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Abstract

The integration of diverse omics layers with advanced computational methods can help to
decipher cellular signaling and disease mechanisms. Thereby it is crucial to ensure that
computational predictions truly reflect biological mechanisms and that different omics
layers are cohesively integrated. This thesis focuses on evaluating approaches to infer
the activity of transcription factors and kinases as well as advancing methods to un-
cover context-dependent signaling networks. First, to identify the most reliable strate-
gies for activity inference, benchmarking frameworks were established to assess various
inference methods. This revealed that a novel collection of signed transcription factor-
gene interactions outperforms existing resources in predicting transcription factor activ-
ities. Similarly, manually curated kinase-substrate libraries combined with less complex
computational models were shown to provide higher accuracy for kinase activity infer-
ence. Next, to reveal the role of these regulators in signaling pathways across diverse
biological contexts, methods for network contextualization were developed, incorporat-
ing phosphoproteomics data alone and in combination with transcriptomics data. For
phosphoproteomics-based networkmodeling, signed protein-protein interactions were in-
corporated to account for regulatory directionality, improving the representation of bio-
logical networks. Additionally, a multi-omics network contextualization approach was
established which is able to link upstream stimuli to kinase and transcription factor ac-
tivities in a cohesive manner, bridging phosphoproteomics and transcriptomics data. The
network models were then applied to study the effects of metformin on colorectal can-
cer and the mechanisms driving hepatic stellate cell activation, uncovering condition-
specific regulatory mechanisms and potential interactions between key signaling path-
ways. This highlights that integrating experimental data with reliable prior knowledge
and advanced computational approaches can aid in understanding context-dependent sig-
naling processes in complex biological systems.
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Zusammenfassung

DasVerknüpfen verschiedenerOmics-Datenebenenmit bioinformatischenMethoden kann
helfen, zelluläre Signalwege und pathologische Krankheitsprozesse zu entschlüsseln. Da-
bei muss sichergestellt werden, dass computergestützte Vorhersagen die biologischen
Mechanismen korrekt widerspiegeln und Omics-Ebenen kohärent integriert werden. Der
Fokus dieser Arbeit liegt auf der Bewertung von Ansätzen zur Berechnung der Aktivität
von Transkriptionsfaktoren und Kinasen sowie auf der Weiterentwicklung von Methoden
zur Aufdeckung kontextabhängiger Signalnetzwerke. Zunächst wurden Bewertungskri-
terien festgelegt, um die zuverlässigsten Strategien zur Aktivitätsabschätzung zu identi-
fizieren und verschiedene Inferenzmethoden zu bewerten. Es zeigte sich, dass eine neue
Sammlung von Transkriptionsfaktor-Gen-Interaktionen die bestehenden Ressourcen bei
der Vorhersage von Transkriptionsfaktor-Aktivitäten übertrifft. Ebenso konnten manuell
erstellte Kinase-Substrat-Bibliotheken in Kombination mit weniger komplexen Modellen
eine höhere Genauigkeit bei der Abschätzung der Kinaseaktivität erreichen. Um die
Rolle dieser Regulatoren in Signalwegen verschiedener biologischer Kontexte zu un-
tersuchen, wurden Methoden zur Netzwerkkontextualisierung entwickelt, die Phospho-
proteomikdaten allein oder in Kombination mit Transkriptomikdaten einbeziehen. Für
die phosphoproteomikbasierte Netzwerkmodellierung wurden signierte Protein-Protein-
Interaktionen genutzt, um die Art der Regulation besser darzustellen und biologische
Netzwerke genauer abzubilden. Zusätzlich wurde ein Multi-Omics-Ansatz zur Netzw-
erkkontextualisierung entwickelt, der vorgeschaltete Stimuli mit der Aktivität von Ki-
nasen und Transkriptionsfaktoren kohärent verknüpft. Dadurch wurde die Verbindung
von Phosphoproteomik- und Transkriptomik-Daten ermöglicht. Diese Netzwerkmodelle
wurden verwendet, um die Wirkung von Metformin auf kolorektale Karzinome sowie
die Aktivierungsmechanismen hepatischer Sternzellen zu untersuchen. Dabei konnten
spezifische regulatorische Mechanismen und potenzielle Interaktionen zwischen wichti-
gen Signalwegen mit kontextspezifischen Variationen identifiziert werden. Dies zeigt,
dass die Kombination experimenteller Daten mit zuverlässigem Vorwissen und fortschrit-
tlichen Rechenansätzen das Verständnis kontextabhängiger Signalprozesse in komplexen
biologischen Systemen verbessern kann.
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Chapter 1

Introduction

1.1 Systems Biology

The human body comprises nearly 37 trillion cells, forming a complex biological sys-
tem that is able to operate in a highly coordinated manner (Sender et al., 2016). In this
system, cells perform distinct functions, such as providing immune defense or creating
protective barriers, tailored to their specific roles within the organism. These cellular
functions are governed by a complex network of biomolecules, including approximately
20,000 protein-coding genes (Consortium, 2004) that are able to produce over 100,000
distinct proteins (Aebersold and Mann, 2016). These proteins can be further modulated
by more than 400 types of post-translational modifications (PTMs), such as phosphory-
lation, acetylation, and ubiquitination, that influence their localization, stability, and ac-
tivity (Khoury et al., 2011; Ramazi and Zahiri, 2021). Adding another layer of complex-
ity, cofactors regulated by metabolic pathways play essential roles in fine-tuning protein
functions (Sun et al., 2023). All together, these biomolecules form a dynamic and inter-
connected network that drives cellular functions and enables cells to adapt to external and
internal stimuli (Aebersold and Mann, 2016). Additionally, they allow cells to communi-
cate with one another and synchronize their processes, ensuring harmonious coordination
throughout the body (Figure 1.1).

To fully understand these complex networks and be able to capture processes, such as
self-regulation, adaptability, and multicellular coordination, it is crucial to study the sys-
tem as a whole rather than as a collection of isolated parts (Turnbull et al., 2018). As such,
systems biology emerged as a discipline dedicated to integrating biological processes to
uncover how their interactions give rise to the functions of life. Systems biology empha-

1
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Figure 1.1. Illustration of intracellular networks driving cellular processes. Connec-
tion of signaling, metabolic, and gene regulatory networks to regulate cellular processes.
Ligands are secreted from neighboring cells and bind to receptors on the cell surface lead-
ing trough intracellular signaling cascades to downstream metabolic and transcriptional
regulation. Adapted from Garrido-Rodriguez et al. (2022).

sizesmodeling dynamic, nonlinear interactions and integrating smaller, modular networks
into cohesive frameworks, providing insights into processes like cell signaling, feedback
loops, and metabolic regulation (Manson, 2001). For instance, mathematical models of
signaling pathways can reveal how perturbations affect cellular decision-making, such as
apoptosis or proliferation (Alon, 2007). Computational advances have further enabled
the incorporation of context-dependent variables like environmental stimuli or cell-type
specificity (Melham, 2013;Motta and Pappalardo, 2012). In systems biology, omics anal-
yses, spanning genomics, transcriptomics, proteomics, or metabolomics for example, has
emerged as a vital tool for dissecting these intricate systems, providing a comprehensive
view of molecular interactions and their regulation in diverse biological contexts (Hasin
et al., 2017).

1.2 Leveraging Omics Data to Profile Diseases

The emergence of high-throughput omics technologies enables a deep exploration of the
molecular mechanisms underlying cellular function and diseases. These technologies
generate comprehensive datasets, capturing full transcriptomes, epigenetic modifications,
metabolic activities, signaling pathways, protein profiles, chromosomal arrangements,
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and other molecular characteristics (Hasin et al., 2017; Joyce and Palsson, 2006; Kar-
czewski and Snyder, 2018). By systematically profiling genes, proteins, post-translational
modifications and other modalities, omics approaches offer a multidimensional approach
to study cellular processes. However, while integrating these data types is essential for
achieving a holistic understanding of cellular function and disease mechanisms, chal-
lenges in interpretation and cross-omics integration remain.

1.2.1 Transcriptomics

Transcriptomics examines the abundance of ribonucleic acid (RNA)molecules to uncover
gene expression patterns within a given biological entity, such as a tissue, cell, or organ-
ism (Lowe et al., 2017). Early transcriptomics approaches focused on measuring gene
expression at the population level, capturing the average expression across all cells in a
sample, using technologies such as microarrays and RNA sequencing (RNA-seq). While
microarrays rely on hybridization to predefined probes, RNA-seq provides an unbiased
and high-resolution approach, capable of detecting both known and novel transcripts, as
well as quantifying isoforms (Ozsolak and Milos, 2011; Wang et al., 2009). Due to its ad-
vantages and advancements in sequencing technologies, decreasing costs, and greater ac-
cessibility, RNA-seq has become the preferred method over microarrays nowadays (Mor-
tazavi et al., 2008). To measure transcriptomics using RNA-seq, the process begins with
the extraction of RNA from a tissue or cell sample, followed by the enrichment of messen-
ger RNA (mRNA) and the synthesis of complementary DNA (cDNA) (Stark et al., 2019).
The cDNA is then fragmented and sequenced to generate short reads, which are mapped
to a reference genome and summarized into gene-specific counts (Conesa et al., 2016).
The number of reads mapped to a particular gene reflects its expression level, providing
a quantitative measure of transcriptional activity (Mortazavi et al., 2008). RNA-seq typi-
cally captures the expression of tens of thousands of genes offering a detailed snapshot of
the transcriptional state of the sample under specific experimental conditions (Stark et al.,
2019; Wang et al., 2009).

While transcriptomics provides valuable insights into the transcriptional activity of
tissues and cells, it does not necessarily reflect their functional state given the low corre-
lation between transcript and protein abundance (Maier et al., 2009) and the influence of
additional regulatory mechanisms, including epigenetic (Fraser et al., 2021; Isbel et al.,
2022), post-transcriptional (Zhao et al., 2017), and post-translational (Jensen, 2004) mod-
ifications. These regulatory layers can be explored using other omics technologies, which
can complement transcriptomics data to provide a more comprehensive understanding of
cellular functions and their regulation.
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1.2.2 (Phospho)proteomics

Proteomics and phosphoproteomics enable the large-scale analysis of proteins and their
modifications, specifically phosphorylations, within biological samples. This provides
valuable insights into the molecular mechanisms underlying cellular states as proteins
are the primary effectors of cellular function and morphology and are closely linked to
the phenotype (Cox and Mann, 2007; Timp and Timp, 2020). High-throughput methods
for proteomics are typically classified into antibody-based methods, such as protein mi-
croarrays, and mass spectrometry (MS)-based methods, which have become central to
proteome analysis (Aslam et al., 2017). In recent years, advances in MS-based technolo-
gies have made it possible to quantify thousands of proteins (Beck et al., 2011; Nagaraj
et al., 2011) and tens of thousands of unique phosphorylation sites across the proteome
(Aebersold and Mann, 2016). To measure proteins and their modifications, proteins are
first extracted from biological samples. Labeling techniques, which enable comparative
quantification across samples, can be employed either at the biological sample stage, as
for example stable isotope labeling by amino acids in cell culture, also known as SILAC
(Ong et al., 2002), or after protein extraction like isobaric tags for relative and absolute
quantitation, known as iTRAQ/TMT. After labeling, proteins are digested into peptides,
typically using trypsin. For phosphoproteomics, additional enrichment steps are required
to isolate phosphorylated peptides due to their low abundance. Enrichment techniques,
such as immobilized metal affinity chromatography or titanium dioxide chromatography,
are commonly employed to enhance the detection of phosphopeptides (Beausoleil et al.,
2004; Pinkse et al., 2008). After enrichment, peptides are typically separated using liquid
chromatography, enabling more accurate identification and quantification of peptides and
their post-translational modifications (Bantscheff et al., 2012). After separation, peptides
are introduced into the mass spectrometer, where their mass-to-charge ratios are mea-
sured, generating spectra used for peptide identification and quantification. Two principal
acquisition technologies have been developed for mass spectrometry: data-dependent ac-
quisition (DDA) and data-independent acquisition (DIA). In DDA, the mass spectrometer
first performs a survey scan MS1 to detect all precursor peptide ions and then selects a
predefined subset of these ions for fragmentation in a subsequent scan MS2 (Krasny and
Huang, 2021). In contrast, in DIA, all precursor ions detected in the MS1 survey scan
are fragmented, thanks to the recent advances in mass spectrometry technology, allowing
faster scanning speeds and increased sensitivity (Gillet et al., 2012). DIA achieves this
by using a series of wide isolation windows that collectively span the full mass-to-charge
ratio range, capturing comprehensive fragmentation data (Krasny and Huang, 2021). The
resulting spectra are then used to identify peptides, quantify their intensities, map them to
the reference proteome, and ultimately summarize the data at the protein level for down-
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stream proteomics analyses. With that, the abundance of proteins and phosphorylation
sites in a given biological context can be measured and further analyzed.

1.2.3 Functional Analysis

To derive functional insights from omics data, the measurements are typically compared
between two groups, usually in a case-control scenario. The objective is to identify genes,
proteins, or phosphorylation sites whose expression or abundance levels differ between
these groups. Numerous computational tools have been developed for this purpose, in-
cluding limma, one of the most widely used tools (Ritchie et al., 2015). In the limma
framework, the data is modeled as continuous and approximately normally distributed.
Although RNA-seq data consist of discrete integer counts (Robinson and Oshlack, 2010),
treating them as continuous takes advantage of the mathematical tractability of the normal
distribution, which simplifies statistical analysis and computation (Law et al., 2014). Ad-
ditionally, statistical methods based on approximately normally distributed data require
that the standard deviations of the measurements remain more or less constant. How-
ever, omics data usually exhibits variance-mean dependence, where genes or proteins
with larger abundance typically have larger standard deviations. To address this, normal-
ization methods such as logarithmic transformation or variance-stabilizing normalization
(vsn) can be applied to stabilize the variance (Holmes and Huber, 2019). After normal-
ization, a linear model is fit to each gene, protein or phosphorylation site based on the
experimental design to test the null hypothesis that no differential expression or abun-
dance exists between experimental conditions. It calculates a moderated t-statistic for
each molecule, which compares the mean expression or abundance differences between
groups while accounting for variability and identifies differentially expressed or abundant
molecules.

To further interpret omics data, computational methods have been developed to sum-
marize gene- or protein-level information into higher-level functional processes. For ex-
ample, enrichment analysis comprises statistical methods that organize gene- or protein-
level statistics based on prior knowledge to estimate the likelihood of coordinated changes.
The primary goal is to convert a disjointed list of differentially abundant molecules into
a cohesive set of potential cellular processes that may be activated or repressed in a cer-
tain state of the tissue (Barry et al., 2005). These methods often rely on hypergeomet-
ric tests, rank-based statistics, or empirical likelihood estimations using permutations
(Mathur et al., 2018; Väremo et al., 2013). Prior knowledge, linking genes or proteins
to functional processes for enrichment analysis, is typically derived from databases like
KEGG (Kanehisa et al., 2016) or Reactome (Fabregat et al., 2017), which curate col-
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lections associated with signaling pathways or cellular processes. However, these sets
typically group proteins as pathway members, which can limit the direct interpretation
of transcriptomics data since the transcriptional state of a tissue does not necessarily re-
flect its functional state. Nevertheless, genes involved in a particular cellular process are
usually regulated collectively and as such represent the functional footprint of cellular
processes (Dugourd and Saez-Rodriguez, 2019; Szalai and Saez-Rodriguez, 2020). For
instance, the functional footprint of a signaling pathway represents the genes that consis-
tently change in expression when the pathway is perturbed, rather than merely the struc-
tural members of the pathway itself (Jiang et al., 2021; Schubert et al., 2018). Similarly,
transcription factor activity can be inferred from the transcriptomic levels of its target
genes, providing stronger evidence of functional relevance than the expression level of
the transcription factor alone (Garcia-Alonso et al., 2018; Schubert et al., 2018). Like-
wise, kinase activity can be deduced from the phosphorylation state of its target proteins
(Casado et al., 2013). For this, several initiatives have been undertaken to compile func-
tional footprints for pathway and cytokine activities (Schubert et al., 2018), transcription
factors (TFs) Garcia-Alonso et al., 2019, kinases (Hornbeck et al., 2012), and other per-
turbations (Dixit et al., 2016), providing valuable resources for these analyses.

1.3 Network Contextualization

As cells operate within complex networks of interactions, where molecules do not func-
tion independently but work coordinatively to transmit information, network biology has
emerged as a powerful paradigm for understanding these interactions within biological
systems (Barabási et al., 2011). To investigate the function of a cell or higher biological
units, it is often advantageous to conceptualize them as systems of interacting elements.
A graph-based representation is commonly used, where the system’s elements are repre-
sented as nodes and their pairwise relationships are depicted as edges connecting these
nodes (Pavlopoulos et al., 2011). In biological contexts, the nodes typically represent
genes, proteins, or other molecules, and the directed edges represent regulatory or signal-
ing relationships (Albert, 2007). For example, in signaling networks, these edges often
represent protein-protein interactions, which are curated in databases such as STRING
(Szklarczyk et al., 2019) and OmniPath (Türei et al., 2016). However, these databases
usually aggregate all interactions in a cell-agnostic manner. In reality, the relevance of
specific interactions is highly dependent on the biological context or cell type, as some
proteins may not be expressed or active in certain conditions. To address this limitation,
network contextualization has been developed to identify context-specific networks by
integrating untargeted omics data with prior knowledge (Garrido-Rodriguez et al., 2022).
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This approach not only enhances the biological relevance of the network but also pro-
vides a mechanistic explanation for observed patterns in the omics data. Additionally, by
combining experimental data with curated prior knowledge, researchers can enhance the
signal-to-noise ratio, thereby improving the robustness and interpretability of biological
data analyses (Hill et al., 2016).

Multiple computational methods have been developed to model cellular signaling
and infer context-specific networks, which can be categorized into different groups (Garrido-
Rodriguez et al., 2022). Edge filtering and shortest path methods identify the most rele-
vant pathways between nodes by filtering edges based on experimental data or finding the
shortest paths connecting key nodes, such as specific genes or proteins of interest (Franke
et al., 2006). Recursive signal propagation and heat diffusion approaches simulate the
flow of information across the network, highlighting nodes and edges most influenced
by the input data (Vanunu et al., 2010). Graph theory combined with statistical testing
leverages mathematical properties, such as centrality or clustering coefficients, to pin-
point critical nodes or subnetworks under specific conditions (Yu et al., 2007). Bayesian
networks model probabilistic dependencies between nodes, enabling inference of causal
relationships and prediction of how perturbations propagate through the network (Fried-
man et al., 2000). Neural networks employ deep learning techniques to analyze complex
patterns in signaling data, integrating large-scale omics datasets to predict signaling ac-
tivity and uncover nonlinear relationships within the network Fortelny and Bock (2020).
Finally, Integer linear programming (ILP) optimizes the selection of nodes and edges that
best explain the observed omics data while adhering to constraints such as known in-
teractions (Dittrich et al., 2008). More specifically, ILP is a mathematical optimization
technique where variables are restricted to integer values. The goal is to maximize or
minimize a linear objective function subject to a set of linear constraints. This restriction
makes ILP problems inherently combinatorial, often involving the search for an optimal
solution among a finite set of possibilities (Bragin et al., 2019).

These computational approaches enable the identification of context-specific net-
works, providing a framework for the mechanistic interpretation of omics data and ad-
vancing our understanding of cellular signaling in different biological contexts.

1.4 Evaluation of Computational Methods

Biological systems are inherently complex, characterized by a multitude of intercon-
nected pathways and regulatory layers that are dynamically influenced by the environ-
ment. Computational tools attempt to capture this complexity throughmathematical mod-
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els, statistical algorithms, and machine learning techniques. However, these models of-
ten simplify reality, relying on assumptions such as linear relationships, independence
of variables, or static network structures. While these assumptions make the tools com-
putationally tractable and interpretable, they may fail to fully represent the dynamic and
nonlinear nature of biological systems (Kitano, 2002).

In computational biology as well as other sciences, researchers are often faced with
a choice between up to hundreds of methods for performing a certain type of data analysis
(Weber et al., 2019). This can represent both an opportunity and a challenge, since each
method usually proposes certain advantages and limitations, and the choice of method can
heavily influence the results. Complicating matters further, methods are often presented
as optimal within the context of their own evaluations, making it difficult to determine
the most suitable approach for a given scenario (Norel et al., 2011).

As such, neutral comparison studies in computational sciences are essential to en-
sure that proposed methods perform as expected across diverse scenarios. These studies
also help to establish standard practices grounded in robust, well-designed evaluations
(Boulesteix et al., 2013). Typically, benchmarks for such comparisons are based on spe-
cific input data that the methods are designed to process, expected output data for vali-
dation, defined metrics for performance assessment, and performance values from a set
of tools tested under the same conditions (Peters et al., 2018). For example, perturbation
experiments, where specific kinases or TFs are experimentally manipulated, have been
established as benchmarks for evaluating activity inference tools (Alvarez et al., 2016;
Subramanian et al., 2005). Nevertheless, defining the expected output data can be chal-
lenging in biology due to the inherent noise and lack of clear ground truth in experimental
datasets. Additionally, selecting appropriate input datasets is a critical design choice, as
these datasets must reflect the complexity and variability of real-world biological data.
To address this, diverse benchmarking evaluations are often employed, encompassing a
variety of metrics and datasets that capture the range of conditions under which the meth-
ods are expected to operate. This diversity helps to ensure that performance estimates are
robust and generalizable to practical applications and help identify strengths and weak-
nesses in tool performance (Weber et al., 2019).

For the evaluation, the choice of performancemetrics usually depends on the specific
task and type of data being analyzed. Tasks such as classification, clustering, or regres-
sion require tailored metrics to assess performance (Weber et al., 2019). For classification
tasks, metrics such as the area under the receiver operating characteristic curve (AUROC)
and area under the precision-recall curve (AUPRC) are commonly used. AUROC eval-
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uates the trade-off between true positive rate (TPR) and false positive rate (FPR) across
various thresholds, with a perfect classifier achieving a score of 1 and a random classifier
scoring 0.5. In contrast, AUPRC measures the relationship between precision (positive
predictive value) and recall (sensitivity), making it particularly valuable for imbalanced
datasets where one class is significantly underrepresented (Saito and Rehmsmeier, 2015).
These metrics provide a quantitative framework for comparing the performance of com-
putational methods, enabling a rigorous assessment of their accuracy in representing bio-
logical processes. Additionally, they offer critical insights into the applicability of these
methods for addressing complex biological questions.

1.5 Thesis Overview

Computational tools offer a powerful means to extract meaningful insights from omics
data, aiding in the understanding of signaling mechanisms in health and disease. How-
ever, to ensure their reliability and accuracy, rigorous evaluation of computational meth-
ods is essential. Furthermore, developing advanced computational methods to incorporate
multiple layers of information, including multiple omics data, provides a more compre-
hensive view of biological processes, enabling deeper insights into complex systems.
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Figure 1.2. Graphical overview of this thesis. Overview of how this thesis investigates
signaling through the integration of omics data and prior biological knowledge. Chapter 2
and 3 evaluate methods for the prediction of transcription factor (TF) and kinase activities
from transcriptomics and phosphoproteomics data, respectively. Chapter 4 presents a
network contextualization approach based on inferred kinase activities to investigate the
effect of metformin on colorectal cancer cells. Lastly, Chapter 5 introduces a multi-omics
network contextualization connecting TFs and kinases to upstream stimuli in a cohesive
manner which was used to study hepatic stellate cell activation.



10 Chapter 1

This thesis aims to enhance the understanding of signaling events by evaluating and
advancing computational tools for activity estimation and network contextualization from
different omics data (Figure 1.2). More specifically, in Chapter 2 ”Expanding the Cov-
erage of Regulons for Accurate Estimation of Transcription Factor Activities”, I evalu-
ate various TF-gene collections for TF activity estimation. Chapter 3 ”Comprehensive
Evaluation of Kinase Activity Inference from Phosphoproteomics Data” focuses on the
assessment of kinase activity inference tools. In Chapter 4 ”Phosphoproteomics Based
Network Contextualization to Understand Metformin’s Mechanisms in Colon Cancer”, I
extend a network contextualization approach for phosphoproteomics data to account for
directionality and apply it to investigate the mode of action of metformin and its potential
role in colon cancer. Lastly, in Chapter 5 ”Multi-Omics Network Contextualization to
Investigate Hepatic Stellate Cell Activation”, I build a network contextualization model
that integrates phosphoproteomics and transcriptomics data to study hepatic stellate cell
activation by combining insights from signaling and gene regulation.



Chapter 2

Expanding the Coverage of Regulons
for Accurate Estimation of
Transcription Factor Activities

2.1 Background

Gene regulation is crucial for coordinating biological processes, governing development,
cell differentiation, tissue maintenance, and a wide range of physiological functions.
When this regulation is disrupted, it can lead to numerous diseases, including cancer,
autoimmune disorders, neurological conditions, developmental syndromes, diabetes, and
cardiovascular diseases (Lee and Young, 2013). In particular, abnormal activity of tran-
scription factors (TFs), which are central to regulating gene expression, has been closely
linked to cancer progression and can destabilize key cellular regulatory systems (Lambert
et al., 2018). TFs can influence the transcription rates of their target genes, collectively
referred to as the TF’s regulon, by binding to specific DNA sequences. These regula-
tory processes are further shaped by interactions with cofactors and other proteins (Kim
and Wysocka, 2023). Gene regulatory networkss (GRNs) try to capture these interac-
tions as a simplified representation of the underlying complexity (Weidemüller et al.,
2021). Coupling GRNs with activity inference algorithms can aid the interpretation of
transcriptomics data by identifying highly active or inactive TFs from the experimental
data. Among other things, this can help to uncover insights into aging processes (Maity
et al., 2022) link TF activities to drug responses (Garcia-Alonso et al., 2018; Melms et al.,
2021), and connect TF activity to themorphological characteristics of cancer (Walsh et al.,
2017). However, the reliability of these analyses depends heavily on the coverage and

11
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quality of the TF regulons used. Ensuring the use of high-quality regulons that mini-
mize false positives while ensuring comprehensive coverage is essential for accurately
identifying key TFs and their roles in regulatory networks.

In this chapter, I will present and evaluate a new set of TF regulons generated from
TF-gene interaction data from public databases, text mining, and manual curation. This
workwas a joint project with Eirini Tsirvouli andAstrid Lægreid from theNorwegianUni-
versity of Science and Technology andMiguel Vazquez from the Barcelona Supercomput-
ing Center and has been published in a peer reviewed journal (Müller-Dott et al., 2023). I
will focus specifically on the parts of the project that have beenmy contribution, highlight-
ing my responsibilities of developing a workflow to determine whether interactions are
activating or repressing, performing a systematic benchmark to evaluate the TF regulons
and showing the value of TF activity inference in single-cell. The code to reproduce all
the analysis presented can be found here https://github.com/saezlab/CollecTRI.

2.2 Building aHigh-ConfidenceCollection of SignedTran-
scription Factor-Gene Interactions

2.2.1 Collection of Transcription Factor Regulons in CollecTRI

The collection of highly reliable transcription factor (TF)-gene interactions was based on
an already published compilation of available transcription regulation information from
multiple databases combined with information extracted from the text-mining resource
ExTRI (Vazquez et al., 2022). The initial compilation included the databases TFactS
(Essaghir et al., 2010), HTRIdb (Bovolenta et al., 2012), IntAct (Kerrien et al., 2012),
GOA (Huntley et al., 2015), TRRUST (Han et al., 2015), SIGNOR (Perfetto et al., 2016),
CytReg (Carrasco Pro et al., 2018) and GEREDB (Huang et al., 2019)). This dataset
was then expanded with updated data from SIGNOR and GOA, along with three addi-
tional resources: DoRothEA (confidence level A) (Garcia-Alonso et al., 2019), Pavlidis
(Chu et al., 2021), and the NTNU Curated subset of ExTRI. DoRothEA, a meta-resource
containingTF-gene interactions categorized by varying confidence levels, was filtered to
include only the highest-confidence interactions (level A). The NTNU Curated subset of
ExTRI provided manually curated interactions with additional information on the regu-
latory sign (e.g., activation or repression). Gene and protein mentions from all resources
were translated into human gene symbols, including those referring to rat or mouse enti-
ties, using orthology tables. Mouse and rat TF-gene interactions were included, as regu-
latory mechanisms are highly conserved across these species, and text-mined data often

https://github.com/saezlab/CollecTRI
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lacks precise species annotations in PubMed abstracts (Chen et al., 2018). Moreover,
in this collection, two TF dimers, AP1 and NFKB, were treated as single transcription
factors, as they are often referred to by their dimer names in the literature. Finally, this
resulted in a comprehensive table where each TF-gene interaction was documented along-
side the databases in which it appears, including additional details such as the mode of
regulation (when available) and the PubMed identifiers (PMIDs) used to curate or extract
the interaction.

From the compiled information, I then constructed signed and directed TF regulons
for TF activity inference. To ensure reliability of the TF-gene interactions, I first iden-
tified unique PMIDs associated with each interaction and excluded those without any
reference. Next, I focused on proteins with a direct regulatory role in gene expression, in-
cluding only TFs classified as DNA-binding transcription factors (dbTFs), co-regulatory
transcription factors (coTFs), or general initiation transcription factors (GTFs). These
classifications were based on criteria from TFclass (Wingender et al., 2018), Lambert
et al. (2018), Lovering et al. (2021), and gene ontology (GO) annotations (Gene Ontol-
ogy Consortium, 2021). CoTFs and GTFs were further filtered to include only proteins
annotated with the GO terms GO:0003712 and GO:0140223, or their descendant terms,
using QuickGO (Binns et al., 2009). This resulted in a total of 43,175 TF-gene interac-
tions covering 1,186 TFs (Figure 2.1).

Figure 2.1. Overview of the collection of TF-gene interactions. Compilation of tran-
scription factor (TF)-gene interactions from different resources, namly ExTRI, HTRI,
TRRUST, TFactS, GOA, IntAct, SIGNOR, CytReg, DoRothEA A, GEREDB, Pavlidis,
and manual curations. This collection comprises 43,175 TF-gene links covering 1,186
unique TFs. Reprinted from Müller-Dott et al. (2023).

2.2.2 Defining the Mode of Regulation for TF-Gene Interactions

For each TF-gene interaction, I assigned a regulatory mode indicating the sign of tran-
scriptional regulation from the TF to its target gene. Activation was defined as an in-
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crease in the target gene’s expression, while repression corresponded to a decrease. I then
determined the mode of regulation (MoR) using the evidence provided by the PMIDs
associated with each interaction in the databases. For this, each PMID was counted as
evidence only once per interaction, even if referenced in multiple databases. In the rare
cases where the same PMID supported conflicting modes of regulation across databases,
it was considered separately for each mode to determine the final assignment. I then ex-
plored different strategies to assign the MoR based on multiple sources of information
(Figure 2.2). I compared four approaches in combination and separately:

1. Assigning the mode of regulation per TF-target interaction based on the prevalence
of PMIDs associated with a specific mode.

2. Assigning a mode of regulation of a TF based on its general mode of regulation,
defined by prior information about the regulatory information of the TF.

3. Assigning a positive mode of regulation of a TF based on its general mode of reg-
ulation, defined by other interactions in the regulon.

4. Assigning a default mode of regulation to TF-target interactions.

For the second approach, I integrated information from multiple sources to establish
the general mode of regulation of each TF. I compiled annotations from GO terms and
UniProt keywords (UniProt Consortium, 2023), structural information about the Krüppel
associated boxs (KRABs) domain, and the classification of effector domains (Soto et al.,
2022). Specifically, I checked if a TF was annotated with GO terms such as RNA poly-
merase II-specific DNA-binding transcription activator activity (GO:0001228), DNA-
binding transcription repressor activity (GO:0001217), transcription coactivator activity
(GO:0003713), transcription corepressor activity (GO:0003714), positive regulation of
transcription by RNA polymerase II (GO:0045944), or negative regulation of transcrip-
tion by RNA polymerase II (GO:0000122), including any child terms. For the UniProt
keywords, I focused on annotations for Activator (KW-0010) and Repressor (KW-0678).
TFs containing the KRAB domain were classified as repressors if they belonged to the
IPRO3651 superfamily, except for members of the IPRO03655 ancient KRAB family,
which are known to exhibit dual regulatory roles (Paysan-Lafosse et al., 2023). I deter-
mined the final regulatory mode of each TF based on the consensus among all sources and
then assigned the mode of regulation to all target genes accordingly. Using this strategy, I
identified 348 TFs as general activators and 232 as general repressors. This classification
resulted in 10,313 TF-gene links assigned an activating mode and 3,191 links assigned
a repressing mode. For comparison, the prevalence of PMIDs indicated 13,847 activat-
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ing and 5,694 repressing TF-gene links. Both approaches showed a similar trend, with a
majority of interactions assigned a positive regulatory mode (76% using TF classification
and 71% using PMIDs).

Figure 2.2. Overview of strategies for assigning a mode of regulation to TF-gene in-
teractions. Four decision sources were used to determine whether a transcription factor
(TF) activates or represses its target gene: PubMed references (PMIDs): The mode of
regulation (MoR) is assigned based on the prevalence of supporting evidence for activa-
tion (Pos > Neg) or repression (Neg > Pos). TF role: The general regulatory role of the TF
(activator or repressor) is determined using UniProt keywords, GO terms, and structural
information such as KRAB domains and effector domain classifications. MoR of other
edges in the regulon: The mode of regulation is inferred by analyzing the majority behav-
ior of the TF’s other interactions within the regulon (Pos > Neg or Neg > Pos). Default
setting: For TF-gene interactions without any supporting information, a default mode of
regulation is assigned as either activation or repression. Reprinted fromMüller-Dott et al.
(2023).

To evaluate how assigning a mode of regulation impacts TF-gene interactions, I
tested whether the regulatory signs influenced the ability of TF regulons to capture gene
expression changes resulting from TF perturbations. The rationale was that a reliable
regulon, in which a TF accurately regulates its target genes, should reflect the TF’s tran-
scriptional activity through the collective expression patterns of its targets (Garcia-Alonso
et al., 2019). For this analysis, I used data from KnockTF, a curated database of human
RNA-seq and microarray experiments from TF knockdown and knockout studies (Feng
et al., 2020). KnockTF includes datasets from various tissues and cell types. To ensure
that only effective perturbations were included, I filtered for experiments where the tar-
geted TF showed a significant decrease in expression post-knockdown or knockout. This
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resulted in a dataset of 388 experiments spanning 234 TFs. Using the compiled dataset,
I inferred TF activities for the different MoR strategies, ranked the TFs based on their
inferred activity, and assessed the ability to recapitulate the perturbed TF using the area
under the receiver operating characteristic (AUROC) and area under the precision-recall
curve (AUPRC) metric (Figure 2.3). This evaluation followed the benchmarking strat-
egy previously applied to compare inference algorithms (Badia-I-Mompel et al., 2022).
Specifically, I calculated activity scores for each perturbation experiment with a univari-
ate linear model, which measures the contribution of the regulon’s targets to the overall
transcriptional activity. Perturbed TFs were expected to show a strong negative activity
score, reflecting their reduced function. To rank the TFs, I inverted the activity scores,
assigning higher scores to the TFs with the strongest decrease in activity, consistent with
expectations for knocked-out or knocked-down TFs. To address the class imbalance be-
tween perturbed and non-perturbed TFs, I employed a downsampling strategy. In each
iteration, equal numbers of positive and negative classes were randomly sampled, and
AUROC and AUPRCmetrics were calculated. This process was repeated 1,000 times per
network, generating distributions of performance metrics to ensure robust benchmarking.

Activity scores Rank by activity

TF
s

TF1
TF2
TF1
TF4
TF1

TF3
TF4
TF1

TP
TN
TP
TP
TN

TN
TN
TNTF

s 
+ 

Ex
pe

rim
en

ts
...

Classification performance

ROC curve PR curveExperiments

Perturbation target

Si
gn

 c
on

si
st

en
t 

ac
tiv

ity
 ra

nk

...

AUROC AUPRC

Experiments

...

Figure 2.3. Evaluation approach for TF activity estimation. Description of bench-
marking approach for the evaluation of transcription factor (TF) activity inference. TF
activities are inferred from gene expression data of perturbation experiments, ranked by
their activity score and aggregated across experiments. Next, the area under the Receiver
operating characteristic curve (AUROC) and Precision–Recall curve metrics (AUPRC)
are calculated. Here, a downsampling strategy is applied to have an equal number of per-
turbed and non-perturbed TFs.

Finally, applying this benchmarking strategy, I evaluated the performance of the dif-
ferent sign assignment strategies. Initially, I compared the first two approaches, assigning
the mode of regulation per TF-target interaction based on the prevalence of PMIDs as-
sociated with a specific mode and assigning a mode of regulation of a TF based on its
general mode of regulation, defined by prior information about the regulatory informa-
tion of the TF and compared them to TF regulons where all interactions were assigned
an activating mode of regulation. I also tested a combined approach, where the mode of
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regulation was first assigned based on PMIDs, followed by assigning a general mode of
regulation to TF-gene interactions without PMID evidence. Any remaining interactions
were assigned an activating mode of regulation. This revealed that assigning the mode of
regulation based on PMIDs significantly outperformed the regulons with all interactions
rendered activating (adjusted p-value < 2.2×10−16, t-value = 103 for AUROC and 69.6
for AUPRC). In contrast, using prior knowledge to assign a general mode of regulation
led to a decrease in performance (adjusted p-value = 6.5×10−5 and 1.5×10−10, t-value =
4 and 6.5 for AUROC and AUPRC, respectively) (Figure 2.4a). To address TF-gene in-
teractions lacking information from databases, I incorporated data from other interactions
within the TF’s regulon. For each TF, I analyzed the interactions with an assigned mode
of regulation based on PMIDs and classified the TF as activating or repressing based
on the majority mode of its interactions. This approach added 1,750 activating and 154
repressing TF-gene links and significantly improved benchmark performance (adjusted
p-value = 2.5×10−13 and 1.2×10−33, t-value = 7.4 and 12.3 for AUROC and AUPRC, re-
spectively). However, once again, incorporating additional information about the general
classification of a TF based on prior knowledge did not improve performance. (Figure
2.4b). Lastly, I assessed the impact of assigning a default mode of regulation when no
other information was available. Assigning a default activating mode outperformed as-
signing a default repressing mode (adjusted p-value < 2.2×10−16, t-value = 337 and 294
for AUROC and AUPRC, respectively) (Figure 2.4c).Based on these results, the mode of
regulation for each TF-gene interaction was determined using the prevalence of PMIDs,
classification of the TF based on themode of other interactions in its regulon, and a default
assignment of activating mode for interactions without available information. Specif-
ically, 19,541 TF-gene interactions were annotated based on the prevalence of PubMed
references, while 1,904 interactions were assigned a mode of regulation using the TF clas-
sification inferred from other interactions within the regulon. For the remaining 21,730
interactions, an activating mode was assigned by default. This final annotation process
resulted in 86% of TF-gene links being classified as activating and 14% as repressing
(Figure 2.4d).

In conclusion, themode of regulation for TF-gene interactions was assigned based on
the prevalence of PMIDs, the other interactions in the regulon and a default activation for
interactions without available information, resulting in 56% of TFs with a dual regulatory
role, 37% of TFs exclusively linked to activating interactions, and 7% represented only
by repressing links.
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Figure 2.4. Evaluation of strategies for assigning the mode of regulation to TF-gene
interactions. a-c Area under the receiver operating characteristic (AUROC) (top) and
area under the precision-recall curve (AUPRC) (bottom) values for transcription factor
(TF) activity inference using different mode of regulation (MoR) assignment strategies.
TheMoRwas assigned based on the prevalence of PubMed IDs (PMIDs), the general reg-
ulatory role of the TF (activator or repressor) (TF role), the regulatory role of the TF based
on the TF’s other interactions within the regulon (regulon) and the default assignment
(default activation, default repression). d Number of TF-gene interactions assigned as
activating or repressing based on the different decision sources when combining PMIDs,
regulon-based classification and default activation as the best performing combination.
Reprinted from Müller-Dott et al. (2023).

2.2.3 Weighting Interactions Based on Binding Weights

Besides the mode of regulation, gene regulation also has a quantitative aspect that influ-
ences the interaction between TFs and their target genes (Kim and Wysocka, 2023). To
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capture this aspect, I implemented a weighting scheme for TF-gene interactions, which
reflects the likelihood of a TF binding to a gene’s regulatory regions. This approach as-
sumes that a TF’s activity is best reflected in the coordinated expression of genes where
it has a strong binding affinity, particularly within promoter regions or other regulatory
elements. Consequently, genes enriched with the binding motifs of a specific TF were
assigned higher weights, while genes without enriched motifs were given lower weights.

To estimate binding weights, I used two tools, FIMO (Grant et al., 2011) and Ma-
trixRider (Grassi, 2017), focusing on known TF binding motifs and genomic regions. I
first calculated binding weights for promoter regions, defined as 1,000 base pairs (bp) up-
stream and 100 bp downstream of the transcription start site (TSS) (Sanghi et al., 2021).
Additionally, I extended the regulatory region to 10,000 bp upstream of the TSS to include
proximal elements. All binding weights were shifted to positive values with a pseudo
count of 1 and normalized using two strategies: (1) per TF, where weights for all tar-
get genes of a specific TF were divided by the highest binding weight for that TF, and
(2) per gene, where weights for all TFs regulating a specific gene were divided by the
highest weight for that gene. The binding weights inferred across tools, window sizes,
and normalization strategies were highly correlated, with Pearson correlation coefficients
exceeding 0.98 (Figure 2.5a). Due to this strong correlation, I focused on weights calcu-
lated with MatrixRider for the 1,000 bp upstream window in subsequent analyses. Using
these weights, I inferred TF activities and evaluated their performance within the bench-
marking framework described earlier. The weighted regulons performed comparably to
the unweighted regulons, showing no significant improvement (t-test: adjusted p-value =
0.51 for AUROC and 0.9 for AUPRC; Figure 2.5b). Next, I explored the effect of prun-
ing low-weight edges from the network, comparing this approach to randomly removing
edges. Specifically, TF-gene interactions in the lowest 10%, 20%, and 30% quantiles of
binding weights were removed, and the resulting networks were evaluated in the bench-
mark. However, this pruning strategy did not improve network performance for either
AUROC or AUPRC in any scenario (t-test: adjusted p-value > 0.05; Figure 2.5c).

Overall, weighting TF-gene interactions did not enhance the predictive performance
of the regulons and remains feasible only for a subset of TF-gene interactions.



20 Chapter 2

a

b c

Figure 2.5. Evaluating the effect of weighting TF-gene interactions. a Pearson cor-
relation of inferred binding weights across tools, window sizes, and normalization strate-
gies. Binding weights were computed using MatrixRider and FIMO for regions 1,000 bp
and 10,000 bp downstream of the transcription start site. These weights were normalized
either per gene or per transcription factor (TF), and Pearson correlation was used to assess
the similarity of TF-gene interaction weights across methods and conditions. b Predic-
tive performance of weighted versus unweighted TF regulons derived from CollecTRI.
Binding weights were calculated with MatrixRider for a 1,000 bp window and used to
evaluate the impact of weighting on regulon-based predictions. c Predictive performance
of regulons after filtering low-weight TF-gene interactions. Binding weights, prepared as
in panel b, were used to examine the effect of removing the lowest 10%, 20%, and 30%
of TF-gene interactions compared to randomly removing the same proportion of edges.
Reprinted from Müller-Dott et al. (2023).
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2.3 Evaluation of the Transcription Factor Regulon Col-
lection

2.3.1 Comparison to Other Regulon Collections

Building on the constructed TF regulon collection, I evaluated its coverage and compared
it to other widely used collections, including ChEA3 (Keenan et al., 2019), RegNetwork
(Liu et al., 2015), Pathway Commons (Rodchenkov et al., 2020), and DoRothEA (Garcia-
Alonso et al., 2019). ChEA3 provides gene set libraries based on TF-gene co-expression,
TF-target associations derived from ChIP-seq experiments, and TF-gene co-occurrence
data submitted through the Enrichr tool. RegNetwork is a curated database of experi-
mentally observed and predicted transcriptional and post-transcriptional regulatory inter-
actions. Pathway Commons compiles data on regulatory networks, signaling pathways,
molecular interactions, and DNA-binding events from multiple sources. DoRothEA in-
tegrates TF-gene interactions with assigned confidence levels derived from literature-
curated resources, ChIP-seq peaks, motif analyses, and gene expression data. Among
these collections, only DoRothEA, also provides signed information on the direction of
transcriptional regulation.

For a consistent comparison, I first filtered all TF regulons to include only interac-
tions involving annotated dbTFs, coTFs, GTFs, as described earlier. I then analyzed the
overlap of TFs and TF-gene interactions across these collections. The CollecTRI-derived
regulons demonstrated broad TF coverage, including 1,186 TFs—surpassed only by the
ChEA3 gene set libraries ARCHS4 (1,612), GTEx (1,578), and Enrichr (1,393). How-
ever, these ChEA3 libraries rely on co-expression and co-occurrence strategies, which
are known to generate a higher rate of false-positive interactions in TF-target associa-
tion studies (Huynh-Thu et al., 2010). The CollecTRI regulons included 48 new TFs
not present in any of the other resources. RegNetwork and Pathway Commons also con-
tributed unique TFs, with 80 and 42 additional TFs, respectively. Across all collections,
91.3% of TFs were shared by at least two resources. In terms of TF-gene interactions,
curated resources such as RegNetwork, Pathway Commons, DoRothEA, and the Collec-
TRI regulons generally included fewer interactions compared to ChEA3, which relies on
co-expression and co-occurrence methods. These methods often yield larger datasets but
tend to include indirect or spurious regulatory relationships. Overall, there was limited
overlap between the compared resources, with 63.8% of interactions unique to a single
collection. For shared TFs, the overlap in target genes was low, with the mean Jaccard
index of my regulons compared to other networks at just 0.01 (Figure 2.6).
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In summary, the TF regulons constructed fromCollecTRI provide a broader coverage
of TFs compared to most other resources and additionally include signed information
on transcriptional regulation, distinguishing them from most other regulon collections.
Overall a low overlap between TF-gene interactions was observed across resources which
is likely to influence TF activity inference.

Figure 2.6. Comparison of TF coverage and TF-gene interaction across regulon
collections. Total number of transcription factors (TFs) (left) and TF-gene interactions
(right) represented in each resource. Any TF or interaction present in more than one re-
source is considered shared and highlighted in light blue. Reprinted from Müller-Dott
et al. (2023).

Next, I used the same benchmarking pipeline as described in the previous section to
systematically compare the CollecTRI-derived regulons to the other TF regulon collec-
tions. Additionally, I created a permuted version of the CollecTRI regulons as a baseline
for performance, where target genes were shuffled and randomly assigned to TFs, en-
suring that these regulons did not represent biological information. TF activities were
inferred from the differentially expressed genes in each KnockTF experiment using the
regulons provided by each resource. To ensure robustness, only TF regulons with at least
five target genes measured in an experiment were included in the analysis, leading to
a restricted number of TFs for each resource (Supplementary Figure A.1). Inferred TF
activities were then ranked by their activity scores for each experiment, and the identifi-
cation of perturbed TFs based on these scores was evaluated using AUROC and AUPRC.
In this evaluation, the CollecTRI regulons achieved median AUROC and AUPRC values
of 0.73 and 0.77, respectively, outperforming all other regulon collections (adjusted p-
value < 2.2×10−16, mean t-value across tests = 271.8 for AUROC and 281.8 for AUPRC)
(Figure 2.7, Supplementary Table A.1, A.2). Furthermore, all ChEA3 libraries, except for
ChEA3 ARCHS4, did not perform better than the random baseline set by the permuted
CollecTRI regulons (t-test: adjusted p-value > 0.05).
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Overall, these results demonstrate that CollecTRI regulons outperform other TF reg-
ulon collections in identifying perturbed TFs based on inferred TF activities which indi-
cates that the TF-gene interaction information compiled in CollecTRI provides the most
reliable regulons for estimating TF activities among the resources compared.

Figure 2.7. Predictive performance of TF regulon collections for TF activity infer-
ence. Performance of transcription factor (TF) regulon collections in predicting perturbed
TFs from the knockTF database based on inferred TF activities. Performance is assessed
using the area under the receiver operating characteristic curve (AUROC, left) and the
area under the precision-recall curve (AUPRC, right). Reprinted from Müller-Dott et al.
(2023).

2.3.2 Assessing Benchmark Fairness and Performance Robustness

To ensure that the benchmark comparison in the previous section was unbiased and reli-
able, I examined whether the number of target genes associated with each TF influenced
the ability of the networks to predict perturbed TFs. Since the benchmark dataset pre-
dominantly includes well-studied TFs, which typically have a larger number of associated
targets, I investigated whether this factor contributed to the observed performance differ-
ences. For the top three performing TF regulon collections, CollecTRI, DoRothEA ABC,
and RegNetwork, I first assessed whether the number of targets differed between bench-
marked TFs and those not included in the benchmark. In all three cases, TFs in the bench-
mark dataset had significantly more associated targets (adjusted p-values = 2.61×10−5,
1.34×10−3, and 2.81×10−4; t-values = 4.59, 3.27, and 3.84 for CollecTRI, DoRothEA
ABC, and RegNetwork, respectively) (Figure 2.8a). To further explore the relationship
between the number of targets and the accuracy of TF activity inference, I calculated Pear-
son correlation coefficients between the activity scores and the number of targets for each
experiment in the benchmark dataset. The average correlation between the number of tar-
gets and the activity score was 0.4 or lower across all resources, with CollecTRI-derived
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regulons showing the lowest mean correlation of 0.19 (Figure 2.8b). These results indi-
cate that the superior performance of the CollecTRI-derived regulons is not influenced by
a bias toward TFs with a higher number of associated targets, supporting the robustness
of the benchmark comparison.

a

b

Figure 2.8. Comparison of the number of targets of a TF and its inferred activity.
a Number of target genes for transcription factors (TFs) included in the benchmark and
those not included across different regulon collections. b distribution of Pearson correla-
tion coefficients (r) between the number of target genes and prediction accuracy for TF
activity across benchmark experiments. Mean correlations are reported above the plots.
Reprinted from Müller-Dott et al. (2023).

Another limitation of the benchmark is that it assumes that the perturbed TF is the
most deregulated, ignoring potential off-target effects of the perturbation. To address this,
I conducted another evaluation using a subset of 12 TFs for which multiple perturbation
experiments were available. In this setting, I focused on one TF at a time, comparing its
activity across experiments to predict whether it was perturbed or non-perturbed in each
experiment. In this benchmark, the CollecTRI regulons demonstrated superior perfor-
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mance for specific TFs, including REST, TP53, FLI1, NRF2F2, and SOX2, with average
median AUROC and AUPRC values of 0.85 and 0.89, respectively (adjusted p-value <
1.8×10−10, mean t-value across TFs = 73.4 for AUROC and 78.8 for AUPRC). Notably,
REST achieved perfect classification in this setting (Figure 2.9a). Despite these suc-
cesses, the overall performance was comparable to the other regulon collections tested in
this modified benchmark (Figure 2.9b).

Overall, these analyses did not reveal any systematic biases or unfair advantages
in the benchmark design, supporting the reliability of the comparisons across regulon
collections.

a b

Figure 2.9. Evaluating predictive performance in identifying perturbation exper-
iments for specific TFs. a Predictive performance of regulon collections in detecting
perturbation experiments associated with specific TFs. Only TFs with at least five as-
sociated perturbation experiments were included in the analysis. Median AUROC and
median AUPRC values are presented for each regulon collection and TF, assessing their
ability to classify experiments as perturbed or non-perturbed. b Overall median AUROC
(top) and AUPRC (bottom) values across all perturbation experiments for each regulon
collection. Reprinted from Müller-Dott et al. (2023).
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2.4 Transcription Factor Activity Estimation in Single-
Cell Transcriptomics Data

TF activity estimation can provide valuable insights into cell type-specific regulatory
mechanisms, particularly when compared to TF expression levels. To explore this po-
tential, I applied the CollecTRI-derived regulons to estimate TF activities in a single-cell
RNA-seq dataset of peripheral blood mononuclear cells (PBMCs). The single-cell dataset
was processed using standard workflows outlined in Seurat (Hao et al., 2021). Specifi-
cally, I filtered out cells with over 5% of mitochondrial counts and unique feature counts
over 2,500 or under 200d. Gene expression was then normalized by total expression,
scaled to 10,000, and log-transformed. Next, I identified highly variable features (2,000)
and applied a linear transformation to scale the data. I then applied principal compo-
nent analysis (PCA) on the scaled data, followed by clustering using the Louvain algo-
rithm. Cells were embedded in a K-nearest neighbor graph and visualized using a uniform
manifold approximation and projection (UMAP). I then identified marker genes for each
cluster using differential expression analysis which could be linked to eight distinct cell
types: B cells, CD14+ monocytes, FCGR3A+ monocytes, naïve CD4+ T cells, memory
CD4+ T cells, CD8+ T cells, natural killer (NK) cells, dendritic cells, and platelets, based
on canonical marker gene expression (Figure 2.10a) For each cell, I then inferred TF
activities using normalized gene expression counts and the CollecTRI-derived regulons.
Marker TFs for each cell type were identified both through their inferred activity profiles
and their expression levels. Among the 506 marker TFs identified, 93.5% were exclu-
sively detected based on TF activity, 3.9% solely by TF expression, and 2.6% by both ac-
tivity and expression (Figure 2.10b). These findings suggest that estimating TF activities
can reveal cell type-specific regulatory mechanisms that are missed when relying solely
on TF expression. For instance, PAX5, a key regulator of B cell development that gov-
erns their identity and function throughout B lymphopoiesis (Cobaleda et al., 2007), and
EOMES, critical for NK cell maturation and functionality (Gordon et al., 2012; Kiekens
et al., 2021), showed limited expression coverage in the dataset—detected in only 6.7% of
B cells and 10.3% of NK cells, respectively. However, their inferred activities were con-
sistently high across all cells of their respective types, indicating strong regulatory roles
(adjusted p-value < 2.2×10−16, t-value = 20.7 for PAX5 and 20.2 for EOMES) (Figure
2.10c-d).

To further evaluate whether TF activities are better conserved within cell types com-
pared to TF expression, I assessed their ability to group cells of the same type. Similarly
to previously proposed (Holland et al., 2020), I calculated distance matrices for cells using
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a

c
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Figure 2.10. TF activity estimation in PBMCs.a uniform manifold approximation
and projection (UMAP) visualization of single-cell RNA-seq data from peripheral blood
mononuclear cells (PBMCs; n = 2638). Colors represent annotated cell types, including
B cells, monocytes, T cells, NK cells, dendritic cells, and platelets. b Number of marker
transcription factors (TFs) identified based on their expression or activity. c UMAP plots
of PBMCs showing the activity and expression of PAX5 and EOMES across cells. TF
activities were estimated using CollecTRI-derived regulons. d Comparison of the activ-
ity and expression of PAX5 and EOMES between their respective cell types (B cells for
PAX5 and NK cells for EOMES) and all other cell types. Statistical testing was not per-
formed for TF expression due to detection in fewer than 15% of cells in the corresponding
cell type. Reprinted from Müller-Dott et al. (2023).
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either TF activity or expression and computed the average silhouette width for all cells,
using their cell type annotation as the reference. A higher silhouette width reflects better
correspondence to annotated cell types. TF activity-based clustering produced signifi-
cantly higher average silhouette widths compared to clustering by TF expression (p-value
< 2.2×10−16, t-value = 23.8) (Supplementary Figure A.2).

In conclusion, TF activities inferred using CollecTRI-derived regulons provide more
comprehensive and robust insights into the regulatory mechanisms underlying distinct
cell types than TF expression alone, enabling a deeper understanding of cell type-specific
regulation.

2.5 Sharing the Regulon Collection with the Community

I integrated the regulons derived from CollecTRI into the OmniPath database (Türei et al.,
2021), facilitating their distribution and integration with other resources. To achieve this,
I developed methods in PyPath, the database builder for OmniPath, to process the regu-
lons. The build process standardizes gene representation using primary UniProt IDs and
HGNC symbols and maps interactions to mouse and rat orthologs. Within OmniPath, I
explicitly listed all variants of the ”AP1” and ”NFKB” complexes, following definitions
from Bejjani et al. (2019) and Hoffmann et al. (2006). For AP1, I only included dimers
formed by members of the Jun and Fos families, excluding the extended definition de-
scribed in Bejjani et al. (2019). Overall, I incorporated the following information for the
TF-gene interactions:

1. TF: Standardized to classic HGNC nomenclature, enabling users to find specific
transcription factors

2. Target gene: Standardized to classic HGNC nomenclature, allowing users to easily
search for specific genes.

3. Mode of regulation: Specifies whether the TF increases (activation) or decreases
(repression) the expression of its target gene.

4. Sign decision: Indicates whether the mode of regulation (activation or repression)
has been assigned to each TF-gene interaction, providing insights into regulatory
dynamics.

5. PMIDs: Lists the supporting literature references for each TF-gene interaction,
offering traceability and evidence for the assigned interactions.
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6. TF type: Classifies transcription factors into DNA-binding TFs, co-regulators, or
general initiation factors, helping users filter and interpret the regulatory roles of
TFs.

With the integration into OmniPath I hoped to make the regulons easily accessible to
the community through the web service at https://omnipathdb.org/ along with other
OmniPath datasets. Additionally, they can be easily accessed through the DoRothEA,
decoupleR and decoupler-py packages for activity inference.

2.6 Discussion and Conclusion

In this chapter, I present a transparent and reproducible workflow for constructing tran-
scription factor (TF) regulons by integrating TF-gene interaction data from 12 differ-
ent sources, including text-mined information, manual curations, and publicly available
databases. The resulting regulons offer broader coverage of TF-gene interactions com-
pared to existing collections that primarily rely on literature-derived information. To ad-
dress the limited availability of regulatory mode annotations in many public TF-gene
interaction resources, I developed an evidence-driven approach to infer the mode of reg-
ulation for each TF-gene link. This approach improves TF activity inference accuracy
by assigning regulatory modes to individual interactions rather than assuming uniform
activation or repression based on prior TF classifications. This refinement captures the
dual functionality of many TFs, which can activate or repress transcription depending on
the context of regulatory elements and protein complex composition. I demonstrated that
the regulons outperform other TF regulon collections in identifying perturbed TFs based
on gene expression data, highlighting the high quality of the TF-gene interactions in the
CollecTRI regulons. To showcase their utility, I applied these regulons to a single-cell
RNA-seq dataset of peripheral blood mononuclear cells (PBMCs), identifying cell type-
specific marker TFs based on their activities. This application revealed cell type-specific
regulatory mechanisms that might remain undetected when relying solely on TF expres-
sion levels.

Despite the good performance of the CollecTRI-derived regulons, the benchmark
dataset used for validation focuses only on a subset of TFs limiting the TF regulons ac-
tively evaluated in the benchmark. Expanding the amount of perturbation studies in the
future would enable a more comprehensive evaluation of CollecTRI and other resources.
Additionally, while CollecTRI regulons offer a broader coverage compared to other col-
lections, the limited overlap between TF-gene interaction resources suggests opportunities
to further expand the regulons. However, distinguishing high-quality direct interactions

https://omnipathdb.org/
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from indirect or spurious relationships is challenging, especially given the reliance on
literature-curated data, which may introduce biases toward well-studied TFs. Another
limitation is that the regulons currently focus solely on the sign of regulation, omitting
the quantitative aspects of TF-gene interactions and my attempts to incorporate TF bind-
ingweights derived frommotif enrichment analysis did not improve TF activity inference.
In general, the regulons currently only capture one layer of the cis-regulatory code and
omit cooperative interactions between TFs and other proteins, distal regulatory interac-
tions, and chromatin accessibility landscapes, all of which contribute to the complexity of
transcriptional regulation. Additionally, the CollecTRI regulons are constructed as gen-
eral TF-gene interaction networks and do not account for cell type-specific regulatory
differences or TF-TF cooperativity events. Nevertheless, they provide a foundation for
constructing context-specific networks using complementary data types, such as single-
cell transcriptomics or chromatin accessibility data. Incorporating TF binding and pro-
teomics data in future efforts could further enhance understanding of TF-TF regulatory
interactions and context-specific mechanisms.

In conclusion, the constructed collection of TF regulons provides high coverage and
confidence TF-gene interactions which are freely available to the research community.
Systematic comparisons with other resources showed that CollecTRI regulons excel at re-
capitulating gene expression changes following TF perturbations. Furthermore, I demon-
strated their applicability in biological contexts, underscoring their potential to advance
the understanding of transcriptional regulation across diverse scenarios.
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Comprehensive Evaluation of Kinase
Activity Inference from
Phosphoproteomics Data

3.1 Background

Kinases play an essential role in regulating cellular processes, making their study crucial
for understanding cellular function and disease mechanisms. By catalyzing the phospho-
rylation of threonine, serine, tyrosine, or histidine residues, kinases influence substrate
proteins by modulating their activity, stability, localization, and interactions with other
molecules (Manning, 2005). Dysregulated kinase activity is implicated in numerous dis-
eases, including neurodegenerative conditions such as Alzheimer’s and Parkinson’s dis-
eases (Koyano et al., 2014; Neddens et al., 2018), metabolic disorders like steatotic liver
disease, obesity, and diabetes (Copps and White, 2012; Puri et al., 2008), as well as vari-
ous cancer types 642011Hanahan and WeinbergHanahan and Weinberg. As a result, pro-
tein kinases are among the most targeted protein families for small-molecule therapeutics
(Rodgers et al., 2018).

Advances in mass spectrometry (MS)-based phosphoproteomics have enabled large-
scale profiling of global phosphorylation events, providing a detailed snapshot of cellular
signaling dynamics. MS technologies can now identify and quantify up to 50,000 unique
phosphopeptides, representing over 75% of cellular proteins (Sharma et al., 2014). These
measurements provide a snapshot of the activity state of kinases and phosphatases. As
such, phosphoproteomics can be used to infer the activity of a given kinase based on

31
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the phosphorylation state of its targets (Dugourd and Saez-Rodriguez, 2019). To infer
kinase activities, numerous computational methods have been developed with varying
complexity. For instance, PTM-SEA (Krug et al., 2019) employs single-sample gene set
enrichment analysis, while KSEA (Casado et al., 2013;Wiredja et al., 2017) uses a z-score
to aggregate phosphorylation levels of known kinase targets relative to a background set.
Despite their differences, thesemethods all depend on prior knowledge of kinase-substrate
relationships.

Kinase target site information is typically sourced from curated databases such as
PhosphoSitePlus (Hornbeck et al., 2012), SIGNOR (Lo Surdo et al., 2023), or Phos-
pho.ELM (Dinkel et al., 2011). However, these resources cover only a small subset of
measurable phosphorylation sites, often biased towards targets of well-characterized ki-
nases (Needham et al., 2019; Savage and Zhang, 2020). This limitation poses a challenge
for kinase activity inference, as reliable estimation becomes difficult when only a few
substrates are available. To address this, additional targets could be included by incorpo-
rating substrates identified through large-scale in vitro screening assays (Mari et al., 2022;
Sugiyama et al., 2019) or computational predictions, such as those generated by tools like
NetworKIN (Linding et al., 2008). However, the reliability of these targets and their im-
pact on improving predictions remain unclear. Overall, given the variety of available
resources and methods for kinase activity inference, it is crucial to establish comprehen-
sive evaluation frameworks to assess these approaches and determine the most effective
strategies. In particular, evaluating diverse combinations of methods and resources is es-
sential, extending previous comparative analyses, which have typically focused on a small
subset of methods combined with a single kinase-substrate library (Hernandez-Armenta
et al., 2017; Yılmaz et al., 2021).

In this chapter, I will present a systematic benchmarking strategy designed to eval-
uate various combinations of computational algorithms and kinase-substrate libraries for
inferring kinase activities. This project was conducted in collaboration with the Zhang
lab, specifically Eric J. Jaehnig from the Baylor College of Medicine, and has been pub-
lished as a preprint (Müller-Dott et al., 2024) which is currently under revision in a
peer-reviewed journal. I will solely focus on my contributions to the project, which in-
clude detangling prior knowledge from inference algorithms, performing kinase activity
estimation across all combinations, and implementing evaluation metrics based on ki-
nase perturbation experiments. While the manuscript also describes a complementary
benchmarking approach using multi-omics data conceptualized and executed by Eric J.
Jaehnig, this chapter will focus exclusively on the parts of the project for which I was
responsible. The code to reproduce the results presented in this chapter can be found
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here https://github.com/saezlab/kinase_benchmark, as well as in the package
https://benchmarkin.readthedocs.io/.

3.2 Building an Evaluation Framework

Kinase activity inference methods are designed to identify deregulated kinases within a
specific biological context, relying on phosphoproteomics data and known kinase-substrate
relationships (Figure 3.1a). To evaluate the reliability of these methods, perturbation-
based evaluations have been used to assess their accuracy in identifying deregulated ki-
nases (Hernandez-Armenta et al., 2017). This approach tests whether the inferred activi-
ties of kinases align with the a priori expected deregulation of kinases. For this, a collec-
tion of perturbation experiments specifically targeting the activity of certain kinases has
been previously generated (Hernandez-Armenta et al., 2017). While this collection pro-
vides a solid foundation for evaluating kinase activity inference methods, it is still limited
in its coverage of kinases. To address this limitation, I extended the dataset by incor-
porating data from a more recent study that examined the phosphoproteomic responses
of HL60 and MCF7 cells to 60 kinase inhibitors (Hijazi et al., 2020). This resulted in a
collection of 212 experiments covering approximately 70 kinases where an increase or
decrease of activity is expected (Figure 3.1b-c).

https://github.com/saezlab/kinase_benchmark
https://benchmarkin.readthedocs.io/
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Figure 3.1. Collection of perturbation experiments for evaluating kinase activity in-
ference. aWorkflow for kinase activity inference. Phosphorylation profiles from phos-
phoproteomics data are combined with a kinase-substrate library to infer kinase activity
scores using computational methods. The phosphorylation levels of specific sites are
mapped to their corresponding kinases, enabling the estimation of kinase activities across
samples. b Overview of perturbation experiments in the benchmark collection. For each
perturbation experiment specific kinases are being targeted, resulting in an expected in-
crease or decrease in kinase activity. c Number of perturbation experiments targeting
each kinase, categorized by the expected change in activity.

I then implemented three metrics to evaluate the performance of kinase activity in-
ference methods from the perturbation experiments: PHit(k), scaled rank, and area under
the receiver operating characteristic curve (AUROC) (Figure 3.2). PHit(k) measures how
often the perturbed kinase’s activity ranks among the top k kinases in each experiment.
The scaled rank assesses the rank of the perturbed kinase, adjusting for the total number
of kinases by dividing the rank by the size of the inferred activity set for that experiment.
Finally, AUROC scores are calculated by ranking kinases across all experiments based
on their inferred activities. In this approach, true positives (TPs) correspond to the per-
turbed kinases, while tue negatives (TNs) include all other kinases with inferred activity
in a given experiment. To address the imbalance between TPs and TNs, I subsampled the
TNs 1000 times to match the number of TPs. All of these metrics assume that the highest
activity change is observed in the direct target of a perturbation. However, they do not
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explicitly account for potential off-target effects or downstream signaling influences.
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Figure 3.2. Overview evaluation metrics for kinase activity inference methods.
PHit(k) measures the likelihood of the perturbed kinase being ranked among the top k
kinases based on inferred activities. The scaled rank evaluates the perturbed kinase’s
rank relative to the total number of kinases in each experiment by dividing the rank by the
total kinase count. The area under the receiver operating characteristic curve (AUROC)
is determined by ranking kinases across all experiments based on their inferred activities,
where perturbed kinases are considered true positives and all other kinases serve as true
negatives.

3.3 Evaluation of kinase activity inference

3.3.1 Computational methods for kinase activity inference

For the evaluation, I assessed 19 different methods for predicting kinase activity scores
from phosphoproteomics data, all of which rely on a set of kinase-substrate interactions.
Thesemethods include fgsea (Korotkevich et al., 2016), Fisher’s exact test (Fisher), KARP
(Wilkes et al., 2017), KSEA (Casado et al., 2013; Wiredja et al., 2017), the Kolmogorov-
Smirnov test (KS test) (Hollander et al., 2013), the linear model implemented in RoKAI
(lm RoKAI) (Yılmaz et al., 2021), the Mann-Whitney U test (MWU test), the mean, the
median, a multivariate linear model (mlm) (Badia-I-Mompel et al., 2022), the normalized
mean (norm mean) (Badia-I-Mompel et al., 2022), principal component analysis (PCA),
PTM-SEA (Krug et al., 2019), the sum, a univariate linear model (ulm) (Badia-I-Mompel
et al., 2022), the upper quantile (UQ), VIPER (Alvarez et al., 2016), the z-score as imple-
mented by RoKAI (z-score) (Yılmaz et al., 2021), and the Chi-squared test (χ2 test) (Table
3.1, Supplementary Table B.1). These methods differ in several aspects: whether they in-
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corporate quantitative information, account for kinase promiscuity meaning the ability of
sites to be phosphorylated by multiple kinases, or compute scores across multiple sam-
ples. Additionally, they can be categorized based on whether they aggregate values for
a kinase’s target sites or compare these values to remaining sites or an empirical null
distribution.

Table 3.1. Overview of computational methods for kinase activity inference.

Method Accounts for
Magnitude

Models Kinase
Promiscuity

Multi-sample
Based

fgsea Yes No No
Fisher No No No
KARP Yes No No
KSEA Yes No No
Kolmogorov-Smirnov No No No
Linear model - RoKAI Yes Yes No
Mann-Whitney-U No No No
mean Yes No No
median Yes No No
multivariate linear
model

Yes Yes No

normalized mean Yes No No
Principal component
analysis

Yes No Yes

PTM-SEA Yes No No
sum Yes No No
univariate linear model Yes No No
upper quantile Yes No No
VIPER Yes No No
z-score Yes No No
χ2-test No No No

For each method, I inferred kinase activities based on the log fold-change of phos-
phorylation sites obtained from the perturbation experiments in the evaluation collection.
To determine the direct targets of each kinase, I used the manually curated database Phos-
phoSitePlus (Hornbeck et al., 2012), a widely used resource for kinase-substrate interac-
tions, to establish links between kinases and their downstream targets. For each experi-
ment, I calculated kinase activities using these methods, restricting the analysis to kinases
with at least five measured target phosphorylation sites. Similar to previous studies, I also
investigated how the number of targets for each kinase might influence performance by
using themeasured number of targets in an experiment as the kinase activity (Yılmaz et al.,
2021). I then applied the evaluation metrics described earlier to compare the performance
of the different methods.
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Across all three evaluation metrics, the z-score method demonstrated the best overall
performance, achieving PHit(k) values of 0.81, 0.62, and 0.49 for k = 20, 10, and 5,
respectively, an average scaled rank of 0.24, and an average AUROC of 0.79 (Figure 3.3a-
c). Most methods, except for KARP, UQ, and the number of targets, achieved an average
PHit(k) of at least 0.5, an average scaled rank of at least 0.3, and an average AUROC of at
least 0.7. Overall, I observed strong correlations or anti-correlations between the metrics,
with an absolute Pearson correlation of at least 0.9 (p ≤ 1.65 × 10−7).
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Figure 3.3. Predictive performance of kinase activity inference methods. a The prob-
ability of identifying the perturbed kinase among the top k (5, 10, 20) kinases based on
inferred activities. b The scaled rank of the perturbed kinase activity for each experiment.
c Area under the receiver operating characteristic (AUROC) of kinases ranked by their
inferred activities across all experiments. The AUROC calculation was performed 1,000
times, each time randomly sampling a subset of the negative class equal in size to the
positive class.

For the z-score, the top-performing method across metrics, I investigated whether
certain kinases consistently ranked high even when they were not perturbed in an exper-
iment, potentially introducing bias in the performance evaluation (Figure 3.4). Using the
scaled rank metric, I observed that the average scaled rank of the evaluation kinases when
not perturbed in an experiment was 0.52 ± 0.07. This was approximately four times higher
than the scaled rank observed for the same kinases when they were perturbed, indicating
that kinases in the evaluation set do not consistently rank high unless they are actually
perturbed.
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Figure 3.4. Comparison of the scaled rank of kinases in evaluation set based on
perturbation status. The average scaled rank of kinases in the evaluation set is shown,
categorized by whether they were perturbed or not in an experiment. Tyrosine kinases are
indicated with an underline. Kinase activities were estimated using the z-score method in
combination with the PhosphoSitePlus database.

Given the strong correlation observed, I chose to focus on the scaled rank as the
primary evaluation metric, as it is easy to interpret and accounts for the total number
of kinases, allowing for a more fair comparison between kinase-substrate libraries with
differing levels of coverage as presented in the next section.

3.3.2 Comparison of Kinase-Substrate Libraries

In addition to PhosphoSitePlus, several other kinase-substrate libraries can be used for
kinase activity inference. To test the impact of these libraries, I included six additional li-
braries and first compared them in terms of their coverage: PTMsigDB (Krug et al., 2019),
GPS gold (Wang et al., 2020), OmniPath (Türei et al., 2021), iKiP-DB (Mari et al., 2022),
and NetworKIN (Linding et al., 2008). This selection encompasses manually curated
libraries, meta-resources, in vitro-based datasets, and computationally predicted interac-
tions, providing a diverse representation of kinase-substrate relationships. PTMsigDB,
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another manually curated library, provides site-specific signatures for kinases, pathways,
and perturbations and incorporates information from resources like PhosphoSitePlus, Net-
Path (Kandasamy et al., 2010), WikiPathways (Agrawal et al., 2024), and LINCS (Keenan
et al., 2018). I extracted kinase-specific signatures, excluding those from iKiP-DB, which
was tested separately. GPS gold consists of a high-confidence set of kinase-substrate in-
teractions which were used to test GPS 5.0 (Wang et al., 2020), a tool to predict kinase-
substrate interactions. OmniPath represents a meta-resource which aggregates data from
over 100 sources. I filtered OmniPath to retain only phosphorylation events, excluding
interactions reported solely by ProtMapper (Bachman et al., 2022) or KEA3 (Kuleshov
et al., 2021) libraries, due to inconsistencies. iKiP-DB reports interactions from a large-
scale in vitro kinase study covering over 300 human kinases. Lastly, NetworKIN con-
tains precomputed kinase-substrate interactions from the KinomeXplorer-DB (Horn et al.,
2014), filtered to include only those with a NetworKIN score of at least five. I processed
all of the resources into a common format, with kinases and target proteins expressed as
human gene names and filtered for kinases annotated in KinHub or with the gene on-
tology term GO:0016301. Additional details, such as phosphorylated amino acids, their
positions, and flanking sequences, were extracted where available.

I then compared the coverage of kinases across the different resources and noticed
that OmniPath had the highest coverage of kinases, including 47 kinases not present in
any other resource (Figure 3.5a). These unique kinases primarily originated from inter-
actions reported by MIMP (Wagih et al., 2015) and PhosphoNetworks (Hu et al., 2014).
Additionally, iKiP-DB, PhosphoSitePlus, NetworKIN, and GPS gold uniquely reported
interactions for 11, 7, 2, and 1 kinases, respectively. Notably, 86.2% of all kinases were
covered by at least two of the analyzed resources. Overall, all databases included ser-
ine/threonine kinases, tyrosine kinases, and dual-specificity kinases (Figure 3.5b).

Next, I compared the coverage of kinase-substrate interactions. The overlap of the
interactions between resources was notably lower than the overlap in kinase coverage,
with only 21.7% of interactions shared by at least two resources. iKiP-DB and Net-
worKIN had the lowest overlap with other resources, reporting 26,327 and 19,524 unique
kinase-substrate interactions, respectively. In comparison, OmniPath, PhosphoSitePlus,
PTMsigDB, and GPS gold reported 11,148, 341, 277, and 544 unique interactions, re-
spectively (Figure 3.6a). Additionally, the median number of targets per kinase varied be-
tween resources. Manually curated resources—PhosphoSitePlus, PTMsigDB, GPS gold,
and OmniPath—showed a median of 8.5 to 18 targets per kinase. In contrast, NetworKIN
and iKiP-DB had a much higher median number of predicted targets per kinase, at 64 and
69, respectively (Figure 3.6b).
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Figure 3.5. Kinase coverage across resources. aUpSet plot displaying the intersections
of kinases across the various kinase-substrate libraries. b The number of kinases covered
by each resource, categorized by kinase classes (serine/threonine, histidine, tyrosine, or
dual-specificity). Reprinted from Müller-Dott et al. (2024).
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Figure 3.6. Kinase-substrate interaction coverage across resources. a UpSet plot
showing the intersections of kinase-substrate interactions across the different kinase-
substrate libraries. b Regulon size, representing the number of downstream phospho-
rylation sites assigned to each kinase in each resource. Reprinted from Müller-Dott et al.
(2024).

Lastly, I compared the overlap of targets for each kinase between the resources by
calculating the mean Jaccard index for all shared kinases between two resources. Higher
Jaccard indices were observed among the curated resources, specifically PTMsigDB, GPS
gold, and PhosphoSitePlus, likely due to PTMsigDB and GPS gold incorporating sites
from PhosphoSitePlus. OmniPath also demonstrated moderate overlap with these curated
resources, with a mean Jaccard index of 0.34. In contrast, iKiP-DB and NetworKIN
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showed minimal overlap with any other resource, with their highest mean Jaccard index
being just 0.03 (Figure 3.7).
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Figure 3.7. Comparison of kinase regulon overlap across resources. Mean Jaccard
index of kinase regulons between kinase-substrate libraries. For all kinases shared be-
tween two libraries, the Jaccard indices of their target sets were calculated and averaged
to quantify overlap. Reprinted from Müller-Dott et al. (2024).

Overall, the resources showed variation in kinase coverage, with OmniPath provid-
ing the most extensive kinase representation and iKiP-DB reporting the highest number of
kinase-substrate interactions. While the manually curated databases shared overlapping
substrate sets, OmniPath, NetworKIN, and iKiP-DB contained significant numbers of
unique substrates. These differences are likely to influence the accuracy of the predicted
kinase activities derived from each resource, highlighting the importance of comparing
their performance.

3.3.3 Comparison of Kinase Activity Inference across Libraries and
Methods

To now evaluate the contributions of each of the different kinase-substrate libraries, I
inferred kinase activity scores for the perturbation datasets by combining each library with
the computational methods described previously. Due to the significant overlap among
the manually curated resources, PhosphoSitePlus, PTMsigDB, and GPS gold, I created a
combined resource (curated) that encompasses all interactions from these three libraries.
I then first compared the inferred activity scores by assessing mean Pearson correlation
coefficients, mean Spearman correlation coefficients, and the Jaccard index for the top
up- and down-regulated kinases.

When comparing the results of the different computational methods across resources,
most of the computational methods showed high agreement, with Pearson and Spear-
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man correlation coefficients exceeding 0.77 and 0.82, respectively, in 80% of cases. For
the overlap of the top 10 up- or down-regulated kinases, the average Jaccard index was
0.42, indicating that approximately six kinases were consistently identified across meth-
ods. The lowest concordance was observed for activity scores generated using the KARP
score, which had Pearson correlations ranging from -0.14 to 0.03, Spearman correlations
between -0.05 and 0.26, and Jaccard indices between 0.23 and 0.46 (Figure 3.8).
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Figure 3.8. Effect of computational methods on inferred kinase activity scores. Com-
parison of computational methods for kinase activity inference. Based on the inferred ac-
tivity scores, Pearson and Spearman correlation as well as the Jaccard index of the top 10
up- and down regulated kinases was calculated between computational methods for each
kinase-substrate library and averaged across libraries. Partially reprinted from Müller-
Dott et al. (2024).

When comparing the activity scores using different kinase-substrate libraries, I ob-
served the highest Pearson and Spearman correlations of at least 0.88 and 0.84, respec-
tively, among PTMsigDB, GPS gold, PhosphoSitePlus, and the curated combination. In
contrast, NetworKIN and iKiP-DB showed Pearson correlations below 0.43 when com-
pared to other libraries, which can be expected given the limited overlap in substrates
between these and the other databases. Additionally, I found that the average Jaccard
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index for kinase-substrate libraries across methods was 0.29, indicating that only about
four of the top-scoring kinases overlapped (Figure 3.9).
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Figure 3.9. Effect of kinase-substrate libraries on inferred kinase activity scores.
Comparison of kinase-substrate libraries for kinase activity inference. Based on the ac-
tivity scores, Pearson and Spearman correlation as well as the Jaccard index of the top
10 up- and down regulated kinases was calculated between kinase-substrate libraries for
each computational method and averaged computational methods. Partially reprinted
from Müller-Dott et al. (2024).

To finally determine the best-performing combinations of methods and resources,
I computed the scaled rank for all pairings. As previously mentioned, the scaled rank
indicates the quantile in which the perturbed kinase’s activity score falls, with lower val-
ues representing better performance. With that, this metric assesses how likely a per-
turbed kinase is to be located at the extremes of the distribution of inferred activities in
each experiment, evaluating the ability of a method to assist in kinase prioritization in a
real-world experiment. To provide a baseline for performance, I included a randomized
kinase-substrate library, where phosphorylation sites from PhosphoSitePlus, one of the
most widely used resources for kinase activity inference, were randomly reassigned to
upstream kinases while preserving overlapping targets among kinases.

The results revealed distinct clusters of method-resource combinations. For methods
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such as the z-score, sum, KSEA, normalized mean, PTM-SEA, and the univariate linear
model, when used with PhosphoSitePlus, PTMsigDB, or OmniPath, the median scaled
rank of perturbed kinases was consistently at or below the 0.24 quantile (Figure 3.10).
Overall, the lowest scaled rank of 0.23 was observed with the combined curated libraries
in combination with the z-score.
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Figure 3.10. Predictive performance of computationalmethods and kinase-substrate
libraries for activity inference. Performance of the combinations of computational
methods and kinase-substrate libraries in identifying perturbed kinases from phospho-
proteomics data measured by the average scaled rank. The scaled rank is calculated by
ranking the kinases within an experiment based on the activities and dividing the rank of
the perturbed kinase by the total number of kinases and averaging them across experi-
ments. Reprinted from Müller-Dott et al. (2024).

Lastly, I evaluated the performance of each library for kinases categorized as rich,
medium, or poor, based on the number of targets identified in the curated combination
(Figure 3.11). This analysis was conducted to understand whether the number of known
targets influences the ability of a library to accurately infer kinase activities. Kinases
classified as medium demonstrated the highest performance across libraries, with a mean
scaled rank of 0.24. In contrast, a performance drop was observed for NetworKIN and
iKiP-DB in the perturbation-based benchmark when evaluating poor kinases, which are
likely less well-studied and have fewer known targets.

In conclusion, manually curated databases, particularly the combination of GPS
gold, PTMsigDB, and PhosphoSitePlus, demonstrated the strongest performance. When
stratifying kinases based on the number of targets, overall performance was higher for
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Figure 3.11. Evaluation of kinase activity inference across varying target coverage.
Evaluation of kinase activity inference for kinases with 5-10, 11-25 and >25 measured
targets. Kinase activity was inferred using multiple kinase-substrate libraries in combi-
nation with the z-score method and evaluated in terms of recapitulating perturbed kinases
from phosphoproteomics data.

kinases with more known targets. This trend was especially evident for libraries such as
NetworKIN and iKiP-DB, which may reflect a research bias toward well-studied kinases
with extensive target coverage.

3.4 Adding PredictedKinase-Substrate Interactions to En-
hance Activity Inference

Next, I investigatedwhether the prediction accuracy could be further improved by expand-
ing the set of kinase targets. One potential approach to enhance accuracy and increase the
number of sites considered for kinase activity inference is to predict the upstream kinase
of measured phosphorylation sites using tools like the large language model Phosformer
(Zhou et al., 2023) or the kinase library (Johnson et al., 2023; Yaron-Barir et al., 2024).
From the kinase library, kinase-substrate interactions were predicted using the percentile
score for each substrate in the datasets based on the position-specific score matrices de-
rived from the positional scanning peptide array for all Serine/Threonine and Tyrosine
kinases. The highest scoring 15 kinases based on their percentile scores were then se-
lected as upstream regulators for each phosphorylation site. Similarly, for Phosformer
the highest scoring 15 kinases based on their probability score were selected as upstream
regulators for each phosphorylation site.
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I then compared the performance of the curated combination alone to that of the cu-
rated combination supplemented with targets predicted from the kinase library and Phos-
former (Figure 3.12). Overall, incorporating predicted targets from Phosformer and the
kinase library increased the number of kinases for which activity could be inferred, as well
as the number of kinases included in the benchmark set. However, including these pre-
dicted targets resulted in decreased performance for both combinations (Kinase library:
average scaled rank = 0.37; Phosformer: average scaled rank = 0.39). This suggests that
while the predicted targets increase kinase coverage, they also introduce noise that nega-
tively impacts the accuracy of the activity inference.

Unique kinases in evaluation set

library curated curated + Phosformer curated + Kinase library

0
20
40
60

0.00

0.25

0.50

0.75

1.00

z−
sco

re

PTM−S
EA

KSEA
VIPER

mea
n

fgs
ea

n t
arg

ets

sc
al

ed
 ra

nk

Figure 3.12. Evaluation of kinase-substrate predictions. Evaluation of kinase ac-
tivity using a combination of curated kinase-substrate interactions in combination with
predicted targets from the kinase library or Phosformer. Kinase activity was inferred in
combination with various inference methods and evaluated in terms of recapitulating per-
turbed kinases from phosphoproteomics data.

Overall, increasing the number of phosphorylation sites for kinase activity inference
using prediction tools did not improve the performance, making the curated combination
in combination with the z-score the best performing method.

3.5 Building a Package for the Evaluation of NovelMeth-
ods

To also facilitate the evaluation of novel methods in the future, I have build the R pack-
age benchmarKIN which provides the benchmarking approach (https://github.com/
saezlab/benchmarKIN) described in this chapter. The package includes all necessary

https://github.com/saezlab/benchmarKIN
https://github.com/saezlab/benchmarKIN
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data and provides vignettes demonstrating how to use the benchmarking approaches for
evaluating kinase activity inference. Additionally, it incorporates another benchmarking
approach which is based on multi-omics tumor data that has been proposed by Eric J.
Jaehnig. This approach aims to complement the perturbation-based evaluation approach,
and leverages multiple omics layers to construct a gold standard set of highly active or
inactive kinases using human tumor profiling data from the Clinical Proteogenomic Tu-
mor Analysis Consortium. I hope that this package will help to simplify the process of
evaluating novel methods or other kinase-substrate resources in the future.

3.6 Discussion and Conclusion

In this study, I conducted a systematic evaluation of computational methods and prior
knowledge resources for kinase activity inference, focusing on identifying the most reli-
able approaches. By disentangling the contributions of methods and target sets, I assessed
all combinations using a classical perturbation-based benchmarking framework. This re-
vealed that simpler computational methods, such as the mean or z-score as implemented
in RoKAI and KSEA, consistently performed as well as or better than more complex
methods like fgsea ormultivariate linear models. These findings are consistent with previ-
ous benchmarks conducted on smaller subsets of experiments (Hernandez-Armenta et al.,
2017; Yılmaz et al., 2021). Additionally, manually curated target resources demonstrated
the best performance in recapitulating perturbed kinases.

While the perturbation-based approach is straightforward and focuses on assess-
ing the direct effect of the perturbation on the kinase’s activity, it is limited to usually
well-studied kinases that have been experimentally perturbed and profiled by phospho-
proteomics. This is also demonstrated by the performance of the control metric that infers
an activity solely based on the number of kinase targets. Additionally, the perturbation-
based benchmark can also be confounded by downstream kinases, feedback loops, or
off-target effects of perturbation drugs. While efforts have been made to better charac-
terize the target spectrum of kinase inhibitors (Fabian et al., 2005; Klaeger et al., 2017),
these are often based on binding assays, which do not always translate into changes in
kinase activity. Additionally, tyrosine kinases are underrepresented in the current bench-
marking dataset. This is primarily due to the limited availability of perturbation data and
the scarcity of measured tyrosine phosphorylation sites, which often require specialized
enrichment techniques (Engholm-Keller and Larsen, 2013). Future studies employing
highly specific inhibitors, also targeting tyrosine kinases, and expanding the range of per-
turbation experiments would minimize these limitations. Specificity is critical because
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the perturbation-based approach assumes that non-targeted kinases remain unaffected,
treating them as negatives. This assumption may not hold if non-targeted kinases are
indirectly influenced, reducing performance. Moreover, experimental systems lack the
complexity of the tumor microenvironment, further limiting the approach.

Beyond evaluating current methods and libraries, benchmarking provides an op-
portunity to assess the biological relevance of predicted kinase targets. While curated
libraries such as PhosphoSitePlus performed well, their coverage of kinases and phos-
phorylation sites remains limited, leaving much of the data generated by phosphopro-
teomics unused. This restricts kinase activity inference to a subset of kinases, limiting
interpretability. Substrate prediction tools have been developed to address these gaps, but
the tools tested here, namely Phosformer and the kinase library, did not improve perfor-
mance. These tools primarily rely on sequence data and neglect critical contextual factors
such as subcellular localization and regulatory interactions, limiting their accuracy. Fu-
ture prediction tools that integrate modern databases, biological context, and advanced
modeling are likely to improve accuracy, and the benchmarking strategy introduced here
provides a robust framework to evaluate such advancements.

In conclusion, in this chapter I identified the curated target sets in combination with
the z-score as implemented in RoKAI as the best-performing approach for kinase activ-
ity inference. I have made all benchmarking metrics available in the R package bench-
marKIN, which includes the necessary data and vignettes to guide users through eval-
uating novel methods or kinase-substrate resources. This resource simplifies the bench-
marking process and supports the development of improved approaches for kinase activity
inference.
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Phosphoproteomics Based Network
Contextualization to Understand
Metformin’s Mechanisms in Colon
Cancer

4.1 Background

Colorectal cancer, being the third leading cause of cancer-related deaths worldwide, poses
a major global health challenge (Colorectal Cancer Collaborators, 2022). Its development
and progression are driven by complex signaling pathways that promote tumor growth,
invasion, and resistance to therapy (Fearon, 2011; Koveitypour et al., 2019). Despite
advances in early detection and treatment, effective therapeutic options for advanced col-
orectal cancer remain limited, and patient outcomes often remain poor (Arnold et al.,
2017). As such, novel therapeutic strategies are needed that target the complex signaling
pathways that drive tumor progression, invasion, and therapy resistance.

Metformin, a widely used antidiabetic drug, has emerged as a promising candidate
in cancer prevention and treatment, including colorectal cancer (Evans et al., 2005; Meng
et al., 2017). However, its mechanisms of action remain incompletely understood (Rena
et al., 2017). One well-characterized mechanism involves metformin’s inhibition of mi-
tochondrial respiratory complex I, leading to 5′-AMP-activated protein kinase (AMPK)
activation in an STK11 (LKB1)-dependent manner (Shaw et al., 2005). This activation
suppresses mTOR signaling, leading to reduced protein synthesis, decreased cell prolif-

49
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eration, diminished inflammation, and enhanced autophagy (Pernicova and Korbonits,
2014). Beyond the canonical AMPK pathway, metformin can activate AMPK through
alternative kinases such as CAMKK2 (Hawley et al., 2005) or TAK1 (Jia et al., 2020).
Moreover, it also exerts AMPK-independent effects, adding further complexity to its
mechanisms of action (Stein et al., 2019).

Phosphoproteomics offers a powerful tool to study drug effects on signaling path-
ways by capturing its phosphorylation state. Nowadays, advances in mass spectrometry
allow the measurement of around 50,000 phosphopeptides, covering over 75% of cellular
proteins (Aebersold and Mann, 2016). However, the interpretation of site-specific phos-
phorylation data and translation into signaling networks remain challenging. To address
this, network modeling approaches such as PHONEMeS have been developed, enabling
the generation of contextualized networks from phosphoproteomics data by linking per-
turbed phosphorylation sites to upstream signaling cascades (Gjerga et al., 2021; Ter-
fve et al., 2015). In its original implementation, PHONEMeS relied solely on unsigned
kinase-substrate interactions due to the often unknown functional impact of many phos-
phorylation sites, limiting its ability to accurately predict downstream signaling outcomes
and interpret the functional consequences of phosphorylation events.

In this chapter, I present an updated version of PHONEMeS that incorporates signed
protein-protein interactions, accounting for both activating and inhibitory relationships.
This updated method was applied to colon cancer cell lines treated with metformin to
explore its effects on cellular signaling. This work was conducted in collaboration with
the Liu lab, specifically Barbora Salovska and Erli Gao, from the Yale Cancer Biology
Institute and has been published in a peer reviewed journal (Salovska et al., 2023). My
contributions focused on the development and implementation of the updated network
contextualization method PHONEMeS and comparing the resulting contextualized net-
works across different cell lines. I will explicitly refer to my work in the first person
throughout this chapter. The code to reproduce the results presented in this chapter can
be found here https://github.com/saezlab/metformin_CRC, as well as in the pack-
age https://github.com/saezlab/PHONEMeS.

4.2 Exploring the PhosphoproteomeResponse toMetformin
in Colorectal Cancer Cells

To investigate the phosphoproteomic response to metformin in colorectal cancer (CRC),
a set of 12 cell lines representing the heterogeneity of CRC subtypes was selected. These

https://github.com/saezlab/metformin_CRC
https://github.com/saezlab/PHONEMeS
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cell lines were chosen based on their classification into five distinct proteomic subtypes
(CPS1–CPS5), which correspond closely to clinical CRC subtypes (Roumeliotis et al.,
2017). Thereby, CPS1–3 include cell lines characterized by features such as microsatel-
lite instability, hypermutation, and ABC transporter expression, while CPS4–5 represent
the colorectal stem-like subgroup (Roumeliotis et al., 2017). The selected cell lines in-
cluded LoVo, RKO, and SW48 (CPS1); C2BBe1, HT115, SNU-61, SW948, and T84
(CPS2); COLO205 (CPS3); MDST8 (CPS4); and NCI-H747 and SW837 (CPS5). Af-
ter 24 hours of culture, cells were treated with 10 mM metformin, and phosphoproteome
measurements were taken at two time points, 30 minutes and 24 hours, to capture both
early and late phospho-signaling responses. Untreated controls were also collected at
the beginning of the experiment (0 hours) and after 24 hours to serve as a baseline for
comparison (Figure 4.1).

T84SW48

Phosphoproteome

Colon Cancer cell lines from 
distinct proteomics cluster (CPS1-CPS5) Metformin treatment

RKO MDST8  NCI-H747

SNU-61

LoVo COLO 205C2BBe1  HT115

SW837

SW948

CPS1 CPS2 CPS3   CPS4  CPS5

Control

Metformin

10 mM

24 hours
Late response

Cellular metabolic 
state alteration

Early response
Direct kinase/phosphatase 

activation/inhibition

Control
Steady-state 

phosphoproteome

30 min

0 hours

Figure 4.1. Experimental design for the phosphoproteomics analysis of metformin-
treated colon cancer cell lines. Colon cancer cell lines from five distinct proteomics
clusters (CPS1–CPS5) were treated with metformin (10 mM) to investigate its effects on
cellular signaling. Cell lines included LoVo, RKO, and SW48 (CPS1); C2BBe1, HT115,
SNU-61, T84, and SW948 (CPS2); COLO 205 (CPS3); MDST8 (CPS4); and NCI-H747
and SW837 (CPS5). Metformin-treated cells were sampled for phosphoproteomics anal-
ysis after 30minutes (early response) and 24 hours (late response). Additionally untreated
controls were collected at the start of the experiment (early control) and after 24 hours.
Adjusted from Salovska et al. (2023).

To investigate the effects of metformin on the phosphoproteome, I performed differ-
ential analysis using the limma R package (Ritchie et al., 2015), after data processing and
normalization. Differential analysis was conducted separately for the early response (30
minutes) and the late response (24 hours), comparing metformin-treated samples to their
respective controls (0 hours and 24 hours). The analysis included the standard steps of
lmFit, contrasts.fit, and eBayes, to identify differentially abundant phosphorylation pep-
tides and the resulting p-values were adjusted for multiple testing using the Benjamini-
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Hochberg false discovery rate correction. I identified a distinct ‘acute’ response in the
phosphoproteome following the 30-minute treatment, characterized by a subset of signif-
icantly regulated phosphorylation sites. However, both the number of significant phos-
phorylation sites and the magnitude of changes were substantially lower at 30 minutes
compared to the ‘late’ response at 24 hours (Figure 4.2). Moreover, the acute and late
responses within the cell lines were not correlated, with each time point affecting distinct
sets of phosphorylation sites (Supplementary figure C.1). I also examined the regulation
of AMPK and mTOR substrates, and while some sites, such as RPTOR Ser873, were also
differentially abundant after 30 minutes, the majority of these phosphorylation sites was
predominantly affected after 24 hours. At this later time point, thousands of significantly
phosphorylated peptides (p < 0.01 and absolute fold change > 1.5) in 10 of the 12 cell
lines were identified, representing approximately 13.8 – 41.9% of the measured phospho-
proteome per cell line. Only MDST8 and NCI-H747 displayed minimal phosphorylation
changes, affecting only 0.8% and 4.1% of the measured phosphoproteome, respectively.
However, even among the 10 responsive cell lines, the overlap of significantly altered
phosphorylation sites was limited, with only 0.08% of the measured phosphoproteome
shared across cell lines.

In conclusion, most CRC cell lines exhibited significant phosphoproteomic alter-
ations in response to metformin, especially after 24 hours. However, the degree of these
changes and the specific phosphorylation sites varied greatly across the cell line panel.
This variability underscores the heterogeneity in the cellular response to metformin per-
turbation across CRC subtypes.
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Figure 4.2. Metformin-induced phosphoproteome changes in coloncancer cell lines.
The phosphoproteome of 12 colon cancer cell lines (C2BBe1, COLO205, HT115, LoVo,
MDST8, NCIH747, RKO, SNU61, SW48, SW837, SW948, and T84) was analyzed 30
minutes (left panel) and 24 hours (right panel) after metformin treatment (10 mM) and
compared to their respective controls (0 hour and 24 hour controls). Blue and red num-
bers indicate the number of significantly downregulated and upregulated phosphorylation
sites, respectively (adjusted p-value < 0.01 and absolute fold change > 1.5). Reprinted
from Salovska et al. (2023)

4.3 Uncovering Kinase Activity Profiles in Response to
Metformin

To evaluate the effects of metformin on kinase activity, I used the changes in phosphory-
lation site abundances, as represented by t-values from the differential analysis, as input
for kinase activity inference. Phosphorylation sites were assigned to kinases and phos-
phatases based on the OmniPath databas (Türei et al., 2021). From OmniPath, I selected
only phosphorylation and dephosphorylation events and excluded interactions reported
exclusively in ProtMapper (Bachman et al., 2022) due to inconsistencies. This resulted
in a curated dataset of 29,445 signed kinase–phosphorylation site interactions spanning
580 kinases.

To ensure reliable kinase activity inference, I only included kinases with at least five
measured targets. I then used the VIPER algorithm (Alvarez et al., 2016) implemented in
the decoupleR R package (Badia-I-Mompel et al., 2022) to estimate kinase activities. I
then filtered the normalized enrichment scores (NESs) generated by decoupleR to include
only kinases significantly regulated in at least one cell line (p-value < 0.05). Hierarchical
clustering analysis was performed on both kinases and cell lines to reveal distinct patterns
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of kinase activity profiles across the cell lines (Figure 4.3a). For the cell lines, this re-
vealed four clusters, which did not completely align with the clusters previously identified
in the steady-state proteome, suggesting that the heterogeneous response to metformin is
not solely determined by the basal state of the cells. Hereby, cluster 1 corresponded to
RKO, SNU-61, HT115, SW948, C2bbe1, SW837, cluster 2 corresponds to LoVo, SW48,
T84, cluster 3 to COLO205 and NCIH747 and cluster 4 MDST. For the kinases, one
cluster (green cluster) showed a down regulation of kinase activity across cell lines and
included regulators of cellular growth and proliferation, such as mTOR, CDKs, AURKA,
AURKB, PLK1, andMAPKs. This cluster also encompassed tyrosine kinases like EGFR,
FYN, and ABL1, as well as the dual specificity kinase DYRK1A, whose regulatory role
was not apparent from phosphorylation site-level analyses alone. Additionally, a clus-
ter of upregulated kinases (purple cluster) was observed for the cell lines, RKO, SNU-
61, HT115, SW948, C2BBe1, and SW48. This group included AMPK (PRKAA1) and
metabolic regulators like the insulin receptor (INSR). Furthermore, I observed an upregu-
lation of stress-response kinases such as ATM, ATR, PRKDC (DNA-PK), and CHEK1 in
these cell lines, which may explain the corresponding downregulation of CDKs. More-
over, STK11 (LKB1), a critical kinase for AMPK activation under low ATP conditions,
was inferred to be activated in most cell lines (orange cluster). I additionally visualised
the diversity of kinase activity responses across cell lines by generating a kinome tree us-
ing Coral (Metz et al., 2018)(Figure 4.3b). For this, kinase activity scores were mapped
to branches and nodes organised based on the distinct kinase families. This revealed dis-
tinct patterns among the cell lines especially in the calcium/calmodulin-dependent protein
kinase (CAMK) and the protein kinase A, G, and C (AGC) families. Interestingly, the
COLO205 cell line displayed broadly reduced kinase activity, even though a global trend
for phosphorylation site downregulation was not observed (Figure 4.2).

Overall, this highlights the value of kinase activity inference in phosphoproteomic
analysis, as it reveals signaling changes that might not be apparent when examining phos-
phorylation sites alone.
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Figure 4.3. Kinase activity profiles across colorectal cancer cell lines treated with
metformin. a Kinase activity scores for 12 colorectal cancer cell lines (C2BBe1,
COLO205, HT115, LoVo, MDST8, NCIH747, RKO, SNU61, SW48, SW837, SW948,
and T84), clustered based on their kinase activity profiles. Kinase activity was inferred
from the t-values of the phosphorylation sites using VIPER as implemented in decoupleR.
Phosphorylation sites assigned to kinases based onOmniPath. Hierarchical clusteringwas
performed on both rows (kinases) and columns (cell lines). b Kinome tree for each cell
line with kinase activity scores mapped to branches and nodes. These kinome trees high-
light the tyrosine kinase (TK), tyrosine kinase-like (TKL), homologs of yeast Sterile 7,
Sterile 11, Sterile 20 kinases (STE), casein kinase 1 (CK1), CDK, MAPK, GSK3, CLK
(CMGC), protein kinase A, G, and C (AGC) and calcium/calmodulin-dependent protein
kinase (CAMK) families. Kinome trees were visualised using coral. Reprinted from Sa-
lovska et al. (2023)
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4.4 Extending the Network Model PHONEMeS to Ac-
count for Directionality of Changes

To also understand how kinases are connected within a signaling network, I developed an
updated version of the network contexualization method PHONEMeS for reconstructing
signaling networks from phosphoproteomics data. In contrast to the original implemen-
tation, this version incorporates protein-protein interactions and is able to account for
the directionality of changes, including the upregulation or downregulation of proteins.
In the original PHONEMeS implementation, which also aimed to reconstruct pathways
from kinases to downstream phosphorylation sites, network contextualization relied on a
prior knowledge network composed solely of kinase-substrate interactions. While this ap-
proach effectively linked kinases to deregulated phosphorylation sites, it did not consider
whether these phosphorylation sites were increased or decreased in abundance. Further-
more, it lacked the ability to incorporate the functional effects of phosphorylation events,
such as activation or inhibition, due to the limited availability of such information. To
address these limitations, the updated PHONEMeS version incorporates signed protein-
protein interactions into the prior knowledge network, enabling the inclusion of regula-
tory effects. In this version, kinases are linked to phosphorylation sites and connected via
protein-protein interactions. Consequently, phosphorylation sites serve as endpoints in
the solution networks, while their regulatory signals are propagated through the protein-
protein interactions, allowing the incorporation of the direction of change. By including
this information, the updated PHONEMeS offers a more precise representation of causal
relationships within signaling networks.

The updated PHONEMeS is built on the causal reasoning framework of CARNI-
VAL, an integer linear programming (ILP)-based network contextualization method orig-
inally designed to connect upstream perturbations to the deregulation of downstream
transcription factors within a prior knowledge network (Liu et al., 2019). In the up-
dated PHONEMeS implementation, I adopted the objective function used in CARNIVAL
(Equation 4.1) which optimizes the inclusion of input nodes, such as perturbed kinases
and phosphorylation sites identified from experimental data, while penalizing the overall
size of the network.

∑
v∈Vd

|dv|
[
1− σv(Vact(v)− Vinh(v))

]
+ β ·

∑
e∈E

(
Eact(e) + Einh(e)

)
(4.1)

where:
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Vd : Input node selection
dv : Measurement or perturbation value for node v
σv : Sign (dv)
Vact(v) : Node activation indicator for node v, Vact(v) ∈ {0, 1}
Vinh(v) : node inhibition indicator for node v, Vinh(v) ∈ {0, 1}
β : Regularisation weight
Eact(e) : Edge activation indicator for edge e, Eact(v) ∈ {0, 1}
Einh(e) : Edge inhibition indicator for edge e, Einh(v) ∈ {0, 1}

I also used the seven constraints implemented in CARNIVAL which among other
things ensure that the resulting networks are acyclic and maintain sign-consistent paths
(Supplementary Equations C.1-C.9). Additionally, I introduced a preprocessing step to
reduce the solution space by pruning nodes located n steps upstream and downstream of
the input phosphorylation sites and kinases. This step enhances computational efficiency
while preserving biologically relevant interactions.

In addition to the methodological implementation, I incorporated additional func-
tionalities to enhance the analysis of phosphoproteomics data in the updated PHONEMeS
method. First, to address cases where the direct perturbation targets might be unknown,
I included a module for selecting the perturbed nodes for the network contextualization
based on kinase activity inference. This module infers kinase activities from differen-
tially abundant phosphorylation sites, as described above, to select the most deregulated
kinases. Second, to improve the interpretability of the contextualized networks generated
by PHONEMeS, I added a feature to link deregulated phosphorylation sites to their cor-
responding proteins within the network, whenever present. For simplified visualization, I
also implemented the option to exclude phosphorylation sites and focus solely on protein-
protein interactions. Furthermore, targeted analysis is supported through the extraction
of n-step subnetworks upstream and/or downstream of specific proteins, enabling a more
detailed exploration. These functionalities allow a better investigation of signaling events
derived from phosphoproteomics data.

Taken together, the updated PHONEMeS approach integrates both sign information
and protein-protein interactions, offering a more comprehensive framework for network
contextualization. I then applied this in the next section to investigate the mechanisms of
metformin signaling in colorectal cancer cell lines.
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4.5 NetworkContextualization ofMetformin-Induced Sig-
naling Changes

Building on the functionalities of the updated PHONEMeS, signaling networks were re-
constructed for each cell line by integrating phosphoproteomics data with prior knowledge
of signaling. Given that the 24-hour time point exhibited more pronounced effects of met-
formin treatment, the network contextualization focused exclusively on this time point.
For this, the top 15% of phosphorylation sites, ranked by absolute t-values, were selected
as deregulated, and their corresponding t-values were provided as input weights for the
objective function. Since the direct targets of metformin remain unknown, deregulated
kinases were defined as those within the top 15% of absolute activity. Kinases with a
positive activity score were classified as upregulated, while those with a negative score
were classified as downregulated. In cases where AMPK (PRKAA1) ranked among the
top 15%, it was manually excluded to allow for the exploration of its upstream regulation.
Next, kinases with an absolute score below 0.5 were removed from the prior knowledge
network, based on the assumption that their activity is not influenced by metformin. Ad-
ditionally, the prior knowledge network, containing protein-protein and kinase-substrate
interactions from OmniPath, was pruned by removing nodes more than 50 steps upstream
or downstream of the selected kinases and phosphorylation sites, ensuring a focus on the
most relevant interactions.

After initial network contextualization an iterative refinement process was imple-
mented to ensure the coherence between PHONEMeS-inferred activity and experimental
data. For nodes where the inferred activity from PHONEMeS did not align with the ki-
nase activity estimated by decoupleR, the following adjustments were made: nodes with
a score smaller than 2 were excluded from the network, while nodes with a score higher
than 2 were added to the input list of deregulated kinases. PHONEMeS was re-run with
the adapted inputs and the iterative process was repeated until all inferred activities from
PHONEMeS and decoupleR were consistent, yielding a final network solution.

For the final networks, protein-protein interaction subnetworks were generated for
each cell line by excluding kinase-phosphorylation site interactions. To investigateAMPK
regulation across the cell lines, subnetworks were extracted containing all nodes and edges
two steps upstream and downstream of AMPK. Next, a backbone network was created,
incorporating nodes from all cell line-specific subnetworks while highlighting cell line-
specific components (Figure 4.4a). The reconstructed networks revealed substantial dif-
ferences in metformin response across cell lines (Figure 4.4b). Firstly, AMPK activation
was not identified in MDST8, downregulated in COLO205, and activated to varying de-
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grees in the other cell lines. Secondly, the upstream signals leading to AMPK activation
also differed. In three cell lines, STK11 was identified as the primary upstream regulator,
which typically plays a role in the context of low energy conditions (Shaw et al., 2005).
In nine cell lines, CAMKK1 and CAMKK2 were detected as the upstream regulator of
AMPK which can occur under conditions of calcium flux (Hawley et al., 2005). Lastly,
in five cell lines MAP3K7 (TAK1) emerged as the upstream regulator, typically responsi-
ble for AMPK activation during lysosomal injury by various agents including metformin
treatment (Jia et al., 2020). Downstream signaling from AMPK was equally heteroge-
neous with half of the cell lines exhibiting mTOR inactivation, often accompanied by
inhibition of SGK1, an autophagy inhibitor, as the most plausible pathway explaining
signaling outcomes in four cell lines. Other downstream effectors were less commonly
shared, appearing in no more than two cell lines.

Altogether, PHONEMeS revealed diverse metformin-induced responses in colorec-
tal cancer cell lines where context-dependent kinase activities orchestrate AMPK activa-
tion and downstream signaling.
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Figure 4.4. AMPK subnetworks of colorectal cancer cell lines treated with met-
formin. a AMPK subnetwork backbone of all interactions identified in any of the con-
textualised networks capturing metformin signaling of the 12 colorectal cancer cell lines
(C2BBe1, COLO205, HT115, LoVo, MDST8, NCIH747, RKO, SNU61, SW48, SW837,
SW948, and T84). Nodes represent proteins, and edges represent protein-protein inter-
actions. Contextualised networks were generated by PHONEMeS through combining
phosphoproteomics data with prior biological knowledge. Subnetworks around AMPK
were then generated by including two nodes up- and downstream of AMPK. b Cell line-
specific AMPK subnetworks reconstructed using PHONEMeS. Each panel represents a
different colorectal cancer cell line. Nodes are colored based on their activity score in-
ferred from decoupleR and PHONEMeS. Grey nodes represent proteins present in the
backbone but not included in the specific cell line’s network. Reprinted from Salovska
et al. (2023)
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4.6 Providing the Updated Network Model to the Com-
munity

Lastly, to also enable other researchers to apply the updated PHONEMeS version for net-
work contextualization of their own phosphoproteomics data, I have developed an R pack-
age that provides all functionalities described above https://github.com/saezlab/
PHONEMeS. The package includes the updated PHONEMeS implementation, preprocess-
ing tools, a curated prior knowledge network, and comprehensive vignettes demonstrating
how to use the method.

I hope this package will allow other researchers to effectively apply PHONEMeS
to their datasets, uncover complex signaling networks, and support the interpretation of
phosphoproteomics data.

4.7 Discussion and Conclusion

In this chapter, I developed and applied an updated version of PHONEMeS to contex-
tualize signaling networks in colorectal cancer cell lines treated with metformin. This
approach integrated phosphoproteomics data with prior knowledge networks, incorporat-
ing protein-protein interactions and the directional changes in the abundance and activity
of phosphorylation sites and proteins, particularly kinases. Using this framework, I recon-
structed context-specific signaling networks, linking deregulated kinases, selected based
on their inferred activities, to their downstream targets, focusing on the 24-hour time point
when metformin-induced effects were most pronounced. I then focused on the investiga-
tion of signaling events surrounding AMPK, uncovering both similarities and differences
across the cell lines.

While the updated PHONEMeS is a valuable tool for constructing and investigating
signed signaling networks, the method still relies on the quality and coverage of the prior
knowledge network. While OmniPath is a comprehensive meta-database that integrates
information frommultiple sources, incomplete or inaccurate interactions within its dataset
may limit the accuracy of the inferred networks. Additionally, the selection of deregulated
kinases and phosphorylation sites is based on thresholds, which could introduce biases or
exclude biologically relevant nodes with less pronounced changes. Lastly, the approach
does not model feedback loops and only provides a static snapshot of the signaling state.
Incorporating time-series data could help address these limitations by capturing dynamic
signaling changes and providing insights into feedback mechanisms over time. Further-

https://github.com/saezlab/PHONEMeS
https://github.com/saezlab/PHONEMeS
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more, integrating additional omics layers, such as transcriptomics or proteomics, could
refine signal modeling by providing complementary data to better prioritize interactions
and enhance the biological relevance of the networks.

In conclusion, this chapter highlights the value of PHONEMeS to uncover context-
dependent signaling mechanisms by integrating phosphoproteomics data with prior bi-
ological knowledge. The updated PHONEMeS version provides a more accurate and
biologically meaningful framework for investigating complex signaling pathways due to
its inclusion of the directionality of activity and abundance changes. Its application to
metformin-treated colorectal cancer cell lines revealed diverse and context-specific sig-
naling dynamics, offering insights into metformin’s mechanisms and potential therapeutic
effects.
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Multi-Omics Network
Contextualization to Investigate
Hepatic Stellate Cell Activation

5.1 Background

Hepatic stellate cell (HSC) activation is a key driver of liver fibrosis by altering the
composition of the extracellular matrix (ECM) (Friedman, 2008; Kisseleva and Bren-
ner, 2020). These changes affect the liver architecture and contribute to the progression
of liver cirrhosis, a major risk factor for the development of hepatocellular carcinoma
(Breitkopf-Heinlein and Martinez-Chantar, 2024; Forner et al., 2012). While under phys-
iological conditions, HSCs play an essential role in liver repair and vitamin A storage,
dysregulation of HSC activation can result in extensive ECM production, leading to scar
tissue formation that impairs liver function (Tsuchida and Friedman, 2017). Transform-
ing growth factor beta (TGFβ) is well-established as a central mediator of HSC activation
(Dooley and ten Dijke, 2012), driving their transdifferentiationinto a myofibroblast-like
phenotype. However, TGFβ signal transduction in HSCs is highly context-dependent and
underlies multiple levels of regulation (Dewidar et al., 2015). Recent evidence has also
suggested that the growth arrest-specific 6 (GAS6) via the AXL receptor may be involved,
though the precise mechanisms underlying its role in this process and its effect on TGFβ
signaling remain unclear (Bárcena et al., 2015; Tutusaus et al., 2020).

Network biology has become a prominent field for deciphering the complex inter-
actions within biological systems. In particular, network contextualization facilitates the

63
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integration of context-specific experimental data into generalistic biological interaction
networks. In recent years, numerous methods have been developed to incorporate omics
data into large-scale signaling network models (Garrido-Rodriguez et al., 2022), includ-
ing CARNIVAL (Liu et al., 2019), NicheNet (Browaeys et al., 2019), CausalR (Bradley
and Barrett, 2017), and TieDIE (Paull et al., 2013). Nevertheless, despite the growing
availability of tools for network contextualization, many approaches are not able to inte-
grate multiple omics layers into a unified and cohesive framework. Additionally, most
tools typically only perform traditional single-sample analysis and are not capable of per-
forming joint inference across multiple conditions. To overcome these limitations, COR-
NETO, a framework for knowledge-driven network inference, was recently developed
(Rodriguez-Mier et al., 2024). CORNETO redefines the joint inference task as a con-
strained optimization problem with a penalty that enforces structured sparsity, enabling
simultaneous network inference across multiple samples or conditions. Moreover, it al-
lows for the customization of cost functions and constraints to tailor the optimization
problem to specific biological questions or data modalities.

In this chapter, I utilised the CORNETO framework, leveraging its ability to jointly
model multiple conditions and its flexibility in designing constraints, to extend the ob-
jective function of CARNIVAL to allow the integration of multiple omics layers. Specif-
ically, I integrated kinases as an intermediate layer to bridge upstream signaling events
with downstream gene regulatory mechanisms. This extended approach was applied to
investigate the roles of TGFβ and GAS6 in HSC activation, allowing the identification
of potential crosstalk between these pathways. This project was carried out in collabora-
tion with the Klingmüller lab, specifically with Elisa Holstein, from the DKFZ. My main
contributions involved extending the CORNETO framework for multi-omics data inte-
gration and performing the computational analyses. I will explicitly refer to my work in
the first person throughout this chapter. All code used to reproduce the results presented
here is available at https://github.com/saezlab/HSC_multiomics. The repository
is currently private but can be accessed upon request and will be made publicly available
upon publication of this project.

5.2 Temporal Profiling of Hepatic Stellate Cell Activa-
tion Using Multi-Omics Data

For the investigation of the molecular mechanisms underlying hepatic stellate cell (HSC)
activation, I conducted the computational analysis of time-series transcriptomics and phos-
phoproteomics data. In this dataset, HSCs were stimulated with growth arrest-specific 6

https://github.com/saezlab/HSC_multiomics
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(GAS6), transforming growth factor beta (TGFβ), and their combination (GAS6 + TGFβ),
in which the cells were pre stimulated with GAS6 for four hours followed by TGFβ stim-
ulation, with measurements taken at multiple time points to capture phosphorylation dy-
namics on a short time scale (5 min, 30 min and 60 min for GAS6 and 30 min and 60 min
for TGFβ) as well as transcriptomic and proteomic changes on a long time scale (up to
52 hours for proteomics and up to 28 hours for transcriptomics) and assess both individ-
ual and combined effects of these stimulations (Figure 5.1). phosphate-buffered salines
(PBSs) treatment was used as a control to provide a baseline for comparison against the
stimulated conditions.

Phosphoproteome

Transcriptome
growth factor

depletion (16h)

TGFβ

TGFβRI/IIAXL
receptorHSCs

4h

TGFβ stimulationGAS6 stimulation

GAS6

1h 

0.08h 0.5h 1h 4h 4.5h 5h 7h 12h 28h 52h 

4h 7h 12h 20h 28h 

Figure 5.1. Experimental design for time-series analysis of hepatic stellate cell ac-
tivation. Hepatic stellate cells (HSCs) were subjected to growth factor depletion for 16
hours prior to stimulation with either growth arrest-specific 6 (GAS6) via the AXL recep-
tor, transforming growth factor beta (TGFβ) via TGFβ receptors I/II, or a combination
of GAS6 and TGFβ. GAS6 stimulation was performed for 4 hours, after which TGFβ
stimulation was initiated. For the phosphoproteome 10 time points were collected (0.08,
0.5, 1, 4, 4.5, 5, 7, 12, 28, and 52 hours), while for the transcriptome 6 time points were
collected (1, 4, 7, 12, 20, and 28 hours).

Following data processing and normalization, I conducted differential analysis using
the limma R package (Ritchie et al., 2015). For transcriptomics data, I applied trimmed
Mean of M-values (TMM) normalization to account for differences in library sizes and
RNA composition across samples (Robinson and Oshlack, 2010), while for phosphopro-
teomics data, I employed variance stabilizing normalization (VSN) to ensure homogene-
ity in variance across phosphorylation intensities (Huber et al., 2002). For the differential
analysis, I performed time-matched comparisons between PBS and the treatment condi-
tions for both transcriptomics and phosphoproteomics data. This revealed a total of 71,
951, and 1,142 deregulated phosphorylation sites (adjusted p-value ≤ 0.05 and absolute
logFC ≥ 1) and 7, 3,509, and 3,577 deregulated genes for GAS6, TGFβ, and GAS6 +
TGFβ, respectively (Figure 5.2, Supplementary Table D.1, D.2). GAS6 induced signal
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transduction led to early change of the phosphoproteome, with the highest number of
deregulated phosphorylation sites observed at 0.08 hours, and almost no effect on gene
regulation, with just 7 deregulated genes identified across all time points (Supplemen-
tary Table D.1). In contrast, both TGFβ and the GAS6 + TGFβ combination exhibited
a progressive increase in deregulated phosphorylation sites over time and substantially
influenced gene expression, with an average of 877 and 894 deregulated genes per time
point, respectively.

Overall, GAS6 primarily induced an early and transient signaling response in HSCs
with minimal effect on gene expression, whereas TGFβ and the combination of GAS6 +
TGFβ resulted in sustained signaling activity and substantial transcriptional changes.
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Figure 5.2. Time-course analysis of deregulated phosphorylation sites and genes
across treatments. Number of significantly deregulated phosphorylation sites (ph-sites)
and genes over time for each treatment condition: GAS6, TGFβ, and the combination of
GAS6 + TGFβ. GAS6 stimulation was performed for 4 hours, after which TGFβ stim-
ulation was initiated. Deregulation was determined using adjusted p-value ≤ 0.05 and
absolute logFC ≥ 1.



Chapter 5 67

5.3 Identification ofKeyRegulatorsDrivingHepatic Stel-
late Cell Activation

To identify kinases and transcription factors (TFs) affected by TGFb, GAS6 and their
stimulation I inferred their activities per time point using the T-values from the differen-
tial analysis of the phosphorylation sites and genes, respectively. In line with the best-
performing method for kinase activity inference identified in the previous chapter, I used
a curated set of kinase-substrate interaction resources, including PhosphoSitePlus (Horn-
beck et al., 2012), PTMsigDB (Liberzon et al., 2011), and the gold-standard set of GPS
5.0 (Wang et al., 2020) and inferred activities using the z-score as implemented in RoKAI
(Yılmaz et al., 2021). Similarly, I estimated TF activities using the CollecTRI meta-
resource introduced in the previous chapter, linking genes to their TFs, combined with
the univariate linear model (ULM) (Badia-I-Mompel et al., 2022). In total I inferred an
activity for 81 kinases of which 26 were significantly up- or downregulated compared to
PBS in any condition at least one time point. For TFs I inferred activities for 685 TFs of
which 328 were significantly up- or downregulated (adjusted p-value ≤ 0.05) in at least
one point.

Besides other deregulated kinases, AKT1, AKT2, and PIM1 exhibited strong activa-
tion in response to GAS6 stimulation within the first 30 minutes (inferred activity score ≥
5). In contrast, reduced activity was observed for HIPK2 and CSNK2A1 following GAS6
treatment within 30 minutes and 4 hours, respectively (inferred activity score ≤ -5). For
TGFβ and the combination of GAS6 and TGFβ, the activity of MAPKAPK2 increased
the most to an inferred activity score of 11.6 and 11.2, respectively, after 7 hours (Figure
5.3).

For TFs, a strong activation of SMAD1, SMAD2, SMAD3, and SMAD4 exhibited
strong activation following TGFβ and GAS6 + TGFβ stimulation, consistently reaching
activity scores above 10.7 after 7 hours of treatment. Similarly, FOXC1 showed notable
activation under the same conditions. In contrast, while initial changes in transcription
factor activities, such as BMAL2, SATB2, RELA, or SMAD1, were observed following
GAS6 stimulation, none of these factors exhibited a consistent increase or decrease in
activation over time (Figure 5.4)

Next, to evaluate the overall contribution of kinases and TFs on HSC activation,
I calculated the area under the curve (AUC) for their activity scores over time, serving
as a measure of the average activation. This approach avoids focusing on a single time
point, which could overlook important dynamic changes. For GAS6, where most changes
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Figure 5.3. Kinase activity inference over time across treatments. Inferred kinase ac-
tivity over time in response to GAS6 (blue), TGFβ (green), and the combination of GAS6
+ TGFβ (purple). Kinase activities were inferred using a curated set of kinase-substrate
interaction resources, including kinase-substrate interaction databases, and activities were
estimated using the z-score as implemented in RoKAI. The 20 displayed kinases were se-
lected based on the highest absolute activity score at any time point and treatment.

occurred within the first 4 hours, I restricted the AUC calculation to this early response
window. In contrast, for TGFβ and the combination of GAS6 and TGFβ, I calculated
AUCs over the first 28 hours, corresponding to the time frame where both transcriptomics
and phosphoproteomics measurements were available. These AUC values were then used
to identify key regulators for the multi-omics networkmodel described in the next section.
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Figure 5.4. Transcription factor activity inference over time across treatments. In-
ferred transcription factor (TF) activity over time in response to GAS6 (blue), TGFβ
(green), and the combination of GAS6 + TGFβ (purple). TF activities were inferred using
CollecTRI combined with the univariate linear model implemented in decoupler. The 20
displayed TFs were selected based on the highest absolute activity score at any time point
and treatment.

5.4 EnhancingNetworkContextualizationwithMulti-Omics
Integration

To explore the interplay between signaling and gene regulation, I extended the COR-
NETO implementation of CARNIVAL, a network contextualization method which con-
nects upstream perturbations to deregulation of downstream transcription factors in a
prior knowledge network (Liu et al., 2019). This network consists of signed and directed
protein–protein interactions, where nodes represent proteins and edges capture the regu-
latory relationships between them. Edge signs indicated activation or inhibition, adding
contextual information about the regulatory nature of each interaction. The original con-
textualization is formulated as an integer linear programming (ILP) problem, guided by
an objective function that includes a penalty for network size and a term for incorporating
deregulated TFs, which can be selected based on the experimental data (Equation 5.1).
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∑
v∈Vd

|dv|
[
1− σv(Vact(v)− Vinh(v))

]
+ β ·

∑
e∈E

(
Eact(e) + Einh(e)

)
(5.1)

where:

Vd : Input node selection
dv : Measurement or perturbation value for node v
σv : Sign (dv)
Vact(v) : Node activation indicator for node v, Vact(v) ∈ {0, 1}
Vinh(v) : node inhibition indicator for node v, Vinh(v) ∈ {0, 1}
β : Regularisation weight
Eact(e) : Edge activation indicator for edge e, Eact(v) ∈ {0, 1}
Einh(e) : Edge inhibition indicator for edge e, Einh(v) ∈ {0, 1}

To incorporate additional information from the multi-omics data, I included selected
kinases from the experimental data as input for the contextualization process and for that
extended the objective function with an additional penalty term for excluding these ki-
nases from the solution network (Equation 5.2). Hereby, kinases were only considered in
the network if a downstream effect on gene regulation could be observed.

∑
v∈Vd

|dv|
[
1− σv(Vact(v)− Vinh(v))

]
+ βk ·

∑
v∈Vk

|dv|
[
1− σv(Vact(v)− Vinh(v))

]
+ β ·R

(5.2)
where:

Vd : Input node selection
dv : Measurement or perturbation value for node v
σv : Sign (dv)
Vact(v) : Node activation indicator v, Vact(v) ∈ {0, 1}
Vinh(v) : node inhibition indicator v, Vinh(v) ∈ {0, 1}
βk : Kinase regularisation weight
Vk : Kinase node selection
β : Regularisation weight
R : Size regularisation term

∑
e∈E

(
Eact(e) + Einh(e)

)

Furthermore, in addition to the original seven constraints implemented in CARNI-
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VAL (Supplementary Equations C.1-C.9), I included two additional constraints to ensure
kinases and TFs could only be included with their correct regulatory signs (Equation 5.3).

(
Vact(v)− Vinh(v)

)
· σv ≥ 0 (5.3)

where:

σv : Sign measurement or perturbation value for node
Vact(v) : Node activation indicator v, Vact(v) ∈ {0, 1}
Vinh(v) : node inhibition indicator v, Vinh(v) ∈ {0, 1}

This approach now enabled the integration of information from both transcriptomics
and phosphoproteomics data, which I applied to investigate the effects of GAS6, TGFβ,
and their combination on HSC activation in the following section. For the contextualiza-
tion, I alsomade use of CORNETO’smulti-condition contextualization feature, which pri-
oritizes interactions shared across conditions while still accounting for condition-specific
variations.

5.5 Insights into Regulatory Networks Governing Hep-
atic Stellate Cell Activation

Finally, to explore the regulatory mechanisms underlying HSC activation, I generated
three contextualized networks to link changes in signaling to gene regulation in response
to GAS6, TGFβ, and their combined stimulation. For this, I selected kinases and TFs
with absolute AUCs above the 80th and 90th quantiles, respectively, to focus on the most
influential regulators based on their activity over time as input for the network contextu-
alization. Additionally, I selected AXL for GAS6, TGFBRI/II for TGFβ, and both AXL
and TGFBRI/II for the combined stimulation as the initial stimuli for the networks.

I then tested 10 different β weights for the objective function, defining the penalty
for the overall size of the networks: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5 and 10, corre-
sponding to log10(β) values of -2, -1.7, -1.3, -1, -0.7, -0.3, 0, 0.3, 0.7, and 1. A higher
β weight corresponds to a higher size penalty, typically resulting in smaller networks.
These weights were evaluated based on the mean percentage of kinases and TFs included
and the overall network size (Figure 5.5). As expected, a higher β coefficient resulted in
fewer edges and lower inclusion of kinases and TFs in the contextualised networks. The
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networks stabilized in size and inclusion of kinases and TFs for a β coefficient below 0.5,
which was then selected as the final parameter for the network contextualisation.
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Figure 5.5. Optimization of the size penalty in the network contextualization. The
effect of varying β weights (log10-transformed) on the percentage of kinases and tran-
scription factors (TFs) included (left y-axis) and the total number of edges (right y-axis)
in the contextualized networks.

After generating the contextualized networks, I constructed a backbone network,
consolidating all interactions found across the individual solutions, to facilitate the net-
work comparison. This backbone provided a unified view of the signaling and regulatory
pathways active during HSC activation. The resulting backbone network consisted of 137
proteins, of which 40, 53, and 85 were identified in the GAS6, TGFβ, and GAS6 + TGFβ
networks, respectively (Figures D.1–D.3).

Among other findings, the contextualized networks revealed a potential crosstalk
between GAS6 and TGFβ signaling through PRKCA and ATF1 (Figure 5.6). PRKCA
has been previously implicated in fibrotic processes and has been linked to the indirect
regulation of SMAD3 andMAPK14, both of which are critical mediators of TGFβ-driven
fibrosis (Giarratana et al., 2024; Xue et al., 2018). Similarly, ATF1 is associated with
cellular stress responses and survival, with its downstream effects onMAPK8, also known
as JNK, signaling being particularly interesting, as it plays a pivotal role in promoting
fibrogenesis (Hao et al., 2024). This suggests that the combined stimulation of AXL and
TGFβ may fine-tune these pathways by modulating the activity of PRKCA and ATF1,
potentially shaping the fibrotic response in HSCs.
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Figure 5.6. Contextualized subnetworks for GAS6, TGFβ, and GAS6 + TGFβ sig-
naling. Contextualized networks connecting signaling events to transcriptional regulation
induced by GAS6, TGFβ, and their combined stimulation. In these networks, nodes rep-
resent proteins, and arrows denote regulatory relationships. All conditions were jointly
modeled, linking the targeted receptors (diamonds) stimulated by GAS6, TGFβ, or their
combination to deregulated kinases (circles) and transcription factors (triangles) identified
through footprint-based activity inference. The activity of intermediate proteins (rectan-
gles) was inferred within the network model. Nodes from all conditions were integrated
to construct a backbone network.

Overall, this analysis highlights the potential of network contextualization approaches
to generate new hypotheses by integrating prior knowledge with context-dependent omics
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data. In the context of HSC activation, the multi-omics network contextualization uncov-
ered potential interactions and regulatory mechanisms involved in the crosstalk between
GAS6 and TGFβ signaling which can also aid the prioritization of relevant regulators for
further investigation.

5.6 Discussion and Conclusion

In this chapter, I presented the development and application of amulti-omics network con-
textualization approach to investigate the regulatory mechanisms driving hepatic stellate
cell (HSC) activation. To integrate multiple omics layers into the network model, I incor-
porated the inclusion of kinases identified from phosphoproteomics data into the objective
function. Additionally, I evaluated various β coefficients, which define the penalty for
overall network size, to optimize the inclusion of key regulators and the overall network
size. By applying this approach to integrate prior knowledge with context-dependent tran-
scriptomics and phosphoproteomics data, I generated contextualized networks for GAS6,
TGFβ, and their combined stimulation. These networks link upstream signaling events
to downstream gene regulation, offering new hypotheses about the role of GAS6 in HSC
activation and its potential crosstalk with TGFβ.

While network contextualization approaches are valuable tools for generating new
biological hypotheses, they typically only provide a snapshot of the regulatory interac-
tions. Although I attempted to incorporate the time-course of the omics data by identify-
ing regulators across the entire time span rather than focusing on a single time point, this
approach remains limited in capturing time-dependent regulation or dynamic changes in
the signaling pathways. Furthermore, feedback loops, which are essential in many biolog-
ical processes (Alon, 2007), cannot be modeled with this approach. In addition to time,
many other elements, such as spatial dynamics or complex formation, are often simplified
or disregarded when scaling up models of signaling. Nevertheless, network contextual-
ization allows to reduce the complexity of signaling networks, producing a smaller, more
focused subset of interactions. This network can then serve as a foundation for more fine-
grained analyses, such as dynamic modeling, to investigate time-dependent mechanisms,
feedback loops, or complex formation in greater detail.

Additionally, while incorporating prior knowledge into network inference methods
can help to reduce false positive rates compared to solely data-driven approaches (Praveen
and Fröhlich, 2013), the accuracy of the inferred networks depends significantly on the
quality and completeness of the prior knowledge networks. As such, the choice of database
used can significantly impact the network results (Mubeen et al., 2019). Furthermore,
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prior knowledge is often biased toward well-characterized pathways, which may lead to
the omission of interactions in less-studied areas of biology (Garrido-Rodriguez et al.,
2022). As the repository of biological knowledge grows, these biases and limitations are
expected to lessen, enabling more reliable and comprehensive network inferences in the
future.

Lastly, while this approach is helpful for generating new hypotheses, the predicted
interactions and regulatory mechanisms still need to be validated experimentally. The
contextualized networks identified PRKCA and ATF1, as well as their downstream regu-
lators MAPK8 and FOXO3, as potential mediators of crosstalk between GAS6 and TGFβ
signaling. To confirm their biological relevance, targeted experiments such as knockdown
or overexpression studies of these regulators should still be performed in the future.

In conclusion, this chapter highlights the value of integrating multi-omics data with
network-based contextualization to investigate complex cellular processes, such as HSC
activation. The incorporation of kinases into the network model and the use of multi-
condition contextualization provide a robust framework for systematically exploring sig-
naling and transcriptional regulation. The contextualized networks improve our under-
standing of HSC activation and the roles of GAS6 and TGFβ, offering a foundation for
more detailed analyses, such as dynamic modeling.





Chapter 6

Concluding Remarks and Outlook

Cellular signaling and diseasemechanisms are shaped by complex regulatory networks in-
volving kinases and transcription factors, as well as other proteins or signaling molecules.
Deciphering these processes requires high-throughput multi-omics approaches to cap-
ture diverse molecular layers, combined with computational frameworks to integrate and
contextualize this data. As the scale and complexity of biological data grows, the need
for interdisciplinary research connecting molecular biology and computational modeling
becomes increasingly important. This thesis aims to bridge these fields by evaluating
and enhancing methods for activity inference and network contextualization, leveraging
benchmarking frameworks and network-based approaches to uncover regulatory mecha-
nisms underlying cellular signaling and disease progression.

In the chapter ”Expanding the Coverage of Regulons for Accurate Estimation of
Transcription Factor Activities”, I evaluated transcription factor (TF) regulon collections
to improve the accurate prediction of TF activities. By leveraging an expanded set of reg-
ulons that combine TF-gene interactions from multiple databases, including text-mining-
derived information, I developed a knowledge-based approach to assign regulatory modes
to these interactions. I demonstrated that these signed regulons outperform existing databases
in both predictive accuracy and coverage, highlighting their utility in TF activity estima-
tion. Furthermore, I demonstrated their application in single-cell data, showing that they
outperform TF expression alone in identifying marker TFs for specific cell types. Be-
yond single-cell applications, these regulons offer a powerful tool for uncovering the role
of gene regulation in various biological contexts. Future efforts could focus on refin-
ing these regulons by incorporating cell-type or context-specific information to further
improve their accuracy and better capture the complexity and dynamics of regulatory net-
works.

77
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In the chapter ”Comprehensive Evaluation of Kinase Activity Inference from Phos-
phoproteomics Data”, I presented a comprehensive evaluation framework for kinase ac-
tivity inference methods using phosphoproteomics data. While kinase activity inference
is pivotal for understanding signaling pathways, its accuracy and robustness often de-
pend on the choice of kinase-substrate libraries and the algorithms employed. To address
this, I systematically benchmarked various inference methods across multiple datasets,
highlighting the influence of library selection and algorithmic approaches on inferred ac-
tivities. This revealed that simpler computational approaches, such as the z-score, per-
formed as well as or better than more complex models in predicting kinase activities.
Additionally, manually curated kinase-substrate libraries outperformed those based on
in vitro experiments or computational predictions. To enable broader use, I implemented
this benchmarking framework into a package, facilitating the evaluation of novel methods
in the future. This benchmark could be further improved in the future by incorporating
additional datasets from kinase perturbation studies, providing an even more robust foun-
dation for assessing kinase activity inference methods.

In the chapter ”Phosphoproteomics Based Network Contextualization to Understand
Metformin’sMechanisms inColonCancer”, I refined the network contextualizationmethod
PHONEMeS, which predicts signaling networks by integrating phosphoproteomics data
with prior knowledge resources. I extended this method to incorporate protein-protein
interactions and include the regulatory effects between these interactions, allowing for
the incorporation of directionality in signaling changes. To demonstrate its utility, I ap-
plied this approach to analyze the response of diverse colorectal cancer (CRC) cell lines to
Metformin, identifying distinct signaling responses across cell lines. These findings un-
derscore the potential of PHONEMeS to reveal context-specific signaling mechanisms.
Future improvements could be the incorporation of functional weights or additional omics
layers, further refining the accuracy and biological relevance of contextualized networks.

In the chapter ”Multi-Omics Network Contextualization to Investigate Hepatic Stel-
late Cell Activation”, I developed a multi-omics network contextualization approach that
links signaling events to gene regulation in a cohesive manner. I first predicted the activi-
ties of key regulators, such as kinases and transcription factors (TFs), and then connected
them within a prior knowledge network. This contextualization builds on the CARNI-
VAL method, originally designed for predicting signaling networks from transcriptomics
data, which I extended by incorporating kinases as an intermediate layer in its objective
function. I demonstrated this approach in the context of hepatic stellate cell (HSC) activa-
tion, using TGFβ and GAS6 stimulation to link upstream perturbations through kinases to
deregulated TFs. This analysis uncovered potential crosstalk between TGFβ and GAS6
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signaling pathways, which should be validated in the future. Additionally, the resulting
networks provide a foundation for future advancements, such as dynamic modeling, to
explore time-dependent regulatory mechanisms in greater detail.

In summary, this thesis focused on deciphering cellular signaling and disease mech-
anisms by integrating diverse omics data and developing new computational approaches.
Kinase and transcription factor activities are key regulators of signaling pathways, yet
their accurate inference depends on the quality of prior knowledge and computational
frameworks. Through benchmarking, I demonstrated the value of curated resources and
simpler computational methods for robust predictions. Building on this, I refined net-
work contextualization techniques to decipher signaling events from phosphoproteomics
and multi-omics data. For phosphoproteomics data, I incorporated the mode of regulation
by adding directionality to protein-protein interactions, enabling more accurate modeling
of signaling dynamics. For multi-omics data, I integrated kinases as an intermediate layer
to link upstream signaling events with downstream gene regulation, bridging phosphopro-
teomic and transcriptomic information. These refinements provided deeper insights into
regulatory mechanisms and facilitated the generation of context-specific networks across
diverse biological conditions.

All of the approaches presented in this thesis rely heavily on prior biological knowl-
edge. To improve these methods in the future, it is essential to obtain comprehensive
and reliable information about TF-gene interactions, kinase-substrate interactions, and
protein-protein interactions. Expanding these datasets will not only enhance the accuracy
and applicability of computational methods but also address current biases toward well-
studied proteins and pathways. Special attention should be given to understudied pro-
teins and areas like the ”dark phosphoproteome” (Needham et al., 2019), which remain
largely unexplored and could hold critical regulatory insight. Moreover, the integration
of emerging technologies and data types, such as single-cell or spatial omics data, could
further refine these methods and expand their scope. By contextualizing regulatory net-
works at higher resolution and in specific cellular environments, these approaches could
provide even more actionable insights into disease mechanisms and cellular processes.
Lastly, advancing these approaches requires a close collaboration between biologists and
computational scientists. Close interdisciplinary interactions will be crucial for develop-
ing methods that are biologically meaningful and for interpreting the results within their
proper experimental and biological context.





Appendix A

Expanding the Coverage of Regulons
for Accurate Estimation of
Transcription Factor Activities

A.1 Supplementary Figures

Figure A.1. TF coverage across resources. The total number of transcription factors
(TFs) and the subset of TFs with at least five target genes identified within each re-
source.Reprinted from Müller-Dott et al. (2023)
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Figure A.2. Silhouette comparison between TF activity and expression.Average sil-
houette width of cell clusters based on transcription factor (TF) activity and expression.
Higher silhouette widths indicate better alignment of clusters with the annotated cell types.
Reprinted from Müller-Dott et al. (2023)
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A.2 Supplementary Tables

Table A.1. AUROC comparison across TF regulon collections. Area under the re-
ceiver operating characteristic curve (AUROC) values were compared between different
transcription factor (TF) regulon collections using a two-sample t-test. AUROC values
represent the performance in recapitulating perturbed TFs from transcriptomics data. P-
values from the t-test were adjusted using Benjamini-Hochberg.

GRN 1 GRN 2 AUROC Adj.
P Value

AUROC T
Value

ChEA3 ARCHS4 ChEA3 ENCODE <2.2x10-16 111.2
ChEA3 ARCHS4 ChEA3 ENCODE <2.2x10-16 111.2
ChEA3 ARCHS4 ChEA3 Enrichr <2.2x10-16 114.5
ChEA3 ARCHS4 ChEA3 GTEx <2.2x10-16 102.5
ChEA3 ARCHS4 ChEA3 Literature <2.2x10-16 121.2
ChEA3 ARCHS4 ChEA3 ReMap <2.2x10-16 118.2
ChEA3 ARCHS4 Shuffled CollecTRI <2.2x10-16 78.7
ChEA3 Enrichr ChEA3 ENCODE <2.2x10-16 19.8
ChEA3 Enrichr ChEA3 Literature <2.2x10-16 21.2
ChEA3 Enrichr ChEA3 ReMap <2.2x10-16 12.8
ChEA3 GTEx ChEA3 ENCODE <2.2x10-16 26.5
ChEA3 GTEx ChEA3 Enrichr <2.2x10-16 8.6
ChEA3 GTEx ChEA3 Literature <2.2x10-16 28.5
ChEA3 GTEx ChEA3 ReMap <2.2x10-16 20.5
ChEA3 Literature ChEA3 ENCODE 0.97 0.1
ChEA3 ReMap ChEA3 ENCODE <2.2x10-16 8.1
ChEA3 ReMap ChEA3 Literature <2.2x10-16 8.5
CollecTRI ChEA3 ARCHS4 <2.2x10-16 271.9
CollecTRI ChEA3 ENCODE <2.2x10-16 300.7
CollecTRI ChEA3 Enrichr <2.2x10-16 364.6
CollecTRI ChEA3 GTEx <2.2x10-16 344.6
CollecTRI ChEA3 Literature <2.2x10-16 331.2
CollecTRI ChEA3 ReMap <2.2x10-16 342.5
CollecTRI DoRothEA ABC <2.2x10-16 109.9
CollecTRI DoRothEA ABCD <2.2x10-16 185.6
CollecTRI Pathway Commmons <2.2x10-16 218.4

Continued on the next page...
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GRN 1 GRN 2 AUROC Adj.
P Value

AUROC T
Value

CollecTRI RegNetwork <2.2x10-16 193.8
CollecTRI Shuffled CollecTRI <2.2x10-16 327.1
DoRothEA ABC ChEA3 ARCHS4 <2.2x10-16 149.1
DoRothEA ABC ChEA3 ENCODE <2.2x10-16 217.4
DoRothEA ABC ChEA3 Enrichr <2.2x10-16 249.7
DoRothEA ABC ChEA3 GTEx <2.2x10-16 234.4
DoRothEA ABC ChEA3 Literature <2.2x10-16 237.3
DoRothEA ABC ChEA3 ReMap <2.2x10-16 241.2
DoRothEA ABC DoRothEA ABCD <2.2x10-16 71.2
DoRothEA ABC Pathway Commmons <2.2x10-16 109.7
DoRothEA ABC RegNetwork <2.2x10-16 73.3
DoRothEA ABC Shuffled CollecTRI <2.2x10-16 214.2
DoRothEA ABCD ChEA3 ARCHS4 <2.2x10-16 76.2
DoRothEA ABCD ChEA3 ENCODE <2.2x10-16 165.2
DoRothEA ABCD ChEA3 Enrichr <2.2x10-16 182.6
DoRothEA ABCD ChEA3 GTEx <2.2x10-16 169.1
DoRothEA ABCD ChEA3 Literature <2.2x10-16 180
DoRothEA ABCD ChEA3 ReMap <2.2x10-16 180.4
DoRothEA ABCD Pathway Commmons <2.2x10-16 42.4
DoRothEA ABCD Shuffled CollecTRI <2.2x10-16 147.3
Pathway Commmons ChEA3 ARCHS4 <2.2x10-16 28.8
Pathway Commmons ChEA3 ENCODE <2.2x10-16 128.3
Pathway Commmons ChEA3 Enrichr <2.2x10-16 134.3
Pathway Commmons ChEA3 GTEx <2.2x10-16 122.6
Pathway Commmons ChEA3 Literature <2.2x10-16 138.9
Pathway Commmons ChEA3 ReMap <2.2x10-16 136.7
Pathway Commmons Shuffled CollecTRI <2.2x10-16 100.6
RegNetwork ChEA3 ARCHS4 <2.2x10-16 80
RegNetwork ChEA3 ENCODE <2.2x10-16 169
RegNetwork ChEA3 Enrichr <2.2x10-16 189.3
RegNetwork ChEA3 GTEx <2.2x10-16 175

Continued on the next page...
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Continued from previous page.

GRN 1 GRN 2 AUROC Adj.
P Value

AUROC T
Value

RegNetwork ChEA3 Literature <2.2x10-16 184.9
RegNetwork ChEA3 ReMap <2.2x10-16 185.9
RegNetwork DoRothEA ABCD 0.48 0.8
RegNetwork Pathway Commmons <2.2x10-16 44.6
RegNetwork Shuffled CollecTRI <2.2x10-16 152.9
Shuffled CollecTRI ChEA3 ENCODE <2.2x10-16 46.9
Shuffled CollecTRI ChEA3 Enrichr <2.2x10-16 33.3
Shuffled CollecTRI ChEA3 GTEx <2.2x10-16 24
Shuffled CollecTRI ChEA3 Literature <2.2x10-16 50.5
Shuffled CollecTRI ChEA3 ReMap <2.2x10-16 43.6

Table A.2. AUPRC comparison across TF regulon collections. Area under the preci-
sion recall curve (AUPRC) values were compared between different transcription factor
(TF) regulon collections using a two-sample t-test. AUPRC values represent the perfor-
mance in recapitulating perturbed TFs from transcriptomics data. P-values from the t-test
were adjusted using Benjamini-Hochberg

GRN 1 GRN 2 AUPRC Adj.
P Value

AUPRC T
Value

ChEA3 ARCHS4 ChEA3 ENCODE <2.2x10-16 132
ChEA3 ARCHS4 ChEA3 Enrichr <2.2x10-16 185
ChEA3 ARCHS4 ChEA3 GTEx <2.2x10-16 192.3
ChEA3 ARCHS4 ChEA3 Literature <2.2x10-16 183.8
ChEA3 ARCHS4 ChEA3 ReMap <2.2x10-16 160.2
ChEA3 ARCHS4 shuffled CollecTRI <2.2x10-16 138
ChEA3 Enrichr ChEA3 ENCODE <2.2x10-16 4.5
ChEA3 Enrichr ChEA3 Literature <2.2x10-16 20.6
ChEA3 Enrichr ChEA3 ReMap <2.2x10-16 6.5
ChEA3 GTEx ChEA3 ENCODE <2.2x10-16 10.5
ChEA3 GTEx ChEA3 Enrichr <2.2x10-16 8.1
ChEA3 GTEx ChEA3 Literature <2.2x10-16 13.4

Continued on the next page...
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GRN 1 GRN 2 AUPRC Adj.
P Value

AUPRC T
Value

ChEA3 GTEx ChEA3 ReMap <2.2x10-16 13.7
ChEA3 Literature ChEA3 ENCODE <2.2x10-16 20.3
ChEA3 ReMap ChEA3 ENCODE 0.52 0.7
ChEA3 ReMap ChEA3 Literature <2.2x10-16 24.8
CollecTRI ChEA3 ARCHS4 <2.2x10-16 237.8
CollecTRI ChEA3 ENCODE <2.2x10-16 304.9
CollecTRI ChEA3 Enrichr <2.2x10-16 431.1
CollecTRI ChEA3 GTEx <2.2x10-16 437.6
CollecTRI ChEA3 Literature <2.2x10-16 396.6
CollecTRI ChEA3 ReMap <2.2x10-16 377.3
CollecTRI DoRothEA ABC <2.2x10-16 83.2
CollecTRI DoRothEA ABCD <2.2x10-16 160.5
CollecTRI Pathway Commmons <2.2x10-16 170.6
CollecTRI RegNetwork <2.2x10-16 139.5
CollecTRI shuffled CollecTRI <2.2x10-16 360.7
DoRothEA ABC ChEA3 ARCHS4 <2.2x10-16 131.1
DoRothEA ABC ChEA3 ENCODE <2.2x10-16 225.9
DoRothEA ABC ChEA3 Enrichr <2.2x10-16 303.5
DoRothEA ABC ChEA3 GTEx <2.2x10-16 310
DoRothEA ABC ChEA3 Literature <2.2x10-16 290.9
DoRothEA ABC ChEA3 ReMap <2.2x10-16 270.5
DoRothEA ABC DoRothEA ABCD <2.2x10-16 69.6
DoRothEA ABC Pathway Commmons <2.2x10-16 87.9
DoRothEA ABC RegNetwork <2.2x10-16 55.6
DoRothEA ABC shuffled CollecTRI <2.2x10-16 251.9
DoRothEA ABCD ChEA3 ARCHS4 <2.2x10-16 56.9
DoRothEA ABCD ChEA3 ENCODE <2.2x10-16 170
DoRothEA ABCD ChEA3 Enrichr <2.2x10-16 229.5
DoRothEA ABCD ChEA3 GTEx <2.2x10-16 236.2
DoRothEA ABCD ChEA3 Literature <2.2x10-16 224.9
DoRothEA ABCD ChEA3 ReMap <2.2x10-16 203.1

Continued on the next page...



Appendix A 87

Continued from previous page.

GRN 1 GRN 2 AUPRC Adj.
P Value

AUPRC T
Value

DoRothEA ABCD Pathway Commmons <2.2x10-16 24.1
DoRothEA ABCD shuffled CollecTRI <2.2x10-16 183
Pathway Commmons ChEA3 ARCHS4 <2.2x10-16 26.3
Pathway Commmons ChEA3 ENCODE <2.2x10-16 140.7
Pathway Commmons ChEA3 Enrichr <2.2x10-16 183.4
Pathway Commmons ChEA3 GTEx <2.2x10-16 189.7
Pathway Commmons ChEA3 Literature <2.2x10-16 185.1
Pathway Commmons ChEA3 ReMap <2.2x10-16 164.1
Pathway Commmons shuffled CollecTRI <2.2x10-16 144.4
RegNetwork ChEA3 ARCHS4 <2.2x10-16 65.3
RegNetwork ChEA3 ENCODE <2.2x10-16 173.6
RegNetwork ChEA3 Enrichr <2.2x10-16 229.1
RegNetwork ChEA3 GTEx <2.2x10-16 235.6
RegNetwork ChEA3 Literature <2.2x10-16 225.8
RegNetwork ChEA3 ReMap <2.2x10-16 204.8
RegNetwork DoRothEA ABCD <2.2x10-16 10.7
RegNetwork Pathway Commmons <2.2x10-16 33.1
RegNetwork shuffled CollecTRI <2.2x10-16 185.4
shuffled CollecTRI ChEA3 ENCODE <2.2x10-16 21
shuffled CollecTRI ChEA3 Enrichr <2.2x10-16 33
shuffled CollecTRI ChEA3 GTEx <2.2x10-16 40.4
shuffled CollecTRI ChEA3 Literature <2.2x10-16 49.1
shuffled CollecTRI ChEA3 ReMap <2.2x10-16 24.1
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Comprehensive Evaluation of Kinase
Activity Inference from
Phosphoproteomics Data

B.1 Supplementary Tables

Table B.1. Description of computational methods for kinase activity inference.

Method Description

fgsea Fast gene set enrichment infers kinase activities using
a weighted running sum method. It begins by rank-
ing molecular features for each sample and calculates
an enrichment score by traversing the ranked list. The
running sum statistic increases when a feature belongs
to the target set and decreases when it does not. The
size of the increment is proportional to the correlation
between the feature and the phenotype.

Continued on the next page...
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Method Description

Fisher’s exact test Fisher’s exact test assesses the over-representation of
molecular features associated with a kinase’s target
sites compared to non-target sites. This method relies
on a contingency table that categorizes phosphoryla-
tion sites into four groups: kinase targets versus non-
targets and deregulated versus non-deregulated sites.

KARP KARP calculates a K-score by taking the ratio of the
sum of molecular features for a kinase’s target sites to
the sum of molecular features across all phosphoryla-
tion sites. This score is then adjusted to account for
the imbalance in known targets by multiplying it by
the square root of the ratio of measured targets for the
kinase to the total number of known targets in the given
resource.

KSEA KSEA calculates a z-score to quantify the difference
between the mean molecular features of a kinase’s
known targets and the mean molecular features of all
phosphorylation sites. This difference is normalized
by the square root of the number of identified targets
and the standard deviation of the molecular features
across all phosphorylation sites.

Kologomorov-Smirnov The Kolmogorov-Smirnov test compares the running
sums of molecular features for a kinase’s targets and
non-targets. Features are ranked, and the running sum
statistic increases uniformly when a feature belongs to
the target list. Unlike fgsea, the increment size remains
constant regardless of the feature’s correlation.

Continued on the next page...
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Method Description

Linear model - RoKAI The linear model implemented in RoKAI simultane-
ously analyzes the molecular readouts of all phospho-
rylation sites across all kinases. Each phosphorylation
site is modeled as the sum of activities of its associ-
ated kinases, with weights for non-targets set to zero.
Kinase activities are inferred using least squares opti-
mization with ridge regularization to ensure stability
and prevent overfitting.

Mann-Whitney-U The Mann-Whitney U test, also called the Wilcoxon
rank-sum test, compares the ranks of molecular fea-
tures between a kinase’s targets and non-targets. Phos-
phorylation sites are ranked together based on their
molecular features, and the U-statistic is computed
from the sum of ranks for the target and non-target
groups.

mean The mean represents the average value of the molecu-
lar features across all target sites of a kinase.

median The median is the middle value of the molecular fea-
tures for all target sites of a kinase, determined after
ranking these features in ascending or descending or-
der.

multivariate linear model The multivariate linear model, as implemented in de-
coupler, simultaneously models the molecular read-
outs of all features across all kinases. Each phosphory-
lation site is represented as the sum of activities of its
associated kinases, with weights for non-targets set to
zero to focus solely on the relevant kinase associations.

Continued on the next page...
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Method Description

normalized mean The normalized mean is calculated by first generating
a random null distribution of means through random
permutations of target features. The average value of
the molecular features for all target sites of a kinase
is then normalized by subtracting the mean of the null
distribution and dividing by its standard deviation.

principal component analysis Principal Component Analysis (PCA) is conducted
across samples using only the molecular features of a
kinase’s target sites. The kinase score is determined
by the variance explained by the first principal com-
ponent.

PTM-SEA PTM-SEA calculates an enrichment score using the
same approach as fgsea, based on a weighted running
sum. Additionally, it computes a normalized enrich-
ment score by comparing the enrichment score to a null
distribution generated through random permutations of
target features.

sum The sum represents the total of the molecular feature
values across all target sites of a kinase.

univariate linear model The univariate linear model, as implemented in decou-
pler, models the molecular readouts of all features for
each kinase individually. Non-target weights are set to
zero, and the t-value obtained from the fitted model is
used to represent the activity of the kinase.

upper quantile The upper quantile represents the value below which
75% of the molecular feature values for all target sites
of a kinase are distributed.

Continued on the next page...
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Continued from previous page.

Method Description

VIPER VIPER estimates kinase activities by calculating a
three-tailed enrichment score, which evaluates the
ranking of all phosphorylation sites relative to a ki-
nase’s targets based on their molecular features. A nor-
malized enrichment score is then derived by compar-
ing the observed enrichment score to a null distribution
generated through random permutations.

z-score - RoKAI The z-score, as implemented in RoKAI, calculates the
mean of the molecular features for a kinase’s known
targets. This value is then normalized by dividing it by
the square root of the number of identified targets for
the kinase and the standard deviation of the molecular
features across all phosphorylation sites.

Χ2-test The Chi-square test, similar in purpose to Fisher’s ex-
act test, evaluates whether kinase target sites are more
associated with deregulation compared to non-target
sites. It does so by comparing the observed and ex-
pected counts in the contingency table used for Fisher’s
exact test. Unlike Fisher’s exact test, the Chi-square
test is better suited for larger sample sizes and uses
a large-sample approximation to determine statistical
significance.
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Phosphoproteomics Based Network
Contextualization to Understand
Metformin’s Mechanisms in Colon
Cancer

C.1 Supplementary Figures
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cell line. Spearman correlation between the 30-min and 24-h log2 fold changes at the
phosphoproteome level for each colorectal cancer cell line. Reprinted from Salovska et al.
(2023).
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C.2 Supplementary Equations

1. Vertex activation/inhibition exclusivity:

Vact(v) + Vinh(v) ≤ 1, ∀v ∈ V. (C.1)

where:

Vact(v) : Node activation indicator for node v, Vact(v) ∈ {0, 1}
Vinh(v) : Node inhibition indicator for node v, Vinh(v) ∈ {0, 1}
V : Set of all nodes in the graph

2. Edge activation/inhibition exclusivity:

Eact(e) + Einh(e) ≤ 1, ∀e ∈ E. (C.2)

where:

Eact(e) : Edge activation indicator for edge e, Eact(e) ∈ {0, 1}
Einh(e) : Edge inhibition indicator for edge e, Einh(e) ∈ {0, 1}
E : Set of all edges in the graph

3. Sign consistency:

For each edge e ∈ E from se to te:

• If interaction(e) = 1 (activation):

Eact(e) ≤ Vact(se), Einh(e) ≤ Vinh(se). (C.3)

where:

se : Source node of edge e
te : Target node of edge e
Vact(se) : Node activation indicator for source node se, Vact(se) ∈ {0, 1}
Vinh(se) : Node inhibition indicator for source node se, Vinh(se) ∈ {0, 1}
Eact(e) : Edge activation indicator for edge e, Eact(e) ∈ {0, 1}
Einh(e) : Edge inhibition indicator for edge e, Einh(e) ∈ {0, 1}
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• If interaction(e) = −1 (inhibition):

Eact(e) ≤ Vinh(se), Einh(e) ≤ Vact(se). (C.4)

where:

se : Source node of edge e
te : Target node of edge e
Vact(se) : Node activation indicator for source node se, Vact(se) ∈ {0, 1}
Vinh(se) : Node inhibition indicator for source node se, Vinh(se) ∈ {0, 1}
Eact(e) : Edge activation indicator for edge e, Eact(e) ∈ {0, 1}
Einh(e) : Edge inhibition indicator for edge e, Einh(e) ∈ {0, 1}

4. Acyclicity constraints:

Vpos(te)− Vpos(se) ≥ 1−M [1− (Eact(e) + Einh(e))] , ∀e ∈ E. (C.5)

where:

Vpos(te) : Position of target vertex te in the acyclic graph
Vpos(se) : Position of source vertex se in the acyclic graph
M : A large constant used to enforce acyclicity
Eact(e) : Edge activation indicator for edge e, Eact(e) ∈ {0, 1}
Einh(e) : Edge inhibition indicator for edge e, Einh(e) ∈ {0, 1}

5. Signal propagation as a tree:

∑
e∈In(v)

(Eact(e) + Einh(e)) ≤ 1, ∀v ∈ V. (C.6)

where:

In(v) : Set of edges ending at vertex v
Eact(e) : Edge activation indicator for edge e, Eact(e) ∈ {0, 1}
Einh(e) : Edge inhibition indicator for edge e, Einh(e) ∈ {0, 1}
V : Set of all vertices in the graph

6. Vertex activation/inhibition conditions:
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For each non-perturbed vertex v ∈ V \ Vp:

Vact(v) ≤
∑

e∈In(v)

Eact(e), Vinh(v) ≤
∑

e∈In(v)

Einh(e). (C.7)

where:

In(v) : Set of edges ending at vertex v
Eact(e) : Edge activation indicator for edge e, Eact(e) ∈ {0, 1}
Einh(e) : Edge inhibition indicator for edge e, Einh(e) ∈ {0, 1}
Vact(v) : Node activation indicator for node v, Vact(v) ∈ {0, 1}
Vinh(v) : Node inhibition indicator for node v, Vinh(v) ∈ {0, 1}
Vp : Set of perturbed vertices

7. Perturbed inputs:

For each perturbed vertex v provided as input:

• If activation (perturbation value = +1):

Vact(v) = 1, Vinh(v) = 0. (C.8)

• If inhibition (perturbation value = −1):

Vact(v) = 0, Vinh(v) = 1. (C.9)

where:

Vact(v) : Node activation indicator for node v, Vact(v) ∈ {0, 1}
Vinh(v) : Node inhibition indicator for node v, Vinh(v) ∈ {0, 1}
v : Perturbed vertex
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Figure D.1. Contextualized signaling network for GAS6 stimulation in hepatic stel-
late cells. Contextualized network connecting signaling events to transcriptional regula-
tion induced by GAS6 stimulation. In the network, nodes represent proteins, and arrows
denote regulatory relationships. The network was jointly modeled with two other condi-
tions, namely TGFβ and a combined stimulation of TGFβ and GAS6, linking the targeted
receptors AXL (diamond) to deregulated kinases (circles) and transcription factors (tri-
angles) identified through footprint-based activity inference. The activity of intermediate
proteins (rectangles) was inferred within the network model. Nodes from all conditions
were integrated to construct a backbone network.
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Figure D.2. Contextualized signaling network for TGFβ stimulation in hepatic stel-
late cells. Contextualized network connecting signaling events to transcriptional regula-
tion induced by TGFβ stimulation. In the network, nodes represent proteins, and arrows
denote regulatory relationships. The network was jointly modeled with two other con-
ditions, namely GAS6 and a combined stimulation of TGFβ and GAS6, linking the tar-
geted receptors TGFßRI/II (diamond) to deregulated kinases (circles) and transcription
factors (triangles) identified through footprint-based activity inference. The activity of
intermediate proteins (rectangles) was inferred within the network model. Nodes from all
conditions were integrated to construct a backbone network.
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Figure D.3. Contextualized signaling network for GAS6 and TGFβ stimulation in
hepatic stellate cells. Contextualized network connecting signaling events to transcrip-
tional regulation induced byGAS6 and TGFβ stimulation. In the network, nodes represent
proteins, and arrows denote regulatory relationships. The network was jointly modeled
with two other conditions, namely GAS6 and TGFβ, linking the targeted receptors AXL
and TGFßRI/II (diamonds) to deregulated kinases (circles) and transcription factors (tri-
angles) identified through footprint-based activity inference. The activity of intermediate
proteins (rectangles) was inferred within the network model. Nodes from all conditions
were integrated to construct a backbone network.
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D.2 Supplementary Tables
Table D.1. Top differentially expressed genes per stimulation. Top 10 significantly
differentially expressed genes based on their absolute logFC across time points per stim-
ulation (GAS6, TGFß, GAS6+TGFß). Differential expression analysis was performed
using limma and p-values were adjusted using Benjamini-Hochberg.

Gene logFC adj. P-
value

Time
[h]

Stimulation

SLC39A10 1.07 0.03 1 GAS6
TMEM132E -1.17 0.045 4 GAS6
MT1E 1.49 0.009 20 GAS6
MT1F 1.41 0.011 20 GAS6
MT1X 1.28 0.03 20 GAS6
SLC39A10 -1.06 0.034 20 GAS6
KRT15 -1 0.049 20 GAS6
PMEPA1 5.61 <2.2x10-16 12 TGFß
ODAPH 5.59 <2.2x10-16 12 TGFß
FOXS1 5.52 <2.2x10-16 12 TGFß
FOXS1 6.22 <2.2x10-16 20 TGFß
PRG4 6.1 <2.2x10-16 20 TGFß
PMEPA1 5.71 <2.2x10-16 20 TGFß
PRG4 6.95 <2.2x10-16 28 TGFß
ISLR2 6.19 <2.2x10-16 28 TGFß
FOXS1 6.04 <2.2x10-16 28 TGFß
PMEPA1 5.84 <2.2x10-16 28 TGFß
PMEPA1 5.51 <2.2x10-16 7 TGFß + GAS6
FOXS1 5.66 <2.2x10-16 12 TGFß + GAS6
ODAPH 5.58 <2.2x10-16 12 TGFß + GAS6
FOXS1 6.23 <2.2x10-16 20 TGFß + GAS6
PRG4 5.84 <2.2x10-16 20 TGFß + GAS6
PMEPA1 5.56 <2.2x10-16 20 TGFß + GAS6
PRG4 6.95 <2.2x10-16 28 TGFß + GAS6
FOXS1 6.34 <2.2x10-16 28 TGFß + GAS6
ISLR2 6.03 <2.2x10-16 28 TGFß + GAS6
PMEPA1 5.74 <2.2x10-16 28 TGFß + GAS6
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Table D.2. Top differentially abundant phosphorylation sites per stimulation. Top 10
significantly differentially abundant phosphorylation sites based on their absolute logFC
across time points per stimulation (GAS6, TGFß, GAS6+TGFß). Differential analysis
was performed using limma and p-values were adjusted using Benjamini-Hochberg.

Phosphorylation
site

logFC adj. P-
value

Time
[h]

Stimulation

EHBP1_S428 -5.46 0.016 0.08 GAS6
UBAP2L_S467 -4.6 <2.2x10-16 0.08 GAS6
NCOR2_S943 -4.55 0.009 0.08 GAS6
NUP155_S992 -4.35 0.013 0.08 GAS6
SH3RF3_S404 4.68 0.011 4 GAS6
MAP1A_S1146 -7.88 0.014 7 GAS6
DEK_S19 5.2 0.014 7 GAS6
EML3_T881 4.59 <2.2x10-16 7 GAS6
EHBP1_S428 -4.92 0.028 12 GAS6
ARHGEF28_S513 -4.25 <2.2x10-16 12 GAS6
MAP1B_S1819 5.91 0.036 4.5 TGFß
HIVEP1_S1884 -5.83 0.04 5 TGFß
H2AZ1_T104 5.47 0.015 7 TGFß
NUAK1_S388 5.04 <2.2x10-16 12 TGFß
YEATS2_S471 8.34 0.01 28 TGFß
VPS50_S28 -5.24 <2.2x10-16 28 TGFß
ETV3_S159 6.41 0.009 52 TGFß
GAPVD1_S946 -5.4 0.013 52 TGFß
HLA-A_S359 5.05 0.014 52 TGFß
CHERP_S830 -4.96 0.003 52 TGFß
EML3_T881 5 <2.2x10-16 7 TGFß + GAS6
YEATS2_S471 -7.87 0.007 12 TGFß + GAS6
CORO7_S879 -6.84 0.006 12 TGFß + GAS6
CORO7_S880 -6.84 0.006 12 TGFß + GAS6
CORO7_Y883 -6.84 0.006 12 TGFß + GAS6
ERCC5_S382 5.12 <2.2x10-16 12 TGFß + GAS6
YEATS2_S471 7.24 0.014 28 TGFß + GAS6
VPS50_S28 -6.45 <2.2x10-16 28 TGFß + GAS6
RAPH1_T1153 5.7 0.046 52 TGFß + GAS6
ABI1_Y213 5.26 0.039 52 TGFß + GAS6



Glossary

AUC area under the curve

AUPRC area under the precision-recall curve

AUROC area under the receiver operating characteristic curve

cDNA complementary DNA

coTF co-regulatory transcription factor

CRC colorectal cancer

dbTF DNA-binding transcription factor

DDA data-dependent acquisition

DIA data-independent acquisition

ECM extracellular matrix

GAS6 growth arrest-specific 6

GO gene ontology

GRN Gene regulatory networks

GTF general initiation transcription factor

HSC hepatic stellate cell

ILP integer linear programming

KRAB Krüppel associated box
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106 Glossary

MoR mode of regulation

mRNA messenger RNA

MS mass spectrometry

NES normalized enrichment score

PBMC peripheral blood mononuclear cell

PBS phosphate-buffered saline

PCA principal component analysis

PMID PubMed identifier

PTM post-translational modification

RNA ribonucleic acid

RNA-seq RNA sequencing

TF transcription factor

TGFβ transforming growth factor beta

TN tue negative

TP true positive

TSS transcription start site

UMAP uniform manifold approximation and projection

vsn variance-stabilizing normalization
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