
INAUGURAL – DISSERTATION

submitted to the

Combined Faculty of Mathematics, Engineering,

and Natural Sciences

of

Heidelberg University, Germany

for the degree of

Doctoral of Natural Sciences

Put forward by

Leon Radeck M.Sc.

Born in Forchheim

Oral examination: ………………..

2

3

Collecting feedback and deriving

requirements

Supervisors:

Prof. Dr. Barbara Paech Heidelberg University

Prof. Dr. Norbert Seyff University of Applied Sciences and Arts

Northwestern Switzerland

4

5

ABSTRACT

[Context] User feedback plays an important role in software development, improving

system acceptance, reducing project failures and enhancing customer loyalty. To

achieve these benefits, software organizations actively collect, analyze and validate

feedback to derive changes to existing requirements or new requirements. However,

feedback collection and requirements derivation are hindered by several problems that

are reported in literature. Feedback from a small selection of users can result in biased

or incomplete requirements; vague or ambiguous feedback makes it difficult to map it

to requirements; feedback lacking details to propose a change to the application cannot

be used to derive requirements; gathering feedback at specific times is not possible by

relying solely on user initiative and feedback that is used for requirements derivation

must be validated to ensure support among users. [Objective] The goal of this thesis

is to introduce an approach for requirements engineers that enables them to collect

feedback and derive requirements without facing the mentioned problems. The

approach consists of a process to collect feedback and derive requirements, as well as

the platform “smartFEEDBACK” that supports the process. [Methods] To achieve the

goal, this thesis follows the design science methodology consisting of problem

investigation, treatment design and treatment validation. The problem investigation

consists of a systematic mapping study to understand the current state and practice of

collecting feedback over platforms. Platforms are online tools that facilitate the

collection of feedback from multiple stakeholders and enable exchange about that

feedback among them. The results of the problem investigation are the basis for the

treatment design (our approach). The treatment validation validates whether the

approach is feasible and effective, as well as whether the users are satisfied with it and

whether the approach can be improved. For the treatment validation the approach is

applied in the large-scale research project SMART-AGE that examines the use of four

interconnected apps developed for older adults to improve their quality of life.

[Contributions] We contribute our approach that enables researchers and

practitioners to collect feedback and derive requirements without encountering the

mentioned problems. Additionally, we contribute our mapping study that can serve

as a foundation for future systematic mapping studies or as an orientation for

designing individual feedback platforms. We also offer a dataset of change requests

collected in SMART-AGE, providing insights into real-world feedback from older

adults. This dataset is useful for researchers and practitioners aiming to understand

the specific needs and preferences of this user group. Lastly, we contribute a validation

of the approach's feasibility, effectiveness, user satisfaction and improvement, offering

a benchmark for researchers to compare their approaches.

6

7

ZUSAMMENFASSUNG

[Kontext] Nutzerfeedback spielt eine wichtige Rolle in der Softwareentwicklung, da es die

Akzeptanz von Systemen verbessert, Projektausfälle reduziert und die Kundentreue positiv

beeinflusst. Zur Realisierung dieser Vorteile, sammeln, analysieren und validieren

Softwareorganisationen aktiv Feedback, um Änderungen an bestehenden Anforderungen

oder neue Anforderungen abzuleiten. Allerdings wird die Feedbacksammlung und

Anforderungsableitung durch mehrere in der Literatur beschriebene Probleme erschwert.

Feedback von einer kleinen Anzahl an Nutzern kann zu nicht repräsentativen oder

unvollständigen Anforderungen führen; vages oder unklar formuliertes Feedback erschwert

die Zuordnung zu Anforderungen; Feedback, das nicht detailliert genug ist, um Änderungen

an der Anwendung vorzuschlagen, kann nicht zur Ableitung von Anforderungen verwendet

werden; der Zeitpunkt für das Sammeln von Feedback kann nicht kontrolliert werden, wenn

man nur darauf wartet, dass die Nutzer selbstständig Feedback abgeben; und Feedback, das

zur Ableitung von Anforderungen verwendet wird, muss validiert werden, um die

Unterstützung durch Nutzer sicherzustellen. [Zielsetzung] Ziel dieser Arbeit ist es, einen

Ansatz für Anforderungsingenieure vorzustellen, der es ihnen ermöglicht, Feedback zu

sammeln und Anforderungen abzuleiten, ohne auf die genannten Probleme zu stoßen. Der

Ansatz besteht aus einem Prozess zur Sammlung von Feedback und der Ableitung von

Anforderungen sowie der Plattform „smartFEEDBACK“, die diesen Prozess unterstützt.

[Methode] Um das Ziel zu erreichen, folgt die Arbeit der Design-Science-Methode, bestehend

aus Problemuntersuchung, Lösungsentwurf und Lösungsvalidierung. Die Problem-

untersuchung umfasst eine systematische Mapping-Studie, um den aktuellen Stand und die

Praxis der Feedbacksammlung über Plattformen zu verstehen. Plattformen sind Online-Tools,

die die Sammlung von Feedback von mehreren Stakeholdern und den Austausch über dieses

Feedback ermöglichen. Die Ergebnisse der Problemuntersuchung bilden die Grundlage für

den Lösungsentwurf. Der Lösungsentwurf umfasst das Design des Prozesses und der

Plattform. Die Lösungsvalidierung überprüft, ob der Ansatz machbar und effektiv ist, ob die

Nutzer zufrieden sind und ob der Ansatz verbessert werden kann. Für die

Lösungsvalidierung wird der Ansatz im Forschungsprojekt SMART-AGE angewendet, das

den Einsatz von vier miteinander vernetzten Apps untersucht, die für ältere Erwachsene

entwickelt wurden, um deren Lebensqualität zu verbessern. [Beiträge] Wir leisten einen

Beitrag durch die Bereitstellung unseres Ansatzes, der es Forschern und Praktikern

ermöglicht, Feedback zu sammeln und Anforderungen abzuleiten, ohne auf die genannten

Probleme zu treffen. Darüber hinaus tragen wir mit unserer Mapping-Studie bei, die als

Grundlage für zukünftige Mapping-Studien oder als Orientierung für die Entwicklung

individueller Plattformen dienen kann. Wir bieten auch einen Datensatz, der Einblicke in die

Änderungswünsche der Nutzer von SMART-AGE ermöglicht. Dieser Datensatz ist nützlich

für Forscher und Praktiker, die die Bedürfnisse dieser Nutzergruppe verstehen möchten.

Schließlich tragen wir mit einer Validierung der Machbarkeit, Effektivität,

Nutzerzufriedenheit und Verbesserungsmöglichkeiten des Ansatzes bei und bieten so eine

Basis auf der Forscher ihre Ansätze vergleichen können.

8

9

ACKNOWLEDGEMENTS

I want to express my gratitude to my supervisor Professor Barbara Paech for providing

me the opportunity to pursue my doctoral studies and to be part of her Software

Engineering Group at Heidelberg University. I appreciated always that I could reach

out to her with any questions and that she took a genuine interest in the progress of

my work by continuously giving me valuable feedback. I learned from her to question

more deeply the reasons behind why and how something is done, rather than simply

doing it. Furthermore, I learned a lot about presenting my own work and about the

importance of documenting insights from discussions in a structured manner. I am

also very grateful to Norbert Seyff for agreeing to take on the role of second examiner

and I hope he doesn’t regret it after seeing the page count of this thesis. I would like to

thank all my (former) colleagues: I want to thank Michael for the conversations we

shared over the past four years and his support. I would like to thank Anja for going

to the Mensa frequently with me and for all the tips and advice she shared. I want to

thank Willi for his support regarding tasks of the SMART-AGE research project,

especially for managing the order of large amounts of tablets and licenses. I want to

thank Stephanie for her support with all questions I had, for reserving rooms, for

giving me letters and for the many conversations we had. I want to thank Astrid for

helping me onboard the software engineering group and for her help with any

questions. Also, I want to thank Eoin for all the table tennis sessions. For the help

regarding the design of the process to collect feedback and derive requirements, I want

to thank Dennis Scherbatschenko. For the support regarding the development of

smartFEEDBACK, I want to thank Loris Wilwert, Jonas Roos and Benjamin Tuna. I am

also grateful to Daniela Tratz-Weinmann for researching how usage data can be

analyzed, which inspired the validation of the approach. I would also like to thank

many people that helped me in the research project SMART-AGE. I want to express

my gratitude to Niklas Kern and Roman Eiser for designing the help materials.

Furthermore, I would like to thank David Schwenke for developing the SMART-AGE

portal and the reminder system. Special thanks also go again to Niklas and David for

their assistance in automating a large part of the tablet configuration, which was

absolutely essential. I want to thank Zaynab and Dionysios for their help with

configuring hundreds of tablets. I want to thank Robert Jakobs and Moritz Buehrer for

the implementation of smartIMPULS and smartVERNETZT. I would also like to thank

all the people who supported me outside of my work. I want to thank my family for

their constant support, encouragement and care during my life and I want to thank all

my friends—especially those from "Innerer Kreis", the "HD Family" and my shared

flat, as well as all my friends in general—for the many enjoyable experiences we have

shared and continue to share.

10

11

Table of Contents

ABSTRACT.. 5

ZUSAMMENFASSUNG ... 7

ACKNOWLEDGEMENTS ... 9

I. PRELIMINARIES .. 15

1 Introduction ... 17

1.1 Problem context ... 17

1.2 Research methodology ... 19

1.3 Contributions ... 23

1.4 Structure of this thesis .. 24

1.5 Previous Publications ... 25

2 Foundations ... 27

2.1 User feedback types .. 27

2.2 SMART-AGE .. 27

2.2.1 Blinding .. 29

2.2.2 Enrollment procedures .. 29

2.2.3 Apps ... 30

II. PROBLEM INVESTIGATION ... 35

3 State of the art and practice: Collection of feedback over platforms 37

3.1 Research questions .. 37

3.2 Methodology .. 39

3.2.1 Generation of the search string .. 40

3.2.2 Specification of the search sources ... 45

3.2.3 Definition of the inclusion criteria ... 45

3.2.4 Conduction of the term-based search .. 46

3.2.5 Conduction of forward and backward snowballing 46

3.3 Results ... 46

3.3.1 Term-based search .. 46

3.3.2 Snowballing ... 48

3.3.3 Relevant articles .. 51

3.3.4 Literature overview .. 52

3.3.5 Synthesis .. 52

3.4 Discussion ... 61

3.5 Threats to validity ... 63

12

III. TREATMENT DESIGN .. 65

4 Process to collect feedback and derive requirements 67

4.1 Explanation of the documentation format .. 67

4.2 Design decisions .. 68

4.3 Overview of the process ... 69

4.4 Process to collect feedback through initial questions (IQ) 73

4.4.1 REengs select IQ ... 73

4.4.2 REengs ask IQ ... 79

4.4.3 Users answer or skip IQ .. 81

4.4.4 Users send messages and comments ... 81

4.5 Process to derive requirements through follow-up questions (FUQ) 82

4.5.1 Related work ... 82

4.5.2 Terminology .. 83

4.5.3 REengs prepare the feedback ... 83

4.5.4 REengs derive requirements ... 85

4.6 Addressing the problems ... 96

4.7 Conclusion .. 96

5 smartFEEDBACK (SF) - Platform that supports the process 98

5.1 Requirements ... 98

5.1.1 Task level ... 99

5.1.2 Domain level ... 104

5.1.3 Interaction level .. 104

5.1.4 System level ... 111

5.2 Design and implementation .. 112

5.2.1 Presentation tier .. 113

5.2.2 Logic tier .. 121

5.3 Quality Assurance ... 130

5.3.1 Component tests ... 130

5.3.2 Integration tests .. 133

5.3.3 Continuous integration and deployment ... 133

IV. TREATMENT VALIDATION ... 135

6 Study context ... 137

6.1 Data collection .. 137

6.1.1 Datasets .. 137

6.1.2 Resulting data of the process to collect feedback 138

6.1.3 Resulting data of the process to derive requirements 138

6.2 Threats to validity ... 140

7 Validation of feasibility .. 143

13

7.1 Research questions .. 143

7.2 Results and discussion .. 144

7.2.1 Feasibility of collecting feedback ... 145

7.2.2 Feasibility of deriving requirements ... 146

7.2.3 Feasibility of usage of smartFEEDBACK .. 148

7.3 Conclusion .. 150

8 Validation of effectiveness ... 151

8.1 Research questions .. 151

8.2 Results and discussion .. 153

8.2.1 Effectiveness of timeliness .. 153

8.2.2 Effectiveness of completeness... 154

8.2.3 Effectiveness of requirements derivation ... 157

8.3 Conclusion ... 157

9 Validation of satisfaction .. 159

9.1 Research questions .. 159

9.2 Results and discussion .. 161

9.2.1 Satisfaction with the platform .. 161

9.2.2 Satisfaction with the questions ... 164

9.2.3 Satisfaction with the process of asking FUQ .. 166

9.3 Conclusion .. 166

10 Improvement of the approach ... 169

10.1 Characteristics .. 169

10.2 Research questions .. 171

10.3 Results and discussion .. 172

10.3.1 Statistical terminology ... 172

10.3.2 Improvement of the effectiveness to collect feedback through IQ 173

10.3.3 Improvement of the effectiveness to collect CR ... 176

10.3.4 Improvement of the effectiveness to collect feedback timely 178

10.4 Conclusion .. 179

V. CONCLUSION AND OUTLOOK ... 181

11 Conclusion .. 183

12 Outlook .. 187

VI. APPENDIX ... 189

A Supplementary Material for the Problem Investigation 191

A.1 Methodology .. 191

A.2 Results ... 205

B Supplementary material for the treatment Design .. 223

B.1 Coding ... 223

B.2 Selection of FUQ .. 231

B.3 Requirements ... 235

14

B.4 FUQ ... 262

B.5 Handbook for SF .. 284

C Supplementary material for the treatment validation 297

C.1 Derived requirements ... 297

C.2 Characteristics .. 299

BIBLIOGRAPHY .. 303

INDEX OF TABLES ... 309

INDEX OF FIGURES ... 313

INDEX OF LISTINGS ... 317

15

I. PRELIMINARIES

PART I

16

17

 Chapter

1 Introduction

This Chapter gives an introduction into the relevance of user feedback and problems

that occur during feedback collection and requirements derivation in Section 1.1. It

describes research methodology in Section 1.2. It presents contributions in Section 1.3.

It gives an outline of the thesis in Section 1.4 and it lists previous publications which

content is used in this thesis in Section 1.5.

User feedback improves system acceptance (Kujala, 2008), reduces project failure (El

Emam and Koru, 2008) and increases customer loyalty (Kabbedijk et al., 2009). User

feedback is especially essential for the continuous development of software, because it

contributes substantially to the elicitation of requirements (Bajic and Lyons, 2011).

Software organizations actively collect, analyze and validate feedback so that changes

to existing requirements or new requirements can be derived (Li et al., 2024). In

academic research, the importance of feedback collection and requirements derivation

has led to the development of Crowd-Requirements Engineering (CrowdRE), a

research field dedicated to automating the collection of feedback from large user

groups, referred to as the "crowd" with the goal of deriving validated user

requirements (Groen et al., 2017). However, feedback collection and requirements

derivation are hindered by several problems. We present the problems in Section 1.1.

1.1 Problem context

This Section describes three problems from literature that are associated with feedback

collection and requirements derivation: P1: Completeness of feedback, P2: Control of timing

of feedback collection and P3: Support of change requests among users. P1 is the most

important problem as it contains multiple different subordinate problems (P1.1: A lot

of feedback can be collected from a lot of users, P1.2: Feedback can be mapped to requirements

and P1.3: Feedback contains change requests). There are more problems in the literature

than we want to solve here. For example, one big problem is that users are not

motivated to give feedback (Kolpondinos and Glinz, 2020) and one prominent strategy

for motivating users to give feedback is the use of gamification (Kolpondinos and

Glinz, 2020). However, we do not address this problem, because we know from

1

18

literature that our users, who are older adults, may not be receptive to gamification

elements (Sardi et al., 2017). Furthermore, our users are participating in a study where

providing feedback is an integral part, meaning they are already inherently motivated

to contribute. In general, we do not focus on problems that are not relevant for the

conduction of our approach in the context of our research project SMART-AGE (see

Section 2.2). For example, we also do not focus on the problem of identifying users

who want to give feedback about software (Kolpondinos and Glinz, 2020), because we

have plenty of users already through the recruiting in SMART-AGE. The problems

that our approach aims to treat (P1, P2 and P3) are described in the following.

P1: Completeness of feedback

We define feedback as complete, when a lot of feedback can be collected from a lot of

users (P1.1), when it can be mapped to requirements (P1.2) and when it contains

change requests (P1.3).

P1.1: A lot of feedback can be collected from a lot of users

We want to collect as much feedback as possible from a large number of users in

order to understand their needs. If feedback comes from only a small subset of users,

it may not represent the full spectrum of user needs. This can lead to the

requirements engineers (REengs) receiving only the needs of a minority, while

missing out on the broader needs of the majority of users (Tizard et al., 2020). The

feedback also may be biased toward specific demographics or use cases, resulting in

software that works well for a subset of users but poorly for others. For example,

demographic differences, such as gender or age, affect who provides feedback,

potentially leading to solutions that are not inclusive of all users (Tizard et al., 2021).

Furthermore, as only a small percentage of feedback addresses the desire for change

or for new features (Panichella et al., 2015) and because these change requests are

relevant for deriving requirements, we want to collect as much feedback as possible

from each user.

P1.2: Feedback can be mapped to requirements effortlessly

To derive changes to existing requirements based on feedback, the feedback must be

mapped to these requirements. The mapping to requirements requires that the

feedback is comprehensible. However, feedback often times lacks detail or is

ambiguous, making it difficult to understand and to map to requirements (Laporti

et al., 2009; Lai et al., 2014; Chevalier and Buckles, 2019; Van Oordt and Guzman,

2021; Lim et al., 2021; Li et al., 2024). For example, feedback that states that “the filter

function is not working” potentially does not provide enough details to map the

feedback to a requirement, because it could refer to any filter functionalities within

the application, such as search filters, sorting filters or other content filtering

functionalities. However, even when feedback is not ambiguous, the effort of

analyzing it and mapping it to requirements is high (Van Oordt and Guzman, 2021).

This is why we want to reduce this effort.

19

P1.3: Feedback contains change requests

According to (Van Oordt and Guzman, 2021) practitioners from the industry that

collect feedback often find feedback “not helpful”. Feedback often lacks the

necessary details to propose a change to the application, which is important for

requirements derivation (Panichella et al., 2015). For example, the feedback “I don’t

like the app” is not detailed enough to derive any concrete changes to the app. In

our approach we want to collect feedback that addresses change in more detail, so

that we can use it for requirements derivation.

P2: Control of timing of feedback collection

During feedback collection it is important to collect feedback at specific, targeted

times. For example, after special events such as the release of a software update, it is

necessary to receive timely feedback in order to assess whether the users are satisfied

with the new software version or whether they desire changes. Also, in our research

project SMART-AGE we have specific times when we want to collect specific

feedback. For example, we want to collect feedback about the usability of an app not

directly when the users started to use the app, but after they already have used the

app for a while. This is because asking too early for feedback might disturb the users

(Fotrousi et al., 2018). Collecting feedback at specific times is not possible by relying

on feedback given autonomously, as it depends on the initiative of the users (Maalej

et al., 2009).

P3: Support of change requests among users

According to (Van Oordt and Guzman, 2021) some users are very passionate about

a specific feature that they wish would exist, but according to industry practitioners

this does not mean that the feature is beneficial for the vast majority of the users. To

decide whether a change request of the users should be implemented, it is important

to know whether this change request is supported among the users.

1.2 Research methodology

This research in this thesis follows the design science methodology by Wieringa

(Wieringa, 2014). The research methodology is explained in general and regarding the

specific instance of our approach.

[Design Science] Design science is the design and investigation of artifacts in context.

The design and investigation are the two major activities of design science and the

artifact is the object that is studied. The artifact can be software, hardware, an

organization, a business process or a method. Essentially, anything that can be

designed by a design researcher.

20

Instance

In our case, the artifact is our approach which collects feedback and derives

requirements based on the feedback. The approach consists of the process to

collect feedback and to derive requirements and the platform called

“smartFEEDBACK” (SF) that supports the process.

The context of the artifact refers to the environment in which the artifact operates. This

context may include other software, hardware, organizations, business processes, and

methods, as well as entities that cannot be designed, such as people, values, desires,

fears, goals, norms, and budgets. The problem context refers to the part of the context

that relates to the problem that is solved. The problem context contains the social context

and the knowledge context. The social context contains the stakeholders who may affect

the project or may be affected by it. Stakeholders include users, operators, maintainers,

and others associated with the artifact. The knowledge context consists of existing

theories from science and engineering, specifications of currently known designs, facts

and other knowledge relevant for design and investigation of the artifact.

Instance

In our case, the social context is the users of our platform and us, the REengs. The

knowledge context consists of the problems P1, P2 and P3, that we identified in

literature and that we selected based on our knowledge regarding the research

project and the user group (e.g. we did not focus on the problem of user

motivation, because of the study rewards and the inherent motivation of the

users). Furthermore, the knowledge context consists of our insights identified

through the conducted mapping study in Chapter 3 and our own knowledge

regarding requirements engineering and software development.

[Goals of a design science research project] The goals of a design science research

project consist of the social context goals and the design science research goals. The social

context goals consist of the stakeholder goals. The design science research goals include

technical research goals and knowledge goals. Technical research goals improve the

performance of an artifact in context. Knowledge goals describe phenomena and

explain them. Knowledge Goals are refined into knowledge questions.

Instance

We describe our goal structure in Figure 1.1. There are two stakeholder goals (❶

and ❷) and six design science research goals (❸, ❹, ❺, ❻, ❼, ❽). The

stakeholder goals are associated to the stakeholders, who comprise the users and

21

the REengs. The users’ goal is that their task is well supported by the application

and that they can contribute to its improvement (❶).

Figure 1.1: Goal structure of this thesis. Arrows are indicating that a goal

contributes to another goal.

The goal of the REengs (❷) is to collect feedback in a way that is complete

(addressing P1) and timely (addressing P2). Regarding requirements derivation,

the REengs have the goal to derive requirements based on change requests that

have support among users (addressing P3). This thesis aims to support the REengs

goal, which contributes to the achievement of the user goal. The technical research

goal (TRG) (❸) contributes to the achievement of the REengs goal. The TRG is to

design a process and platform to collect feedback and support requirements

22

derivation that treats the problems P1, P2 and P3. The following knowledge goals

support the technical research goal. Knowledge goal 1 (❹) is about understanding

how feedback can be collected over platforms. To achieve knowledge goal 1, a

systematic mapping study about the state of the art and practice of collecting

feedback over platforms is conducted. Knowledge goal 2 (❺) validates whether

the approach is feasible to collect feedback and to derive requirements. Knowledge

goal 3 (❻) validates whether the approach is effective in collecting feedback and

deriving requirements. Knowledge goal 4 (❼) validates the user satisfaction of the

approach and knowledge goal 5 (❽) shows how the effectiveness of the approach

can be improved.

[Design Cycle] The design activity of a design science project can be decomposed into

three tasks, namely, problem investigation, treatment design and treatment validation.

During problem investigation, the researchers try to understand more about the

problem context or they investigate existing solutions. During the treatment design

one or more artifacts are designed that interact with the problem context to treat the

problem. The treatment validation checks whether the problem is treated by the

artifacts. The set of these three tasks is called design cycle.

Instance

The design cycle for this thesis is shown in Figure 1.2 along with references to

the research goals.

Figure 1.2: Design cycle of this thesis as UML activity diagram. The activities

represent the achievement of each research goal. The activities belong to the

design science tasks: Problem Investigation (PI), Treatment Design (TD) and

Treatment Validation (TV).

23

The design cycle starts with the problem investigation (❶). During problem

investigation, a systematic mapping study is conducted, which analyzes the state

of art and practice for the collection of feedback over platforms. The results of the

mapping study are the basis for the treatment design (❷). For the treatment

validation, the treatment design is applied in the research project SMART-AGE

(❸) and validated for feasibility (❹), effectiveness (❺) and satisfaction (❻). It

is also shown how the effectiveness of the approach can be improved (❼).

1.3 Contributions

We make several contributions that are helpful for other researchers and practitioners

who want to collect feedback and derive requirements from a large number of users.

The most important contribution is our validated approach, consisting of the process

to collect feedback and derive requirements (see Chapter 4) and the platform SF that

supports this process (see Chapter 5, addressing the TRG). Our approach enables

REengs to systematically collect feedback and derive requirements regarding any

desired app.

Second, we contribute a systematic mapping study about the current state of the art

and practice of collecting feedback over platforms (see Chapter 3, addressing knowledge

goal 1). The mapping study investigates what types of feedback are collected at what

times, what the context of feedback collection is, how feedback collection over

platforms is evaluated and what the results are, as well as how the platforms work in

general. The results of the mapping study influence the process to collect feedback and

derive requirements (see Chapter 4) and they influence the design of SF (see Chapter

5). The results of the mapping study also help other researchers that also want to

design feedback platforms.

Third, we contribute a validation of the feasibility of our approach to collect feedback

and derive requirements (see Chapter 7, addressing knowledge goal 2). The validation

reports whether it is feasible to collect feedback, whether it is feasible to derive

requirements and whether the usage of SF is feasible. The results provide other

researchers with valuable benchmarks for assessing the feasibility of their approach to

collect feedback collection and derive requirements.

Fourth, we contribute a validation of the effectiveness of our approach (see Chapter 8,

addressing knowledge goal 3). The validation reports whether the feedback that is

collected is complete (addressing P1), whether the feedback can be collected timely

(addressing P2), and whether requirements can be derived that have support among

the users (addressing P3).

24

Fifth, we provide a validation of the satisfaction of users with the approach (see

Chapter 9, addressing knowledge goal 4). The validation includes the satisfaction of the

users with the platform, with our questions and with the process of asking FUQ. The

validation of the satisfaction can be interesting for other researchers that want to refine

and optimize their feedback platform.

Sixth, we contribute an analysis of whether the effectiveness of our approach can be

improved (see Chapter 10, addressing knowledge goal 5). The insights are helpful for

other researchers that also want to use our approach, as they can use the provided

insights to improve its effectiveness.

1.4 Structure of this thesis

The thesis is composed of six parts and 12 chapters. Table 1.1 gives an overview of the

structure. Part I gives an introduction, Part II describes the problem investigation that

addresses knowledge goal 1. Part III presents the treatment design, which addresses the

TRG. Part IV describes the treatment validation, which addresses knowledge goal 2,

knowledge goal 3, knowledge goal 4 and knowledge goal 5. Part V gives a summary and an

outlook. Part VI contains the appendix.

Table 1.1: Structure of the thesis

P
ar

t
I Preliminaries Chap.

Introduction 1

Foundations 2

P
ar

t
II

 Problem Investigation

State of the art and practice: Collection of feedback over platforms

Knowledge Goal 1: Understand the current state of the art and practice

of collecting feedback over platforms

3

P
ar

t
II

I

Treatment Design

Technical Research Goal (TRG): Design a process and platform to

collect feedback and support requirements derivation that treats the

problems P1, P2 and P3

Process to collect feedback and derive requirements 4

smartFEEDBACK (SF) - Platform that supports the process 5

P
ar

t
IV

Treatment validation

Study context 6

Validation of feasibility

Knowledge Goal 2: Show that the approach is feasible to collect

feedback and derive requirements

7

Validation of effectiveness

Knowledge Goal 3: Show that the approach is effective in collecting

feedback and deriving requirements

8

25

1.5 Previous Publications

Some chapters of this thesis include already published findings. Table 1.2 lists the

publications which contain the findings along with the chapter where these findings

are used.

 Table 1.2: Previous publications

Citation Publication Chapter

(Radeck et

al., 2022)

Radeck et al., Understanding IT-related Well-being, Aging

and Health Needs of Older Adults with Crowd-RE,

Proceedings of the International Workshop on Requirements

Engineering for Well-Being, Aging, and Health, IEEE, 2022.

2, 4, 5

(Radeck and

Paech, 2023)

Radeck L, Paech B, Integrating Implicit Feedback into

Crowd Requirements Engineering – A Research Preview.

Proceedings of the International Conference on Requirements

Engineering: Foundation for Software Quality, ACM, 2023

4, 5

(Radeck and

Paech, 2024)

Radeck L, Paech B, Channeling the Voice of the Crowd:

Applying Structured Queries in User Feedback Collection.

Proceedings of the International Conference on Requirements

Engineering: Foundation for Software Quality, Springer

Nature Switzerland, 2024

4, 5, 7

(Memmer et

al., 2024b)

Memmer et al. 2024b. SMART-AGE Study Protocol: A

Complex Intervention to Increase Social Participation, Physical

Fitness and Health Awareness Among Older Adults. BMC

Trials, 2024

2

Validation of satisfaction

Knowledge Goal 4: Show that the users are satisfied with the approach
9

Improvement of the approach

Knowledge Goal 5: Show that the effectiveness of the approach can be

improved
10

Part

V

Conclusion 11

Outlook 12

26

27

 Chapter

2 Foundations

This Chapter provides an overview of the different user feedback types in Section 2.1

and it presents the research project SMART-AGE in Section 2.2 which is the context in

which we develop our approach to collect feedback and derive requirements in Part

III.

2.1 User feedback types

User feedback can be divided into feedback pushed by the user (push) or pulled from

the user (pull), and feedback given with the intent to give feedback (explicit) or given

unintentionally (implicit) (Maalej et al., 2009). Examples for explicit push feedback are

reports about issues, bugs, enhancements or features that are sent autonomously by

the users. Examples for explicit pull feedback are results of workshops, interviews and

surveys. Examples for implicit push feedback are field observations and conversations

with lead users. Implicit pull feedback is usage data recorded from the users.

2.2 SMART-AGE

The SMART-AGE research project (“Smart Aging in Community Contexts: Testing

Intelligent Assistive Systems for Self-regulation and Co-regulation under Real-Life

Conditions”) is relevant for this thesis, because the treatment design (see Part III) is

validated in this context. The SMART-AGE research project is a large-scale study that

investigates the use of four interconnected apps for older adults who have moderate

digital competence and no significant impairments. These apps aim to help older

adults tackle challenges that affect their quality of life, such as loneliness, fall risks,

declining health, digital exclusion, and the complexities of using digital devices. The

study is structured as a three-armed, randomized controlled trial with repeated

measures over a 6-month period. We refer to the older adults in the following as study

partners (SP), to highlight their contribution as equal collaborators rather than passive

subjects. Figure 2.1 provides an overview of the study procedure.

2

28

Home-based assessments are conducted at the time of study enrollment (T1) and again

after 6 months (T6). Additionally, a brief online self-assessment takes place 3 months

after enrollment (T3). At both T1 and T6, researchers visit the SP in their homes to

conduct assessments, including a series of cognitive tasks and the use of state-of-the-

Figure 2.1: Overview of the study design (Memmer et al., 2024b)

N = total sample size, n = sample size in the treatment arms, CT = cognitive tasks,

T1/T3/T6 = timepoint in the study

29

art body-fixed movement sensors to monitor physical activity for seven consecutive

days. The SP are asked to complete a set of web-based questionnaires on their tablets

within a week of each home visit. These questionnaires are divided into four sets of

comparable length, with each set designed to take no longer than an hour to complete.

The SP are instructed to complete one set of questionnaires per day. Following the

second and fourth sets of questions, SP perform additional cognitive tasks on the

tablet. The first set of questions, presented on the first day, includes the primary

outcome measures and is repeated at T3 to provide more detailed data on the primary

outcomes. One week after the initial home visit, the randomization has already taken

place, and a second home visit is conducted for SP of all groups. During this visit, the

tablets are modified allowing SP in both intervention groups (arm 1 and 2) access to

two SMART-AGE specific apps: smartVERNETZT and SF. These groups also receive

instructions and a manual on how to use these new apps. SP in the control group are

given access to the standard applications on the tablet. However, detailed explanations

are only given for the video chat tool. Four to six weeks after the second home visit, SP

in the full intervention group additionally receive access to and are instructed in the

use of the KOKU app. Approximately 10 days after the digital assessment at 3 months,

the SP of the full intervention group are introduced to the SI app during home visit IV.

Meanwhile, 25% of SP in both the active control and partial intervention group receive

a video call four to six weeks after the second home visit to allow controlling for social

enhancement effects solely due to interacting with the study team, which might affect

primary outcomes.

2.2.1 Blinding

SP are always aware of which study arm they have been assigned to, as this determines

whether they have access to none, two, or all four of the project apps, with the

exception of the baseline assessment. To collect data, two key home visits, HV I and

HV V, are conducted. It is essential that the researchers conducting these visits remain

blinded to the SPs’ group assignments. To maintain this blinding, the research team is

divided into two separate groups: assessors and app instructors. The assessors are

responsible for data collection during home visits HV I and HV V, while the app

instructors manage home visits HV I, II, III, and IV. The first home visit, HV I, takes

place before SP are randomized, allowing both assessors and instructors to participate

in this initial stage of the study.

2.2.2 Enrollment procedures

We recruit SP aged 67 and older, who are evenly distributed across the three study

arms. To identify potential SP, we obtained addresses from the city registries of

Mannheim and Heidelberg and send out invitation letters with detailed study

information. Interested individuals who reach out to the study team undergo a

screening process via phone to determine eligibility based on specific inclusion and

exclusion criteria. Those excluded from the study include individuals under the age of

30

67, those residing in nursing homes, those with severe cognitive limitations, no

internet access, no experience with PCs/Tablets, severe medical conditions, significant

visual or hearing impairments, poor knowledge of German, or those working more

than 20 hours per week. As an incentive, study participants receive a tablet when they

enroll in the survey, which they can keep upon completing the study.

2.2.3 Apps

Pilot studies were conducted for all apps to evaluate their usability and feasibility

(Memmer et al., 2024a). There is a fifth app called “Portal” which allows the access to

the other apps. The development of the apps smartVERNETZT (SV) (Bührer, 2021), SF

and smartIMPULS (SI) (Jakobs, 2021) was carried out by students with supervision of

the Institute of Computer Science at the University of Heidelberg. KOKU (Stanmore,

2021) was initially created at the University of Manchester and translated by the

SMART-AGE project team, with Reason Digital, based in Manchester, UK, handling

the technical implementation. These apps are accessed using a Lenovo M10 FHD Plus

tablet. The usage of the apps is monitored, and if there is no activity for two weeks, a

single reminder email is sent to the tablet for each app. Alongside digital and printed

user manuals and instructional videos, a helpline (accessible via email and phone) has

been established to provide support.

2.2.3.1 smartVERNETZT (SV)

In collaboration with Sara Czaja (Czaja et al, 2018) and her CREATE research team, a

German app-based version of PRISM (SV) was developed. The primary goal of SV is

to enhance social connections, encourage local involvement, and promote

participation in both digital and offline activities among older adults, ultimately

reducing feelings of loneliness. The app offers a curated selection of links and

applications focused on health topics, leisure activities, cognitive games, and learning

opportunities. Additionally, it includes features such as an internet browser, a

calendar with a reminder function, a contact book, and provides weekly updates on

social participation, events, health, exercise, and technology. It also facilitates social

networking through email, social networks, and video chat. Localized links were

added in collaboration with municipal stakeholders. In total, SV includes information

on 25 apps and 148 website links. Figure 2.2 shows a screenshot of SV.

31

Figure 2.2: Screenshot of SV showing the sidebar with activities on the left and tools

on the right. In the background news are presented and information about the

weather.

2.2.3.2 smartFEEDBACK (SF)

SF allows the older adults to give feedback about the apps SV, SI and SF itself.

Feedback can be given by answering questions or by sending messages. With the

collected feedback, requirements are derived so that the apps can be improved. The

approach to collect feedback and derive requirements is explained in Chapter III. An

example screenshot is given in Figure 2.3. All screenshots of SF are presented in the

appendix (from Figure B.2.21 till Figure B.2.40).

Figure 2.3: Screenshot of start page of SF

32

2.2.3.3 KOKU

KOKU is a personalized strength and balance training program designed for older

adults (Stanmore, 2021). The app offers 26 strength and bodyweight exercises that can

be performed while sitting, standing, and walking. These exercises are accompanied

by instructional videos and safety tips, enabling users to engage in unsupervised home

training. To begin the program, SP must complete an initial assessment, which

includes several digitized questionnaires within the app, along with questions about

their history of falls. Users advance through six stages, each consisting of two weeks

with three training sessions per week. The app recommends three daily exercises,

targeting 8-12 repetitions each. SP provide feedback in KOKU on the number of

repetitions completed and their subjective sense of safety and well-being. Based on this

feedback, the app adjusts the exercise progression. Additionally, KOKU includes four

games aimed at promoting health literacy—two focusing on identifying potential

hazards in the home (bathroom/bedroom and living room) and two on healthy eating

and hydration. The app was translated into German by two native speakers with

expertise in physiotherapy and medicine, ensuring that its original structure and

functionality were preserved. Figure 2.4 shows screenshots of KOKU.

Figure 2.4: Four screenshots of KOKU showing the exercise scheduled for the current

day (yellow); showing the SPs’ progress (green) indicating how many exercises have

been completed so far; showing games (blue) and showing the variety of exercises for

users to choose from (red).

33

2.2.3.4 smartIMPULS (SI)

SI is designed to enhance health awareness in older adults, with a primary focus on

health areas essential for maintaining independent living as long as possible, such as

mobility, social participation, and nutrition. Each day, SP receive one to four questions

that address their current life circumstances, daily functioning, and health status.

These questions are repeated after a set period, reflecting the expected timeframe for

changes in the relevant health area. If the SP doesn’t use the app for one or more days,

the questions accumulate, though they may be skipped if desired. The app analyzes

the responses of the SP using predefined calculation rules to assess whether there is a

need to raise the SP’ awareness of a particular health issue. If an area of concern is

identified, the app sends a notification with a suggestion. This suggestion might

encourage the SP to consider addressing the issue during their next doctor's visit, or

with a social worker at an appropriate counseling center, or it may provide additional

information about relevant options within or outside of SMART-AGE's offerings.

Ultimately, it is up to the SP to decide whether to act on the suggestion. Figure 2.5

shows a screenshot of SI.

Figure 2.5: Screenshot of SI showing a question that is asked to the SP. On the left

sidebar the options “Home”, “Questions”, “Recommendations”, “Answers” and

“Profile” can be selected.

34

35

II. PROBLEM INVESTIGATION

PART II

36

37

 Chapter

3 State of the art and practice:

Collection of feedback over platforms

A Systematic Mapping Study

This Chapter contributes to the knowledge goal 1 of the thesis: Understand the current

state of the art of collecting feedback over platforms. It presents a systematic mapping study

contributing an overview of feedback platforms, which are online tools specifically

designed to facilitate the collection of feedback from multiple users and allow users to

interact with feedback of other users. The overview of the platforms is the basis for the

treatment design described in Part III of the thesis. Section 3.1 describes the research

questions (RQ). Section 3.2 describes the methodology of the publication search.

Section 3.3 presents the results of the systematic mapping study. Section 3.4 gives a

discussion and Section 3.5 discusses the threats to validity.

3.1 Research questions

This mapping study aims to investigate the main RQ “How is the collection of user

feedback supported by platforms”. This main RQ is chosen because the results can

help us design a process and platform to collect user feedback in SMART-AGE. The

knowledge goal 1 is refined into four RQs, which are broken down into sub-questions

for more detailed investigation. The RQs and their sub-questions are listed in Table

3.1.

Table 3.1: Research questions

RQ Description

RQ1 What feedback is collected how and when?

 RQ1.1 What feedback is collected?

 RQ1.2 How is the feedback collected?

 RQ1.3 How is the collection influenced by the REengs?

RQ2 What is the context of the feedback collection?

 RQ2.1 In what environment is the feedback collected?

 RQ2.2 How many users is feedback collected from?

 RQ2.3 How long is feedback collected?

3

38

RQ3 How are key aspects evaluated and what are the results?

 RQ3.1 How is the user participation evaluated and what are the results?

 RQ3.2 How is the feedback evaluated and what are the results?

 RQ3.3 How is the platform evaluated and what are the results?

 RQ3.4 How do the findings of the feedback affect the software?

RQ4 How does the platform work?

 RQ4.1 What functionalities to collect feedback does the platform offer?

 RQ4.2 What additional functionalities does the platform offer?

 RQ4.3 Is the platform accessible publicly?

We use RQ1, RQ2, RQ3, and RQ4 because they provide a comprehensive

understanding of how feedback can be collected through platforms, making it easier

for other researchers to compare their platforms to existing ones.

RQ1 What feedback is collected how and when?

RQ1 explores what feedback is being gathered (RQ1.1), how it is collected (RQ1.2) and

how the collection of feedback is influenced by the REengs (RQ1.3). RQ1.1 is important

because feedback could be collected in different forms, e.g. as freetext or in a structured

form. RQ1.2 is relevant because there could be different methods to collect feedback,

such as relying on messages from users or asking users questions. Further, feedback

could be collected either once or multiple times. RQ1.3 is important because influence

of REengs could have any forms (e.g. interacting with users or moderating discussions)

which could impact the feedback collected or the user participation.

RQ2 What is the context of the feedback collection?

The second research question, RQ2, inspects the context of feedback collection. It

analyzes in which environment the feedback is collected (RQ2.1), how many users give

feedback (RQ2.2) and how long the feedback is collected (RQ2.3). Regarding RQ2.1 the

environment refers to the institutional or organizational setting in which feedback is

collected, the product about which the feedback is collected and the users that use the

product. This research question is important because the environment can affect how

feedback is collected. In an industrial context, the goal is often to generate more profit,

while in research, the focus is freer from capitalist goals, allowing for more flexibility

in exploring feedback collection. RQ2.2 is important to assess whether the feedback

collection process is practical and scalable for a large number of users. RQ2.3 is

important because it shows whether users are willing to give feedback over a longer

period of time.

RQ3 How are key aspects evaluated and what are the results?

RQ3 investigates the evaluation of key aspects and results. The key aspects are the user

participation (RQ3.1), the feedback received (RQ3.2) the platform itself (RQ3.3), as well

as the findings of the feedback that affect the software (RQ3.4). RQ3.1 is important

because it could be that a lot of users use the platform, but only few give feedback.

39

RQ3.2 is important because the feedback needs to be in some form helpful for the

REengs and it is therefore interesting to know which aspects are evaluated and what

the results are. RQ3.3 gives insights how a platform can be evaluated. This is important

as user satisfaction with the platform can influence the feedback and user

participation. RQ3.4 is important because incorporating the findings into the software

is necessary to improve it.

RQ4 How does the platform work?

RQ4 investigates the platform regarding the functionalities that the platform offers to

collect feedback (RQ4.1), the functionalities beyond feedback collection (RQ4.2) and

regarding whether the platform is publicly accessible (RQ4.3). RQ4.1 is important

because there could be different ways to submit feedback (e.g. through comments or

posts) and there could be ways that facilitate submitting feedback (e.g. using speech

messages instead of text). RQ4.2 is important because there could be functionalities

that are used to motivate users to give feedback or other functionalities that facilitate

the use of the platform for the user (e.g. providing an overview of feedback or allowing

for export of the feedback). RQ4.3 is interesting because it means that everyone could

use the platform to collect feedback.

3.2 Methodology

This Section outlines the steps of our mapping study and describes our inclusion

criteria. To address the research questions listed in Section 3.1, we conducted a

systematic mapping study, which adheres to the guidelines proposed by (Kitchenham

& Charters, 2007). These guidelines entail having:

• C1 - a well-defined search strategy

• C2 - a search string with alternative terms combined by ANDs and ORs

• C3 - a broad range of search sources

• C4 - explicit inclusion or exclusion criteria

• C5 - strict documentation of the search

Our systematic mapping study follows all the mentioned guidelines (C1 – C5). To

understand when we follow which guideline, we denote the guidelines with "Cx" in

the following.

We reviewed the papers according to a structured, defined search strategy (C1). The

search strategy consists of the definition of the search string (C2), the identification of

search sources (C3), the definition of the inclusion criteria (C4), the conduction of a

term-based search and the conduction of forward and backward snowballing. We

document the conduction of the search in detail by describing every step and result in

form of text, tables and graphics (C5).

40

3.2.1 Generation of the search string

We first construct a prototypical search string (C2) based on the main RQ “How is the

collection of user feedback supported by platforms” (Section 3.2.1.1). We then expand

this prototypical search string by identifying alternatives for the search terms to also

find relevant papers that do not use the exact same words (Section 3.2.1.2). Finally, we

check the recall of the resulting search string and adapt it iteratively, so that the

number of results is manageable (Section 3.2.1.3).

3.2.1.1 Constructing a prototypical search string

To construct a prototypical search string, we split the search question “How is the

collection of user feedback supported by platforms” into four main root search terms:

collect, user, feedback, and platform. Our first prototypical search string in Table 3.2

is generated by concatenating these root terms with the AND operator.

Table 3.2: Prototypical search string

 AND AND AND

collect user feedback platform

3.2.1.2 Identifying alternatives for the root search terms

We try to increase the likelihood to find other relevant papers that do not use the exact

same words but alternative words with the same meaning (C2). We take advantage of

the fact that we already know of 7 relevant articles. These known relevant articles are all

feedback platforms described in paper "Crowd-based requirements elicitation via pull

feedback: method and case studies" (Wouters et al., 2022).

We identify alternative words for the root search terms in two ways. The first way is

to search for the most frequent words of the known relevant articles and check whether

these words can be used as alternatives for the root search terms. The second way is to

search for alternative terms for the root search terms inside the known relevant articles

with a lexical similarity measure.

Identification of most frequent words in the known relevant articles

We analyze the 20 most frequent words of each known relevant article and then check

manually, whether these words can be used as alternatives for one of the root search

terms. The frequency of words was determined by reading in the PDF file of the article

and counting identical words independently of plural or singular with the help of the

python NLTK library1. The detailed result along with reasons why certain words were

used as alternatives to root search terms can be found in appendix (Table A.1.2). The

1 https://www.nltk.org/

41

resulting search string can be seen in Table 3.3. Note that we summarized the words

“crowdsourced” and “crowdsourcing” to the wildcard version “crowdsourc*” to

include different variations of these words. Also “negotiat*” is used to include both

“negotiation” and “negotiate”. For “community” the plural version “communities” is

also added.

Table 3.3: Search string after identifying alternatives for the root search terms (green

background) by analyzing the 20 most frequent words of the known relevant articles.

 AND AND AND

 collect user feedback platform

OR crowdsourc* stakeholder requirement software

OR negotiat* crowd idea tool

OR request participant post

OR elicit visitor

OR employee

OR community

OR communities

Identification of similar words to the root search terms in the known relevant

articles

As a second way of identifying alternatives for the root search terms, we use the lexical

database WordNet2 and python to identify words inside the known relevant articles

that are similar to the root search terms. We search for similar words inside the known

relevant articles for each root search term. We compare words using path similarity

with a threshold of 0.3, which means that words in the known relevant articles must

share at least 30% similarity with the corresponding root search term. We use this

threshold because it provides a balanced value that captures a wider range of

semantically related terms without being overly restrictive, ensuring that also not

perfectly matching terms are included in our analysis. We search for alternative terms

inside the known relevant articles and not in the internet, to ensure that the alternative

terms are contextually appropriate and belong to the domain-specific language. The

detailed result along with reasons why certain similar words were used as alternatives

to root search terms can be found in Table A.1.3. The refined prototypical search string

can be found in Table 3.4.

2 https://wordnet.princeton.edu/

42

Table 3.4: Refined prototypical search string after identifying similar words to the

root search terms (green background) inside the known relevant articles.

 AND AND AND

 collect user feedback platform

OR elicit stakeholder requirement software

OR crowdsourc* crowd idea tool

OR negotiat* participant post application

OR request visitor review

OR gather employee answer

OR ask community comment

OR communities rating

OR client

OR person

OR individual

OR customer

Setting the scope of the search string

We decide to not limit our search to the title, because some titles of our known relevant

articles do not contain the root search terms or their alternatives. For example,

“CrowdRE in a Governmental Setting: Lessons from Two Case Studies” (Wouters et

al., 2021) only mentions “crowd”. A mapping to the root search terms “collect”,

“feedback” or “platform” cannot be established. Furthermore, searching the full text

is not possible for search sources like WebOfScience3. Therefore, we decide to set the

scope of our search string to the abstract of possible relevant papers. To be sure that

our known relevant articles would be found when searching for their abstracts, we

manually checked all their abstracts and compared them to the search string.

3.2.1.3 Adapting the prototypical search string to allow for a manageable amount

of search results

After constructing the search string and before starting the actual search, we conduct

an exploratory search on IEEE to test whether our search string yields a manageable

number of search results. We do it on IEEE, because it provides the most flexibility

regarding the search scope. We test whether our search string yields not more than 500

results, as this is our limit for a manageable amount of search results per search source.

If the number of search results is higher than 500, we have to make the search term

more concrete or change the scope of the search string (e.g. scoping some terms to the

title only instead of the abstract).

3 https://webofscience.com/

43

As a first step to check whether our search string yields a manageable amount of search

results, we convert the search string in Table 3.4 to the IEEE command format4. The

resulting search term is listed in Listing 1.

Listing 1: Refined prototypical search term in IEEE command search format

("Abstract": collect OR "Abstract": elicit OR "Abstract": crowdsourc* OR

"Abstract": negotiat* OR "Abstract": request OR "Abstract": gather OR

"Abstract": ask)

AND ("Abstract": user OR "Abstract": stakeholder OR "Abstract": crowd OR

"Abstract": participant OR "Abstract": visitor OR "Abstract": employee OR

"Abstract": community OR "Abstract": communities OR "Abstract": client OR

"Abstract": person OR "Abstract": individual OR "Abstract": customer)

AND ("Abstract": feedback OR "Abstract": requirement OR "Abstract": idea OR

"Abstract": post OR "Abstract": review OR "Abstract": answer OR "Abstract":

comment OR "Abstract": rating)

AND ("Abstract": platform OR "Abstract": software OR "Abstract": tool OR

"Abstract": application)

With this search term we execute a search on IEEE on 01.06.2023. The number of results

was 9465. As this is higher than 500, we subsequently try to limit the number of search

results by analyzing false positive search hits and adapting the search terms

accordingly. When examining the search results, we noticed that words like "ask" or

"answer” produce too many irrelevant hits. Furthermore, words like "post" or "rating"

are found in other words, such as "poster", "post-hoc" or "incorporating" and thus

produce false hits. Also, the word "application" is ambiguous and occurs in

"application field", for example. All of the mentioned words were therefore removed

from the search term. There were also articles that described platforms in the context

of blockchains, articles that investigate fake reviews and code reviews, articles that

analyze training platforms in sports and furthermore articles that focus on machine

learning, deep learning, sentiment analysis or classification. These articles were

filtered by blacklisting words either in the title or abstract. We blacklist in title and

abstract, because it could be that these words in either one of these fields when

searching other sources.. Finally, the word "idea" also appeared in phrase "the idea of".

This phrase was also removed by blacklisting. In Table 3.5 the refined prototypical

search string after the elimination of the mentioned ambiguous or general words is

shown.

Table 3.5: Refined prototypical search string after eliminating ambiguous or too

general words (red font) and after blacklisting specific words or phrases (green

background).

 AND AND AND AND NOT

 collect user feedback platform Title: blockchain

OR crowdsourc* stakeholder requirement software Title: machine learning

4 https://ieeexplore.ieee.org/Xplorehelp/searching-ieee-xplore/command-search

44

OR negotiat* crowd idea tool Title: deep learning

OR request participant post application Title: classification

OR elicit visitor review Title: sentiment analysis

OR gather employee answer fake review

OR ask community comment code review

OR communities rating training platform

OR client the idea of

OR person

OR individual

OR customer

The elimination of ambiguous and too general words resulted in 3690 search results.

The amount of search results could thus be reduced by 5775 hits. Nevertheless, the

amount of search results can not yet be examined manually because it is still too large.

We couldn’t identify any other ambiguous words and continuing to blacklist would

only remove a handful of articles. Therefore, we decided to limit the search on the

research area "requirements engineering". To achieve that, the term “requirement*

engineering” is added. The asterix is used, because some people may use the

terminology “requirement engineering” instead of “requirements engineering”. The

resulting final search term is shown in Table 3.6 and in IEEE format in Listing A.1.1.

Table 3.6: Final search term after limiting research field to “requirement*

engineering” (green background).

 AND AND AND AND NOT AND

collect user feedback platform

Title:

blockchain

re
q

u
ir

em
en

t*
 e

n
g

in
ee

ri
n

g

OR crowdsourc* stakeholder requirement software
Title: machine

learning

OR negotiat* crowd idea tool
Title: deep

learning

OR request participant review

Title:

classification

OR elicit visitor comment

Title:

sentiment

analysis

OR gather employee

fake review

OR

community code review

OR communities
training

platform

OR client the idea of

OR person

 OR individual

OR customer

45

The final search term produced 498 search results. This amount of search results can

be checked manually, so this search term will be used for the mapping study.

3.2.2 Specification of the search sources

To have a high coverage of the research field we use four search sources (C3). We use

the scientific associations IEEE5, ACM6, SpringerLink7 and WebOfScience8 as search

sources, because a large part of scientific literature of IT can be found there. We cannot

search on Scopus9, because Heidelberg University has no active access to it.

SpringerLink does not allow to search in the abstract only. It always searches in title,

abstract and full text. We used the search source nevertheless and check only the first

500 results of the ~12.000 search results.

3.2.3 Definition of the inclusion criteria

Following the recommendations of (Kitchenham & Charters, 2007) we define seven

explicit inclusion criteria (C4). These inclusion criteria are listed in Table 3.7 All of the

known relevant articles (see Table A.1.1) fulfill I1 - I7.

Table 3.7: Inclusion criteria

Nr. Inclusion criterium

I1 Title suggests relevance to main RQ

I2 Abstract suggests relevance to main RQ

I3 Article is available online

I4 Article is not older than 16 years (2008 - 2024)

I5 Article is written in German or English

I6 Article describes how the collection of user feedback is supported by a

platform

I7 Article describes how the exchange of feedback among the users is

supported by the platform

I1 and I2 ensure that the title and abstract of the article indicate relevance to the main

RQ. I3 checks whether the article is available online. I4 limits the time of the publication

date to the last 16 years. The original timeframe was 15 years, but the search was

repeated a year later, extending the timeframe by an additional year. I5 is important

because the author only understands articles that are written in German or English. I6

and I7 are necessary to only include articles that comply to our definition of a feedback

platform. With exchange of feedback (I7) we mean that the platform allows users to

interact with the feedback of other users.

5 https://ieeexplore.ieee.org/

6 https://dl.acm.org/

7 https://link.springer.com/

8 https://www.webofscience.com/

9 https://www.scopus.com/

46

3.2.4 Conduction of the term-based search

We conduct a term-based search with the search term in Table 3.6 on 07.08.2024 at the

specified search sources. We then apply the inclusion criteria to the found articles.

3.2.5 Conduction of forward and backward snowballing

The known relevant articles and the results of the term-based search are used to

conduct forward and backward snowballing with the same inclusion criteria to

expand the number of search results and find even more relevant articles.

3.3 Results

In Section 3.3.1 the results of the term-based search are presented. In Section 3.3.2 the

results of the forward and backward snowballing are presented. Section 3.3.3 list all

the relevant articles that result from the search. Section 3.3.4 gives a literature overview

over the relevant articles. Section 3.3.5 summarizes the findings of the relevant articles

in the form of a synthesis and gives answers to the research questions.

3.3.1 Term-based search

Figure 3.1 shows how many articles of the term-based search were included and

excluded based on their title (I1).

Figure 3.1: Included and excluded articles by I1 (term-based search)

■ IEEE There were 418 search results, of which 334 articles were excluded, because

their titles did not suggest relevance. 84 articles were included (I1).

■ SpringerLink The first 500 search results were checked. 443 articles could not be

included, based on their title. 57 were included.

47

■ ACM There were 366 search results. 329 articles could not be included, because of

their title. 37 articles could be included.

■ WebOfScience There were 258 results. 234 articles did not fulfill I1, 24 did.

In total 1542 articles were checked based on their title. Figure 3.2 gives an overview of

the application of all inclusion criteria I1 – I7 on the search results.

Figure 3.2: Included articles by I1 - I7 (term-based search)

■ IEEE The abstracts of 29 of the 84 included papers suggested relevance (I2). All of

the 29 papers were available (I3), not older than 16 years (I4) and written in English

(I5). 10 articles describe how the collection of user feedback is supported by a platform

(I6). 5 articles out of the 10 also describe how the exchange of feedback is supported

by the platform (I7). These 5 articles are the known relevant articles (Renzel et al., 2013;

Snijders et al., 2015; Sharma and Sureka, 2018; Menkveld et al., 2019; Wouters et al.,

2021). The articles that pass I6 but not I7 are (Seyff et al., 2010; Vijayan et al., 2017; Stade

et al., 2017; Oriol et al., 2018; Saphira and Rusli, 2019). These do not support the

exchange about feedback (I7), because users can always see only their own feedback.

The articles are listed in Table 3.8 together with their titles.

■ SpringerLink 13 of the already included 57 articles were further included, because

of their abstract (I2). All of the 13 papers passed the inclusion criteria I3 - I5. The 2

articles (Kolpondinos and Glinz, 2020) and (Wüest et al., 2019) were included, because

of I6. (Wüest et al., 2019) does not pass I7, because it only collects feedback, but it does

not support the exchange of the feedback with other users. (Kolpondinos and Glinz,

2020) passes I7, but it is a known relevant article.

■ ACM 23 articles could further be included, because of their abstract (I2). From these

23 articles, 22 articles passed I3 - I5. 2 articles fulfilled I6. One article (Seyff et al., 2010)

48

was already found through IEEE. The other article is (Wehrmaker et al., 2012). This

article does not pass I7, because it does not support the exchange about feedback (I7).

■ WebOfScience 9 of the included articles fulfilled I2. 8 articles fulfilled I3, I4 and I5.

No article fulfilled I6 or I7.

No new relevant articles that pass I1 - I7 were identified. The identified 6 articles that

pass I1 - I7 were known relevant articles. Table 3.8 shows all 7 identified articles that

pass I6 but not I7.

Table 3.8: Identified articles through term-based search that pass I6 and not I7.

Source Ref. Title I6 I7

■ IEEE
(Saphira and

Rusli, 2019)

Towards a gamified support tool for

requirements gathering in Bahasa

Indonesia

✓ X

■ IEEE
(Oriol et al.,

2018)

FAME: Supporting Continuous

Requirements Elicitation by Combining

User Feedback and Monitoring

✓ X

■ IEEE
(Vijayan et al.,

2017)

Collaborative requirements elicitation

using elicitation tool for small projects
✓ X

■ IEEE
(Stade et al.,

2017)

Providing a user forum is not enough:

First experiences of a software company

with CrowdRE

✓ X

■ IEEE
(Seyff et al.,

2010)

End-user requirements blogging with

iRequire
✓ X

■ Springer-

Link

(Wüest et al.,

2019)

Combining Monitoring and Autonomous

Feedback Requests to Elicit Actionable

Knowledge of System Use

✓ X

■ ACM
(Wehrmaker et

al., 2012)
ConTexter feedback system ✓ X

3.3.2 Snowballing

Our term-based search yielded only known relevant articles. To expand our set of

relevant articles, we performed backward and forward snowballing based on the

known relevant articles. Figure A.1.1 in the appendix shows in detail how many

articles are found through backward and forward snowballing per known relevant

article and also how many articles pass the inclusion criteria.

49

(Wouters et al., 2021)

Backwards: We found 32 references, from which 9 passed I1, and 4 passed I2 – I7. All

4 articles are known relevant articles (Renzel et al., 2013; Snijders et al., 2015; Menkveld

et al., 2019; Kolpondinos and Glinz, 2020).

Forwards: When forward snowballing the article, 6 articles were found, of which 1

passed I1, but not I2.

(Kolpondinos & Glinz, 2020)

Backwards: We found 64 references of which 20 passed I1 and 10 passed I2 – I5. 4

articles passed I6. 2 of the 4 articles are known relevant articles (Fernandes et al., 2012;

Snijders et al., 2015). One article was already identified over the term-based search

(Oriol et al., 2018). One new relevant article passed I7 (Lohmann et al., 2009). The new

relevant articles are listed in Table 3.10.

Forwards: Forward snowballing resulted in 44 articles, of which 7 passed I1, 3 passed

I2 and 2 passed I3 – I7. These were known relevant articles (Menkveld et al., 2019;

Wouters et al., 2021).

(Fernandes et al., 2012)

Backwards: We found 37 references. 8 passed I1 and 7 passed I2 – I5. 3 passed I6. 1 of

the 3 was already found in the term-based search (Seyff et al., 2010). The other two

articles also passed I7 and are new relevant articles (Yang et al., 2008; Laporti et al.,

2009).

Forwards: We found 221 results. 25 articles passed I1 and 11 passed I2 – I5. 3 passed

I6 and I7. 2 of the 3 are known relevant articles (Snijders et al., 2015; Kolpondinos and

Glinz, 2020). One article (Vogel et al., 2020) is a new relevant article.

(Snijders et al., 2015)

Backwards: There were 26 results through backward snowballing. 11 articles passed

I1. 4 articles passed I2 – I5. 2 articles passed I6 and I7. Both articles are known relevant

articles (Fernandes et al., 2012; Renzel et al., 2013).

Forwards: Forward snowballing resulted in 106 results. 24 articles passed I1 and 10

passed I2 – I5. 7 articles pass I6 and 4 I7. One of the 4 is already found through

snowballing (Vogel et al., 2020b). Three are known relevant articles (Menkveld et al.,

2019; Kolpondinos and Glinz, 2020; Wouters et al., 2021).

(Renzel et al., 2013)

Backwards: There were 6 results. None of the results passed I1.

Forwards: We found 84 articles, of which 16 passed I1 and 6 passed I2 – I5. 4 passed I6

and I7. All articles are known relevant articles (Snijders et al., 2015; Sharma and Sureka,

2018; Menkveld et al., 2019; Wouters et al., 2021).

50

(Menkveld et al., 2019)

Backwards: We found 22 articles. 8 of the articles passed I1 and 4 articles passed I2 –

I5. 3 passed I6 and I7. The 3 articles are known relevant articles (Renzel et al., 2013;

Snijders et al., 2015; Kolpondinos and Glinz, 2020).

Forwards: Forward snowballing resulted in 12 articles found. 4 articles passed I1 and

1 article passed I2 – I7. This article is also a known relevant article (Wouters et al., 2021).

(Sharma & Sureka, 2018)

Backwards: We found 28 articles. 10 passed I1 and 4 articles passed I2 – I5. 1 article

passed I6 and I7. This article is a known relevant article (Renzel et al., 2013).

Forwards: We found 19 articles, of which 8 passed I1 and 2 passed I2 – I5. 1 passed I6.

This article was already found through snowballing (Rietz, 2019).

In total, we checked 707 articles for relevance during snowballing. Table 3.9 shows the

newly identified articles that passed I6, but not I7. Table 3.10 gives an overview over

all new relevant articles that were identified through snowballing.

Table 3.9: Identified new articles through snowballing (passing I1-I6, but not I7).

Excluding duplicates.

Source Ref. Title I6 I7

(Snijders et al.,

2015)

(Rietz, 2019)

Designing a conversational

requirements elicitation system for end-

users

✓ X

(Haug et al.,

2023)

Scalable Design Evaluation for

Everyone! Designing Configuration

Systems for Crowd-Feedback Request

Generation

✓ X

Table 3.10: Identified relevant articles through snowballing (passing I1-I7).

Excluding known relevant articles and duplicates.

Source Ref. Title I6 I7

 (Kolpondinos &

Glinz, 2020)

(Lohmann et

al., 2009)

A Web Platform for Social

Requirements Engineering
✓ ✓

(Fernandes et al.,

2012)

(Yang et al.,

2008)

WikiWinWin: A Wiki based system for

collaborative requirements negotiation
✓ ✓

(Laporti et

al., 2009)

Athena: A collaborative approach to

requirements elicitation
✓ ✓

(Vogel et al.,

2020b)

Leveraging the internal crowd for

continuous requirements engineering -

Lessons learned from a design science

research project

✓ ✓

51

3.3.3 Relevant articles

After checking 2249 articles for relevance through a term-based search and

snowballing, we could identify 4 new relevant platforms (see Table 3.10). Together

with the 7 known relevant articles (see Table A.1.1), we have 11 relevant articles in

total. We list all relevant articles for simpler reading in the joined Table 3.11 along with

their platform names. These relevant articles will be the base for the literature

overview in Section 3.3.4 and the synthesis in Section 3.3.5.

Table 3.11: All relevant articles

Ref. Title Platform

(Wouters et

al., 2021)

CrowdRE in a Governmental Setting: Lessons

from Two Case Studies

(Kolpondinos

and Glinz,

2020)

GARUSO: a gamification approach for involving

stakeholders outside organizational reach in

requirements engineering

(Menkveld et

al., 2019)

User story writing in crowd requirements

engineering: The case of a web application for

sports tournament planning

(Sharma &

Sureka, 2018)

CRUISE: A platform for crowdsourcing

Requirements Elicitation and evolution

(Snijders et

al., 2015)

REfine: A gamified platform for participatory

requirements engineering

(Renzel et al.,

2013)

Requirements Bazaar: Social requirements

engineering for community-driven innovation

(Fernandes et

al., 2012)

iThink: A game-based approach towards

improving collaboration and participation in

requirement elicitation

(Lohmann et

al., 2009)

A Web Platform for Social Requirements

Engineering

(Yang et al.,

2008)

WikiWinWin: A Wiki based system for

collaborative requirements negotiation

(Laporti et al.,

2009)

Athena: A collaborative approach to

requirements elicitation

(Vogel et al.,

2020b)

Leveraging the internal crowd for continuous

requirements engineering - Lessons learned from

a design science research project

Figure 3.3 shows the distribution of publication years for the relevant articles. The

publication rate for relevant articles was relatively constant throughout the years 2008

– 2021 with 1 publication per year. The years 2009 and 2020 have 2 publications. It is

KMar-Crowd

 GARUSO

 Tournify

 CRUISE

 REfine

 Bazaar

 iThink

 WPFSRE

 WikiWinWin

 Athena

 CrowdCore

52

notable that no relevant articles were found for the years 2022, 2023 and 2024 even

though we did not exclude these years in the term-based search or during the

snowballing.

Figure 3.3: Distribution of publication years of relevant articles

3.3.4 Literature overview

Table A.2.1 presents the literature overview of the relevant articles in a tabular format.

In the literature overview, a row is created for each relevant article. Each cell in the

row contains aspects regarding the content of the publication. It includes the

background, motivation, research questions and problems, principal idea, as well as the

contribution of the article. The context and motivation provides background

information and describes the motivation of the research direction. The research

questions and problems column explains what will be answered or solved in the

article, as well as problems that occurred during the research. To reduce the size of the

literature overview table, we only present results of the articles in the synthesis under

RQ3. The principal idea column contains a description of the research process and the

contribution column describes how the article helps others in their work.

3.3.5 Synthesis

The synthesis presents the findings of the individual relevant articles. The complete

synthesis matrix is in the appendix and it is split into Table A.2.2 and Table A.2.3. Table

A.2.2 addresses RQ1 and RQ2, whereas Table A.2.3 addresses RQ3 and RQ4. We have

created a condensed synthesis matrix with Table 3.12 In the following, we present

results to the research questions by explaining the condensed synthesis matrix and

enriching the explanation with important details of the complete synthesis matrix in

the appendix (Table A.2.2 and Table A.2.3). We also summarize each research question

and provide key takeaways for the sub-research questions when the text is more

extensive.

53

Table 3.12: Condensed synthesis matrix.
US=User story, US*=US, User scenario, Use case

 RQ1.1 RQ1.2 RQ1.3 RQ2.1 RQ2.2 RQ2.3 RQ3.1 RQ3.2 RQ3.3 RQ4.1 RQ4.2 RQ4.3

Platform

M
ai

n
 f

ee
d

b
ac

k
:

F
re

e
te

x
t

M
ai

n
 f

ee
d

b
ac

k
:

T
em

p
la

te

F
ee

d
b

ac
k

 c
o

ll
ec

ti
o

n

in
 m

u
lt

ip
le

 p
h

as
es

F
ee

d
b

ac
k

 c
o

ll
ec

ti
o

n

in
 o

n
e

p
h

as
e

R
E

en
g

s
in

fl
u

en
ce

fe
ed

b
ac

k
 c

o
ll

ec
ti

o
n

G
=G

o
v

er
n

m
en

t,

R
=R

es
ea

rc
h

,

C
=C

o
m

m
er

ci
al

In
v

it
ed

 u
se

rs

A
cc

es
si

n
g

 u
se

rs

C
o

n
tr

ib
u

ti
n

g
 u

se
rs

F
ee

d
b

ac
k

 c
o

ll
ec

ti
o

n

d
u

ra
ti

o
n

 i
n

 d
ay

s

N
u

m
b

er
 o

f
m

ai
n

fe
ed

b
ac

k

E
v

al
u

at
io

n
 o

f

fe
ed

b
ac

k

E
v

al
u

at
io

n
 o

f
th

e

p
la

tf
o

rm

S
u

b
m

it
ti

n
g

 m
ai

n

fe
ed

b
ac

k

C
o

m
m

en
ti

n
g

V
o

ti
n

g
/S

co
ri

n
g

/

R
at

in
g

O
th

er

G
am

if
ic

at
io

n

O
th

er

A
cc

es
si

b
le

 f
o

r

p
u

b
li

c

S-Sys US X X G 478 135 60 33 32 X X X X X X X

V-Sys US X X G 2393 385 130 56 78 X X X X X X X

 US X X R 726 32 92 56 X X X X X X X

 US X X C 337 157 39 35 57 X X X X X X

X X R 37 18 18 X X X X X X

X X X C 19 19 35 21 X X X X X X

 US X X X X X X X

 (1) X X C 7 7 10 X X X X X X

(2) X X C 17 17 22 X X X X X X

 X X X X X X X X

 US* X R 6 6 1/6 X X X

 X X R 6 6 1/6 62 X X X X X

 X X X C X X X X X

KMar-Crowd

KMar-Crowd

 GARUSO

 Tournify

 CRUISE

 REfine

 Bazaar

 iThink

 iThink

WPFSRE

Athena

WikiWinWin

CrowdCore

54

The condensed synthesis matrix includes the platforms in the left column. If a platform

appears twice, it indicates that the platform was evaluated in two different studies. In

the columns to the right, the research questions are listed, and crosses are marked if

aspects relevant to answering the research questions apply.

――――――― RQ1 What feedback is collected how and when? ――――――――

――――――――――― RQ1.1 What feedback is collected? ――――――――――

We distinguish between main feedback and meta-feedback in feedback collection.

Main feedback is feedback that does not reference existing feedback, while meta-

feedback is feedback that references existing feedback (e.g. a comment). The main

feedback is always either collected in an unstructured form as freetext or in a

structured form as a template. A template means, that the main feedback content is

split into parts (e.g. the role, action and reason of a user story are split into three

different input fields). 6 platforms collect feedback as freetext (CRUISE, REfine, iThink,

WPFSRE, WikiWinWin and CrowdCore). The other 5 platforms collect main feedback

as a template. Templated main feedback is always a user story except for Athena where

main feedback is collected as a combination of user scenarios and use cases. The meta-

feedback is either collected through comments or through a form of voting, scoring or

rating (see Table 3.12: RQ4.1). Three platforms have special forms of meta-feedback.

GARUSO allows to submit meta-feedback in the same form as main feedback

underneath another main feedback. REfine allows the users to create branches of the

main feedback, so that different aspects of the main feedback can be isolated. WPFSRE

allows the users to mark relations between different main feedback.

Key takeaway: Feedback can be distinguished into main and meta-feedback, which is

meta-feedback references main feedback. Platforms collect main feedback either in an

unstructured form as freetext or in a templated form. Meta-feedback is collected via

comments, voting, scoring, rating, or specialized methods such as branching.

―――――――――― RQ1.2 How is the feedback collected? ――――――――――

All platforms collect their main and meta-feedback as push feedback only. None of the

platforms uses questions to ask for feedback (pull feedback). During feedback

collection it can be distinguished whether feedback is collected in multiple phases or

only in a single phase. Four platforms (KMar-Crowd, Bazaar, Athena and CrowdCore)

collect feedback over multiple phases, while the other platforms collect feedback in a

single phase. KMar-Crowd starts with collecting main feedback in a first phase. Then,

a summary about the collected feedback is provided by the REengs, and subsequently

the main feedback is commented upon or voted on by the users. For Bazaar there are

also multiple phases. There is an initial phase where main feedback is collected. Then,

this main feedback is discussed through commenting and voting, and subsequently, it

is again refined through commenting and voting. For Athena, main feedback is

collected first as user stories. Then these stories are converted by the users into

55

scenarios, and subsequently, the scenarios are converted by the users into use cases.

Comments can be made at each phase of this process. For CrowdCore, main feedback

is also collected first. Then the product owner decides which main feedback progresses

to the voting phase. In the voting phase, the users vote on feedback. After the voting

phase there is a decision phase, where the product owner selects main feedback and

the users can comment on it.

Key takeaway: All platforms rely on push feedback to collect both main and meta-

feedback, with no use of direct questioning. While the most platforms collect feedback

in a single phase, few platforms employ a multi-phase approach for feedback

collection.

―――――― RQ1.3 How is the collection influenced by the REengs? ――――――

The REengs influence the collection of feedback on seven platforms (KMar-Crowd,

GARUSO, Tournify, Refine, Bazaar, WPFSRE and CrowdCore). Regarding KMar-

Crowd and GARUSO the REengs write summaries and present them to the users.

Regarding Tournify, the REengs comment on some of the main feedback and also label

main feedback as in development or done. Regarding REfine, the REengs provision

guidelines for feedback collection, they delete irrelevant needs and also sent weekly

updates to improve the activity of users. Regarding Bazaar, the REengs comment on

main feedback. Regarding WPFSRE, the REengs supervise and moderate discussions

and regarding CrowdCore, the product owner motivates the users to interact and

participate by providing incentives such as praise and encouragement. Even though

the requirements engineers influence feedback collection in various ways, no

conclusions can be drawn about the impact of their influence, as this has not been

evaluated on any platform.

Key takeaway: All platforms involve REengs influencing feedback collection in some

way, whether through summarizing, commenting, creating guidelines, moderating or

motivating users.

Answer to RQ1: Feedback collected on platforms can be categorized into main

feedback and meta-feedback, where meta-feedback references main feedback. Main

feedback is submitted either unstructured or structured, while meta-feedback is given

through comments, voting or special forms (RQ1.1). Platforms rely on push feedback

instead of asking questions to the user, and while most collect feedback in a single

phase, some collect feedback through multiple phases for refinement (RQ1.2). REengs

influence the collection by summarizing, commenting, providing guidelines,

moderating discussions or motivating users (RQ1.3).

56

―――――― RQ2 What is the context of the feedback collection? ―――――――

――――――― RQ2.1 In what environment is the feedback collected? ――――――

There are three different environments in which feedback is collected: government,

research, and commercial. One platform (KMar-Crowd) describes the feedback

collection in the government sector, four platforms (GARUSO, CRUISE, Athena,

WikiWinWin) describe feedback collection in the research sector, and four platforms

(Tournify, REfine, iThink and CrowdCore) describe feedback collection in the

commercial sector. Two platforms do not mention the environment for feedback

collection. Feedback was collected for a range of products, including operational

systems, smart living applications, tournament management tools, compliance

platforms, and specialized databases. Users varied widely, including employees,

students, clients, and online participants, though some products and users were not

described in detail.

Key takeaway: Feedback is collected across three environments - government,

research, and commercial - targeting a variety of products with different user groups.

―――――――― RQ2.2 How many users is feedback collected from? ――――――

To answer this research question, we present the number of users who are invited to

the platform, the number of users who access the platform, as well as their proportion

to the invited users, as well as the number of users that contribute main feedback or

meta-feedback and their proportion to the number of invited users. We mention the

platforms descending by the number of contributing users. In the V-Sys study of

KMar-Crowd, out of 2392 invited users, 385 users are accessing (16%) and 130 users

are contributing (5%). In the S-Sys study of KMar-Crowd, out of 478 invited users, 135

are accessing (28%) and 60 contributing (13%). On Tournify, out of 337 invited users,

157 are accessing users (47%), and 39 users contribute feedback (12%). On GARUSO,

out of 726 accessing users, 32 users contribute feedback. The number of invited users

is unknown. On Refine, 37 users were invited and 19 users (51%) access and contribute

feedback. On CRUISE, all 18 users contribute feedback. In the second study of iThink

all 17 users contribute feedback. In the S-Sys study of iThink all 7 users contribute

feedback. On Athena, all 6 users contribute feedback. Lastly, on WikiWinWin, all 6

users provide feedback. The other platforms do not mention the number of users.

Key takeaway: The proportion of contributing users among accessing users varies

across platforms, with some where all accessing users are also contributing and others

where only very few contributing users exist among the accessing users.

――――――――――― RQ2.3 How long is feedback collected? ―――――――――

GARUSO collects feedback for the longest with a study duration of 92 days. The V-Sys

study of KMar-Crowd collects feedback for 56 days. Tournify and REfine both collect

feedback for 35 days. The S-Sys study of KMar-Crowd collects feedback for 33 days.

57

Lastly, Athena and WikiWinWin only collect feedback for 4 hours. The other platforms

do not mention how long feedback is collected.

Key takeaway: Feedback collection durations vary widely across platforms, ranging

from 92 days to just 4 hours, with some platforms not reporting their collection

periods.

Answer to RQ2: Feedback is collected in three main environments—government,

research and commercial (RQ2.1)—targeting a variety of products with different user

groups. The number of contributing users relative to accessing users varies strongly,

with some where all accessing users are also contributing and others where only very

few contributing users exist among the accessing users (RQ2.2). Feedback collection

durations also differ widely, ranging from several months to just a few hours, while

some platforms do not report the duration at all (RQ2.3).

――――――― RQ3 What is evaluated and what are the results? ――――――――

―― RQ3.1 How is the user participation evaluated and what are the results? ―――

Platforms measure user participation by the number of interactions, where an

interaction is either the submission of main feedback or the submission of meta-

feedback. Additionally, users are divided into invited, accessing and contributing, as

described in RQ2.2. The number of votes tends to be higher than the number of

comments. In terms of total main feedback, the V-Sys study of KMar-Crowd collected

78 overall, averaging 0.6 per contributing user. WikiWinWin collected 62 in total,

Tournify 57 with 1.5 per user, GARUSO 56 with 1.75 per user, the S-Sys study of KMar-

Crowd 32 with 0.5 per user, REfine 21 with 1.1 per user, while iThink collected 22 in

the second study and 10 in the first. The number of meta-feedback can be found in the

complete synthesis matrix (Table A.2.3) in the appendix. Regarding the number of

meta-feedback, the tendency is that the number of comments is higher than the

number of main feedback.

Key takeaway: Platforms measure participation through interactions, including main

and meta-feedback submissions, with votes typically outnumbering comments and

comments tending to exceed the amount of main feedback. Main feedback

contributions vary widely, both in absolute numbers, ranging from 10 to 78 and

average submissions per contributing user, which range from less than 0.5 to nearly 2.

――――― RQ3.2 How is the feedback evaluated and what are the results? ―――――

Three platforms evaluated the main feedback that is collected. The authors of KMar-

Crowd classified their main feedback (user stories) into three categories of the KANO

model (Berger and Blauth, 1993). The three categories were: “must-be implemented”,

“one-dimensional” (detrimental if not implemented, useful when implemented) and

“attractive qualities” (i.e. delighters). In the S-Sys study of KMar-Crowd 13 user stories

fell into the category “must-be implemented”, 10 were “one-dimensional” and 12 were

58

“attractive”. In the V-Sys study 50,6% of the user stories were “must-be implemented”,

36,7% was “one-dimensional” and 12,7% was “attractive”. In the S-Sys study KMar-

Crowd also classified whether user stories were gathered earlier through other

methods than the platform. 19 times they were gathered before completely, 6 times

partly and 5 times not at all. It was also classified in the S-Sys study whether the user

stories were complete enough for the development teams to implement. 11 times the

user stories were complete enough and 19 times they were not. In the V-Sys study the

user stories were classified regarding whether they were suitable for an MVP (59,5%)

or whether they were enough for a product (27,8%). Furthermore, also in the V-Sys

study the granularity of the user stories was analyzed. 40,5% of the user stories

represented the granularity of an epic, 54,5% the granularity of an actual user story

and for 5,1% of the user stories the classification was not applicable. Tournify

evaluated their main feedback (user stories) based on a quality framework for user

stories. 52% of the user stories met all quality aspects and 48% of the user stories

contained one or more easily preventable error(s). They also analyzed the amount of

work needed to implement the user storis. Therefore, nine out of ten user stories can

be developed within one workday. One user story could not be estimated, because it

was formulated too vaguely. Lastly, iThink evaluated the sentiment of their meta-

feedback (comments). There were 6 positive comments in the first study and 48 in the

second study. 3 comments of the first study and 32 of the second study were neutral.

6 comments of the first and second study were negative. CRUISE also evaluated

whether their collected main feedback is comparable to feedback from interviews. The

result was that the feedback is comparable.

Key takeaway: Platforms evaluated main feedback using various criteria, such as

classification after KANO, where feedback was categorized into essential, useful, or

delightful qualities. Main feedback was assessed for its suitability for development,

with most being adequate for MVPs and some for full products. Granularity was also

assessed ranging from epics to user stories. Quality evaluations highlighted either no

or preventable errors in some user stories. Analysis for implementation effort showed

most main feedback could be quickly addressed. Sentiment analysis of meta-feedback

revealed more positive or neutral comments than negative comments.

―――― RQ3.3 How is the platform evaluated and what are the results? ―――――

Seven articles evaluated their platform. The user acceptance of the platform was

evaluated five times either through a questionnaire or through conversations with

experts. KMar-Crowd used a questionnaire to ask the users questions about how they

liked the way of working with the platform. In both the S-Sys and the V-Sys study the

results were positive. Tournify also used a questionnaire to ask about the perceived

usefulness of the platform. 10 users answered the questionnaire and found that the

platform is very useful. Regarding REfine, 17 users answered a questionnaire and

found the process as difficult, more useful and more engaging compared with

previous feedback experiences. The users especially liked voting and commenting. The

59

results of an interview with experts were that the platform is useful for requirements

elicitation, negotiation and specification. iThink also evaluated the platform through a

questionnaire and the answers indicated a high level of acceptance for both the first

and second study. CrowdCore asked experts about their opinion regarding the

platform. The approach was found effective in involving users in the requirements

engineering process. Concerns were raised about the applicability of the approach for

all software types and the need for users to trust product owners to implement

prioritized requirements. One platform (WikiWinWin) also compared their features to

other platforms (EasyWinWin and SOP-Wiki). The results were that WikiWinWins

main strengths are the exchange of ideas and knowledge, the content editing and

versioning. Main weaknesses are its lacking automated consistency checking and

problems with conflicts during editing conflicts. Lastly, KMar-Crowd especially

evaluated the gamification features in the V-Sys study through a questionnaire. The

results were that they did not increase motivation.

Key takeaway: Authors evaluated their platforms by measuring user acceptance,

perceived usefulness, by asking experts for feedback, by comparing their platform

features to other platforms and by assessing gamification features. Results showed

positive user acceptance, with users appreciating features like voting and commenting

and finding platforms suitable for requirements engineering. However, some

challenges were noted, such as the applicability of the platform to other software and

the need to trust product owners to implement requirements. Additionally,

gamification features were found to have no impact on user motivation in one study.

―――― RQ3.4 How do the findings of the feedback affect the software? ―――――

The findings of the feedback (see RQ3.2) influence the software by providing

actionable insights for development. Classification using models like KANO helps

prioritize user stories based on their importance. Assessing feedback suitability for

MVPs or full products ensures development aligns with user needs. Quality

evaluations improve user stories errors and thus influence further development of

software positively.

Answer to RQ3: Platforms evaluate user participation by measuring main and meta-

feedback submissions, with participation varying widely between the platforms.

Feedback (RQ3.2) is evaluated using criteria like KANO classification, granularity and

quality, providing actionable insights for development. Platforms themselves (RQ3.3)

are assessed for user acceptance and usefulness with positive results overall and few

challenges. The findings of the feedback (RQ3.4) influence software development by

improving the prioritization and quality of user stories.

60

―――――――――― RQ4 How does the platform work? ―――――――――――

――― RQ4.1 What functionalities to collect feedback does the platform offer? ――

All platforms offer functionalities to collect main feedback and meta-feedback.

Regarding meta-feedback all platforms offer the possibility to comment on other users’

main feedback and all platforms except Athena offer the ability to do either some form

of voting, scoring or rating. As mentioned in RQ1.1 three platforms have special forms

of meta-feedback. GARUSO offers functionality to submit meta-feedback in the same

form as main feedback, REfine offers functionality to create branches of the main

feedback and WPFSRE allows the users to mark relations between main feedback.

――――― RQ4.2 What additional functionalities does the platform offer? ――――

Platforms offer a variety of additional functionalities beyond feedback collection,

including gamification elements like points, badges, leaderboards and challenges to

enhance engagement. Other features support organization and collaboration, such as

main feedback overviews, user profiles, tagging, filtering, revision history,

synchronization with issue trackers and dashboards. Advanced functionalities include

importing/exporting feedback, controlled user registration, role and user

management, status tracking and effort estimation.

―――――――――――― RQ4.3 Is the platform accessible? ――――――――――

Only Bazaar is accessible publicly through a website, but it requires an account to

use.

Answer to RQ4: Platforms provide various functionalities to support feedback

collection (RQ4.1), including the ability to collect main feedback and meta-feedback

through unstructured and structured forms, commenting, voting or scoring, with

some platforms offering advanced meta-feedback features like branching or marking

relations. Additional functionalities (RQ4.2) extend beyond feedback collection, using

gamification elements like points and leaderboards and supporting collaboration with

features such as user profiles, tagging, filtering, revision history and synchronization

with issue trackers. Accessibility (RQ4.3) is limited, with only one platform accessible

publicly, but needing to register a user account for access.

61

3.4 Discussion

In the following the results of the research questions are discussed, based on the

authors’ interpretations.

[RQ1.1] The platforms collect their main feedback almost equally as freetext or in the

form of templates. Collecting main feedback as freetext allows the users to express

their thoughts without constraints which could lower the barrier for providing

feedback, as users do not need to worry about fitting their feedback into a

predetermined template. On the other hand, templated feedback makes analyzing the

feedback easier.

[RQ1.2] All platforms use push feedback, meaning that the users do not get any

questions and provide the feedback autonomously. The feedback collection

methodology of the platforms also differs in the number of phases at which feedback

is collected. Using multiple phases could have an impact on the resulting quality of

the feedback, but requires more time and effort from the users.

[RQ1.3] The REengs of most platforms influence the feedback collection either by

summarizing feedback, commenting and setting guidelines. Summarization and

commenting can enhance the motivation of the users to participate and shows the

users that their feedback is received and valued. However, influencing the collection

of feedback might introduce bias. For example, by summarizing and commenting

feedback, the REengs might inadvertently highlight certain aspects while ignoring

others.

[RQ2.1] Feedback is collected in government, research and commercial environments.

Only one platform (KMar-Crowd) collects feedback in a governmental environment.

The remaining platforms equally collect feedback in either a research or commercial

environment. Platforms in the research environment (GARUSO, CRUISE, Athena and

WikiWinWin) could profit from a potentially less restrictive settings regarding

feedback collection methods. Platforms in a commercial environment (Tournify,

REfine, iThink and CrowdCore) might be more influenced by business and developer

goals than other platforms.

[RQ2.2] The number of accessing and contributing users varies strongly across

platforms. The number of contributing users is often times much lower than the

number of accessing users. Furthermore, the number of contributing users itself in

general is not very high, with only one platform reaching more than 100 contributing

users (KMar-Crowd). This indicates that while many users may visit a platform, very

few are motivated to contribute to the feedback collection. This could be because of a

lack of motivation, time or trust.

[RQ2.3] Feedback collection durations range from a few hours to several months.

Longer durations can lead to more comprehensive and considered feedback, as users

have enough time to engage with a product and the platform. However, long collection

62

duration can also lead to user fatigue and a drop in participation over time (e.g. in the

S-Sys study of KMar-Crowd).

[RQ3.1] The number of collected main feedback varies between the platforms.

However, it is unclear how much main feedback each user contributes. It is possible

that most of the main feedback is submitted by a few highly motivated contributing

users. This however cannot be validated based on the available data of the platforms.

[RQ3.2] As only three platforms analyzed their feedback, it is unclear whether the

feedback collected by the other platforms is helpful. Also, it was often times not clear,

whether feedback represented opinions, problems or improvement ideas regarding

the product. This information would help to be able to assess how much potential the

feedback has to derive requirements from it. Opinions without wishes for change are

for example not helpful for deriving requirements in our view.

[RQ3.3] Although seven articles evaluated their platform, it is noteworthy that no

standardized instruments (e.g. the System Usability Scale) were used. The absence of

standardized measures makes it difficult to compare the evaluations across different

platforms objectively. Furthermore, the evaluations conducted were not very fine-

grained. For example, the articles did not evaluate each functional or non-functional

requirement of the platforms in detail.

[RQ3.4] Even though some platforms found that the feedback contains actionable

insights regarding the further development of the software, none of the platforms

described whether the feedback had an actual effect on the software, meaning whether

the proposed changes were actually implemented.

[RQ4.1] All platforms allow users to comment on other users’ feedback. This implies

that user feedback is always visible to other users. By making feedback visible to all

users, platforms can create a sense of community and shared purpose as users see their

input as part of a larger effort. However, this transparency can also make some users

more uncomfortable sharing honest but critical feedback and users’ opinions might be

influenced by reading the feedback of others.

[RQ4.2] The integration of gamification features has the potential to increase the

amount of user feedback, but it could reduce the quality of the feedback, as the users’

focus could shift on merely accumulating reward elements. The additional overview

and search functionalities could make it easier for the user to find feedback, but if the

functionalities are not designed well, it could lead to decreased usability.

[RQ4.3] As only one platform is accessible through the web, the limited accessibility

of all platforms makes it hard to validate the insights regarding the platforms.

[Consequences for researchers] The lack of standardized evaluation methods makes

it difficult to compare platforms objectively. Established benchmarks for feedback

quality or quantity do not exist, making it challenging to assess whether a platform is

truly effective in collecting actionable user feedback. This is why researchers should

63

focus on establishing these evaluation methods and benchmarks in the future to allow

for reliable comparisons between platforms.

Gamification elements, such as points, badges, and leaderboards, are implemented in

some of the platforms to increase user motivation. While these features could have the

potential to motivate users to contribute, it is still unclear, because only one platform

evaluated the effect of gamification with the result that it doesn’t have an effect on

motivation. To address this uncertainty, future research should systematically

evaluate the impact of gamification on user motivation regarding the submission of

feedback.

[Consequences for practitioners] Unfortunately, only one platform (Bazaar) is

available publicly. We suggest trying out this platform to assess whether it has

potential to be adapted to specific feedback collection needs in industry.

Furthermore, practitioners can adopt collecting feedback in multiple phases (idea

generation, refinement and decision-making) to assess whether this method yields

more helpful feedback for them compared to the single-phase methods that are often

used in platforms but also in app stores, where feedback collection consists of solely

an input form.

3.5 Threats to validity

This Section discusses potential biases of the systematic mapping study.

[Search strategy bias] Our search term could exclude relevant articles because of our

specific choice of search terms. To counteract this threat, we identified multiple

alternatives to the search terms through analyzing the frequency and similarity of

words in known relevant articles. Furthermore, we included wildcards in our search

terms to include also slightly different forms of a word.

[Selection bias] One threat is to not find all relevant articles. One problem could be

that we couldn’t use the Scopus library, because we had no access to it. Another

problem could be that we had to limit the number of search results of SpringerLink,

because it didn’t allow to scope the search terms individually to title, abstract and full

text. Furthermore, during the search term construction, we had to limit the results to

the research field of requirements engineering, because otherwise the amount of

search results would not have been manageable. This means that there could be more

relevant articles that are not in the research field of requirements engineering. To

counteract this threat, we used a combination of a term-based search across four high

quality search sources and then applied forwards and backwards snowballing again.

[Data interpretation] It might be that we interpreted the data of the articles in a

different way than the authors, leading to inaccuracies or incorrect conclusions. To

counteract this threat, we carefully cross-checked our interpretations with the data

presented in the articles, ensuring consistency and alignment with the authors'

findings.

64

65

III. TREATMENT DESIGN

PART III

66

67

 Chapter

4 Process to collect feedback and derive

requirements

This Chapter describes the process to collect feedback and derive requirements. The

documentation format is described in Section 4.1. Design decisions that span multiple

process steps are described in Section 4.2. Section 4.3 gives an overview over the whole

process. Section 4.4 explains the process to collect feedback through initial questions

(IQ) and Section 4.5 explains the process to derive requirements through follow-up

questions (FUQ). We summarize how our process addresses the problems in Section

4.6. We give a conclusion in Section 4.7.

4.1 Explanation of the documentation format

In this Chapter and the following chapter, we explain the process both in general and

specifically for the application within SMART-AGE. We call the application of the

process in SMART-AGE the instance of the process. When describing the process we

document decisions. We differentiate between general decisions and instance

decisions. General decisions represent decisions which are independent of the instance

and instance decisions are dependent on the instance of the process. We document

general decisions in a box that looks like this:

General decision

 This text describes a general decision.

We document instance decisions like this:

Instance decision

 This text describes an instance decision.

We document the description of the instance like this:

4

68

Instance description

This text describes the instance and it can contain instance decisions.

Instance decision

 This text describes an instance decision inside the instance description.

4.2 Design decisions

We describe design decisions that affect multiple process steps in this Section. We

describe further design decisions regarding individual steps in the following Sections.

General decisions

[Designing a new process] All of the platforms that we found through the

systematic mapping study in Chapter 3 use push feedback in their process. Using

push feedback makes it difficult to address P2 “Control of timing of feedback

collection”, because the REengs rely on the users to give feedback autonomously.

Furthermore, none of the platforms addresses P1.2 “Feedback can be mapped to

requirements” by collecting feedback together with information to which

requirement it is associated. To address these problems we design a new process

that uses questions to collect feedback. We describe how our process addresses

the problems in Section 4.4, Section 4.5 and Section 4.6 .

[Use multiple phases for feedback collection] As we identified in the mapping

study in Chapter 3, several platforms use multiple phases to collect feedback. We

adopt using multiple phases for our process to collect feedback and to derive

requirements, because this makes it possible to converge on specific aspects of

feedback. This contributes to conquering P3 “Support of change requests among

users”, because we can use a separate phase to measure the support among users

of wishes for change in functionality (change requests).

[No gamification] We decided to not use gamification, because the gamification

features seemed to not have an effect for KMar-Crowd and because according to

the meta-review (Sardi et al., 2017), a noticeable short-term effect on the users’

motivation and engagement is unlikely to be sustained, as the users’ interest and

enthusiasm in the game-like features seems to decrease in the long.

Regarding the application of the process in SMART-AGE, we made the following

decision that spans multiple process steps.

69

Instance decision

[No gamification] (Altmeyer et al., 2018) found that older adults avoid

competition and prefer collaboration and caretaking. They consider badges and

points as meaningless because they provide a level of visibility that puts older

adults under pressure.

4.3 Overview of the process

In the following, we describe our process to collect feedback and derive requirements.

The process is supported by the platform SF which is described in Chapter 5. The

process is shown in Figure 4.1.

The process consists of the collection of feedback through initial questions (IQ) and the

derivation of requirements through follow-up questions (FUQ). Table 4.1 gives an

overview about the process steps and in which Section they are described.

Figure 4.1: Activity diagram representing the process to collect feedback and derive

requirements. Numbers (e.g. ❶) indicate individual steps (or groups of steps) of the

process.

70

Table 4.1: Process steps description and reasons

 Nr. Step Section

Process to collect feedback through IQ

❶ REengs select IQ Section 4.4.1

❷ Usage data is recorded (optional) Section 4.4.2

❸ REengs ask IQ Section 4.4.2

❹ Users answer or skip IQ Section 4.4.3

❺ Users send messages and comments Section 4.4.4

Process to derive requirements through FUQ

❻ REengs prepare the feedback Section 4.5.3

REengs extract change requests (CR) Section 4.5.3.1

REengs map CR to requirements Section 4.5.3.2

REengs map CR to topics Section 4.5.3.3

❼ REengs derive requirements Section 4.5.4

REengs derive FUQ
Section 4.5.4.1

Section 4.5.4.3

REengs select FUQ
Section 4.5.4.2

Section 4.5.4.3

REengs ask FUQ Section 4.5.4.3

Users answer or skip FUQ Section 4.5.4.3

REengs enrich topics Section 4.5.4.3

REengs change/create requirements Section 4.5.4.4

In the following we describe the steps briefly including a justification for each step. We

extend our description in the respective Sections of the process steps.

――――――――― Process to collect feedback through IQ ―――――――――――

――――――――――――― REengs select IQ (❶) ――――――――――――――

The REengs select the IQ that they want to ask the users before the users start the use

of the apps.

71

General decision

A selection of IQ is necessary, because depending on the goals of the REengs,

different IQ need to be chosen.

We also propose adaptive IQ, which are personalized questions that are based on the

usage data of the user.

General decision

We propose adaptive IQ, because they allow us to better ensure that a question is

actually answerable for the user. For example, we can ask why a specific function

was not used. This question only makes sense to a user if they really did not use

the function.

――――――――― Usage data is recorded (optional) (❷) ――――――――――

This step is only required, when adaptive IQ are selected in ❶, because adaptive IQ

are the only questions that rely on recorded usage data. If no adaptive IQ were chosen

this step can be skipped. If adaptive IQ were chosen, all interactions of the users with

the apps (e.g. starting/stopping an app, clicking on UI elements) are recorded and

saved.

――――――――――――― REengs ask IQ (❸) ―――――――――――――――

The REengs ask the selected IQ to the users.

General decision

We ask questions instead of relying solely on push feedback to address the

problems P1.2 and P2, as already mentioned above in Section 4.2.

―――――――――――― Users answer or skip IQ (❹) ――――――――――――

The users can answer and skip the IQ (❹).

General decision

We allow for skipping questions, to allow users the option to not answer a

question. In our view this respects the users’ autonomy and reduces frustration.

――――――――― Users send messages and comments (❺) ――――――――――

As an alternative to answering IQ, the user can also send messages and give comments

(addressing P1.1: A lot of feedback can be collected from a lot of users).

72

General decision

We allow for submitting messages to give users the possibility to send feedback

that is not covered by the IQ. We allow for submitting comments, so that users can

add additional information to their answers and messages after submission.

Based on the received feedback, the process to derive requirements through FUQ is

conducted.

―――――――― Process to derive requirements through FUQ ―――――――――

――――――――――― REengs prepare the feedback (❻) ―――――――――――

The REengs prepare the feedback, which involves extracting change requests (CR) and

mapping them to requirements and to topics.

General decision

We extract CR, because they indicate wishes regarding the change of functionality

or new functionality and we need them to derive requirements. We map CR to

topics because this an established method to process feedback (Li et al., 2024). In

our process topics represent aspects of change regarding a requirement. This is why

we map CR to requirements as well.

――――――――――― REengs derive requirements (❼) ―――――――――――

Based on the topics, the REengs iteratively derive, select and ask FUQ.

General decision

We ask FUQ to collect CR that are actionable (ACR), to identify the ACR which

are most desired by the users and to validate whether an ACR should be

implemented. Collecting ACR is necessary, because some CR are not concrete

enough to derive requirements (non-actionable). Identifying the most desired

ACR is necessary when there are multiple ACR and it is not clear which ACR

should be validated regarding whether it should be implemented. The

identification of ACR and the validation of whether an ACR should be

implemented address P3: Support of change requests among users.

The users answer or skip these FUQ. Based on the answers to the FUQ, the REengs

either enrich the topics with the collected ACR, they note in the topics which ACR is

73

most desired by the users and they change/create requirements based on an ACR that

should be implemented. Based on the enriched topics the REengs can conduct a new

iteration of deriving, selecting, asking and enriching topics. We explain how this works

and why iterations are needed in Section 4.5.4.3.

4.4 Process to collect feedback through initial questions (IQ)

In this Section we describe in detail steps ❶ to ❺ of the process. We describe how

REengs select IQ (❶) in Section 4.4.1. We describe how usage data is recorded (❷)

and how REengs ask IQ (❸) in Section 4.4.2. We describe how users answer or skip

IQ (❹) in Section 4.4.3 and we describe how users send messages and comments (❺)

in Section 4.4.4.

4.4.1 REengs select IQ

We offer a variety of IQ with different characteristics that can be used to collect

feedback (addressing P1.1: A lot of feedback can be collected from a lot of users). We describe

the characteristics of these IQ in Section 4.4.1.1 and we describe their structure and

give examples in Section 4.4.1.2. We describe how to decide which IQ to select in

Section 4.4.1.3.

4.4.1.1 IQ characteristics

Our proposed IQ have the following characteristics: owner, purpose, type, aspect, category

and app.

The owner of an IQ represents the person that is responsible for that IQ. This could be

the REeng, the product owner, the developer or any other person that needs to ask a

question to the users.

Instance description

In SMART-AGE we have us REengs and stakeholders of the apps asking IQ to the

users.

The purpose of an IQ represents the reason for why the IQ is asked. There could be

different purposes for asking an IQ to the users. For example, the purpose could be to

derive requirements for the app, to evaluate aspects of the app, or to let the users

answer a question as an exercise.

General decision

For the conduction of our process to collect feedback and derive requirements,

only IQ with the purpose to derive requirements are necessary. Exercise questions

74

are optional and they can be asked so that the users are familiar with the

functionality before answering IQ with the purpose to derive requirements.

Instance description

In SMART-AGE also ask questions to evaluate the usability of the apps.

Instance decision

We ask questions regarding the evaluation of the usability, to use the results in

our evaluation.

The type of a question can either be scheduled or adaptive. Scheduled means that the

question is asked after a fixed number of days relative to the start of using an app

(addressing P2 "Control of timing of feedback collection"). Adaptive means that the

question is asked depending on the usage behavior of the user.

Instance description

In SMART-AGE we ask both scheduled and adaptive IQ. Regarding adaptive IQ,

in SMART-AGE we ask why the users didn’t use the app or a specific functionality

of it for some time and we ask how the functionality can be improved so it is used

more often.

Instance decision

We ask adaptive IQ in SMARTAGE, because we think that asking about reasons

for inactivity can yield change requests that help us to improve the apps

(addressing P1.3 "Feedback contains change requests").

The category represents whether the IQ asks about opinions, problems or

improvements (OPI) or about reasons and improvements (RI).

General decision

We ask for OPI in isolation to obtain more specific answers. We always ask an

opinion question, followed by a problem question, followed by an improvement

question. We ask for OPI and RI to address P1.3 "Feedback contains change requests".

The category RI is used for adaptive IQ.

IQ of category ‘other’ do not follow the OPI structure. In our process, questions of

category ‘other’ are a) asked by the stakeholders (as they are not interested in a

75

combination of OPI), b) asked for the purpose of evaluation taken from a questionnaire

or c) address non-functional aspects that often need to be formulated in a specific way.

The characteristic “aspect” distinguishes whether the IQ refers to the system (that

means one of the apps) as a whole or to functional aspects or non-functional aspects.

General decision

We ask questions about specific requirements to reduce effort of mapping

feedback to requirements (conquering P1.2 "Feedback can be mapped to

requirements").

IQ with aspect ‘other’ cannot be uniquely mapped to either the system as whole or a

specific functional or non-functional requirement. In general IQ with a functional

aspect refer to system functions and IQ with a non-functional aspect refer to quality in

use and product quality (ISO/IEC 25012:2008).

General decision

We want to have feedback about the following aspects of quality in use:

Satisfaction, Effectiveness and Efficiency, because we think these aspects help most

in deriving requirements. The aspects regarding satisfaction address how useful

the users find the app (Usefulness), how much trust they have in it (Trust), how

pleasurable they find it (Pleasure) and how much comfort they have with it

(Comfort). Regarding effectiveness and efficiency, we ask about the goals of the

users, as well as related problems and improvement proposals. Regarding product

quality, we address the following aspects, also because we think these aspects help

most in deriving requirements: Compatibility, Usability and Security. Regarding

compatibility, we ask about the connection to other apps. Regarding usability, we

ask about how learnable the app is (Learnability), how easy to operate it

(Operability) is, whether user errors occurred and how these can be prevented

(User Error Protection), as well as how accessible the app is for older adults

(Accessibility). Regarding security, we ask whether the users have doubts

regarding data protection.

The characteristic app represents the app which the IQ addresses (SF, SV or SI).

4.4.1.2 IQ structure and examples

We explain in this Section how our proposed IQ are structured and give examples

from the instance of our process in SMART-AGE. Table 4.2 gives an overview over the

structure of IQ, along with their characteristics and their answer options.

76

General decision

We often combine two sub-questions in one IQ, such as “How do you like <function>

in <app>? Why?”. Here the first part of the IQ can be answered by selecting a value

from a likert scale and the second part can be answered by freetext. This is because

only the selection of a value without reasoning does not allow us to derive

requirements.

We ask for a likert scale quantitatively, because the distribution of the selection of

the likert scale allows for a quick insight into the users opinions, without the need

to qualitatively analyze the answers. We ask qualitatively for the reason, because it

 Table 4.2: Structure of IQ and their answer options. O=Owner, P=Purpose,

T=Type, A=Aspect, C=Category

ID
IQ and its characteristics Answer options

1)

How do you like <function> in <app>? Why?

Characteristics: O: REeng, P: Requirements Derivation, T:

Scheduled, A: Functional, C: Opinion, App: SF

Likert scale

selection, Freetext

2)

Are there any problems with <function> in <app>? If yes, which

ones?

Characteristics: O: REeng, P: Requirements Derivation, T:

Scheduled, A: Functional, C: Problem, App: SF

Yes/No selection

Freetext

3)

Can the <function> in <app> be improved? If yes, how?

Characteristics: O: REeng, P: Requirements Derivation, T:

Scheduled, A: Functional, C: Improvement, App: SF

Yes/No selection

Freetext

4)

This type of question can be formulated very freely. See our

instance examples below for inspiration.

Characteristics: O: REeng, P: Requirements Derivation, T:

Scheduled, A: Non-Functional, C: Other, App: SV

As desired

5)

Can <app> be improved to improve <NFR>? If yes, how?

Characteristics: O: REeng, P: Requirements Derivation, T:

Scheduled, A: Non-Functional, C: Improvement, App: SF

Yes/No selection

Freetext

6)

What is the reason that you have not used <function> in <time

range>? How could <app> be improved so that you use it more

often?

Characteristics: O: REeng, P: Requirements Derivation, T:

Adaptive, A: Functional, C: RI, App: SF

Freetext

Freetext

77

is important to understand the selection of the likert scale, because otherwise no

change to the application can be derived.

For IQ with category OPI we always use a combination of selection and freetext. In

category other, we mix sub-questions with the answer option combinations:

freetext – selection, selection – only, freetext – freetext and freetext only. This is

because some questions address aspects that need more freedom in the question

structure.

Instance description

We give concrete examples for IQ that we use in our process in SMART-AGE in

Table 4.3.

We provide the complete list of IQ in our repository10.

Table 4.3: Example IQ and answer options.

Id Example IQ

1) How do you like the history function in SF? Why?

2)
Are there any problems with displaying the history in

SF? If yes, which ones?

3) Can the display of the history in SF be improved? If yes, how?

4)
Are you concerned about the security of your data in

SV? Why?

5)
Can SV be improved to make it

particularly good for users over 67? If yes, how?

6)
What is the reason that you have not looked at a question in SF in the last

week? How could the app be improved so that you use it more often?

4.4.1.3 IQ selection

Instance description

Figure 4.2 shows the distribution of IQ that we selected in SMART-AGE. Each

characteristic is mapped to a ring starting with owner as the innermost ring and app

with the outermost ring. We provide a repository which includes the detailed plan

when which questions are asked11.

10 https://github.com/lradeck/dissertation/blob/main/IQ.xlsx

11 https://github.com/lradeck/dissertation/blob/main/IQ.xlsx

78

Figure 4.2: Sunburst chart with distribution of IQ and their characteristics

To conduct our process, other REengs don’t need to select IQ the same way we do in

SMART-AGE. They can select a subset of IQ that fits their individual needs and

constraints. For example, when no usage data can be recorded because of data privacy,

adaptive IQ can be omitted. When the REengs want to focus on collecting feedback

regarding functional requirements, they can just ask IQ with aspect functional.

Additionally, we recommend to read Section 10.3.2, which gives insights regarding

how effective different IQ were in collecting feedback. These insights also can help

when deciding which IQ to select.

79

4.4.2 REengs ask IQ

We ask no more than five IQ per day and we ask a mixture of different IQ with a

specific order.

General decision

To enhance the quality of experience for the users during feedback collection, we

do not ask more than five questions per day (Fotrousi et al., 2018) and we mix

questions to make answering questions more interesting. When asking for OPI, we

ask for the opinion first, then for problems and then improvements. We ask for

opinions first, because they are more abstract than answers regarding problems

and improvements. We ask questions at specific timepoints to address P2 “Control

of timing of feedback collection”.

We strategically schedule the IQ regarding functionality and user experience.

General decision

We ask IQ about less prominent system functions later in the process, allowing

users enough time to explore and familiarize themselves with all aspects of the app.

IQ that are asked to the users do not expire. If the users don’t answer the IQ they

receive on one day, they can answer these IQ on the next day together with the new

IQ of that day.

The process of asking adaptive IQ is illustrated in Figure 4.3. The user with user id

“User1” starts interacting with the app (❶). The resulting implicit feedback is sent to

SF (❷). The implicit feedback consists of the ID of the user (UserID), the app that was

used (App), the event that happened (Event – e.g. CLICK for clicking on a user interface

element or START for starting the app), the context of the event (Context – e.g. which

user interface element was clicked on), a foreign ID referencing an entity of the app

that was used (FID – e.g. the ID of a link clicked) and the date at which the event was

created (Created). The userID is necessary to trace back the implicit feedback to the user.

The App is important, as otherwise implicit feedback of multiple apps couldn’t be

distinguished.

Instance description

In SMART-AGE out of the IQ that we ask each day, three are specifically designed

to gather feedback on OPI, while the other two IQ are selected randomly to provide

a variation.

80

Figure 4.3: Diagram representing the process of asking an adaptive IQ.

The context and FID are necessary, because they define an interaction with an app.

Created is important, because otherwise no calculations regarding a behavior over time

can be conducted. SF receives the implicit feedback and saves it to the database (❸).

SF now periodically loads the history of the implicit feedback (❹) and checks whether

it does not represent the ideal usage behaviour of the app about which feedback is

collected (❺). The ideal usage behaviour is configured by the REengs but defined by

the stakeholders of the apps. To define ideal usage behavior the stakeholders have to

think about how they would like the users to interact with the apps. They then

formulate their wishes in form of measurable metrics and communicate them to the

REengs. The REengs then configure the metrics in SF.

Instance description

For example, in SMART-AGE all stakeholders want the users to open the apps it at

least once a week. This frequency was discussed among the stakeholders and was

found to reflect regular engagement with the apps. The SI stakeholders defined

ideal usage behavior so that the users should check every recommendation within

one day, that they should answer every question within one day and that they

should open the link of a given recommendation within three days. The users

should also never skip questions. Regarding SV, the users should open the news

and a category at least once per week. Regarding SF, once per week the users

should open the history, look at least one of their answers, open a question, send a

message and use the audio recording function

If the implicit feedback does not represent ideal usage behavior the user receives an

adaptive question, which asks for the reason and for improvement ideas.

81

General decision

The asking of adaptive question is similar to (Wüest et al., 2019) and (Fotrousi and

Fricker, 2016). (Wüest et al., 2019) trigger feedback collection based on user goals

in the context of a navigation system. (Fotrousi and Fricker, 2016) also collects

explicit pull feedback based on implicit feedback. Our collection of implicit

feedback adapts aspects from these articles: (Dzvonyar et al., 2016), (Oriol et al.,

2018a), (Stade et al., 2017) and (Fotrousi et al., 2018). From (Dzvonyar et al., 2016)

we adapt recording the user id to know which user sent the implicit feedback. We

adapt recording which application sent which implicit feedback from (Oriol et al.,

2018a), to be able to differentiate implicit feedback between the applications. We

adapted recording events based on interaction level and their timestamps from

(Stade et al., 2017; Fotrousi et al., 2018; Oriol et al., 2018b), because this is necessary

to ask adaptive questions. QoE logs the user id, timestamps of events on feature

level (e.g. starting or completing a feature) and user interaction level (e.g. user input

or an application output) and then triggers a feedback collection form with the

option to answer a question about the users satisfaction and the reasons for the user

behaviour. Compared to (Wüest et al., 2019) and (Fotrousi and Fricker, 2016) we do

not collect pull feedback based on specific activities that are detected in the implicit

feedback, but we collect pull feedback through adaptive questions based on the

absence of activity to ask for the reasons.

4.4.3 Users answer or skip IQ

The users can answer and skip the IQ. After answering or skipping an IQ either the

next IQ is shown (if there is another IQ open to answer) or no IQ is shown anymore.

4.4.4 Users send messages and comments

We allow users to send messages and comments as an alternative to answering IQ.

General decision

We implement commenting on answers and messages like almost all platforms.

Instance description

Due to constraints of our study, users cannot see and comment other feedback of

other users. This is because users could influence each other through their

feedback, leading to non-independent responses. This would violate the

assumption of independent observations, which is critical for many statistical

analyses. However, the users can comment their own feedback to extend their

answer or message with aspects they did not include initially.

82

4.5 Process to derive requirements through follow-up questions (FUQ)

In this Section we describe how we derive requirements through follow-up questions

(FUQ) based on the feedback to the IQ. Section 4.5.1 presents related work. Section

4.5.2 explains relevant terminology. The following Sections describe the steps of the

process to derive requirements through FUQ of Figure 4.1 (❻ and ❼). Section 4.5.3

describes how REengs prepare the feedback (❻) and Section 4.5.4 describes how the

REengs derive requirements (❼).

4.5.1 Related work

We conducted a term-based literature search and snowballing in (Scherbatschenko,

2023) to find articles that describe how requirements can be derived from feedback

systematically. The search was executed in 2023 and did not yield any results.

However, we eventually found two industry studies (Johanssen et al., 2019) and (Li et

al., 2024). In (Johanssen et al., 2019), the authors asked practitioners how they capture

and utilize user feedback. Feedback is collected explicitly (e.g., surveys) and implicitly

(e.g., usage data), analyzed to link it to features or applications, validated to ensure

alignment with user needs and prioritized to guide feature development and

improvement. These steps correspond well to the insights of (Li et al., 2024). (Li et al.,

2024) state that the derivation of requirements from feedback is still an open problem.

Even though they do not present a systematic process to derive requirements from

feedback, they identify key steps of a life cycle of managing user feedback in

organizations to improve their products. This life cycle comprises four essential steps:

1) collection, 2) analysis, 3) validation and 4) prioritization of user feedback. In the

collection phase, organizations gather feedback from different sources, including

emails, support tickets, online platforms and user usage data. Next, in the analysis

phase, feedback is examined to identify common themes. A theme is a set of feedback

that addresses the same problem or feature. (Panichella et al., 2015; Guzman et al.,

2016) for example, analyze feedback by employing systematic content analysis and

machine learning to classify feedback into categories (e.g. praise, bug, complaint, etc.),

to understand a vast volume of feedback related to software applications. The

validation phase ensures that these themes are accurate and really represent the users’

needs. For example, (Lohmann et al., 2009; Laporti et al., 2009; Fernandes et al., 2012;

Snijders et al., 2015; Sharma and Sureka, 2018; Menkveld et al., 2019; Kolpondinos and

Glinz, 2020; Wouters et al., 2022) validate user feedback through some form of voting,

scoring or rating, to assess the support among users. Finally, in the prioritization

phase, validated feedback is ranked based on its alignment with organizational goals

or potential impact on users. For example, the articles (Gartner and Schneider, 2012;

Kifetew et al., 2021; Malgaonkar et al., 2022) describe the automation of how feedback

can be prioritised, but according to the industry practitioners in (Li et al., 2024), these

tools are rarely used.

83

4.5.2 Terminology

In this Section we explain the terminology that is relevant for understanding the

further Sections.

[Deriving requirements] With derivation of requirements we mean changing existing

requirements and creating new requirements.

[Follow-up questions (FUQ)] In our process to derive requirements from feedback we

use questions. We call these questions follow-up questions (FUQ), because they are asked

to the users after the user already gave feedback to our IQ We use different types of

FUQ which we distinguish with FUQ1, FUQ2 and FUQ3 as explained below.

[Change requests] From all the feedback of our users, we use feedback that represents

change requests (CR) regarding an app.

General decision

We use only CR, because these indicate wishes regarding the change of

functionality or new functionality, and thus change wrt. requirements.

There exist two types of CR, non-actionable change requests (NACR) and actionable change

requests (ACR).

[Non-actionable change requests (NACR)]. NACR are CR that do not contain detailed

enough information to allow the direct derivation of a change to a requirement. An

example for an NACR would be “I want to find a website link faster” or “In my view,

a website link cannot be found fast”. These CR are NACR, because “finding a website

link faster” can be achieved through a variety of different solutions. A search function

could be the solution to find website links faster or there could be a function that allows

the user to adjust the UI to his/her individual needs. For the REeng it is not apparent

what exactly should be changed.

[Actionable change requests (ACR)] ACR in contrast to NACR allow the direct

derivation of requirements. An example for an ACR is “I want to have a bigger font

size” or “In my view the font size is very small”. These CR are ACR, because an

existing requirement (e.g. a system function that is responsible for displaying text) can

be changed to reflect the wish for bigger font size.

[Topics] Topics represent an aspect of change regarding a requirement and both

NACR and ACR are mapped to them.

4.5.3 REengs prepare the feedback

In this Section we describe the preparation of the feedback that we received through

our IQ. The result of the preparation are CR that are mapped to requirements and

topics. The steps for the preparation of the feedback are: ❶) Extracting CR from the

feedback ❷) Mapping the CR to requirements and ❸) Mapping the CR to topics.

84

4.5.3.1 REengs extract change requests (CR)

To extract CR we first check whether the feedback is comprehensible. Feedback is

comprehensible when the REeng can understand the feedback in terms of grammar

and spelling. When feedback is comprehensible, we extract the CR (e.g. in contrast to

bug reports). When feedback contains multiple CR or when it contains a CR and also

information that is not a CR, we split the feedback into parts, so that each part

represents either a CR or not. We call these parts “statements”. When the feedback is

not split, we call the whole feedback a statement. Examples and more details regarding

the extraction of CR can be found in the appendix B.1.

4.5.3.2 REengs map CR to requirements

After extracting CR, we map the CR to requirements.

Instance description

Our requirements are specified using TORE (Paech and Kohler, 2004) which

distinguishes user tasks, subtasks, system functions and workspaces. The latter

bundles data and functions presented together to the user. We map a CR always to

the most technical requirement possible. System functions and workspaces give

more technical details than subtasks and subtasks more details than user tasks. We

map a CR to a system function when it addresses mainly functional aspects. We

map a CR to a workspace when it addresses mainly aspects about the user interface.

We map a CR to a subtask if it mainly addresses aspects about the subtask and we

map it to a user task, if it addresses aspects about the app or app context which

cannot be associated with an existing subtask. Further details regarding the

mapping of CR to requirements can be found in the appendix B.1. The requirements

for the apps are listed in in the appendix in Table B.1.5, Table B.1.6, Table B.1.7 and

Table B.1.8.

Using TORE is not necessary for the process to work. If you are using user stories, just

try to identify which user story fits best to the CR. Keep in mind that later based on

the CR changes to the associated requirement will be derived.

4.5.3.3 REengs map CR to topics

We map CR to topics, which address aspects of change regarding a requirement. We

give examples in the following which should make it clear in general how mapping

CR to topics work.

85

Instance description

Table 4.4 gives examples for topics which address different aspects regarding the

system function “SF: Display Question”, which is responsible for displaying the

questions in SF. C1, C5 and C6 have their own topic, because they address different

aspects related to the system function “SF: Display Question”. C2, C3 and C4 have

the same topic, because they all represent CR regarding the understandability of

the questions. C2 wishes for better understandability of questions in general and

C3 and C4 provide concrete proposals for enhancing the understandability.

Table 4.4: CR and their topics. C=Id of CR, T=Id of topic,

C Change request Reason for ACR/NACR Topic T

C1

NACR: “When I answer a

question, I want to have

more answer options to

select.”

It is unclear which answer

options the user wants.

Answer

options
T1

C2

NACR: “I want to have

questions that are easier to

understand.”

It is unclear how we can

make the questions easier

to understand

Understandability

T2

C3

ACR: “I want you to

explain the terms in a

question better.”

We can explain the terms

of a question in more

detail

C4

ACR: “I want you to

explain better what aspect

of the app a question

addresses.”

We can explain in more

detail what aspect of the

app is addressed by the

question

C5
ACR: “I want an overview

over all open questions.”

We can provide an

overview over all open

questions

Overview T3

C6
ACR: “I don’t want to be

asked about my inactivity.”

We can ask no more

questions regarding

inactivity

Inactivity T4

4.5.4 REengs derive requirements

In this Section we describe how the REEngs can derive requirements. The process of

deriving requirements consists of the steps of deriving FUQ, selecting FUQ, asking

FUQ, enriching topics and changing/creating requirements.

86

4.5.4.1 REengs derive FUQ

Based on the topics we can derive FUQ. Depending on which types of CR are mapped

to a topic, we derive different types of FUQ.

We use three types of FUQ: FUQ1, FUQ2 and FUQ3.

General decisions

We use these three types of FUQ, because they allow us to achieve the goals in

Table 4.5.

Table 4.5 gives an overview over the different FUQ, their conditions, goals and from

which topics they are derived.

If a topic contains only NACR, then we derive a FUQ1 which has the goal to collect an

ACR for that topic. This question is a divergent question (Glinz et al., 2020), as it

encourages brainstorming and exploration of solution. If a topic contains multiple

ACRs, we derive and ask a FUQ2 and let the users decide which ACR is most

supported. This question is a convergent question (Glinz et al., 2020), as it chooses one

specific solution out of many. If a topic has only one ACR or when the topic has

multiple ACR, but the most supported ACR is already identified, then we derive a

FUQ3. This question is also convergent, because it validates whether the specific ACR

should be accepted for implementation or not. Table 4.5 shows in column “Enables”

that the answers of asking FUQ1 enable asking FUQ2 or FUQ3, that the answers of a

FUQ2 enable asking FUQ3 and that based on the answers to FUQ3 we can derive

requirements.

Table 4.5: Different types of FUQ along with their conditions, goals and the topic id

(T) of Table 4.4 for which they are used

Type Condition Goal Style Enables T

FUQ1
Topic contains only

NACR
Collect ACR Divergent FUQ2/3 T1

FUQ2
Topic contains multiple

ACRs

Identify most voted

ACR
Convergent FUQ3 T2

FUQ3

Topic has only one ACR

or the most supported

ACR is already identified

Validate whether

ACR should be

implemented.

Convergent
Deriving

requirements

T3,

T4

87

Instance decision

It would have been possible to ask multiple FUQ3 for a topic that has multiple

ACRs, but we decided to let the users vote for the most desired ACR of a topic to

reduce the amount of FUQ needed for requirements derivation.

If the number of questions is not relevant, one can ask a FUQ3 for every ACR in a topic.

Table 4.6 shows the elements of FUQ1 and examples.

General decisions

E1.1 explains the topic briefly so users can understand why they receive a

question. E1.2 provides context, because it could be that users don’t understand

which functionality in the app is meant. E1.3 lets users state if they desire change

in general, which is a precondition for answering E1.4. E1.3 also allows the users

to indicate that they find the question not comprehensible or that they cannot

answer the question. These answer options are important to improve construct

Table 4.6: FUQ1 elements and examples regarding topic id T1 from Table 4.4

ID Element Example

E1.1
Description of the topic

as text

“We have received the request to provide more

options for answering questions. However, we are not

exactly sure how to implement this request.”

E1.2

Optional description and

screenshot of the related

functionality in the app

to give context

Description: “In the image below, you can see the

current view of a question and its answer options.”

Image: [for an example see Figure B.2.42 in the

appendix]

E1.3

Question whether

change regarding topic

is desired in general and

the answer options:

Instance example: “Do you even want there to be

more options for answering questions?”

Answer options:

Selection: 1) Yes 2) No 3) I don’t care 4) I find the

question not comprehensible 5) I cannot answer this

question

E1.4
Question asking for

ACRs

“In case change regarding topic is desired:” Instance

example: “What answer options do you want there to

be?”

 Answer option: Freetext

88

validity of the FUQ. E1.4 is important to give users a possibility to specify how the

change should look like.

Table 4.7 shows the elements of FUQ2 and examples.

Table 4.7: FUQ2 elements and examples regarding topic id T2 of Table 4.4

ID Element Example

E2.1
Description of the topic as

text

Instance example: “We have received the request

to make our questions easier to understand.”

“However, we are not exactly sure how to

implement this request.”

E2.2

Optional screenshot of the

related functionality in the

app to give context

A screenshot could be given here to remind the

users about the view of a question, but it is not

obligatory.

Description: “In the image below, you can see the

current view of a question.”

Image: [for an example see Figure B.2.43]

E2.3
Description of the ACRs as

text

“There are the following proposed changes:

Instance examples:

• More detailed explanation of the terms in a

question

• More detailed explanation of what aspect of

the app the question addresses”

E2.4

Question whether change

regarding topic is desired in

general

Instance example: “Do you even want our

questions to be easier to understand?”

Answer options:

Selection: 1) Yes 2) No 3) I don’t care 4) I find the

question or the ACRs not comprehensible 5) I

cannot answer this question

E2.5

Question asking which of

the ACR is wanted.

“If yes, please decide for a change:

Instance examples:

• More detailed explanation of the terms in a

question

• More detailed explanation of what aspect of

the app the question addresses”

Answer options:

All ACRs of the topic (the users can choose one

ACR) along with the answer option “No ACR is

suitable”

89

General decisions

E2.3 is important as it shows the users all the possible changes from which they

can choose one in E2.5. We let the users select only one option in E2.5, so that they

have to think about which change the desire most. The other elements are

important because of the same reasons as we explained before.

Table 4.8 shows the elements of FUQ3 and examples.

Table 4.8: FUQ3 elements and examples regarding topic id T3 and T4 of Table 4.4

ID Element Example

E3.1 Description of the ACR as text

[If mockup]: [T3]: T3 needs solution proposed

through mockup, because it is important to

validate the UI of the mockup. We write

Instance example: “We have received the

request to provide an overview over all open

questions.

“In the image below, you can see our mockup

outlined in red.” [Mockup]

[if no mockup]: [T4]: For T4, the solution is clear

(not ask any questions regarding inactivity

anymore). We write

Instance example: “We have received the

request to not ask questions about your

inactivity anymore.”

E3.2
[If mockup]: Mockup is shown

here
Mockup: [for an example see Figure B.2.54]

E3.3

[if no mockup]: Optional

screenshot of related

functionality is shown here

Screenshot: [for an example see Figure B.2.53]

E3.4

Question whether ACR should

be accepted

Instance examples:

[T3]: “Do you want an overview of the

questions?”

[T4]: “Do you want us to not ask about your

inactivity anymore?”

Answer options:

1) Yes 2) No 3) I don’t care 4) I find the question

or the ACR not comprehensible 5) I cannot

answer this question

90

General decision

E3.1 is important as it provides a description of the ACR to ensure stakeholders

understand the proposed change. In E3.2 we provide a mockup, which is necessary

if the proposed solution involves UI changes. We use mockups to propose

solutions, because explaining user interface changes through text is difficult to

understand. In E3.5 we offer the possibility to choose “Yes, but I have notes” and

to give notes as freetext in E3.6, because users could have remarks regarding our

proposals. The other elements are important because of the same reasons as we

explained before.

4.5.4.2 REengs select FUQ

Based on the derived FUQ the REengs select specific FUQ that they want to ask to the

users.

General decision

Selecting specific FUQ is necessary if the amount of derived FUQ is too high to be

asked to the users. Furthermore, depending on the feedback and the goals of the

REengs it makes sense to prefer asking specific FUQ. If the feedback contains a lot

of NACRs but few ACRs and the goal is to derive as many requirements as possible,

than it makes sense to ask a lot of FUQ1 initially to collect more ACRs. If the goal

of the REengs is to change or create requirements very quickly, but it is not

necessarily important that a lot of requirements are changed or created, then only

FUQ2 and FUQ3 could be asked. It is even possible to skip the voting of ACRs

regarding FUQ2 and ask FUQ3 only in case the REengs are sure that the ACR is

desired by the community or when there are no alternatives to the ACR.

Furthermore, the selection of specific FUQ can be conducted based on

characteristics of the FUQ. We explain the characteristics and the reasons why

selecting FUQ based on the characteristics is helpful for the REengs below.

The characteristics of the FUQ are listed and explained in Table 4.9 along with

examples.

E3.5
[if mockup]: Question whether

ACR should be accepted

Instance example:

[T3]: “If yes: Do you want us to implement our

solution proposal?”

 Answer options: 1) Yes 2) No 3) I don’t care

E3.6

[if solution is proposed]:

Freetext field where users can

enter notes.
“If you have notes: Which notes do you have?“

91

Table 4.9: Characteristics of FUQ and examples

Innovativity (all FUQ have this characteristic)

Definition: A FUQ is considered innovative when the proposed change(s) enable

users to do more or less, or to receive more or less amounts of information

Examples for innovative FUQs:

Do more: The FUQ asks whether the users want to change the order of categories or

links in an app

Do less: The FUQ asks whether the filter function in an app should be removed

Get more information: The FUQ asks whether the users want to see characteristic

tags for the news in a news app

Get less information: The FUQ asks whether the users want to have access to less

links in an app

Examples for not innovative FUQs:

The FUQ asks whether the users want to have a larger font regarding the news in a

news app

General decision

Ask innovative FUQ to identify changes to requirements or new requirements that

influence what users can do or what information they see.

Ask not innovative FUQ to identify changes to requirements or new requirements

that influence only how users see the information that is displayed by the system.

Percentage of associated users (all FUQ have this characteristic)

Definition: The percentage of users that submitted an ACR or NACR that is

associated with the topic of the FUQ divided by all users that submitted an ACR or

NACR.

Examples: Assuming the ACRs and the NACR of topic with T2 of Table 4.3 were

extracted from the feedback of three different users, the number of associated users

would be 3. If there would be 100 users that submitted ACRs or NACRs, the

percentage would be 3%.

92

General decision

Ask FUQ that have a high percentage of associated users to identify changes to

requirements or new requirements that are already recognized as important by

relatively many users. This can increase the chance of the FUQ getting answered

by the users.

Ask FUQ that have a low percentage of associated users to identify changes to

requirements or new requirements that are recognized as important by relatively

few users yet. This can be still be helpful when the proposed change(s) of the FUQ

are seen as very important by the REengs.

Cognitive effort (FUQ1 and FUQ2 have this characteristic)

Definition: The required level of creativity (low, medium, high) needed to answer a

FUQ1 or FUQ2.

Low cognitive effort: In the case of a FUQ1, it is easy for the user to come up with a

desired ACR, or in the case of a FUQ2, the range of possible ACRs is highly covered

by the provided ACRs.

Example: A FUQ2 asks whether the users don’t want to get asked about feature A

and/or feature B anymore. The FUQ2 offers the ACRs “Don’t ask about feature A

anymore”, “Don’t ask about feature B anymore” and “Don’t ask about feature A and

feature B anymore”. There are no other ACRs imaginable for the user and the user can

just choose one of the offered ACRs to answer the question.

Medium cognitive effort: In the case of a FUQ1, it is moderately difficult for the user

to come up with a desired ACR, or in the case of a FUQ2, the range of possible ACRs

is moderately covered by the provided ACRs.

Example: A FUQ1 asks whether an app should update their links more often and in

the case this is desired, it asks how often the links should be updated. The range of

possible ACRs is moderate (e.g. once a week/month/year etc.). For the user it is

moderately difficult to come up with an ACR. A FUQ2 asks how the design of links

could be enhanced. The ACRs offered are “Don’t shorten the length of links” and

“Make links colored”. There are a few other ACRs imaginable for the user (e.g. “Give

links clearer names” or “Differentiate links to apps and links to websites in the

design”, but overall the range of possible ACRs is moderately covered by the offered

ACRs.

High: In the case of a FUQ1, it is difficult for the user to come up with a desired ACR,

or in the case of a FUQ2, the range of possible ACRs is poorly covered by the provided

ACRs.

Example: A FUQ1 asks whether the users want to find content in an app more quickly

and if yes how this can be achieved. The range of possible ACRs is high (finding

content more quickly can be achieved through a lot of ways such as a search function,

tagging, layout changes, etc.). For the user it is difficult to come up with a desired

93

4.5.4.3 REengs iteratively derive, select and ask FUQ

We derive, select and ask FUQ iteratively, because we can only derive requirements

from answers to FUQ3. To ask a FUQ3 it is necessary that either the topic only has one

ACR or the most supported ACR is already identified. The identification of the most

supported ACR requires to ask a FUQ2. A FUQ2 can only be asked when the topic

contains multiple ACR. For topics with only NACR it is thus necessary to ask FUQ1 to

identify ACR. We explain the iterative deriving, selecting and asking of FUQ in Figure

4.4. In the following we explain terminology that is necessary to understand before

describing Figure 4.4.

ACR. A FUQ2 with high cognitive effort would for example ask whether the design

of an app should be changed and offer ACRs like “Make symbols bigger” and “Make

font bigger”. However, there are very many possibilities how the design of an app

and its features could be changed, so the range of possible ACRs is only poorly

covered by the two offered ACRs.

General decision

Asking FUQ with higher cognitive effort can yield more creative change requests,

but it could also decrease the chance of the FUQ getting answered.

Visualization type (FUQ3 has this characteristic)

Whether or not the FUQ3 requires a mockup to describe the proposal

Mockup: A mockup is required to describe the solution proposal for an ACR

Example: see Table 4.8

No mockup: There is no need for a solution proposal and it is just asked whether the

ACR should be implemented or not

Example: see Table 4.8

General decision

Asking FUQ3 with a mockup takes more effort for the REengs, as they have to

create the mockup first. However, asking FUQ3 with mockups is needed when

changes to requirements or new requirements need to be identified which affect

the user interface of the system.

Instance decision

In SMART-AGE we try to ask FUQ which cover all characteristics. We describe our

decision in the appendix in B.2.

94

[Votes] We define votes as answers that represent an opinion regarding a change

(“Yes”, “I don’t care”, “No” and a selection of proposed ACR). A FUQ can receive a

maximum of one vote. If for example a user answers the FUQ3 regarding topic T3 with

“Yes” for E3.4 and with “Yes” for E3.5, then this is counted as one vote and not two.

There is no vote, when the answer doesn’t represent an opinion (answering “I find the

question (or the ACR) not comprehensible” or “I cannot answer this question”) or

when the question is skipped.

General decision

Like most other platforms which we identified in Chapter 3, we implement voting.

We use voting during requirements derivation to measure whether change

requests should be implemented or not. We don’t make the results of the voting

public during the voting phase, so that the users are not influenced by the

intermediate results. Voting contributes to conquering P3 " Support of change

requests among users", because we can measure the support of the change requests

among the users.

[Thresholds] Change desired in general (TCHANGE). As outlined in Table 4.5, based on

the responses to a FUQ1, we can proceed to ask either a FUQ2 or FUQ3. Similarly,

based on the responses to a FUQ2, we can ask a FUQ3. We only proceed asking further

FUQ when users desire change in general, because it makes no sense to refine or

validate a change that is not desired by the users.

General decision

We define TCHANGE for FUQ1 when at least 70% of the votes to E1.3 in Table 4.6 are

not against change. For FUQ2 we use the same calculation but for votes regarding

E2.4 of Table 4.7. If 70% of votes are not against the change, it makes sense to refine

or validate it, as this shows most users are open for the change.

Acceptance of an ACR (TACCEPT). We accept an ACR based on the answers of the users

to a FUQ3. We define an acceptance threshold TACCEPT with the same reason as for

TCHANGE. An ACR is accepted when at least 70% of the votes to E3.4 or E3.5 in Table 4.8

are not against change. After accepting an ACR, we derive changes to existing

requirements or create new requirements (see Section 4.5.4.4).

Figure 4.4 shows how we derive, select and ask FUQ iteratively. The start of Figure 4.4

are the topics that are extracted in Section 4.5.3.

95

Figure 4.4: UML activity diagram representing the process to iteratively derive, select

and ask FUQ. DSA=Derive, select and ask

FUQ1. We derive and ask a FUQ1, if only NACR are mapped to the topic Ⓐ. After

asking the FUQ1 we check whether TCHANGE is fulfilled Ⓑ. If it is fulfilled, we check

whether the given freetext to E1.4 in Table 4.6 contains ACR Ⓒ. We cannot ask any

more FUQ if the freetext to E1.4 does not contain ACR. If it does contain ACR, we map

the ACR to the topic Ⓓ. When the topic contains at least two ACR, it is now the basis

for asking a FUQ2. If it contains only one ACR, it is the basis for asking a FUQ3.

FUQ2. We derive and ask a FUQ2, if at least two ACR are mapped to the topic ①②.

After asking the FUQ2, we check whether TCHANGE is fulfilled ③. If it is fulfilled, we

analyze which ACR is the most voted one ④ by checking which ACR of E2.4 of Table

4.7 is selected most often by the users. As it is now clear which ACR is most voted, the

topic is now the basis for asking FUQ3 ⑤.

FUQ3. We derive and ask FUQ3 either if only one ACR is mapped to the topic ❶❷

or if the most voted ACR of the topic is already identified ⑤. If the FUQ3 uses a

mockup ❸, we analyze the votes of the ACR regarding E3.4 of Table 4.8. If the FUQ3

does not use a mockup ❸, we analyze the votes of the ACR regarding E3.5 of Table

4.8. Only if TACCEPT is fulfilled ❹, we derive requirements.

Instance decision

In SMART-AGE we conduct two rounds of asking FUQ, each round containing a

first and second iteration. We use two rounds to spread out the effort of answering

questions for users over time.

96

4.5.4.4 REengs change or create requirements

The REengs change or create a requirement based on a validated ACR of a FUQ3. For

example, when a FUQ3 validated the ACR “I don’t want to see advertisements when

opening a link in SV”, then we would adjust the description of the corresponding

requirement, in this case SF: displayLink, to include the constraint that advertisements

should be blocked when opening a link. When a FUQ3 validated the ACR “I want to

edit my answer after I submitted it in SF”, then we would create a new requirement

SF: editSubmittedAnswer (U) that allows to edit an already submitted answer.

4.6 Addressing the problems

We summarize in Table 4.10 how we address the problems P1 (P1.1, P1.2, P1.3), P2 and

P3.

4.7 Conclusion

To summarize, the process to collect feedback and derive requirements is divided into

two parts: the process to collect feedback through IQ and the process to derive

Table 4.10: Addressing the problems

P1.1 A lot of feedback can be collected from a lot of users

Addressed by:

• Asking all users a variety of IQ at multiple times

• Letting users submit messages and comments

P1.2 Feedback can be mapped to requirements effortlessly

Addressed by:

• Asking IQ that are associated with requirements

P1.3 Feedback contains change requests

Addressed by:

• Asking all users a variety of IQ, especially IQ that ask improvements about

the system and its functional and non-functional requirements, as well as

adaptive IQ that ask about reasons for inactivity and proposals for

improvements.

P2 Control of timing of feedback collection

Addressed by:

• Asking the IQ at specific defined times

P3 Support of change requests among users

Addressed by:

• Asking three different types of FUQ

97

requirements through FUQ. In the process to collect feedback through IQ, the REengs

start by selecting IQ from our proposed IQ. If adaptive IQ are selected, usage data

needs to be recorded. After the users have access to the app(s), REengs ask IQ and

users can answer or skip these IQ. Users may also send messages and comments. Based

on the collected feedback, the process to derive requirements through FUQ can be

conducted. REengs prepare the feedback by extracting change requests, mapping these

change requests to requirements and topics. Building on this prepared feedback,

REengs derive requirements by iteratively deriving, selecting and asking FUQ, while

users can answer or skip these FUQ. Lastly, the REengs are able to change and create

requirements based on the answers to the FUQ.

98

 Chapter

5 smartFEEDBACK (SF) -

Platform that supports the process

This Chapter describes the requirements of SF in Section 5.1 and the design and

implementation of SF in Section 5.2. The quality assurance of SF is described in Section

5.3. We also created a handbook that explains the complete user interface of SF with

screenshots and descriptions in B.5 in the appendix.

5.1 Requirements

We use Task and Object-oriented Requirements Engineering (TORE) by (Paech and

Kohler, 2004) to define the requirements. TORE is a method to unify requirements

engineering and object-oriented software development into a single conceptual model.

TORE identifies 16 distinct types of decisions that are organized into four levels of

abstraction. The levels along with their explanation and artefacts are presented in

Table 5.1.

Table 5.1: TORE levels

TORE

Level Explanation Artefacts

Described

in

Task

Describes the reasons why

users are motivated to use the

software.

• User Roles

• User Tasks

• Subtasks

Section

5.1.1

Domain

Outlines the activities users

need to perform as part of their

work.

• Domain data model

Section

5.1.2

Interaction

Specifies how users should

interact with the system to

complete their tasks.

• System Functions

• Workspaces

Section

5.1.3

5

99

System

Details the decisions related to

the internal workings of the

application and the user

interface.

• Virtual Windows

Section

5.1.4

For the task level we present user roles, user tasks and subtasks in Section 5.1.1. For

the domain level we describe the domain data model in Section 5.1.2. For the

interaction level we present the system functions and workspaces in Section 5.1.3. For

the system level we show virtual windows in Section 5.1.4.

5.1.1 Task level

When designing a new system, it's important to first understand the users who will

interact with the software. This understanding helps create a system that meets their

needs, which is necessary for its success. The insights about the users are captured in

user role models. We present the user roles, along with their user tasks, success criteria,

knowledge/experience/capabilities and communication partners in Table 5.2. The task

information outlines what the users aim to achieve by using the software. The success

criteria define the conditions that must be fulfilled by these tasks for the software to be

deemed successful. The knowledge/experience/capabilities Section offers more

information regarding the context of the users. The communication partners Section

describes who the users communicate with.

There are two user roles, the REeng and the platform user. The task of the REeng is to

collect feedback about apps and to derive new requirements or -changes. The task is

successful when new requirements or -changes can be derived from the feedback. The

REeng has high experience with technology and communicates on a regular basis with

Table 5.2: User roles with User Tasks

Title User Tasks (UT) Success criteria

Knowledge

Experience

Capabilities

Communi-

cation

partners

R
E

en
g

UT1(R): Collect

feedback about apps

and derive new

requirements or (-

changes)

New requirements or

-changes can be

derived from the

feedback

High

experience

with

technology

App

stakeholders

P
la

tf
o

rm
 U

se
r UT1(U): Submit

feedback in the form of

answers to questions,

messages and

comments to improve

the application

Little effort is

required to give

feedback and

feedback impact is

reflected to users

Little to high

experience

with

technology

REeng

100

the stakeholders of the apps. The task of the platform user is to submit feedback in the

form of answers to questions, messages and comments to improve the application.

This task is successful when little effort is required from the user to give feedback and

the impact of the feedback is reflected to the user. The user has either little or high

experience with technology and communicates with the REeng by sending feedback.

Descriptions for the subtasks are created to further elaborate on the user tasks. The

subtasks for the platform user are shown in Table 5.3 and for the REeng in Table 5.4.

Each subtask is given a name and a detailed description that provides further

clarification. Example solutions are suggested to help support the subtask, outlining

specific ways to implement it in software. These example solutions reference the

specific system functions that are explained in Section 5.1.3.2 in detail. The variants

Section specifies any variations of the subtasks that might differ slightly. The problem

Section describes problems that may arise during the execution of the subtasks, with

example solutions for these problems also provided.

Table 5.3: Subtasks for UT1(U)

Role: Platform User (abbreviated as "user" in the following)

Task: UT1(U)

Step (ST) / Problem (PB) Example solution

UT1S1(U): Submit feedback

UT1S1(U)_ST1: The user can send

an answer, message or comment.

Necessary for process steps:

• Users answer or skip IQ

• Users send messages and

comments

• Users answer or skip FUQ

The user can submit an answer, message and

comment. This is supported through:

• SF: displayQuestion (U)

• SF: submitAnswer (U)

• SF: submitMessage (U)

• SF: submitComment (U)

UT1S1(U)_PB1.1: The users forget

to give feedback

The users are reminded to give feedback

through SF: remindUser(U)

UT1S1(U)_PB1.2: The users may

not understand the question or

may not like to give an answer to

the question

The users can skip a question through SF:

skipAnswer (U)

UT1S1(U)_PB1.3: The users may

not like to use the keyboard to

submit a longer message

The users can add an audio recording to a

message through SF: addAudioRecording (U)

101

UT1S1(U)_PB1.4: The user forgets

how to submit feedback

The user can read a brief explanation of SF

through SF: displayInstructions (U)

UT1S2(U): Manage existing feedback

UT1S2(U)_ST1: The user can

manage answers grouped by

question, messages and comments.

Necessary for process steps:

• Users send comments (This

requires to see submitted

answers or messages)

Indirectly: This decreases the chance

that users send duplicate feedback.

Furthermore, having an overview

is helpful for the user to keep track

of his/her feedback in general.

The presentation of answers, messages and

comments is supported through:

• SF: displayQuestionsWithAnswers(U)

• SF: displayAnswersForQuestion (U)

• SF: displayMessages (U)

• SF: displayComments (U)

The presentation of the details of an answer and

message is supported through:

• SF: displayAnswerDetails (U)

• SF: displayMessageDetails (U)

The user can sort feedback:

• SF: sortQuestions (U)

• SF: sortAnswers (U)

• SF: sortMessages (U)

The user can filter feedback:

• SF: filterAnswersOfQuestion (U)

• SF: filterOnlyMessagesOrAnswers(U)

• SF: filterMessagesOrQuestions (U)

UT1S2(U)_PB1.1: When a large

amount of answers or comments is

submitted, it can be difficult for the

user to keep an overview over the

feedback.

Feedback is presented in batches and the user

can load a new batch of feedback. This is

supported through:

• SF: displayMoreQuestionsWithAnswers (U)

• SF: displayMoreAnswersForQuestion (U)

• SF: displayMoreComments (U)

UT1S2(U)_PB1.2: The user forgets

how to manage answers grouped

by question, messages and

comments.

The user can read a brief explanation of SF

through SF: displayInstructions (U)

UT1S2(U)_ST2: The user can see a

history of all his/her answers and

messages

Necessary for process:

Indirectly: This prevents sending

duplicate feedback. Furthermore,

The presentation of answers and messages is

supported through:

• SF: displayAnswersInHistory (U)

• SF: displayMessagesInHistory (U)

102

The system functions are designed to address various user needs and technical

constraints to enhance the overall user experience. Due to space limitations, we cannot

display detailed information for multiple answers, messages or comments on a single

screen. Therefore, we provide a condensed view through functions like

displayAnswersForQuestion(U), displayAnswersInHistory(U), displayComments (U,R),

displayMessages(U) and displayMessagesInHistory(U). For users who want to know more

detailed information, we use functions such as displayAnswerDetails(U),

displayAnswerDetailsInHistory(U), displayMessageDetails(U), and displayMessage-

DetailsInHistory(U). Additionally, to manage screen space more effectively, we allow

content to be loaded incrementally, reducing the number of elements displayed

simultaneously. We also offer audio recording options to support older adults who

may face motor or vision challenges, as speaking is often easier than typing. The ability

to skip questions accommodates users who may not understand certain questions or

who may not have previously used a particular functionality. To further support our

users, the reminder functionality assists those who wish to provide feedback but might

occasionally forget. Finally, by differentiating between answers, messages, and

comments, we address both reactive users who prefer responding to prompts and

proactive users who wish to initiate communication.

having an overview about when

which feedback was sent helps the

user to keep track of his/her

feedback

The presentation of the details of an answer and

message is supported through:

• SF: displayAnswerDetailsInHistory (U)

• SF: displayMessageDetailsInHistory (U)

The user can filter answers and messages:

• SF: filterAnswersAndMessagesInHistory (U)

UT1S2(U)_PB2.1: When a large

amount of answers or messages is

submitted, it can be difficult for the

user to keep an overview over the

history of feedback.

Feedback is presented in batches and the user

can load a new batch of feedback. This is

supported through:

• SF: displayMoreAnswersInHistory (U)

• SF: displayMoreMessagesInHistory (U)

UT1S2(U)_PB2.2: The user forgets

how to check the history of all

his/her answers and messages

The user can read a brief explanation of SF

through SF: displayInstructions (U)

Table 5.4: Subtasks for UT1(R)

Role: REeng

Task: UT1(R)

Step (ST) / Problem

(PB) Example solution

UT1S1(R): Manage questions

103

UT1S1(R)_ST1: The

REEng manages all

existing questions

Necessary for

process steps:

• REengs ask IQ

• REengs ask

FUQ

The REeng can:

• View questions: SF: displayQuestions (R)

• Sort questions: SF: sortQuestions (R)

• Search questions SF: searchQuestions (R)

• Edit a question: SF: editQuestion (R)

• Schedule a question: SF: scheduleQuestion (R)

• Set metric for an adaptive question: SF:

configureAdaptiveQuestion (R)

• Enable a question: SF: enableQuestion (R)

• Disable a question: SF: disableQuestion (R)

UT1S1(R)_ST2: The

REEng creates a new

question

Necessary for

process steps:

• REengs ask IQ

• REengs ask

FUQ

The REeng can create a new question. This is supported

through SF: createQuestion (R)

UT1S2(R): Manage given feedback

UT1S1(R)_ST1: The

REeng can manage

the answers and

messages given by

the users

Necessary for

process steps:

• REengs derive

FUQ

The REeng can:

• View all answers of all users: SF: displayAnswers (R)

• View the details of an answer: SF: displayAnswerDetails

(R)

• Sort the answers of all users based on aspects specified

in SF: sortAnswers (R)

• Filter answers of all users for a question based on

aspects specified in SF: filterAnswersOfQuestion (R)

• View all messages of all users: SF: displayMessages (R)

• View the details of a message: SF: displayMessageDetails

(R)

• Sort the messages of all users based on aspects

specified in SF: sortMessages (R)

• Filter messages of all users based on aspects specified

in SF: filterMessages (R)

• Filter questions and messages based on aspected

specified in SF: filterQuestionsAndMessages (R)

UT1S1(R)_PB1.1:

When a large amount

of feedback is

submitted, it can be

difficult for the

The REeng can lose the overview when all feedback is

presented at once. This is why feedback is presented in

batches and the REeng can load a new batch of feedback. This

is supported through:

• SF: displayMoreAnswers (R)

104

We display feedback in batches for the REeng as well through displayMoreAnswers (R),

displayMoreMessages (R), and displayMoreComments (R), preventing information

overload for the REeng. We provide functions like createQuestion (R), editQuestion (R),

scheduleQuestion (R) or configureAdaptiveQuestion (R) which are essential to support the

process defined in Section 4.4. Furthermore, we offer viewing and filtering of users

through displayUsers (R) and filterUsers (R) which helps in identifying problems during

the study.

5.1.2 Domain level

We present the domain data model in Figure B.3.1. The domain data model defines the

key entities from the task descriptions and their relationships, without using any

implementation or solution-specific language. The entities are represented through

rectangles with the entity's name displayed at the top. The model is further refined

with associations between entities.

5.1.3 Interaction level

We present the workspaces and the UI structure diagrams in Section 5.1.3.1. The

system functions are presented in Section 5.1.3.2.

REeng to keep an

overview over the

feedback.

• SF: displayMoreMessages (R)

• SF: displayMoreComments (R).

UT1S1(R)_ST2: The

REeng can manage

the comments on

given feedback

Necessary for

process steps:

• REengs derive

FUQ

The REeng can:

• View all comments of an answer or message:

SF: displayComments (R)

• Add a comment to an answer or message:

SF: submitComment (R)

UT1S3(R): View study partners

UT1S1(R)_ST1: The

REeng can manage

the users

Necessary: To track

how many users use

SF

The REeng can:

• view all users that use SF:

SF: displayUsers (R)

• filter the users as specified in SF: filterUsers (R)

105

5.1.3.1 Workspaces

Workspaces provide a way for documenting which data and functions are used within

a specific context and are accordingly organized on the user interface. We describe the

data and the system functions for each workspace of the user in Table 5.5 and for the

REeng in Table 5.6.

Table 5.5: Workspaces for the user

Data Description of functionality

W: QuestionView (U)

+ questions:

List<Question>

The user displays a question (displayQuestion (U)). The user can

answer (submitAnswer (U)) and skip open questions (skipAnswer

(U)).

W: MessageView (U)

+ message:

Message

The user can submit a message (submitMessage (U)). The message

can contain an audio recording (addAudioRecording (U)) and a file

(addFile (U)).

W: SentView (U)

+ questions:

List<Question>

+ messages:

List<Message>

The user can see his/her answered questions (displayQuestions-

WithAnswers (U)) and their submitted messages (displayMessages

(U)). The user can load more answered questions

(displayQuestionsWithAnswers (U)) and more messages

(displayMoreMessages (U)). The user can sort the questions

(sortQuestions (U)) and the messages (sortMessages (U)). The

questions and messages can also be filtered (filterMessages-

OrQuestions (U)). The user can navigate to the answers of a question

(navigateToAnswersForQuestion (U)) and the user can navigate to a

message (navigateToMessageDetails (U)).

W: DetailedQuestionView (U)

+ question:

Question

+ answers:

List<Answer>

The user can see the question and its answers (displayAnswers-

ForQuestion (U)). The user can load more answers for that question

(displayMoreAnswersForQuestion (U)). The user can sort

(sortAnswersOfQuestion (U)) and filter (filterAnswersOfQuestion (U))

the answers of the question. The user can also navigate to the

answer (navigateToAnswerDetails (U)).

W: DetailedAnswerView (U)

+ answer:

Answer

+ comments:

List<Comment>

The user can see his/her answer (displayAnswerDetails (U)) and its

comments (displayComments (U)). The user can load more

comments displayMoreComments (U)) and can navigate to a

106

comment (navigateToComment (U)). The user can also sort

comments (sortComments (U)).

W: DetailedMessageView (U)

+ message:

Message

+ comments:

List<Comment>

The user can see his/her message (displayMessageDetails (U)) and its

comments (displayComments (U)). The user can load more

comments (displayMoreComments (U)) and can navigate to a

comment (navigateToComment (U)). The user can also sort

comments (sortComments (U)).

W: CommentView (U)

+ comment:

Comment

The user can add a new comment (submitComment (U)). The

comment can contain an audio recording (addAudioRecording (U)).

W: HistoryView (U)

+ answers:

List<Answer>

+ messages:

List<Message>

The user can see his/her answers (displayAnswersInHistory (U)) and

his/her submitted messages (displayMessagesInHistory (U)). The user

can load more answers (displayMoreAnswersInHistory (U)) and more

messages (displayMoreMessagesInHistory (U)). The user can filter the

answers and messages (f ilterAnswersAndMessages (U)). The user can

navigate to an answer (navigateToAnswerDetailsInHistory (U)) and to

a message (navigateToMessageDetailsInHistory (U)).

W: DetailedAnswerHistoryView (U)

+ answer:

Answer

The user can see his/her message (displayAnswerDetailsInHistory

(U)).

W: DetailedMessageHistoryView (U)

+ message:

Message

The user can see his/her message (displayMessageDetailsInHistory

(U)).

W: InstructionView (U)

+ text: String The user can see an explanation for the app (displayInstructions (U)).

W: SidebarView (U)

+ links:

List<String>

The user can navigate over links to the workspaces W: QuestionView

(U), W: MessageView (U), W: SentView (U), W: HistoryView (U) and

W: InstructionView(U).

W: HeaderView (U)

+ link: String
The user can navigate to the SMART-AGE portal (navigateToPortal

(U)).

107

Table 5.6: Workspaces for the REeng

Data Description of functionality

W: QuestionView (R)

+ questions:

List<Question>

The REeng can see all questions that exist (displayQuestions (R)). The

REeng can load more questions (displayMoreQuestions (R)). The

REeng can create a new question (createQuestion (R)). The REeng can

filter (filterQuestions (R)), sort (sortQuestions (R)) and search

questions (searchQuestions (R)). The REeng can enable

(enableQuestion (R)) and disable (disableQuestion (R)) questions. The

REeng can edit a question (navigateToEditQuestion (R)) and the

REeng can schedule a question (navigateToScheduleQuestion (R)).

W: ScheduleQuestionView (R)

+ question:

Question
The REeng can schedule a question (scheduleQuestion (R)).

W: CreateQuestionView (R)

+ question:

Question

The REeng can create (createQuestion (R)) and edit (editQuestion (R))

a question

W: ResultsView (R)

+ questions:

List<Question>

+ messages:

List<Message>

The REeng can see all questions that contain at least one answer

(displayQuestionsWithAnswers (R)) and all submitted messages

(displayMessages (R)). The REeng can load more questions

(displayMoreQuestionsWithAnswers (R)) and more messages

(displayMoreMessages (R)). The REeng can sort questions

(sortQuestions (R)) and messages (sortMessages (R)). The REeng can

filter questions and messages (filterQuestionsAndMessages (R)). The

REeng can navigate to the answer for a question

(navigateToAnswersForQuestion (R)) and to a message

(navigateToMessageDetails (R)).

W: DetailedQuestionView (R)

+ question:

Question

+ answers:

List<Answer>

The REeng can see the question and all of its answers from all users

(displayAnswersForQuestion (R)). The REeng can load more answers

for that question (displayMoreAnswersForQuestion (R)). The REeng

can sort (sortAnswersOfQuestion (R)) and filter (filterAnswers-

OfQuestion (R)) the answers of the question. The REeng can also

navigate to the answer (navigateToAnswerDetails (R)).

W: DetailedAnswerView (R)

+ answer:

Answer

The REeng can see an answer (displayAnswerDetails (R)) and its

comments (displayComments (R)). The REeng can load more

comments (displayMoreComments (R)) and can navigate to a

108

The UI structure diagram for the user is shown in Figure 5.1 and for the researcher in

Figure 5.2. The system functions that allow navigation between workspaces are

underlined.

+ comments:

List<Comment>

comment (navigateToComment (R)). The REeng can also sort

comments (sortComments (R)).

W: DetailedMessageView (R)

+ message:

Message

+ comments:

List<Comment>

The REeng can see a message (displayMessageDetails (R)) and its

comments (displayComments (R)). The REeng can load more

comments (displayMoreComments (R)) and can navigate to a

comment (navigateToComment (R)). The REeng can also sort

comments (sortComments (R)).

W: CommentView (R)

+ comment:

Comment

The REeng can add a new comment (submitComment (R)). The

comment can contain an audio recording (addAudioRecording (R)).

W: UserView (R)

+ users:

List<User>

The REeng can see all users (displayUsers (R)). The REeng can load

more users (displayMoreUsers (R)) and can filter users (filterUsers

(R)).

W: SidebarView (R)

+ links:

List<String>

The REeng can navigate over links to the workspaces W:

QuestionView (R), W: ResultsView (R), W: UserView (R).

General decision

We designed the workspaces so that the user or REeng is not overloaded with

information during their tasks. For example, we separate information regarding

questions, answers and comments into multiple workspaces instead of showing the

whole information in one workspace. We also allow quick navigation between the

workspaces to support the user and REeng in their tasks. For this we introduce the

W: SidebarView (U, R) which contains links to important workspaces.

109

Figure 5.1: UI structure diagram for the user

110

Figure 5.2: UI structure diagram for the REeng

111

5.1.3.2 System functions

The system functions are listed for the user in Table B.3.1 and for the REeng in Table

B.3.2 in the appendix. They are described along with their name, their description, their

pre- and post-conditions, their input and output, as well as exceptions that occur and

rules which define how the function should operate.

5.1.4 System level

Based on the workspaces that are mapped to system functions, we can create virtual

windows (mockups) to describe how the user interface of SF should look like. We give

an example for a virtual window for the workspace W: DetailedQuestionView (U) in

Figure 5.3.

Figure 5.3: Virtual window for W: DetailedQuestionView (U) including W:

HeaderView (U) and W: SidebarView (U)

Figure 5.3 shows the virtual window W: DetailedQuestionView (U) along with the

virtual windows of W: SidebarView (U) and W: HeaderView (U). We decided to show the

two virtual windows for the workspaces W: SidebarView (U) and HeaderView (U) always

to the user, because SidebarView (U) allows navigation to other workspaces and

HeaderView (U) allows navigation to the SMART-AGE portal, which are navigations

112

that should be easily accessible as they are done frequently. Figure 5.3 also shows the

mapping between the user interface and the system functions (red). We don’t describe

the virtual windows in detail here, because we describe the implemented virtual

windows (screenshots) for all workspaces in detail in B.5 in the appendix. The

screenshots do not show meaningful differences to the virtual windows, so an extra

explanation is not necessary. The only exception is the virtual window of

CreateQuestionView (R) in Figure B.2.13 in the appendix. This virtual window we didn’t

implement exactly how we planned, because we could use an existing user interface

from a library (see Section 5.2.2.3). We list all virtual windows for the user in Figure

B.2.1 - Figure B.2.11 and for the REeng in Figure B.2.12 - Figure B.2.20 in the appendix.

In general, we designed the virtual windows with respect to our target group of older

adults. We use large fonts and interaction elements to make interaction easier despite

potential vision or motor difficulties.

5.2 Design and implementation

The design of SF follows the widely adopted three-tier architecture used in software

engineering. The three tiers are typically referred to as the presentation tier, logic tier

and data tier. Figure 5.4 gives an overview over the architecture. The presentation tier

contains the frontend of the application, the logic tier contains the backend (business

logic) and the data tier contains the database. The frontend communicates with the

backend in both directions. The frontend receives data from the backend to show it to

the user and the backend receives data from the frontend to do calculations with it and

to store it in the database. The backend also receives data from the database to do

calculations with it. The database receives the data from the backend and stores it. For

the presentation tier and the logic tier we describe in Sections 5.2.1 and 5.2.2 what

technology we use, what our design is and what the implementation is. We explain

the technology selection before the design, because the design is dependent on the

chosen technology. We don’t describe the details of the data tier, because the design of

the database is automatically derived from the entities of the backend, which we

explain in detail in Section 5.2.2.2. The only relevant information is that we use a

PostgreSQL12 database and that we tune its settings through PGTune13 to enhance its

performance.

Figure 5.4: Overview over the three-tier architecture of SF. Arrows represent

communication direction.

12 https://www.postgresql.org/

13 https://pgtune.leopard.in.ua/

113

5.2.1 Presentation tier

We describe the presentation tier in this Section. The presentation tier represents the

frontend of SF. Section 5.2.1.1 describes the technology selection, Section 5.2.1.2 the

design and Section 5.2.1.3 the implementation.

5.2.1.1 Technology selection

The author has previous experience with the frontend technologies Vue.js14 and

Google Web Toolkit (GWT)15. The decision which frontend technology to use is guided

by the consideration of their advantages and disadvantages which are shown in Table

5.7.

Vue.js offers the advantage of reactive data binding, which makes it possible for the

UI to automatically update when data changes occur. Furthermore, it has a strong

community support with extensive resources and plugins. Specifically, it offers

support for the open source javascript library SurveyJS, which allows to create

question forms in a flexible way. Lastly, Vue.js allows for fast loading times. Compared

to Java, which is used in GWT it does not offer type safety. Next to type safety, GWT

offers a rich set of widgets (prebuilt components) which can be used to build the UI.

However GWT faces important disadvantages. It has a slower development cycle

compared to Vue.js, as Java needs to be compiled to Javascript. Furthermore, GWT is

increasingly seen as outdated technology, having less relevance and little community

support.

14 https://vuejs.org/

15 https://www.gwtproject.org/

16 https://surveyjs.io/

Table 5.7: Advantages and disadvantages between Vue.js and GWT

Advantages Disadvantages

Vue.js

Reactive data binding (UI reflects data

changes automatically)
No type safety

Strong community support (Survey

framework SurveyJS16 available)

Performance (Fast loading times)

GWT

Type safety
Slower development cycle (Java to

Javascript compilation adds overhead)

Rich set of widgets (prebuilt

components)
Outdated (decreased relevance and little

community support)

114

5.2.1.2 Design

Vue.js uses components as building blocks of an application. A component in Vue.js is

a reusable and isolated unit of code that contains the structure of the user interface

expressed as HTML (Hyper Text Markup Language), its style expressed in CSS

(Cascading Style Sheets) and its data and behavior expressed in JavaScript. The data of

a component can be changed dynamically depending on the application state. We

derive components for the design of the user interface based on the virtual windows

of Section 5.1.4.

Figure 5.5 shows that only three components are needed to represent the virtual

windows for the workspaces ❶ W: DetailedQuestionView (R) and ❷

DetailedQuestionView (U). The components (❸) are HeaderView, SidebarView and

DetailedQuestionView. We can create reusable components for parts of the virtual

windows that always have the same structure. For example, the sidebar always lists

links in the form of a list. Only the links (data) changes for example depending on

whether the application is used as a user or as a REeng. The components HeaderView

and SidebarView are used throughout all virtual windows. Only the component

DetailedQuestionView is switched out for other components depending on the

application state (e.g. when the user clicks a link on the sidebar). The user interface of

SF can be thus generalized to the structure in Figure 5.6.

General decision

We chose Vue.js over GWT mainly because the reactive data binding eliminates the

need to refresh the UI when needed, which is very convenient. Furthermore, the

development time is reduced by relying on SurveyJS for creating question forms

and by not needing to wait for the compilation of Java code to Javascript code, that

is necessary for GWT.

115

Figure 5.6: Structure of the user interface of SF. Dashed line means that this part of

the user interface is represented by different components.

Figure 5.5: Representation of the virtual windows of the workspaces W:

DetailedQuestionView (R) and W: DetailedQuestionView (U) through components.

116

Table 5.8 shows for all virtual windows which component is representing the

placeholder part of the user interface.

Table 5.8: Virtual windows for workspaces and their component that is used instead

of the placeholder part of the user interface.

Virtual window for workspace

Component that is used instead

of placeholder

W: QuestionView (U) QuestionView

W: MessageView (U) MessageView

W: SentView (U)

W: ResultsView (R)
FeedbackMainView

W: DetailedQuestionView (U)

W: DetailedQuestionView (R)
DetailedQuestionView

W: DetailedAnswerView (U)

W: DetailedAnswerView (R)
DetailedAnswerView

W: DetailedMessageView (U)

W: DetailedMessageView (R)
DetailedMessageView

W: CommentView (U)

W: CommentView (R)
CreateCommentView

W: HistoryView (U) HistoryView

W: DetailedAnswerHistoryView (U) DetailedFeedbackHistoryView

W: DetailedMessageHistoryView (U) DetailedMessageHistoryView

W: InstructionView (U) InstructionView

W: QuestionView (R) ManageQuestionsView

W: ScheduleQuestionView (R) ScheduleQuestionView

W: CreateQuestionView (R) CreateQuestionView

W: UserView (R) UserView

In total, we need 17 components to represent the virtual windows, including

SidebarView and HeaderView.

117

5.2.1.3 Implementation

In this Section we present a mockup of an implemented virtual window and we

explain how we use the frameworks Vuetify17, Survey.js18, VueApollo19, VueRouter20

and Axios21 to implement the components. We list all implemented virtual windows

in the appendix (Figure B.2.21 - Figure B.2.40). These implemented virtual windows

represent screenshots of SF. As screenshots are often pixelated and font can hardly be

read, we vectorized the screenshots, so that also smaller font can be read through

zooming in.

[Reusing existing user interface elements with Vuetify]

To explain how we use the framework Vuetify to reuse existent user interface elements

for the implementation of our components, Figure 5.7 shows a mockup of the

implemented virtual window W: HistoryView (U). The colored areas highlight the

specific Vuetify user interface elements that we have reused. The figure shows the

components HeaderView on the top, SidebarView on the left and HistoryView on the

right. The HeaderView component contains an app-bar element22 to show the SF text

and a button element23 for the navigation button to the portal. The SidebarView is

using a navigation drawer24 element for the navigation links and multiple icon

elements25 that decorate the navigation links. The HistoryView contains two data

tables26 to display the answers to questions and messages. The data table elements

come with built-in functionalities, such as displaying a limited number of items at a

time and offering pagination options. Other used Vuetify elements that we reuse in

our components are selection menus27 that we use for filtering, as well as spinners28 to

show progress during data loading. We don’t list all Vuetify elements here, because it

is easy to identify them into code. The vuetify components are all marked with the

HTML tag <v>. All implemented components can be found in the folder

ui/app/src/components folder in the repository of smartFEEDBACK29 on branch

dissertation. The repository of smartFEEDBACK will be open source after SMART-

AGE study ends in Q2/Q3 of 2025.

17 https://vuetifyjs.com/en/

18 https://surveyjs.io/

19 https://apollo.vuejs.org/

20 https://router.vuejs.org/

21 https://axios-http.com/docs/intro

22 https://vuetifyjs.com/en/components/app-bars/

23 https://vuetifyjs.com/en/components/buttons/

24 https://vuetifyjs.com/en/components/navigation-drawers/

25 https://vuetifyjs.com/en/components/icons/

26 https://vuetifyjs.com/en/components/data-tables/

27 https://vuetifyjs.com/en/components/selects/

28 https://vuetifyjs.com/en/components/progress-circular/

29 https://github.com/SMARTAGE21/smartage-feedback-app

https://github.com/SMARTAGE21/smartage-feedback-app

118

Figure 5.7: Mockup of the implementation of the virtual window W: HistoryView (U)

along with colored areas to show what Vuetify components are used.

[Creating questions with Survey.js]

We use the framework Survey.js in SF.

Using Survey.js as a framework to integrate questions into SF offers flexibility when it

comes to extending the application in the future. If additional question types or more

General decision

We decided to use Survey.js to allow the REeng to easily set up and customize

questions with a wide variety of question elements, such as text input, selection

and, html content.

119

complex question logic are required later on, these can be easily implemented without

manually coding all functionalities or change the existing functionality. Therefore

using Survey.js not only simplifies the initial development but also makes the

application more adaptable in the long term.

[Communication with the backend through VueApollo]

VueApollo is a state management library for Vue.js applications that allows the

communication from frontend to backend through a GraphQL API (Application

Programming Interface). GraphQL is a query language for APIs that allows clients to

request exactly the data they need from a server with one endpoint. GraphQL uses

queries to fetch data and mutations to modify data, reducing the number of requests

and the amount of data transferred, ensuring a fast communication between client and

server.

We use queries to fetch data from the backend through GraphQL. We define the

GraphQL queries in each component, which allows the components to request exactly

the data they need. The component then automatically receives and displays the data,

and if the data changes on the backend, the component updates to reflect those

changes. For example, if a user opens the “Questions” screen in the sidebar, the

corresponding Vue component (QuestionView) has a query that receives all open

questions for that user from the backend.

We use mutations to send a request to change, add, or delete data on the backend. This

is similar to how a query works, but instead of just fetching data, a mutation actively

alters the data stored on the backend. We define the GraphQL mutations also directly

within each Vue component, specifying the data to be modified and the new values to

be applied. For example, if a user answers a question, the corresponding Vue

component (QuestionView) has a mutation that sends the answer to the backend.

We describe the design and implementation of the queries and mutations in the in

Section 5.2.2.2 of the logic tier, because the backend is responsible for the actual

calculation that results from the queries and mutations.

[Sending monitoring data]

When using SF, we record each interaction that the user does with SF components as

implicit feedback. To send implicit feedback we use Axios.

General decision

We chose Axios, because it is a popular and established popular JavaScript library

used for making HTTP requests from the browser.

120

We first create an instance of Axios (httpClient) with a base URL for the API. This

instance is used to manage HTTP requests throughout the application. The

monitoringService object defines a method createEvent, which is responsible for

sending implicit feedback to a central monitoring service that is responsible for

receiving the implicit feedback from all apps used in SMARTAGE.

The monitoring service can be found in the folder ui/app/src/services in the repository30

on branch dissertation.

[Navigation with VueRouter]

We use the library VueRouter for navigation.

We use VueRouter every time the component in the placeholder of the user interface

switches (see Figure 5.6 in Section 5.2.1.2). For that we define routes, which are

mappings between URL paths and each Vue component. For example the route for the

overview of questions for the user is called with the URL path “/questions” in the

browser. The vue component QuestionView is shown when the user navigates

through the press on a user interface element to this path. The user interface elements

that allow navigation through routes (e.g. buttons) use router links, which function

like regular hyperlinks but allow for navigation without triggering a page reload.

VueRouter intercepts the navigation and updates the browsers’ URL while swapping

out the old placeholder component for the new one. VueRouter also keeps track of the

applications’ history, allowing for backward and forward navigation.

The Vue router configuration along with all routes can be found in the folder

ui/app/src/router in the repository31 on branch dissertation.

30 https://github.com/SMARTAGE21/smartage-feedback-app

31 https://github.com/SMARTAGE21/smartage-feedback-app

General decision

We use a central httpClient instance for SF encapsulates the logic for sending

monitoring data in a reusable service, making it easy to send monitoring events

from different components whenever necessary.

General decision

We use VueRouter, because it is is the official routing library for Vue.js

applications, enabling navigation between different screens without reloading the

entire page.

https://github.com/SMARTAGE21/smartage-feedback-app
https://github.com/SMARTAGE21/smartage-feedback-app

121

5.2.2 Logic tier

We describe the logic tier in this Section. The logic tier represents the backend of SF.

Section 5.2.2.1 describes the technology selection, Section 5.2.2.2 the design and Section

5.2.2.3 the implementation.

5.2.2.1 Technology selection

The author has previous experience with the backend technologies JavaEE (Java

Platform, Enterprise Edition) and Java Spring Boot. The author has more experience

with Java EE than Java Spring Boot. The decision on which backend technology to use

is guided by the consideration of their advantages and disadvantages, which are listed

in Table 5.9 and explained below.

Table 5.9: Advantages and disadvantages between Java EE32 and Java Spring Boot33

Java EE is a widely used technology for building enterprise-level applications. One of

its main advantages is that it is a well-established and uses robust tools and libraries.

However, Java EE requires a high amount of boilerplate code, which makes the

development process slower and more complex. Additionally, it requires an external

application server, adding extra configuration and deployment effort.

Java Spring Boot, on the other hand, offers several benefits that make it an attractive

alternative to Java EE. One big advantage is that it requires little boilerplate code,

which simplifies the development process and makes it faster to build and deploy

applications. Spring Boot also does not require an external application server, as it can

run an embedded server, which further saves effort during development. However,

Spring Boot has a high learning curve, especially for the author, because he has little

previous experience with it.

32 https://www.oracle.com/de/java/technologies/java-ee-glance.html

33 https://spring.io/projects/spring-boot

Advantages Disadvantages

JavaEE

Well-established with robust tools and

libraries
High amount of boilerplate code

 Requires external application server

Java Spring Boot

Litte amount of boilerplate code High learning curve

External application server not required

122

5.2.2.2 Design

In this section, the design of the entities of the Java Spring Boot backend is described,

which are the core data structures. We also describe the design of the GraphQL queries

and mutations that are offered by the backend and accessed by the frontend. We also

describe how we design the authentication of devices.

[Entities]

The class diagram shown in Figure 5.8 represents the entities for a Java Spring Boot

backend and their relationships. The entities include AbstractEntity, AdminUser, User,

Question, AnswerOrMessage, App, Snippet and Comment.

At the core is AbstractEntity, a base class that provides a common attribute, id, serving

as a unique identifier for all entities inheriting from it. This abstract entity is extended

by all other entities except App which represents an enum. The entity AdminUser

represents the REeng user in the system and contains attributes such as userId,

password, and session to manage user credentials and the user sessions. The entity User,

also extends AbstractEntity and represents regular users of the system, with attributes

like userId and createdDate to track the identity of the user and the date when the user

started using SF.

The Question entity, inheriting from AbstractEntity, represents questions within the

application and includes attributes such as questionId, createdDate (date of the creation

of the Question), app (associated app of the question), json (content of the Question

including the subquestions and answer options), adaptiveMetric (the metric that is used

to determine the receivers of the question in case the question is adaptive),

showAfterDays (list of days when the Question should appear), deactivateAtDate (date

when question should be deactivated), enabled (determining whether the question is

enabled or disabled) and answers (containing all answers for the question).

General decision

We chose Java Spring Boot over Java EE because development effort is decreased a

lot through the minimal boilerplate code and the advantage to not need an external

server (-configuration). Although Java Spring Boot has a higher learning curve, the

benefits of faster development cycles and easier deployment outweighed the

downsides, making it the preferred choice for our backend technology.

123

Figure 5.8: Class diagram for entities

The Answer entity, inheriting from AbstractEntity, represents an answer to a question.

We also use the Answer entity to model messages. This way we can make use of the

Survey.js framework functionality which allows us to configure the message structure

through the form of a question. Concretely this means, that we can easily extend our

message structure in the future, if we for example want to add new input fields or

change the appearance of the message. Answer includes the attribute questionId. When

Answer represents a message, this questionId is fixed, representing the fixed question

that defines the structure of the message input form. When the entity represents an

124

answer, the questionId is the id of the corresponding question, which can be different

depending on the answer. Answer also includes the attributes userId (representing the

user that created the Answer), app, creationDate (representing the date when the Answer

was created), json (content of the Answer including all values that were input for the

subquestions of the question with id questionId) and comments (a list of all comments

for the Answer).

We also model the entity Comment in a compatible way with Survey.js. This means that

we can also flexibly change and extend the input field of a comment in the future.

The Comment entity has a questionId (representing the fixed question which defines the

structure of the comment), commentId (the id of the comment), an answerId

(representing the id of the associated Answer), json (content of the comment including

all values that were input for the subquestions of the question with id questionId), as

well as createdDate (representing the date of creation of the comment).

The Snippet<T> entity represents a generic, paginated collection of Answer or Comment

entities. The Snippet<T> includes the actual entities in the attribute snippet<T>. Further

attributes which are relevant for pagination are totalLength (needed to show the total

number of entities for pagination) and page (indicating the current page that the entities

in Snippet<T> belong to). The attributes relevant for filtering are filterCriteria and

filterValue. An example for filterCriteria would be “creationDate” and an example for

the filterValue would be “last_week”, to filter entities which were created in the last

week.

In terms of relationships, the diagram shows also that each AdminUser can manage

multiple Question entities, while each Question is associated with exactly one

AdminUser. Similarly, each User can be linked to multiple Answer entities, and each

Answer is associated with one User. Question entities can have multiple related Answer

entities, and each Answer can have multiple Comment entities.

[Queries and mutations]

For the user and the REeng to see data on the frontend, the data needs to be provided

from the backend. This happens through queries as explained in Section 5.2.1.3. Table

5.10 presents an overview of the queries that are required to fetch different data in

different workspaces used by the REeng or the user. The queries fetch entities that we

describe in this Section under the caption “Entities”. The queries are categorized by

entity type (question (Q), answer (A), and comment (C)) and by the caller (REeng or

user). Each entry in the table specifies also the query name and the reason why this

query must exist.

125

Table 5.10: Queries regarding different entities

Entity legend: Q = Question, A=Answer, C=Comment

Entity Query name Reasons

Used by REeng

Q

ADMIN_SNIPPET_

OF_QUESTIONS

Needed to fetch a paginated, filtered and sorted

list of existent questions in W: QuestionView (R)

ADMIN_QUESTION
Needed to fetch the details of a question in W:

DetailedQuestionView (R)

ADMIN_SNIPPET_OF_

QUESTIONS_WITH

_ANSWERS

Needed to fetch a paginated, filtered and sorted

list of questions in W: ResultsView (R)

A

ADMIN_ANSWER

Needed to fetch the details of an answer in

W: DetailedAnswerView (R) and a message in W:

DetailedMessageView (R).

ADMIN_SNIPPET_

OF_ANSWERS

Needed to fetch a paginated, filtered and sorted

list of answers.

W: DetailedQuestionView (R)

C
ADMIN_SNIPPET_

OF_COMMENTS

Needed to fetch a paginated sorted list of

comments in W: DetailedAnswerView (R) and

W: DetailedMessageView (R).

Used by user

Q

QUESTIONS
Needed to fetch a list of all open questions for

the user in W: QuestionView (U).

QUESTION
Needed to fetch the details of a question in W:

DetailedQuestionView (U)

MESSAGE_

QUESTION

Needed to fetch the structure of the message

input form in W: MessageView (U).

A

ANSWER

Needed to fetch the details of an answer in

W: DetailedAnswerView (U) and W:

DetailedAnswerHistoryView (U), as well as a

message in W: DetailedMessageView (U) and

DetailedMessageHistoryView (U).

SNIPPET_OF_

ANSWERS

Needed to fetch a paginated, filtered and sorted

list of answers or messages in W:

DetailedQuestionView (U) and W: HistoryView (U)

C
SNIPPET_OF_

COMMENTS

Needed to fetch a paginated and sorted list of

comments in DetailedAnswerView (U) and

DetailedMessageView (U)

126

Table 5.11 gives an overview of the mutations that are needed to change or update the

entities of the backend. The table uses the same structure and categorization as Table

5.10.

Table 5.11: Mutations regarding different entities

Entity legend: Q = Question, A=Answer, C=Comment

Entity Query Reason

Used by REeng

Q

ADMIN_CREATE_

QUESTION

Needed to create a question in

W: CreateQuestionView (R).

ADMIN_UPDATE_

QUESTION

Needed to update a question in

W: CreateQuestionView (R)

ADMIN_DELETE_

QUESTION

Needed to delete a question in

W: CreateQuestionView (R)

ADMIN_UPDATE_

SCHEDULE_QUESTION

Needed to schedule a question in

W: ScheduleQuestionView (R)

C
ADMIN_CREATE_

COMMENT

Needed to create a comment in

W: CommentView (R).

Used by user

A
CREATE_

ANSWER

Needed to create an answer in

W: QuestionView (U).

CREATE_ANSWER_

SKIPPED

Needed to mark an answer as skipped in

W: QuestionView (U).

C
CREATE_

COMMENT

Needed to create a comment in

W: CommentView (U).

[Authentication]

As the feedback of the users involves sensitive data, we need to design our

authentication mechanism secure. This involves limiting communication with the

backend for users of SMART-AGE and making sure that a user has no access to the

feedback of other users.

General decision

We decide to not use a traditional authentication method that includes a

combination of username and password, because our users might forget the

credentials and could have issues with the process of recovering them. For

example, when they forget the username, they would need to communicate with

the study personal through emails or through phone. Communication through

127

This key is known to the backend and it is used by the frontend to encrypt the user id.

When a request with an encrypted user id is received by the backend. The backend

checks whether the user id can be decrypted successfully. If it can be decrypted, the

backend accepts the request.

5.2.2.3 Implementation

In this section, the implementation of the entities of the Java Spring Boot backend and

the implementation of the GraphQL queries is explained. Furthermore, we briefly

explain how the authentication works and how many lines of code were produced.

[Entites]

For the implementation of the entities in Section 5.2.2.2, we use JPA (Java Persistence

API34) annotations to define how they relate to other entities and how they are stored

in the database.

The AbstractEntity provides a common identifier (id) for each entity. The id attribute is

annotated with @Id and @GeneratedValue(strategy = GenerationType.IDENTITY),

indicating the it represents the primary for the entity and the its value is automatically

generated by the database every time a new entity is persisted. The User entity uses

the annotation @Temporal(TemporalType.TIMESTAMP) for its attribute createdDate

to ensure correct formatting of the date. The Question entity uses the

@OneToMany(fetch = FetchType.LAZY) annotation on the answers attribute. This

represents a one-to-many relationship between Question and Answer. The

FetchType.LAZY part is important for optimizing the performance, as it ensures to

load the answers only when needed from the database. For example, the answers are

not loaded when only the json attribute of Question is needed for calculation. The

34 https://spring.io/projects/spring-data-jpa

email could be a problem for some of the users and our hotline phone is only

available at certain days and hours. Because we want to avoid any issues with

authentication having impacts on the app usage, we design the authentication so

that the users don’t even notice it. As each user has a unique user id, we decide that

the user id needs to be contained in each request to the backend, to achieve that the

backend accepts the request. As the user id might be known by other users, we

furthermore decide to encrypt the user id with a key that is safely contained on the

device of the users.

General decision

We use JPA, because it is already integrated in Java Spring Boot and represents an

established API.

128

Answer entity uses the @Column(columnDefinition = “TEXT”) annotation for the

attribute json, because this field may contain more text that is allowed by the default

database text type VARCHAR. The @OneToMany(fetch = FetchType.LAZY)

annotation on the attribute comments defines again a one-to-many relationship with

the entity Comment while using lazy loading. The Comment entity uses the annotation

@ManyToOne for the attribute answer, indicating that multiple comments are

associated with a single answer. The AdminUser entity does not need any specific JPA

annotations for its attributes. The Snippet<T> only serves as an entity to wrap a

collection of other entities for pagination and it is not saved in the database. All

implemented entities along with their attributes and their JPA annotations can be

found in the folder api/src/main/java/de/se/ifi/uniheidelberg/domain/route folder in the

repository35 on branch dissertation.

To save the entities in the database, we use Hibernate36, an object-relational mapper

(ORM), because the object structure must be mapped to tables.

Hibernate creates the database structure containing the tables and the columns of the

tables along with their types automatically based on the attributes of the entities and

their JPA annotations.

[Queries and mutations]

In this Section we show how we implement the queries and mutations of Section

5.2.2.2. For the implementation we use query/mutation resolvers38 and repositories39.

We use resolvers to handle incoming queries and mutations. The resolvers map the

different queries and mutations to specific methods which perform calculations

including fetching and writing data to the database. To fetch and write data from and

to the database, repositories are used. Repositories perform CRUD (Create, Read,

Update, Delete) on the entities in the database. There exists a repository for each entity.

Figure 5.9 shows a flow diagram that represents the steps required to give a response

to the frontend which sends a query or mutation.

35 https://github.com/SMARTAGE21/smartage-feedback-app

36 https://hibernate.org/

37 https://hibernate.org/

38 https://docs.spring.io/spring-graphql/reference/request-execution.html#execution.graphqlsource.default-type-resolver

39 https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html

General decision

We use Hibernate37 as an ORM, because it is the standard OR mapper of Java Spring

Boot and it is an established technology.

https://github.com/SMARTAGE21/smartage-feedback-app

129

Figure 5.9: Flow diagram for steps necessary to execute queries and mutations.

Unnamed dashed arrows represent “accesses” and solid arrows represent data.

The frontend GraphQL client (VueApollo) sends a query or mutation to the

query/mutation resolver in the backend. This resolver maps the query or mutation

internally to a method which accesses repositories to fetch and write data from and to

the database tables. Repositories can automatically write SQL statement for fetching

and writing data. They do this by analyzing a declared methods signature. For

example, when declaring the method “findByUserId(String id)” in the repository

AnswerRepository, the SQL statement “SELECT * from answers where userId = id” is

generated automatically. In more complicated cases, the SQL has to be written

manually. The resolvers can be found in the folder

api/src/main/java/de/se/ifi/uniheidelberg/domain/route/resolver folder in the repository40 on

branch dissertation.

[Authentication]

To implement the authentication design described in Section 5.2.2.2, we adjust the

resolvers to include a parameter called dataFetchingEnvironment. This parameter

contains details about each request that the backend receives, including the requests

headers. Inside the headers, the encrypted user id is contained. The encrypted user id

is read and decrypted through the file AESHelper. If the decryption is successful the

request is allowed to proceed. If the decryption fails, an exception is thrown, blocking

the request and preventing unauthorized access. The AESHelper can be found in the

folder api/src/main/java/de/se/ifi/uniheidelberg/domain folder in the repository on branch

dissertation.

[Lines of Code (LOC)]

Figure 5.10 shows how many LOC we implemented per file type. Next to the java code,

we use YAML41 to store questions in files, GraphQL to define the queries and

mutations and JSON for configuration files.

40 https://github.com/SMARTAGE21/smartage-feedback-app

41 https://yaml.org/

https://github.com/SMARTAGE21/smartage-feedback-app

130

Figure 5.10: LOC per file type for the backend

5.3 Quality Assurance

To assure the quality of our code, we use component tests to test the backend and

integration tests to test both the frontend and backend in combination. We describe

the component tests in Section 5.3.1 and the integration tests in Section 5.3.2. To ensure

the quality of deployment we explain how we use continuous integration (CI) and

continuous deployment (CD) in Section 5.3.3.

5.3.1 Component tests

We use component tests that are responsible testing the query and mutation resolvers

(explained in Section 5.3.1.1), the repositories (explained in Section 5.3.1.2) and the

entities. We don’t explain the tests for the entities, because they are very simple, testing

only whether they can be initialized correctly and whether their getters and setters

work correctly. The tests for the entities can be found in the folder

api/src/test/java/de/se/ifi/uniheidelberg/domain/route folder in the repository42 on branch

dissertation. We use JUnit43 as a testing framework. In total, we implemented 160

component tests and reach a coverage of 85% of Java LOC. We use linting to ensure

that our code follows the correct syntax and adheres to formatting rules. We can only

measure the coverage for the java code, because this code gets executed.

42 https://github.com/SMARTAGE21/smartage-feedback-app

43 https://junit.org/junit5/

https://github.com/SMARTAGE21/smartage-feedback-app

131

5.3.1.1 Testing the queries and mutations

We use the abstract base classes BaseMutationResolverTest and

BaseQueryResolverTest for establishing a consistent testing environment by setting up

necessary dependencies, such as the repositories. Furthermore, with an abstract base

class we can setup test data which is used by all tests that inherit from it. We also

provide methods for setting the headers of the queries and mutations correctly, as they

are only accepted when the headers contain the correctly encrypted user id as

explained in Section 5.2.2.3. A typical test is designed to validate a specific query or

mutation ensuring that the resolver correctly handles the request and produces the

expected outcome. The structure of a test generally contains three steps: preparation,

execution and validation. During the preparation, the test is set up with a context (e.g.

inserting test data into the database). The execution phase simulates the sending of a

query or mutation. In the validation phase, the response of the query or mutation is

checked for correctness and for a mutation it is checked whether the data in the

database is manipulated correctly. Table 5.12 gives an example for a query test that

checks whether a user gets the correct questions on a specific day.

Table 5.12: Example query test that validates whether a user receives the

correct questions at a specific day

Phase Description

Preparation

• Insert Question1 into the database and schedule it to

appear on first day and then again on the fifth day

• Insert Question2 into database and schedule it to

appear on the third day

• Insert Question3 into the database and schedule it to

appear on day 10

• Create user with id 1 and set its start date to 1.1.1900

Execution

• Send query responsible for getting the questions

(name: QUESTIONS see Section 5.2.2.2) for user with

id 1 at day 3.1.1900

Validation
• Check whether Question1 and Question2 are

contained in the answer of the query

Table 5.13 gives an example for a mutation test that checks whether a user can

successfully give an answer to a question.

132

Table 5.13: Example mutation test that validates whether a user can correctly

create an answer to a question

Phase Description

Preparation
• Insert Question1 into the database

• Create user with id 1

Execution

• Send mutation responsible for creating an answer for

Question1 (name: CREATE_ANSWER see Section

5.2.2.2) by user with id 1

Validation

• Check whether the response of the mutation does not

include an error and check whether the answer of

user with id 1 to the question is stored correctly in the

database

The tests for the query and mutations resolvers can be found in the folder

api/src/test/java/de/se/ifi/uniheidelberg/domain/route/resolver folder in the repository44 on

branch dissertation.

5.3.1.2 Testing the repositories

We test each repository through an individual test file. The structure of tests is equal

to the tests of the query and mutation resolvers. Table 5.14 shows an example for a test

of the repository AnswerRepository.

Table 5.14: Example test for the repository AnswerRepository

Phase Description

Preparation

• Insert Question1 into the database

• Insert Answer1 with creationDate “1.1.1900 12:00” for

Question1 into the database

• Insert Answer2, Answer3, Answer4 and Answer5

with creationDate “2.1.1900” for Question1 into the

database

• Insert Answer6 with creationDate “3.1.1900” for

Question1 into the database

Execution

• Call method of repository that should return first 5

answers with creationDate between 2.1.1900 and

3.1.1900

Validation
• Check whether the response contains Answer2,

Answer3, Answer4, Answer5 and Answer6 in the

correct order.

44 https://github.com/SMARTAGE21/smartage-feedback-app

https://github.com/SMARTAGE21/smartage-feedback-app

133

The tests for the repositories can be found in the folder

api/src/test/java/de/se/ifi/uniheidelberg/domain/route folder in the repository45 on branch

dissertation.

5.3.2 Integration tests

We use integration tests to test whether the frontend responses correctly to simulated

user input. With the integration tests we are testing the complete application consisting

out of the frontend, backend and database. We implemented 47 integration tests with

the testing framework Cypress46. These tests cover 97% of the querys and mutations

and 100% of the pages of SF, meaning that every page is visited at least once in a test.

We implemented 7140 LOC as Vue code and 3464 LOC as Javascript. The structure of

the frontend tests follows those of the backend (preparation, execution and validation).

Table 5.15 shows an example for an integration test.

Table 5.15: Example integration test, that checks whether an answer can be

submitted

Phase Description

Preparation

• Insert Question1 into the database that shows for

every user from the start

• Create user with id 1

Execution

• Go to the page which represents W: QuestionView

(U) as user with id 1

• Give inputs for the required subquestions

• Submit the answer over the “Submit” button

Validation

• Check whether all questions are answered

• Check whether answer appears on “Sent” page and

“History” page

The integration tests can be found in the folder ui/app/src/cypress/integration folder in

the repository47 on branch dissertation.

5.3.3 Continuous integration and deployment

We use GitHub Actions48 to automatically run our component and integration tests

after each commit on the main branch. GitHub Actions is a feature of GitHub for

executing code automatically. For the execution of the tests we create two pipelines,

one for the frontend and one for the backend. Every time a file is changed in the

frontend or backend and the change is committed, the corresponding pipeline is run.

45 https://github.com/SMARTAGE21/smartage-feedback-app

46 https://www.cypress.io/

47 https://github.com/SMARTAGE21/smartage-feedback-app

48 https://github.com/features/actions

https://github.com/SMARTAGE21/smartage-feedback-app

134

This ensures that changes to the code are automatically tested. The pipeline executes

the tests and if the tests are successful it creates a docker image from the frontend or

backend. A Docker image49 is a package that contains everything needed to run the

application, including the code, runtime and libraries. Docker images provide

portability and consistency across environments by packaging applications with all

their dependencies, ensuring they run the same everywhere. After creating the docker

image, it pushes the docker image to DockerHub. DockerHub50 is a repository where

Docker images can be stored and managed. Once the docker image is pushed to

Docker Hub, we deploy it to a Docker Swarm51 ensuring high availability of the

application. We monitor the Docker Swarm through automated checks. Whenever an

application is not reachable, the check sends an alert to the developer.

49 https://docs.docker.com/reference/cli/docker/image/

50 https://hub.docker.com/

51 https://docs.docker.com/engine/swarm/

135

IV. TREATMENT VALIDATION

PART IV

136

137

 Chapter

6 Study context

This Chapter presents the data collection that is necessary to conduct the validation of

the approach (see Chapters 7, 8, 9) and the improvement of the approach (see Chapter

10). The data collection is described in Section 6.1. The threats to validity are described

in Section 6.1.2.

6.1 Data collection

In Section 6.1.1 we describe the datasets that we use in our analysis. In Section 6.1.2 we

describe the conduction of the process to collect feedback and in Section 6.1.3 the

conduction of the process to derive requirements.

6.1.1 Datasets

We use four datasets in our analysis. These datasets are listed in Table 6.1. GTOTAL

contains the answers of the users to IQ, as well as their messages and usage data. It

contains 273 users, as at the time of analyzing the data this number of users has already

completed the study. The dataset GCODED contains the answers to IQ and messages from

a subset of 64 users, which represents almost a quarter of the total number of users in

GTOTAL. From our perspective, this sample size is sufficient for a qualitative analysis

while remaining manageable in terms of effort. The answers and messages of GCODED

were used to conduct the preparation of the feedback (Section 4.5.3) to enable the

derivation of FUQ (Section 4.5.4.1). The dataset GFUQ contains all answers to the FUQ.

The dataset GFINAL contains all answers to our final question regarding the satisfaction

with the FUQ. All datasets contain only feedback regarding the apps SF and SV.

Table 6.1: Datasets

Measurement GTOTAL GCODED GFUQ GFINAL

Time range
02.06.23 -

02.09.24

02.06.23 –

28.11.23

22.05.24 –

16.07.24

08.07.24 –

15.07.24

6

138

Number of users

273 users who

completed

study

64 users who

completed first 3

months of study

205 users who

answered or

skipped at least

one FUQ

143 users who

received the

final question

Number of

questions
63316 IQ 17283 IQ 8742 FUQ

143 final

questions

Number of

answers
54643

2943 answers

with freetext from

15586 total

answers

8251 136

Number of

skipped

questions

8673 1696 491 7

Messages 622 123 [not included] [not included]

Usage data Yes Yes No No

6.1.2 Resulting data of the process to collect feedback

This is the data resulting from the process to collect feedback (see Section 4.4). we

received 54643 answers to our 63316 IQ from 273 users who completed the study in

the time of 02.06.23 - 02.09.24. We also received 622 messages in that time. The resulting

data is stored in GTOTAL.

6.1.3 Resulting data of the process to derive requirements

This is the data resulting from the process to derive requirements (see Section 4.5). The

preparation of the feedback based on GCODED resulted in 3002 statements of which were

425 CR. We bundled the CR into 88 topics. We provide the extracted CR, the topics

and the total derived FUQ in our repository52. Table 6.2 gives an overview of how

many FUQ were ask and when.

Table 6.2: Number of FUQ and timepoints

Measurement Round 1 Round 2

Iteration and number of

users who received FUQ

(n)

Iteration 1

(n=163)

Iteration 2

(n=141)

Iteration 1

(n=158)

Iteration 2

(n=149)

Time range when FUQ

are asked

22.5. - 5.6.

(14d)

15.6. – 25.6.

(10d)

18.6. – 2.7.

(14d)

5.7. – 15.7.

(10d)

Number of FUQ 19 11 19 10

Number of FUQ1 4 - 5 -

52 https://github.com/lradeck/dissertation/blob/main/Change_requests_Topics_FUQ.xlsx

139

Number of FUQ2 7 3 6 3

Number of FUQ3 8 8 8 7

In the first iteration we asked 19 FUQ (4 FUQ1, 7 FUQ2 and 8 FUQ3). In the second

iteration, we asked 3 FUQ2 based on the answers of FUQ1 of the first iteration. This is

because one FUQ1 received only one ACR, so we could ask a FUQ3 directly. We also

asked 7 further FUQ3 based on the answers of FUQ2 of the first iteration. In the first

iteration of the second round we asked another 19 FUQ (5 FUQ1, 6 FUQ2, 8FUQ3). In

the second iteration we asked 3 FUQ2, because one FUQ1 did not receive any ACR

and another FUQ1 only received one ACR, so we could ask a FUQ3 directly. We also

ask 6 further FUQ3 based on the answers to the 6 FUQ2 of the first iteration. The

answers to FUQ are stored in GFUQ. In both rounds TCHANGE and TACCEPT were always

reached. It would have been possible to extend each round with one more iteration, to

ask FUQ3 based on the answers of the remaining FUQ2, but we wanted to limit the

effort of answering more questions for the users in our study. Based on the answers to

FUQ3 we were able to derive 6 completely new requirements and 25 changes to

existing requirements. Some examples for new requirements and requirement changes

are shown in Table 6.3. The complete list of changes and new requirements is shown

in Table C.1.

Table 6.3: Examples for derived requirements

App New requirement or change of existing requirement

SV
New requirement: SF: customizeStartPage

The user can customize the start page by adding links and applications to it.

SV
New requirement: SF: filterNews

The user can filter the news by the city “Mannheim” and “Heidelberg”.

SF
New requirement: SF: editSubmittedAnswer

The user can edit an already submitted answer.

SF

Change of requirement: W: HistoryView

When displaying the button that allows the navigation to the details of an

answer or message, the button should be visible clearly and not be hidden

partially.

SF

Change of requirement: SF: submitAnswer

When asking a question, there should be an answer option “I never did this”,

so that the user can signalize that his/her experience is not sufficient to answer

the question.

SV Change of requirement: W: LinkView

When displaying links, links that lead to apps should be highlighted so that it

is clear that they lead to apps and not to web pages.

140

6.2 Threats to validity

When interpreting the results presented in this study, several threats to validity must

be carefully considered. These threats apply for the following Chapters 7, 8, 9 and 10.

Construct validity. The question order, ambiguous wording or leading questions are

a threat to construct validity. The sequence in which questions are presented can

impact how the users interpret and answer to subsequent ones, possibly leading to

biased feedback (Covell et al., 2012). Additionally, ambiguous wording in questions

might result in varied interpretations, which could mean the answers don't accurately

capture the user perspective. Moreover, the use of leading questions can bias answers

towards a particular viewpoint. To alleviate this, we try to not ask questions that are

leading and we use consistent wording throughout these questions. Additionally,

having too many questions can lead to user fatigue, causing users to hurry through the

questions or stop answering altogether. We try to limit this threat by asking only a

maximum of five questions per day. Users might also provide answers they believe

are expected or “correct” which could mask their true opinions or experiences. To

address this, we explicitly tell users during a home visit that all feedback regarding the

apps is welcome, whether positive or negative.

Internal validity. The positive relationship between project personnel and the SP,

especially during home visits, might influence the answers, leading to more favourable

feedback. Also, providing free tablets as incentives could influence the motivation of

the users to give feedback. To mitigate potential biases in the answers, we ensure,

especially during home visits, conversations remain focused on study-related topics

and consciously avoid talking about personal matters.

External validity. The validation and the improvement of the approach (see Chapters

7, 8, 9 and 10) are based on feedback to specific apps (SF and SV), and the findings may

not extend to different types of applications or user groups with different

characteristics, such as younger individuals or individuals with different technology

experience. Furthermore, the exclusion of users who meet specific criteria may limit

the generalizability of the findings. This selection bias restricts our ability to apply

conclusions to a broader population. Additionally, the lack of visibility of others'

feedback and the absence of crowd interactions can limit external validity. The

feedback in this isolated environment might not accurately reflect the feedback that

users would give in a more interactive setting. Furthermore, we coded only part of the

feedback. To mitigate concerns regarding external validity, we drew users from two

highly diverse cities (Heidelberg and Mannheim).

Reliability is a concern, particularly with regard to how feedback is processed and

analyzed. The extraction of change requests from the user feedback and the mapping

to requirements and topics (see Section 4.5.3) involves a degree of interpretation,

which could lead to inconsistencies when applied repeatedly. To counteract the threat

of reliability we conducted an interrater agreement (IR) for the mapping to classes and

141

requirements. The IR reached a Kappa of 0.93 indicating very few disagreements. The

Kappa value was calculated using Brennan & Prediger Kappa (Brennan and Prediger,

1981). There are many contributing factors for the high Kappa value. One factor was

that 95% of the feedback consisted of answers to questions and 90% of the answers

were given to questions that addressed a specific requirement. In cases where it was

not clear to which requirement the answer statement should be mapped, the coders

mapped the statement to the requirement which the question addressed. Another

factor was that the feedback was in general very short and rarely needed to be split.

Furthermore, the coders profited from a very detailed coding manual. A lot of

ambiguities in the coding manual could be avoided, because a third coder conducted

a coding on a smaller sample beforehand and the manual was refined based on the

results. Both coders were also very familiar with the applications. One coder (the

author) lead the development of the applications and the other coder already used the

applications and was also familiar with their requirements. The coding was split into

five parts, which were smaller in the beginning of the coding and larger at the end.

The coders discussed their conflicts after each part to avoid divergence.

142

143

 Chapter

7 Validation of feasibility

This Chapter contributes to the knowledge goal 2 of this thesis: Show that the approach

is feasible to collect feedback and to derive requirements. It validates the feasibility of the

treatment by answering the research questions in Section 7.1. Section 7.2 presents the

results of the validation and discusses them. Section 7.3 concludes the Chapter and

answers the main RQ.

7.1 Research questions

The knowledge goal 2 is refined into the three research questions RQ1, RQ2 and RQ3

in Table 7.1. We ask RQ1 and RQ2 to validate the feasibility of the process to collect

feedback and to derive requirements (see Chapter 4) when supported through SF. We

ask RQ3, because interacting with SF consistently over an extended period is necessary

to follow our process. This Section presents these research questions and the metrics

which are used to answer the research questions. We define feasibility regarding the

answering of questions so that the percentage of questions which got answered by at

least 70% of users must be at least 30%. This is similar to the calculation of response

rates for (online) surveys where the numbers of responses is counted, but often

distinguishing partial and complete responses (AAPOR, 2004). A complete response

in our case means that all questions must be answered. We do not require all questions

to be answered, as the questions are asked over a time span and users can have various

reasons to sometimes skip a question. We believe to our definition of feasibility is

ambitious compared to typical response rates (Shih and Xitao, 2008), but it seems

adequate under the condition that users only have to answer single questions.

Table 7.1: Research questions for the feasibility

 RQ Metric

RQ1 Is it feasible to collect feedback? (GTOTAL)

RQ1.1
Is it feasible to collect

feedback through IQ?

The percentage of IQ which got answered by >=

70% of users must be >= 30%

RQ1.2
Is it feasible to collect

feedback through messages?

The percentage of users that gave a message

must be >= 70%

7

144

RQ1 “Is it feasible to collect feedback?” is refined into the RQ1.1 “Is it feasible to

collect feedback through IQ?” and RQ1.2 “Is it feasible to collect feedback through

messages?”. We ask RQ1 and RQ2 because answers and messages represent the

feedback that we use in our process. We answer RQ1.1 by assessing whether our

definition of feasibility regarding the answering of questions is fulfilled. To answer

RQ1.2 we validate whether at least 70% of users gave a message, as this reflects a

substantial portion of the users in our view.

RQ2 “Is it feasible to derive requirements?” is refined into the RQ2.1 “Is it feasible to

collect votes through FUQ?” and RQ2.2 “Is it feasible to change or create requirements

based on the answers to FUQ?”. We ask RQ2.1 because the number of votes decides

which requirements can be changed or created. We ask RQ2.2 because the effort for

changing or creating requirements must be manageable. To answer RQ2.1, similar to

RQ1.1, we apply our definition of feasibility regarding the answering of questions. We

answer RQ2.2 by checking whether the derivation of either a change to a requirement

or the creation of a new requirement takes less than five minutes per user. Compared

with analyzing interview results, we think this is reasonable.

RQ3 “How feasible is the usage of SF?” is answered by assessing whether the average

usage time per week of SF is higher than 10 minutes per week for at least 3 months

and the average number of starts of SF per week is higher than 2 for at least 3 months.

We think that using SF for at least 10 minutes a week is the minimum to have enough

time to reply to our questions. Furthermore, the users should start SF at least twice per

week, to prevent the number of open questions from becoming too high, which could

lead to skipping questions due to feeling overwhelmed. The condition regarding usage

time and the number of starts should consist for at least 3 months, because we ask the

most questions in this time. After 3 months the number of questions we ask declines.

7.2 Results and discussion

In this Section we answer the research questions RQ1, RQ2 and RQ3. We answer RQ1

in Section 7.2.1, RQ2 in Section 7.2.2 and RQ3 in Section 7.2.3.

RQ2 Is it feasible to derive requirements? (GTOTAL)

RQ2.1
Is it feasible to collect votes

through FUQ?

At least 30% of the FUQ must receive votes from

at least 70% of users

RQ2.2
Is it feasible to change or

create requirements based

on the answers to FUQ?

The effort to derive a requirement is less than

five minutes per user

RQ3
How feasible is the usage

of SF? (GTOTAL)

The average usage time per week of SF is higher

than 10 minutes per week for at least 3 months

and the average number of starts of SF per week

is higher than 2 for at least 3 months

145

7.2.1 Feasibility of collecting feedback

In this Section we address the RQ1 “Is it feasible to collect feedback?” by answering

RQ1.1 “Is it feasible to collect feedback through IQ?” in Section 7.2.1.1 and RQ1.2 “Is it

feasible to collect feedback through messages?” in Section 7.2.1.2.

7.2.1.1 Is it feasible to collect feedback through IQ?

In this Section, we present the results for whether the collection of feedback through

IQ is feasible. To conduct the validation we use the dataset GTOTAL and we exclude IQ

with type adaptive, because these IQ are asked only under specific conditions and to

only some SP. Furthermore, regarding IQ that get asked repeatedly, we only analyze

the first answer for each SP. We do this, because not all IQ have the same number of

repetitions. Of the 155 IQ that we analyzed, 116 (74,8%) are answered by more than

70% of users. These IQ are marked green in Figure 7.1. According to our threshold of

30%, this means that it is feasible to collect feedback through IQ.

[Discussion]

The percentage of IQ that are answered by more than 70% of users exceeds the

threshold of 30% by far, indicating that users are very motivated to answer a lot of IQ.

This could have several reasons. Users may feel a sense of obligation to answer the IQ

because they were informed by the study staff that providing feedback is important

for the study. Another reason could be that the users want to share their feedback to

have impact on the improvement of the apps. It could also be, that the IQ are very

understandable and easy to answer, which lowers the barriers to answer them.

Furthermore, as the users receive the tablet as a reward after the study, this could

create a sense of responsibility to earn the reward by actively participating.

Figure 7.1: Each IQ (iq) and the number of users that answered it (niq)

146

7.2.1.2 Is it feasible to collect feedback through messages?

In this Section, we present the results for whether the collection of messages is feasible.

We validate the feasibility of collecting feedback through messages by checking

whether the percentage of users who gave messages is at least 70%. We use the dataset

GTOTAL and we exclude messages that were given on the day when smartFEEDBACK

was introduced to the users by the study personnel. We exclude this day, because the

users are instructed to test out sending messages on that day. Only 149 (54,6%) of 273

users gave a message, which is less than 70%. This means that the collection of

messages is not feasible.

[Discussion]

Several factors may explain that the collection of messages is not feasible. One possible

reason could be that users already feel they have sufficiently provided feedback

through answering the IQ. Given the high number of answers regarding the IQ, they

may feel that their feedback is already communicated. Furthermore, the perceived

effort involved in sending a message could also play a role. While answering IQ might

be seen as a quick task, where the goal and structure is already predefined, composing

a message might require more cognitive effort.

7.2.2 Feasibility of deriving requirements

In this Section we address RQ2 “Is it feasible to derive requirements?” by answering

RQ2.1 “Is it feasible to collect votes through FUQ?” in Section 7.2.2.1 and RQ2.2 “Is it

feasible to change or create requirements based on the answers to FUQ?” in Section

7.2.2.2.

7.2.2.1 Is it feasible to collect votes through FUQ?

In this Section, we analyze whether the collection of votes through FUQ is feasible. To

conduct the validation we use the dataset GFUQ. We define votes as answers to FUQ

that represent an opinion regarding a change (e.g. “Yes”, “Yes – but I have notes”, “I

don’t care”, “No” or a selection of proposed ACR). A FUQ can receive a maximum of

one vote. An answer is not counted as a vote, when it doesn’t represent an opinion

(answering “I find the question not comprehensible” or “I cannot answer the

question”) or when the question is skipped, which means that no answer was given.

All FUQ receive votes from more than 70% of users, which means that it is feasible to

collect feedback through FUQ.

147

Table 7.2: FUQ and the percentage of users who gave votes

Round 1 Round 2

Iteration 1 (n=163) Iteration 2 (n=141) Iteration 1 (n=158) Iteration 2 (n=149)

22.5. - 5.6. (14d) 15.6. – 25.6. (10d) 18.6. – 2.7. (14d) 5.7. – 15.7. (10d)

[Discussion]

The users already answered our IQ very well, so it is not surprising that the FUQ get

a lot of votes as well. Furthermore, as the FUQ ask about specific changes regarding

the apps, they can be interesting for the users as they have the feeling of being able to

contribute to concrete changes. It is also likely that users are motivated to answer the

FUQ because they see that their given feedback is respected and reflected to them.

7.2.2.2 Is it feasible to change or create requirements based on the FUQ?

In this Section, we analyze whether the change or creation of requirements based on

the FUQ is feasible. Table 7.3 shows the time effort for the conduction of the process to

derive requirements.

Table 7.3: Time effort for one person for the conduction of the process to derive

requirements

 Step Duration

(1) Mapping to classes and requirements (based on GCODED) 32 h

(2) Mapping to topics (based on GCODED) 4 h

(3) Derivation of FUQ for first iteration (based on GCODED) 9,5 h

 Total effort regarding GCODED 45,5 h

148

 Effort per user in GCODED (64 users) per requirement (31 requirements) ~1,4 min

(4) Derivation of FUQ for second iteration (based on GFUQ) 5 h

(5) Derivation of requirements (based on GFUQ) 1 h

 Total effort regarding GFUQ 6 h

 Effort per user in GFUQ (205 users) per requirement (31 requirements) ~0,1 min

 Total effort: 51,5 h

We analyzed the dataset GCODED including 64 users. We extracted 3170 statements from

the feedback of these user that we mapped to classes and requirements. This mapping

(1) took around one hour per 100 statements and around 32 hours in total. The 425

statements which were of class “Actionable change request” (ACR) or “Non-actionable

change request” (NACR) were then mapped to topics (2). This mapping took around

4 hours. We then derived FUQ1, FUQ2 and FUQ3 from the topics. The derivation of

FUQ for the first iteration (3) took around 9,5 hours. Some FUQ (e.g. FUQ3 which

require mockups) took more time and others (e.g. FUQ1 without screenshots) required

less time. Until this step we used the feedback of the 64 users of GCODED. The following

steps use the answers to FUQ (GFUQ) of 205 users. The derivation of FUQ for the second

iteration (4) took 5 hours. The derivation of requirements based on the answers of

FUQ3 took 1 hour. The time effort for the conduction of the process took 51,5 hours. In

total we could derive 31 requirements. The effort per user per requirement in GCODED

(see Table 7.3) was around 1,4 minutes and the effort per user per requirement in GFUQ

was around 0,1 minutes. When adding up the average efforts we receive an effort of

around 1,5 minutes per requirement per user which is less than five minutes and thus

feasible according to our threshold.

[Discussion]

Even though the effort for the derivation of changes to existing requirements and the

creation of requirements is feasible, we think that it can further be reduced. For

example, the use of a classifier that maps feedback to CR and requirements could

reduce the effort of 32 hours substantially.

7.2.3 Feasibility of usage of smartFEEDBACK

In this Section, we analyze whether the usage of SF is feasible. We analyze the usage

time and the number of starts of the users of the dataset GTOTAL and include only data

for the app SF.

[Results]

Figure 7.2 shows the average usage time per week in minutes for SF. The figure shows

that the average usage time is consistently over 10 minutes until week 15, where the

usage time drops below 10 minutes. Figure 7.3 shows the average number of starts of

SF for each week. The figure shows that the average number of starts is consistently

over 2 per week for all usage weeks. The usage of SF is feasible, because the average

149

usage time is above 10 minutes for at least 3 months and also the average number of

starts is over 2 per week for at least 3 months.

Figure 7.2: Average usage time per week in minutes for SF (n=273)

Figure 7.3: Average starts per user per week for SF (n=273)

[Discussion]

The average user usage time remained above the minimum threshold of 10 minutes

per week for the first 15 weeks, which exceeds the required 3-month period. We see in

Figure 7.2 the usage time peaks several times. The first peak is after five weeks and the

time corresponds with the timepoint of the second house visit (HVII) or video call

150

(depending on the group of the SP). The next peak is after 13 weeks. This time falls

into the time of T3 where users get asked a battery of questions through REDCap. The

last peak is at week 17, but we don’t know the exact reasons for that. Regarding the

average starts of SF in Figure 7.3, we also see peaks at week five and week 17, but no

peak at week 13. It is possible that users who hadn't answered questions for a while,

or hadn't used the tablet at all, began using the tablet again due to receiving questions

through REDCap. This may have led them to open SF and realize that many questions

were still unanswered. As a result, they spent more time answering these questions,

which could explain the increase in usage time. However, since they didn’t need to

start the app frequently, this could account for the lack of a noticeable peak in app

starts around week 13.

7.3 Conclusion

This Chapter validates the feasibility of an approach for collecting feedback and

deriving requirements, addressing knowledge goal 2 of the thesis. RQ1 assesses

whether it is feasible to collect feedback through IQ and messages. We could show that

RQ1 is feasible regarding the aspect of collecting feedback via IQ, but not regarding

collecting feedback through messages. RQ2 examines the feasibility of collecting votes

through FUQ and the feasibility of deriving requirements. We could show that RQ2 is

feasible regarding the collection of votes through FUQ and regarding the effort for

deriving requirements. RQ3 evaluates the feasibility of the usage of SF. The results

indicate that the usage of SF is feasible. We conclude that the approach is feasible to

collect feedback through IQ (but not to collect messages) and to derive requirements.

151

 Chapter

8 Validation of effectiveness

This Chapter contributes to the knowledge goal 3 of this thesis: Show that the approach

is effective to collect feedback and to derive requirements. It validates the effectiveness of the

treatment to solve the problems P1, P2 and P3 by answering the research questions in

Section 8.1. Section 8.2 presents the results of the validation and discusses them.

Section 8.3 concludes the Chapter and answers the main RQ. The validation of the

effectiveness addresses the problems in Section 1.1.

8.1 Research questions

The knowledge goal 3 is refined into three research questions (see Table 8.1). This

Section presents these research questions and the metrics which are used to answer

the research questions. We ask RQ4 to validate the effectiveness to control the timing

of collecting feedback (addressing P2: Control of timing of feedback collection). In our

approach we ask IQ at specific times, but this does not mean that the IQ are answered

timely. We ask RQ5 to validate the effectiveness to collect complete feedback

(addressing P1: Completeness of feedback). We address RQ5 through three sub RQ. We

ask RQ5.1 to validate the effectiveness to collect feedback through IQ (addressing P1.1

- A lot of feedback can be collected from a lot of users). This is important because we want

to get as many answers from as many users as possible. We ask RQ5.2 to validate

effectiveness to map feedback to requirements (addressing P1.2 - Feedback can be

mapped to requirements). This is important because we want to reduce the effort of

mapping feedback to requirements. We ask RQ5.3 to validate the effectiveness to

collect change requests (addressing P1.3 - Feedback contains change requests). This is

important, because our process to derive requirements builds on the change requests.

We ask RQ6 to validate the effectiveness to derive requirements (addressing P3 –

Support of change requests among users). This is important because the change requests

must have support among the users so that the derived requirements do not serve only

the needs of individuals.

8

152

RQ4 is answered by calculating the average time taken for a user to answer a question.

The time must be at maximum three days for at least 70% of users. We choose three

days because we think this should suffice in practice. For repeated IQ we only take

into account the first time when the question is answered. This is because when an IQ

is repeated for the second time, but the first time it was not answered, then there is

only one answer.

We answer RQ5.1 by checking whether the percentage of IQ which got answered by

>= 70% of users is at least 70%. We base this on our definition of feasibility in relation

to answering questions and increase the percentage of users who respond from 30% to

70% to be even more ambitious.

We answer RQ5.2 by checking whether the percentage of comprehensible feedback is

at least 70%. We think that 70% is a substantial part of feedback. Furthermore, as we

Table 8.1: Research questions for the effectiveness

RQ4 Is it effective to control the timing of collecting feedback? (GTOTAL)

Addressed problem: P2: Control of timing of feedback collection

Metric: The average time taken for a user to answer a question after the

question is asked must be at maximum 3 days for at least 70% of users.

RQ5 Is it effective to collect complete feedback?

 Addressed problem: P1: Completeness of feedback

RQ5.1 Is it effective to collect feedback through IQ? (GTOTAL)

Addressed problem: P1.1 - A lot of feedback can be collected from a lot of users

Metric: The percentage of IQ which got answered by >= 70% of users must be

>= 70%

RQ5.2 Is it effective to map feedback to requirements? (GCODED)

Problem: P1.2 - Feedback can be mapped to requirements

Metric: The percentage of comprehensible feedback must be at least 70%.

Furthermore, less than 30% of the statements included in answers to IQ

regarding functional or non-functional requirements need to be remapped to

other requirements.

RQ5.3 Is it effective to collect change requests? (GCODED)

Problem: P1.3 - Feedback contains change requests

Metric: The ratio of the number of change requests per user must rank among

the top three compared to other platforms

RQ6 Is it effective to derive requirements? (GCODED, GFUQ)

Problem: P3 – Support of change requests among users

Metric: At least 70% of the FUQ must receive votes from at least 70% of users

who received the FUQ

153

ask IQ that address functional and non-functional requirements directly, we check

whether less than 30% of the statements resulting from the answers to these IQ need

to be remapped to other requirements. We think that when only 30% of statements

need to be remapped this represents a substantial reduction of effort.

We answer RQ5.3 by comparing the ratio of the number of change requests per user

with those of other platforms identified in our mapping study (see Chapter 3). If our

ratio is among the top three of other platforms we consider our collection of change

requests effective because this highlights our platform's competitiveness. To compare

our platform to others, we need to clarify terminology. Active users are users that

interacted with the platform. Regarding SF, they either answered a question or sent a

message. Regarding the other platforms, they either posted an idea, added a comment

or expressed a vote. We interpret an idea in the context of SF in two ways. First, we

interpret an idea as a change request. This is an wider interpretation, because our

change requests are usually very short and for example do not contain all aspects

necessary to create a user story out of them. Second, we interpret an idea as a validated

derived requirement. This is a restrictive interpretation because the other platforms

interpret an idea just as a “crowd input” (Wouters et al., 2022) which does not

necessarily involve validation. We looked at each of the platforms that we use for our

comparison again and checked if it was clear whether the ideas represent ideas which

were voted on or not. However, the platforms always only gave the absolute number

of ideas and the absolute number of votes. It was thus not clear how many ideas

received votes. We use the dataset GCODED for the comparison to the other platforms.

RQ6 is answered by assessing whether at least 70% of FUQ received votes from at least

70% of users who received the FUQ. This is similar to the effectiveness of answering

IQ.

8.2 Results and discussion

In this Section we answer the research questions RQ4, RQ5 and RQ6. We answer RQ4

in Section 8.2.1, RQ5 in Section 8.2.2 and RQ6 in Section 8.2.3.

8.2.1 Effectiveness of timeliness

In this Section, we analyze whether the timeliness of collection of feedback through IQ

is effective. We validate the feasibility of the timeliness of collection of feedback

through IQ by analyzing the time between when an IQ is asked and answered. We use

the dataset GTOTAL for our analysis. The average time between receiving an IQ and

answering it should be at maximum 3 days for at least 70% of the users for the

timeliness of collection of feedback to be effective.

[Results]

The average time in days for all users between receiving an IQ and answering it is 18,1

days. As this time seems very high, we analyzed the distribution of the average time

154

to answer an IQ for the first time for each user to check for outliers. Additionally, we

applied k-means clustering to group users into clusters. Figure 8.1 shows the clusters

of users and their average time to answer an IQ for the first time.

Figure 8.1: Clusters of users and their average time to answer an IQ for the

first time (n=258, 15 users did not answer IQ)

Figure 8.1 shows that there are 5 clusters of users of different size with different

average times reaching from 3.3 days to 146.5 days. The biggest cluster with n=181

users has the lowest average time (3.3 days). In total, 258 users answered IQ. This

means that 70% of the users who answered IQ, answered them on average 3.3 days

after the IQ were received. We graciously see this as effective, because the threshold

of 3 days is only exceeded by a few hours.

[Discussion]

While the majority of users falls into the cluster with the lowest average time to answer

an IQ, there are smaller groups of users with much longer delays. Some users might

only sporadically access SF, which would naturally lead to delays in answering IQ,

because we ask IQ regularly. Additionally, some users might view the IQ as irrelevant

or repetitive leading to procrastination in answering. Other potential reasons could

include technical barriers in the context of interacting with the tablet or SF and thus

less motivation in answering the IQ frequently.

8.2.2 Effectiveness of completeness

In this Section we answer the RQ5 “Is it effective to collect complete feedback?” by

answering RQ5.1 “Is it effective to collect feedback through IQ?” in Section 8.2.2.1,

RQ5.2 “Is it effective to map feedback to requirements?” in Section 8.2.2.2 and RQ5.3

“Is it effective to collect change requests?” in Section 8.2.2.3.

155

8.2.2.1 Is it effective to collect feedback through IQ?

In this Section we validate the effectiveness to collect feedback through IQ. We validate

the effectiveness to collect feedback the same way we validate the feasibility, but with

a threshold of 70% instead of 30% regarding the percentage of IQ which got answered

by >= 70% of users.

[Results]

As described in Section 7.2.1.1, out of the 155 IQ that we analyzed, 116 (74,8%) are

answered by more than 70% of users. According to our condition, this means the

collection of IQ is not only feasible, but also effective.

[Discussion]

Several factors could contribute to this high response rate, we discuss these factors in

Section 7.2.1.1.

8.2.2.2 Is it effective to map feedback to requirements?

In this Section we validate whether feedback can be effectively mapped to

requirements. For this, we check whether the percentage of comprehensible feedback

is at least 70%. Furthermore, we check whether less than 30% of the statements

resulting from the answers to IQ, that address functional and non-functional

requirements directly, need to be remapped to other requirements. We use GCODED for

this analysis.

[Results]

98,5% of the answers to IQ are comprehensible. All messages were comprehensible.

There were 1849 statements included in the answers to IQ, that address functional and

non-functional requirements directly. Only 265 statements (14,3%) needed to be

remapped to other requirements. As more than 70% of feedback is comprehensible

and furthermore less than 30% of the statements from answers to IQ, that address

requirements directly, needed to be remapped, we consider it effective to map

feedback to requirements.

[Discussion]

The comprehensibility of the feedback is very high. This could be because the users

put effort into their answers and messages or because our questions put the answers

into context, which makes it easier to understand them. Furthermore, only a small part

(14,3%) of statements resulting from answers to IQ that addressed requirements

directly, needed to be remapped. We think we could further reduce this percentage by

adjusting our set of IQ. This is because a lot of answers to IQ regarding system

functions contained UI details, which lead to remapping the contained statements to a

workspace where the system function was included. This could be avoided by asking

IQ that address workspaces directly.

156

8.2.2.3 Is it effective to collect change requests?

We answer RQ5.3 by comparing the ratio of the number of change requests per active

user with those of other platforms that described their ratio. If our ratio is among the

top three of other platforms, then we consider the collection of change requests

effective.

[Results]

Table 8.2 shows the comparison to the other platforms. All users of GCODED were active.

According to our wider definition of an idea, we collected 425 ideas, which correspond

to the collected change requests and the ratio of ideas per active user is 6.64. According

to our restrictive definition of an idea, we collected 39 ideas, which correspond to the

validated derived requirements and the ratio is 0.60. To be among the top three, we

must reach a ratio of 1.11. With our wider definition of idea, we exceed this threshold

and with our restrictive definition of idea we do not meet the threshold. Thus, based

on our threshold, we cannot conclude whether the collection of change request is

effective or not.

[Discussion]

One has to keep in mind when looking at our comparison, that the definition of an

idea is not clearly defined and the platforms in our comparison didn’t report how

many ideas received votes. We tried to address this by putting up a wider and more

restrictive definition of an idea. Additionally, it is not clear whether the platforms did

some kind of consolidation, such as removing duplicate ideas, before presenting their

idea numbers. We also could not compare our full dataset that we collected in SF, as

we only analyzed a part of it qualitatively. However, our dataset is still the second

largest compared to the other platforms based on active user count. Furthermore, in

our study the users are instructed to give feedback and they receive the tablet as a

reward in the end. This could influence the motivation of the users positively.

Table 8.2: Comparison of SF to other platforms. US=User story, W=Wider,

R=Restrictive

Platform SF Tournify

Kmar-

Crowd REfine GARUSO

Product SMART-AGE Tournify S-Sys V-Sys Qubus 7 Smart living

Feedback type Freetext US US US Freetext US

Active users 64 39 60 130 19 32

Ideas W: 425 (R: 39) 57 32 78 21 56

Ideas/active user W: 6.64 (R: 0.60) 1.46 0.53 0.60 1.11 1.75

157

8.2.3 Effectiveness of requirements derivation

In this Section we present and discuss results regarding the validation of the

effectiveness to collect votes through FUQ (RQ6).

[Results]

As described in Section 7.2.2.1, all FUQ received votes by more than 70% of users.

According to our condition, this means the collection of votes is not only feasible, but

also effective.

[Discussion]

Compared to the IQ, where 74,8% of IQ got answered by more than 70% of users, the

FUQ were answered even better, with all FUQ receiving votes from more than 70% of

users. This could be due to the fact that the FUQ show the users that we valued their

feedback by asking them about specific change requests that they submitted.

Furthermore, the use of images and mockups might make the questions more

interesting, leading to more answers. We analyze in Chapter 10 whether there is an

influence between the characteristics of the FUQ and their vote count.

8.3 Conclusion

This Chapter validates the effectiveness of the approach for collecting feedback and

deriving requirements, addressing knowledge goal 3 of the thesis. The effectiveness of

timeliness of feedback collection (RQ4) could be validated. Regarding the effectiveness

of collecting complete feedback (RQ5), we could validate that it is effective to collect

feedback through IQ (RQ5.1) and to map feedback to requirements (RQ5.2). Regarding

the effectiveness of the collection of change requests (RQ5.3) we could not clearly

validate the effectiveness of the collection of change requests, because we have both a

restrictive and wider interpretation of an idea and with the restrictive interpretation,

the collection of change requests is not effective. The effectiveness of deriving

requirements (RQ6) could be validated. We conclude that the approach is effective in

collecting feedback timely and deriving requirements, as well as in collecting complete

feedback, provided the wider interpretation of what defines an idea is applied.

158

159

 Chapter

9 Validation of satisfaction

This Chapter contributes to the knowledge goal 4 of this thesis: Show that the users are

satisfied with the approach. It validates the satisfaction by answering the research

questions in Section 9.1. Section 9.2 presents the results of the validation and discusses

them. Section 9.3 concludes the Chapter and answers the main RQ.

9.1 Research questions

The knowledge goal 4 is refined into three research questions (see Table 9.1). This

Section presents these research questions and the metrics which are used to answer

the research questions. We ask RQ7 to validate the satisfaction of the users with the

platform. We address RQ7 by answering the three sub RQ, RQ7.1, RQ7.2 and RQ7.3.

We ask RQ7.1 to validate whether the users are satisfied with the platform in general.

This is important because if the users are not satisfied with the platform, this could

limit the effectiveness of our approach. For the same reason we ask RQ7.2 and RQ7.3.

We ask RQ7.2 to validate whether the users are satisfied with the implementation of

the functional requirements and RQ7.3 to validate whether the users are satisfied with

the implementation of the non-functional requirements. We ask RQ8 to validate

whether the users are satisfied with our questions. This is important because the

questions are the central part of our process. We ask RQ8.1 to validate whether the

users are satisfied with the display of the IQ. We analyze the display of the IQ, because

we unfortunately did not ask the users about the comprehensibility of the IQ. The

question regarding the display of the IQ is the closest question regarding the

satisfaction with the IQ that we have. We screened the feedback and the users often

refer to the content of the IQ, so this is why we use the question as an alternative. We

ask RQ8.2 to validate whether our FUQ are comprehensible. This is important because

if the FUQ are not comprehensible, the FUQ will either not be answered or answered

in a way that might not represent the intention of the user. We ask RQ9 to validate the

satisfaction of the users with the process of asking the FUQ. If the users are not satisfied

with the process of asking the FUQ, this could also lead to FUQ being answered less

or not meaningfully.

9

160

RQ7.1 is answered by calculating the System Usability Scale (SUS) Score (Brooke,

1995). A SUS Score of at least 70 is considered good (Sauro and Lewis, 2012). In this

case, we assume that the users are satisfied with the platform. We answer RQ7.2 by

checking whether the sum of answers indicating that the functional requirement was

Table 9.1: Research questions for the satisfaction

 Research question Metric

RQ7 How satisfied are the users with the platform? (GTOTAL)

RQ7.1

How satisfied are the users

with the platform in

general?

The System Usability Scale Score is at least 70

RQ7.2

How satisfied are the users

with the implementation of

the functional

requirements?

The sum of answers indicating that the

implementation of the functional requirement

was liked is higher than the sum of answers

indicating that the implementation of the

requirement was disliked for 70% of

requirements

RQ7.3

Are the users satisfied with

the implementation of the

non-functional

requirements?

The sum of answers indicating that the

implementation of the non-functional

requirement was liked is higher than the sum of

answers indicating that the implementation of the

requirement was disliked for 70% of

requirements

RQ8 How satisfied are the users with the questions?

RQ8.1

How satisfied are the users

with the display of the IQ?

(GTOTAL)

The sum of answers indicating that the display of

the IQ was liked is higher than the sum of

answers indicating that the IQ were disliked

RQ8.2
Are the FUQ

comprehensible? (GFUQ)

At least 70% of the FUQ must be found

comprehensible by at least 70% of users who

received the FUQ

RQ9

How satisfied are the

users with the with the

process of asking FUQ?

(GFINAL)

Q is the final question regarding the satisfaction

with the process of asking FUQ and is split into

three sub questions:

Q1) Satisfaction with the fact that we asked FUQ

Q2) Satisfaction with the FUQ

Q3) Intention to use

For Q1, Q2 and Q3 at least 70% of the users who

received the FUQ must choose “Yes” or

“Neutral”

161

liked is higher than the sum of answers indicating that the requirement was disliked.

If this is the case for 70% of requirements, we consider that the users are satisfied with

the functional requirements. We use the threshold for the feasibility of answering IQ

as an orientation. We answer RQ7.3 the same way regarding the non-functional

requirements.

RQ8 is refined into the RQ8.1 “How satisfied are the users with the display of the IQ?”

and RQ8.2 “Are the FUQ comprehensible?”. We answer RQ8.1 by checking whether

the sum of answers indicating that the display of the IQ was liked is higher than the

sum of answers indicating that the display of the IQ was disliked. If this is the case, we

consider that the users are satisfied with the display of the IQ.

With RQ8.2 we analyze whether our FUQ are comprehensible. It is important that the

FUQ are comprehensible, because otherwise the validity of the answers to the

questions might be compromised. We require for the satisfaction with the FUQ that

70% of FUQ are answered by less than 30% users with “I don’t understand the

question”. This threshold uses the threshold for the effectiveness of answering FUQ as

orientation (70% of users must not answer “I don’t understand the question”).

Regarding RQ9 we ask one question each for three aspects: Q1) Satisfaction with being

asked: Did you think it was good that we asked for your feedback on suggestions

regarding SV and SF? Q2) Satisfaction with the questions: Did you like the questions

we used to ask for your feedback on suggestions regarding SV and SF? and Q3) Intent

to answer in the future: Would you also like to answer questions and provide

suggestions for other software that you use? We evaluate the satisfaction for each

aspect separately.

9.2 Results and discussion

In this Section we answer the research questions RQ7, RQ8 and RQ9. We answer RQ7

in Section 9.2.1, RQ8 in Section 9.2.2 and RQ9 in Section 9.2.3.

9.2.1 Satisfaction with the platform

In this Section we answer the RQ7 “How satisfied are the users with the platform?” by

answering RQ7.1 “How satisfied are the users with the platform in general?” in Section

9.2.1.1, RQ7.2 “Are the users satisfied with the functional requirements?” in Section

9.2.1.2 and RQ7.3 “Are the users satisfied with the non-functional requirements?” in

Section 9.2.1.3.

9.2.1.1 How satisfied are the users with the platform in general?

In this Section we validate the satisfaction of the users with the platform in general by

checking whether the SUS Score of SF is at least 70. We use GTOTAL for our analysis. We

only include users who answered all of the SUS questions.

162

[Results]

133 users answered all of the SUS questions. The average SUS Score is 71.83. This SUS

Score is slightly higher than 70, which means that we consider that the users are

satisfied with the platform in general.

[Discussion]

The exclusion of users who did not answer all SUS questions could influence the

results, as their opinions might differ from those who completed all questions.

Additionally, the process of answering all SUS questions requires a certain level of

effort and attention from users. This could indicate that the users who completed all

SUS questions may represent a subset of users who are more interested in the platform.

As the SUS questions consisted of 10 questions, the likelihood is high that one question

is skipped. This could be the reason why only 133 users answered all SUS questions.

9.2.1.2 How satisfied are the users with the functional requirements?

In this Section we validate the satisfaction of the users with the functional

requirements. Our IQ consist of questions asking about opinions regarding the

functional requirements of SF. The questions are formulated like this: “How good do

you find <functional requirement>?” and the answer options are “Very good”,

“Good”, “Neutral”, “Not good”, “Not good at all”. We use GTOTAL for our analysis.

 [Results]

Figure 9.1 shows a diagram which presents the proportions of answers for each IQ

regarding a functional requirement. The color dark green represents “Very good”,

green represents “Good”, gray “Neutral”, orange “Not good” and red “Not good at

all”. Black represents the proportion of skipped answers.

Figure 9.1: Answers to IQ which ask about opinions regarding function

requirements (n=273)

163

Based on Figure 9.1 we can see that the sum of answers indicating that the functional

requirement was liked (“Very good”, “Good”) is higher than the sum of answers

indicating that the requirement was disliked (“Not good”, “Not good at all”) for all

functional requirements. Thus, we consider that the users are satisfied with the

functional requirements.

[Discussion]

Some system functions received few “Very good” and “Good” answers, for example,

SF: addFile (U), SF: addAudioRecording (U) and SF: filterMessagesOrQuestions (U).

SF: addFile (U) is a rather advanced system function, requiring more technical

experience. For example, it requires the user to search for a file using the tablet file

explorer. Similarly, SF: addAudioRecording (U) might present a technical barrier,

because it requires starting the voice message, speaking, stopping it and sending it. As

for SF: filterMessagesOrQuestions (U), it may be perceived as less essential compared

to other functionalities, leading to more neutral answers.

9.2.1.3 How satisfied are the users with the non-functional requirements?

In this Section we validate the satisfaction of the users with the non-functional

requirements. We analyze the results to IQ that ask about opinions regarding non-

functional requirements and that offer a likert scale (“Very good”, “Good”, “Neutral”,

“Not good”, “Not good at all”). We also asked IQ regarding other non-functional

requirements (User Error Protection and Effectiveness/Efficiency), but there we asked

for freetext instead of a likert scale. For the analysis only the non-functional

requirements with a likert scale are relevant. We use GTOTAL for our analysis.

[Results]

Figure 9.2 shows the answers to IQ which ask about opinions regarding non-functional

requirements and that offer a likert scale.

Figure 9.2: Answers to IQ which ask about opinions regarding non-functional

requirements and provide likert scale (n=273)

164

Only for the non-functional requirement “Pleasure”, the sum of positive answers is

not higher than the sum of negative answers. For 6 of 7 non-functional requirements

(more than 70%) the sum of positive answers is higher than the sum of negative

answers. Thus, we consider that the users are satisfied with the non-functional

requirements.

[Discussion]

The non-functional requirement "Pleasure" did not receive more positive answers than

negative ones, indicating that the users did not find the platform as enjoyable as

expected. This could be due to fact that we did not include any motivational elements

such as gamification in our platform. Furthermore, it could just be that the effort of

giving feedback outweighed the pleasure of using the platform. We could not analyze

the answers of two non-functional requirements, because there the likert scale was not

used. If both non-functional requirements would have more negative than positive

answers, than the threshold would not be met.

9.2.2 Satisfaction with the questions

In this Section we answer the RQ8 “How satisfied are the users with the questions?”

by answering RQ8.1 “How satisfied are the users with the display of the IQ?” in 9.2.2.1

and RQ8.2 “Are the FUQ comprehensible?” in Section 9.2.2.2.

9.2.2.1 How satisfied are the users with the display of the IQ?

In this Section we validate the satisfaction of the users with the display of the IQ. For

this we analyze the answers to the IQ “How good do you find the display of our

questions?” and the answer options are “Very good”, “Good”, “Neutral”, “Not good”,

“Not good at all”. We use GTOTAL for our analysis. In GTOTAL no FUQ were asked to the

users. This means when the users receive the IQ “How good do you find the display

of our questions?”, they don’t mistake “questions” for FUQ and thus only rate IQ.

[Results]

Figure 9.3 shows the answers to the IQ that asks about how users are satisfied with the

display of IQ.

Figure 9.3: Answers to IQ that asks about how users are satisfied with the display of

IQ (n=273)

The sum of positive answers is higher than the sum of negative answers. Thus, we

consider that the users are satisfied with the display of the IQ. To know what the users

did not like about the IQ, we screened the freetext of the answers which represent

165

“Neutral”, “Not good” and “Not good at all”. Several users highlighted that the IQ felt

repetitive and similar, which they found tiring. Others expressed a desire for larger

font sizes to improve readability. Additionally, some users suggested that the IQ could

benefit from clearer explanations and a broader range of answer options.

[Discussion]

Even though the IQ received some criticism, this accounted for only a small portion of

the answers. The majority of answers was positive. The criticism regarding similarity

of the IQ is understandable, as we use very differentiated IQ (e.g. regarding opinions,

problems and improvements for a specific aspect). This level of detail might feel

repetitive to users as they might respond with problems or improvements to an

opinion question initially. When they subsequently receive a problem or improvement

question regarding the same aspect then, they could feel like they already mentioned

these aspects in a previous answer. Additionally, it is true that we repeat the IQ over

the duration of the study.

9.2.2.2 How comprehensible are the FUQ?

In this Section we validate whether the FUQ are comprehensible to the users. For this

we analyze the answers to the FUQ of the first iteration of round 1 and 2, because we

asked the users there whether they find each FUQ comprehensible or not. We use GFUQ

for our analysis. We counted how many users received the FUQ and divided them by

the number of the answers for the FUQ that state „I didn’t understand the question (or

proposal(s))”.

[Results]

Figure 9.4 shows a bar chart which represent the proportion of answers to FUQ

indicating that FUQ are incomprehensible.

Figure 9.4: Proportion of answers to FUQ indicating that FUQ are

incomprehensible (n=205)

For all FUQ the percentage of answers which is “I didn’t understand the question (or

proposal(s))” is not more than around 5%. This means that according to our threshold

the FUQ are comprehensible.

166

[Discussion]

The fact that a high number of users understand the FUQ suggests the questions along

with their descriptions as text and images are not confusing to the users.

9.2.3 Satisfaction with the process of asking FUQ

In this Section we validate whether the users are satisfied with the process of asking

FUQ. We use GFINAL for our analysis, which contains the answers to our final question,

consisting of the sub-questions Q1, Q2 and Q3 (see Table 9.2).

[Results]

Table 9.2 shows the answers to the questions regarding the satisfaction with the

process of asking FUQ. Almost 70% of users agreed to the fact that it was good that we

asked for feedback on suggestions regarding SF and SV and 20% were neutral (Q1).

80% of users agreed that they liked the FUQ and 5% said they don’t care (Q2).

Regarding Q3, in total only 50% of users answered with “Yes” or were neutral. 35% of

users do not intend to provide feedback for other software. We conclude that the users

are satisfied with our process in the current study, but not motivated for further

software.

Table 9.2: Answers to the questions regarding the satisfaction with the process of

asking FUQ. A1=Yes, A2=I don’t care, A3=No, A4=I find the question not

comprehensible, A5=I cannot answer the question. Dataset: GFINAL (n=143)

Q Question A1 A2 A3 A4 A5

Q1
Did you think it was good that we asked for your feedback

on suggestions regarding SF and SV?
68% 20% 2% 5% 5%

Q2
Did you like the questions we used to ask for your

feedback on suggestions regarding SF and SV?
80% 5% 7% 5% 3%

Q3
Would you also like to answer questions and provide

suggestions for other software that you use?
34% 16% 35% 12% 3%

[Discussion]

It is understandable that some of our users are not motivated to provide feedback for

other software, as they are already heavily involved in giving feedback at the moment

of answering this question and they already gave a lot of feedback throughout the

study. We therefore believe that a reluctance to give feedback on other software does

not imply that they disliked our process or questions, which is supported by the

responses to Q1 and Q2.

9.3 Conclusion

This Chapter validates the satisfaction of the users with approach, addressing

knowledge goal 4 of this thesis. The analysis confirmed that users are satisfied with

167

the platform (RQ7), because the System Usability Scale (SUS) score exceeded our

threshold. Furthermore, functional and non-functional requirements were positively

received. However, non-functional requirements such as “Pleasure” and certain

advanced functionalities highlighted opportunities for improvement, suggesting that

the platform could benefit from further refinements to enhance user enjoyment. User

satisfaction with the questions (RQ8) was validated. The process of asking FUQ (RQ9)

could be validated only partially, because users said they do not want to provide

feedback for other software in the future. We conclude that the users are satisfied with

the approach, except for wanting to give feedback for other software in the future.

168

169

 Chapter

10 Improvement of the approach

This Chapter contributes to the knowledge goal 5 of this thesis: Show that the

effectiveness of the approach can be improved. In Section 8 we validated, whether the

problems P1: Completeness of feedback (P1.1: A lot of feedback can be collected from a lot of

users, P1.2: Feedback can be mapped to requirements, P1.3: Feedback contains change requests),

P2: Control of timing of feedback collection and P3: Support of change requests among users

could be solved through our approach. For the problems P1.1 and P2 our results

exceeded our defined thresholds only slightly. For P1.3 the results with our restrictive

definition of an idea didn’t meet the threshold. The other problems could be resolved

in such a way that the result was clearly above the defined threshold. We conclude

that P1.1, P1.3 and P2 profit most from improvement. Our goal is to enhance the

solving of each problem by identifying variables with a statistically significant impact

on the problem and discussing how the approach can be adapted based on this

knowledge. We call the variables that we analyze for the solving of the problems

“characteristics”. We describe the characteristics in Section 10.1. We describe the

research questions in Section 10.2. We present the results of the research questions

along with the discussion in Section 10.3. Section 10.4 concludes the Chapter and

answers the main RQ.

10.1 Characteristics

We use three types of characteristics in our analysis. We use characteristics of users

that are collected through questionnaires (e.g. age, gender, education) to analyze

whether we can improve our approach by adapting better to the attributes of the

individual users. We use characteristics of the usage behavior of the users to assess

whether we can improve our approach based on insights into how users engage with

our platform. Furthermore, we use the characteristics of IQ to improve our approach

by assessing whether IQ with specific characteristics are more impactful than others.

Table 10.1 shows the characteristics of users that are collected through questionnaires.

The full description of the characteristics can be seen in Table C.2.

10

170

Table 10.1: Characteristics of users that are collected through

questionnaires

Characteristic Explanation

u_age Age

u_gender Gender

u_abitur Education (Abitur)

u_swe Self efficacy (Jerusalem and Schwarzer, 2003)

u_mhdt

Media Use/Frequency of Technology Use

Self-designed questionnaire, based on: (Wagner and

Zank, 2022)

u_huadi

Frequency and Type of Internet Use

Self-designed questionnaire, based on: (Vogel et al.,

2020a)

u_mdpq
Mobile Device Proficiency Questionnaire (Roque

and Boot, 2018)

u_techbio Technology biography (Mollenkopf et al., 2000)

u_pus_peu
Perceived Usefulness & Perceived Ease of use

Self-designed questionnaire, based on: (Davis, 1985)

u_intc

Intention to (continue) use

Self-designed questionnaire, based on:

(Bhattacherjee and Premkumar, 2004)

u_peen
Perceived Enjoyment

Self-designed questionnaire, based on: (Davis, 1985)

The user usage characteristics are the usage time of SF (u_usage_time_sf), the usage

time of SV (u_usage_time_sv), the total usage time of both apps (u_usage_time), the

number of starts of SF (u_number_of_starts_sf), the number of starts of SV

(u_number_of_starts-_sv) and the total number of starts of both apps

(u_number_of_starts). Table C.3 gives more info about the unit of measurement.

Table 10.2 shows the characteristics of IQ that we use for our analysis. We don’t use

the characteristics owner, purpose and type, because these characteristics are highly

correlated to category and aspect. For example, all questions with type “adaptive” have

category “RI”.

Table 10.2: Characteristics of IQ. For examples for IQ see Section 4.4.1.1.

Characteristic Explanation

q_category_opinion IQ that asks for opinion

q_category_problem IQ that asks for problem

171

10.2 Research questions

Table 10.3 shows the research questions and the metrics which are used to answer the

research questions. We ask these RQ to more effectively solve the problems P1.1, P1.3

and P2. We ask RQ10 to assess how the effectiveness to collect feedback through IQ

can be improved. We ask RQ11 to analyze how the effectiveness to collect CR can be

improved. We ask RQ12 to assess how the timeliness of feedback collection can be

improved. We do this to be able to collect feedback quickly at desired times.

q_category_improvement IQ that asks for improvement

q_category_RI IQ that asks for reason for inactivity and improvement

q_category_other This type of IQ can be formulated very freely

q_aspect_system IQ that addresses app in general

q_aspect_functional IQ that addresses functional requirement of app

q_aspect_non_functional IQ that addresses non-functional requirement of app

q_app_smartVERNETZT IQ regarding SV

q_app_smartFEEDBACK IQ regarding SF

Table 10.3: Research questions for the effectiveness

RQ10 How to improve the effectiveness to collect feedback through IQ?

Addressed problem: P1.1: A lot of feedback can be collected from a lot of users

Metric: Identify characteristics that significantly influence the collection of

feedback

Methodology: Analyze the influence of characteristics on whether an IQ was

answered.

Dataset: GTOTAL

RQ11 How to improve the effectiveness to collect change requests (CR)?

 Addressed problem: P1.3: Feedback contains change requests

 Metric: Identify characteristics that significantly influence the collection of CR

Methodology: Analyze the influence of characteristics on whether an answer

contains a CR

Dataset: GCODED

RQ12 How to improve the timeliness of feedback collection?

Problem: P2 - Control of timing of feedback collection

Metric: Identify characteristics that significantly influence the timeliness of

collection of feedback

Methodology: Analyze the influence of characteristics of the users and the

characteristics of IQ on the time taken to answer IQ

Dataset: GTOTAL

172

RQ10 “How to improve the effectiveness to collect feedback through IQ?”

We analyze the influence of the characteristics on whether an IQ was answered or not

through a multivariate binary logistic regression and a correlation. A multivariate

binary logistic regression is a statistical test that looks at multiple independent

variables (in our case the characteristics) at the same time, to see how each one

influences the likelihood of a dependent binary variable (for this RQ whether or not

an IQ was answered) (Sheskin, 2004). For the regression, we use the characteristics of

the users that are collected through questionnaires and the characteristics of the IQ as

independent variables. As dependent variable we use whether the IQ was answered

or not. The results of the regression show us which characteristics influence the

dependent variable significantly and to which degree. We examine the influence of

user usage characteristics separately, focusing on specific correlations, such as whether

users with more usage time of SF also provide more answers to IQ related to SF.

RQ11 “How to improve the effectiveness to collect change requests (CR)?”

To answer RQ11 we also use a multivariate binary logistic regression with the same

characteristics as RQ10 with the same reasoning, but for analyzing whether an answer

contains a CR or not. We also conduct correlations in the same manner as RQ10, but

regarding the submission of CR instead of answers.

RQ12 “How to improve the effectiveness to derive requirements?”

To answer RQ12 we conduct a multivariate linear regression. For the regression we

use the same characteristics as RQ10 with the same reasoning, but for analyzing how

long an IQ took to answer. Furthermore, we conduct correlations to analyze whether

the user usage characteristics correlate with the average time to answer an IQ.

10.3 Results and discussion

In this Section we explain answer the research questions RQ10, RQ11 and RQ12. To

understand the results, we describe the statistical terminology first in Section 10.3.1.

We answer RQ10 in Section 10.3.2, RQ11 in Section 10.3.3 and RQ12 in Section 10.3.4.

10.3.1 Statistical terminology

To interpret the results of the regressions and the correlations we explain statistical

terminology in this Section (Sheskin, 2004). For each regression we describe the values

n and p. n is the sample size. p indicates whether overall the set of independent

variables explains the independent variable significantly better than having no

independent variables at all. We adopt the common threshold of using p < 0.05 for

significance. For a binary regression we describe Pseudo R2 and for linear regression

we describe R2. Pseudo R2 and R2 are numbers between 0 and 1 that represent to what

extent the independent variables explain the dependent variable. A low number

means that there are many other variables that influence the dependent variable. In

psychological research it is common that these are below 0.1 (Xu et al., 2022). For each

173

independent variable we list β, OR, p and (OR-1)*100. β represents the direction and

strength of the influence of the independent variable on the dependent variable. OR

means “Odds Ratio”. It is derived from β and explains how the odds (likelihood an

event will happen compared to the likelihood that it will not happen) of the

independent variable change with each unit increase in the dependent variable. For

example, assume that “u_age” is one of our independent variables. If the OR for u_age

is 0.97, it means that for every additional year in age, the odds of the independent

variable (e.g. the IQ is answered) decreases by about 3%. The 3% represent (OR-1)*100.

For variables like the aspect of an IQ which don’t represent a number but a value, such

as “q_aspect_system,” “q_aspect_functional,” or “q_aspect_non-functional”, one

value is chosen as “reference value”. This reference value serves as the baseline to

which we compare the other aspects. For the aspect of an IQ we use “q_aspect_system”

as reference value, for the category of an IQ we use “q_category_opinion” and for the

app of an IQ we use “q_app_smartFEEDBACK”. This means for example that when

analyzing which characteristics of an IQ influence whether an IQ is answered, if we

find that the OR for the characteristic “q_aspect_functional” is 0.52, it means that

functional IQ have 48% lower chance of being answered compared to IQ with aspect

“system”.

For correlations we list r and p. r is the Pearson correlation coefficient. It measures the

strength and direction of the linear relationship between two variables, with values

ranging from -1 (perfect negative relationship) through 0 (no relationship) to +1

(perfect positive relationship). r between 0.1 and 0.3 is considered as a weak

relationship, r between 0.3 and 0.5 as a moderate and r greater than 0.5 as a strong

relationship. p is used again to show significance.

10.3.2 Improvement of the effectiveness to collect feedback through IQ

Table 10.4 shows the results of the binary logistic regression for RQ10. Our analysis

consisted of 60.778 IQ which were either answered or not (n). Pseudo R2 is 0.066 and p

is <0.001, which indicates that overall our results are statistically very unlikely to be

due to chance. We identified independent variables that influence significantly

whether an IQ was answered. These variables are listed in in Table 10.4. The table

shows that there are IQ characteristics and user questionnaire characteristics that

influence the chance of the IQ being answered positively or negatively, with a

tendency of the IQ characteristics being more influential. When an IQ is of subject

q_aspect_functional, the chance of receiving an answer is reduced by 48% compared to

when the IQ would have q_aspect_system. When an IQ has the characteristic

q_category_functional, the chance of receiving an answer is reduced by 45% compared

to when the IQ would have q_category_opinion. The chance of an IQ receiving an

answer decreases by 30% for each unit the SP’s u_pus_peu (Perceived Usefulness &

Perceived Ease of use of IT) increases. If the IQ has the characteristic

q_aspect_non_functional the chance of receiving an answer is 27% lower than when it

would be with characteristic q_aspect_system. The chance for an IQ to be answered by

a female (u_geschlecht = 1) user is 27% lower than to be answered by a male user

174

(u_geschlecht = 0). The chance for an IQ to receive an answer increases with 26% for

each unit of increase u_peen (Perceived Enjoyment) of the SP. It also increases by 23%

when the IQ addresses SV compared to when it addresses SF. The chance of an IQ

getting answered from a user with high school degree (german: “Abitur”) is 20% less

than without high school degree. For the remaining characteristics and their influence,

see Table 10.4.

Table 10.4: Significant results regarding the influence of user questionnaire

characteristics and IQ characteristics on whether an IQ was answered.

n=60778, Pseudo R2=0.066, p=<0.001

Independent variable β OR p (OR-1)*100

q_aspect_functional -0.65 0.52 <0.001 -48%

q_category_improvement -0.60 0.55 <0.001 -45%

u_pus_peu -0.36 0.70 <0.001 -30%

q_aspect_non_functional -0.32 0.73 <0.001 -27%

u_geschlecht -0.30 0.74 <0.001 -26%

u_peen 0.23 1.26 <0.001 26%

q_app_smartVERNETZT 0.21 1.23 <0.001 23%

u_abitur -0.22 0.80 <0.001 -20%

q_category_other -0.21 0.81 <0.001 -19%

q_category_problem -0.15 0.86 <0.001 -14%

u_intc 0.11 1.12 <0.001 12%

u_techbio -0.12 0.88 0.001 -12%

u_age -0.03 0.97 <0.001 -3%

u_swe 0.02 1.02 <0.001 2%

u_mdpq 0.01 1.01 <0.001 1%

In Table 10.5 we show the results regarding the correlation of user usage characteristics

with the number of answers to IQ differentiated by app. The correlations show that

there is a significant moderate relationship between the usage time of a user in SF and

the number of answers given to IQ that address SF, as well as the total number of

answers to IQ. Furthermore, there is a significant weak relationship between the usage

time of a user in SV and the number of answers given to IQ that address SV. There is

significant a moderate relationship between the number of starts of SF of a user and

the number of answers given to IQ that address SF, as well as the total number of

answers to IQ. There is a significant moderate relationship between the number of

starts of SV of a user and the number of answers given to IQ that address SV.

175

Table 10.5: Results regarding the correlation of user

usage characteristics with the number of answers to IQ.

Variable pair r p

u_usage_time_sf

Number of answers to IQ of SF
0.57 <0.001

u_usage_time_sv

Number of answers to IQ of SV
0.26 <0.001

u_usage_time_sf

Number of total answers
0.57 <0.001

u_number_of_starts_sf

Number of answers to IQ of SF
0.51 <0.001

u_number_of_starts_sv

Number of answers to IQ of SV
0.32 <0.001

u_number_of_starts_sf

Number of total answers
0.51 <0.001

[Discussion]

The low Pseudo R2 of the binary logistic regression indicates that there are many other

unmeasured variables that influence the whether a user gives an answer to IQ or not.

IQ that address functional or non-functional aspects were less likely to be answered

than IQ that address the system as a whole. This may be because more open IQ are

easier to answer. For instance, IQ about specific functions might remain unanswered

due to lack of usage of the functions or the inability to understand which function in

the app is meant. IQ regarding non-functional requirements might be conceived as too

irrelevant (e.g. asking for the comfort, pleasure or accessibility when using the app –

see Figure 9.2 RQ7.3). IQ that ask for improvements were less likely to be answered

compared to those that ask for opinions. This might be because we ask IQ regarding

improvements always after IQ regarding opinions and problems. When the user

answered the IQ regarding their opinions and problems, they often already submitted

everything that they wanted to say and they skip the IQ regarding improvement. We

also recognize that user with a higher score regarding perceived usefulness and

perceived ease of use regarding technology (u_pus_peu) and users with a more

technological experience (u_techbio) are less likely to answer IQ. This could be because

these users are less interested in using the SMART-AGE apps overall, as these are more

focused on users with less technological experience. Users with a high score regarding

their perceived enjoyment with technology (u_peen) are more likely to answer the IQ.

This might be because these users like using the tablet or the apps and thus use it more

often. Furthermore, older users and users with high school degree are less likely to

answer IQ. Older users might be less interested in using SF to give feedback and users

with high school degree could be more selective in answering the questions.

176

The correlation of user usage characteristics with their number of answers to IQ shows

weak to moderate but statistically significant relationships. Higher usage time or

number of starts of a user regarding an app correlates with an increased amount of

answered IQ from that user regarding that app (for SF more than for SV). Also, the

usage time and the number of starts of SF by a user correlates with the total number of

answers given by the user. These results were expected, as for answering IQ, the app

SF must be used, which increases the usage time and the number of starts.

Furthermore, answers regarding SV cannot be answered without experience in using

SV.

[Ideas for improving the effectiveness to collect feedback through IQ]

To increase the likelihood of an IQ to be answered that addresses functional aspects,

we could ask that IQ only when it is clear based on the monitoring data that the user

has used the function already. This reduces the chance that the user doesn’t answer

the IQ, because of a lack of experience. Furthermore, to reduce the likelihood that the

user doesn’t answer the IQ because of inability to understand which function in the

app is meant, we could provide explanations and screenshots for the function. To make

use of the insight that user with high perceived enjoyment of technology are more

likely to answer IQ, we could try to increase the enjoyment of SF by experimenting

with motivational elements such as gamification, even though we initially decided

against gamification during the design of SF because of lacking evidence in literature.

Regarding the insight that more usage time and more starts of the apps increase the

likelihood to answer IQ, we could make more use of notifications in SF. For example,

we could send the users a notification each day when new IQ can be answered.

Currently, we do this only when the number of unanswered IQ is high. However, we

did not analyze whether this influences the usage of SF, so this is just an assumption

that is yet to be validated.

10.3.3 Improvement of the effectiveness to collect CR

The results in Table 10.6 show the influence of user questionnaire characteristics and

IQ characteristics on whether an IQ was answered and a CR is contained in the answer.

The binary logistic regression, performed on 16510 IQ (n), yielding a Pseudo R² of 0.080

and remaining statistically significant (p<0.05). The table shows that there are IQ

characteristics and user questionnaire characteristics that influence the chance of the

IQ answer containing a CR positively or negatively, with a tendency of the IQ

characteristics being more influential. The category of an IQ can be identified as a key

predictor for whether the IQ was answered whilst also containing a CR. If the category

is q_category_RI or q_category_improvement, than the likelihood of the IQ being

answered with a CR is 80% or 66% higher than the reference q_category_opinion.

Furthermore, when a user has a high school degree, the likelihood of an IQ being

answered with a CR is 74% higher. If the category of the IQ is q_category_other or

q_category_problem than the likelihood of an IQ receiving an answer with a CR is 66%

or 60% lower than the reference q_category_opinion. The likelihood of a user answering

177

an IQ with a CR increases by 55% for each unit of u_intc (Intention to (continue) use

IT). Furthermore, if the IQ addresses SV instead of SF, the likelihood is 40% lower to

receive a CR. Also, when the user is female, the likelihood of answering an IQ with a

CR is 37% higher. For the remaining characteristics and their influence, see Table 10.6.

Table 10.6: Significant results regarding the influence of the user questionnaire

characteristics and IQ characteristics on whether an IQ was answered and contained

a CR.

(n=16510, Pseudo R2=0,080, p=<0.001)

Input variable β OR p (OR-1)*100

q_category_RI 0.59 1.80 0.01 80%

u_sozd_schule 0.55 1.74 <0.001 74%

q_category_improvement 0.51 1.66 <0.001 66%

q_category_other -1.09 0.34 <0.001 -66%

q_category_problem -0.92 0.40 <0.001 -60%

u_intc 0.44 1.55 <0.001 55%

q_app_smartVERNETZT -0.52 0.60 <0.001 -40%

u_geschlecht 0.31 1.37 0.02 37%

u_peen -0.27 0.77 0.001 -23%

u_mdpq 0.02 1.02 <0.001 2%

In Table 10.7 we correlate the user usage characteristics with the number of change

requests differentiated by app. There is a moderate relationship between the usage

time of a user regarding SF and the number of CR regarding SF from that SP, as well

as the total number of CR from that SP. Furthermore, the number of starts of SF of a

user correlates with the number of CR for SF from that SP, as well as with the total

number of CR from that SP. There is no significant correlation between the usage

time/number of starts of SV and the number of CR for SV.

Table 10.7: Results regarding the correlation of user

usage characteristics with the number of CR

Variable Pair r p

u_usage_time_sf

Number of CR for SF
0.33 <0.001

u_usage_time_sf

Total number of CR
0.33 <0.001

u_number_of_starts_sf

Number of CR for SF
0.22 <0.001

u_number_of_starts_sf

Total number of CR
0.20 0.001

178

[Discussion]

IQ that ask for improvement (q_category_RI and q_category_improvement) increase the

likelihood of receiving a CR on an IQ the most compared to IQ with q_category_opinion.

This makes sense, as this is the goal of these IQ. Interestingly, IQ with q_category_RI

(adaptive IQ) are even better than q_category_improvement for receiving CR. This could

be due to the fact that the adaptive IQ ask for the reason for inactivity and users might

feel the need to justify themselves by giving a detailed answer. IQ with

q_category_problem decrease the likelihood of receiving a CR through an IQ compared

to IQ with q_category_opinion. This suggests that while users might mention issues,

these issues represent problems with the existing functionality and do not represent

our definition of change requests which address the change of requirements. Users

with a high school degree are more likely to provide CR in their answers. This could

be because they answer the IQ in more detail than other SP. Furthermore, users with

higher u_intc (Intention to (continue) use IT) are more likely to give CR. This might be,

because these users are interested in continually using IT in the future and are thus

more motivated to contribute to its improvement.

Regarding the correlation of user usage characteristics with the number of CR, the

usage characteristics for SV show only weak and non-significant correlations for the

number of CR related to SV, in contrast to SF, where more usage or more starts lead to

more CR. It makes sense that usage and starts of SF correlates with the number of CR,

because usage and starts of SF are needed to give CR (a CR cannot be submitted

without using SF). This is not the case for SV, as users could submit a lot of CR

regarding SV without using SV a lot.

[Ideas for improving the effectiveness to collect CR]

To increase the likelihood of an IQ to be answered with a CR, the logical conclusion

based on our results would be to ask more IQ that ask for improvement. Specifically,

we could ask more adaptive IQ that ask for improvements regarding used

functionalities. At least, the order of IQ should be changed, so that IQ addressing

improvement are not always asked after IQ addressing opinion and problem. As users

without high school degree tend to give less CR, we could try to formulate our IQ in

easier language or with more explanations.

10.3.4 Improvement of the effectiveness to collect feedback timely

We analyzed the influence of questionnaire characteristics of the users and the

characteristics of IQ on the time taken to answer IQ through a linear regression. The

regression did not yield any significant results. We further calculated a correlation

between the user usage characteristics and the average time difference to answer IQ

differentiated by app. The results are shown in Table 10.8. The usage time of SF did

not correlate significantly with the average time difference to answer IQ neither for

both SF and SV nor for SF and SF individually. The usage time of SV did also not

correlate significantly with the average time difference to answer IQ for SV. The

179

number of starts of SF showed an inverse moderate significant correlation with the

average time difference to answer IQ (regarding SF), meaning that the more SF is

started, the less the average time difference of answering IQ (regarding SF) is. The

number of starts of SV showed an inverse, but weak significant correlation on the

average time difference to answer IQ regarding SV.

Table 10.8: Significant results regarding the correlation of user

usage characteristics average time difference to answer IQ

Variable Pair r p

number_of_starts_sf

average time taken to answer IQ
-0.35 <0.001

number_of_starts_sf

average time taken to answer IQ regarding

SF

-0.35 <0.001

number_of_starts_sv

average time taken to answer IQ regarding

SV

-0.25 0.001

[Discussion]

The linear regression did not yield any significant predictors. The correlation however

identified the number of starts of SF as a significant predictor on both the average time

taken to answer IQ and the average time taken to answer IQ regarding SF. This makes

sense, as for timely answering IQ it is necessary to start SF regularly. The correlation

of the number of starts of SV on the average time taken to answer IQ could be due to

the fact that when users answer IQ regarding SV, they also start SV for example to try

out a functionality that an IQ addresses.

[Ideas for improving the effectiveness to collect feedback timely]

One idea for improving the effectiveness to collect feedback timely is to integrate the

possibility to answer IQ regarding SV in SV. This way when users start SV, but not SF,

they can still answer our IQ regarding SV leading to a reduced time taken between the

IQ overall. Another way would be to integrate a linking functionality from SV to SF so

that users are reminded of SF more and the transition from one app to the other is

facilitated.

10.4 Conclusion

This Chapter validates that the effectiveness of the approach can be improved,

addressing knowledge goal 5 of this thesis. The analysis identified significant

predictors that are relevant for improving the solving of the problems P1.1: A lot of

feedback can be collected from a lot of users, P1.3 Feedback contains change requests and P2:

Control of timing of feedback collection.

180

With RQ10 we identified significant predictors for the collection of answers to IQ

(addressing P1.1). The aspect and category of an IQ were the most influential factors

in determining whether it will be answered or not. IQ addressing functional or non-

functional aspects were less likely to receive answers than those focusing on the system

as a whole. Similarly, IQ asking for improvements were less likely to be answered

compared to those asking about opinions. Also, all users usage time and number of

starts were predictors for the amount of answers to IQ independently of the app. Our

ideas to improve the effectiveness of answer collection included to ask IQ addressing

functional aspects only when the functional aspect was already used by the SP,

avoiding IQ that cannot be answered due to a lack of experience. Furthermore, ideas

included to give clearer reference to functionality in IQ, as well as using notifications

more intensely to drive app usage.

With RQ11 we identified significant predictors for the collection of answers to IQ that

contain CR (addressing P1.3). The category of an IQ and the education of the user were

the most important predictors. When the category of the IQ included asking for

improvement or when the user had a high school degree, the chance of receiving an

answer including a CR increased strongly. Additionally, a longer usage time of SF and

a higher number of starts of SF contributed to a higher number of collected CR. Our

ideas to improve the effectiveness of collecting CR included to ask more IQ that ask

for improvements or to change ask IQ addressing improvements before other IQ.

Furthermore, to make the IQ easier to understand for users without high school

degree, we propose to formulate the IQ in easier language and to add explanations.

With RQ12 we identified significant predictors for the timely collection of answers to

IQ (addressing P2). The only significant predictors on the time taken to answer IQ that

we could identify were the number of starts of SF and the number of starts of SV. These

correlated inversely, meaning that higher number of starts lead to less average time

taken to answer IQ. Our ideas for improving the effectiveness to collect feedback more

timely include the integration of the possibility to answer IQ regarding SV in SV or the

integration of a linking functionality facilitating the switch to SF.

We conclude that we could identify predictors regarding the problems P1.1, P1.3 and

P2 through which we could come up with ideas to improve the effectiveness of the

approach.

181

V. CONCLUSION AND OUTLOOK

PART V

182

183

 Chapter

11 Conclusion

This Chapter summarizes the goals of this thesis and its contributions. The

contributions are valuable for practitioners that collect feedback and derive

requirements, as well as for researchers. The goals of this thesis consisted of one

technical research goal and five knowledge goals.

Knowledge goal 1 was to understand the current state and practice of collecting

feedback over platforms (Part II). We conducted a systematic mapping study and

found that feedback is collected on platforms using either free text or templates. The

feedback is collected in single or multiple phases, either in a governmental, research

or commercial setting. Evaluations primarily focus on platform acceptance and user

participation, while the evaluation of the content of feedback is rare. Platforms

typically support submitting, commenting, and voting on feedback, with additional

features like gamification. The results of our mapping study are valuable for

researchers as a basis for future systematic mapping studies and for an orientation

regarding the design of individual approaches.

The technical research goal was to develop the treatment for three identified problems

reported in literature that occur during collection of feedback and the derivation of

requirements: P1) Completeness of feedback, P2) Control of timing of feedback collection and

P3) Support of change requests among users. The treatment, also called approach, consists

of the process to collect feedback and derive requirements and the platform that

supports the process (Part III). P1) Completeness of feedback is treated by asking a variety

of IQ to every user (addressing P1.1: A lot of feedback can be collected from a lot of users),

including requirements specific IQ (addressing P1.2: Feedback can be mapped to

requirements) and IQ asking for improvements (addressing P1.3: Feedback contains

change requests). P2) Control of timing of feedback collection is treated by asking these IQ

at either fixed timepoints and P3) Support of change requests among users is treated by

asking FUQ to validate and refine change requests among the users. Adopting our

approach is particularly interesting for practitioners who want to collect feedback and

derive requirements regarding their products. This is because the approach not only

addresses the identified problems but it is also highly customizable regarding the

11

184

configuration of questions and it is easily set up, due to the simplicity of deploying SF

as a container.

Knowledge goal 2 was to show that the approach is feasible to collect feedback and to

derive requirements (Chapter 7). The results indicate that collecting feedback through

IQ and collecting votes through FUQ was feasible, while collecting messages was not.

Requirements could be successfully derived with manageable effort per user and the

usage of SF proved feasible, with sustained activity over three months. The results

provide other researchers with valuable benchmarks for assessing the feasibility of

their approach to collect feedback collection and derive requirements.

Knowledge goal 3 was to show that the approach is effective to collect feedback and

to derive requirements by analyzing whether the problems could be solved (Chapter

8). The results show that sufficiently complete feedback (addressing P1) could be

collected, because the amount of feedback collected exceeded our threshold

(addressing P1.1), as well as because only a small part of the feedback needed manual

remapping to other requirements (addressing P1.2) and because our collection of

change requests exceeded those of other platforms when we interpreting the results

with a wider definition of an idea (addressing P1.3). Furthermore, the feedback could

be collected timely (addressing P2) and the support of change request among the users

could be validated, as all FUQ received more votes than our defined threshold

(addressing P3). The results are valuable for practitioners, as P1, P2, and P3 are

industry-relevant problems. However, it should be noted that these findings were

obtained in a study setting with the specific target group of older adults. This means

that additional testing and adjustments may be necessary to ensure the problems can

also be solved effectively in other settings with different age groups.

Knowledge goal 4 was to show that the users are satisfied with the approach (Chapter

9). The users were satisfied with the platform itself, indicated by a high System

Usability Score (SUS). The satisfaction with the implementation of the functional and

non-functional requirements could also be validated, even though the implementation

of the requirements could benefit from further improvements. The satisfaction with

the presentation of the IQ and with the comprehensibility of the FUQ could also be

validated. The process of asking FUQ could be validated partially, because even

though users appreciated being asked for feedback and despite that they liked the

FUQ, they indicated that they were not motivated to give feedback for other software.

Knowledge goal 5 was to show that the effectiveness of the approach can be improved

(Chapter 10). Our goal was to increase the effectiveness in solving the problems P1.1

A lot of feedback can be collected from a lot of users, P1.3 Feedback contains change requests

and P2 Control of timing of feedback collection. Regarding P1.1 we found out that IQ

addressing functional or non-functional aspects were less likely to receive answers

than those focusing on the system as a whole and that IQ asking for improvements

were less likely to be answered compared to those asking about opinions. To increase

the likelihood of an IQ to be answered that addresses functional aspects, we could ask

that IQ only when it is clear based on the monitoring data that the user has used the

185

function already. This reduces the chance that the user doesn’t answer the IQ, because

of a lack of experience. Furthermore, to reduce the likelihood that the user doesn’t

answer the IQ because of inability to understand which function in the app is meant,

we could provide explanations and screenshots for the function. We also identified

that app usage time and number of starts influenced the collection of feedback

significantly. This means that reminding the users more through notifications to use

SF could increase the amount of collected feedback. Regarding P1.3 we identified that

IQ that ask for improvement, especially adaptive IQ, were more likely to yield CR. So

even though these IQ are less likely to be answered in general, when they are

answered, they yield more CR. Also, users with high school degree were more likely

to answer IQ with CR. To improve CR collection, we suggest to use more IQ to ask for

improvements or to ask those IQ before other IQ. Also, we suggest to formulate IQ in

easier language or to add explanations for users without high school degree.

Regarding P2 the number of starts of SF and SV were significant predictors for timely

IQ answers, with more starts reducing the time taken to answer the IQ. Our proposed

improvements include allowing to answer IQ within SV and enable users to navigate

from SV to SF easily.

In summary the dissertation contributed an approach that enables researchers and

practitioners to collect feedback and derive requirements without facing the problems

P1, P2 and P3. Additionally, we contribute the mapping study that can serve as a

foundation for future systematic mapping studies or as a guide for designing

individual feedback platforms. We also offer a dataset of change requests collected in

SMART-AGE, providing insights into real-world feedback from older adults. This

dataset is useful for researchers and practitioners aiming to understand the specific

needs and preferences of this user group. Lastly, we contribute a validation of the

approach's feasibility, effectiveness, user satisfaction and improvement, offering a

benchmark for researchers to compare their approaches.

186

187

 Chapter

12 Outlook

This Chapter explores future work, focusing on leveraging advancements in large

language models (LLMs), to automate and enhance our approach. We also discuss

prior actions worth considering before implementing our approach in an industrial

setting. We believe that LLMs can replace a large part of the manual steps required to

conduct our process to derive requirements. The derivation of requirements can be

supported by LLMs because the extraction of CR and their mapping to topics and

requirements is a classification problem. However, the derivation of FUQ, especially

the creation of mockups will likely still require human assistance, because at the time

of writing this thesis, images often still contain hallucinated text. Nevertheless, we

believe that automatic mockup creation will be possible in the future as well.

Assuming that the steps of our approach can be fully automated, changes to existing

requirements or new requirements that are validated by the users could be proposed

continuously to the requirements engineers without any manual effort involved. It is

even imaginable, that based on the proposed requirements, automatic code updates

are triggered and feedback is collected automatically for the new software version

again through A/B testing. Independently of the support through LLMs, our approach

should be improved based on the validated requirements that we derived for SF from

the users and the identified improvements regarding knowledge goal 5. Before

applying our approach in an industrial setting, we believe it is important to conduct a

more thorough assessment of potential threats to external validity. Specifically, we

think evaluating whether the approach is effective with a younger target group and in

a context where users do not receive a reward for their participation. Furthermore, in

industry feedback already exists from the collection through various channels like

emails or social media. This means that it would also be possible to skip the process to

collect feedback and only apply our process to derive requirements. To make use of

the various existing feedback channels, it is also imaginable, to adjust SF for collecting

feedback and asking questions through channels that allow interactions with the users

(e.g. Email or Slack) directly instead of through the UI of SF.

12

188

189

VI. APPENDIX

PART VI

190

191

A Supplementary Material for the Problem

Investigation

A.1 Methodology

Table A.1.1: Known relevant articles

Ref. Title Platform

(Wouters et al.,

2021)

CrowdRE in a Governmental Setting: Lessons from Two Case

Studies

(Kolpondinos and

Glinz, 2020)

GARUSO: a gamification approach for involving stakeholders

outside organizational reach in requirements engineering

(Menkveld et al.,

2019)

User story writing in crowd requirements engineering: The case of

a web application for sports tournament planning

(Sharma & Sureka,

2018)

CRUISE: A platform for crowdsourcing Requirements Elicitation

and evolution

(Snijders et al., 2015) REfine: A gamified platform for participatory requirements

engineering

(Renzel et al., 2013) Requirements Bazaar: Social requirements engineering for

community-driven innovation

(Fernandes et al.,

2012)

iThink : A game-based approach towards improving collaboration

and participation in requirement elicitation

KMar-Crowd

 GARUSO

 Tournify

 CRUISE

 REfine

 Bazaar

 iThink

192

Table A.1.2: Identification of alternatives for root search terms over analysis of 20 most frequent words of known relevant articles. Adopted

alternatives for root search terms are bold and green.

Ref. 20 most frequent words Term adoption

(W
o

u
te

rs
 e

t
a
l.,

 2
0
2
1
)

words reason
mapped root

search term

ideas feedback can be an idea feedback

crowd users form a crowd user

case not relevant

requirements

Some platforms collect

feedback in form of

requirements (e.g. user stories)

feedback

CrowdRE

leave away, to also include

platforms which don’t mention

CrowdRE

study too specific

KMar specific approach

elicitation
to elicit can be used for “to

collect”
collect

user already in search term

users already in search term

platform already in search term

studies too specific

sys not clear what is meant

participants
feedback can be collected from

e.g. platform participants
user

employees
employees can be users of a

platform
user

research too broad

method too broad

governmental not relevant platform

two not relevant

organizations not relevant user

193
(K

o
lp

o
n

d
in

o
s

&
 G

li
n

z,
 2

0
2

0
)

words reason

mapped root

search term

stakeholders Stakeholders can be users of a

platform

user

platform already in search term

garuso specific approach

activities not relevant

users already in search term

reach not relevant

results not relevant

requirements Some platforms collect

feedback in form of

requirements (e.g. user stories)

feedback

organizational not relevant

post feedback can be a post on a

platform

feedback

outside not relevant

system not relevant

visitors visitors of a platform user

posts See “post”

one not relevant

see not relevant

stakeholder See “stakeholders”

level not relevant

study too specific

sub not clear

194
(M

en
k

v
el

d
 e

t
al

.,
20

19
)

words reason

mapped root

search term

uss Leave away to also include

platforms that do not collect

user stories (uss)

requirements Some platforms collect

feedback in form of

requirements (e.g. user

stories)

feedback

user already in search term

platform already in search term

one not relevant

users already in search term

feature not relevant

us Leave away to also include

platforms that do not collect

user stories (uss)

crowd users form a crowd user

crowdsourced Crowdsourcing is a means

of collective contribution

collect

quality not relevant

tournament not relevant

also filling word

requests request for feedback collect

tournify specific approach

study too specific

software a platform is a software platform

written not relevant

use not relevant

product cannot be mapped to root

search term

195
(S

h
a

rm
a

 &
 S

u
re

k
a

,
2

0
18

)

words reason
mapped root

search term

requirements

Some platforms collect

feedback in form of

requirements (e.g. user

stories)

feedback

cruise specific approach

study too specific

crowdsourcing
Crowdsourcing is a means of

collective contribution
collect

project too general

group too general

tool
a platform could also be

named tool
platform

users already in search term

crowd users form a crowd user

user already in search term

hypothesis too general

control too general

collected already in search term

platform already in search term

elicitation
to elicit can be used for “to

collect”
collect

participants

feedback can be collected

from e.g. platform

participants

users

proposed too general

one not relevant

design not relevant

196
(S

n
ij

d
er

s
et

 a
l.

,
2

0
15

)

words reason

mapped root

search term

requirements

Some platforms collect feedback

in form of requirements (e.g.

user stories)

feedback

refine too broad

users already in search term

stakeholders
Stakeholders can be users of a

platform
user

needs too broad

crowd users form a crowd user

product cannot be mapped to root term

points cannot be mapped to root term

crowdsourcing
Crowdsourcing is a means of

collective contribution
collect

need duplicate

user already in search term

involvement cannot be mapped to root term

gamification not relevant

useful not relevant

quality not relevant

game not relevant

platform already in search term

software a platform is a software platform

use too broad

participants
feedback can be collected from

e.g. platform participants
user

197
(R

en
ze

l
et

 a
l.

, 2
01

3)

words reason

mapped root

search term

requirements

Some platforms collect

feedback in form of

requirements (e.g. user

stories)

feedback

bazaar specific aproach

service already in search term

social not relevant

providers not relevant

user already in search term

communities a community of users community

negotiation

Users can discuss and

negotiate the relevance of

feedback

realization not relevant

stakeholders
Stakeholders can be users of a

platform
user

requirement
to also include platforms that

only collect feedback

phase not relevant

engineering not relevant

community See “communities”

workflow not relevant

particular not relevant

process too broad

co not relevant

creation not relevant

198
(F

er
n

an
d

es
 e

t
al

.,
20

12
)

words reason
mapped root

search term

game not relevant

elicitation
to elicit can be used for “to

collect”
collect

project not relevant

requirement

Some platforms collect

feedback in form of

requirements (e.g. user stories)

thinking not relevant

stakeholders
Stakeholders can be users of a

platform
user

new not relevant

case not relevant

also filling word

six not relevant

games not relevant

hat not relevant

information too broad

several not relevant

results not relevant

points not relevant

based not relevant

tool
a platform could also be

named tool
platform

manager not relevant

199

Table A.1.3: Identification of alternative terms for root search terms over analysis of known relevant articles. Adopted search terms are

green and bold. Terms that are already part of the search term are orange.

Ref. collect user feedback platform

(W
o

u
te

rs
 e

t
al

.,
20

21
)

alternative reason alternative reason alternative reason alternative reason

collecting
already a search

term
european too specific learning not relevant activity too broad

content not relevant author too specific section not relevant application
a platform is an

application

request
already a search

term
leader too specific overview not relevant engineering too broad

cast not relevant avatar too specific support not relevant usage too broad

set not relevant employee
already a search

term
comment a comment is feedback use too broad

crowd
already a search

term
user

already a search

term
answer

an answer to a question is

feedback
software a platform is software

gather
can be used for

“collect”
dummy not relevant literature not relevant

elicit
already a search

term
visitor

already a search

term
classic not relevant

 client

can be used for

“user” e.g.

product client

service not relevant

 legislator not relevant practice not relevant

 broad too broad analysis not relevant

 mvp not relevant text too broad

 supplier not relevant usage too broad

 stakeholder
already a search

term
process too broad

 neutral not relevant comparing not relevant

 sceptic not relevant explanation not relevant

 participant
already a search

term
effort not relevant

 review a review is feedback

200

Ref. collect user feedback platform

(K
o

lp
o

n
d

in
o

s
&

 G
li

n
z,

 2
02

0)

alternative reason alternative reason alternative reason alternative reason

request already a search

term

equal not relevant summary too broad activity not relevant

set not relevant author not relevant game not relevant application a platform is an

application

group too broad user already a search term conduct not relevant engineering too broad

gather can be used for

“collect”

achiever not relevant comment A comment is

feedback

 usage too broad

elicit already a search

term

visitor already a search term answer an answer to a

question is feedback

 world not relevant

 stakeholder already a search term service not relevant use too broad

 person abstract version of user survey not relevant body not relevant

strategist too specific rating a rating is feedback software a platform is

software

 worker too specific analysis not relevant technology too broad

 individual abstract version of user behavior not relevant

 participant already a search term text too broad

 socializer not relevant segmentation not relevant

 player not relevant play not relevant

 member member of a platform effort not relevant

 explorer not relevant review a review is feedback

 announcement not relevant

 question too broad

 use not relevant

 research too broad

 defining not relevant

201

Ref. collect user feedback platform

(F
er

n
an

d
es

 e
t

al
.,

20
12

)

alternative reason alternative reason alternative reason alternative reason

asking Asking someone to give feedback european not relevant summary too broad activity not relevant

appeal not relevant user already a search term game not relevant

application

a platform is an

application

set not relevant student too specific comparison not relevant engineering too broad

group too broad great not relevant comment a comment is feedback usage too broad

gather can be used for “collect” stakeholder already a search term learning not relevant world not relevant

elicit already a search term person abstract version of

user

section not relevant use too broad

 designer too specific support not relevant body not relevant

 european not relevant answer an answer to a question is

feedback

 software a platform is software

 user already a search term document not relevant technology too broad

 student too specific literature not relevant

 great not relevant blog not relevant

 stakeholder already a search term asking not relevant

 rating a rating is feedback

 creation not relevant

(S
n

ij
d

er
s

et
 a

l.
, 2

01
5)

set not relevant participant already a search term practice not relevant activity too broad

group too broad customer already a search term review a review is feedback application a platform is an

application

crowd already a search term user already a search term game not relevant engineering too broad

elicit already a search term stakeholder already a search term comment a comment is feedback use too broad

set not relevant player too specific learning not relevant software a platform is software

 overview not relevant technology too broad

 read not relevant

 rating a rating is feedback

 analysis not relevant

 process not relevant

 job not relevant

202

Ref. collect user feedback platform

(R
en

ze
l

et
 a

l.
, 2

01
3)

alternative reason alternative reason alternative reason alternative reason

 elicit already a search

term

leader not relevant project not relevant activity too broad

 individual abstract version of user comment a comment is feedback application a platform is an

application

 engineer too specific learning not relevant engineering too broad

 provider too specific section not relevant instrumentation not relevant

 user already a search term usage too broad

 stakeholder already a search term use too broad

 developer too specific artifact too broad

 software a platform is

software

(M
en

k
v

el
d

 e
t

al
.,

20
19

)

 request already a search

term

 author too specific task not relevant utilization too broad

set not relevant user already a search term statement too broad application a platform is an

application

 group too broad customer already a search term measurement not relevant engineering too broad

crowd already a search

term

familiar not relevant project not relevant world not relevant

elicit already a search

term

organizer not relevant summary too broad use too broad

control not relevant administrator too specific comment a comment is feedback software already a search

term

 planner too specific overview not relevant

 person abstract version of user section not relevant

 participant already a search term

 engineer too specific

 developer too specific

(S
h

ar
m

a
an

d

S
u

re
k

a,
 2

01
8)

avoid not relevant individual already a search term review a review is feedback software not relevant

include too general visionary too specific study too general engineering too broad

give too general customer already a search term investigating not relevant usage too broad

end not relevant advocate too specific comparison not relevant

feature not relevant

make too general

gather

203

Listing A.1.1: Final search term in IEEE command search format

("Abstract": collect OR "Abstract": crowdsourc* OR "Abstract": negotiat* OR "Abstract": request OR "Abstract": elicit OR

"Abstract": gather)

AND

("Abstract": user OR "Abstract": stakeholder OR "Abstract": crowd OR "Abstract": participant OR "Abstract": visitor OR

"Abstract": employee OR "Abstract": community OR "Abstract": communities OR "Abstract": client OR "Abstract": person OR

"Abstract": individual OR "Abstract": customer)

AND

("Abstract": platform OR "Abstract": software OR "Abstract": tool)

AND NOT

"Document Title": blockchain

AND NOT

"Document Title" machine learning

AND NOT

"Document Title": deep learning

AND NOT

"Document Title": classification

AND NOT

"Document Title": sentiment analysis

AND NOT

"Abstract": "fake review"

AND NOT

"Abstract": "code review"

AND NOT

"Abstract": "the idea of"

AND

"Abstract": requirement*

AND

"Abstract": engineering

204

Figure A.1.1: Included articles by I1 - I7 (Snowballing)

205

A.2 Results

Table A.2.1: Literature review

Ref.

Plat-

form Background and Motivation RQs and problems Principal ideas Contribution

(W
o

u
te

rs
 e

t
al

.,
20

21
)

Background

Crowd-based Requirements

Engineering is a recent paradigm that

promotes the active participation of a

large number of stakeholders in RE.

Motivation for evaluating the

effectiveness of pull feedback:

• The volume of studies is by far too

limited for organizations to assess the

potential and pitfalls of adopting

pull-based elicitation practices

Motivation for or studying the

effectiveness of crowd-based elicitation

in a governmental setting:

• None of the existing studies were

executed in a

governmental setting

RQs

RQ1: Can CrowdRE be used in a

governmental setting to

complement the requirements

elicitation practices?

Problems

• Requirements elicitation and

evolution are more constrained

in governmental settings.

The paper presents two case studies

of CrowdRE within the Royal

Netherlands Marechaussee using the

approach KMar-Crowd which

adapts CrowdRE ideas to the needs

of governmental organizations.

• KMar-Crowd description

• Overlap comparison between

KMar-Crowd-collected

requirements and traditionally

elicited requirements through

techniques such as interviews task

analysis and introspection -

demonstrated via "S-Sys" case

study involving 135 participants 32

ideas and over 300 votes.

• Dynamics testing of a larger crowd

- assessment of the utility of crowd-

generated ideas through "V-Sys"

case study with 385 participants 78

ideas and over 500 votes where

elicitation was not previously

conducted.

(K
o

lp
o

n
d

in
o

s
&

 G
li

n
z,

 2
02

0)

Background

The success probability of a software

system strongly depends on the

stakeholders participation in RE

activities

Motivation for developing a strategy

for identifying stakeholders outside

organizational reach

• Typically the techniques used for

identifying stakeholders assume that

they can be identified among the

members of the software

RQs

• RQ1: How can we identify

stakeholders outside

organizational reach over

diverse online channels?

• RQ2: How can we build a

platform that supports the

collaborative participation of

stakeholders outside

organizational reach in eliciting

and prioritizing requirements?

Principal idea

The article describes the GARUSO

approach which provides a strategy

for identifying stakeholders outside

organizational reach and a social

media platform that enables large-

scale collaborative elicitation and

prioritization of requirements with

gamification elements to motivate

participation. and reports on its

empirical evaluation

Contribution

• Strategy for identifying

stakeholders outside

organizational reach based on

exploratory study results.

• Comprehensive description

provision of GARUSO platforms’

architecture and user interface.

• Empirical demonstration of the

approach effectiveness.

• Derivation of initial design

principles for identification and

K
M

ar
-C

ro
w

d

G
A

R
U

S
O

206

organization. However these

assumptions no longer hold for many

of todays software systems.

Motivation for gamification elements

of GARUSO:

• Existing social media based RE

platforms provide support for large-

scale collaboration they assume that

the collaborating stakeholders can be

told to participate which is not the

case for stakeholders outside

organizational reach.

• RQ3: How effective is the

GARUSO approach in attracting

stakeholders outside

organizational reach and

supporting the collaborative

elicitation and prioritization of

requirements by these

stakeholders?

Problems

• Todays software systems

have stakeholders that are

outside organizational reach

• Stakeholders are not told to

participate in RE activities.

participation of stakeholders

outside organizational reach.

(M
en

k
v

el
d

 e
t

al
.,

20
19

)

Background

The process of extracting informal

stakeholders needs and translating

them into formal specifications is a key

process in Requirements Engineering

(RE)

Motivation for user stories

• User stories may improve the quality

of crowdsourced requirements

Motivation for user involvement

• improve system acceptance

• diminish project failure

• deliver greater system

understanding

• improve customer loyalty

• broaden the market

RQs

Not explicitly stated.

Could be:

• RQ1: What is the user

participation of the platform?

• RQ2: What is the quality and

complexity of the user stories?

• RQ3: What is the perceived

usefulness of the platform?

Problems

• User stories sometimes lack

context information

Principal idea

The authors investigate how the

platform can be employed to enable

crowd workers to express

requirements in the form of User

Stories. They implement and

validate the platform in the case of a

web application for sports

tournament planning.

Contribution

• Introduction of the platform

integrated into Tournify

Tournament manager.

• Report on evaluation of the

platform including user

participation and quality and

complexity assessment of elicited

user stories.

(S
h

ar
m

a
&

S
u

re
k

a,

20
18

)

Background

Crowdsourcing has aroused a lot of

interest in Requirements Engineering

(RE) research community.

Motivation for crowdsourcing

RQs

• RO1: How to design and develop

a requirements elicitation

platform?

Principal idea

The authors propose the platform

called CRUISE which is aimed at

involving users in gathering

analyzing validating prioritizing and

Contribution

• Introduction of CRUISE

platform highlighting its

features and architecture.

T
o

u
rn

if
y

C

R
U

IS
E

207

• Crowdsourcing approach can

possibly meet the challenge of

involving business users during

requirements elicitation analysis

prioritizing and negotiation

• RO2: How to investigate the

effectiveness of the proposed

platform in terms of the quality

completeness and coverage of

the elicited requirements?

• RO3: How to compare and

contrast the proposed

crowdsourcing based platform

with traditional approaches and

discuss the limitations of the

proposed approach and future

research directions?

Problems:

• Deciding whether guest users

should be allowed to contribute

to projects or if only registered

users have the permission.

• Determining whether

registration should be controlled

or if any user can register and

contribute to projects.

• Identifying who holds the

ownership of the project.

[…]

negotiating requirements. They

conduct an experimental study to

investigate the feasibility and

viability of CRUISE.

• Report on evaluation of the

platforms’ applicability.

(S
n

ij
d

er
s

et
 a

l.
, 2

01
5)

Background

In software product development

stakeholder involvement is typically

limited to representatives from

Software Product Organizations (SPOs)

and key clients excluding important

stakeholders such as current and

potential users. However two

emerging trends crowdsourcing and

gamification offer potential solutions

by enabling access to a larger pool of

RQs

Not explicitly stated

They could be:

• RQ1: What is the user

participation of REfine?

• RQ2: What is the acceptance of

REfine?

Problems

• The role of end-users is often

underestimated

Principal idea

The authors propose REfine a

gamified platform for requirements

elicitation and refinement by

involving a crowd of stakeholders.

They conduct a case study where

they analyze user participation user

acceptance and expert opinions.

Contribution

• Introduction of REfine platform

providing details on its features

and architecture.

• Explanation of REfines role as an

element of a crowd-centric

requirements engineering method.

• Report on initial evaluation of

REfine through a case study

specifically applied in the context

R
E

fi
n

e

208

stakeholders and keeping them

motivated through feedback loops.

Motivation for involving stakeholders

• improved acceptance of a system

• higher chances of project success

• greater system understanding by the

users

• improved customer loyalty

• broadened market

• more accurate user requirements

• Interacting with users is

challenging especially in terms

of gaining access and obtaining

consensus

• Crowdsourcing responses are

often noisier than expert data

of a governance risk and

compliance tool.

(R
en

ze
l

et
 a

l.
, 2

01
3)

Background

Traditional Requirements Engineering

(RE) techniques are currently

challenged by the massive scale

openness diversity and uncertainty

experienced with the Web.

Motivation

The innovation potential of niche

communities often remains inaccessible

to service providers due to a lack of

awareness and effective negotiation

between these two groups.

Bringing together communities and

service providers allows for

requirements elicitation and

realization.

RQs

No RQs. Only the platform is

presented

Problems: -

Principal idea

The authors present Requirements

Bazaar a platform for Social

Requirements Engineering (SRE).

Contribution

• A description of requirements

bazaar the co-creation workflow

the workspace integration and the

personalizable requirements

prioritization

(F
er

n
an

d
es

 e
t

al
.,

20
12

)

Background

Requirements elicitation is a critical

activity of the information systems

development life cycle.

Motivation

• Stakeholders can be gathered at the

same time and place

• Lower logistic costs

RQs

• RQ1: What is the effectiveness of

the platform?

• RQ2: What is the acceptance of

the platform?

Problems

• Lack of user involvement

Principal idea

The authors present a game-based

platform called iThink that aims at

improving the participation in a

requirement elicitation process. The

effectiveness and acceptance of the

platform is evaluated in two case-

studies.

Contribution

• Demonstration of the effectiveness

and acceptance of the platform.

B
az

aa
r

iT
h

in
k

209

(L
o

h
m

an
n

 e
t

al
.,

20
09

)

Background

Social Software Engineering (SSE) is

the application of

processes, methods, and tools to enable

community-driven creation,

management, deployment, and use of

software in online environments

Motivation

Existing RE tools are primarily

designed for a small group of experts

and provide limited support for

collaboration among a diverse and

large group of stakeholders. These

tools often require additional tools for

communication and collaboration,

leading to a lack of transparency and

traceability in the RE process.

RQs

Not explicitly stated

They could be:

• RQ1: How to engage a larger

group of stakeholders in the RE

process using social software

concepts?

Problems

Balancing conflicting demands

such as simplicity and community

orientation with the need for

sufficient formality to meet typical

requirements engineering

demands like structured access

Principal idea

The authors present a web platform

that enables geographically

distributed stakeholders to

collaboratively collect, discuss,

semantically enrich, and classify

software requirements.

Contribution

• Demonstration of the approach that

integrates social software concepts

with requirements engineering to

enhance stakeholder engagement

and collaboration.

• Demonstration of the platform

(Y
an

g
 e

t
al

.,
20

08
)

Background

There is already a tool called

“EasyWinWin” to capture and

negotiate requirements involving

multiple stakeholders.

Motivation

EasyWinWin lacks features regarding

requirements negotation.

“WikiWinWin” is developed as a

successor to EasyWinWin with more

features,

RQs

Not explicitly stated

They could be:

• RQ1: How to adopt the wiki

technology to support active

stakeholder participation and

collaborative requirements

negotiation

Problems

Consistency checking for resolved

issues was not automated,

requiring significant effort from

the Shaper to facilitate task The

system needed specific user

interface improvements to enhance

ease of use for stakeholders

involved in the negotiation

process.

Principal idea

The authors presents WikiWinWin, a

wiki-based system designed as a

potential successor to EasyWinWin,

aimed at facilitating collaborative

requirements negotiation.

Contribution

• Demonstration of the WikiWinWin

requirements negotiation process

• Case study of using WikiWinWin

W
P

F
S

R
E

W

ik
iW

in
W

in

210

(L
ap

o
rt

i
et

 a
l.

, 2
00

9)

Background

Quality requirements are essential for

project success.

Motivation

The motivation for the authors in

proposing the Athena approach is to

address the limitations of traditional

requirements elicitation methods,

which often fail to capture the

complete and nuanced requirements

due to communication gaps,

ambiguity, and the inherent

complexities of stakeholders' needs

RQs

Not explicitly stated

They could be:

• RQ1: How to capture detailed

requirements through a

collaborative storytelling

approach?

• RQ2: How to transform

narratives into structured

scenarios and then into use cases?

Problems

• Difficulty of converting

narratives into structured formats

Principal idea

The authors introduce Athena, a

collaborative method for eliciting

system requirements collective

storytelling. This approach begins

with stakeholders sharing narratives

about their experiences with existing

systems, which are then synthesized

into a unified story. These stories

evolve into scenarios, ultimately

defining use cases, facilitating a

progression from user narratives to

actionable specifications.

Contribution

• Approach and platform to support

interaction

• Experimental analysis to show

effectiveness of the proposed

approach

(V
o

g
el

 e
t

al
.,

20
20

b
)

Background

Crowd-based RE comprises

“automated or semiauto- mated

approaches to gather and analyze

information from a crowd to derive

validated user requirements”.

Motivation

The motivation for the authors to build

a feedback platform is to ensure long-

term realization of a software product’s

intended benefits post-implementation

RQs

Not explicitly stated

They could be:

• How to develop design

principles for continuous internal

crowd-based RE?

• How to implement a platform

and process that implements the

design principles?

Problems

• Delay in implementing a large

volume of collected requirements

could lead to user dissatisfaction

and decreased participation.

• The success of the approach

depends on the crowd's ability to

produce quality requirements,

necessitating user empowerment

and education.

Principal idea

The authors of the paper propose

leveraging crowdsourcing for

software requirements engineering

(RE) within organizations as their

principal idea. They identify design

principles for this through a

literature review and develop a

process and platform that implement

the design principles.

Contribution

• Design principles for

crowdsourcing of requirements

engineering

• Process and platform that

implement design principles

A
th

en
a

C

ro
w

d
C

o
re

211

Table A.2.2: Literature synthesis (RQ1 and RQ2)

Ref. Abr. RQ1.1 (What feedback is

collected?)

RQ1.2 (How is the feedback

collected?)

C=Crowd

Feedback related functionalities are

underlined

Aspects with bullet points happen

simulatenously

RQ1.4 (How is

the collection

influenced by

the REengs?)

R2.1 (n what

environment is

the feedback

collected?)

RQ2.2 (How

many users is

feedback

collected from?)

RQ2.3 (How

long is

feedback

collected?)

(W
o

u
te

rs
 e

t
al

. 2
02

1)

Main feedback

• User Stories (called

“Ideas”)

Meta feedback

• Votes

• Comments

4 Phases of KMar-Crowd method

1. Preparation

1.1 Create core team

1.2 Prepare one core question

(unclear)

1.3 Deploy Crowd

2. Ideas generation

2.1 C: Submit main feedback

2.2 C: Vote main feedback

2.3 C: Comment main feedback

3. Refinement

3.1 Write summary

3.2 C: Vote main feedback

3.3 C: Comment main feedback

4. Response and execution

4.1 Comment main feedback

4.2 Develop and share timeline

4.3 Invite to focus group

4.4 Execute sprints

Feedback is collected in phases 2,3

and 4

Requirement

engineers write

summaries and

present them to

users.

Requirement

engineers

respond to ideas

of users (phase 3

of KMar-Crowd)

Product

S-Sys and V-Sys

(operational

systems)

Users

Employees of a

large

governmental

organization (

Royal

Netherlands

Marechaussee)

S-Sys case

study

From 135 users,

60 users gave

feedback

V-Sys case

study

From 385 users,

130 users gave

feedback

S-Sys case

study

33 days

V-Sys case

study

56 days

K
M

ar
-C

ro
w

d

212
(K

o
lp

o
n

d
in

o
s

an
d

 G
li

n
z

20
20

)

Main feedback

User Stories (called “Post”)

• Title that describes a wish

• Description of the wish

• Description of the benefit

one gets when wish is

realized

• Benefit label

• Image upload that clarifies

wish

Meta feedback

Sub-Post

• Additional benefit

description

• Category

Votes of post/sub-posts

Rating of posts

• C: Submit main feedback

• C: Submit sub-posts

• C: Rate posts

• C: Vote posts

• C receive emails with summaries

There is no specific phase where

feedback is given. Giving feedback is

initiated all the time autonomously

by the users.

The requirement

engineers send

summaries of

platform

activities at day

19, 25, 31, 47 over

email

Product

Smart living

application of

Empa, the Swiss

federal research

institute for

materials science

and technology

Users

Acquired over

internet

From 726 users,

32 users gave

feedback

92 days

(M
en

k
v

el
d

 e
t

al
. 2

01
9b

)

Main feedback

User Stories

• Role

• Goal

• Benefit

• Category

Meta feedback

• Comments

• Votes

• C: Submit main feedback

• C: Vote main feedback

• C: Comment main feedback

There is no specific phase where

feedback is given. Giving feedback is

initiated all the time autonomously

by the users.

• The REengs

initiated the

first request

and

commented on

some of the

requests during

the study

• They were also

able to label

features as in

development or

done.

Product

Tournify

Tournament

Manager

Users

Users of

Tournify

Tournament

Manager

From 157 users,

39 users gave

feedback

35 days

(S
h

ar
m

a
an

d

S
u

re
k

a
20

18
) Main feedback

• Free text

Meta feedback

• Comment

• Score

• C: Submit main feedback

• C: Comment main feedback

• C: Score main feedback

There is no specific phase where

feedback is given. Giving feedback is

No influence. Product

Student

registration tool

Users

18

undergraduate

students

Not described.

G
A

R
U

S
O

T

o
u

rn
if

y

C
R

U
IS

E

213

initiated all the time autonomously

by the users.
Undergraduate

students

(S
n

ij
d

er
s

et
 a

l.
, 2

01
5)

Main feedback

• Free text

Meta feedback

• Comments

• Votes

CCRE method

1. Feasibility analysis

(crowdsourcing potential)

2. Context analysis (Stakeholder,

feedback channel)

3. Crowdsourcing preparation

(crowd)

4. Crowd involvement

• C: Submit main feedback

• C: Comment main feedback

• C: Vote main feedback

• C: Create branches of main

feedback

5. Requirement identification

(requirement)

6. Focus group execution (sub-

crowd, decision)

Sprint (release)

Feedback is only given in phase 4

• The REengs

provision the

guidelines

• The REengs

delete

irrelevant

needs

• The REengs

send weekly

updates to

improve

activity of users

Product

Qubus, a

Governance Risk

and Compliance

(GRC) web

platform for

compliance.

Company:

KPMG

Users

Employees,

clients and users

of clients

From 19 users,

19 users gave

feedback

35 days

(R
en

ze
l

et
 a

l.
 2

01
3)

Main feedback

User Stories

Meta feedback

• Voting

• Comments

1. Idea Generation

• C: Create main feedback

2. Idea Selection

Negotiation among stakeholders

takes place, until one service

provider commits to take the lead for

realization

3. Idea Realization

Refinement and negotiation

continue.

4. Release

REengs comment

ideas.

Product

Not described.

Users

Not described.

Not described. Not described.

R
E

fi
n

e
B

az
aa

r

214

A final solution is acknowledged,

possibly leading to new user stories

In phase 2 and 3:

• C: Vote main feedback

• C: Comment main feedback

Feedback is given in phases 1, 2 and

3

(F
er

n
an

d
es

 e
t

al
. 2

01
2)

Main feedback

• Free text

Meta feedback

• Comments

• Ratings

1. Project manager creates initial

requirements

2. Feedback collection

• C: Submit main feedback

• C: Comment main feedback

• C: Rate main feedback

Feedback is given only in Phase 2

No influence. Product

First case study:

Information

system of

childcare center

Second case

study: course

management

system

Users

Employees of

the childcare

center

First case study:

From 7

employees, 7

gave feedback

Second case

study:

From 17

students, 17

gave feedback

Not described.

(L
o

h
m

an
n

 e
t

al
.,

20
09

)

Main feedback

• Free text

Meta feedback

• Comments

• Votes (agreement or

disagreement

• Ratings (5 point scale

regarding quality)

• Relations

• C: Submit main feedback

• C: Comment main feedback

• C: Vote main feedback

• C: Rate main feedback

• C: Define relations between main

feedback

There is no specific phase where

feedback is given. Giving feedback is

initiated all the time autonomously

by the users.

REengs supervise

and moderate

discussions

Product

Not described.

Users

Not described.

Not described. Not described.

iT
h

in
k

W

P
F

S
R

E

215
(L

ap
o

rt
i

et
 a

l.
, 2

00
9)

Main feedback

• Stories (Template)

• Scenarios (Template)

• Use cases (Template)

Meta feedback

• Comments

1. Collection of stories

• C: Submit stories

• C: Comment stories

2. Transform stories to scenarios

• C: Submit scenarios

• C: Comment scenarios

3. Transform scenarios to use cases

• C: Submit use cases

• C: Comment use cases

Feedback is given in phases 1,2 and 3

No influence. Product

System that sells

movie tickets on

the web

Users

No info

From 6 users, 6

gave feedback

4 hours

(Y
an

g
 e

t
al

.,
20

08
)

• Free text (called “Win

condition” = Stakeholder

objectives)

• Rating

1. Set up WinWin Negotiation

Context

2. Negotiate WIOAs (Win

Condition, Issue, Option,

Agreement)

• C: Submit main feedback

• C: Rate main feedback

Feedback is given only in phase 2

No influence. Product

Medieval East

Asian Tombs

Database system

Users

Graduate

students

From 6 graduate

students, 6 gave

feedback

2 sessions of 2

hours in-

negotiation

meeting

(V
o

g
el

 e
t

al
.,

20
20

)

Main feedback

• Free text

Meta feedback

• Comments

• Votes

1. Ideation

• C: Submit main feedback

• C: Comment main feedback

2. Consolidation

Product Owner (PO) determines

which requirements proceed to

voting phase.

3. Voting

• C: Vote main feedback

4. Decision

PO select requirements based on

expected value for users. Users give

feedback over comments.

• C: Comment main feedback

Feedback is given in phase 1, 3 and

4.

PO motivates

users to interact

and participate

by providing

incentives such

as praise and

encouragement.

Product

Seaport

organization

Users

Employees of

the organization

Not described Not described

A
th

en
a

W

ik
iW

in
W

in

C
ro

w
d

C
o

re

216

Table A.2.3: Literature synthesis (RQ3 and RQ4)

Ref. Abr. RQ3.1 (How is the

user participation

evaluated and

what are the

results?)

RQ3.2 (How is the

feedback evaluated

and what are the

results?)

RQ3.3 (How is the platform

evaluated and what are the

results?)

RQ3.4 (How

do the

findings of

the

feedback

affect the

software?)

RQ4.1 (What

functionalities

to collect

feedback does

the platform

offer?)

RQ4.2 (What

additional

functionalities

does the platform

offer?)

RQ4.3 (Is the

platform

accessible?)

(W
o

u
te

rs
 e

t
al

. 2
02

1)

S-Sys Interactions

• Main feedback: 32

• Votes: 284

• Comments: 28

V-Sys Interactions

• Main feedback: 78

• Votes: 453

• Comments: 78

S-Sys Users

• Invited users: 478

• Accessed users:

135

• Contributing

users: 60

V-Sys Users

• Invited users:

2393

• Accessed users:

385

• Contributing

users: 130

KANO model

• Must-be (S: 13, V:

50,6%)

• One-dimensional (S:

10, V: 36,7%)

• Attractive (S: 7, V:

12,7%)

Gathered earlier

• Completely (S: 19)

• Partly (S: 6)

• Not at all (S: 5)

Complete

Complete for dev

teams (S: 11)

Enough for MVP (V:

59,5%)

Enough for product

(V: 27,8%)

Granularity

• Epic (V: 40,5%)

• User Story (V:

54,5%)

• Not applicable

(5,1%)

• Acceptance

Way of working (S/V:

positive)

• Gamification (V: Did not

increase motivation)

Not

described.

• Submit main

feedback

• Vote feedback

• Comment

feedback

Gamification

elements

• Receiving points

• Receiving badges

• Show a

leaderboard

• Receiving stars

It is internally

accessible from

the KMar

Network.

K
M

ar
-C

ro
w

d

217

(K
o

lp
o

n
d

in
o

s
an

d
 G

li
n

z
20

20
)

Interactions

• Main feedback: 56

• Logins: -

• Comments: -

Users

• Invited users: -

• Accessed users :

726

• Contributing

users: 32

No feedback is

evaluated.

Not described. Not

described.

• Submit main

feedback

• Submit sub-

post

• Rate posts and

sub-posts

• Vote posts and

sub-posts

Gamification

elements

• Receiving badges

• Do challenges

• Receiving points

• Get up levels

• Receiving

rewards

Onboarding

mechanism

FAQ page

Overview of an

extract of feedback

of other users

Sharing posts and

sub-posts with

users and social

media

Not described.

(M
en

k
v

el
d

 e
t

al
. 2

01
9b

)

Interactions

• Main feedback: 57

• Votes: 89

• Comments: 14

Users

• Invited users: 337

• Accessed users :

157

• Contributing

users: 39

Quality (Quality US

framework)

• 52% of the user

stories met all

quality aspects and

48% of the user

stories contained

one or more easily

preventable error(s).

Complexity (amount

of work to implement

US)

• 9/10 crowd- sourced

USs can be

developed within

one workday. 1 US

could not be

estimated, because

Acceptance

Questionnaire (perceived

usefulness)

• 10 users answered

questionnaire and they

found the platform as

very useful.

Not

described.

• Submit main

feedback

• Vote main

feedback

• Comment main

feedback

• Main feedback

overview
Not described.

G
A

R
U

S
O

T

o
u

rn
if

y

218

it was formulated

too vaguely. 7 USs

were already imple-

mented but

overlooked by the

user.

(S
h

ar
m

a
an

d
 S

u
re

k
a

20
18

)

Not described. Gathered earlier

• Comparison of

requirements

elicited by

interviews and

CRUISE

• The results are

comparable

Not described. Not

described.

• Submit main

feedback

• Comment main

feedback

• Score main

feedback

• Moderator can

finalize main

feedback for

development

• Import and

export of main

feedback

• User and role

management

• Dashboard of

main feedback

• Controlled user

registration

• Follow main

feedback

Not described.

(S
n

ij
d

er
s

et
 a

l.
, 2

01
5)

Interactions

• Main feedback: 21

• Votes: 130

• Comments: 37

Users

• Invited users: 37

• Accessed users :

19

• Contributing

users: 19

Not described. Acceptance

Questionnaire

• 17 users found the process

as difficult, more useful

and more engaging

compared with previous

feedback experiences

• Voting and commenting

were found as more useful

than branching

• The participants agreed

that the game elements

made the experience more

pleasant

Interview with experts

Not

described.

• Submit main

feedback

• Comment main

feedback

• Vote main

feedback

• C: Create

branches of

main feedback

Gamification

elements

• Roles

• Exploration

• Points

• Group forming

• Endorsements

• Leaderboards

Contact page

Main feedback

overview

User profile

Not described.

C
R

U
IS

E

R
E

fi
n

e

219

• Experts found

crowdsourcing useful for

requirements elicitation,

negotiation, and

specification, and agreed

that CCRE improves the

quality of the RE process

and provides valuable

requirements.

(R
en

ze
l

et
 a

l.
 2

01
3)

Not described. Not described. Not described. Not

described.

• Submit main

feedback

• Vote main

feedback

• Comment main

feedback

• Synchronization

with issue

trackers

• List of ranked

main feedback

• Follow and share

main feedback

A ready-to-use

installation is

available at

requirements-

bazaar.org.

(F
er

n
an

d
es

 e
t

al
. 2

01
2)

• Main feedback (F:

10, S: 22)

• Comments (F: 15,

S: 86)

F = First case study

S = Second case study

Sentiment

• Positive comments

(F: 6, S: 48)

• Neutral comments

(F: 3, S: 32)

• Negative comments

(F: 6, S: 6)

F = First case study

S = Second case study

Acceptance

• High level of satisfaction

(F)

Not

described.

• Submit main

feedback

• Comment main

feedback

• Rate main

feedback

Gamification

elements

• Points

• Stars

• Ranking

Support for

multiple projects at

once

Filter main

feedback

Group main

feedback

Not described.

(L
o

h
m

an
n

 e
t

al
.,

20
09

)

Not described. Not described. Not described. Not

described.

• Submit main

feedback

• Comment

feedback

• Vote feedback

• Rate feedback

• Define

relations

• Edit main

feedback

• Revision history

(track, rollback

changes)

• Overview over

feedback

In general

everyone with

internet access

and a web

browser can

access the wiki.

B
az

aa
r

iT
h

in
k

W

P
F

S
R

E

220

between

feedback

• Tree navigation

along

classification for

main feedback

• Tagging for main

feedback

• Word cloud for

tags

• Export main

feedback

Only registered

users can add

and edit.

The web

platform itself

doesn’t exist

anymore.

(L
ap

o
rt

i
et

 a
l.

, 2
00

9)

Not described.

Not described.

Not described.

Not

described.

Submit main

feedback

• Submit stories

• Submit

scenarios

• Submit use

cases

• Comment

feedback

• Administrator

role

• Manage users

• Create project

• Giving user

moderator role

• Project glossary

(user can add

new terms)

Not described.

(Y
an

g
 e

t
al

.,
20

08
)

• Main feedback

(win conditions):

62

Not described. Feature comparison

WikiWinWin is compared

to EasyWinWin and SOP-

Wiki. The results were that

WikiWinWins main

strengths are the exchange

of ideas and knowledge, the

content editing and

versioning. Main

weaknesses are its lacking

automated consistency

checking and problems with

conflicts during editing

conflicts.

Not

described.

• Submit main

feedback

• Rate feedback

• Edit main

feedback

• Synchronous

collaboration

• Exporting main

feedback

• Content editing

and versioning

Not described.

A
th

en
a

W
ik

iW
in

W
in

221

(V
o

g
el

 e
t

al
.,

20
20

)

• Not described. Not described. Acceptance

Conversation with experts

The approach was found

effective in involving users

in the requirements

engineering process.

Concerns were raised about

the applicability of the

approach for all software

types and the need for users

to trust product owners to

implement prioritized

requirements.

Not

described.

• Submit main

feedback

• Comment main

feedback

• Vote main

feedback

• User profile page

• Main feedback

overview page

• Main feedback

quality check

• Search

functionality

• POs can give

effort estimation

• Status system:

Open, Backlog, In

Progress,

Implemented,

Closed

• Subscribe to main

feedback

Not described.

C
ro

w
d

C
o

re

222

223

B Supplementary material for the treatment

Design

B.1 Coding

The goal of the coding is to assign specific coding attributes to feedback that is collected over the app

“smartFEEDBACK” in the context of the SMART-AGE research project. Feedback can either be an answer to a

question or a message. The coder conducts the coding over an excel sheet that is provided by the supervisor.

The excel sheet is provided in the repository53.

1. Reading the feedback and feedback context

The first part of coding feedback, whether it is an answer or a message, is reading the feedback itself and its

context. The columns in the excel sheet that represent the feedback and its context are highlighted blue.

The data that is relevant for an answer and its context is described in Table B.1.1. The table lists the data along

with an explanation, examples and the columns of the excel sheet that contain the data.

Table B.1.1: Data that is given to the coder for coding freetext answers

Data Explanation Example Column

All subquestions

and the answers

to all

subquestions of a

question.

A question can be divided into

two subquestions. A subquestion

can either be a selection (e.g.

choosing “Very good”) or a

freetext. All answers are

provided, but only the freetext

answer is coded.

Question: Wie gut finden

Sie das Anzeigen von

Links zu Webseiten in

smartVERNETZT?

Warum?

Subquestion 1: Wie gut

finden Sie das Anzeigen

von Links zu Webseiten

in smartVERNETZT?

(Selection:)

Subquestion 2: Warum?

(Freitext)

subquestion_1

answer_for_subquestion_1

subquestion_2

answer_for_subquestion_2

App
The app that the question

belongs to.
smartVERNETZT app

Non-functional

requirement

(NFR) that the

question

addresses

The NFR which the question

addresses. If the question does

not address an NFR, the field is

empty.

Question: Wie leicht fiel

es Ihnen

smartFEEDBACK zu

erlernen?

NFR: Learnability

(Product Quality Model –

Usability)

associated_nfr

System Function

(SF) that the

The SF which the question

addresses. If the question does

not address an SF, the field is

Question: Wie gut finden

Sie das Anzeigen von

Links zu Webseiten in

associated_sf

53 https://github.com/lradeck/dissertation/blob/main/coding_template_and_examples.xlsx

224

question

addresses

empty. SFs for the app

smartFEEDBACK are listed in

Table B.1.5. SFs for the app

smartVERNETZT are listed in

Table B.1.7.

smartVERNETZT?

Warum?

SF: Display Links

Table B.1.2 lists example questions and answer options.

Table B.1.2: Example questions and answer options

The data that is relevant for a message and its context is described in Table B.1.3.

Table B.1.3: Data that is given to the coder for coding messages

Data Explanation Example Column

Title The title of the message „Löschen von Neuigkeiten“ title

App
The app that the question

belongs to.
smartVERNETZT app

Description Freetext of message

Question: Wie leicht fiel es

Ihnen smartFEEDBACK zu

erlernen?

NFR: Learnability (Product

Quality Model – Usability)

description

Contains

voicemessage?

The message can contain a

voice message (Yes/No)
Yes contains_voicemessage

Transcript

If the message contains a

voice message, the transcript

is stored here.

“Ich wünsche mir …” transcript

Example Question Answer options

How good do you find the history function in SF? Why?

Likert scale selection (Very good,

good, etc.)

Freetext

Are there any problems with displaying the history in

SF? If yes, which ones?

Yes/No selection

Freetext

Can the display of the history in SF be improved? If yes, how?
Yes/No selection

Freetext

Are you concerned about the security of your data in

smartVERNETZT? Why?

Yes/No selection

Freetext

What is the reason that you have not looked at a question in

SF in the last week? How could the app be im-proved so that you use it

more often?

Freetext

Freetext

I can well imagine using SV regularly.

Why is that?
Likert scale selection, Freetext

225

2. Coding

The coder assigns the coding attributes of Table B.1.4 to the feedback. The columns in the excel sheet that

represent the coding attributes are highlighted orange. Some coding attributes only need to be coded under

certain conditions. Excel automatically colors cells that are not necessary in gray.

Table B.1.4: Coding attributes that are generated by the coder during the coding of feedback.

Data Format Explanation Example Column

Feedback is

comprehensible
Yes/No

The comprehensibility

of the feedback is

checked. The feedback

can either be

comprehensible or not.

Comprehensible means,

the coder understands

the feedback

syntactically and

semantically.

Example for

syntactically

incorrect

feedback „Dihj

tut mir nicht

gbn”

Example for

semantically

incorrect

feedback:

“Das Design

ist mein Haus”

comprehensible

The following data is coded for comprehensible feedback

Extracted

statement 1..n

One or more

subsequent

sentences. A

sentence can also be

divided into

subordinate clauses

(“Nebensätze”)

The feedback is split into

statements if it contains

multiple parts that can

be associated to different

classes (see Table B.1.9).

See excel tab

“Beispiele”:

Row 9

statement[N] –

where N is number

of statement

The following data is coded per statement

Class (see Table

B.1.9)

Selection from

predefined set (see

Table B.1.9)

(see Table B.1.9)
(see Table

B.1.9)
class[N]

The following data is coded for each statement that is class:

• Positive, neutral or negative statement about app or app context

• Actionable change request

• Non-actionable change request

• Problem

Associated

requirement(s)

Note: For the

process this is only

required for CR,

but we need the

requirement also

for not CR to

answer RQ2.2

Selection from

predefined set (Table

B.1.5, Table B.1.6,

Table B.1.7, Table

B.1.8). The associated

SF or NFR of the

question is listed as

the default value in

excel for Req1.

In general:

Map the statement to a NFR, UT, ST, SF,

W.

For NFR:

Map the statement to an NFR if it

addresses mainly non-functional aspects.

Example: Excel Row 10

In the case the statement addresses a

non-functional aspect about a SF or W,

map it as well to the SF or W.

Example: Excel Row 11

Req[N]

226

For UT, ST, SF & W:

Map the statement always to the most

technical requirement (SF & W > ST >UT)

where “>” means “more technical than”.

Explanation:

Map the statement to a system function

(SF) if it addresses mainly functional

aspects.

Example: Excel Row 6

Map the statement to a workspace (W) if

it addresses mainly aspects about the

user interface, even if a system function

is mentioned.

Example: Excel Row 7

Map the statement to a SubTask, (ST) if

(1) it mainly addresses new or existing

aspects about the SubTask (Example:

Excel Row 12) or

(2) it is a change request that

a) wishes for changes of the system

support for this SubTask (Example: Excel

Row 4) or

b) is actionable and wishes for new

system functions/workspaces to be

added to the SubTask (Example: Excel

Row 5)

Map the statement to a UserTask (UT), if

it addresses aspects about the app or app

context which cannot be associated with

an existing Sub Task (ST).

Example: Excel Row 3

The following data is coded only for statements that have the class “Actionable

change request” or “Non-actionable change request”

Reason for change

request

The coder gives a reason

for why the statement is

a change request

See excel tab

“Beispiele”:

Row 4,5,6,7

Reason CR[N]

Reason for

choosing

“Actionable change

request” oder Non-

Actionable

Freetext

Actionable: The coder

gives a reason for

choosing why he/she

thinks the change

request is actionable.

Please give an

See excel tab

“Beispiele”:

Row 4,5,6,7

Reason

(Non)Actionable[N]

227

explanation of how the

change looks like.

Non-actionable: The

coder gives a reason for

choosing why he/she

thinks the change

request is non-

actionable. Please give

an explanation of why it

is not clear how the

change looks like.

Reason for

associated

requirement

Freetext

The coder gives a reason for choosing

why he/she thinks the requirements is

associated and not another (e.g.

Workspace vs. System Function).

(Example: Excel Rows 6,7)

If the requirement is a SubTask: Indicate

the reason why it is mapped to a

SubTask:

(1) it mainly addresses new or existing

aspects about the SubTask (Example:

Excel Row 12) or

(2) it is a change request that

a) wishes for changes of the system

support for this SubTask (Example: Excel

Row 4) or

b) is actionable and wishes for new

system functions/workspaces to be

added to the SubTask (Example: Excel

Row 5)

Reason Req[N]

228

Table B.1.5: smartFEEDBACK: User Tasks (UT) and Subtasks

(ST) and System Functions (SF)*

 Table B.1.6: smartFEEDBACK: Workspaces (W)

and non-functional requirements (NFR)*

Requirement Requirement

UT1: Older Adults Give And Manage Feedback W1: Question View

UT1S1: Express Own Feedback W3: Private Answer And Feedback View

 SF: Navigate To SMART-AGE Portal W4: Feedback View

 SF: Display Question W5: History View

 SF: Skip Question W6: Instruction View

 SF: Display Feedback Form W7: Comment View

 SF: Display Application Information W8: SMART-AGE Portal View

 SF: Add File W9: Detail View

UT1S2: Discuss Given Feedback W10: Sidebar View

 SF: Display Comment W11: Public Answer And Feedback View

 SF: Add Comment NFR: Time Behaviour

 SF: Add Audio Recording NFR: User Error Protection

 SF: Filter Private Answer And Feedback NFR: Accessibility

 SF: Display Private Answer And Feedback NFR: Modifiability

UT1S3: Review Given Feedback NFR: Compatibility

 SF: Display History Details NFR: Security

 SF: Filter History NFR: Learnability

 SF: Display History NFR: Operability

 NFR: Comfort

 NFR: Pleasure

 NFR: Trust

 NFR: Usefulness, Effectiveness, Efficiency

* The listed requirements have been revised in Section 5.1. See excel sheet tab “Info” for a mapping of requirements.

229

Table B.1.7: smartVERNETZT: User Tasks (UT) and Subtasks (ST)

and System Functions (SF)

Table B.1.8: smartVERNETZT: Workspaces (W)

and non-functional requirements (NFR)

Requirement Requirement

UT1: Older Adults Inform Themselves About Various Topics W1: Home View

UT1S1: Get Information About Health Related Topics W2: Category View

 SF: Navigate To SMART-AGE Portal W3: Link View

 SF: Display Link W4: External Website View

 SF: Add Personal Link W5: SMART-AGE Portal View

 SF: Display Personal Link W6: Native App View

 SF: Delete Personal Link NFR: Modifiability

 SF: Display Categories NFR: Accessibility

 SF: Display Application NFR: User Error Protection

 SF: Display external Website NFR: Time Behaviour

UT1S2: Get Information About Leisure Activities NFR: Compatibility

 [Same SF as UT1S1] NFR: Security

UT1S3: Get Information About News NFR: Learnability

 [Same SF as UT1S1] NFR: Operability

 SF: Display News Notifications NFR: Comfort

 SF: Delete News Notification NFR: Pleasure

 SF: Add Event To Calendar NFR: Trust

UT1S4: Get Information About The Weather NFR: Usefulness, Effectiveness, Efficiency

 [Same SF as UT1S1]

 SF: Display Weather Information

230

3. Examples

Further examples for coding are given in the tab “Beispiele” of the Excel sheet. The excel sheet can be found in the

repository.

Table B.1.9: Classes for feedback coding

Class Explanation Example

Irrelevant statement

Statement that does not describe the app or

app context and is thus not relevant for

coding.

Definition of app context:

smartFEEDBACK:

• Older adults (OAs) give and

manage feedback

smartVERNETZT:

• OAs inform themselves about

various topics

• OAs entertain themselves

• OAs communicate with people

“Es regnet heute”

Positive, neutral or

negative statement

about app or app context

Statement that describes the app or app

context in a positive, neutral or negative

way.

OAs organize their everday life

Positiv:

“smartFEEDBACK finde ich gut”

Neutral:

“smartFEEDBACK ist eine App zum

Abgeben von Feedback”

Negative:

„Ich gehe nicht gerne joggen“

“smartFEEDBACK ist blöd”

Actionable change

request

Statement explicitly or implicitly requesting

a change. The coder can derive a

requirement improvement or a new

requirement based on the statement.

Explicit: “Ich will Funktion X”

Implicit: “Ich finde die Schriftgröße sehr

klein“

Non-actionable change

request

Statement explicitly or implicitly requesting

a change. The requirements engineer needs

more information to derive a requirement

improvement or a new requirement based

on the statement.

Explicit: "Ich will, dass ich Dinge schneller

finde"

Implicit: "Aus meiner Sicht kann man

Dinge nicht schnell finden"

Problem
Statement describing that an existing

functionality does not work.
„Es ist nicht möglich zu filtern“

Cannot answer question
Statement indicating that the question could

not be answered.

„Ich kann die Frage nicht beantworten“

oder „Ich verstehe die Frage nicht“

Reference to other

answer

Statement indicating that the question has

already been answered by another

response.

„Das habe ich schon bei der vorherigen

Antwort beschrieben“

231

B.2 Selection of FUQ

We choose which FUQ we want to ask the users based on their characteristics and based on additional aspects, such as the type of associated requirement and the associated

app. We first selected 8 FUQ3 based on their characteristics, where we aimed for an equal distribution. We present the selection of FUQ3 for round 1 iteration 1 in Table

B.2.1. We also list additional aspects such as the associated requirement type and the app in the table, because these are relevant for the selection of FUQ1 and FUQ2. The

abbreviations for the associated requirement types are: SF = System function, W = Workspace, UTS = Subtask and UT = User Task. The app abbreviations are SF =

smartFEEDBACK and SV = smartVERNETZT.

Table B.2.1: Selection of FUQ3 based on their characteristics for round 1 iteration 1

T
y

p
e

R
ea

d
ab

le
 I

D

Screenshot

Characteristics Additional aspects

In
n

o
v

at
iv

e

S
o

lu
ti

o
n

p
ro

p
o

se
d

th
ro

u
g

h

m
o

ck
u

p

P
er

ce
n

ta
g

e

as
so

ci
at

ed

u
se

rs

N
u

m
b

er
 o

f

F
U

Q

A
ss

o
ci

at
ed

re
q

u
ir

em
en

t

ty
p

e

A
p

p

FUQ3 AV1 Figure B.2.52 Yes No > 2% 1 SF SF

FUQ3 AV2 Figure B.2.53 Yes No <2% 1 SF SV

FUQ3 AV3 Figure B.2.54 Yes Yes >2% 1 SF SF

FUQ3 AV4 Figure B.2.55 Yes Yes <2% 1 W SV

FUQ3 AV5 Figure B.2.56 No No >2% 1 W SF

FUQ3 AV6 Figure B.2.57 No No <2% 1 W SF

FUQ3 AV7 Figure B.2.58 No Yes >2% 1 SF SV

FUQ3 AV8 Figure B.2.59 No Yes >2% 1 W SF

232

We then selected 8 FUQ1 and FUQ2 also alone based on their characteristics, where we aimed for an equal distribution (Table B.2.2).

Table B.2.2: Selection of 8 FUQ1 and FUQ2 based on their characteristics for round 1 iteration 1

T
y

p
e

R
ea

d
ab

le
 I

D

Screenshot

Characteristics Additional aspects

In
n

o
v

at
iv

e

H
ig

h

co
g

n
it

iv
e

ef
fo

rt

P
er

ce
n

ta
g

e

as
so

ci
at

ed

u
se

rs

N
u

m
b

er
 o

f

F
U

Q

A
ss

o
ci

at
ed

re
q

u
ir

em
en

t

ty
p

e

A
p

p

FUQ1 FF1 Figure B.2.41 Yes High > 2% 1 SF SF

FUQ1 FF2 Figure B.2.42 Yes High <2% 1 SF SV

FUQ2 FF3 Figure B.2.43 Yes Moderate/Low >2% 1 SF SF

FUQ2 FF4 Figure B.2.44 Yes Moderate/Low <2% 1 W SF

FUQ2 FF5 Figure B.2.45 No High >2% 1 UT SF

FUQ2 FF6 Figure B.2.46 No High <2% 1 W SF

FUQ2 FF7 Figure B.2.47 No Moderate/Low >2% 1 SF SV

FUQ1 FF8 Figure B.2.48 No Moderate/Low >2% 1 W SV

To address different requirements and apps equally, we decided to select the last 3 FUQ1 and FUQ2 based on the additional aspects (Table B.2.3).

233

Table B.2.3: Selection of 3 additional FUQ1 and FUQ2 based on the additional aspects for round iteration 1

For the second round, we applied the same strategy of selecting FUQ. We couldn’t achieve an equal distribution of FUQ3 regarding their characteristics, because for some

combinations of characteristics no FUQ3 existed anymore. This was the case for 2 FUQ3. We crossed out the combinations in Table B.2.4.

Table B.2.4: Selection of FUQ3 based on their characteristics for round 2 iteration 1

T
y

p
e

R
ea

d
ab

le
 I

D

Screenshot

Characteristics Additional aspects

In
n

o
v

at
iv

e

H
ig

h

co
g

n
it

iv
e

ef
fo

rt

P
er

ce
n

ta
g

e

as
so

ci
at

ed

u
se

rs

N
u

m
b

er
 o

f

F
U

Q

A
ss

o
ci

at
ed

re
q

u
ir

em
en

t

ty
p

e

A
p

p

FUQ1 FF9 Figure B.2.49 Yes High >2% 1 UTS SF

FUQ2 FF10 Figure B.2.50 Yes Moderate/Low >2% 1 W SV

FUQ2 FF1 Figure B.2.51 No High >2% 1 UT SV

T
y

p
e

R
ea

d
ab

le
 I

D

Screenshot

Characteristics Additional aspects
In

n
o

v
at

iv
e

S
o

lu
ti

o
n

p
ro

p
o

se
d

th
ro

u
g

h

m
o

ck
u

p

P
er

ce
n

ta
g

e
o

f

as
so

ci
at

ed

u
se

rs

N
u

m
b

er
 o

f

F
U

Q

A
ss

o
ci

at
ed

re
q

u
ir

em
en

t

ty
p

e

A
p

p

FUQ3 2_AV1 Figure B.2.82 Yes No > 2% 1 SF SF

FUQ3 2_AV2 Figure B.2.83 Yes No <2% 1 UTS SF

FUQ3 2_AV3 Figure B.2.84 Yes No <2% 1 W SF

FUQ3 2_AV4 Figure B.2.85 Yes Yes >2% 1 W SV

FUQ3 2_AV5 Figure B.2.86 Yes Yes <2% 1 UT SF

234

The selection of the FUQ1 and FUQ2 for round 2 based on their characteristics is shown in Table B.2.5.

Table B.2.5: Selection of 8 FUQ1 and FUQ2 based on their characteristics for round 2 iteration 1

The selection of the FUQ1 and FUQ2 for round 2 iteration 1based on their additional aspects is shown in

Table B.2.6. There were no more FUQ1 or FUQ2 associated with User Tasks or Subtasks.

FUQ3 2_AV6 Figure B.2.87 Yes Yes <2% 1 W SF

FUQ3 - - No No >2% - - -

FUQ3 - - No No <2% - - -

FUQ3 2_AV7 Figure B.2.88 No Yes >2% 1 W SF

FUQ3 2_AV8 Figure B.2.89 No Yes >2% 1 W SF

T
y

p
e

R
ea

d
ab

le
 I

D

Screenshot

Characteristics Additional aspects

In
n

o
v

at
iv

e

H
ig

h

co
g

n
it

iv
e

ef
fo

rt

P
er

ce
n

ta
g

e
o

f

as
so

ci
at

ed

u
se

rs

N
u

m
b

er
 o

f

F
U

Q

A
ss

o
ci

at
ed

re
q

u
ir

em
en

t

ty
p

e

A
p

p

FUQ2 2_FF1 Figure B.2.71 Yes High > 2% 1 SF SV

FUQ2 2_FF2 Figure B.2.72 Yes High <2% 1 SF SV

FUQ2 2_FF3 Figure B.2.73 Yes Moderate/Low >2% 1 SF SF

FUQ1 2_FF4 Figure B.2.74 Yes Moderate/Low <2% 1 SF SV

FUQ1 2_FF5 Figure B.2.75 No High >2% 1 SF SV

FUQ1 2_FF6 Figure B.2.76 No High <2% 1 SF SF

FUQ2 2_FF7 Figure B.2.77 No Moderate/Low >2% 1 SF SV

FUQ1 2_FF8 Figure B.2.78 No Moderate/Low >2% 1 SF SV

235

Table B.2.6: Selection of 3 additional FUQ1 and FUQ2 based on the additional aspects for round 2 iteration 1

B.3 Requirements

Figure B.3.1: Domain data diagram

Type

Characteristics Additional aspects

R
ea

d
ab

le
 I

D

Screenshot

In
n

o
v

at
iv

e

H
ig

h

co
g

n
it

iv
e

ef
fo

rt

P
er

ce
n

ta
g

e
o

f

as
so

ci
at

ed

u
se

rs

N
u

m
b

er
 o

f

F
U

Q

A
ss

o
ci

at
ed

re
q

u
ir

em
en

t

ty
p

e

A
p

p

FUQ2 2_FF9 Figure B.2.79 Yes Moderate/Low >2% 1 W SF

FUQ1 2_FF10 Figure B.2.80 Yes High <2% 1 W SV

FUQ2 2_FF11 Figure B.2.81 No Moderate/Low >2% 1 W SF

236

Table B.3.1: System functions (SF) for the user

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

Name: SF: submitAnswer (U) Input: W: QuestionView (U)

The user can submit an answer for

a question. Required fields of the

answer are marked with a “*”.

These fields must be filled out.

A question exists

that is not yet

answered by the

user

The answer is

submitted to the

database

After submission a notification appears

indicating that the answer was

submitted successfully. If there are no

more questions to be answered or

skipped, then a message appears

indicating this and a confetti animation

is played. If there are more questions,

then the next question is shown.

(E1) The user

discards the

changes to the

answer by

navigating to

another

workspace.

(E2) Required

fields are not

filled out.

(R1) All required fields of the answer must be filled

out.

Name: SF: skipAnswer (U) Input: W: QuestionView (U)

The user can skip an answer.

A question exists

that is not yet

answered by the

user

The answer is

marked as skipped

in the database.

After submission a notification appears

indicating that the answer was skipped.

If there are no more questions to be

answered or skipped, then a message

appears indicating this and a confetti

animation is played.

- -

Name: SF: submitMessage (U) Input: W: MessageView (U)

The user can submit a message.

The message has a title, content

and is associated with an app.

-

The message is

saved in the

database.

After submission a notification appears

indicating that the message was

submitted successfully.

(E1) The user

discards the

changes to the

answer by

navigating to

another

workspace.

(E2) Required

fields are not

filled out.

(R1) The title of the message is required and it is

required that the content of the message is not empty.

The user must also choose an associated app or select

“other”.

Name: SF: addAudioRecording (U) Input: W: MessageView (U), W: CommentView (U)

The user can add an audio

recording to a message or a

comment. The user presses on the

The user must

allow the app to

The audio

recording is added

After recording an audio recording, the

audio recording appears in the message

or comment and the user can play the

(E1) The user

does not allow

(R1) The audio recording is stopped automatically

when it reaches a length of two minutes.

237

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

record button and can stop the

message by pressing to stop

button.

use the

microphone.

to the message or

comment.

audio recording again or start recording

a new one.

the app to use

the microphone

Name: SF: submitComment (U) Input: W: CommentView (U)

The user can submit a comment for

an answer or message. The

comment can contain text and a

audio recording (see SF:

addAudioRecording (U))

An answer or

message exists.

The comment is

saved in the

database.

After submission a notification appears

indicating that the comment was

submitted successfully.

(E1) Required

fields are not

filled out.

(R1) The content of the comment must not be empty.

There must be either an audio recording or text.

Name: SF: remindUser (U) Input: -

The user is reminded to answer

question when there are more than

5 questions to be answered on a

Monday.

There are 5

questions open

that need to be

answered on a

Monday. The

user allowed the

app to send

push messages .

A push message is

sent to the user

reminding him to

answer the

questions.

The push message is displayed on the

device of the user.

(E1) The user

did not permit

the app to send

push messages

to the device.

-

Name: SF: displayQuestionsWithAnswers (U) Input: W: SentView (U)

The user can display all questions

that have answers. The questions

are shown with their title, app and

their number of answers.

There is at least

one question

that has an

answer.

-
The first five questions that have

answers are shown.

(E1) There are

no questions

that have

answers. If this

is the case then

a text appears

indicating that

the list is empty.

(R1) There are only 5 questions shown at one time.

The user can load more questions with SF:

displayMoreQuestionsWithAnswers(U)

(R2) Questions with only skipped answers are not

shown.

Name: SF: displayMoreQuestionsWithAnswers (U) Input: W: SentView (U)

The user can display five more

questions that have answers.

There are at least

five questions

that have an

answer.

-

Five more questions are shown to the

user. If there are less than five questions

remaining, then these remaining

questions are shown.

(R1) Questions with only skipped answers are not

shown.

Name: SF: displayAnswersForQuestion (U) Input: W: DetailedQuestionView (U)

238

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

The user can display all answers for

a question. The answers are shown

with their shortened content, their

creation data and their number of

comments.

There is at least

one answer to

the question.

-
The first five answers for the question

are shown.
-

(R1) There are only 5 answers shown at one time. The

user can load more answers with SF:

displayMoreAnswersForQuestion (U)

(R2) Skipped answers are not shown.

Name: SF: displayMoreAnswersForQuestion (U) Input: W: DetailedQuestionView (U)

The user can display five more

answers that for a question

There are at least

five answeres

that have an

answer.

-

Five more answers are shown to the

user. If there are less than five answers

remaining, then these remaining

answers are shown.

 (R1) Skipped answers are not shown.

Name: SF: displayMessages (U) Input: W: SentView (U)

The user can display all messages.

The messages are shown with their

title, app and their number of

comments.

There is at least

one message.
- The first five messages are shown. -

(R1) There are only 5 messages shown at one time.

The user can load more messages with SF:

displayMoreMessages(U)

Name: SF: displayMoreMessages (U) Input: W: SentView (U)

The user can display five more

messages.

There are at least

five messages.
-

Five more messages are shown to the

user. If there are less than five messages

remaining, then these remaining

messages are shown.

- -

Name: SF: displayComments (U) Input: W: DetailedAnswerView (U), W: DetailedMessageView (U)

The user can display the comments

for an answer or message.
An answer or

message exists.
-

The first five comments of the answer or

message are shown.

(R1) There are only 5 comments shown at one time.

The user can load more comments with SF:

displayMoreComments (U)

Name: SF: displayMoreComments (U) Input: W: DetailedAnswerView (U), W: DetailedMessageView (U)

The user can display five more

comments.

There are more

than five

comments.

-

Five more comments are shown to the

user. If there are less than five comments

remaining, then these remaining

comments are shown.

- -

Name: SF: sortComments (U) Input: W: DetailedAnswerView (U), W: DetailedMessageView (U)

239

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

The user can sort the comments for

a question.

There exist at

least one

comment.

-
The comments are sorted by the selected

criterium.
-

(R1) The comments can be sorted by these criteria:

• Date of creation

Name: SF: displayAnswerDetails (U) Input: W: DetailedAnswerView (U)

The user sees the content of the

answer (app and all subquestions

and their answers).

The answer was

not skipped.
- The content of the answer is shown. - -

Name: SF: displayMessageDetails (U) Input W: DetailedMessageView (U)

The user sees the content (title and

text or audio recording) of the

message.

- - The content of the message is shown. - -

Name: SF: sortQuestions (U) Input: W: SentView (U)

The user can sort the questions.

There exists at

least one

question that has

an answer.

-
The questions are sorted by the selected

criterium.
-

(R1) The questions can be sorted by these criteria:

• Number of answers

• Creation date of last answer

• Creation date of last comment

Name: SF: sortAnswersOfQuestion (U) Input: W: DetailedQuestionView (U)

The user can sort the answers for a

question.

There exist at

least one answer.
-

The answers for the question are sorted

by the selected criterium.
-

(R1) The answers can be sorted by these criteria:

• Date of creation

Name: SF: sortMessages (U) Input: W: SentView (U)

The user can sort the messages.

There exists at

least one

message.

-
The messages are sorted by the selected

criterium.
-

(R1) The messages can be sorted by these criteria:

• Date of creation

Name: SF: filterfMessagesOrQuestions (U) Input: W: SentView (U)

The user can filter the questions

and the messages.

There exists at

least one

question that has

an answer or one

message.

-

The answers of the question and the

messages are filtered by the selected

criterium.

-

(R1) The questions and messages can be filtered by

these criteria:

• Creation date of last answer of question

(Last week, this week, today)

• App (SF, SI, SV, Other, Exercise)

Name: SF: filterAnswersOfQuestion (U) Input: W(U): DetailedQuestionView (U)

240

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

The user can filter the answers of a

question.

There exists at

least one

question that has

an answer.

-
The questions are filtered by the selected

criterium.
-

(R1) The answers can be filtered by these criteria:

• Creation date of answer (Last week, this

week, today)

•

Name: SF: filterOnlyMessagesOrQuestions (U) Input: W: SentView (U)

The user can decide whether to

show only messages or only

questions.

There exists at

least one

question that has

an answer or a

message.

-
Only the questions or the messages are

shown based on the selected criterium.
-

(R1) The user can show only the messages or only the

questions by choosing the corresponding type in the

filter.

Name: SF: navigateToAnswerDetailsInHistory (U) Input: W: HistoryView (U)

The user can navigate to W:

DetailedAnswerHistoryView (U).

There exist at

least one answer.
-

The user is now in W:

DetailedAnswerHistoryView (U).
- -

Name: SF: navigateToMessageDetailsInHistory (U) Input: W: HistoryView (U)

The user can navigate to W:

DetailedMessageHistoryView (U).

There exist at

least one

message.

-
The user is now in W:

DetailedMessageHistoryView (U).
- -

Name: SF: displayAnswersInHistory (U) Input: W: HistoryView (U)

The user can display all answers.

The answers are shown with their

question title, their creation date

and information whether they

were answered or skipped.

There is at least

one answer.
- The latest five answers are shown. -

(R1) There are only 5 answers shown at one time. The

user can load more answers with SF:

displayMoreAnswersInHistory (U)

(R2) Skipped answers are also shown.

Name: SF: displayMoreAnswersInHistory (U) Input: W: HistoryView (U)

The user can display five more

answers.

There are at least

five answers.
-

Five more answers are shown to the

user. If there are less than five answers

remaining, then these remaining

answers are shown.

 (R1) Skipped answers are also shown.

Name: SF: displayMessagesInHistory (U) Input: W: HistoryView (U)

The user can display all messages.

The messages are shown with their

title and their creation date.

There is at least

one message.
- The latest five messages are shown. -

(R1) There are only 5 messages shown at one time.

The user can load more answers with SF:

displayMoreMessagesInHistory (U)

241

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

Name: SF: displayMoreMessagesInHistory (U) Input: W: HistoryView (U)

The user can display five more

messages.

There are at least

five messages.
-

Five more messages are shown to the

user. If there are less than five messages

remaining, then these remaining

messages are shown.

- -

Name: SF: filterAnswersAndMessagesInHistory (U) Input: W: HistoryView (U)

The user can filter the answers and

the messages.

There exists at

least one answer

or one message.

-
The answers and the messages are

filtered by the selected criterium.
-

(R1) The questions and messages can be filtered by

these criteria:

• Creation date (Custom range, today)

Name: SF: displayInstructions (U) Input: W: InstructionsView (U)

The instructions for the application

are displayed automatically.
- - The instructions are shown. - -

Name: SF: navigateToQuestionView (U) Input: W: SidebarView (U)

The user can navigate to the

question view.
- - The question view is shown. - -

Name: SF: navigateToMessageView (U) Input: W: SidebarView (U)

The user can navigate to the

message view.
- - The message view is shown. - -

Name: SF: navigateToSentView (U) Input: W: SidebarView (U)

The user can navigate to the sent

view.
- - The sent view is shown. - -

Name: SF: navigateToHistoryView (U) Input: W: SidebarView (U)

The user can navigate to the

history view.
- - The history view is shown. - -

Name: SF: navigateToInstructionView (U) Input: W: SidebarView (U)

The user can navigate to the

instruction view.
- - The instruction view is shown. - -

242

Table B.3.2: System functions for the REeng

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

Name: SF: displayQuestions (R) InputW: QuestionView (R)

The REeng can display the first ten

questions. The ID, the question title

and the status whether or not the

question is enabled or disabled are

shown-

- -
The first ten questions are

shown.
-

(R1) The first ten questions are shown initially.

The Reeng can display more questions through

SF: displayMoreQuestions (R)

Name: SF: displayMoreQuestions (R) Input: W: QuestionView (R)

The REeng can display ten more

questions.

There are more

than ten questions

that have an

answer.

-

Ten more questions are

shown to the user. If there are

less than ten questions

remaining, then these

remaining questions are

shown.

- -

Name: SF: sortQuestions (R) Input: W: QuestionView (R)

The REeng can sort the questions.
There is at least one

questions.
-

The questions are sorted by

the selected criterium.
-

The questions can be sorted by these criteria:

• ID

• Question name

• Disabled/Enabled

Name: SF: searchQuestions (R) Input: W: QuestionView (R)

The REeng can search questions by

text. If the text matches a part of a

subquestion, then the corresponding

question(s) is shown.

- -

The question(s) that contain

the text in at least one of their

subquestion are shown.

- -

Name: SF: enableQuestion (R) Input: W: QuestionView (R)

The REeng can enable a question.

The question must

exist and be

disabled.

- The question is enabled. - -

Name: SF: disableQuestion (R) Input: W: QuestionView (R)

243

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

The REeng can disable a question.

The question must

exist and be

enabled.

- The question is disabled. - -

Name: SF: createQuestion (R) Input: W: CreateQuestionView (R)

The REeng can create a question.

The REeng specifies the question

title, the app, as well as all

subquestions and answer options

- - The question is created.
(E1) The question is not

shown to the user

(R1) The question must contain at least one

subquestions and corresponding answer options.

Name: SF: editQuestion (R) Input: CreateQuestionView (R)

The REeng can edit the question and

its properties (title, app, all

subquestions and answer options).

The question must

exist.
-

The edited properties are

saved.

(E1) The question is not

shown to the user

(R1) The question must contain at least one

subquestions and corresponding answer options.

Name: SF: scheduleQuestion (R)Input: W: ScheduleQuestionView (R)

The REeng can schedule a question

to be enabled and disabled.

The question must

exist.
-

The question is now

scheduled based on the

configured conditions.

-

(R1) The question can be scheduled based on

these conditions:

• Enable question at specific days. If the

question is not answered it will not be

asked multiple times when multiple days

are entered.

• Disable question at specific date

Name: SF: displayAnswersForQuestion (R) Input: W: DetailedQuestionView (R)

The REeng can display all answers

for a question. The answers are

shown with their shortened content,

their creation data and their number

of comments.

There is at least one

answer to the

question.

-
The first five answers for the

question are shown.
-

(R1) There are only 5 answers shown at one time.

The REeng can load more answers with SF:

displayMoreAnswersForQuestion (R)

(R2) Skipped answers are not shown.

Name: SF: displayAnswerDetails (R) Input: W: DetailedQuestionView (R), W: DetailedAnswerView (R)

The REeng sees the content of the

answer (app and all subquestions

and their answers).

The answer was not

skipped.
-

The content of the answer is

shown.
- -

Name: SF: sortQuestionsWithAnswers (R) Input: W: ResultsView (R)

244

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

The REeng can sort the questions.

There exists at least

one question that

has an answer.

-
The questions are sorted by

the selected criterium.
-

(R1) The questions can be sorted by these criteria:

• Number of answers

• Creation date of last answer

• Creation date of last comment

Name: SF: filterQuestionsAndAnswers (R) InputW: ResultsView (R)

The REeng can filter the questions

and messages.

There exists at least

one question that

has an answer or

one message.

-

The questions and messages

are filtered by the selected

criterium.

-

(R1) The questions and messages can be filtered

by these criteria:

• Creation date of last answer of question

or creation date of message (Last week,

this week, today)

• App (SF, SI, SV, Other, Exercise)

Name: SF: sortAnswers (R) Input: W: DetailedQuestionView (R)

The REeng can sort the answers for

a question.

There exists at least

one answer.
-

The answers for the question

are sorted by the selected

criterium.

-

(R1) The answers can be sorted by these criteria:

• Date of creation

• Creation date of last comment

Name: SF: filterAnswers (R) Input: W: DetailedQuestionView (R)

The REeng can filter the answers of

a question .

There exists at least

one question that

has an answer.

-
The answers are filtered by

the selected criterium.
-

(R1) The answers can be filtered by whether or

not they were already commented by the REeng.

Name: SF: displayMessages (R) Input: W: ResultsView (R)

The REeng can display all messages

of all users. The messages are shown

with their title, app and their

number of comments.

There is at least one

message.
-

The first five messages are

shown.
-

(R1) There are only 5 messages shown at one time.

The REeng can load more messages with SF:

displayMoreMessages(R)

Name: SF: displayMessageDetails (R) Input: W: DetailedMessageView (R)

The REeng sees the content (title and

text or audio recording) of the

message.

- -
The content of the mesage is

shown.
- -

Name: SF: sortMessages (R) Input: W: ResultsView (R)

The REeng can sort the messages.
There exists at least

one message.
-

The messages are sorted by

the selected criterium.
-

(R1) The messages can be sorted by these criteria:

• Date of creation

245

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

• Creation date of last comment

Name: SF: filterMessages (R) Input: W: ResultsView (R)

The REeng can filter the messages.
There exists at least

one message.
-

The messages are filtered by

the selected criterium.
-

(R1) The messages can be filtered by these criteria:

• Creation date of message (Last week, this

week, today)

• App (SF, SI, SV, Other, Exercise)

• Commented by the REeng (Yes/No)

Name: SF: displayQuestionsWithAnswers (R) Input: W: ResultsView (R)

The REeng can display all questions

that have answers. The questions are

shown with their title, app and their

number of answers.

There is at least one

question that has

an answer.

-
The first five questions that

have answers are shown.

(E1) There are no

questions that have

answers. If this is the case

then a text appears

indicating that the list is

empty.

(R1) There are only 5 questions shown at one

time. The REeng can load more questions with SF:

displayMoreQuestionsWithAnswers(R)

(R2) Questions with only skipped answers are not

shown.

Name: SF: displayMoreQuestionsWithAnswers (R) Input: W: ResultsView (R)

The REeng can display five more

questions that have answers.

There are at least

five questions that

have an answer.

-

Five more questions are

shown. If there are less than

five questions remaining,

then these remaining

questions are shown.

(R1) Questions with only skipped answers are not

shown.

Name: SF: displayMoreAnswersForQuestion (R) Input: W: DetailedQuestionView (R)

The REeng can display five more

answers that for a question

There are at least

five answers that

have an answer.

-

Five more answers are

shown. If there are less than

five answers remaining, then

these remaining answers are

shown.

 (R1) Skipped answers are not shown.

Name: SF: displayMoreMessages (R) Input: W: ResultsView (R)

The REeng can display five more

messages.

There are at least

five messages that

have an answer.

-

Five more messages are

shown. If there are less than

five messages remaining, then

these remaining messages are

shown.

- -

246

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

Name: SF: displayComments (R) Input: W: DetailedAnswereView (R), W: DetailedMessageView (R)

The REeng can display the

comments for an answer or

message.

An answer or

message exists.
-

The first five comments of the

answer or message are

shown.

(R1) There are only 5 comments shown at one

time. The REeng can load more comments with

SF: displayMoreComments (R)

Name: SF: displayMoreComments (R) Input: W: DetailedAnswereView (R), W: DetailedMessageView (R)

The REeng can display five more

comments.

There are more

than five

comments.

-

Five more comments are

shown. If there are less than

five comments remaining,

then these remaining

comments are shown.

- -

Name: SF: sortComments (R) Input: W: DetailedAnswerView (R), W: DetailedMessageView (R)

The REeng can sort the comments

for a message or answer.

There exist at least

one comment.
-

The comments are sorted by

the selected criterium.
-

(R1) The comments can be sorted by these criteria:

• Date of creation

Name: SF: submitComment(R) Input: W: CommentView (R)

The REeng can submit a comment

for an answer or message. The

comment can contain text and a

audio recording (see SF:

addAudioRecording (U))

An answer or

message exists.

The comment is

saved in the

database.

After submission a

notification appears

indicating that the comment

was submitted successfully.

(E1) Required fields are

not filled out.

(R1) The content of the comment must not be

empty. There must be either an audio recording

or text.

Name: SF: displayUsers (U) Input: W: UserView (R)

The REeng can view all users that

use smartFEEDBACK.
- - - -

The users are shown with their ID and the date

when they first started to use smartFEEDBACK.

Name: SF: filterUsers (R) Input: W: UserView (R)

The REeng can filter users by their

start date.

There must be at

least one user.
-

Only users are shown who

have a start date in the

specified range or today.

-
The REeng can input a range for the start date or

he/she can filter users which start date is today.

Name: SF: navigateToQuestionView (R) Input: W: SidebarView (R)

The REeng can navigate to the W:

QuestionView (R).
- -

W: QuestionView (R) is

shown.
- -

Name: SF: navigateToResultsView (R) Input: W: SidebarView (R)

247

Description Pre-condition(s) Postcondition(s) Output Exception(s) Rule(s)

The REeng can navigate to W:

ResultsView (R)
- - W: ResultsView (R) is shown. - -

Name: SF: navigateToUsersView (R) Input: W: SidebarView (R)

The REeng can navigate to W:

QuestionView (R)
- -

W: QuestionView (R)is

shown.
- -

248

Virtual windows for the user

Figure B.2.1: Virtual window for

W: QuestionView (U)

Figure B.2.2: Virtual window for

W: MessageView (U)

Figure B.2.3: Virtual window for

W: SentView (U)

249

Figure B.2.4: Virtual window for

W: DetailedQuestionView (U)

Figure B.2.5: Virtual window for

W: DetailedAnwerView (U)

Figure B.2.6: Virtual window for

W: DetailedMessageView (U)

Figure B.1: Virtual window for

W: CommentView (U)

250

Figure B.2.7: Virtual window for

W: CommentView (U)

Figure B.2.8: Virtual window for

W: HistoryView (U)

Figure B.2.9: Virtual window for

W: DetailedAnswerHistoryView (U)

251

Figure B.2.10: Virtual window for

W: DetailedMessageHistoryView (U)

Figure B.2.11: Virtual window for

W: InstructionView (U)

252

Virtual windows for the REeng

Figure B.2.12: Virtual window for W:

QuestionView (R)

Figure B.2.13: Virtual window for

W: CreateQuestionView (R)

Figure B.2.14: Virtual window for

W: ScheduleView (R)

253

Figure B.2.15: Virtual window for

W: ResultsView (R)

Figure B.2.16: Virtual window for

W: DetailedQuestionView (R)

Figure B.2.17: Virtual window for W:

DetailedAnswerView (R)

254

Figure B.2.18: Virtual window for

W: DetailedMessageView (R)

Figure B.2.19: Virtual window for

W: CommentView (R)

Figure B.2.20: Virtual window for

W: UserView (R)

255

Screenshots for the user

Figure B.2.21: Screenshot for implemented

virtual window of W: QuestionView (U)

Figure B.2.22: Screenshot for implemented

virtual window of W: MessageView (U)

Figure B.2.23: Screenshot for implemented

virtual window of W: SentView (U)

256

Figure B.2.24: Screenshot for implemented

virtual window of:

DetailedQuestionView (U)

Figure B.2.25: Screenshot for implemented

virtual window of:

DetailedAnswerView (U)

Figure B.2.26: Screenshot for implemented

virtual window of

W: DetailedMessageView (U)

257

Figure B.2.27: Screenshot for implemented

virtual window of W: CommentView (U)

Figure B.2.28: Screenshot for implemented

virtual window of W: HistoryView (U)

Figure B.2.29: Screenshot for implemented

virtual window of

W: DetailedAnswerHistoryView (U)

258

Figure B.2.30: Screenshot for

implemented virtual window of

W: DetailedMessageHistoryView (U)

Figure B.2.31: Screenshot for

implemented virtual window of

W: InstructionView (U)

259

Screenshots for the REeng

Figure B.2.32: Screenshot for

implemented virtual window of

W: QuestionView (R)

Figure B.2.33: Screenshot for

implemented virtual window of

W: CreateQuestionView (R)

Figure B.2.34: Screenshot for

implemented virtual window of

W: ScheduleQuestionView (R)

260

Figure B.2.35: Screenshot for

implemented virtual window of

W: ResultsView (R)

Figure B.2.36: Screenshot for

implemented virtual window of

W: DetailedQuestionView (R)

Figure B.2.37: Screenshot for

 implemented virtual window of

W: DetailedAnswerView (R)

261

Figure B.2.38: Screenshot for

implemented virtual window of

W: DetailedMessageView (R)

Figure B.2.39: Screenshot for

implemented virtual window of

W: CommentView (R)

Figure B.2.40: Screenshot for

implemented virtual window of

W: UserView (R)

262

B.4 FUQ

Figure B.2.41: FUQ with id FF1 Figure B.2.42: FUQ with id FF2 Figure B.2.43: FUQ with id FF3

Round 1 iteration 1

263

Figure B.2.44: FUQ with id FF4 Figure B.2.45: FUQ with id FF5 Figure B.2.46: FUQ with id FF6

264

Figure B.2.47: FUQ with id FF7 Figure B.2.48: FUQ with id FF8 Figure B.2.49: FUQ with id FF9

265

Figure B.2.50: FUQ with id FF10 Figure B.2.51: FUQ with id FF11 Figure B.2.52: FUQ with id AV1

266

Figure B.2.53: FUQ with id AV2 Figure B.2.54: FUQ with id AV3 Figure B.2.55: FUQ with id AV4

267

Figure B.2.56: FUQ with id AV5 Figure B.2.57: FUQ with id AV6 Figure B.2.58: FUQ with id AV7

268

Figure B.2.59: FUQ with id AV8

269

FUQ of round 1 iteration 2

Figure B.2.60: FUQ with id FF1_FF Figure B.2.61: FUQ with id FF2_FF Figure B.2.62: FUQ with id FF3_AV

270

Figure B.2.63: FUQ with id FF4_AV Figure B.2.64: FUQ with id FF5_AV Figure B.2.65: FUQ with id FF6_AV

271

Figure B.2.66: FUQ with id FF7_AV Figure B.2.67: FUQ with id FF8_AV Figure B.2.68: FUQ with id FF9_FF

272

Figure B.2.69: FUQ with id FF10_AV Figure B.2.70: FUQ with id FF11_AV

273

FUQ of round 2 iteration 1

Figure B.2.71: FUQ with id 2_FF1 Figure B.2.72: FUQ with id 2_FF2 Figure B.2.73: FUQ with id 2_FF3

274

Figure B.2.74: FUQ with id 2_FF4 Figure B.2.75: FUQ with id 2_FF5 Figure B.2.76: FUQ with id 2_FF6

275

Figure B.2.77: FUQ with id 2_FF7 Figure B.2.78: FUQ with id 2_FF8 Figure B.2.79: FUQ with id 2_FF9

276

Figure B.2.80: FUQ with id 2_FF10 Figure B.2.81: FUQ with id 2_FF11 Figure B.2.82: FUQ with id 2_AV1

277

Figure B.2.83: FUQ with id 2_AV2 Figure B.2.84: FUQ with id 2_AV3 Figure B.2.85: FUQ with id 2_AV4

278

Figure B.2.86: FUQ with id 2_AV5 Figure B.2.87: FUQ with id 2_AV6 Figure B.2.88: FUQ with id 2_AV7

279

Figure B.2.89: FUQ with id 2_AV8

280

FUQ of round 2 iteration 2

Figure B.2.90: FUQ with id 2_FF1_AV Figure B.2.91: FUQ with id 2_FF2_AV Figure B.2.92: FUQ with id 2_FF3_AV

281

Figure B.2.93: FUQ with id 2_FF4_FF Figure B.2.94: FUQ with id 2_FF5_AV Figure B.2.95: FUQ with id 2_FF6_AV

282

Figure B.2.96: FUQ with id 2_FF7_AV Figure B.2.97: FUQ with id 2_FF8_FF Figure B.2.98: FUQ with id 2_FF9_AV

283

Figure B.2.99: FUQ with id 2_FF11_AV

284

B.5 Handbook for SF

We describe the features that are used by the REeng in Section “Features for the REeng” and the

features that are used by the users in Section “Features for the user”. We start with the features

of the REeng, because the question structure is explained, which is necessary to understand when

answering questions. We use screenshots of the implemented virtual windows of Section 5.1.4 to

explain the features. We don’t explain each system function in detail. For a complete description

of all system functions, see Table B.3.1 and Table B.3.2. To see how each individual system

function is related to the user interface, see the virtual windows in Section 5.1.4.

Features for the REeng

We explain how the REeng can manage questions in Section “Managing questions (UT1S1(R))”.

We describe how the REeng can manage given feedback in Section “Managing given feedback

(UT1S2(R))”.

Managing questions (UT1S1(R))

Figure B.5.1 shows a screenshot for the implemented virtual window of workspace W:

QuestionView (R). The REeng has the option to navigate to the question overview through ❶

and to the overview of received feedback through ❷. The REeng sees all existing questions in

the area ❻. The questions are shown along with their ID, their name, their on/off status (whether

they are activated or not) and with different action buttons. The REeng can enable and disable a

question through the toggle switch in the on/off column. With the action button, the REeng

can edit a question, with the action button the REeng can schedule a question and with the

action button the REeng can delete a question. The REeng can search through the questions with

❸. The REeng can sort the columns of the question table with the arrows next to the table

captions (❺). The column data can be sorted ascending and descending. The REeng can create a

new question with ❹.

Figure B.5.1: Screenshot for the implemented virtual window

of workspace W: QuestionView (R)

285

Figure B.5.2 shows a screenshot for the implemented virtual windows of workspace W:

CreateQuestionView (R). The REeng can see this screen after pressing the action button or after

pressing the “new” button that is shown in Figure B.5.1. On the left side different tools are shown

including text, selection, options, dropdowns, html etc. These tools can be dragged and dropped

in the middle. To support our process we only need the answer options that are highlighted in

red (text (❶), selection (❷) and html (❸). The text tool generates a question with a title and a

text input field as answer option. The selection tool also generates a question with a title, but with

different selection options that the user can choose from to answer the question. The html allows

arbitrary html code to be used. We use the html tool to design the top part of a question where

we display the application logo and name. The REeng can use the title (❹) to give questions a

title and ❺ to save the question. The REeng can cancel the question creation with ❻. All other

functionalities in Figure B.5.2 that are not red can still be used for example to adapt the process

in the future through questions with e.g. image selection but they are not needed to support the

version of the process that is presented in this thesis. We still leave the functionalities visible, to

remind the REeng that the question creation is very flexible. We explain in Section 5.2.1.2 how

the functionality is implemented.

Figure B.5.2: Screenshot for the implemented virtual window

of workspace W: QuestionView (R)

After the question is saved it appears in the list of questions of Figure B.5.1. The REeng can then

schedule when the question should be asked to the users. For this, the REeng presses the action

button in Figure B.5.1 for the specific question. The screen Figure B.5.3 is shown to the REeng.

286

Figure B.5.3: Screenshot for the implemented virtual window

of workspace W: ScheduleQuestionView (R)

The REeng can either use one of the two options (❶ or ❷) to schedule a question. With ❶ the

REeng can show the question after a number of days relative to the day when the user started

using SF. When “1” is entered, that means that the question is displayed one day after the users’

start date to the user. The REeng can also input multiple days such as “1, 100”. This means that

the questions appears one day after the users’ start date and then again 100 days after the start

date. If the user doesn’t answer the question before the day 100, the question will not be asked

twice on day 100, but it will just remain open. With ❷ the REeng can disable a question at a

specific date for all users. This means that when the date is reached, no user will be able to receive

the question anymore. We use ❶ to schedule our questions of type “scheduled” and a

combination of ❶ and ❷ to ask FUQ only to users who at least have 7 days of usage and to

disable our FUQ at a specific date for all users. The REeng can save the schedule of a question

with ❹ and the schedule can be canceled with ❺. After saving or cancellation the REeng is

redirected to back to Figure B.5.1.

Managing given feedback (UT1S2(R))

Figure B.5.4 shows a screenshot for the implemented virtual window of workspace W:

QuestionView (R). The REeng can see this screen after pressing “Results” (❶) in the sidebar. The

REeng can see all questions that contain at least one answer in ❸.

287

The questions are shown with application logo, title and application name (❻). The questions

can be sorted with ❹ by the number of answers of the users, by the date of the last answer and

by the date of the last comment. This helps the REeng to identify popular questions and questions

that are currently answered or commented. The messages (❼) are also shown with application

logo, title and application name (❿). The REeng can sort the messages by creation date and by

creation date of last comment to identify new messages or comments quickly. The REeng can

filter questions and messages simultaneously through ❷. The REeng can filter by date range (for

questions the date of the last answer and for messages the date of their creation). The date ranges

Figure B.5.4: Screenshot for the implemented virtual window

of workspace W: ResultsView (R)

288

are last week, this week and today. This allows the REeng to filter for relevant feedback when

reviewing the feedback. The REeng can also filter questions and messages for a specific app only.

This is helpful, when the REeng wants to inspect the feedback for only one app. The REeng can

navigate to all answers of a questions with ❺. After navigation the REeng is presented with the

screen in Figure B.5.5.

Figure B.5.5: Screenshot for the implemented virtual window

of workspace W: DetailedQuestionView (R)

The question for which the answers are presented is shown at the top (❶) in Figure B.5.5. The

question is presented with the application logo and name, as well as the title of the question and

the day when the question was last answered. The answers of the question are shown at ❷. There

is only one answer in this case. The answer contains the selected answer option and a reason in

freetext below. The answers are shown without the question title to save space, because the

question title is always the same for each answer. The creation date of the answer is shown in the

top right corner. The REeng can filter and sort the answers with ❸ and ❺. The REeng can filter

by creation date of the answer (last week, this week, today). The REeng can sort the answers by

creation date as well. With ❻ the REeng can navigate back to Figure B.5.4. The button ❹ shows

the number of comments of the answer and allows the REeng to navigate to the details of an

answer. Figure B.5.6 shows how the details of an answer are presented.

289

Figure B.5.6: Screenshot for the implemented virtual window

of workspace W: DetailedAnswerView (R)

In Figure B.5.6 the answer is shown in ❶. The answer is shown with the application logo and

name, as well as the question title. The comments of the answer are shown in ❷ with the author

of the comment (e.g. user with ID 2) in the left upper corner and the creation date of the comment

in the right upper corner. The content of the comment is shown below as text. If the comment is

given as a voice message, the voice message appears and can be played. The comments differ in

color depending on whether they are given by users or by the REeng, to make it easier for the

REeng to identify the comment authors. When a comment is written by the REeng, the author of

the comment is shown as “By us”. The REeng can sort the comments through ❸ by the date of

the creation of the comment. The REeng can navigate back to Figure B.5.5 through ❺. The REeng

has the option to create a new comment through ❹. In the context of SMARTAGE, the REeng

doesn’t comment on answers to questions, because this would not be feasible due to the large

number of answers. The REeng only comments on messages from users that are very urgent and

require a reply to avoid causing dissatisfaction to the user.

To view the details of a message, the REeng can press on ❾ Figure B.5.4. The details of a message

are then shown in Figure B.5.7.

290

Figure B.5.7: Screenshot for the implemented virtual window

of workspace W: DetailedMessageView (R)

The message details are shown in ❶. The message is displayed with the associated app logo and

name, as well as the title of the message and content. If the content is textual, the text is displayed

and if it is a voice message, then the voice message is displayed and can be played. The creation

date of the message is displayed in the right upper corner. The comments of the message are

shown below ❷. If there are no comments, the message “Currently there are no comments” is

shown. If there are comments, the comments are shown in the same way as in Figure B.5.6. With

the “Sort by” function next to ❷, the REeng can sort the comments by creation date. With ❸ the

REeng can create a new comment and with ❹ the REeng can navigate back to Figure B.5.4.

When creating a comment, the screen in Figure B.5.8 is shown. The REeng can enter the comment

in the text field of ❶ or as a voice message through ❷. To record a voice message, the “Start

recording” button is pressed and after speaking the “Stop recording” button is pressed. The

comment can be submitted with ❸ and the REeng can cancel the comment submission through

❹. When the comment submission is canceled, the REeng sees Figure B.5.7 again.

291

Figure B.5.8: Screenshot for the implemented virtual window

of workspace W: CommentView (R)

Viewing users (UT1S3(R))

Figure B.5.9 shows a screenshot for the implemented virtual window of workspace W: UserView

(R). The REeng can view this screen by navigating to “Users” ❶ in the sidebar.

Figure B.5.9: Screenshot for the implemented virtual window

of workspace W: UserView (R)

292

In ❸ the REeng can see the users of smartFEEDACK with their IDs and their date of first use.

The REeng can sort the headers of the table ascending and descending by pressing the arrow next

to the header. The REeng can filter the users with ❷. A start date can be entered together with

an end date, followed by a press on the button “Filter”. This filters the users based on the start

date, which has to be between the two dates. With a press on “Today”, the REeng can quickly

filter for users who start the use of SF at that day.

Features for the user

We explain how the user can submit feedback to questions in “Submitting feedback (UT1S1(U))”.

We describe how the user can manage given feedback in “Managing existing feedback

(UT1S2(U))”.

Submitting feedback (UT1S1(U))

The user can submit feedback through answers to questions, messages and comments. The

submission of answers works through the screen in Figure B.5.10. The user can navigate to this

screen through pressing the button “Users” in the sidebar (❶).

Figure B.5.10: Screenshot for the implemented virtual window

of workspace W: QuestionView (U)

The user sees how many questions are open by the caption “We have questions to you: Question

n of N” where n is the current question and N is the number of questions that is open. Each

question is displayed individually and is shown with the application logo and name (❸) as well

293

as with all its subquestions and corresponding answer options (❹, ❺). The user can either skip

the answer for a question (❼), which means that no answer is given and the next question is

shown or the user addresses the input fields (❹ - selection and ❺ - text) and submit the answer

(❻). To submit the answer, the user must at least give answers to questions that are marked with

a “*” (e.g. in Figure B.5.10 the user must at least select an answer option for the question “How

satisfied are you with SV?” to be able to submit the answer). When no more questions are open,

a confetti animation is shown to the user.

The submission of messages is conducted through the screen in Figure B.5.11.

Figure B.5.11: Screenshot for the implemented virtual window

of workspace W: MessageView (U)

The user can navigate to the screen by pressing the button “Message” in the sidebar (❶). The

caption ❷ serves as an explanation for the user, that the message is not shown to other users that

the message can be found by navigating to “Sent” in the sidebar after submission. To submit the

message, the user must choose an app or the category “other”. The category “other” is used when

the message is not about the app SV, SF or SI. The user must enter a title for the message through

294

❹. The user can provide the message content either through text (❺) or through a voice message

(❻). The recording of a voice message works by pressing the “start recording” button and then

pressing the “stop recording” button after speaking. The user also has the option to upload a file

as an appendix to the message (❼). This is useful when the user needs to provide a screenshot

or another file as a reference. The user can submit the message by pressing the “Submit” button

(❽). After submission a text appears that the message was sent successfully and the user is

presented with the screen of Figure B.5.11 again.

The submission of comments to answers and message is conducted by pressing the “Sent” button

in the sidebar and then proceeding exactly like described in Section “Managing given feedback

(UT1S2(R))” from the perspective of the REeng.

When the user has problems to remember which of the sidebar buttons are relevant for

submitting feedback, he/she can navigate to the screen in Figure B.2.31 in the appendix through

the “Tip” button in the sidebar. The screen in the figure explains all sidebar buttons.

Managing existing feedback (UT1S2(U))

The user manages her/his own feedback through the two links “Sent” and “History” in the

sidebar.

The “Sent” button redirects the user to the screen in Figure B.2.23 in the appendix. This screen

looks exactly the same for the user and the REeng, with the exception that the screenshot of the

REeng shows different sidebar buttons and that the REeng sees questions, answers and messages

of all users compared to the user who only sees questions, answers and messages that are relevant

for her/him. This is why we do not explain the management of existing feedback through the

“Sent” button in this Section, as we already describe this from the perspective of the REeng. To

see a complete overview over all screens from the perspective of the user, see Figure B.2.24 in the

appendix for a screenshot of the implemented virtual window for W: DetailedQuestionView (U),

Figure B.2.26 in the appendix for a screenshot of the implemented virtual window for W:

DetailedMessageView (U) and Figure B.2.27 in the appendix for a screenshot of the implemented

virtual window for W: CommentView (U).

The ”History” button redirects the user to the screen in Figure B.5.12. In the history the user sees

an overview over all answers (❷) and messages (❸). Compared to the “Sent” screen, where the

answers are grouped by questions, in the history the user sees the answers in their chronological

order independent of their question. Each answer is listed with the question name, the date when

the answer was given or skipped and the info whether the answer was given or skipped. The

user sees always five answers and more answers can be loaded through ❺. This is the same for

the messages. The user can filter the answers and messages simultaneously through ❶. A start

date and end date can be entered and with a press on the button “Filter” the answers and

messages are filtered based on their creation date which must be between the start and end date.

With a press on the button “Today” the user can quickly filter for answers and messages which

where created on that day.

295

Figure B.5.12: Screenshot for the implemented virtual window

of workspace W: HistoryView (U)

The user can view an answer in detail by pressing the button “Details” (❹) which takes the user

to Figure B.5.13.

Figure B.5.13: Screenshot for the implemented virtual window

of workspace W: DetailedAnswerHistoryView (U)

296

The user can view the answer details below ❶. The answer is displayed with the application

logo and name, as well as with all subquestions their titles and the selection or text that was given

by the user. The user can navigate back through the “Back” button above ❶.

The user can view a message in detail by pressing the button “Details” (❻) in Figure B.5.12 which

takes the user to Figure B.5.14.

Figure B.5.14: Screenshot for the implemented virtual window

of workspace W: DetailedMessageHistoryView (U)

The user can view the message details below ❶. The message is displayed with the application

logo and name, as well as with its title and content. The user can navigate back to Figure B.5.12.

through the “Back” button above ❶.

297

C Supplementary material for the treatment

validation

C.1 Derived requirements

Table C.1: Derived changes to existing requirements and new requirements

R
ea

d
ab

le
 I

D

S
cr

ee
n

sh
o

t

C
h

an
g

e

N
ew

A
p

p
li

ca
ti

o
n

Change or new requirement

AV1
Figure

B.2.52
X SV

Change SF: displayLink

When opening links block advertisements

automatically.

AV2
Figure

B.2.53
 X SV

Create SF: filterNews

The user can filter the news by the city “Mannheim”

and “Heidelberg”.

AV3
Figure

B.2.54
 X SF

Create: SF: editSubmittedAnswer (U)

The user can edit an already submitted answer.

AV4
Figure

B.2.55
 X SV

Create: SF: customizeStartPage (U)

The user can customize the start page by adding

links and applications to it.

AV5
Figure

B.2.56
X SF

Change: W: HistoryView (U)

The button that allows the navigation to the details

of an answer and a message should be visible clearly

and not be hidden behind scroll pane.

AV6
Figure

B.2.57
X SF

Change: W: HeaderView (U)

The button the allows navigation to the portal should

be centered.

AV7
Figure

B.2.58
X SV

Change: SF: displayNews

When displaying news, each news link should direct

the user to an individual page where only this news

is displayed and no other news.

AV8
Figure

B.2.59
X SF

Change: W: MessageView (U)

The placement of the audio recording should be

above the placement of the text input.

298

FF3_AV
Figure

B.2.62
X SF

Change: SF: submitAnswer (U)

When asking a question, there should be an answer

option “I never did this”, so that the user can

signalize that his/her experience is not sufficient to

answer the question.

FF4_AV
Figure

B.2.63
X SF

Change: W: QuestionView (U)

When displaying a question to the user, there should

be information about why we ask the question.

FF5_AV
Figure

B.2.64
X SF

Change: W: MessageView (U)

When submitting a message, no ‘childish’ symbols

such as smileys should be displayed.

FF6_AV
Figure

B.2.65
X SF

Change: W: SentView (U)

The design of the Sent View should be fitted to the

size of the tablet screen.

FF7_AV
Figure

B.2.66
 P

Change: This change addresses a requirement from

the SMART-AGE portal, which we did not define.

The change suggests that the email application

should be openable from the portal.

FF8_AV
Figure

B.2.67
X SV

Change: W: HomeView

The news should be displayed in an activity “News”

in the activity sidebar.

FF10_AV
Figure

B.2.69
X SV

Change: W: LinkView

Links that lead to apps should highlighted so that it

is clear that the lead to apps.

FF11_AV
Figure

B.2.70
X SV

Change: W: CategoryView

The symbols of the categories should be colored and

not black.

2_AV1
Figure

B.2.82
X SF

Change: SF: displayQuestion (U)

A question should only be asked once and it should

not be repeated in the exact form.

2_AV2
Figure

B.2.83
X SF

Change: SF: displayQuestion (U)

A question should be asked over email.

2_AV3
Figure

B.2.84
X SF Change: The SF: filterHistory (U) should be removed.

2_AV4
Figure

B.2.85
 X SV

Create: SF: changeOrderOfLinks

The order of the links should be changeable by the

user.

299

2_AV5
Figure

B.2.86
 P

Change: This change addresses a requirement from

the SMART-AGE portal, which we did not define.

The portal should allow the users to open both SF

and SV simultaneously.

2_AV6 Figure

B.2.87

 X SF Create: SF: markAnswerAsRead (U)

The user can mark an answer as read.

2_AV7 Figure

B.2.88

X SF Change: W: QuestionView (U)

The font size of the questions should be increased.

2_AV8 Figure

B.2.89

X SF Change: W: MessageView (U)

The size of the symbols of the audio recording

should be increased.

2_FF1_AV Figure

B.2.90

X SV Change: SF: displayLinks

The number of links in the category “sport” should

be increased.

2_FF2_AV Figure

B.2.91

X SV Change: SF: displayWeather

The weather report should include a 10 day forecast.

2_FF3_AV Figure

B.2.92

X SF Change: SF: displayQuestion (U)

There should be no questions that ask about the

priority or sentiment of the user.

2_FF5_AV Figure

B.2.94

 X SV Create: SF: customizeCategories

The user can group links into categories by

himself/herself. The position of the categories can

also be chosen by the user.

2_FF7_AV Figure

B.2.96

X SV Change: SF: addPersonalLink

A personal link can be added through the browser

with one click.

2_FF9_AV Figure

B.2.98

X SF Change: SF: displayInstructions (U)

The instruction text of the app should be shortened.

2_FF11_AV Figure

B.2.99

X SF Change: W: HistoryView (U)

The History View should include the comments of

answer and messages.

C.2 Characteristics

Table C.2: Characteristics of users that are collected through questionnaire.

Description Values

u_age (Age)

What is your age? E.g. 70

u_gender (Gender)

300

What is your gender? 1: male, 2: female

u_abitur (Education)

Do you have a high school degree?
0: No high school degree

1: High school degree

u_swe (Self-efficacy (Jerusalem and Schwarzer, 2003)

Number of questions: 10

Examples:

"If I encounter resistance, I find ways and means to assert

myself."

“I always succeed in solving difficult problems when I put

effort into them."

4: Completely agree

3: Somewhat agree

2: Hardly agree

1: Do not agree

For one SP, we use the sum score

of all answers.

u_mhdt (Media Use/Frequency of Technology Use)

Self-designed questionnaire, based on: (Wagner and Zank, 2022)

Number of questions: 11

Examples:

"How often do you use a smartphone?"

"How often do you use a... computer, PC, laptop, notebook,

or netbook?"

0: Not available / I don’t know

1: Multiple times a day

2: Daily / almost daily

3: At least once a week

4: At least once a month

5: Less often

6: Never

For one SP, we use the sum score

of all answers.

u_huadi (Frequency and Type of Internet Use)

Self-designed questionnaire, based on: (Vogel et al., 2020a)

Number of questions: 23

The internet offers a variety of usage possibilities. Therefore,

we are interested in how often you use the internet for the

following purposes:

Examples:

“Contact with friends, acquaintances, and relatives (e.g.,

WhatsApp, Telegram, Signal, video calls like Skype)."

“Searching for social contacts (e.g., friends, partners, like-

minded people)”

0: I don’t use it

1: Daily

2: Several times a week

3: Once a week

4: One to three times a month

5: Less often

6: Never

For one SP, we use the sum score

of all answers.

u_mdpq (Mobile Device Proficiency Questionnaire (Roque and Boot, 2018))

Number of questions: 16

When using a mobile device, I can:

Examples:

“Navigate through the on-screen menus using the

1: Never tried

2: Not at all

3: Not very easy

301

touchscreen.”

“Using the on-screen keyboard for typing.”

4: Relatively easy

5: Very easy

For one SP, we calculate the

score according to (Roque and

Boot, 2018)

u_techbio (Technology biography (Mollenkopf et al., 2000))

Number of questions: 7

Examples:

“I have always dealt a lot with technology in my life.”

“I have always been interested in owning the latest

technological devices.”

1: Does not apply at all

2: Applies slightly

3: Partially applies

4: Mostly applies

5: Applies very well

For one SP, we calculate the

average score from all answers

u_pus_peu (Perceived Usefulness & Perceived Ease of use)

Self-designed questionnaire, based on: (Davis, 1985)

Number of questions: 6

Examples:

• Using IT helps me manage everyday life.

• I find it easy to handle IT.

1: Strongly disagree

2: Disagree

3: Rather disagree

4: Neutral

5: Rather agree

6: Agree

7: Strongly agree

For one SP, we calculate the

average score from all answers

u_intc (Intention to (continue) use)

Self-designed questionnaire, based on: (Bhattacherjee and Premkumar, 2004)

Number of questions: 4

Examples:

“I intend to (continue to) use IT in the future.”

“I assume that I will (continue to) use IT in the future.”

1: Strongly disagree

2: Disagree

3: Rather disagree

4: Neutral

5: Rather agree

6: Agree

7: Strongly agree

For one SP, we calculate the

average score from all answers

u_peen (Perceived Enjoyment)

Self-designed questionnaire, based on: (Davis, 1985)

Number of questions: 3

Examples:

1: Strongly disagree

2: Disagree

302

“I enjoy using IT.”

“It is a pleasure for me to use IT.”

3: Rather disagree

4: Neutral

5: Rather agree

6: Agree

7: Strongly agree

For one SP, we calculate the

average score from all answers

Table C.3: User usage characteristics

Variable Description Values

Usage time of SF The usage time of SF in seconds Value in seconds (e.g. 3600 for 1h)

Usage time of SV The usage time of SV in seconds Value in seconds (e.g. 3600 for 1h)

Number of starts of SF The number of times SF was started E.g. 100

Number of starts of SV The number of times SV was started E.g. 100

303

BIBLIOGRAPHY
AAPOR 2004. Standard definitions: Final dispositions of case codes and outcome rates for

surveys. American Association for Public Opinion Research.

Altmeyer et al. 2018. Investigating Gamification for Seniors Aged 75+ In: Proceedings of the

Designing Interactive Systems Conference. ACM, pp.453–458.

Bajic, D. and Lyons, K. 2011. Leveraging social media to gather user feedback for software

development In: Proceedings of the International Workshop on Web 2.0 for Software Engineering.

ACM, pp.1–6.

Berger, C. and Blauth, R. 1993. KANO’s Methods For Understanding Customer-Defined Quality.

Center for Quality Management Journal. 4, pp.3–36.

Bhattacherjee, A. and Premkumar, G. 2004. Understanding Changes in Belief and Attitude

Toward Information Technology Usage: A Theoretical Model and Longitudinal Test. MIS

Quarterly. 28(2), pp.229–254.

Brennan, R.L. and Prediger, D.J. 1981. Coefficient Kappa: Some Uses, Misuses, and Alternatives.

Educational and Psychological Measurement. 41(3), pp.687–699.

Brooke, J. 1995. SUS: A ‘Quick and Dirty’ Usability Scale. Usability Evaluation In Industry., pp.207–

212.

Bührer, M. 2021. Supporting Social Interaction and Participation of Older Adults Through Technology

(Master Thesis). Heidelberg University.

Chevalier, J.M. and Buckles, D.J. 2019. Participatory Action Research: Theory and Methods for Engaged

Inquiry 2nd ed. Routledge.

Covell et al. 2012. Does the sequence of data collection influence participants’ responses to closed

and open-ended questions? A methodological study. International Journal of Nursing Studies.

49(6), pp.664–71.

Czaja et al 2018. Improving Social Support for Older Adults Through Technology: Findings From

the PRISM Randomized Controlled Trial. Gerontologist. 58(3), pp.467–477.

Davis, F.D. 1985. A technology acceptance model for empirically testing new end-user information

systems : theory and results. Massachusetts Institute of Technology.

El Emam, K. and Koru, G.A. 2008. A replicated survey of IT software project failures. IEEE

Software. 25(5), pp.84–90.

Fernandes et al. 2012. IThink : A game-based approach towards improving collaboration and

participation in requirement elicitation. Procedia Computer Science. 15, pp.66–77.

Fotrousi et al. 2018. The effects of requests for user feedback on Quality of Experience. Software

Quality Journal. 26(2), pp.385–415.

Gartner, S. and Schneider, K. 2012. A method for prioritizing end-user feedback for requirements

engineering In: Proceedings of ICSE Workshop on Cooperative and Human Aspects on Software

Engineering. IEEE, pp.47–49.

Glinz et al. 2020. Handbook for the CPRE Foundation Level according to the IREB Standard Education

and Training for Certified Professional for Requirements Engineering (CPRE) Foundation Level

Terms of Use. IREB.

304

Groen et al. 2017. The Crowd in Requirements Engineering: The Landscape and Challenges. IEEE

Software. 34(2), pp.44–52.

Guzman et al. 2016. A Needle in a Haystack: What Do Twitter Users Say about Software? In:

Proceedings of the International Conference on Requirements Engineering. IEEE, pp.96–105.

Haug et al. 2023. Scalable Design Evaluation for Everyone! Designing Configuration Systems for

Crowd-Feedback Request Generation In: Proceedings of Mensch und Computer. Association for

Computing Machinery, pp.91–100.

Jakobs, R. 2021. Health assessment and recommendation for older adults (Master Thesis). Heidelberg

University.

Jerusalem, M. and Schwarzer, R. 2003. Skala zur Allgemeinen Selbstwirksamkeitserwartung.

Open Test Archive.

Johanssen et al. 2019. How do Practitioners Capture and Utilize User Feedback during

Continuous Software Engineering ? In: Proceedings of the International Conference on

Requirements Engineering. IEEE, pp.153–164.

Kabbedijk et al. 2009. Customer Involvement in Requirements Management: Lessons from Mass

Market Software Development In: Proceedings of the International Conference on Requirements

Engineering. IEEE, pp.281–286.

Kifetew et al. 2021. Automating user-feedback driven requirements prioritization. Information and

Software Technology. 138(1), p.106635.

Kolpondinos and Glinz 2020. GARUSO: a gamification approach for involving stakeholders

outside organizational reach in requirements engineering. Requirements Engineering. 25(2),

pp.185–212.

Kujala, S. 2008. Effective user involvement in product development by improving the analysis of

user needs. Behaviour & Information Technology. 27(6), pp.457–473.

Lai et al. 2014. A collaborative method for business process oriented requirements acquisition

and refining In: Proceedings of the International Conference on Software and System Process. ACM,

pp.84–93.

Laporti et al. 2009. Athena: A collaborative approach to requirements elicitation. Computers in

Industry. 60(6), pp.367–380.

Li et al. 2024. Unveiling the Life Cycle of User Feedback : Best Practices from Software

Practitioners In: Proceedings of the International Conference on Software Engineering. ACM, pp.1–

13.

Lim et al. 2021. Data-Driven Requirements Elicitation: A Systematic Literature Review. SN

Computer Science. 2(1).

Lohmann et al. 2009. A Web Platform for Social Requirements Engineering. Software Engineering

Workshopband (GI)., pp.309–315.

Maalej et al. 2009. When users become collaborators In: Proceedings of the SIGPLAN conference

companion on Object oriented programming systems languages and applications. ACM, pp.981–

990.

Malgaonkar et al. 2022. Prioritizing user concerns in app reviews – A study of requests for new

features, enhancements and bug fixes. Information and Software Technology. 144, p.106798.

Memmer et al. 2024a. Pilot Testing of a German Version of the ‘PRISM’ App to Promote Social

305

Participation in Aging: Initial Implementation. Zeitschrift für Medien und Altern.

Memmer et al. 2024b. SMART-AGE Study Protocol: A Complex Intervention to Increase Social

Participation, Physical Fitness and Health Awareness Among Older Adults. BMC Trials.

Menkveld et al. 2019. User story writing in crowd requirements engineering: The case of a web

application for sports tournament planning In: Proceedings of the International Conference on

Requirements Engineering. IEEE, pp.174–179.

Mollenkopf et al. 2000. Technik im Haushalt zur Unterstützung einer selbstbestimmten

Lebensführung im Alter. Zeitschrift fur Gerontologie und Geriatrie. 33(3), pp.155–168.

Van Oordt, S. and Guzman, E. 2021. On the Role of User Feedback in Software Evolution: A

Practitioners’ Perspective In: Proceedings of the International Conference on Requirements

Engineering. IEEE, pp.221–232.

Oriol et al. 2018. FAME: Supporting Continuous Requirements Elicitation by Combining User

Feedback and Monitoring In: Proceedings of the International Conference on Requirements

Engineering. IEEE, pp.217–227.

Paech, B. and Kohler, K. 2004. Task-Driven Requirements in Object-Oriented Development In:

Perspectives on Software Requirements. Springer, pp.45–67.

Panichella et al. 2015. How can I improve my app? Classifying user reviews for software

maintenance and evolution In: Proceedings of the International Conference on Software

Maintenance. IEEE.

Radeck et al. 2022. Understanding IT-related Well-being, Aging and Health Needs of Older

Adults with Crowd-Requirements Engineering In: Proceedings of the IEEE International

Conference on Requirements Engineering. IEEE, pp.57–64.

Radeck, L. and Paech, B. 2024. Channeling the Voice of the Crowd: Applying Structured Queries

in User Feedback Collection In: Proceedings of the International Working Conference on

Requirements Engineering: Foundation for Software Quality. Springer Nature Switzerland,

pp.284–301.

Radeck, L. and Paech, B. 2023. Integrating Implicit Feedback into Crowd Requirements

Engineering – A Research Preview In: Proceedings of the International Conference on

Requirements Engineering: Foundation for Software Quality. ACM, pp.283–292.

Renzel et al. 2013. Requirements Bazaar: Social requirements engineering for community-driven

innovation In: Proceedings of the International Requirements Engineering Conference. IEEE,

pp.326–327.

Rietz, T. 2019. Designing a conversational requirements elicitation system for end-users In:

Proceedings of the International Conference on Requirements Engineering. IEEE, pp.452–457.

Roque, N.A. and Boot, W.R. 2018. A New Tool for Assessing Mobile Device Proficiency in Older

Adults: The Mobile Device Proficiency Questionnaire. Journal of Applied Gerontology. 37(2),

pp.131–156.

Saphira, M. and Rusli, A. 2019. Towards a gamified support tool for requirements gathering in

Bahasa Indonesia In: Proceedings of the International Conference on New Media Studies. IEEE,

pp.201–206.

Sardi, L., Idri, A. and Fernández-Alemán, J.L. 2017. A systematic review of gamification in e-

Health. Journal of Biomedical Informatics. 71, pp.31–48.

Sauro, J. and Lewis, J.R. 2012. Quantifying the User Experience: Practical Statistics for User Research.

306

Morgan Kaufmann.

Scherbatschenko, D. 2023. Ableitung von Anforderungen aus Nutzerfeedback (Master Thesis).

Heidelberg University.

Seyff et al. 2010. End-user requirements blogging with iRequire In: Proceedings of the International

Conference on Software Engineering., pp.285–288.

Sharma, R. and Sureka, A. 2018. CRUISE: A platform for crowdsourcing Requirements Elicitation

and evolution In: Proceedings of the International Conference on Contemporary Computing. IEEE,

pp.1–7.

Sheskin, D. 2004. Handbook of Parametric and Nonparametric Statistical Procedures.

Technometrics. 46(3), pp.369–370.

Shih, T.H. and Xitao, F. 2008. Comparing response rates from web and mail surveys: A meta-

analysis. Field Methods. 20(3), pp.249–271.

Snijders et al. 2015. REfine: A gamified platform for participatory requirements engineering In:

Proceedings of the International Workshop on Crowd-Based Requirements Engineering. IEEE, pp.1–

6.

Stade et al. 2017. Providing a user forum is not enough: First experiences of a software company

with CrowdRE In: Proceedings of the International Requirements Engineering Conference

Workshops. IEEE, pp.164–169.

Stanmore, E. 2021. Developing, Testing, and Implementing a Falls Prevention and Healthy Aging

App (Keep-On-Keep-Up) for Older Adults. Innovation in Aging. 5, p.514.

Tizard et al. 2020. Voice of the Users: A Demographic Study of Software Feedback Behaviour In:

Proceedings of the International Conference on Requirements Engineering. IEEE, pp.55–65.

Tizard et al. 2021. Voice of the users: an extended study of software feedback engagement.

Requirements Engineering. 27, pp.293–315.

Vijayan et al. 2017. Collaborative requirements elicitation using elicitation tool for small projects

In: Proceedings of the International Conference on Signal Processing, Communication, Power and

Embedded System. IEEE, pp.340–344.

Vogel et al. 2020a. German Ageing Survey (DEAS). Encyclopedia of Gerontology and Population

Aging., pp.1–9.

Vogel et al. 2020b. Leveraging the internal crowd for continuous requirements engineering -

Lessons learned from a design science research project In: Proceedings of the European

Conference on Information Systems. AIS eLibrary.

Wagner, M. and Zank, S. 2022. Abschlussbericht: Lebensqualität und Wohlbefinden hochaltriger

Menschen in NRW (Folgebefragung NRW80+). Cologne Center for Ethics, Rights, Economics,

and Social Sciences of Health.

Wehrmaker, T., Gärtner, S. and Schneider, K. 2012. ConTexter feedback system In: Proceedings of

the International Conference on Software Engineering. IEEE, pp.1459–1460.

Wieringa, R.J. 2014. Design Science Methodology for Information Systems and Software Engineering.

Springer.

Wouters et al. 2022. Crowd-based requirements elicitation via pull feedback: method and case

studies. Requirements Engineering. 27, pp.429–455.

Wouters et al. 2021. CrowdRE in a Governmental Setting : Lessons from Two Case Studies In:

307

Proceedings of the International Conference on Requirements Engineering. IEEE, pp.312–322.

Wüest et al. 2019. Combining Monitoring and Autonomous Feedback Requests to Elicit

Actionable Knowledge of System Use In: Proceedings of the International Conference on

Requirements Engineering: Foundation for Software Quality. Springer, pp.209–225.

Xu, X., Du, H. and Lian, Z. 2022. Discussion on regression analysis with small determination

coefficient in human-environment researches. Indoor Air. 32(10), pp.1–13.

Yang et al. 2008. WikiWinWin: A Wiki based system for collaborative requirements negotiation

In: Proceedings of the International Conference on System Sciences. IEEE, pp.1–10.

308

309

INDEX OF TABLES

Table 1.1: Structure of the thesis... 24

Table 1.2: Previous publications ... 25

Table 3.1: Research questions ... 37

Table 3.2: Prototypical search string .. 40

Table 3.3: Search string after identifying alternatives for the root search terms (green

background) by analyzing the 20 most frequent words of the known relevant articles. 41

Table 3.4: Refined prototypical search string after identifying similar words to the root search

terms (green background) inside the known relevant articles. .. 42

Table 3.5: Refined prototypical search string after eliminating ambiguous or too general words

(red font) and after blacklisting specific words or phrases (green background). 43

Table 3.6: Final search term after limiting research field to “requirement* engineering” (green

background). .. 44

Table 3.7: Inclusion criteria ... 45

Table 3.8: Identified articles through term-based search that pass I6 and not I7............................ 48

Table 3.9: Identified new articles through snowballing (passing I1-I6, but not I7). Excluding

duplicates. ... 50

Table 3.10: Identified relevant articles through snowballing (passing I1-I7). Excluding known

relevant articles and duplicates. .. 50

Table 3.11: All relevant articles ... 51

Table 3.12: Condensed synthesis matrix. US=User story, US*=US, User scenario, Use case 53

Table 4.1: Process steps description and reasons ... 70

Table 4.2: Structure of IQ and their answer options. O=Owner, P=Purpose, T=Type, A=Aspect,

C=Category ... 76

Table 4.3: Example IQ and answer options. ... 77

Table 4.4: CR and their topics. C=Id of CR, T=Id of topic, .. 85

Table 4.5: Different types of FUQ along with their conditions, goals and the topic id (T) of Table

4.4 for which they are used .. 86

Table 4.6: FUQ1 elements and examples regarding topic id T1 from Table 4.4 87

Table 4.7: FUQ2 elements and examples regarding topic id T2 of Table 4.4 88

Table 4.8: FUQ3 elements and examples regarding topic id T3 and T4 of Table 4.4 89

Table 4.9: Characteristics of FUQ and examples ... 91

Table 4.10: Addressing the problems .. 96

Table 5.1: TORE levels ... 98

Table 5.2: User roles with User Tasks .. 99

Table 5.3: Subtasks for UT1(U) ... 100

Table 5.4: Subtasks for UT1(R) ... 102

310

Table 5.5: Workspaces for the user .. 105

Table 5.6: Workspaces for the REeng .. 107

Table 5.7: Advantages and disadvantages between Vue.js and GWT ... 113

Table 5.8: Virtual windows for workspaces and their component that is used instead of the

placeholder part of the user interface. .. 116

Table 5.9: Advantages and disadvantages between Java EE and Java Spring Boot 121

Table 5.10: Queries regarding different entities ... 125

Table 5.11: Mutations regarding different entities .. 126

Table 5.12: Example query test that validates whether a user receives the correct questions at a

specific day ... 131

Table 5.13: Example mutation test that validates whether a user can correctly create an answer

to a question ... 132

Table 5.14: Example test for the repository AnswerRepository .. 132

Table 5.15: Example integration test, that checks whether an answer can be submitted 133

Table 6.1: Datasets .. 137

Table 6.2: Number of FUQ and timepoints .. 138

Table 6.3: Examples for derived requirements .. 139

Table 7.1: Research questions for the feasibility .. 143

Table 7.2: FUQ and the percentage of users who gave votes .. 147

Table 7.3: Time effort for one person for the conduction of the process to derive requirements

 .. 147

Table 8.1: Research questions for the effectiveness ... 152

Table 8.2: Comparison of SF to other platforms. US=User story, W=Wider, R=Restrictive 156

Table 9.1: Research questions for the satisfaction .. 160

Table 9.2: Answers to the questions regarding the satisfaction with the process of asking FUQ.

A1=Yes, A2=I don’t care, A3=No, A4=I find the question not comprehensible, A5=I cannot

answer the question. Dataset: GFINAL (n=143) ... 166

Table 10.1: Characteristics of users that are collected through questionnaires 170

Table 10.2: Characteristics of IQ. For examples for IQ see Section 4.4.1.1. 170

Table 10.3: Research questions for the effectiveness ... 171

Table 10.4: Significant results regarding the influence of user questionnaire characteristics and

IQ characteristics on whether an IQ was answered. n=60778, Pseudo R2=0.066, p=<0.001 174

Table 10.5: Results regarding the correlation of user usage characteristics with the number of

answers to IQ. ... 175

Table 10.6: Significant results regarding the influence of the user questionnaire characteristics

and IQ characteristics on whether an IQ was answered and contained a CR. (n=16510,

Pseudo R2=0,080, p=<0.001) .. 177

311

Table 10.7: Results regarding the correlation of user usage characteristics with the number of

CR ... 177

Table 10.8: Significant results regarding the correlation of user usage characteristics average

time difference to answer IQ .. 179

312

313

INDEX OF FIGURES
Figure 1.1: Goal structure of this thesis. Arrows are indicating that a goal contributes to another

goal. .. 21

Figure 1.2: Design cycle of this thesis as UML activity diagram. The activities represent the

achievement of each research goal. The activities belong to the design science tasks:

Problem Investigation (PI), Treatment Design (TD) and Treatment Validation (TV). 22

Figure 2.1: Overview of the study design (Memmer et al., 2024b) N = total sample size, n =

sample size in the treatment arms, CT = cognitive tasks, T1/T3/T6 = timepoint in the study 28

Figure 2.2: Screenshot of SV showing the sidebar with activities on the left and tools on the

right. In the background news are presented and information about the weather. 31

Figure 2.3: Screenshot of start page of SF ... 31

Figure 2.4: Four screenshots of KOKU showing the exercise scheduled for the current day

(yellow); showing the SPs’ progress (green) indicating how many exercises have been

completed so far; showing games (blue) and showing the variety of exercises for users to

choose from (red). .. 32

Figure 2.5: Screenshot of SI showing a question that is asked to the SP. On the left sidebar the

options “Home”, “Questions”, “Recommendations”, “Answers” and “Profile” can be

selected. ... 33

Figure 3.1: Included and excluded articles by I1 (term-based search) ... 46

Figure 3.2: Included articles by I1 - I7 (term-based search).. 47

Figure 3.3: Distribution of publication years of relevant articles .. 52

Figure 4.1: Activity diagram representing the process to collect feedback and derive

requirements. Numbers (e.g. ❶) indicate individual steps (or groups of steps) of the

process. .. 69

Figure 4.2: Sunburst chart with distribution of IQ and their characteristics 78

Figure 4.3: Diagram representing the process of asking an adaptive IQ. .. 80

Figure 4.4: UML activity diagram representing the process to iteratively derive, select and ask

FUQ. DSA=Derive, select and ask ... 95

Figure 5.1: UI structure diagram for the user ... 109

Figure 5.2: UI structure diagram for the REeng ... 110

Figure 5.3: Virtual window for W: DetailedQuestionView (U) including W: HeaderView (U) and W:

SidebarView (U) ... 111

Figure 5.4: Overview over the three-tier architecture of SF. Arrows represent communication

direction. ... 112

Figure 5.5: Representation of the virtual windows of the workspaces W: DetailedQuestionView

(R) and W: DetailedQuestionView (U) through components. .. 115

Figure 5.6: Structure of the user interface of SF. Dashed line means that this part of the user

interface is represented by different components. .. 115

Figure 5.7: Mockup of the implementation of the virtual window W: HistoryView (U) along with

colored areas to show what Vuetify components are used. .. 118

Figure 5.8: Class diagram for entities .. 123

314

Figure 5.9: Flow diagram for steps necessary to execute queries and mutations. Unnamed

dashed arrows represent “accesses” and solid arrows represent data. 129

Figure 5.10: LOC per file type for the backend .. 130

Figure 7.1: Each IQ (iq) and the number of users that answered it (niq) ... 145

Figure 7.2: Average usage time per week in minutes for SF (n=273) .. 149

Figure 7.3: Average starts per user per week for SF (n=273) ... 149

Figure 8.1: Clusters of users and their average time to answer an IQ for the first time (n=258, 15

users did not answer IQ) .. 154

Figure 9.1: Answers to IQ which ask about opinions regarding function requirements (n=273)

 .. 162

Figure 9.2: Answers to IQ which ask about opinions regarding non-functional requirements and

provide likert scale (n=273) .. 163

Figure 9.3: Answers to IQ that asks about how users are satisfied with the display of IQ (n=273)

 .. 164

Figure 9.4: Proportion of answers to FUQ indicating that FUQ are incomprehensible (n=205) . 165

Figure A.1.1: Included articles by I1 - I7 (Snowballing) ... 204

Figure B.2.1: Virtual window for W: QuestionView (U) ... 248

Figure B.2.2: Virtual window for W: MessageView (U) .. 248

Figure B.2.3: Virtual window for W: SentView (U) .. 248

Figure B.2.4: Virtual window for W: DetailedQuestionView (U) .. 249

Figure B.2.5: Virtual window for W: DetailedAnwerView (U) .. 249

Figure B.2.6: Virtual window for W: DetailedMessageView (U) ... 249

Figure B.2.7: Virtual window for W: CommentView (U) .. 250

Figure B.2.8: Virtual window for W: HistoryView (U) .. 250

Figure B.2.9: Virtual window for W: DetailedAnswerHistoryView (U) 250

Figure B.2.10: Virtual window for W: DetailedMessageHistoryView (U) 251

Figure B.2.11: Virtual window for W: InstructionView (U) .. 251

Figure B.2.12: Virtual window for W: QuestionView (R) ... 252

Figure B.2.13: Virtual window for W: CreateQuestionView (R) .. 252

Figure B.2.14: Virtual window for W: ScheduleView (R) .. 252

Figure B.2.15: Virtual window for W: ResultsView (R) ... 253

Figure B.2.16: Virtual window for W: DetailedQuestionView (R) ... 253

Figure B.2.17: Virtual window for W: DetailedAnswerView (R) .. 253

Figure B.2.18: Virtual window for W: DetailedMessageView (R) .. 254

Figure B.2.19: Virtual window for W: CommentView (R) .. 254

Figure B.2.20: Virtual window for W: UserView (R) ... 254

Figure B.2.21: Screenshot for implemented virtual window of W: QuestionView (U) 255

Figure B.2.22: Screenshot for implemented virtual window of W: MessageView (U)................. 255

Figure B.2.23: Screenshot for implemented virtual window of W: SentView (U) 255

Figure B.2.24: Screenshot for implemented virtual window of: DetailedQuestionView (U) 256

Figure B.2.25: Screenshot for implemented virtual window of: DetailedAnswerView (U) 256

Figure B.2.26: Screenshot for implemented virtual window of W: DetailedMessageView (U). 256

Figure B.2.27: Screenshot for implemented virtual window of W: CommentView (U) 257

315

Figure B.2.28: Screenshot for implemented virtual window of W: HistoryView (U) 257

Figure B.2.29: Screenshot for implemented virtual window of W: DetailedAnswerHistoryView

(U) .. 257

Figure B.2.30: Screenshot for implemented virtual window of W:

DetailedMessageHistoryView (U) .. 258

Figure B.2.31: Screenshot for implemented virtual window of W: InstructionView (U) 258

Figure B.2.32: Screenshot for implemented virtual window of W: QuestionView (R) 259

Figure B.2.33: Screenshot for implemented virtual window of W: CreateQuestionView (R) .. 259

Figure B.2.34: Screenshot for implemented virtual window of W: ScheduleQuestionView (R)

 .. 259

Figure B.2.35: Screenshot for implemented virtual window of W: ResultsView (R) 260

Figure B.2.36: Screenshot for implemented virtual window of W: DetailedQuestionView (R)

 .. 260

Figure B.2.37: Screenshot for implemented virtual window of W: DetailedAnswerView (R) . 260

Figure B.2.38: Screenshot for implemented virtual window of W: DetailedMessageView (R) 261

Figure B.2.39: Screenshot for implemented virtual window of W: CommentView (R)............. 261

Figure B.2.40: Screenshot for implemented virtual window of W: UserView (R) 261

Figure B.2.41: FUQ with id FF1 .. 262

Figure B.2.42: FUQ with id FF2 .. 262

Figure B.2.43: FUQ with id FF3 .. 262

Figure B.2.44: FUQ with id FF4 .. 263

Figure B.2.45: FUQ with id FF5 .. 263

Figure B.2.46: FUQ with id FF6 .. 263

Figure B.2.47: FUQ with id FF7 .. 264

Figure B.2.48: FUQ with id FF8 .. 264

Figure B.2.49: FUQ with id FF9 .. 264

Figure B.2.50: FUQ with id FF10 .. 265

Figure B.2.51: FUQ with id FF11 .. 265

Figure B.2.52: FUQ with id AV1 ... 265

Figure B.2.53: FUQ with id AV2 ... 266

Figure B.2.54: FUQ with id AV3 ... 266

Figure B.2.55: FUQ with id AV4 ... 266

Figure B.2.56: FUQ with id AV5 ... 267

Figure B.2.57: FUQ with id AV6 ... 267

Figure B.2.58: FUQ with id AV7 ... 267

Figure B.2.59: FUQ with id AV8 ... 268

Figure B.2.60: FUQ with id FF1_FF .. 269

Figure B.2.61: FUQ with id FF2_FF .. 269

Figure B.2.62: FUQ with id FF3_AV .. 269

Figure B.2.63: FUQ with id FF4_AV .. 270

Figure B.2.64: FUQ with id FF5_AV .. 270

Figure B.2.65: FUQ with id FF6_AV .. 270

Figure B.2.66: FUQ with id FF7_AV .. 271

Figure B.2.67: FUQ with id FF8_AV .. 271

Figure B.2.68: FUQ with id FF9_FF .. 271

316

Figure B.2.69: FUQ with id FF10_AV .. 272

Figure B.2.70: FUQ with id FF11_AV .. 272

Figure B.2.71: FUQ with id 2_FF1 .. 273

Figure B.2.72: FUQ with id 2_FF2 .. 273

Figure B.2.73: FUQ with id 2_FF3 .. 273

Figure B.2.74: FUQ with id 2_FF4 .. 274

Figure B.2.75: FUQ with id 2_FF5 .. 274

Figure B.2.76: FUQ with id 2_FF6 .. 274

Figure B.2.77: FUQ with id 2_FF7 .. 275

Figure B.2.78: FUQ with id 2_FF8 .. 275

Figure B.2.79: FUQ with id 2_FF9 .. 275

Figure B.2.80: FUQ with id 2_FF10 .. 276

Figure B.2.81: FUQ with id 2_FF11 .. 276

Figure B.2.82: FUQ with id 2_AV1 ... 276

Figure B.2.83: FUQ with id 2_AV2 ... 277

Figure B.2.84: FUQ with id 2_AV3 ... 277

Figure B.2.85: FUQ with id 2_AV4 ... 277

Figure B.2.86: FUQ with id 2_AV5 ... 278

Figure B.2.87: FUQ with id 2_AV6 ... 278

Figure B.2.88: FUQ with id 2_AV7 ... 278

Figure B.2.89: FUQ with id 2_AV8 ... 279

Figure B.2.90: FUQ with id 2_FF1_AV .. 280

Figure B.2.91: FUQ with id 2_FF2_AV .. 280

Figure B.2.92: FUQ with id 2_FF3_AV .. 280

Figure B.2.93: FUQ with id 2_FF4_FF .. 281

Figure B.2.94: FUQ with id 2_FF5_AV .. 281

Figure B.2.95: FUQ with id 2_FF6_AV .. 281

Figure B.2.96: FUQ with id 2_FF7_AV .. 282

Figure B.2.97: FUQ with id 2_FF8_FF .. 282

Figure B.2.98: FUQ with id 2_FF9_AV .. 282

Figure B.2.99: FUQ with id 2_FF11_AV .. 283

317

INDEX OF LISTINGS
Listing 1: Refined prototypical search term in IEEE command search format 43

Listing A.1.1: Final search term in IEEE command search format .. 203

	Abstract
	Zusammenfassung
	Acknowledgements
	I. PRELIMINARIES
	1 Introduction
	1.1 Problem context
	1.2 Research methodology
	1.3 Contributions
	1.4 Structure of this thesis
	1.5 Previous Publications
	2 Foundations
	2.1 User feedback types
	2.2 SMART-AGE
	2.2.1 Blinding
	2.2.2 Enrollment procedures
	2.2.3 Apps
	2.2.3.1 smartVERNETZT (SV)
	2.2.3.2 smartFEEDBACK (SF)
	2.2.3.3 KOKU
	2.2.3.4 smartIMPULS (SI)

	II. PROBLEM INVESTIGATION
	3 State of the art and practice: Collection of feedback over platforms
	3.1 Research questions
	3.2 Methodology
	3.2.1 Generation of the search string
	3.2.1.1 Constructing a prototypical search string
	3.2.1.2 Identifying alternatives for the root search terms
	3.2.1.3 Adapting the prototypical search string to allow for a manageable amount of search results

	3.2.2 Specification of the search sources
	3.2.3 Definition of the inclusion criteria
	3.2.4 Conduction of the term-based search
	3.2.5 Conduction of forward and backward snowballing

	3.3 Results
	3.3.1 Term-based search
	3.3.2 Snowballing
	3.3.3 Relevant articles
	3.3.4 Literature overview
	3.3.5 Synthesis

	3.4 Discussion
	3.5 Threats to validity

	III. TREATMENT DESIGN
	4 Process to collect feedback and derive requirements
	4.1 Explanation of the documentation format
	4.2 Design decisions
	4.3 Overview of the process
	4.4 Process to collect feedback through initial questions (IQ)
	4.4.1 REengs select IQ
	4.4.1.1 IQ characteristics
	4.4.1.2 IQ structure and examples
	4.4.1.3 IQ selection

	4.4.2 REengs ask IQ
	4.4.3 Users answer or skip IQ
	4.4.4 Users send messages and comments

	4.5 Process to derive requirements through follow-up questions (FUQ)
	4.5.1 Related work
	4.5.2 Terminology
	4.5.3 REengs prepare the feedback
	4.5.3.1 REengs extract change requests (CR)
	4.5.3.2 REengs map CR to requirements
	4.5.3.3 REengs map CR to topics

	4.5.4 REengs derive requirements
	4.5.4.1 REengs derive FUQ
	4.5.4.2 REengs select FUQ
	4.5.4.3 REengs iteratively derive, select and ask FUQ
	4.5.4.4 REengs change or create requirements

	4.6 Addressing the problems
	4.7 Conclusion
	5 smartFEEDBACK (SF) - Platform that supports the process
	5.1 Requirements
	5.1.1 Task level
	5.1.2 Domain level
	5.1.3 Interaction level
	5.1.3.1 Workspaces
	5.1.3.2 System functions

	5.1.4 System level

	5.2 Design and implementation
	5.2.1 Presentation tier
	5.2.1.1 Technology selection
	5.2.1.2 Design
	5.2.1.3 Implementation

	5.2.2 Logic tier
	5.2.2.1 Technology selection
	5.2.2.2 Design
	5.2.2.3 Implementation

	5.3 Quality Assurance
	5.3.1 Component tests
	5.3.1.1 Testing the queries and mutations
	5.3.1.2 Testing the repositories

	5.3.2 Integration tests
	5.3.3 Continuous integration and deployment

	IV. TREATMENT VALIDATION
	6 Study context
	6.1 Data collection
	6.1.1 Datasets
	6.1.2 Resulting data of the process to collect feedback
	6.1.3 Resulting data of the process to derive requirements
	6.2 Threats to validity

	7 Validation of feasibility
	7.1 Research questions
	7.2 Results and discussion
	7.2.1 Feasibility of collecting feedback
	7.2.1.1 Is it feasible to collect feedback through IQ?
	7.2.1.2 Is it feasible to collect feedback through messages?

	7.2.2 Feasibility of deriving requirements
	7.2.2.1 Is it feasible to collect votes through FUQ?
	7.2.2.2 Is it feasible to change or create requirements based on the FUQ?

	7.2.3 Feasibility of usage of smartFEEDBACK
	7.3 Conclusion

	8 Validation of effectiveness
	8.1 Research questions
	8.2 Results and discussion
	8.2.1 Effectiveness of timeliness
	8.2.2 Effectiveness of completeness
	8.2.2.1 Is it effective to collect feedback through IQ?
	8.2.2.2 Is it effective to map feedback to requirements?
	8.2.2.3 Is it effective to collect change requests?

	8.2.3 Effectiveness of requirements derivation
	8.3 Conclusion

	9 Validation of satisfaction
	9.1 Research questions
	9.2 Results and discussion
	9.2.1 Satisfaction with the platform
	9.2.1.1 How satisfied are the users with the platform in general?
	9.2.1.2 How satisfied are the users with the functional requirements?
	9.2.1.3 How satisfied are the users with the non-functional requirements?

	9.2.2 Satisfaction with the questions
	9.2.2.1 How satisfied are the users with the display of the IQ?
	9.2.2.2 How comprehensible are the FUQ?

	9.2.3 Satisfaction with the process of asking FUQ
	9.3 Conclusion

	10 Improvement of the approach
	10.1 Characteristics
	10.2 Research questions
	10.3 Results and discussion
	10.3.1 Statistical terminology
	10.3.2 Improvement of the effectiveness to collect feedback through IQ
	10.3.3 Improvement of the effectiveness to collect CR
	10.3.4 Improvement of the effectiveness to collect feedback timely
	10.4 Conclusion

	V. CONCLUSION AND OUTLOOK
	11 Conclusion
	12 Outlook

	VI. APPENDIX
	A Supplementary Material for the Problem Investigation
	A.1 Methodology
	A.2 Results

	B Supplementary material for the treatment Design
	B.1 Coding
	B.2 Selection of FUQ
	B.3 Requirements
	B.4 FUQ
	B.5 Handbook for SF

	C Supplementary material for the treatment validation
	C.1 Derived requirements
	C.2 Characteristics

	Bibliography
	Index of tables
	Index of figures
	Index of listings

