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Abstract 

 

The northern Chilean coastal regions are known for their extreme aridity, with annual precipitation 

often less than 1 mm. The interaction between ocean-atmosphere systems plays a crucial role in 

shaping marine advection fog patterns in this area, which is vital for the hyper-arid ecosystem along 

the Atacama coast. While extensive geographical research has been conducted on fog patterns since 

the mid-20th century, there is limited knowledge in managing fog climate records and understanding 

their regional and local climatological dynamics. This research is organized into three main sections. 

The first one outlines a methodological climate data flow, emphasizing data quality control and 

processing. The second section focuses on analyzing temporal gradients of fog climate at the regional 

level. The third section delves into local spatial analysis and modeling of Near-surface fog water in the 

inland desert. 

The processing of raw climatic data recorded from extreme environments such as the extreme aridity 

of the Atacama Desert poses a significant challenge in climatic research, as they exhibit gaps, 

inconsistencies, and errors. The process of handling climatic data from the eight climatological stations 

and Standard Fog Collectors (SFCs) comprising the fog climate network in the northern Atacama 

Desert, Region of Tarapacá, involves data identification, cleansing, correction, and normalization. This 

is achieved through programming flows guided by standardized parameters, primarily defined by the 

World Meteorological Organization (WMO). Data gaps and outliers within the network's data series 

account for less than 2% of the total record. Anomalies in the data series are primarily attributed to 

electrical and electronic issues inherent in remote/satellite transmission. The precision and quality of 

climatic data are essential for accurate interpretation and analysis, enhancing the understanding of 

fog climate dynamics in hyper-arid environments. 

The regional approach aims to comprehend the variability between fog collection and its 

climatological gradient. The datasets were analyzed at different temporal intervals across eight 

climatological stations. The analysis elucidates how the variability of fog climates and their driving 

factors in these datasets manifest themselves throughout the region, considering both temporal and 

geographical determinants. Throughout the year, fog exhibits marked diurnal variation, being more 

pronounced in the morning and minimal in the afternoon and night. The seasonal influence of the 

thermal inversion layer (TIL) is significant, with more fog water collected in the winter due to a lower 

TIL and less collection in the summer due to a higher TIL. High relative humidity is crucial for fog 

formation in coastal areas, while inland regions are drier. Wind, varying in direction and speed, also 
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impacts fog. Overall, this regional-temporal analysis shows the multifaceted nature of fog in the 

Atacama Desert, elucidating its dependence on diurnal, seasonal, and geographical variables. These 

findings contribute to a better understanding of fog dynamics within this unique arid ecosystem. 

In an inland desert at ca. 1,200 meters above sea level (masl) within the "Oyarbide" Site, a local study 

analyses the link between Near-surface fog water variability and topographical features. The monthly 

data of ten Mini Fog Collectors (Mini FCs) placed at Oyarbide and Digital Elevation Model (DEM) data, 

an Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) were employed for 

regression analysis. These methods evaluated the influence of five topographical factors on Near-

surface fog water. Results revealed patterns and spatial variability in these associations, emphasizing 

the impact of topography on Near-surface fog water. Elevation was positively correlated with Near-

surface fog water, while Aspect and Slope are related to terrain roughness. Local GWR model 

outperformed the global OLS model, substantially increasing the coefficient of determination (R²). This 

provides a comprehensive understanding of how local topography affects Near-surface fog water 

collection, enhancing the knowledge of atmosphere-biosphere interactions. 
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Zusammenfassung 

 

Die Küstenregionen im Norden Chiles sind für ihre extreme Trockenheit bekannt, mit jährlichen 

Niederschlägen oft unter 1 mm. Die Wechselwirkung zwischen Ozean-Atmosphäre-Systemen spielt 

eine entscheidende Rolle bei der Formung von marinen Advektionsnebelmustern in dieser Region, die 

für das hyperaride Ökosystem entlang der Atacama-Küste von großer Bedeutung ist. Obwohl seit 

Mitte des 20. Jahrhunderts umfangreiche geografische Forschung betrieben wurde, sind die 

Kenntnisse im Umgang mit Klimaaufzeichnungen des Nebelklimas und das Verständnis ihrer 

regionalen und lokalen klimatologischen Dynamik begrenzt. Diese Forschungsarbeit ist in drei 

Hauptabschnitte unterteilt. Der erste Abschnitt skizziert einen methodischen Datenfluss im Klima, 

wobei die Qualität und Verarbeitung der Daten betont wird. Der zweite Abschnitt konzentriert sich 

auf die Analyse von zeitlichen Gradienten des Nebelklimas auf regionaler Ebene. Der dritte Abschnitt 

vertieft die lokale räumliche Analyse und Modellierung von oberflächennahem Nebelwasser in der 

Binnenwüste. 

Die Verarbeitung von Klimarohdaten aus extremen Umweltbedingungen wie sie die extreme 

Trockenheit der Atacama-Wüste darstellt, stellt die Klimaforschung vor eine erhebliche 

Herausforderung, da sie Lücken, Inkonsistenzen und Fehler aufweisen. Der Prozess der Bearbeitung 

von Klimadaten aus den acht klimatologischen Stationen und Standard Fog Collectors (SFCs), die das 

Nebelklimanetzwerk in der nördlichen Atacama-Wüste, Region Tarapacá, bilden, umfasst die 

Identifikation, Bereinigung, Korrektur und Normalisierung von Daten. Dies erfolgt durch 

Programmierungstechniken, die von standardisierten Parametern geleitet werden und hauptsächlich 

von der Weltorganisation für Meteorologie (WMO) definiert sind. Datenlücken und Ausreißer in den 

Datenreihen des Netzwerks machen weniger als 2% der Gesamtaufzeichnung aus. Anomalien in den 

Datenreihen werden hauptsächlich auf elektrische und elektronische Probleme bei der Fern-

/Satellitenübertragung zurückgeführt. Die Präzision und Qualität der Klimadaten sind für die genaue 

Interpretation und Analyse dieser Daten von entscheidender Bedeutung, um unser Verständnis der 

Dynamik des Nebelklimas in hyperariden Umgebungen zu vertiefen. 

Der regionale Ansatz zielt darauf ab, die Variabilität zwischen der Nebelsammlung und ihrem 

klimatologischen Gradienten zu verstehen. Die Datensätze wurden in verschiedenen Zeitabständen 

an acht Klimastationen analysiert. Die Analyse verdeutlicht, wie sich die Variabilität des Nebelklimas 

und seiner treibenden Faktoren in diesen Datensätzen in der gesamten Region manifestiert, wobei 

sowohl zeitliche als auch geografische Determinanten berücksichtigt werden. Während des ganzen 



Zusammenfassung 
_______________________________________________________________________________________________  

 

VI 
 

Jahres weist der Nebel ausgeprägte tageszeitliche Schwankungen auf, die morgens stärker und 

nachmittags und nachts minimal ist. Der jahreszeitliche Einfluss der thermischen Inversionsschicht 

(TIL) ist signifikant, wobei im Winter aufgrund einer niedrigeren TIL mehr Nebelwasser und im Sommer 

aufgrund einer höheren TIL weniger Nebelwasser gesammelt wird. Hohe relative Luftfeuchtigkeit ist 

entscheidend für die Nebelbildung in Küstengebieten, während die Regionen im Landesinneren 

trockener sind. Der Wind, der in Richtung und Geschwindigkeit variiert, wirkt sich auch auf den Nebel 

aus. Insgesamt zeigt diese regional-zeitliche Analyse die vielfältigen Eigenschaften des Nebels in der 

Atacama-Wüste und verdeutlicht seine Abhängigkeit von tages- und jahreszeitlichen sowie und 

geografischen Variablen. Diese Erkenntnisse tragen zu einem besseren Verständnis der Nebeldynamik 

in diesem einzigartigen ariden Ökosystem bei. 

Am Hauptstandort "Oyarbide", in einer Wüste im Landesinneren auf etwa 1.200 Metern über dem 

Meeresspiegel (m ü. M.) wird in einer lokalen Studie der Zusammenhang zwischen der Variabilität des 

oberflächennahen Nebelwassers und den topografischen Merkmalen analysiert. Für die 

Regressionsanalyse wurden die monatlichen Daten von zehn Mini Fog Collectors (Mini FCs), die in 

Oyarbide aufgestellt wurden, Daten eines digitalen Höhenmodells (DEM), eine Methode der kleinsten 

Quadrate (OLS) sowie eine geografisch gewichtete Regression (GWR) verwendet. Mit diesen 

Methoden wurde der Einfluss von fünf topografischen Faktoren auf das oberflächennahe Nebelwasser 

untersucht. Die Ergebnisse deckten Muster und räumliche Variabilität in diesen Zusammenhängen auf 

und betonten die Auswirkung der Topografie auf das oberflächennahe Nebelwasser. Die Höhe war 

positiv mit dem oberflächennahen Nebelwasser korreliert, während Exposition und Hang in Beziehung 

zur Geländerauigkeit standen. Das lokale GWR-Modell übertraf das globale OLS-Modell und erhöhte 

den Bestimmtheitskoeffizienten (R²) erheblich. Dies ermöglicht ein umfassendes Verständnis dafür, 

wie die lokale Topografie die Sammlung von oberflächennahem Nebelwasser beeinflusst, und 

erweitert das Wissen über die Wechselwirkungen zwischen Atmosphäre und Biosphäre. 
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1. Introduction 

 

The western coastal regions of South America are among the driest areas on the planet, with average 

annual precipitation averaging less than 1 mm annually (Westbeld et al., 2009). Despite these arid 

conditions, fog plays a vital role in providing natural water resources for local ecosystems and human 

populations (Cermak et al., 2009). Based on regional studies, the fog in this region is generated by 

stratocumulus clouds that form over the cold Humboldt Current and humid air masses, which are then 

transported inland by trade winds and land-sea circulation. When the stratocumulus clouds interact 

with the coastal topography, they become advection fog. This ocean-atmosphere interaction drives 

the spatio-temporal dynamics of marine advection fog, which is essential to the development of 

unique ecosystems and high biodiversity along the Atacama coast (Cereceda et al., 2008b). 

Extensive research has been conducted on fog in the Chilean section of the Atacama coastal desert, 

with a particular focus on its role as a water resource for Tillandsia landbeckii ecosystems and human 

consumption (Cereceda et al., 2002; Schemenauer & Cereceda, 1994a). Geographic studies of this 

region date back to the mid-20th century (Weischet, 1975), and it remains an area of significant 

interest, with fog research covering approximately 100,000 km² in northern Chile (Cereceda et al., 

2008a; Cereceda et al., 2002). The distinctive environmental conditions of the Atacama coast have 

fostered a diverse range of ecological dynamics, making it an ideal setting for in-depth studies of fog 

processes and their ecological impacts. 

Despite significant research on fog in the Chilean Atacama coastal desert, there is still limited 

understanding of the spatio-temporal dynamics of fog variability on a local and regional scale, 

especially concerning interactions with the unique fog ecosystems of Tillandsia Lomas dominated by 

the endemic species Tillandsia landbeckii. 

This knowledge gap underscores the necessity for a detailed analysis of the spatial and temporal 

dynamics of fog and its driving factors. Consequently, this study seeks to address the following 

research questions: 

Does the management of the fog climate network database, based on the identification and 

rectification of gaps and outliers, culminate in an enhancement of database quality, thereby fostering 

heightened reliability and robustness in ensuing multiscale analyses of fog variability? 

How does fog occurrence, duration, and intensity vary across the regional climatological gradient over 

time, and what is the relationship between these patterns, altitude, and proximity to the coast? 
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What are the primary topographical factors and their thresholds that drive the spatial variability of 

Near-surface fog water on a local scale in the inland desert, and how do these interactions influence 

the variability and accumulation of Near-surface fog water? 

By addressing these research questions, this study aims to deepen the understanding of fog variability 

patterns across multiple scales within the Tarapacá region of northern Chile. Through comprehensive 

spatio-temporal analyses and modeling of fog-related climatological and topographical data, this 

research seeks to characterize the variability of fog collection and occurrence, which play a critical role 

in the region's climatology. Specifically, this work provides insights into effective approaches for 

modeling fog climate and examining biosphere-atmosphere interactions in the Atacama Desert. This 

approach is designed to bridge existing knowledge gaps by examining the spatial and temporal 

dynamics of fog and its primary influencing factors, contributing to a more robust framework for 

studying hyper-arid, fog-dependent ecosystems. 

Firstly, to assess the precision and accuracy of the data provided by the fog climate measurement 

network and enhance data quality as necessary. Secondly, to define the spatio-temporal variability 

and patterns of fog on a regional scale and investigate how these are influenced by spatial 

characteristics such as altitude and proximity to coastal gradients. Finally, to analyze the variability of 

Near-surface fog and assess the spatial influence of key topographical factors on fog dynamics. 

This research has a significant scope and will contribute to advancing the scientific knowledge of fog 

climatology and its ecological implications in hyper-arid environments. The findings of this study will 

have implications for regional climate modelling, ecosystem management, and biodiversity 

conservation efforts and the research results will be relevant not only to researchers but also to 

policymakers who are interested in climatology, climate change and adaptation in hyper-arid regions 

through the provision of detailed knowledge on regional-local fog dynamics in the Atacama. 

The research adopts a comprehensive approach and is conducted at both regional and local scales. At 

the regional scale, the study area extends from the coast to approximately 11 km inland into the 

desert, serving as a representative area for analyzing the flog climate gradient. The local scale study is 

focused on a representative study site called "Oyarbide" covering an area of ca. 16 km2, located near 

the homonymous hill. The Oyarbide Site is of particular interest owing to the presence of one of the 

largest Tillandsia landbeckii fields in the region, which represents a unique fog-dependent ecosystem 

covering a range of about 200 m in elevation. It is framed by an east/west directed corridor, where 

the advective and orographic fog can penetrate far enough inland to reach the study site at around 

over the upper limit (Cereceda et al., 2007; Westbeld et al., 2009). 
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To achieve the research objectives, this study is structured around a methodological framework 

encompassing three main chapters. The first chapter includes an assessment of climatological time 

series from the fog climate network, applying quality control measures and advanced data processing 

techniques to ensure data accuracy. The second chapter addresses a regional-scale analysis of fog 

climate data to identify spatial and temporal patterns that characterize its variability from the coast 

to inland desert. The final chapter focuses on developing statistical models to evaluate the influence 

of topographic factors on Near-surface fog water variability at a local scale. This approach facilitates a 

detailed examination of spatio-temporal patterns in fog variability across both regional and local 

scales, supporting an enhanced understanding of fog variability in this environment. 

Chapter 1 presents the availability, management, and challenges associated with the quality of 

climatic data obtained from the fog climate measurement network in hyper-arid environments with 

limited accessibility and data storage/transfer systems. An overview of the regional measurement 

system in the Atacama Desert is provided, along with a presentation of the data processing and 

advanced approaches used for the quality control of data transmitted via satellite, as well as the 

strategies employed to develop high-quality climate data products in such extreme conditions. 

Chapter 2 introduces a comprehensive multiscale analysis of the spatio-temporal gradient of the 

driving parameters that determine the fog climate on a regional scale. This chapter characterizes fog 

variability through the dynamic of SFW collected by Standard Fog Collectors (SFCs) and the occurrence 

of fog events in relation to the variability of climatic variables. The analysis is conducted using a 

transect of climatological stations extending from the coast up to 11 km inland and over 1,300 masl. 

Advanced statistical techniques, including time series analysis, principal component analysis, and 

generalized additive models, are employed to identify the spatio-temporal patterns of fog occurrence 

and its relationship with climatic variables. 

Chapter 3 focuses on the spatial analysis and evaluation of the influence of topographic factors 

affecting fog occurrence and accumulation on the variability of Near-surface fog water, measured at 

50 cm from the surface on a local scale. The Ordinary Least Squares (OLS) and Geographically 

Weighted Regression (GWR) analysis are employed to model the relationship between topography 

and the Near-surface fog water collection. The differences between the two regression analysis 

methods are highlighted, and their relevance for modelling this type of interactions is discussed. 

This research provides a comprehensive and systematic analysis of data quality management of the 

regional fog climate measurement system in the Chilean Atacama Desert, regional fog variability and 

its relationship with climatic gradient, and topographic factors influencing Near-surface fog variability 

in this hyper-arid environment.
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2. Research area 

 

The Chilean Atacama Coastal Desert from ca. 18°20'S to 27°S, is part of the hyper-arid geographic 

complex that extends for more than 3,000 km along a narrow coastal strip from northern Peru to 

Norte Chico of Chile on the west coast of South America. The Atacama Desert's existence is attributed 

to a stable high-pressure system in the western Pacific Ocean, the Humboldt current's drying effect, 

and the rain shadow effect of the Andes, restricting moisture penetration from eastern trade winds 

(Jaksic et al., 1999; Rundel et al., 1991). With an average annual precipitation of less than 1 mm per 

year, advective sea fog provides water and nutrients to unique ecosystems localized inland Desert 

(Moat et al., 2021). 

In this research area, the focus is specifically on a defined study area approximately 11 km inland from 

the coast. Within this study area lies a selected study site, covering an area of ca. 16 km2, situated ca. 

10 km inland. This study area and site is the subject of investigation to understand atmospheric-

biosphere dynamics guided by fog collection variability (see Figure 1). 

 

 

Figure 1: North to south satellite view of the research area – Northern Chilean Atacama Desert. 
Source: Nasa – Earth Observatory1 

 
1 https://earthobservatory.nasa.gov/images/151670/looking-down-on-the-
andes?utm_source=TWITTER&utm_medium=NASAEarth&utm_campaign=NASASocial&linkId=229342528 
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2.1. Study area 

 

The Chilean Atacama Desert, one of the driest regions on Earth, experiences nearly nonexistent rainfall 

in its core zones. Here, the predominant source of water is a complex water inputs from marine 

advective fog along the Pacific coast, penetrating deep inland desert from variations along the 

Atacama coast linked with fluctuations in moisture inputs originating from the Pacific Ocean (Latorre 

et al., 2011). Multi-scale climatological measurements on a regional approach reveal steep spatial 

gradients and rapid atmospheric changes in the lower atmosphere. These changes are closely tied to 

the advection of divergent coastal (humid and cold) and continental (dry and warm) air masses, whose 

ocean-desert interaction seeks to record the transect of climatic stations that constitute the fog 

climate network (see Figure 2). 

 

 

Figure 2: View of the transitional desert-ocean gradient from OYA_1069 in Southern Autumn. 
Source: author’s photographic archive 
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This advective fog allows the existence of disjoint patches of vegetation known as Tillandsia Lomas, 

which are home to endemic species of Tillandsia landbeckii that rely exclusively on coastal fog as their 

primary source of water and constituting important biodiversity hotspot (see Figure 3). The 

topography of the region generates fog due to the presence of a coastal cliff that intercepts the 

stratocumulus clouds between 400 and 1,200 masl. Therefore, fog ecosystems exhibit high densities 

near the ocean and inland locations (Cereceda et al., 1999), and often form linear structures arranged 

orthogonally to the sloping desert landscape, optimizing fog collection and minimizing self-

competition (Wolf et al., 2016). 

 

 

Figure 3: Regional clusters of Tillandsia fields on a 3D perspective. Source: Mikulane et al. (2022) 

 

Embedded within this extreme ecosystem, a network of climatological stations has been set up since 

2016, strategically localized from coast to 1,354 masl and extending up to 11 km inland (see Figure 4). 

These stations systematically record and monitor an array of climatological variables pivotal to study 

fog dynamics and its driver parameters with a high sensitivity level and high quality of the sensors and 

store these data at 10-minute intervals. The recorded parameters include standard fog water (SFW) 

(2 m), fog water 360° (FW360), dew water (DW), air temperature (AT) and relative humidity (RH), soil 
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temperature (SoT) (0.1 m), soil moisture (SoM) (0.1 m), surface temperature (ST) (0.05 m), wind speed 

and direction (WS and WD at 2/10 m), air pressure (AP), global radiation (GR), leaf wetness (LW), and 

dew (DP) (see Table 1). 

 

 

Figure 4: Fog climate measurement network at regional scale approach. Source: author's elaboration 
based on Esri ArcGIS Basemap 
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Table 1: Fog climate instrumentations and its features at regional scale. Source: author's elaboration 

 

 

 

 

 

 

 

 

 

 

Parameter m Height Sensor type Measuring range Accuracy

Standard fog water 2 SFC & Precipitation Transmitter/Thies CLIMA 200 cm2 0.1mm

Fog water 360° 1 Cylindrical Fog Collector & Precipitation Transmitter/Thies CLIMA 50 cm2 0.1mm

Dew water 1 Vertical dew water collector & Precipitation Transmitter/Thies CLIMA 200 cm2 0.1mm

Air temperature 2 Hygro-Thermo Transmitter-compact/Thies CLIMA 30… +70°C ± 0.1K

Relative humidity 2 Hygro-Thermo Transmitter-compact/Thies CLIMA 0… 100% ± 2 RH (@ 5… 95% RH and 10… 40°C)

Surface temperature 0.05 Earth Surface Temperature Transmitter Pt 100/Thies CLIMA 30… +50°C ± 0.1K

Soil moisture 0.1 Soil Moisture Probe Trime-Pico 32/IMKO 0… 100% ± 2% (@ 5… 40%), ± 3% (@ 40… 70%)

Soil temperature 0.1 Soil Moisture Probe Trime-Pico 32/IMKO 15… +50°C ± 1.5K

Wind speed (2 m) 2 Wind Transmitter Classic/Thies CLIMA 0.3… 50m/s < 2% or ± 0.3m/s of meas. value

Wind speed (10 m) 10 Wind Transmitter Classic/Thies CLIMA 0.3… 50m/s < 2% or ± 0.3m/s of meas. value

Win direction (2 m) 2 Wind Direction Transmitter Classic/Thies CLIMA 0… 360° ± 1.5°

Wind direction (10 m) 10 Wind Direction Transmitter Classic/Thies CLIMA 0… 360° ± 1.5°

Ai pressure 1.5 Baro Transmitter B-278/Thies CLIMA 800… 1060 hPa ± 0.3 hPa @ 20°C

Global radiation 2 Pyranometer CMP 3/Thies Clima 0… 2000 W/m2 5… 20 µV/W/m2

Leaf wetness 0.05 Leaf Wetness Transmitter/Thies CLIMA 0… 100% 10%

Dew point 0.05 Rain Monitor/Thies CLIMA 0 (No) & 1 (Yes) Binary
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2.2. Study site 

 

In the inland desert, a representative area of ca. 16 km2 called Oyarbide (20°29'S, 70°03'W) has been 

selected to analyze and model the spatial gradients and variability of fog Near-surface. The seasonal 

and diurnal dynamics of fog in this site, which includes the transect of climatological stations 

OYA_1128, OYA_1193 and OYA_12111, situated proximate to Cerro Oyarbide, are intricately 

interconnected with a complex interplay of regional and local elements, encompassing oceanographic 

and geographical characteristics that influence its behavior.  

The area exhibits a topographical profile characterized by altitudinal gradients ranging from 

approximately 1,000 m to over 1,200 m. The site is flanked by an east-west oriented corridor that 

facilitates the inflow of both advective and orographic fog, which can penetrate up to 200 m in 

elevation, reaching upper limit of Oyarbide (see Figure 5).  

 

 

Figure 5: Terrain of the study site “Oyarbide” on a fog event. Source: author’s photographic archive 
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Between the summits of Oyarbide and Soronal hills, a fog corridor is delineated, giving rise to a saddle 

point that channels the stratocumulus cloud, leading to intermittent fog occurrences (Farías et al., 

2005), and comprises one of the most extensive Tillandsia landbeckii fields that depends heavily on 

fog as a primary water source (Cereceda et al., 2007; Westbeld et al., 2009). Oyarbide exhibits the 

most pronounced variability among Tillandsia stands concerning elevation gradients, its topography 

features an ideal relief characterized by a predominantly uniform incline towards the coast, leading to 

distinct gradients in stand structure and facilitating modeling and correlation with other climatological 

variables, especially fog collection (Mikulane et al., 2022). 

In 2019 ten mini standard fog collectors (Mini FCs) were installed, covering a localized surface area 

the study site (see Figure 6). These collectors yield monthly data regarding Near-surface fog water 

collected at a height of 50 cm above the ground. The first results from modeling Near-surface fog 

variability reveal a significant correlation with the roughness of the terrain. 

 

 

Figure 6: Mini FCs measurements network at local scale in the study site. Source: author's 
elaboration, Esri ArcGIS Basemap 
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3. State of the art of fog patterns understanding in the Atacama Desert: 

multiscale exploration and climatic analysis 

 

3.1. Fog research and fog climate measurements background in Chile 

 

Since the 19th century, fog has undergone extensive study as a potential natural water resource for 

human consumption (Fessehaye et al., 2014). In the mid-1980s, several developing countries initiated 

collecting fog water, with the FogQuest Foundation2 pioneering the dissemination of knowledge about 

fog water benefits. Furthermore, the Pontifical Catholic University of Chile has played a pivotal role in 

the systematic collection and analysis of SFW data within the Atacama Desert. In recent years, 

monitoring systems like the Satellite-based Operational Fog Observation Scheme (SOFOS)3, have 

enabled interdisciplinary research focused on comprehensively understanding the spatio-temporal 

variability of fog. Initiatives such as FogNet (FN)4 in coastal desert regions of the Americas and Africa, 

the South Africa Science Services Center project for Climate Change and Adaptive Land Management 

(SASSCAL)5, Namib Fog Life Cycle Analysis (NaFoLiCA)6 in the Namibian Coastal Desert, and the 

cooperation between the Centro UC Desierto de Atacama (CDA)7 and the Research Group for Earth 

Observation8 from Heidelberg University of Education and University of Heidelberg, collectively seek 

to advance integrative knowledge on the fog climate of the Atacama Desert and its role in supporting 

ecosystems that serve as bio-indicators of climate change (see Figure 7). 

 

 
2 https://fogquest.org/ 
3 https://publikationen.bibliothek.kit.edu/1000067688 
4 http://the-
eis.com/elibrary/sites/default/files/downloads/literature/Monitoring%20the%20lifeblood%20of%20the%20Namib_Fog.pd
f 
5 https://sasscal.org/ 
6 https://www.imk-asf.kit.edu/english/Projects_2885.php 
7 https://www.cda.uc.cl/ 
8 https://www.rgeo.de/de/start/ 
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Figure 7: Overview of the methodological approach proposed by rgeo/CDA for researching fog 
climate and fog ecosystems in the Chilean Atacama Desert. Source: FEBiD Project ref. 

ELAC2015/T01-08729 

 

Comprehensive research and empirical investigations have revealed that the geographical and 

topographical characteristics of the Chilean South American coastline create conditions that facilitate 

the frequent presence of fog for most of the year (Montecinos et al., 2018). The climatic conditions 

responsible for fog formation in the Atacama Desert are largely driven by the presence of the 

southeast Pacific anticyclone and the region’s prominent topography, the coastal range and the 

Andean Cordillera (Garreaud et al., 2008). It is influenced by the cold waters of the Humboldt current 

(Rutllant et al., 2003), and thus also by El Niño-Southern Oscillation (ENSO) and the associated sea 

surface temperature anomalies in the adjacent ocean (Schulz et al., 2012). 

 
9 https://www.eucelac-platform.eu/project/chilean-peruvian-arid-coastal-fog-ecosystems-under-climate-change-
understanding-biosphere 
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A persistent stratocumulus cloud deck forms in the upper part of the marine boundary layer (MBL), 

producing dense fog where the coastal escarpment interacts with these clouds. The pronounced 

temperature increase within the inversion layer hampers the vertical development of clouds, while 

the steep coastal mountain range largely impedes its movement inland (Schulz et al., 2012) (see Figure 

8). This ocean-atmosphere system gives rise to a dynamic marine advection fog, providing moisture 

to a hyper-arid environment and allowing the development of ecosystems and high biodiversity locally 

called vegetación de lomas or fog oases (Cereceda et al., 2008b; Del Río et al., 2018; Garreaud et al., 

2008). 

A dominant land-sea breeze system prevails in the study area, extending from the coastal zone 

towards the interior desert, reaching the Tillandsia Lomas fields and further into the desert (Miller, 

1976). Generally, this local wind system generates orographic fog that develops at the coastal cliff 

whereas radiation fog occurs further inland (Cereceda et al., 2002). 

 

 

 

Figure 8: Fog formation and its ocean-continent movement. Source: Schulz et al. (2012) 

 

In northern Chile, particularly in the Norte Grande, the meteorological stations have limited and sparse 

data records, with sixty climate stations, mostly belonging to the Chilean General Directorate of Water 

(DGA), and six corresponding to the Chilean Meteorological Office (DMC) (Sarricolea et al., 2017). On 

regional level, climatological measurements and observations have been recorded at Diego Aracena 

Airport of Iquique (20°32'57''S 70°10'52''W) from 1981 until nowadays. The initial studies on fog 
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collection in the Atacama Desert were conducted in the 1960s, when a team of physicists from the 

University of Antofagasta began to experiment with forms of collecting SFW following the Grunow 

Method (Grunow, 1952), which set the foundation for the development of modern Standard Fog 

Collectors (Schemenauer & Cereceda, 1994b). During the 1980s, the Institute of Geography of the 

Pontifical Catholic University of Chile carried out initiatives for fog water collection and measurement 

for some coastal towns and since 1997, through the Centro del Desierto de Atacama – Alto Patache, 

has recorded fog data and driving factors up nowadays. However, there is a knowledge gap about fog 

weather in its interaction of climate variables with topographic parameters and layer inversion height, 

at different scales, particularly in a region with one of the largest Tillandsias fields, where the 

variability of the fog in these environments responds to a complex biosphere-atmosphere interaction 

framed in a complex topographic landscape. 

 

3.2. Climate data management: quality and control    

 

High-quality and homogenous long-term data series play a pivotal role for climatological research. The 

availability of comprehensive historical climate datasets spanning extended periods, coupled with 

data homogeneity, stands as paramount for meeting the exigencies of climate research endeavors. 

Such datasets not only serve as indispensable prerequisites for conducting reliable and representative 

research but also support the credibility and robustness of climatological investigations (WMO, 2011). 

However, a significant portion of long-term climatological data series contains outliers, missing values, 

and inhomogeneity (Cao & Yan, 2012; Trewin, 2013). 

In estimating climatological data, various methods are employed. From advanced technologies such 

as the use of satellites, statistical programs, and hydrological modeling (Smith et al., 1998), which, due 

to their high cost, are not massively used, to traditional statistical methods, which are easier to access 

and widely used. The latter are based on simple mathematical formulas, such as simple averages, 

multiple linear regressions, or time series models (Kim et al., 2007), where relationships are 

established between standard or nearby stations and the station with a lack of climatic information. 

To enhance the estimation of missing data and outliers within a temporal series of values, statistical 

procedures exist that incorporate the physical properties inherent to the climatological station or 

climate network under investigation. These procedures aim to yield realistic and coherent values 

consistent with the underlying physical principles (WMO, 2008). 
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In general, the necessity for implementing a QC process can be attributed to three key factors 

(Doraiswamy et al., 2000). Firstly, such a system ensures the proper generation of information. 

Secondly, it serves to identify and rectify erroneous records, thereby averting potential 

misinterpretations and erroneous decision-making. Lastly, it facilitates the timely detection of issues, 

enabling prompt resolutions through maintenance, repair, and calibration of climate sensors. 

The World Meteorological Organization (WMO) Guide to Climatological Practices (WMO, 2011) 

proposes various methodologies employed for filling missing data or outliers in climatological 

databases. 

The Quality Control (QC) procedures are imperative for the various phases of the data collection 

process. However, comprehensive QC measures are lacking across all levels (Zahumensky, 2004). The 

QC procedures widely employed worldwide are rooted in meticulously formulated general protocols 

extensively documented across various WMO guidelines and publications, particularly catering to 

synoptic networks and climate data. The different manuscript of Practices, Observing, 

Instrumentation, Methods, and Processing System Guides, collectively represent the basic literature 

of the WMO10, delineating the international benchmarks for data QC.  

Numerous techniques have been developed for detecting irregularities and adjusting them in climatic 

datasets. These include the Buishand range test (Buishand, 1982), Kruskal-Wallis test (Kruskal & Wallis, 

1952), Mann-Kendall test (Kendall, 1975; Mann, 1945), Multiple Analysis of Series for Homogenization 

(Szentimrey, 1999), Pettit test (Pettitt, 1979), Regression-Based methods (Easterling & Peterson, 1995; 

Lund & Reeves, 2002), and the Standard Normal Homogeneity Test (Alexandersson, 1986), among 

others.  

The Normal Ratio calculation (RN) is a non-geostatistical method widely used to fill in missing non-

continuous climatological data; it estimates erroneous or missing values at the climatological station 

under review by employing a weighted average of stations within the homogeneous hydrological area 

(Paulhus & Kohler, 1952). 

A widely accepted proposal is based on a contribution by Zahumensky (2004) who proposed 

classification system of anomalies in a database based on internal consistency between stations 

and/or in time, differentiating between random errors, which exhibit a symmetric distribution around 

zero, systematic errors, characterized by an asymmetric distribution and primarily caused by 

equipment malfunctions or data processing errors, and micro-meteorological errors, representing 

inconsistencies in local records compared to surrounding regions. 

 
10 https://library.wmo.int/ 
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In the process of homogenization, irregularities identified within a time series using various techniques 

are subsequently adjusted to render the dataset homogeneous (Trewin, 2013). Although a wide 

quantity of techniques exists, no single procedure is universally recommended. Instead, the choice of 

method depends on the specific characteristics of the data series and the nature of the anomalies 

recorded. 

It is imperative in the process of identification and homogenization within a climatological database 

that statistical procedures incorporate the physical properties of the measurement station under 

study, facilitating the derivation of realistic and coherent values consistent with physical principles 

(WMO, 2011). 

 

3.3. Fog cycles in the northern Chilean Atacama Desert  

 

Numerous studies on fog occurrence and water availability have been conducted at various Atacama 

Desert places (Cereceda & Schemenauer, 1991) and have shown that fog drifts inland and cover the 

Coastal Range up to ca. 25 km, and occasionally reach as far as 50 km, reaching the depresion 

intermedia (Farías et al., 2005) (see Figure 9). Fog frequency is generally highest in the coastal areas, 

peaking between 35° and 40°S with approximately 38 fog days per year. However, frequencies with 

189 days of fog are particularly high at the more elevated parts of the coast.  Requiring dense networks 

of observations, fog water availability in the Atacama Desert is a complex function of the topography, 

seasonal wind patterns and trade inversion height, which partially contribute to patchy small-scale fog 

oases (Lehnert et al., 2018).  

 



3. State of the art of fog patterns understanding in the Atacama Desert 

_______________________________________________________________________________________________ 
 

17 
 

 

 

Figure 9: Fog penetration corridors in the Tarapacá Region. Source: Farías et al. (2005) 

 

Fog data showed significant seasonal characteristics and interannual variability in the coastal Chilean 

Atacama Desert. In austral winter, 90% of the fog over land is of advective origin, while 10% is 

orographic. The situation changes in austral summer when there is less fog and orographic events are 

more frequent than advective events (Farías et al., 2005). High fog frequency at higher elevations, 

however, is usually a product of orographic cooling (Lange, 2003). The presence of stratocumulus 

clouds and fog represents a well-defined annual cycle with less presence from December to April and 

greater presence from May to November (Cereceda et al., 2008a, 2008b; Farías et al., 2005). On 

average, SFW yields based on Standard Fog Collector measurements between 0.8 to 7 L m-2 day-1  

(Cereceda et al., 2008a; Larrain et al., 2002). Likewise, there is a predominant daily cycle, with higher 

fog presence during the night and dawn, while fog water is generally dissipated and evaporated by 

solar radiation during the day (Cáceres et al., 2007; Larrain et al., 2002; Osses et al., 2017). 

Despite these investigations, there is still limited understanding of spatial and inter-annual variability 

of fog clouds and their associated water content, especially on a local level. The reasons for the 

spatiotemporal variability of fog and the relationship between this variability and the Southeast Pacific 

oceanographic and atmospheric indices remains mostly unknown (Del Río et al., 2018). 

High temporal (daily and hourly data) and spatial (local scale) climatological data, based on 

standardized high-quality sensors for the analyses of fog climate are not available in the Atacama 

Desert due to sparse observation networks and the limited systematization of existing data. 
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Consequently, it is practically impossible to carry out a reliable and spatially coherent analysis of fog 

distribution based only on existing surface observation data (Bendix, 2002). 

    

3.4. Multivariate analysis on topographic and climatic influences on fog variability 

 

Topographic features such as saddlebacks, depressions, fog-corridors, aspect and elevation above sea 

level affect the local geographic distribution, frequency and water-content of fog and hence the 

distribution of fog ecosystems (Osses et al., 2007; Westbeld et al., 2009). At a local/stand level, 

Tillandsia Lomas are known to form distinct spatial patterns which provide indication on the local fog-

water inputs and their relation to vegetation density and vitality (Borthagaray et al., 2010). The 

isolated spatial distribution of fog in these extremely arid conditions provides a test bed for observing, 

analyzing, and modeling biosphere-atmospheric dependencies and relating them to meso-climate 

regimes and changes on a global scale (Vautard et al., 2009). 

Regression analysis is the most widely used statistical technique for examining and modeling the 

relationships between variables (Montgomery et al., 2021), and has a widely application in almost 

every domain, including ecological and remote sensing studies (Foody, 2003). 

Miller (2012) emphasizes the OLS model as a 'global' method that assumes spatial stationarity, 

positing constant parameters across geographic space. This approach, reliant on a singular equation, 

dominates ecological applications for parameter (Berterretche et al., 2005; Zhang & Shi, 2004). 

However, the OLS model remains a-spatial, disregarding geographical information in parameter 

estimation, thus averaging all parameters across the dataset (Fotheringham et al., 2002). 

Key assumptions underpinning OLS regression include normality, homogeneity, and independence of 

residuals (Montgomery et al., 2021), and the violations of these assumptions yield biased estimators, 

compromising parameter accuracy (Fox et al., 2001; Montgomery et al., 2021). Furthermore, the 

assumption of spatially random observations and invariant relationships between variables across 

geographical locations in OLS models masks local characteristics, portraying global results as average 

effects across diverse regions. 

Addressing the limitations posed by spatial stationarity, the GWR emerges as a solution to address 

spatially autocorrelated error terms in OLS models (Wang et al., 2005; Zhao et al., 2010). OLS models, 

rooted in spatial stationarity, universalize derived parameters across sampled space, overlooking local 

variations (Foody, 2003). Consequently, the adoption of local analyses becomes imperative to unveil 
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nuanced spatial realities, diverging from the homogeneity espoused by global analyses (Foody, 2003; 

Fotheringham et al., 2002)  (see Figure 10). 

 

 

 

Figure 10: Average trends using global statistical model (left) masking local trends revealed in local 
statistical model (right). Source: Sachdeva & Fotheringham (2020) 

 

The GWR, introduced in geographical literature by Brunsdon et al. (1996) and developed theoretically 

by Fotheringham et al. (2001) investigates spatial variability of regression model correlations, 

addressing parametric nonstationarity. Spatial heterogeneity, stemming from diverse environmental 

processes operating at various scales (Legendre, 1993), challenges models assuming uniformity across 

space. Fotheringham et al. (2001) propose that GWR model leverages local and variable parameter 

regression techniques, integrating spatial location information into the regression framework. 

Utilizing local smoothness via distance-weighted regression points and surrounding observations 

based on geographical positions (Zhou et al., 2019), GWR emerges as a potent tool to account for 

spatial heterogeneity, notably in climate research. 

Operational within local windows cantered on a regular grid, GWR employs a spatial kernel to weight 

observations, affording higher influence on spatially proximate data points (Windle et al., 2010). The 

bandwidth of this kernel, whether fixed or adaptive, crucially determines the extent of influence, 
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impacting parameter estimates and the scale of relationships between variables (Brunsdon et al., 

1996; Osborne et al., 2007; Windle et al., 2010). 

Autocorrelation, widely observed in ecological variables across spatial and temporal domains 

(Legendre, 1993; Legendre, P., & Legendre, L., 1998), underscores the necessity of accounting for 

spatial autocorrelation and spatial non-stationarity in modelling research (Brunsdon et al., 1996; 

Fotheringham et al., 2002; Fotheringham et al., 1998). Spatial non-stationarity, inherent in natural 

environments due to dynamic biological and large-scale physical processes (Fernandes & Leblanc, 

2005; Frescino et al., 2001; Legendre, P., & Legendre, L., 1998), demands models capable of 

accommodating such intricacies for enhanced predictive capabilities (Foody, 2003; Zhang & Gove, 

2005). 

As a local regression method, GWR extends global regression principles, employing local statistics to 

link spatial autocorrelation and heterogeneity across space, aligning with Tobler's first law in 

Geography (Tobler, 1970), emphasizing the significance of spatial relationships. 
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4. Research objectives, methodological concept, and methodology 

 

4.1. General and specific objectives 

 

Several studies have been conducted on the variability of fog water collection and about dynamics of 

fog and its role with fog ecosystems on the place. However, the understanding of the driving 

parameters and characteristics of fog climate at regional and local levels remains limited. This 

knowledge gap persists due to constraints such as the scarcity and low-level quality of available data, 

alongside the diverse temporal dynamics and spatial gradients of fog climatology. 

This study aims to contribute to the understanding of the atmosphere-biosphere interaction in fog 

ecosystems by employing a multiscale data collection network in the Atacama Desert (see Figure 11). 

Specifically, this research seeks to determine the variability and availability of SFW through regional 

and local scale fog climate modeling. The expected outcome of this study is to generate new 

knowledge that can inform the ecological niche of Tillandsia landbeckii fog ecosystems, serving as a 

bioindicator for SFW availability and the potential impacts of climate change in hyperarid regions like 

the Atacama Desert. The insights gained from this research are expected to contribute significantly to 

the study of fog climatology and provide valuable guidance for the management and conservation of 

ecosystems in arid regions. 

A methodological design is proposed which is determined by the overcome of three secondary 

objectives detailed below: 

a) Implementing a data quality flow aimed at enhancing the reliability and precision of the climatic 

data series originating from the fog climate network established in the Atacama Desert since 2016. 

This flow is based on a rigorous process through programming flows that identifies and record the 

gaps, non-numeric values, and outliers. Subsequently, filling or correcting the recorded data will be 

conducted, thereby ensuring the integrity and utility of the climatic datasets. 

b) Conducting a comprehensive analysis of the climatological data from the fog climate network in the 

Atacama Desert, following the implementation of a data quality workflow. This analysis will specifically 

focus on comprehending the fog climate across its climatic gradient from the coastal regions until ca. 

11 km inland into the desert, up to an elevation of about 1,354 masl. A detailed temporal analysis will 

be performed to scrutinize fog variability in the region through its SFW collection records from the 

SFC. 
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c) Conducting a comprehensive analysis of the spatial distribution of Near-surface fog at the Oyarbide 

study site based on the record of Mini FCs network and its correlation with the local topography. This 

will be achieved through Geographic Information System (GIS)-based regression analysis, which will 

assess the relationship between Near-surface fog water variability and topographic features. The OLS 

and GWR models will be compared to determine the best fit. By utilizing disaggregate statistics to test 

and model this relationship, the pattern of association can be visually represented through 

cartographic techniques, with statistical values spatially represented on raster maps and plots.  

 

 

Figure 11: Multiscale data sources and measurement approaches for analyzing fog variability. 
Source: author's elaboration 
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4.2. Research and design methods 

 

The proposed research adopts a multi-scalar, integrative analytical approach—both temporal and 

spatial—in conjunction with an inductive methodology, as outlined in stages in Figure 12. 

 

 

Figure 12: Methodological framework research on fog variability patterns in the Atacama Desert. 
Source: author's elaboration 
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4.2.1. Quality control 

 

The first stage "Quality control and data processing" seeks to homogenize and systematize the 

climatological data to eliminate non-climate factors in order that the data variability is strictly a 

reflection of the regional-local climatological variability. To establish a homogeneity of the 

climatological data series, considering the recommendations of the WMO, a non-parametric test will 

be applied, called the sequence method. With this test the number of data sequences will be 

evaluated in their temporal order whose record must be included between the critical values of the 

sample distribution table. This process will allow to determine the homogeneity of the data series 

when these vary according to the natural climatic factors that affect regional meteorology, also if the 

environmental conditions remain constant and the climate sensors are in good condition. If these 

conditions are not met, it will be necessary to delete the anomalous data from the data series, in which 

all the fluctuations contained in their time series reflect the variability and trends of the climatic 

variables. 

The process of data filling or correction is divided into three distinct intervals. For intervals 

characterized by short durations, specifically those containing six or fewer climate records, each of 

which spans 10 minutes, the arithmetic mean method is employed to estimate missing data. In this 

approach, the estimation aligns with the model y = α, wherein "y" denotes the estimated value for the 

missing data, and "α" signifies the mean derived from observations of the variable of interest before 

and after interval. For middle and long-term intervals, the Neighboring Station Interpolation Method, 

initially proposed by Paulhus and Kohler (1952) and referenced by Searcy and Hardison (1960), is 

applied. This method estimates climatic variable data by averaging observations from neighboring 

stations that experience the same biosphere-atmosphere influence during the respective period. 

The start of data processing for quality control dates from the start of each climate station's 

transmissions until June 30th, 2023, at 23:50 hr. 

 

4.2.2. Regional analysis 

 

The measured data from climatological stations and SFC reveal the temporal and spatial dynamics of 

the fog climate variability from coast to inland desert, over the Coastal Cordillera.  

The coastal-to-interior gradient of the desert, along with the altitudinal gradient, is represented by 

the transect of climatic stations from OYA_518 to OYA_1211 at the innermost point of the desert and 
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from OYA_518 to OYA_1354 at the highest altitudinal point. The climate data considered on this 

transect are the primary driving parameters upon which fog water collection predominantly depends 

(Montecinos et al., 2018)  and are essential for characterizing the coast-inland and altitudinal 

gradients. Considering that OYA1211 has the most quantity of sensors, was installed farthest from 

coast and at the top of a Tillandsia landbeckii field, has relevance in the fog measurement network 

and will be considered for deeper analysis (see Figure 13). 

 

 

Figure 13: Climatological station OYA_1211 and SFC at the upper limit of Oyarbide. Source: author’s 
photographic archive 

 

Analysis have included a multitemporal approach (see Figure 14), considering main drivers as air 

temperature (AT), relative humidity (RH), wind speed (WS), wind direction (WD), and standard fog 

water (SFW), as well as relevant variables for the inland desert analysis, considering the penetration 

of oceanic humidity conditions and the variability of the TIL, such as leaf wetness (LW) and dew (DP). 

While the primary emphasis will be placed on the driving climate data previously mentioned, a 
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comprehensive analysis of all climatic data provided by the network of stations has been conducted 

to achieve a holistic characterization. 

The start of data processing for regional analysis dates from the start of each climate station's 

transmissions until June 30th, 2023, at 23:50 hr. 

 

 

Figure 14: Fog climate network and its measurement sensors. Source: author's elaboration 

 

4.2.3. Local analysis 

 

In the Oyarbide Site, a complex terrain and home to one of the region's largest fields of Tillandsia 

landbeckii of the region, it’s been conducted Near-surface fog water measurements using a network 

of Mini FCs with the primary aim of analyzing and assessing the geospatial relationship between Near-

surface fog water variability and the topographical characteristics of the study site.  

A Mini FC is a passive collector of fog water positioned near the surface, based on the (Schemenauer 

& Cereceda, 1994b) method, which employs a "Raschel" type mesh with 35% shade, placed in two 

layers at a height of 50cm from its base. The collected fog water is stored in a 60L tank, linked to the 

device through a plastic hose (see Figure 15). These measurements have been conducted monthly 

since February 2019 and continue until nowadays. 
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Figure 15: Structure and components of a Mini FC. Source: Elaboration by the author based on the 
author's photographic archive 

 

To gain insights into the variability of Near-surface fog water, which constitutes the focal dependent 

variable within the local analytical framework, a carefully designed monthly field data collection 

protocol was implemented on-site at Oyarbide. The fog water collected by the Mini FCs is measured 

monthly in-situ using a milliliter-scale (with a margin of error of 20 ml) to ensure accurate 

measurement quantification. Subsequently, this data is transmitted to the central data repository for 

systematic organization. 

To gather data for the topographical explanatory variables, a Digital Elevation Model (DEM) has been 

made from the results from the processing of ca. 6800 aerial photos captured during a flight campaigns 

November 2018 in the study site by a consumer digital SLR Camera DJI Zenmuse X5S Gimbal stabilized 

mounted on a DJI Matrice 200 UAV/Drone, with a height set to 90 m and draped 1.42 cm/pix 

resolution. By geoprocessing tools from the DEM were extracted the topographical factors analyzed 

to potentially predict the Near-surface fog water variability: Altitude, Slope, Aspect, Curvature and 

Hillshade. Given that the Aspect variable is circular in nature (ranging from 0 to 359°), it requires 

transformation into incremental values based on trigonometric functions to northness and eastness 

(Olaya, 2009; Roberts, 1986), as northness = cos(Aspect) and eastness = sin(Aspect). 
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Based on the aforementioned information, global and local regression models were developed using 

the ESRI ArcGIS spatial modeling module. The dependent variable was Near-surface fog water, while 

the explanatory variables included Elevation, Aspect, Slope, Curvature, and Hillshade. 

The OLS constitutes a widely employed global regression method that endeavors to establish a single 

equation elucidating the relationship between variables. This method assumes homogeneity, 

presuming a consistent relationship across the entire study area, thereby assuming stationarity.  

The formulation of applied OLS to the research case can be expressed as: 

 

Near-surface fog water = β₀ + β₁ * explanatory 1 + β₂ * explanatory 2 + ... + βₙ * explanatory n + ε 

 

Here's the breakdown: 

 

Near-surface fog water is the response variable to be estimated. 

β₀ is the intercept term. 

β₁, β₂, ..., βₙ are the regression coefficients that indicate the relationship between each of the 

explanatory variables and the response variable. 

explanatory 1, explanatory 2, ..., explanatory n are the variables used to predict the response variable. 

ε is the error term, which represents the variability in the response variable that cannot be explained 

by the explanatory variables. 

 

In contrast, GWR deviates from global regression techniques by computing distinct equations for 

individual elements, such as pixels in the context of a dependent variable dataset. This model 

introduces the estimation of local parameters, diverging from uniform global parameters 

(Fotheringham et al., 2002). By integrating spatial coordinates into the analysis, the GWR discerns 

spatial disparities and relationships between environmental determinants and factors through 

localized estimations (Abdul-Rahim et al., 2022). 

The formulation of applied GWR regression model is as follows: 

 

Near-surface fog waterᵢ = β₀(uᵢ,vᵢ) + β₁(uᵢ,vᵢ)x₁ᵢ + β₂(uᵢ,vᵢ)x₂ᵢ + ... + βₖ(uᵢ,vᵢ)xₖᵢ + εᵢ 
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Here's the breakdown: 

 

Near-surface fog waterᵢ signifies the observed value of the response variable at the i-th geographic 

location. 

x₁ᵢ, x₂ᵢ, ..., xₖᵢ denote observed values of k explanatory variables at the same i-th location. 

β₀(uᵢ,vᵢ), β₁(uᵢ,vᵢ), β₂(uᵢ,vᵢ), ..., βₖ(uᵢ,vᵢ) stand for spatially variable regression coefficients, contingent 

on the spatial coordinates (uᵢ,vᵢ) of the i-th location. 

εᵢ represents the error term, capturing unaccounted variability in the response variable at the i-th 

geographic point. 

 

The GWR model employs an Adaptive Kernel with spatial variability, adjusting the weighting of 

regression and neighboring observation points based on their geographical proximity. The model 

proceeds by iteratively estimating parameters using the local-weighted least squares method 

fortifying the model's capacity to accommodate spatial disparities (Zhou et al., 2019). 

The start of data processing for local analysis dates from the start of Near-surface fog measurements 

network until May 2023. 
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5. Fog variability characterization in the Chilean Atacama Desert: fog 

climate data quality assurance and multiscale spatio-temporal analysis 

 

5.1. Quality control and data processing 

 

5.1.1. Data quality flow 

 

Application of stringent quality control procedures to data series assumes pivotal importance. This 

chapter delves into the key processes of data validation, aggregation, rectification, and deletion, which 

together form the bedrock of ensuring data integrity. An effective quality control system requires a 

comprehensive approach that traces data back to their sources, thereby safeguarding their accuracy 

and proactively averting the recurrence of errors whenever possible. This data quality control 

examination is particularly pertinent within the context of the fog climate measurement network 

situated in the Atacama Desert, where the imperatives of precision and accuracy loom large, serving 

as the linchpin for gaining deep insights into the intricate dynamics characterizing the fog climate 

system in hyper arid environments. 

To ensure the quality of fog climate data, a proposed a three-part flow of quality control procedures 

that should be applied after the initial data transmission/entry process as shown in Figure 16. This 

process starts with the reception of data in the central repository, serving as a fundamental 

cornerstone for subsequent analyses and research endeavors. The subsequent step, called as "gaps 

checking," focuses on identifying and addressing any missing data and non-numeric values within the 

dataset. This data review ensures data completeness and integrity. Following this, the data undergo a 

filtering process referred to as "outliers checking." This stage differentiates between continuous and 

non-continuous climatic data, directing each through specific pathway. This categorization allows for 

identification and tailored data correction based on its climatic variability. These checking processes 

are supported by carefully designed programming flows, the outliers identified are documented in a 

database table and graphical representation in every filter, ensuring efficiency and precision 

throughout its execution. After completing the identification stages, the process advances to the 

"filling data process". Here, the data intervals are classified into short, middle, and long, each category 

requiring specialized treatment to ensure coherence and consistency. This process culminates in a 
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highly reliable dataset. These data represent the outcome of a rigorous flow, thoroughly examined, 

and curated to serve as the foundation for credible and insightful climatological analyses.  

 

 

Figure 16: Data quality flow to improve regional-scale fog climate network climate data series. 
Source: author's elaboration 
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5.1.2. Gaps checking: missing data and non-numeric values 

 

A fundamental prerequisite for the precise execution of a regional climatological analysis resides in 

the accessibility of comprehensive climate data sets devoid of any gap. However, in practice, missing 

data is a common issue, originating from a myriad of factors, inclusive of, yet not confined to, 

instrument malfunction, inaccuracies in data input, and alterations in observational methodologies or 

instrumentation. 

The process of ensuring data quality starts by identifying gaps and non-numeric values in the climatic 

data series (see Programming flow 1), by climatological station and by variable, which is recorded for 

subsequent correction or filling, as shown in Figure 17. 

 

--- 

 

# Codes package import 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from matplotlib.dates import YearLocator, ConciseDateFormatter, date2num 
from datetime import timedelta 
 
# Database selection 
oya1 = pd.read_excel('518_ALL.xlsx') 
 
# Formatting DATE and TIME in DataFrame  
oya1.loc[oya1['TIME'] == 0, 'TIME'] = '00:00' 
oya1['DATE_FULL'] = pd.to_datetime(oya1['DATE']+oya1['TIME'], format='%d.%m.%Y%H:%M') 
oya1['DATE'] = pd.to_datetime(oya1['DATE'], format='%d.%m.%Y') 
 
# Define the relevant variables and their names 
variable_names = { 
    'SFW': 'Standard fog water', 
    'FW360': 'Fog water 360°', 
    'DW': 'Dew water', 
    'AP': 'Air pressure', 
    'RH': 'Relative humidity', 
    'AT': 'Air temperature', 
    'LW': 'Leaf wetness', 
    'WS2': 'Wind speed 2m', 
    'WD2': 'Wind direction 2m', 
    'WS10': 'Wind speed 10m', 
    'WD10': 'Wind direction 10m', 
    'GR': 'Global radiation', 
    'DP': 'Dew', 
    'SoT': 'Soil temperature'} 
    'SoM': 'Soil moisture'} 
    'ST': 'Surface temperature'} 
 
# Create an Excel writer object 
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output_file_excel = 'Filter_Missing data_OYA_518.xlsx' 
writer_excel = pd.ExcelWriter(output_file_excel, engine='xlsxwriter') 
 
# Iterate through each variable specified in variable_names and check for missing data 
num_plots = 0 
variables_with_missing_data = [] 
for variable, variable_name in variable_names.items(): 
    if variable in oya1.columns: 
        missing_non_numeric_data = oya1[oya1[variable].notna() & ~pd.to_numeric(oya1[variable], 
errors='coerce').notna()] 
        gaps_data = oya1[oya1[variable].isnull()] 
        if not missing_non_numeric_data.empty or not gaps_data.empty: 
            num_plots += 1 
            variables_with_missing_data.append(variable) 
num_rows = (num_plots // 2) + (num_plots % 2)  
num_cols = min(num_plots, 2) 
fig, axes = plt.subplots(num_rows, num_cols, figsize=(12, 6))   
axes = axes.flatten() 
counter = 0 
 
# Iterate through variables with missing data to create plots 
for variable in variables_with_missing_data: 
    variable_name = variable_names[variable] 
for variable, variable_name in variable_names.items(): 
    if variable in oya1.columns: 
        missing_non_numeric_data = oya1[ 
            oya1[variable].notna() & ~pd.to_numeric(oya1[variable], errors='coerce').notna()] 
        gaps_data = oya1[oya1[variable].isnull()] 
        if not missing_non_numeric_data.empty or not gaps_data.empty: 
            if not missing_non_numeric_data.empty: 
                axes[counter].scatter(date2num(missing_non_numeric_data['DATE']), 
np.ones_like(missing_non_numeric_data.index), c='red', s=1, label='Non-Numeric Data') 
            if not gaps_data.empty: 
                axes[counter].scatter(date2num(gaps_data['DATE']), np.zeros_like(gaps_data.index), c='red', s=1, 
label='Gaps') 
             
            # Set title with percentages in parentheses and axis 
            total_data_points = len(oya1) 
            percent_non_numeric = len(missing_non_numeric_data) / total_data_points * 100 if 
missing_non_numeric_data.size > 0 else 'ND' 
            percent_gaps = len(gaps_data) / total_data_points * 100 if gaps_data.size > 0 else 'ND' 
            title_non_num = f'{percent_non_numeric:.2f}%' if isinstance(percent_non_numeric, float) else 'ND' 
            title_gaps = f'{percent_gaps:.2f}%' if isinstance(percent_gaps, float) else 'ND' 
            acronym = variable 
            title = f'{acronym} ({title_non_num}/{title_gaps})' 
            axes[counter].set_title(title, fontsize=12.5) 
            axes[counter].set_yticks([0, 1]) 
            axes[counter].set_yticklabels(['Gaps', 'Non-Numeric Data'], fontsize=12.5) 
 
            # Remove the right and top spines 
            axes[counter].spines['right'].set_visible(False) 
            axes[counter].spines['top'].set_visible(False) 
 
            # Set a common X-axis based on the original 'DATE' column 
            axes[counter].set_xlim(oya1['DATE'].min(), oya1['DATE'].max()) 
            axes[counter].set_ylim(-0.5, 2) 
            years = YearLocator() 
            axes[counter].xaxis.set_major_locator(years) 
            axes[counter].xaxis.set_major_formatter(ConciseDateFormatter(years)) 
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            # Store data in a dataframe for the variable with missing data and save relevant columns in the Excel file 
            oya1['ID'] = oya1.index 
            df_missing_data = pd.concat([ 
                oya1.loc[oya1['ID'].isin(missing_non_numeric_data.index), ['ID', 'DATE', 'TIME', variable]], 
                oya1.loc[oya1['ID'].isin(gaps_data.index), ['ID', 'DATE', 'TIME', variable]]]) 
            df_missing_data['Type'] = np.where(df_missing_data['ID'].isin(missing_non_numeric_data.index), 'Non-
Numeric Data', 'Gaps') 
            df_missing_data['DATE'] = df_missing_data['DATE'].dt.date 
            df_missing_data['ID'] = df_missing_data['ID'] + 2 
            df_missing_data[['ID', 'DATE', 'TIME', variable, 'Type']].to_excel(writer_excel, sheet_name=f'{variable}', 
index=False) 
            counter += 1 
writer_excel.close() 
 
# Save all plots in a single JPG file 
plt.tight_layout() 
plt.savefig('Filter_Missing data_OYA_518.jpg', bbox_inches='tight', dpi=300) 
 
plt.show() 
 
##### 
 
# Converting 'DATE_FULL' column to 'timestamp' column and setting up variables for time intervals 
oya1['timestamp'] = (pd.to_datetime(oya1['DATE_FULL'], format='%d:%m:%Y %H:%M') + 
pd.Timedelta(hours=3)).astype('int64') // 10**9 
dt = 60*10  
missed_date = False 
 
# Iterating through the 'timestamp' column to find missing date intervals 
for i in range(1,len(oya1['timestamp'])): 
    if(oya1['timestamp'][i]-oya1['timestamp'][i-1]!=dt and not missed_date): 
        missed_date = True 
        i_missed = i - 1 
        continue 
    if(oya1['timestamp'][i]-oya1['timestamp'][i-1]!=dt and missed_date):continue 
    if(oya1['timestamp'][i]-oya1['timestamp'][i-1]==dt and missed_date): 
        n_data = int((oya1['timestamp'][i]-oya1['timestamp'][i_missed])/dt) - 2   
        if(n_data<5): 
            message = "%i minutes"%(n_data*10) 
        elif(n_data<144): 
            message = "%i hours"%(n_data*10/60) 
            if (n_data*10%60!=0): 
                message += " %i minutes"%(n_data*10%60) 
        else: 
            message = "%i days"%(n_data*10/1440) 
            if (n_data*10%1440!=0): 
                if(n_data*10%1440>=60):message += " %i hours"%((n_data*10%1440)/60) 
            if ((n_data*10%1440)%60!=0): 
                    message += " %i minutes"%((n_data*10%1440)%60) 
        print("Date interval with missing data: n° records %i corresponding to %s between %s and 
%s"%(n_data,message,oya1['DATE_FULL'][i_missed],oya1['DATE_FULL'][i-1])) 
        missed_date = False 
 

--- 

 

Programming flow 1: Gaps checking: missing data. Source: author's elaboration 
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*ND: No data 

 

Figure 17: Standard plots of gaps and non-numeric data by variable in a data series (OYA_518). 
Source: author's elaboration 

 

Non-numeric values are not recorded in climate data series, both in the dates of data records and in 

the availability of data by climatic variable. Meanwhile missing data are recorded, these manifest as 

temporal gaps, disrupting the continuity of the recorded climate data in the continuity of the dates as 

well as in the availability of data by climatological variable as exemplified the Figure 18. 

At OYA_518, the record for each climatic variable exhibited consistent gaps, with a uniform 7.07% 

across RH, AT, LW, and DP variables, indicating potential systemic issues during data collection. In 

contrast, the nearest station, OYA_780, demonstrated exceptional data integrity, with only 0.009% of 

gaps across multiple variables, underscoring its highly reliable data acquisition. Since its installation in 

2022, OYA_862 has proven exceptional reliability, boasting a perfect record with zero gaps and non-

numeric values across all variables. Similarly, OYA_1069 has shown high reliability, with minimal gaps 

of 0.006% in most variables, ensuring consistent and dependable data. 

The same reliability can be seen in OYA_1128, OYA_1193 and OYA_1211. These stations exhibited 

gaps in SFW, accounting for 0.13%, 0.25% and 0.01% respectively, while maintaining minimal gaps in 

other variables. Meanwhile, OYA_1354 demonstrated moderate gaps of 0.034% in SFW, suggesting 

just sporadic data collection issues. 
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The identification of complete data series (all variables) missing in a range of dates (same day, month, 

year, time) is determined by the satellite transmission in two climate data packages, the first Chile_1 

which includes OYA_1211, OYA_1128, OYA_1354 and OYA_1193, and Chile_2 which includes 

OYA_518, OYA_780, OYA_1069 and OYA_862. However, the climatic stations present different date 

gaps due to the different date of installation and beginning of the record of each climatic station. 

Considering the data package and stations nearest coast, OYA_518 portrays sporadic instances of 

missing data, distributed across various temporal intervals. Notably, the largest temporal gap spans 

424 days and 17 hours, significantly impacting the dataset's continuity between February 7th, 2020, 

and April 6th, 2021, and then until May 2nd, 2022. Moreover, intermittent short-duration anomalies 

further disrupt the dataset's consistency, standing out as the climatological station with the greatest 

amount of missing data in the database, recording 34.60% data availability when considering the start 

of data transmission and the final record included in this research. OYA_780 the anomalies identified 

in this station span diverse temporal extents, with instances recurring across several intervals. Notable 

durations include anomalies persisting for 502 days and 9 hours, significantly affecting data continuity 

between November 21st, 2018, and April 6th, 2021. The OYA_862 exhibits just 8 missing records (80-

minutes records). For OYA_1069, no missing data were identified within the dataset for this station. 

Chile_1 data package has minor anomalies in its data set. OYA_1128 records missing data 

predominantly manifest as shorter-duration gaps, intermittently scattered across the dataset. 

OYA_1193 highlights for being the climatic station with the greatest continuity in the data series, 

recording 96.80% availability of the database. At OYA_1211 the anomalies identified within this 

station span minor temporal extents, showcasing interruptions in data continuity across multiple 

intervals, mainly shorts. OYA_1354 akin to previous instances, present recurring interruptions at 

various intervals, thereby impacting the overall temporal continuity of the recorded climate data. 
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Figure 18: Missing data across complete time intervals in a data series (OYA_518). Source: author's 
elaboration 

 

5.1.3. Outliers checking 

 

The differentiation of raw climatic data into continuous and non-continuous datasets is essential due 

to their varied nature and measurements.  

Employing the Tukey's test for identifying potential outliers in continuous climatic data provides 

significant advantages across a range of datasets. However, augmenting this approach with checks for 

plausible climatic values and acceptable climatological changes, as stipulated within ten-minute 

recording intervals and hourly variability, following scientifically endorsed guidelines by the WMO 

adapted to the fog climate research network, establishes a robust foundation for enhancing data 

quality. On the other hand, the treatment of continuous climatic data, such as the SFW collection, 

needs a distinct methodology for outliers’ identification. Optimal results in detecting outliers are 

achieved when fog collection is recorded with RH below 90%, following with the correlation of water 

collection records within a homogeneous atmosphere-biosphere system. 
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Continuous data 

 

The first filter applied is the Tukey's test (David & Tukey, 1977), as seen in Programming flow 2. Applied 

to this data series, it aims to identify errors, such as when a data value significantly differs from the 

preceding or succeeding value within the same time series (Feng et al., 2004). The test employs three 

internal steps to detect outliers; the filter identifies the interquartile range (IQR) and subsequently 

calculates the lower and upper extremes, designating values beyond these boundaries as potential 

outliers as seen, for example, in the standard output plots shown in Figure 19. 

Distance from the coast has a significant impact on climatic conditions due to the moderating effect 

of the ocean. Most of the analyzed variables record outliers in the Tukey's test, with a global average 

of the data series and variables at 5.45%, fluctuating between 1.26% in OYA_1069 and 10.07% in 

OYA_518 with the measurements of RH as those that record larger outlier records. Measurement 

records near the ocean experience greater stability in humidity conditions due to the influence of the 

maritime climate. In contrast, as distance from the coast increases toward the interior, climate 

variability increases due to the decrease in the influence of the ocean, which can generate a greater 

proportion of outliers in the measurements. Local factors such as the presence of vegetation or 

microtopography can increase local RH and therefore influence the identification of outliers. At 

Oyarbide Site a higher proportion of LW outliers could indicate the influence of local vegetation, which 

retains moisture and gives rise to atypical measurements. 

 In the context of RH measurements in the Atacama Desert, outliers may arise due to fog events 

arrives. Therefore, Tukey's test to measurements in the Atacama Desert, it is essential to consider that 

some values identified as outliers may genuinely reflect exceptional climatic conditions or natural 

events, rather than measurement errors. In these cases, it is necessary to contextualize and 

comprehend the environmental conditions to appropriately interpret the values identified as outliers 

and determine their relevance or correctness based on the research or monitoring objectives. 

 

--- 
 

# Codes package import                                                                                                                                                                                                  
import numpy as np                                                                                                                                                                                      
import matplotlib.pyplot as plt                                                                                                                                                                                       
import pandas as pd 

 
# Database selection 
oya1 = pd.read_excel('1128_ALL.xlsx') 
 
# Define units of measurement for each variable 
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variable_units = { 
    'AP': 'hPa', 
    'WS10': 'm/s', 
    'WD10': '°', 
    'RH': '%', 
    'AT': '°C', 
    'ST10': '°C', 
    'GR': 'W/m2', 
    'LW': '%', 
    'WS2': 'm/s', 
    'WD2': '°', 
    'ST10': '°C', 
    'DP': 'No/Yes'} 
 
# Create a dictionary to store outliers for each variable along with their IDs 
outliers_dict = {} 
plt.figure(figsize=(15, 30)) 
pos = 1 
for col in oya1.columns:   
    if col in variable_units: 
        Q1 = oya1[col].quantile(0.25) 
        Q3 = oya1[col].quantile(0.75) 
        IQR = Q3 - Q1 
        filter = (oya1[col] < Q1 - 1.5 * IQR) | (oya1[col] > Q3 + 1.5 * IQR) 
        if any(filter): 
            outliers = pd.DataFrame({'ID': oya1.index[filter]+ 2, col: oya1[col][filter]}) 
             
            # Add the 'DATE', 'TIME', and 'SFW' columns to outliers_data and reorder the columns  
            outliers['DATE'] = oya1['DATE'][filter] 
            outliers['TIME'] = oya1['TIME'][filter] 
            outliers['SFW'] = oya1['SFW'][filter] 
            outliers = outliers[['ID', 'DATE', 'TIME', 'SFW', col]] 
            outliers = outliers.reset_index(drop=True) 
            outliers_dict[col] = outliers 
            plt.subplot(7, 3, pos) 
            boxprops = dict(linewidth=1.5, color='black') 
            medianprops = dict(linestyle='-', linewidth=1.5, color='black') 
            flierprops = dict(marker='o', markersize=1, markeredgecolor='red', linestyle='none')  # Outliers as points 
 
            # Customize the y-axis label with units of measurement  
            y_label = f'{variable_units[col]}' 
            oya1.boxplot(column=col, grid=False, showfliers=True, boxprops=boxprops, medianprops=medianprops, 
flierprops=flierprops) 
            plt.ylabel(f'{variable_units[col]}', fontsize=12.5) 
 
            # Set the title with the percentage of outliers and remove the x-axis label 
            total_data = len(oya1[col]) 
            percentage_outliers = len(oya1[col][filter]) / total_data * 100 
            plt.title(f'{col} ({percentage_outliers:.2f}%)', fontsize=12.5) 
 
            # Remove top and right axis lines and x-axis label 
            plt.gca().spines['top'].set_visible(False) 
            plt.gca().spines['right'].set_visible(False) 
            plt.xticks([]) 
            plt.xticks(fontsize=12.5) 
            plt.yticks(fontsize=12.5) 
            pos = pos + 1 
 
# Save all plots in a single JPG file and Excel file with outliers per variable 
plt.tight_layout() 
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plt.savefig('Filter_Tukeys_OYA_1128.jpg', bbox_inches='tight', dpi=300) 
with pd.ExcelWriter('Filter_Tukeys_OYA_1128.xlsx') as writer: 
    for col, outliers in outliers_dict.items(): 
        outliers.to_excel(writer, sheet_name=col, index=False) 
 
plt.show() 
 

--- 

 

Programming flow 2: Outliers checking by Tukey's test. Source: author's elaboration 

 

 

 

Figure 19: Standard plots of the Tukey's test check by variable in a data series (OYA_1211). Source: 
author's elaboration 
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After Tukey's test the check "plausible value" assessment phase is to validate whether the data falls 

within the permissible range boundaries defined by measurement range of each climatological sensor 

(see Programming flow 3) as seen for example in Figure 20. Each sample is subject to a scrutiny to 

ascertain whether its value aligns with the measurement range specified by the climatological device 

as specified in Table 1. If a value fails this assessment, it is rejected, and data that successfully passes 

this stage continue in the data flow with the next stage processes. 

At OYA_518 and OYA_780 present a notable outlier percentage of 2.99% and 4.28% in WS2 

respectively. Moving to OYA_862, WS2 exhibits a moderate outlier percentage of 1.62% and 

OYA_1069 presents a higher 3.25% in WS2. In contrast, OYA_1128 reports minimal outliers in WS2 

(0.09%) and AT (0.008%). However, the most significant disparities arise at OYA_1211, showcasing 

remarkable outlier percentages in GR (48.77%), alongside notable outliers in LW (0.10%) and WS2 

(0.92%). OYA_1354 displays minor outliers in WS2 (0.02%). 

On average, 3.47% of non-plausible data are observed within the global database. The stations 

exhibiting the lowest proportion of non-plausible data are those of more recent installation at the 

"Oyarbide Site," specifically OYA_1193 (0.001%) and OYA_1128 (0.06%). Similarly, OYA_1354 in 

"Oyarbide Hill" system records only 0.05% of implausible data in its global database. Conversely, the 

station OYA_1211 displays the highest count (6) of variables exceeding plausible limits. 

 

--- 
 

# Codes package import 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Database selection 
oya1 = pd.read_excel('1211_ALL.xlsx') 
 
# Convert the 'DATE' column to a datetime data type 
oya1['DATE'] = pd.to_datetime(oya1['DATE'], format='%d.%m.%Y') 
 
# Units of measurement for each variable 
variable_units = { 
    'AP': 'hPa', 
    'RH': '%', 
    'AT': '°C', 
    'LW': '%', 
    'WS2': 'm/s', 
    'WD2': '°', 
    'WS10': 'm/s', 
    'WD10': '°', 
    'GR': 'W/m2', 
    'DP': 'Yes/No', 
    'ST10': '°C'} 
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cols = list(variable_units.keys()) 
lim = [[800, 1060], [0, 100], [-30, 70], [0, 100], [0.3, 50],[0, 360],[0.3, 50],[0, 360],[0, 2000], [0, 1], [-30, 50]] 
 
# Iterate through each column and create a separate plot for each variable 
outlier_data = [] 
num_plots = 0 
for col in cols: 
    if col in oya1.columns and oya1[col].dtype in [np.int64, np.float64]: 
        outliers = oya1[(oya1[col] < lim[cols.index(col)][0]) | (oya1[col] > lim[cols.index(col)][1])] 
        total_data_points = len(oya1[col]) 
        outlier_count = len(outliers) 
        outlier_percentage = (outlier_count / total_data_points) * 100 
        if not outliers.empty: 
            num_plots += 1 
num_rows = (num_plots // 3) + (num_plots % 3 > 0) 
num_cols = min(num_plots, 3) 
fig, axes = plt.subplots(num_rows, num_cols, figsize=(12, 4)) 
axes = axes.flatten() 
counter = 0 
cols_outliers = [] 
for col in cols: 
    if col in oya1.columns and oya1[col].dtype in [np.int64, np.float64]: 
        outliers = oya1[(oya1[col] < lim[cols.index(col)][0]) | (oya1[col] > lim[cols.index(col)][1])] 
        if not outliers.empty: 
            if counter < len(axes): 
                axes[counter].plot(outliers['DATE'], outliers[col], '.r', markersize=2) 
 
                # Set labels and title with the percentage and the Y-axis label with the unit of measurement 
                axes[counter].set_title(f'{col} ({outlier_percentage:.2f}%)', fontsize=12.5) 
                axes[counter].set_xlabel('Date', fontsize=12.5) 
                axes[counter].set_ylabel(variable_units[col], fontsize=12.5) 
 
                # Remove right and top borders 
                axes[counter].spines['right'].set_visible(False) 
                axes[counter].spines['top'].set_visible(False) 
                axes[counter].tick_params(axis='x', rotation=45)   
 
                # Collect outlier data 
                counter += 1 
                cols_outliers.append(col) 
                for i, value in outliers.iterrows(): 
                    new_id = i + 2 
                    outlier_data.append([i,  
                        value['DATE'], 
                        value['TIME'], 
                        variable_units[col], 
                        value[col]]) 
 
# Save all plots in a single JPG file 
plt.tight_layout() 
fig.savefig(f'Filter_Plausible values_OYA_1211.jpg', bbox_inches='tight', dpi=300) 
 
# Create a DataFrame for the outlier data 
outlier_df = pd.DataFrame(outlier_data, columns=['ID', 'DATE', 'TIME', 'Variable', 'Value']) 
outlier_df['ID'] = outlier_df['ID'] + 2 
outlier_df['DATE'] = pd.to_datetime(outlier_df['DATE']).dt.date 
 
# Create an Excel file and iterate through the variables and save the data in separate sheets  
fileoutxlsx = 'Filter_Plausible values_OYA_1211.xlsx' 
writer = pd.ExcelWriter(fileoutxlsx, engine='xlsxwriter') 
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for col in cols_outliers: 
    variable_data = outlier_df[outlier_df['Variable'] == variable_units[col]] 
    if not variable_data.empty: 
        variable_data = variable_data.drop(['Variable'], axis=1) 
        variable_data.to_excel(writer, sheet_name=col, index=False) 
 
# Save the Excel file 
writer.save() 
 
plt.show() 
 

--- 
 

Programming flow 3: Outliers check by plausible value. Source: author's elaboration 

 

 

 

Figure 20: Standard plots of the plausible value check by variable in a data series (OYA_1211). 
Source: author's elaboration 

 

A calculation of standard deviation for the process of outlier detection in climate data is strongly 

recommended, as it serves as a valuable tool for identifying outliers, as well blocked sensors and 

addressing long-term sensor drift as was stipulated as a WMO Guidelines by Zahumensky (2004). The 

objective of the time consistency checks on maximum allowed variability of an instantaneous value is 

to examine the rate of change in instantaneous 10-minute data. Following each data measurement, 

the sample undergoes a comparative analysis with its predecessor. In instances where the disparity 

between these two samples surpasses the predetermined threshold of 10 standard deviations, the 

current sample is classified as, at least questionable. Consequently, it is duly recorded both in a 

comprehensive data table (see Programming flow 4) and in a graphical representation (see Figure 21). 

OYA_518 presents outlier occurrences across several variables. RH (2.72%), AT (1.85%), GR (1.26%), 

LW (3.86%), WS2 (11.12%), and WD2 (10.97%). Notably, the year 2022 emerged prominently, 
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contributing significantly to heightened outlier percentages across these variables. OYA_780 displayed 

minimal outliers in AP (0.01%, 13 data points) but notable deviations in RH (6.07%), AT (3.72%), LW 

(3.33%), WS2 (11.57%), and WD2 (13.98%). Distinct high outlier patterns were observed notably in 

2018 and 2019, significantly impacting these variables. OYA_862 presented substantial outliers in RH 

(8.03%), AT (4.45%), LW (6.00%), WS2 (11.76%), and WD2 (13.28%). Notably, the year 2022 

demonstrated heightened deviations across multiple variables, marking a distinct outlier trend. 

OYA_1069 showcased outliers in RH (8.56%), AT (5.14%), GR (1.42%), WS2 (11.79%), and WD2 

(15.54%), prominently influenced by the year 2023. Similarly, OYA_1128 portrayed considerable 

outliers in RH (8.36%), AT (4.28%), LW (4.19%), WS2 (12.30%), and WD2 (13.55%), significantly 

influenced by the anomalies observed in the year 2021. OYA_1193 exhibited remarkable outliers in 

RH (9.09%), AT (3.84%), LW (3.29%), WS2 (12.25%), and WD2 (12.39%). The year 2021 emerged as a 

significant outlier´s year, showcasing distinct outlier trends across various variables. At climate station 

OYA_1211, standout outlier occurrences were observed in WD10 (11.90%) during 2022 and RH 

(8.61%) in 2018. Lastly, OYA_1354 revealed substantial outliers in RH (10.21%), AT (3.59%), LW 

(3.99%), WS2 (11.93%), and WD2 (11.86%). Notably, the year 2022 marked significant outlier trends 

across multiple variables. 

 

--- 
 

# Codes package import 
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
from datetime import datetime 
from time import time 
 
# Database selection 
oya1 = pd.read_excel('780_ALL.xlsx')   
 
# Define units of measurement for each variable 
variable_units = { 
    'AP': 'hPa', 
    'WS10': 'm/s', 
    'WD10': '°', 
    'RH': '%', 
    'AT': '°C', 
    'ST10': '°C', 
    'GR': 'W/m2', 
    'LW': '%', 
    'WS2': 'm/s', 
    'WD2': '°', 
    'ST100': '°C', 
    'DP': 'No/Yes'} 
 
# Convert the columns to floats for all variables and the 'DATE' column to datetime format 
for var in variable_units.keys(): 
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    if var in oya1.columns: 
        oya1[var] = pd.to_numeric(oya1[var], errors='coerce') 
oya1['DATE'] = pd.to_datetime(oya1['DATE'], format='%d.%m.%Y').dt.date 
 
# Initialize arrays and detect outliers for all variables 
outliers = {var: {'data': np.zeros((6, len(oya1))), 'count': 0} for var in variable_units.keys()} 
dates_outliers = {} 
for var in variable_units.keys(): 
    list_dates_outliers = [] 
    if var in oya1.columns and var != "DP": 
        for i in range(2, len(oya1) - 1):  
            std_dev = np.std([oya1[var][i-1], oya1[var][i-2]]) 
            mean_value = np.mean([oya1[var][i-1], oya1[var][i-2]]) 
            factor_std = 10 
            difference_abs = abs(oya1[var][i] - mean_value) 
            if difference_abs >= factor_std * std_dev and std_dev > 0: 
                outliers[var]['data'][0, outliers[var]['count']] = mean_value 
                outliers[var]['data'][1, outliers[var]['count']] = oya1[var][i] 
                outliers[var]['data'][2, outliers[var]['count']] = i + 2 
                outliers[var]['data'][3, outliers[var]['count']] = factor_std * std_dev 
                outliers[var]['data'][4, outliers[var]['count']] = difference_abs 
                outliers[var]['count'] += 1  
                list_dates_outliers.append(oya1['DATE'][i]) 
    dates_outliers[var] = list_dates_outliers 
variables_with_outliers = [var for var in variable_units.keys() if var in outliers and outliers[var]['count'] > 0] 
 
# Calculate the number of needed rows to organize the plots in columns by 3 to down 
num_filas = len(variables_with_outliers) // 3 
if len(variables_with_outliers) % 3 != 0: 
    num_filas += 1 
     
# Create a single figure for all plots 
plt.figure(figsize=(15, 5 * num_filas)) 
for idx, var in enumerate(variables_with_outliers): 
    plt.subplot(num_filas, 3, idx + 1) 
    outliers_data = outliers[var]['data'] 
    plt.plot(dates_outliers[var], outliers_data[1, :len(dates_outliers[var])], 'ro', markersize=1) 
 
    # Set the Y-axis label with the unit of measurement and the title of the plot with the percentage of data plotted 
    plt.ylabel(f'{variable_units[var]}', fontsize=12.5) 
    plt.tick_params(axis='x', rotation=45) 
    total_points = len(oya1) 
    percentage_plotted = (outliers[var]['count'] / total_points) * 100 
    plt.title(f'{var} ({percentage_plotted:.2f}%)', fontsize=12.5) 
 
    # Remove spines from top and right sides 
    plt.gca().spines['top'].set_visible(False) 
    plt.gca().spines['right'].set_visible(False) 
 
    # Generation of data list with limit for outliers values 
    with pd.ExcelWriter('Filter_Maximum instantaneous change_OYA_780.xlsx', engine='xlsxwriter') as writer: 
        for var in variable_units.keys(): 
            if var in outliers and outliers[var]['count'] > 0:   
                df = pd.DataFrame({ 
                    'ID': outliers[var]["data"][2, :],  
                    'Previous mean': outliers[var]["data"][0, :],  
                    'Value Exceeded': outliers[var]["data"][1, :], 
                    f'{factor_std} * std': outliers[var]["data"][3, :], 
                    'Difference abs': outliers[var]["data"][4, :]}) 
                df = df[df['ID'] != 0]   
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                # Save the data as a Excel file 
                df.to_excel(writer, sheet_name=var, index=False) 
 
# Save all plots in a single JPG file 
plt.tight_layout() 
plt.savefig('Filter_Maximum instantaneous change_OYA_780.jpg', bbox_inches='tight', dpi=300) 
 
plt.show() 
 

--- 
 

Programming flow 4: Outliers check by maximum allowed variability of an instantaneous value. 
Source: author's elaboration 

 

 

 

 

Figure 21: Standard plots of the check on a maximum allowed variability of an instantaneous value 
by variable in a data series (OYA_780). Source: author's elaboration 

 

The aim of this checking on a minimum required variability of instantaneous values is to identify 

outliers based on the degree of variability in instantaneous data over 60 minutes after the 

measurement of a given parameter as exemplified the Figure 22. Within a 6-records timeframe 
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(persistence test), data values failing to exhibit variation beyond a threshold of 0.2 standard deviations 

are deemed, at a minimum, questionable (see Programming flow 5).  

The station OYA_518 consistently exhibited significant outliers in RH (2.35%), AT (3.69%), GR (8.11%), 

LW (2.34%), WS2 (6.70%), and WD2 (6.80%) throughout the entire observation period. Notably, the 

year 2022 displayed the most pronounced variations across multiple variables, contributing 

substantially to the cumulative outlier percentage. Transitioning to OYA_780 revealed persistent 

outlier occurrences in RH (10.05%) and AT (10.92%), primarily influenced by the anomalies recorded 

in the year 2022, leading to substantial deviations in these specific variables. OYA_862 consistently 

presented diverse outliers in RH (4.50%), AT (4.89%), LW (2.69%), WS2 (8.39%), and WD2 (8.72%) over 

the entire duration under consideration, prominently driven by the anomalies observed in the year 

2022. OYA_1069 displayed outliers in RH (5.26%), AT (5.65%), GR (7.01%), WS2 (8.06%), and WD2 

(7.61%) across the complete timeframe, notably prominent in the year 2023. In a similar vein, 

OYA_1128 showcased notable outliers in RH (4.50%), AT (5.14%), LW (2.37%), WS2 (7.91%), and WD2 

(8.23%), notably influenced by the anomalies in the year 2021. OYA_1193 recorded moderate outlier 

occurrences in RH (3.85%), AT (3.95%), LW (1.67%), WS2 (5.60%), and WD2 (6.43%), particularly 

influenced by the anomalies observed in the year 2022. OYA_1211, displayed varied outlier 

occurrences ranging from 0.02% to 7.52%, mostly recorded in 2021 and 2017. Finally, OYA_1354 

consistently revealed presence of outliers in RH (5.72%), AT (5.51%), LW (2.95%), WS2 (7.20%), and 

WD2 (6.49%) throughout the entire observation duration. 

 

--- 
 

# Codes package import 
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
from datetime import datetime 
from time import time 
 
# Database selection 
oya1 = pd.read_excel('780_ALL.xlsx')  
 
# Define units of measurement for each variable 
variable_units = { 
    'AP': 'hPa', 
    'WS10': 'm/s', 
    'WD10': '°', 
    'RH': '%', 
    'AT': '°C', 
    'ST10': '°C', 
    'GR': 'W/m2', 
    'LW': '%', 
    'WS2': 'm/s', 
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    'WD2': '°', 
    'ST100': '°C', 
    'DP': 'No/Yes'} 
 
# Convert the columns to floats for all variables and the 'DATE' column to datetime format 
for var in variable_units.keys(): 
    if var in oya1.columns: 
        oya1[var] = pd.to_numeric(oya1[var], errors='coerce') 
oya1['DATE'] = pd.to_datetime(oya1['DATE'], format='%d.%m.%Y').dt.date 
     
# Initialize arrays and detect outliers for all variables 
outliers = {var: {'data': np.zeros((5, len(oya1))), 'count': 0} for var in variable_units.keys()} 
dates_outliers = {} 
for var in variable_units.keys(): 
    list_dates_outliers = [] 
    if var in oya1.columns and var != "DP": 
        for i in range(6, len(oya1)): 
            std_dev = np.std(oya1[var][i-6:i-1]) 
            mean_value = np.mean(oya1[var][i-6:i-1]) 
            factor_std = 0.20 
            difference_abs = abs(oya1[var][i] - mean_value) 
            if difference_abs <= factor_std * std_dev and std_dev != 0: 
                outliers[var]['data'][0, outliers[var]['count']] = mean_value 
                outliers[var]['data'][1, outliers[var]['count']] = oya1[var][i] 
                outliers[var]['data'][2, outliers[var]['count']] = i + 2 
                outliers[var]['data'][3, outliers[var]['count']] = factor_std * std_dev 
                outliers[var]['data'][4, outliers[var]['count']] = difference_abs 
                outliers[var]['count'] += 1  
                list_dates_outliers.append(oya1['DATE'][i]) 
    dates_outliers[var] = list_dates_outliers 
variables_with_outliers = [var for var in variable_units.keys() if var in outliers and outliers[var]['count'] > 0] 
 
# Calculate the number of needed rows to organize the plots in columns by 3 to down 
num_filas = len(variables_with_outliers) // 3 
if len(variables_with_outliers) % 3 != 0: 
    num_filas += 1 
     
# Create a single figure for all plots 
plt.figure(figsize=(15, 5 * num_filas)) 
for idx, var in enumerate(variables_with_outliers): 
    plt.subplot(num_filas, 3, idx + 1) 
    outliers_data = outliers[var]['data'] 
    plt.plot(dates_outliers[var], outliers_data[1, :len(dates_outliers[var])], 'ro', markersize=1) 
 
    # Set the Y-axis label with the unit of measurement and the title of the plot with the percentage of data plotted 
    plt.ylabel(f'{variable_units[var]}', fontsize=12.5) 
    plt.tick_params(axis='x', rotation=45) 
    total_points = len(oya1) 
    percentage_plotted = (outliers[var]['count'] / total_points) * 100 
    plt.title(f'{var} ({percentage_plotted:.2f}%)', fontsize=12.5) 
 
    # Remove spines from top and right sides 
    plt.gca().spines['top'].set_visible(False) 
    plt.gca().spines['right'].set_visible(False) 
 
    # Generation of data list with limit for outliers 
    with pd.ExcelWriter('Filter_Minimum change_OYA_780.xlsx', engine='xlsxwriter') as writer: 
        for var in variable_units.keys(): 
            if var in outliers and outliers[var]['count'] > 0:   
                df = pd.DataFrame({ 
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                    'ID': outliers[var]["data"][2, :],  
                    'Previous mean': outliers[var]["data"][0, :],  
                    'Value Exceeded': outliers[var]["data"][1, :], 
                    f'{factor_std} * std': outliers[var]["data"][3, :], 
                    'Difference abs': outliers[var]["data"][4, :]}) 
                df = df[df['ID'] != 0]   
 
                # Save the data as a Excel file 
                df.to_excel(writer, sheet_name=var, index=False) 
 
# Save all plots in a single JPG file 
plt.tight_layout() 
plt.savefig('Filter_Minimum change_OYA_780.jpg', bbox_inches='tight', dpi=300) 
 
plt.show() 
 

--- 
 

Programming flow 5: Outliers check by minimum required variability of 1 hr values. Source: author's 
elaboration 

 

 

 

 

Figure 22: Standard plots of the check on a minimum required variability of 1 hr values by variable in 
a data series (OYA_780). Source: author's elaboration 
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Non-continuous data 

 

The approach employed to identify outliers in non-continuous data involves a combination of two 

methods was implemented, relying on a minimum threshold of RH when SFW is collected, and 

subsequently with an inter-station correlation within the similar hydrological system. 

Within the dataset of fog climate network, 0.82% of data records exhibits the presence of SFW 

collected under conditions of RH equal to or below the threshold 90% (Liu et al., 2018) as exemplified 

the Figure 23 (see Programming flow 6). Among the climate stations, 62.5% of climate stations records 

less than 1% records of SFW collected data below the stipulated RH threshold, OYA_518 and 

OYA_1211 records the lowest incidence with a 0.13% and 0.19%, respectively. Conversely, OYA_862 

stands out as the station recording by far the largest numbers of SFW collected records falling beneath 

the prescribed RH threshold, recording at 2.28%. 

 

--- 
 

# Codes package import 
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
 
# Database selection 
oya1 = pd.read_excel('1193_ALL.xlsx') 
 
# Filtering the table 
threshold = 90 
oya1_filter_incorrect = oya1.loc[(oya1['RH'] <= threshold) & (oya1['SFW'] > 0)] 
 
# Create a new column 'DATETIME' by merging 'DATE' and 'TIME' 
oya1_filter_incorrect['DATETIME'] = pd.to_datetime(oya1_filter_incorrect['DATE'] + ' ' + 
oya1_filter_incorrect['TIME'], format='%d.%m.%Y %H:%M') 
 
# Calculate the percentage of data points below the threshold within the original data 
total_data_points_original = len(oya1) 
total_data_points_filtered = len(oya1_filter_incorrect) 
percentage_below_threshold_filtered = (total_data_points_filtered / total_data_points_original) * 100 
 
# Create the plot  
fig1 = plt.figure(figsize=(15, 13)) 
ax1 = fig1.add_subplot(111) 
oya1_filter_incorrect.plot('DATETIME', 'RH', use_index=True, kind='scatter', marker='.', color='red', ax=ax1, s=15) 
ax1.set_xlabel('Date', fontsize=12.5) 
 
# Set y-axis label with the unit of measurement 
ax1.set_ylabel('%', fontsize=12.5) 
 
# Create a dataframe from the filtered data and add a new column "ID" 
df = oya1_filter_incorrect[['DATE', 'TIME', 'RH', 'SFW']] 
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df['ID'] = df.index + 2 
 
# Save the dataframe to an excel file 
df.to_excel('Filter_Humidity threshold_OYA_1193.xlsx', sheet_name='tab1', index=False, columns=['ID', 'DATE', 
'TIME', 'RH', 'SFW']) 
 
# Remove the top and right lines from the plot 
ax1.spines['top'].set_visible(False) 
ax1.spines['right'].set_visible(False) 
 
# Set the title with the percentage in parentheses and increased font size 
ax1.set_title(f'Relative humidity ({percentage_below_threshold_filtered:.2f}%)', fontsize=12.5) 
 
# Save all plots in a single JPG file 
plt.tight_layout() 
plt.savefig('Filter_Humidity threshold_OYA_1193.jpg', bbox_inches='tight', dpi=300) 
 
plt.show() 
 

--- 
 

Programming flow 6: Outliers checking by RH threshold. Source: author's elaboration 

 

 

 

Figure 23: Standard plot of the check on the RH threshold in a data series (OYA_1193). Source: 
author's elaboration 
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In the dataset under analysis, stations were defined for each homogeneous fog climatic system (see 

Figure 24), based on topographic and altitudinal criteria. The study site "Oyarbide" constitutes a 

homogeneous fog climatic group, as indicated by the r between the site's stations, where the 

collection of SFW shows values greater than 0.7 among them. Taking these considerations into 

account, three groups are obtained: group 1 is composed of stations OYA_518, OYA_780, OYA_862, 

and OYA_1069, all located below 1,069 masl and 10 km from the coast; group 2 (Oyarbide Site) 

includes OYA_1128, OYA_1193, and OYA_1211; and group 3 consists of station OYA_1354, which is 

the only one in the network that seasonally overpassed the thermal inversion layer. Due to the 

impossibility of making an interrelation in system 3, the process is not applied as exemplified the 

Programming flow 7 and Figure 25. 

 

 

Figure 24: Homogeneous fog climate measurement systems at regional scale. Source: author's 
elaboration 
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At Oyarbide Site, the higher percentages of non-correlation observed in stations OYA_1128 (3.91%), 

OYA_1193 (4.52%), and OYA_1211 (4.00%) may be attributed to local micro-topographic and climatic 

influences affecting the SFW collection process. Conversely, the group located furthest to the 

southwest exhibits a lower average interstation non-correlation (0.97%). Nevertheless, the absence 

of correlation in individual stations OYA_518 (0.60%), OYA_780 (0.23%), OYA_862 (2.57%), and 

OYA_1069 (0.49%), suggests a more homogeneous SFW collection environment with reduced 

influences that could disrupt the process at each location under consideration. 

 

--- 
 

# Codes package import 
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
from datetime import datetime 
from matplotlib import pyplot as plt 
 
# Database selection 
oya1 = pd.read_excel('OYA_1128 09-2022.xlsx')  
oya2 = pd.read_excel('OYA_1193 09-2022.xlsx')  
oya3 = pd.read_excel('OYA_1211 09-2022.xlsx')  
 
# Data visualization 
n_date = 0 
data = [] 
for i in range(len(oya1)): 
    if(oya1.DATE[i]==oya2.DATE[i] and oya1.DATE[i]==oya3.DATE[i]): 
        if(oya1.Collected[i]==oya2.Collected[i] and oya1.Collected[i]==oya3.Collected[i]): 
            continue 
        else: 
            n_date += 1 
            if(list([oya1.Collected[i],oya2.Collected[i],oya3.Collected[i]])==[1,0,0]): 
                data.append([oya1.index[i]+1, oya1['DATE'][i], oya1['TIME'][i],"OYA_1128"]) 
                continue 
            if(list([oya1.Collected[i],oya2.Collected[i],oya3.Collected[i]])==[0,1,0]): 
                data.append([oya1.index[i]+1, oya1['DATE'][i], oya1['TIME'][i],"OYA_1193"]) 
                continue 
            if(list([oya1.Collected[i],oya2.Collected[i],oya3.Collected[i]])==[0,0,1]): 
                data.append([oya1.index[i]+1, oya1['DATE'][i], oya1['TIME'][i],"OYA_1211"]) 
                continue 
            if(list([oya1.Collected[i],oya2.Collected[i],oya3.Collected[i]])==[1,1,0]): 
                data.append([oya1.index[i]+1, oya1['DATE'][i], oya1['TIME'][i],"OYA_1211"]) 
                continue 
            if(list([oya1.Collected[i],oya2.Collected[i],oya3.Collected[i]])==[1,0,1]): 
                data.append([oya1.index[i]+1, oya1['DATE'][i], oya1['TIME'][i],"OYA_1193"]) 
                continue 
            if(list([oya1.Collected[i],oya2.Collected[i],oya3.Collected[i]])==[0,1,1]): 
                data.append([oya1.index[i]+1, oya1['DATE'][i], oya1['TIME'][i],"OYA_1128"]) 
                continue 
    else: 
        break 
df = pd.DataFrame (data, columns = ['ID',"DATE","TIME",'Table']) 
df.to_excel('Filter intertable_Oyarbide Site.xlsx', sheet_name='tab1',index=False) 
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i=0 
cols= ['DATE', 'Collected'] 
oya1['YEAR'][0] 
params = {'legend.fontsize': 'x-large', 
          'figure.figsize': (15, 11), 
         'axes.labelsize': 'x-large', 
         'axes.titlesize':'x-large', 
         'xtick.labelsize':'medium', 
         'ytick.labelsize':'medium'} 
plt.rcParams.update(params) 
fig, ax = plt.subplots(1, 1) 
 
# Data plotting 
oya1_filtered_indices = oya1.index[(oya1.Collected==1)&(oya2.Collected==0)&(oya3.Collected==0)] 
oya2_filtered_indices = oya2.index[(oya1.Collected==0)&(oya2.Collected==1)&(oya3.Collected==0)] 
oya3_filtered_indices = oya3.index[(oya1.Collected==0)&(oya2.Collected==0)&(oya3.Collected==1)] 
plt.plot(oya1_filtered_indices, np.arange(len(oya1_filtered_indices))*0+1,".r", markersize=5) 
plt.plot(oya2_filtered_indices, np.arange(len(oya2_filtered_indices))*0+2,".r", markersize=5) 
plt.plot(oya3_filtered_indices, np.arange(len(oya3_filtered_indices))*0+3,".r", markersize=5) 
ax = plt.gca() 
 
# X and Y axis labeling 
dates = []   
for i in range(0, len(oya1), 145): 
    dates.append(oya1.DATE[i]) 
ax.set_xticks(np.arange(0, len(oya1), 145)) 
ax.set_xticklabels(dates, fontsize=12.5) 
 
# Percentage calculation and define axis labels and its percentages  
total_data_oya1 = len(oya1) 
total_data_oya2 = len(oya2) 
total_data_oya3 = len(oya3) 
percentage_oya1 = (len(oya1_filtered_indices) / total_data_oya1) * 100 
percentage_oya2 = (len(oya2_filtered_indices) / total_data_oya2) * 100 
percentage_oya3 = (len(oya3_filtered_indices) / total_data_oya3) * 100 
labels_y = [f'OYA_1128 ({percentage_oya1:.2f}%)', f'OYA_1193 ({percentage_oya2:.2f}%)', f'OYA_1211 
({percentage_oya3:.2f}%)'] 
ax.set_yticks([1, 2, 3]) 
ax.set_yticklabels(labels_y, fontsize=12.5) 
ax.set_ylim(0.5, 3.5)   
plt.xticks(rotation=45) 
ax.set_xlabel('Date', fontsize=12.5) 
 
# Remove the top and right line from the plot 
ax.spines['top'].set_visible(False) 
ax.spines['right'].set_visible(False) 
 
# Save all plots in a single JPG file 
plt.tight_layout() 
plt.savefig('Filter intertable_Oyarbide Site.jpg', bbox_inches='tight', dpi=300) 
 
plt.show() 
 

--- 
 

Programming flow 7: Outliers identification by inter-stations correlation. Source: author's 
elaboration 
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Figure 25: Standard plot of the check on the inter-stations correlation in a data series (System 1). 
Source: author's elaboration 

 

5.1.4. Filling data process 

 

Differing from the prior stages of automated programming flows, the non-automatic filling or 

correction data process is conducted on a case-by-case basis. Its primary objective is to ascertain the 

effectiveness of the automated tests and the appropriateness of interval selection. Furthermore, 

potentially it serves as a mechanism for identifying novel error types (Cerlini et al., 2020). 

After identifying the intervals data from filters in data quality flow, the intervals were categorized as 

short (less than or equal to 6 records), medium (more than one hour up to 12 hr), and long (more than 

12 hr) (see Table 2). The objective is to correct or fill in these intervals using methods relevant based 

on their temporal resolution. For short intervals, a simple linear interpolation is applied to the 

respective climatic station. This involves calculating the average between the last recorded data and 

the first recorded data after the interval. For medium and long intervals, an inter-station correlation 

is employed with stations that constitute the same homogeneous fog climate measurement system. 
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This calculation involves determining the hourly average for medium intervals and the daily average 

for long intervals. 

For Missing data and non-numeric values, short intervals show substantial proportions in OYA_518 

(100%) and OYA_780 (90.6%), potentially reflecting the influence of specific climatic events or 

underlying technical challenges. Middle intervals present nuanced relationships through 

climatological stations, with OYA_1128 (9.4%) suggesting a complex interplay of climatic influences 

and suddenly defecting data recording mechanisms. Long intervals reveal spatial nuances, particularly 

in OYA_1211 (3.40%). 

Moving to Continuous data analysis, Tukey's test and plausible value checks correlate with interval 

distributions. OYA_780 demonstrates heightened anomalies in short intervals (70.8%), indicating 

potential transient, non-frequent, climatic events influencing specific data subsets. The OYA_1211 

dataset displays a significant increase in implausibility within middle intervals (33.4%), suggesting a 

complex interplay of technical challenges or unique climatic conditions influencing data recording. 

In Non-continuous data examination, correlations emerge in Humidity thresholds, with OYA_1069 

showcasing robust compliance in short intervals (100%), reflecting reliability to climatic variations or 

proper instrument calibration of the fog climate network. OYA_780's lower compliance suggests 

susceptibility to climatic fluctuations within specific data subsets.  

The inclusion of Inter-stations correlation adds a new dimension, highlighting the importance of every 

homogeneous fog climate measurement system.  In the short interval, the considerable 92.30% lack 

of correlation in System 1 and the 85.4% in System 2 suggest isolated instances where at least one 

station within each system did not collect fog while others did. This discrepancy could be attributed 

to localized variations or transient climatic conditions impacting the consistency of fog collection. 

Transitioning to the middle interval, the lower proportions of 7.70% and 14.6% absence of correlation 

in System 1 and System 2, respectively, align with the earlier hypothesis derived from the short 

intervals.  The complete absence of correlation (0%) in the long interval might be attributed to the fact 

that the occurrence of not collecting fog in one station while the rest do is a topographically local and 

brief phenomenon, conditioned by local climatic phenomena that affect the non-correlated 

measurement. OYA_1354 (System 3), is exempt from this correlation analysis, due its distinct nature 

that does not allow for correlation with other measurements within the same system. 
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* There are no missing values in the available climate data series; however, some complete time intervals are entirely unavailable. 

_ No data recorded. 

§ OYA_1354 represents a fog measurement climate system by itself, therefore this data filter does not apply as it cannot be correlated with other measurements within 

the same system. 

 

 

Table 2: Percentage of filtered data by climate station and data filter. Source: author's elaboration 

 

 

 

 

 

518 780 862 1069 1128 1193 1211 1354

Short * 100% * * 90.6% 91.9% 88.2% 88.9%

Middle * 0% * * 9.4% 8.1% 8.4% 11.1%

Long * 0% * * 0% 0% 3.40% 0%

Short 70.8% 63.8% 64.0% 66.9% 41.6% 44.8% 50.9% 58.3%

Middle 27.4% 36.0% 36.0% 33.1% 58.2% 55.1% 49.0% 41.4%

Long 1.7% 0.3% 0% 0% 0.1% 0.1% 0.2% 0.3%

Short 96.8% 95.7% 100% 96.7% 90.0% _ 66.6% 98.3%

Middle 3.2% 4.3% 0% 1.0% 10.0% _ 33.4% 1.7%

Long 0% 0% 0% 2.4% 0% _ 0% 0%

Short 100% 100% 100% 100% 100% 100% 100% 100%

Middle 0% 0% 0% 0% 0% 0% 0% 0%

Long 0% 0% 0% 0% 0% 0% 0% 0%

Short 100% 100% 100% 100% 100% 100% 100% 100%

Middle 0% 0% 0% 0% 0% 0% 0% 0%

Long 0% 0% 0% 0% 0% 0% 0% 0%

Short 82.6% 99.1% 90.3% 100% 97.8% 96.5% 99.8% 95.8%

Middle 17.4% 0.9% 9.7% 0% 2.2% 3.5% 0.2% 4.2%

Long 0% 0% 0% 0% 0% 0% 0% 0%

Short 85.4% 85.4% 85.4% 85.4% 92.3% 92.3% 92.3% §

Middle 14.6% 14.6% 14.6% 14.6% 7.70% 7.70% 7.70% §

Long 0% 0% 0% 0% 0% 0% 0% §
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5.2. Regional scale - Temporal analysis 

 

5.2.1. Altitudinal and coast-inland variability of fog climate 

 

Overall, the annual variability, range of values, and geographical influence on SFW collection stand 

out among the various climatological stations. March and April tend to show the greatest increases, 

whereas May and June tend to have lower accumulation and slower increases. 

May records the highest accumulation of SFW for locations from the coast up to 5 km inland (862 

masl), whereas at higher altitudes, the highest accumulation is observed in October (see Figure 26). 

The stations nearest to the coast exhibit relatively lower average SFW collection compared to other 

climatological stations. The standard deviation suggests a relatively low variability in SFW collection. 

The most significant increases occur from January to February, with increments below 0.2 L. The 

records remain relatively stable during the months of May and June (Austral Autumn), with lower 

accumulation and slower increases. 

In the interior of the desert, the annual variability in SFW accumulation fluctuates, with averages 

ranging between 82.36 and 88.10 L. The most significant increases occur from March to April, with 

increments above 4.00 L and standard deviations ranging between 0.36 and 27.35. Stability is 

maintained in May and June, characterized by lower accumulation and slower increases.  

Significant annual variability exists in SFW collection over the TIL, with averages ranging from 0.03 L 

to 3.67 L, and accumulation averages ranging between 34.21 L and 40.83 L. Standard deviations range 

between 2.19 L and 29.77 L. The data displays a wide range of values, with minimums of 0.0 and 

maximums of 500 L. The most significant accumulation increase occurs from March to April, with an 

increment of 4.98 L. Measurements indicate relative stability in May and June, with lower 

accumulation and slower increase. 
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Figure 26: Annual cumulative SFW from coast to inland desert. Source: author's elaboration 

 

In coastal areas, the presence of relatively stable AT and moisture conditions significantly contributes 

to a more consistent and concentrated collection of SFW. This phenomenon is illustrated in Figure 27, 

where a tighter distribution of SFW collected is observed. Overall, a concentration of lower values is 

observed (25% and 50%) and a wider dispersion towards higher values (75%). This suggests that in 

most climatological stations, the amount of SFW tends to be lower, but there are some cases where 

significantly higher quantities are recorded. 

Kernel density estimation reveals that SFW collection is highly concentrated around the median of fog 

data recorded along the coast, ranging from as low as 30 ml at 1,128 masl. In contrast, the IQR inland 

desert exhibits lower values, ranging from 112 ml at 1,211 masl. The highest values for SFW collection 

are observed inland desert, with measurements reaching 524 ml at 1,193 masl. Similarly, the median 

SFW collection is higher at 46 ml at 1,211 masl, and the average stands at 79.2 ml at 1,193 masl. Above 

the TIL, a similar dispersion pattern to the Oyarbide variability is observed, albeit with a slightly lower 

average SFW collection of 67.9 ml. 

When considering the different altitudes, it is observing that there is no clear linear relationship 

between altitude and the amount of SFW. The SFW records at 862 masl has a lower average value 
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than the station at 780 masl. This suggests that other factors, such as local topography, may influence 

the amount of recorded SFW, in addition to altitude. 

 

 

 

Figure 27: Variability of the collected SFW from coast to inland desert. Source: author's elaboration 

 

Wind patterns during fog events exhibit temporal variability. The wind speed along the coastal to 

inland desert transect of climatic records remains relatively constant but shows an increase during the 

afternoon and night, possibly due to heightened atmospheric turbulence. The wind direction, typically 

originating from the southwest (SW) from the Pacific Ocean, exhibits an inverse pattern during fog 

events (see Figure 28). 

Near the coast (518 masl) during the early time hours (2:00 - 6:00 hr), the average wind direction 

shows values around 336.56° and 337.97°. This indicates a prevailing trend of north-northwest (NNW) 

winds during these periods with fog records, with average wind speeds ranging from 3.75 to 5.58 m/s. 

From 6:00 to 16:00 hr, the average wind direction varies between 103.51° and 180.00°, and the 

average wind speed ranges from 2.69 to 7.97 m/s. This suggests that during the morning and midday, 

wind direction is more variable compared to the early hours, predominantly from the southeast (SE), 

with significant fluctuations in wind speed. 

Going into the desert at 862 masl during the early time ranges (0:00 - 6:00 hr), the average wind 

direction is consistently between 31.69° and 42.09°. This indicates that in that specific context of the 
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Atacama Desert, ca. 5 km inland from the coast, there is a prevailing NE wind direction during the early 

hours of the morning. From 6:00 to 22:00 hr, the average wind direction varies widely between 1.06° 

and 305.46°. This suggests significant changes in wind direction during the day within a broad range. 

Between 22:00 and 24:00, the average wind direction returns to early morning values, around 313.27° 

(NNW). The average wind speed remains relatively constant throughout the day, with values ranging 

from 1.47 to 3.04 m/s. This indicates that in the Atacama Desert, ca. 5 km inland, the wind speed 

remains at low to moderate levels throughout the day. 

The records furthest from the coast, 11 km inland at 1,211 masl, show an average wind direction 

between 4.64° and 36.36° during the early hours (00:00 - 06:00). This suggests a prevailing NE wind 

direction during the early hours of the morning. From 06:00 to 10:00 hr, the average wind direction 

varies between 33.5° and 36.0°. This suggests minor variations in wind direction during the morning, 

generally within a narrow range. From 10:00 to 22:00 hr, the average wind direction fluctuates widely 

between 32.13° and 242.20°. This indicates greater variability in wind direction during the day, within 

a broad northwest (NW) to southwest (SW) range. Between 22:00 - 24:00 hr, the average wind 

direction returns to values close to the early time ranges, around 249.82° (WSW). The average wind 

speed remains moderate throughout the day, ranging from 2.28 to 5.43 m/s. This indicates that inland 

in the desert, the wind speed can be relatively constant during the day, with occasional higher peaks 

in the afternoon. During the morning, the wind direction remains within a narrower range, while 

during the day, it becomes more variable. 
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Figure 28: Wind patterns gradients from coast (518 masl) to inland desert (862 and 1,211 masl). 
Source: author's elaboration 
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The northern direction exhibits the most significant influence, represent 21% of the frequency of 

records. This implies that when the wind originates from N, the probability of fog is notably higher. 

Significant correlations are also recorded for SW wind patterns (see Figure 29). Conversely, in fog-free 

conditions, the correlations between wind direction and fog probability are less pronounced. 

Scenarios with N and NE wind patterns also display high correlations. In this scenario, the influence of 

wind direction on fog probability is less significant. In these cases, wind direction continues to impact 

fog probability, albeit to a lesser extent than in foggy conditions. 

 

 

Figure 29: Relationship between the amounts of SFW collected and wind patterns (1,211 masl). 
Source: author's elaboration 

 

A consistent variability is observed in the records of dew point (DP), fog collection record, and SFW 

amounts across the months inland desert (see Figure 30). The variables exhibit a positive trend, with 

the proportion of records reaching the DP displaying greater variability compared to the fog collection 

and SFW amounts. 

The highest annual correlation between SFW collected and DP records occurs during the months of 

June, July, and August, with coefficients of 0.44, 0.39, and 0.44, respectively. Conversely, the lowest 

correlation is observed during the Austral summer months (January, February, and March), with 

values approaching 0. The average DP values are higher in January and February (Austral Summer) 

and lower in May and August. This indicate a seasonality in the conditions under which the DP is 
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reached, associated with the movement of the TIL, which reaches its highest point during summer 

with ca. 1,230 masl (Del Río, 2019) overpassing the climatological stations of the recording.  

 

 

 

Figure 30: Fog annual variability and its relationship with SFW collection and DP records. Source: 
author's elaboration 

 

In December, January, and February, the records reaching the DP exhibit significantly higher values, 

indicating consistently high RH in the air. A considerable high records of fog collection and SFW 

amounts is also recorded. These patterns suggest that during the Austral Summer, there is a higher 

probability of fog formation and humidity in the Atacama Desert. This is related to the influence of 

cold coastal winds interacting with the hot and dry desert air, creating favorable conditions for fog 

formation. 

Throughout March, April, and May, the records reaching the DP continue to exhibit a high frequency 

compared to other months. Although the fog collection recording and SFW amounts decrease, a 

significant presence is still observed. This indicates that during the Austral Autumn, there is still be 

some RH and potential for fog formation in the Desert, although to a lesser extent than in summer. 

During June, July, and August, the DP records decrease considerably, indicating a lower presence of 

humidity in the air. The records of SFW collected and the amount of SFW also diminish significantly. 
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These patterns suggest that during the Austral Winter the air becomes drier, and the probability of 

fog occurrence is reduced, then the conditions for RH and fog formation are much less frequent.  

During the months of September, October, and November, the DP records, SFW collected recording, 

and SFW amounts show an increase compared to Winter, although they do not reach the levels 

observed in Summer and Autumn. This suggests that during the Austral Spring, RH and fog formation 

gradually begin to increase in the Desert, preparing for the wetter conditions of Summer. 

The records of LW also provide valuable data to understand the seasonal changes in moisture levels 

and their connection to the TIL variability (see Figure 31), which reaches its maximum height in Austral 

Summer-Autumn, and lowest in Austral Winter-Spring reaching lower altitudes and less penetration 

into the desert, affecting the distribution of moisture and humidity in the region. 

 

 

 

 

Figure 31: LW over 70% recording fog above and below TIL (1,354 masl and 1,211 masl). Source: 
author's elaboration 
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5.2.2. Monthly variability of fog climate 

 

The Figure 32 presents a detailed overview of the monthly accumulation of SFW inland Atacama 

Desert (ca. 11 km). The Austral Autumn stands out as the period with the highest accumulation of 

SFW, representing 54.81% of the annual total. Within this period, April exhibits the highest SFW 

accumulation, reaching 55.41 L.  On the other hand, the Austral Summer experiences the lowest 

accumulation of SFW annually, representing only 5.35% of the total. February emerges as the month 

with the least SFW accumulation, with less than 1 L (0.72 L) of accumulated SFW. 

 

 

 

Figure 32: Monthly cumulative (ml) SFW collected inland desert (year 2020). Source: author's 
elaboration 
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The fog variability events in the Atacama Desert, defined for this research as 3 continuous 10-minute 

records of collected water, are influenced by seasonal and local factors. The Figure 33 shedding light 

on the interaction between fog events variability in size and duration and seasonal patterns. 

There is a growing trend of fog events during the Austral Winter inland desert. Among the months 

analyzed, July stands out with the highest number of fog events, totaling 19 occurrences. However, 

June (35.07 L) and November (14.30 L) exhibit the greatest amounts of SFW. No fog events are 

recorded in January and February (2023), while March only records a single event. This annual 

variability suggests the influence of seasonal and local climatic factors on fog formation. The longest-

lasting fog events are observed in June, with an average maximum duration of 4.97 hr, and in July, 

with maximum durations of 14.83 hr and 6.33 hr, respectively. These months exhibit greater 

atmospheric stability and lower temperatures, which facilitate the formation and persistence of fog 

over more extended periods. 

A correlation coefficient (r) of 0.60 exists between the number of fog events and the amount of 

collected SFW. Winter months, particularly June and July, showcase the highest quantity and duration 

of fog events due to the prevailing lower temperatures during these months. In June, the largest 

quantities of SFW are collected, reaching a maximum of 9.88 L. Additionally, June also exhibits the 

longest-lasting events, with a maximum duration of 14.8 hr. On the contrary, July records the smallest 

fog collection events (0.008 L) and a significant proportion of shorter events, with a minimum duration 

of 0.5 hr. In October, a perfect correlation (1) is observed between the amount of SFW collected and 

the duration of the two recorded events. August and September also display high correlations, with 

values of 0.97 and 0.98, respectively. However, November exhibits the lowest annual correlation 

between the amount of SFW and the duration of events, with a value of 0.53. 
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Figure 33: Annual gradient of fog events inland desert. Source: author's elaboration 

 

The variability of RH under foggy conditions demonstrates that high RH is a key factor in fog formation. 

Coastal areas exhibit elevated levels of RH due to their proximity to the ocean, while inland desert 

regions are characterized by aridity (see Figure 34). Indeed, more than 97% of fog occurrences both 

along the coast and inland desert are associated with RH levels exceeding 80%. The disparities 

between coastal and inland desert regions are pronounced. 

The increased humidity in coastal areas facilitates fog formation and enhances the potential for SFW 

collection. Near the coast (518 masl), most records fall within the RH ranges of 90 to 100%, 

representing 95.71% of the total records. This indicates that fog formation is more likely under high 

RH conditions. 

The 60 to 70% and 70 to 80% ranges display standard deviations of 29.03 and 51.86, respectively, 

suggesting higher variability in RH when fog occurs within these ranges. From 90 to 100% RH range 



5. Fog variability characterization in the Chilean Atacama Desert 
_______________________________________________________________________________________________ 
 

69 
 

accounts for 95.71% of the total records, confirming the greater importance of high RH in fog 

formation near the coast compared to the inland desert. Along the coast, fog collection takes place at 

an average RH with a declining trend throughout the year. However, over 95% of fog collection and 

fog quantity are recorded at RH levels exceeding 90%. On the other hand, in the inland desert, there 

is an annual increasing trend in RH during fog collection events, with more than 90% of fog occurrences 

and over 87% of the collected fog quantity observed at RH levels above 90%. During the summer, the 

collection of fog near the coast represents the period of lowest RH, reaching a minimum of 64.93% in 

March. Throughout more than half of the year, the average RH during foggy conditions remains above 

90%, with peaks in October (96.78%). In the absence of fog, the annual average drops from 86.22% to 

75.79%, with the least humid months occurring during summer, particularly in January (67.58%). 

Conversely, the winter months exhibit the highest average RH, with September marking the peak at 

84.61%. 

Inland desert (1,211 masl), months with fog collection display average RH levels surpassing 90%, with 

a maximum of 99% in April. The distribution of RH under foggy conditions shows that most records 

fall within the RH ranges of 90 to 100%. This range represents 90.05% of the total records, suggesting 

that fog formation is highly likely under high RH conditions. Additionally, a greater dispersion of data 

is observed in the 80 to 90% range, indicating a more pronounced variability in RH compared to other 

ranges. January exhibits the lowest average RH at 75.68%, excluding February, which does not record 

fog collection (2023). This leads to an annual "anomaly" as the winter and southern spring months 

record the lowest average RH levels with fog occurrences. In the absence of fog, the annual average 

declines from 93.68% to 47.76%, characterized by pronounced seasonal variation in RH during 

summer and the first half of autumn, with a peak in April at 75.44%. Furthermore, the winter and early 

spring experience low average RH, reaching a minimum in August at 20.67%. 

In general, considering the fog records along the coastal to inland desert transect, the 90 to 100% RH 

ranges are the most prevalent during foggy conditions. Additionally, a greater dispersion of data is 

observed in the 60 to 70% and 70 to 80% ranges, indicating a more pronounced variability in RH 

compared to other ranges. 
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Figure 34: RH gradient near coast (518 masl) and inland desert (1,211 masl). Source: author's 
elaboration 

 

Near the coast Inland desert 
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The gradient of AT during SFW collection exhibit significant variability throughout the year. The Figure 

35 presents the data on the annual temperature range in both the coastal and inland regions of the 

Atacama Desert. Near the coast, over 95% of fog occurrences are associated with AT below 10°C, while 

this percentage decreases to slightly above 86% in the desert's interior. 

Close to the coast, the dispersion of temperature data around the mean varies between 0.93°C and 

3.90°C (annual standard deviation of 1.90°C). There is relatively high data dispersion in months with 

average temperatures above 14°C. In the inland desert, the average temperature range during fog 

events varies between 1.04°C and 2.05°C (annual standard deviation of 1.38°C) with relatively high 

data dispersion in months with average temperatures above 10°C. Fog collection is accompanied by 

an average AT that exhibits a decreasing trend throughout the year. More than 98% of fog collection 

events and the corresponding amount of fog collected occur at temperatures below 15°C. Similarly, in 

the inland desert, there is an annual decreasing trend in AT during fog collection, with over 99% of fog 

occurrences and the quantity of fog collected recording temperatures below 15°C.  

A pronounced bimodal temperature trend is observed, with a temperature difference of 15.03°C 

between the lowest and highest monthly averages. The period with low temperatures during fog 

collection corresponds to the winter months and the first half of spring, with a minimum in September 

(6.14°C), which also exhibits the lowest thermal variability (0.93°C standard deviation). On the other 

hand, the highest temperature records occur in summer, with a maximum average of 21.17°C in 

March. The difference between the highest and lowest monthly temperature averages is only 6.31°C. 

Additionally, oscillations are present that disrupt the thermal trend during certain periods. The 

monthly temperature average shows a maximum decrease of 5.96°C in October, accompanied by low 

temperatures throughout the first half of the period, and an increase in summer up to 12.25°C in 

January. Thermal oscillations are pronounced during the summer period, with a maximum of 2.05°C 

in December. 

 

  



5. Fog variability characterization in the Chilean Atacama Desert 
_______________________________________________________________________________________________ 
 

72 
 

 

*No fog collection in February 2022 inland desert (OYA_1211) 

 

Figure 35: AT gradient near coast (518 masl) and inland desert (1,211 masl). Source: author's 
elaboration 

Near the coast 

Inland desert 
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Fog has a dual effect on both diurnal and nocturnal temperatures, while also contributing to increased 

RH levels. When fog settles in this region, it acts as an insulating layer that decreases heat during the 

night and mitigates daytime warming (see Figure 36). Consequently, a discernible decrease in both 

minimum and maximum temperatures is observed during fog events, accompanied by an evident rise 

in RH. This climatic phenomenon profoundly influences the thermal regulation of the desert, creating 

a comparatively cooler and more humid environment in comparison to the usual conditions. 

 

 

 

Figure 36: Day and night fog events and its relationship with AT and RH. Source: author's elaboration 

 

The correlation between fog records and AT is negative, while the correlation with RH is positive. Since 

the beginning of the fog climate network records, the correlation in both the coastal (780 masl) and 

inland desert (1,211 masl) areas exceeds +/- 0.3 for both variables, with a higher correlation observed 

for AT (-0.38 and -0.37, respectively) compared to RH (0.32 for both measuring stations). 

  



5. Fog variability characterization in the Chilean Atacama Desert 
_______________________________________________________________________________________________ 
 

74 
 

5.2.3. Daily variability of fog  

 

The dynamics of fog collection throughout the day provides valuable insights into its occurrence and 

variability. Significant temporal variability in SFW collection is observed by the presence of the TIL and 

its seasonal variability (see Figure 37). Throughout the year, distinct seasonal variations in fog 

occurrence were observed. In the spring months, such as April and May, fog was present during the 

early morning hours, with an average occurrence of approximately 80% of days. As the day 

progressed, fog gradually dissipated, and by midday, the occurrence reduced to around 50% of days. 

In contrast, during the summer months, like June, July, and August, fog occurrence exhibited a 

different pattern. It was relatively less frequent during the early morning hours, with an average 

occurrence of around 33% of days. However, as the day advanced, fog occurrence gradually increased, 

reaching a peak of approximately 60% of days in the late afternoon or evening. 

 There is lower or negligible fog formation between 14:00 and 22:00 hr, accounting for only 1.96% of 

the annual hourly fog formation. In contrast, the highest levels of fog formation are recorded between 

6:00 and 10:00 hr encompassing 42.50% of the annual hourly formation. This daily fog variability aligns 

with previous findings on fog frequency presence (Del Río, 2019), which indicates that its peak 

occurrence is during the night and dawn (~40%). 

During the Austral Winter, when the TIL is lower, there is greater fog formation throughout the day. 

On an average year, August stands out as a month with fog formation present in most hours, except 

in the 20:00 hr range. This suggests that the lower height of the TIL during the season allows for greater 

moisture retention in the atmosphere and, consequently, increased fog formation during the day. In 

contrast, during the Austral Summer, when the TIL reaches its maximum height, fog formation is 

primarily concentrated in the early hours of the morning, with minimal presence during the day. This 

hourly distribution is reflected in the period with the lowest fog formation of the year, with February 

recording the lowest value of only 0.7 L. 

When examining the specific hourly variability above the TIL (1,354 masl), no clear decreasing trend 

in fog formation at specific times is evident. The lowest values are generally observed between 18:00 

and 20:00 hr, while there is no distinct pattern of high fog formation at a particular time. However, 

peak values are observed at 10:00 hr, followed by significant values in the early evening hours. 
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Figure 37: Hourly distribution of SFW collection below (1,211 masl) and above TIL (1,354 masl). 
Source: author's elaboration 

 

In terms of monthly distribution, April, and May exhibit fog formation in almost all hourly records. 

These months coincide with the second and third consecutive months with the highest annual fog 

formation, slightly lower than December, which stands out as the month with the highest annual fog 

formation. Months with fewer hourly ranges of fog collection do not exhibit a clear trend, with 

February being the only month that records a single fog formation range between 12:00 and 13:00 hr, 

coinciding with the month of lowest formation (0.12 L). 
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Under the TIL, the hourly fog collection pattern shows that the month with the highest SFW 

concentration is in Autumn, with highest concentration in April, with 55.41 L. The monthly average 

SFW concentration is highest in April at 4.26 L and lowest in February at 0.06 L. Above the TIL, the 

month with the highest total SFW concentration is December, with a value of 30.93 L. The monthly 

average SFW concentration varies across different months, being highest in December at 23.80 L and 

lowest in October at 0.18 L. 

The analysis of fog occurrence and its relationship with hourly temperature variability reveals distinct 

seasonal patterns. In periods of largest records of fog collection, such as during the spring and summer 

months, average daily temperatures tend to exhibit smaller fluctuations compared to periods with 

lower fog occurrence. For instance, during foggy days in April, temperature variations range from 

10.50°C to 12.80 °C, while on clear days, the range extends from 9.11°C to 11.70°C. This suggests that 

fog acts as a temperature regulator, preventing excessive heating during the day and maintaining 

relatively stable temperatures (see Figure 38). The influence of fog on daily temperature patterns can 

be attributed to its cooling effect. During foggy mornings, the presence of water droplets in the air 

reduces solar radiation reaching the surface, resulting in lower temperatures. As the fog dissipates 

and clears during the day, more solar radiation can penetrate, leading to increased daytime 

temperatures.  

The variability in fog records and its relationship with temperature can also vary within each season. 

Further analysis reveals that in April, fog occurrence ranges from approximately 80% to 90% of days, 

while in May, it ranges from 70% to 80% of days. Fog acts as a temperature regulator, reducing daily 

temperature fluctuations and influencing local climate dynamics. Fog tends to be present during the 

morning hours in spring, dissipating as the day progresses representing approximately 80% of days. In 

contrast, during the summer months, fog occurrence increases throughout the day, peaking in the late 

afternoon or evening, representing approximately 33% to 60% of days. 
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Figure 38: 10-minute average AT and SFW collection records at 1,211 masl. Source: author's 
elaboration 

 

5.3. Local scale - Spatial analysis 

 

5.3.1. Near-surface fog water measurements and explanatory variables 

 

An overview of Near-surface fog water data across distinct altitudinal tiers delineates discernible fog 

collection patterns. Higher altitudes exhibit elevated levels of fog water, whereas intermediate and 

lower altitudes exhibit diminished concentrations. The variability in fog water collection presents a 

spatial distribution pattern that concentrates large amounts of fog water collected in the southeast 

sector, especially above 1,180 masl. Conversely, there is a negative trend of collection below this 

threshold, spatially concentrated in a north-southwest strip of Oyarbide (see Figure 39). 
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At higher elevations (1,213, 1,208, 1,185 masl), there is a consistent recording of larger quantities of 

fog water. This pattern presents higher mean values and wider ranges between minimum and 

maximum readings at these altitudes, indicative of favorable topographic conditions conducive to fog 

formation and accumulation. The correlations between these Mini FCs show high and consistent 

positive values. 

Measurements collected at intermediate elevations (1,191, 1,184, 1,165 masl) display a moderate 

collection of Near-surface fog water. Despite exhibiting lower average values compared to higher 

altitudes, appreciable levels of fog persist. These Fog Collectors show positive correlations, although 

with slightly lower values than those observed at higher altitudes. 

Lower elevations (1,206, 1,163, 1,162, 1,135 masl) exhibit diminished Near-surface fog water content 

compared to higher altitudes. The notably lower averages and narrower ranges between minimum 

and maximum values at these elevations imply reduced fog accumulation. Feasible features include 

drier climatic conditions on this area or reduced topographic exposure to fog-generating 

meteorological phenomena at these lower altitudes. The Mini FCs at lower altitudes present variable 

correlations, with lower values compared to those at higher and intermediate elevations. 

In whole measurements records of Near-surface fog water, the largest collections are recorded during 

the May-June and September-October periods, and the lowest collection period corresponds to the 

Austral Summer (November-January). 
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Figure 39: Interpolation of Near-surface fog water variability from June to November 2019. Source: 
author's elaboration 
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Five potential topographical predictors of Near-surface fog water were analyzed in Oyarbide exploring 

global pattern and spatial variability of associations between Near-surface fog water variability and 

the selected potential topographical parameters based on the results from the processing of ca. 6,800 

pictures captured during the flight campaigns November 2018 in the Atacama Desert by a consumer 

digital SLR Camera DJI Zenmuse X5S Gimbal stabilized mounted on a DJI Matrice 200 UAV/Drone, with 

a height set to 90 m and draped 1.42 cm/pixel resolution.  

The study site's altitude map was generated through interpolation and contouring of the 

topographical data into a DEM, providing a detailed representation of the altitude gradient with a 

range of 102 meters. Additional explanatory variables derived from the DEM using ArcGIS spatial 

analyst tools include Slope, Aspect, Curvature, and Hillshade (see Figure 40). 

Approximately half of the study site exhibits slopes of less than 11° (48.7%), with 1% characterized by 

flat surfaces, indicative of a terrain with moderate slopes. In contrast, only 1.8% of the land displays 

slopes exceeding 45%. Most of the terrain faces southwest (17.2%) and west (15.3%), with lesser 

proportions oriented towards the north (6.8%) and northwest (9.6%). Hillshade allows visualization of 

the terrain based on a light source and the slope and orientation of the elevation surface. 

Consequently, only 10.3% of the study site experiences shading. Finally, the Curvature of the terrain 

reveals that 50% of Oyarbide's surface features a convex terrain, while 48.8% is concave, and a mere 

1.3% corresponds to flat surfaces. 
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Figure 40: Topographic explanatory variables in Oyarbide extracted from the DEM. Source: author's 
elaboration 
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Before applying regression techniques to model Near-surface fog variability, a bivariate Pearson 

correlation (r) analysis was performed on the set of candidate explanatory variables (see Figure 41).  

The correlation observed between Near-surface fog water and Elevation is significant, with an r value 

of 0.57. This signifies a moderate positive relationship between fog presence and elevation, suggesting 

that higher elevation areas tend to experience increased occurrences of Near-surface fog. 

Additionally, significant albeit slightly weaker correlations have been identified between Near-surface 

fog water and Curvature with an r of about 0.55. Slightly weaker correlations have been identified 

between Near-surface fog water and Aspect, Hillshade, and Slope, with coefficients ranging between 

0.27 and 0.25.  

Highly correlated values were excluded from subsequent analysis to address potential issues arising 

from multicollinearity whose range use the threshold ranging from 0.6 to 0.8 (Tay, 2017). As shown in 

the plot, closest correlation to the proposed range was observed for variable Elevation. 
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Figure 41: Bivariate correlation between dependent and explanatory variables in Oyarbide. Source: 
author's elaboration 
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5.3.2. Spatial analysis validation 

 

In the field of climatological research, the intricate relationship between Near-surface fog water and 

the topographical features of Oyarbide suggests for a sophisticated analytical framework. The "Global 

Moran's I" and "High/Low clustering – Getis Ord General G" methods, both important tools in spatial 

analysis, are skillfully employed to assess spatial autocorrelation and spatial clustering, respectively. 

Implemented prior to engaging in exploratory regression, these methods provide insights into the 

spatial structure of the data, revealing significant spatial patterns. Through this approach, it becomes 

possible to identify spatial dynamics prior incorporating spatial variables into the regression model. 

 

Global Moran's I & High/Low clustering – Getis Ord General G 

 

The use of the Global Moran's I and High/Low clustering – Getis Ord General G indices represents an 

optimal approach to acquire a comprehensive understanding of the spatial patterns and clustering 

tendencies exhibited by concentrations of Near-surface fog water concerning topographic attributes. 

These indices enable the identification of overarching autocorrelation trends and localized clustering 

patterns. Consequently, they serve as indicators of the topography's influence on the distribution 

patterns of Near-surface fog water in Oyarbide. 

Global Moran's I (Fotheringham et al., 2002) was employed to analyze the variability of Near-surface 

fog water, aiming to discern whether the pattern exhibited by the dependent variable at the study 

site is clustered, dispersed, or random. The calculated Moran's I Index show a value of 0.1060 (see 

Figure 42), indicating a statistically significant spatial autocorrelation. The associated z-score of 0.9403 

(regression coefficient divided by standard error) and p-value of 0.3470 (indicating the degree of data 

compatibility with the null hypothesis) suggest that the null hypothesis cannot be rejected. 

Consequently, there is insufficient evidence to conclude that the spatial arrangement of Near-surface 

fog water variability values tends towards randomness. Further analysis is warranted to accurately 

characterize the spatial pattern of Near-surface fog water distribution. 
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Figure 42: Spatial autocorrelation report of Near-surface fog water collection. Source: author's 
elaboration 

 

The analysis of explanatory variables revealed statistically significant spatial autocorrelation with a 

clustered distribution, as indicated by Moran's I (see Table 3). Consequently, rejection of the null 

hypothesis was supported by both the z-score, and the p-value, signifying that entity values in 

explanatory variables were non-randomly distributed across the study site. 

 

 

 

*Measure of standard deviation 

°Represents the pseudo-significance level, which is computed using a randomization algorithm (Anselin, 1995). The probability of obtaining an observed pattern P<0.05 

 

Table 3: Spatial autocorrelation for the explanatory variables. Source: author's elaboration 

Variable Moran´s I Pattern Z-score* P-value°

Aspect 0.371336 Clustered 87.814551 0.000000

Slope 0.281953 Clustered 66.685833 0.000000

Curvature 0.001876 Random 0.565123 0.571990

Hillshade 0.059245 Clustered 17.509775 0.000000
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The High-Low Clustering Report for Near-surface fog water collection provides a comprehensive 

insight into spatial patterns (see Figure 43). The observed General G value of 0.001217 reveals a subtle 

yet non-significant deviation from spatial randomness. This z-score of 0.148800 and a p-value of 

0.881712 suggest that the distribution of the dependent variable does not exhibit significant spatial 

clustering.  

 

 

 

Figure 43: High-low clustering report of Near-surface fog water collection. Source: author's 
elaboration 
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Exploratory regression 

 

The exploratory regression approach systematically analyses various potential explanatory variables 

to identify optimal OLS models. These models effectively elucidate the dependent variable, adhering 

to local scale-specified criteria. 

The provided summaries in Table 4 offer insights into the highest adjusted R-squared results and 

passing models derived from the exploratory regression analysis and the term "maximum VIF", who 

denotes the maximum value of variance inflation factor (VIF) serves as a metric indicating the extent 

to which the variance of a regression coefficient inflates due to multicollinearity among predictor 

variables. Each summary corresponds to a different combination of predictor variables based as part 

of a process of exhaustive exploration of different models. 

Summary 1: The model with the highest adjusted R2 (0.02) features the variable Slope as the sole 

predictor. It demonstrates a low AICc value and no significant Jarque-Bera (JB) or K-Bowman tests 

(K(BP)) results, indicating a good fit. Additionally, the VIF value of 1.00 suggests no issues with 

multicollinearity. This model passes all criteria and is denoted by "***". 

Summary 2: Two models yield the highest adjusted R2 (0.02). Both models include the variable Slope, 

with additional variables Hillshade and Aspect, respectively. They exhibit low AICc values and no 

significant JB or K(BP) results, implying adequate fit. The VIF values are below 1.01, indicating no 

multicollinearity issues. Both models pass all criteria, with one marked as "*" and the other as "". 

Summary 3: The highest adjusted R2 (0.02) model includes the variables Hillshade, Slope, and Aspect. 

It features a relatively higher VIF value of 1.05 for Hillshade but remains below the acceptable 

threshold. This model passes all criteria and includes "***" for significance. 

Summary 4: The model with the highest adjusted R2 (0.02) incorporates all variables: Hillshade, Slope, 

Curvature, and Aspect. While Hillshade has a VIF value slightly above 1.05, it remains within an 

acceptable range. This model passes all criteria and is represented without additional significance 

markers. 

Overall, these summaries highlight the models with the highest explanatory power, predominantly 

featuring Slope as a significant predictor. So far, multicollinearity concerns appear minimal, and the 

chosen models adequately fit the data, meeting the specified criteria. 
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Model variable significance: * = 0.10, ** = 0.05, *** = 0.01 

 

Table 4: Exploratory regression overview. Source: author's elaboration 

AdjR2 AICc JB K(BP) VIF SA Model

0.02 464553.83 0.00 0.00 1.00 0.00 Slope***

0.00 465189.25 0.00 0.00 1.00 0.00 Hillshade

0.00 465190.33 0.00 0.00 1.00 0.00 Aspect***

AdjR2 AICc JB K(BP) VIF SA Model

0.02 464501.29 0.00 0.00 1.01 0.00 Hillshade + Slope***

0.02 464549.78 0.00 0.00 1.01 0.00 Slope*** + Aspect**

0.02 464555.72 0.00 0.00 1.00 0.00 Slope*** + Curvature

AdjR2 AICc JB K(BP) VIF SA Model

0.02 464502.31 0.00 0.00 1.05 0.00 Hillshade + Slope*** + Aspect

0.02 464503.18 0.00 0.00 1.01 0.00 Hillshade + Slope*** + Curvature

0.02 464551.67 0.00 0.00 1.01 0.00 Slope*** + Curvature + Aspect**

AdjR2 AICc JB K(BP) VIF SA Model

0.02 464504.20 0.00 0.00 1.05 0.00 Hillshade + Slope*** + Curvature + Aspect

Passing Models

Passing Models

Passing Models

Passing Models

Highest Adjusted R-Squared Results

Highest Adjusted R-Squared Results 

Choose 2 of 4 Summary

Choose 1 of 4 Summary

Choose 3 of 4 Summary

Highest Adjusted R-Squared Results

Choose 4 of 4 Summary

Highest Adjusted R-Squared Results
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The established criterion dictates that the maximum VIF value should remain below 7.50 for the model 

to be deemed acceptable. The successful outcome of all tests signifies that this criterion has not been 

breached in any instance, as evidenced by the 100% (% Passed) passing rate (see Table 5). 

Consequently, it suggests an absence of problematic multicollinearity within the exploratory 

regression model. 

 

 
 

Table 5: Exploratory regression multicollinearity testing. Source: author's elaboration 

 

The Table 6 shows a summary of explanatory variable significance and directional impact, within the 

exploratory regression model. The variable Slope exhibits 100% significance, indicating a strong 

positive relationship with Near-surface fog water. No negative relationship is observed. The variable 

Aspect exhibits 75% significance, also shows a predominantly positive relationship with the dependent 

variable, with no recorded negative relationship. The variable Hillshade does not show any significant 

relationship with the dependent variable, as indicated by the 0% significance. The variable Curvature, 

similarly, no significant relationship is found with the dependent variable, with 50% of the instances 

displaying a positive relationship and the other 50% showing a negative relationship. 

Overall, the results presented indicate that variables Slope and Aspect are significant predictors of the 

dependent variable Near-surface fog water. 

 

 Criterion Trials # Passed % Passed

R-Squared 15 0 0.00

p-value 15 3 20.00

Value 15 15 100.00

p-value 15 0 0.00

p-value 11 0 0.00

Max VIF < 7.5

Min Jarque-Bera > 0.1

Min Spatial Autocorrelation > 0.1

 Percentage of Search Criteria Passed

Search Cutoff

Min Adjusted R-Squared > 0.5

Max Coefficient < 0.05
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Table 6: Exploratory regression assessment of variable significance. Source: author's elaboration 

 

The coefficients from the variables Slope and Aspect consistently demonstrate statistical significance 

and exhibit positive effects as resilient prognosticators of Near-surface fog water. Conversely, the 

remaining variables exhibit a lack of statistical significance and display an absence of consistent sign 

patterns. This renders them inappropriate for inclusion within the models and erodes their efficacy as 

predictors of Near-surface fog water. Consequently, the definitive course of action will be further 

analyzed by OLS regression in the next step incorporating the variables Slope and Aspect into the 

model, thereby ensuring precise and reliable explanatory of the variability in Near-surface fog water. 

 

5.3.3. Geo-statistical modelling and analysis 

 

A diverse set of models was iteratively developed by leveraging a selection of candidate variables, 

ultimately leading to the identification of a model with superior explanatory power. This elected 

model integrates the quartet of explanatory variables that hold pertinence from the vantage of Near-

surface fog water dynamics. The regression analysis encompassed an examination of the variability in 

Near-surface fog water, treated as the dependent variable, employing two distinct analytical 

frameworks, the OLS as detailed in the study by Fotheringham et al. (2019), and the GWR method 

introduced by Fotheringham et al. (2001). 

 

 

 

 

Variable % Significant % Positive

Aspect 75.00 100.00

Slope 100.00 100.00

Curvature 0.00 50.00

Hillshade 0.00 100.00

% Negative

0.00

0.00

50.00

0.00

Summary of Variable Significance 
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Ordinary Least Squares (OLS) 

 

At a 95% confidence level, the OLS model summary (see Table 7) reveals that two of the four 

explanatory variables, Aspect, and Slope, are significant (p-value) and exhibit expected coefficients. 

Based on previous results in explanatory regression the remaining variable that are insignificant in the 

global model therefore are discarded for the local model as well. The VIF values, all below 7.5, indicate 

no multicollinearity issues among the explanatory variables (Niedzielski & Migała, 2018). 

 

 

 

SE: standard error; VIF: variance inflation factor, indicator of redundancy between the explanatory variables, *P<0.05 

 

Table 7: OLS model summary. Source: author's elaboration 

 

Several key statistical indicators have been employed to assess the efficacy of the global regression 

model and elucidate the underlying dynamics of Near-surface fog water variability at this analysis 

level. Each metric shown in Table 8 offers unique insights into different dimensions of the regression 

model, ranging from its overall fit to assumptions regarding the distribution of residuals and spatial 

variability. 

The negative Adjusted R2 value, as an indicative of the proportion of variability in the dependent 

variable explained by the independent variables, suggests a considerable deficiency in the model's 

ability to elucidate the variance in Near-surface fog water collection based solely on Slope and Aspect. 

The AIC serves as a quantitative measure of model parsimony, encapsulating the trade-off between 

model complexity and goodness of fit. The relatively high value of the AIC value implies potential 

inadequacies in model specification or the presence of unaccounted factors exerting influence on 

Near-surface fog water variability. 

The Jarque-Bera statistic (Jarque & Bera, 1987) and the Breusch-Pagan (BP) statistic  (Koenker, 1981), 

are a key diagnostic to assess the normality and spatial variability assumptions underlying the 

regression model. A higher Jarque-Bera statistic, coupled with a p-value exceeding the significance 

Variable Coefficient SE P-value VIF

Intercept 3676.607001 1535.108622 0.047663* _

Aspect -4.689027 6.987808 0.523583 1.078652

Slope 37.177801 46.922218 0.454102 1.078652
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threshold commonly set at 0.05 implies a lack of evidence to reject the null hypothesis of normality in 

the residuals. The statistic proximity to unity suggests a reasonable adherence to the normality 

assumption, indicating that the residuals from the global regression model may indeed follow a 

normal distribution. This value suggests confidence in the regression analysis and enhances the 

credibility of the estimated coefficients for Slope and Aspect in explaining Near-surface fog water 

variability. The BP statistic, with a p-value of 0.055224, slightly exceeds the customary threshold of 

0.05 for statistical significance (Koenker, 1981). The high p-value suggests the possibility of non-

stationarity in the relationship between the dependent and explanatory variables. This observation 

suggests nuanced variations across distinct spatial zones within Oyarbide, underscoring the intricate 

spatial dynamics exerting influence on Near-surface fog water variability. 

 

 

 

°Coefficient indicating the relative goodness of fit of the regression; #measure of the model value of adaption – the lower the value, the higher the model’s performance; 
§approach to establish if the residuals of a regression model are normally distributed; ^approach testing the spatial variability of the variables. 

 

Table 8: OLS diagnostic model. Source: author's elaboration 

 

Spatial regression is justified when there is an enhancement in global fit or when clusters are detected 

in the residual distribution, necessitating correction. After considering these factors thoroughly and 

examining the available evidence, it is apparent that opting for GWR is the most supports the adoption 

of GWR, making it the optimal choice for addressing the research question at hand. 

 

Geographical Weighted Regression (GWR) 

 

The model's local performance was evaluated with various key metrics (see Table 9). 

The bandwidth of 6 indicates the spatial extent over which neighboring data points influence the 

estimation of coefficients. A bandwidth of 6 suggests that the model is considering data points within 

a relatively proximity.  

Statistics Diagnostic P

Adjusted R2° -0.146039 _

AIC# 189.419661 _

Jarque-Bera statistic
§ 0.818878 0.664023

BP statistic ^ 5.792721 0.055224
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The RSS (1103474.94625) represents the unexplained variability in the dependent variable after 

accounting for the explanatory variables. A lower residual compared to the global model, indicates a 

better fit of the model to the data. 

The effective number (9.280045), a measure of the degrees of freedom in the model, considering the 

spatially varying nature of the relationships between the variables, suggest that each observation 

contributes as if it were part of a dataset with approximately 9 observations. This implies that the 

spatial autocorrelation presents in the data results in a reduction of the effective sample size 

compared to the actual sample size. 

Sigma (1238.022649), a standard deviation of the dependent variable, indicating the variability of 

Near-surface fog water across the study site. A moderate to high sigma value like this one suggests 

greater variability in Near-surface fog water. 

The AICc value of -162.506711 serves as a measure of the model's goodness of fit while penalizing for 

the number of parameters used. A lower AICc (compared with OLS) suggest a fitting model. 

The R² indicates that ca. 95.06% of the variance in Near-surface fog water variability can be explained 

by Slope and Aspect in the model. This suggests a strong overall relationship between the variables. 

However, the lower adjusted R² suggests that around 38.24% of the variance can be explained by the 

independent variables after adjusting for the model's degrees of freedom. 

 

 

 

Table 9: Summary of results of the GWR model analysis. Source: author's elaboration 

 

The spatial analysis of localized adaptations, as delineated by the Local R2 coefficients, offers a 

nuanced understanding of the model's explanatory power. The range of Local R2 coefficients spans 

from 0.20971 to 0.92618 (see Figure 44), reflecting a diverse spectrum of explanatory abilities across 

different elevations.  

Bandwidth 6

Residual squares 1103474.94625

Effective number 9.280045

Sigma 1238.022649

AICc -162.506711

R2 0.950595

Adjusted R
2

0.382398
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Areas with maximal R2 coefficients (> 0.6151), representing heightened explanatory prowess, are 

concentrated within discrete clusters. Specifically, these clusters align along the western north-south 

Oyarbide strip and in the southeastern highest area of Oyarbide, accounting 50% of registration 

sensors. Furthermore, there exists a discernible positive correlation between the Local R2 values and 

observed Near-surface fog water collection, particularly evident within statistically significant zones. 

This correlation underscores the heightened influence of the Near-surface fog water variability in 

response to escalated Aspect and Slope of Oyarbide. Conversely, the model's adequacy diminishes 

significantly (< 0.4304) across 30% of the study site, concentrated in a central patch. 

 

 

Figure 44: GWR Local R2. Source: author's elaboration 

 

The t-values, serving as quantifiers of the disparity between an observed data and its predicted Near-

surface fog water data in units of standard error, and rigorously assessed at a confidence level of 95% 
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is shown for the explanatory variables in Figure 45. It is imperative to note that t-values surpassing the 

critical threshold of 2.31 are delineated as indicators of pronounced statistical significance. 

Mini FCs measurements with high t-values, indicate that those measurements areas have a greater 

incidence of Aspect and Slope in the Near-surface fog water collection. Conversely, observation with 

a below threshold t-value suggests a significant negative relationship between explanatory variables 

and Near-surface fog collection. 

The results obtained from the localized modelling offer valuable insights into the discernment of 

diverse levels of adaptation generating spatialized coefficients for the explanatory variables 

(elasticities), and providing insight into how these variables interact locally to achieve a specific 

adjustment in a given area (Fotheringham et al., 2002) (see Figure 46). Higher coefficients of 

explanatory variables denote a stronger relationship with dependent variable within specific areas, on 

the other hand, lower coefficients suggest a weaker association.  
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Figure 45: GWR t-value for each explanatory variable. Source: author's elaboration 
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Figure 46: Local influence of explanatory variables on Near-surface fog water variability. Source: 
author's elaboration 
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Within the higher coefficients recorded, the Aspect intervals coefficients suggest a weak positive 

correlation between Aspect and observed Near-surface fog water. As the terrain Aspect tends towards 

facing towards the sun, observed Near-surface fog water shows a slight increase. The average 

observed Near-surface fog water (3145.93 ml) closely resembles the predicted Near-surface fog water 

(3145.85 ml), indicating local model accuracy. The average Slope (11.23°) and an average Aspect of 

176.58° (SSE), may suggests moderated terrain inclinations, potentially influencing fog accumulation.  

At the high Slope intervals coefficients, reflects a strong positive correlation between Slope and 

observed Near-surface fog water. Steeper slopes correlate with increased observed Near-surface fog 

collection. The average observed Near-surface fog water (3074.02 ml) aligns closely with predicted 

Near-surface fog water (3074.21 ml), indicating model reliability. The same lower average Slope and 

Aspect suggests steeper terrain, potentially facilitating fog collection. At both explanatory variable 

areas with high coefficients the lower average elevation (1,100 masl) in conjunction with precedent 

features mentioned may implies terrain conducive to localized Near-surface fog collection. 

Conversely, lower coefficients in some areas of Oyarbide indicate a less pronounced relationship 

between the explanatory variables and the dependent variable. 

Within the lower coefficients, the Aspect intervals coefficients indicate a moderate negative 

correlation between Aspect and observed Near-surface fog water. As the terrain Aspect becomes 

more facing away from the sun, observed Near-surface fog water tends to increase. The average 

observed (3279.58 ml) and predicted (3278.75 ml) Near-surface fog water aligns closely, suggesting 

accurate model predictions. The average Slope angle (13.14°) implies moderately inclined terrain, and 

an average Aspect of 196.41° (SSW), might contribute to moisture dissipation. The Slope intervals 

coefficients indicate a moderate negative correlation between Slope and observed Near-surface fog 

water. As slope steepness increases, observed Near-surface fog water tends to decrease. Notably, the 

average observed (3120.77 ml) and predicted (3120.72 ml) Near-surface fog aligns closely, suggesting 

reliable model performance also for this variable. The average Slope (12.46°) and same average Aspect 

implies potentially facilitating lower levels of Near-surface fog water collection. Additionally, the 

average low elevation (1,104 masl) complements explanatory variables characteristics. 

In summary, the GWR modelling with its statistics associated offers a superior modelling of the 

interplay between the dependent variable and its two explanatory variables by delineating nuanced 

local fluctuations in this local relationship. By discerning and assigning optimal model weights tailored 

to each geographic location throughout Oyarbide, it facilitates the creation of a proper spatial 

depiction of these weights, thus enhancing the understanding of the spatial dynamics underlying the 

variables involved. 
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Figure 47 provides a visual representation of the synthesized impact of Slope and Aspect on Near-

surface fog variability. Through the normalization and weighting of the values, these coefficients have 

been merged to yield a single, representative metric elucidating their collective influence on fog 

variability across the study site. Low fluctuations in Slope and Aspect values are correlated with lower 

tends in Near-surface fog water variability. Conversely, when the normalized Slope and Aspect values 

are higher, the Near-surface fog water variability tends to be higher. 

 

 

Figure 47: Coefficients of combined explanatory variables and their relationship with Near-surface 
fog water variability. Source: author's elaboration 

 

Although Elevation was excluded from both the global and local models due to multicollinearity, its 

relationship with predicted Near-surface fog water values remains significant as an independent 

explanatory variable. Analyzing this association outside the constraints of the regression models offers 

a complementary perspective on altitudinal effects. The Figure 48 illustrates the relationship between 
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Elevation and the predicted Near-surface fog water values, highlighting trends that align with the 

altitudinal tiers initially discussed. 

This complementary assessment provides further evidence of the altitudinal influence on fog water 

collection, yet underscores the importance of using multivariate models, such as local, to capture the 

spatial heterogeneity of the interactions between the dependent variable and other topographical 

predictors. Consequently, the comparative analysis between global and local regression models sheds 

further light on the efficacy of each approach in accounting for the variability of Near-surface fog water 

across Oyarbide. 

 

 

Figure 48: Relationship between Elevation and predicted Near-surface fog water. Source: author's 
elaboration 
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Global (OLS) versus Local (GWR) regression model 

 

The comparison between these regression models shows the efficacy of each approach in capturing 

the spatial variability of Near-surface fog water, with widely observed differences in key performance 

metrics in each one (see Table 10). 

 

 

 

Table 10: Comparison between global and local regression modelling. Source: author's elaboration 

 

The RSS, a key measure of model fit, demonstrates considerable variation between OLS and GWR, 

with GWR exhibiting substantially lower values. This suggests that GWR better accounts for the 

localized variability in Near-surface fog water, reflecting its ability to capture spatial heterogeneity 

more effectively compared to the global modelling. 

Furthermore, the AIC underscores the advantages of local modelling, as evidenced by its negative 

value, indicating a higher level of explanatory power compared to global model. This suggests that 

GWR offers a better fit for the local data (Hurvich et al., 1998; Niedzielski & Migała, 2018) and 

therefore a more efficient framework for modelling Near-surface fog water variability in Oyarbide.  

The R² further reinforce the superiority of GWR, showing its ability to explain a significant proportion 

of the spatial variance in Near-surface fog water occurrence. This contrasts with the comparatively 

lower explanatory capacity of the OLS. Despite the inherent complexity of GWR due to its localized 

nature, the higher Adjusted R2 values, providing insight into the balance between model complexity 

and explanatory power, indicate that GWR achieves a favorable balance, offering a more nuanced 

understanding of the relationship between Aspect and Slope, and Near-surface fog water variability 

in the study site. 

Assessment of the spatial autocorrelation of residuals between OLS and GWR, allow to assess how 

each model addresses and captures the spatial structure of prediction errors, thereby aiding in 

Value OLS GWR

Residual sum of square 22706518.768 1103474.946

Classic AIC 189.419661 -162.506711

R
2

0.108636 0.950595

Adjusted R
2

-0.146039 0.382398
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determining which model is more suitable for describing and predicting Near-surface fog water 

variability in Oyarbide (see Table 11). 

 

 

 

Table 11: Moran's I in the residuals OLS and GWR. Source: author's elaboration 

 

In the OLS model, a significant positive Moran's Index in residuals suggests pronounced clustering, 

indicating that areas with similar Slope and Aspect tend to exhibit analogous Near-surface fog water 

collection. Conversely, the GWR model reveals a significant negative spatial autocorrelation, implying 

spatial heterogeneity, where neighboring areas manifest dissimilar Near-surface fog water variability 

despite comparable Slope and Aspect characteristics of the terrain. 

Both models exhibit equal expected index values, indicating that the observed spatial autocorrelation 

aligns with what would be expected under spatial randomness. The OLS model shows a slightly higher 

variance of residuals compared to the GWR model, suggesting greater variability around the mean 

prediction in the OLS framework. 

The OLS model presents a positive z-score and relatively low p-value, affirming significant positive 

spatial autocorrelation in global approach. In contrast, the GWR model displays a negative z-score and 

higher p-value, indicating a lack of significant spatial autocorrelation. 

Both models show a random spatial pattern, indicating that while there is a spatial association 

between explanatory and dependent variable, the distribution lacks discernible spatial trends beyond 

random variation. 

  

Score OLS GWR

Moran´s I 0.209222 -0.204591

Expected index -0.111111 -0.111111

Variance 0.052469 0.044919

z-score 1.398458 -0.441061

p-value 0.161976 0.659169

Pattern Random Random
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6. Discussions of multiscale findings on fog variability in the Chilean 

Atacama Desert 

 

The quality and calibration of instruments used to measure climatic variables may vary across 

climatological stations, potentially leading to less precise measurements and, consequently, can result 

in an increased occurrence of outliers at specific climatological stations. Therefore, instrumentation 

stands as a pivotal requisite in procuring dependable climate data. 

Several researchers advocate for the utilization of non-geostatistical methods (Borges et al., 2016; 

Goovaerts, 2000; Mair & Fares, 2010), which disregard spatial dependence in spatial data dynamics, 

to interpolate missing data or outlier series in non-continuous variables, typically employing linear 

regressions and inverse distance weighting, alongside geostatistical methods such as kriging. 

Nonetheless, meticulous attention must be accorded to selecting and applying statistically robust 

methods tailored to the dataset's temporal interval when addressing gaps or outliers. 

The data quality flow proposed for the fog climate measurements network in Atacama, although 

yielding favorable outcomes, requires acknowledging that its application may not consistently depict 

actual variability accurately in climatological data. This is especially true when temporal trends or 

substantial differences between data intervals exist. While averaging and correlation techniques by 

different data intervals may offer practical adjustments, they might fall short in providing a 

comprehensive evaluation of the data's variability. Moreover, employing these techniques to estimate 

missing data or outliers can significantly impact the overall dataset, this is particularly relevant in 

situations where the data is highly susceptible to the influence of outliers or temporal trends. 

Additionally, as mentioned by Schween et al. (2020), the Atacama Desert suffers from a lack of 

continuous and representative meteorological observations covering the entire region. Long-term 

data is only available from meteorological stations located at the airports of Antofagasta, Iquique, 

Arica, and Calama. These data are often extrapolated to other areas, which poses a challenge due to 

the localized nature of low cloud and fog distribution (Del Río et al., 2021). Covering this gap, the 

detailed regional-local fog climate network data and its improvement process described in this 

research serves as a contribution to address this issue, characterizing the variability of fog climate with 

high spatiotemporal resolution and its relationship with climatic gradients. 

After passing the quality flow, the analysis and evaluation of the climatic data have delivered 

interesting results recorded in the wind patterns with foggy conditions inland desert (see Figure 49). 
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The comparative analysis between fog collection and without collection reveals distinctive patterns in 

the distribution of wind speeds across different wind direction intervals. During fog collection, wind 

direction patterns with the highest average speeds are centered around northeasterly to northerly 

directions, notably ENE (2.66 m/s), NE (3.29 m/s), NNE (3.33 m/s), and N (2.40 m/s). These plots 

suggest a tendency towards more efficient fog collection when the wind blows from these directions. 

Conversely, wind direction patterns with lower average speeds during fog collection include SSE (0.49 

m/s), S (0.85 m/s), SE (0.81 m/s), and W (1.27 m/s), suggesting a potential contribution, but not a 

major one, to the persistence of fog collection when the wind originates from southerly and westerly 

directions, where speeds are notably lower. 

 

 

 

Figure 49: Wind patterns with (left) and without (right) fog collection inland desert. Source: author's 
elaboration 

 

The findings align with broader atmospheric circulation patterns observed in the region. For instance, 

the presence of higher wind speeds from northeasterly to northerly directions during fog collection 

may be influenced by the interaction of local topography with regional atmospheric dynamics, such 

as the Southeast Pacific High (SEPH) (García et al., 2021). The SEPH, characterized by its southerly flow, 

contributes to the development of land-sea breezes and other mesoscale phenomena, ultimately 

impacting the distribution of wind speeds across different wind direction patterns.  
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Additionally, radiative heating and cooling at the slopes of the Andes and the Altiplano to the west 

initiate a circulation so called Rutllant cell (Rutllant et al., 2003). This circulation pattern leads to strong 

westerly and easterly winds during daytime and nighttime, respectively (Schween et al., 2020). The 

Rutllant cell further contributes to the complexity of wind behavior observed at station OYA_1211, 

particularly during different times of the day and night. 

In addition, as details García et al. (2021) the wind patterns observed at inland desert measurements 

exhibit a regular pattern characterized by eastward winds with lower speeds during the second half 

of the night until hours before noon, followed by westward winds at higher speeds from before noon 

until the first half of the night. This pattern is influenced by the presence of the Andes and the central 

depression, which dominate the inland wind system. During the night, wind speeds are low, and 

direction is mostly from the land, roughly following the slope of the cliff. However, some hours after 

sunrise, the wind direction switches to southwest, and speed increases, indicating the influence of a 

land-sea breeze combined with a coastal low-level jet (Garreaud et al., 2008; Soares et al., 2022). 

Conversely, without fog collection, wind speeds exhibit a distinct distribution. Wind direction patterns 

with the highest average speeds are SW (3.89 m/s), WSW (4.37 m/s), and NE (2.59 m/s). Conversely, 

wind pattern intervals with the lowest average speeds are SSE (1.10 m/s), S (1.42 m/s), and SE (1.54 

m/s), suggesting that winds from southeast and south directions tend to have lower speeds when fog 

is absent. 

Such variability in fog distribution and fog water content are expected to happen with climate change 

at different elevations at the Coastal Cordillera (Del Río et al., 2018). The influence of the ENSO 

changes, since the beginning of the 21st century, presents Interdecadal Pacific Oscillation (IPO) 

predominantly negative values, suggesting a shift toward the negative (cold) phase. If this evolution is 

confirmed during the forthcoming years, even drier conditions, will be likely in the arid coast of 

northern Chile during coming decades, potentially affecting fog episodes (Del Río, 2019; Schulz et al., 

2012).  

Overall, the comprehensive understanding of wind patterns, incorporating both local topographical 

effects and broader atmospheric circulation dynamics, provides valuable insights into the intricate 

relationship between fog collection, regional atmospheric circulation, and local climatic and 

topographical conditions in the inland desert. Further research integrating these findings with local 

and broader biosphere-atmosphere dynamics will improve the understanding of the complex fog 

climate interactions patterns in the region. 
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The utilization of local spatial statistics to model spatial data, exemplified in this research by the GWR 

as originally proposed by Fotheringham et al. (2002), has gained widespread recognition among spatial 

analysts. This surge in popularity is driven by the inability of global statistical techniques to effectively 

address contemporary scientific needs. The GWR offers a versatile method for examining spatial 

relationships between dependent and explanatory variables within a unified framework. By 

seamlessly integrating data exploration, analysis, evaluation, visualization, and mapping capabilities 

within GIS providing comprehensive output, enabling spatial autocorrelation analysis (Pratt & Chang, 

2012), thus, the GWR facilitates a comprehensive analysis of local variations across spatial domains 

(Brunsdon et al., 1998; Fotheringham et al., 2002). 

Traditional regression analysis employs a method that minimizes the squared differences from the 

fitted line and yields a value for the entire set of observations, assuming that the relationship between 

variables is consistent throughout the study site (stationary), without considering the possibility of 

local variations due to the heterogeneity of the space, thus adopting a global perspective. However, 

this assumption has been recognized as a fundamental weakness by statistical geoscientists, therefore 

this approach is inadequate when the model relationships vary across the research area (Gutiérrez et 

al., 2013).  

The choice between global and local regression analysis depends on the clarity of the local 

characteristics of variables. When these characteristics are not readily evident, the global analysis 

employing fixed coefficients is used, masking the geographical variations of the relations between the 

variables (Lloyd & Shuttleworth, 2005). Conversely, if the coefficients exhibit spatial heterogeneity 

and vary depending on the location, as it was proven in Chapter 6, the local analysis is utilized 

(Fotheringham et al., 2001), assuming that this relationship between geographical data do not have a 

consistent behavior stationary (Haining, 1977). 

The GWR enables the estimation of model parameters and statistics at each sample location, thereby 

allowing the description of patterns and relationships between variables in a manner that was 

unobservable with OLS (Fotheringham et al., 2002; Fotheringham et al., 1998). Furthermore, 

parameter estimation in GWR heavily relies on the weighting function and bandwidth of the kernel 

used, and selecting appropriate values for these factors is crucial for obtaining desired local variation 

(Wang et al., 2005). However, as the bandwidth increases, parameter estimates in GWR tend to 

converge towards those of a global model (Wang & Tenhunen, 2005).  

The GWR offers several advantages over traditional regression models. Firstly, it attenuates abrupt 

changes in local statistics across neighboring data, thereby enhancing the stability of estimations. 

Secondly, it facilitates the visualization of spatial variability within geographic entities, aiding in the 
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identification of localized trends and patterns. Finally, GWR enables the analysis of regionally 

aggregated data, providing insights into broader spatial trends and relationships (Goovaerts, 1998). 

Three fundamental principles support GWR, as highlighted by Hanham and Spiker (2005). Firstly, 

spatial data often lack stationarity, necessitating localized modelling approaches like GWR. Secondly, 

the spatial structure of data significantly influences the estimation of variable relationships. Thirdly, 

relationships between variables can exhibit localization and variability across space. GWR addresses 

these principles by calibrating multiple regressions at each sampled point, capturing localized spatial 

variation effectively (Zhang et al., 2004). The regression fitting in GWR employs a spatial proximity 

approach, giving greater weight to observations nearer to the estimation location (Foody, 2003; 

Fotheringham et al., 2002). 

From a bioecological standpoint, local spatial models, such as GWR, play a crucial role in capturing the 

inherent spatial structuring of natural systems (Legendre, 1993; Legendre, P., & Legendre, L., 1998). 

By considering spatial heterogeneity and local variation, GWR enhances the understanding of 

ecological processes and spatial dynamics. This approach provides evidence of the importance of 

considering local analysis in atmosphere-biosphere interaction phenomena, especially considering 

that one of the most extensive Tillandsia fields in northern Chile is located in this region, whose 

nutrient uptake comes only from the fog, which is favored by specific characteristics of the terrain 

(Koch et al., 2019). 

In modelling the variability of Near-surface fog, the predictive prowess of this local model is shaped 

not solely by the robustness of associations between fog collection and topographical features of the 

study site, but also by the model's proficiency in discerning whether these associations manifest across 

multiple spatial scales. The GWR offers a structured approach to investigate scale-specific effects by 

progressively expanding the scope of the local analysis data sample and evaluating their repercussions 

on the model's predictive performance (Miller, 2012).  

When validating regression models, a crucial step involves assessing spatial autocorrelation patterns 

within residuals. This practice aims to ascertain whether the residuals exhibit any spatial clustering, 

would indicating potential complete or incomplete capture of the underlying spatial structure within 

the data (Pratt & Chang, 2012).  With a Moran's Index of -0.20 in the residual GWR diagnostic 

(representing the difference between observed and predicted Near-surface fog values), the model 

suggests negative spatial autocorrelation in its residuals (see Figure 50). This indicates that high 

residuals tend to be surrounded by low values, and vice versa, concerning the Near-surface fog water 

variable. This could indicate spatial patterns in fog distribution not entirely captured by the 

explanatory variables included in the model, suggesting that other spatial variables not included in the 
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model could explain part of the variability in Near-surface fog water. It could also indicate that the 

GWR model may systematically underestimate or overestimate fog presence in certain geographic 

areas. 

In the northeastern Oyarbide measurement areas, specifically at GFC_1206 and GFC_1208, the high 

values of the positive standardized residuals suggest that the model is tending to overestimate Near-

surface fog water levels in those areas. On the other hand, in the mostly rest of the measurement 

areas the standardized residual values are slightly negative, which indicates a slight tendency to 

underestimate the Near-surface fog water levels in that area. This suggests that the model could be 

better tuned to capture the characteristics of these specific topographic conditions. 

 

 

Figure 50: GWR standard residual values distribution. Source: author's elaboration 

 

Spatial analysis enables researchers to determine whether variables are random or tend to cluster 

(Getis & Ord, 1992), and it helps in understanding the underlying reasons for such spatial distributions 
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(Fotheringham et al., 2015). On regional bio-cycles, topography plays a crucial role in controlling 

microclimate and exerts a significant influence on its dynamics (Chen et al., 2007; Hook & Burke, 2000). 

In the context of fog spatial variability, local geographical features may play a more prominent role 

than altitude (Błaś et al., 2002). 

While GWR offers several advantages in identifying spatial heterogeneity and providing a more 

detailed and precise analysis, getting heightened levels of granularity and precision (Foody, 2003; 

Fotheringham et al., 2002; Lloyd & Shuttleworth, 2005), it remains pivotal to take into account the 

potential reliability conflicts (Páez et al., 2011). Therefore, it is imperative to note that all regression 

analysis and modelling, by their inherent nature, are essentially non-spatial. Thus, caution must be 

exercised when deploying these methodologies to analyze spatial data, ensuring meticulous attention 

is given to the pertinent assumptions and constraints. 

Several limitations and challenges have been identified by researchers in the local approach of GWR. 

Zhang and Shi (2004) suggest that the estimation of local model parameters in GWR relies on spatial 

weighted proximity, which may lead to a reduced effective number of observations for certain spatial 

points. Additionally, outliers can significantly impact the estimation of localized model parameters. 

Moreover, while GWR effectively detects spatial non-stationarity in relationships, interpreting such 

non-stationarity demands additional contextual and underlying information (Yu & Wu, 2004). 

Moreover, the interpretation of spatial variation coefficients produced by GWR is not straightforward 

and often regionally specific, potentially limiting its relevance for specific areas of interest (Platt, 

2004). 

Furthermore, GWR has been noted to have limitations concerning interpretation and extrapolation. 

While regression models and diagnostic statistics in GWR can be interpreted similarly to traditional 

global OLS, local R2 should not be interpreted with the same confidence as global R2 (Foody, 2003). 

The GWR is also not suitable for extrapolating relationships beyond the region where the model was 

developed. Furthermore, selecting the appropriate kernel and bandwidth for a specific application 

poses challenges (Foody, 2003). Lastly, as cautioned by Jetz et al. (2005), it's important to acknowledge 

that GWR models do not fully address spatial autocorrelation and must be interpreted with caution. 

Additionally, general inferences like those offered by global OLS models cannot be obtained through 

local GWR models. 

In summary, the limitations of GWR encompass issues related to parameter estimation, 

interpretation, extrapolation, and addressing of the spatial data, which collectively warrant careful 

consideration and interpretation when utilizing this approach in spatial analysis. 
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7. Conclusions and outlooks in understanding fog climate patterns 

 

This research provides a multifaceted perspective on fog climate dynamics in the Atacama Desert, 

emphasizing the importance of data quality assurance, regional analysis, and localized investigations. 

The analysis of anomalies through the fog climate measurements network underscores the criticality 

of data integrity in climatic studies. The varying durations and frequencies of missing data and outliers’ 

instances across stations needs meticulous attention when utilizing these datasets for scientific and 

analytical purposes and climatological modelling. The data quality flow enhances the quality and 

accuracy of the climatological data housed within the central repository. However, it's important to 

highlight that the methods outlined in this quality control and data management cannot restore 

erroneous or missing data once it's lost. What was bad or lost, is irretrievable. Nevertheless, these 

methods facilitate the substitution of incorrect values and the filling of missing climate data with 

"reasonable" values that align with the statistical and climatological attributes of the location of every 

climate station. 

The sporadic occurrence of these missing data or outlier intervals, spanning from minutes to months 

across different climatological stations, suggests several possible causes, such as equipment 

malfunctions, technical glitches, maintenance periods, or even environmental factors impacting 

satellite/remote data transmission or recording. 

This comprehensive analysis emphasizes the heterogeneous nature of data integrity across whole fog 

climate measurement network. Further investigations into these discrepancies are crucial to ensure 

the accuracy and completeness of climatological data, facilitating comprehensive and accurate 

climatic analyses. Subsequent research endeavors can employ these methodologies to improve the 

management, application, and analysis of future data sets. 

At regional scale, the research highlights notable seasonal variability and geographical influences on 

fog water collection from coast to inland desert. March and April exhibit the highest increases in fog 

accumulation, particularly in the interior desert areas. Conversely, May and June experience lower 

accumulation levels and slower growth.  

The highest accumulation of fog water is observed in May along the coast, while higher altitudes 

record peak accumulation in October. Coastal areas are characterized by relatively stable atmospheric 

conditions, leading to a more concentrated collection of fog water. Inland desert regions, however, 

experience fluctuating fog patterns influenced by seasonal and local climatic factors. The 
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concentration of fog water tends to be lower but displays sporadic instances of significantly higher 

amounts. 

The diurnal variability of fog occurrence, particularly prevalent during the early morning hours 

preceding noon, is intricately linked to the complex desert-ocean interactions influencing temperature 

and humidity gradients. Subsequently, prevailing ambient conditions attenuate fog formation, 

thereby resulting in diminished fog water collection. Consequently, cooler early mornings engender 

increased fog water collection, thereby exerting discernible trends in fog water collection records. 

Hourly fog variability indicates distinct seasonal patterns, with peak occurrence during the Austral 

Winter. Fog formation is more prevalent during the early morning hours, gradually dissipating as the 

day progresses. Notably, fog frequency exhibits an inverse correlation with diurnal temperature 

fluctuations. 

Wind patterns play a crucial role in fog events, with prevailing directions affecting fog occurrence and 

consequently, collection records. Northern winds significantly increase fog occurrence, while fog-free 

conditions correlate with less pronounced wind patterns. 

The records of dew points reveal a multifaceted interplay of atmospheric dynamics, prominently 

shaped by oceanic factors and the variability of the TIL. As the TIL ascends, there is a discernible 

increase in dew point measurements attributable to heightened oceanic influences. This ascent of the 

TIL corresponds with augmented atmospheric moisture content in the data, creating conditions 

conducive to fog formation and subsequent water condensation processes inland desert. Conversely, 

during periods characterized by lower TIL levels, dew point recordings typically exhibit a decrease. This 

dynamic underscore the central role of oceanic drivers in modulating atmospheric moisture content, 

thereby influencing the formation of fog and the ensuing processes of fog water collection inland 

desert. 

At the local scale, both OLS and GWR models demonstrated adequate capabilities in exploring the 

spatial variability of Near-surface fog water. While the OLS model provided a global perspective by 

assuming uniform relationships across the study site, the GWR model effectively captured localized 

variations, offering deeper insights into the influences of Oyarbide topography as explanatory 

variables. 

Enhancing the comprehension of intricate and dynamic spatial processes is significantly advanced 

through the application of an integrated methodology. This local spatial modeling approach, such as 

GWR, combined with a repertoire of analytical and visualization instruments like GIS and remote 

sensing, not only facilitates the creation of refined models but also allows a better visualization of the 
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spatial heterogeneities and locally disaggregation statistical data with a heightened level of granularity 

and precision, contributing substantially to advancing the understanding of complex spatial dynamics 

in biosphere-atmosphere interactions. Moreover, disaggregating the global R2 into localized 

coefficients and analyzing their geographic distribution across Oyarbide provides valuable insights into 

regions with varying explanatory power, influenced by independent topographical variables in 

modeling Near-surface fog water variability. 

The empirical research in Oyarbide has consistently demonstrated that the foundational assumption 

of global statistics presupposes homogeneity in the relationships between predictors and the criterion 

variable across spatial domains, suggesting a uniform response to a factor throughout the study site. 

However, real-world dynamics, particularly evident in the inland desert through local regression 

analysis, challenge this assumption. The relationships between atmospheric-topographical variables 

display significant heterogeneity, manifesting as geographical variations where the terrain roughness 

generates notably divergent responses in the Near-surface fog variability across the study site. 

By advancing the scientific understanding of fog climate dynamics in this hyper arid environment, 

these findings enhance broader scientific understanding of the atmosphere-biosphere interactions 

and contribute to the fog ecosystems modeling in the climate change context. 
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