INAUGURAL - DISSERTATION

To obtain the doctoral degree of the

Combined Faculty of Mathematics,

Engineering and Natural Sciences

of the Ruprecht-Karls-University Heidelberg

presented by

M.Sc. Jonas Hädeler

Oral examination: March 27th, 2025

Natural abiotic iron-mediated formation of C1 and C2 compounds from environmentally important methyl-substituted substrates and their implication for nature

Reviewer:

Prof. Dr. Dr. h.c. Frank Keppler

Prof. Dr. Peter Comba

Abstract

Natural processes continuously produce organic and inorganic volatile compounds with one or two carbon atoms (C1 and C2), for instance, methane, ethane, methanol, formaldehyde, methyl chloride and carbon dioxide from the whole range of organic matter. They act as greenhouse gases, control the oxidation capacity of the atmosphere, destroy tropospheric and stratospheric ozone and play an important role in atmospheric chemistry and physics, thus influencing the global carbon cycle. Their origin is typically ascribed to complex enzymatic and metabolic processes and the combustion of organic matter. Methane emissions were, in general, attributed to methanogenic archaea, which grow under anoxic conditions. High emissions of methanol into the atmosphere originate from plant growth. Lignin, as part of the plants, is degraded by fungi, which is a well-described process that leads, for instance, to the release of methanol. Also, the demethylation of lignin under elevated pressure and temperature is utilised in industrial processes to generate sustainable resources like methanol and bioaromatics.

This study presents compelling evidence for the oxic and abiotic formation of C1 and C2 compounds. These were generated from environmentally important organic substrates with sulfur-, nitrogen-, phosphorus-, and oxygen-bonded methyl groups. This was proven with the us of precursor compounds and extensive isotopically labelling studies in laboratory incubation experiments. Then, naturally occurring macro molecules like lignin were incubated, and for a direct link to nature, soil samples were incubated. The cleavage of the methyl group occurs through a highly reactive iron-oxo species which produces methyl radicals. The iron-oxo species is generated through the Fenton reaction in which iron reacts with hydrogen peroxide. Methyl radicals from methyl group-containing compounds serve as crucial intermediates in these reactions as they act as precursors of the C1 and C2 compounds. The product distribution of C1 and C2 compounds is influenced by the binding of the methyl group to different heteroatoms, ascorbic acid concentrations, and the specific iron species involved. An exchange of the iron species with other transition metals leads to identical C1 and C2 compounds with varying conversion rates. The use of isotopically labelled compounds determines the origin of carbon, hydrogen, and oxygen in the C1 and C2 compounds, identifying the methyl group, hydrogen peroxide and dioxygen as precursors depending on the heteroatom. A special case is the demethoxylation of lignin monomeric units and other aromatic methoxy compounds where the whole methoxy group is cleaved off and leads to the formation of methanol and, under the oxic conditions, additionally to formaldehyde. Extensive isotopic studies confirmed this newly described process.

With a series of sterilised soil samples with different organic carbon and methoxy contents, this process was transferred to natural environments, resulting in the observation of significant amounts of methanol and formaldehyde with the methoxy group as a precursor and, to a lesser extent, methane

and ethane formation. The incubation experiments of wet-dry cycles with soil samples have demonstrated their ability to produce methanol and formaldehyde continuously with decreasing amounts.

All environmentally significant processes described here represent a substantial abiotic source of ubiquitously distributed C1 and C2 compounds. The specific case of demethoxylation is particularly important in the pedosphere due to the high levels of lignin in organic matter; this process is expected to provide an energy source for various microorganisms. The novel demethoxylation mechanisms and the expanded demethylation mechanism demonstrate the abiotic production of C1 and C2 compounds that affect the chemical and physical properties of natural environments and the global carbon cycle, thereby highlighting the significance of these processes.

Kurzfassung

Bei natürlichen Prozessen entstehen kontinuierlich organische und anorganische flüchtige Verbindungen mit einem oder zwei Kohlenstoffatomen (C1 und C2), z. B. Methan, Ethan, Methanol, Formaldehyd, Methylchlorid und Kohlendioxid aus einer vielzahl organischer Stoffe. Sie wirken als Treibhausgase, steuern die Oxidationskapazität der Atmosphäre, zerstören troposphärisches und stratosphärisches Ozon und spielen eine wichtige Rolle in der Atmosphärenchemie und -physik, wodurch sie den globalen Kohlenstoffkreislauf beeinflussen. Ihre Entstehung wird in der Regel auf komplexe enzymatische und metabolische Prozesse und die Verbrennung organischer Stoffe zurückgeführt. Methanemissionen wurden üblicherweise methanogenen Archaeen zugeschrieben, die unter anoxischen Bedingungen wachsen. Hohe Methanolemissionen in die Atmosphäre sind auf das Pflanzenwachstum zurückzuführen. Lignin, welches ein Bestandteil von Pflanzen ist, wird durch Pilze abgebaut welches ein gut beschriebener Prozess ist, der unter anderem zur Freisetzung von Methanol führt. Auch die Demethylierung von Lignin unter erhöhtem Druck und Temperatur wird in industriellen Prozessen genutzt, um nachhaltige Ressourcen wie Methanol und Bioaromaten zu erzeugen.

Diese Studie liefert überzeugende Beweise für die oxische und abiotische Bildung von C1- und C2-Verbindungen. Diese wurden aus umweltrelevanten organischen Substraten mit schwefel-, stickstoff-, phosphor- und sauerstoffgebundenen Methylgruppen gebildet. Dies wurde mit Vorläuferverbindungen und umfangreichen Isotopenmarkierungsstudien in Inkubationsversuchen nachgewiesen. Dann wurden natürlich vorkommende Makromoleküle wie Lignin inkubiert, und für einen direkten Übertrag zur Natur wurden Bodenproben inkubiert. Die Abspaltung der Methylgruppe erfolgt durch eine hochreaktive Eisen-Oxo-Spezies, welche Methylradikale erzeugt. Die Eisen-Oxo-Spezies wird durch die Fenton-Reaktion erzeugt, bei der Eisen mit Wasserstoffperoxid reagiert. Die Methylradikale aus methylgruppenhaltigen Verbindungen dienen als wichtige Zwischenprodukte in diesen Reaktionen, da sie als Vorläufer von C1 und C2 Verbindungen fungieren. Die Produktverteilung der C1- und C2-Verbindungen wird durch die Bindung der Methylgruppe an verschiedene Heteroatome, die Ascorbinsäurekonzentration und die beteiligten Eisenspezies beeinflusst. Ein Austausch der Eisenspezies mit anderen Übergangsmetallen führt zu identischen C1- und C2-Verbindungen mit unterschiedlichen Umwandlungsraten. Durch die Verwendung isotopisch markierter Verbindungen lässt sich die Herkunft des Kohlenstoffs, Wasserstoffs und Sauerstoffs in den C1- und C2-Verbindungen bestimmen, wobei je nach Heteroatom die Methylgruppe, Wasserstoffperoxid und Sauerstoff als Vorläufer identifiziert werden. Ein Sonderfall ist die Demethoxylierung von Ligninmonomereinheiten und anderen aromatischen Methoxyverbindungen, bei der die gesamte Methoxygruppe abgespalten wird und zur Bildung von Methanol und unter oxischen Bedingungen zusätzlich zu Formaldehyd führt. Umfangreiche Isotopenstudien bestätigten diesen neu beschriebenen Prozess.

Mit einer Reihe von sterilisierten Bodenproben mit unterschiedlichen Gehalten an organischem Kohlenstoff und Methoxygruppen wurde dieser Prozess auf die natürliche Umgebung übertragen, was zur Beobachtung signifikanter Mengen von Methanol und Formaldehyd mit der Methoxygruppe als Vorläufer und in geringerem Maße zur Bildung von Methan und Ethan führte. Die Inkubationsexperimente von Nass-Trocken-Zyklen mit identischen Bodenproben haben gezeigt, dass diese in der Lage sind, Methanol und Formaldehyd kontinuierlich mit abnehmenden Mengen zu produzieren.

Alle beschriebenen umweltrelevanten Prozesse stellen eine wesentliche abiotische Quelle für ubiquitär verteilte C1- und C2-Verbindungen dar. Der Sonderfall der Demethoxylierung ist in der Pedosphäre besonders wichtig, da die organische Substanz im Boden große Mengen an Lignin enthält. Es wird postuliert, dass dieser Prozess eine Energiequelle für verschiedene Mikroorganismen darstellt. Der neue Demethoxylierungsmechanismus und der erweiterte Demethylierungsmechanismus führen zur abiotische Produktion von C1- und C2-Verbindungen, die die chemischen und physikalischen Eigenschaften des Erdsystem und den globalen Kohlenstoffkreislauf beeinflussen, und unterstreichen damit die Bedeutung der Mechanismen.

Acknowledgement

I want to express my sincerest gratitude to my supervisor, Prof. Dr. Dr hc Frank Keppler, for guiding me through my PhD journey and for your unwavering support, motivation, and commitment to engaging in discussions on an equal footing level. Your guidance has been instrumental in my success. I would also like to thank you for creating a friendly, collegial and supportive working atmosphere. Your passion for science truly inspires me! It encourages me to explore new and exciting paths of discovery.

I am incredibly grateful to Prof. Dr. Peter Comba, my second supervisor. He gave me invaluable insights into chemistry, inspiring me with his friendly manner. I am thankful for the excellent working relationship we have. I am also indebted to Dr Gunasekaran Velmurugan for his good cooperation and stimulating discussions on our joint project and for introducing me to chemical modelling. I would also like to thank Rejith Radhamani for synthesising the bispidine complexes used. I want to extend my gratitude to Prof. Dr Christoph Schüth and Prof. Dr Werner Aeschbach for their willingness to review my oral examination.

I would also like to thank all my students who worked with me on my project. I want to thank Kirsten Rheinberger, Rebekka Lauer, Isabel Hanstein, Jule Dörpmund and Julia Wenhuda for their support, the reliable and precise lab work, the many discussions and the consistently positive working atmosphere.

I want to extend my gratitude to the entire Orcas group, who provided an excellent working environment and were readily available to offer assistance and guidance whenever needed. I would also like to thank Bernd Knape, who was always on hand to repair the equipment and share his endless expertise. I want to thank Rebekka Lauer, Moritz Schroll, Marcus Schneider and Anna Wieland for their excellent cooperation and support. I would also like to thank Maurice Maas, Elena Zwerschke, Markus Greule, Daniela Polag, Christian Scholz, Stefan Rheinberger, Silvia Rheinberger, Ivanina Ralenekova, Martin Maier and Charlotte Stirn, as well as all Bachelor and Master students, for creating an excellent and friendly working atmosphere that always makes me look forward to starting the day at the institute. And let's not forget the exhilarating table football matches.

I'd also like to thank my family, especially my parents, Gundel Hädeler and Rolf Bourgeois, for their unwavering support. I'd also like to thank my grandparents for supporting me, who unfortunately passed away before seeing the end of this chapter.

I want to express my sincerest gratitude to my partner, Lisa Dönges, for her unwavering support over the past five years. Thank you for listening to my endless stories about the fascinating connections between chemistry and nature.

Abbreviations

This list contains frequently used abbreviations throughout this study. Parameters and elements are described within the text.

Pentafluorophenylhydrazine	PFPH	Barrier ion discharge detector	BID
parts per billion by volume	ppb_v	Biogenic volatile organic compounds	BVOCs
parts per million by volume	ppm _v	Dimethylsulfide	DMS
part per million by weight	ppm _w	Dimethylsulfoxide	DMSO
parts per trillion by volume	ppt _v	Flame ioisation detector	FID
Reactive oxygen species	ROS	Galacturonic acid methyl ester	Game
S-adenosyl-L-methionine	SAM	Gas chromatography	GC
Trimethylamine	ТМА	Hydrogen atom abstraction	HAA
Volatile organic compounds	VOC	Mass spectrometer	MS
		Oxygen atom transfer	OAT

Table of contents

1	Introduction	1
1.1	State of knowledge	2
1.1.1	Abiotic formation of C1 and C2 compounds from hetero-bonded CH ₃ groups	2
1.1.2	Formation of CH ₃ OH from methoxy group containing compounds	5
1.2	Properties of C1 and C2 compounds and their role in the natural environments	5
1.2.1	Methane	7
1.2.2	Ethane	8
1.2.3	Carbon monoxide	9
1.2.4	Carbon dioxide	9
1.2.5	Methanol	10
1.2.6	Formaldehyde	11
1.2.7	Formic acid and acetic acid	12
1.2.8	Chloromethane	12
1.3	Precursor compounds and their function in natural systems	13
1.3.1	S-, N- and P- bonded CH_3 group containing compounds	14
1.3.1.1	DMSO	14
1.3.1.2	Methionine	15
1.3.1.3	Trimethylamine	15
1.3.1.4	Choline	16
1.3.1.5	Methylphosphonate	16
1.3.2	OCH ₃ aromatic compounds	17
1.3.3	Galacturonic acid methyl ester	17
1.4	Transition metal species and their occurrence in soils	18
1.4.1	Tetradentate Bispidine Ligand	18
1.4.2	Hematite	19
1.4.3	Transition metals	19
1.5	Ascorbic acid as an OH radical scavenger	20
1.6	ROS and the formation of C1 and C2 in soils	21
1.7	DFT modelling	22
1.8	Motivation and research aim of this study	22
2	Materials and Methods	23
2.1	Experimental setup and details for the incubation experiments	23
2.1.1	Experiments with hetero-bonded CH ₃ groups	24
2.1.2	Sampling of the experiments	24
2.1.3	Experiments with labelled substrates and other setups	25
2.1.4	Experiments with soils	25
2.1.4.1	Sampling and Preparation of the samples	25
2.1.4.2	Location and Sample Description	26

2.2	Laboratory analysis of CH ₄ , C_2H_6 , CH ₃ OH, CH ₂ O, CH ₃ Cl, CO, CO ₂ , HCOOH and CH ₃ COOH	30
2.2.1	Principles of Gas Chromatography	30
2.2.2	Principles of an FID and BID	31
2.2.2.1	Analysis of low CH_4 and C_2H_6 concentrations with a GC-FID	31
2.2.2.2	Analysis of CH_4 and CO_2 with a GC-BID	31
2.2.2.3	Analysis of CH ₃ OH with a GC-FID	32
2.2.2.4	Analysis of OCH_3 with a GC-FID	32
2.2.3	Principles of Mass Spectrometry	32
2.2.3.1	Analysis of CH_2O with a GC-TOF-MS	33
2.2.3.2	Analysis of CH_3Cl and labelled CH_3OH with a GC-MS	34
2.2.3.3	Analysis of HCOOH and CH $_3$ COOH with a GC-MS	34
2.2.4	Analysis of δ ^{13}C and δ ^{18}O of CO_2 with a GC-IRMS	35
2.2.5	Analysis of TOC with a SSM-5000A	36
2.3	Calculations of the conversion rates and concentrations	36
2.3.1	Calculations of the conversion ratio of CH ₃ OH and CH ₂ O	36
2.3.2	Calculation for gases	37
2.3.3	Calculation of the mass fraction of CH_3OH and CH_2O in soil	37
2.3.4	Calculation of the mass fraction	38
2.4	Statistics of the measurements	38
3	Results and Discussion	39
3.1	Conversion rates and mechanistic details of $d_6\text{-}DMSO$ to C1 and C2 compounds	40
3.1 3.1.1	Conversion rates and mechanistic details of d_6 -DMSO to C1 and C2 compounds Determination of the general experimental setup	40 40
3.1 3.1.1 3.1.2	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of different Asc concentrations	40 40 nt 42
3.1 3.1.1 3.1.2 3.1.3	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of different Asc concentrations Impact of O ₂ in the headspace and H ₂ O phase on the conversion rates of CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O derived from d ₆ -DMSO	40 40 nt 42 44
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of different Asc concentrations Impact of O ₂ in the headspace and H ₂ O phase on the conversion rates of CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O derived from d ₆ -DMSO Investigation of the intermediate dimethyl sulfone and the conversion rates to CH ₄ , C ₂ H ₆ , CH ₃ OH, and CH ₂ O	40 40 nt 42 44 5, 46
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of differer Asc concentrations Impact of O ₂ in the headspace and H ₂ O phase on the conversion rates of CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O derived from d ₆ -DMSO Investigation of the intermediate dimethyl sulfone and the conversion rates to CH ₄ , C ₂ H ₆ CH ₃ OH, and CH ₂ O Investigation of the mechanism of the reaction of d ₆ -DMSO to C1 and C2 compounds wit isotopically labelled compounds.	40 40 nt 42 44 5, 46 th 47
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.5.1 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of differer Asc concentrations Impact of O ₂ in the headspace and H ₂ O phase on the conversion rates of CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O derived from d ₆ -DMSO Investigation of the intermediate dimethyl sulfone and the conversion rates to CH ₄ , C ₂ H ₆ CH ₃ OH, and CH ₂ O Investigation of the mechanism of the reaction of d ₆ -DMSO to C1 and C2 compounds with isotopically labelled compounds Identification of the origin of the CH ₃ group in C1 and C2 compounds with fully deuterate DMSO	40 40 41 42 44 45, 46 th 47 ed 47
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.5.1 3.1.5.2 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of differer Asc concentrations Impact of O ₂ in the headspace and H ₂ O phase on the conversion rates of CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O derived from d ₆ -DMSO Investigation of the intermediate dimethyl sulfone and the conversion rates to CH ₄ , C ₂ H ₆ CH ₃ OH, and CH ₂ O Investigation of the mechanism of the reaction of d ₆ -DMSO to C1 and C2 compounds wit isotopically labelled compounds Identification of the origin of the CH ₃ group in C1 and C2 compounds with fully deuterate DMSO Oxidation of CD ₃ OH to CD ₂ O	40 40 41 42 44 5, 46 46 47 47 50
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.5.1 3.1.5.2 3.1.5.2 3.1.5.3 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of different Asc concentrations Impact of O ₂ in the headspace and H ₂ O phase on the conversion rates of CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O derived from d ₆ -DMSO Investigation of the intermediate dimethyl sulfone and the conversion rates to CH ₄ , C ₂ H ₆ CH ₃ OH, and CH ₂ O Investigation of the mechanism of the reaction of d ₆ -DMSO to C1 and C2 compounds with isotopically labelled compounds Identification of the origin of the CH ₃ group in C1 and C2 compounds with fully deuterate DMSO Oxidation of CD ₃ OH to CD ₂ O	40 40 41 42 44 45, 46 47 47 60 50 51
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.5.1 3.1.5.2 3.1.5.3 3.1.5.4 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of differer Asc concentrations Impact of O ₂ in the headspace and H ₂ O phase on the conversion rates of CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O derived from d ₆ -DMSO Investigation of the intermediate dimethyl sulfone and the conversion rates to CH ₄ , C ₂ H ₆ CH ₃ OH, and CH ₂ O Investigation of the mechanism of the reaction of d ₆ -DMSO to C1 and C2 compounds witi isotopically labelled compounds Identification of the origin of the CH ₃ group in C1 and C2 compounds with fully deuterate DMSO Oxidation of CD ₃ OH to CD ₂ O Identification of the origin of the carbon in CO ₂ with ¹³ C-labelled DMSO Identification of the origin of the oxygen atom in CH ₃ OH, CH ₂ O and CO ₂ with ¹⁸ O-labellec H ₂ O, H ₂ O ₂ and O ₂	40 40 41 42 44 5, 46 47 47 50 51 51 51
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.5.1 3.1.5.2 3.1.5.3 3.1.5.4 3.1.6 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of differer Asc concentrations Impact of O ₂ in the headspace and H ₂ O phase on the conversion rates of CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O derived from d ₆ -DMSO Investigation of the intermediate dimethyl sulfone and the conversion rates to CH ₄ , C ₂ H ₆ CH ₃ OH, and CH ₂ O Investigation of the mechanism of the reaction of d ₆ -DMSO to C1 and C2 compounds witi isotopically labelled compounds Identification of the origin of the CH ₃ group in C1 and C2 compounds with fully deuterate DMSO Oxidation of CD ₃ OH to CD ₂ O Identification of the origin of the carbon in CO ₂ with ¹³ C-labelled DMSO Identification of the origin of the oxygen atom in CH ₃ OH, CH ₂ O and CO ₂ with ¹⁸ O-labelled H ₂ O, H ₂ O ₂ and O ₂ Trapping CH ₃ radicals with CH ₂ Br ₂ and CCl ₃ Br	40 40 41 42 44 5, 46 47 47 50 51 51 51 53
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.5.1 3.1.5.2 3.1.5.3 3.1.5.4 3.1.6 3.1.7 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of differer Asc concentrations Impact of O ₂ in the headspace and H ₂ O phase on the conversion rates of CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O derived from d ₆ -DMSO Investigation of the intermediate dimethyl sulfone and the conversion rates to CH ₄ , C ₂ H ₆ CH ₃ OH, and CH ₂ O Investigation of the mechanism of the reaction of d ₆ -DMSO to C1 and C2 compounds witi isotopically labelled compounds Identification of the origin of the CH ₃ group in C1 and C2 compounds with fully deuterate DMSO Oxidation of CD ₃ OH to CD ₂ O Identification of the origin of the carbon in CO ₂ with ¹³ C-labelled DMSO Identification of the origin of the oxygen atom in CH ₃ OH, CH ₂ O and CO ₂ with ¹⁸ O-labellec H ₂ O, H ₂ O ₂ and O ₂ Trapping CH ₃ radicals with CH ₂ Br ₂ and CCl ₃ Br Discussion of DMSO as a case study to characterise the reaction to C1 and C2 compound	40 40 41 42 44 5, 46 47 46 47 50 51 51 53 45.
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.5.1 3.1.5.2 3.1.5.3 3.1.5.4 3.1.6 3.1.7 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup	40 40 41 42 44 47 46 47 46 47 50 51 51 51 53 45.55
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.5.1 3.1.5.2 3.1.5.3 3.1.5.4 3.1.6 3.1.7 3.2 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup	40 40 41 42 44 5, 46 47 46 47 50 51 51 53 55 60
 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.5.1 3.1.5.2 3.1.5.3 3.1.5.4 3.1.6 3.1.7 3.2 3.2.1 	Conversion rates and mechanistic details of d ₆ -DMSO to C1 and C2 compounds Determination of the general experimental setup Conversion rates of d ₆ -DMSO to CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O and the impact of differer Asc concentrations Impact of O ₂ in the headspace and H ₂ O phase on the conversion rates of CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O derived from d ₆ -DMSO Investigation of the intermediate dimethyl sulfone and the conversion rates to CH ₄ , C ₂ H ₆ CH ₃ OH, and CH ₂ O Investigation of the mechanism of the reaction of d ₆ -DMSO to C1 and C2 compounds wit isotopically labelled compounds Identification of the origin of the CH ₃ group in C1 and C2 compounds with fully deuterate DMSO Oxidation of CD ₃ OH to CD ₂ O Identification of the origin of the carbon in CO ₂ with ¹³ C-labelled DMSO Identification of the origin of the carbon in CO ₂ with ¹³ C-labelled DMSO Intrapping CH ₃ radicals with CH ₂ Br ₂ and CCl ₃ Br Discussion of DMSO as a case study to characterise the reaction to C1 and C2 compounds Conversion of S-, N- and P- bonded CH ₃ group containing compounds to C1 and C2 compounds	40 40 41 42 44 5, 46 47 47 50 51 53 55 60 6,

3.2.2	Investigation of the reaction mechanism with deuterium-labelled compounds	62
3.2.3	Discussion of the formation of C1 and C2 compounds originated in S-, N- and P- bonded CH_3 group containing compounds	64
3.3	Conversion rates and mechanistic details of methoxy compounds to C1 and C2 compound	ids 66
3.3.1	Conversion rates of OCH ₃ compounds to CD_3H , C_2D_6 , CD_3OH , and CD_2O	66
3.3.2	Trapping CH_3 radicals with CH_2Br_2 and CCl_3Br	67
3.3.3	Investigation of the reaction mechanism with deuterium and ¹⁸ O-labelled compounds	68
3.3.4	Discussion and mechanistic details of the conversion of methoxy group containing compounds to CH ₃ OH and CH ₂ O	69
3.4	Results of the studies with different Mn, Fe, Co, Ni and Cu species instead of $LFe^{II}Cl_2$ and Fe_2O_3	71
3.4.1	Conversion of d_6 -DMSO, d_3 -methionine and 2-methoxyphenol to CD_3H , C_2D_6 , CD_3OH , CD_2 and CH_3Cl mediated by transition metals	₂0 71
3.4.1.1	d ₆ -DMSO	72
3.4.1.2	d ₃ -Methionine	74
3.4.1.3	2-Methoxyphenol	75
3.4.1.4	CH ₃ Cl	77
3.4.2	Discussion and implications of the different transition metal species in reaction with d_6 -DMSO, d_3 -methionine and 2-methoxyphenol and the formation of CH ₄ , C ₂ H ₆ , CH ₃ OH, CH ₂ and CH ₃ Cl.	₂O 78
3.4.2.1	d ₆ -DMSO	78
3.4.2.2	d ₃ -methionine	81
3.4.2.3	2-Methoxyphenol	81
3.4.2.4	Methyl chloride	82
3.5	Lignin and pectin as precursors of CH ₄ , C ₂ H ₆ , CH ₃ OH and CH ₂ O	83
3.5.1	Formation of CH ₄ , C_2H_6 , CH ₃ OH and CH ₂ O from lignin and pectin under abiotic and oxic conditions.	83
3.5.2	Discussion of the production CH_4 , C_2H_6 , CH_3OH and CH_2O and the influence of Fe_2O_3 , H_2O_3 and Asc	9 ₂ 84
3.6	Abiotic and oxic production of CH_3OH , CH_2O , CH_4 and C_2H_6 from sterile soils and their controlling factors	86
3.6.1	Production of CH_3OH , CH_2O , CH_4 and C_2H_6 from sterile soils under abiotic and atmospher conditions.	ic 86
3.6.2	Methoxy groups in soils as a precursor of CH ₃ OH, CH ₂ O, CH ₄ and C ₂ H ₆	87
3.6.3	Identification of the origin of CH_3OH in soils with deuterated or $^{18}O-OCH_3$ labelled 2-methoxyphenol	89
3.6.4	Determination of the ability of soils to degrade d ₆ -DMSO	90
3.6.5	Wet-dry cycles with soils and their effect on CH_3OH and CH_2O formation	92
3.6.6	Influence of pH variations on soil and the impact on CH_3OH , CH_2O , CH_4 and C_2H_6 production	94
3.6.7	Variation of incubation temperature in soil and the influence on CH_3OH, CH_2O, CH_4 and C_2H_6 production.	94
3.6.8	Addition of CH ₃ OH to non-sterile soils for demonstration of soil degradation potential	95

3.6.9	Correlation of TOC and methoxy content as a basis for a first extrapolation of the production of CH_3OH and CH_2O from soils on a global scale	6
3.6.10	TOC and $CH_3OH + CH_2O$ correlation for initial global predictions of CH_3OH and CH_2O production	7
3.6.11	Discussion and implications of the abiotic production of CH_3OH , CH_2O , CH_4 and C_2H_6 in natural environments, especially the pedosphere	8
3.7	Global implications of the abiotic and oxic formation of CH_3OH , CH_2O , CH_4 and C_2H_6 in soil	s 12
4	Summary and Outlook 10	4
5	Related scientific work 11	.0
6	Appendix 11	.0
7	References	.1

<u>x</u>

List of Figures

Figure 1: A p	ostulated mechanism for the production of CH_4 from methionine by $[Fe=O^{IV}]^{2+}$ species
in th	e presence of Asc. Taken from Althoff et al. (2014) ¹⁴ 4
Figure 2: Cor	nplex interactions of gas phase reactions and heterogeneous reactions of VOCs in the
atmo	osphere. Taken from Shen et al. (2013). ³ 6
Figure 3: Me	chanism for CH_4 formation in living organisms due to the oxidative demethylation of
DMS	O. Taken from Ernst et al. (2022). ⁷² 8
Figure 4: Str	uctures of the Tetradentate Bispidine Ligand a) L ([Fe(N ₂ Py ₂)Cl ₂]•CH ₃ CN) and its b) IV)-Oxido complex in aqueous solution. Taken from Hädeler et al. (2023). ²⁰⁵
Figure 5: So	urces and pathways of ROS in soils. The Fenton reaction, which forms part of the
pres from	ent investigation, represents a significant component of ROS production in soil. Taken Yu et al. (2021). ²²⁹ 22
Figure 6: Loc	ations of the soil samples near Heidelberg A-M. ²³⁹
Figure 7: D	erivatisation of CH_2O with PFPH and the formation of a hydrazone due to a lensation reaction
Figure 8: Dif	ferences in the conversion rate between DMSO and d ₆ -DMSO relative to the added
d ₆ -D	MSO (25 μ mol) with LFe ^{II} Cl ₂ (bars B) or Fe ₂ O ₃ (bars H) (10 μ mol), Asc (100 μ mol) and
H ₂ O ₂	(200 $\mu mol)$ converted to one CH_3 group. Error bars refer to the SD of the total
conv	ersion of all major C1 and C2 compounds for n = 9, except for C_2D_6 , n = 3. Taken from
Häde	eler et al. (2023). ²⁰⁵
Figure 9: Fo	rmation of CD_3H over time from the deuterium-labelled CH_3 groups of DMSO,
med	iated by LFe ^{II} Cl ₂ (red symbols) compared to Fe $_2O_3$ (blue symbols) (10 μ mol) with Asc
(100 near	μ mol) and H ₂ O ₂ (200 μ mol) converted to one CH ₃ group. The reaction with LFe ^{II} Cl ₂ is ly completed after 0.5 h, and the reaction with Fe ₂ O ₃ is completed after more than
24 h	. Error bars refer to mean values of CD ₃ H (n = 9). Taken from Hädeler et al. (2023). ^{205} 42
Figure 10: F	ormation of C1 and C2 compounds from d_6 -DMSO mediated by LFe $^{II}Cl_2$ (bars B)
com	pared to Fe_2O_3 (bars H). Experiments show the dependence of the rates of the formed
prod	ucts (CD ₃ H, C ₂ D ₆ , CD ₃ OH, and CD ₂ O) on the Asc concentrations (10 ml H ₂ O, 48 h
reac	tion time, ambient conditions) with added d_6-DMSO (25 μ mol), with LFe ^{II} Cl ₂ or Fe ₂ O ₃
(10 µ	μ (mol), H ₂ O ₂ (200 μ mol); error bars refer to the SD of the total conversion of all major

C1 and C2 compounds for n = 9, except for C_2D_6 , n = 3. Taken from Hädeler et al. (2023).²⁰⁵

- Figure 13: Mass fragmentation patterns of CH₄, C₂H₆, CH₃OH and CH₂O of experiments with d₆-DMSO (25 μmol) with LFe^{II}Cl₂ (10 μmol), Asc (100 μmol) and H₂O₂ (200 μmol) under ambient atmospheric conditions with a reaction time of 48 h. a) Mass shift of 3 from 16 to 19 for CD₃H from d₆-DMSO; b) mass shift of 6 from 30 to 36 for C₂D₆ from d₆-DMSO; c) mass shift of 3 from 32 to 35 for CD₃OH from d₆-DMSO; d) mass shift of 2 from 210 to 212 for deuterated and derivatised CD₂O from d₆-DMSO. Taken from Hädeler et al. (2023).²⁰⁵48
- Figure 15: Chromatogram of deuterium labelled CD₃Cl in the experiment with 25µmol d₆-DMSO, 100 µmol ascorbic acid, 200 µmol H₂O₂ and 10 µmol LFe^{II}Cl₂ under ambient atmospheric conditions with a reaction time of 48 h. The chromatogram illustrates the masses 53 (black) and 55 (pink). These represent a mass shift of 3 AMU to the CD₃Cl, with the stable isotopes 35 and 37 (mass of 50 or 52 for CH₃Cl). Taken from Hädeler et al. (2023).²⁰⁵....49
- Figure 16: Mass fragmentation of deuterium-labelled CH₂O to track the oxidation from CH₃OH to CH₂O. Mass track of CH₂O with a mass shift of 2 AMU from 210 to 212 **a**) without DMSO and added CD₃OH and **b**) with DMSO and added CD₃OH. Experiment with or without 25µmol DMSO, 100 µmol Asc, 200 µmol H₂O₂ and 10 µmol LFe^{II}Cl₂ under ambient atmospheric conditions with a reaction time of 48 h.Taken from Hädeler et al. (2023).²⁰⁵50
- Figure 17: Chromatogram of isotopic labelled CH₃OH. Experiment with 2.5 μ mol d₆-DMSO, 10 μ mol Asc, 20 μ mol H₂¹⁸O₂ and 1 μ mol LFe^{II}Cl₂ in 1 ml ultra-pure H₂O under ambient

atmospheric conditions with a reaction time of 48 h. Chromatogram of $C^2H_3^{18}OH$ at m/z =

- Figure 27: Comparison of CH₃Br in experiments with 10 μmol LFe^{II}Cl₂, 100 μmol Asc and 200 μmol H₂O₂, 25 μmol sinapyl alcohol, 2-Methoxyphenol or Game and 1,25 mmol CCl₃Br (alkyl radical trapping agent) compared to the blank experiment with the same setup but only without substrate (n = 3) under ambient atmospheric conditions with a reaction time of 48 h. a) Mass 94 (stable isotope 79 of bromine) and b) 96 (stable isotope 81 of bromine) of CH₃Br.
- Figure 28: Chromatograms and mass track of CH₃OH from different isotopic labelling experiments with 10 µmol LFe^{II}Cl₂, 100 µmol Asc and 200 µmol H₂O₂ and 25 µmol sinapyl alcohol, coniferyl alcohol or 2-methoxyphenol under ambient atmospheric conditions with a reaction time of 48 h: **a**) with H₂¹⁸O₂ instead of H₂O₂ (n = 3) and **b**) O₂ replaced in H₂O and headspace by ¹⁸O₂ (n = 3 measurement). **c**) Experiment with 1/10 of all compounds and with ¹⁸OCH₃ 2-methoxyphenol instead of unlabelled 2-methoxyphenol (n = 3 measurement). Pink, blue and brown chromatograms are the measured mass of 29, 30 and 31 of the produced CH₃OH. The black line is the blank without substrate, and green,

- Figure 33: Formation of **a**) CH₃OH and CH₂O and **b**) CH₄ and C₂H₆ were detected in experiments involving 50 mg (dry weight) of either lignin or pectin. These experiments were carried out with either 10 μ mol Fe₂O₃ and 100 μ mol Asc or without Asc and 10 μ mol Fe₂O₃, and the third experiment with 0.05 μ mol triflic acid and no Fe₂O₃ and with 200 μ mol H₂O₂ in

- Figure 40: Measurement of CH_3OH , CH_2O **a**) and CH_4 and C_2H_6 **b**) in soil sample PT 0-10 (5 g and 10 ml H₂O) with the adjustment of the pH-value with NaOH. Error bars refer to the SD of

the total conversion of all major C1 and C2 compounds for n = 9, except for CH₄ and C₂D₆, Figure 41: Measurement of CH_3OH , CH_2Oa) and CH_4 and C_2H_6b) in soil WA2 0-10 at different incubation temperatures (-26, 6, 12, 22, 30, 40 and 50°C). Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for CH₄ and C₂D₆, n =Figure 42: a) Degradation of added CH₃OH in untreated soil samples AL 20 0-20, WA2 0-10, and UH 0-10 (n = 3). b) Measurement of CH₃OH and CH₂O in soil AL 20 with added methylotrophic bacteria (Methylorubrum extorquens) before and after the incubation compared with the experiment of AL 20 from Figure 34. Error bars refer to the SD of the total conversion of CH₃OH and CH₂O for n = 9.....96 Figure 43: Correlation of the TOC (n = 1) with OCH₃ content (n = 3) of the 24 investigated soil samples with an R² = 0.88.....97 Figure 44: The TOC was correlated with the sum of CH₃OH and CH₂O concentrations of all 24 soils investigated. The experiments involved a two-day incubation period, during which 5 g of soil was incubated in 10 ml ultra-pure H₂O.....98 Figure 45: Overview of the cycle of iron-mediated demethylation from lignin-derived substrates and the production of CH₃OH and CH₂O. Subsequently, the degradation by microbes or emission into the atmosphere and, finally, the mineralisation to CO₂, which is taken up by Figure 46: Summary of the CH₃ radical-based (left) and OCH₃-based cycles (right) that form C1 and C2 compounds. Fenton Chemistry generates the [Fe^{IV}=O]²⁺ species that initiates the demethylation (left) or the demethoxylation (right) of the substrates with hetero-bonded CH₃ groups. The observed ¹³C and ²H labels in the CH₃ radical-based mechanism are presented in bold red and green, respectively. Oxygenated C1 compounds with ¹⁸O isotopes are highlighted in bold orange or blue, originating from 18 O-labeled H₂O₂ or O₂, respectively. The deuterated and ¹⁸O labels from the OCH₃ group of 2-methoxyphenol are shown in red and pink, respectively......108

List of Tables

Table 1: A comprehensive overview of all chemical components utilised, including their respective
chemical structures
Table 2: Overview of transition metal species used instead of the LFe ^{II} CL ₂ or Fe ₂ O ₃ 19
Table 3: Used amounts of substrates in the standard experiments dissolved in 10 ml H_2O 24
Table 4: Sample name, location and a short description of the sampled soils according to the
"Leitboden-assoziationen" of the Soil Atlas of Germany of the Federal Institute for
Geosciences and Natural Resources27
Table 5: Experimental setups to determine the differences between DMSO and d_6 -DMSO40
Table 6: Composition of the experiments to determine the conversion rates with different Asc
concentrations42
Table 7: Composition of the experiments with (+) and without (-) O_2 to determine the conversion
rates and possible differences45
Table 8: Composition of the experiments with the alkyl radical scavenger CH_2Br_2 and CCl_3Br to
determine the conversion rates and possible differences.
Table 9: Composition of the experiments with d₃-methionine, methylphosphonate, d ₉ -choline and
d ₉ -trimethylamine to determine the conversion rates and possible differences60
Table 10: Composition of the experiments on different transition metal species with d $_6$ -DMSO, d $_3$ -
methionine and 2-methoxyphenol as precursor compounds to determine the conversion
rates and possible differences72
Table 11: Composition of the experiments with lignin or pectin and with or without Fe_2O_3 and Asc
to determine the conversion rates and possible differences

1 Introduction

Many different types of volatile carbon compounds (VOCs) are released into the atmosphere from various natural and anthropogenic processes and play a prominent role in all parts of the environment.^{1,2} Crucial compounds with one or two carbon atoms (C1 and C2) are methane (CH₄), ethane (C₂H₆), methanol (CH₃OH), formaldehyde (CH₂O), methyl chloride (CH₃Cl), carbon dioxide (CO₂), carbon monoxide (CO), formic acid (HCOOH) and acetic acid (CH₃COOH) with oxidation states for carbon between –IV to +IV. These strongly influence the chemical and physical properties of the atmosphere due to the reaction with oxidants such as hydroxyl radicals, nitrogen oxides and ozone to form new radicals/VOCs. They also influence the radiation budget, act as a greenhouse gas, and influence cloud formation. ^{1,3,4}

The C1 and C2 compounds are typically attributed to the thermal degradation of organic matter or complex metabolic processes occurring in plants and microorganisms. Through the C1 and C2 components, these compounds can regulate essential ecological functions, such as the growth of plants and microbes, and act as stress resistance or signalling substances in communication reproduction.^{5,6} Methanogenic archaea produce the majority of atmospheric CH₄, thriving under anoxic conditions and utilising CO₂, H₂, and acetate as substrates for a series of enzymatic reactions.⁷ Further sources of CH₄ include industrial coal, gas, and oil processing; incomplete combustion of hydrocarbons; and geological activities at elevated temperatures and/or pressures.⁸ These processes are also sources of many different VOCs.^{9,10} The primary identified sources of CH₃OH are vegetation,¹¹ soils,¹² and the ocean.¹³

A hitherto unexplained phenomenon has been reported where CH₄ and other C1 compounds formed abiotically, primarily by compounds with a sulphur-bonded CH₃ group, in oxic environments and under ambient atmospheric pressure and temperature. CH₄ is generated via iron mediation, with hydrogen peroxide (H₂O₂) acting as an exogenous agent oxidant.^{14–16} Consequently, the formation of those above-mentioned C1 and C2 compounds is investigated under abiotic, oxic, and atmospheric conditions. Intensive isotopic labelling studies were conducted to understand the reaction mechanism leading to the formation of C1 and C2 components. Various precursor compounds are investigated involving hetero-bonded CH₃ group-containing compounds sulphur, nitrogen, phosphor and oxygen (S, N, P, and O) with Fe, H₂O₂, and ascorbic acid (Asc). The occurrence of these components in nature in substantial quantities underscores the importance of this reaction. A comprehensive understanding of the production of these C1 and C2 compounds is essential for grasping their impact on natural processes, particularly those that influence the climate, and for evaluating the subsequent consequences of the current climate change.

The current state of research concerning these reactions is presented, followed by an examination of the individual C1 and C2 components and their influence on the atmosphere and other compartments of the Earth's system. The precursor compounds, Fe or transition metal species and Asc, are then discussed, along with soils in the context of C1 and C2 compounds and the reactive oxygen species (ROS) in soils. Finally, the objectives of the study are outlined.

1.1 State of knowledge

The discovery by Keppler et al. (2006)¹⁷ and subsequent research that plants¹⁸, fungi^{19,20} and animals^{21–} ²³ can produce CH₄ under atmospheric conditions, leading to a new field of research. These investigations, along with all subsequent research in this field, are presented here. Also, research investigating the formation of CH₃OH from OCH₃ groups is discussed separately due to the new mechanism described here of the formation of CH₃OH directly from OCH₃ groups.

1.1.1 Abiotic formation of C1 and C2 compounds from hetero-bonded CH₃ groups

Keppler et al. (2006) used stable carbon isotopes to identify the hitherto unknown oxic production from plants of CH₄. High global emissions were observed from intact plants (62-236 Tg yr⁻¹) and detached leaves (1-7 Tg yr⁻¹), suggesting an important source of CH₄.¹⁷ This discovery subsequently became the subject of considerable controversy.^{24–26} However, a growing scientific literature emerged on oxic CH4 formation in the following years. The previously mentioned formation of CH₄ from plants¹⁸, fungi^{19,20} and animals²¹⁻²³ extended this knowledge by providing more CH₄ sources. Research has shown that with deuterated OCH₃-pectin, the OCH₃ group serves as a precursor of CH₄.²⁷ Another precursor compound was found due to the addition of ¹³CH₃-methionine to plants and the subsequent detection of deuterium-labelling in CH₄.²⁸ Another approach involved H₂O₂, Asc, FeCl₂, or FeCl₃, resulting in the production of choline, CH₄, CO, and CO₂, with choline identified as the source. This system was investigated in rat liver mitochondria, which was postulated to serve as a protective function against reductive stress. The aim of these experiments was to ascertain how CH₄ is generated in living organisms.^{21,29} However, these investigations do not provide a detailed mechanism of CH₄ production. Leaf wax was employed to examine the underlying mechanism, and a Norrish I reaction was proposed to generate CH₃ radicals via UV light in oxic conditions and, subsequently, CH₄.³⁰ However, this CH₄ is not produced directly by the plant, as previously postulated by Keppler et al. (2006).

The H_2O_2 , Asc, Fe system was taken up by Althoff et al. (2010) and investigated further. Other Fe species (hematite, ferrihydrite, goethite and lepidocrocite) with H_2O_2 and Asc as a precursor compound were varied in concentration. It turned out that H_2O_2 and Asc in a ratio of 2:1 gave the highest yields

of CH_4 at a pH value of approx. 3. Furthermore, nine other substances (e.g. 2-methoxyphenol, vanillin and methionine) instead of Asc were analysed for CH₄ production, but none could be detected.³¹ These studies were further advanced by Althoff et al. (2014), who conducted experiments with Asc, H₂O₂, Fe minerals, and precursor compounds containing sulfur-bonded CH₃ groups. In these experiments, Asc acted as an OH radical scavenger rather than as a precursor compound. Up to 83% CH₄ is produced from DMSO, and all other compounds also yield CH₄. Further compounds with N-, O-, and C-bonded CH₃ groups do not produce CH₄, except for choline chloride, which produces 0.6 % CH₄. In experiments utilising dissolved Fe (e.g. Fe salts), however, the generation of CH₄ was observed to be negligible. This leads to the conclusion that OH radicals, which are generated by the Fenton reaction there, must play a very minor role in the experiments with Fe minerals, given that a considerable amount of CH₄ is produced in the former and a minimal amount in the latter. This leads to the assumption that another oxidising agent is present in the experiment. The reaction of Asc with the Fe mineral undergoes reductive dissolution, and together with H₂O₂, a [Fe^{IV}=O]²⁺ species and OH radicals are generated, with the latter being scavenged by the ascorbate. This was confirmed using an artificial bispidine complex, which exclusively forms the [Fe^{IV}=O]²⁺ species and leads to similar results. In this reaction, CH₃ radicals were formed, which were detected using electron paramagnetic resonance (EPR) spectroscopy and subsequently produced CH₄. Additionally, CH₃OH was also detected (Figure 1). To identify the precursor atom of CH₄, ¹³CH₃ labelled methionine was used. The δ^{13} C of CH₄ rises drastically because the ¹³C labelled CH₃ group of methionine is the precursor of CH₄.¹⁴ This attack of the [Fe^{IV}=O]²⁺ species at the sulphur atom of methionine and the subsequent transfer of the oxygen to the sulphur atom is named oxygen atom transfer (OAT). An electrophile (e.g. Fe^{2+} , Fe^{3+}) may react with the CH₃ group to produce CH₃ radicals, which react further to CH₄ and other compounds.

This mechanism was further investigated in laboratory experiments and extended with various bispidine complexes. The created $[Fe^{IV}=O]^{2+}$ species was observed to oxidise the sulphur atom, resulting in the formation of methionine sulphoxide. Subsequently, the compound oxidised further to a sulphone or a CH₃ radical and was split off homolytically¹⁶, as previously reported by Althoff et al. (2014). This mechanism was supported by computational modelling (Figure 1).

Taking up this system, a mechanism for CH₄ production from methylated sulfur and nitrogen compounds via Fenton reactions, which utilise iron (Fe²⁺) and ROS generated by light and heat in aqueous environments, has been postulated. OH radicals and $[Fe^{IV}=O]^{2+}$ species oxidatively demethylate these compounds, forming CH₃ radicals that subsequently lead to the generation of CH₄. This non-enzymatic process is supposed to have contributed to CH₄ levels before the emergence of life and may have played a significant role in the early atmospheric evolution of Earth.³²

Figure 1: A postulated mechanism for the production of CH_4 from methionine by $[Fe=O^{|V}]^{2+}$ species in the presence of Asc. Taken from Althoff et al. (2014)¹⁴

Soils have also been investigated for non-microbial/abiotic CH₄ formation. Two studies have shown a hitherto unknown process by which different soils can produce CH₄ abiotically. A positive correlation was found between UV irradiation or temperature intensity and CH₄ production. H_2O_2 addition also enhances CH₄ production.³³ The addition of H₂O to the soils enhances the CH₄ emission rate up to 8-fold compared to dry soils, and higher organic content also increases the emission rate.³⁴ It has been previously demonstrated that Fe minerals, which undergo a reduction from Fe^{III} to Fe^{II}, can decompose organic matter in soils. This was illustrated using catechol as a case study, whereby the production of CO₂ and the formation of halocarbons are observed when halogens are present.^{35,36}

A new mechanism for CH_3 radical formation from CH_3COOH was discovered by Comba et al. (2018). In this mechanism, the C-H bond of CH_3COOH is attacked by the $[Fe^{IV}=O]^{2+}$ species, resulting in the cleavage of a CH_3 radical. This radical subsequently reacts to form CH_4 , CH_3OH and CH_3CI (chloride ions are in solution). Notably, the conversion rates observed in this mechanism are significantly lower than

those observed in the thioether mechanism, with conversion rates below 1 %.³⁷ Further CH₄-emitting organisms have been identified, including fungi¹⁹, marine algae³⁸, animals^{21,23} and humans.^{39,40}

1.1.2 Formation of CH₃OH from methoxy group containing compounds

Due to the ubiquitous distribution of pectin and lignin and the monomeric units, they are of interest and could be possible precursors of C1 and C2 compounds. The OCH₃ groups of pectin were identified as the source of $CH_4^{27,30}$ CH₄ production from leave wax could also be measured.⁴¹ Previously, the OCH₃ group had also been identified as a precursor of CH₃Cl at temperatures above 200°C.⁴² No detailed reaction mechanism was postulated in either case.

Many different catalytic reactions for the demethoxylation of 2-methoxyphenol and other methoxybenzenes have been described in the literature. However, these are always carried out at high temperatures (>285°C), high pressure (>0.5 MPa) and often in a hydrogen atmosphere.^{43–45} Consequently, these conditions do not arise in natural environments and are irrelevant for naturally occurring processes.

Other research has demonstrated that wood treated with Fe can release CH_2O . The addition of H_2O_2 has been shown to significantly enhance the release of CH_2O , while the incorporation of lignin into the experimental setup has been observed to increase CH_2O production further. The hypothesis that the OCH₃ group is cleaved and CH_3OH is produced, which is then attacked by OH radicals to yield CH_2O , has been postulated.⁴⁶ Further studies indicate that cellobiose dehydrogenase may be involved in the degradation of OCH₃ groups in lignin. This process generates hydroxyl radicals via the Fenton reaction, which attacks the aromatic ring and splits off an OCH₃ group, reacting further to form CH_3OH .^{47,48} The proposed enzymatic mechanisms have not been verified by chemical modelling or isotopic labelling experiments, so the precise mechanisms remain unclear.

The findings outlined above contribute to the conceptualisation of this study and represent the fundamental elements upon which this work is conceptualised.

1.2 Properties of C1 and C2 compounds and their role in the natural environments

C1 and C2 compounds significantly influence the atmosphere, affecting its chemical and physical composition, human health, and climate conditions. Of these compounds, CO_2 as a non-VOC and CH_4 are of particular importance in the atmosphere, with concentrations of 425 parts per million by volume (ppm_v) and 1936 parts per billion by volume (ppb_v), respectively.⁴⁹ Other VOCs include CH_3OH , C_2H_{6} , and halogenated compounds such as CH_3CI , which can react with hydroxyl radicals (OH⁻), nitrogen oxides (NO_x), and ozone (O₃), leading to the formation of new VOCs, peroxides, or radicals, such as hydroperoxyl (HO₂•), peroxy (RO₂•), or organic radicals (RO•). Other secondary organic aerosols are also formed by isoprene, terpenes, and aromatics, among other compounds (Figure 2).^{3,50–52}

Gas phase reactions of VOCs

Figure 2: Complex interactions of gas phase reactions and heterogeneous reactions of VOCs in the atmosphere. Taken from Shen et al. (2013).³

A subcategory of the VOCs are the biogenic volatile organic compounds (BVOCs) which primarily originated from terrestrial and marine ecosystems. In terrestrial ecosystems, BVOCs are emitted predominantly by plants or through the decomposition of organic matter by microorganisms.^{50,53,54} In the ocean, plankton represents the primary source of BVOCs.⁵⁵ In these ecosystems they have crucial ecological functions, including promoting plant and microbial growth, enhancing resilience to environmental stress, and releasing signalling compounds that facilitate communication and reproduction.^{5,6} Other sources of BVOCs include the combustion of biomass and fossil fuels. An increase in BVOCs is postulated due to climate change, as the temperature and, thus, the vapour pressure is rising. Another factor is the longer growing season, as plants can produce more BVOCs.⁵⁶ Many of these C1 and C2 compounds are investigated here and are known to be produced from a mechanism different from the oxic and abiotic formations involving Fe, H₂O₂, and Asc investigated here.

1.2.1 Methane

Since 1750, CH₄ has contributed 23 % to the greenhouse effect, the most abundant reduced compound in the atmosphere.⁵⁷ The ratio of CH₄ in the atmosphere has increased from 715 (ppb_v) in 1750 to 1936 ppb_v in 2024⁴⁹. This increase is predominantly attributable to anthropogenic emissions. There is a considerable degree of uncertainty surrounding anthropogenic and natural CH4 emissions estimates, with numbers ranging from 538 to 884 Tg yr^{-1.8,58} Additionally, discrepancies exist between bottom-up and top-down approaches due to the incomplete understanding of global CH₄ fluxes.^{8,58} It has been proposed that a significant aquatic source of CH₄ remains unidentified due to the considerable uncertainty surrounding the budget for aquatic CH₄ emissions.⁵⁹ The numerous emission sources are effectively offset by tropospheric oxidation via OH radicals, which serve as a sink, accounting for approximately 90 % of the total removal.⁶⁰ Other sinks include the degradation of methanotrophic bacteria in soils^{61,62} (4 %), the reaction with chlorine and atomic oxygen radicals in the stratosphere⁶³ (3 %), and the reaction of chlorine radicals derived from sea salt in the marine boundary layer⁶⁴ (3 %).

A fundamental differentiation can be made between pyrogenic, thermogenic and biogenic CH₄ sources⁶⁵, with the latter representing the predominant contributor to atmospheric emissions, estimated at approximately 70 %. Until 2006, biogenic CH₄ was mainly attributed to methanogenesis by microorganisms of the archaea domain under anoxic conditions. These utilise CO₂, hydrogen (H₂) and acetate (CH₃COO⁻) as an energy source, which is enzymatically catalysed to CH₄.⁷ In 2006, oxic CH₄ formation was demonstrated for the first time by Keppler et al.¹⁷ Subsequent studies were conducted to investigate the formation of oxic CH₄ in a range of organisms, including saprotrophic fungi⁶⁶, animals⁶⁷, humans⁶⁸, marine⁶⁹ and freshwater⁷⁰ algae, and cyanobacteria⁷¹. The mechanisms underlying the CH₄ production remain inadequately understood. A recent study has demonstrated that the combination of Fe²⁺ and H₂O₂, produced by ROS, generates a highly reactive [Fe^{IV}=O]²⁺ species in living organisms. This species can effectively oxidative demethylate DMSO, forming a CH₃ radical and subsequently forming CH₄ (Figure 3).⁷²

Figure 3: Mechanism for CH₄ formation in living organisms due to the oxidative demethylation of DMSO. Taken from Ernst et al. (2022).⁷²

An intriguing phenomenon is the CH₄ paradox, predominantly observed in oxygen-saturated marine environments but also occurs in other water surfaces.^{70,73} In this instance, the concentration of CH₄ is greater than its solubility, resulting in supersaturation. Several potential explanations have been proposed for this phenomenon, including the upwelling of anaerobically produced CH₄, ^{74–76} the production of CH₄ by algae^{69,77} or phytoplankton.^{78,79} Other sources that have been discussed are the bacterial degradation of organic matter⁸⁰ and DMSO in the ocean, which could be another possible source of CH₄ in the ocean and thus contribute to the CH₄ paradox. A positive correlation between DMSO or dimethylsulfoniopropionate and CH₄ content was measured in a north-south transect in the Western Pacific Ocean. The study's authors conclude that DMSO or a degradation product thereof may be substrates for CH₄ formation.⁸¹ A further study was also able to observe this correlation. However, no mechanism for CH₄ production was proposed.⁸²

The substances in the aforementioned studies are highly analogous to those under investigation here, except that the reaction in the present study is purely abiotic, in contrast to the living organisms that were previously investigated and could contribute to explaining this phenomenon.

1.2.2 Ethane

 C_2H_6 is the second most abundant hydrocarbon in the atmosphere, with a mean concentration of 0.5-2 ppb_v⁸³ and can reach a maximum of 1000 ppb_v near gas production facilities⁸⁴. There are pronounced seasonal and latitudinal fluctuations in concentrations, with a peak in winter and a minimum in summer. These fluctuations can be attributed to the degradation of C_2H_6 by OH radicals.⁸⁴ The higher concentrations observed in the northern hemisphere can be ascribed to the concentration of anthropogenic sources in that region and the relatively short lifetime of C_2H_6 , which is only three months. This is insufficient time for interhemispheric mixing to occur. The most significant sources of atmospheric C_2H_6 are the use of fossil fuels and leakage from oil and gas extraction. Other sources include biomass combustion and the use of biofuels.^{84,85} It is also acknowledged that lower emissions are derived from the ocean, terrestrial vegetation and soils.⁸⁶ Furthermore, the potential for volcanic sources to contribute to these emissions is also being discussed.⁸⁷ Like CH₄, the hydroxyl radicals represent the primary sink for C_2H_6 . This affects the oxidation potential of the atmosphere, resulting in the production of acetaldehyde (CH₃CHO), a precursor of peroxyacetyl nitrile. This pollutant functions as a reservoir for NO_x, contributing to tropospheric ozone formation.^{85,88,89}

1.2.3 Carbon monoxide

Carbon monoxide (CO) is a colourless, odourless, and tasteless gas that can cause significant harm to the health of living creatures.⁹⁰ The most significant primary source of CO is the incomplete combustion of hydrocarbons^{91,92} and other sources, such as vegetation⁹³ and the ocean.⁹⁴ The most prevalent secondary sources are the photochemical oxidation of CH₄ and other VOCs, including isoprene and monoterpenes, with CH₂O serving as an intermediate product.⁹⁵ The primary sink for CO is the reaction with OH radicals, which contributes 40 % to removing OH radicals from the troposphere.⁹⁶ Consequently, CO plays an important role in ozone formation and acts as a precursor to preventing the radical degradation of other components in the troposphere, such as CH₄, which significantly influences the radiation budget and the chemical composition of the troposphere.⁹⁷ Soils act as carbon sinks, exhibiting a net flux between -163 and -145 Tg per year, with tropical evergreen forests, savannas, and deciduous forests being the most important sinks with 123 Tg CO yr^{-1.98} As with the alkanes, there is a strong gradient for CO from the northern hemisphere to the southern hemisphere since, as previously stated, most emissions are anthropogenic, and the mixing ratio is between 100-150 ppby.⁹⁹ In the southern hemisphere, the sources of CO are characterised by biogenic sources and biomass combustion. Given the atmospheric lifetime of approximately two months, a complete atmosphere mixing cannot occur. In conjunction with the highly variable sources, the aforementioned factors result in a highly complex seasonal cycle.^{100,101}

1.2.4 Carbon dioxide

 CO_2 is the second most significant natural greenhouse gas after H₂O vapour and the most important anthropogenic greenhouse gas. The current atmospheric concentration of carbon dioxide is 425 ppm_v while the pre-industrial concentration is approximately 277 ppm_v.⁴⁹ This represents an annual increase between 1 and 2.2 ppm_v over the past 60 years.¹⁰² The primary cause of this increase is the anthropogenic emission of CO_2 resulting from the combustion of fossil fuels and alterations in land use.¹⁰³ The faster degradation of organic matter in soils due to surface alteration could also influence the described reaction because more OCH₃ groups could be available. Also, more energy is in the system due to increasing temperatures. The rising CO₂ levels have resulted in significant alterations to the Earth's climate system, including the acidification of the oceans, which has disrupted the calcium carbonate balance and has had a detrimental impact on marine calcifiers.¹⁰⁴ The combustion of biomass, volcanic activity and respiration (autotrophic and heterotrophic) by organisms represent the most substantial natural sources of atmospheric CO₂. Gas exchange between the ocean and the atmosphere also influences its levels, which is a sink for atmospheric CO₂. Other natural processes that contribute to removing CO₂ from the atmosphere include rock weathering and photosynthesis.^{105–107}

1.2.5 Methanol

CH₃OH is the most abundant oxygenated and reactive VOC in the atmosphere and plays an important role in atmospheric physics and chemistry. The atmospheric concentration of CH₃OH exhibits considerable seasonal and regional variability due to the short lifetime, with a mixing ratio of 0.2-195 ppb_v.¹⁰⁸ The primary sources are plant growth and reactions in the atmosphere. Other sources include biomass burning, urban areas, and plant decay. These add up to an emission rate of 75-490 Tg yr⁻¹.¹⁰⁹⁻¹¹¹ Another CH₃OH source are root exudates in soils¹¹² and the physical-chemical decomposition of organic matter in the soil.¹¹³ These studies mainly focus on interactions between the biosphere, pedosphere and the atmosphere. The source of CH₃OH is primarily ascribed to biotic sources. Little is known about the abiotic sources of CH₃OH in soils and other related carbon pools¹¹⁴ and nothing about the reaction mechanism.¹¹⁵

Several investigations have highlighted the exchange of CH₃OH between soil and the atmosphere. The highest air concentrations of CH₃OH among all measured 19 VOCs were measured in a Mediterranean shrubland.¹¹⁶ In Amazonian soils, CH₃OH release occurs during dry periods and is weakly absorbed during wet periods.¹¹⁷ High CH₃OH levels of up to 25 nmol mol⁻¹ were reported near an agricultural soil surface, leading to approximately a flux. 0.05 mgC m⁻² h⁻¹. The flux correlated to sensible heat flux, suggesting CH₃OH production near the surface. Measurements were taken during the hot and dry 2003 heatwave in Germany.¹¹³ However, the precise origin of all these emissions remains unclear.¹¹⁶ Rewetted and dried leaves were the subjects by Warnecke et al. (1999), and it was discovered that CH₃OH emissions were produced abiotically. The authors report high emission rates for CH₃OH (18-40 Tg per year) from dead leaf material, and no mechanism for production has been postulated.¹¹⁸ CH₃OH emissions from 12 different litters were investigated, and abiotic CH₃OH production ranges from 26-140 µmol g_{litter}⁻¹, and higher biotic production ranges from 54-3340 µmol g_{litter}⁻¹.¹¹⁹

Other sources include the reaction of methylperoxy (CH₃O₂) radicals with themselves or higher organic peroxy radicals present in the atmosphere and other anthropogenic sources, such as solvents or biofuels.¹¹¹ The reaction with OH radicals represents the largest sink, accounting for 63 % of the total removal, followed by dry deposition on land (26 %), wet deposition (6 %), ocean uptake (5 %) and aqueous-phase oxidation in clouds (<1 %).¹¹¹ The chemical reaction occurring in the clouds can result in the formation of HCOOH, which subsequently affects the acidity of the precipitation.¹¹⁰ Most biotic CH₃OH production is attributable to the demethylation of pectin in the plant cell wall, catalysed by the enzyme pectin methyl esterase. Demethylation occurs throughout the plant's life cycle, including during pollination, fruit ripening and the response of plant cells to stress factors.¹²⁰

These surfaces of leaves, in turn, serve as a habitat for microorganisms that utilise CH₃OH as an energy source, so-called pink-pigmented facultative methylotrophs. These microorganisms directly utilise the CH₃OH produced and ultimately metabolise it to CO₂, which the plants then take up.¹²¹ However, how these bacteria survive when the plant dies and metabolism stops remains unresolved. The abiotic formation of CH₃OH may play a role, that these bacteria can survive during winter.

1.2.6 Formaldehyde

 CH_2O has a mixing ratio of 0.03-176 ppb_v in the atmosphere, making it the most prevalent carbonyl compound in the atmosphere. Its atmospheric lifetime is relatively brief, estimated to be a few hours. However, due to its high reactivity and associated carcinogenic and mutagenic properties, the significance of CH_2O is considerable.¹⁰⁸ The primary sources of CH_2O are vegetation, soil¹²², seawater¹²³, industrial processes, combustion exhaust gases^{124–126} and the burning of biomass.¹²⁷ Secondary sources of CH_2O include the oxidation of CH_4 and other long-lived VOCs, which represent a global background.¹²⁸ In continental regions, the oxidation of CH_3OH and isoprene dominates.¹²⁹ The heterogeneous sources yield a complex picture of the global atmospheric distribution of CH_2O are the reaction with OH radicals, photolysis, and the formation of peroxyacetyl nitrate and O_3 .⁹⁵ Other sinks include wet and dry deposition.¹²⁸ Additionally, CH_2O is absorbed by plants and subsequently converted to CO_2 through enzymatic processes, which then enters the Calvin cycle.^{86,130,131}

Different studies show that the production of CH_2O from wood/lignin is mostly at elevated temperatures, with either the OCH₃ group or a C₂OH group bonded to an alkyl chain as a precursor.^{132–134} Fu et al. (2022) proposed a lignin-mediated Fenton reaction where Fe and H₂O₂ promote the CH₂O and CH₃OH production from Lignin. Due to the generation of OH radicals, demethylation of lignin occurs, and the aforementioned products are generated, but no reaction mechanism is postulated.¹³² Also, no abiotic production mechanism is currently known in soils.

1.2.7 Formic acid and acetic acid

The atmospheric mixing ratio of HCOOH is 0.02-40 ppb_v, while that of CH₃COOH is 0.05-17.8 ppb_v.¹⁰⁸ The modelling, based on air and ground measurements, suggests the presence of an unknown source or an incorrect interpretation of sources and sinks.¹³⁵ These are the two most emitted organic acids from vegetation. HCOOH is predominantly produced as formate, while CH₃COOH is primarily formed as acetyl-coenzyme A (acetyl-CoA). It is evident that the two acids have a similar source. The most significant contribution to their formation is derived from emissions originating from terrestrial vegetation. With regard to the synthesis of HCOOH in plants, there are numerous potential pathways, including those associated with C1 metabolism, C₂H₄ biosynthesis, the oxidation of CH₂O, and photorespiration. The formation of CH₃COOH is a consequence of the hydrolysis of acetyl-CoA, the principal product of the catabolism of carbohydrates and fats.⁸⁶

Another important source is the photochemical oxidation of various VOCs (especially isoprene, acetaldehyde and alkenes).¹³⁶Additionally, biogenic sources include the formation by soil bacteria¹³⁷ and the combustion of biomass.¹³⁸ In contrast, anthropogenic sources encompass fossil fuels, exhaust gases from the combustion of fossil fuels, biofuels and agriculture.¹⁰⁸ The residence time in the atmosphere for both acids are more than one week, given that they are the final product of photooxidation. The largest sink is the wet deposition due to the high H₂O solubility of the acids, which also strongly influences the residence time in the atmosphere.¹³⁹ The acids can account for up to 60 % of the acid content of precipitation.¹⁴⁰ Another sink is the adsorption of dust particles, which can be highly significant on a regional scale.¹⁴¹

1.2.8 Chloromethane

CH₃Cl is the most prevalent halogenated hydrocarbon in the atmosphere, with a mixing ratio of 550 ppt_v. Global emissions are estimated to range from 4,000 to 5,000 Gg. It is assumed that the tropical rainforest produces approximately half of the emissions.¹⁴² Overall, the global CH₃Cl budget is not balanced, with sinks outweighing sources. However, it is unclear whether there are unknown sources or whether emission estimates are inaccurate.¹⁴³ Recent experiments and calculations of the kinetic isotope effect, on which the emission in the calculations for the rain forest are based, suggest the presence of a significant unidentified source in the tropical rain forest, estimated to be approximately 1,500 Gg.¹⁴⁴ The abiotic conversion of chloride and pectin, a CH₃ donor ubiquitous in plants, has been observed to produce CH₃Cl in dead leaves under ambient conditions. Emissions exhibited a marked increase at elevated temperatures, indicating a significant contribution of terrestrial ecosystems and biomass burning to global chloromethane cycling.¹⁴⁵ Other sources include the ocean¹⁴⁶, grassland¹⁴⁷, oxidative turnover of organic matter¹⁴⁸, salt marshes¹⁴⁹, wetlands¹⁵⁰, biomass burning¹⁵¹, and fungi.¹⁵²

The main anthropogenic source is coal combustion. Degradation occurs mainly by OH radicals in the atmosphere.¹⁵³ Methylotrophic bacteria in the soil and ocean can degrade CH₃Cl and extract energy from it.¹⁵⁴ In addition, CH₃Cl is degraded by chlorine radicals in the marine boundary layer.¹⁵³ Given a typical lifetime of approximately one year, the substance is incorporated into the stratospheric environment, where it is known to release chlorine radicals due to photolytic cleavage. It is estimated that approximately 16 % of the observed depletion of stratospheric ozone can be ascribed to this chemical reaction, which makes it the most significant source of reactive chlorine within the stratosphere.¹⁴⁴

1.3 Precursor compounds and their function in natural systems

Various precursor compounds with hetero-bonded CH₃ groups were analysed to ascertain their potential for forming C1 and C2 components (Table 1). Environmentally relevant compounds with CH₃ groups bound to sulphur, nitrogen, phosphorus, or oxygen were analysed. The primary focus is on the sulphurand oxygen-bound CH₃ groups. Given that work is being conducted in aquatic systems and that a substantial number of soils have been analysed, the role of the substances in these compartments is being given particular attention. To trace the reaction pathway, ²H, ¹³C and ¹⁸O labelled substances were applied. Subsequently, the aforementioned stable isotopes were analysed in the C1 and C2 components. A detailed discussion of the formation of CH₃ radicals from these substances is presented in a separate section (1.1).

Table 1: A comprehensive overview of all chemical components utilised, including their respective chemical structures.

1.3.1 S-, N- and P- bonded CH₃ group containing compounds

1.3.1.1 **DMSO**

Dimethylsulfoxide (DMSO) is a product of the photochemical and biological oxidation of dimethylsulfide (DMS) and has two S-bound CH₃ groups. DMS is produced by bacteria from dimethylsulfoniopropionate in the ocean and also serves as a metabolite in phytoplankton. DMS represents the largest natural source of sulphur in the atmosphere. DMS, DMSO and dimethylsulfoniopropionate are, therefore, the most important components of the global sulphur cycle.¹⁵⁵ DMS is oxidised at the ocean/atmosphere boundary layer to form sulphuric and methanesulfonic acids, which act as cloud
nuclei. These influence the radiation budget of the atmosphere, thus exerting a feedback effect on biogenic DMS emissions (CLAW hypothesis).^{156,157} The atmospheric oxidation of DMS produces DMSO as an intermediate product, with mixing ratios of up to 30 parts per trillion by volume (ppt_v) modelled.¹⁵⁸ Sediments, soils, and freshwater compartments are also sources of DMS.^{159,160} Given the production of ROS in soils, as outlined in section 1.6, it is plausible that the DMS undergoes oxidation to form DMSO. Furthermore, it is suggested that DMSO has an anti-oxidative effect in the cell.^{161,162}

1.3.1.2 Methionine

Methionine is an essential amino acid not synthesised by the body and, thus, must be obtained from dietary sources. Two isomers of methionine have been identified: D-methionine and L-methionine, which contain one sulfur-bound CH₃ group. L-methionine is the naturally occurring form and, in conjunction with cysteine, is the sole sulphur-containing amino acid.¹⁶³ Succinyl-CoA, cysteine, creatine, homocysteine and carnitine all require methionine as a precursor compound during synthesis and thus represent an essential component in protein biosynthesis and metabolism.¹⁶⁴ Moreover, methionine directly influences immune system function, increasing the production of taurine, glutathione and other metabolites through methionine catabolism.¹⁶⁵ Furthermore, methionine reacts with adenosine triphosphate to form S-adenosyl-L-methionine (SAM), which is a principal CH₃ donor in organisms.¹⁶⁶

1.3.1.3 Trimethylamine

Trimethylamine (TMA) is a volatile tertiary aliphatic amine consumed through food. The precursor compounds carnitine, choline (described in Chapter 1.3.1.4) and lecithin, found in large quantities in meat and eggs, are absorbed and then converted to TMA by gut microbiota.^{167–169} Subsequently, TMA is converted to trimethyl-N-oxide by flavone monooxygenase.¹⁷⁰ Marine organisms utilise the substance for several purposes, including the equalisation of hydrostatic pressure and the function of an osmolyte. It is also employed to reduce the freezing point of body fluids and provide protection against elevated urea concentrations.^{171,172} Trimethyl-N-oxide can be metabolised by bacteria to tri-, di-, and monomethylamine, which are responsible for the characteristic fishy odour.¹⁷¹ Moreover, trimethyl-N-oxide can be metabolised to dimethylamine and CH₂O with the assistance of trimethylamine monooxygenase and trimethylamine dehydrogenase, which is energetically preferred.¹⁷³ Additionally, plants possess intrinsic levels of trimethyl-N-oxide, which are elevated during abiotic stress. This phenomenon enhances the plant's tolerance to abiotic stressors, including frost, drought, and high salinity.¹⁷⁴

TMA is released into the atmosphere from various sources, including pig faeces, fish processing, vehicle exhaust, marine organisms and anaerobic fermentation of food waste.^{175–178} The primary reaction pathways of aliphatic amines in the gas phase are postulated to occur via interaction with atmospheric oxidants, such as hydroxyl radicals and ozone. The formation of non-salt organic aerosols results from the TMA oxidation, which has been demonstrated to exhibit enhanced stability relative to nitrate salts.¹⁷⁹

1.3.1.4 Choline

Choline has three CH₃ groups attached to the nitrogen of ethanolamine, making it a quaternary amine; as earlier mentioned, it is a precursor for TMA. It is a vitamin-like substance for humans and animals, but it is also produced by the body in small amounts. ¹⁸⁰ Choline fulfils a multitude of biological functions within the human body. One such function is that choline can be oxidised by an enzyme to betaine, whereby the CH₃ group of betaines can be utilised to synthesise methionine from homocysteine. Additionally, choline is a precursor to phosphatidylcholine and sphingomyelin, which are integral components of biological membranes. It also serves as a precursor to diacylglycerol and ceramide, which are intracellular messengers. The neurotransmitter acetylcholine is also dependent on choline as a precursor compound.^{180–182} Choline is synthesised within the body through the methylation of phosphatidylethanolamine by SAM.¹⁸³ The synthesis of choline has also been observed in plants and yeast cells.^{184,185}

1.3.1.5 Methylphosphonate

Methylphosphonate is an organic phosphonate, a category of reduced phosphorus compounds distinguished by their chemically stable C-P bond. These compounds constitute a substantial portion of the dissolved organic matter in marine environments.¹⁸⁶ This observation underscores the significance of phosphonates as an important source of phosphorus, particularly in oligotrophic (phosphorus-limited) areas of the ocean. Specialised enzymatic pathways (C-P lyase pathways) have evolved in microorganisms to facilitate the cleavage of the C-P bond in phosphates, thereby enabling the utilisation of phosphorus by these organisms. Inorganic phosphorus, which is typically more readily available, is the preferred source of phosphorus.¹⁸⁷ A multi-enzyme complex splits the phosphonate into phosphate and a corresponding hydrocarbon, thereby enabling the degradation of methylphosphonate to produce CH₄.^{188,189} This process may offer a potential explanation for the CH₄ paradox, as it results in CH₄ supersaturation in the upper layers of the ocean, where this process occurs.^{80,190}

1.3.2 OCH₃ aromatic compounds

The two most significant lignin monomers, namely sinapyl alcohol and coniferyl alcohol, which are endowed with OCH₃ groups, were subjected to analysis. These monomers, in conjunction with pcoumaryl alcohol (S-, G- and H-units), serve as the fundamental building blocks of lignin. It represents an essential wood component comprising between 18 and 35 % of the total composition. The remaining essential components are cellulose (40-45 %), hemicellulose (25-35 %), and a range of other components, including polysaccharides and minerals, which collectively account for up to 10 % of the total composition.^{191–194} Lignin is a vital component of the cell wall, providing structural integrity and hindering the decomposition of polysaccharides. Additionally, it serves as a barrier against pathogens, insects, and other herbivores.¹⁹⁵ Most softwoods are composed of coniferyl units, while hardwoods primarily comprise coniferyl and sinapyl alcohol units. In contrast, grasses are known to contain all three lignin monomers.¹⁹³ Decomposition of the aromatic compound lignin is principally facilitated by the action of white-rot and brown-rot fungi, in addition to certain bacteria. These organisms synthesise a range of heme peroxidases, which enable the direct degradation of lignin and the demethylation processes. Furthermore, the by-product of this process is the formation of humic substances, which are integral components of soil humus.^{196–198} Lignin is an essential component of wood, which is ultimately deposited in the soil following the decay process and is found in nearly all terrestrial ecosystems. Given the substantial quantities of lignin available and the hetero-bonded CH₃ groups present, it is a potential source of VOCs in this study. Furthermore, wood is utilised as an energy source through combustion, producing numerous VOCs, including 2-methoxyphenol (guaiacol).¹⁹⁹ This also occurs as a monomer in lignin and is employed as an example substance due to its favourable availability and is also isotopically labelled available. Furthermore, analysis was conducted on 3- and 4-methoxyphenol due to their structural similarities. Other components selected for their structural similarity and relevance to the environment are anisole, syringic acid and syringic aldehyde.

1.3.3 Galacturonic acid methyl ester

Galacturonic acid methyl ester (Game) represents the esterified galacturonic acid that constitutes the fundamental building block for pectin. It is linked alpha-1,4-glycosidically and exhibits varying degrees of esterification depending on the plant species.^{200,201} Also, numerous side chains containing up to 17 different monosaccharides and more than 20 linkages are possible.²⁰² The cell walls of plants and fruits contain pectin, which constitutes between 10 and 35 % of their composition. This pectin plays a crucial role in maintaining the stability and development of the cell wall.²⁰³ The pectin methyl esterase catalyses the hydrolysis of pectin methyl esters, releasing CH₃OH through the stomata.^{121,203} The ester/OCH₃

group is of interest for this study as it plays an integral role in Game and pectin and is worthy of further investigation.

1.4 Transition metal species and their occurrence in soils

1.4.1 Tetradentate Bispidine Ligand

An iron-bispidine complex was employed in a multitude of experiments. Its selection was predicated on its high reactivity and the necessity for modelling using DFT (density functional theory). These properties were used in previous studies described in Chapter 1.1.1. Additionally, it has been the subject of extensive research and has been utilised for over half a century.²⁰⁴

Figure 4: Structures of the Tetradentate Bispidine Ligand **a**) L ($[Fe(N_2Py_2)Cl_2] \bullet CH_3CN$) and its **b**) Iron(IV)-Oxido complex in aqueous solution. Taken from Hädeler et al. (2023).²⁰⁵

The non-haem iron complex is displayed in Figure 4a, in which a tetradentate bispidine-based ligand (LFe^{II}CL₂) coordinates Fe²⁺ via two tertiary amines and two pyridine donor groups.^{16,205} The synthesis of this complex is achieved through a two-step process involving consecutive double Mannich reactions, followed by the addition of Fe²⁺.²⁰⁶ Subsequently, the compound is oxidised by adding an oxidising agent, in this case, H₂O₂, which forms an iron-oxo complex (Figure 4b).¹⁶

These bispidine-based iron-oxo complexes are regarded as highly effective catalysts for the epoxidation of alkenes, hydroxylation and halogenation of alkanes, as well as the oxidation of alkanes, alcohols and sulphur compounds, including thioethers.^{22,207–211} Due to the high oxidising power of iron-oxo complexes, organic substances can also be converted with great efficiency, which is why highly valent ironoxo complexes play a significant role in natural processes.¹⁵ The processes of oxygen atom transfer (OAT) and hydrogen atom abstraction (HAA) are of significant importance in this context (Chapter 1.1.1) and could be performed by the iron-oxo complex (Figure 4b).

1.4.2 Hematite

Hematite (Fe₂O₃) is a trivalent reddish-coloured Fe oxide very common in rocks and as a pedogenic mineral in soils. There, Fe₂O₃ can be regarded as the end product of the transformation of other Fe oxides and hydroxides. The weathering of primary minerals results in the release of Fe²⁺, which is then oxidised to Fe³⁺, which is then hydrolysed at a pH >3, e.g. to ferrihydrite (5 x Fe₂O₃-9 x H₂O).²¹² The primary mechanism of Fe₂O₃ formation in soil is the dehydration and rearrangement of ferrihydrite.²¹³ The metastable ferrihydrite can be transformed into Fe₂O₃ and/or goethite (α -FeOOH) in soils, which is particularly influenced by temperature, moisture and pH: Fe₂O₃ forms at higher temperatures, low moisture and neutral pH, while lower temperatures and higher pH favour the formation of goethite.²¹⁴ Accordingly, Fe₂O₃ is particularly common in soils of the tropics and subtropics, while goethite dominates in soils of temperate latitudes.

 Fe_2O_3 can react with many inorganic and organic colloids to form even more complex aggregates. The solubility is highly dependent on Eh-pH conditions and is generally very low. Due to that, a major problem is that plants may not be able to absorb enough Fe at pH values above 7, which can lead to growth problems. Microorganisms may have similar problems²¹⁵ as Fe is a micronutrient for them.²¹⁶

1.4.3 Transition metals

Different transition metal species are investigated to investigate whether other transition metals than iron can mediate the reaction described in Chapter 1.1.1 (Table 2). Selected minerals and salts are analysed, and each transition metal is investigated in isolation. The formation of CH₃Cl was investigated by selecting transition metal chlorides. Distinct oxidation states of the transition metal cation were also selected, allowing the investigation of different oxidation states of the transition metals.

transition metal	halogenated species	other species	
manganese	MnCl ₂ • 4H ₂ O	MnO ₂ , MnSO ₄ • 4H ₂ O	
iron	FeCl ₂ • 4H ₂ O	FeSO ₄	
cobalt	CoCl ₂ · 6H ₂ O	-	
nickel	NiCl ₂ • 6H ₂ O	NiSO ₄ · 6H ₂ O	
copper	CuCl ₂	CuO/Cu ₂ O, Cu(CH ₃ COO) ₂	

Table 2: Overview of transition metal species used instead of the $LFe^{II}CL_2$ or Fe_2O_3 .

Here, a brief description of the transition metals used focuses on the occurrence in soils. Manganese (Mn) is naturally present in three oxidation states (+II, +III, and +IV), influenced by soil redox conditions. Manganese is often found as Mn(IV) oxides in well-aerated soils, while Mn(II) is present in waterlogged

or anaerobic conditions.²¹⁷ The manganese content of the soil is principally derived from the weathering of manganese-bearing minerals present within rock formations.²¹⁸

Cobalt (Co) is an inherent constituent of the earth's natural environment, originating from the weathering of parent rocks such as cobaltite and erythrite. It is predominantly observed in two valence states: Co(II) and Co(III). Volcanic ash has been shown to enhance cobalt levels in soil samples.²¹⁹ Furthermore, using fertilisers and additives in agricultural practices has been demonstrated to contribute to elevated levels of cobalt in soil.²²⁰ Cobalt is an indispensable trace element for the functioning of plant and animal life, and thus humans. The key physiological role of cobalt is as the central metal ion in vitamin B12 (cyanocobalamin), ensuring its catalytic activity in CH₃ group transfer reactions.²²¹

Nickel (Ni) concentrations in soils range from 5 to 500 mg kg⁻¹, with the primary source of nickel being the geological weathering of (ultra)mafic rocks enriched in Ni-bearing minerals, such as limonite and garnierite.^{222,223} Nickel is a biologically essential micronutrient found in enzymes across all domains of life. It is crucial for diverse biogeochemical processes, including the fixation of nitrogen and its uptake and the fixation of carbon and methanogenesis.²²²

The concentration of copper (Cu) in soil is contingent on many interacting factors, including the characteristics of the parent material, the physico-chemical properties of the soil, and potential exogenous inputs from agricultural or industrial activities. For instance, the availability of copper is known to decrease in soils with elevated pH levels, high concentrations of soil organic carbon, and substantial clay content.²²⁴ An analysis of agricultural soils, focusing on those associated with vineyards and orchards, revealed an elevated presence of copper. This phenomenon can be attributed to using copper-based fungicides in agricultural practices.^{225,226}

1.5 Ascorbic acid as an OH radical scavenger

Vitamin C (Asc) is an antioxidant and a vital human nutrient which must be consumed with food. The highest concentrations of the substance in food are found in vegetables, fruit, and other plant materials, which accumulate in the soil in the end.²²⁷ Asc is easily oxidised and functions as an effective scavenger of ROS. Other compounds, such as glutathione peroxidase, catalase and other forms of Asc, also possess these properties. This is important for all living organisms, protecting them from cell damage and other adverse effects.^{227,228} This property is of crucial importance in the experiments carried out.

1.6 ROS and the formation of C1 and C2 in soils

As outlined in Chapters 1.4 and 1.5, transition metals have been detected in the soil, and Asc and its derivatives have also been identified in the same environment. The precursor compounds described in Chapter 1.3 are commonly present in the soil. Specifically, lignin and pectin, as representatives of the oxygen-bonded CH₃ group, occur extensively in the soil due to their essential role in plant composition.

The need for ROS, especially H_2O_2 , in the investigated reaction is ubiquitous in soil (Figure 5). Most of these are O₂- radical, H₂O₂, and OH radicals formed during photochemical reactions, atmospheric precipitation, plant and microbial exudation and heterogeneous catalysis mediated by biochar or quinone-like substances (Figure 5).²²⁹ The photochemical process can occur within the soil, whereby mineral oxides act as catalysts to produce ROS, including O2^{•-} and H2O2.²³⁰ Additionally, this process can take place on hydrated mineral surfaces²³¹ or during the reaction with transition metals, such as Fe.²³² Another source is the precipitation, which contains up to 78 μ mol L⁻¹ H₂O₂, which contributes significantly to the ROS in the soil.²³³ Moreover, a considerable number of microorganisms are involved in the production of ROS. These generate H₂O₂ in conjunction with enzymes such as oxidase enzymes.²³⁴ A further source is the alteration of redox conditions resulting from alternating aerobic and anaerobic conditions in soils. The conversion of Fe^{III} into Fe^{II} causes desorption and/or the production of ROS.²³⁵ Quinones are pervasive in soil environments, formed through the decomposition of leaves and lignin and synthesised by microorganisms.^{236,237} They are redox active, exhibiting three distinct oxidation states, and thus capable of reacting with O2, transition metals or catalysts to produce ROS.²³⁷ These processes, particularly the abiotic ones, significantly influence the formation of C1 and C2 components in soil, functioning as a primary driving force behind these chemical reactions.

Figure 5: Sources and pathways of ROS in soils. The Fenton reaction, which forms part of the present investigation, represents a significant component of ROS production in soil. Taken from Yu et al. (2021).²²⁹

1.7 DFT modelling

The computer-aided chemical modelling conducted by Gunasekaran Velmurugan and Peter Comba to accompany the experiments is outlined in Hädeler et al. (2023).²⁰⁵ It constitutes an indispensable element of the reaction mechanisms but was not conducted in the present study and, therefore, not described here.

1.8 Motivation and research aim of this study

Based on the previously described research, CH_3 radicals are precursors of C1 and C2 compounds in the environment.^{14,31,37,238} These reactions occur under oxic, abiotic and atmospheric conditions with mostly H_2O_2 as an oxidant that activates Fe to a $[Fe^{IV}=O]^{2+}$ species, naturally occurring substrates with a hetero-bonded CH_3 group (S, N, P and O) and Asc as an OH radical scavenger. These processes are only less described for CH_4 formation in natural environments³³ and poorly for other C1 and C2 compounds. Thus, a comprehensive understanding of all processes is crucial to fully understanding the interactions between all these C1 and C2 compounds and how they influence the natural environments. Thus, the primary objective of this study was to gain a thorough understanding of the processes and conversion rates involved in both the oxic and abiotic production of C1 and C2 compounds. Moreover, a comprehensive understanding of these processes within the pedosphere is imperative, particularly with regard to methoxy compounds as a precursor.

The fundamental objective is further subdivided into the following more precise aims:

- Studying several potential precursor compounds with S-, O-, N- and P-bonded CH₃ groups in the laboratory, using different Fe species, Asc and H₂O₂. Quantitative and qualitative analysis of C1 and C2 compounds in all oxidation states of carbon, ranging from -IV to +IV.
- Identification of novel pathways that contribute to forming environmentally relevant C1 and C2 compounds with isotopic ²H-, ¹³C and ¹⁸O-labelled substances.
- 3. Replacement of Fe species by various transition metal species and studying the qualitative and quantitative amount of C1 and C2 compounds produced.
- 4. Quantifying and determining the potential of soils to release C1 and C2 compounds and identifying the underlying reaction mechanism.
- 5. Varying the conditions in the soil experiments (pH, temperature, wet-dry cycles, and the removal of reactive groups) to gain further insight into the controlling factors of C1 and C2 production.
- 6. Estimating initial global emission rates of the produced C1 and C2 compounds.

2 Materials and Methods

The various experimental setups and the preparation and collection of the soil samples are described below. Furthermore, the individual methods for analysing CH₄, C₂H₆, CH₃OH, CH₂O, CH₃Cl, CO₂, HCOOH and CH₃COOH and all calculations are described.

2.1 Experimental setup and details for the incubation experiments

All chemicals were of reagent grade or higher and purchased from Fischer Scientific GmbH, Merck KGaA, Cayman Chemicals, Carl Roth GmbH + Co. KG, Linde GmbH, AIR LIQUIDE Deutschland GmbH and Campro Scientific GmbH.

2.1.1 Experiments with hetero-bonded CH₃ groups

All experiments with hetero-bonded CH_3 groups containing a transition metal species, a substrate, an acid and H_2O_2 in the following ratios: 10:25:100:200 (Table 3). Deviations from this are always described.

Reactant	Amount [µmol]	
Transition metal species	10	
Substrate	25	
Asc /Triflic acid	100/0.05	
H ₂ O ₂	200	

Table 3: Used amounts of substrates in the standard experiments dissolved in 10 ml H₂O.

The standard experiments were conducted in 50 ml glass vials (IVA Analysetechnik GmbH & Co. KG, Germany) that were sealed with an aluminium crimp cap with a Pharma-Fix-Septum, Butyl/PTFE septum (3.0 mm thickness, 20 mm diameter, IVA Analysentechnik GmbH & Co. KG, Germany). The vials contain 10 μ mol of tetradentate bispidine ligand (see Figure 2; LFe^{II}Cl₂) or Fe₂O₃ as a catalyst. Subsequently, 25 µmol of different hetero-bonded CH₃ group-containing substrates are dissolved in 5 ml ultra-pure H₂O. Additionally, 100 µmol Asc is dissolved in 2.5 ml H₂O and introduced to the experiments as an OH radical scavenger, maintaining a consistent pH across all experiments. In the absence of Asc, 0.05 μ mol trifluoromethanesulfonic acid (triflic acid) is dissolved in 2.5 ml H₂O, and the vials are then sealed with an aluminium crimp cap. A solution of 200 μ mol H₂O₂ (dissolved in 2.5 ml) was added through the septum with a 2.5 ml syringe (SETonic GmbH, Germany) to initiate the reaction. This was done to prevent the produced gas from being degassed. The total volume of the liquid phase is 10 ml, resulting in a headspace volume of 40 ml. Afterwards, the experiments were stored in a climate chamber in the absence of light for 48 h. All individual experiments were performed in triplicate with the same composition and under the same environmental conditions to obtain comparable and statistically reliable results. Control samples ("blanks") were also prepared to account for the background values of the investigated components in the liquid and gas phases and were subtracted from the measured values. These also contained the specified amounts of Fe species, Asc, and H_2O_2 ; however, the solution with the initial substance was replaced by 5 mL of ultra-pure H_2O .

2.1.2 Sampling of the experiments

Following a period of 48 h, the samples were collected. All gas samples were collected using a 30 ml gas-tight plastic syringe (BD Plastipak[™], BD, Switzerland). A volume of 6 ml was transferred to a 3 ml

glass container (Exetainer[®], Labco Limited, UK) for subsequent analysis with the GC-BID (Chapter. 2.2.2.2). The remaining headspace (ca. 30 ml) was stored in a 12 ml glass container (Exetainer[®], Labco Limited, UK) for subsequent analysis of the hydrocarbons (Chapter 2.1) and any additional measurements deemed necessary. Subsequently, the experiments were opened, and the liquid phase was sampled. The liquid was initially filtered through a sterile filter with a mesh size of 0.2 µm (Whatman™, GE Healthcare Life Sciences, USA). A 1.5 ml sample was mixed with 10 μ l of catalase (1 mg ml⁻¹) to terminate the reaction. The sample was then stored in crimp-top vials (IVA Analysentechnik GmbH & Co.) and sealed with an aluminium crimp cap with a natural rubber/butyl/PTFE septum (1.0 mm thickness, 11 mm diameter, IVA Analysentechnik GmbH & Co. KG, Germany) for the CH₃OH analysis. For the CH₂O analysis, a solution of 1 ml of sample, 1 ml of pH 7 buffer solution, 1 ml of Pentafluorophenylhydrazine (PFPH; 1 mg ml⁻¹) and 10 µl of catalase (1 mg ml⁻¹) was prepared in a glass flask and subsequently transferred to a 1.5 ml crimp-top vial. The remaining samples were stored in 20 ml crimp-top vials (IVA Analysentechnik GmbH & Co. KG, Germany), and the pH value was measured at least once in each experiment (WTW-SenTix[®] 81, Xylem Analytics Germany Sales GmbH & Co. KG, Germany). All quantitative data shown represents triplicates, measured three times for CH₄, CH₃OH and CH₂O and one time for C_2H_6 (n = 9/3), with the total error of all experiments displayed and the total error calculated after equation 10. Any deviations in procedure or measurements are explicitly noted.

2.1.3 Experiments with labelled substrates and other setups

To trace the origin and reaction path of the individual components, ²H, ¹³C and ¹⁸O-labelled starting materials were employed, as well as H₂¹⁸O, H₂¹⁸O₂ and ¹⁸O₂; however, due to the high cost of some of the labelled substances and the subsequent limited availability, reduced quantities were often utilised. Furthermore, the concentrations of the several components were varied. All deviations from the standard experiments are indicated.

2.1.4 Experiments with soils

2.1.4.1 Sampling and Preparation of the samples

A total of 24 soil samples were examined to ascertain their potential for forming C1 and C2 compounds. The samples were collected in the Rhein-Neckar-Kreis and the Rhein-Pfalz-Kreis, Germany. A diverse range of soil samples was collected concerning the genesis and the composition of the organic material to facilitate a comprehensive and representative study. Furthermore, the sampling sites were selected to minimise the potential for human influence. The initial step involved the collection of a 1-metredeep profile using the Pürckhauer method to determine the soil horizons. Subsequently, a hole of an equivalent depth was excavated using a stainless-steel spade, and the requisite mixing samples were obtained from the respective horizons with a stainless-steel spatula to conduct experiments investigating the formation of C1 and C2 components. If the deepest horizon is less than one metre in depth or rock is present below, only the overlying horizons were sampled.

The samples were subsequently subjected to sterilisation by drying at 105°C for three days, after which they were ground using a planetary mill (PULVERISETTE 5, Fritsch GmbH, Germany) at a rate of 400 rotations per minute for five minutes to achieve complete homogenisation. A total of 5 g of soil was incubated in a 50 ml glass vial, which was sterilised once more for a minimum of one hour. Subsequently, 10 ml of ultra-pure H₂O was added, and the experiment was sealed (see Chapter 2.1.1 for a description of the materials used). All quantitative data shown represents triplicates, measured three times for CH₄, CH₃OH and CH₂O and one time for C₂H₆, with the total error of all experiments displayed and the total error calculated after equation 10. Any deviations in procedure or measurements are explicitly noted.

2.1.4.2 Location and Sample Description

The soil samples are briefly described below in accordance with DIN standard 18196. Figure 6 and Table 4 show the sampling locations, the abbreviations used, and the classification according to the "leading soil associations". The overlying dead plant material was removed before sampling.

Name	Location	Description
MX	Maxdorf (A)	Chernozem from loess and loess-like silt deposits
BI	Birkenheide (B)	Pararendzina from loess alternating with Rendzina from marl and limestone
AL1	Altlußheim (C)	Fenland soil
AL2	Altlußheim (D)	Alluvial soil / gley from loamy to clayey alluvial sediments
НО	Hockenheim (E)	Fenland soil - podzolic brown earth from sandy terrace deposits
WA1	Walldorf (F)	Podzolic brown earth from sandy terrace deposits
WA2	Walldorf (G)	Alluvial soil / gley from loamy to clayey alluvial sediments
MA	Malschenberg (H)	Pelosol brown earth / Pelosol pseudogley from weathering products of marl and clay rocks
SH1	Schriesheim (I)	Brown earth from acidic igneous and metamorphic rocks
SH2	Schriesheim (J)	Chernozem-parabrown earth / parabrown earth-chernozem from loess or lo- ess loam
LR	St. Leon-Rot (K)	Pelosol brown earth / Pelosol pseudogley from weathering products of marl and clay rocks
UH	Unterhof (L)	Chernozem-parabrown earth / parabrown earth-chernozem from loess or lo- ess loam
PT	Peterstal (M)	Podzolic brown earth from base-poor quartzitic sandstones and conglomerates

Table 4: Sample name, location and a short description of the sampled soils according to the "Leitboden-assoziationen" of the Soil Atlas of Germany of the Federal Institute for Geosciences and Natural Resources.

Figure 6: Locations of the soil samples near Heidelberg A-M.²³⁹

Three soil samples were obtained from a soil profile in a mixed forest near Maxdorf (A) at depths of 0-5 cm, 5-15 cm and 15-30 cm, respectively. The topsoil is characterised by a slightly medium sandy and slightly silty fine sand with a dark brown colour and a high humus content. The humus content decreases in the 5-15 cm depth layer, and the colour shifts from dark brown to brown. From 15 cm depth onwards, the soil is characterised by a homogeneous, light brown, medium sandy fine sand with a significantly higher silt and humus content.

Two samples were obtained from the area of Birkenheide (B) at depths of 10-25 cm and 25-35 cm. The soil type is also characterised by a high proportion of medium-sized sand particles, as observed in the soil samples from Maxdorf. The colouration of the topsoil transitions from dark brown to brown with depth, whereas in the subsoil, it becomes increasingly light brown. The samples were obtained from a meadow comprising grass and heather vegetation.

The Altlußheim (C) soil sample is distinguished by a dark colouration and markedly elevated humus content. The soil type is classified as slightly fine sandy and very slightly clayey silt. The sample originates from the "Hockenheimer Rheinbogen", a nature and landscape conservation area comprising a silted-up oxbow of the Rhine where a fen has developed.²⁴⁰ The landscape is characterised by grass and moorland, partly influenced by agricultural practices. The soil sample was taken from a depth of 20 cm.

Another soil sample was collected at a depth of 0-10 cm in the area of Altlußheim (D) in the "Hockenheimer Rheinbogen" area, which has a black colour and a high humus content. The predominant soil component is silt, which exhibits slight fine sandy and medium sandy properties.

The soil profile in the Hockenheim (E) area was developed in the eastern section of the "Hockenheimer Rheinbogen " region. Two soil samples were obtained from depths of 10–20 cm and 20-30 cm. The soil is characterised by a dark brown, soft silt with slightly clayey and humic properties and a very slight sand content in the upper area. The lower area consists of strongly humic (peaty) silt, which is slightly clayey and slightly sandy with a high H₂O content. The parent rock is a flood sediment that lies on river gravel.²⁴⁰

Three additional soil samples were obtained in a mixed forest near Walldorf (F) at 0-5 cm, 5-15 cm, and 20-35 cm. The topsoil is characterised by a dark brown, silty medium sand to fine sand texture and a high humus content. Towards the base of the profile, the colour transitions to a lighter brown. The humus content declines and the soil is predominantly medium sand with fine sand content. At a second site near Walldorf (G), soil samples were obtained from a mixed forest at depths of 0-10 cm, 10-40 cm, and 40-100 cm. The initial 10 cm of soil is characterised by dark brown pigmentation, a high humus content, and a fine to medium sand and silt composition. At a depth of 10-40 cm, the soil transitions to a silty and fine to medium sand texture with a brown to light brown colouration. At a 40-100 cm depth, the soil exhibits slight silty characteristics, fine and slightly medium sand, a light brown hue, and a low humus content.

A soil sample was obtained from a depth of 5-20 cm at Malschenberg (H) in an area that comprises a variety of habitats, including grassland and shrubland, which are utilised by humans. A dark brown colour characterises the soil sample, clayey silt with a high humus content. The soil formation below this layer consists of marl and claystone.

Two distinct locations were identified for sampling in the area surrounding Schriesheim. The initial site (I) is situated on a mixed forest slope comprising slightly weathered rhyolite as the parent rock, where only a shallow soil profile has developed. The sample was obtained from a 0-5 cm depth and comprises a heterogeneous mixture of gravel with strong silty and sandy components. A dark brown colour and a high humus content characterise the soil. In contrast, a soil profile (J) at the foot of the slope in a grassland was sampled with loess and loess loam as parent materials. The top 5 cm of soil is a brown, humic, slightly fine sandy silt. Below 5 cm, the colour changes to light brown with a low humus content. Additionally, lime concretions can be observed in the lower area. One sample was taken from the top 5 cm and one from 45-55 cm.

Two soil samples were obtained from the surface to a depth of 10 cm and 100 cm at the St. Leon-Rot location (K). The samples were taken in a mixed forest. The soil exhibited a medium humus content in the upper area and a dark brown colour. The soil was identified as silty and very slightly medium sand. The deeper soil sample was characterised by a brown colour with a low humus content and, like the upper part, was also very slightly medium sandy and silty.

Two further soil samples were taken at Unterhof (L) in a mixed forest at 0-10 cm and 10-100 cm depths. The soil consists of loess and is dark brown at 0-10 cm level, transitioning to brown at 10-100 cm level. It is primarily silt, with a medium humus content in the upper part, which decreases sharply from 10 cm.

Soil samples were taken from a coniferous forest near Peterstal (M) at two depth intervals: 0–10 cm and 10–40 cm. The entire profile is characterised by a fine sand composition, with a minor proportion of medium sand and silt. A dark brown hue and a high humus content characterise the soil. The soil exhibits a reddish-brown colouration from a depth of 10 cm to 40 cm due to the underlying sandstone and a relatively low humus content.

2.2 Laboratory analysis of CH₄, C₂H₆, CH₃OH, CH₂O, CH₃Cl, CO, CO₂, HCOOH and CH₃COOH

2.2.1 **Principles of Gas Chromatography**

Gas chromatography (GC) is a technique employed for the separation of volatile compounds present in a mixture. The fundamental principle of this technique is that a mobile phase (the analyte) interacts with a stationary phase within the column, resulting in the separation of the components due to the differing adsorption capabilities between the two phases. This enables the qualitative and quantitative determination of the individual components present in a given sample. The gas chromatographic system consists of three main components: an injector, a column, and a detector. The injector is kept at a high temperature to facilitate the sample's vaporisation. Additionally, a split may be used to dilute the sample and improve chromatographic performance. Subsequently, the sample is transferred to the column using an inert carrier gas (e.g., helium or nitrogen). This is the point where the stationary phase separates the analytes. The necessary time depends on the specific components being analysed and is referred to as the retention time. This is a characteristic property of each substance, enabling its identification. Following this, the detector generates an electric signal. A quantitative determination can be made based on the peak area and a linear calibration with a known concentration.²⁴¹

2.2.2 Principles of an FID and BID

The carrier gas with the sample is introduced to the bottom of the **flame ionisation detector (FID)**, where it is mixed with hydrogen gas and a make-up gas (N_2). This mixture is combined with synthetic air and burned above the jet tip. The carbon samples are first reduced to CH₄, then pyrolysed to CH radicals, and subsequently react with O_2 to produce CHO⁻⁺ and electrons in stoichiometric amounts. These electrons are then detected by a plate collector and displayed as a chromatogram.^{242,243}

The **barrier ionisation-discharge-detector (BID)** operates with helium, whereby the helium atoms are excited by a high voltage to generate a plasma. Upon relaxation into their ground state, the atoms emit photons with high energies (17.7 eV), which ionise the analyte molecules. The resulting ions generate an electric signal at the collector electrode.^{243,244}

2.2.2.1 Analysis of low CH₄ and C₂H₆ concentrations with a GC-FID

CH₄ and C₂H₆ were measured (low CH₄ concentrations < 200 ppm_v) with a GC-FID (Nexis GC-2030 with FID-2030; Shimadzu, Japan) or with a CARLO ERBA STRUMENTAZIONE with a coupled FID (GC6000 Vega Series 2). The Nexis is equipped with a 50 m aluminium oxide coated column (SH-Alumina BOND/KCl; Shimadzu, Japan; 50 m x 0.53 mm x 15 µm) connected to a second aluminium oxide coated column (30 m x 0.53 mm x 10 µm, Agilent Technologies Inc., USA). The temperature program of the oven started at 30°C and was held for 6,5 min. Then, it was heated up to 170°C at a rate of 50°C and held for 2.2 min. Helium was used as a carrier gas (30.2 ml min⁻¹). The FID (200°C) runs with hydrogen gas (32 ml min⁻¹), synthetic air (200 ml min⁻¹) and nitrogen gas (24 ml min⁻¹) as a makeup gas.

The CARLO ERBA is equipped with an aluminium oxide coated column ($30 \text{ m} \times 0.53 \text{ mm} \times 10 \mu\text{m}$, Agilent Technologies Inc., USA), and the oven program starts at 50°C for 1 min, is heated with 5°C min⁻¹ to 70°C and then heated up to 190°C with a rate of 20°C min⁻¹ and is held for 5 min. In both systems, a 7 ml sample was injected with a gas-tight syringe (BD Luer-Lok Becton Dickinson, Switzerland) equipped with a side-port needle (7751-13/00/2, Hamilton Co., USA) into a 2 ml sample loop with a preconnected trap filled with Drierite[®] (calcium sulphate) to remove H₂O from the sample and then transferred to the column. Calibration was done with an internal standard with 16.28 ppm_v CH₄ and 10.38 ppm_v C₂H₆. Calibration was done down to 0.01 ppm_v with a minimum R² = 0.99. A daily factor (standard and/or 1/50 of the standard) was measured within any measurement sequence.

2.2.2.2 Analysis of CH₄ and CO₂ with a GC-BID

High CH₄ concentrations (>200ppm_v – 100 %) were measured with a GC-BID (GC-2010 Plus; Shimadzu, Japan) equipped with a packed column (ShinCarbon ST 80/100, 2m, \emptyset =0.53 mm; SilcoSmooth Tubing). 50 µl were injected with an autosampler (AOC 20i; Shimadzu, Japan) in the injector (150°C) with a split

of 5. Helium (5.72 ml min⁻¹) was used as a carrier gas. The chromatographic conditions were 30°C for 7.5 min, 10°C min⁻¹ until 100°C for 4 min and 30°C min⁻¹ until 200°C for 2 min. For CH₄, a 1000 ppm_v and a 60 % standard (CRYSTAL-Standard; Air Liquide GmbH, Germany) were diluted and used for the calibration ($R^2 \ge 0.99$). The 1000 ppm_v CH₄ was always measured as a daily factor and quality control each day after every 9-12 measurements.

2.2.2.3 Analysis of CH₃OH with a GC-FID

All CH₃OH concentrations were measured with a GC-FID (GC-2010 Plus; Shimadzu, Japan) and an autosampler (AOC 20i; Shimadzu, Japan). The GC is equipped with an SH 200 column (30 m x 0.25 mm x 1.00 µm). 1 µl aqueous sample was injected (250°C) with a split of 10. The carrier gas is helium (1.5 ml min⁻¹). The FID ran with hydrogen gas (40 ml min⁻¹), synthetic air (400 ml min⁻¹) and nitrogen as a makeup gas (30 ml min⁻¹). The starting temperature of the oven is 50°C and is constantly increased from 3°C min⁻¹ to 65°C. The oven is then heated to 250°C at a rate of 50°C and held for 3 min. Standards were prepared using 99.9 % CH₃OH and diluting between 0.1 and 50 ppm_w (R² ≥ 0.99). Also, a daily factor of 10 ppm_w was measured for quality control and daily variations of the measurements.

2.2.2.4 Analysis of OCH₃ with a GC-FID

Quantification of the OCH₃ was done with a GC-FID (HP 6890 GC and an HP 6890 autosampler; Hewlett Packard, USA). The injector temperature was 200°C, a split of 10 was applied, and 50 μ l of sample was injected with the autosampler. A DB-5 (25 m x 0.32 mm x 0.52 μ m) column with a nitrogen gas flow of 1.1 ml min⁻¹ was used. The column temperature was held constant at 150 °C for 6 min. The FID ran with hydrogen (40 ml min⁻¹), synthetic air (400 ml min⁻¹), and nitrogen as a makeup gas (45 mL min⁻¹). Calibration was done with an internal beech wood (HUBG4²⁴⁵) or vanillin standard with a calibration between 6 μ g and 200 μ g (R² \ge 0.99). A daily factor (HUBG4) was measured as quality control.

Before the measurement, the samples had to be treated with hydroiodic acid (HI).²⁴⁶ 40 mg of the soil sample was mixed with 250 ml HI (57 %) in a 1.5 ml glass bottle. The vials were sealed with aluminium crimp caps with a natural rubber/butyl/TEF septum (1.0 mm thickness, 11 mm diameter, IVA Analyse-technik GmbH & Co. KG, Germany) and incubated at 130 °C for 30 min and afterwards left to cool down and then the samples are measured.

2.2.3 Principles of Mass Spectrometry

Many measurements were conducted on mass spectrometers (MS) coupled with gas chromatographs. Three fundamental principles underlying the operation of a mass spectrometer are the generation of ions from both inorganic and organic substances, followed by their separation based on their mass-tocharge ratio (m/z). This process is achieved by irradiating the molecules with high-energy ions.

The essential configuration of a mass spectrometer comprises an ion source, an analyser, and a detector. Following this, ionisation occurs after chromatographic separation. Ions are generated by a rhenium (or other metals, e.g. tungsten or wolfram) filament, which is subjected to a defined current; the electrons then impact the analytes, resulting in ion generation. The separation of ions into specific mass fragments depends on the ionisation energy. The aforementioned fragments are accelerated in an electric field, bundled with focusing lenses, and transferred to the analyser. The analyser's function is to separate ions based on their m/z ratio. Various analytical instruments are available for this purpose, differing in their operational characteristics. Employed were a quadrupole analyser, a time-offlight (TOF) analyser, and an ion trap analyser. The quadrupole analyser consists of four rod electrodes arranged in the xy-direction, with the ion flow occurring in the z-direction. By applying a defined direct current (DC) voltage and a high-frequency alternating voltage, only ions with a specific mass-to-charge ratio (m/z) will pass through the quadrupole. The TOF analyser utilises a method of separation based on the ions' flight time. The ions are subjected to a constant voltage, resulting in differing velocities due to their varying m/z ratios, which in turn produce distinct flight paths and arrival times. In the ion trap, ions are collected in a potential well formed by a ring electrode, and two end cap electrodes to which direct current and radio frequency potentials are applied. The quadrupole ion trap can then release the ions from the trap in a targeted manner by altering the potential and/or resonance excitation based on their differing m/z ratios. These mass fragments from all different detectors subsequently collide with a collector equipped with a secondary electron multiplier, generating an amplified electrical signal that is detected and used to create a mass spectrum.

2.2.3.1 Analysis of CH₂O with a GC-TOF-MS

The quantification and isotopic measurements of CH_2O were conducted using a GC-TOF-MS (GC 6890N, Agilent Technologies Inc., USA, coupled with a GCT PremierTM Mass Spectrometer, Waters Co., USA). It was equipped with a DB-5 column (60 m x 0.32 mm x 1 μ m), and helium was used as a carrier gas at a flow rate of 1.5 ml min⁻¹. An autosampler (COMBIPAL, CTC Analytics AG, Schweiz) injected 1.5 μ l of the aqueous sample into the injector at 280°C with a split ratio of 2. The oven's starting temperature was set to 30°C, increasing at a rate of 10°C min⁻¹ to 200°C, then further heated to 250°C at a rate of 40°C min⁻¹ and held for 5 minutes. For samples containing 2-methoxyphenol, a distinct temperature programme was utilised. The initial temperature was again set to 30°C, with a heating rate of 4°C min⁻¹ until 160°C was reached. Subsequently, the heating rate increased to 40°C min⁻¹. The final

temperature of 250°C was maintained for 5 minutes. The mass spectrometer selectively detected masses ranging from 100 to 250 atomic mass units (AMU).

To analyse the CH₂O, a derivatisation step is needed to make the CH₂O more suitable for the GC-MS analysis. 1 ml PFPH (1 mg ml⁻¹) and 1 ml pH-phosphate buffer (from buffer tablets) were added to the sample to prevent decomposition at low pH. A hydrazone is formed with a mass of 210 g mol⁻¹ and is analysed after a reaction time of half an hour (Figure 7). Standards in the range of 0.1 - 25 ppm_w (R² \ge 0.99) were prepared using 30 % CH₂O without CH₃OH.

Figure 7: Derivatisation of CH_2O with PFPH and the formation of a hydrazone due to a condensation reaction.

2.2.3.2 Analysis of CH₃Cl and labelled CH₃OH with a GC-MS

Concentrations of CH₃Cl and isotopic labels of CH₃Cl and CH₃OH were measured using a GC-MS (GC-2010 Plus; GCMS-QP2020; Shimadzu, Japan). A ZB-624 column (60 m x 0.32 mm x 1.8 μm; Phenomenex, USA) was employed with helium as the carrier gas $(1.51 \text{ ml min}^{-1})$ and a split ratio of 5 in the injector (200°C). For the measurement of CH₃Cl, 50 μ l of gas was injected with a 250 μ l gas-tight Pressure-Lok glass syringe (VICI, USA). The MS operates in two simultaneous modes: Total Ion Current (TIC) with a mass range of 46 – 200, and Selected Ion Monitoring (SIM) with the m/z ratios $CH_3^{35}CI: 50$, CH₃³⁷Cl: 52, CD₃³⁵Cl: 53, and CD₃³⁷Cl: 55. The initial temperature was set to 30°C for 5.5 minutes, followed by a heating phase at a constant rate of 30°C min⁻¹ up to 180°C for 1 minute. Calibration was achieved by diluting a 99.8 % gas (Air Liquide, France) between 300 ppb_y and 25 ppm_y ($R^2 = 1.00$), and a daily factor of 6 ppm_v was measured for each sequence as part of quality control. For the labelled CH₃OH, the same column, injector temperature, column flow, and split ratio were employed but with a different oven program. It commenced at 40°C for 2 minutes, then increased at 50°C min⁻¹ to 150°C, where it was held for 3 minutes. The TIC mode was consistently used at 29 - 150 m/z, and the SIM mode was employed with m/z ratios of 33 and 34 for CH₃¹⁸OH and for CD₃OH, 33, 34, and 35 m/z. Prior to injection, the samples were equilibrated at 85°C for 30 minutes. A volume of 200 µL of headspace was manually injected (n = 3) using a heated gas-tight glass syringe (VICI, USA) at 85°C.

2.2.3.3 Analysis of HCOOH and CH₃COOH with a GC-MS

The labelled HCOOH and CH₃COOH in the samples were analysed using a 450-GC gas chromatograph coupled with a 240-MS IT mass spectrometer (both manufactured by Varian Inc. and Agilent

Technologies Inc., USA). A DB-5 column (60 m x 0.32 mm x 1.0 μ m; Agilent Technologies Inc., USA) was utilised with a helium flow of 1.5 ml min⁻¹ and a split of 10. A volume of 1 μ l was transferred to the injector at a temperature of 220°C using an autosampler (Varian PAL, CTC Analytics AG, Switzerland). The temperature programme commences at 40°C and is maintained for one minute. Thereafter, the temperature is increased to 60°C at a rate of 15°C min⁻¹ and subsequently to 110°C at a rate of 5°C min⁻¹. The temperature is then increased with a rate of 70°C min⁻¹ to 250°C, which is maintained for a further five minutes.

Derivatisation is a prerequisite for analysing HCOOH and CH₃COOH in GC-MS, as these compounds decompose at the elevated temperatures typically encountered in the injector. The methodology presented here is based on the approach developed initially by Moreau et al. (2003).²⁴⁷ Silylation is carried out, but the HCOOH and CH₃COOH must first be extracted twice using diethyl ether, as the derivatising agent N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide is highly susceptible to H₂O contamination.²⁴⁸ To this end, 25 µL of 25 % hydrochloric acid is added to each 1 mL sample in the polypropylene tubes. Subsequently, the tubes are filled to the 3 mL mark with diethyl ether, sealed, and mixed for 30 minutes at 1000 rpm using a vortexer (IKA MTS, IKA GmbH & Co. KG, Germany). The HCOOH and CH₃COOH are then transferred into the diethyl ether. Subsequently, the samples are centrifugated for five minutes at 1200 rpm. The organic phase is aspirated and transferred to a 5 mL rolled rim vessel (IVA Analysentechnik GmbH & Co. KG, Germany). The extraction process is repeated with the remaining sample. Subsequently, Drierite[®] is added to the extract to remove residual H₂O. The samples are then subjected to a second centrifugation for three minutes and then transferred to 1.5 mL rolling rim tubes (IVA Analysentechnik GmbH & Co. KG, Deutschland). In the final step, 20 µL of N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide is added to each sample, and the samples are stored in the dark for five days before measurement for the derivatisation.

An ion trap is employed as an MS, operating within the range of 80-250 AMU. Derivatisation results in masses of 103 g mol⁻¹ (HCOOH) and 117 g mol⁻¹ (CH₃COOH), or 104 g mol⁻¹ and 120 g mol⁻¹, should deuterium-labelled HCOOH and CH₃COOH have been formed in the experiments.

2.2.4 Analysis of δ^{13} C and δ^{18} O of CO₂ with a GC-IRMS

The δ^{13} C and δ^{18} O stable isotope values of CO₂ were measured utilising an HP 6890N gas chromatograph (Agilent, Santa Clara, USA) equipped with an autosampler A200S (CTC Analytics, Zwingen, Switzerland). The GC system was coupled to a DeltaPLUSXL isotope ratio mass spectrometer (IRMS) (Thermo Fisher Scientific, Bremen, Germany) via a GC Combustion III Interface (ThermoQuest Finnigan, Bremen, Germany). To circumvent the conventional procedure of combustion IRMS analysis, the combustion reactor was bypassed through a capillary. The resulting transfer of the CO₂ analyte eluting from the GC column was conducted directly from the column to the interface and then to the IRMS.

The gas chromatograph was equipped with a GS-GasPro capillary column (60 m x 0.32 mm; Agilent J&W, USA). The following conditions were employed: a split of 20 and an isothermal oven temperature of 30°C. Helium was used as the carrier gas, with a constant flow rate of 1.4 ml min⁻¹. A tank of high-purity CO_2 (CO_2 4.5, Air Liquide, Düsseldorf, Germany) with a known isotopic composition was utilised as the monitoring gas. All ¹³C/¹²C and ¹⁸O/¹⁶O isotope ratios are expressed in the conventional δ notation per mil or mUr versus Vienna Pee Dee Belemnite (VPDB).

2.2.5 Analysis of TOC with a SSM-5000A

The total organic carbon (TOC) in soils was quantified using a TOC-V_{CPH} coupled with a solid module, specifically the SSM-5000A. The procedure involved the combustion of a dried soil sample at 900°C in an oven with oxygen and vanadium(V) oxide as a catalyst. The total carbon (TC) is oxidised to CO_2 and transferred with oxygen to a non-dispersive infrared detector. Additionally, the total inorganic carbon (TIC) was quantified by acidifying the sample with phosphoric acid, which produced CO_2 that was then transferred to the detector. The TOC is not directly measured but is calculated as the difference between the TC and TIC. Calibration was conducted using sodium bicarbonate (1-200 mg; R² = 1.00), with a daily factor of 80 mg measured for quality control purposes.

2.3 Calculations of the conversion rates and concentrations

The conversion of precursor compounds to various C1-C2 components is represented by yields calculated from the mixing ratios. These mixing ratios are determined through the calibration of the measured values. For each starting material, it is assumed that a complete conversion of a single CH₃ group occurs.

2.3.1 Calculations of the conversion ratio of CH₃OH and CH₂O

For CH₃OH and CH₂O, which are analysed in aqueous solution, the conversion rate is determined by the ratio of the amount of substance in the sample vessel to the maximum possible amount of substance (Eq. 1). The maximum possible amount corresponds to the amount of starting material added (25 μ mol unless otherwise indicated). The calculation of the amount of substance in the samples is carried out according to Eq. 2.

$$Y_i = \frac{n_i}{n_{max}} \bullet 10^2 \tag{1}$$

 Y_i = conversion rate of the component *i* [%]

 n_i = amount of substance of component i per vial [µmol]

 n_{max} = maximum amount of substance per vial [µmol]

$$n_i = \frac{w_i}{M_i} \bullet m_L \tag{2}$$

 w_i = mass fraction of component i per vial [ppm_w] M_i = molar mass of component i [g•mol⁻¹] m_L = mass of solution per vial [g]

2.3.2 Calculation for gases

For the gases, the conversion rate is determined by the measured ratio to the maximum achievable volume fractions in the sample vessel (Eq. 3).

$$Y_i = \frac{\varphi_i}{\varphi_{max}} \cdot 10^2 \tag{3}$$

Y_i = Conversion rate of component i [%]

 φ_i = Volume fraction of component i per vial [ppm_v]

 $\varphi_{max,i}$ = Maximum volume fraction of component i per vessel [ppm_v]

The volume fractions are calculated according to Eqs. 4 and 5.

$$\varphi_{max,i} = \frac{V_{max,i}}{V_{HS}} \tag{4}$$

$$V_{max,i} = \frac{n_{max} \bullet V_m}{n_{CH_3}}$$
(5)

 $V_{max,i}$ = Maximum gas volume of component i [µl]

 V_{HS} = Headspace volume in the vial [L].

n_{max} = Maximum amount of substance per vessel [mol]

 V_m = Molar volume [mol•L⁻¹]

 n_{CH_3} = Number of CH₃ groups required to form the gas

2.3.3 Calculation of the mass fraction of CH₃OH and CH₂O in soil

$$w_{Boden, TG} = \frac{W_i}{m_{dw}} \cdot 10^3$$
(6)

 $w_{soil, dw}$ = Mass fraction of component i in dried soil [ng/g_{soil,dw}]

w_i = Mass fraction of component i per vial [ppm_w]

 m_{dw} = Dry weight of the soil in the vial [g]

Calculation of the amount of substance according to the ideal gas law:

$$n_i = \frac{p \cdot V}{R \cdot T} \cdot \varphi_i \cdot 10^3 \tag{7}$$

 n_i = Amount of substance of component i per vial [nmol]

p = Pressure = 101.3 kPa

 $V = Vial Volume = 46.9 \cdot 10^{-3} L$

 $R = \text{Universal gas constant} = 8.314 (\text{kPa} \cdot \text{L})/(\text{mol} \cdot \text{K})$

T = Temperature = 295 K

 φ_i = Volume fraction of component i per vial [ppm_v]

2.3.4 Calculation of the mass fraction

$$m_i = n_i \bullet M_i \tag{8}$$

$$w_{soil, dw} = \frac{m_i}{m_{dw}}$$
(9)

*m*_i = Mass of component i per vial [ng]

M_i = Molar mass of component i [g/mol]

2.4 Statistics of the measurements

Standard deviations were calculated using Equation 10. They are based on three replicates and three CH_4 , CH_3OH and CH_2O measurements. C_2H_6 is only measured once per experiment due to the measurement setup. The number of experiments and measurements is listed in the corresponding section. The total error is calculated from the error propagation according to Eq. 10.

$$\sigma_{ges} = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2} \tag{10}$$

 σ_{tot} = Total conversion rate error [%]

 σ_n = Error of the individual conversion rate [%]

Linear regression analysis was conducted with Microsoft Excel (Microsoft Office 2019), where the R square value (R²) shows how well the linear regression model fits the analysed data.

Throughout the present study, the C1 and C2 components CH₄, C₂H₆, CH₃OH and CH₂O were measured in all investigations. The additional C1 and C2 compounds (CH₃Cl, CO₂, CO, HCOOH and CH₃COOH) measured in the studies are described in each case. The first set of results focuses on the reaction of DMSO as an example substrate with a sulphur-bonded CH₃ group and to dive deep into the reaction mechanism. The general experimental setup contains 25 µmol DMSO, 10 µmol LFe^{II}Cl₂/Fe₂O₃, 200 µmol H₂O₂ and 100 µmol Asc, and every time the concentrations in the experiments are measured, a blank experiment is conducted to get the background concentrations of all analysed components. Additionally, the following isotopically labelled substances, d₆-DMSO, H₂¹⁸O, H₂¹⁸O₂, and ¹⁸O₂, were used to investigate the reaction mechanism and the precursor atoms of all formed C1 and C2 compounds (Chapter 3.1). Subsequently, experiments with compounds containing S-, N-, and P-bonded CH₃ groups are presented to determine the individual conversion rates mainly. The same setup contains 25 µmol S-, N-, and P-bonded CH₃ groups compounds, 10 μ mol LFe^{II}Cl₂/Fe₂O₃, 200 μ mol H₂O₂ and 100 μ mol Asc (Chapter 3.2). The next chapter investigates compounds containing OCH₃ groups with the setting containing 25 µmol OCH₃ compound, 10 µmol LFe^{II}Cl₂/Fe₂O₃, 200 µmol H₂O₂ and 0.05 µmol trifluoromethanesulfonic acid instead of Asc. The investigations of the reaction mechanism and precursor atom with isotopically labelled compounds (²H- or ¹³C-CH₃-2-methoxyphenol, H₂¹⁸O₂, and ¹⁸O₂) are described in detail (Chapter 3.3).

Moreover, a series of studies are outlined in which $LFe^{II}Cl_2/Fe_2O_3$ is substituted for a range of different transition metals (Mn, Fe, Co, Ni and Cu) species to investigate the potential to produce CH₄, C₂H₆, CH₃OH, CH₂O and CH₃Cl. The precursor compounds are 25 µmol d₆-DMSO, d₃-methionine or 2-meth-oxyphenol along with 10 µmol transition metal species, 200 µmol H₂O₂ and 100 µmol Asc (Chapter 3.4).

The next phase of the study involves transferring the results to natural conditions. This is achieved through a series of experiments with 50 mg lignin or pectin (essential parts of plants), 200 μ mol H₂O₂, with or without 10 μ mol Fe₂O₃, and with or without 100 μ mol Asc (Chapter 3.5). A range of sterile soils (5g) with 10 ml ultra-pure H₂O were incubated and analysed for CH₄, C₂H₆, CH₃OH and CH₂O production. To get deeper insights into their formation, labelled precursor compounds were added, and also the physical and chemical parameters of the incubation were varied. Also, the TOC and the OCH₃ content of all soil samples were measured to conduct initial global extrapolations (Chapter 3.6).

3.1 Conversion rates and mechanistic details of d₆-DMSO to C1 and C2 compounds¹

Given the substantial environmental distribution of DMSO²⁴⁹, particularly within the marine ecosystem⁸¹, detailed studies were conducted to enhance the knowledge about the conversion rate to different C1 and C2 compounds and their formation processes.

3.1.1 Determination of the general experimental setup

Initial experiments with DMSO or d_6 -DMSO were conducted to detect differences in conversion rates and produced C1 and C2 compounds (Table 5). d_6 -DMSO provides the advantage that deuterium from d_6 -DMSO can be tracked through the reaction chain, offering more profound insights into the reaction pathway.

No.	Precursor compound	Fe species	Oxidant	acid
1	25 μmol DMSO	10 µmol LFe [∥] Cl₂	200 μ mol H ₂ O ₂	100 µmol Asc
2	25 µmol d₀-DMSO	10 µmol LFe [∥] Cl₂	200 μ mol H ₂ O ₂	100 µmol Asc
3	25 μmol DMSO	10 μ mol Fe ₂ O ₃	200 μ mol H ₂ O ₂	100 µmol Asc
4	25 μmol d₀-DMSO	10 μ mol Fe ₂ O ₃	200 μ mol H ₂ O ₂	100 µmol Asc

Table 5: Experimental setups to determine the differences between DMSO and d₆-DMSO.

Only minor differences between DMSO and d_6 -DMSO with LFe^{II}Cl₂ or Fe₂O₃, H₂O₂ and Asc were observed in the conversion rate, and CH₄, C₂H₆, CH₃OH and CH₂O were identified for all reactions. Total conversion rates of 39.0 ± 1.50 % vs 49.7 ± 1.13 % for LFe^{II}Cl₂ and 73.0 ± 1.00 % vs 85.7 ± 1.41 % for Fe₂O₃ were detected for DMSO and d_6 -DMSO, respectively (Figure 8). Due to the minor differences, only d_6 -DMSO was used for further investigations. The 48-hour reaction time was selected based on the findings of time-dependent measurements of the conversion rate of d_6 -DMSO to CH₄ (Figure 9), conducted with setups 2 and 4 (Table 5). CH₄ was selected because it does not undergo further reactions, is easy to sample, and separates from the compounds in the H₂O phase during the experiment due to degassing in the headspace. The reaction with the LFe^{II}Cl₂ complex is completed after 0.5 h, but the reaction with Fe₂O₃ is completed after more than 24 h. A reaction time of 48 h is appropriate to finish the reaction. The ratio between H₂O₂ and Asc was previously tested, and the amount of Fe species was slightly adapted¹⁴ (For details of the setup, see Chapter 2.1.1).

¹ Please note that parts of this section are taken from Hädeler et al (2023)²⁰⁵.

Figure 8: Differences in the conversion rate between DMSO and d₆-DMSO relative to the added d₆-DMSO (25 μ mol) with LFe^{II}Cl₂ (bars B) or Fe₂O₃ (bars H) (10 μ mol), Asc (100 μ mol) and H₂O₂ (200 μ mol) converted to one CH₃ group. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for C₂D₆, n = 3. Taken from Hädeler et al. (2023).²⁰⁵

Figure 9: Formation of CD₃H over time from the deuterium-labelled CH₃ groups of DMSO, mediated by LFe^{II}Cl₂ (red symbols) compared to Fe₂O₃ (blue symbols) (10 μ mol) with Asc (100 μ mol) and H₂O₂ (200 μ mol) converted to one CH₃ group. The reaction with LFe^{II}Cl₂ is nearly completed after 0.5 h, and the reaction with Fe₂O₃ is completed after more than 24 h. Error bars refer to mean values of CD₃H (n = 9). Taken from Hädeler et al. (2023).²⁰⁵

3.1.2 Conversion rates of d₆-DMSO to CD₃H, C₂D₆, CD₃OH, and CD₂O and the impact of different Asc concentrations

Figure 10 illustrates the conversion rate of d_6 -DMSO to CD₃H, C₂D₆, CD₃OH, and CD₂O mediated by LFe^{II}Cl₂ or Fe₂O₃ with H₂O₂ under standard conditions but with varying Asc concentrations (Table 6).

No.	Precursor compound	Fe species	Oxidant	acid
1, 3, 5 and 7	25 μmol d₀-DMSO	10 µmol LFe [∥] Cl₂	200 µmol H2O2	0, 10, 100, 1000 μmol Asc
2, 4, 6 and 8	25 μmol d₀-DMSO	10 µmol Fe₂O₃	200 μmol H ₂ O ₂	0, 10, 100, 1000 μmol Asc

Table 6: Composition of the experiments to determine the conversion rates with different Asc concentrations.

In the absence of Asc (No. 1 and 2), the only products are CD₃OH (B: 23.8 ± 2.55 % and H: 23.6 ± 1.75 %) and CD₂O (B: 17.4 ± 1.47 % and H: 12.9 ± 2.14 %). The addition of 10 µmol Asc (No. 3 and 4) results in the formation of CD₃OH (B: 16.6 ± 6.44 % and H: 12.6 ± 0.77 %) and CD₂O (B: 12.3 ± 2.46 % and H: 4.06 ± 0.94 %) and along with CD₃H (B: 6.47 ± 0.25 % and H: 10.9 ± 0.42 %) and C₂D₆ (B: 1.35 n = 1 due to measurement issues and H: zero %). The conversion rates from d₆-DMSO to the C1 and C2 components are highest with 100 µmol Asc with a total conversion of 49.7 ± 1.13 % for LFe^{II}Cl₂ (No. 5). This was comprised of 25.3 ± 0.85 % CD₃H, 2.35 ± 0.01 % C₂D₆, 8.65 ± 0.27 % CD₃OH, and CD₂O 13.5 ± 0.69 % and with Fe₂O₃ (No. 6) a total conversion rate of 85.7 ± 1.41 % and individual rates of 54.1 ± 1.1 % CD₃H, 0.039 ± 0.002 % C₂D₆, 22.1 ± 0.7 % CD₃OH and 9.4 ± 0.6 % CD₂O are observed. When the concentration of Asc is 1000 µmol (No. 7 and 8), the conversion rate declines substantially, with CD₃H (B: 13.0 ± 0.3 % and H: 22.2 ± 0.6 %) as the primary product, along with small amounts of CD₃OH (B: 2.94 ± 2.19

% and H: 2.52 \pm 0.46 %) and C₂D₆ (B: 0.012 %; n = 1 due to measurement issues and H: zero %).

Figure 10: Formation of C1 and C2 compounds from d₆-DMSO mediated by LFe^{II}Cl₂ (bars B) compared to Fe₂O₃ (bars H). Experiments show the dependence of the rates of the formed products (CD₃H, C₂D₆, CD₃OH, and CD₂O) on the Asc concentrations (10 ml H₂O, 48 h reaction time, ambient conditions) with added d₆-DMSO (25 μ mol), with LFe^{II}Cl₂ or Fe₂O₃ (10 μ mol), H₂O₂ (200 μ mol); error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for C₂D₆, n = 3. Taken from Hädeler et al. (2023).²⁰⁵

3.1.3 Impact of O_2 in the headspace and H_2O phase on the conversion rates of CD_3H , C_2D_6 , CD_3OH , and CD_2O derived from d₆-DMSO

These experiments (Table 7) were done to investigate the role of O_2 in the experiments and whether it influences the conversion rates.

No.	O ₂	Precursor compound	Fe species	Oxidant	acid
1	-	25 µmol d₀-DMSO	10 µmol LFe [∥] Cl₂	200 μ mol H ₂ O ₂	100 µmol Asc
2	+	25 µmol d₅-DMSO	10 µmol LFe [∥] Cl₂	200 μ mol H ₂ O ₂	100 µmol Asc
3	-	25 μmol d₅-DMSO	10 µmol LFe ⁿ Cl₂	200 µmol H ₂ O ₂	0 μmol Asc
4	+	25 μmol d₀-DMSO	10 µmol LFe [‼] Cl₂	200 µmol H ₂ O ₂	0 μmol Asc

Table 7: Composition of the experiments with (+) and without (-) O_2 to determine the conversion rates and possible differences.

The results of experiments conducted without O_2 and with or without Asc and LFe^{II}Cl₂ are illustrated in Figure 11. In the absence of O_2 and with or without Asc, the same C1 and C2 compounds are produced. In the absence of O_2 (No. 1), CD₃H, C₂D₆, CD₃OH and CD₂O are produced with a total conversion rate of 59.1 ± 9.3 % (21.7 ± 4.1 % CD₃H, 2.4 ± 0.5 % C₂D₆, 17.2 ± 8.2 % CD₃OH, 17.8 ± 1.6 % CD₂O). The total conversion rates are identical within the error margin of the experiment No. 2 with O_2 . In the absence of Asc and O_2 (No. 3), the total conversion rate is identical within the error bar of the experiment with O_2 (No. 4). Only CD₃OH and CD₂O in experiment No. 3 with a total conversion rate of 45.4 ± 7.0 % (15.6 ± 0.9 % CD₃OH, 29.8 ± 6.9 % CD₂O, 0.00 % CD₃H, 0.00 % C₂D₆) is produced.

Figure 11: Impact of O_2 and Asc on forming C_1 and C_2 compounds with LFe^{II}Cl₂. Experiments with 25 µmol d₆-DMSO, 100 µmol Asc (or none: -Asc), 200 µmol H₂O₂ and 10 µmol LFe^{II}Cl₂ in 10 ml ultra-pure H₂O without O₂ (-O₂) or in ambient atmosphere with a reaction time 48 h. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for C₂D₆, n = 3. Taken from Hädeler et al. (2023).²⁰⁵

3.1.4 Investigation of the intermediate dimethyl sulfone and the conversion rates to CH_4 , C_2H_6 , CH_3OH , and CH_2O

To investigate whether the oxidised form of DMSO, dimethyl sulfone, acts as a precursor for C1 and C2 compounds, taking into account the possibility of their production in the experiment due to the highly oxidative conditions, experiments with 25 μ mol dimethyl sulfone, 100 μ mol Asc, 200 μ mol H₂O₂ and 10 μ mol LFe^{II}Cl₂ were conducted. Only low conversion rates of CH₄ (0.03 %) were observed, and no other C1 and C2 compounds were produced. Figure 12 shows the chromatogram of CH₄ formation with dimethyl sulfone compared with a blank experiment.

Figure 12: Chromatogram of the formation of CH₄ in the experiment with 25 μ mol dimethyl sulfone (black line), 100 μ mol ascorbic acid, 200 μ mol H₂O₂, 10 μ mol LFe^{II}Cl₂, compared with the blank experiment (100 μ mol ascorbic acid, 200 μ mol H₂O₂, 10 μ mol LFe^{II}Cl₂ and no substrate added) under ambient atmosphere with a reaction time 48 h. Taken from Hädeler et al. (2023).²⁰⁵

3.1.5 Investigation of the mechanism of the reaction of d₆-DMSO to C1 and C2 compounds with isotopically labelled compounds

A broad set of isotopically labelled experiments were conducted to gain deeper insights into the precursor atoms and reaction mechanism. These involved ²H and ¹³C labelled DMSO and ¹⁸O labelled H₂O, H_2O_2 , and O_2 .

3.1.5.1 Identification of the origin of the CH₃ group in C1 and C2 compounds with fully deuterated DMSO

Fully deuterated DMSO enables tracking of the CH₃ group throughout the reaction, with the mass shifts detectable through various MS analyses. The MS pattern of the C1 and C2 compounds measured in Chapter 3.1.2 for experiment No. 5 (25 μ mol d₆-DMSO, 100 μ mol ascorbic acid, 200 μ mol H₂O₂, 10 μ mol LFe^{II}Cl₂) shows a clear mass shift of 3 AMU for CH₄ vs CD₃H, 6 for C₂H₆ vs C₂D₆, 3 for CH₃OH vs CD₃OH and 2 for CH₂O vs CD₂O (Figure 13a, b, c and d, respectively). Also, traces of HCOOH and CH₃COOH could be detected, but no quantification could be made because of the low concentrations and the large variability of the conversion rate during the analysis. However, a mass shift of 1 for HCOOH and CD₃COOH could be measured (Figure 14a and b). The presence of chlorine in LFe^{II}Cl₂ also resulted in the detection of labelled CH₃Cl in setup No. 5 from Chapter 3.1.2, which showed a mass shift of 3 from CH₃Cl to CD₃Cl (Figure 15).

Figure 13: Mass fragmentation patterns of CH₄, C₂H₆, CH₃OH and CH₂O of experiments with d₆-DMSO (25 μ mol) with LFe^{II}Cl₂ (10 μ mol), Asc (100 μ mol) and H₂O₂ (200 μ mol) under ambient atmospheric conditions with a reaction time of 48 h. **a**) Mass shift of 3 from 16 to 19 for CD₃H from d₆-DMSO; **b**) mass shift of 6 from 30 to 36 for C₂D₆ from d₆-DMSO; **c**) mass shift of 3 from 32 to 35 for CD₃OH from d₆-DMSO; **d**) mass shift of 2 from 210 to 212 for deuterated and derivatised CD₂O from d₆-DMSO. Taken from Hädeler et al. (2023).²⁰⁵

Figure 14: Mass fragmentation of an experiment with 25 μ mol d₆-DMSO, 100 μ mol ascorbic acid, 200 μ mol H₂O₂ and 10 μ mol LFe^{II}Cl₂ under ambient atmospheric conditions with a reaction time of 48 h. Chromatogram and the corresponding mass track from **a**) HCOOH with a mass shift of 1 AMU from 103 to 104 and **b**) CH₃COOH with a mass shift of 3 AMU from 117 to 120. Taken from Hädeler et al. (2023).²⁰⁵

retention time [min]

Figure 15: Chromatogram of deuterium labelled CD_3Cl in the experiment with 25µmol d₆-DMSO, 100 µmol ascorbic acid, 200 µmol H₂O₂ and 10 µmol LFe^{II}Cl₂ under ambient atmospheric conditions with a reaction time of 48 h. The chromatogram illustrates the masses 53 (black) and 55 (pink). These represent a mass shift of 3 AMU to the CD₃Cl, with the stable isotopes 35 and 37 (mass of 50 or 52 for CH₃Cl). Taken from Hädeler et al. (2023).²⁰⁵

3.1.5.2 Oxidation of CD₃OH to CD₂O

To ascertain whether CH_2O is an oxidation product of CH_3OH and not directly produced in all investigations conducted, an experiment was performed without DMSO, with CD_3OH , and another with DMSO and CD_3OH . Both with the addition of 10 µmol LFe^{II}Cl₂, 100 µmol Asc and 200 µmol H₂O₂. In both experimental setups, the deuterium-labelling in CD_2O could be clearly detected by the mass shift of 2 AMU from 210 to 212 in the derivatised CD_2O (Figure 16a and b).

Figure 16: Mass fragmentation of deuterium-labelled CH_2O to track the oxidation from CH_3OH to CH_2O . Mass track of CH_2O with a mass shift of 2 AMU from 210 to 212 **a**) without DMSO and added CD_3OH and **b**) with DMSO and added CD_3OH . Experiment with or without 25µmol DMSO, 100 µmol Asc, 200 µmol H_2O_2 and 10 µmol LFe^{II}Cl₂ under ambient atmospheric conditions with a reaction time of 48 h.Taken from Hädeler et al. (2023).²⁰⁵
3.1.5.3 Identification of the origin of the carbon in CO₂ with ¹³C-labelled DMSO

To trace the carbon atom from the CH₃ group of DMSO during the oxidation reaction up to CO₂ due to the presence of H₂O₂, 25 µmol ¹³C-labelled DMSO was employed with the following substances: 100 µmol Asc, 200 µmol H₂O₂ and 10 µmol LFe^{II}Cl₂. The CO₂ formed in traces was then subjected to analysis using GC-C-IRMS. The δ^{13} C-CO₂ vs VPDB (Vienna Pee Dee Belemnite) is markedly elevated (196 ± 2.2 mUr) in comparison to laboratory air (-16.8 ± 0.9 mUr). This allows us to rule out that a natural isotope effect is responsible for the markley elevation. Additional standard experiments with 25 µmol ¹³C-CO₂ value (267 ± 0.2 mUr). The utilisation of 25 µmol ¹³CH₃OH without added ¹³C-labelled DMSO and 100 µmol Asc, 200 µmol H₂O₂ and 10 µmol LFe^{II}Cl₂ exhibited an even higher δ^{13} C-CO₂ value of 1206 ± 0.2 mUr.

3.1.5.4 Identification of the origin of the oxygen atom in CH₃OH, CH₂O and CO₂ with ¹⁸Olabelled H₂O, H₂O₂ and O₂

To ascertain the oxygen atoms' origin in the oxygenated reaction compounds, experiments were conducted utilising H_2O , H_2O_2 and O_2 labelled with ¹⁸O. To investigate the behaviour of the OH radicals generated by the Fenton reaction, 5 µmol d₆-DMSO, 10 µmol Asc, 20 µmol H₂¹⁸O₂ and 1 µmol LFe^{II}Cl₂ were utilised due to limitations in the availability of H₂¹⁸O₂, smaller quantities were employed. A mass shift of 5 AMU from 37 in CD₃¹⁸OH compared to 32 in CH₃OH was observed, which is caused by the CD₃ in d₆-DMSO and the ¹⁸O in H₂¹⁸O₂ (Figure 17). Moreover, to investigate the role of O₂ in the reaction, 25 μ mol DMSO, 100 μ mol Asc, 200 μ mol H₂O₂ and 10 μ mol LFe^{II}Cl₂ were utilised, and the O₂ present in the headspace and the H₂O-phase was replaced by ¹⁸O₂. This enabled the determination of whether O₂ was also involved in the reaction. Also, as previously observed, a mass shift of 5 AMU in CD₃¹⁸OH compared to 32 in CH₃OH, was detected in this instance and proves that the CD₃ in d_6 -DMSO and the ¹⁸O in O₂ is the precursor of CD₃¹⁸OH (Figure 18). The setup with 2.5 μ mol d₆-DMSO, 10 μ mol Asc, 20 μ mol H₂O₂ and 1 μ mol LFe^{II}Cl₂ with 1 ml H₂¹⁸O demonstrated no transfer of ¹⁸O to CD₃OH and proved that the oxygen in H₂O is not involved in the reaction. CO_2 was also analysed for $\delta^{18}O$ values versus VPDB in all previously described ¹⁸O-labelling experiments. A markedly elevated δ^{18} O value of 1316 ± 14 mUr was observed for H₂¹⁸O₂, while for ¹⁸O₂, an elevated value of 55-93 mUr was recorded. That proves that the oxygen in CO_2 originates from the H_2O_2 and the O_2 present.

Figure 17: Chromatogram of isotopic labelled CH₃OH. Experiment with 2.5 μ mol d₆-DMSO, 10 μ mol Asc, 20 μ mol H₂¹⁸O₂ and 1 μ mol LFe^{II}Cl₂ in 1 ml ultra-pure H₂O under ambient atmospheric conditions with a reaction time of 48 h. Chromatogram of C²H₃¹⁸OH at m/z = 37. Taken from Hädeler et al. (2023).²⁰⁵

Figure 18: Chromatogram of isotopically labelled CH₃OH. Experiment with 25 μ mol d₆-DMSO, 100 μ mol Asc, 200 μ mol H₂O₂ and 10 μ mol LFe^{II}Cl₂ under 79 % N₂ and 21 % ¹⁸O₂ atmosphere with a reaction time of 48 h. Chromatogram of CD₃¹⁸OH at m/z-ratio at 37. Taken from Hädeler et al. (2023).²⁰⁵

3.1.6 Trapping CH₃ radicals with CH₂Br₂ and CCl₃Br

To provide further evidence for the formation of CH₃ radicals, alkyl radical scavengers CH₂Br₂ and CCl₃Br were applied (1.25 mmol). Both were incorporated into separate experiments with 25 μ mol d6-DMSO, 100 μ mol Asc, 200 μ mol H₂O₂ and 10 μ mol LFe^{II}Cl₂ and the conversion rates to CD₃H, C₂D₆, CD₃OH and CD₂O were quantified (Table 8).

Table 8: Composition of the experiments with the alkyl radical scavenger CH₂Br₂ and CCl₃Br to determine the conversion rates and possible differences.

No.	Precursor compound	Fe species	Oxidant	acid
1	25 μmol d6-DMSO	10 µmol LFe [∥] Cl₂	200 μ mol H ₂ O ₂	100 µmol Asc
2 with CH ₂ Br ₂	25 μmol d6-DMSO	10 µmol LFe [∥] Cl₂	200 μ mol H ₂ O ₂	100 µmol Asc
3 with CCl₃Br	25 μmol d6-DMSO	10 µmol LFe [∥] Cl₂	200 μ mol H ₂ O ₂	100 µmol Asc
4	25 μmol d6-DMSO	$10 \ \mu mol \ Fe_2O_3$	200 μ mol H ₂ O ₂	100 µmol Asc
5 with CCl₃Br	25 μmol d6-DMSO	10 μmol Fe ₂ O ₃	200 µmol H2O2	100 µmol Asc

In the case of CH_2Br_2 in No. 2, only a minor decline in the conversion rates of all C1 and C2 compounds was recorded compared to No. 1 (Figure 19). Conversely, a pronounced reduction in the conversion rates was observed when CCI_3Br was used in No. 3 and No. 5 (Figure 19). No. 2 yielded a total conversion rate of 44.0 ± 3.3 (CD_3H (22.0 ± 2.5 %), C_2D_6 (2.14 ± 0.28 %), CD_3OH (12.6 ± 2,0 %). CD_2O (5.89 ± 0.64 %)) The total conversion rate in No. 3 is 12.8 ± 1.4 (CD_3H (6.73 ± 0.39 %), C_2D_6 (0.75 ± 0.07 %), CD_3OH (5.36 ± 1.31 %) and zero for CD_2O and for No. 5 is 9.23 ± 1.25 % (CD_3H (0.36 ± 0.01 %), C_2D_6 (zero %), CD_3OH (4.76 ± 0.60 %), CD_2O (4.11 ± 1.09 %)).

Figure 19: Formation of CD₃H, C₂D₆, CD₃OH and CD₂O from d₆-DMSO with the 10 μ mol LFe^{II}Cl₂ (bars B) or Fe₂O₃ (bars H) 100 μ mol Asc and 200 μ mol H₂O₂ in the presence of 1.25 mmol CH₂Br₂ or CCl₃Br, respectively, compared to the conversion rates observed in Chapter 3.1.2, without alkyl radical scavengers. Experiments were conducted under ambient atmospheric conditions with a reaction time of 48 h. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for C₂D₆, n = 3. Taken from Hädeler et al. (2023).²⁰⁵

Figure 20a, b and c show the formation of deuterium labelled CD_3Br in Nos. 2, 3, and 5 with CH_2Br_2 or CCl_3Br and 25 µmol d₆-DMSO, 100 µmol Asc and 200 µmol H₂O₂ and 10 µmol LFe^{II}Cl₂/Fe₂O₃. This shows that the CD₃ group from d₆-DMSO becomes a radical, scavenged by CH_2Br_2 or CCl_3Br , and forms CD_3Br .

Figure 20: The chromatograms of isotopically labelled CH_3Br in the experiments with **a**) $LFe^{II}CI_2$ and CH_2Br_2 (1.25 mmol), **b**) $LFe^{II}CI_2$ and 1.25 mmol of CCI_3Br and as well **c**) Fe_2O_3 and 1.25 mmol of CCI_3Br and 25 µmol d₆-DMSO, 100 µmol Asc and 200 µmol H₂O₂ under ambient atmospheric conditions with a reaction time of 48 h. The presented chromatograms refer to the masses 97 (black) and 99 (pink), representing the CD_3Br with the stable isotopes of Br (79, 81). This represents a mass shift of 3 concerning CH_3Br (the mass of CH_3Br is 94 and 96). Taken from Hädeler et al. (2023).²⁰⁵

3.1.7 Discussion of DMSO as a case study to characterise the reaction to C1 and C2 compounds

The findings outlined in Chapters 3.1.1 to 3.1.6 reveal that DMSO can be converted to various C1 and C2 products using $LFe^{II}CI_2$ or Fe_2O_3 and H_2O_2 with Asc as a radical scavenger. Asc was originally added to facilitate the dissolution of Fe_2O_3 and has the additional benefit of quenching OH radicals, thereby suppressing additional pathways and allowing the characterisation of CH_3 radicals. The $LFe^{II}CI_2$ complex was used for the mechanistic studies and to have a well-characterized oxidant with added H_2O_2 to form a $[Fe^{IV}=O]^{2+}$ complex.^{14,238,250,251}

High conversion rates of up to 86 % were observed for CH_4 , C_2H_6 , CH_3OH and CH_2O , and only slight differences between DMSO and d_6 -DMSO as precursor compounds could be determined (Figure 8). An

isotopic effect during the reaction most likely causes this. Although the exact cause could not be clarified, it can be assumed that it could be due to the higher mass of the deuterium compared to the hydrogen and the different bonding energies of the C-H bond. The high total conversion rates demonstrate that the reaction of d_6 -DMSO with Fe, H_2O_2 and Asc is highly efficient and selective with regard to the C1 and C2 components.

The experiments with LFe^{II}Cl₂ generally show lower total conversion rates compared to Fe₂O₃, probably due to the very fast (<0.5 h) conversion to the C1 and C2 compounds and the radicals (CH₃, OH, etc.) generated in a short time (Figure 9). It is assumed that Asc cannot immediately trap a large number of OH radicals produced by the Fenton reaction, so they react non-specifically with all the substances involved and disturb a reaction to C1 and C2 compounds. In contrast, experiments with Fe₂O₃ and d₆-DMSO (Figure 8) showed an overall yield of 86 %. Therefore, a slower reaction involving Fe₂O₃ can be considered more selective than the fast one with LFe^{II}Cl₂. The rapid reaction of d₆-DMSO with LFe^{II}Cl₂ also results in higher concentrations of CH₃ radicals due to the shorter reaction time compared to Fe₂O₃. This leads to an increasing probability of recombination of CH₃ radicals and, therefore, to a higher C₂H₆ concentration. Althoff et al. (2014) also observed high conversion rates to CH₄ (83 %) with iron minerals with a comparable 48 h reaction time to finish the conversion.¹⁴ Furthermore, HCOOH and CH₃COOH could not be quantified. Additionally, it cannot be excluded that other unidentified C1 and C2 components are formed, and all would have to be added to the total conversion rate.

In previous studies, Asc was added to bring the Fe minerals into solution^{14,37,238}, but it also has the property of trapping OH radicals. This can be clearly demonstrated in the experiments with different concentrations of Asc. In the absence of Asc, when no OH radicals are trapped, only oxygenated compounds are formed. As the amount of Asc increases (10-100 μ mol), the production of CH₄ and C₂H₆ also increases because some OH radicals are trapped, and non-oxygenated compounds could be formed (more on the mechanism below). At a high excess of Asc (1000 μ mol), the total conversion of C1 and C2 compounds drops sharply, and CH₄ and only 2.5–3 % CH₃OH and no CH₂O are produced. Due to the high Asc concentration, the low conversion rates to CH₃OH and no CH₂O can be explained by the high amounts of OH-radicals that are trapped. It is speculated that the high concentration of Asc deactivates the [Fe^{IV}=O]²⁺ species (i.e., the iron oxidant oxidises the antioxidant) and reduces the reactivity. At lower concentrations of Asc, the deactivation does not seem to be a very relevant process for C1 and C2 formation because high conversion rates are observed.

The presence or absence of O_2 in the experiment has little effect on the conversion rates. Qualitatively, the same C1 and C2 components were detected in the experiments with or without Asc. Thus, it is assumed that O_2 plays only a minor role in the reaction (more details below).

The isotopic detections of three deuterated atoms from d₆-DMSO in various products demonstrate, that the CH₃ group is cleaved off homolytically and then rapidly reacts to the observed products as previously observed for CH₄.^{14,238} The presence of three deuterated atoms per carbon atom in CH₄, C₂H₆, CH₃OH and CH₃Cl demonstrates that an OAT is occurring (Chapter 1.1.1) as a transfer of the oxygen in the $[Fe^{IV}=O]^{2+}$ species to the substrate appears, and then the CH₃ group splits. This mechanism has been demonstrated previously for methionine as a precursor.¹⁴ It can be concluded that an abstraction of the hydrogen atom is impossible, given that one hydrogen atom must be detached from the CH₃ group, resulting in only two deuterium being detected within the analysed C1 and C2 compounds.

In all investigations, the mass shift of 2 AMU in CD₂O indicates that the compound originates from d₆-DMSO. However, an experiment with CD₃OH shows that the CD₂O originates from the CD₃OH and is formed due to an overoxidation of CD₃OH. This is verified in experiments with and without DMSO, in which CD₃OH was used, and CD₂O could be detected (Figure 16). HCOOH is likely a secondary oxidation product of CH₂O, with CH₃COOH representing another secondary oxidation product of HCOOH, proofed due to detected deuterium labelling in all compounds and the highly oxidative milieu. However, these individual pathways have not been verified with isotopically labelled CH₂O and HCOOH. Nonetheless, the strongly oxidative environment and isotopic labelling support this hypothesis.

The H₂¹⁸O₂-d₆-DMSO experiments demonstrate that CH₃OH is formed directly by CH₃ and OH radicals, despite the presence of Asc, which cannot fully scavenge the OH radicals, as evidenced by previous EPR spectroscopy studies.^{14,238} Another indication is that in the absence of Asc, only oxygenated compounds are formed due to the high reactivity and excess of OH radicals. The use of ¹⁸O₂ and d₆-DMSO also enabled the demonstration that O₂ functions as a precursor to CH₃OH. Initially, the oxygen and the CH₃ radical react to form a methyl peroxide, which then reacts following a Russel-type mechanism, undergoing equal parts of decay to form CH₂O, CH₃OH, and O₂.^{252,253} However, this process only accounts for a small proportion of products, as the turnover rates increase very little in the absence of O₂.

The CH₃ group of CD₃Cl originated from the d₆-DMSO (Figure 15), and the chlorine originated from $LFe^{II}CI_2$ as it is the only chlorine present. Investigations with Fe₂O₃, where no CD₃Cl was measured, evidence this. This reaction presumably is a rebound reaction involving the Cl⁻, which occurs at the coordination center at the iron of LFe^{II}Cl₂.

The alkyl trapping experiments show that in the experiment with d_6 -DMSO and LFe^{II}Cl₂, Asc and H₂O₂, CH₃ radicals are formed. This can be seen from the reduced conversion rates when CH₂Br₂ and CCl₃Br are added to the experiment, trapping CH₃-radicals (Figure 20). It is evident that both alkyl scavengers demonstrate inadequate solubility in H₂O. Consequently, the conversion rate reduction depends on

the concentration of the alkyl scavengers present in the H_2O . This renders a quantitative interpretation of the reduction unfeasible. Still, a definite proof is the measured mass shift of 3 AMU in the formed CD_3Br that a CD_3 is present, which derives from the educt d_6 -DMSO (Figure 20). Due to this reaction, CH_2Br -radicals and CCl_3 -radicals are also produced. These radicals abstract a hydrogen atom from (un)labelled compounds in solution, which is presumably Asc, d_6 -DMSO or other compounds in solution, and form either CH_3Br (CH_2DBr) or CCl_3H (CCl_3D).

Figure 21 summarises all investigated C1 and C2 components with their respective isotopic labels (²H, ¹³C and ¹⁸O). Almost all carbon oxidation states between -IV and +IV could be detected in the C1 and C2 compounds. Due to the isotopically labelled experiments, it is possible to clarify the origin of the different carbon species and identify the most likely pathways.

Figure 21: The portfolio of C1 and C2 components arises from the CH₃ radical, which is formed abiotically by the LFe^{II}Cl₂/H₂O₂ system from DMSO. Deuterated and ¹³C-labelled DMSO and ¹⁸O-labelled H₂O₂ and O₂ were utilised to investigate the different pathways. The observed ¹³C and ²H labels are presented in bold red and green, respectively. Oxygenated C1 compounds with ¹⁸O isotopes are highlighted in bold orange or blue, originating from ¹⁸O-labeled H₂O₂ or O₂, respectively. Oxygen atoms in orange and blue indicate that the product derived oxygen from H₂O₂ and O₂. The oxidation states of carbon are shown in Roman numbers. Taken from Hädeler et al. (2023).²⁰⁵

Based on the previously described experimental research and the computational data, a reaction mechanism involving $LFe^{II}Cl_2/H_2O_2$ has been proposed (Figure 22).²⁰⁵ This mechanism forms CH_4 , C_2H_6 , CH_3OH , CH_2O , and traces of HCOOH, CH_3COOH , CO_2 , and CH_3CI from DMSO. In this context, the following conclusions can be formulated:

1. The CH₃ group of the C1 and C2 components originates in DMSO and is cleaved off homolytically by the $[Fe^{IV}=O]^{2+}$ species through an OAT (transition state).²⁰⁵ The oxygen is transferred to the sulphur atom of DMSO, forming a CH₃ radical. This radical subsequently reacts to form the respective C1 and C2 components.

2. Most of the oxygen in CH₃OH originates in H_2O_2 and minor parts from O_2 . During the Fenton reaction, hydroxyl radicals are formed from H_2O_2 , recombining with the CH₃ radicals. Despite the presence of Asc, not all OH radicals are captured, resulting in the formation of CH₃OH. EPR studies support this.^{14,238} The Russell-type mechanism may form a minor proportion of CH₃OH and CH₂O.

3. The majority of CH_2O is formed by the oxidation of CH_3OH , CH_2O is then further oxidized to produce traces of HCOOH, CH_3COOH and CO_2 .

4. The chlorine in CH_3Cl is derived from LFe^{II}Cl₂. This reaction presumably is a rebound process involving the Cl^- , coordinated at the Fe centre of LFe^{II}Cl₂. It can be assumed that other halogens in solution would react similarly and form the corresponding halomethanes.

For a more comprehensive computational (DFT) analysis of the reaction mechanism, please refer to the study by Hädeler et al. (2023).²⁰⁵

Figure 22: Postulated mechanism for forming CH_4 , C_2H_6 , CH_3OH and CH_2O by reaction of DMSO with a Fe species (LFe^{II}Cl₂ or Fe₂O₃), H_2O_2 and Asc. (Postulated intermediates are highlighted in red; reactants are shown in green; products are shown in blue; for simplicity, the stoichiometry of some of the reactions has not been adjusted). Taken from Hädeler et al. (2023).²⁰⁵

Given the ubiquitous presence of DMSO and its related products (DMS and dimethylsulfoniopropionate) in the ocean (Chapter 1.3.1.1) and the ubiquitous presence of Fe^{254} and ROS in the ocean²⁵⁵, it can be postulated that the reaction also occurs in the ocean, contributing, for instance, to the CH₄ paradox^{80,190} (oversaturation of the ocean with CH₄) and providing CH₃OH as an energy source for microorganisms such as methylotrophic bacteria. Moreover, the volatile C1 and C2 components can be emitted into the atmosphere, where they exert a profound influence on the physical and chemical properties of the atmosphere as well as those of the ocean. As previously stated in Chapter 1.2, they serve various functions, including GHG, influencing the oxidation potential and ozone formation. Given that DMS is also present in sediments, soils and freshwater compartments^{159,160} where all the requisite components for the reaction from DMS to DMSO are present, the previously described reaction could occur. Therefore, all investigated C1 and C2 components could be produced and would influence the physical and chemical properties of the atmosphere, the pedosphere and the hydrosphere (Chapter 1.2). Furthermore, these components serve as a source of energy for microorganisms living in these compartments, which transform them at the end to CO₂ with various carbon species as intermediates and contribute to the global carbon cycle.

3.2 Conversion of S-, N- and P- bonded CH₃ group containing compounds to C1 and C2 compounds

The compounds methionine, methylphosphonate, choline and trimethylamine were also investigated for their potential to produce C1 and C2 components. These were selected due to their environmental relevance, as described in Chapter 1.3.1. All compounds were fully deuterated at the CH_3 group except methylphosphonate because it was not commercially available. The experiments and measurements previously described for d₆-DMSO were repeated for the above-mentioned precursor compounds (Table 9).

Table 9: Composition of the	e experiments with d3-methionine, r	nethylphosphonate,	d ₉ -choline and d ₉ -trimethyl-	
amine to determine the conversion rates and possible differences.				
I	1	ĺ.	1	

No.	Precursor compound	Fe species	Oxidant	acid
1 and 2	25 μ mol d ₃ -methionine	10 μ mol LFe ^{II} Cl ₂ /Fe ₂ O ₃	200 μ mol H ₂ O ₂	100 µmol Asc
3 and 4	25 μmol methylphosphonate	$10 \ \mu mol \ LFe^{II}Cl_2/Fe_2O_3$	200 µmol H ₂ O ₂	100 µmol Asc
5 and 6	25 µmol d₀-choline	10 μ mol LFe ^{II} Cl ₂ /Fe ₂ O ₃	200 μ mol H ₂ O ₂	100 µmol Asc
7 and 8	25 µmol d ₉ -trimethylamine	10 μmol LFe ^{II} Cl ₂ /Fe ₂ O ₃	200 µmol H ₂ O ₂	100 µmol Asc

3.2.1 Conversion rates of S-, N- and P- bonded CH₃ group containing compounds to CD₃H, C₂D₆, CD₃OH, and CD₂O

In general, the use of d₃-methionine, methylphosphonate, d₉-choline and d₉-trimethylamine resulted in lower conversion rates to CH₄, C₂H₆, CH₃OH and CH₂O than for experiments with d₆-DMSO (Figure 23). In experiments conducted with LFe^{II}Cl₂, d₃-methionine was observed to produce CD₃H (1.17 ± 0.06 %) and C₂D₆ (0.012 ± 0.001 %), with no detection of CD₃OH or CD₂O. In contrast, the experiment with Fe₂O₃ yielded the production of CD₃H (5.70 ± 0.04 %), C₂D₆(0.69 ± 0.01 %), CD₃OH (1.25 ± 0.13 %) and CD₂O (3.46 ± 0.33 %). Methylphosphonate was observed to produce CH₃OH (2.18 ± 0.22 %) solely with LFe^{II}Cl₂ and only CH₂O (0.92 ± 0.34 %) with Fe₂O₃. CD₃OH (0.77 ± 0.25 %), CD₂O (3.74 ± 0.86 %) and traces of CD₃H (0.002 ± 0.000 %) could be detected in experiments with choline and LFe^{II}Cl₂. Furthermore, the presence of CD₃OH (0.33 ± 0.06 %) and CD₂O (2.41 ± 0.48 %) was also observed in the Fe₂O₃ experiments, along with CD₃H (0.16 ± 0.01 %). In experiments conducted with trimethylamine, only CD₃OH (0.74 ± 0.51 %) and CD₂O (0.29 ± 0.76 %) were detected in the presence of LFe^{II}Cl₂, while CD₂O (1.18 ± 0.95 %) was also observed in the presence of Fe₂O₃.

Figure 23: The formation of C1 and C2 compounds in experiments with 10 μ mol LFe^{II}Cl₂ (bar B) or Fe₂O₃ (bar H), 200 μ mol H₂O₂ and 100 μ mol Asc with 25 μ mol d₃-methionine (d₃-Met), methylphosphonate (MPA; unlabelled C1 and C2 compounds), d₉-choline (d₉-Cho) or d₉-trimethylamine (d₉-TMA) as precursor compounds under ambient atmospheric conditions with a reaction time of 48 h. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for CH₄ and C₂D₆, n = 3.

3.2.2 Investigation of the reaction mechanism with deuterium-labelled compounds

To determine whether the CH₃ group of CH₃OH and CH₂O have the origin in the S-and N-labelled compounds, CH₃-deuterium-labelled methionine, choline, and trimethylamine was used to demonstrate the transfer of the deuterium label to CD₃OH. This is indicated by its isotopic signature by the mass increase of 3 AMU from 32 to 35 in CD₃OH (Figure 24). Furthermore, deuterium labelling was also identified in CH₂O. A shift of 2 AMU from 210 to 212 in the derivatised CD₂O is evident in the experiments with methionine, and small percentages were also observed for trimethylamine and choline (Figure 25).

Figure 24: Chromatograms and mass tracks of CD₃OH with a shift to 35 in experiments with 25 μ mol **a**) d₃-methionine, **b**) d₉-choline and **c**) d₉-trimethylamine and 10 μ mol LFe^{II}Cl₂, 100 μ mol Asc and 200 μ mol H₂O₂ as an oxidant under ambient atmospheric conditions with a reaction time of 48 h.

Figure 25: Mass tracks of CD₂O with a shift of 2 AMU from 210 to 212 in experiments with 25 μ mol **a**) d₃-methionine, **b**) d₉-choline and **c**) d₉-trimethylamine and 10 μ mol LFe^{II}Cl₂, 100 μ mol Asc and 200 μ mol H₂O₂ as an oxidant under ambient atmospheric conditions with a reaction time of 48 h.

3.2.3 Discussion of the formation of C1 and C2 compounds originated in S-, N- and Pbonded CH₃ group containing compounds

The experiments with d₃-methionine, methylphosphonate, d₉-choline and d₉-trimethylamine generally demonstrate lower conversion rates than those with DMSO and the OCH₃ compounds (Chapter 3.3.1). This is likely due to elevated energy barriers in the OAT reaction, as preliminary DFT modelling results suggested (unpublished). Nevertheless, in the case of methionine with the oxidant Fe₂O₃, for example, a conversion rate of exceeding 11 % was observed, with all C1 and C2 compounds analysed. In contrast, experiments conducted with LFe^{II}Cl₂ detected only slightly more than 1 % CH₄ and traces of C₂H₆. This notable discrepancy contrasts the outcomes observed with DMSO. This finding suggests the potential for forming the same products, albeit to a lesser extent, attributable to the elevated energy barriers associated with the reaction.

The observed shift of the mass track by 3 or 2 in CH_3OH and CH_2O , respectively, in experiments with $LFe^{II}CI_2$ (Figure 24 and Figure 25) without blank subtraction indicates the formation of CH_3OH and CH_2O in this reaction. Given that the blank conversion rate is higher than that of the experiments, the

conversion rate is zero. The elevated blank value can be attributed, at least partially, to the inherent variability associated with the experimental procedures and the analytical measurements. It is also established that the LFe^{II}Cl₂ complex is capable of reacting with H_2O_2 to form CH_2O .²⁵⁶ Since more H_2O_2 is available in the blank due to the consumption of H_2O_2 during the reaction in the experiment with the precursor compounds, more CH_2O can be formed from the LFe^{II}Cl₂ in the blank and thus influences the concentration of CH_2O due to the subtraction of the blank. CH_3OH can then be converted to CH_2O through keto-enol tautomerism.²⁵⁷ The acidic solution catalyses this process in the direction of the CH_2O and can, therefore, affect the respective conversion rates. This effect has a relatively minor impact on the high turnover rates of DMSO to CH_2O ; however, it becomes more significant at lower conversion rates.

The studies (Table 9) with methylphosphonate, choline and trimethylamine all produce CH₃OH and/or CH₂O in low conversion rates, and choline also produces traces of CH₄. These low conversion rates of all substrates may be attributed to steric hindering effects of the atom where the CH₃ group is bonded. The phosphorus atom in methylphosphonate is surrounded by four neighbouring atoms (quaternary atom), analogous to the nitrogen atom in choline. The influence of steric effects was previously postulated by Althoff et al. (2012)²⁵⁸ in the context of choline chloride. Trimethylamine has three atoms surrounding the nitrogen atom and two free electrons, which allows for better attack from the [Fe^{IV}=O]²⁺ species at the nitrogen atom. However, it still exhibits low reactivity compared to the DMSO (Figure 10). This may be attributed to the ability of trimethylamine to be readily oxidised by H_2O_2 to trimethylamine-N-oxide²⁵⁹, which then sterically hinders the nitrogen atom by four neighbouring atoms. Also, preliminary DFT calculations suggest a higher activation energy for trimethylamine-N-oxide than for trimethylamine. This can explain the low conversion rate of trimethylamine. In living organisms, however, a high conversion of trimethylamine to CH₄ was observed in a ROS-driven Fenton reaction, but likewise, there was no significant conversion of choline to CH₄.⁷² This is in contrast to the low conversion rates shown here for trimethylamine. It is not considerably oxidised within the organism to trimethylamine-N-oxide due to the lack of high H₂O₂ concentrations, making it readily available for Fenton reactions, whereas choline is, from the beginning, sterically hindered due to the four bonds. The lower conversion rates and lack of substantial amounts of CH_4 and C_2H_6 compared to methionine may be attributed to the different bonding of the CH₃ to nitrogen or phosphorus. Also, due to lesser bonds to the sulphur atom in methionine and, therefore, more free electrons, reacting with the $[Fe^{|V}=O]^{2+}$ species is easier and faster and, thus, the reaction can produce C_2H_6 due to the higher CH₃ radical concentration. The exact reason why hydrocarbons and oxygenated compounds are produced in higher amounts in experiments with sulphur-bonded compounds compared to nitrogen or phosphorus-bonded CH_3 groups with the same Asc and H_2O_2 concentrations has to be elucidated.

3.3 Conversion rates and mechanistic details of methoxy compounds to C1 and C2 compounds

Given OCH₃ groups' ubiquitous and pivotal role in natural systems due to their common occurrence in plants, a comprehensive series of experiments were conducted on a diverse range of aromatic compounds, each containing at least one OCH₃ group. Additionally, galacturonic acid methyl ester, a monomer of pectin, was subjected to investigation (Figure 26).

3.3.1 Conversion rates of OCH₃ compounds to CD₃H, C₂D₆, CD₃OH, and CD₂O

All compounds produced in the investigations are CH₃OH and/or CH₂O and no CH₄, C₂H₆ or CH₃Cl (Figure 26). The conversion rates observed with Asc and sinapyl alcohol, or Game, are consistently lower than when Asc is substituted with triflic acid. Subsequently, the experiments with the remaining compounds were conducted without Asc to achieve higher conversion rates. This was presumably because Asc quenches OH radicals and reduces the amount of ROS in the experiments, which can react with the precursor compound to form CH₃OH and CH₂O. Experiments involving S-, N-, and P-bounded CH₃ groups result in the production of CH₄ and C₂H₆ (Chapters 3.1 and 3.2). However, in the case of OCH₃ groups, no CH₄ and C₂H₆ were detected in experiments, as no CH₄ and C₂H₆ were produced in its presence. The Asc is replaced with triflic acid to have the same pH value as in all other investigations.

The experiments conducted with the LFe^{II}Cl₂ complex consistently exhibited a higher total conversion rate than those utilising the Fe mineral Fe₂O₃. For the aromatic compound, the conversion rate ranged from 41.5 ± 4.3 % with anisole to 111 ± 8 % with sinapyl alcohol in the presence of the oxidant LFe^{II}Cl₂. The total conversion rates with Fe₂O₃ as the oxidant ranged from anisole at 1.23 ± 2.95 % to 94.3 ± 4.0 % with sinapyl alcohol. The total conversion rate of Game as a non-aromatic compound and part of pectin ranged from 16.7 ± 1.1 % to 27.4 ± 4.0 % with LFe^{II}Cl₂ and from 10.1 ± 1.6 % to 10.6 ± 0.6 % with Fe₂O₃.

Figure 26: Investigations of OCH₃ group-containing compounds (25 μ mol of Sinapyl alcohol (Sin); Galacturonic acid methyl ester (Game); 2-, 3- and 4-Methoxyphenol (2-, 3- and 4-Methph); Anisole; Syringic acid (Syr acid) and Syringaldehyde (Syr ald)), without Asc replaced by 0.05 μ mol triflic acid (with 100 μ mol Asc is marked as +Asc), 10 μ mol LFe^{II}Cl₂ (bar B) or Fe₂O₃ (bar H) and 200 μ mol H₂O₂ as an oxidant under ambient atmospheric conditions with a reaction time of 48 h. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9.

3.3.2 Trapping CH₃ radicals with CH₂Br₂ and CCl₃Br

Similar to the experiments conducted with d_6 -DMSO (Chapter 3.1.6), alkyl trapping experiments (25 μ mol substrate, 10 μ mol LFe^{II}Cl₂, 100 μ mol Asc, 200 μ mol H₂O₂) were carried out with 1.25 mmol CCl₃Br to determine whether CH₃ radicals are produced in this reaction. Figure 27 shows that the area of the produced CH₃Br (mass 94 and 96, both bromine isotopes 79 and 81 plus 15 for the CH₃ group) due to the CH₃ radical trapping leads to the same areas in investigations with sinapyl alcohol, 2-methoxyphenol, or Game. The blank experiment (without substrate) shows the same areas as the measurements with the substrate.

Figure 27: Comparison of CH₃Br in experiments with 10 μ mol LFe^{II}Cl₂, 100 μ mol Asc and 200 μ mol H₂O₂, 25 μ mol sinapyl alcohol, 2-Methoxyphenol or Game and 1,25 mmol CCl₃Br (alkyl radical trapping agent) compared to the blank experiment with the same setup but only without substrate (n = 3) under ambient atmospheric conditions with a reaction time of 48 h. **a)** Mass 94 (stable isotope 79 of bromine) and **b)** 96 (stable isotope 81 of bromine) of CH₃Br.

3.3.3 Investigation of the reaction mechanism with deuterium and ¹⁸O-labelled compounds

To gain insight into the reaction mechanism, experiments were conducted utilising ¹⁸O-labelled H_2O_2 and O_2 alongside sinapyl alcohol, coniferyl alcohol and 2-methoxyphenol. Additionally, the experiment depicted in Figure 26 was conducted with ¹⁸O-labelled 2-methoxyphenol (¹⁸OCH₃) and deuterated 2methoxyphenol (OCD₃) instead of regular 2-methoxyphenol. The investigation with 2-methoxyphenol and either $H_2^{18}O_2$ or ¹⁸O₂ showed no evidence of ¹⁸O labelling in CH₃OH. This is illustrated by the chromatograms of CH₃OH in Figure 28a and b, which show a peak for masses 29, 30 and 31 (unlabelled CH₃OH) but no peak for masses 33 and 34, which correspond to CH₃¹⁸OH. In contrast, the experiments with ¹⁸OCH₃-2-methoxyphenol yielded a prominent peak for masses 33 and 34, while no peaks were observed for masses 29, 30, and 31 (Figure 28c). In the setup from Figure 26 with OCD₃-2-methoxyphenol, a mass shift of 3 AMU to mass 35 can be observed, representing the triple deuteration of CD₃OH as observed for the S-and N-bonded CH₃ groups.

Figure 28: Chromatograms and mass track of CH₃OH from different isotopic labelling experiments with 10 µmol LFe^{II}Cl₂, 100 µmol Asc and 200 µmol H₂O₂ and 25 µmol sinapyl alcohol, coniferyl alcohol or 2-methoxyphenol under ambient atmospheric conditions with a reaction time of 48 h: **a**) with H₂¹⁸O₂ instead of H₂O₂ (n = 3) and **b**) O₂ replaced in H₂O and headspace by ¹⁸O₂ (n = 3 measurement). **c**) Experiment with 1/10 of all compounds and with ¹⁸OCH₃ 2-methoxyphenol instead of unlabelled 2-methoxyphenol (n = 3 measurement). Pink, blue and brown chromatograms are the measured mass of 29, 30 and 31 of the produced CH₃OH. The black line is the blank without substrate, and green, dark blue, and olive are the masses 33 and 34 of CH₃¹⁸OH measured in the experiments. **d**) Mass track of CH₃OH in a standard experiment with d3-2-methoxyphenol with a mass shift of 3 AMU from 32 to 35 representing the CD₃OH.

3.3.4 Discussion and mechanistic details of the conversion of methoxy group containing compounds to CH₃OH and CH₂O

The data presented for the OCH₃ components demonstrate that only CH₃OH and CH₂O are produced; even in experiments conducted with Asc, no CH₄, C₂H₆, or CH₃Cl could be quantified. This contrasts with the DMSO investigations, where hydrocarbons and other C1 and C2 compounds are produced with Asc (Chapter 3.1). All experiments with aromatic OCH₃ compounds and the LFe^{II}Cl₂ complex produce approximately 45 to 111 % CH₃OH and CH₂O, corresponding to a high conversion rate. More than 100 % conversion rate is possible due to the normalisation to one OCH₃ group, and sinapyl alcohol has two. The lignin components sinapyl and coniferyl alcohol have the highest conversion rates, which

makes the reaction particularly relevant for natural environments. The isomers 2-, 3-, and 4-methoxyphenol exhibited conversion rates of approximately 50 % and comparable distributions of CH₃OH and CH₂O, suggesting that the position of the OCH₃ group does not significantly influence the reaction. In contrast, experiments involving Fe₂O₃ and the aromatic OCH₃ compounds yielded lower conversion rates than those observed with LFe^{II}Cl₂. This disparity could be attributed to the distinct structural characteristics of the Fe species, resulting in divergent reaction behaviours, such as steric hindrance. Fe₂O₃ exhibits 2-3 orders of magnitude lower solubility than other Fe species, potentially impeding the reaction rate.²⁰⁵ However, the lower solubility of Fe_2O_3 does not influence the conversion rate of the DMSO experiments due to the completion of the reaction observed in the kinetic study. This was not thoroughly examined in the study with the OCH₃ compounds, necessitating further investigation due to the potential for alterations in kinetics resulting from disparities in reaction mechanisms. The experiments involving anisole and Fe₂O₃ exhibited minimal conversion, which might be attributable to the absence of an OH group at the benzine ring and a potentially different reaction mechanism, as all other compounds comprise an OH group neighbouring the OCH₃ group. For Game, the only non-aromatic compound with an OCH₃ group, lower conversion rates have been measured than for the aromatic compounds. This phenomenon may be attributed to a divergent reaction mechanism, given that no aromatic system exists, as is the case with all other compounds. A possible reaction to form CH₃OH is the acidic ester cleavage and further oxidation to CH₂O as H₂O₂ is present.

The only production of CH₃OH and CH₂O suggests that no CH₃ radicals are formed, which would otherwise be indicated by the presence of CH₄, C₂H₆, CH₃Cl and other C1 and C2 compounds, as observed in the study with d₆-DMSO. To test this hypothesis, identical experiments with CCl₃Br as an alkyl radical scavenger were conducted using sinapyl alcohol, 2-methoxyphenol, and Game. Figure 27 illustrates no observable difference between the blank experiment and the experiments with substrates. This reveals that no CH₃ radicals are formed and that an alternative reaction mechanism must be responsible for generating CH₃OH and, subsequently, CH₂O. To investigate this further, the isotopically labelled substances described above were employed. The experiments conducted with H₂¹⁸O₂ and ¹⁸O₂ demonstrated that the oxygen present in CH₃OH does not originate from H₂O₂ or O₂. This is demonstrated by the absence of CH₃¹⁸OH in the experiments. In contrast to the results observed with DMSO, in which these compounds act as oxygen donors for CH₃OH and CH₂O, the present findings suggest another reaction mechanism. To ascertain which component of the OCH₃ group is present in CH₃OH, ²H or ¹⁸O-labelled 2-methoxyphenol was employed.

The results of experiments conducted with d3-2-methoxyphenol indicate that the whole CH_3 group of 2-methoxyphenol is present in CH_3OH , as evidenced by a shift of 3 AMU from mass 32 to 35. This also excludes the possibility of a hydrogen atom transfer as a reaction mechanism, which was similarly ruled

out in the experiments conducted with DMSO (Chapter 3.1.7). This is evident from the mass of 35 observed for CH₃OH, as during a hydrogen atom abstraction reaction, a deuterium atom is removed from the CH₃ group and replaced by a hydrogen atom in the reaction, resulting in a final mass of 34 for CH₃OH. The ¹⁸O-labelled oxygen atom was successfully detected in the resulting CH₃OH using ¹⁸OCH₃-2-methoxyphenol (> 95 % labelling). Figure 28c illustrates the peaks for masses 33 and 34, which correspond to CH₃¹⁸OH. In contrast, no peak is observed for masses 29, 30 and 31, which leads to the conclusion that the oxygen from CH₃OH originates exclusively from the OCH₃ group of 2-methoxyphenol. These experiments demonstrate that the entire OCH₃ group is cleaved off and reacts with a hydrogen atom to form CH₃OH. It can be postulated that the hydrogen originates from an excess of H⁺ ions present in the acidic solution. The resulting CH₃OH can undergo further oxidation to CH₂O by the oxidative environment, as previously described for DMSO. These observations provide a reaction mechanism for CH₃OH production from lignin monomers, where previous studies lack information.^{118,122,132}

The reaction under consideration has not yet been the subject of scientific investigation in atmospheric conditions (1013 mbar and 22°C). However, it is of considerable environmental significance due to the ubiquitous distribution of aromatic OCH₃ compounds alongside H_2O_2 and other ROS and Fe species (Chapter 1.3.2 and 1.6). Chapters 3.6 and 3.7 provide a more detailed analysis of the impact on the global carbon cycle, particularly the pedosphere.

3.4 Results of the studies with different Mn, Fe, Co, Ni and Cu species instead of LFe^{II}Cl₂ and Fe₂O₃

To gain further insights into the reactions described previously, the Fe-containing species, i.e., LFe^{II}Cl₂ and Fe₂O₃, were replaced by various transition metals (Mn, Fe, Co, Ni and Cu) in the form of salts, oxides, sulphates and acetate. Investigations were carried out with MnCl₂, MnSO₄, MnO₂, FeCl₂, FeSO₄, CoCl₂, NiCl₂, NiSO₄, CuCl₂, CuO + CuO₂ and Cu(OAc)₂ using the precursor compounds d₆-DMSO, d₃-me-thionine and 2-methoxyphenol, respectively. This was done to see if other transition metals with different counterions react similarly due to the presence of all these transition metals in nature, particularly in the pedosphere.

3.4.1 Conversion of d₆-DMSO, d₃-methionine and 2-methoxyphenol to CD₃H, C₂D₆, CD₃OH, CD₂O and CH₃Cl mediated by transition metals

The above-listed transition metal species were utilised as substitutes for $LFe^{II}Cl_2$ and Fe_2O_3 . Consequently, a range of transition metals and counterions and different oxidation states of the transition

metals were examined. The experiments involved the analysis of CH_4 , C_2H_6 , CH_3OH and CH_2O in the same setup as with d_6 -DMSO (10 µmol transition metal species, 25 µmol d_6 -DMSO, 100 µmol Asc and 200 µmol H_2O_2 ; (Table 10), with the addition of CH_3Cl analysis in experiments involving chlorine counterions.

Table 10: Composition of the experiments on different transition metal species with d_6 -DMSO, d_3 -methionine and 2-methoxyphenol as precursor compounds to determine the conversion rates and possible differences.

No.	Precursor compound	Transition metal species	Oxidant	acid
1-11	25 μmol d₀-DMSO	10 μ mol MnCl ₂ , MnSO ₄ , MnO ₂ , FeCl ₂ , FeSO ₄ , CoCl ₂ , NiCl ₂ , NiSO ₄ , CuCl ₂ , CuO + CuO ₂ and Cu(OAc) ₂	200 µmol H2O2	100 μmol Asc
12-22	25 μmol d₃-methio- nine	10 μ mol MnCl ₂ , MnSO ₄ , MnO ₂ , FeCl ₂ , FeSO ₄ , CoCl ₂ , NiCl ₂ , NiSO ₄ , CuCl ₂ , CuO + CuO ₂ and Cu(OAc) ₂	200 µmol H ₂ O ₂	100 μmol Asc
23-33	25 μmol 2-methoxy- phenol	10 μ mol MnCl ₂ , MnSO ₄ , MnO ₂ , FeCl ₂ , FeSO ₄ , CoCl ₂ , NiCl ₂ , NiSO ₄ , CuCl ₂ , CuO + CuO ₂ and Cu(OAc) ₂	200 µmol H ₂ O ₂	100 μmol Asc

3.4.1.1 d₆-DMSO

To facilitate a comparison with the process described in Chapter 2.1, d₆-DMSO was again utilised in conjunction with the aforementioned transition metal species (No. 1-11; Table 10). Figure 29 illustrates the conversion of d₆-DMSO to CH₄, C₂H₆, CH₃OH and CH₂O. The predominant formation of CH₄ resulted in conversion rates ranging from 1.61 \pm 0.10 % for CuCl₂ to 62.0 \pm 2.0 % for FeSO₄. The conversion rate for C₂H₆ range from 0.00076 \pm 0.00014 % for MnCl₂ to 3.28 \pm 0.05 % for FeCl₂, while the conversion rate for CH₃OH range from 5.67 \pm 0.35 % for Cu(OAc)₂ to 24.0 \pm 0.8 % for MnO₂. The conversion to CH₂O demonstrates a moderate fluctuation between 2.29 \pm 1.81 % and 7.45 \pm 0.58 %.

Figure 29: The experiments investigated the formation of C1 and C2 compounds from d₆-DMSO using 10 µmol different transition metal species in conjunction with 200 µmol H₂O₂ and 100 µmol Asc under ambient atmospheric conditions with a reaction time of 48 h. All C1 and C2 compounds could be measured for all transition metal species. Except for CuCl₂, CH₂O concentrations could not be determined; hence, no conversion rate was calculated. CuOx is a mixture of copper oxides (CuO and Cu₂O), whereas Cu(OAc)₂ refers to copper(II) acetate. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for C₂D₆, n = 3.

The total conversion rates of the Mn species range from 44.9 ± 4.6 to 56.5 ± 6.4 %, and the distributions of the Mn species' individual C1 and C2 components are similar. A comparison of the C1 and C2 components for the two Fe species reveals a similar distribution as for the Mn species, with a conversion rate of 75.4 ± 1.7 % for FeCl₂ and 77.7 ± 2.5 % for FeSO₄, respectively. CoCl₂ exhibits a conversion rate of 53.5 ± 5.5 %, falling within the range of Mn. NiCl₂ exhibit the highest conversion rate of 81.4 ± 7.6 %, while NiSO₄ demonstrates a lower conversion rate of 64.6 ± 1.9 %. In the context of the Cu species,

the conversion rates ranged from 9.60 \pm 0.37 % (CH₂O could not be measured due to analytical issues) to 31.7 \pm 1.6 %.

3.4.1.2 d₃-Methionine

In experiments that involved 25 μ mol d₃-methionine, 10 μ mol transition metal species, 100 μ mol Asc and 200 μ mol H₂O₂ (No. 12-22; Table 10), the observed conversion rates were consistently lower than those observed in experiments involving d₆-DMSO (Figure 30). The conversion rates ranged from 0 to 4.07 ± 1.52 % for CH₄ and from 0.00043 ± 0.00016 % to 0.45 ± 0.01 % for C₂H₆. Conversion rates ranging from 0.0 % to 2.30 % ± 0.14 % were observed for CH₃OH and between zero % and 4.67 % ± 1.74 % for CH₂O.

CH₃OH was detected in considerable amounts (2.30 % ± 0.14 %) only in experiments with MnCl₂ compared to all other experiments. The total conversion rates for the Mn and Fe species range from 4.52 ± 1.07 % to 8.77 ± 2.31 %. Conversely, lower total conversion rates were observed for the Co, Ni, and Cu species compared to the Fe and Mn species. These range from 1.18 ± 0.12 % to 2.50 ± 1.31 %, except for CuCl₂, for which the rate was lower at 0.064 ± 0.038 %. It should be noted that the CH₂O formation rate could not be determined due to technical issues in this instance.

 CH_4 conversion rates are very similar in these experiments for Fe and Mn species, and C_2H_6 conversion rates are more prominent for the Fe species than for the Mn species. Compared to Fe_2O_3 , the total conversion rate is approximately 11 %, slightly higher, and the $LFe^{II}CL_2$ complex only exhibits approximately 1.2 % hydrocarbons. The Co and Ni species exhibit lower conversion rates than the Fe and Mn species, in contrast to the experiments with d_6 -DMSO, where the conversion rates are similar.

Figure 30: The experiments investigated the formation of C1 and C2 compounds from 25 μ mol d₃-methionine using 10 μ mol of different transition metal species in conjunction with 200 μ mol H₂O₂ and 100 μ mol Asc under ambient atmospheric conditions with a reaction time of 48 h. For CuCl₂, CH₂O concentrations could not be determined; hence, no conversion rate was calculated. CuOx is a mixture of copper oxides (CuO and Cu₂O), whereas Cu(OAc)₂ refers to copper(II) acetate. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for C₂D₆, n = 3.

3.4.1.3 2-Methoxyphenol

In experiments involving 2-methoxyphenol, a configuration analogous to d_6 -DMSO and d_3 -methionine was conducted (No. 23-33; Table 10). Asc was replaced with triflic acid, maintaining a pH value of 2.3. Asc is absent because the reaction mechanism described in Chapter 3.3 does not require a radical scavenger, as no OH and CH₃ radicals are involved in forming CH₃OH and CH₂O. They are directly produced from the OCH₃ group, and only the formation of CH₃OH and CH₂O was observed (Figure 31).

The conversion rates of CH₃OH ranged from 0 to 23.6 \pm 4.3 %, while those of CH₂O fell within the range of 0 to 27.9 ± 2.0 %. Further analysis of the individual transition metals reveals that the total conversion rate for MnSO₄ (15.3 \pm 2.1 %) is significantly higher than for MnCl₂ (1.36 \pm 1.92 %) and MnO₂ (2.53 \pm 0.65 %). For FeCl₂ and FeSO₄, the total conversion rates are similar at 32.2 ± 1.7 % and 36.1 ± 2.0 %, respectively, and all experiments with both Mn and Fe species produced CH₃OH and CH₂O, except for MnCl₂, where only CH₂O was detected. In the case of Co, Ni and Cu, the only product observed was CH₃OH, except NiCl₂, which yielded CH₂O at a conversion rate of 0.78 ± 1.32 %. It should be noted that the error margin for this measurement exceeds the conversion rate. The total conversion rates for these transition metal species range from 5.39 ± 3.62 % for CuCl₂ to 23.6 ± 4.3 % for NiSO₄. A divergence in the observed patterns is apparent compared to the d_6 -DMSO and d_3 -methionine experiments. The absence of hydrocarbons is a general observation, and with 2-methoxyphenol, the conversion rates of the Mn species are comparatively low compared to other transition metal species. This contrasts the d_6 -DMSO and d_3 -methionine experiments, wherein the Mn species demonstrate higher conversion rates than the other transition metal species. The Fe species demonstrate the highest conversion rates, analogous to the d₆-DMSO experiments. Conversely, the Co, Ni and Cu species exhibit lower conversion rates than the Fe species. This phenomenon has also been observed in experiments involving d₆-DMSO except for Ni species and d₃-methionine. The conversion rates are intermediate between those documented in the d_6 -DMSO and d_3 -methionine experiments.

Figure 31: The formation of CH₃OH and CH₂O compounds from 25 μ mol 2-methoxyphenol was investigated using 10 μ mol of different transition metal species, 200 μ mol H₂O₂ and 0.05 μ mol triflic acid under ambient atmospheric conditions with a reaction time of 48 h. No CH₄ and C₂H₆ formation was observed. For CuCl₂, CH₂O concentrations could not be determined due to analytical issues. Hence, no conversion rate was calculated. CuOx is a mixture of copper oxides (CuO and Cu₂O), whereas Cu(OAc)₂ refers to copper(II) acetate. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9.

$3.4.1.4~\text{CH}_3\text{Cl}$

For all transition metal species that possess chlorine as a counter ion, the experiments with d_6 -DMSO, d_3 -methionine and 2-methoxyphenol were further analysed for CH₃Cl formation (Figure 32). In the studies with d6 DMSO, CH₃Cl was observed for all transition metal species with a range of conversion rates from 0.00006 to 0.00097 %. CuCl₂, however, exhibited a conversion rate of 0.69 ± 0.13 %, approximately three orders of magnitude higher than in the rest of the study. With d_3 -methionine, a conversion rate of 0.00017 ± 0.00002 % and 0.0026 ± 0.0025 % were detected exclusively for FeCl₂ and

CuCl₂, respectively. In experiments with 2-methoxyphenol, only experiments with $FeCl_2$ show a low production of 0.000044 ± 0.000025 % CH₃Cl.

Figure 32: The formation of CH₃Cl from 25 μ mol d₆-DMSO, d₃-methionine, or 2-methylphenol with 100 μ mol Asc or 0.05 μ mol triflic acid in case of 2-methoxyphenol and 200 μ mol H₂O₂ was investigated using 10 μ mol different transition metal species with chlorine counter ions in the experiments described above. Error bars refer to the SD of the conversion of CH₃Cl for n = 3.

3.4.2 Discussion and implications of the different transition metal species in reaction with d₆-DMSO, d₃-methionine and 2-methoxyphenol and the formation of CH₄, C₂H₆, CH₃OH, CH₂O and CH₃Cl

3.4.2.1 d₆-DMSO

A comparative analysis of the conversion rates for $FeCl_2$ and $FeSO_4$ with d₆-DMSO shows that the identical products CH₄, C₂H₆, CH₃OH, and CH₂O were formed in a consistent pattern. The highest conversion rates were observed for CH₄ (up to 62 %), followed by moderate yields for CH₃OH and CH₂O (up to 24.2 and 7.45 %, respectively). High conversion rates for C₂H₆ (up to 3.28 %) are also observed for Fe species compared to the other transition metal species, and they are within the range of the experiments with

79

the LFe^{II}Cl₂ complex (Chapter 3.1.2). The conversion rates to CH₄ are similar for the naturally occurring Fe₂O₃, FeCl₂ and FeSO₄. The production of CH₃OH from FeCl₂ and FeSO₄ is more closely related to that of the LFe^{II}Cl₂ complex than that of Fe₂O₃. This may be attributable to the complete solubility of the iron species compared to the very low solubility of Fe₂O₃.²⁰⁵ Conversely, for CH₂O production, FeCl₂ and FeSO₄ show a behaviour more similar to Fe₂O₃ than to the LFe^{II}Cl₂ complex. However, Althoff et al. (2010)³¹ reported that the type of Fe oxide or hydroxide significantly affects the yield of CH₄ in experiments with Asc as a precursor compound, with ferrihydrite having the highest yield and Fe₂O₃ the lowest. Nevertheless, a direct comparison is not feasible due to their experiments' absence of a sulfurbound CH₃ group. Compared to the data from Althoff et al. 2014¹⁴, the CH₄ conversion rates are generally lower. The high ratio of Asc to precursor compound (100:1) in the study conducted by Althoff compared to the 4 to 1 ratio in this study influences the CH₄ production considerably since more OH radicals are trapped and less oxygenated compounds are generated. The CH₃ radicals can react to CH₄ instead of the OH radicals. It is essential to consider methodological differences, particularly in the amounts of substances used and the incubation duration. In addition, Althoff's study focused exclusively on CH₄ conversion rates without considering other C1 and C2 compounds.

The results indicate that d_6 -DMSO can be converted to various C1-C2 compounds using different Fe species as catalysts. Differences in the C1 and C2 conversion rates may be attributed to differences in the solubility and crystal structure of the Fe species. While the mechanism underlying the formation of the high-valent iron-oxo complex from the LFe^{II}Cl₂ complex is well established, similar mechanisms for Fe₂O₃ and Fe salts, sulfates, and acetates remain poorly understood and require further investigation.

Within each transition metal, the conversion rates for all C1-C2 compounds investigated are similar, indicating that the oxidation state and counterions have a lesser impact than the choice of the transition metal itself. Interestingly, C1 and C2 emissions from Cu compounds differ significantly from the other transition metal species, with substantially lower conversion rates. The underlying causes of these discrepancies remain to be elucidated, particularly given the reported evidence for the formation of CH₃ radicals from DMSO mediated by Cu(II) salts.^{260–262} One potential explanation for these variations may be found in the redox potential exhibited by the transition metal compounds; however, this potential is influenced by a complex network of interacting factors. For instance, factors such as pH and ionic strength significantly influence redox behaviour. Furthermore, the transition metal ion's electronic configuration and spin state, particularly in transition metals with multiple oxidation states, can impact its redox potential, as these factors affect the transition metal ion's ability to interact with surrounding ligands and solvent molecules.^{263,264} Consequently, further experimental and theoretical studies are required to elucidate the underlying mechanisms fully.

The present study extends transition metal complex-based Fenton chemistry beyond Fe as a redox catalyst. The formation of oxidised species in Fenton-like reactions at circumneutral pH has been shown to generally follow the order $Cu^{\parallel} < Ni^{\parallel} < Mn^{\parallel} < Fe^{\parallel} < Co^{\parallel}$. ²⁶⁵ However, this is not the case in the present study because the conversion rates do not follow this trend. These differences are likely attributed to variations in reaction conditions, particularly to the lower pH values of 2.3 in this study. The redox properties of each transition metal-H₂O₂ system are unique and significantly influenced by the transition metal's oxidation state and the solution pH.²⁶⁶ For instance, Mn²⁺-chelates have been shown to enhance O₂⁻⁻ generation by reacting with H₂O₂.²⁶⁷ Transition metals with multiple redox states, such as Fe, Cu, Co, and Mn, can directly decompose H₂O₂ into HO via conventional Fenton-like pathways. Although such Fenton systems demonstrate efficiency even at neutral pH, the mechanism of H₂O₂ activation is distinguished by its high specificity to the nature and composition of the catalyst.²⁶⁸ Consequently, the mechanisms by which non-iron catalysts facilitate the decomposition of organic matter remain ambiguous, and thus, extensive further research is necessary.

The proposed mechanism for CH_3 radical formation from d_6 -DMSO via S-demethylation (Chapter 3.1.7) is supported by the deuterium incorporation into CH_2O and CH_3CI as indicated by a change in mass of 2 or 3 AMU in all transition metal catalysts examined. This was determined using GC-MS, analogous to Chapter 3.1.5, but not shown here. This finding indicates that a demethylation process may occur analogous to d_6 -DMSO with LFe^{II}Cl₂. Also, the production of C_2H_6 , likely formed through recombining two CH₃ radicals, is observed and supports this mechanism. Consequently, it is reasonable to hypothesise that the remaining C1 and C2 compounds will also demonstrate isotopic labelling, as CH_3 radicals should be the predominant precursors in this process.

Notably, Fe and Cu species appear to be the only transition metals capable of mediating substantial C_2H_6 formation, while transition metals such as Mn, Co, and Ni exhibit minor C_2H_6 production. This observation might suggest differing or slower C1 and C2 formation mechanisms in the latter transition metals than in Fe and Cu. However, further mechanistic studies and theoretical calculations are necessary to elucidate the underlying processes fully. The findings reported here are consistent with those observed in experimental studies involving various Fe species, which have documented high conversion rates to CH_4 compounds.¹⁴ In addition to Fe compounds, Mn, Co, and Ni catalysts have been shown to exhibit similarly high yields, suggesting that these transition metal species are effective in C1 and C2 formation. Chapter 3.7 will discuss potential implications for the global production of C1 and C2 compounds in detail.

3.4.2.2 d₃-methionine

In a setup conducted analogous to d_6 -DMSO, d_3 -methionine was employed as a substrate to investigate abiotic C1 and C2 production. A comparison of conversion rates in experiments involving d_3 -methionine across various Fe and Mn species (Fe₂O₃, FeCl₂, FeSO₄, MnCl₂ and MnO₂) reveals a consistent pattern of C1 and C2 formation observed among these species and lower rates for the Co, Ni and Cu species. In contrast, the LFe^{II}Cl₂ complex produced no CH₂O or CH₃OH (Chapter 3.2.1). The conversion rates to C₂H₆ from Fe salts are in a similar range to those of Fe₂O₃, as compared to LFe^{II}Cl₂, and generally higher than with the other transition metal species. CH₄ conversion rates for Fe and Mn species are approximately 3%, in contrast to previous studies where conversion rates are 10%.¹⁴ This discrepancy may be attributed to a different setup and using another Fe species (ferrihydrite). However, the conversion rates from d₃-methionine are lower than those documented for d₆-DMSO. The observed discrepancy between d₃-methionine and d₆-DMSO may be attributed to the different chemical structures resulting in different chemical properties which influence the reaction mechanism. According to preliminary DFT calculations, this reaction with methionine requires a higher activation energy than the calculated activation energy for DMSO.²⁰⁵

The data show that d₃-methionine can be converted to different C1-C2 compounds using various transition metal species as catalysts. Solubility and lattice structure variations may contribute to the observed differences in C1 and C2 conversion rates from distinct transition metal species. The oxidation state and choice of counterion have less influence on C1 and C2 formation than the choice of transition metal, as observed for DMSO. In particular, Cu compounds' C1 and C2 emissions, especially CuCl₂, differ from those of other transition metal species by exhibiting lower conversion rates. While the high-valent iron-oxo complex formation from LFe^{II}Cl₂ is well established^{206,211,250}, mechanistic studies for all other transition metal species have yet to be carried out. The demonstration of deuterium incorporation into CD₂O and CD₃Cl, evidenced by a mass shift of 2 or 3 AMU in all transition metal catalysts, suggests that a demethylation mechanism analogous to d₆-DMSO is most likely the reaction mechanism. Thus, isotopic labelling can also be expected for the other C1 and C2 compounds, as CH₃ radicals will likely serve as the primary precursors.

3.4.2.3 2-Methoxyphenol

The conversion patterns to C1 and C2 compounds in experiments with 2-methoxyphenol exhibited notable deviations from those observed with S-methylated substrates. Only CH₃OH and CH₂O were produced, and no CH₄ or C₂H₆ was detected. Their absence suggests a lack of CH₃ radicals, as described earlier for Fe₂O₃ and LFe^{II}Cl₂ (Chapter 3.3.3). FeCl₂ and FeSO₄ exhibited CH₃OH and CH₂O formation patterns consistent with those observed for the previously described experiments with Fe₂O₃ and

LFe^{II}Cl₂, suggesting a similar reaction mechanism (Chapter 3.1). In contrast, Mn species exhibited minimal conversion to oxygenated C1 compounds except MnSO₄ with medium conversion rates, indicating a low catalytic efficiency. Furthermore, the experiments involving Co, Ni, or Cu resulted in the exclusive production of CH₃OH, with a minimal yield of CH₂O in experiments with NiSO₄, suggesting a reduced oxidative capacity compared to the Fe species. Notably, the overoxidation from CH₃OH to CH₂O appears unlikely for these transition metal species, in contrast to the Fe and Mn species. Nevertheless, these findings underscore the significant catalytic influence of transition metal species on the degradation of methoxylated substrates under ambient conditions (1013 mbar, 22°C). Potential contributions to the global production of C1 compounds will be discussed in detail in Chapter 3.7.

3.4.2.4 Methyl chloride

CD₃Cl has been observed in all experiments involving d₆-DMSO, with conversion rates of less than 0.0062 \pm 0.0002 %, indicative of low production levels compared to the other C1 and C2 compounds. Conversely, CuCl₂ exhibits a significantly higher abundance of CD₃Cl, with a conversion rate approximately three orders of magnitude higher than the other compounds. However, its concentrations remain relatively low relative to other C₁ and C₂ compounds. The findings on CH₃Cl production are consistent with previous observations on d₆-DMSO.

The CD₃Cl concentration is quantified with masses 53 and 55 via GC-MS, thereby confirming the CD₃ group origin from d₆-DMSO, as the masses are shifted by 3 AMU relative to non-deuterated CD₃Cl. A similar outcome was observed in the case of d₃-methionine, where CD₃Cl formation was observed to occur at low conversion rates with FeCl₂ and CuCl₂. However, no CH₃Cl was detected in experiments involving 2-methoxyphenol, which may be attributed to the alternative mechanism of OCH₃ group cleavage, where no CH₃ radical is formed (Chapter 3.3.2).

Given the similarities in chemical properties exhibited by these chlorine counterions, it can be hypothesised that analogous processes occur in the presence of other halogenated counterions, forming methyl halides. In addition, Keppler et al. (2000) have documented the formation of CH₃Cl, CH₃Br, and CH₃I in soils, a process catalysed by Fe.³⁵ This observation, supported by a comparable reaction mechanism involving Fe, provides a compelling argument for the potential formation of other methyl halides. Despite the low conversion rates, the potential impact of this process on the environment cannot be discounted, as the precursor compounds, transition metal species, and ROS are present in substantial quantities in the environment. Consequently, low conversion rates can still result in substantial amounts of halogenated compounds being released, which, in turn, can considerably affect the atmosphere's chemistry.

3.5 Lignin and pectin as precursors of CH₄, C₂H₆, CH₃OH and CH₂O

Lignin and pectin were investigated the same way as the previous compounds, including sinapyl alcohol, coniferyl alcohol, and Game (Chapter 3.3), which are monomers of lignin and pectin. Plant matter, particularly cell walls, comprises a significant portion of lignin and pectin, which are important organic components of the soil. It was previously shown that lignin and pectin can emit CH₃OH and CH₃Cl under elevated temperatures (> 150°C)¹⁷ and that polygalacturonic acid can emit CH₄ at elevated temperatures (> 40°C) and irradiated with UV light.²⁶⁹ All these properties of lignin and pectin are of interest for this study and make them possible precursor compounds for various other C1 and C2 compounds.

3.5.1 Formation of CH₄, C₂H₆, CH₃OH and CH₂O from lignin and pectin under abiotic and oxic conditions

To investigate the environmental implications of these reactions, pure lignin and pectin (50 mg dry weight) were studied for their potential to produce CH_3OH , CH_2O , CH_4 and C_2H_6 (Figure 33) using 10 μ mol Fe₂O₃, 100 μ mol Asc and 200 μ mol H₂O₂ in different setups (Table 11) following the procedure described in Chapter 2.1.1. The C1 and C2 compounds were shown in concentrations instead of conversion rates for comparison with other studies and the fact that lignin and pectin are weighed in grams.

No.	Precursor compound	Fe species	Oxidant	acid
1	Lignin	10 μ mol Fe ₂ O ₃	200 μ mol H ₂ O ₂	100 µmol Asc
2	Lignin	10 μ mol Fe ₂ O ₃	200 μ mol H ₂ O ₂	0.05 μmol Triflic acid
3	Lignin	-	200 μ mol H ₂ O ₂	0.05 μmol Triflic acid
4	Pectin	10 μ mol Fe ₂ O ₃	200 μ mol H ₂ O ₂	100 µmol Asc
5	Pectin	10 μ mol Fe ₂ O ₃	200 μ mol H ₂ O ₂	0.05 μmol Triflic acid
6	Pectin	-	200 μmol H ₂ O ₂	0.05 μmol Triflic acid

Table 11: Composition of the experiments with lignin or pectin and with or without Fe_2O_3 and Asc to determine the conversion rates and possible differences.

The highest concentrations of CH₃OH and CH₂O (Figure 33a) were observed in experiments with Fe₂O₃ and Asc for both lignin (399 ± 28 μ g/g, No. 1) or pectin (422 ± 52 μ g/g, No. 4). In experiments without Asc and Fe₂O₃, the concentrations are lower at 251 ± 31 μ g/gd for lignin (No. 2) and 311 ± 76 μ g/g for pectin (No. 5). Moreover, experiments without Fe₂O₃ and Asc resulted in concentrations of 307 ± 24 μ g/g for lignin (No. 3) and 106 ± 8 μ g/g for pectin (No. 6). Additionally, the production of CH₄ and C₂H₆

was observed (Figure 33b). Notably, hydrocarbons were only detected in the presence of Asc (lignin: 2.76 \pm 0.04 µg/g and pectin: 1.44 \pm 0.04 µg/g), with concentrations two orders of magnitude lower than those of the oxygenated compounds. Experiments conducted without Asc did not yield any hydrocarbon production.

Figure 33: Formation of **a**) CH₃OH and CH₂O and **b**) CH₄ and C₂H₆ were detected in experiments involving 50 mg (dry weight) of either lignin or pectin. These experiments were carried out with either 10 µmol Fe₂O₃ and 100 µmol Asc or without Asc and 10 µmol Fe₂O₃, and the third experiment with 0.05 µmol triflic acid and no Fe₂O₃ and with 200 µmol H₂O₂ in each experiment under ambient atmospheric conditions with a reaction time of 48 h. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for CH₄ and C₂D₆, n = 3.

3.5.2 Discussion of the production CH₄, C₂H₆, CH₃OH and CH₂O and the influence of Fe₂O₃, H₂O₂ and Asc

Lignin and pectin exhibit elevated concentrations of CH_3OH and CH_2O , analogous to those observed in OCH_3 -containing substrates with Fe_2O_3 , H_2O_2 and Asc. A contrasting picture emerges when the experiments with and without Asc but with triflic acid are compared in the context of sinapyl alcohol and lignin. While sinapyl alcohol yields are lower in the presence of Asc, lignin experiments exhibit higher concentrations of CH_3OH and CH_2O (Chapter 3.3.1). These discrepancies can be attributed to the complex three-dimensional structure of lignin, which allows for a multitude of side reactions. In the case of Game and pectin, analogous trends can be observed. Here, structural differences are confined to the cross-links between the Game monomeric units in pectin, and the potential for additional side reactions is limited. Nevertheless, a comparable reaction could be feasible.

In the case of experiments conducted solely with H_2O_2 and lignin or pectin, respectively, a contrasting pattern emerges. In lignin experiments, the absence of Asc and Fe₂O₃ results in CH₃OH and CH₂O concentrations comparable to those observed in their presence. In contrast, pectin experiments show a notable decline in CH₃OH and CH₂O concentrations in the absence of Asc and Fe₂O₃. This discrepancy may be attributed to differing reaction mechanisms observed in the experiments with the absence of Fe₂O₃ compared to those conducted with Fe₂O₃. In the latter, an iron-oxo species ([Fe^{IV}=O]²⁺) is responsible for initiating the reaction, whereas, in the former, H₂O₂ and possibly other radicals like O₂⁻ or OH may directly interact with the substrate. Also, differences in the general structure of these molecules are evident, with an aromatic system in lignin and a non-aromatic system in pectin. This may also account for variations in the product concentrations.

The observed release of CH₃OH from methoxybenzenes and lignin is a well-described process in the literature, but always at high temperatures and pressures and regularly under an H₂ atmosphere; therefore, a comparison is not feasible. It is well known that wood (lignin) releases low amounts of CH_2O^{133} ; a lignin-mediated Fenton generation of CH_2O is postulated with the OH radical attacking the OCH₃ group and releasing CH_2O . That is enhanced with rising H_2O_2 and Fe concentrations.¹³² This mechanism is similar to the investigated here, but the mechanism remains unclear, and no direct evidence has been provided for the origin of the CH_2O .

Adding Asc to experiments with lignin or pectin resulted in a significant increase in CH_4 and C_2H_6 production. Conversely, no hydrocarbon production was observed in the absence of Asc. These findings indicate that an OH radical scavenger, such as Asc, is essential for facilitating hydrocarbon production. These findings are analogous to the reactions described earlier with DMSO (Chapter 3.1). Still, the ratio of $CH_3OH + CH_2O$ to $CH_4 + C_2H_6$ is two orders of magnitude higher than in the experiments with DMSO (approximately 1:1). This discrepancy may also be attributed to different reaction mechanisms. In the case of the DMSO, all C1 and C2 compounds are produced from a CH_3 radical, whereas CH_3OH and CH_2O are produced from the whole OCH_3 group of methoxyphenols and presumably from the OCH_3 group of lignin and pectin. A multitude of side chains from lignin and pectin could act as precursors of the hydrocarbons. A decay of lignin or pectin itself due to the highly oxidative milieu and subsequent reactions could also lead to the production of hydrocarbons. A release of CH_4 from OCH_3 groups of pectin is reported at elevated temperatures with greater than 40° C and isotically confirmed.²⁶⁹ The origin of CH_4 and C_2H_6 is unclear and requires further investigation. With isotopically labelled precursor substances, as described in Keppler et al. (2008)²⁶⁹, more knowledge could be gained concerning the origin of CH_4 and C_2H_6 .

3.6 Abiotic and oxic production of CH₃OH, CH₂O, CH₄ and C₂H₆ from sterile soils and their controlling factors²

Experiments were conducted using 24 soil samples (5 g) that were sterilised at 105°C and homogenised and incubated with 10 ml ultra-pure H₂O and subsequently analysed for CH₃OH, CH₂O, CH₄ and C₂H₆. Establishing a direct link between the studies with precursor compounds and natural processes, especially soils where high concentrations of lignin and pectin are found, provides a perfect objective for studying the formation of C1 and C2 compounds. All relevant reactants and additives employed in the previous investigations, including transition metal precursors (e.g., Fe₂O₃), organic substrates possessing CH₃ groups, H₂O₂, and OH radical scavengers such as ascorbic acid, naturally occur in soils. Consequently, experiments were conducted on various soil types, including modifications to the OCH₃ content, wet-dry cycles (WDC), pH adjustments, and temperature variations. The degradation of CH₃OH in untreated soils was also investigated. Additionally, the OCH₃ content and TOC of the soils were determined to enable preliminary estimation of the global impact of the abiotic processes described herein.

3.6.1 Production of CH₃OH, CH₂O, CH₄ and C₂H₆ from sterile soils under abiotic and atmospheric conditions

Following the protocols described in Chapter 2.1.4, 24 sterilised and homogenised soils (5 g each) were incubated with ultra-pure H₂O (10 ml) for 48 h. Following incubation, the samples were analysed for the presence of CH₃OH and CH₂O in the H₂O phase and CH₄ and C₂H₆ in the headspace. All 24 soils from the different locations and sampling depths (Chapter 2.1.4.2) emitted oxygenated compounds and hydrocarbons. The concentrations of CH₃OH ranged from 0.76 \pm 0.03 µg/g_{soil,dw} to 18.0 \pm 0.6 µg/g_{soil,dw}, except for WA2 10-40, where no CH₃OH could be measured. The concentrations of CH₂O ranged from 0.41 \pm 0.53 µg/g_{soil,dw} to 21.4 \pm 1.0 µg/g_{soil,dw} (Figure 34a). For CH₄ concentrations between 0 and 6.50 \pm 0.30 ng/g_{soil,dw} could be determined; furthermore, for C₂H₆ 0.02 \pm 0,02 ng/g_{soil,dw} to 2.65 \pm 0.20 ng/g_{soil,dw} concentrations were observed (Figure 34b).

² Please note that parts of this section are taken from Hädeler et al (2023)²⁰⁵.

Figure 34: abiotic formation of CH₃OH, CH₂O, CH₄, and C₂H₆ from 24 sterilised soils at 105°C (5 g each, with indicated depths in cm) using ultra-pure H₂O (10 ml), incubated for 48 h under ambient conditions (22°C and 1013 mbar). **a)** CH₃OH and CH₂O were displayed in $\mu g/g_{soil,dw}$, with three orders of magnitude lower concentrations for **b)** CH₄ and C₂H₆ displayed in ng/g_{soil,dw}. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for CH₄ and C₂D₆, n = 3. Parts of the data are taken from Hädeler et al. (2023).²⁰⁵

3.6.2 Methoxy groups in soils as a precursor of CH₃OH, CH₂O, CH₄ and C₂H₆

To determine whether OCH₃ groups in soils serve as precursors to CH₃OH, CH₂O, CH₄ and C₂H₆, they were removed using the Zeisel method (Chapter 2.2.2.4) in three different soils that produced high amounts of CH₃OH, CH₂O, CH₄ and C₂H₆. Figure 35a illustrates OCH₃ content in three different soil samples before and after HI treatment, which causes the removal of the OCH₃ group and the reduction ranging from 81.1 % to 93.6 %. The soil samples with high organic content, in which the OCH₃ group

were removed, were then incubated as described in Chapter 2.1.4 and the concentrations of CH_3OH and CH_2O were analysed. The results demonstrated an absence of CH_3OH and a reduction in CH_2O concentrations by 28.8 % to 83.5 % in HI-treated soils (Figure 35b). Furthermore, the removal of OCH_3 groups resulted in a decrease in CH_4 concentration by 81.4 % to 96 %. A reduction in the concentrations of C_2H_6 by 40 % and 96 % was also noted in the PT and WA2 soils, respectively. Conversely, a substantial increase of 590 % was recorded for soil AL 20 (Figure 35c).

Figure 35: **a)** OCH₃ content in soil samples AL 20, PT 0-10 and WA2 0-10 before and after OCH₃ removal due to HI treatment. **b)** Comparison of the concentrations of CH₃OH and CH₂O and **c)** CH₄ and C₂H₆ from soil experiments with and without OCH₃ group removal. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for CH₄ and C₂D₆, n = 3.

3.6.3 Identification of the origin of CH₃OH in soils with deuterated or ¹⁸O-OCH₃ labelled 2-methoxyphenol

The three soils from which the OCH₃ group was removed were used. 1 g soil each was mixed with 2 ml H_2O , and then 5 µmol deuterated or ¹⁸O-OCH₃ labelled 2-methoxyphenol was added to the incubation to show that the soil splits of the whole OCH₃ group. By measuring CH₃OH and the masses 33, 34 and 35, Figure 36 clearly shows the production of the deuterated CH₃OH in these soils. This is evident due to the pronounced peaks observed in experiments utilising deuterated 2-methoxyphenol and measuring the mass shift from 32 to 33-35 (Figure 36a). Also, measuring the mass 33 and 34 from CH₃OH in experiments with ¹⁸O-labelled 2-methoxyphenol (Figure 36b) and the resulting peaks for these experiments demonstrate the origin of CH₃OH from the OCH₃ group of 2-methoxyphenol. The unlabelled soils and ultra-pure H₂O as controls exhibit minimal to no peaks. These experiments demonstrate that the OCH₃ group is cleaved off in soils and forms CH₃OH only by adding H₂O.

Figure 36: Chromatogram of labelled CH₃OH in soil experiments with added deuterated or ¹⁸O-OCH₃ labelled 2-Methoxyphenol. The m/z 33, 34 and 35 of CD₃OH **a**) or m/z 33 and 34 of CH₃¹⁸OH **b**) in experiments where the OCH₃ groups were removed from the soil samples GL1, PO and GL2 using the Zeisel method. 1 g soil and 2 ml ultra-pure H₂O with added 5 µmol **a**) deuterated OCH₃-2-Methoxyphenol and **b**) 5 µmol ¹⁸O-OCH₃-2-Methoxyphenol. Blue, brown and pink are the experiments with labelled 2-methoxyphenol; light green, dark green and purple are the non-spiked soils, and black is pure H₂O.

3.6.4 Determination of the ability of soils to degrade d₆-DMSO

To investigate whether soils have the capacity to convert substrates with S-bonded CH_3 groups to CH_3OH and CH_2O , 25 µmol d₆-DMSO was added to soils WF, MX, BI, AL1, HO WA1, MA, SH1 and SH2.

The formation of CD₃OH and CD₂O was observed in these soil samples, as illustrated by one example in Figure 37 and Figure 38. Deuterium labelling of CH₃OH and CH₂O is evidenced by a mass shift of 3 or 2 AMU, respectively, as previously described (Chapter 3.1.5.1). It can be hypothesised that CH₄ and C₂H₆ can also be formed from d₆-DMSO, as described in Chapter 3.1.5.1. As demonstrated in Chapter 3.2, N- or P-bonded CH₃ groups can also produce CH₃OH, CH₂O, CH₄ and C₂H₆, which lends evidence to support the hypothesis that these can also be converted within the soil.

Figure 37: Chromatogram and mass track 33 and 35 of deuterated CH₃OH in an experiment with 5 g sterile soil (WF 0-5) in 10 ml ultra-pure H₂O and 25 μ mol d₆-DMSO. Taken from Hädeler et al. (2023).²⁰⁵

Figure 38: Chromatogram and mass track 210 and 212 of deuterated and derivatised CH_2O in an experiment with 5 g sterile soil (WF 0-5) in 10 ml ultra-pure H_2O and d_6 -DMSO. Taken from Hädeler et al. (2023).²⁰⁵

3.6.5 Wet-dry cycles with soils and their effect on CH₃OH and CH₂O formation

The objective of the 10 wet-dry cycles was to observe the soils' behaviour when subjected to a drying and subsequent rewetting process. Soil samples UH 0-10 and AL 20 were chosen because of their high organic content and different genesis (Chapter 2.1.4.2), and a third experiment was conducted with AL 20, where 200 μ mol H₂O₂ was added (Figure 39). This was done to see whether higher concentrations of oxidant impact the concentrations of the products. The investigation was focused on CH₃OH and CH₂O formation, as these are the C1 compounds with the highest concentrations in the soil investigations and have a high impact on carbon cycling and the chemical composition of the soil.

The concentration of CH₃OH in all soil samples in all WDCs was within the range of $4.44 \pm 0.21 \,\mu g/g_{soil,dw}$ to $6.18 \pm 0.35 \,\mu g/g_{soil,dw}$, with a general downward trend with continuing cycles (Figure 39a). However, there were exceptions with higher concentrations, particularly in the second and third cycles. Following ten cycles of wetting and drying, the concentration is observed to range between 0.98 ± 0.25 $\mu g/g_{soil,dw}$ and 1.55 ± 0.30 $\mu g/g_{soil,dw}$. The total concentration after 10 cycles of CH₃OH is 17.6 ± 1.1 $\mu g/g_{soil,dw}$, 30.2 ± 1.6 $\mu g/g_{soil,dw}$ and 49.5 ± 2.7 $\mu g/g_{soil,dw}$ for soil UH 0-10, AL 20 and AL 20 with H₂O₂, respectively.

A differentiated pattern is evident for CH₂O compared with CH₃OH, with overall higher concentrations (Figure 39b). The starting concentrations in the samples were 7.49 \pm 0.39 µg/g_{soil,dw}, 6.55 \pm 0.75 µg/g_{soil,dw} and 14.5 \pm 0.8 µg/g_{soil,dw} CH₂O for soil UH 0-10, AL 20 and AL 20 with H₂O₂, respectively. The final concentrations of CH₂O are 8.40 \pm 0.33 µg/g_{soil,dw}, 6.80 \pm 0.25 µg/g_{soil,dw} and 4.92 \pm 0.59 µg/g_{soil,dw} for soils UH 0-10, AL 20 and AL 20 with H₂O₂, respectively. The measurement of AL 20 with H₂O₂ failed at the 9th WDC and AL 20 in the 10th WDC due to technical issues. No discernible trends are evident for UH 0-10 and AL 20, with a slight decline observed for AL 20 with H₂O₂. The sum of all concentrations observed is 51.8 \pm 1.35 µg/g_{soil,dw} for UH 0-10, 85.7 \pm 2.3 µg/g_{soil,dw} for AL 20, and 86.7 \pm 2.4 µg/g_{soil,dw} CH₂O for AL 20 with H₂O₂.

Figure 39: CH₃OH **a**) and CH₂O **b**) concentrations in 10 wet-dry-cycle experiments (5 g soil with 10 ml H₂O; 2-day wetting phase and then sterilisation at 105°C) of soil UH 0-10 and AL 20 (also with added H₂O₂) and the sum of CH₃OH and CH₂O concentrations **c**). Error bars refer to the SD of the total conversion of CH₃OH and CH₂O for n = 9.

The sum of CH₃OH and CH₂O results in a discernible decline in the values of all three WDCs (Figure 39c). The starting concentrations range from $11.9 \pm 0.5 \ \mu g/g_{soil,dw}$ to $20.7 \pm 0.9 \ \mu g/g_{soil,dw}$, with values between 6.47 ± 0.67 $\ \mu g/g_{soil,dw}$ and 9.82 ± 0.71 $\ \mu g/g_{soil,dw}$ observed in the ninth and tenth WDCs. The

summed concentrations are 69.4 ± 1.8 μ g/g_{soil,dw} for UH 0-10, 115 ± 3 μ g/g_{soil,dw} for AL 20 and 136 ± 4 μ g/g_{soil,dw} for AL 20 with H₂O₂.

3.6.6 Influence of pH variations on soil and the impact on CH₃OH, CH₂O, CH₄ and C₂H₆ production

To gain insights into the impact of pH change on the formation of CH₃OH, CH₂O, CH₄ and C₂H₆, NaOH was added to the soil sample PT 0-10, which has the lowest pH of all soil samples (pH 3.2), and the soil sample was then incubated at pH values of 3.9, 5.2, 6.2 and 6.9 (Figure 40). The concentration of CH₃OH exhibited gradually increased from 6.88 \pm 0.06 to 26.0 \pm 4.8 µg/g_{soil,dw} with rising pH levels. Conversely, the concentration of CH₂O demonstrated a consistent decline from 21.4 \pm 1.0 to 6.49 \pm 0.33 µg/g_{soil,dw}, except for the pH 6.9.

The total concentration of $CH_3OH + CH_2O$ remains constant at approximately 25 µg/g_{soil,dw} within the error margins except for pH 6.9, where total concentrations of 41.2 ± 6.1 µg/g_{soil,dw} were observed. No major changes were observed in the concentrations of CH_4 and C_2H_6 , except at pH 3.9, where a slight increase in the concentration of CH_4 was noted. The attempt to modify the pH value from a high to a low pH in various soil samples was unsuccessful due to the decomposition of the soil matrix, the inability to take H₂O samples, and the consequence of obtaining reliable measurements.

Figure 40: Measurement of CH₃OH, CH₂O **a**) and CH₄ and C₂H₆ **b**) in soil sample PT 0-10 (5 g and 10 ml H₂O) with the adjustment of the pH-value with NaOH. Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for CH₄ and C₂D₆, n = 3.

3.6.7 Variation of incubation temperature in soil and the influence on CH₃OH, CH₂O, CH₄ and C₂H₆ production

The impact of temperature (-26, 6, 12, 22, 30, 40 and 50°C) on the soil experiments was investigated using soil WA2 0-10 as a case study (Figure 41). It was selected because of the previously observed

high production of CH₃OH, CH₂O, CH₄, and C₂H₆, which were again analysed. The concentration of CH₃OH exhibited a gradual increase with increasing temperature, from $2.14 \pm 0.33 \ \mu g/g_{soil,dw}$ to $30.1 \pm 1.2 \ \mu g/g_{soil,dw}$. In contrast, there is no considerable variation in the concentration of CH₂O, which ranges between $21.6 \pm 0.6 \ \mu g/g_{soil,dw}$ and $26.8 \pm 2.2 \ \mu g/g_{soil,dw}$, except for -26° C, where it is observed to be lower at $14.0 \pm 3.9 \ \mu g/g_{soil,dw}$. The concentration of CH₄ increases with temperature, rising from $0.97 \pm 0.03 \ n g/g_{soil,dw}$ to $5.54 \pm 0.41 \ n g/g_{soil,dw}$. A similar trend is observed for C₂H₆, with the concentration increasing from $0.30 \pm \text{zero } n g/g_{soil,dw}$ to $1.36 \pm 0.07 \ n g/g_{soil,dw}$. An exponential growth for CH₃OH, CH₄ and C₂H₆ is observed between R² = 0.86 and 0.97, while the exponential R² for CH₂O is lower at 0.36.

Figure 41: Measurement of CH₃OH, CH₂O **a**) and CH₄ and C₂H₆ **b**) in soil WA2 0-10 at different incubation temperatures (-26, 6, 12, 22, 30, 40 and 50°C). Error bars refer to the SD of the total conversion of all major C1 and C2 compounds for n = 9, except for CH₄ and C₂D₆, n = 3.

3.6.8 Addition of CH₃OH to non-sterile soils for demonstration of soil degradation potential

Experiments were conducted with untreated and non-sterile soil samples AL 20, WA2 0-10, and UH 0-10 to investigate if they could directly degrade abiotically produced CH₃OH, considering the presence of microorganisms within them. The initial addition of CH₃OH to wetted soils resulted in a degradation of CH₃OH over 21 days. The initial concentrations of CH₃OH were 230 μ g/g_{soil,dw}, 249 μ g/g_{soil,dw} and 214 μ g/g_{soil,dw} for the soil samples AL 20, WA2 0-10 and UH 0-10, respectively. A gradual degradation was observed until day 10, after which it accelerated significantly. Complete degradation of the CH₃OH was achieved within 15-21 days and demonstrates the degradation potential of the soils (Figure 42a).

In addition, 5 g soil sample (AL 20) was incubated with 10 ml ultra-pure H₂O and in two additional experiments, methylotrophic bacteria (*Methylorubrum extorquens*) was added before the incubation

started and after the incubation and the latter measured again two days later (Figure 42b). The CH_3OH concentration within the error bars is zero, indicating a degradation due to *Methylorubrum extorquens*. A negative value is observed due to the subtraction of the blank concentration. The CH_2O concentration is unchanged in all three experiments, suggesting that the *Methylorubrum extorquens* did not consume CH_2O .

Figure 42: **a)** Degradation of added CH₃OH in untreated soil samples AL 20 0-20, WA2 0-10, and UH 0-10 (n = 3). **b)** Measurement of CH₃OH and CH₂O in soil AL 20 with added methylotrophic bacteria (*Methylorubrum extor-quens*) before and after the incubation compared with the experiment of AL 20 from Figure 34. Error bars refer to the SD of the total conversion of CH₃OH and CH₂O for n = 9.

3.6.9 Correlation of TOC and methoxy content as a basis for a first extrapolation of the production of CH₃OH and CH₂O from soils on a global scale

The TOC and OCH₃ content were analysed for all 24 investigated soil samples using the methods described in Chapters 2.2.2.4 and 2.2.5. The concentrations of TOC range from 0 to 16.2 w%, and the OCH₃ content ranges from 0.0043 \pm 0.0026 w% to 0.42 \pm 0.00 w%. The TOC and OCH₃ content show a high correlation of R² = 0.88 (Figure 43).

The degrees regression equation was used to calculate the OCH_3 content as a percentage of the TOC with the following equation:

$$y = 0.0218x + 0.0102 \tag{10}$$

Filling in 100 % TOC as x in equation 10 yields an OCH₃ content of 2.19 % per 100 % TOC. This was done to extrapolate the OCH₃ content to a global scale and was undertaken to calculate initial projections using the scientific data available.

Figure 43: Correlation of the TOC (n = 1) with OCH₃ content (n = 3) of the 24 investigated soil samples with an R^2 = 0.88.

3.6.10 TOC and CH₃OH + CH₂O correlation for initial global predictions of CH₃OH and CH₂O production

Figure 44 illustrates the relationship between TOC and the measured concentrations of CH_3OH and CH_2O from all 24 soil experiments (Figure 34). A linear regression equation with an R^2 value of 0.67 was obtained (Equation 11).

$$y = 1.71x + 7.03 \tag{11}$$

This shows a high correlation of the TOC with the produced CH_3OH and CH_2O , indicating that the TOC measurement gives a good prediction for the CH_3OH and CH_2O production of the soil. When 100 % TOC is entered into the equation, it predicts a production of 178 $\mu g/g_{TOC}$ CH_3OH and CH_2O from a two-day incubation time. This value can then be extrapolated globally for the two-day incubation period for the soils, resulting in a value of 0.41 Gt CH_3OH and CH_2O production from the 2350 Gt TOC.

Figure 44: The TOC was correlated with the sum of CH_3OH and CH_2O concentrations of all 24 soils investigated. The experiments involved a two-day incubation period, during which 5 g of soil was incubated in 10 ml ultra-pure H_2O .

3.6.11 Discussion and implications of the abiotic production of CH₃OH, CH₂O, CH₄ and C₂H₆ in natural environments, especially the pedosphere

The results from various experiments with sterile soil samples provide evidence that they possess the potential for the abiotic formation of CH₃OH, CH₂O, CH₄ and C₂H₆, which represent environmentally important C1 and C2 compounds. High production of 2-28 μ g/g_{soil,dw} CH₃OH and CH₂O in soils was observed. These results correspond to the high CH₃OH and CH₂O production already obtained for aromatic OCH₃ compounds, as well as for lignin and pectin in aqueous solution in the presence of H₂O₂, an acid and a transition metal species. To further confirm these similarities, OCH₃ groups were removed from the soil samples, and experiments with isotopically labelled substrates were carried out.

The almost complete removal of OCH₃ groups from the soil samples resulted in a complete absence of CH₃OH and a substantial decrease in CH₂O concentration. This suggests that the OCH₃ groups may serve as precursors for CH₃OH and CH₂O in soil samples. To investigate this further, deuterated or ¹⁸O-OCH₃ labelled 2-methoxyphenol was added to three soil experiments with removed OCH₃ groups. Subsequent measurements of the deuterated and ¹⁸O-labelled CH₃OH formed in the reaction provided direct evidence for the production of CH₃OH from the OCH₃ group of 2-methoxyphenol. This is

initiating various oxidation reactions (Chapter 1.6). As discussed in Chapters 1.6, 1.4 and 1.3, ROS, transition metal species and various precursor compounds, particularly lignin, are ubiquitous in soils. This suggests that the prerequisites for the reactions are given, and it can be hypothesised that this reaction occurs in soils, as observed for the aromatic OCH₃ compounds. Given the capacity of C1 and C2 formation by other compounds with S-, N- and P-bound CH₃ groups (chapters 3.1.2 and 3.2.1), which are also abundant in soils, it is proposed that these compounds should also be considered as precursor compounds. Furthermore, adding d₆-DMSO to the soils resulted in deuterium-labelling in CH₃OH and CH₂O, thereby supporting the hypothesis (Chapter 3.6.4).

The production of CH₄ and C₂H₆ can be observed in all experiments with soils; however, the concentrations are 3-4 orders of magnitude lower than for CH₃OH and CH₂O. Concentrations up to 6,55 ± 0,27 ng/g_{soil,dw} (0,14 ng g⁻¹_{soil,dw} dw h⁻¹) in a two-day incubation time were measured at 22°C. These are comparable to those observed in other studies with 0.20 ± 0.05³⁴ or 0.24 ± 0.06 ng g⁻¹ dw h^{-1 133} at 40°C. Furthermore, the production of CH₄ and C₂H₆ is also 2-3 orders of magnitude lower in lignin and pectin, but only in the presence of Asc (chapter 3.5.1). In contrast, no production of CH₄ and C₂H₆ is observed for the analysed monomers of lignin and pectin in the absence of Asc. This suggests that an OH radical scavenger such as Asc and lignin or pectin must be present as a macromolecule in the soil to produce CH₄ and C₂H₆. This behaviour of Asc was also observed in experiments with d₆-DMSO, which can also be transferred to other S- and N-hetero-bonded compounds due to a similar reaction mechanism.¹⁴ Based on this observation, many other precursor compounds with a CH₃ group should also be considered sources of CH₄ and C₂H₆, as well as CH₃OH and CH₂O. This is particularly relevant given the considerable variation in soil composition, which can harbour a vast reservoir of potential precursor compounds. Other pathways of CH₄ production in soils are also possible, such as photolysis, electrocatalysis, and others.²⁷⁰

A decrease in CH₄ and C₂H₆ concentration has been observed upon removal of the OCH₃ groups in soil samples, in contrast to the experiments with the aromatic OCH₃ compounds, which do not produce CH₄ and C₂H₆ (Chapter 3.3.1). Therefore, removing the OCH₃ group should not influence CH₄ and C₂H₆ production. Since the production of CH₄ and C₂H₆ has been observed in lignin and pectin in the presence of Asc, it is reasonable to conclude that other functional groups of Lignin or pectin could be responsible for CH₄ and C₂H₆ production. However, these groups are possibly altered by the HI treatment of the soil samples, thereby reducing the production of CH₄ and C₂H₆. Another possibility is that the Asc produces CH₄ and C₂H₆, as previously observed for CH₄.³¹ Furthermore, HI has been shown to cleave CH₃ groups from other compounds, such as DMSO (experiments with DMSO demonstrate this). Consequently, the production of CH₄ and C₂H₆ from other compounds is reduced, influencing the total

production rate. The source of CH_4 and C_2H_6 remains to be elucidated; thus, the precise factors influencing their production remain to be determined.

Additional experimental setups were conducted using various configurations to enhance the understanding of the dominant processes. Initially, two soils were subjected to 10 wet-dry cycles to examine the behaviour of CH₃OH and CH₂O formation from the soil following several reaction cycles. Furthermore, H_2O_2 was added to soil sample AL 20 to investigate whether the availability of an additional oxidising agent would affect the conversion rates. It was observed that there was a continuous decrease in the concentration of CH₃OH over the 10 cycles for all soil samples. A similar trend was observed for CH₂O, although its concentration remained consistently higher than that of CH₃OH. Adding H₂O₂ to soil sample AL 20 resulted in an increase of approximately 18 % in the total concentration of CH₃OH and CH₂O. Given that the total addition of 2 mmol H₂O₂ corresponds to a 3-orders of magnitude higher conversion if every H_2O_2 molecule produces a CH₃OH molecule, this does not appear to be the limiting factor for the reaction. It is also noteworthy that H_2O_2 can be utilised by other reactions within the soil, which can limit its availability. This is supported by the observation that not all CH₃OH is oxidised to CH₂O, which would be feasible due to an excess of H₂O₂. This finding indicates that H₂O₂ is rapidly consumed in other reactions, limiting availability. This phenomenon can be attributed to the high reactivity of H₂O₂. Consequently, the extent to which the additional H₂O₂ contributes to the overall reaction is challenging to determine.

Other limiting factors can be the presence of ROS in the soil and other factors that may impose limitations, including the accessibility of OCH₃ groups. Notably, most of these groups are incorporated within the complex 3D structure of lignin and may not be available for the reaction with the iron-oxo species. Furthermore, the availability of free Fe to form reactive Fe species may also be a limiting factor due to the incorporation of complex molecular structures.²⁷¹ In general, the experiments demonstrate that, over a more extended period of time, the soil retains its capacity to produce CH₃OH and CH₂O, albeit with a decline in turnover rates. However, following the completion of 10 wet-dry cycles, a conversion of 6.19 % to 7.25 % of the OCH₃ group to CH₃OH and CH₂O was observed, indicating a substantial conversion to C1 components when extrapolated on a global scale (as discussed in detail in Chapter 3.7).

In addition, the pH value in soil sample PT was increased from 3.2 to 6.9 in 5 steps with NaOH, and the concentrations of CH_3OH , CH_2O , CH_4 and C_2H_6 were analysed. However, the reduction of the pH value with HCl from around 7 to around 3 could not be carried out in the experiments due to the decomposition of the soil. No discernible change in the concentration of the sum of CH_3OH and CH_2O was observed, except for a slight increase at pH 6.9. The observed increase in CH_3OH with increasing pH may be attributable to a deficiency in oxidation capacity. This capacity is essential for the oxidation of Fe,

which is present in increasing amounts in Fe^{II} at higher pH values.²⁷² Consequently, an enhanced oxidation capacity is required to oxidise Fe^{II} to Fe^{III} and subsequently to Fe^{IV} for the generation of the ironoxo species and, subsequently, for the production of CH₃OH. Consequently, a shortage of oxidation capacity to oxidise CH₃OH to CH₂O arises due to the need for enhanced iron oxidation that increases the percentage of CH₃OH. The observation of a constant concentration of both CH₃OH and CH₂O further indicates that the reaction from CH₃OH has a lower energy barrier than the oxidation of CH₃OH to CH2O because CH3OH has to be produced first, and only the CH₂O could be produced. This suggests that the conversion of CH₃OH to CH₂O occurs faster. In that case, CH₃OH and the total concentration rate will decrease due to this reaction's consumption of oxidation capacity, which is missing for the CH₃OH formation. It is also assumed that the oxidation capacity remains constant because the concentration of CH₄ and C₂H₆ remains approximately constant over the entire pH range, indicating that the production of CH₄ and C₂H₆ is independent of the pH value.

Temperature-dependent experiments (ranging from -26-50°C) were conducted using soil sample WA2 0-10, and the concentrations of CH₃OH, CH₂O, CH₄ and C₂H₆ were analysed. The results demonstrated an exponential growth trend for all components with increasing temperature, exhibiting high R² values ranging from 0.86 to 0.97. However, the exponential regression for CH₂O has an R² of 0.36, indicating a different growth pattern. A substantial increase in CH₃OH concentration by over 1340 % was observed with rising temperatures, in contrast to the increase of only 60 % in CH₂O. As temperature rises, production increases, but oxidation capacity may not keep pace, resulting in more CH₃OH formation at higher temperatures that are not converted to CH₂O. For CH₄ and C₂H₆, a consistent increase in concentration was observed across the temperature range, with concentrations rising by approximately 500 %, attributable to the enhanced energy in the system and a faster reaction in general.

To investigate the degradation of CH₃OH in soils, CH₃OH concentrations were artificially elevated in untreated (non-sterile) soil samples. The results demonstrate that the degradation of CH₃OH occurs in soils in approximately 15-21 days. Additionally, methylotrophic bacteria (*Methylorubrum extorquens*) were added before and after the soil experiments. In both cases, no CH₃OH was observed after the incubation. These experiments demonstrate that soils and added methylotrophic bacteria possess the capacity to degrade internally produced CH₃OH.

All soil samples' TOC and OCH₃ content were determined to provide initial estimates of the effects on global production rates of C1 and C2 components in soils. The TOC and OCH₃ content concentrations lie within the range of natural fluctuations at 0-16.2 w% ²⁷³ and 0.0043 \pm 0.0026 w% to 0.42 \pm 0.003 w%, respectively.^{274,275} These values can then be related to the resulting C1 and C2 components, allowing for the initial estimation of these processes' global potential. Given the high correlation between OCH₃ content and TOC, as well as the significant correlation of TOC with the production of CH₃OH +

 CH_2O , one can make accurate predictions for $CH_3OH + CH_2O$ production based solely on the measurement of either the TOC or the OCH₃ content in the soils.

3.7 Global implications of the abiotic and oxic formation of CH_3OH , CH_2O , CH_4 and C_2H_6 in soils

The effects of lignin-derived demethoxylation and the resulting C1 and C2 components are discussed in this section. As lignin constitutes a significant proportion of soil organic matter, its transformation is a pivotal process in the global carbon cycle and, thus, the environment. Utilising the mean content of 2.19 % of OCH₃ groups in the TOC of the soil samples determined in this study (Chapter 3.6.9), an average content of approximately 50 Gt OCH₃ group can be calculated from the approximately 2350 Gt TOC in the soil globally.²⁷⁶ This corresponds to approximately 50 Gt CH₃OH that can be produced maximally from the OCH₃ groups. Utilising the 10 wet-dry cycles as the basis for the CH₃OH and CH₂O produced (6.71, 6.17 or 7.25 % conversion of the OCH₃ content), the quantity obtained is 3.46, 3.19 and 3.74 Gt CH₃OH + CH₂O, respectively. When the individual experiments with the soil samples are used as a basis for calculations, 0.41 Gt CH₃OH + CH₂O conversion is obtained with an incubation time of 2 days, as described in Chapter 3.6.1. If the annual emissions of CH₃OH into the atmosphere (0.075-0.490 Gt yr⁻¹)¹⁰⁹⁻¹¹¹ compared with this, the production rate is in the same range for the two-day incubation time and is approximately one order of magnitude lower than the 10 wet-dry cycles. A lower emission rate from dead leaf matter was calculated to be 0.018 to 0.040 Gt yr⁻¹ CH₃OH as an additional abiotic source.

These calculations, however, are subject to significant uncertainties, including competitive reactions of microorganisms that degrade lignin and can produce CH₃OH.¹⁹⁷ In turn, other microorganisms like methylotrophic bacteria can utilise CH₃OH as an energy source; therefore, only net emission rates are observed, leading to low emission rates in the atmosphere. Additionally, the laboratory conditions do not accurately reflect natural conditions, and measurement inaccuracies and the analysis of soil samples from only temperate latitudes introduce further uncertainties concerning global turnover rates. Also, the sterilisation of the soil samples could change the structure of the organic molecules and, therefore, potentially influence the conversion rates. Nonetheless, it can be suggested that the recently identified processes play a substantial role in the global carbon cycle. However, further investigations are required to evaluate the precise environmental implications. Moreover, experiments on CH₃OH degradation have demonstrated that soil microorganisms can degrade CH₃OH, thereby indicating that CH₃OH can be effectively degraded directly in the soil and is, therefore, not emitted in high quantities into the atmosphere.^{110,111} The demethoxylation process provides many easily accessible

carbon molecules, such as CH₃OH and CH₂O, as an energy source for the microbial community.⁵⁴ This phenomenon elucidates the discrepancy between the substantial production capacity and the low atmospheric emissions mentioned earlier. Also, CH₄ and C₂H₆ generated in soils are food for microorganisms like methylotrophic bacteria.²⁷⁷ All these generated C1 and C2 compounds influence the carbon cycle and have to be considered by calculating the fluxes in the carbon cycle (Figure 45).

Figure 45: Overview of the cycle of iron-mediated demethylation from lignin-derived substrates and the production of CH₃OH and CH₂O. Subsequently, the degradation by microbes or emission into the atmosphere and, finally, the mineralisation to CO₂, which is taken up by plants.

4 Summary and Outlook

The present study investigates environmentally relevant substances like DMSO, 2-methoxyphenol, sinapyl alcohol and others with hetero-bonded CH_3 groups and the release of C1 and C2 components from them in the presence of transition metals like Fe, H_2O_2 and an acid. This was done with laboratory incubation experiments and isotopically labelled substrates, especially to elucidate the underlying reaction mechanism. This system produces, among others, a $[Fe^{IV}=O]^{2+}$ species, which initiates the reaction. With lignin or pectin and soil samples that were incubated, the reactions are transferred close to natural environments.

A conversion to C1 and C2 compounds was observed for all substrates with heteroatom-bonded CH₃ groups in a chemical model system under abiotic and oxic conditions. This contrasts with metabolic and combustion processes, typically considered the primary sources of these C1 and C2 compounds. Using DMSO as a model substance, the following C1 and C2 components were identified with conversion rates up to 86 %: CH₄, C₂H₆, CH₃OH, CH₂O, CH₃Cl, CO, CO₂, HCOOH and CH₃COOH. The CH₃ group was identified as a precursor for all components using deuterated or ¹³C-labelled DMSO. Furthermore, in alkyl trapping experiments, it was observed that a CH₃ radical is generated from DMSO. The origin of the oxygen in CH₃OH, CH₂O and CO₂ was identified using ¹⁸O-labelled H₂O, H₂O₂ and O₂, with the origin in H₂O₂ and O₂. Applying deuterated CH₃OH, it was demonstrated that CH₂O is an oxidation product of CH₃OH. The presence of chlorine in LFe^{II}Cl₂ results in the formation of CH₃Cl, which has shown a reaction of chlorine with the CH₃ radical.

The conversion rates of CH₄, C₂H₆, CH₃OH, and CH₂O depend on the choice of substrates, the iron species, and the presence or absence of Asc. Replacing LFe^{II}Cl₂ with Fe₂O₃ results in enhanced yields, particularly with CH₄ at 100 μ mol Asc concentrations. Asc concentrations influence the species distribution of the reaction products, with elevated levels of CH₃OH and CH₂O observed at lower Asc concentrations. The absence of Asc results in the exclusive formation of CH₃OH and CH₂O. Notably, a pronounced shift in the ratio towards CH₄ and a near absence of all other C1 and C2 compounds are observed. In addition, lower conversion rates are generally observed in response to changes in Asc concentration compared to the initial setup (100 μ mol Asc). The influence of oxygen on the reaction was investigated by replacing it with nitrogen; however, no discernible influence was found on conversion rates to C1 and C2 compounds.

Based on these observations, an extended reaction mechanism was developed. Utilising iron species, Asc and H_2O_2 , the formation of $[Fe^{IV}=O]^{2+}$ species and OH radicals was observed, as previously documented.^{14,16} The $[Fe^{IV}=O]^{2+}$ species then reacts with DMSO, resulting in the cleavage of a CH₃ radical. This radical subsequently reacts with the OH radical, forming CH₃OH, and can undergo further oxidation to CH_2O and up to CO_2 . The reaction that leads to CH_4 occurs by recombining the CH_3 radical with a hydrogen atom. The formation of C_2H_6 results from the recombination of two CH_3 radicals. The substitution of DMSO with methionine (S-bonded) or compounds featuring N- and P-bonded CH_3 groups (choline, trimethylamine or methylphosphonate) in identical experiments has been shown to yield reduced conversion rates. With methionine, the presence of CH_4 , C_2H_6 , CH_3OH , and CH_2O was confirmed, whereas, in the case of the N- and P-bonded compounds, only smaller quantities of primarily CH_3OH and CH_2O were observed possibly due to structural differences in molecules. In instances involving methionine, choline, and trimethylamine, the CH_3 group could likewise be identified as a precursor of CH_4 and C_2H_6 . The production of C1 and C2 compounds in these reactions has a considerable impact on natural environments due to the ubiquitous distribution of all involved compounds.

In contrast, substrates with O-bonded CH₃ groups attached to an aromatic system exhibit different behaviour under the same experimental conditions, characterised by the formation of CH₃OH and CH₂O and the absence of CH₄ and C₂H₆. The investigation of the monomers sinapyl alcohol and coniferyl alcohol, which are parts of the lignin structure, reveals high conversion rates (up to 111 %) of CH₃OH and CH₂O compared to one CH₃ group. Furthermore, 2-methoxyphenol was selected as a representative substance for aromatically bound OCH₃ groups owing to its simple structure and the availability of isotopically labelled variants. The behaviour of other aromatic compounds with an OCH₃ group was examined, and it was found that they exhibit comparable behaviour in producing CH₃OH and CH₂O, which also represent the sole reaction products. The iron species was also found to influence the conversion rate, with consistently higher conversion rates and exclusively to CH₃OH and CH₂O. Hence, it was replaced with triflic acid in follow-up experiments. This is in contrast to the other hetero-bonded CH₃ groups where, in the presence of Asc, CH₄ and C₂H₆ are produced. The monomer galacturonic acid methyl ester, which is part of the pectin structure and lacks an aromatic system, was also analysed, revealing lower conversion rates for CH₃OH and CH₂O are produced. The monomer galacturonic acid methyl ester, which is part of the pectin structure and lacks an aromatic system, was also analysed, revealing lower conversion rates for CH₃OH and CH₂O only.

A detailed investigation of the reaction mechanism associated with methoxylated substrates was carried out due to the observed differences in the C1 and C2 compounds produced compared to DMSO. Contrary to DMSO, alkyl trapping experiments indicated no formation of CH₃ radicals. Furthermore, ¹⁸O-labelled H₂O₂ and O₂ were used to identify the origin of the oxygen, demonstrating that the oxygen in CH₃OH and CH₂O does not originate from H₂O₂ or O₂. Consequently, deuterated and ¹⁸O-labelled OCH3-2-methoxyphenol was employed, confirming that the entire OCH₃ group is the source of CH₃OH. This led to the proposal of a novel mechanism for forming CH₃OH from aromatically bound OCH₃ groups, where the whole OCH₃ group is split off due to the [Fe^{IV}=O]²⁺ species and reacts to CH₃OH. This mechanism has not been previously documented under atmospheric conditions and could occur in natural environments with significant impact on them.

The investigation of transition metal species (MnCl₂, MnSO₄, MnO₂, FeCl₂, FeSO₄, CoCl₂, NiCl₂, NiSO₄, CuCl₂, CuO + CuO₂ and Cu(OAc)₂) other than LFe^{IV}Cl₂ and Fe₂O₃ in combination with DMSO, methionine and 2-methoxyphenol, and the otherwise identical setup, demonstrated that the identical C1 and C2 components were formed as with LFe^{IV}Cl₂ and Fe₂O₃. With DMSO as a substrate, all transition metal species apart from the Cu species exhibited a comparably high conversion rate. In the case of methionine, the Mn and Fe species exhibited similar turnover rates, while the remaining transition metal species demonstrated smaller rates. FeCl₂ and FeSO₄ exhibited conversion rates analogous to those of LFe^{IV}Cl₂ and Fe₂O₃ in the presence of 2-methoxyphenol. All other transition metal species exhibited transition metal species, CH₃Cl was detected for DMSO and, to a lesser extent, for methionine, but none was detected for 2-methoxyphenol. Altogether, various transition metal species have been shown to act as effective mediators in the process of C1 and C2 formation from hetero-bonded CH₃ groups.

To get closer to natural conditions, lignin and pectin were initially incubated under the previously established experimental conditions. The presence of Asc led to the formation of CH_4 , C_2H_6 , and approximately 2-3 orders of magnitude more CH_3OH and CH_2O . In contrast, the absence of Asc resulted in the formation of only CH_3OH and CH_2O in comparable concentrations. This shows that these biomolecules can also be converted to C1 and C2 compounds.

Subsequently, various soils with different organic content were sterilised at 105°C to eliminate all microbial activity. These were incubated with solely ultra-pure H₂O, and the formation of CH₄ and C₂H₆ was observed alongside a three- to fourfold higher production of CH₃OH and CH₂O across all soil types with concentrations between 2-28 $\mu g/g_{soil,dw}$. The OCH₃ group was identified as the source of both CH₃OH and CH₂O, a conclusion supported by the addition of isotopically labelled 2-methoxyphenol and the subsequent removal of the OCH₃ groups from the soil, which results in the lack of CH₃OH formation and a substantial decrease in CH₂O formation. The precise origins of CH₄ and C₂H₆ remain unclear; however, lignin and pectin produce them in the presence of Asc. Also, other hetero-bonded CH₃ groups can produce CH₄ and C₂H₆, as evidenced by adding d₆-DMSO. Therefore, many sources are possible for the generation of CH₄ and C₂H₆. Through the implementation of 10 wet-dry cycles, it has been shown that soil demonstrates a gradual decline in its capacity to produce CH₃OH and CH₂O while retaining the ability to generate these components over an extended period.

The demethylation process has been identified as a previously unobserved source of many different C1 and C2 components in the environment where CH₄ was described earlier. A novel process is the

special case of O-methyl groups and the demethoxylation of the whole OCH₃ group under atmospheric and abiotic conditions. It has a presumably high impact on natural environments, especially the pedosphere, due to the widespread and essential biomolecules like lignin and the ubiquitous distribution of all components involved in the reaction.

Figure 46 provides a comprehensive summary of the processes described in this study. The formation of C1 and C2 components from DMSO is particularly relevant in the marine environment due to the high abundance of DMSO and related compounds like DMS. Meanwhile, other S-, N, and P-bonded CH₃ groups are ubiquitous and generally influence the Earth's system. Methionine is an essential amino acid, and choline functions as a precursor to other biomolecules in animals therefore, they are wide-spread in the biosphere. The formation of CH₃OH and CH₂O from OCH₃ groups is important in the pedosphere, as evidenced in this work, contributing to a more comprehensive understanding of the carbon cycle within this environment and on a global scale.

The present study provides an initial understanding of the abiotic and oxic formation of C1 and C2 compounds in the environment. However, several aspects require further investigation to refine the comprehension of these processes and their broader implications. The interaction between abiotic and microbial pathways in soil remains a critical open question. While this study identifies abiotic CH₃OH and CH₂O production, the extent to which microbial degradation counteracts its production requires more detailed studies. Scaling up the experimental results to quantify the contribution of these processes to global biogeochemical cycles requires additional field-based studies across different soil types and climatic regions. Incorporating isotopic tracing methods in environmental monitoring could validate the proposed reaction mechanisms and improve global flux estimations. The role of environmental stress factors such as pH, temperature variations, and redox fluctuations should be further explored to assess their impact on the reaction and the turnover rates. Understanding these factors will enhance predictive models of carbon turnover in ecosystems and refine climate models incorporating trace gas emissions.

Figure 46: Summary of the CH₃ radical-based (left) and OCH₃-based cycles (right) that form C1 and C2 compounds. Fenton Chemistry generates the $[Fe^{IV}=O]^{2+}$ species that initiates the demethylation (left) or the demethoxylation (right) of the substrates with hetero-bonded CH₃ groups. The observed ¹³C and ²H labels in the CH₃ radical-based mechanism are presented in bold red and green, respectively. Oxygenated C1 compounds with ¹⁸O isotopes are highlighted in bold orange or blue, originating from ¹⁸O-labeled H₂O₂ or O₂, respectively. The deuterated and ¹⁸O labels from the OCH₃ group of 2-methoxyphenol are shown in red and pink, respectively.

Overall, this study extended an overlooked abiotic pathway for C1 and C2 formation from CH_3 radicals that takes place in many compartments in the earth's system. This system comprises transition metals, H_2O_2 and Asc, in conjunction with compounds containing hetero-bonded CH_3 groups. The novel discovered demethoxylation process is especially important in the pedosphere and contributes significantly to the carbon cycle within the soil. By addressing the identified knowledge gaps, future research can incorporate these findings into a more comprehensive framework that considers both biotic and abiotic contributions to the global carbon budget.

5 Related scientific work

Peer-reviewed journal articles

Hädeler, J. *et al.* Natural Abiotic Iron-Oxido-Mediated Formation of C1 and C2 Compounds from Environmentally Important Methyl-Substituted Substrates. *Journal of the American Chemical Society* **145**, 24590–24602; 10.1021/jacs.3c06709 (2023).

Additional contributions (not directly related to this thesis):

Ernst, L. *et al.* Methane formation driven by light and heat prior to the origin of life and beyond. *Nat Commun* **14**, 4364; 10.1038/s41467-023-39917-0 (2023).

Conference Proceedings

Hädeler, J., Velmurugan, G., Lauer, R., Comba, P., Keppler, F.: ¹⁸O labelling experiments reveal new abiotic pathway of methanol and formaldehyde formation in soil orally presented at: Jahrestagung der Arbeitsgemeinschaft Stabile Isotope e.V. (ASI), online conference, 30 September – 02 October 2024.

Hädeler, J., Velmurugan, G., Lauer, R., Comba, P., Keppler, F.: Natural abiotic iron-oxido-mediated formation of C1 and C2 compounds from environmentally important methyl-substituted substrates Jahrestagung der Arbeitsgemeinschaft Stabile Isotope e.V. (ASI), online conference, 27-29 September 2023.

6 Appendix

All individual measurements displayed in the figures are listed in a separate Excel sheet.

It is accessible online from heiDATA, an institutional repository for data from Heidelberg University.

(https://doi.org/10.11588/DATA/M2GCOQ)

7 References

- Atkinson, R. & Arey, J. Atmospheric degradation of volatile organic compounds. *Chemical reviews* 103, 4605–4638; 10.1021/cr0206420 (2003).
- Guenther, A. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. *Atmospheric Environment* 34, 2205–2230; 10.1016/S1352-2310(99)00465-3 (2000).
- Shen, X., Zhao, Y., Chen, Z. & Huang, D. Heterogeneous reactions of volatile organic compounds in the atmosphere. *Atmospheric Environment* 68, 297–314; 10.1016/j.atmosenv.2012.11.027 (2013).
- Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50; 10.1038/nature10322 (2011).
- Insam, H. & Seewald, M. S. A. Volatile organic compounds (VOCs) in soils. *Biol Fertil Soils* 46, 199–213; 10.1007/s00374-010-0442-3 (2010).
- Tang, J., Schurgers, G. & Rinnan, R. Process Understanding of Soil BVOC Fluxes in Natural Ecosystems: A Review. *Reviews of Geophysics* 57, 966–986; 10.1029/2018RG000634 (2019).
- Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. *Environmental Microbiology Reports* 1, 285–292; 10.1111/j.1758-2229.2009.00038.x (2009).
- Saunois, M. *et al.* The Global Methane Budget 2000–2017. *Earth System Science Data* 12, 1561– 1623; 10.5194/essd-12-1561-2020 (2020).
- Montero-Montoya, R., López-Vargas, R. & Arellano-Aguilar, O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. *Annals of Global Health* 84, 225–238; 10.29024/aogh.910 (2018).
- Chaturvedi, S. *et al.* Recent Advancement in Organic Aerosol Understanding: a Review of Their Sources, Formation, and Health Impacts. *Water Air Soil Pollut* 234, 1–21; 10.1007/s11270-023-06772-0 (2023).
- Fall, R. & Benson, A. A. Leaf methanol the simplest natural product from plants. *Trends in Plant Science* 1, 296–301; 10.1016/S1360-1385(96)88175-0 (1996).

- McBride, S. G., Osburn, E. D., Barrett, J. E. & Strickland, M. S. Volatile methanol and acetone additions increase labile soil carbon and inhibit nitrification. *Biogeochemistry* 145, 127–140; 10.1007/s10533-019-00595-0 (2019).
- Dixon, J. L., Beale, R. & Nightingale, P. D. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source. *Biogeosciences* 8, 2707–2716; 10.5194/bg-8-2707-2011 (2011).
- 14. Althoff, F. *et al.* Abiotic methanogenesis from organosulphur compounds under ambient conditions. *Nat Commun* **5**, 4205; 10.1038/ncomms5205 (2014).
- Comba, P., Kerscher, M., Krause, T. & Schöler, H. F. Iron-catalysed oxidation and halogenation of organic matter in nature. *Environ. Chem.* 12, 381; 10.1071/EN14240 (2015).
- Benzing, K., Comba, P., Martin, B., Pokrandt, B. & Keppler, F. Nonheme Iron-Oxo-Catalyzed Methane Formation from Methyl Thioethers: Scope, Mechanism, and Relevance for Natural Systems. *Chemistry – A European Journal* 23, 10465–10472; 10.1002/chem.201701986 (2017).
- 17. Keppler, F., Hamilton, J. T. G., Brass, M. & Röckmann, T. Methane emissions from terrestrial plants under aerobic conditions. *Nature* **439**, 187–191; 10.1038/nature04420 (2006).
- Keppler, F. *et al.* Methane formation in aerobic environments. *Environ. Chem.* 6, 459; 10.1071/EN09137 (2009).
- Lenhart, K. *et al.* Evidence for methane production by saprotrophic fungi. *Nat Commun* **3**, 1046; 10.1038/ncomms2049 (2012).
- Schroll, M. *et al.* Fungal Methane Production Controlled by Oxygen Levels and Temperature. *Methane* 3, 257–275; 10.3390/methane3020015 (2024).
- Ghyczy, M. *et al.* Hypoxia-induced generation of methane in mitochondria and eukaryotic cells: an alternative approach to methanogenesis. *Cellular Physiology and Biochemistry* **21**, 251–258; 10.1159/000113766 (2008).
- Bautz, J. *et al.* Formation of an aqueous oxoiron(IV) complex at pH 2-6 from a nonheme iron(II) complex and H2O2. *Angewandte Chemie (International ed. in English)* 45, 5681–5684; 10.1002/anie.200601134 (2006).
- Tuboly, E. *et al.* Methane biogenesis during sodium azide-induced chemical hypoxia in rats. *American journal of physiology. Cell physiology* **304,** C207-14; 10.1152/ajpcell.00300.2012 (2013).

- Dueck, T. A. *et al.* No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. *The New phytologist* **175**, 29–35; 10.1111/j.1469-8137.2007.02103.x (2007).
- 25. Evans, J. R. Resolving methane fluxes. *The New phytologist* **175**, 1–4; 10.1111/j.1469-8137.2007.02114.x (2007).
- Kirschbaum, M. U. F. *et al.* A comment on the quantitative significance of aerobic methane release by plants. *Functional Plant Biol.* **33**, 521–530; 10.1071/FP06051 (2006).
- Keppler, F. *et al.* Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. *New Phytologist* **178**, 808–814; 10.1111/j.1469-8137.2008.02411.x (2008).
- Lenhart, K., Althoff, F., Greule, M. & Keppler, F. Technical Note: Methionine, a precursor of methane in living plants. *Biogeosciences* 12, 1907–1914; 10.5194/bg-12-1907-2015 (2015).
- 29. Ghyczy, M., Torday, C. & Boros, M. Simultaneous generation of methane, carbon dioxide, and carbon monoxide from choline and ascorbic acid: a defensive mechanism against reductive stress? *The FASEB Journal* **17**, 1124–1126; 10.1096/fj.02-0918fje (2003).
- Bruhn, D., Mikkelsen, T. N., Rolsted, M. M. M., Egsgaard, H. & Ambus, P. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen. *Plant Biology* 16, 512–516; 10.1111/plb.12137 (2014).
- Althoff, F., Jugold, A. & Keppler, F. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. *Chemosphere* 80, 286–292; 10.1016/j.chemosphere.2010.04.004 (2010).
- Ernst, L. *et al.* Methane formation driven by light and heat prior to the origin of life and beyond. *Nat Commun* 14, 4364; 10.1038/s41467-023-39917-0 (2023).
- Jugold, A. *et al.* Non-microbial methane formation in oxic soils. *Biogeosciences* 9, 5291–5301;
 10.5194/bg-9-5291-2012 (2012).
- Hurkuck, M., Althoff, F., Jungkunst, H. F., Jugold, A. & Keppler, F. Release of methane from aerobic soil: an indication of a novel chemical natural process? *Chemosphere* 86, 684–689; 10.1016/j.chemosphere.2011.11.024 (2012).
- Keppler, F., Eiden, R., Niedan, V., Pracht, J. & Schöler, H. F. Halocarbons produced by natural oxidation processes during degradation of organic matter. *Nature* 403, 298–301; 10.1038/35002055 (2000).

- Pracht, J., Boenigk, J., Isenbeck-Schröter, M., Keppler, F. & Schöler, H. F. Abiotic Fe(III) induced mineralization of phenolic substances. *Chemosphere* 44, 613–619; 10.1016/s0045-6535(00)00490-2 (2001).
- Comba, P. *et al.* Iron catalyzed demethylation of acetic acid*. *Journal of Coordination Chemistry* **71**, 1704–1714; 10.1080/00958972.2018.1490414 (2018).
- Lenhart, K. *et al.* Evidence for methane production by the marine algae Emiliania huxleyi. *Biogeosciences* 13, 3163–3174; 10.5194/bg-13-3163-2016 (2016).
- Keppler, F. *et al.* Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane. *J. Breath Res.* **10**, 16003; 10.1088/1752-7155/10/1/016003 (2016).
- 40. Radical-Driven Methane Formation in Humans Evidenced by Exogenous Isotope-Labeled DMSO and Methionine. Antioxidants 2023, 12, 1381 (2023).
- Bruhn, D., Mikkelsen, T. N., Rolsted, M. M. M., Egsgaard, H. & Ambus, P. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen. *Plant Biology* 16, 512–516; 10.1111/plb.12137 (2014).
- 42. John T. G. Hamilton, Mcroberts, W. C., Keppler, F., Kalin, R. M. & Harper, D. B. Chloride Methylation by Plant Pectin: An Efficient Environmentally Significant Process. *American Association for the Advancement of Science* (2003).
- Yang, H., Yin, W., Zhu, X., Deuss, P. J. & Heeres, H. J. Selective Demethoxylation of Guaiacols to Phenols using Supported MoO 3 Catalysts. *ChemCatChem* 14, e202200297; 10.1002/cctc.202200297 (2022).
- Ishikawa, M., Tamura, M., Nakagawa, Y. & Tomishige, K. Demethoxylation of guaiacol and methoxybenzenes over carbon-supported Ru–Mn catalyst. *Applied Catalysis B: Environmental* 182, 193–203; 10.1016/j.apcatb.2015.09.021 (2016).
- 45. Zhang, X., Yan, P., Zhao, B. & Zhang, Z. C. Identification of electron-rich mononuclear Ni atoms on TiO 2 -A distinguished from Ni particles on TiO 2 -R in guaiacol hydrodeoxygenation pathways. *Catal. Sci. Technol.* **11**, 297–311; 10.1039/D0CY01720E (2021).
- Fu, Y., Zhu, Y., Shi, S. Q. & Goodell, B. Formaldehyde emission from wood promoted by lignin in the presence of iron residues. *Green Chem.* 24, 6631–6638; 10.1039/D2GC02632E (2022).

- Hildén, L. *et al.* Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation? *FEBS Letters* 477, 79–83; 10.1016/S0014-5793(00)01757-9 (2000).
- 48. Henriksson, G. *et al.* Is cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme? *Biochimica et biophysica acta* 1480, 83–91; 10.1016/S0167-4838(00)00096-0 (2000).
- Global Monitoring Laboratory Carbon Cycle Greenhouse Gases. Available at https://gml.noaa.gov/ccgg/trends_ch4/ (2025).
- Atkinson, R. & Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. *Atmospheric Environment* **37**, 197–219; 10.1016/S1352-2310(03)00391-1 (2003).
- 51. Claeys, M. *et al.* Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene. *American Association for the Advancement of Science* (2004).
- 52. Volkamer, R. *et al.* Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. *Geophysical Research Letters* **33**; 10.1029/2006GL026899 (2006).
- Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the Earth system. *New Phytologist* 183, 27–51; 10.1111/j.1469-8137.2009.02859.x (2009).
- Kesselmeier, J. & Staudt, M. Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology. J Atmos Chem 33, 23–88; 10.1023/A:1006127516791 (1999).
- 55. Halsey, K. H., Padaki, V. G. & Giovannoni, S. Chapter 12 The volatile organic carbon component of dissolved organic matter in the ocean. In *Biogeochemistry of marine dissolved organic matter,* edited by D. A. Hansell & C. A. Carlson (Academic Press, an imprint of Elsevier, London, San Diego, CA, 2024), pp. 587–612.
- Peñuelas, J. & Staudt, M. BVOCs and global change. *Trends in Plant Science* 15, 133–144; 10.1016/j.tplants.2009.12.005 (2010).
- Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. *Geophysical Research Letters* 43, 12,614-12,623; 10.1002/2016GL071930 (2016).
- Marielle, S. *et al.* The global methane budget 2000-2012. *Earth System Science Data* 8, 697–751; 10.5194/essd-8-697-2016 (2016).

- 59. Rosentreter, J. A. *et al.* Half of global methane emissions come from highly variable aquatic ecosystem sources. *Nat. Geosci.* **14**, 225–230; 10.1038/s41561-021-00715-2 (2021).
- Kirschke, S. *et al.* Three decades of global methane sources and sinks. *Nature Geosci* 6, 813–823; 10.1038/ngeo1955 (2013).
- Charles L. Curry. Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochemical Cycles 21; 10.1029/2006GB002818 (2007).
- 62. Q. Zhuang *et al.* Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. *Global Biogeochemical Cycles* **18**; 10.1029/2004GB002239 (2004).
- R. J. Cicerone & R. S. Oremland. Biogeochemical aspects of atmospheric methane. *Global Biogeochemical Cycles* 2, 299–327; 10.1029/GB002i004p00299 (1988).
- 64. W. Allan, H. Struthers & D. C. Lowe. Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements. *Journal of Geophysical Research: Atmospheres* **112**; 10.1029/2006JD007369 (2007).
- Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. *Chemical Geology* 161, 291–314; 10.1016/S0009-2541(99)00092-3 (1999).
- Lenhart, K. *et al.* Evidence for methane production by saprotrophic fungi. *Nat Commun* 3, 1046; 10.1038/ncomms2049 (2012).
- 67. Tuboly, E. *et al.* Determination of endogenous methane formation by photoacoustic spectroscopy. *Journal of breath research* **7**, 46004; 10.1088/1752-7155/7/4/046004 (2013).
- Keppler, F. *et al.* Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane. *J. Breath Res.* **10**, 16003; 10.1088/1752-7155/10/1/016003 (2016).
- Klintzsch, T. *et al.* Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. *Biogeosciences* 16, 4129–4144; 10.5194/bg-16-4129-2019 (2019).
- Hartmann, J. F. *et al.* High Spatiotemporal Dynamics of Methane Production and Emission in Oxic Surface Water. *Environmental science & technology* 54, 1451–1463; 10.1021/acs.est.9b03182 (2020).
- Bižić, M. *et al.* Aquatic and terrestrial cyanobacteria produce methane. *Science Advances* 6, eaax5343; 10.1126/sciadv.aax5343 (2020).

- 72. Ernst, L. *et al.* Methane formation driven by reactive oxygen species across all living organisms. *Nature* **603**, 482–487; 10.1038/s41586-022-04511-9 (2022).
- Ordóñez, C. *et al.* Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient. *Nat Commun* 14, 2165; 10.1038/s41467-023-37861-7 (2023).
- 74. Encinas Fernández, J., Peeters, F. & Hofmann, H. On the methane paradox: Transport from shallow water zones rather than in situ methanogenesis is the major source of CH 4 in the open surface water of lakes. *JGR Biogeosciences* **121**, 2717–2726; 10.1002/2016JG003586 (2016).
- Peeters, F., Encinas Fernandez, J. & Hofmann, H. Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs. *Sci Rep* 9, 243; 10.1038/s41598-018-36530-w (2019).
- Morana, C. *et al.* Methane paradox in tropical lakes? Sedimentary fluxes rather than pelagic production in oxic conditions sustain methanotrophy and emissions to the atmosphere. *Biogeosciences* 17, 5209–5221; 10.5194/bg-17-5209-2020 (2020).
- 77. Evidence for methane production by marine algae (Emiliana huxleyi) and its implication for the methane paradox in oxic waters (2015).
- Klintzsch, T. *et al.* Stable Carbon Isotope Signature of Methane Released From Phytoplankton. *Geophysical Research Letters* 50, e2023GL103317; 10.1029/2023GL103317 (2023).
- 79. Mao, Y. *et al.* Aerobic methane production by phytoplankton as an important methane source of aquatic ecosystems: Reconsidering the global methane budget. *The Science of the total environment* **907**, 167864; 10.1016/j.scitotenv.2023.167864 (2024).
- Repeta, D. J. *et al.* Marine methane paradox explained by bacterial degradation of dissolved organic matter. *Nature Geosci* 9, 884–887; 10.1038/ngeo2837 (2016).
- Zindler, C. *et al.* Sulphur compounds, methane, and phytoplankton: interactions along a north– south transit in the western Pacific Ocean. *Biogeosciences* **10**, 3297–3311; 10.5194/bg-10-3297-2013 (2013).
- Zhang, Y., Tan, D.-D., He, Z., Yu, J. & Yang, G.-P. Dimethylated Sulfur, Methane and Aerobic Methane Production in the Yellow Sea and Bohai Sea. *Journal of Geophysical Research: Oceans* 128, e2023JC019736; 10.1029/2023JC019736 (2023).
- Defratyka, S. M. *et al.* Ethane measurement by Picarro CRDS G2201-i in laboratory and field conditions: potential and limitations. *Atmospheric Measurement Techniques* 14, 5049–5069; 10.5194/amt-14-5049-2021 (2021).

- Simpson, I. J. *et al.* Long-term decline of global atmospheric ethane concentrations and implications for methane. *Nature* 488, 490–494; 10.1038/nature11342 (2012).
- 85. Pozzer, A. *et al.* Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes. *Atmospheric Chemistry and Physics* **10**, 4403–4422; 10.5194/acp-10-4403-2010 (2010).
- Kesselmeier, J. & Staudt, M. Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology. *Journal of Atmospheric Chemistry* 33, 23–88; 10.1023/A:1006127516791 (1999).
- 87. Etiope, G. & Ciccioli, P. Earth's Degassing: A Missing Ethane and Propane Source. *American Association for the Advancement of Science* (2009).
- González Abad, G. *et al.* Ethane, ethyne and carbon monoxide concentrations in the upper troposphere and lower stratosphere from ACE and GEOS-Chem: a comparison study. *Atmos. Chem. Phys.* **11**, 9927–9941; 10.5194/acp-11-9927-2011 (2011).
- Rudolph, J. The tropospheric distribution and budget of ethane. J. Geophys. Res. 100, 11369– 11381; 10.1029/95JD00693 (1995).
- Kumar, A., Kumar, S. & Kumari, A. Carbon Monoxide Concentration in Atmosphere—A Review. In IRC-SET 2022. Proceedings of the 8th IRC Conference on Science, Engineering and Technology, August 2022, Singapore, edited by H. Guo, et al. (Springer Nature, Singapore, 2023), pp. 97–109.
- Hoesly, R. M. *et al.* Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). *Geosci. Model Dev.* 11, 369–408; 10.5194/gmd-11-369-2018 (2018).
- 92. van der Werf, G. R. *et al.* Global fire emissions estimates during 1997–2016. *Earth Syst. Sci. Data*9, 697–720; 10.5194/essd-9-697-2017 (2017).
- Bruhn, D., Albert, K. R., Mikkelsen, T. N. & Ambus, P. UV-induced carbon monoxide emission from living vegetation. *Biogeosciences* 10, 7877–7882; 10.5194/bg-10-7877-2013 (2013).
- 94. Conte, L., Szopa, S., Séférian, R. & Bopp, L. The oceanic cycle of carbon monoxide and its emissions to the atmosphere. *Biogeosciences* **16**, 881–902; 10.5194/bg-16-881-2019 (2019).
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. *Atmospheric Environment* 34, 2063–2101; 10.1016/S1352-2310(99)00460-4 (2000).
- Lelieveld, J., Gromov, S., Pozzer, A. & Taraborrelli, D. Global tropospheric hydroxyl distribution, budget and reactivity. *Atmos. Chem. Phys.* 16, 12477–12493; 10.5194/acp-16-12477-2016 (2016).

- 97. Anthropogenic and Natural Radiative Forcing. In *Climate Change 2013. The physical science basis,* edited by T. Stocker (Cambridge University Press, New York, 2014), pp. 659–740.
- Liu, L. *et al.* Global soil consumption of atmospheric carbon monoxide: an analysis using a process-based biogeochemistry model. *Atmos. Chem. Phys.* 18, 7913–7931; 10.5194/acp-18-7913-2018 (2018).
- Stein, O. *et al.* On the wintertime low bias of Northern Hemisphere carbon monoxide found in global model simulations. *Atmos. Chem. Phys.* 14, 9295–9316; 10.5194/acp-14-9295-2014 (2014).
- 100. Fisher, J. A. *et al.* Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations. *Atmos. Chem. Phys.* **15**, 3217–3239; 10.5194/acp-15-3217-2015 (2015).
- Zeng, G. *et al.* Multi-model simulation of CO and HCHO in the Southern Hemisphere: comparison with observations and impact of biogenic emissions. *Atmos. Chem. Phys.* **15**, 7217–7245; 10.5194/acp-15-7217-2015 (2015).
- 102. Michel Ramonet *et al.* CO₂ in the Atmosphere: Growth and Trends Since 1850. In *Oxford Research Encyclopedia of Climate Science* (2023).
- 103. Raupach, M. R., Canadell, J. G. & Le Quéré, C. Anthropogenic and biophysical contributions to increasing atmospheric CO₂ growth rate and airborne fraction. *Biogeosciences* 5, 1601–1613; 10.5194/bg-5-1601-2008 (2008).
- 104. Guinotte, J. M. & Fabry, V. J. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences **1134**, 320–342; 10.1196/annals.1439.013 (2008).
- 105. Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831–836;
 10.1038/ngeo689 (2009).
- 106. Sarmiento, J. L. *et al.* Trends and regional distributions of land and ocean carbon sinks. *Biogeosciences* **7**, 2351–2367; 10.5194/bg-7-2351-2010 (2010).
- 107. Taylor, J. A. & Lloyd, J. Sources and Sinks of Atmospheric CO2. *Aust. J. Bot.* 40, 407;
 10.1071/bt9920407 (1992).
- 108. Seco, R., Peñuelas, J. & Filella, I. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. *Atmospheric Environment* **41**, 2477–2499; 10.1016/j.atmosenv.2006.11.029 (2007).

- 109. Singh, H. *et al.* Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic. *J. Geophys. Res.* 105, 3795–3805;
 10.1029/1999JD900779 (2000).
- 110. Heikes, B. G. *et al.* Atmospheric methanol budget and ocean implication. *Global Biogeochemical Cycles* **16**, 80-1-80-13; 10.1029/2002GB001895 (2002).
- 111. Jacob, D. J. *et al.* Global budget of methanol: Constraints from atmospheric observations. *J. Geophys. Res.* **110**; 10.1029/2004JD005172 (2005).
- 112. Dennis, P. G., Miller, A. J. & Hirsch, P. R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? *FEMS Microbiol Ecol* **72**, 313– 327; 10.1111/j.1574-6941.2010.00860.x (2010).
- 113. Schade, G. W. & Custer, T. G. OVOC emissions from agricultural soil in northern Germany during the 2003 European heat wave. *Atmospheric Environment* 38, 6105–6114; 10.1016/j.atmosenv.2004.08.017 (2004).
- 114. Kolb, S. Aerobic methanol-oxidizing bacteria in soil. *FEMS microbiology letters* **300**, 1–10;
 10.1111/j.1574-6968.2009.01681.x (2009).
- 115. Peñuelas, J. *et al.* Biogenic volatile emissions from the soil. *Plant, Cell & Environment* **37**, 1866–1891; 10.1111/pce.12340 (2014).
- 116. Asensio, D. *et al.* Interannual and seasonal changes in the soil exchange rates of monoterpenes and other VOCs in a Mediterranean shrubland. *European Journal of Soil Science* 59, 878–891; 10.1111/j.1365-2389.2008.01057.x (2008).
- Bourtsoukidis, E. *et al.* Strong sesquiterpene emissions from Amazonian soils. *Nat Commun* 9, 2226; 10.1038/s41467-018-04658-y (2018).
- 118. Warneke, C. *et al.* Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: Significance for atmospheric HO x chemistry. *Global Biogeochemical Cycles* **13**, 9–17; 10.1029/98GB02428 (1999).
- 119. Gray, C. M., Monson, R. K. & Fierer, N. Emissions of volatile organic compounds during the decomposition of plant litter. *J. Geophys. Res.* **115**; 10.1029/2010JG001291 (2010).
- 120. Dorokhov, Y. L., Shindyapina, A. V., Sheshukova, E. V. & Komarova, T. V. Metabolic methanol: molecular pathways and physiological roles. *Physiological Reviews* 95, 603–644;
 10.1152/physrev.00034.2014 (2015).

- 121. Yurimoto, H., Shiraishi, K. & Sakai, Y. Physiology of Methylotrophs Living in the Phyllosphere. *Microorganisms* **9**, 809; 10.3390/microorganisms9040809 (2021).
- 122. Schade, G. W. & Goldstein, A. H. Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. *J. Geophys. Res.* **106**, 3111–3123; 10.1029/2000JD900592 (2001).
- 123. Luecken, D. J., Hutzell, W. T., Strum, M. L. & Pouliot, G. A. Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling. *Atmospheric Environment* 47, 477–490; 10.1016/j.atmosenv.2011.10.005 (2012).
- 124. Granby, K., Christensen, C. S. & Lohse, C. Urban and semi-rural observations of carboxylic acids and carbonyls. *Atmospheric Environment* **31**, 1403–1415; 10.1016/s1352-2310(96)00347-0 (1997).
- Possanzini, M., Di Palo, V. & Cecinato, A. Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air. *Atmospheric Environment* 36, 3195–3201; 10.1016/s1352-2310(02)00192-9 (2002).
- 126. Bakeas, E. B., Argyris, D. I. & Siskos, P. A. Carbonyl compounds in the urban environment of Athens, Greece. *Chemosphere* **52**, 805–813; 10.1016/S0045-6535(03)00257-1 (2003).
- 127. Holzinger, R. *et al.* Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide. *Geophysical Research Letters* 26, 1161–1164;
 10.1029/1999GL900156 (1999).
- 128. Fortems-Cheiney, A. *et al.* The formaldehyde budget as seen by a global-scale multi-constraint and multi-species inversion system. *Atmos. Chem. Phys.* **12**, 6699–6721; 10.5194/acp-12-6699-2012 (2012).
- 129. Palmer, P. I. *et al.* Mapping isoprene emissions over North America using formaldehyde column observations from space. *J. Geophys. Res.* **108**; 10.1029/2002JD002153 (2003).
- SCHMITZ, H., HILGERS, U. T. & WEIDNER, M. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. *New Phytologist* 147, 307–315; 10.1046/j.1469-8137.2000.00701.x (2000).
- Liang, H., Zhao, S., Liu, K. & Su, Y. Roles of reactive oxygen species and antioxidant enzymes on formaldehyde removal from air by plants. *Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering* 54, 193–201; 10.1080/10934529.2018.1544477 (2019).

- 132. Fu, Y., Zhu, Y., Shi, S. Q. & Goodell, B. Formaldehyde emission from wood promoted by lignin in the presence of iron residues. *Green Chem.* **24**, 6631–6638; 10.1039/D2GC02632E (2022).
- 133. Schäfer, M. & Roffael, E. On the formaldehyde release of wood. *Eur. J. Wood Prod.* 58, 259–264;
 10.1007/s001070050422 (2000).
- Wan, G. & Frazier, C. E. Lignin Acidolysis Predicts Formaldehyde Generation in Pine Wood. ACS Sustainable Chem. Eng. 5, 4830–4836; 10.1021/acssuschemeng.7b00264 (2017).
- 135. Millet, D. B. *et al.* A large and ubiquitous source of atmospheric formic acid. *Atmos. Chem. Phys.* 15, 6283–6304; 10.5194/acp-15-6283-2015 (2015).
- 136. Paulot, F. *et al.* Importance of secondary sources in the atmospheric budgets of formic and acetic acids. *Atmos. Chem. Phys.* **11**, 1989–2013; 10.5194/acp-11-1989-2011 (2011).
- 137. Enders, G. *et al.* Biosphere/Atmosphere interactions: Integrated research in a European coniferous forest ecosystem. *Atmospheric Environment. Part A. General Topics* 26, 171–189; 10.1016/0960-1686(92)90269-q (1992).
- 138. Yokelson, R. J. *et al.* Emissions from biomass burning in the Yucatan. *Atmos. Chem. Phys.* **9**, 5785–5812; 10.5194/acp-9-5785-2009 (2009).
- 139. Chebbi, A. & Carlier, P. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review. *Atmospheric Environment* **30**, 4233–4249; 10.1016/1352-2310(96)00102-1 (1996).
- 140. Peña, R. M. et al. Organic acids and aldehydes in rainwater in a northwest region of Spain. Atmospheric Environment 36, 5277–5288; 10.1016/S1352-2310(02)00648-9 (2002).
- Falkovich, A. H., Schkolnik, G., Ganor, E. & Rudich, Y. Adsorption of organic compounds pertinent to urban environments onto mineral dust particles. *J. Geophys. Res.* 109; 10.1029/2003JD003919 (2004).
- 142. Yokouchi, Y., Saito, T., Ishigaki, C. & Aramoto, M. Identification of methyl chloride-emitting plants and atmospheric measurements on a subtropical island. *Chemosphere* 69, 549–553; 10.1016/j.chemosphere.2007.03.028 (2007).
- 143. Carpenter, L. J. *et al. Scientific assessment of ozone depletion. 2014* (World Meteorological Organisation, Geneva, Switzerland, 2014).
- 144. Bahlmann, E. *et al.* Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes. *Atmos. Chem. Phys.* **19**, 1703–1719; 10.5194/acp-19-1703-2019 (2019).
- 145. John T. G. Hamilton, Mcroberts, W. C., Keppler, F., Kalin, R. M. & Harper, D. B. Chloride Methylation by Plant Pectin: An Efficient Environmentally Significant Process. *American Association for the Advancement of Science* (2003).
- 146. Hu, L., Yvon-Lewis, S. A., Butler, J. H., Lobert, J. M. & King, D. B. An improved oceanic budget for methyl chloride. *JGR Oceans* **118**, 715–725; 10.1029/2012JC008196 (2013).
- 147. Rhew, R. C. & Abel, T. Measuring simultaneous production and consumption fluxes of methyl chloride and methyl bromide in annual temperate grasslands. *Environmental science & technology* **41**, 7837–7843; 10.1021/es0711011 (2007).
- 148. Keppler, F., Eiden, R., Niedan, V., Pracht, J. & Schöler, H. F. Halocarbons produced by natural oxidation processes during degradation of organic matter. *Nature* 403, 298–301; 10.1038/35002055 (2000).
- 149. Rhew, R. C., Miller, B. R. & Weiss, R. F. Natural methyl bromide and methyl chloride emissions from coastal salt marshes. *Nature* **403**, 292–295; 10.1038/35002043 (2000).
- 150. Varner, R. K., Crill, P. M. & Talbot, R. W. Wetlands: A potentially significant source of atmospheric methyl bromide and methyl chloride. *Geophysical Research Letters* 26, 2433–2435; 10.1029/1999GL900587 (1999).
- 151. Yevich, R. & Logan, J. A. An assessment of biofuel use and burning of agricultural waste in the developing world. *Global Biogeochemical Cycles* **17**; 10.1029/2002GB001952 (2003).
- 152. Watling, R. & Harper, D. B. Chloromethane production by wood-rotting fungi and an estimate of the global flux to the atmosphere. *Mycological Research* 102, 769–787;
 10.1017/S0953756298006157 (1998).
- 153. Khalil, M. & RASMUSSEN, R. A. Atmospheric methyl chloride. *Atmospheric Environment* **33**, 1305–1321; 10.1016/S1352-2310(98)00234-9 (1999).
- Lee-Taylor, J. M., Brasseur, G. P. & Yokouchi, Y. A preliminary three-dimensional global model study of atmospheric methyl chloride distributions. *J. Geophys. Res.* **106**, 34221–34233; 10.1029/2001JD900209 (2001).
- 155. LOVELOCK, J. E., MAGGS, R. J. & RASMUSSEN, R. A. Atmospheric Dimethyl Sulphide and the Natural Sulphur Cycle. *Nature* **237**, 452–453; 10.1038/237452a0 (1972).
- 156. Glasow, R. von & Crutzen, P. J. Model study of multiphase DMS oxidation with a focus on halogens. *Atmos. Chem. Phys.* **4**, 589–608; 10.5194/acp-4-589-2004 (2004).

- 157. Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J. & Stoiber, R. E. Sulfur emissions to the atmosphere from natural sources. *J Atmos Chem* **14**, 315–337; 10.1007/BF00115242 (1992).
- 158. Chen, Q., Sherwen, T., Evans, M. & Alexander, B. DMS oxidation and sulfur aerosol formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry. *Atmos. Chem. Phys.* 18, 13617–13637; 10.5194/acp-18-13617-2018 (2018).
- 159. Lomans, B. P. et al. Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Applied and environmental microbiology 63, 4741–4747; 10.1128/aem.63.12.4741-4747.1997 (1997).
- 160. Kiene, R. P. & Hines, M. E. Microbial formation of dimethyl sulfide in anoxic sphagnum peat. *Applied and environmental microbiology* **61**, 2720–2726; 10.1128/aem.61.7.2720-2726.1995 (1995).
- 161. Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M. *Oceanography and Marine Biology: Volume* 42. An annual review. Volume 42 (CRC Press, London, 2004).
- 162. Keppler, F., Boros, M. & Polag, D. Radical-Driven Methane Formation in Humans Evidenced by Exogenous Isotope-Labeled DMSO and Methionine. *Antioxidants* **12**, 1381; 10.3390/antiox12071381 (2023).
- 163. Brosnan, J. T., Brosnan, M. E., Bertolo, R. F. & Brunton, J. A. Methionine: A metabolically unique amino acid. *Livestock Science* **112**, 2–7; 10.1016/j.livsci.2007.07.005 (2007).
- 164. Martínez, Y. *et al.* The role of methionine on metabolism, oxidative stress, and diseases. *Amino Acids* **49**, 2091–2098; 10.1007/s00726-017-2494-2 (2017).
- 165. Blachier, F., Wu, G. & Yin, Y. (eds.). *Nutritional and physiological functions of amino acids in pigs* (Springer, Vienna, New York, 2013).
- 166. Roje, S. S-Adenosyl-L-methionine: beyond the universal methyl group donor. *Phytochemistry* 67, 1686–1698; 10.1016/j.phytochem.2006.04.019 (2006).
- 167. Bain, M. A., Fornasini, G. & Evans, A. M. Trimethylamine: metabolic, pharmacokinetic and safety aspects. *Current Drug Metabolism* **6**, 227–240; 10.2174/1389200054021807 (2005).
- 168. Koeth, R. A. *et al.* Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. *Nat Med* **19**, 576–585; 10.1038/nm.3145 (2013).
- Wang, Z. *et al.* Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. *Nature* 472, 57–63; 10.1038/nature09922 (2011).

- Lambert, D. M. *et al.* In vivo variability of TMA oxidation is partially mediated by polymorphisms of the FMO3 gene. *Molecular Genetics and Metabolism* **73**, 224–229; 10.1006/mgme.2001.3189 (2001).
- 171. Velasquez, M. T., Ramezani, A., Manal, A. & Raj, D. S. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. *Toxins* **8**, 326; 10.3390/toxins8110326 (2016).
- 172. Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208, 2819–2830; 10.1242/jeb.01730 (2005).
- 173. Colby, J. & Zatman, L. J. Trimethylamine metabolism in obligate and facultative methylotrophs.
 Biochem J 132, 101–112; 10.1042/bj1320101 (1973).
- 174. Catalá, R., López-Cobollo, R., Berbís, M. Á., Jiménez-Barbero, J. & Salinas, J. Trimethylamine Noxide is a new plant molecule that promotes abiotic stress tolerance. *Science Advances* 7; 10.1126/sciadv.abd9296 (2021).
- 175. Ho, K.-L., Chung, Y.-C. & Tseng, C.-P. Continuous deodorization and bacterial community analysis of a biofilter treating nitrogen-containing gases from swine waste storage pits. *Bioresource Technology* **99**, 2757–2765; 10.1016/j.biortech.2007.06.041 (2008).
- 176. Rappert, S. & Müller, R. Odor compounds in waste gas emissions from agricultural operations and food industries. *Waste Management* **25**, 887–907; 10.1016/j.wasman.2005.07.008 (2005).
- 177. Rehbein, P. J. G. *et al.* Cloud and fog processing enhanced gas-to-particle partitioning of trimethylamine. *Environmental science & technology* **45**, 4346–4352; 10.1021/es1042113 (2011).
- 178. Di, Y., Liu, J., Liu, J., Liui, S. & Yan, L. Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop. *Journal of the Air & Waste Management Association (1995)* 63, 1173–1181; 10.1080/10962247.2013.807318 (2013).
- Murphy, S. M. *et al.* Secondary aerosol formation from atmospheric reactions of aliphatic amines. *Atmos. Chem. Phys.* 7, 2313–2337; 10.5194/acp-7-2313-2007 (2007).
- Zeisel, S. H. & Niculescu, M. D. Perinatal choline influences brain structure and function. *Nutr Rev* 64, 197–203; 10.1111/j.1753-4887.2006.tb00202.x (2006).
- 181. Blusztajn, J. K. Choline, a Vital Amine. *American Association for the Advancement of Science* (1998).
- 182. Medicine, Institute of, Board, F. a. N., Nutrients, Subcommittee on Upper Reference Levels of & Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. *Dietary reference intakes for thiamin, riboflavin, niacin,*

vitamin B_6 , folate, vitamin B_{12} , pantothenic acid, biotin, and choline (National Academy Press, Washington, D.C., 1998).

- Hollenbeck, C. B. An introduction to the nutrition and metabolism of choline. *Central nervous* system agents in medicinal chemistry **12**, 100–113; 10.2174/187152412800792689 (2012).
- 184. Fernández-Murray, J. P. & McMaster, C. R. Glycerophosphocholine catabolism as a new route for choline formation for phosphatidylcholine synthesis by the Kennedy pathway. *The Journal of biological chemistry* 280, 38290–38296; 10.1074/jbc.M507700200 (2005).
- 185. Rhodes, D. Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology 44, 357–384; 10.1146/annurev.arplant.44.1.357 (1993).
- 186. Kolowith, L. C., Ingall, E. D. & Benner, R. Composition and cycling of marine organic phosphorus. *Limnology & Oceanography* **46**, 309–320; 10.4319/lo.2001.46.2.0309 (2001).
- 187. Sosa, O. A., Repeta, D. J., DeLong, E. F., Ashkezari, M. D. & Karl, D. M. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation. *Environmental Microbiology* **21**, 2402–2414; 10.1111/1462-2920.14628 (2019).
- White, A. K. & Metcalf, W. W. Microbial metabolism of reduced phosphorus compounds. *Annual Review of Microbiology* **61**, 379–400; 10.1146/annurev.micro.61.080706.093357 (2007).
- 189. Born, D. A. *et al.* Structural basis for methylphosphonate biosynthesis. *American Association for the Advancement of Science* (2017).
- 190. Karl, D. M. *et al.* Aerobic production of methane in the sea. *Nature Geosci* 1, 473–478;
 10.1038/ngeo234 (2008).
- 191. Ali Shah, T., Zhihe, L., Zhiyu, L. & Andong, Z. Composition and Role of Lignin in Biochemicals. In Lignin. Chemistry, structure, and application, edited by A. Sand & J. Tuteja (IntechOpen, London, 2023).
- Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annual Review of Plant Biology 54, 519–546; 10.1146/annurev.arplant.54.031902.134938 (2003).
- 193. Dorrestijn, E., Laarhoven, L. J., Arends, I. W. & Mulder, P. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. *Journal of Analytical and Applied Pyrolysis* 54, 153– 192; 10.1016/S0165-2370(99)00082-0 (2000).

- 194. Ralph, J., Lapierre, C. & Boerjan, W. Lignin structure and its engineering. *Current Opinion in Biotechnology* 56, 240–249; 10.1016/j.copbio.2019.02.019 (2019).
- 195. Hatfield, R. & Vermerris, W. Lignin formation in plants. The dilemma of linkage specificity. *Plant Physiol* 126, 1351–1357; 10.1104/pp.126.4.1351 (2001).
- 196. Modification of Kraft lignin by biological demethylation (2012).
- 197. Datta, R. *et al.* Enzymatic Degradation of Lignin in Soil: A Review. *Sustainability* 9, 1163;
 10.3390/su9071163 (2017).
- 198. Venkatesagowda, B. & Dekker, R. F. H. Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups. *Enzyme and Microbial Technology* **147**, 109780; 10.1016/j.enzmictec.2021.109780 (2021).
- 199. Yang, B. *et al.* Experimental and theoretical studies on gas-phase reactions of NO3 radicals with three methoxyphenols: Guaiacol, creosol, and syringol. *Atmospheric Environment* 125, 243–251; 10.1016/j.atmosenv.2015.11.028 (2016).
- 200. Mohnen, D. Pectin structure and biosynthesis. *Current Opinion in Plant Biology* 11, 266–277; 10.1016/j.pbi.2008.03.006 (2008).
- 201. Voragen, A. G. J., Coenen, G.-J., Verhoef, R. P. & Schols, H. A. Pectin, a versatile polysaccharide present in plant cell walls. *Struct Chem* **20**, 263–275; 10.1007/s11224-009-9442-z (2009).
- Bonnin, E., Garnier, C. & Ralet, M.-C. Pectin-modifying enzymes and pectin-derived materials: applications and impacts. *Appl Microbiol Biotechnol* **98**, 519–532; 10.1007/s00253-013-5388-6 (2014).
- 203. Caffall, K. H. & Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. *Carbohydrate Research* **344**, 1879–1900; 10.1016/j.carres.2009.05.021 (2009).
- 204. Haller, R. Metallchelate pyridyl-(2)-substituierter 3,7-Diaza-bicyclo-(3,3,1)-nonanone. Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft 302, 113–118; 10.1002/ardp.19693020206 (1969).
- 205. Hädeler, J. *et al.* Natural Abiotic Iron-Oxido-Mediated Formation of C1 and C2 Compounds from Environmentally Important Methyl-Substituted Substrates. *Journal of the American Chemical Society* **145**, 24590–24602; 10.1021/jacs.3c06709 (2023).
- 206. Comba, P., Rudolf, H. & Wadepohl, H. Synthesis and transition metal coordination chemistry of a novel hexadentate bispidine ligand. *Dalton transactions (Cambridge, England : 2003)* 44, 2724–2736; 10.1039/C4DT03262D (2015).

- 207. Bukowski, M. R. *et al.* Bispidin-Ligandeneffekte in der Eisen-Wasserstoffperoxid-Chemie. *Angewandte Chemie* **116**, 1303–1307; 10.1002/ange.200352523 (2004).
- 208. Bautz, J., Comba, P., Lopez de Laorden, C., Menzel, M. & Rajaraman, G. Biomimetic high-valent non-heme iron oxidants for the cis-dihydroxylation and epoxidation of olefins. *Angewandte Chemie (International ed. in English)* 46, 8067–8070; 10.1002/anie.200701681 (2007).
- 209. Benet-Buchholz, J. *et al.* Iron vs. ruthenium--a comparison of the stereoselectivity in catalytic olefin epoxidation. *Dalton Trans.,* 5910–5923; 10.1039/B902037C (2009).
- 210. Benet-Buchholz, J. *et al.* The Ru(IV)=O-catalyzed sulfoxidation: a gated mechanism where O to S linkage isomerization switches between different efficiencies. *Dalton Trans.* **39**, 3315–3320; 10.1039/B924614B (2010).
- 211. Comba, P., Fukuzumi, S., Kotani, H. & Wunderlich, S. Electron-transfer properties of an efficient nonheme iron oxidation catalyst with a tetradentate bispidine ligand. *Angewandte Chemie International Edition* **49**, 2622–2625; 10.1002/anie.200904427 (2010).
- 212. U. Schwertmann & R.M. Taylor. Iron Oxides. In *Minerals in Soil Environments* (John Wiley & Sons, Ltd2018), pp. 379–438.
- 213. Colombo, C., Di Iorio, E., Liu, Q., Jiang, Z. & Barrón, V. Iron Oxide Nanoparticles in Soils: Environmental and Agronomic Importance. *Journal of nanoscience and nanotechnology* 18, 761;
 10.1166/jnn.2018.15294 (2018).
- 214. Jiang, Z. *et al.* The Magnetic and Color Reflectance Properties of Hematite: From Earth to Mars. *Reviews of Geophysics* **60**, e2020RG000698; 10.1029/2020RG000698 (2022).
- 215. Colombo, C. & Torrent, J. Relationships between aggregation and iron oxides in Terra Rossa soils from southern Italy. *CATENA* **18**, 51–59; 10.1016/0341-8162(91)90006-J (1991).
- 216. Colombo, C., Palumbo, G., He, J.-Z., Pinton, R. & Cesco, S. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. *J Soils Sediments* 14, 538–548; 10.1007/s11368-013-0814-z (2014).
- 217. Manganese in Soils and Plants (Springer, Dordrecht, 1988).
- 218. Marshall, K. C. Chapter 5 Biogeochemistry of Manganese Minerals. In Studies in Environmental Science : Biogeochemical Cycling of Mineral-Forming Elements, edited by P. A. Trudinger & D. J. Swaine (Elsevier1979), Vol. 3, pp. 253–292.
- 219. Young, R. S. The geochemistry of cobalt. *Geochimica et Cosmochimica Acta* 13, 28–41; 10.1016/0016-7037(57)90056-X (1957).

- 220. Poznanović Spahić, M. M. *et al.* Natural and anthropogenic sources of chromium, nickel and cobalt in soils impacted by agricultural and industrial activity (Vojvodina, Serbia). *Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering* 54, 219–230; 10.1080/10934529.2018.1544802 (2019).
- 221. Banerjee, R. & Ragsdale, S. W. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. *Annual Review of Biochemistry* 72, 209–247; 10.1146/annurev.biochem.72.121801.161828 (2003).
- 222. James W. Morris, Kirk G. Scheckel & David H. McNear. Biogeochemistry of Nickel in Soils, Plants, and the Rhizosphere. In *Nickel in Soils and Plants* (CRC Press2018), pp. 51–86.
- Morrison, J. M. *et al.* Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA. *Applied Geochemistry* 61, 72– 86; 10.1016/j.apgeochem.2015.05.018 (2015).
- 224. Stern, B. R. *et al.* Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. *Journal of toxicology and environmental health. Part B, Critical reviews* **10**, 157–222; 10.1080/10937400600755911 (2007).
- Ballabio, C. *et al.* Copper distribution in European topsoils: An assessment based on LUCAS soil survey. *The Science of the total environment* 636, 282–298; 10.1016/j.scitotenv.2018.04.268 (2018).
- 226. Navel, A. & Martins, J. M. F. Effect of long term organic amendments and vegetation of vineyard soils on the microscale distribution and biogeochemistry of copper. *The Science of the total environment* **466-467**, 681–689; 10.1016/j.scitotenv.2013.07.064 (2014).
- 227. Arrigoni, O. & Tullio, M. C. de. Ascorbic acid: much more than just an antioxidant. *Biochimica et biophysica acta* **1569**, 1–9; 10.1016/S0304-4165(01)00235-5 (2002).
- 228. ALSCHER, R. G. ANTIOXIDANTS IN HIGHER PLANTS (CRC Press, [Place of publication not identified], 2017).
- 229. Yu, G.-H. & Kuzyakov, Y. Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling. *Earth-Science Reviews* **214**, 103525; 10.1016/j.earscirev.2021.103525 (2021).
- Wang, B., Lerdau, M. & He, Y. Widespread production of nonmicrobial greenhouse gases in soils. *Global Change Biology* 23, 4472–4482; 10.1111/gcb.13753 (2017).

- 231. Zent, A. P., Ichimura, A. S., Quinn, R. C. & Harding, H. K. The formation and stability of the superoxide radical (O 2–) on rock-forming minerals: Band gaps, hydroxylation state, and implications for Mars oxidant chemistry. J. Geophys. Res. 113; 10.1029/2007JE003001 (2008).
- 232. Yen, A. S., Kim, S. S., Hecht, M. H., Frant, M. S. & Murray, B. Evidence that the reactivity of the martian soil is due to superoxide ions. *Science* 289, 1909–1912; 10.1126/science.289.5486.1909 (2000).
- 233. Gonçalves, C., Santos, M. A. d., Fornaro, A. & Pedrotti, J. J. Hydrogen peroxide in the rainwater of Sao Paulo megacity: measurements and controlling factors. *J. Braz. Chem. Soc.* **21**, 331–339; 10.1590/s0103-50532010000200020 (2010).
- 234. Arantes, V., Jellison, J. & Goodell, B. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. *Appl Microbiol Biotechnol* **94**, 323–338; 10.1007/s00253-012-3954-y (2012).
- 235. Hall, S. J., Silver, W. L., Timokhin, V. I. & Hammel, K. E. Lignin decomposition is sustained under fluctuating redox conditions in humid tropical forest soils. *Global Change Biology* 21, 2818–2828; 10.1111/gcb.12908 (2015).
- 236. Krumina, L., Lyngsie, G., Tunlid, A. & Persson, P. Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles: Iron Reduction versus Surface Catalysis. *Environmental science & technology* **51**, 9053–9061; 10.1021/acs.est.7b02292 (2017).
- 237. Nurmi, J. T. & Tratnyek, P. G. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. *Environmental science & technology* 36, 617–624; 10.1021/es0110731 (2002).
- 238. Benzing, K., Comba, P., Martin, B., Pokrandt, B. & Keppler, F. Nonheme Iron-Oxo-Catalyzed Methane Formation from Methyl Thioethers: Scope, Mechanism, and Relevance for Natural Systems. *Chemistry – A European Journal* 23, 10465–10472; 10.1002/chem.201701986 (2017).
- 239. GPS Geoplaner GeoConverter | Routenplaner online. Available at https://www.geoplaner.de/ (2024).
- 240. Moore und Anmoore in der Oberrheinebene (1997).
- 241. Littlewood, A. B. *Gas Chromatography. Principles, Techniques, and Applications.* 2nd ed. (Elsevier Science, Saint Louis, 2014).
- 242. John V. Hinshaw. The Flame Ionization Detector (MJH Life Sciences, 2005).

- 243. Robards, K. & Ryan, D. *Principles and practice of modern chromatographic methods* (Academic Press, an imprint of Elsevier, London, United Kingdom, San Diego, CA, 2022).
- 244. BID | Research & Development | SHIMADZU CORPORATION. Available at https://www.shimadzu.com/research_and_development/technology_branding/nexis_technologies/bid.html (2021).
- 245. Greule, M. *et al.* Three wood isotopic reference materials for δ2H and δ13C measurements of plant methoxy groups. *Chemical Geology* **533**, 119428; 10.1016/j.chemgeo.2019.119428 (2020).
- 246. Zeisel, S. ber ein Verfahren zum quantitativen Nachweise von Methoxyl. *Monatshefte fr Chemie*6, 989–997; 10.1007/bf01554683 (1885).
- 247. Simultaneous measurement of plasma concentrations and 13C-enrichment of short-chain fatty acids, lactic acid and ketone bodies by gas chromatography ... (2003).
- 248. Zhang, H. *et al.* MTBSTFA derivatization-LC-MS/MS approach for the quantitative analysis of endogenous nucleotides in human colorectal carcinoma cells. *Journal of Pharmaceutical Analysis* 12, 77–86; 10.1016/j.jpha.2021.01.001 (2022).
- Andreae, M. O. Dimethylsulfoxide in marine and freshwaters. *Limnology and Oceanography* 25, 1054–1063; 10.4319/lo.1980.25.6.1054 (1980).
- 250. Comba, P., Faltermeier, D., Krieg, S., Martin, B. & Rajaraman, G. Spin state and reactivity of iron(iv)oxido complexes with tetradentate bispidine ligands. *Dalton Trans.* 49, 2888–2894; 10.1039/C9DT04578C (2020).
- 251. Comba, P., Nunn, G., Scherz, F. & Walton, P. H. Intermediate-spin iron(IV)-oxido species with record reactivity. *Faraday Discussions* **234**, 232–244; 10.1039/D1FD00073J (2022).
- 252. Russell, G. A. Deuterium-isotope Effects in the Autoxidation of Aralkyl Hydrocarbons. Mechanism of the Interaction of PEroxy Radicals 1. *Journal of the American Chemical Society* **79**, 3871– 3877; 10.1021/ja01571a068 (1957).
- Comba, P., Maurer, M. & Vadivelu, P. Oxidation of cyclohexane by high-valent iron bispidine complexes: tetradentate versus pentadentate ligands. *Inorganic chemistry* 48, 10389–10396; 10.1021/ic901702s (2009).
- 254. Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. *Nat. Geosci.* **3**, 675–682; 10.1038/ngeo964 (2010).
- 255. Morris, J. J., Rose, A. L. & Lu, Z. Reactive oxygen species in the world ocean and their impacts on marine ecosystems. *Redox Biology* **52**, 102285; 10.1016/j.redox.2022.102285 (2022).

- 256. Abu-Odeh, M. *et al.* Pathways of the Extremely Reactive Iron(IV)-oxido complexes with Tetradentate Bispidine Ligands. *Chemistry – A European Journal* 27, 11377–11390; 10.1002/chem.202101045 (2021).
- 257. Bouchoux, G. Keto-enol tautomers and distonic ions: The chemistry of [C n H 2 n O] radical cations. Part I. *Mass Spectrometry Reviews* **7**, 1–39; 10.1002/mas.1280070102 (1988).
- 258. Althoff, F. Sources and pathways of methane formed in oxidative environments. Johannes Gutenberg-Universität Mainz, 2012.
- 259. Pearson, A. J. & Yamamoto, Y. Trimethylamine N -Oxide. In *Encyclopedia of reagents for organic synthesis,* edited by L. A. Paquette (J. Wiley & Sons, New York, 1995).
- 260. Huang, J., Chen, Z. & Wu, J. Recent Progress in Methyl-Radical-Mediated Methylation or Demethylation Reactions. ACS Catal. 11, 10713–10732; 10.1021/acscatal.1c02010 (2021).
- 261. Cao, H. *et al.* Cu-Catalyzed selective C3-formylation of imidazo1,2-apyridine C-H bonds with DMSO using molecular oxygen. *Chemical communications (Cambridge, England)* 51, 1823–1825; 10.1039/C4CC09134E (2015).
- 262. Jia, J. *et al.* Copper-Catalyzed O-Methylation of Carboxylic Acids Using DMSO as a Methyl Source. *Synthesis* **48**, 421–428; 10.1055/s-0035-1560967 (2016).
- 263. Konezny, S. J. *et al.* Reduction of Systematic Uncertainty in DFT Redox Potentials of Transition-Metal Complexes. *J. Phys. Chem. C* **116**, 6349–6356; 10.1021/jp300485t (2012).
- 264. van Gaal, H. & van der Linden, J. Trends in redox potentials of transition metal complexes. *Coordination Chemistry Reviews* **47**, 41–54; 10.1016/0010-8545(82)85009-1 (1982).
- 265. A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH (2003).
- 266. Hussain, S., Aneggi, E. & Goi, D. Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: a review. *Environ Chem Lett* **19**, 2405–2424; 10.1007/s10311-021-01185-z (2021).
- 267. Li, Y., Sun, J. & Sun, S.-P. Mn(2+)-mediated homogeneous Fenton-like reaction of Fe(III)-NTA complex for efficient degradation of organic contaminants under neutral conditions. *Journal of Hazardous Materials* **313**, 193–200; 10.1016/j.jhazmat.2016.04.003 (2016).
- 268. Bokare, A. D. & Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. *Journal of Hazardous Materials* 275, 121–135; 10.1016/j.jhazmat.2014.04.054 (2014).

- 269. Keppler, F. *et al.* Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. *New Phytologist* **178**, 808–814; 10.1111/j.1469-8137.2008.02411.x (2008).
- 270. Ye, J. *et al.* Abiotic Methane Production Driven by Ubiquitous Non-Fenton-Type Reactive Oxygen Species. *Angewandte Chemie* **136**; 10.1002/ange.202403884 (2024).
- Lucena, J. J., Gárate, A. & Villén, M. Stability in solution and reactivity with soils and soil components of iron and zinc complexes. *Z. Pflanzenernähr. Bodenk.* **173**, 900–906; 10.1002/jpln.200900154 (2010).
- 272. Pehkonen, S. Determination of the oxidation states of iron in natural waters. A review. *Analyst* 120, 2655; 10.1039/an9952002655 (1995).
- 273. Benbi, D. K. Evaluation of a rapid microwave digestion method for determination of total organic carbon in soil. *Communications in Soil Science and Plant Analysis* 49, 2103–2112; 10.1080/00103624.2018.1495732 (2018).
- 274. Lloyd, M. K. *et al.* Methoxyl stable isotopic constraints on the origins and limits of coal-bed methane. *Science* **374**, 894–897; 10.1126/science.abg0241 (2021).
- 275. Cox, T. *et al.* Isotopic analysis (δ13C and δ2H) of lignin methoxy groups in forest soils to identify and quantify lignin sources. *The Science of the total environment* **949**, 175025; 10.1016/j.scitotenv.2024.175025 (2024).
- 276. Stockmann, U. *et al.* The knowns, known unknowns and unknowns of sequestration of soil or-ganic carbon. *Agriculture, Ecosystems & Environment* 164, 80–99; 10.1016/j.agee.2012.10.001 (2013).
- 277. Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. *Microbiological Reviews* 60, 439–471;
 10.1128/mr.60.2.439-471.1996 (1996).

GESAMTFAKULTÄT FÜR MATHEMATIK, INGENIEUR- UND NATURWISSENSCHAFTEN

COMBINED FACULTY OF MATHEMATICS, ENGINEERING AND NATURAL SCIENCES ruprecht-karls-UNIVERSITÄT HEIDELBERG

Eidesstattliche Versicherung gemäß § 8 der Promotionsordnung für die Gesamtfakultät für Mathematik, Ingenieur- und Naturwissenschaften der Universität Heidelberg / Sworn Affidavit according to § 8 of the doctoral degree regulations of the Combined Faculty of Mathematics, Engineering and Natural Sciences at the Heidelberg University

1. Bei der eingereichten Dissertation zu dem Thema / The thesis I have submitted entitled

handelt es sich um meine eigenständig erbrachte Leistung / is my own work.

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner unzulässigen Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß aus anderen Werken übernommene Inhalte als solche kenntlich gemacht. / I have only used the sources indicated and have not made unauthorised use of services of a third party. Where the work of others has been quoted or reproduced, the source is always given.

3. Die Arbeit oder Teile davon habe ich wie folgt/bislang nicht¹⁾ an einer Hochschule des In- oder Auslands als Bestandteil einer Prüfungs- oder Qualifikationsleistung vorgelegt. / I have not yet/have already¹⁾ presented this thesis or parts thereof to a university as part of an examination or degree.

Titel der Arbeit / Title of the thesis:
Hochschule und Jahr / University and year:

Art der Prüfungs- oder Qualifikationsleistung / Type of examination or degree:.....

- 4. Die Richtigkeit der vorstehenden Erklärungen bestätige ich. / I confirm that the declarations made above are correct.
- 5. Die Bedeutung der eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir bekannt. / I am aware of the importance of a sworn affidavit and the criminal prosecution in case of a false or incomplete affidavit

Ich versichere an Eides statt, dass ich nach bestem Wissen die reine Wahrheit erklärt und nichts verschwiegen habe. / I affirm that the above is the absolute truth to the best of my knowledge and that I have not concealed anything.

Ort und Datum / Place and date

Unterschrift / Signature

¹⁾ Nicht Zutreffendes streichen. Bei Bejahung sind anzugeben: der Titel der andernorts vorgelegten Arbeit, die Hochschule, das Jahr der Vorlage und die Art der Prüfungs- oder Qualifikationsleistung. / Please cross out what is not applicable. If applicable, please provide: the title of the thesis that was presented elsewhere, the name of the university, the year of presentation and the type of examination or degree.