor that may have come into
play is the large size of the timestep, which at ∼ 18 a.u. might make
the approximately compiled trotter expansion too approximate. This
is exactly why such studies are essential to perform before an experi-
ment.

It is hoped that it will be possible to perfect the simulation and
improve the results by tweaking various parameters and eventually
run the full experiment on actual quantum hardware. It is hoped
that the reader has gotten a feeling for the considerations and work
that goes into translating an algorithm that attempts to be efficient
to one that can actually be run on hardware.
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Conclusion and Outlook

“Which way ought I to walk from here?" – "That depends a good deal on where you want to get to."
Alice’s Adventures in Wonderland, Lewis Carroll, 1865

This thesis has presented a broad introduction to quantum com-
puting with a strong focus on error mitigation and algorithms. This
was to lay the foundation for the research that followed. The re-
search can be thought of in three steps, first an almost ideal algo-
rithm with potential to be used in current devices, then presenting
research in dealing with the many errors presenting a new method
of error mitigation, finally looking forward into a future where there
is some error correction. Finally, the algorithmic and practical sides
were brought together in a still in progress work where one of the
first experiments in quantum computer-simulated first quantization
based dynamics will be performed.

To achieve this goal, the reader and author have gone through
a journey beginning with a short overview of the fundamentals of
quantum computing, beginning with a mathematical underpinning
and the foundational postulates of quantum computing. This allowed
the introduction of gate based quantum computing concepts and
some fundamental theorems of quantum information and computing.

From here it was possible to discuss various quantum algorithms
and the kinds of advantages they have over classical algorithms. In
particular a strong focus was given to the variational quantum eigen-
solver as it was one of the most promising candidates for these of
current machines should error correction not work out. Of course,
mentioning error correction means a discussion on errors, of which
their characterization and foundational error mitigation techniques
and considerations were presented. A brief discussion on error cor-
rection and its recent advances were shown for context.

This laid the foundations to discuss a short introduction and
history to quantum chemistry on quantum computers, looking at
both the second quantized approach which is more popular for elec-
tronic structure, and then first quantization approaches that may
be more promising for dynamics. Then foundational algorithms for
Hamiltonian simulations were presented. This knowledge and con-
text is hopefully of help for the true meat of the work, which is the
research.
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Here the TDVQP algorithm for mixed quantum-classical dy-
namics is presented, which is used to solve the classical nuclear and
quantum electron dynamics of the Shin-Metiu model in first quan-
tization. Many simulations considering finite shot effects were run,
yielding qualitatively good results. The simulations themselves were
noiseless, but just to be sure that noise won’t be a problem, a novel
error mitigation technique is developed that combines the previously
introduced techniques and combined them into one called UNITED1. 1 Because it is a method to combine

different techniques in harmony.It turns out that doing so, with enough measurements, allows one to
correct better than any one technique alone.

Around this time though it was becoming clear that error mit-
igation would probably never truly bring about a useful quantum
algorithm, so instead the question of what happens when one has a
perfect quantum computer but then attempt to add noisy subsys-
tems to it came up. So instead of making a computer better, what
happens when it begins perfect and make it worse? It turned out
that even a single qubit subject to noise would destroy the state
eventually.

Undeterred and armed with all the tools and techniques required
to write an algorithm and think about how it could be made to
work on noisy hardware it is time to actually do so. The last chap-
ter of the research presents a currently incomplete work that brings
together the algorithm and error mitigation into a soon-to-be exper-
iment, and discusses all the practical considerations that must be
taken, hopefully instructing all who read this about the various com-
plexities of this era of quantum computing, from how to justify time
on a quantum computer to the compromises and tricks that have to
be played.

As such the thesis has explored a large range of methodologies
with a focus on the chemical use case for NISQ computers. Many
times it is mentioned that the main obstacle to quantum comput-
ing is the presence of noise, and that when it is there most hope of
advantage is pushed away. At the time of writing there is no hint of
a clear advantage, even though techniques today do go beyond any
exact computations [214], but not beyond very good approximations
by the arch nemesis and sometimes fundamental friend of quantum
computing, tensor networks.

As such at the moment noisy quantum computers are approaching
state of the art classical techniques, but for a very small subset
of problems that happen to be Hamiltonian simulation, which is
exactly what Feynman said they would be good for. Whether this
will extend to more complicated systems like those in chemistry,
that is likely not the case as simulating chemical systems require
extremely deep circuits. Variational circuits in general have been
falling out of favour, but things like geometric deep learning and
their translation into quantum machine learning may still be fruitful.

However, the major advances happening in quantum error correc-
tion make the prospect of fault-tolerant machines much more tangi-
ble. If there is any prediction to be made it is that going back to the
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ideal algorithms and making them resource efficient in terms of gate
counts or discovering new constructions2 for important operations 2 A construction is something like an

algorithm to generate a specific type
of state or some N-qubit unitary.

for fault-tolerant machines is the future of the craft.
At the same time, it is the case that to keep this research exciting

it would be very beneficial to the field if even existing machines yield
useful results, so such a pursuit is beneficial to both the quantum
computer providers and the lucky research groups that achieve the
first hints at advantage. If they can cut through the noise!
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A Reflection

’Roses have thornes, and silver fountaines mud, Cloudes and eclipses staine both Moone and Sunne’
No more be grieved at that which thou hast done, Sonnet 35, William Shakespeare, c.a.1592-1595

Quantum computing is a truly odd field. It is full of promise
and problems, like many others, but it also has unrealistic expecta-
tions brought upon it from an extreme amount of investment that
has not truly been seen often in the history of science. This has lead
to many claims that at best stretch the truth and due to this the
research has become applied before it truly has a chance at being
realistic. In my opinion this is a bit of a pity, and I fear this work
has somewhat fallen into that race of trying to apply something too
soon when it was still time to explore the waters.

When I started working in QC in late 2018 Preskill had only just
written his prediction of the potential of the so called NISQ era
[168]. Indeed, in that year was the first implementation of what is
now known as zero noise extrapolation [75] from theoretical work
only done in the previous year [112]. As such it was an exciting time
to be in the field. As I have mentioned several times throughout the
work, there was a veritable explosion in the exploration of NISQ
ready algorithms.

Indeed, for better or for worse the work I did through this the-
sis fits fairly nicely within this scheme. My first paper of the PhD
was a result of the LANL summer school I had done just before
and throughout the first month or two of the PhD which was the
UNITED error mitigation technique. This then lead to some dis-
cussions where the idea of combining perfect and imperfect qubits
came along, which was the second paper of my PhD. Concurrently
to this Oriol Vendrell and me had been working on various ideas on
non-adiabatic dynamics on QCs, a lot of which were researched and
published in the early stages of our own work which was dishearten-
ing to me, but such is research, and we found a nice topic in mixed
quantum classical dynamics in first quantization. This was based
on an algorithm based on VQE, and so very appropriate for this
era of research. This is being picked up and being slowly but surely
adapted to run on an actual QC. Indeed, now the very same model
is being studied by at least one other group [325], under a very dif-
ferent approach, surprisingly working off different results from the
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Vendrell group.
Now that it’s 2025 there are many more doubts on the validity or

scalability of the VQE and to a lesser extent other VQAs, for after
all the variational principle and parameterized models will always
be a compass to numerical and theoretical studies, leaving quan-
tum computing in a split between two paths. One is chasing the
road pitched by IBM which is that of quantum utility [213], whether
it’s utility or futility, only time will tell. The other is slightly more
far term, and it is a return to fault-tolerant algorithms, which are
a little different from the early ’idealistic’ algorithms of the before
times1. These algorithms go back to not worrying about noise, but 1 Before 2017

now take into account some of the remaining limitations imposed by
error correction. In particular, the amount of time it takes to run
an algorithm and how many measurements are required to estimate
important expectation values, since the overhead to error correc-
tion is likely to be quite large. This is also not helped by the fact
that the clock speed of QCs are limited by the physical speed of the
interactions required to perform gates, and as such there will be a
plateau.

As such there is a resurgence of creativity beyond variational
algorithms, which I think will be a great benefit to the potential
usefulness to quantum computing, be it in the actual discovery of an
actionable quantum advantage or in the discovery of techniques that
may be useful in classical computing. I call this potential phenomena
scientific backporting2, and it has happened a few times, usually due 2 In the same way programs and

games from newer machines back in
the early days of home computing
would be rewritten for a particularly
popular older machine.

to the fact that noise removes quantum advantage from many classes
of algorithms [331], but some observables are easier to simulate
than others even in noiseless cases [62]. Once in a while a supposed
algorithmic advantage is disproven [332].

There is also the question, now that machine learning has effec-
tively solved3 some long-standing problems such as protein folding 3 By this I mean that for many

practical purposes excellent solutions
have been found

[333], if QCs are truly necessary if one can learn the right approach
to specific problems that do not need to explore an exponentially
large Hilbert space. This is part of the race of being able to numeri-
cally compute or simulate problems with an ever-growing number of
components, but you shouldn’t forget that sometimes mathematical
or purely theoretical insights can shed much more light on a prob-
lem rather than more accurately computing yet another test case.
Nonetheless, for problems of practical importance if quantum com-
puting or machine learning are the ones that will solve ever larger
problems, it will be a net gain for all research.
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A
Time-Dependent Variational Quantum Propagation

A.1 Multiple transitions

The simulation parameters for these examples are synthetic, with a
∆t = 0.05 and an initial velocity of v = 0.2, which tests if the algo-
rithm can deal with more complex dynamics within 700 timesteps.
All other parameters are kept as in the main text. Figure A.1 shows
the dynamics of the populations with 4 population crossings that are
well described between states 0,1 and 2.
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Figure A.1: State population
evolution for multiple tran-
sitions. The simulation of the
Shin-Metiu model is initialized
in the ground state and evolved
for 700 steps of ∆t = 0.05 with
a fast-moving proton (v = 0.2).
This induces 4 transitions. The
lines show the mean BOPES
state populations (solid for
ideal and dashed for TDVQP)
with faint lines representing
higher energy levels of the
TDVQP.

What is particularly interesting is that around the end of the sim-
ulation (t > 17), there is a fall in occupation of the second state and
an increase in the first state. This is nicely matched by what the en-
ergy in Figure A.2. Now that the state is highly excited, population
loss to lower energy states causes a drop in the energy rather than
the increase in the other examples.

This fall in energy is not accompanied by an increase in fidelity,
and as Figure A.3 shows, the fidelity keeps decreasing at a steady
rate, although likely that at very long times it would begin to oscil-
late at around 0.5.

A.2 Arbitrary state evolution
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Figure A.2: Change in en-
ergy for the multiple tran-
sition simulation. The plot
shows the energy behaviour of
the TDVQP algorithm (orange
solid line) as it progresses over
700 timesteps of ∆t = 0.05
starting in the ground state,
but with a fast-moving pro-
ton (with an initial velocity of
v = 0.2). The ideal simulation
is energy-conserving. The rise
in TDVQP energy is due to
leakage to higher energy lev-
els, which then transitions to
leakage in lower energy levels
as the higher energy level is
populated.
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Figure A.3: Fidelity for the
multiple transition simula-
tion. The fidelity (solid blue
line) of the TDVQP wavefunc-
tions compared to the exact
evolution of the initial state for
700 timesteps of ∆t = 0.05. It
can be seen that it decreases
over time more quickly than
the ground state evolution.

|ψdesired⟩ U(θ)† ≈ |0⟩

Figure A.4: Computing the
ansatz parameters for ar-
bitrary state preparation.
The quantum simulator is ini-
tialized in the desired state,
and the ansatz U parameters θ
are varied until the final state
is close to |0⟩.

To prepare an arbitrary state it is possible to find some unitary U
that can operate on a state |ψ⟩ such that U |ψ⟩ = |0⟩. This circuit
can be made to have the form of the desired ansatz and only it is
only allowed to vary the parameters θ. Some threshold or number
of iterations is set and the expression minθ(1 − | ⟨ψ|U(θ) |0⟩ |2) is
optimized to said threshold. This is done by running the circuit
in Figure A.4, where the quantum computer is initialized int the
excited state. For this simulation, the starting state is set to be
the desired state, and an initialization in the first excited state is
shown in Figure A.5 and a superposition of the two lowest BOPES
in Figure A.6.
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Figure A.5: State popula-
tion evolution of the first
excited state. The simula-
tion of the Shin-Metiu model
initialized in the first excited
state and evolved for 700 steps
of ∆t = 0.05. Initial conditions
are the same as in Section 6.3
and the lines show the mean
BOPES state populations. The
faint lines represent higher
energy levels of the TDVQP.
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Figure A.6: State population
evolution of the superposi-
tion state. The simulation of
the Shin-Metiu model initial-
ized in an equal superposition
of the 0 and 1 states showing
the mean BOPES state popula-
tions and evolved for 700 steps
of ∆t = 0.05. Initial conditions
are the same as in Section 6.3
and the lines show the mean
BOPES state populations. The
faint lines represent higher
energy levels of the TDVQP.
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Figure A.7: Mean fidelity
over the evolution of the equal
superposition showing the low-
est BOPES states (solid, blue)
and first excited state (orange,
dashed). The highlighted areas
show the standard deviation of
their respective values.
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Figure A.8: Mean force mea-
surements for an equal super-
position of the lowest BOPES
states (solid, blue) and first
excited state (orange, dashed)
compared to their respective
ideal simulations (black).

Figures A.4 and A.5 both show that the states of interest are ini-
tially well represented by the algorithm. As the evolution continues
the evolution remains qualitatively similar, but degrades, especially
when populations approach the ’noise floor’ of the algorithm around
10−3 where the higher energy levels are populated. Figure A.7 shows
a very sharp decrease in fidelity in the first timesteps and quite a
large standard deviation compared to ground state results shown in
Figure A.3. This may either be due to not being able to initialize
the ansatz as well in non-ground state settings with this approach.
Forces are still well followed qualitatively as in Figure A.8.

A.3 Inherent Errors in Ideal TDVQP

The TDVQP algorithm inherits all of the errors of its constituent
parts. This includes the chosen circuit compression algorithm, time
evolution approximation, and in the classical propagator. Nonethe-
less, it is important to have an intuition of the potential pitfalls of
the algorithm. The first subsection will begin with a short derivation
of the effect of the magnitude of the infidelity of the wave function
on an observable. This is followed by an analysis of the propaga-
tion through the velocity Verlet integrator, and finally, numerical
experiments comparing the effect of various potential errors on the
Shin-Metiu model. The second subsection will show the effect of
finite shots on the algorithm

A.3.1 Errors Due to Incorrect Force Expecation Values

The error can be thought of as a superposition of the desired state
|ψ⟩ some combination of undesired orthogonal states |ϕ⟩ are in a
superposition of |ψ̃⟩ =

√
1 − I2 |ψ⟩ + I |ϕ⟩, where I is the infidelity.
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When a Hermitian observable O is measured, the result is

⟨ψ̃| O |ψ̃⟩ =
(
1 − I2) ⟨ψ| O |ψ⟩ + I2 ⟨ϕ| O |ϕ⟩ . (A.1)

The actual measured observable is completely system depen-
dent, so the effect of its magnitude on the rest of the algorithm
cannot be estimated at this stage. Nonetheless, an idea of the ef-
fect of this on the integrator can be formed by assuming that this
directly translates to a worst-case error in the force observable, so
that for an error of some magnitude, Fe is replaced in eq. 6.2 with
Fe(Ri, |ψi⟩) = Fi + Fiϵ and propagate the first timestep.

R̃1 = R0 + Ṙ0∆t+
F0 + F0ϵ

M
∆t2 (A.2)

= R1 +
Fϵ
M

∆t2, (A.3)

(A.4)

This shows the error in position is linear in the force error and
quadratic in the timestep. This now enters the generation of the new
position-dependent Hamiltonian such that Hel(R1 +

Fϵ
M ∆t2) which is

used on the subsequent step. The first evolution begins at a known
position and the second is already affected by the previous error as

|ψ̃1⟩ = exp(−iHel(R0)∆t) |ψ̃0⟩ , (A.5)
|ψ̃2⟩ = exp(−iHel(R̃1)∆t) |ψ̃1⟩ . (A.6)

Sadly even in this simple 1-dimensional model, it is difficult to
analytically determine the effect on the evolution of the subsequent
wavefunction, so assume this effect is negligible within one timestep.
Now the effect on the velocity update can be computed as

˜̇R1 =Ṙ0 +
F0 + F0ϵ + F1 + F1ϵ

2M ∆t (A.7)

˜̇R1 =Ṙ0 +
F0 + F1

2M ∆t+
F0ϵ + F1ϵ

2M ∆t (A.8)

˜̇R1 =Ṙ1 +
F0ϵ + F1ϵ

2M ∆t (A.9)

The update can always be separated into the contributions of the
ideal integration and the integration of the error. This shows that
the velocity estimation error is linear in the error in the force and
linear in time. From the second timestep onwards, the error will
accumulate leading to behaviour like

R̃i = R̃i−1 +
˜̇Ri−1∆t+

Fi + Fiϵ
2M ∆t2. (A.10)

This expression can then be expressed as the ideal contributions
and the contributions from the force error as

R̃i = Ri + Ṙi−1∆t+
i∑

j=0

(
F(j−2)ϵ + F(j−1)ϵ

2M +
Fjϵ
M

)
∆t2. (A.11)

(A.12)
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And if the error in the force is constant the expression simplifies
to

R̃i = Ri + Ṙi−1∆t+
(i2 + i)Fϵ

2M ∆t2, (A.13)

which is quadratic in the timestep, linear in the magnitude of
the error, and quadratic with respect to the number of time steps.
The error is also likely to be proportional to I2, which will initially
be small but may increase unexpectedly as the desired position and
subsequent error-prone time evolution will increasingly diverge from
the ideal time evolution.

The above section illustrates that there is an effect due to the
inherent interplay between the observables and the classical propa-
gation which increases through time. But The fidelity of the wave-
function is always affected by the set optimizer threshold for fidelity.
Assuming this is always met within the maximum allowed number of
iterations per timestep, with a threshold of T and assuming no other
errors, the fidelity with the number of iterations i should fall as

| ⟨ψexact(i)|ψTDVQP(i)⟩ |2 ≈ T i. (A.14)

The overall effect of the threshold error is already illustrated
in Figure 6.11, but the effect of the observable deserves numerical
simulations, so two different types of errors have been simulated.
The first is a constant additive offset (F̃ = F + Fϵ) that simply
adds a force of the stated magnitude at each timestep and is shown
in Figure A.9. The second is a multiplicative factor F̃ = F + F · ϵ,
which is force-dependent and its effect is shown in Figure A.10. The
effect of both types of errors is quantified by comparing the fidelity
of the ideal evolution to the one in which this error is injected at
each timestep, but otherwise, the quantum evolution and integrator
are the same as in the ideal case. The effect in both is a straight line
in the log-log plot of 1 − fidelity over time, which hints at there being
a power law as in eq. A.13. The gradient of the lines is identical in
all cases within one error group (additive or multiplicative), but it is
larger than 2. This may be due to the change in the Hamiltonian as
the positions diverge which is not taken into account in eq. A.13.

Another potential error that should be disentangled from the rest
is the effect of the trajectory on the TDVQP. To do this, the nu-
cleus was set to follow the path it would have followed on the exact
simulation irrespective of the measured observable. In effect, an evo-
lution under an external time-dependent Hamiltonian. Figure A.11
shows the effect of the parameterization, which is insignificant at
the infinite shot limit, but quite noticeable in the finite shot case.
The difference is particularly pronounced near the transition point
(which is beginning to be approached around 200 a.u.), where the
speed of the nucleus has a large effect on the transition probability,
as expected by the Landau-Zener formula. The lower measured force
over the simulation as seen in Figure 6.10 means that the speed of
approach differs enough for the transition to cause a divergence in
fidelity of the two.



A

time-dependent variational quantum propagation 165

100 101 102 103

Timestep

10−15

10−12

10−9

10−6

10−3

100

1-
|〈ψ

ex
ac

t(
t)
|ψ

er
ro

r(
t)
〉|2 Constant force offset

1 · 10−5

1 · 10−6

1 · 10−7

1 · 10−8

Figure A.9: Effect of an ad-
ditive force measurement
error on ideal propagation.
The force is a constant addition
of Fϵ at each step such that
F̃i = Fi + Fϵ. Different colours
represent different error factors.
Reproduced from [180] under
CC4.

Figure A.10: Effect of a
multiplicative force mea-
surement error on ideal
propagation. Here the force is
a constant addition of a magni-
tude (ϵ) dependent error such
that F̃i = Fi + Fi · ϵ. Different
colours represent different error
magnitudes. Reproduced from
[180] under CC4.

Figure A.11: Effect of using
a parameterized trajectory
on the p-VQD algorithm, show-
ing the infinite shot limit in
blue and 105 shots in orange,
with highlights showing the
standard deviation. Solid lines
are unparameterized while
dashed lines are. In the infi-
nite shot limit, there is little
difference between the two, but
in the finite shot case, fidelity
does not fall as quickly nearing
the transition point, likely due
to a difference in the speed
of approach of the nucleus.
Reproduced from [180] under
CC4.
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A.3.2 Finite Shot Effects
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Figure A.12: Populations
with finite sampling effect
for the MD initialization simu-
lation, showing different colours
for the various shot counts, 0
being the infinite shot limit.
Dashed lines represent the
excited state while solid lines
represent the ground state.
Reproduced from [180] under
CC4.

Figure A.12 shows the effect of finite sampling error on the state
populations. When shot noise is taken into account, the system
tends to move towards the equal superposition state. Interestingly,
the population transfer between states 0 and 1 is enhanced, likely
due to the faster decrease of the 0 state to other states.
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B.1 Correcting Depolarizing Noise with UNITED

Consider a global depolarizing noise channel that acts on all Q
qubits, this channel takes the form:

ρ −→ (1 − p)ρ+ p
I

d
(B.1)

where d is the dimension of the Hilbert space and 0 ⩽ p ⩽ 1. If this
channel acts i times throughout this can be represented as:

ρψ,i = (1 − p)iρψ + (1 − (1 − p)i)
I

d
(B.2)

Consider the effect of the above channel on some observable of inter-
est X:

Xnoisy,i
ψ = Tr(ρψ,iX) (B.3)

= (1 − p)iXexact
ψ + (1 − (1 − p)i)

Tr(X)

d
(B.4)

Using an ansatz which combines observables evaluated at multiple
state preparation noise levels an several numbers of copies in the VD
circuit structure. For simplicity swap noise increases are omitted in
this treatment.

X̂mit
ψ =

n,M∑
i=1,m=1

ai,mX
noisy,i,m
ψ (B.5)

where X̂mit
ψ is the estimate of the observable of interest, n is the

number of noise levels and ai,m are the parameters fitted using least
squares regression on the data generated by the near-Clifford VD
training circuits with m copies. Therefore,

Xnoisy,i,m
ψ =

Tr
(
ρmψ,iX

)
Tr
(
ρmψ,i

) (B.6)

This expression can be evaluated. First focusing on the denominator:

Tr
(
ρmψ,i

)
= Tr

( m∑
k=0

(
m

k

)(
(1 − p)iρψ

)(m−k)
(

1 − (1 − p)i

d

)k)
(B.7)

=
m∑
k=0

(
m

k

)
(1 − p)i(m−k)Tr(ρψm−k)

(
1 − (1 − p)i

d

)k
(B.8)



B

168
Quantum Chemistry on Quantum Computers

If it is assumed that ρψ is pure then ρ2
ψ = ρψ and Trρψ = 1. Noting

that when m = k it is a trace over the identity, giving:

Tr
(
ρmψ,i

)
=

m−1∑
k=0

(
m

k

)(
(1 − p)i(m−k)

(
1 − (1 − p)i

d

)k)
+ d

(
1 − (1 − p)i

d

)m
(B.9)

= (1 − p)im
(
(1 − p)−i − 1

d
+ 1
)m

+ (d− 1)
(

1 − (1 − p)i

d

)m
(B.10)

=

(
1 + (d− 1)(1 − p)i

d

)m
+ (d− 1)

(
1 − (1 − p)i

d

)m
(B.11)

Now consider the numerator of Eq.B.6

Tr
(
ρmψ,iX

)
= Tr

( m∑
k=0

(
m

k

)(
(1 − p)iρψ

)(m−k)
(
(1 − (1 − p)i)

d

)k
X

)
(B.12)

=

(
1 + (d− 1)(1 − p)i

d

)m
Tr
(
ρψX

)
+ (Tr(X) − Tr(ρψX)

(
1 − (1 − p)i

d

)m
(B.13)

= Tr(ρψX)

((
1 + (d− 1)(1 − p)i

d

)m
−
(

1 − (1 − p)i

d

)m)
+ Tr(X)

(
1 − (1 − p)i

d

)m
(B.14)

Combining the above yields the following expression:

Xnoisy,i,m
ψ = fi,mTr(ρψX) + gi,mTr(X) (B.15)

where

fi,m = 1 − d

((1 − (1 − p)i)−m(1 + (d− 1)(1 − p)i)m + d− 1) (B.16)

gi,m =
1

((1 − (1 − p)i)−m(1 + (d− 1)(1 − p)i)m + d− 1) (B.17)

This can be simplified further as fi,m = 1 − dgi,m. Therefore,

Xnoisy,i,m
ψ = (1 − dgi,m)Tr(ρψX) + gi,mTr(X) (B.18)

It is good to check that g1,1 = p/d, f1,1 = 1 − p leads to the ex-
pected result for one copy and one noise level, g2,1 = (2−p)p

d =
1−(1−p)2

d , f2,1 = (1 − p)2 also as expected.
Take the case where the ansatz is formed from one noise level

i = 1 and two copies m = 1, 2.

X̂mit
ψ = a1,1X

noisy,1,1
ψ + a1,2X

noisy,1,2
ψ (B.19)

with this anstaz is it possible to completely remove the effects of
global depolarizing noise?

X̂mit
ψ = a1,1((1 − p)Xexact

ψ + p
Tr(X)

d
) + a1,2((1 − dg1,2)X

exact
ψ + g1,2Tr(X))

(B.20)

= Xexact
ψ (a1,1((1 − p) + a1,2(1 − dg1,2)) + Tr(X)(

p

d
a1,1 + a1,2g1,2)

(B.21)
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For X̂mit
ψ = Xexact

ψ , this gives:

a1,1 = −g1,2
d

p− dg1,2
, a1,2 =

p

p− dg1,2
(B.22)

Considering m = 2 gives

g1,2 =
p2

d(d(p− 1)2 − (p− 2)p) (B.23)

So it is shown that this ansatz can correct global depolarizing noise
for one noise level. This extends to any number of noise levels.
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