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Abstract
Relaxing Supervision Requirements for Tomographic Data Analysis with

Machine Learning

In this doctoral thesis, the power and potential of advanced imaging techniques,
specifically Tomographic Imaging (hereinafter tomography), are explored in an era
characterized by the rapid growth of data and the critical need for effective analysis
strategies. This work engages with different modalities, such as but not limited to
parallel beam X-ray Computed Tomography (CT), and Magnetic Resonance Imag-
ing (MRI). The research is centered around the incorporation of machine learning
models, deep learning in particular, to optimize the analysis of tomography scans
across various domains, including biology, medicine, and material sciences. This
is achieved by navigating the primary challenges associated with the utilization of
tomography, namely image preprocessing, data labeling, and model training. This
work is organized as a series of chapters, consequently covering those topics in the
order in which the proposed techniques would be applied in a practical pipeline of
the data analysis.

In Chapter 3 this work explores the applicability of the Noise2Noise denois-
ing technique to the multi-channel imaging datasets, particularly those with signifi-
cantly reduced Signal-to-Noise Ratio (SNR). Utilizing the self-supervised denoising
approach for datasets for biological and material sciences, significant improvements
in image quality have been achieved, or, equivalently, the possibility to reduce ex-
posure time has been shown while maintaining image quality.

Chapter 4 of the thesis details the optimization of dataset preparation proce-
dures for training neural networks, specifically concerning tomography segmenta-
tion tasks. The study conducted on several openly available medical datasets unrav-
els the critical elements of a useful dataset: quality, diversity, and completeness. It
further proposes an optimized labeling procedure that balances these virtues, aim-
ing to deliver the best dataset with minimal effort.

Chapter 5 introduces a novel self-supervised pre-training technique for biomed-
ical tomography called SortingLoss. Its underlying principle is the utilization of
the inherent order of slices in a tomography scan volume to pre-train a neural net-
work. This method has been evaluated on medical tomography of lungs affected by
COVID-19 and high-resolution full-body tomography of model organisms (Medaka
fish) showing lower computational complexity while maintaining results on par
with more complex but general approaches.

Lastly, Chapter 6 presents a self-training framework for multi-label segmenta-
tion, therefore marking the last stage of the data analysis. The pseudo-labeling
method, complemented by a novel Quality Classifier technique to select the best
pseudo-labels, and pixel-wise knowledge distillation, has led to improved segmen-
tation performance when tested on the dataset of the Medaka fish brain segmenta-
tion.

In sum, this thesis explores the profound potential of integrating advanced com-
puter vision and machine learning tools in the application of tomography imaging.
It proposes novel solutions to existing challenges and applies existing techniques in
novel circumstances, aiming to remove the burden of manual analysis from the area
experts.
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In dieser Doktorarbeit werden die Kraft und das Potenzial fortschrittlicher bild-
gebender Verfahren, insbesondere der Tomographischen Bildgebung (im Folgenden
Tomographie), in einer Ära untersucht, die durch das schnelle Wachstum von Da-
ten und die dringende Notwendigkeit effektiver Analysestrategien gekennzeichnet
ist. Diese Arbeit beschäftigt sich mit verschiedenen Modalitäten, wie aber nicht
beschränkt auf Parallelstrahl-Röntgen-Computertomographie (CT) und Magnetre-
sonanztomographie (MRT). Die Forschung konzentriert sich auf die Einbeziehung
von maschinellen Lernmodellen, insbesondere des tiefen Lernens, um die Analy-
se von Tomographie-Scans in verschiedenen Bereichen, einschließlich Biologie, Me-
dizin und Materialwissenschaften, zu optimieren. Dies wird erreicht, indem die
primären Herausforderungen im Zusammenhang mit der Nutzung der Tomogra-
phie, nämlich Bildvorverarbeitung, Datenbeschriftung und Modellschulung, bewäl-
tigt werden. Diese Arbeit ist als eine Reihe von Kapiteln organisiert und deckt folg-
lich diese Themen in der Reihenfolge ab, in der die vorgeschlagenen Techniken in
einer praktischen Datenanalyse-Pipeline angewendet würden.

In Chapter 3 untersucht diese Arbeit die Anwendbarkeit der Noise2Noise Ent-
störungstechnik auf Multikanal-Bildgebungs, insbesondere solche mit deutlich re-
duziertem Signal-Rausch-Verhältnis (SNR). Durch die Verwendung des selbstüber-
wachten Entstörungsansatzes für Datensätze aus den Bereichen Biologie und Mate-
rialwissenschaften wurden signifikante Verbesserungen der Bildqualität erzielt oder,
anders ausgedrückt, die Möglichkeit gezeigt, die Belichtungszeit zu reduzieren und
dabei die Bildqualität beizubehalten.

Chapter 4 der Arbeit beschreibt die Optimierung von Verfahren zur Datensatz-
vorbereitung für das Training neuronaler Netzwerke, insbesondere im Hinblick auf
CT-Segmentierungsaufgaben. Die Studie, durchgeführt an mehreren öffentlich ver-
fügbaren medizinischen Datensätzen, entfaltet die kritischen Elemente eines nütz-
lichen Datensatzes: Qualität, Vielfalt und Vollständigkeit. Sie schlägt weiterhin ein
optimiertes Beschriftungsverfahren vor, das diese Tugenden ausbalanciert und dar-
auf abzielt, den besten Datensatz mit minimalem Aufwand zu liefern.

Chapter 5 führt eine neuartige selbstüberwachte Vor-Trainingstechnik für bio-
medizinische CTs ein, genannt SortingLoss. Ihr zugrundeliegendes Prinzip ist die
Nutzung der inhärenten Reihenfolge von Schnitten in einem CT-Scanvolumen, um
ein neuronales Netzwerk vorzutrainieren. Diese Methode wurde an medizinischen
CTs von Lungen, die von COVID-19 betroffen sind, und an hochauflösenden Ganz-
körper CT von Modellorganismen (Medakafische) getestet und zeigt eine geringere
Rechenkomplexität, während sie Ergebnisse auf Augenhöhe mit komplexeren, aber
allgemeineren Ansätzen beibehält.

Schließlich stellt Chapter 6 einen Selbsttrainingsrahmen für die Mehrfachetiket-
tensegmentierung vor und markiert somit die letzte Stufe der Datenanalyse. Die
Pseudobeschriftungsmethode, ergänzt durch eine neuartige Quality Classifier Tech-
nik zur Auswahl der besten Pseudobeschriftungen, und pixelweise Wissensdestilla-
tion haben zu verbesserten Segmentierungsleistungen geführt, als sie am Datensatz
der Medakafisch-Gehirnsegmentierung getestet wurden.

Zusammenfassend erforscht diese Dissertation das tiefe Potenzial der Integrati-
on fortschrittlicher Computer Vision und maschineller Lerntechnologien in der An-
wendung der CT-Bildgebung. Sie schlägt neuartige Lösungen für bestehende Her-
ausforderungen vor und wendet bestehende Techniken in neuen Umständen an, mit
dem Ziel, die Last der manuellen Analyse von den Fachexperten zu nehmen.
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List of Abbreviations and
Terminology

Radiography (X-ray Imaging) A non-invasive diagnostic technique employing X-
rays to generate images representing the internal composition of an object or
body, facilitating the examination of structural integrity or pathology without
requiring direct access.

CT (Computed Tomography) An advanced imaging modality that synthesizes mul-
tiple X-ray projections taken from diverse angles to create volumetric cross-
sectional images, enabling detailed internal visualization without physical sec-
tioning.

MRI (Magnetic Resonance Imaging) A radiological technique that utilizes strong
magnetic fields and radiofrequency pulses to produce detailed images of in-
ternal body structures, highlighting physiological processes and anatomical
details.

Biomedical Imaging The interdisciplinary field that combines elements of engineer-
ing, biology, and medicine to visualize internal structures for diagnostic, ther-
apeutic, and research purposes, encompassing a broad spectrum of imaging
modalities.

ML (Machine Learning) A branch of artificial intelligence focused on developing
algorithms that enable computers to learn from and make predictions or deci-
sions based on data, without being explicitly programmed for specific tasks.

DL (Deep Learning) A subset of machine learning characterized by the use of deep
neural networks with multiple layers of processing units, facilitating the mod-
eling of complex patterns and high-level abstractions in data.

NN (Neural Network) A computational architecture inspired by the neural networks
in the human brain, consisting of interconnected units (neurons) that process
information using a layered approach, adaptable to a wide range of tasks through
learning.

Image Segmentation The process of dividing a digital image into multiple segments
(regions or pixels) to simplify or change its representation into a more mean-
ingful format, facilitating easier analysis or interpretation.

k-NN (k-Nearest Neighbors) A non-parametric method in machine learning for clas-
sification and regression that estimates the likelihood of a data point belonging
to one class or another based on the closest data points in the feature space.

FBP (Filtered Back Projection) A reconstruction algorithm widely used in CT imag-
ing to produce two-dimensional images from the raw data acquired from mul-
tiple angles around the object, applying filters to correct distortions and en-
hance quality.
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Sinogram A data representation derived from the raw measurements collected dur-
ing a computed tomography (CT) scan, depicting the intensity of transmitted
radiation as a function of the projection angle and the position of the radiation
source. Sinograms serve as the foundation for algorithms such as filtered back
projection (FBP) to reconstruct cross-sectional images from the radiographic
projections.

SNR (Signal-to-Noise Ratio) A quantitative measure comparing the level of a de-
sired signal to the background noise, crucial in determining the quality and
clarity of an image or signal, with higher values indicating less noise and
clearer detail.

PR (Phase Retrieval) An algorithmic approach in imaging science for extracting phase
information from intensity patterns, indispensable in fields where direct phase
measurement is challenging, enhancing image contrast and resolution in non-
invasive imaging.

ToF (Time-of-Flight) A technique for estimating distance based on the travel time
of a signal (light, sound, or particles) from a source to an object and back to a
detector, applied in 3D imaging, LIDAR, and other spatial measurement con-
texts.
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Chapter 1

Introduction

Analyzing specific instances, whether they are biological specimens like wasps and
mice, physical entities such as crystals and liquids, or historical artifacts like ancient
books and pottery, is a fundamental step in advancing our understanding of the
world across natural and applied sciences. Earlier, e.g., in biology, scientists explored
the structures of an organism with the naked eye, then with a microscope. However,
not only light microscope have its limitations on the possible resolution (Evennett
and Hammond, 2004), but it also has two intrinsic limitations: the ability to image
either the exterior of an opaque sample or the projection of a translucent sample,
never the full 3D information. The quasi-3D information became obtainable with
light sheet microscopy, where the sample is illuminated with a thin and wide laser
beam (sheet), and the microscope captures the luminescence of the illuminated sam-
ple layer (Huisken et al., 2004). The ability to image samples opaque to visible light
came with the discovery of X-rays, which allowed the exploration of the intrinsic
structure of such samples without physical intervention. The next step in the pro-
cess of the sample’s inner structure discovery was the Computed Tomography (CT)
technique, which is able to produce a dense 3D image of the sample, a detailed,
solid-filled volumetric internal representation, without any interventions other than
exposure to X-ray radiation. While exposure to the radiation itself is yet a problem
to be solved, especially for living creatures, this technique allowed for a new level of
understanding of the microworld (Keklikoglou et al., 2021).

The CT is applied with various modifications in a multitude of knowledge do-
mains. It has become an essential technique for medicine. E.g., as Power et al., 2016
claims, it has drastically reduced the need for exploratory surgery. It also increased
the quality of early disease detection and became a popular screening technique (Bin
Saeedan et al., 2016; MacMahon et al., 2005). When the COVID-19 epidemic stroke,
CT became one of the important steps to precisely diagnose and understand the dis-
ease development stages (Kwee and Kwee, 2020, Figure 1.1).

In biology, applications of CT vary widely. It allowed a deep dive into otherwise
inaccessible domains such as insect anatomy (Van De Kamp et al., 2011) or preserved
fossils (Kamp et al., 2018, Figure 1.2). The nano-scale CT allowed Bradley, Robinson,
and Yusuf, 2017 to image the cell growth process on polymer scaffolds with unprece-
dented resolution. The in-vivo CT allowed Moosmann et al., 2013 to discover cell
behavior during the gastrulation phase of the Xenopus laevis embryo development.
The high level of process automation allowed Weinhardt et al., 2018 to image hun-
dreds of samples and create a dataset large enough for the statistical analysis of the
morphology features of the Oryzias latipes fish (also known as Medaka fish).

In material sciences, CT is brought to the production, e.g., quality assurance. It
allowed Camattari et al., 2020 to conduct advanced crystallography, and (Vásárhe-
lyi et al., 2020) to investigate dense materials in a non-destructive way. Being cou-
pled with computer vision, CT allowed Fuchs, Kröger, and Garbe, 2021 to develop
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FIGURE 1.1: Demonstration of typical COVID-19 development fea-
tures in lungs CT, as presented by (Kwee and Kwee, 2020)

FIGURE 1.2: Photo (left) and 3D model built based on the CT volume
(right) of a mineralized fossil, discovering the parasitoid wasp mor-

phology, as presented by (Kamp et al., 2018)



1.1. Computed Tomography 3

industry-level techniques for defect detection.
Even though Computed Tomography fueled advances in multiple research dis-

ciplines, it has its own problems. For example, as Moosmann et al., 2013 states the
ability of the penetrative X-Rays to destruct the living samples limits the possible
time of imaging. As another example, as Weinhardt et al., 2018 and Fuchs, Kröger,
and Garbe, 2021 show, CT requires advanced analysis techniques to thrive in the age
of big data analysis.

Machine learning models have become an essential tool in CT data analysis due
to the vast amounts of data produced by CT scanners. These models can be trained
to analyze CT images with accuracy and speed inaccessible to humans. By automat-
ing the analysis process, machine learning can greatly improve both the efficiency
and accuracy of CT data analysis, allowing e.g., medical experts to make more in-
formed decisions about patient care, without tediously measuring needed parame-
ters on the CT; biology experts, to acquire statistical data on their subject organisms
without manually segmenting tens and hundreds of volumes; material experts, to
discover patterns and abnormalities even in noisy data, which is painstakingly hard
to read by a bare eye.

One specific example of ML for CT data analysis is the use of deep learning al-
gorithms for the automated segmentation of organs and tissues. In biomedical CT
scans, organs and tissues can appear as closely resembling each other, making it dif-
ficult to distinguish between them with simple tools. Deep learning algorithms can
be trained on large datasets of annotated CT scans to learn how to precisely segment
and label different organs and tissues. This automated segmentation can then be
used for further analysis, from treatment planning for patients to quality assurance
for microprocessors. For example, in medicine, Avetisian et al., 2020 demonstrated
the ability to surpass the medical expert quality in the classification of stroke type
via segmentation. This result, applied at scale, can help earlier, and more precise
treatment for diseases, leading to increased life expectancy.

To summarize, CT became a key technique in many areas, from medicine and
biology to material research. However, it still has its bottlenecks slowing the trans-
fer from imaging to conclusions and discoveries. Machine Learning techniques and
Deep Learning, in particular, became established techniques to widen those bottle-
necks, or sometimes even surpass them completely. However, to be applicable they
require, large sets of precisely prepared data and sometimes domain-specific knowl-
edge utilized during the training. The aim of this work is to contribute towards
overcoming these bottlenecks with the tools provided by advanced computer vision
and machine learning. Further in this chapter, I will briefly introduce the basics of
Computed Tomography and Machine Learning.

1.1 Computed Tomography

Despite this work being mainly dedicated to machine learning, it is important to
understand the peculiarities of the underlying imaging techniques. In this section,
I will first describe the practical process of CT image formation. Then, I will dis-
cuss the important differences between different imaging domains, techniques, and
samples.

1.1.1 Computed Tomography Acquisition

To obtain a CT image, we need three physical components:
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FIGURE 1.3: Imaging station for the Synchrotron-based Computed
Tomography, as presented by Kamp, 2011. The beam tube represents
the source here, the sample is positioned on a rotational stage in the

middle, and the detector is on the right.

Source of the penetrating rays of some sort. For example, an X-Ray tube, or a syn-
chrotron light source.

Detector – a device capable of measuring the spatial distribution of the X-rays’ in-
tensity. Usually, some sort of digital camera, either with the matrix sensitive to
the required energy spectrum (so-called direct detectors) or a classical camera
pre-pended with a scintillator converting the X-rays to the visible spectrum
(so-called indirect detectors).

Sample – the object of imaging. The sample should be translucent to the X-rays, yet
not completely transparent. The exact limitations are dependent on the source
and camera properties (the penetrative ability of the rays, the resolution of the
camera, etc).

I show a schematic setup in the Figure 1.3. The sample is situated between the
source and the detector in such a way, that the beam emitted from the source inter-
acts with the sample and is then captured by the detector. By interaction between
the beam and the sample we typically understand the attenuation of the beam. Each
pixel of the detector, in this case, captures the energy of the arrived beam. Either
sample or source-detector system should be able to rotate with high precision, to
capture the projections of the sample from different angles. The axis, around which
the system rotates is called tomographic rotation axis. Typically, during a scan, a set of
projections is taken evenly spaced across 180◦ of rotation. We will call the rotation
angle of each projection with respect to the starting position a projection angle. The
amount of projections taken during the scan is a parameter of the imaging process
and is set w.r.t. the properties of the system and the sample. The high amount of pro-
jections requires precise positioning of the sample and increases the exposure time
of the sample, but provides a clearer, less noisy image.

The acquired projections should then be treated to avoid excessive noise and
amplify the signal. There are at least two corrections that are typically applied, the
flat and dark field corrections.
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The flat field correction is used to remove the noise introduced by the source. The
source rarely covers the whole field of view evenly, and the beam is frequently
disturbed by the imperfections of the components. The flat field itself is, there-
fore, captured with the source turned on, but without the sample in the field
of view.

The dark field correction is used to compensate for the artifacts of the camera itself,
like the peculiarities of the matrix. The dark field is captured with the source
turned off.

If we have the projection I, flat field F, and dark field D, the correction is by the
Equation (1.1).

Î =
(I − D) Ī

F − D
(1.1)

, where Ī stands for average pixel value, and Î for the corrected image. Hereinafter,
I will always assume the images are always flat and dark field corrected.

These corrections are enough when we speak about the typical imaging regime,
also called absorption contrast. In this regime, each projection pixel represents how
much of the X-ray got absorbed going through the tissues. However, for thin ob-
jects, or for soft tissues, that do not absorb much, this regime doesn’t provide much
information. That’s where the so-called phase contrast regime is used. This regime
is based on the idea that despite the absorption of some materials being verlow, the
speed of light is different for them. Therefore, the coherent wavefront is deformed
while passing through the sample. Due to the coherence of this wavefront, in the
locations where it is deformed, it forms the interference fringes that grow in size
as the wavefront propagates further from through space (see Figure 1.4). The ampli-
tude information on those fringes is captured by the detector after some propagation
distance. However, instead of the typical absorption contrast projection, here we get
a projection where only the borders between the materials are pronounced. To re-
trieve the image close to the absorption contrast, another correction is needed, on
top of the dark and flat field corrections, the so-called phase retrieval. One of the pop-
ular ways to solve this task is the Paganin algorithm (Paganin et al., 2004), which
is, simply speaking, a specially formulated low-pass filter, which works for small
propagation distances, where the fringes have low overlap. After this correction, the
resulting image resembles the one of the absorption contrast, but the materials with
the low absorption become more pronounced.

After all corrections are done to the projections, the final step is to reconstruct
the 3D volume. This step is based on the ability to reconstruct a 3D volume from
a series of its 2D projections. This ability is backed by the work of Radon, 1986,
where he demonstrated the reversibility of a specific integral transform matching
a 2D function and set of its 1D projections on differently oriented axes (hereinafter
the Radon transform). Given a 2D function f (x1, x2), we introduce the transformed
version of this function as f̂ (ρ, θ) – the function of a projection angle ρ and position
along the projection axis θ (see the Figure 1.5 for intuition). To find a value of the f̂
at some point (ρ∗, θ∗), we need to take the integral of the function f along the line
x2 = tg(θ∗)x1 +

ρ∗

cos(θ∗) .
The projections are stacked together, along the new axis, to constitute a 3D image

(Figure 1.6). The axes of this 3D image are the concatenation axis θ, and x and y, the
pair of axes corresponding to the two axes of each projection image. Speaking of
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FIGURE 1.4: Sketch of propagation-based imaging setup as presented
by Tao et al., 2021.

FIGURE 1.5: Visual explanation of the Radon transform performed
from the 2D function f (x1, x2), defined on the cartesian axes x1, x2 to
another 2D function f̂ (ρ, θ), defined on the polar axes θ, ρ. The second
function can be viewed as an infinite collection of 1D functions, where
each 1D function is a line integral of the inial function along the newly
selected axis, rotated at the angle θ to the original x1 axis, and the θ
denotes the shift along the axis orthogonal to this newly selected one.
The idea is presented in further details in the work by Protonotarios

et al., 2021, where I took the plot from.



1.1. Computed Tomography 7

Reconstruction

(a) (b) (c) (d) (e)

y
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FIGURE 1.6: Obtaining the tomographic volume from a set of pro-
jections. A set of projections (a) is obtained for different projection
angles. They are stacked into an array (b), along the new axis, repre-
senting the rotation angle. This array then is sliced along the plane
orthogonal to the tomographic rotation axis, to obtain a set of sino-
grams (c). The reconstruction (d) (e.g., Filtered Back Projection) is
then used, to obtain a set of slices (e) that make up the final volume.

connection with the Figure 1.5, the axis θ represents the same axis, the axis x, repre-
sents the axis ρ, and the axis y, represents the axis enumerating the tomographical
slices, going along the tomographic rotation axis. This axis is orthogonal both to x1
and x2 on the Figure 1.5. We then slice this 3D image along the plane orthogonal
to the y axis to get a so-called sinograms. Due to the fact, that each sinogram in this
stack is orthogonal to the tomographic rotation axis, all points of the object imaged
on it, never leave one sinogram to appear on another. During rotations, points of the
object form sinus-shaped lines, this is where the name comes from.

This sinogram is a sampled representation (since we have a finite number of pro-
jections) of a 2D slice of the sample but in the Radon space as f̂ . Using the reversibil-
ity of the Radon transform, we can reconstruct a slice of the final 3D volume, with
axes x and z of sizes of both equal to the size of the horizontal size of the original
projection. There are multiple algorithms to obtain this reconstruction. The simplest
and the most popular one is the Filtered Back Projection (FBP) algorithm (Schofield
et al., 2020).

However, the problem of inverting the Radon transform from the sampled noisy
observations is ill-posed, which can lead to incorrect solutions in case of high noise
or a low number of projections acquired. For extremely noisy or undersampled cases
a variation of the reconstruction procedure called iterative reconstruction can be used
instead of FBP. In this case, the reconstruction process is viewed as an optimization
problem. The main benefit of the iterative reconstruction is the ability to impose
additional restrictions on the solution. One typical example of such limitation is
a restricted set of possible values in the reconstructed volume, which implies the
limited amount of materials in the sample. Another option would be to enforce
the smoothness of the resulting volume to mitigate excessive noise (Ametova et al.,
2021b).
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1.1.2 Imaging Modalities Overview

Radiography, CT, and biomedical imaging differ from photography, not only from
the appearance point of view. In photography, despite some general spatial rela-
tions taking place, the general composition is not fixed, which, on the one hand,
leads to a drastic difference between two photos displaying the same object, but
on the other hand, helps models to delineate features of the objects from features
of its surroundings. For, despite some works showing that models overly rely on
texture (Geirhos et al., 2018) and can fail to recognize objects in unusual surround-
ings (Gupta et al., 2022), in general, the model trained to detect some objects on
images can locate them (Selvaraju et al., 2016). In turn, for biomedical imaging,
the controlled environment and similarity of the samples make the variability less
prominent. For example, the heart of a living human being is always located near
the lungs and is always present in chest radiography or CT. Therefore, it is impos-
sible to train a model to classify radiography images of humans with regard to the
existence of the heart, and the model should be able to locate it. Furthermore, fixed
imaging conditions make space for spurious correlations, e.g., the work by Narla
et al., 2018 shows how if the ruler appears on the skin photo, it is a strong sign of
malignancy of the skin lesion imaged.

Other aspects are superposition, occlusion, and perspective. In photography,
they occur altogether, requiring a model to adapt to drastically changing sizes of the
objects or partial visibility. In radiography, while occlusion is generally possible (e.g.,
so-called bone shadows), it is more predictable and can be efficiently mitigated (Ra-
jaraman et al., 2021). As the CT is a volumetric image, not only occlusion but also the
superposition is excluded, apart from the image resolution issues. It means that the
only possibility of some voxel being occupied by two different tissues or materials
is for it to be spatially large enough. The perspective distortion can be mitigated in
the CT image even when the cone beam projection is used. Furthermore, CT and ra-
diography typically register the position of the imaging object, source, and detector.
Therefore, the sample’s size variability due to perspective not only can be mitigated
mathematically but is of a smaller scale compared to photography.

The vast availability of photo cameras, the drastic difference between imaging
conditions, and the popularity of photo-specific augmentations in Deep Learning
allow training more generalizable models. Unlike photos, imaging protocol often
strictly regulates radiography and CT imagery. Therefore, within one acquisition
sequence on one device, the images of different samples may come out almost per-
fectly with the same image properties (contrast, brightness, noise, etc.), but the next
sequence or a sequence imaged on a different device may come out dramatically
different, lowering model performance. Combined with the lack of CT-specific aug-
mentations, this leads to a search for more sophisticated transfer learning algo-
rithms (Valverde et al., 2021).

Last but not least, it is important to note that not only do imaging modalities have
a multitude of fundamental differences between them, but also the imaging type,
setup, and analysis aims may vary the algorithm selection. For example, the medical
MRI can be done on thousands of machines worldwide and has highly standardized
protocols. But at the same time, there are only tens of synchrotron facilities world-
wide that are capable of producing high-resolution images of living frog embryos,
each being a one-of-a-kind device with setups and equipment different While large
standardized samples (being biological or technical) can be physically pre-aligned,
small biological samples (e.g., frog embryos) scanned with high resolution simply
can not be perfectly aligned for the image to be taken and require post-processing.
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While acquiring samples for morphology study requires visible structures, some ma-
terial studies are more interested in the texture of the materials, leading to different
imaging conditions. All this leads to the situation where a general dataset and pre-
trained model (akin to the ImageNet by Russakovsky et al., 2015) is not only hard to
achieve but also can have a questionable quality boost.

1.2 Machine Learning

With serial, high-throughput tomography, acquiring large datasets of CT 3D or even
4D images became possible. Which leads to the next bottleneck in the analysis
problem–data processing. The current acquisition speed does not allow manual data
analysis. The automation of the analysis has undergone significant progress, from
routine automation to predictive models obtained by means of Machine Learning
(ML).

Not only are those models able to free researchers from manual recurring labor,
but they are also reproducible. Deep Learning (DL) techniques generate state-of-
the-art results. Recent results demonstrate (Avetisian et al., 2020) that modern DL
models can surpass expert quality. In this section, I will briefly review the ML ap-
proaches’ tasks, models, and supervision regimes. A more thorough description can
be found in works by Hastie, Tibshirani, and Friedman, 2009; Bishop, 2007; Murphy,
2012; Goodfellow, Bengio, and Courville, 2016.

1.2.1 Problems

Machine learning problems generally differ in terms of the inputs they expect and
the outputs they produce in response. They could be roughly separated into three
categories: classification, regression, and generation.

Classification stays for the cases, where for each input, the model should select one
of the pre-defined possible classes. So, the model is a function that, given the
data sample x is expected to predict categorical value y ∈ C, where C is a pre-
defined set of classes, e.g., C ={’cat’, ’dog’, ’human’}. One typical example
of classification is the prediction of the disease stage based on the patient’s
records.

Regression in turn, outputs a continuous value per input. So, given the sample x,
the model should predict y ∈ Rn. An example of the regression problem is the
estimation of the property cost based on location, size, age, etc.

Generation problem defines a model that generates realistic but previously unseen
samples from the data distribution. In general, these models operate without
additional input, however, in recent years, guided generation–where parame-
ters of the sample are given as input–became a developing research topic. The
model should predict y ∈ X defined in such a way that every possible sample
of the data also belongs to it x ∈ X ; ∀x, however, y /∈ {x}N .

However, each problem can be subdivided into many more levels. For example, text
generation differs from text completion, which, in turn, differs from the problem of
code completion. I will further focus on specific tasks related to the presented work.
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1.2.2 Models

The key idea of machine learning is to replace the hand-crafted parameters for the
data processing algorithms with the parameters derived directly from the available
data. For example, instead of the manual selection of the brightness threshold to
select all pixels belonging to bones in a CT volume, statistically deriving the proper
threshold from several volumes with outlined bones could be employed. This so-
lution can be viewed as a one-parameter (the threshold value) classification model
solving the task of the segmentation (pixel-wise classification of an image). The ob-
ject incorporating those derived parameters is called a model, and the process of the
derivation of the parameters is called model training.

There are many very specialized model types, but I will resort to describing the
most important for this work.

k Nearest Neighbors or k-NN is the simplest model, where (like in a look-up table)
the parameters are the whole set of the training examples. When the new input
comes, the decision is made as an interpolation between the labels of the k
nearest neighbors from the training examples. For the regression task, this
is typically a linear interpolation; for the classification, it is majority voting.
Different measures of closeness can be used.

Linear Model is a model where the weighted sum of the parameters of the input
provides the prediction. The parameters of the model are, therefore, these
weights. For the input sample x of size k, the prediction is provided as ŷ =

k
∑

i=0
wi ∗ xi + b, hence the name. To solve the classification task with this model,

the sigmoid function is added on top of the weighted sum, limiting predictions
to the [0, 1] range.

Decision Tree is a model represented by a binary tree, where each node contains
a decision rule navigating each input to the left or right branches. Each leaf
of this tree contains a prediction in the form of either a class for a classifi-
cation problem or a value for a regression problem. Typically, the decision
rule is a threshold (decision boundary) imposed on a specific parameter; e.g.,
(’weight’, 80.1), would mean, that patients with weight more than 80.1
would be navigated to the right branch, and others to the left.

(Artificial) Neural Network or Deep Learning model is the most advanced type of
model. This model can be seen as a series of linear models, with non-linear
functions on top of each. Each linear model in this sequence is called a layer.
There are multiple different layers designed specifically for the corresponding
task, (e.g., convolutional layers designed for the image analysis, or recurrent
layers developed for the text generation).

1.2.3 Supervision Types

For the training of the aforementioned models, one needs a dataset. Generally, all
training types with respect to datasets could be divided into three: fully supervised,
unsupervised, and semi-supervised.

Full supervision supposes that each example used for training has a corresponding
label – the desired response of the model to this input. This is the most typical
way of training a model, for example, ResNet models trained on the ImageNet
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dataset or the YOLO model family which is trained on the COCO dataset are
commonly used as a starting point for further training or as a readily available
solution for some tasks. However, datasets with this type of supervision are
costly to obtain with enough samples to saturate the model’s capacity to train.
And open datasets are rarely available for a specific task to solve, which is
typical for medicine or biology.

Unsupervised training uses zero labels, only the input data, the model itself should
implicitly contain our beliefs about the world, which results in a proper re-
sponse. For example, the clusterization of samples, or training a generative
model can be done without any supervision However, this type of training
rarely is able to yield desired results itself and rather belongs to a class of ex-
ploratory analysis tools. There are specific classes of tasks, which are perfectly
solved by such models though, e.g., anomaly detection (Zong et al., 2018).

Semi-supervised training is a relatively novel research area, boomed when the lack
of labeled data became apparent. It includes such areas as self-supervised
learning, self-training, weakly supervised learning, etc. Labels in this type
aren’t completely absent, however, they are either rough (hence, cheaper to
produce), or provided only for part of the available examples. The aim, there-
fore, is to utilize the unlabeled data to train the model to produce meaning-
ful representations of the input data. Further on, either a small model can be
trained to utilize these representations for the actual task of interest, or the
whole model could be fine-tuned to solve the actual (so-called downstream)
task. The models trained in a semi-supervised way have great potential and
are now a growing area of research, which can be seen by recent influential
works of Oquab et al., 2023; Kirillov et al., 2023; OpenAI, 2023

1.3 Summary and Organization of the Thesis

In this introduction, we have traversed the evolution and application of Computed
Tomography (CT), highlighting its pivotal role across such fields as medicine, biol-
ogy, and material science. From its origins in basic observational techniques to the
advanced, non-intrusive insights provided by CT, we’ve seen a transformative im-
pact on scientific understanding and diagnostic processes. Particularly, the advent
of CT has revolutionized the approach to visualizing internal structures, enabling
precise disease diagnosis, understanding biological phenomena, and enhancing ma-
terial analysis without destructive methods. Moreover, the integration of Machine
Learning (ML) with CT data analysis was discussed, marking a significant leap in
processing and interpreting complex data. These advancements exemplify the po-
tential of combining deep learning with volumetric imaging, offering unprecedented
accuracy and efficiency in data analysis. As we venture further, it’s clear that the
synergy between CT technology and ML not only broadens our investigative capa-
bilities but also introduces challenges and opportunities in data handling, requiring
innovative solutions to fully harness their combined power.

The rest of the thesis will be organised as a series of chapters consequently cov-
ering the main practical complications and their solutions in the same order they
happen in the practical pipeline. In Chapter 3 I introduce my contributions to the
first step of the pipeline – data pre-processing. Namely, noise removal. In Chapter 4
the optimization of the pipeline of the labeling is presented. The idea here is to min-
imize expert labour on labeling, while maximizing the performance of the model
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trained on such labels. In Chapter 5 I further propose a way, to pre-train a model
on an unlabeled dataset. As was mentioned earlier, pre-training helps to initialize
the model used for further analysis, with weights that are closer to global minimum,
than the random initialization. In Chapter 6 the final contribution is presented – a
self-training algorithm. The self-training here denotes a technique that allows tun-
ing an already trained a model with additional data without requirement to have it
labeled.
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Chapter 2

Related Works

In this chapter, I will quickly recap the information about the whole data acquisition
and processing pipeline and outline bottlenecks that are open to being solved with
machine learning. Then, I will describe the state of the art in solving these problems.

2.1 Sample Analysis Bottlenecks

The whole process of sample analysis, which we want to speed up, from acquisition
to conclusions drawing, can be roughly separated into three main steps.

Sample preparation includes all biological, chemical, or engineering phases required
to obtain a sample. It will not be covered in this work, since this process is
mostly driven by biology and chemistry experts, and wildly varies depending
on the sample, imaging device, and aims of the research. See (Weinhardt et al.,
2018) as an example.

Sample imaging , or measurement, is the process of obtaining an image of the pre-
pared sample. This work is limited to 3D CT images, radiography, and spec-
trography. However, generally, this could include text, sound, or photographic
images.

Image analysis includes manual analysis, labeling datasets, training and inference
of predictive models, statistical analysis, hypotheses testing, and all other pro-
cesses required to draw scientific conclusions about the sample under investi-
gation.

This work is focused on sample imaging and analysis, and further in this section, I
will describe their corresponding details.

2.1.1 Sample Imaging

Modern-day measurement devices (including synchrotron facilities) aim to provide
as much automation of the measurement as possible. It includes robotic sample
operators (Kamp et al., 2018), automated procedures of beam alignment (Campbell
et al., 2021), fast automated post-processing (Faragó et al., 2022), and a neverending
race to increase the capacity of data transfer channels.

All these, multiplied by the increasing amount of facilities and the trend to open
access to scientific data, increases the amount of data available for analysis. Gener-
ally, dataset size in MRI and CT areas grows exponentially, as it is noted by (Kiryati
and Landau, 2021). As an example for KARA facility, for the project of morphometri-
cal analysis of the Medaka fish, more than 850 samples were scanned and analyzed,
with an average image taking 100Gb of disk space, without markup.
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Yet, due to the limitations of the detectors and stochasticity of the particle count-
ing process, there is a bottleneck in exposure time. The first is a physical limitation,
sources aren’t able to produce a high flux of particles of any given energy. The en-
ergies of the particles emitted by the source are distributed in a way resembling
Normal distribution. An example of such distribution is shown Figure 3.1. There-
fore, moving away from the peak flux energy requires increasing the exposure time
to keep the PSNR same. Other possible sources of quality limitation are in-vivo or
operando imaging. In the in-vivo case, the sample is a living creature and has a limited
lifetime under exposure to radiation. In both in-vivo and operando cases, the speed of
the process could also limit the exposure time, since imaging with increased expo-
sure produces blurry images and fails to resolve the process of interest in the time
domain. To compensate for this, denoising techniques are employed. I will describe
my contribution to solving the denoising task in 3.

2.1.2 Image Analysis

As the amount of information grows, the natural problem is to increase the speed
and ease of processing. A multitude of tools is developed to help area experts with
their work of analysis. Some aimed to help segment the volumetric data (Lösel et
al., 2020), others aimed to help visualization and further analysis (Wolf et al., 2004).
The most popular way however is the data-driven automation of the analysis based
on the machine learning approaches. As mentioned before, DL models overall tend
to be eager for training data. While the amount of the data itself rapidly grows, the
amount of readily available markup for an arbitrary task is almost always a zero. The
next bottleneck, therefore, is the amount of time the area experts need to contribute
to labeling the datasets for further training. I describe my contributions towards
optimizing the labeling procedure for the segmentation of CT volumes in Chap-
ter 4. Another way to mitigate this is to use semi-supervised learning approaches.
In Chapters 5 and 6, I describe my contribution towards using self-supervised learn-
ing and self-training to make use of the unlabeled data.

2.2 State of The Art

In this section, I will describe the techniques, that will be used in this work, in a
more detailed fashion. First, in Section 2.2.1, I will cover the Deep Learning basics
required for this work. In Section 2.2.2, I will describe methods used to solve the task
of image denoising. Finally, self-supervised pre-training and self-training methods
will be described in Section 2.2.2 and Section 2.2.2 respectively.

2.2.1 Models

As it was mentioned before, modern-day neural networks, are a sequence of layers,
where each layer is some linear transformation of the input with some non-linear
function appended. The combination of characteristics of these layers (dimension-
ality, the non-linear function used, where the input comes from) is called the model
architecture. And the numerical parameters of the linear transformations are called
weights. The model altogether is typically denoted as a function fθ , parametrized
with weights θ. Typically, the architecture of the model is fixed by a researcher.
There’s one exclusive area of research (architecture search algorithms) where the ar-
chitecture is optimized for the specific task automatically, but this is out of the scope
of the current work. The training of the model is, therefore, the optimization of those
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weights θ. Here I will describe how the training of the neural networks is conducted,
and, later on, specific layers and architectures important for computer vision.

Training

The training of the Deep Learning model requires three principal components: a
dataset, a loss function, and an optimization algorithm.

The data set is a subsample of the general data distribution with corresponding la-
bels attached to each sample. Consider some general data distribution X . For
example, it could be the distribution of all possible chest MRI scans, then one
data point xi ∈ X is one volume. The attached label yi depends on the task,
it could be segmentation of the lungs or some other organs, diagnosis of the
patient, or even the binary label of being ill with some specific disease. The
data set then, is a collection of N sample-label pairs {(xi, yi)}(i = 0)N

Generally, the label is provided by an expert, for example by manually seg-
menting the organs of interest. For self-supervised learning, however, the label
is inferred from the available data. E.g., for the colorful image re-colorization
(Zhang, Isola, and Efros, 2016), the dataset is collected as {to_greyscale(xi), xi}N

i=0,
where xi is drawn from the full distribution of the colorful photos.

The ideal target of training is to find such optimal weights θ∗, that fθ∗(xi) is as
close to yi for any xi ∈ X as possible. However, since our dataset is limited
by N samples, the best we can do is to fit a model that performs well on this
representative subsample, which is called Empirical Risk Minimization.

Loss Function also called cost function, takes as input the prediction of the model
and corresponding label ( fθ(xi), yi) and maps it to R. The loss function (typ-
ically denoted as L) is used to estimate the badness of the prediction. So, if
for two models fθ1 , fθ2 , it’s true that L( fθ1(xi), yi) < L( fθ2(xi), yi), we will say
that the model fθ1 has a lower loss, and therefore performs better for the i-
th sample. The aim of the model training, therefore, can be reformulated as
∑i L( fθ(xi), yi) −→

θ
min.

The most common examples of the loss functions for the regression task are
L1-loss L(y′, y) := |y′ − y|, or L2-loss L(y′, y) := |y′ − y|22. For the classifica-
tion task, the most popular option is so-called cross-entropy loss L(y′, y) :=
∑c yc log y′c , where c is the index of the class in the multiclass classification
problem.

The Optimization Algorithm therefore, should minimize the loss function value
over the dataset, w.r.t. the weights. It is commonly accepted, that for better
optimization access to the gradient is preferred. To make the gradient avail-
able, the chain rule is used. Chain rule, states, that if we have a function,
expressed as a sequence of two functions d(x) := f (g(x)), then its derivative
can be expressed as

∂d(x)
∂x

=
∂ f (g(x))

∂x
=

∂ f (g(x))
∂g(x)

∂g(x)
∂x

This rule, being applied sequentially to each layer starting from the last allows
to calculate, is called Backward Propagation.
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With the gradient available, the most common algorithm of the optimization is
the Stochastic Gradient Descent. The normal gradient descent updates weights
with

θt+1 = θt − η∇θt(∑
i
L( fθt(xi), yi))

, where η is a small constant, called the learning rate. But since the computation
of the gradients for the whole dataset is problematic, SGD uses batches of the
inputs to update the weights. For the sake of simplicity, I will use Lθt to denote
a loss, calculated for the weights θt on one batch of the data. The SGD update
then is

θt+1 = θt − η∇θtLθt

Each update then is called a step, and when the model was updated on the
whole dataset (so, enough batches to see each xi in the dataset), it’s called an
epoch.

There is a multitude of algorithms varying the optimization method. How-
ever, the most common optimizer nowadays is Adam (at the moment I write
this, the paper had almost 138000 citations), which combined ideas from the
RMSProp and Momentum. The idea of the Momentum update is to overcome
small local minima by updating the weights with aggregation of the last gra-
dients, instead of the only very last. This way, the model is expected to move
along the smooth slope of the general plane, instead of bouncing around from
every small change in the slope. The idea of the RMSProp was to alleviate
problems of the low slope along some parameter axes, which can be triggered,
for example, by the rarely occurring inputs. This method dynamically scales
the updates along different axes, based on their aggregated magnitude. Over-
all, the update by the Adam optimizer updates are described in Equation (2.1).
Where, m denotes momentum, and v normalization coefficients; β and γ are
the smoothing factors for the exponential smoothing of the momentum and
normalization; m̃ and ṽ are momentum and normalization coefficients after
corrections to remove skewness of the estimation towards 0, introduced by
initialization of the estimators.

mt+1 = βmt + (1 − β)∇θtLθt

vt+1 = γvt + (1 − γ)(∇θtLθt)
2

m̃t+1 =
mt+1

1 − βt

ṽt+1 =
vt+1

1 − γt

θt+1 = θt − η
m̃t+1√
˜vt+1 + ϵ

(2.1)

Layers

In a Neural Network, a layer is a collection of nodes or neurons that process the in-
puts received from the previous layer and produce outputs for the next layer. Each
neuron in a layer is connected to all the neurons in the previous layer, and each con-
nection has a weight that determines the strength of the signal transmitted through
it. In this section, I will list the layers, that are most important to understand the
current work.
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Initially, one layer of the neural network was a linear transformation, appended
with a non-linear function. This model was dictated by a biological analogy of a
firing neuron employed by the McCulloch and Pitts, 1943. This layer is called a
dense layer in modern literature and is calculated as y = xAT + b, where A is a
matrix of shape input_size × output_size, b is a vector of length output_size, x is
the input vector of size input_size, and y is the output vector of size output_size.
The so-called nonlinearity applied on top of the linear transformation was, initially,
mostly the logistic function f (x) = 1

1+exp x , as it is a differentiable approximation
of the step function dictated by the biological analogy. Nowadays, there is a lot of
research on the activation functions, but the most common function nowadays is the
Rectified Linear Unit, or ReLU, defined as f (x) = max(0, x).

Next in importance for this work is the convolutional layer introduced by Le-
cun et al., 1998. Convolutional layers are a type of layer in a Neural Network that
are specifically designed for processing data with a close relation between adjacent
inputs, typically applied to images. The idea is based on kernel filters, a popular
concept in computer vision; e.g., the Sobel filter is used for edge detection and the
Gaussian filter for denoising. The convolutional layer consists of several such fil-
ters with the same kernel size, however, the parameters (weights) of the kernels are
fitted together with the whole model to minimize the loss. The output from each
filter is called a channel, and all channels are stacked together upon computation.
The output of a c-th channel can be calculated as yc = Ac ⋆ x + bc. Where ⋆ is the
operation of the convolution, Ac is a tensor of size input_channels × kernel_size
× kernel_size which contains weights of one kernel filter for the c-th channel, bc
is the bias for the c-th channel, x is the whole input of the layer, the image of size
input_channels× input_width× input_height, and the yc is the output of the c-th
filter of size 1 × output_width × output_height. The c here is used to index along
the filters of the layer, the first dimension of the full output will be dependent on
the number of filters used. The output_width can be calculated as input_width -
kernel_size + 1.

The third important layer for computer vision models is the pooling layer. The
pooling layer operates on each channel of its input and statistic of the nearby out-
puts. A hyper-parameter of the pooling layer is the size of the neighborhood to be
aggregated. For example, it could be 2 × 2 neighborhood, therefore producing one
output pixel per field of 2× 2 input pixels. An extreme example of it is called Global
Pooling – when the neighborhood to aggregate is the whole input. The two most
common types of pooling layers are max pooling and average pooling. These layers
help to aggregate data from large images, effectively discarding non-important sig-
nals. The global pooling layers allow models to be independent of the input image
shape.

The next important layer is the dropout layer. It is a layer, primarily used as a
regularization technique to prevent overfitting. It works differently during training
and inference. During the training phase, it randomly sets a portion of the incom-
ing activations to zero, before passing it to the next layer. That forces the network
to learn more robust and generalizable features, instead of being overly reliant on
one particular activation. The portion of activations, which are to be set to zero is
a hyper-parameter of the layer and is called the dropout rate. During the inference
phase, however, all the inputs are passed to the next layer. But to avoid a shift in the
average input values, all activations are multiplied by a dropout rate. In convolu-
tional layers, there is more freedom to what to denote as one activation. The most
typically used is the spatial dropout, which equalizes to zero random "pixels" of the
embedding map fed to it as an input. However, there are works considering channel
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FIGURE 2.1: The architecture of the LeNet-5 model, as presented in
(Lecun et al., 1998)

dropout, where the whole channel is equalized to zero, or other, more exotic types
of dropout.

There are many more layers less important for this work, e.g., the self-attention
layer introduced in transformers, or the recurrent cell layer, introduced by RNN.
Since they aren’t that important for this work, I leave a thorough walkthrough of all
layers to other sources.

Architectures

Having layers–the building blocks of neural networks–defined, I will move on and
describe the most important architectures, that will be used in this work. For this
work, it is essential to understand models designed for two tasks: classification and
segmentation. For each of those tasks, I will describe two models, one which sparked
the progress in the current direction, and one which is the most popular one, typi-
cally used throughout this work.

LeNet-5 is a pioneering convolutional neural network architecture developed by
Lecun et al., 1998 which revolutionized the neural networks for computed vision by
introducing the convolutional layers. LeNet-5 consists of two sets of convolutional
and pooling layers, followed by three fully connected layers Figure 2.1. The fully
connected layer was enabled by the fact, that the images in the target dataset were
all of the same size (28 × 28 px). Therefore, after the set of the downscaling opera-
tions, the incoming image always became a representation of size C × 1 × 1, where
C is the number of channels. The network is relatively shallow compared to modern
architectures, but it introduced many of the concepts that are still used in modern
CNNs. However, stacking more layers was problematic due to the vanishing gradi-
ent problem (Simonyan and Zisserman, 2015).

The problem of vanishing gradients was solved by the ResNet model. To en-
able the training of very deep networks authors utilized residual connections. The
model consisted of the so-called residual blocks, each containing several convolu-
tion and pooling layers. However, each residual layer has a bypass connection di-
rectly passing its input to the next block, which allows easier gradient propagation
to deeper blocks without vanishing Figure 2.2. To enable training with input images
of any size, the authors adapted max-pooling by Ranzato et al., 2007 and changed
it to a global average pooling layer between the convolutional layers and the fully
connected layer. This layer helped to preserve global features from the whole im-
age context, without making the model dependent on the image size. The ResNet
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FIGURE 2.2: The architecture comparison of the ResNet to VGG and
plain architecture of the same size. As presented in (He et al., 2016a)

is nowadays amongst the most used architecture of CNNs and will be widely em-
ployed in this work. For a deeper understanding of CNNs’ history and architecture,
I refer a reader to (Khan et al., 2020).

However, while the ResNet is a good architecture for classification, it has no
use for segmentation, since it predicts only one label per image, while segmentation
requires the prediction of one label per pixel of the input image. The Fully Convo-
lutional Network (FCN) is a type of neural network architecture that is specifically
designed for semantic segmentation tasks. Unlike traditional CNNs, which are de-
signed for classification tasks, FCNs use only convolutional layers and do not have
any fully connected layers. The simplest way to construct an FCN from a ResNet
requires (1) replacing the Global Average Pooling layer with an upscaling layer, and
(2) replacing the fully connected layer with a convolution layer. The upscaling layer
parameters are calculated from the parameters of previous layers of the model in
such a way, that it upscales the image to its original size. The convolutional lay-
ers are of size 1 × 1, which makes them equivalent to the operation of applying the
dense classification layer to each pixel separately. This way, even a model trained to
be a classifier, can be converted to present a rough segmentation mask.

U-Net is a convolutional neural network architecture designed for biomedical
image segmentation tasks. The U-Net somewhat builds on the idea of the fully con-
volutional model. However, it (1) uses information from several different layers of
the so-called encoder model (e.g., ResNet), and (2) replaces simple upscaling oper-
ations with upscale-convolve layer pairs, which allows smart upscaling that modi-
fies the output progressively during upscaling. The U-Net is one of the most used
models for image segmentation. One particular benefit of this model is that the ar-
chitecture allows using a pre-trained encoder while training the decoder part of the
model, this technique is widely used, and good pre-trained encoders are publicly
available.

2.2.2 Tasks

Now that the elements of the Neural Networks for computer vision are introduced,
I will make a deeper introduction to the tasks, which are considered in this work.
Namely, the denoising task – the task of the noise removal from the images, the pre-
training tasks that aim to find such data-driven initialization of the model, that it
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has better properties (e.g., convergence speed or better minimum achieved), and the
self-training technique, that utilizes the ability of a model trained on a small set of
data, to improve itself while observing the larger set of the unlabeled data.

Denoising

The denoising task with stochastic artifacts caused by image acquisition. These arti-
facts are inherent to digitally acquired images, as an acquisition process (also known
as acquisition function) is subject to many uncertainties and in general, is not accu-
rately known. The acquisition function includes optical distortion, lens and detector
array heterogeneity, and inherent noise driven by the stochastic nature of the par-
ticle emission and their interaction with materials. As optical distortion is a simple
misplacement of information, a distortion map can be estimated and applied to com-
pensate for it. For the lens and matrix heterogeneity, flat and dark field corrections
are used. Flat and dark fields refer to the measurement of detector response with and
without source illumination, respectively. Finally, denoising is used to compensate
for the inherent stochastic noise. Hence, the denoising problem is to restore signal S
from a noisy observation I (Gonzalez and Woods, 2008):

I = S + σ(S) (2.2)

where σ(S) is the inherent noise of the imaging device.
The most basic denoizing methods are spatial filtering methods: mean, median,

or Gaussian kernel filters (Gonzalez and Woods, 2008). For each pixel, these filters
select a new value, based on the weighted values of the neighboring pixels. These
filters are fast, robust, well-understood, and work fairly well in many situations.
The main drawback of these classical filters is their tendency to not only remove the
bright noise outliers but also blur the sharp edges.

More advanced spatial filtering approaches, e.g., non-local means (NLM), use
more information from the whole image (Buades, Coll, and Morel, 2005). Instead of
taking an average of the direct neighborhood of the pixel, NLM takes an average of
the whole image, weighted by similarity and distance between the “donor” and the
“recipient“ pixel. The process of revisiting multiple locations in the image, compar-
ing their surroundings, and computing the average can take minutes for one image.
In return, this method is capable of producing sharper denoised images (Fan et al.,
2019).

Alternatively, denoising can be formulated as an optimization problem and reg-
ularization can be used to incorporate some prior knowledge about the image prop-
erties (Gu and Timofte, 2019). These methods are very powerful but require deep
mathematical knowledge and handcrafted regularizers, making their application
challenging. One of the most successful regularizers is Total Variation (TV) which
encourages piece-wise constant image regions separated with sharp boundaries (Ro-
dríguez, 2013).

To summarize, classical methods require fine parameter tuning by an expert to
balance smoothing and denoising, hence there is a significant risk of information
loss if applied incorrectly. A more comprehensive overview of the classical denois-
ing methods can be found elsewhere (Fan et al., 2019). I describe my contributions
towards the denoising in Chapter 3
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Self-Supervised Pre-Training

Most part of this work is dedicated to self-supervised methods, I will introduce them
more in-depth in the following paragraphs. The idea behind self-supervised learn-
ing is to create a fully-supervised task from data without labels. This task (so-called
pretext), doesn’t directly lead to a model that is able to solve the actual task. How-
ever, training for a pretext task forces the model to create representations beneficial
for the actual (so-called downstream) task solving. A great example of such a task
is image colorization. On one hand, having just a set of colorful images, it’s easy to
produce a dataset consisting of grayscale photos paired with their colorful version.
On the other hand, the conversion of the grayscale images back to full color requires
a model to develop a deep understanding of the depicted structures to make a pre-
diction. As a result, the model trained to colorize the images is forced to recognize
the depicted objects and requires less markup to be trained to segment them (Lars-
son, Maire, and Shakhnarovich, 2017).

Two major directions of self-supervised machine learning are knowledge-prior
and data-prior training.

Knowledge-prior training uses expert knowledge of the specific task for training.
For example, as a pretext task, a model was trained to predict the distance be-
tween different splits of the brain cortex (Spitzer et al., 2018). As a downstream
task, the segmentation of the cortex into specific regions was used. To train this
model properly, the authors knew a specific way to measure the distance be-
tween those slices, because they knew the way the cortex is organized.

Data-prior training in contrast isn’t bound to a specific data type. The most popu-
lar subtype is contrastive learning. In the contrastive learning framework for
each image in a batch, two copies are generated, and they are passed through
different augmentations. The loss enforces that representation of the different
views of the same image should be close to each other, while representations
of the different images should be distant. While the model is forced to rec-
ognize objects on the image to judge their closeness beyond simple features,
destroyed by augmentations.

The benefits of data-driven self-supervised training are the ability to be applied
to almost any dataset and the broad set of studies for these approaches since they are
generally applicable. However, knowledge-driven approaches can provide better
results by being tailored for specific tasks and datasets.

Contrastive Learning Recently, a lot of research has focused on the so-called con-
trastive learning (Newell and Deng, 2020). Contrastive SSL tasks are designed to
distinguish between positive and negative examples. In (Chen et al., 2020a) authors
presented SimCLR – a method for contrastive learning, which quickly became a pop-
ular approach. It relies on a specific procedure of batch construction – a number of
samples are taken from a dataset, then two views of each image are created by ap-
plying random augmentations. The model is trained to pull together embeddings of
different views of the same image (positive samples) and push away from embed-
dings of different images (negative samples). As a downside, this approach requires
a large batch size containing many negative samples. This leads to a higher mem-
ory footprint and longer computation time. Another difficulty for SimCLR is the
requirement that the positive and the negative samples should be as diverse as pos-
sible. Currently, many methods aim to tackle this by imposing constraints on the
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embedded vectors themselves (Bardes, Ponce, and LeCun, 2021). Moreover, it was
noted that SimCLR might be sensitive to harder augmentations (Wang et al., 2021),
requiring fine-tuning of the method. More details on various contrastive methods
are given in the review by Weng, 2021.

Knowledge-Driven Learning Knowledge-Driven methods are based on the spe-
cific knowledge of an application area and dataset. In the work, by Spitzer et al.,
2018 the authors propose to employ the geodesic distance between two patches of
the human brain cortex. Using geodesic distance was an important metric due to the
inherent 3D structure of a brain cortex – its characteristic folds with high curvature.
In another work (Haghighi et al., 2021), the authors proposed to rely on the fact that
many medical images are highly structured (i.e., relative positions between organs)
and aligned during a scanning procedure (e.g., radiography image of lungs). Thus,
they supposed that taking crops from the same location of an image would result
in the same structures being demonstrated on the crop. The authors, therefore, se-
lected several pre-defined crop locations and assigned a separate class for each of
those locations. These classes were called Transferable Visual Words. It is important
to note, that the strong assumption about the alignment of data requires thorough
data filtering, even for medical applications. I describe my contributions towards
the self-supervised pre-training in Chapter 5.

Self-Training

Another training type used in this work is self-training. The self-training technique,
in contrast to self-supervised training, employs the unlabelled part of the dataset di-
rectly to train a model for the target task (Hsu et al., 2019). To do so, two models are
used, the Teacher and the Student. The Teacher model (which could be an ensemble
of models) is trained on a labeled part of the dataset. Subsequently, its predictions
on the unlabelled part of the dataset (so-called pseudo-labels) are used to train the
Student model. This method originates from the Knowledge Distillation framework
(Hinton, Vinyals, and Dean, 2015). Experiments show, that given enough data avail-
able, self-training may be superior to the pre-training (Zoph et al., 2020). In that
work, the authors also show that self-training could be beneficially combined with
self-supervised pre-training.

Several methods were proposed to improve the results of the self-training fur-
ther. Authors proposed to train several Teacher models and average their predic-
tions to form pseudo-labels (Tarvainen and Valpola, 2017). Another work proposed
to use soft labeling instead of hard labeling. It is, instead of selecting the most prob-
able class, the authors proposed to save the whole probability distribution for each
prediction. This required updating the loss, and making use of KL-divergence in-
stead of the Cross-Entropy for prediction, but was shown to be beneficial for the
final quality (Xie et al., 2020). One more work proposed a procedure to select the
best pseudo-labels for the Student model training based on the confidence of the
Teacher’s predictions (Zou et al., 2018a). My contributions towards the self-training
in Chapter 6
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Chapter 3

Self-Supervised Multi-Channel
Data Denoising

The work presented in this chapter is
strongly related to the (Zharov et al.,
2023), which was published in the
Optics Express Journal.
The work was performed in
collaboration with Dr. Evelina Ametova.
She simulated the computed
tomography dataset and implemented
the material decomposition algorithm.
She also significantly contributed to
the manuscript preparation.

As soon as the images land on a hard drive, and even before any automated pro-
cessing takes place, they can be reviewed by a scientist. What unites both people and
classical computer vision algorithms is the high noise sensitivity. Noisiness of an im-
age can be measured with Signal-to-Noise Ration (SNR) defined as SNR = µ

σ , where
µ is the average value of some image neighbourhood and σ its variance (Gonzalez
and Woods, 2008). This chapter engages with the noise reduction (SNR increase)
for a specific subset of tomographic and radiographic images, those with multiple
channels.

Noise can become a particularly critical issue in applications where additional
constraints force a strong reduction of the SNR per image. These constraints may
result from limitations on the maximum available flux or permissible dose and the
associated restriction on exposure time. Often, a high SNR per image is traded for
the ability to distribute a given total exposure capacity per pixel over multiple chan-
nels, thus obtaining additional information about the object by the same total ex-
posure time. These can be energy channels in the case of spectroscopic imaging or
time channels in the case of time-resolved imaging. Conventional image denoising
methods work on a per-image basis and rely on certain assumptions concerning im-
age properties. Consequently, they perform well when the assumptions are met and
fail otherwise. At the same time, tremendous progress in machine learning demon-
strated that data-driven methods are much more flexible in accommodating various
image characteristics.

The proposed method is designed specifically for the multichannel (time or energy-
resolved) imaging datasets and relies on the recent Noise2Noise (N2N) (Lehtinen et
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al., 2018) self-supervised denoising approach. that learns to predict a noise-free sig-
nal without access to noise-free data. N2N in turn requires drawing pairs of sam-
ples from a data distribution sharing identical signals while being exposed to differ-
ent samples of random noise. The proposed method is applicable if adjacent chan-
nels share enough information to provide images with similar enough information
but independent noise. I demonstrate several representative case studies, namely
spectroscopic (k-edge) computed tomography, in vivo cine-radiography, and energy-
dispersive (Bragg edge) neutron tomography. In all cases, the N2N method shows
dramatic improvement and outperforms conventional denoising methods. For such
imaging techniques, the method can therefore significantly improve image quality,
or maintain image quality with further reduced exposure time per image.

3.1 Introduction

Many imaging modalities rely on radiation’s penetration ability to make an object’s
interior visible. Physical interactions of radiation and matter, such as absorption,
scattering, or phase shifts, can be used to obtain contrast inside the object of inter-
est. Commonly, either radiography (single view projection) or tomography (multiple
views with subsequent volumetric image reconstruction) are acquired. As particle
or photon emission and detection are stochastic processes, and often source flux
and detector efficiency are limited, longer exposure time improves image quality.
However, there are many scenarios where sufficient exposure can not be achieved.
An obvious example is in vivo imaging, where the radiation dose ultimately limits
the amount of information acquired (Moosmann et al., 2013). Another example is
spectroscopic imaging with a polychromatic beam, where the detected intensity or
particle counts are distributed across multiple energy bins. This leads to a significant
noise per energy channel or requires a dramatic increase of exposure times, hence,
limiting the experiment throughput (Warr et al., 2021). Both imaging modes can be
generalized as multi-channel images. In this chapter, I specifically address a num-
ber of cases when the channels of multi-channel images share a sufficient amount of
common structural information but are affected by independent noise samples.

Given the aforementioned physical constraints, we often need to rely on image
processing techniques to improve image quality and extract valuable data. A group
of methods for improving image quality that is affected by noise is called denoising.
Similar to other domains, methods based on Machine Learning (ML) have revolu-
tionized denoising (Ilesanmi and Ilesanmi, 2021). In my work, I demonstrate an ML
approach to improve the quality of underexposed images in challenging applica-
tions such as spectroscopic k-edge computed tomography, in vivo radiography, and
energy-dispersive Bragg-edge neutron tomography. The method is based on the re-
cent Noise2Noise (N2N) self-supervised denoising approach (Lehtinen et al., 2018).
The main assumption enabling the N2N method is formulated as follows: Consider
two images I1 and I2 that share the same structural information S but are affected
by independent and identically distributed (iid) instances of noise σ1 and σ2. If the
model is trained to predict I1, given I2 as input, the best prediction possible is S,
because σ2 is conditionally independent of σ1, given S.

This chapter is organized as follows. First, the related work is outlined to put
the proposed method in context. Then, the N2N method is described, followed by
three rigorous case studies. Finally, a discussion of the findings in the context of
multi-channel imaging is provided.



3.2. Related Work 25

3.2 Related Work

Artifacts are inherent to digitally acquired images, as an acquisition function is sub-
ject to many uncertainties and is generally not accurately known. The acquisition
function includes source or detector heterogeneity, optical distortion by optical el-
ements or diffraction during wave-field propagation, and inherent noise driven by
the stochastic nature of particle emission, detection, and interactions. As optical
distortion is a misplacement of information, a distortion map can be estimated and
applied to compensate for it. For a number of cases, simple flat and dark field cor-
rections are applicable. Flat and dark fields refer to the measurement of detector
response with and without source illumination, respectively. Finally, denoising is
used to compensate for the inherent stochastic noise. Hence, the denoising problem,
as it was introduced in the Chapter 1, is to restore the (deterministic) signal S from a
noisy observation I:

I = S + σ(S) (3.1)

where σ(S) is the inherent noise of the imaging device. This noise depends not only
on the stochasticity of the particles (neutrons, photons, etc.) and the electronics but
additionally on the distortions, and also on the transformation applied to correct the
image. All this makes a closed-form distribution estimation problematic.

The existing image denoising approaches can be roughly categorized into two
large groups: classical image processing and ML approaches. Typically, classical
image processing approaches work in a single-image manner and incorporate expert
beliefs about the nature of noise. ML approaches, on the other hand, employ the idea
of fitting a data-driven model entirely without or with minimal expert knowledge
about the nature of the data.

3.2.1 Classical Image Processing

The basic spatial filtering methods are mean, median, or Gaussian kernel filters (Gon-
zalez and Woods, 2008). For each pixel, these filters select a new value, based on
the weighted values of the neighboring pixels. These filters are fast, robust, well-
understood, and work fairly well in many situations. The main drawback of these
classical filters is their tendency to blur sharp edges.

More advanced spatial filtering approaches, e.g., non-local means (NLM), use
more information from the whole image (Buades, Coll, and Morel, 2005). Instead of
taking an average of the direct neighbourhood of the pixel, NLM takes an average of
the large region, weighted by the similarity between the “donor” and the “recipient”
pixel. The process of revisiting multiple locations in the image, comparing their
surroundings, and computing the average can take minutes for one image. In return,
this method is capable of producing sharper denoised images (Fan et al., 2019).

Alternatively, denoising can be formulated as an optimization problem and reg-
ularization can be used to incorporate some prior knowledge about the image prop-
erties (Gu and Timofte, 2019). These methods are very powerful but require deep
mathematical knowledge and handcrafted regularizers in many cases, making their
application for experimental data challenging. One of the most successful regulariz-
ers is Total Variation (TV) which encourages piece-wise constant image regions with
sharp boundaries (Rodríguez, 2013). In summary, classical methods require fine tun-
ing of parameters by an expert to balance smoothing and denoising. Hence there is
a significant risk of information loss if applied incorrectly. A more comprehensive
overview of classical denoising methods can be found elsewhere (Fan et al., 2019).
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3.2.2 Machine Learning Approaches

The evolution of classical methods may be seen as a series of steps taken to increase
the amount of information used to correct a single pixel value. In this respect, ML-
based approaches appear as a natural further step: a model, trained to correct the
noise, implicitly incorporates knowledge about the whole dataset.

Early ML-based image denoising approaches worked in a supervised manner,
i.e. a model was trained on a set of noisy images to predict a noise-free image (tar-
get). Recently, authors of the N2N method demonstrated that there is no need for a
noise-free target: if one uses a pair of noisy images (affected by iid instances of the
noise) as an input and as a target for the training, the model will predict the noise-
free image (Lehtinen et al., 2018). The underlying intuition is that independent in-
stances of noise are uncorrelated and cannot be predicted, hence the model is forced
to extract features. Even though N2N does not explicitly require a set of noise-free
images, the Lehtinen et al., 2018 synthetically formed noisy pairs by adding noise
to noise-free images.

There have been several attempts to extend the N2N method for denoising prob-
lems where pairs of images are not naturally available. Noise2Self (Batson and
Royer, 2019) and Noise2Void (Krull, Buchholz, and Jug, 2019) generate the required
pair of images by taking random pixels in the noisy image and disturbing them with
yet another noise distribution. In this way, multiple training pairs can be constructed
from a single noisy image. Noise2Stack (Papkov et al., 2021) was designed for three-
dimensional tomographic data and is based on an assumption that tomographic data
is typically smooth. Therefore, slice-to-slice changes are assumed to be significantly
smaller than the slice-wise variability caused by noise, hence, neighbouring slices
can be used for training.

Alternatively, constrained autoencoders can be used to denoise images (Vincent
et al., 2008). During the training, autoencoders use the same image both as input and
target and attempt to compress (encode) the input image into its lower-dimensional
representation. The denoising properties of this approach rely on the assumption
that the noise, due to its stochastic nature, is harder to encode, than the signal. To
additionally limit the capacity of the model to store information about the noise,
it can be restricted by limiting the computational capacity of the model, lowering
the dimensionality of the learned representation, or introducing synthetic noise into
it (Vincent et al., 2008). However, the autoencoders are inefficient if the noise is
spatially correlated and can be easily memorized by the model. The Hierarchical
DivNoising (HDN) method addresses this issue by training a variational autoen-
coder with a noise model imposed over output (Prakash et al., 2022). The authors
proposed a way to find particular components of the model that encode informa-
tion about the noise so that they can remove those components. Even though the
proposed methods provide a valuable alternative to the N2N approach, the authors
highlight that the N2N approach is a hard-to-beat baseline (Prakash et al., 2022).

3.3 Model Training

The N2N method assumes that a pair of images contains the same signal and iid
noise. My adaptation of the method to multi-channel image data takes its inspira-
tion from the denoising of Synthetic Aperture Radar (SAR) images (Dalsasso, Denis,
and Tupin, 2022). In SAR imaging, both the phase and amplitude of received mi-
crowaves are measured in each pixel; commonly the phase information is ignored.
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However, the authors demonstrated that the amplitude and the phase contain com-
plementary information and can be used as a basis for N2N denoising. I hypothesize
that in multi-channel imaging, adjacent time frames or energy levels indeed share
sufficiently similar signals, and have noise samples close to being iid. Therefore, I
generate the required pair images based on this hypothesis. To help the model catch
complex spatial structures of the signal, I also feed it with multiple adjacent energies
or time frames as input whenever it does not result in oversmoothing.

Following (Krull, Buchholz, and Jug, 2019; Batson and Royer, 2019; Lehtinen et
al., 2018), I use the fully-convolutional neural networks as a model architecture. I
employed U-Net with ResNet-50 (as implemented in (Pavel Iakubovskii, 2019)) as
the backbone and relied on the Adam optimizer with a 3 × 10−4 learning rate, with-
out scheduling. Referring to the model, I will use fθ and model interchangeably,
where θ denotes trainable parameters of the neural network. The training, therefore,
is the process of minimization of the proposed loss function (defined for specific
experiments) by changing the parameters θ. Each image pair was augmented with
random crops, shifts, scale, rotations, distortions, and different types of blur. I ac-
knowledge that there is room for quality improvement via larger models, modern
architectures, better optimization procedures, or more aggressive augmentations.
The sensitivity study of training parameters is a topic of future investigation.

3.4 Experiments

3.4.1 Simulated spectral X-ray tomography

As a first case study I will discuss the applicability of N2N to energy-dispersive X-
ray tomography, which is of interest for biomedical imaging (Warr et al., 2021). The
polychromatic emission of laboratory X-ray tube sources is suitable to provide suf-
ficient photon flux. However, the broadband spectrum also leads to disadvantages
in quantitative analysis. In the conventional absorption mode, each detector pixel
integrates all photons irrespective of their energy. Since attenuation is a function
of photon energy, conventional tomographic reconstruction might exhibit so-called
beam-hardening artifacts (Davis, Jain, and Elliott, 2008). However, acquisition with
an energy-dispersive X-ray detector allows segmenting materials that can be insep-
arable in polychromatic absorption contrast. These are materials with similar mean
polychromatic absorption, but with spectrum showing sharp discontinuities at en-
ergies equal to the binding energies of the core-electron states, so-called absorption-
edges (K, L, M) edges. Thie energy spectrum in each reconstructed voxel can be used
to identify the corresponding material. Highly energy-dispersive (so-called hyper-
spectral) X-ray detectors have yet a limited total pixel number but an energy reso-
lution of about 1 keV (Egan et al., 2015), allowing to distinguish even neighboring
chemical elements. However, a high spectral energy resolution entails long expo-
sure times since the acquired counts are distributed over multiple bins. Therefore, a
state-of-the-art reliable denoising approach might help to improve the experimental
throughput. In this study, to ensure strictly controlled conditions, I simulated the
tomographic acquisition.

Data

I generated a volumetric phantom by combining several three-dimensional point
clouds: two Swiss rolls, two moon crescents, and an s-curve. All point clouds were
generated by the Scikit-Learn library (Pedregosa et al., 2011); to convert 2D point
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clouds to 3D, the third axis was added by randomly sampling from the Uniform
distribution. To convert the point clouds to a raster volume, I selected the size (in
voxels) of each point. To resolve the ambiguous cases (when several materials ap-
peared in the same voxel), I selected the priority order and always assigned the
material with the highest order to fill the ambiguous voxel. The spatial size of the
phantom was set to 512× 512× 512. In a rough structure, all slices of the dataset are
the same. However, the surface texture varied because of the random nature of the
point clouds. A single slice is shown in Figure 3.2a (left).

I assigned the simulated objects with energy-dependent mass attenuation coef-
ficient (MAC) of Europium (63Eu, k-edge = 48.5 keV), Gadolinium (64Gd, k-edge =
50.2 keV), Ytterbium (70Yb, k-edge = 61.3 keV), Lutetium (71Lu, k-edge = 63.3 keV),
and Uranium (92U, k-edge = 115.6 keV). The background was assigned with MAC
of air. This particular choice of materials was inspired by the study of the separabil-
ity of k-edge nanoparticles presented in (Getzin et al., 2018). Two pairs of materials
have neighbouring atomic numbers, hence very close k-edges, and are barely distin-
guishable in a noisy image; Uranium was added to have a k-edge in the noisiest part
of the spectrum, to check the ability of the method to locate the k-edge in extreme
noise conditions.

I used the MATLAB package PhotonAttenuation to generate the energy-dependent
MAC of the selected materials (Tuszynski, 2006). A spectrum profile of a Boone/Fewell
source with the tube potential 150 kV (no kV Ripple and filters) was generated us-
ing the MATLAB package spektr 3.0 (Punnoose et al., 2016). The obtained source
spectrum was normalized and scaled to have a maximum value of 175 × 103 pho-
tons / mm2 to imitate short exposure acquisition. MAC of selected materials and
the source spectrum are shown in Figure 3.1.

I generated 135 energy bins between 15 and 150 keV with a 1 keV step. For
each bin, I simulated 120 equally-spaced parallel-beam CT projections over 180 The
spectral characteristics of the material and the source are shown in Figure 3.1. I
used the conventional FBP algorithm to reconstruct tomographic data (implemented
in (Jørgensen et al., 2021)). Examples of reconstructed slices for 40 keV (high flux)
and 140 keV (low flux) are shown in Figure 3.2b (right). As expected, at 140 keV the
reconstructed slice is uninterpretable.

Training and Processing

The model fθ was trained by optimizing

Ei,j∥ fθ(xi,j−1, xi,j+1)− xi,j∥1 −→
θ

min, (3.2)

where xi,j is a projection acquired at the transmission angle i and in the energy bin j. I
randomly split the whole set of projection angles into a training set and a validation
set with a ratio of 80/20. I do not select a test set, since, in the experiments, I do
want to overfit for the exact dataset and do not seek for generalization. Note that
the energy level j, which is required to be predicted by a model, should not be fed
into the model to avoid the trivial solution. Only adjacent j − 1, j + 1 levels should
be used. This forms a gap of one energy level in the inputs.

During the inference, the model is fed with the adjacent energy bins without the
gap used in training, to avoid blur in the spectral domain:

x̃i,j−0.5 = fθ(xi,j−1, xi,j). (3.3)
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FIGURE 3.1: The materials and source characteristics used to
simulate spectral CT. For materials, energy-dependent mass atten-
uation coefficients (MAC) are presented, and for the simulated
Boone/Fewell source, I present the source profile. I selected two pairs
of materials with close k-edges that are hard to resolve and one mate-

rial with the k-edge in the low-flux zone of the source.

However, since the model predicts the energy level which is averaged between
two input levels, it will inevitably predict an energy level between two adjacent ones
used as input. It is important yet easy to compensate for this.

As before, the denoised tomographic datasets were reconstructed with the con-
ventional FBP algorithm. Here, each energy bin was reconstructed separately result-
ing in 135 volumes. To obtain the spatial distribution of individual materials in the
sample, I performed material decomposition as described in (Ametova et al., 2021b).
The employed decomposition relies on the assumption that each voxel is a unit vol-
ume and each material occupies a volume fraction in this unit volume (the fraction
can be 0). Under this assumption, a voxel-wise sum of all material maps is equal to
1 in each voxel.

Results

Figures 3.2a and 3.2b show two-dimensional slices for selected (individual) energy
bins. N2N demonstrates the drastic quality improvement of the reconstruction. For
40 keV (high source flux, Figure 3.2a) the reconstructed slice appears to be almost
noise-free; the slice shows sharply defined objects where all original structures be-
come clearly visualized. Although no signal seems to be visible in the 140 keV slice
(Figure 3.2b) prior to denoising, N2N is able to partially recover the structures in the
slice.

Single noisy energy spectra are used for one voxel per material component and
denoised spectra are reconstructed for the voxels and plotted in Figure 3.2c along
with the theoretical MAC. The voxel positions within the materials were chosen ar-
bitrarily. Noise reduction results in sharp and accurately positioned k-edges, aiding
further material decomposition. Even the slight uranium k-edge is visible in the
denoised spectrum.
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(A) Noisy and denoised slices at 40 keV (near peak
source flux)

(B) Noisy and denoised slices at 140 keV (low
source flux)
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Enegry, keV

U

(C) Spectral profiles

FIGURE 3.2: Qualitative examination of the denoising of the simu-
lated energy-resolved CT of a specially devised phantom. On the left,
present a noisy (left) and denoised (right) transverse slice both near
peak (top) and low (bottom) flux. On the right, I present a compari-
son of theoretical, noisy, and denoised spectra for different materials.
For each material, I selected one representative pixel. Note how de-
noising is able to recover information even in extremely noisy cases
both spatially (b) and spectrally (see the slight k-edge of the Uranium

on the (c) plot).
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Air Eu Gd Yb Lu U mean

2*
A

U
PR

C
noisy 0.999 0.917 0.873 0.787 0.645 0.998 0.870

denoised 0.999 0.998 0.998 0.996 0.995 0.999 0.998

TABLE 3.1: Quantitative examination of the denoising of the simu-
lated energy-resolved CT of a specially devised phantom. I numer-
ically compare the material decomposition quality before and after
denoising. The denoising provides a prominent quality boost for ma-

terial decomposition.

To quantitatively evaluate denoising results, I perform the material decompo-
sition. Since the sum of volume fractions corresponding to each material, obtained
through material decomposition, is bound to 1 in each voxel, I can treat the estimated
volume fractions as probabilities. Hence, the task of material decomposition can be
considered a classification problem and the related quality assessment metrics can
be applied to quantitatively assess the results. The comparison results are shown
in the Figures 3.3a and 3.3b. In the top row I show the binarized material decom-
position error (black corresponds to erroneous material prediction). The confusion
matrices between the predicted and true materials for each pixel are presented in the
bottom row (perfect classification results in the identity confusion matrix). A high
level of noise in the simulated data causes misclassifications between close materials
(e.g., Lutetium and Ytterbium). Also, as it is visible on the top row, these errors are
distributed evenly throughout the sample. Hypothetically, this can be compensated
by enforcing an assumption of material homogeneity. However, this assumption
might cause severe errors close to material interfaces. The errors in the denoised
volume are mostly concentrated around the borders (see the top row), and mainly
correspond to misclassification for air due to slight blur (see the bottom row). But
overall, the confusion matrix for the denoised dataset is considerably closer to the
identity matrix.

I also present the Area Under Precision-Recall Curve (AUPRC), measured for
each material Table 3.1. AUPRC for ideal classification is 1. AUPRC results addi-
tionally highlight improvement after denoising: N2N provides a boost of more than
10% of mean AUPRC for the downstream material decomposition. To assess qual-
ity loss caused by reconstruction itself (without any effect of denoising), I generated
another set of projections with very high flux (all other parameters remained con-
stant). Material decomposition for this volume shows a mean AUPRC of 0.999, with
the lowest precision of 0.996 for the air. I can conclude that the reconstruction losses
are negligible in this experiment.

3.4.2 Neutron imaging

As a second case study I discuss the applicability of N2N to energy-dispersive Bragg
edge neutron tomography. Neutron imaging provides a complementary contrast to
conventional X-ray imaging. Neutrons mainly interact with atomic nuclei, in this
way a neutron beam passing through an object can capture information about the
internal material structure. The energy spectrum of the neutron transmission of a
polychromatic thermalized neutron beam passing a predominantly polycrystalline
material contains sudden and sharp edges at wavelengths equal twice the interpla-
nar distance between scattering planes in dependence of the crystalline properties
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FIGURE 3.3: Quantitative examination of the denoising of the simu-
lated energy-resolved CT of a specially devised phantom. I study the
quality of denoising through the lens of further material decomposi-
tion. On the top row, I present the binarized material decomposition
error. Pixels that are black were assigned the wrong material. On the
bottom row, I present the confusion matrix of the material decompo-
sition for different materials, where ideal decomposition should yield
the identity matrix. I note that materials with close k-edges are fre-
quently confused before the denoising, and after the denoising, the

confusion mainly comes from spatial smoothing.
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of the sample material (Fundamentals, 1993). Energy dispersive images can effi-
ciently be acquired by combining a pulsed neutron spallation source and a suit-
able time-sensitive detector by using the time-of-flight (ToF) method, which employs
the energy-dependent neutron velocity for spectral information (the more energetic
neutrons, by having higher velocities, reach the detector earlier than less energetic
(slower) neutrons). Measuring the time of arrival of the neutrons at the detector and
knowing the flight path length, their energies, and the corresponding wavelengths
can be determined. For TOF methods, high energy resolution requires long flight
distances and many time bins in the detector. Hence, only a few pulses per second
can be measured, and acquired counts are shared between multiple bins (Santiste-
ban et al., 2001). More details on this acquisition mode can be found elsewhere, for
both the measurement setup (Kockelmann et al., 2007) and applications (Santiste-
ban et al., 2002; Strobl et al., 2009). Neutron facilities are expensive and demand for
neutron beamtime exceeds the supply capacity (Bentley, 2020). Therefore, there is
a high interest in efficient image denoising techniques to reduce exposure time and
subsequently increase experiment throughput.

Data

In this study, I employ the dataset (Jørgensen et al., 2019) acquired at the Imaging
and Materials Science & Engineering (IMAT) beamline operating at the ISIS spal-
lation neutron source (Rutherford Appleton Laboratory, U.K.) (Burca et al., 2013;
Kockelmann et al., 2018). More details on acquisition parameters and preprocess-
ing can be found elsewhere (Ametova et al., 2021b); here, I only briefly summarize
details relevant to this study.

A sample contains 6 aluminium tubes: five filled with metallic powder (copper
(Cu), aluminium (Al), zinc (Zn), iron (Fe), and nickel (Ni)), and one empty. The
neutron detector has 512 × 512 pixels, 0.055 mm pixel size. A set of spectral projec-
tions were acquired at 120 equally-spaced angular positions over 180 degrees rota-
tion with 15 min exposure. Additionally, 8 flat field images (4 before and 4 after the
acquisition) were acquired with the same exposure.

A typical problem of spectral measurements is that noise statistics vary quite
drastically across the spectrum. The beam spectrum at the IMAT beamline has a
crude bell shape with a peak around 3 Å (Burca et al., 2013). Additionally, the time-
sensitive detector suffers from dead time meaning counts loss, hence, additional
signal distortions (Tremsin et al., 2012). To alleviate the count loss problem, the time
(wavelength) domain is split in several independent measurement intervals (4 in this
case) and a special correction technique is applied to the measured data (Tremsin et
al., 2012). Each interval has an individual bin width; for this study the following
bin width was used: 0.7184 · 10−3 Å, 1.4368 · 10−3 Å, ·10−3 Å and 2.8737 · 10−3 Å.
To benchmark N2N, I generated three additional datasets by rebinning the dataset
in the original resolution (2840 energy bins split into 4 measurement intervals with
(1141, 814, 424, 464) bins in each). The rebinning was performed individually in each
interval by summing every (4, 2, 2, 1), (8, 4, 4, 2), and (16, 8, 8, 4) bins, resulting in
datasets with 1366, 681 and 339 wavelength bins, respectively.

As a proxy to demonstrate the noisiness of the data, as a function of frequency,
I plot the standard deviation of pixel values for one projection angle but different
wavelengths along the spectrum in Figure 3.4. Vertical dashed lines separate in-
dependent intervals. Note, that standard deviation increases drastically with the
increase of flux (the effect of counts loss becomes more apparent).
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FIGURE 3.4: Limitations of time-sensitive detectors require splitting
the whole wavelength domain into several measurement intervals (4
in this case, brackets depicted with dashed lines). Each interval has an
individual wavelength bin width. In this plot, I show how standard
deviation of the values captured for an individual pixel within the bin
changes with the change in wavelength. This can be assumed to be
a proxy measure of the signal noisines. Additionally, to benchmark
the method, I generated three additional datasets by rebinning the

spectral dimension of the original dataset.

Training and Analysis Details

In this experiment, I compare the effect of noise reduction applied to the projections
(N2N(P)) before reconstruction with that of applying it to the already reconstructed
slices (N2N(S)). In both cases, I trained a model fθ by performing essentially the
same loss optimization procedure as in the previous case study

Ei,j∥ fθ(xi,j−1, xi,j+1)− xi,j∥1 −→
θ

min, (3.4)

where now xi,j can represent either the projection for an angle i and an energy chan-
nel j, or a reconstructed slice number i and an energy channel j. I used i to randomly
split the dataset into the training and validation subsets in the 80/20 ratio.

The combination of the N2N denoising approach and the conventional FBP re-
construction was compared with the advanced iterative reconstruction routine pro-
posed by Ametova et al., 2021b. The latter relies on expert expectations on how the
reconstructed image should look like. Which becomes increasingly complex with
increasing complications of the sample under investigation. As in this case the re-
constructed samples are expected to appear as solids, i.e. homogeneous regions,
the authors assumed a piece-wise constant signal in the spatial domain. This prior
knowledge is enforced through TV regularization (Rudin, Osher, and Fatemi, 1992;
Sidky, Kao, and Pan, 2006). The signal in the spectral domain is expected to be
piece-wise smooth based on theoretical predictions for the materials employed in
this study (Boin, 2012). In this case, regularization is achieved through Total Gen-
eralized Variation (TGV) prior (Bredies, Kunisch, and Pock, 2010). Hence, I refer to
the iterative reconstruction method as TV-TGV. As before, the reconstruction was
implemented in CIL (Papoutsellis et al., 2021). Code to reproduce results is available
from (Ametova et al., 2021a).
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Results Discussion

I will begin with a visual comparison of different denoising approaches in the spec-
tral domain (Figure 3.5). I perform the comparison for the 339 channels image as the
same binning was used for the case study in Ametova et al., 2021b. The theoretical
predictions provide the ground truth for the comparison. As in the previous case
study, without denoising the conventional FBP reconstruction results are uninter-
pretable. The N2N performance is comparable to a TV-TGV reconstruction. TV-TGV
provides smoother spectra at a cost of spectral and spatial resolution loss. In con-
trast, N2N results appear sharper spatially but noisier spectrally for low-attenuative
materials. Hence, I conclude that there is a certain threshold noise level N2N can
handle efficiently.

Figure 3.6a shows a comparison of the slices reconstructed from the white beam
data (sum of all energies) and from data for a selected single energy channel for TV-
TGV, N2N(S), and N2N(P), through direct comparisons of reconstructed slices in the
transverse plane. While for Fe and Ni, both N2N(P) and N2N(S) perform compa-
rably, for Cu and Al their performance differs. The attenuation of Al is drastically
lower than other materials, which could lead to inconsistent predictions of the model
for the projections when another material occludes the Al cylinder. This problem is
not relevant for N2N(S). The Cu powder has a larger mean particle size than other
powders (the mean particle size is comparable to the voxel size), hence, stronger
spatial structures are visible in the cross-section. The structure changes randomly
along the sample height. Therefore the N2N(S) model has less information about
the structure and might fail to recover it correctly.

As a reference revealing structures, I use an FBP slice averaged across all energy
levels, sacrificing spectral information for spatial. I also report the structural similar-
ity index (SSIM) between the single-energy slices and the reference slice (Wang et al.,
2004). Both N2N approaches provide a sharper, more detailed image than TV-TGV.
Interestingly, while N2N(S) provides a visually better, sharper image, this image has
lower SSIM, compared to the N2N(P). I hypothesize, that this is caused by the un-
intentional reduction of the streak artifacts (highlighted in the top left callout in the
N2N(P) slice). Streak artifacts are very common in tomographic imaging and are
caused by insufficient angular sampling (Kak and Slaney, 2001).

I next explore denoising quality in the spatial (Figure 3.6c) and the spectral do-
main (Figure 3.6b) given the increase of noise levels in the input data. I control noise
levels by changing binning: the smaller is the binning step–the lower is SNR. I use
the white beam slice reconstructed with FBP and the theoretical predictions for SSIM
calculations in the spatial and spectral domains, respectively. While iterative recon-
struction provides the best results for the spectral domain, it provides the worst
result for the spatial domain. Excellent TV-TGV performance heavily capitalizes on
the fact that the cylinders are homogeneous inside. In terms of SSIM, N2N(P) out-
performs N2N(S) because N2N(S) additionally minimizes streak artifacts due to the
angular undersampling, hence, the discrepancy between the reference image and
the denoised one grows.

Another important observation is that N2N can be computed for the higher num-
ber of channels. The training time of the model stays almost the same, around 20
hours on average for the full volume, calculated on a 4 × A5000 machine. After the
training, the model is capable of inferencing one projection/slice at the rate of 20-30
energy channels per second. While TV-TGV reconstruction for one slice with 339
channels takes several hours to complete and reconstruction time increases with the
increase in the number of channels or the number of slices.
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FIGURE 3.5: Qualitative comparison of denoising techniques in the
spectral domain for the neutron imaging dataset. The λ designates
the wavelength, and is measured in angstroms. For each material, I
selected one representative voxel, and present the theoretical and em-
pirical spectra. Left: results of TV-TGV, N2N done on slices, and N2N
done on projections are presented; right: the spectra before denoising
are presented. All results are presented for the datatset with 339 en-
ergy bins. I can note, that N2N provides sharper edges, but noisier

predictions.
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FIGURE 3.6: Qualitative (top) and quantitative (bottom) compar-
isons of the denoising methods for the neuron imaging are presented.
For the quantitative comparison, I plot the dependency between
the structural similarity index (separately in spectral and spatial do-
mains) and the number of energy channels used. Since the change
in the number of channels was done through the binning, the lower
amount of channels corresponds to the lower amount of noise in the
initial image. I note, that spatially Noise2Noise provides superior de-

noising.
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3.4.3 In Vivo Cine-Radiography

The third case study considers a N2N application to cine-radiography. Digital real-
time radioscopy, cine-radiography alias fluoroscopy are different realizations of time-
resolved X-ray imaging techniques relying on radiographic projection imaging to
study morphological evolution during technological or biological processes. In par-
ticular, for in vivo or other dose-sensitive applications, the applicable dose and the
detection efficiency of the imaging system limits acquisition times, constraining the
total observation time or achievable SNR.

For this case study, I employed propagations-based phase contrast imaging (PB-
PCI), which is particularly well suited for X-ray imaging of very weakly absorb-
ing soft tissue in biological specimens in the sub-micron up to a few µm resolution
range (Fitzgerald, 2000). The X-ray wavefield experiences a locally varying phase
shift when traversing the specimen, which turns into measurable intensity contrast
as a result of free-space wavefield propagation. The object information can be re-
constructed from the detected image interference pattern by algorithmic treatments
(so-called phase retrieval or PR for short (Lohse et al., 2020)). Here, I applied a convo-
lution with a dedicated low-pass filter in the spatial domain. This so-called Paganin
filter (Paganin et al., 2002) heavily affects the noise distribution. On one hand, it sig-
nificantly reduces high-frequency noise, hence, increases the Peak Signal-to-Noise
Ratio (PSNR). On the other hand, low-frequency noise becomes more prominent
causing so-called “cloudy” artifacts (Paganin et al., 2004). For a single image, the
effect of low-frequency noise might be less disturbing. However, in a time-resolved
cine-radiographic sequence, this effect leads to a highly disturbing flickering, since
the position of these “clouds” changes randomly from frame to frame, which affects
the interpretability of the images by experts.

Data

In this case study, I used a batch of in vivo cine-radiographic data from a behavioral
study visualizing the morphodynamics of parasitoid chalcid wasps emerging from
their host eggs (Spiecker et al., 2023a). The full dataset contained 138 videos, imaged
with 15 fps (0.066 s exposure time per frame) with lengths between 81 and 7142
frames per image series. The total number of frames is 263, 875.

I identified a sequence of 100 frames, where the wasp was completely still. From
this, I calculated an average frame and used it as a low-noise reference image. This
averaged image was used for qualitative results calculations. The average PSNR
value before phase retrieval is 25.2 with a standard deviation of 0.02. After the Pa-
ganin phase retrieval, the PSNR increases to 35.9 with a standard deviation of 1.2.

Training and Analysis Details

Because of the high dynamics in the sample’s motions, I cannot use more than one
frame as model input at one pass. I train the model fθ by optimizing the loss

Ei,j∥ fθ(xi,j−1)− xi,j∥1 −→
θ

min, (3.5)

where xi,j stands for the frame number j from the image sequence number i. I have
randomly divided all frames into training and validation sets in the 80/20 ratio ac-
cording to the index i. In addition, I noticed that in some cases the temporal resolu-
tion was not high enough to smoothly capture fast movements because the structure
positions changed significantly between adjacent frames. I introduced additional
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measured before PR measured after PR
PSNR SSIM PSNR SSIM

no denoising 25.2 ± 4 × 10−3 0.41 ± 1 × 10−4 36.0 ± 0.2 0.97 ± 2 × 10−3

denoising before PR 33.1 ± 13 × 10−3 0.49 ± 3 × 10−4 37.3 ± 0.3 0.98 ± 1 × 10−3

denoising after PR - - 36.0 ± 0.3 0.97 ± 1 × 10−3

TABLE 3.2: Quantitative comparison of the denoising done before
and after phase retrieval for the chalcid wasp cine-radiography. I av-
eraged 100 motion-free frames to use as the reference (noise-free) im-
age for these calculations. I report mean values and 95% confidence
intervals. The denoising before phase retrieval provides a slight im-

provement in measures both before and after phase retrieval.

filtering to alleviate potential blur caused by the large morphodynamical changes
between neighboring frames. During the training, I discard the image pairs whose
SSIM was below a manually optimized threshold.

Results

I applied the N2N denoising once before and once after phase retrieval. Table 3.2
summarizes PSNR and SSIM for both cases (the average of 100 frames without mo-
tion was used as a reference for metrics calculation). Applying denoising before the
phase retrieval results in significant improvement in PSNR and SSIM. The benefits
are maintained even after phase retrieval.

To qualitatively assess the benefits of denoising done before the phase retrieval, I
show exemplary frames in Figure 3.7. Note that after the denoising and before phase
retrieval the complex structures of the insect leg and interference fringes become
more visible (Figure 3.7b). I also visually compare how the noise changes between
consequent frames without (Figure 3.7c) and with (Figure 3.7d) denoising. I note
that the noise not only becomes less sharp without blurring the sample (Figure 3.7a)
but also produces less sudden changes in consequent frames. This makes it easier
to evaluate the morphodynamics or, reversely, would allow reducing the dose even
further. While denoising made the images smoother, there is no drastic blur, and
even relatively small details (e.g., legs or antennae) are preserved.

3.5 Discussion

In this chapter, I proposed and tested a way to relax the data constraints of the N2N
method. I traded the degree of similarity required from signals of individual im-
age pairs for the number with structurally close image pairs. That is, instead of
taking one pair with an identical signal, application to multi-channel imaging al-
lows us to benefit from drawing tens or hundreds of pairs with close but not iden-
tical signals. Through the experiments with different imaging modalities, I demon-
strated the method’s capability to significantly enhance image quality without over-
smoothing along the energy or time domain. I also highlighted the vulnerability
of the method to significantly dissimilar training image pairs (Section 3.4.3). I sug-
gested an approach to overcoming this issue by discarding images based on some
image similarity metrics.

In general, the method does not compensate for systematic artifacts present in
all channels (energy bins or time frames), hence relevant corrections (such as centre-
of-rotation compensation in CT) remain essential. On the other hand, I noticed that
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FIGURE 3.7: Qualitative examination of the denoising performed for
the chalcid wasp cine-radiography. I show the same cropped slice be-
fore and after the denoising. I also compare results before and after
the phase retrieval. Denoising is done only before phase retrieval. In
(b), I demonstrate an enlarged view of the wasp’s leg before PR (a call-
out from the red rectangle in (a)). In (c) and (d), I show consequent
frames of the noise without the sample, before and after denoising.
All four frames are plotted with the same value range. This demon-
strates that not only the noise becomes less prominent, but also the
evolution of the cloudy noise becomes less drastic after the denois-

ing.
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N2N applied to reconstructed slices significantly reduced the appearance of the ring
artifacts (Figure 3.2b) and the undersampling artifacts (Figure 3.6a). The magnitude
and the limits of this secondary effect are in the scope of future research.

I yet observed superficial “cloudy” artifacts present in homogeneous image re-
gions (such as the background) after denoising. These artifacts do not have any
significant effect on CT data as they have lower contrast than actual image features.
However, in cine-radiographic time series, they affect the overall image perception
as their location changes randomly from frame to frame introducing strongly dis-
turbing flickering without denoising. The reduced flickering after denoising im-
proves image interpretability as it has very low contrast compared to image features
and becomes more of a cosmetic effect as the human eye is still sensitive to it. A
way around this is to generate a few images for each frame by adding some Gaus-
sian noise, i.e. to increase the noise level, and take a median value of the resulting
denoised images. However, increasing the number of used denoised images or the
variance of the noise leads to blurring. I set these parameters, guided by the expert
judgment on the resulting image.

N2N assumes that the image pairs have equal signal values and independent
noise drawn from the same distribution. Strictly speaking, both assumptions might
be violated in spectral and time-resolved imaging where values in each individ-
ual channel are either energy or time-dependent, and noise distribution might be
partially correlated (see data discussion in 3.4.2 for details). The application of the
method to such data is based on the assumption that the variability of noise between
the twin images is larger than the variability of the signal.

In spectral CT, N2N can be applied to both projection images and to tomographic
slices after reconstruction. Any corrections in the projection domain are challenging
as they might cause or exaggerate existing inconsistency between projections (a con-
sistent sinogram has strong restrictions expressed as Helgason–Ludwig consistency
condition (Helgason, 1965)). However, the empirical studies did not show any no-
ticeable artifacts due to this inconsistency.
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Chapter 4

Optimizing the Markup
Preparation Procedure

This chapter explores the critical challenge of data annotation in the field of neural
networks for computer vision, specifically within the context of Computed Tomog-
raphy (CT) segmentation. Despite technological advancements easing the burdens
of data collection and sharing, the intensive requirement for high-quality, expert-
annotated datasets remains a significant hurdle, particularly in specialized fields
such as medical imaging. The involvement of subject matter experts, such as med-
ical practitioners, in the data labeling process, introduces a bottleneck due to the
expertise and time required, potentially compromising the primary duties of these
professionals and impacting the quality of dataset annotations. In this chapter, I’ve
tried to answer the question what is the optimal dataset, define it’s characteristics
and find how change in those characteristics drives the model quality.

4.1 Introduction

Neural networks for computer vision have made significant strides, achieving re-
sults that rival those of human experts in certain tasks (Avetisian et al., 2020). This
remarkable level of performance, however, is predicated on the availability of vast
quantities of training data. As a consequence, there is an ongoing and intense pres-
sure to collect and label ever-larger datasets to sustain and further enhance the per-
formance of these models.

With the advent of technological advancements, the burden of data collection
and sharing is steadily diminishing. Automation continues to expedite the process
of data collection, making it feasible to gather massive datasets in relatively short
periods. Simultaneously, the continuous decline in storage costs, coupled with the
accelerated data transfer speeds offered by modern networks, has significantly eased
the challenges associated with data sharing and storage. Hence, the constraints re-
lated to data collection and dissemination are becoming less obstructive in the land-
scape of neural networks and computer vision.

However, a new challenge has arisen in the form of data annotation, especially
as the resolution of data expands and tasks become more complex. The task of label-
ing high-resolution, complex datasets often demands a high degree of expertise and
is a time-consuming process. The labeling process becomes even more challenging
when it necessitates the involvement of subject matter experts. For instance, in med-
ical imaging, the labeling process often requires input from medical practitioners
who possess the necessary knowledge to accurately annotate the images.
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FIGURE 4.1: Exemplar image of the bad interpolation of the human
lung segmentation, as found in Ma et al., 2021.

The need for experts’ involvement in the labeling process introduces another
level of complexity. Medical practitioners, already burdened with their primary re-
sponsibilities, are now expected to devote considerable amounts of their time to act
as labeling experts. This requirement of experts spending many hours annotating
datasets comes at the expense of their primary duties and is a significant hurdle in
the development and deployment of advanced neural networks in fields such as
healthcare. This sometimes leaves us with the markup of the undesired quality, e.g.,
Figure 4.1.

This conundrum underscores the need for innovative solutions in neural net-
work training that can minimize the reliance on large, expert-annotated datasets. It
also highlights the importance of developing models that can generalize well from
smaller, meticulously annotated datasets, thereby alleviating the pressure on experts
and making the process of deploying advanced neural networks more efficient and
sustainable.

The quest to minimize the volume of labeled data required for training machine
learning models has given rise to several lines of research. Approaches such as trans-
fer learning (Zhuang et al., 2021), self-supervised learning (Jing and Tian, 2021), and
active learning (Ren et al., 2022) have been developed with this very goal in mind.
Of these methods, only active learning seeks to modify the labeling process itself,
while the others predominantly operate under the assumption that a given dataset
is available.

In the realm of Computed Tomography (CT), the pool of available datasets is
experiencing rapid growth, propelled by advances in instrumentation and the rise
of efficient digital pixel array detectors (Kiryati and Landau, 2021). However, the
inherent diversity of biological or technical specimens, coupled with stringent data
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requirements specific to the medical field (such as ensuring anonymity and accurate
representation of diseases), often necessitates the collection of task-specific datasets.

Given this rising demand for unique, task-specific datasets, it is crucial for us,
as a research community, to consider how we might go about acquiring the best
possible dataset with the least amount of effort. To understand what constitutes the
’best’ dataset, it’s important to note that the process of collecting a dataset is not the
final destination but rather a means to an end - the production of a high-performing
model. Therefore, the value of a collected dataset can be gauged by the performance
of the model that is trained on it.

While this work primarily focuses on the specific task of medical CT segmenta-
tion, the conclusions I draw are applicable to other CT segmentation tasks as well.
This is because the approach does not impose any assumptions that are uniquely
specific to medical imaging data. I believe that the insights gleaned from my re-
search will have broader relevance and applicability across a range of CT segmenta-
tion tasks.

In my view, the three fundamental characteristics of an optimal dataset for train-
ing purposes are its quality, diversity, and completeness. The attribute of quality can
be further bifurcated into two separate facets, those being the quality of the data
itself and the quality of the labels. While I discuss datasets assembled specifically
for model training, the quality of the data is dictated by the intended application of
the model. As such, I will be focusing less on data quality in this discussion. Label
quality, on the other hand, is primarily influenced by the level of precision of the
annotation. More specifically, it refers to the accuracy with which the segmentation
labels align with the actual anatomy present in the images (Lösel et al., 2020). Thus,
going forward, any reference to quality will imply label quality.

Diversity in this context signifies the ability of the dataset to encapsulate a wide
range of sample variations that are regulated by known parameters, such as a pa-
tient’s age, sex, and medical history. On the other hand, completeness pertains to the
capacity of the dataset to represent the naturally occurring variances in human mor-
phology. For instance, even identical twins may present subtle differences in their
morphological features.

Taking the perspective of the data manifold into account, diversity is character-
ized by the ability to provide sparse coverage of the entire manifold with repre-
sentative prototypical examples. Contrarily, completeness is defined by the ability to
densely populate the manifold and faithfully represent its distribution nuances. In
essence, while diversity ensures a broad spectrum of examples, completeness en-
sures a rich, detailed portrayal of each instance within that spectrum.

In this work, my primary goal is to determine the relative impact of these three
dataset virtues—quality, diversity, and completeness—on model performance. The-
oretically, if a dataset perfectly embodies all three of these characteristics to the max-
imum possible degree, there would be no need for a model. Every conceivable in-
stance would already be accounted for within the dataset, thereby transforming the
prediction function into a simple lookup table.

However, in real-world scenarios, datasets rarely reach this ideal. Instead, mod-
els are required to interpolate the full data manifold from sparse points provided in
the training dataset. Certainly, enhancement in any of the three virtues leads to the
creation of a superior model. Nevertheless, with time as a limiting factor, domain
experts must judiciously balance these three virtues. This process is often guided by
intuition, and sometimes these decisions are even made unconsciously.

In many circumstances, the balance is more art than science—more intuition than
procedure. This can lead to suboptimal results, as intuition is not always correct, and
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implicit decisions can overlook important considerations. Therefore, a more system-
atic understanding of the interplay between these three virtues—quality, diversity,
and completeness—in different contexts and for various tasks would be valuable.
This could help experts make more informed decisions about how to best allocate
their limited time and resources when assembling a training dataset. This work is a
step towards a more quantified, more systematic understanding of the interrelation-
ship between these virtues in the context of training data collection.

In contrast to the concurrent work by Kim et al., 2022, I focus on the segmenta-
tion task specifically, and consider only the fully supervised training, as opposed to
the weak supervision as a way to vary label granularity. I also propose a labeling
procedure that optimizes the effort.

4.2 Method

4.2.1 Datasets Preparation & Model Training

In this study I choose the brain tumor, heart, and liver tasks from the Medical De-
cathlon segmentation datasets (Antonelli et al., 2022). For the sake of simplicity,
I joined all available classes, to represent binary segmentation, however, my pri-
vate experience shows that the results hold for a multiclass segmentation. For each
dataset, I took the openly available markup and split substracted 20% of the avail-
able data as the test set. The test is selected once for a dataset and never altered. I
call the other 80% as train+val set, as it will be split again later on.

In medical datasets, it is typical to have a relatively small amount of volumes
collected from a representative variety of patients (Luca et al., 2022). Hence, I as-
sume that the portion of random volumes used for training could be a proxy to the
diversity, and I specify it as a number ∈ (0, 1] representing this portion. Although
this subsampling also affects completeness, as I show in Section 4.3.3 and especially in
Figure 4.6, the model responds differently to diversity and completeness. I conclude
that this is a plausible and sufficient proxy for the purposes of qualitative compar-
isons presented in this chapter. I follow Zettler and Mastmeyer, 2021, and always
train a 2D model on slices, instead of a 3D one on volumes. Based on assumption
that adjacent slices represent small variations of roughly the same morphology, I use
the portion of the slices used for training as a proxy for the completeness, which is
reported as number ∈ (0, 1] as well. Finally, as a proxy for the quality of the dataset,
I take a subset of equidistant slices and interpolate the labels between them using
the nearest neighbor approach. Varying the distance between slices, and therefore
the interpolation errors, allows us to manipulate the label quality, which I report as a
percent ∈ [0, 100] representing the IoU between the label after interpolation and the
original label.

To measure the model performance for some virtue value, I:

1. modify the train+val part of the dataset to model some virtue:

• sample a portion of volumes to model diversity;

• sample a portion of slices containing a mask to model completeness;

• sample an equidistant set of slices and interpolate markup between them
to model quality.

2. split the resulting data into train and val, at a ratio of 80 to 20.
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3. upsample the train in such a way, that the amount of labeled slices is always
equal to 80% of labeled slices in the original train+val set;

4. fit the model on train, select the best snapshot on val, and measure the model
quality on test.

I hypothesized that, while tuning the model and optimizer hyperparameters can
change the model performance, it will not change the relative importance of different
dataset virtues for the model performance. Therefore, I always train the same model
(UNet (Ronneberger, Fischer, and Brox, 2015) with ResNet-18 (He et al., 2016a) as
the backbone), with the same optimizer (Adam (Kingma and Ba, 2015) with 3e −
4 learning rate), for the same amount of epochs (100 epochs and 10 epochs long
cooldown of the early stopping). For each measurement, the median of 5 runs on
random train+val splits is reported.

4.2.2 Results Interpretation

The target of optimization of the labeling procedure is to obtain the model with the
best performance given a certain available effort budget for labeling. For example,
an expert can roughly segment 10 volumes, or spend the same time, precisely seg-
menting 3 volumes. For experiments, I devise custom proxies of the effort measure.
I leave the empirical measurement of the effort (e.g., as elapsed time) for future re-
search, however, I consulted with experts involved in the segmentation process, and
they concur with my estimation.

To find the optimal strategy I consider a plot, where the horizontal axis describes
labeling efforts spent, and the vertical axis represents the model performance (to
make the plots clearer I normalize the model performance to the quality of the model
trained on the unaltered data). For the same amount of effort spent pursuing differ-
ent virtues, I will have different model qualities. The optimal strategy of labeling is
represented by a convex polyline that passes through the points on the plot in such
a way that no points lie above it. Following this trajectory provides the best possible
dataset at any given moment.

To understand the optimal strategy, I consider another plot. On the horizontal
axis, I plot the model performance, and on the vertical axes–the value of the com-
pared virtues. For each point on the optimal trajectory, I add one point per virtue
in comparison. Therefore, each vertically aligned set of points represents the virtues
required to achieve a specific model performance. This way, moving along the hor-
izontal axis, I can see which virtue should be pursued earlier on, to stay on the
optimal trajectory.

4.3 Results

4.3.1 What is More Important, Quality or Diversity?

To compare quality and diversity, I define effort as the portion of the volumes used
(as a measure of diversity) multiplied by quality. E.g., 0.1 of the volumes segmented
with 80% IoU will result in 8% effort.

The sampled plot with the optimal trajectory is shown in Figure 4.2. From this
plot, I observe that the optimal trajectory connects the high-quality points, while
low-quality points always fall far below the line.

I show in Figure 4.3 how quality and diversity drive the optimal trajectory. From
this plot I conclude, that quality is more important early on, even though I never
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use IoU worse than 75% (which could be admissible quality for small area labels).
However, as quality reaches around 90%, increasing diversity becomes as important
or even more important than increasing quality.

4.3.2 How Much Labeling Quality is Enough?

Increasing labeling quality up to 100% is challenging if not impossible. But where is
a meaningful threshold of the labeling quality, after which the model performance
stagnates? To investigate it, I plot the model performance against the labeling qual-
ity (see Figure 4.4). I also plot the performance of the model trained on sparsely
segmented slices (each 5th, 10th, and 15th). I conclude, that, first, if one can not
achieve good interpolation quality, it may be even harmful to interpolate, and, sec-
ond, in accordance with the previous section–one should aim for 90% quality of the
labeling before aiming for either completeness or diversity.

4.3.3 What is More Important, Diversity or Completeness?

To compare diversity and completeness, I define the effort as a total percentage of slices
segmented. E.g., if I sample 6 volumes from 10 available (diversity = 0.6) and seg-
mented each 10th slice (completeness = 0.1), then the effort is 0.06.

The optimal trajectory plot is shown in Figure 4.5. The brightest demonstration
of the importance of diversity is in the right bottom parts: the 0.2 of diversity with 1
of completeness is much worse than vice versa.

In Figure 4.6 I demonstrate the importance of diversity and completeness for the
optimal trajectory. Not only diversity is more important early on, but completeness
contributes less to the model performance (note the steeper growth of the complete-
ness with the performance growth). Therefore, finding more diverse examples and
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segmenting more volumes should be preferred to segmenting more random varia-
tions and segmenting slices more densely/interpolating them.

4.3.4 How Much Data Diversity is Enough?

Although, how to define a reasonable limit to stop searching for diversity, and start
increasing completeness? I plot the performance of the model w.r.t. diversity in Fig-
ure 4.7, each line represents a different set of virtues. Since the total amount of the
data possibly available is unknown, I can not define a numerical limit. Instead, I note
that all lines saturate ca. at the same point of increasing diversity. Hence I can define
where to stop increasing diversity and start increasing completeness, by continuously
updating a segmentation model, while expanding the dataset.

4.4 Discussion

In this chapter, I have compared the importance of different ways to spend label-
ing efforts and presented a way to optimize the segmentation labeling procedure. I
minimized the effort required to obtain the model of a specific quality. In general,
I conclude that quality is more important than diversity, which is more important
than completeness. Based on my experiments, I propose the following procedure to
minimize the effort during labeling volumetric data for segmentation:

1. Start with segmenting slices, without interpolation. Aim for maximal quality
affordable without pixel hunting, at least 90%.

2. Decide on your time budget and distribute slices to segment as evenly through
diverse volumes as possible. Though, keep in mind, that the structure of inter-
est may impose a minimal slice number per volume to capture all parts of the
structure.

3. Train a model as early in the process as possible. This allows, first, deciding
which areas require more markup (by means of active learning, or just by an
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expert assessment of predictions), and, second, recognizing the moment when
model performance starts to saturate w.r.t. diversity.

4. After hitting the saturation w.r.t. the diversity, increase the completeness either
by adding more volumes or by interpolating more slices to squeeze the last
performance percent.
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Chapter 5

Pre-Training for Segmentation via
Slice Ordering

In the extensive discussions that took place in Chapter 2 and Chapter 4, it was
highlighted that Neural Networks display a particular propensity towards both the
quantity and the quality of training data. The more information they have access
to, and the better the quality of this data, the better their performance. This is a
double-edged sword; while it enhances the overall capability of these networks, it
also presents a unique challenge as acquiring large amounts of high-quality data is
not always feasible. In this chapter I propose another solution to the problem of
the problem of the model’s performance. This is a so-called pre-training technique,
where the model is first trained on a set of the data without labels (the pre-training
phase), and only then is tuned for the actual task at hand (fine-tuning phase). I
present a novel algorithm of pre-training developed specifically for the tomograph-
ical data of the biological samples, in particular, Medaka fish.

5.1 Introduction

The typical response to the issue of the lack of the labels is to implement some form
of pre-training, which essentially leverages openly available datasets or unlabeled
samples from the very same training dataset in order to boost the initial training
process. For instance, it is not uncommon for Neural Networks to be pre-trained on
the ImageNet (Russakovsky et al., 2015) dataset, which is freely accessible and gen-
erally aids in improving outcomes for subsequent tasks, particularly those related to
natural images.

However, while for openly available datasets, labels are readily provided, the
task of training on unlabeled samples requires the development and implementa-
tion of novel approaches. One such approach involves self-supervised pre-training.
This method hinges on the notion of learning from the data itself, allowing the
model to develop representations without external guidance. While the idea of self-
supervised learning is not new, the adaptation of this approach for specific applica-
tions is a nontrivial task.

In my work, I have specifically designed and developed an algorithm for self-
supervised pre-training that is particularly suited to biomedical CT. The rationale be-
hind this specialized approach was to mitigate the limitations often encountered in
general pre-training strategies when applied to specific tasks like biomedical imag-
ing.

The algorithm I developed is categorized as a data-driven prior, (see Chapter 2).
Nonetheless, it deviates from some of the methodologies discussed therein, specif-
ically those developed for medical data that assume perfect alignment. In contrast,
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the devised approach is specifically designed to be resilient to imperfect alignment,
a characteristic often encountered in practical applications. While most algorithms
require perfect alignment, my approach only requires one axis where the ordering of
the slices can be determined based on the sample of interest and not from the back-
ground content. This is particularly useful in real-world scenarios where obtaining
perfectly aligned samples can be challenging and laborious.

For such datasets, I propose to train a model to predict the order within a batch
of slices, randomly sampled from one volume. I refer to this method as SortingLoss
hereinafter.

5.2 Method

The proposed sorting loss draws inspiration from the concept of the jigsaw puzzle
task (Noroozi and Favaro, 2016). In the jigsaw puzzle task, an image is divided into
several tiles which are then shuffled. The model is then tasked with predicting the
relative positions of these shuffled tiles in order to reconstruct the original image.

However, sorting loss introduces a distinctive twist. Instead of predicting the
relative positions of shuffled tiles, the model is now required to predict the order in a
set of slices randomly extracted along one axis from a volume. In doing so, the model
needs to learn the inherent structure within the data, much like understanding the
overall picture in a jigsaw puzzle task, allowing it to predict the sequence of the
slices effectively.

For the loss to enforce effective sample localization, the sample should exhibit
less permutation invariance (along the slicing axis) than the background. The easier
way to predict the order of slices would then be to learn the features of the sample
and their relative positions. To illustrate, one could consider that the liver usually
lies between the heart and the tail. By learning these relative positions of organs, the
model can successfully predict the order of slices even when shuffled.

Considering the typical lack of positional alignment between different volumes
in biological imaging, the calculation of loss is proposed to be performed only be-
tween slices obtained from the same volume. Not only this allows training on the
misaligned volumes, but also makes a more reasonable and fair measure of the
model’s performance.

During the training phase, I construct a batch of size k by randomly selecting one
volume and subsequently randomly sampling a set of slices {xi}k

1 from this volume.
Indices {ψi}k

1 are uniformly sampled to represent each slice.
The model fθ is trained with the loss outlined in Equation (5.1), which is a vari-

ation of the well-known margin ranking loss (Sculley, 2009). For each possible pair of
predictions fθ(xi), fθ(xj) where ψi > ψj, the loss is defined to enforce that fθ(xi) ≥
fθ(xj) + m, with m being a margin value set to prevent the collapse of representa-
tions. The process of training and the intuition behind the work of the model are
depicted in Figure 5.1.

L = ∑
i,j∈[1,N]

[max(0, ( fθ(xj) + m))− fθ(xi)]ψi>ψj (5.1)

In the absence of additional information, the slice indices ψi could be uniformly
sampled. However, there may be instances where the sample is known to have a
high margin to borders. In these cases, it may be advantageous to use a generalized
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Gaussian distribution, which discourages the sampling of slices that lack substan-
tial content. This is proposed as a potential enhancement to improve the learning
process of the model.

The generalized Gaussian distribution is a family of continuous probability dis-
tributions which includes the normal distribution as a specific case, with the prob-
ability density function described in Equation (5.2). It is parameterized by a loca-
tion parameter µ, which determines the center of the distribution; a scale parameter
α > 0, which influences the spread of the distribution; and a shape parameter β > 0,
which can adjust the shape of the distribution from the symmetric bell curve of the
normal distribution to heavy-tailed or light-tailed distributions. The Γ stands for the
gamma function.

f (x; µ, α, β) =
β

2αΓ(β−1)
e−

(
|x−µ|

α

)β

(5.2)

To provide a comprehensive measure of the model’s performance, I propose the
inclusion of a control metric alongside loss tracking. This metric is designed to offer
a clear understanding of the model performance. The measure, called mean dis-
placement, is defined as the mean absolute distance between the predicted order
and the true order of slices. The mean displacement can be calculated as described in
Equation (5.3). The intention behind this metric is to provide a human-interpretable
measure of how well the model has learned to recognize the features of a sample
rather than of a background.

LMD({psii}k
1, { f θ(xi)}k

1) =
1
k ∑

i
|ξi − ξ̂i|

ξ = argsort([ψ1, ..., ψk])

ξ̂ = argsort([ f θ(x1), ..., fθ(xk)])

(5.3)

There are a couple of potential applications for the pre-trained model that in-
terest us. The first involves using the pre-trained model as an encoder for a seg-
mentation model. The second explores the possibility of employing the model for
fully automated sample cropping. These two applications harness the capabilities
of the model in different ways, exploiting its capacity to understand and predict the
inherent structure within the data.

In the context of semantic segmentation, leveraging pre-trained encoders, such
as ResNet, can significantly improve the performance of the model. The idea behind
using a pre-trained encoder is to utilize the hierarchical feature extraction capabil-
ities learned from large-scale datasets (like ImageNet), and adapt it to the task of
segmentation. An encoder trained on a large and diverse dataset has learned to ex-
tract general, reusable features from raw data, which often are transferable to other
tasks. In fact, using the encoder pre-trained on a large dataset became a de-facto
standard in industry and a baseline to compare to in science.

One common architecture used for segmentation tasks is the U-Net model, which
essentially consists of an encoder path and a decoder path. By using a pre-trained
model like ResNet as the encoder, I can initialize the U-Net with a robust set of
features. These features can then be fine-tuned to the specific task of segmenta-
tion, while the decoder part learns to map these high-level features to pixel-wise
class probabilities. This combination of a pre-trained encoder with a specialized de-
coder often leads to superior results in comparison to training the whole model from
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FIGURE 5.1: Scheme (a) and intuitive example (b) of the sorting loss
training procedure.

scratch, especially when dealing with smaller or less diverse datasets. The strategy
reduces the risk of overfitting and speeds up the convergence of training, resulting
in a more efficient and robust model.

Using the model for automated cropping requires additional explanation and
design of the own precedure. In this context, I hypothesize that since the model
relies on the sample structures for prediction, these regions should display higher
uncertainty when perturbed. The modifications introduced to the model to facilitate
this are twofold.

Firstly, to estimate the uncertainty for different regions rather than on a global
scale per image, the Global Average Pooling layer and the last linear layer are re-
moved. This adjustment allows the model’s output to be a spatial map of image
region embeddings, akin to the Fully Convolutional Network (FCN) described in
Chapter 2.

Secondly, the model is trained with dropout to estimate uncertainty. However,
the inference with dropout does not follow the classical method; I permit dropout
sampling during the inference time (Fabi and Schneider, 2020). This strategy allows
sampling from the distributions of superpixel embeddings. To identify the region
of interest, all superpixels where the standard deviation of the embedding exceeds
a manually set threshold are selected. In this way, the regions that the model is
relying on mostly (and thus, most likely contains the structures of interest) can be
easily identified and cropped for further analysis.

5.3 Dataset

Model organisms are undeniably vital assets in diverse domains of scientific explo-
ration, including but not limited to genetics, neuroscience, developmental biology,
and pharmacological research. These organisms act as representative approxima-
tions of intricate biological systems, enabling the investigation of basic life processes
in a manageable and simplified environment. In order to harness the full potential of
these model organisms, the necessity for first-rate 3D atlases, rich in detail, becomes
evident. These reference atlases provide expansive data concerning their develop-
ment and anatomical structure. Such a reference framework enables the mapping of
genes and other molecular markers onto distinct organs and tissues. This leads to a
deeper comprehension of the interplay between phenotype and gene expression, as
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well as the influence of gene regulation alterations on organism development and
function.

Quality-rich 3D atlases have been created for numerous model organisms, rang-
ing from zebrafish to mice, and fruit flies among others. One such example is the ze-
brafish atlas, which offers a meticulously detailed map of zebrafish brain structure,
down to the molecular and cellular levels. This facilitates the study of brain func-
tion and development. In a similar fashion, the mouse atlas offers an all-inclusive
perspective on mouse anatomy, and it is a tool frequently employed in mouse ge-
netic studies and functional genomics research. Such 3D atlases act as pivotal tools
for researchers, offering valuable insights into the fundamental biological processes
and fostering novel discoveries that have significant implications for understanding
human health and disease.

The Medaka fish, or Oryzias latipes, holds particular significance as a model
organism due to a unique combination of biological and genetic characteristics that
render it highly compatible with a multitude of research applications. These applica-
tions span genetics, functional genomics, and developmental biology. The Medaka
fish boasts a relatively compact and thoroughly annotated genome, making it an
optimal species for conducting genetic analysis and functional genomics studies.
Another feature that adds to its appeal as a model organism is its ability to produce
a large number of offspring within a limited time span. This trait is beneficial for
both forward and reverse genetic screens. Additionally, the Medaka fish’s transpar-
ent embryonic stage allows for direct visualization and manipulation of early de-
velopmental processes. It also possesses unique biological characteristics such as its
simple and rapid lifecycle, adaptability to laboratory conditions, and compatibility
with a diverse array of experimental techniques. These techniques include transgen-
esis, knockdown, and imaging, all of which enhance its appeal as a model organism
for studying a broad spectrum of biological processes, from stem cell biology and
embryonic development to neurodevelopment. The Medaka fish also exhibits high
levels of genetic and phenotypic diversity, making it a compelling species for studies
centered around evolutionary and population genetics.

The dataset contains CT scans of the Medaka (Oryzias latipes) fish scanned by the
protocol alike Weinhardt et al., 2018. It contains in total 274 volumes that have an
average size of 3000 × 1008 × 1008 pixels. Since during the imaging, the helical CT
was used to scan the full body of the fish, some changes in the size along the first axis
are expected. 24 volumes were segmented by a panel of experts to contain labels of
the visual system. Since we arranged the segmentation in such a way, that different
experts had overlaps in their assigned volumes, we can estimate the expert quality of
the segmentation. The Table 5.1 lists the segmented sub-organs and corresponding
expert segmentation quality.

5.4 Experiments

5.4.1 Medaka Fish Segmentation

In the pursuit of generating a high-fidelity, segmented atlas of the Medaka fish, I
decided to incorporate the concept of pre-training on the available data. This deci-
sion was guided by the potential of pre-training to reduce the necessity for extensive
markup, thus providing a pragmatic basis for my investigation. The core idea is to
leverage this approach in order to significantly enhance the efficiency and accuracy
of the subsequent segmentation task, ultimately delivering a comprehensive, well-
segmented atlas of the Medaka fish that would be invaluable for biological research.
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FIGURE 5.2: A slice example of the Medaka fish along the transverse
plain.

Sub-organ name mIoU
left/right ciliary body and iris 60.3

left/right cornea 12.1
left/right lens 92.6

left/right muscles 68.5
optic nerve 58.1

left/right retina 94.4
average (without cornea) 74.8

TABLE 5.1: The quality of the segmentation as provided by the ex-
perts. The quality was estimated on the samples independently seg-

mented by different experts.
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pre-training
data % None SimCLR MoCoV3 sorting loss

1 63.5 66.6 67.9 67.4
100 74.8 72.7 74.5 75.0

TABLE 5.2: IoU of Medaka visual system segmentation, depending
on the pre-training loss and amount of supervised dataset used. The

median values are estimated on 5 independent runs.

To comprehensively assess the performance of this proposed pre-training method-
ology, I established a comparative framework featuring two popular data-prior pre-
training methods: SimCLR (Chen et al., 2020b) and MoCoV3 (Chen, Xie, and He,
2021). The selection of these two methods was deliberate and informed by a dual
rationale. Firstly, the paradigm of contrastive learning, which these methods em-
body, is a well-researched area that boasts open implementations thoroughly tested
across a multitude of datasets. This advantage is significant as it mitigates the risk
of performance degradation due to re-implementation errors, which can often ac-
company complex methodologies. Secondly, it was important to acknowledge that
knowledge-driven pre-training methods typically make specific assumptions about
the nature of the data (as discussed in Chapter 2).

These assumptions may not necessarily hold true for the dataset under consid-
eration in this research. This realization further endorsed the choice of these two
contrastive learning methods for comparison, as they are not reliant on specific data
assumptions and therefore offer a more universally applicable solution. The even-
tual aim is to ascertain the most effective pre-training method for our specific task:
the creation of a detailed, segmented atlas of the Medaka fish.

All of the selected pre-training algorithms were used on the same model class,
ResNet-18, which was later used as an encoder for DeepLabV3+ models. For the
pre-training, I randomly selected 50 unlabeled volumes and split them in 3-to-1 pro-
portion to a train and a validation set. I trained a ResNet-18 model with the sort-
ing loss, with the margin set to m = 0.2. All methods were trained for the same
amount of epochs. However, since both contrastive learning methods require paired
sampling, they have a larger computational footprint per epoch. I demonstrate the
quantitative comparison of different pre-trainings in the Table 5.2. From the results, I
conclude that the proposed method performs on par with the MoCoV3, while clearly
outperforming SimCLR.

As Zoph et al., 2020 demonstrated, pre-training methods often decrease the qual-
ity compared to the baseline when lots of training data are available. The presented
results indeed indicate that this is the case for the contrastive pre-training methods,
while the proposed method doesn’t demonstrate performance degradation.

However, the landscape of practical applications often requires the training of
larger models. In recognition of this reality, I extended my investigation to exam-
ine the capacity of the proposed pre-training method to handle larger models and
datasets. Consequently, I tried the pre-training of a larger, more complex architec-
ture, specifically the ResNet-152 model, utilizing all 250 unlabeled volumes available
in the dataset.

Due to constraints related to computational resources, I found myself unable to
conduct a comparison with other methodologies. Despite this limitation, the out-
comes of this extensive pre-training exercise were revealing. Notably, even when
the U-Net was subjected to fine-tuning, the pre-training process still managed to im-
prove performance. In terms of the Intersection over Union (IoU) metric, there was
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a 2.3% performance enhancement compared to the training of a model of identical
size from scratch. This gain was accomplished while utilizing the full extent of the
supervised datasets, underlining the effectiveness of the pre-training process even
in larger-scale application scenarios.

This outcome reaffirms the value of the pre-training approach in improving model
performance, even when handling more complex model architectures and larger
datasets. It lends strength to the broader applicability of this approach in developing
comprehensive, high-fidelity 3D atlases for model organisms, such as the Medaka
fish, thereby facilitating more nuanced and detailed biological research.

NB! During the experiments, I noted that the aggressive augmentation can further
increase quality for the sorting loss pre-training while decreasing it for the SimCLR.
This finding completely agrees with the recent findings by Wang et al., 2021, who
states that aggressive augmentation may damage the performance of the contrastive
pre-training methods.

5.4.2 Medaka Fish Localization

As it was noted in the Section 5.2, I can use the pre-trained model to localize the
sample. In the first experiment, I consider the qualitative examination of the usage
of a pre-trained model for sample localization. For the pre-training, I selected 50
unlabeled volumes and randomly split them in 3 to 1 proportion to a train and a
validation set. I trained a ResNet-18 model with the sorting loss, with the margin set
to m = 0.2. The mean displacement reached 0.42 on the test set and 0.26 on the train
set for the batch size of 12. Hence, I conclude that the estimator provides reasonably
good ordering and should rely on the data structures.

To define the bounding box around the sample, I followed the training proce-
dure, described in the Section 5.2, with the dropout layer added after the first, sec-
ond, and third residual blocks. To define the bounding box I used 3% of the super-
pixels with the highest standard deviation. Additionally, I found it beneficial to use
only the largest connected region of the pixels above this threshold.

As a baseline, I select pixel value thresholding, since it is still a frequently used
technique. I used the Otsu threshold finding method. To compare the results numer-
ically, I selected 20 volumes, that were not included in the training set, performed
the Otsu thresholding on them, and corrected it by hand, to match the expected
bounding box.

Direct numerical comparison of the thresholding versus the NN localization fa-
vors thresholding with the mean bounding box IoU of the thresholding being 0.87,
while 0.47 for the sorting loss localization. To further assess the quality, I con-
sider four types of errors sorted from the most to least severe: fish not inside,
cut fish parts, cut fins, and oversize bounding box. The results for the 20 vol-
umes are presented in the Table 5.3. So, the most popular problems for localization
with sorting loss are cutting the fins and overshooting the boundaries. The different
types of errors are presented in the Figure 5.3.

Based on this experiment, this localization method could be recommended for
cases, where either it is problematic to employ the classical localization methods
(e.g., due to the low contrast between the sample and the background), or where the
robustness of the prediction is more important than the tightness of the bounding
box. For example, to adjust the reconstruction parameters, it is useful to know the
position of the imaged sample, and for this, the proposed localization method pro-
vides sufficient performance. Also, it’s worth noting, that even after adding safety
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error type neural network Otsu threshold
fish not inside 0 2
cut fish parts 4 0

cut fins 18 0
oversize 12 0

TABLE 5.3: The quantitative comparison of the bounding box errors
between the proposed method and the Otsu thresholding. The errors
are sorted top-down from the most to least severe. While the pro-
posed method typically fails to produce a tight bounding box, it is

more robust and less tuned to the exact gray values.

borders around the bounding box provided by the model, so that it doesn’t cut the
important parts off, it was able to reduce the size of the volume by 74% per volume
on average, i.e. from 24 Gb to 5 Gb.

5.5 Discussion

The pre-training approach presented in this study can be described as occupying
a distinct middle ground between the broad, data-prior pre-training methods and
the task-specific knowledge-prior pre-training approaches typically employed in the
medical domain. In contrast to the more general, data-prior pre-training methods,
which require no assumptions about the data but demand significant computational
resources, the method proposed herein offers a more balanced approach.

On one hand, the proposed method leverages task-specific information to opti-
mize pre-training effectiveness without relying on an overabundance of computa-
tional resources. Yet, it doesn’t over-specify to the point of being incompatible with
more general types of data, as is often the case with some knowledge-prior pre-
training methods, for instance, those that assume perfect data alignment. Therefore,
the method carves out a novel, middle-ground position in the pre-training landscape
that balances resources and performance, generalization, and specificity.

What is striking about this balance is the performance of the model relative to
the computational resources employed. Despite being less resource-intensive, the
model competes favorably with modern contrastive pre-training methods in the
downstream task of semantic segmentation. Even when the downstream task is
trained in a full-data regime, it does not negatively impact the model performance,
an outcome that underscores the model’s efficiency and robustness.

However, the method’s performance in terms of bounding box IoU, when ap-
plied to localization, is inferior compared to a simple baseline. Despite this, it demon-
strates increased robustness in scenarios where the voxel’s gray value is insufficient
to make accurate determinations. In these challenging situations, the model’s ability
to maintain performance underscores its value in real-world applications where the
data often contain unexpected and complex patterns. While the bounding box IoU
score may be lower, the model’s overall performance in context-sensitive situations
suggests an exciting direction for future research and refinement of this pre-training
approach.
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sorting loss ground truth Otsu thresholding

FIGURE 5.3: Examples of the bounding box errors, depicted top-
down from the most to least severe. (1) Otsu thresholding fails to
localize the fish in presence of an artifact. (2) the proposed method
fails to include the entire fish, cutting off important parts of the head.
(3) the proposed method cuts off the fins and tail while preserving all
important parts of the sample. (4) the proposed method fails to pro-

duce a tight bounding box.
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Chapter 6

Self-Training for the Medaka Fish
Segmentation

The work presented in this chapter is
strongly related to the (Bhatt et al.,
2023), which was published in the
proceedings of the ISBI conference.
The work was performed in
collaboration with Jwalin Bhatt
conducted experiments for this work.

Morphological atlases hold a vital position as a significant tool in the study of
organisms and their structure. They provide an exhaustive, detailed visual repre-
sentation of the organism’s structure, enabling in-depth comparative studies. The
advent of modern high-throughput Computed Tomography (CT) facilities has revo-
lutionized this space, offering the capability to generate hundreds of full-body, high-
resolution volumetric images of organisms. This transformation marks a significant
stride in organismal studies, allowing researchers to delve deeper into the organ-
ism’s structural nuances with unprecedented precision.

Despite these advances, for these volumetric representations to mature into a
comprehensive morphological atlas, they necessitate meticulous organ segmenta-
tion. Organ segmentation is the process of identifying and delineating different
organs within the volumetric images, thereby creating a detailed map of the or-
ganism’s internal structure. This segmentation process is crucial to maximize the
usefulness of the CT-generated images, providing the necessary detail and clarity
for further studies.

Over the past decade, machine learning techniques have emerged as a game-
changer, achieving remarkable feats in image segmentation tasks. Machine learn-
ing algorithms, with their ability to learn complex patterns and relationships from
data, have proven incredibly effective at identifying and separating distinct organs
within the volumetric images. These techniques have not only enhanced the speed
and accuracy of segmentation but have also reduced the reliance on manual, labor-
intensive processes.

However, these machine learning techniques, especially deep learning methods,
are data-hungry entities, necessitating ample annotated data to be trained effectively.
The requirement for such vast quantities of annotated data poses a substantial chal-
lenge, especially considering the complexity and detailed nature of the 3D segmen-
tation process.

In light of these challenges, this paper puts forth an innovative solution in the
form of a self-training framework for the multi-organ segmentation of Medaka fish
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in tomographic images. The proposed method seeks to circumvent the limitations of
traditional segmentation techniques while harnessing the power of machine learn-
ing, all without the need for copious amounts of annotated data.

The proposed approach leans heavily on the concept of pseudo-labeled data gen-
erated by a pretrained ’Teacher’ model. In the realm of machine learning, pseudo-
labeling is a semi-supervised learning method where a model is initially trained on
a small set of labeled data, and this model is then used to predict labels for the
unlabeled data, thereby creating pseudo-labels. The pseudo-labeled data from the
’Teacher’ model forms the backbone of the proposed framework.

The pseudo-labeled data is further refined by adopting a Quality Classifier. The
Quality Classifier, as the name suggests, is tasked with assessing and improving the
quality of the pseudo-labels, thereby enhancing the reliability of the data being fed
into the model for training. This data refinement process is instrumental in ensuring
the robustness and accuracy of the final segmentation model.

Furthermore, I introduce a pixel-wise knowledge distillation method. Knowl-
edge distillation is a process where the learned representations (knowledge) of one
model (usually a larger, more complex model) are transferred to another model (usu-
ally smaller and simpler). The pixel-wise knowledge distillation method is imple-
mented to prevent overfitting to the pseudo-labeled data and bolster the segmenta-
tion performance. By mitigating overfitting, this method ensures that the model is
more generalizable and better equipped to handle new, unseen data.

The experimental outcomes demonstrate that the proposed method results in a
notable improvement of 5.9

6.1 Introduction

The study of model organisms has a long history. Initially, most of the studies were
done either on dissection or by visual observation of the transparent organisms (e.g.,
Zebrafish). In recent years, the growing capacity to produce radiographic images
led to qualitative change in the available data. Synchrotron-based micro Computed
Tomography allows the production of images of high resolution (micrometer scale
pixel sizes) (Sombke et al., 2015). And with further automatization of the scanning
process, tens of volumes could be obtained serially, without human interaction.

Fishes have become increasingly important model organisms in biomedical re-
search over the past decades. In particular, the Medaka (Oryzias latipes) has become
an indispensable model organism for studying gene function in vertebrates. Their
availability for future-oriented genetics, in particular their small body size, the trans-
parency of their embryos, and extra-uterine development, make them ideal systems
for systematic investigations of developmental processes. The digital morpholog-
ical atlas of the adult Medaka fish allows biologists to analyze the morphometric
properties of internal and external features, including organs and tissues. Therefore,
comparative studies concerning phenotypic analysis use the atlas as a reference and
are thus of vital importance for the further use of Medaka as a model organism.
The quantitative description of the organ positions and shapes can be discovered
by solving the segmentation task. Although, the study of a bigger number of spec-
imen samples faces the hurdle of semi-manual segmentation, which consumes lots
of time.

The conventional technique used to generate the 3D anatomical atlas for the
Medaka fish was using the Amira software with the help of the readily available
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FIGURE 6.1: Overview of the proposed framework. The teacher
model is trained on the labeled data and the pseudo-labeled data are
obtained by the trained teacher model. The quality classifier refines
pseudo-labeled data and the student model is trained on the filtered
pseudo-labeled data and labeled data by using knowledge distilla-

tion to improve the performance of the organ segmentation.

annotations and atlases (Kinoshita et al., 2009; Shanthanagouda et al., 2014; Bryson-
Richardson et al., 2007). This, however, required an immense amount of hand work
even for small data sets and lacks automatization for scaling to larger datasets. To
handle these limitations, an atlas-based approach was proposed by Weinhardt et al.,
2018, which allows the automatic segmenting of new samples.

However, the atlas-based methods may suffer from quality loss, given the strong
morphological differences between the new sample and the base segmentation.

Recently, deep learning-based methods so-called semi-supervised learning have
been introduced to solve the problems with the cost of requiring way a large amount
of labeled data. In Shen et al., 2019, a weakly supervised segmentation method
using bounding boxes instead of segmentation masks was proposed to reduce the
cost of labeling data. In addition, the pre-training technique aims to find a good,
data-driven initialization for the model weights. He et al., 2020 proposed an ob-
ject segmentation framework, called Mask R-CNN, which improves the segmenta-
tion performance by pre-training the neural network model on a large open-source
dataset, such as ImageNet, and training the model on a small private dataset again.
The self-training technique, in contrast, employs the unlabeled part of the dataset
(Hsu et al., 2019). The core idea is to train two models, the Teacher and the Student.
The Teacher model (which could be an ensemble of models) is trained on the small
labeled dataset. Subsequently, its predictions on the unlabeled part of the dataset
(called pseudo-labels) are used to train the Student model. To further improve the
performance of self-training, several methods have been proposed. In Tarvainen
and Valpola, 2017, Mean Teacher, which averages model weights to provide a better
Teacher model, was proposed. Xie et al., 2020 proposed NoisyStudent which adds
noise to the Student to transfer knowledge from the Teacher’s knowledge. Zou et al.,
2018b introduced a class-balanced self-training to select the pseudo-labels better to
use for training the Student.

In this chapter, I propose a knowledge distillation framework for Medaka or-
gan segmentation in tomographic images with pseudo-label refinement. I utilize
the pseudo-labeled data from the Teacher model pretrained on the labeled data and
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adopt a Quality Classifier that learns to distinguish well-segmented data and bad-
quality segmented data. The Student model is trained on the labeled data and the
refined pseudo-labeled data to improve the segmentation performance. To prevent
overfitting to the pseudo-labeled data and further improve the performance, I intro-
duce a pixel-wise knowledge distillation technique that regularizes the Student to
learn predictive capability from the output segmentation prediction of the Teacher
explicitly. The proposed method is evaluated on the Medaka tomographic image
dataset I have collected, and the experimental results show that the method im-
proves the Medaka segmentation performance effectively.

6.2 Proposed Method

I show the proposed framework in fig. 6.1. It consists of three models: (1) the Teacher
model, trained on the labeled data, (2) the Quality Classifier trained to distinguish
bad pseudo-labels from good, and (3) the Student model, trained on the filtered
pseudo-labeled data together with the labeled data. I further describe components
of this framework in detail.

6.2.1 Models

First, I use a U-Net (Ronneberger, Fischer, and Brox, 2015) for the Teacher model and
train on the data with their corresponding segmentation provided by the biologists.
U-Net introduces skip concatenation between the encoder and the decoder layers
and provides good performance in image segmentation. Let XL = {xi

L}
NL
i=1 be the

labeled input images with pixel-wise annotated labels YL = {yi
L}

NL
i=1. In this work,

I adopted ResNet-18 (He et al., 2016b) as the encoder to achieve high performance
for image classification. Then, I generate pseudo-labeled data by putting all the
unlabeled data into the teacher model. I denote the unlabeled images XU = {xi

U}
NU
i=1

and the teacher model FT : XU → YU . Then, the pseudo labels can be defined as
YU = FT(XU) = {yi

U}
NU
i=1.

Among these pseudo labels, there are many slices that are harmful to be used for
training the Student model. In this work, I adopt a Quality Classifier to distinguish
between good and bad pseudo labels. To train the quality classifier, a dataset of
about 1000 slices was labeled manually into good and bad categories. The slice from
the image was concatenated with the mask, where each sub-organ in the mask was
represented using a separate channel. Thus, the refined input images are expressed
as XR = {xi

R}
NR
i=1 with the refined pseudo labels YR = {yi

R}
NR
i=1.

For the Student model use the same architecture and size of the model as the
Teacher. As shown in fig. 6.1, the Student is trained on the labeled data and filtered
data by the quality classifier to prevent performance degradation due to the inaccu-
rate pseudo-labels. However, the number of refined pseudo-labeled data is much
more than the number of labeled data, so the Student can be biased to the pseudo-
labeled data. I concatenate the refined pseudo-labeled data and the labeled data
XC = {xi

c}
NL+NR
i=1 = XL ∪ XR with the labels YC = {yi

c}
NL+NR
i=1 = YL ∪ YR. I denote

the Student model FT : XC → YC . Then, I can express the predictive segmentation
maps from the Teacher and the Student model as ỸT

C = FT(XC) and ỸS
C = FS(XC),

respectively.
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6.2.2 Training

I define the segmentation loss on the combination of the pseudo-labeled and super-
vised data as follows.

Lseg = LCE(FS(XC), YC),

where LCE = −∑
k

q(k) log(p(k)), (6.1)

I train the Student with this loss drives to transfer the knowledge from the Teacher
model. Hereinafter, I refer to training with this loss solely as Pseudo-Labeling.

I incorporate the idea of the Self-Training (Hsu et al., 2019) by initializing the
Student model with the last checkpoint of the Teacher model. This is supposed to
lead to better convergence.

Furthermore, I incorporate the idea of the Knowledge Distillation (Hinton, Vinyals,
and Dean, 2015; Yuan et al., 2020), also known as dark knowledge distillation. To
prevent overfitting to the pseudo-labeled data and keep the knowledge from the la-
beled data in the pretrained Teacher model, this idea proposes directly distilling the
softened labels produced by the Teacher Model. As proposed by the listed papers, I
use temperature scaling to soften the predictions of the Teacher model.

pt
k(xi; τ) = so f tmax(zt

k(xi; τ)) =
exp (zt

k(xi)/τ)

∑K
j exp (zt

j(xi)/τ)
(6.2)

where pt
k(xi; τ) is the k-th output of i-th pixel, K is the number of segmentation

classes, zt
k is the pixel-wise output segmentation logits of the pre-trained teacher

model and τ is the temperature to soften the predictive segmentation probability.
Using the softened predictions, I regularize the student model by using the Kullback-
leibler (KL) divergence for all pixel pairs at the same spatial position with the teacher
model. The knowledge distillation (KD) loss is given as follows.

LKD =
1
N ∑

i∈N
KL(ps(xi; τ) ∥ pt(xi; τ)) (6.3)

where N = W × H is the number of pixels of the image data, KL()̇ is the KL diver-
gence function, and ps(xi; τ), pt(xi; τ) are the output probability of the i-th pixel in
the segmentation map from the student and the pre-trained teacher models respec-
tively.

The proposed method combines all mentioned parts together: I use the pseudo-
labels further filtered by the Quality Classifier, initialize the Student with the last
Teacher model snapshot, and regularize the Student model via the Knowledge Dis-
tillation loss. The final student loss, with which the Student is trained, is defined as
follows.

Lstd = (1 − α)Lseg + αLKD (6.4)

where α controls the relative importance of different losses.
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(A) (B) (C) (D)

FIGURE 6.2: Examples of (a) Input image, (b) ground truth, and seg-
mentation results by (c) the Teacher (Fully Supervised), (d) the Stu-

dent model by the proposed method.

TABLE 6.1: Comparison of the segmentation results between the
Fully Supervised model as a baseline, and the proposed method.

Number of mIoU (%) Dice (%)
labeled volumes proposed baseline proposed baseline

2 72.5 43.2 77.9 48.5
7 75.6 54.7 80.8 55.9
12 79.8 60.1 86.9 65.2
23 82.4 74.8 89.4 82.2

6.3 Experimental Results

In this section, I address a brief introduction of the tomographic Medaka image data
and implementation details. In addition, I provide the comparison results and ab-
lation study of the proposed method in terms of the mean intersection over union
(mIoU) and the dice score.

6.3.1 Datasets

The data was collected several beam times, following the protocol proposed by
Weinhardt et al., 2018. The original slices, the dimension of 6000× 2000× 2000, were
rescaled to 3000 × 1000 × 1000. The labeled dataset used to train the teacher model
consists of 30 samples. The unlabeled dataset consists of a total of 582 scans from
three different experiments: 169, 232, and 181 samples The labeled data were split
into the train (75%) and validation (25%), hence 23 volumes were used for training,
and 7 were used for validation.

6.3.2 Implementation Details

The proposed method was implemented in Python with PyTorch library. I used two
NVIDIA RTX 8000 and two RTX 2080 for training and testing. Adam optimizer was
used to train the proposed network with a learning rate of 3e-4. The hyperparame-
ters in eq. (6.4) were α = 0.1 and τ = 4. The models were trained with a crop size of
256 and a batch size of 64, and they converged within 15 epochs. The convergence
was even faster (5 epochs) when initialized with the Teacher’s weights.

6.3.3 Baseline Comparison

First, I quantitatively compare the results of the proposed method with the Fully
Supervised model as a baseline. I present the comparison of the results in table 6.1.
The proposed method clearly outperforms the baseline both in the low and full data
regimes. It demonstrates that the method consistently outperformed the baseline.
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TABLE 6.2: Evaluation results of ablation study for the proposed
framework with knowledge distillation and quality classifier using

23 labeled volumes for training.

Method mIoU (%) Dice (%)
Fully supervised 74.8 82.2
Pseudo-Labeling 76.5 86.0
Knowledge Distillation 76.7(+0.2) 86.6(+0.6)
Teacher Checkpoint 77.5(+1.0) 86.8(+0.8)
Quality Classifier 81.2(+4.7) 87.4(+1.4)
Proposed 82.4(+5.9) 89.4(+3.4)

In addition, the proposed method using seven labeled volumes also provided better
performance than the baseline using all available training data volumes, confirming
the proposed method can improve the Medaka segmentation performance. Even
the method using only two volumes of the labeled data gave better results than the
Fully Supervised method with 12 labeled volumes.

Second, I visually compare the results of the segmentation as shown in fig. 6.2. I
marked the problematic areas of the sample with yellow circles on fig. 6.2 (c). While
the prediction of the proposed method clearly has its own peculiarities of segmenta-
tion, the provided result is smoother spatially and closer to the ground truth.

6.3.4 Ablation Study

I present the ablation study of the employed components in table 6.2. The proposed
method performed slightly better than any of the parts of the pipeline separately. I
note, that the proposed way of filtering the pseudo-labels is the most beneficial part
of the improvements. I hypothesize, that training better Quality Classifiers with
more data could be beneficial for the final quality, but leave a thorough assessment
of this question for future research.

Interestingly, the results demonstrate that the improvements of the proposed
method are equal to or greater than the sum of improvements provided by the sepa-
rate components. This could mean, that different components improve the quality of
the result in different ways. This is beneficial for total improvement since improve-
ments of the separate components do not interfere with others.

6.4 Discussion

In this chapter, I have presented a knowledge distillation framework that improved
the segmentation quality for the organs of the Medaka fish with pseudo-label re-
finement. The proposed method improved 5.9% of the mIoU and 3.4% of the Dice,
measured in the full data regime, compared to the fully supervised training method.
Notably, in the low data regime, presented with only 2 volumes as a training set, the
method yields an improvement of 29.3% mIoU, and a result, which is on par with
supervised training on 12 volumes. This helps to reduce the burden of the hand-
drawn segmentation, excessively used by the deep learning models to be trained.
I also proposed my own view on the selection of the pseudo-labels used to train
the Student model, called Quality Classifier. This component is a core component
of the proposed method and provides a noticeable contribution to the quality im-
provement (+4.7% mIoU out of +5.9% in total). In future work, I will collect more
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tomographic data on Medaka and other types of fish with more organisms to eval-
uate and improve the proposed method. I believe extending this work by including
more organisms can provide more understanding for future-oriented genetics.
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Chapter 7

Conclusion

In the broader context of the rapidly growing data landscape and the need for robust
analysis strategies, this doctoral thesis has explored the profound power and poten-
tial of advanced computer vision, with a particular focus on tomographic data. It
brings to the fore, the benefits of incorporating machine learning models, especially
deep learning algorithms, into the analysis of CT scans in various domains, includ-
ing biology, medicine, and material sciences. This journey, however, is not without
its hurdles, the most prominent of which include the need for large, accurately la-
beled datasets and domain-specific knowledge during model training. The thesis,
through the presentation of four individual but closely related studies, presented
solutions to these challenges from data pre-processing down to neural networks
training.

Chapter 3 delved into the application of the Noise2Noise self-supervised denois-
ing approach to multi-channel imaging datasets. This method appeared to be a ro-
bust and efficient alternative to conventional denoising methods and regularized
iterative reconstruction methods. The method streamlined the denoising process by
eliminating the need for manual parameter fine-tuning or regularization formula-
tion and tuning, demonstrating significant improvements in image quality.

Chapter 4 of this thesis takes on the issue of data labeling, which is often the
most labor-intensive aspect of model training. Through an extensive investigation
into the aspects of data segmentation labeling, we drew conclusions on the relative
importance of quality, diversity, and completeness with respect to the efforts spent
on labeling. Drawing from these experimental results I proposed a procedure of the
markup creation, which minimizes the practical effort.

Chapter 5 moves forward on this path by introducing the SortingLoss method, a
resource-efficient self-supervised pre-training technique. This technique leverages
the inherent order of slices in a CT scan volume to pre-train the neural network. Po-
sitioned between general and task-specific pre-training techniques, the SortingLoss
method encapsulates the advantages of both. It demonstrated considerable perfor-
mance, matching that of modern contrastive pre-training methods, in semantic seg-
mentation tasks even when tested in a full-data regime. Furthermore, the method
exhibited the ability to robustly perform sample localization without any supervi-
sion.

In Chapter 6, this work deepens the training approaches with the usage of the
self-training techniques applied to multi-label segmentation. The chapter extended
the well known pseudo-labeled data method with a novel Quality Classifier and
a pixel-wise knowledge distillation technique. The case study is presented on the
Medaka fish brain areas segmentation. The proposed approach led to a marked im-
provement in segmentation performance, particularly in a low-data regime, there-
fore, significantly reducing the need for hand-drawn segmentation.
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In sum, during my journey, I explored the potential of integrating advanced ma-
chine learning techniques, particularly deep learning algorithms with relaxed su-
pervision, in the domain of CT imaging analysis. In this work I presented a set of
my findings spanning from pre-processing the acquired data to get better signal-
to-noise ratio, to label-efficient model training. Each of these findings serves as a
stepping stone toward the broader goal of making deep learning models more effi-
cient, accessible, and applicable to a wide range of real-world problems. And along
these, solving particular practical problems present in day-to-day life of a researcher
in a CT lab.
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