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1. Introduction 

Magnetic Resonance Imaging (MRI) has been integrated into oncology for staging, assessing 

tumor response, and also for radiation therapy (RT) planning, with the advantages of superior 

soft-tissue imaging contrast and continuous real-time imaging, which can facilitate tumor and 

organ-at-risk delineation as well as image registration [1-5]. The large variety of imaging 

contrasts in MRI is associated with a large number of different pulse sequence parameter sets 

(SPS), which have a direct impact on image quality, contrast, acquisition time and efficiency 

of further image processing. Depending on the sequence and the clinical objective, these SPS 

can consist of up to 30 different parameters (repetition time (TR), echo time (TE), flip angle 

(FA), bandwidth (BW), turbo factor (TF) and averages, etc.). Each of these parameters directly 

influences image contrast, image quality, or acquisition time. As many pulse sequences are 

often not fully optimized to the needs of a specific clinical scenario, additional sequence 

optimization is often performed manually, which can be cumbersome and time-consuming. 

Machine learning-based models can help to simplify and automate such tasks, however, to 

train these models a large amount of data with different SPS needs to be collected and 

analyzed. Again, manual acquisition of this data at the scanner is a time-consuming procedure 

that requires repeated human interventions to change the SPS settings, and automation of 

this acquisition process is preferred. For this, several tools have been presented in literature. 

“Pulseq” [6] is a high-level, flexible, and hardware-independent open-source framework for 

the rapid development, representation, and execution of magnetic resonance (MR) 

sequences. This tool allows users to create customized sequences by applying different 

schemes of RF pulses and gradients. By utilizing the Pulseq interpreter, these sequences can 

be exported and executed on an MRI device. 

Recently, the self-learning framework ‘MR-zero’ [7], utilizing the Pulseq-tool, has been 

proposed, which adapts and optimizes MRI sequences based on a Bloch equation simulation. 

The generated pulse sequence, still requires knowledge of Bloch simulation in order to 

perform MR sequence optimization. In the more advanced version "MR-double-zero" [8], the 

“Pulseq” tool is still utilized to remotely control the scanner, however, the optimization 

directly operates on the acquired imaging data without requiring a Bloch simulation model or 

any further human interaction. As a prerequisite for implementing clinical sequences with 

Pulseq, a detailed prior knowledge of the manufacturer pulse schemes with the exact timings 

of the gradients and RF pulses used in the respective clinical sequence is required. The clinical 

sequence has then to be built from scratch within Pulseq mimicking as closely as possible the 

selected sequence. 

Just recently, a real-time scanner remote control tool ‘Access-i’ (Siemens Healthineers, 

Erlangen, Germany) has been introduced, which resolves this problem by allowing the user 

to access all sequences implemented on the scanner and to change MRI parameters via a 

script. This tool has been used to realize an automated sequence optimization tool that 

includes an iterative change of SPS that are executes on the MRI scanner followed by an 

automated evaluation of the resulting images based on a predefined optimization goal. 
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The proposed frameworks, I) regression-based optimization and II) on-the-run optimization, 

for automatic optimization of MRI sequences are based on SPS that are directly applied on 

the scanner. Two clinically relevant optimization goals were pursued: i) achieving the same 

signal and thus contrast as in a target image, and ii) maximizing the signal difference between 

specified tissue types. Furthermore, the proposed framework is evaluated using two different 

optimization methods, a covariance matrix adaptation evolution strategy (CMA-ES) and a 

genetic algorithm (GA). The obtained results demonstrate the potential of the proposed 

framework for automatic contrast optimization of MRI sequences, which can improve the 

application of MRI for application in radiotherapy planning. Most of the Introduction material 

have been extracted from our previous publication [88]. 

 

1.1. Thesis Outline 

This thesis is structured into five chapters. Following the introduction section, Chapter 2 

presents the materials and methods employed in the research. It discusses the physical 

foundations of radiotherapy, treatment planning and the radiotherapy process, as well as MRI 

and image quality. Additionally, it introduces the basics of regression and optimization 

problems, along with possible solution methods. The chapter further explains the 

experimental setup, including phantom materials and two optimization pipelines: I) 

Regression-based optimization and II) On-the-run optimization. It also compares two 

different evolutionary optimization methods: CMA-ES and GA.  

Chapter 3 is dedicated to presenting the results achieved by using both SPS optimization 

workflows, providing a comprehensive overview of the outcomes and findings. In Chapter 4, 

a detailed discussion of the results from both SPS optimization workflows is provided, Finally, 

Chapter 5 presents the main conclusions drawn from this thesis, summarizing the key findings 

and their implications for future research in the field. 
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2. Material and methods 
 

2.1. Radiotherapy 

Radiotherapy is one of the most important strategies for cancer treatment together with 

surgery, immunotherapy, and chemotherapy [9-11]. Radiotherapy uses ionizing radiation to 

induce irreparable damage in tumor tissue [12]. The common goal of any radiotherapy is to 

deliver the medically prescribed dose, defined as the energy E absorbed by the mass m, to 

the treatment volume while sparing the surrounding healthy tissue as much as possible. This 

is particularly important for certain organs at risk (OARs) where explicit dose limits exist. 

  

𝐷 =  
𝑑𝐸

𝑑𝑚
  

 

Equation 2-1 

 

There are different types of radiation used, depending on the type and location of the tumor 
among other factors. Ion beam therapy uses positively charged protons or heavier ions to 
deliver the dose. Protons and ions can be precisely targeted to the tumor site, minimizing 
damage to surrounding healthy tissue. Proton and ion treatments are commonly used to treat 
tumors of the brain, spine, and prostate, among others [13]. Photon therapy uses high-energy 
photons from a linear accelerator to deliver the dose. Photons are commonly used to treat 
tumors of the lung, breast, and head and neck, among others [14]. 

 

2.1.1. Treatment Planning and Radiotherapy Process 

The treatment planning process is comprised of several steps, starting with the acquisition of 

imaging data of the patient, usually computed tomography (CT) images that serves as patient 

model for treatment planning. After optimizing the treatment plan for the patient, plan is 

approved, verified my measurement or independent recalculation and finally delivered to the 

patient. Figure 1 depicts all the main components of the treatment planning workflow, 

emphasizing the structure of the treatment planning system (TPS) and the dose optimization.  

 

https://iopscience.iop.org/article/10.1088/0031-9155/60/8/R155/pdf
https://iopscience.iop.org/article/10.1088/0031-9155/60/8/R155/pdf
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To start treatment planning, image data must be acquired for each patient. CT imaging is the 

current standard for 3D imaging in radiation oncology. There are two main reasons for 

choosing CT for radiotherapy planning: first, the CT image contains electronic density 

information, which is a key component for dose calculation. Second, a CT image is 

geometrically robust, allowing accurate targeting of the tumour during treatment planning 

and delivery [16] . However, geometric uncertainties may arise from the limited visibility of 

the tumour on CT. To overcome this problem and to better identify anatomical regions of 

interest, planning CT can be combined with other diagnostic imaging modalities such as 

positron emission tomography (PET), MRI or other diagnostic CT protocols.  

The main goal of radiotherapy treatment planning is to optimize the dose in areas that need 

to receive the prescribed dose while reducing the dose in radiosensitive areas. For intensity-

modulated radiotherapy (IMRT), the optimization process, uses an “inverse planning” 

technique, which is of fundamental importance in modern radiotherapy treatment planning 

[17]. Initially, the radiation oncologist prescribes the dose to the tumor based on his or her 

knowledge and experience, taking into account factors such as expected tumour control 

probability (TCP) and normal tissue complication probability (NTCP). The optimization process 

 
 

Figure 1: Illustration of a typical radiotherapy workflow. Green colored boxes show 

processes that are handled automatically by a clinical software or hardware, and blue boxes 

indicate processes that require a human treatment planner. Orange boxes show the 

processes that require physicians. Adopted from [15]. 
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aims to identify a set of treatment parameters, including beam angles and pencil beam 

intensities and locations that achieve the desired clinical goals best. During treatment plan 

optimization, the dose is recalculated iteratively in each step of the optimization loop. 

𝑑𝑖 = ∑ 𝐷𝑖𝑗𝑤𝑗

𝑗

 

 

Equation 2-2 

To save the computation time, the dose contribution from each pencil beam (photon or proton) is pre-

calculated and stored on the dose influence matrix 𝐷𝑖𝑗, representing the dose to each voxel. The 

absorbed dose 𝑑𝑖  is computed by summing dose contribution from intensity weighted elementary 

pencil beams 𝑤𝑗 (with 𝑤𝑗 > 0). The objective function in the treatment planning can be define as 

weighted/penalized least square: 

 

min
𝑤

𝐹(𝑑) = arg min
𝑤

(𝐷𝑤 − 𝑑∗)𝑇𝑃(𝐷𝑤 − 𝑑∗) 

 

Where 𝑃 = 𝑑𝑖𝑎𝑔(𝑝1, 𝑝2, … . 𝑝𝑙) is the penalized diagonal matrix that allows to penalize between target 

volume and OARs.  

Typically, the dose is delivered to the patient in a fractionated way whith typical doses of 2 Gy 

per day. This improves the sparing of normal tissue and OARs as their repair capacity is larger 

than that of the tumor [18, 19].  

The fractionated approach of radiation therapy requires high precision in the application of 

radiation. This is especially true for highly conformal photon therapy or particle therapy, 

which includes high gradients in the dose distribution. Even a slight change in patient position 

may have a significant impact on the treatment outcome [14]. 

2.1.2. Safety margins 

The concept of safety margins compensates for motion-induced under-dosage of tumor 

volume. The volumes used in treatment planning are defined by ICRU report 50 and 62 [20, 

21]. The Gross Tumor Volume (GTV) is the visible or palpable tumor and any contiguous tumor 

extensions [21-23]. The Clinical Target Volume (CTV) is the GTV plus any subclinical or 

microscopic malignant disease that cannot be detected by imaging but is likely to be present 

based on the tumor type, location, and stage [21, 23]. The Planning Target Volume (PTV) is 

the CTV plus a margin that accounts for uncertainties in patient setup and organ motion 

during treatment delivery [21, 24]. Organs at Risk (OAR) are normal tissues or organs that are 

close to the target volume and are at risk of receiving a high dose of radiation during 

treatment. In addition to the four main volumes of interest, another volume is defined in the 

ICRU Report No. 62 to account for the effects of variation in size and position of the CTV, 

which accounts for organ motion. This results in an Internal Target Volume (ITV), which is the 

enveloping volume of the CTV in all motion states. All volumes are graphically presented in 

Figure 2 
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Figure 2: Graphical representation of the definition of the target volumes and organs at 

risk for use in treatment planning according to the ICRU reports 50 and 62. Adapter from 

[25]. 
 

Sufficient image contrast in imaging is important for radiotherapy to define the CTV, GTV and 

ITV as well as the OAR. This is especially important when the tumor is located close to critical 

organs or tissues. Contrast agents may be used to enhance the visibility of the tumor and to 

accurately delineate the target volume. This allows for more precise treatment planning and 

delivery, which can help to minimize the risk of normal tissue damage [26]. 

MRI offers superior contrast in imaging compared to CT, even without contrast agents and 

additional use of contrast agens additionally improves the contrast between tumor and 

normal tissue [27]. In MRI, contrast agents contain Gadolinium, which is a paramagnetic 

substance that enhances the signal intensity in T1-weighted images [28].  

2.1.3. Image-guided Radiotherapy 

Image-guided radiotherapy (IGRT) is used to reduce the effect of set-up errors and anatomical 

changes in the patient in fractionated radiotherapy [29]. Prior to each fraction, an image of 

the patient is acquired. In the simplest case, a translation vector and/or rotation of the 

treatment table is determined using rigid image registration. The most common imaging 

technologies for IGRT are CT on rails and cone beam CT imaging using x-ray tubes attached to 

the gantry. In more advanced techniques, the treatment plan may be adapted to anatomical 

changes. This approach is denoted as adaptive radiothetrapy [30]. 

More recently, the use of magnetic resonance-guided radiotherapy (MRgRT) has been 

clinically introduced for photon therapy and is also proposed for proton therapy [31, 32]. The 

use of MRI provides excellent soft tissue contrast without additional radiation exposure and 
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in principle allows real-time imaging during irradiation. More details on MRI are given          

section 2.2. Early results suggest that MRgRT may be a promising approach for the treatment 

of certain tumor types. For example, a recent study found that MRgRT was effective in 

treating prostate cancer with a low incidence of side effects [33]. 

One of the currently available MRgRT devices is the Viewray MRIdian Linac (Viewray Inc., 

Oakwood, USA), which operates at a magnetic field of 0.3 T [34]. As spatial resolution, Signal-

to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) improves at higher magnetic field 

strengths, it may be beneficial to integrate diagnostic images of high-field MRI devices into 

the treatment. However, these images must be aligned with those in the Viewray MRIdian 

Linac for further use. This so-called image registration is performed by registration algorithms 

that either rigidly or deformably transform the diagnostic images.  

 

2.2. Magnetic resonance imaging  

MRI originated from the discovery of nuclear magnetic resonance by Bloch [35], followed by 

the first image acquisition by Lauterbur [36]. MRI is an imaging technique that provides 

detailed anatomical and physiological information about patients. Unlike CT scans, MRI does 

not use ionizing radiation. Instead, it utilizes a combination of a static magnetic field and 

radiofrequency (RF) pulses to excite nuclear hydrogen spins to obtain a spatially resolved 

signal from the body. When subjected to an external magnetic field, the spin of hydrogen 

nuclei aligns to the direction of the magnetic field and can be excited by applying oscillating 

magnetic fields (radiofrequency pulses). After excitation, the spins are precessing with a 

frequency proportional to the applied external magnetic field and in turn emit radio 

frequency signal which can be measured by a receiving coil. By using additional magnetic field 

gradients, the magnetization can be spatially encoded, allowing for the reconstruction of 

image slices through the body. 

MRI is mainly used in medical diagnosis to visualize the structure and functionality of human 

tissues and organs. It offers high spatial resolution (approximately 1 mm) and superior soft 

tissue contrast. Various MRI sequences can provide not only spatial information but also 

functional insights. Examples include the measurement of perfusion, and diffussion (e.g. 

diffusion tensor imaging to visualize nerve fibers), dynamic contrast-enhanced MRI, used to 

measure microvascular parameters, or and magnetic resonance angiography, used to 

visualize blood vessels. MRI is often preferred over CT scans as it does not expose patients to 

radiation. However, individuals with certain metal implants containing are not suitable 

candidates for MRI scans due to possible induction of eddy-currents in the implants. Other 

drawbacks of MRI include loud sounds during the procedure, longer scan times, and the 

narrow space inside the scanner, which some patients may find uncomfortable. 
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2.2.1. Basic principles of MRI  

All nuclei with an odd number of nucleons have a nuclear spin 𝐽 in their ground state and a 

magnetic moment different from zero. These nuclei possess a dipole moment: 

µ⃗⃗ =  ħ𝛾𝐽 

Where ħ is the reduced Planck constant and 𝛾 in the gyromagnetic ratio. For protons 𝛾 

is 7.62259328547) 𝑀𝐻𝑧/𝑇. 

There are several odd numbers of nuclei, such as 1H, 3He, 19F, and 23Na. Among these, the 

hydrogen atom (1H) is the most commonly used in MRI due to its high natural abundance in 

human tissue. More than 80% of bodily tissue consists of water (H2O) and fat (CH2(OCOR)–

CH(OCOR′)–CH2(OCOR″)) that contain a high number of hydrogen atoms, as evident in their 

chemical formulas [37]. Typically, an MRI image is generated based on the nuclei of these 

hydrogen atoms, i.e. protons. Each hydrogen nucleus possesses a magnetic moment, 

essentially acting as a tiny magnet. The high abundance of protons in tissue leads to a 

significantly stronger MRI signal as compared to other nuclei. Hence, the focus of the 

following description is on hydrogen nuclei. 

Without an external magnetic field, the protons in the body are in thermal equilibrium and 

randomly distributed. However, when a strong external magnetic field 𝐵0 is applied, the spins 

align along the direction of the B0 field, either parallel or antiparallel. This creates a net 

magnetization vector along the field direction, called the longitudinal magnetization 𝑀𝑧 . 

Under this condition, the net magnetization in the z-direction is static. The direction of the 

magnetization 𝑀 can be manipulated by applying radio frequency (RF) pulses 𝐵1 of different 

duration at Larmor frequency 𝜔0 to the body perpendicular to the main magnetic field 𝐵0. 

This pulse causes the magnetization to be rotated away from the field direction by a certain 

angle, called the flip angle. The tilted magnetization results in a transverse magnetization 

𝑀𝑥𝑦, that rotates around the main field at a frequency that depends on the strength of the 

field, called the Larmor frequency. 

ꙍ0 = 𝛾𝐵0 Equation 2-3 

The rotating transverse magnetization induces a voltage in a receiver coil placed around the 

body of the patient, which is detected and recorded by the scanner. This voltage is the MRI 

signal, and after spatial encoding, it contains information about the location and properties 

of the protons in the body. 

Relaxation time 

When an RF pulse is turned off, a relaxation process takes place, and the net magnetization 

immediately starts propagating back toward its equilibrium state, leading to an exponential 

decay of the transversal magnetization, called free-induction decay (FID). The relaxation 

process is caused by interactions between the spins and the molecular environment and can 

be divided into two processes, described by the Bloch Equation 2-4Equation 2-5. 
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Spin-lattice relaxation (also called longitudinal or T1 relaxation time) is a measure of how 

quickly the net magnetisation vector (NMV) recovers to its ground state in the direction of B0. 

The return of excited nuclei from the high energy state to the low energy or ground state is 

associated with loss of energy to the surrounding nuclei. T1 is the time required for the 

longitudinal magnetization to recover approximately 63% (1- (1/e)) of its initial value after 

being flipped into the transverse magnetic plane by a 90° radiofrequency pulse. 

 

𝑑𝑀𝑧(𝑡)

𝑑𝑡
=

𝑀𝑜 − 𝑀𝑧(𝑡)

𝑇1
 

 

Equation 2-4 

 

Spin-spin relaxation (also called transverse or T2 relaxation) is a process that causes the 

progressive dephasing of the precessing dipoles, leading to a decay of the magnetisation in 

the transverse plane (Mxy). This type of relaxation occurs with the time constant T2, which is 

the time it takes for the transverse magnetisation vector to decay to 1/e or 37% of its initial 

magnitude after a radiofrequency pulse. 

𝑑𝑀𝑥𝑦

𝑑𝑡
= −

𝑀𝑥𝑦(𝑡)

𝑇2
 

 

Equation 2-5 

In practice, the magnetic field  B0 will always have some spatial inhomogeneity ∆𝐵0, which 

results in a shorter relaxation time 𝑇2
∗ compared to the spin-spin relaxation time 𝑇2 

  

Image acquisition and reconstruction 

To generate a three-dimensional (3D) image, it is essential to capture spatial information in 

all three coordinates: x, y, and z. This is achieved through the use of a sequence of magnetic 

field gradients, namely Gx, Gy, and Gz, which lead to a spatial encoding of the Lamor-

frequency.  

First, a slice selection gradient Gss is applied to the volume of interest, causing the frequency 

of the nuclei to vary in the direction of the gradient. Next, the position of each point is 

encoded vertically and horizontally within the selected slice by applying a phase encoding 

gradient GPE and a frequency encoding gradient GFE. The phase encoding gradient works by 

making the nuclei rotate with the same frequency but a different phase for each row. When 

the frequency encoding gradient is applied, the Larmor frequencies of the nuclei are modified 

to generate columns of different frequencies. This information is then combined to form the 

final image by using a 2D-Fourier transformation. 

The delivery of these RF pulse and gradients significantly influences the resulting image. A 

pulse sequence refers to a defined sequence of pulses that are repeated systematically. In 

clinical practice, a wide range of sequences is available and can be utilized depending on the 

specific imaging requirements. 
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2.2.2.  Imaging sequences 

To acquire an MR image, a sequence of excitation pulses and gradient fields is applied. This 

sequence is characterized by three parameters: the FA, the TR, which is the time interval 

between two excitation pulses, and the TE, which is the time interval between the excitation 

pulse and signal acquisition. The resulting signal intensities in the image depend on tissue-

specific properties such as relaxation times (T1 and T2) and proton density (PD) as described 

as.  

 

𝑆 = 𝑃𝐷 (1 − 𝑒
−𝑇𝑅

𝑇1
⁄ ) (𝑒

−𝑇𝐸
𝑇2

⁄ ) 

 

Equation 2-6 

 

 

In a typical spin-echo (SE) sequence, an additional B1 pulse with a FA of 180° is applied after 

the initial 90° excitation pulse to reverse the dephasing of the nuclei caused by static field 

inhomogeneities and produce a signal echo at time TE. The signal intensities at the echo are 

governed by T2. After a TR, the next excitation pulse is applied. During each excitation cycle, 

gradient fields for spatial encoding are changed to enable spatial encoding (Figure 1). 

Applying consecutive 180° pulses in an MRI sequence generates multiple echoes located at a 

specific time interval (n • TE). This sequence, known as a multi-spin echo  sequence, allows 

for the quantitative determination of the relaxation time (T2) by analysing the signal intensity 

of the echoes [38]. To minimize the influence of T1 relaxation, the TR should be chosen to be 

sufficiently high (TR ≥ 3T1). 

Another related sequence is the fast or turbo spin-echo (TSE) sequence, which also utilizes 

consecutive 180° pulses [38]. The number of echoes are collected in one repetition time 

during TSE imaging called turbo factor (TF) or echo train length (ETL). However, in TSE, 

additional varying phase gradients are applied between each 180° pulse to speed up the k-

space filling process. In regular SE and MSE sequences, the phase encoding gradient remains 

constant during each TR interval. By changing the phase encoding gradient for each 180° 

pulse, multiple phase-encoding steps (lines of k-space) can be acquired within a given 

repetition time, resulting in a significant reduction in imaging time. 
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Figure 3: Sequence diagram illustrating the steps of a Spin Echo sequence. The sequence 
begins from the equilibrium state (1) and involves the application of a 90° excitation pulse 
with a simultaneous slice selective gradient to excite a 2D slice (2). Over time, the signal 
decays due to dephasing with the time constant 𝑇2

∗ (3). At t = 1/2 TE, a 180°-pulse is applied 
(4), which reverse the dephasing caused by static field inhomogeneities and generating an 
echo at t = TE (5). The signal at the echo depends on T2. (Adapted from [38], permission is 
obtained). 

 

If the TR is sufficiently long compared to T1 (the longitudinal relaxation time), all 

magnetization will fully relax before the next excitation. This leads to similar signal intensities 

at each excitation. In contrast, with a short TR, the magnetization in tissues with a short T1 

will fully relax, while the magnetization in tissues with a longer T1 will not. As a result, tissues 

with short T1 will have higher signal intensities at the next excitation, creating a T1-weighted 

(T1W) contrast (Figure 4a). At a relatively long TE, tissues with short T2 will have already 

undergone significant relaxation during signal acquisition, producing a weaker signal. On the 

other hand, tissues with longer T2 will have higher signals due to less pronounced relaxation. 

These differences in measured signals create a T2-weighted contrast (T2W) (Figure 4b). 

However, at a very short TE, the signal intensities will be similar because none of the tissues 

has yet significantly relaxed. In addition, the T1W and T2W contrast can also be achieved by 

selecting small TR, TE and large TR, TE values of the sequence parameters during acquisition.  
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Figure 4: (a) Schematic representation of the longitudinal relaxation and the differences in 
signal intensities at different repetition times TR and (b) schematic representation of the 
transversal relaxation and the differences in signal intensities at different echo times TE 
Adapted from [38], permission is obtained.  

 

2.3. Image Quality 

Image quality is a crucial aspect of MRI, as it determines how well the scan can reveal the 

details and contrast of the tissues and organs in the human body. Several factors affect image 

quality, such as image contrast, noise, and presence of artifacts. Image quality assessment is 

a research field that seeks to evaluate and enhance the quality of MRI images using various 

methods and metrics. Image quality is essential for ensuring diagnostic accuracy, efficiency, 

and safety in MRI applications [39].  

(a)

(b)
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2.3.1. Image Contrast 

The difference in signal intensity between different tissues or regions of interest, known as 
MRI contrast, depends on various factors including tissue properties and pulse sequence 
parameters. Proton density, representing the number of protons per unit volume, influences 
signal intensity, particularly in visualizing tissue anatomy and morphology like in brain or spine 
imaging. Additionally, the T1 relaxation time of the tissue, which indicates the time for protons 
to return to the longitudinal vector quantity, and the T2 relaxation time, representing the time 
for transverse magnetization to decay, play significant roles. Shorter T1 relaxation times result 
in faster recovery and higher signal intensity, often used to depict differences in tissue 
composition and metabolism such as in fat or blood imaging. Conversely, longer T2 relaxation 
times lead to slower decay and higher signal intensity, commonly utilized to highlight 
differences in tissue structure and pathology, such as in fluid or edema imaging. 

The pulse sequence includes several parameters, such as the TR, TE, FA, BW, the matrix size 
(MS), the field of view (FOV), and the slice thickness (ST). These parameters determine the 
timing and characteristics of the RF pulses and the signal acquisition, and they affect the 
contrast, resolution, and acquisition time of the MRI images. For example, a short TR and a 
short TE will emphasize the T1 contrast, while a long TR and a long TE will emphasize the T2 
contrast. A large FA will increase the signal intensity, but also increase the specific absorption 
rate (SAR) and the acquisition time. A high BW will reduce the noise and the susceptibility 
artifacts, but also reduce the SNR. A high MS and a small FOV will increase the spatial 
resolution, but also increase the scan time and the aliasing artifacts. A thin ST will increase 
the slice resolution, but also increase the partial volume effect and the scan time. 

2.3.2. Image Noise 

Image noise is the random variation in signal intensity that reduces image clarity and 
resolution, which originates e.g. from thermal noise in the receiver coils and the scanner 
electronics [40]. Thermal noise is proportional to temperature and bandwidth, and inversely 
proportional to coil resistance and the number of coil elements. It can be reduced by using a 
low bandwidth, employing a high-resistance coil, and using a multi-element coil. Other 
sources result from the scanner, which is the noise caused by the imperfections and 
instabilities of the scanner components, such as the main magnet, the gradient coils, the RF 
coils, and the shimming devices. The scanner noise is dependent on the scanner performance 
and maintenance, the pulse sequence parameters, and environmental factors. The scanner 
noise may be reduced by using high-quality and well-calibrated scanner components, using 
appropriate shimming and tuning, using gradient and RF spoiling, and by shielding of the 
scanner rooms. 

MRI noise can be quantified by the SNR, which is the ratio of the mean signal intensity to the 
standard deviation of the noise intensity. The SNR can be increased by increasing the signal 
intensity or by decreasing the noise intensity using various MRI parameters. E.g. increasing 
the number of signal averages (NSA) reduces the noise intensity by the square root of the 
NSA, but also increases the scan time by the same factor. Increasing the voxel size increases 
signal intensity by the voxel size but also decreases spatial resolution by the same factor. 
Increased voxel sizes may generate partial volume effects or chemical shift artifacts, which 

https://link.springer.com/chapter/10.1007/978-3-642-25085-9_5
https://link.springer.com/chapter/10.1007/978-3-642-25085-9_5
https://link.springer.com/chapter/10.1007/978-3-642-25085-9_5
https://link.springer.com/chapter/10.1007/978-3-642-25085-9_5
https://link.springer.com/chapter/10.1007/978-3-642-25085-9_5
https://link.springer.com/chapter/10.1007/978-3-642-25085-9_5
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prevents resolving small tissue structures. BW is one of the MR parameters that affects image 
noise and its relationship to other parameters. BW defines the range of frequencies sampled 
during signal acquisition and is inversely proportional to the TE. BW affects SNR, susceptibility 
artifacts, and scan time of MRI images. It is inversely proportional to SNR, with noise intensity 
increasing by the square root of the BW. Therefore, low BW results in high SNR, while high 
bandwidth results in low SNR.  

In addition, increasing the receiver gain, which is the amplification factor of the signal 
detected by the coil, increases the signal intensity but also increases the noise intensity by 
the same factor. Using parallel imaging, a technique that uses multiple coils to acquire signals 
simultaneously and to reconstruct the image using by a combination of the coil signals, 
reduces scan time and noise intensity, but it also reduces SNR by a geometry factor (g-factor), 
which depends on the coil configuration and acceleration factor. 

2.3.3. Image Artifacts 

Image distortions are image changes that do not reflect the true anatomy of the patient and 

may arise from various causes: Magnetic inhomogeneities of the main magnetic field in the 

imaged volume may lead to signal frequency shifts or broadening. This induces artifacts like 

chemical shift, magnetic susceptibility, zipper, and truncation. These artifacts can be reduced 

by appropriate shimming of the magnetic field, using a high bandwidth, a low magnetic field 

strength or frequency-selective fat suppression or water excitation. 

The tissue heterogeneity describes the variation of the tissue properties and its magnetic 

environment across the imaging volume. This may cause a signal loss or distortion due to 

blood flow, motion, metal implants or dielectric effects. These effects can be reduced by using 

appropriate pulse sequence parameters, such as gradient moment nulling, flow 

compensation, motion correction, metal artifact reduction, and dielectric pads. 

The technical errors originate from the mistakes or malfunctions of the scanner components 

or the operator. This can cause a corruption or a misregistration of the signal data, resulting 

in artifacts such as ringing, aliasing, ghosting, and cross-talk. These artifacts can be reduced 

by using appropriate quality control and maintenance of the scanner components, using 

appropriate pulse sequence parameters, such as oversampling, phase encoding, k-space 

filling, and slice selection, and assuring appropriate operator training and supervision 

Overall, many parameters are involved in MR sequences, which directly affect the image 

quality. Therefore, optimizing all these MR sequence parameters is essential for image quality 

and achieving diagnostic accuracy in MRI examinations. To optimize the MRI image quality, 

several goals may be pursued: optimizing MR sequences to improve the signal intensity, the 

contrast, or reducing artifacts in the MRI images. This may be performed either manually or 

by using machine learning and artificial intelligence methods to automatically generate and 

optimize MRI sequences based on target contrasts or clinical application of the resulting 

images [7, 8, 41].  

To analyze the behaviour of characteristic performance parameters of MR image acquisition 

automatically, such as contrast, we might need a continuous function of the target parameter 
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on the sequence parameters. With such a function, interpolated from previously performed 

measurements and explaining the physical behaviour of the respective sequence parameters, 

a regression model can be build. Such a regression model should reflect the measured values 

as accurately as possible.  

2.4. Regression Problem 

Regression analysis is a statistical technique used to model the relationship between a 

dependent variable and one or more independent variables. It aims to quantify how changes 

in the independent variables impact the dependent variable. Regression analysis is widely 

used in various fields, including economics, finance, social sciences, and machine learning. 

The basic form of regression analysis is simple linear regression, which assumes a linear 

relationship between the dependent variable (Y) and multiple independent variables (�⃗�). The 

simple linear regression model can be represented by the equation: 

𝑌 =  𝛽₀ +  𝛽₁𝑋₁ +  𝛽₂𝑋₂ + . . . + 𝛽ₚ𝑋ₚ +  𝜀 

In the regression model, 𝑌 denotes the dependent variable, while �⃗� = 𝑋₁, 𝑋₂, . . . , 𝑋ₚ 
represent the independent variables. The coefficients 𝛽₀, 𝛽₁, 𝛽₂, . . . , 𝛽ₚ are the parameters to 
be estimated, representing the intercept and slopes of the linear relationship between the 
variables. Lastly, 𝜀 corresponds to the error term, capturing the unexplained variability in the 
dependent variable. 

The objective of linear regression is to estimate the values of the coefficients that minimize 

the difference between the observed values of the dependent variable and the values 

predicted by the regression model. This is typically achieved using the Ordinary Least Squares 

(OLS) method, which minimizes the sum of squared residuals [42]. 

Nonlinear regression extends the concept of linear regression by allowing for more complex 

relationships between the dependent variable and the independent variables. It is used when 

the relationship between the variables cannot be adequately captured by a linear equation. 

The general form of a nonlinear regression model can be represented as: 

𝑌 =  𝑓(𝛽, �⃗�)  +  𝜀 

Here, 𝑌 represents the dependent variable, while 𝑓(𝛽, �⃗�) represents a nonlinear function of 

the coefficients β and the independent variables �⃗�. Again, 𝜀 represents the error term. 

The nonlinear function can take various forms, such as exponential, logarithmic, polynomial, 

or trigonometric functions, among others. The choice of the specific form depends on the 

nature of the relationship between the variables. Unlike linear regression, estimating the 

coefficients in nonlinear regression models cannot be directly solved using OLS. Instead, 

iterative optimization algorithms are used to find the values of the coefficients that minimize 

the discrepancy between the observed and predicted values of the dependent variable. 

Nonlinear regression is not bound by strict assumptions. However, certain considerations are 

commonly taken into account: Firstly, obtaining good initial parameter estimates is crucial as 

it aids in achieving convergence to the correct solution. Secondly, model selection plays a vital 
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role in nonlinear regression, as selecting an appropriate nonlinear model is essential for 

accurately capturing the underlying relationship between variables. Lastly, overfitting is a 

challenging issue in nonlinear regression, where selecting a too complex model relative to the 

available data can increase the chances of having an overfitting problem.  

Nonlinear regression provides a flexible framework for modelling complex relationships 

between variables. It is commonly used in various fields, including biology, economics, 

engineering, and social sciences, where linear relationships may not accurately capture the 

data's underlying patterns. In this thesis, we focused on exploring and analysing two distinct 

learning-based regression models. Each of these models is described briefly in the following 

section. 

2.4.1. Generalized Additive Model 

A generalized additive model (GAM) is a statistical model that can capture complex and 

nonlinear relationships between a response variable and some predictor variables. A GAM is 

an extension of a generalized linear model (GLM), where the linear predictor is replaced by a 

sum of smooth functions of the predictor variables. These smooth functions can be estimated 

by various methods, such as splines, kernels, or trees. GAMs are useful for exploratory data 

analysis, regression, and classification problems, where the underlying relationship between 

the response and the predictors is not well understood or not easily parametrized. GAMs are 

also interpretable, as they allow one to visualize the effect of each predictor on the response, 

while accounting for the other predictors. The general form of a GAM can be written as 

follows: 

𝑔(𝐸(𝑌)) = 𝛽0 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯ + 𝑓𝑚(𝑥𝑚) 

Where Y is the response variable, g is a link function that relates the expected value of Y to 

the predictor variables, 𝛽0 is a scalar value, and 𝑓𝑚 are smooth functions of the independent 

variables 𝑥𝑚. The link function g depends on the distribution of Y, which can be any member 

of the exponential family, such as normal, binomial, Poisson, gamma, etc. The smooth 

functions 𝑓𝑚 can have different forms and degrees of smoothness, depending on the data and 

the method of estimation. In GAM 𝑓𝑚 can be calculated by a spline functions. 
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Figure 5: Fitting a GAM model as an example to a random dataset using B-spline basis 

functions as an example. Adapted from [43]. 

 

B splines are a type of basis function that can be used to fit GAMs. A basis function is a 
mathematical function that transforms an input variable into a new feature that can capture 
nonlinear patterns in the data. B splines are composed of polynomial segments that are joined 
smoothly at certain points called knots. The number and location of the knots affect the 
flexibility and smoothness of the B spline. B splines can also have different orders, which 
determine the degree of the polynomial segments and the continuity of the derivatives at the 
knots. One way to write the equation for a B spline basis function is: 

𝑏𝑗(𝑥) = ∑ 𝑐𝑖,𝑗𝑥𝑖

𝑘

𝑖=0

 

Where 𝑗 is the index of the basis function, k is the order of the B spline, and 𝑐𝑖,𝑗 are coefficients 

that depend on the knots and the order of the B spline. The coefficients can be computed 

using a recursive formula known as the de Boor algorithm [44]. Another way to write the 

equation for a B spline basis function is: 

𝑏𝑗(𝑥) = ∑ 𝑁𝑖,𝑘(𝑥)𝑑𝑖,𝑗

𝑘

𝑖=0

 

Where 𝑁𝑖,𝑘(𝑥)the normalized B spline basis are functions of order k, and 𝑑𝑖,𝑗  are the control points 

that define the shape of the B spline. The normalized B spline basis functions can be computed using 

a recursive formula known as the Cox-de Boor formula [45]. To fit a GAM using B splines, we can use 
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a linear combination of B spline basis functions as the smooth term for each covariate. For 

example, if we have a covariate x, we can write the smooth term as: 

𝑠(𝑥) = ∑ 𝛽𝑗𝑏𝑗(𝑥)

𝐽

𝑗=1

 

j is the number of basis functions, βj are the coefficients to be estimated, and 𝑏𝑗(x) are the B 

spline basis functions.  

 

2.4.2. Neural Networks 

For many years machine learning (ML) methods have been successfully applied to solve 

various tasks, e.g. in robotics [46], natural language processing [47], and computer vision [48] 

that priorly were only achievable by humans. Yet, some capabilities, like speech and vision, 

are still challenging for computers, even though the human brain can perform these tasks 

almost effortlessly. With the advancements in computer hardware as well as the availability 

of huge amounts of data combined with the right algorithms, the performance of machine 

learning models finally reached human performance on the famous ImageNet challenge in 

2015 [49].  

Improved hardware does not only allow for processing more data in a shorter time but also 

to build more complex deep model neural net (NN) architectures. As in regular machine 

learning approaches, a common task is to estimate an implicit mapping between an input 

vector and an output vector. By adding more layers to neural network architectures in 

combination with non-linear activation functions, models can learn highly sophisticated 

mappings for underlying problems.  

Despite active deep learning (DL) research in other fields such as natural language processing, 

speech recognition, and recommender systems, much attention is drawn to computer vision 

tasks, such as classifying, detecting and segmenting objects in an image or video.  

Computer vision techniques have also been acknowledged in the medical context and thus 

been applied for solving tasks such as brain tumor or bone segmentation [50], but also 

personalized Alzheimer diagnosis [51], lung disease [52] and lesion classification [53]. 

However, medical computer vision encounters domain-specific challenges, which need to be 

addressed during the design and execution of machine learning models:  

i) Few training samples: Finding large data sets in the medical context is difficult as it often 

covers rare pathological conditions, and data protection of patients is inhibitory. However, 

the more complex the underlying tasks and the more advanced machine learning models are, 

the more data is required for the training process as many parameters need to be learned.  

ii) Large images with only small regions of interest: For some tasks, large 3D image volumes 

are available from CT or MR scans. However, tumors or other relevant areas are relatively 

small in comparison to the entire input volume. This increases the complexity of task solving 

as relevant information could be hidden by the remaining volume.  
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iii) Domain complexity: The same disease may vary among patients, and even from a medical 

point of view, it is not always fully understood which variations exist and how those diseases 

progress. Due to these uncertainties, data annotation can be more error-prone. In contrast 

to natural daily life objects, the medical domain reduces the interoperability of machine 

learning results even further as expert knowledge is required. 

2.4.3. Artificial Neural Networks 

The basic idea of the artificial neural network (ANN) started in 1943 when neurophysiologist 

Warren McCulloch and mathematician Walter Pitts tried to mimic the way neurons in a 

human brain work with a computational model-based threshold logic [54]. The idea kept 

getting developed over the years, but due to a lack of computation power and data, it did not 

gain popularity until the 2000s. A basic structure of the neural network, as shown in Figure 6:, 

contains 3 different types of layers:  

i) Input Layer: This layer feeds the information to the whole model. Each neuron in this layer 

represents an input feature that has an effect on the final output.  

ii) Hidden Layer: This layer takes in the information from the input layer and processes it to 

extract the relationship between the neurons of the input layer and their effect on the output. 

There can be more than one hidden layer, and each layer can have different numbers of 

neurons. These are the hyper-parameters, which are set, and they differ from task to task.  

iii) Output Layer: This layer makes a decision using the information gathered from the whole 

network. The number of neurons in this layer depends on the task in question. In the case of 

a binary decision, this layer contains only one neuron.  

To understand how a single neuron in a hidden or output layer works, refer to Figure 6. Here, 

the output of all the neurons from the previous layer is taken as input for the new layer. The 

task of this neuron is then divided into two parts. The first part calculates a linear combination 

of all the inputs and weights plus a bias term in Equation 2-7. The second part applies a 

nonlinear transformation with an activation function 𝑓 in second equation. 

𝑧 =  ∑ 𝑊𝑖𝑋𝑖 + 𝑏𝑛
𝑖=1                                                

𝑌 =  𝑓(𝑧) 

 

Equation 2-7 

 

The value of the linear combination could be between −∞ to +∞. The activation function 

brings this value into some range with non-linear transformation, which helps the model to 

learn complex non-linear relationships between the inputs and the output. This value is then 

the output of this neuron to the next layer. There are many options for activation functions 

in the literature [55] which are explained in the bellow section. 
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(b) 

(a) 

 
 

 

 

 

 

 

 

Figure 6: (a) Illustration of the fundamental structure of an artificial neural network. The 

network comprises three types of layers: the input layer responsible for receiving input 

features, the hidden layers for processing the information, and the output layer for making 

decisions. (b) Schematic representation of a single neuron in an artificial neural network. 

The neuron receives input from preceding layers, performs a linear combination operation, 

and applies a non-linear transformation using the activation function f. Adapted from [56]. 
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2.4.4. Activation Layer and Activation Functions 

After the neurons layer, the values could be between −∞ to +∞, and a non-linear activation 

function is applied to each feature map, which helps the model to learn the complex non-

linear relationship between input and the output. There are many options for activation 

functions in the literature; the most common ones being:  

1.  The Sigmoid function is especially used for models where we have to predict a probability 

as an output for a binary classification. The term sigmoid means ‘S-shaped’, and logistic form 

of the sigmoid maps the interval (−∞, ∞) on to (0, 1) as seen in Figure 7. The logistic function 

has the form of [57]:  

𝜎(𝑥)  =  
1

1 + 𝑒−𝑥
  

2. The tangens-hyperbolicus (tanh) activation function is also sigmoidal-shaped (s-shaped), 

but the range of the tanh function is from (-1,1). The output is transforms according to [58]: 

𝑡𝑎𝑛ℎ(𝑥)  =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
  

3. The Rectified Linear Unit (ReLU) activation function is most commonly used, especially in 

the convolutional neural network (CNN). The ReLU maps from ℝ →  [0, +∞). For values 

larger or equal than one, ReLU is the identity function, while all negative values are mapped 

to zero, which decreases the ability of the model to fit or train from the data properly. ReLU 

are described by [58]:  

𝑅𝑒𝐿𝑈(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)  

4. Leaky ReLUs are the attempt to solve the dying ReLU problem. Instead of the function being 

zero at 𝑥 <  0, a Leaky ReLU function will have a small negative slop a (of 0.1, or so).  

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 > 0

𝑎𝑥, 𝑖𝑓 x ≤ 0
 

5. Softmax functions are a general form of sigmoid functions that result in a probability 

distribution dor different classes, adding up to 1. Mathematically, the softmax function is 

shown below, where x is a vector of the inputs to the output layer (if there are K classes, then 

there are K elements in x), and j is the index of the output units (𝑗 =  1, 2, . . . , 𝐾): 

𝜎(𝑥)  =  
𝑒𝑥𝑗

∑ 𝑒𝑥𝑘𝑘
𝑘=1

  

Figure 7: shows a graphical representation of these activation functions. The original 

perception first used a step function for activation. However, back-propagation requires the 

activation function to be differentiable. The widely used sigmoid function is a differentiable 

non-linear activation function that maps the output into a (0, 1) range allowing probability 

interpretations. However, sigmoid and similarly tanh exhibit so-called vanishing gradients, 

which prevents effective weight learning as weight updates might be close to zero. Figure 8:  

shows the sigmoid function and its derivative separately. The derivative is generally rather 

small with a maximum value of 0.25, and the sigmoid function reaches saturation for x ≤ −5 
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and x ≥ +5. Consequently, after many iterations, the weights are very slowly updated and and 

the training is accordingly slow. The effects of vanishing gradients become even more relevant 

in deep architectures as error gradients are back-propagated through many layers. To avoid 

this problem, the non-linear activation function ReLU the Leaky ReLU  is commonly used [59]. 

In these cases, the vanishing gradients are replaced by a constant derivative of 1 or a, 

respectively. In addition, ReLU and its variations are less prone to exhibit in saturated 

gradients, another effect that prevents effective weight learning. Softmax is an activation 

function used in the final layer of, e.g., the classification network. 

 

 

 
 

Figure 7: Comparison of different Activation Functions in Neural Networks. The figure 
illustrates various activation functions commonly used in neural networks. These activation 
functions introduce non-linearity to the network, enabling modelling of complex data. 
Adapter from [60]. 
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Figure 8: Sigmoid function and its derivative. The derivative has a maximum value of 0.25 
and shows gradient saturation for x ≤ -5 and x ≥ +5. Adapted from [60], permission is 
obtained. 

 

2.4.4.1. Loss function 

The loss function plays an essential role in training neural networks (NNs) as it quantifies the 

error that influences the learning process. This error is determined by comparing the output 

of the neural network obtained during the forward pass with the ground truth. 

Backpropagation is then employed which calculates the gradient of the loss function with 

respect to all the weights in the network. The ultimate goal is to minimize the loss during the 

training process. The selection of an appropriate loss function depends on the specific 

problem that the network aims to solve. Loss functions can be customized based on the 

requirements of investigated task and it is also common to combine multiple loss functions 

into a single objective. There are several fundamental and widely used loss functions, 

including: 

1. The mean squared error (MSE), which is also referred to as L2 loss, calculates the average 

of the Euclidean distances (L2) between the predicted value �̂�𝑖  and the ground truth 𝑦𝑖  for 

each instance i. 

𝐿𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1
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2. The mean absolute loss (MAE) is the absolute loss (referred to as L1 loss) and calculates the 

mean absolute value between the predicted value �̂�𝑖  and the ground truth 𝑦𝑖  for each 

instance i. 

𝐿𝑀𝐴𝐸 =
1

𝑛
∑ │𝑦𝑖 − �̂�𝑖│

𝑛

𝑖=1

 

2.4.4.2. Neural Network Optimization 

Neural networks (NN) are trained using back-propagation, which is the implementation of a 

gradient descent algorithm based on a selected loss function. To compute the loss function, 

the input data is first propagated through the network and then compared to the ground 

truth. Let 𝑦 be the ground truth, and �̂� the result after the calculation. The loss function is 

defined as: 

𝑓(𝜃) =  𝐿(𝑦, �̂�) 

The Gradient Descent (GD) method updates the parameters, 𝜃 ∈  ℝ𝑑 , in the opposite 

direction of the gradient of loss function 𝛻𝜃 𝑓(𝜃). Here, 𝜃  include all the weights and biases 

as described in Equation 2-3. The size of the step in the negative direction is called the learning 

rate (η). Figure 9: shows the graphical representation of gradient descent at work. Depending 

on our decision for speed vs. accuracy, there are three different versions of gradient descent 

method, which differ by the amount of data they require to make an update at the iteration 

number k: 

1. Batch Gradient Descent method: Computes the gradient and makes the update to 

parameters after using the whole training Set: 

𝜃𝑘+1   =  𝜃𝑘  −  𝜂 ∗  𝛻𝜃 𝑓(𝜃𝑘 ) 

Since the whole dataset is used to make just a single update, Batch Gradient Descent is very 

slow and memory consuming but the number of steps might be very small. 

2. Stochastic Gradient Descent (SGD) method updates the parameters on each dataset (xi, yi): 

𝜃𝑘+1   =  𝜃𝑘  −  𝜂 ∗  𝛻𝜃 𝑓(𝜃𝑘; 𝑥𝑖; 𝑦𝑖 ) 

Each update of SGD method is much faster than that for the batch gradient descent method, 

however, it needs more steps to converge. 

3. Mini-batch Gradient Descent method updates the parameters after processing a mini-

batch of n on training samples 𝑥𝑖:𝑖+𝑛; 𝑦𝑖:𝑖+𝑛. 

𝜃𝑘+1   =  𝜃𝑘  −  𝜂 ∗  𝛻𝜃 𝑓(𝜃𝑘; 𝑥𝑖:𝑖+𝑛; 𝑦𝑖:𝑖+𝑛 ) 

With this method, the loss per iteration is minimized more than that in the stochastic gradient 

descent method, and each step is faster than that for the batch gradient descent method. 

This is the mostly employed method. 
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One of the problems with the gradient descent method is that it treats all the parameters in 

the same way, regardless of their magnitude, and uses the same learning rate throughout the 

learning process. In recent times, there are more powerful optimizers, which solve these 

issues and are used in training of neural networks. One of them is Adam (adaptive moment 

estimation). Adam uses an individual learning rate for each network weight and adapts these 

weights individually based on gradient back-propagation. An exponential moving average of 

the gradient 𝑚(𝑡) and the exponential moving average of past squared gradient 𝑣(𝑡) 

(variance) are calculated. Exponential moving averages of the gradient g are calculated as 

follows: 

𝑚(𝑡)  =  𝛽1𝑚(𝑡 −  1)  +  (1 −  𝛽1)𝑔(𝑡) 

𝑣(𝑡)  =  𝛽2𝑣(𝑡 −  1)  +  (1 − 𝛽2)𝑔2(𝑡) 

Here, t is a iteration number. Two additional parameters β1 and β2 are used to decay moving 

averages over time, recommended to be chosen close to 1. As 𝑚(𝑡) and 𝑣(𝑡) are initialized 

as vectors of 0’s, that is why moment estimates tend to show a bias towards zero, especially 

during the initial time steps. Hence, this bias is corrected: 

�̂�(𝑡) =
𝑚(𝑡)

1 − 𝛽
1
𝑡  

�̂�(𝑡) =
𝑣(𝑡)

1 − 𝛽
2
𝑡  

Here, �̂�(𝑡) and �̂�(𝑡) are the updated values, t is a exponent in case of  𝛽1
𝑡 and 𝛽2

𝑡. These 

values are used to update the parameters by using the expression: 

𝜃𝑘+1   =  𝜃𝑘  −  
𝜂

√(�̂�(𝑡) + 𝜖) 
�̂�(𝑡) 

Where, 𝜂 is a learning rate using in the optimization method. 
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Figure 9: Visualization of Gradient Descent Optimization method. The figure shows the 
iterative process of gradient descent, in which the arrows represent the direction and 
magnitude of the gradient at each iteration, indicating the path taken towards the optimal 
solution. Adapted from [61]. 

 

2.5. Optimization 

In unconstrained optimization, the goal is to find the optimal solution for a given objective 

function without any constraints. The objective function is typically defined over a continuous 

domain and represents a quantity to be maximized or minimized. Let's denote the objective 

function as f(x), where x is the input or decision variable. To find the optimal solution, we seek 

the value of x that either maximizes or minimizes the objective function. This can be 

represented as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓(𝑥)  

 

To determine the optimal solution, we often use gradient-based methods, such as gradient 

descent or Newton's method. These methods rely on the derivative or gradient of the 

objective function to guide the search for the minimum or maximum. 

For instance, in gradient descent, we iteratively update the value of x based on the negative 

gradient of the objective function. The update rule can be expressed as: 

𝑥𝑛𝑒𝑤  =  𝑥𝑜𝑙𝑑  −  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗  𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑓(𝑥𝑜𝑙𝑑)) 

Here, learning_rate represents a small positive value that controls the step size of each 

iteration. The goal is to update x in the direction that minimize the value of the objective 
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function until convergence. A detailed explanation of optimization can be found in the 

literature [62-65]. 

Constrained Optimization Problems: 

Constrained optimization deals with finding the optimal solution while considering a set of 

constraints that restrict the search space. The constraints can be inequalities (<=, >=) or 

equalities (=) that must be satisfied when searching for the optimal solution. We can express 

the constrained optimization problem as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓(𝑥) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑔(𝑥)  <=  0 (𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) 

ℎ(𝑥)  =  0 (𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) 

 

Here, g(x) represents the vector of inequality constraints, and h(x) represents the vector of 

equality constraints. To solve constrained optimization problems, various techniques are 

available, such as the Lagrange multipliers method, Karush-Kuhn-Tucker (KKT) conditions, and 

nonlinear programming algorithms. The equation for the Lagrange multipliers method is [66]: 

∇𝑓(𝐱) = 𝜆∇𝑔(𝐱) 

∇𝑓(𝐱) + ∑ 𝜆𝑖∇𝑔𝑖(𝐱)
𝑚

𝑖=1
+ ∑ 𝜇𝑗∇ℎ𝑗(𝐱)

𝑛

𝑗=1
= 0

𝑔𝑖(𝐱) ≤ 0, 𝑖 = 1, … , 𝑚
ℎ𝑗(𝐱) = 0, 𝑗 = 1, … , 𝑛

𝜆𝑖 ≥ 0, 𝑖 = 1, … , 𝑚
𝜆𝑖𝑔𝑖(𝐱) = 0, 𝑖 = 1, … , 𝑚

 

Where f(x) is the objective function, gi(x) ≤0 are the inequality constraints, hj(x) =0 are the 

equality constraints, ∇ denotes the gradient operator, and λi and μj are the KKT multiplier. 

These methods aim to find the optimal solution by considering both the objective function 

and the constraints. By combining the objective function and the constraints, constrained 

optimization seeks to identify the values of x that simultaneously minimize the objective while 

satisfying all constraints. 

Overall, optimization of unconstrained and constrained problems is a vast and rich field, 

encompassing a range of algorithms and techniques. These approaches allow to find the 

optimal solutions in various domains and make informed decisions based on mathematical 

modeling and problem-solving. 

 

https://engineering.purdue.edu/ME697Y/KKT.pdf
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2.5.1. Covariance matrix adaptation evolution strategy 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a popular and powerful 

stochastic derivative-free global optimization method. It belongs to the family of Evolutionary 

Algorithms (EAs) and is designed to solve continuous optimization problems, where the 

objective function is expensive to evaluate or has no explicit gradient information. CMA-ES, 

an optimization technique originally introduced by Hansen et al. [67], and is a method that 

aims to find the global optimum in a given solution space. A population of potential solutions 

is iteratively sampled from this distribution and evaluated using a so-called “black-box 

function”, which is a function that can be used without knowing its internal implementation 

or logic. The pairs of solutions and their evaluations form a data set that CMA-ES uses to 

update its search distribution, specifically the mean and covariance matrix. A more detailed 

description on CMA-ES can be found in [68-70]. 

To elaborate, let's consider a fitness function 𝑓: ℝ𝑛 ↦ ℝ parameterized by 𝜃 ∈  ℝ𝑛, denoted 

𝑓(𝜃). The goal is to find an optimal parameter 𝜃∗ that minimizes 𝑓(𝜃). In CMA-ES, it is 

common to represent the solution space with a multivariate normal distribution, with 𝜃 ∼

𝑁(𝜃; 𝑚, 𝐶). Here, 𝑚 is the n-dimensional mean vector and 𝐶 is the 𝑛 × 𝑛 covariance matrix. 

At each iteration k, CMA-ES generates the kth population of λ offspring by sampling from the 

kth distribution given by 𝜃𝑖 ∼ 𝑁(𝜃; 𝑚𝑘, 𝐶𝑘) for 𝑖 = 1, ⋯ , 𝜆. Here, 𝑚𝑘 and 𝐶𝑘 correspond to 

the mean vector and covariance matrix at iteration k after k updates respectively. The 

offspring are then sorted in ascending order based on their evaluations 𝑓(𝜃𝑖). Only the top 

𝜇 (< 𝜆) candidates are selected for updating 𝑚𝑘 and 𝐶𝑘. Another parameter, the global step 

size 𝜎 ∈ ℝ, is used to control the convergence rate of the covariance matrix update. 𝜎 is 

defined as the global standard deviation. Thus, the complete set of parameters in CMA-ES is 

{𝑚, 𝐶, 𝜎}. 
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Figure 10: CMA-ES flowchart. In each iteration(generation) step, a weighted combination of 

the µ best out of λ new candidate solutions is used to update the distribution parameters p 

σ, p µ, C. Here, N represents a normal distribution and f is the fitness function. Adapter from 

[71]. 
 

 

2.5.2. Genetic algorithm 

Genetic algorithms (GA) have emerged as a powerful optimization technique inspired by 

natural selection and genetic principles (see Figure 11:). GA is widely used in various fields, 

including engineering, computer science, and economics, to solve complex optimization 

problems. The key characteristic of GAs lies in their ability to mimic the process of evolution 

through iterative generations of candidate solutions. This section explains the dynamics of 

genetic algorithm optimization, shedding light on the underlying mechanisms and factors 

influencing its performance. For more detailed explanation, the reader is refer to the 

literature [72, 73] 

The representation of the problem space and encoding of the candidate solutions play a 

crucial role in genetic algorithm optimization and significantly impacts the genetic algorithm's 

efficiency and effectiveness. Here, we explore different representation schemes and 

encoding techniques commonly used in genetic algorithm optimization. 

Representation Schemes: 

1. Binary representation is one of the most widely used schemes in genetic algorithms. It 

represents each candidate solution as a string of binary digits (0 and 1). This scheme is suitable 

for problems where the solution can be represented as a binary sequence, such as 

combinatorial optimization problems or Boolean function optimization. 

2. Real-valued representation is used when the problem requires variables with continuous 

values. Each candidate solution is represented as a vector of real numbers in this scheme. It 
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allows for directly mapping the solution space, making it suitable for optimization problems 

with continuous or numerical variables. 

3. Permutation representation is employed when the problem involves finding an optimal 

ordering or arrangement of elements. It represents the candidate solution as a permutation 

of the elements being optimized. Permutation representation is commonly used in problems 

such as traveling salesman or job scheduling. 

 

Encoding Techniques: 

1. Fixed-length encoding is used when the length of the chromosome representing a 

candidate solution remains constant throughout the optimization process. Each chromosome 

has a fixed number of bits or elements representing different variables or characteristics of 

the solution. Fixed-length encoding simplifies the implementation of genetic operators but 

may be less efficient for problems with varying lengths. 

2. Variable-length encoding is employed when the length of the chromosome can change 

during the optimization process. It allows for the representation of solutions with varying 

numbers of variables or features. Variable-length encoding offers flexibility but requires 

additional mechanisms to handle varying chromosome lengths, such as special termination 

conditions or dynamic memory allocation. 

3. Direct encoding represents the problem-specific features directly in the chromosome 

without any transformation. For example, in a scheduling problem, the chromosome may 

directly encode the time slots assigned to different tasks. Direct encoding simplifies the 

representation but may lead to a large search space or lack of generality. 

4. Indirect encoding represents the candidate solution using a set of rules or transformations 

that generate the desired solution. It employs a higher-level representation that maps to the 

actual solution. Indirect encoding allows for compact representation and can exploit problem-

specific knowledge, but it adds complexity to the decoding process. 

The choice of representation and encoding depends on the problem's nature, the variables' 

characteristics, and the optimization task's requirements. It is essential to select a 

representation scheme and encoding technique that effectively captures the problem 

structure and facilitates efficient exploration of the search space. Careful consideration 

should be given to the choice of representation and encoding to ensure compatibility with 

the problem domain and maximize the performance of genetic algorithm optimization. 

 

Population Initialization: 

The initial population is the foundation for the evolutionary process in genetic algorithms. 

This section explores different techniques for population initialization, such as random 

initialization, heuristic-based initialization, and biased initialization. The influence of 

population size, diversity, and structure on the algorithm’s exploration and exploitation 

abilities will be examined, highlighting the trade-offs involved. 
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Genetic Operators: 

The genetic operators, namely selection, crossover, and mutation, are exploitation 

characteristics of genetic algorithms. This section delves into various selection strategies, 

including tournament selection, roulette wheel selection, and rank-based selection. It 

investigates different crossover techniques, such as single-point crossover, multi-point 

crossover, and uniform crossover. The effects of different mutation operators, mutation 

rates, and adaptive mutation schemes on the algorithm’s ability to escape local optima and 

maintain diversity will be discussed. 

 

Selection: 

Selection is a vital genetic operator in the genetic algorithm optimization process, responsible 

for choosing individuals from the population to serve as parents for the next generation. The 

selection process is based on proportionate fitness selection, where individuals with higher 

fitness are more likely to be selected. There are several common selection strategies: 

1. Tournament Selection: In this strategy, individuals are randomly selected from the 

population, and a tournament is held among them. The fittest individual from the tournament 

is chosen as a parent. The tournament size determines the selection pressure, with larger 

tournament sizes favoring individuals with better fitness. 

2. Roulette Wheel Selection also known as stochastic selection or proportionate fitness 

selection, this strategy assigns a probability to each individual in the population based on their 

fitness. A roulette wheel is then spun, and individuals are selected based on the portion of 

the wheel they occupy. Individuals with higher fitness have larger portions and are more likely 

to be selected. 

3. Rank-Based Selection assigns ranks to individuals based on their fitness, with higher ranks 

assigned to fitter individuals. Selection probabilities are derived from these ranks, favoring 

individuals with higher ranks. This technique reduces the influence of extreme fitness values 

and encourages diversity. 

 
Crossover: 

Crossover is the genetic operator responsible for recombining genetic information from two 

parent individuals to create offspring. It mimics the genetic recombination that occurs during 

sexual reproduction. Common crossover techniques include: 

1. Single-Point Crossover is a technique, in which a single random point is selected along the 

chromosome of the parent individuals. The genetic material beyond that point is swapped 

between the parents, producing two offspring. 

2. Multi-Point Crossover: Similar to single-point crossover, multi-point crossover involves 

selecting multiple random points along the chromosome. The genetic material between these 
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points is exchanged between the parents, generating offspring with mixed genetic 

information. 

3. Uniform Crossover, each gene in the chromosome is independently selected from either 

parent with a predefined probability. This allows for a more diverse recombination of genetic 

material, leading to increased exploration of the search space. 

 

Mutation: 

Mutation is a genetic operator that introduces random changes in individual chromosomes, 

helping to maintain diversity and explore new regions of the search space. It prevents 

premature convergence to local optima. Common mutation techniques include: 

1. Bit Flip Mutation is commonly used for binary-encoded chromosomes. It selects random 

bits in the chromosome and flips their values, introducing small changes to the genetic 

material. 

2. Gaussian Mutation is suitable for real-valued chromosomes. It adds a small random value 

drawn from a Gaussian distribution to each gene in the chromosome, causing a slight 

perturbation in the values. 

3. Swap Mutation is often used for permutation-encoded chromosomes. It selects two 

random positions in the chromosome and swaps the values at those positions, introducing 

changes in the ordering of genes. 

It is important to note that the mutation rate determines the probability of applying mutation 

to each individual gene or chromosome. A higher mutation rate promotes exploration but 

may hinder convergence, while a lower mutation rate may lead to premature convergence. 

The genetic operators selection, crossover, and mutation work in combination to drive the 

evolutionary process in genetic algorithm optimization. They allow for the exploration of the 

search space, exploitation of promising solutions, and maintenance of genetic diversity, 

ultimately converging towards high-quality solutions to complex optimization problems. 

- 

Convergence Analysis: 

Understanding the convergence properties of genetic algorithms is crucial for assessing their 

performance and optimizing their behaviour. This section presents theoretical and empirical 

convergence analyses, exploring the impact of population size, selection pressure, crossover 

rate, mutation rate, and termination criteria on the algorithm's convergence speed and 

solution quality. Moreover, the role of fitness landscape characteristics, such as ruggedness, 

multimodality, and separability, in determining convergence behaviour will be investigated. 
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Parameter Tuning and Adaptation: 

The performance of genetic algorithms heavily relies on the proper configuration of their 

parameters. This section investigates various techniques for parameter tuning and 

adaptation, including classical methods like grid search and evolutionary algorithms, as well 

as more advanced approaches such as self-adaptive algorithms and machine learning-based 

methods. The challenges, benefits, and limitations of different parameter tuning strategies 

will be discussed, along with their impact on the algorithm's performance and robustness. 

 

 
 

Figure 11: Genetic Algorithm Pipeline. The figure illustrates the pipeline of a genetic 
algorithm, including the steps of initialization, fitness assignment, selection, crossover, 
mutation, and selection. Adapted from [74]. 

 

2.5.3. Multi Objective Optimization 

Multi-objective optimization (MOO) also knows as Pareto optimization is a branch of 

mathematical optimization that deals with problems involving more than one objective 

function to be optimized simultaneously. Such problems arise in many fields of science, 

engineering [75], economics, and logistics, where optimal decisions need to be made in the 

presence of trade-offs between two or more conflicting objectives. MOO problems are 

challenging because they do not have a single optimal solution, but rather a set of solutions 

that are equally good in terms of the objective functions. These solutions are called Pareto 

optimal solutions. The primary challenge in MOO is the presence of conflicting objectives, 

making it impossible to improve one objective without degrading another. This leads to the 

concept of Pareto optimality, where a solution is considered Pareto optimal if none of the 
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objective functions can be improved without worsening at least one other objective function. 

The goal in MOO is to find a representative set of such Pareto optimal solutions.  

Several solution methods have been developed of MOO, including interactive methods [76],  

a priori methods [77], evolutionary algorithms [78]. One way to solve MOO problems is to use 

scalarization methods. In which convert a MOO problem into a single-objective optimization 

problem by combining the multiple objectives into a scalar function. The scalar function is 

usually a weighted sum of the objectives, but other forms are possible. The equation for the 

weighted sum scalarization method or classical method is [79]: 

 

𝑓(𝑥) = ∑ 𝑤𝑖𝑓𝑖(𝑥)

𝑛

𝑖=1

 

where 𝑓(𝑥) is the scalar function, 𝑓𝑖(𝑥) are the objective functions, 𝑤𝑖 are the weights, and n 

is the number of objectives. The weights reflect the relative importance of each objective and 

must be non-negative and sum to one. 

Scalarization methods are simple and easy to implement, but they have some limitations. For 

example, they might not be able to find all the Pareto optimal solutions, especially if the 

Pareto optimal set is non-convex or discontinuous. They also require prior knowledge of the 

objective functions and their ranges, which might not be available in some cases. Therefore, 

other methods, such as evolutionary algorithms, have been developed to overcome these 

challenges and find more diverse and robust solutions for MOO problems [80]. 

 

Non-dominated Sorting Genetic Algorithm –III: 

Non-dominated Sorting Genetic Algorithm-III (NSGA-III) [81] is an evolutionary algorithm 

specifically designed to solve multi-objective optimization problems. It is an improved version 

of the well-known NSGA-II [82] algorithm and is known for its ability to efficiently handle 

multi-objective optimization problems. The algorithm works by maintaining a diverse set of 

solutions that are not dominated by each other. It uses a three-level approach to maintain 

diversity and convergence, making it suitable for many-objective optimization problems. 

NSGA-III improves upon NSGA-II by introducing the following features: 

Reference points: NSGA-III uses a set of predefined reference points to guide the search 

towards a diverse and well-distributed Pareto front. The reference points are uniformly 

distributed in the objective space and represent the ideal trade-offs among the objectives. 

NSGA-III tries to find one solution for each reference point, or as close as possible. 

Reference line: NSGA-III uses a reference line to measure the distance between a solution and 

a reference point. The reference line is the line that passes through the origin and the 

reference point. NSGA-III prefers solutions that have a smaller perpendicular distance to the 

reference line, as they are closer to the ideal trade-off. 

Selection scheme: NSGA-III uses a two-step selection scheme to maintain diversity and 

convergence. First, it applies the non-dominated sorting as in NSGA-II to rank the solutions 

https://link.springer.com/article/10.1140/epjs/s11734-021-00206-w
https://link.springer.com/article/10.1140/epjs/s11734-021-00206-w
https://engineering.purdue.edu/~sudhoff/ee630/Lecture09.pdf
https://engineering.purdue.edu/~sudhoff/ee630/Lecture09.pdf
https://engineering.purdue.edu/~sudhoff/ee630/Lecture09.pdf
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according to their dominance level. Second, it selects the solutions from the last front that 

are needed to fill the population. It does so by assigning each solution to the nearest reference 

point and then choosing the solutions that belong to the least populated reference points. If 

there is more than one solution for a reference point, it selects the one with the smallest 

perpendicular distance to the reference line. 

Elitism: NSGA-III maintains an external archive of the best solutions found so far, called the 

elite set. The elite set is updated at each generation by combining the current population and 

the offspring, and applying the non-dominated sorting procedure. The elite set ensures that 

the algorithm does not lose any good solution and preserves the diversity of the Pareto 

optimal front. A detailed description of this method and related methods can be found 

elsewhere [81, 82]. 

 

2.6. Segmentation 

Segmentation in the context of image processing refers to the process of dividing an image 

into meaningful and distinct regions or objects. It is a fundamental technique used to extract 

specific regions of interest or separate different objects in an image. Segmentation plays a 

crucial role in various applications such as object recognition, image analysis, computer vision, 

and medical imaging. 

The main purpose of segmentation is to simplify and analyze images by partitioning them into 

semantically coherent regions. This enables subsequent analysis and understanding of the 

image content, such as object detection, tracking, and feature extraction. 

There are several popular methods for image segmentation, and each has its strengths and 

limitations. Some common segmentation methods include thresholding [83], edge-based 

methods [84], clustering algorithms [85], and region-based methods [86]. Each method 

employs different techniques and algorithms to achieve the desired segmentation. One of the 

widely used segmentation methods is the Region Growth method. It is a region-based 

approach that starts with a seed point or region and gradually expands the region by including 

neighboring pixels based on specific criteria. The region growth process continues iteratively 

until a stopping criterion is met. 

The region growth method typically involves the following steps: Seed Selection, Region, 

Expansion, Similarity measure and finally the stopping criterion. During the seed Selection an 

initial seed point or region is chosen either manually or automatically based on specific 

characteristics or user input. This seed point or region is expanded during the region 

expansion by iteratively examining neighboring pixels and determining if they satisfy certain 

criteria, such as intensity similarity, color similarity, texture similarity, or gradient similarity. 

Thereafter, a similarity measure is used to assess the similarity between the candidate pixel 

and the current region. If the similarity criterion is met, the pixel is added to the region, and 

the process continues.  The region growth process continues until a stopping criterion is 

fulfilled, which could be a predefined size, a specific image feature, or reaching the boundary 

of the image. This method is effective in segmenting regions with uniform properties, such as 

homogeneous regions or objects with consistent characteristics. However, it may face 
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challenges in handling complex scenes with varying textures, illumination changes, or 

overlapping objects. 

2.7. Experimental setup 

This section presents two different optimization workflows developed in this thesis: I) 

Regression-based optimization and II) On-the-run optimization. In the regression-based 

optimization workflow, two different regression models were evaluated: (a) DL and (b) GAM. 

For both optimization workflows, two different EA optimizations were also evaluated: (i) 

CMA-ES and (ii) GA. As a clinical application in radiotherapy, this study demonstrated how MR 

sequences can be optimized with respect to two different goals: (1) achieving the same 

contrast as in a target image and (2) maximizing the contrast between different tissue types. 

Figure 12 gives an overview on the different investigation in this thesis. 

Pursuing the first goal is reasonable, e.g., if diagnostic MR images are to be included into 

treatment planning for a 0.35 T MR-linac, which can exhibit a different image contrast. Using 

the images from the diagnostic MRI and optimizing the SPS to obtain a similar contrast as the 

MR-linac may facilitate image processing steps like registration. Other scenarios, where the 

target image is acquired at the same device with different sequences or SPS are also 

conceivable. The second use case maximizes the contrast between specified adjacent tissues 

to improve the conditions for automated segmentation of tumors and/or organs at risk. 
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Figure 12: Provides an overview of the various investigations conducted in this thesis. 

 

 

2.7.1. Phantom materials 

Measurements were performed using a cylindrical water phantom that was equipped with 7 

in-house fabricated substitutes with different contrasts. A PMMA-ring was used to hold the 

substitutes in place. The substitutes and they were made with different concentrations of 

agarose (Agar) (AgaroseHEEO Ultra-Quality, Carl RothGmbH&Co. KG, Karlsruhe, Germany), in-

house produced nickel-diethylenetriaminepentaacetic acid (Ni-DTPA), and potassium 

chloride (KCl) (≥99, 5%, Carl RothGmbH&Co. KG, Karlsruhe, Germany). The contrast of the Ni-

DTPA doped agarose gel was adjusted to achieve different T1 and T2 relaxation times in MRI 

by varying the amounts of Ni-DTPA and agarose. Ni-DTPA mainly reduced T1 relaxation time, 

while agarose mainly decreased T2 relaxation time. Additionally, KCL was added to change the 

CT value. The substitutes had different amounts of Agar, Ni, and KCL to create 7 different 

contrasts (see Table 1). Plastic conical centrifuge tubes (50 ml, diameter: 28 mm, FalconTM, 

Thermo Fisher Scientific Inc., Waltham, USA) served as containers for the substitutes.       

Figure 13 shows a phantom alongside its corresponding scanned image. 

On-the-Run 
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i) GAM
ii) DL

Regression Based
Optimization

SPS Optimization

Optimization Methods
i) CMA-ES
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Figure 13: Left) Shows the real phantom which is used for all the investigation, and (Right) displays 

the image acquired from MR SOLA scanner using random parameter combinations. 

 

 

Table 1: Contrast materials providing specific T1 and T2 values at a 1.5 T MRI and 0.35 T MR-Linac. 
Values as reported in [87]. 

 Container #1 #2 #3 #4 #5 #6 #7 

1.5 T 
T1 420±1 523±1 984±3 1097±4 629±1 876±4 882±2 

T2 67±1 93±2 110±2 46±1 57±1 296±3 107±2 

0.35 T 
T1 575±4 733±4 1108±4 1155±4 707±4 1106±5 1051±5 

T2 75±5 100±5 119±4 45±1 61±3 311±13 110±5 

 

 

2.7.2. Regression based SPS Optimization 

In this section, a regression-based optimization workflow was implemented. Initially, a large 

dataset was acquired by varying combinations of four sequence parameters to construct a 

regression model. This model aims to predict the signal value for any combination of SPS. 

These regression models served as the signal prediction functions. The optimization methods 

were then integrated with the regression models. Overall, the workflow continuously updated 

the SPS and predicted the signals for each substitution with the new SPS based on the 

regression model. In this iterative process, the SPS was optimized for two clinical use cases. 

 

1 
2 

3 

4 
5 

6 
7 
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2.7.2.1. Data Acquisition 

All measurements were performed on a 1.5 T MAGNETOM Aera MR scanner (Siemens 

Healthineers, Erlangen, Germany) using the 20-channel head coil. Measurements were 

performed on a 1.5 T MRI Aera scanner. The SPS was optimized for a 2D TSE sequence with a 

fixed BW of 186 Hz/pixel, acquired resolution of 0.4 x 0.4 mm2, slice thickness of 5 mm and 

echo spacing of 11 ms. TE, TR, TF and refocusing FA, as main contributors to contrast, were 

varied in a specific range (TE: 12 ms – 114 ms, TR: 500 ms – 2300 ms, TF: 10 – 40 and FA: 140° 

– 180°) to generate images with 1114 different SPS combinations. 

In our experiments, we used an image from a 0.35 T MR-Linac (MRIdian Linac, Viewray Inc., 

Oakwood, USA) as a target image specially for use case 1: achieving the same contrast as a 

target image, with the following parameters: TR = 2000 ms, TE = 35 ms, TF = 15, BW = 202 

Hz/pixel, FA = 180° and resolution = 0.78 x 0.78 mm2. 

 

2.7.2.2. Regression problem 

After measuring the parameter space, the next step was to develop a model that can predict 

the signal values based on the measured data. The model should match the measured values 

as closely as possible. In this study, two different types of regression models were explored: 

(i) GAM and (ii) DL model (see section 2.4.) 

Depending on the sequence and parameters, modelling interaction effects may occur. 

Therefore, the interaction variable strategy was used for GAM. To select the best number of 

splines, a grid search method was additionally used. The DL model had an architecture 

consisting of five blocks with hidden layers using ReLU activation function and one input and 

output layer each. The number of hidden layers were optimized by random search method.  

The number of nodes in the input and output layers depends on the total number of input 

parameters and predicted signal output values, respectively. MSE and MAE were used as the 

loss function and regularizer, respectively, during the training process. In addition, an Adam 

optimizer with a learning rate of 0.01 was also used for optimization. For both methods, 10% 

of the dataset was randomly selected as the test dataset, and another 10% of the remaining 

data was used for validation in DL model and the remaining dataset was used during 

regression training.  
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 Figure 14: Visualization of a deep learning model for our regression problem. This DL model 
has 1 input, 5 hidden layers, and 1 output layer. The output layer has 7 nodes that 
correspond to the 7 signal values of the containers. 

 

2.7.2.3. Optimization Process 

After evaluating the regression models, the next step was to implement optimization 

methods based on them (for more detail, see section 2.5). The approximation function based 

on regression models may not be a convex function and may have undefined derivatives. 

Therefore, gradient-based optimization cannot be applied or cannot guarantee a global 

optimum. Three different optimization methods based on evolutionary algorithms were 

employed: (i) GA and (ii) CMA-ES for single objective optimization and (iii) NSGA-III for multi-

objective optimization (see section 2.5 for more details). These algorithms were implemented 

using the PyMOO framework for multi-objective optimization in Python. For GA, tournament 

selection, simulated binary crossover, and polynomial mutation strategies with a default 

probability of 0.9 were used. For CMA-ES, a sigma value of 0.2 was used. Elitism was not 

incorporated into the execution of either algorithm. For NSGA-III, a population size of 360 and 

a number of iterations of 50 were used. The workflow continuously updated the SPS and 

predicted the signals for each substitute with the new SPS based on the regression model. In 

this loop, the SPS were optimized for two clinical use cases. 

2.7.2.4. Clinical use cases 

i) Achieving the same contrast as in a target image 

To achieve this, we consider that the regression models predict a signal mi in substitute i that 

should match the signal ti of the same substitute in the target image acquired at 0.35T MR 

LINAC with the parameters combination described in section 2.7.2.1. The optimization of the 

SPS involves several steps: First, a set of either predefined or randomly selected parameters 

Input 
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is sent to the regression model. Then the regression model predicts the average signal values 

for each individual ROI mi based on these parameters. The differences between the signals mi 

and ti determine the MSE loss function, which is sent to the optimizer to update the SPS. 

Finally, the updated parameters are transferred back to the regression model for the next 

iteration. This process is repeated until the objective function is below a user defined 

threshold value 10-3. 

Loss(MSE) =
∑ (ti − mi)

2n
i

n
 

 

 

ii) Maximizing the contrast between different tissue types 

First, a set of either predefined or randomly chosen parameters are selected and send them 

to regression models to predict the average signal values for each individual ROI mi based on 

these parameters. Then the contrast between adjacent pairs of substitutes is calculated as 

the difference between mi and mj (i<j). Since each contrast represents a different clinical 

objective, this problem can be considered as a MOO problem (see more detail in 2.5.3). To 

maximize the contrast between each substitute, two different optimization approaches are 

evaluated.  The NSGA-III method is used to optimize the MOO and obtained the Pareto front 

optimal solution. However, since MOO is computationally expensive and time consuming, the 

classical approach of considering a weighted sum of the individual objective functions was 

also applied to arrive at a single objective function: 

𝐹 = ∑ 𝜆𝑖𝑗(𝑚𝑖 − 𝑚𝑗)
2

𝑖,𝑗  𝑤𝑖𝑡ℎ    𝑖 = 1 … (𝑛 − 1), 𝑗 = (𝑖 + 1) 

Here, λij are the weights of the objective function terms (𝑚𝑖 − 𝑚𝑗)
2
. To evaluate the 

performance of the multi-objective optimization algorithm, two different settings of 

weighting factors were evaluated. Setting 1: the weights for four containers (λ12, λ23, λ34) were 

initialized to 1 and optimization was performed. Setting 2: the weighting factors λ12 and λ23 

were then changed to 5 while keeping the weight λ34 equal to 1 and the resulting contrasts 

were evaluated. This allowed us to investigate how the classical MOO approach would 

prioritize the associated objectives in comparison to others and also compare with Pareto 

front optimal solutions. 

2.7.3. On-the-run SPS optimization  

This section describes the implementation of an innovative on-the-run optimization workflow. 

Most of the presented materials for “on-the-run” SPS optimization workflow have been 

extracted from our previous publication [88]. The workflow continuously updates the SPS and 

executes it on an MR scanner using the Access-i tool, resulting in the generation of new image 

data. This new data is then used to calculate the loss value based on the clinical objective 

function. The SPS is carefully optimized for two different clinical use cases within this iterative 

loop. Unlike a regression-based optimization workflow, the on-the-run optimization approach 

eliminates the need to acquire a large initial dataset. Additionally, since this workflow runs 

directly on the scanner, predictive models are not required.    
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2.7.3.1. Optimization loop via MRI interface 

All measurements were performed on a 1.5 T MAGNETOM Sola MR scanner (Siemens 

Healthineers, Erlangen, Germany) using the 20-channel head coil. To enable the “on-the-run” 

optimization process, the MR scanner was remotely controlled by Access-i (Siemens 

Healthineers, Erlangen, Germany). The optimization process was run on a local computer 

(Intel(R) Core(TM) i5-9400, 2.9 GHz CPU, 6 cores and 16 GB RAM) instead on the host 

computer of the MRI scanner. By running the optimization process on a separate computer, 

we were able to optimize the MR sequence parameters based on the acquired images without 

interfering with the operation of the scanner using an in-house developed Python code. In 

the next step, optimized SPS are automatically transferred back and executed on the MRI 

scanner, and the optimization loop is terminated if the objective function or parameter values 

do no longer change with respect to a predefined threshold value. 

2.7.3.2. Optimization Process 

The SPS was optimized for a 2D TSE sequence with a constant BW of 186 Hz/pixel, acquired 

resolution of 0.4 x 0.4 mm2, slice thickness of 5 mm and TF) of 30 with an echo spacing of 11 

ms. TE, TR and refocusing FA, as main contributors to contrast, were used as optimization 

parameters and were allowed to vary within a specific range (TE: 12 ms – 114 ms, TR: 500 ms 

– 2300 ms and FA: 140° – 180°). These parameters and ranges were the same as for the 

regression method, expect for TF, as Access-i has limitations that do not allow us to change a 

few sequence parameters. 

The optimization workflow deals with images for discrete SPS obtained directly from the 

scanner via the Access-i tool. Consequently, gradient-based optimization methods were not 

applicable, since they require a smooth function to calculate the derivatives. We therefore 

employed the same evolutionary algorithms for evaluation: The GA and the CMA-ES. The 

workflow was designed to continuously update the SPS and to subsequently execute the SPS 

on an MR scanner via the Access-i tool, which in turn results in new image data. In this loop, 

the SPS were optimized for two clinical use cases 

2.7.3.3. Clinical use cases 

i) Achieving the same contrast as in a target image 

For this, we consider that the scanner generates a signal mi in substitute i which shall match 

the signal ti of the same substitute in the target image acquired under different conditions, 

without an initial image registration process. For target image (T), the same parameter setups 

as for regression-based optimization workflow (described in section 2.7.2.1) were used.  

The optimization of the SPS involves several steps. First, a set of either predefined or 

randomly selected parameters is sent to the scanner for data acquisition. Then, the 

substitutes are automatically segmented using a region growing segmentation algorithm and 

the average signal of each ROI mi is calculated. The MSE loss function (Figure 15) is derived 

from the differences between the signals mi and ti and is used by the optimizer to update the 

SPS. The updated parameters are then transferred back to the scanner for another iteration. 

This process continues until the objective function reaches a user defined threshold value        

10-3. Figure 15 illustrates the pipeline for on-the-run SPS optimization.  
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Figure 15: Flow chart of the proposed "on-the-run" optimization workflow. The optimizer uses 
the Access-i interface to send the sequence parameters to the MR scanner, which acquires a 
set of 4 MR images (population size of 4). These images are then compared to the target image 
to calculate the MSE. The MSE is then fed back to the optimizer to update the sequence 
parameters until the optimum solution is achieved. Adapted from [88]  

 

ii) Maximizing the contrast between different tissue types 

For this use case, a set of either predefined or randomly parameters are selected and 

automatically segment the substitutes in the acquired images. Then, the contrast between 

neighbouring pairs of substitutes is calculated as the difference of mi and mj (i<j). As each 

contrast represents a different clinical objective, this problem was considered as a MOO 

problem. As a MOO is computationally expensive and time-consuming, it is difficult to solve 

such a problem directly by measurements on the scanner. Therefore, the classical approach 

of considering a weighted sum of the individual objective functions is applied to arrive at a 

single objective function [79]: 

  𝐹 = ∑ 𝜆𝑖𝑗(𝑚𝑖 − 𝑚𝑗)
2

𝑖,𝑗  𝑤𝑖𝑡ℎ    𝑖 = 1 … (𝑛 − 1), 𝑗 = (𝑖 + 1) 

Where the λij are the weights of the objective functions terms (𝑚𝑖 − 𝑚𝑗)
2
. To evaluate the 

performance of the MOO algorithm, two different experiments were again conducted with 

different settings of weighting factors. In setting 1, all weights (λ12, λ23, λ34, λ45, λ56, λ67) were 

set to 1 an. In setting 2:  weights λ34 and λ45 were set to 5, while keeping the other weights 

(λ12, λ23, λ56, λ67) equal to 1. For both settings the optimization were performed and the 

contrasts were evaluated. 
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3. Results 
This chapter presents the results obtained from the different optimization experiments. 
Section 3.1 shows the results for segmentation, which were obtained by the region growing 
method. Section 3.2 describes the results obtained by utilizing a regression-based SPS 
optimization pipeline. Section 3.3 describes the results obtained by the on-the-run SPS 
optimization directly on the scanner using the Access-i interface. For both methods, two 
clinically relevant optimization goals were pursued: i) achieving the same contrast as in a 
target image, and ii) maximizing the contrast between specified tissue types. 
 

3.1. Segmentation 
After dataset acquisition, regions of interest (ROIs) are identified through an automated 
segmentation technique known as the region growth method (see Section 2.6 for detail). 
Figure 16 shows the segmentation steps carried out by the region growth method.  
 

 
Figure 16: Illustration of the segmentation process using the region growth method: initial 
image (a), image after seed initialization through a manual process involving mouse clicks 
(b), and final segmented image using the region growth method (c), respectively. 

 

3.2. Regression based SPS optimization  
This section demonstrates the results of the SPS optimization based on two different 

regression methods: (a) GAM and (b) DL based model. Additionally, a detailed evaluation of 

different optimization methods, including CMA-ES and GA for single-objective optimization 

and NSGA-III for multi-objective optimization, is shown. Furthermore, the results obtained by 

applying the regression-based optimization method in a clinical use case are also shown. 

3.2.1. Regression  
Figure 17 compares the results of two different regression models: (a) GAM and (b) DL, applied 
to the dataset for varying TR and TE. The contrast was calculated from two neighboring vials 
1/2 within the segmented ROIs as an example, after segmentation. Each graph represents the 
contrast values for varying TR parameters with fixed TE value. Figure 18shows surface plots of 
the contrast with a grid resolution of 100x100a.u. In Figure 18 (a) and (b), TF and TR are varied 
with a fixed TE of 11ms. In Figure 18 (c) and (d), TR and TE are varied with a constant TF of 10. 
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As can be seen in Figure 18, the prediction of the GAM is smoother compared to the DL 
regression due to the characteristic features of the splines. 
To evaluate the performance of the DL and GAM regression models, a quantitative analysis 
was performed. For training purposes, 10% of the dataset was randomly selected as the test 
dataset, and another 10% of the remaining data was used for validation during DL-based 
regression training. After training, the performance of these two regression models was 
compared by evaluating the loss functions using the MAE and MSE metrics (see Table 2). Table 
2 shows that the GAM exhibits lower MSE and MAE values within the training dataset 
compared to the DL, but shows larger deviations in the test data. 
 

Table 2: Quantitative evaluation of contrast regression models by using MAE and MSE losses. 

Methods MAE MSE 

 Train Test Train Test 

GAM 0.6 2.6 0.4 5.2 

DL 1.3 1.4 1.9 2.1 
 

 
 
Figure 17:  Measurement (dots) and model prediction (dots&line) of the contrast between 1/2 
vials for varying TR and discrete values of TE for the (a) GAM and (b) deep learning-based 
model. 
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Figure 18: Contrast predicted with GAM (a, c) and DL-based regression (c, d) for varying TF 
and TR and fixed TE = 11 ms (a, b) and varying TR, TE and fixed TF = 10 (c, d). 
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3.2.2. Optimization 
In this section, two clinical use cases are illustrated: (1) achieving the same contrast as the 

target image, and (2) maximizing the contrast in specified tissue types. Furthermore, these 

two clinically relevant optimization goals are evaluated using different optimization methods: 

(i) CMA-ES and (ii) GA for single-objective optimization for clinical use case 1 and 2, and (iii) 

NSGA-III for multi-objective optimization (MOO) specifically for clinical use case 2. 

i) Achieving the same contrast as in a target image 

Figure 20: shows the comparison between the two different optimization methods, GA and 

CMA-ES, used to achieve the same contrast as a target image. Figure 19: shows that GA 

required a larger number of iterations compared to CMA-ES; however, both methods 

converged at the same parameter values (FA = 173°, TF = 26, TE = 47 ms, TR = 1763 ms) and 

objective function values. The CMA-ES optimization method required 59 iterations to 

converge, while the GA optimization required 159 iterations. In addition, the finally optimized 

image obtained by the CMA-ES optimization method is displayed for visualization and 

comparison with the target image (T) acquired at the 0.35 T MR linac. 

Figure 20: compares the results for population sizes of 2, 3, 4, 5, and 6, which required 185, 

126, 59, 108, and 85 iterations, respectively. It was found that the 4 acquisitions per iteration 

is most suitable for the presented optimization case. In Figure 20:, the performance of the 

optimization method is shown using an intelligent initial guess (close to the previous 

optimization solution) of (FA = 165°, TF = 20, TE = 35 ms, TR = 1650 ms), which converged to 

the optimal parameter values in only 37 iterations compared to 59 iterations when starting 

at a random position within the parameter space. Figure 21 illustrates the progression of the 

parameter development during the optimization process. 
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Figure 19: A comparison of the MSE loss functions for the GA and CMA-ES optimization 
methods is shown for clinical use case i). Additionally, the finally optimized image (F) 
obtained by the CMA-ES method as well as the target image (T) are displayed. 

 
 

Figure 20: Comparison of the MSE loss functions for the CMA-ES optimization method with 

varying population sizes for clinical case i). The number of iterations required for 

convergence with population sizes of 2, 3 4, 5, and 6 were 185,126, 59, 108, and 85, 

respectively. An evaluation with an initial guess and a population size of 4 converged in just 

37 iterations. 
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Figure 21: Development of TE (a), TR (b), TF (c), and FA (d) parameters during the regression-

based optimization process for clinical use case i). CMA-ES converged in fewer iterations 

compared to GA, although both methods result in the same SPS. 
 

 

ii) Maximizing the contrast between different tissue types 

Figure 22: Figure 22: shows the Pareto front MOO optimal solutions for the contrast between 

substitutes 1/2, 2/3, and 3/4 obtained by the NSGA-III method. For better visualization, only 

the contrast between substitutes 1/2, 2/3, and 3/4 are presented. The CMA-ES was also 

evaluated as a classical MOO in terms of maximizing the contrast between selected 

substitutes. Table 3 shows the results of the CMA-ES optimization method for two analyzed 

weight settings. Setting 1 (λ12, λ23, λ34 = 1) resulted in a well-distributed contrast between 

substitutes. Setting 2 (increasing the weighting factors λ12 and λ23 to 5) increased the contrast 

between substitutes 1/2, but at the cost of decreased contrast between substitutes 3/4. The 

contrast between substitutes 2/3 remained the same in this case. We found (FA: 170°, TF = 

10, TE: 57 ms, TR: 2010 ms) and (FA: 179°, TF = 36, TE: 39 ms, TR: 2100 ms) as the optimal 

parameter values for setting 1 and setting 2, respectively. 

Figure 23: shows the Pareto front of optimal solutions obtained using the NSGA-III method. 

These plots also include solutions obtained using CMA-ES for the two different weight settings 
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1 and 2. The results show that by varying the weighting factors λij, different optimal contrast 

combinations between all the substitutes can be obtained in the Pareto front optimal 

solutions. 

 

Table 3: Signal and contrast for the measured substitutes for two different sets of weighting factors. 

Container 1 2 3 4 

Case 1 (λ12=λ23=λ34 =1) 

Signal [a.u.] 975.01 618.63 1312.71 1627.69 

Contrast [a.u.]  356.41 696.17 312.98  

Case 2 (λ12=λ23 = 5, λ34 =1) 

Signal [a.u.] 885.01 434.51 1130.51 1300.86 

Contrast [a.u.]  450.49 695.99 170.34  

  

 

 
 
 

Figure 22: Results of the multi-objective optimization using NSGA-III to maximize the 
contrast between the substitutes 1/2, 2/3, and 3/4. The Pareto front shows all the optimal 
contrast combinations with in the given parameter space. 
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Figure 23: Pareto front optimal solutions obtained by using the NSGA-III method for clinical 

case ii). The graphs also represent the solution obtained by using CMA-ES for two different 

weight settings: setting 1 (all weights set to 1) and setting 2 (λ12 and λ23 = 5 and λ34 = 1). 
 

3.3. On-the-run SPS Optimization 
This section presents the detailed results of the on-the-run SPS optimization results, in which 

the MR scanner was remotely controlled using the Access-I interface. Some of the presented 

results have been extracted from our previous publication [88]. Both, CMA-ES and GA 

optimization methods were used for both clinical use cases. For contrast maximization (case 

ii), only classical multi-objective optimization was utilized by introducing weights, as MOO 

requires a large number of acquisitions to find the optimal Pareto front, which is not feasible 

for the on-the-run optimization. 

i) Achieving the same contrast as in a target image 

Figure 24: shows the loss functions for the both GA and CMA-ES optimization techniques. The 

results show, that also here, the CMA-ES method is almost 1.5 times faster than the GA 

method, taking approximately 2.5 hours to converge to the same objective function and 

parameter values (FA: 180°, TE: 50 ms, TR: 2010 ms) as compared to 4 hours for the GA 

method. The CMA-ES optimization took 73 iterations to achieve the optimal value, while the 

GA optimization took 172 iterations. The overall optimization time is the result of the 

acquisition time for the sequences per iteration (10 - 40s), total number of acquisitions (73 vs 

172, respectively), the time required for remotely controlling the MRI via Access-i, and the 

execution of the optimization algorithm, with the first two being the limiting factors. 

Setting 2

1/2 2/3 3/4

457 729 175

Setting 1

1/2 2/3 3/4

351 692 317

Setting 2

1/2 2/3 3/4

457 729 175

Setting 1

1/2 2/3 3/4

351 692 317
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Figure 24: visualized the progress of the optimization process by displaying the image contrast 

at 10, 20, 30, 50, and 73 iterations for the CMA-ES algorithm. These corresponding images 

were then compared with the target image (T) acquired at the 0.35 T MR linac. The excellent 

agreement between the optimized and target images indicates that the contrast optimization 

was successful. Figure 25: provides a visualization of how the parameters evolved throughout 

the optimization process. 

 

Figure 24: A comparison of the MSE loss functions for the GA and CMA-ES on-the-run 
optimization methods for clinical use case i). Additionally, five images at different iteration 
numbers (10, 20, 30, 50 and 73) for the CMA-ES method as well as the target image (T) are 
shown. Adapted from [88] 
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Figure 25: Shows the development of TE (a), TR (b) and FA (c) parameters during the on-the-

run optimization process for the clinical use case i). CMA-ES converges in fewer iterations 

compared to GA, although both methods result in the same final parameter values. Adapted 

from [88]. 

 

ii) Maximizing the contrast between different tissue types 

The CMA-ES and GA methods were also evaluated to optimize for contrast maximization 

between selected substitutes. Table 4 shows only the results of CMA-ES, since CMA-ES 

converged in fewer iterations and achieved the same optimal parameter values. Two settings 

with different weighting factors were analyzed: setting 1, where all weights were set to 1, and 

setting 2, where the weighting factors λ34 and λ45 were increased to 5. In setting 1, the 

contrast between the 3/4 and 4/5 substitutes was relatively low. However, in setting 2, the 

contrast between these substitutes improved significantly, but at the expense of decreased 

contrast between the other substitutes. The optimal SPS for settings 1 and 2 were found to 

be (FA: 173°, TE: 91 ms, TR: 2090 ms) and (FA: 180°, TE: 11 ms, TR: 700 ms), respectively. 
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Figure 26: provides a visual representation of the results by showing the initial and final 

images for both cases.  

 

 

Table 4: Signal and contrast for the measured substitutes for two different sets of weighting factors. 

Container 1 2 3 4 5 6 7 

Case 1 (λ12=λ23=λ34=λ45=λ56=λ67=1) 

Signal [a.u] 715.43 232.46 826.68 940.52 894.82 1227.79 494.94 

Contrast 
[a.u] 

 482.97 594.22 113.84 45.70 332.97 732.85  

Case 2 (λ12=λ23 =λ56=λ67=1, λ34=λ45=5) 

Signal [a.u] 688.79 612.78 1030.27 1627.86 1126.77 1095.36 1213.98 

Contrast 
[a.u] 

 76.01 417.49 569.59 501.09 31.41 118.59  

 

 

 

 

 

 

 

 

 
Figure 26: Illustration of the impact of the two sets of weighting factors: initial image (a) 

and image after optimization with λ12=λ23=λ34=λ45=λ56=λ67=1 (b, setting 1) and λ34 and λ45 

raised to 5 (c, setting 2), respectively. Adapted from [88] 



55 
 

 

 

4. Discussion 
In this chapter, the two previously introduced optimization methods are discussed. Some of 
the presented materials have been extracted from our previous publication [88]. In the 
present work, a proof-of-concept for the automatic optimization of contrast in MRI sequences 
was demonstrated by applying the sequence of SPS using two different optimization 
approaches: (I) Regression-based optimization method and (II) On-the-run optimization 
method. Furthermore, for both methods, it was demonstrated how MR sequences can be 
optimized specifically for application in radiotherapy using two clinical use cases: (1) achieving 
the same signal as in a target image and (2) maximizing the signal difference between 
different tissue types. Use case (1) improves radiotherapy planning in MRgRT, where 
diagnostic MRI images may be easier registered to images obtained at the MR-Linac [89, 90]. 
This registration may be facilitated, if the image from the diagnostic MRI is optimized to have 
the same signal as the target image from the MR-Linac. Use case (2) on the other hand, is 
useful to better distinguish adjacent tissue structures and to automatically delineate them for 
treatment planning.  
 

4.1. Regression-based Optimization method 

A proof-of-concept for automatic contrast optimization in MRI sequences was demonstrated 
using the SPS sequence based on a regression model. The optimization was performed with 
images of a 1.5T MR Aera scanner using 2D TSE sequences due to their relatively short 
acquisition time. The contrast was optimized by adjusting four parameters: TR, TE, TF and FA. 
However, it is important to note that additional parameters could potentially be included in 
this optimization process. Overall, the final data set of acquired images comprised over 1114 
individual SPS.  
For the regression-based optimization method, two regression models were compared: (a) 

GAM and (b) DL to predict contrast between given substitutes. GAMs are useful when the 

relationships in the data are not strictly linear and can handle complex, non-linear patterns 

without relying on a predetermined functional form. One of the key features of GAMs is their 

ability to incorporate spline functions to effectively model non-linearities. These spline 

functions allow GAMs to flexibly capture intricate relationships between predictors and the 

response variable, making them valuable tools for regression analysis in various fields. In 

contrast, the DL model is a neural network-based model that can learn linear or complex 

nonlinear relationships between variables. Unlike traditional regression models, DL models 

can automatically discover intricate patterns and hierarchies in the data by learning from 

large amounts of dataset.  Both models were trained on the acquired dataset and their 

performance was evaluated using two different metrics: the MSE and MAE. These MAE and 

MSE metrics are mainly used to evaluate the prediction error rates and model performance 

in regression analysis. The DL model achieved an MSE of 1.9 and an MAE of 1.3 on the training 

dataset, and an MSE of 2.1 and an MAE of 1.4 on the test dataset. In comparison, the GAM 

model achieved an MSE of 0.4 and an MAE of 0.6 on the training dataset, and an MSE of 5.2 
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and an MAE of 2.6 on the test dataset (see Table 2). Results showed that the GAM model had 

lower errors for the training dataset than the DL model. However, there was a notable 

deviation for the test dataset due to overfitting, particularly visible in Figure 17 at TR=1500 

ms and both TE=57 ms and TE=34 ms in the GAM model, as these points were specifically 

chosen for the test dataset. In contrast, the DL model performed well on both the training 

and test datasets. Mitigating overfitting is relatively easy since a validation test can be applied 

using validation data during training to analyze the model and prevent overfitting. Conversely, 

controlling overfitting in GAM during training is challenging because validation tests cannot 

be applied. In addition, selecting the optimal number of splines to train the GAM to avoid 

overfitting is another challenging task. To address this, the Python implementation of the 

GAM tool [91] used in this study offers additional optimization methods, such as grid search 

and random search. These techniques systematically explore various spline configurations, 

allowing the most suitable number of splines for the specific GAM to be identified. Despite 

the utilization of an additional grid search method to address this problem, some overfitting 

was still observed in the model. 

Depending on the sequence and SPS, interaction effects within the variable may occur. While 

the integration of interaction variables into a GAM is possible, these interaction variables 

have to be pre-defined. For this, however, a prior knowledge of the physical dependence of 

these variables is required. The DL-based model on the other hand can automatically detect 

the described interactions between all parameters without the need for additional 

information. On the other hand, the GAM model is much faster and requires fewer 

computational resources (no GPU) compared to the DL model, even with a large dataset to 

train. The DL models take several hours to be trained and require high computational power 

(GPU). 

DL is a powerful technique that can predict multiple outcomes using only one model, as 

shown in the Figure 14. Despite the already mentioned time-consuming nature and the need 

for high computational power in the training-phase of a deep learning model, it only needs to 

undergo training once to support multiple predictions, which may consequently save both 

time and computational resources. On the other hand, for a GAM training a separate model 

for each contrast combination is required. This means that for n objective functions, the 

number of GAM models is n, while in the DL-based model approach only one can be sufficient. 

Therefore, a DL model is a more efficient approach for multi-prediction tasks. Once a reliable 

regression model has been established, optimization can be conducted using the regression 

model.  

 

4.1.1. Optimization 

i) Achieving the same contrast as in a target image 

In In this work, two single-objective optimization algorithms based on evolutionary strategies: 

GA and CMA-ES, were evaluated. Each iteration of the algorithms runs on a fixed population 

size, determining how many samples have to be acquired and evaluated per iteration. As 

shown in Figure 19, CMA-ES only required 59 iterations (resulting in a total of 236 

acquisitions), while GA required 159 iterations (resulting in a total of 636 acquisitions) using 
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a population size of 4. Since, CMA-ES required fewer iterations than GA, the results obtained 

from CMA-ES were presented for further analysis. In Figure 20, different population sizes 

were tested, with 2–6 acquisitions and found that a population size of 4 was most suitable for 

both GA and CMA-ES, based on time efficiency. The number of iterations required for CMA-

ES for convergence with population sizes of 2, 3, 5, and 6 was 185, 126, 108, and 85, 

respectively. The termination criteria were consistently applied across all population sizes: 

The objective function value remained unchanged beyond the user define threshold of 10-3, 

or none of the variables exhibited changes greater than 1, as the variables were considered 

only as integer values. Additionally, the PyMOO framework that has been used for the 

implementation of the individual algorithms, has the ability to select an initial guess, which is 

utilized within one of the population selections. The performance of such an initial guess in 

CMA-ES was evaluated by employing a parameter set close to the optimal value, leading to 

convergence with a population size of 4 in just 37 iterations. These findings could be helpful 

for optimizing the sequence SPS in-vivo and in clinical practice, this initial guess during an in-

vivo optimization could consist of clinically suggested optimized parameter sets or by 

optimized parameters from a phantom study. 

Overall, the comparison of the two presented optimization methods shows that CMA-ES 

converges faster and should therefore be preferred over the GA algorithm for the presented 

optimization cases. It is important to note, however, that the required population size and 

the number of iterations may differ significantly depending on the number of sequence 

parameters included in the optimization and the resulting complexity of the objective 

function. Regarding population size, there is a trade-off between slowing down the 

optimization by larger population sizes and insufficient diversity if the size is too small. 

 

ii) Maximizing the contrast between different containers 

Here we wanted to maximize the contrast between the adjacent vails. As these represent 

different clinical objective, this problem is considered as a MOO problem, and therefore a 

different optimization approach as presented in i) had to be used. For this, two different MOO 

methods were implemented: the classical approach, which is a scalarization method that 

transforms a multi-objective function into a scalar function by applying a weighted sum of 

each objective function (see section 2.5.3 for more details), and NSGA-III, an evolutionary 

algorithm designed to find the best Pareto optimal solutions using elitism and a fast non-

dominated sorting approach. In the multi-objective optimization analysis, the results 

demonstrated that NSGA-III produced a well-spread pareto-front optimal solution. Despite 

the extensive time required for multi-objective optimization, using 250 populations and 50 

iterations, resulting in a total of 250 x 50 = 12,500 measurements, the NSGA-III method 

proved to be a powerful technique for solving MOO. It provided all the objective contrast 

solutions through a single optimization method, saving a significant amount of time and 

computational resources. In contrast, the classical approach requires optimization from 

scratch with new combinations of weighting factors, which is not an efficient method. 

Furthermore, to evaluate both classical and NSGA-III multi-objective optimization approaches 

and also to understand the impact of weighting factors (λij) in the classical approach, two 
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settings of weighting factors were investigated: Setting 1) (λ12, λ23, λ34 to 1) resulted in a well-

distributed contrast between substitutes. Setting 2 (increasing the weighting factors λ12 and 

λ23 to 5) which in turn increased the contrast between substitutes 1/2 and 2/3. The obtained 

results by using a classical approach of considering a weighted sum of the individual objective 

functions, also show the trade-off between NSGA-III and classical approach optimization 

method. For both settings 1 and 2, the optimal solution of classical method was found within 

the pareto-optimal solutions which was obtained using NSGA-III. By altering the λ values, an 

investigation was conducted into how the classical optimization algorithm prioritizes the 

associated objectives in comparison to the others. 

For multi-objective optimization problems, the NSGA-III optimization algorithm has also been 

implemented. NSGA-III is a MOO algorithm that extends the classical genetic algorithm to 

solve problems with multiple conflicting objectives. It has several advantages over classical 

weighting methods in multi-objective optimization. Unlike classical methods that require the 

specification of weighting factors for each objective, NSGA-III eliminates this need, making it 

more applicable to real-world problems. It uses non-dominated sorting and crowding distance 

to maintain a diverse population of solutions, which is critical when dealing with multiple 

conflicting objectives and a diverse set of solutions is desired. Designed to handle problems 

with different types of Pareto fronts, including convex, concave, and disconnected fronts, 

NSGA-III adapts well to different problem structures without requiring specific knowledge of 

the problem domain. 

4.2. On-the-run optimization 

In the present study, a proof-of-concept was demonstrated for fully automated optimization 
of contrast in MRI sequences by applying the sequence of SPS directly on the scanner. The 
optimization was performed for 1.5T MR Sola scanner using 2D TSE sequences due to its 
relatively short acquisition time. The contrasts were optimized by changing the three 
parameters TR, TE, and FA, however, more parameters could in principle be included.  
  

i) Achieving the same contrast as in a target image 

In this study, SPS optimization was performed by aiming at a similar contrast as the target 
image from different scanners or the same scanner with different SPS. The same two 
optimization algorithms based on evolutionary strategies: GA and CMA-ES were evaluated. 
Different population sizes, ranging from 2 to 5 acquisitions, were tested and obtained 
consistent results similar to those obtained in the regression-based approach. Again, a 
population size of 4 was found to be optimal for both GA and CMA-ES in terms of time 
efficiency. In particular, CMA-ES required 73 iterations, resulting in a total of 292 acquisitions 
and a total optimization time of approximately 2.5 hours. Meanwhile, GA required 172 
iterations, resulting in a total of 688 acquisitions and a total optimization time of 
approximately 4 hours. The total optimization time also depends on the parameter 
combinations chosen during optimization, as small TR values require less acquisition time 
compared to long TR values. The number of iterations required for CMA-ES to converge with 
population sizes of 2, 3, and 5 were 162, 125, and 93, respectively.  
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ii) Maximizing the contrast between different containers 

As shown before, in multi-objective optimization in clinical use case 2 (maximization the 

contrast between adjacent vials), NSGA-III is computationally expensive and time consuming 

compared to the classical approach of a weighted sum of the individual objective functions to 

one single objective function. Due to the large number of acquisitions, it is difficult to solve 

such a problem directly from measurements on the scanner as shown in regression-based 

optimization method. Here, two different settings of weight factors were investigated for 

maximizing the signal between adjacent substitutes: Setting 1, where all weights were set to 

one (λ12, λ23, λ34, λ45, λ56, λ67 = 1), resulted in a rather low contrast between substitutes 3/4 

and 4/5 as shown in Figure 26. Changing the weights of individual containers, as presented in 

setting 2 (λ34 = λ45 = 5), significantly improved the contrast between the respective substitutes 

3/4 and 4/5, but at the expense of reduced contrast between the other substitutes. For both 

setting 1 and setting 2, the number of iterations required to converge using CMA-ES with a 

population size of 4 was 67 and 59, respectively. 

In this work, a real-time scanner remote control tool "Access-i", developed by Siemens 

Healthineers in Erlangen, Germany, was used. Access-i provides access to all sequences 

implemented on the scanner by the manufacturer. In addition, it exists in several versions, 

including a graphical interface and a Python script version. For full control of the scanner, the 

Python version of Access-i was used in this work by integrating Access-i into the optimization 

pipeline. However, this tool has some limitations. Certain MR parameters remain inaccessible 

via Access-i. For example, parameters such as echo spacing and echo train length/turbo factor 

play a critical role in contrast formation, but are not adjustable through Access-i. Another 

limitation is that the Access-i tool has a fixed timer for executing the second command. 

However, after including the optimization algorithm, the optimization process takes 

additional time, resulting in code crashes. To address this issue, an additional timer has been 

introduced to consider the additional time of the optimization. In addition, a recently released 

real-time scanner remote tool known as Pulseq is an open-source framework specifically 

designed for the development and execution of MR pulse sequences used in imaging and 

spectroscopy. With Pulseq, MRI sequences can be programmed directly in MATLAB or Python 

and executed on real MR devices [6, 92]. However, working with Pulseq requires a detailed 

understanding of the manufacturer's pulse schemes, including the fixed timing of gradients 

and RF pulses used in the clinical sequence. 

As an alternative to the employed optimization algorithms, one could also use a discrete 

gradient descent optimization method [93], a derivative-free approach for solving 

unconstrained non-smooth optimization problems. This method is based on the concept of 

discrete gradients, which can approximate the sub-gradients of a wide range of non-smooth 

functions. Furthermore, this method can improve computational efficiency, as it requires a 

small population size, therefore requiring a smaller number of image acquisitions. Previous 

studies [94-96] have shown that this method is computationally efficient in solving non-

smooth optimization problems. However, it is important to note that the performance of this 

method may vary depending on the specific characteristics of the optimization problem. 

In contrast to the present approach, SPS optimization based on Bloch equations can be 

performed, which may be faster compared to real acquisition-based optimization as it does 
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not require a MR device. However, it heavily relies on the knowledge of Bloch simulation to 

implement a specific sequence and accurate T1 and T2 relaxation times for each tissue, which 

are not necessarily known. Recently, a self-learning framework called ‘MR-zero’ [7], utilizing 

the Pulseq-tool, has been proposed, which adapts and optimizes MRI sequences based on a 

Bloch equation simulation. The generated pulse sequence, still requires knowledge of Bloch 

simulation in order to perform MR sequence optimization. In the more advanced version 

"MR-double-zero" [8], the “Pulseq” tool is still utilized to remotely control the scanner, 

however, the optimization directly operates on the acquired imaging data without requiring 

a Bloch simulation model or any further human interaction. However, implementing a 

sequence in Pulseq remains a challenging task. In contrast, the method used in this thesis 

operates directly on the MR scanner, accessing predefined clinical sequences using the 

Access-i interface of the manufacturer without prior knowledge about sequence details. This 

approach simplifies the optimization process and makes it feasible. 

In recent times, several methods for optimizing MR sequence parameters have been 

proposed. One notable approach is Joint MR Sequence Optimization [97], which combines 

MR physics knowledge with neural network techniques to enhance super-resolution in spin-

echo MRI. This approach simultaneously optimizes the RF pulse train for PD and T2-weighted 

TSE sequences. By integrating known-operator learning, the RF pulse design generates 

optimal signals for the NN. Importantly, this method bridges the gap between physics-based 

optimization and AI-driven approaches. Additionally, AI-driven and automated optimization 

[98] revolutionizes MR sequence design. ML within the Pulseq framework enables direct MRI 

sequence formulation in MATLAB. Using simulated phantom data as a training database, ML 

algorithms capture the intricate relationship between sequence parameters and simulated 

outcomes. Both methods employ Bloch simulation with the Pulseq tool to implement the 

sequence. However, our proposed “on-the-run” optimization method has a unique property: 

it optimizes the SPS directly on clinical sequences implemented by the manufacturer. 

In addition, some limitations of on-the-run optimization method should be addressed. First, 

the potential influence of gradient heating and field drifts due to the long image acquisition 

time must be acknowledged, as they may affect image quality and measurement accuracy 

[99, 100]. Secondly, the phantom was newly prepared following the recipe as described in 

[87]. However, the T1 and T2 values were not verified again. Finally, the optimal parameters 

obtained by using the proposed workflow may be different from typical clinical parameters 

and while the new contrast may be beneficial for a certain application, it may come along 

with a suboptimal diagnostic image quality.  
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4.3. Comparison of the applied methods: regression-based vs. 

on-the-run optimization  

Both the regression-based method and the on-the-run optimization method have been used 

to optimize the sequence parameter sets. However, the regression-based method is a 

inefficient method that requires acquisition of a very large dataset including image 

acquisitions at all potentially relevant parameter combinations of the parameter space, the 

implementation of a regression model, and the application of the optimization method. In 

contrast, the on-the-run optimization is a fully automated MR sequence optimization method 

without any human interaction. This model automatically segments all the vials, calculates 

the required clinical objectives, and performs the optimization directly on the MR scanner 

using the Access-i tool. 

For instance, to build a regression method, obtaining S = 10 entries in each of the parameter 

spaces (number of parameters N = 4) would lead to SN = 104 necessary measurements and 

the problem of defining appropriate boundary conditions. In contrast, the on-the-run 

optimization method can be seen as an advanced, sophisticated and efficient search in the 

MR parameter space to solve both clinical use cases. The autonomous on-the-run 

optimization required only 300 acquisitions, which took about 3 hours directly at the MRI 

scanner. This is still long for an MRI examination, but faster compared to the regression-based 

optimization approach. In addition, the scanning time in the on-the-run optimization method 

could be decreased further by intelligently selecting the initial guess. The results show that 

by selecting a suitable initial guess, e.g., from a previously optimized SPS could significantly 

decrease the acquisition time. 

For the clinical use case of maximizing the signal difference between tissues, we discussed 

that this problem is a MOO problem and has more than one solution. To solve such problems 

with a population size of 250 and 50 iterations, 12,500 measurements are required. However, 

this large number of measurements performed directly on the MRI scanner not feasible. 

Therefore, only the classical approach was investigated for the on-the-run optimization, and 

NSGA-III does not appear to be possible for this case. However, in the regression-based 

method, a large number of data sets were acquired by varying different parameters, and two 

regression models (GAM and DL) were built. These models can accurately predict the 

unknown contrast values for given SPS. Therefore, during the optimization process, the 

regression model was used as an objective function that gives the contrast values for all 

substitutes without performing any measurements on the scanner. Therefore, NSGA-III was 

used and analyzed for regression-based optimization. 
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4.4. Future work 

In this proof-of-principle study, the optimization was performed on a phantom and for clinical 

implementation, the optimized sequences need also to be tested in-vivo. While phantoms 

measurements are useful to establish and calibrate an optimized sequence, images may 

additionally be affected by differences in object size, conductivity and by complex 

physiological and/or dynamical conditions within the human body. Therefore, the contrast 

obtained with the optimized SPS has to be validated in humans. As the optimization of the 

rather simple and fast TSE already took almost 3h, it may not be feasible to perform the full 

optimization in-vivo, however, the SPS could be pre-optimized in anthropomorphic phantoms 

and the obtained SPS may be used as a starting point for further optimization in vivo. This 

approach may significantly reduce the required optimization times in humans.  

Further, more clinical sequences may be integrated into the optimization pipeline, for 

example, the 3D True Fast Imaging with Steady State Free Precession used for planning at the 

MRIdian MR-Linac. Finally, further studies have to investigate additional optimization 

parameters such as CNR, SNR and acquisition time.  

 

4.5. Conclusion 

In conclusion, both proposed frameworks, (I) regression-based optimization and (II) on-the-

run optimization,” for an automated multi-parametric optimization of SPS on MRI scanners 

have the potential to enhance the quality of MRI images for specialized purposes in MRgRT. 

The optimization workflow has been established and exemplarily tested for two clinical use 

cases: (i) achieving the same signal as in a target image and (ii) maximizing the signal 

difference (contrast) between different tissue types. The evaluation of two optimization 

methods based on evolutionary strategies suggests that Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) is an efficient approach to optimize the signal towards a target 

image or to optimize signal difference between two given tissues for both frameworks. 

Moreover, the evaluation of Non-Dominated Sorting Genetic Algorithm (NSGA-III) method for 

MOO and classical approach for Multi-Objective-Optimization (MOO) in regression-based 

approach showed that NSGA-III has significant advantages over classical approaches because 

it provides a full pareto-front in one problem solution. The presented methods may be 

extended by including additional sequence parameters and image quality goals, providing a 

flexible tool for optimizing MR image sequences for different clinical needs. 
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5. Summary 
 

Magnetic Resonance Imaging (MRI) is widely used in oncology for tumor staging, treatment 

response assessment, and radiation therapy (RT) planning. However, optimization of MRI 

sequences for specific clinical needs is complex and very time-consuming due to the large 

number of parameter settings. This study proposes two different frameworks for the 

automatic optimization of MRI sequences addressing two clinical use cases in RT planning 

based on the sequence parameter sets (SPS): I) a regression-based optimization and II) an on-

the-run optimization. A phantom with 7 in-house fabricated contrasts was used for 

measurements. In the regression-based optimization, two prediction models, i) a Generalized 

Additive Model (GAM), and ii) a Deep Learning (DL) model, were implemented based on a 

large number of acquired datasets. In contrast, the on-the-run optimization of the SPS was 

applied directly on the MR scanner using the interface Access-i. Both frameworks used a 

derivative-free optimization algorithm to iteratively update a parameterized sequence based 

on the prediction model or on the use of the MR scanner. In each iteration, the mean squared 

error (MSE) was calculated. Two clinically relevant optimization goals were pursued: achieving 

the same contrast as in a target image and maximizing the contrast between specified tissue 

types. Both goals were evaluated using two optimization methods: a covariance matrix 

adaptation evolution strategy (CMA-ES) and a genetic algorithm (GA). The obtained results 

demonstrated the potential of the framework for automatic contrast optimization of MRI 

sequences. Both CMA-ES and GA methods showed promising results in achieving the two 

optimization goals; however, CMA-ES converged much faster compared to GA. The proposed 

frameworks enable fast automatic contrast optimization of MRI sequences based on SPS and 

may be used to enhance the quality of MRI images for dedicated applications in MR-guided 

RT. 
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6. Zusammenfassung 
 

Die Magnetresonanztomographie (MRT) wird in der Onkologie häufig für das Tumor-Staging, 

die Beurteilung des Therapieerfolgs und die Planung der Radiotherapie (RT) eingesetzt. Die 

Optimierung von MRT-Sequenzen für spezifische klinische Anforderungen ist jedoch aufgrund 

der großen Anzahl von Parametereinstellungen komplex und sehr zeitaufwändig. In dieser 

Studie werden zwei verschiedene Verfahren für die automatische Optimierung von MRT-

Sequenzen für zwei klinische Anwendungsfälle in der RT-Planung basierend auf den Sequenz-

Parametersätzen (SPS) vorgeschlagen: I) eine regressionsbasierte Optimierung und II) eine 

On-the-Run-Optimierung. Für die Messungen wurde ein Phantom mit 7 selbst hergestellten 

Kontrasten verwendet. Bei der regressionsbasierten Optimierung wurden zwei 

Vorhersagemodelle, i) ein verallgemeinertes additives Modell (GAM) und ii) ein Deep-

Learning-Modell (DL), auf Basis einer großen Anzahl von aufgenommenen Datensätzen 

implementiert. Die On-the-Run-Optimierung der SPS wurde dagegen direkt auf dem MR-

Scanner über die Access-i Schnittstelle durchgeführt. Beide Methoden verwendeten einen 

ableitungsfreien Optimierungsalgorithmus, um eine parametrisierte Sequenz basierend auf 

dem Vorhersagemodell oder der direkten Verwenduung des MR-Scanner iterativ zu 

aktualisieren. In jeder Iteration wurde der mittlere quadratische Fehler (MSE) berechnet. Es 

wurden zwei klinisch relevante Optimierungsziele verfolgt: Das Erreichen des gleichen 

Kontrasts wie in einem Zielbild und die Maximierung des Kontrasts zwischen bestimmten 

Gewebetypen. Beide Ziele wurden mit zwei Optimierungsmethoden bewertet: einer 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) und einem genetischen 

Algorithmus (GA). Die erzielten Ergebnisse zeigten das Potenzial der Methode für die 

automatische Kontrastoptimierung von MRT-Sequenzen. Sowohl die CMA-ES- als auch die 

GA-Methode zeigten vielversprechende Ergebnisse beim Erreichen der beiden 

Optimierungsziele, wobei die CMA-ES-Methode im Vergleich zur GA-Methode wesentlich 

schneller konvergierte. Die vorgeschlagene Methode ermöglicht die schnelle automatische 

Kontrastoptimierung von MRT-Sequenzen auf der Grundlage von SPS und kann zur 

Verbesserung der Qualität von MRT-Bildern für spezielle Anwendungen in der MR-geführten 

RT eingesetzt werden. 
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