
Introducing Project-W: A self-hostable platform for OpenAI’sWhisper
Julian Partanen 1, Markus Everling 1, Dominic Kempf 1, Tim Knoth 2, Don Böhm 2, Nikolaus Kepper 2, Martin Baumann 2, Alexander Haller 2

1Scientific Software Center, IWR, Heidelberg University 2URZ, Heidelberg University

TLDR:What is Project-W?

Platform for creating transcripts of audio files (speech-to-text) with
OpenAIs whisper model (or different models in the future)
Highest privacy standards

Self-hostable, on-premise
Suitable for sensitive data
GDPR compliance

Easy to use for the end user
Just visit a website, user doesn’t need to install anything
Simple workflow: Sign in and upload your file
Yet still adaptable to more complex use cases by directly interacting with the
documented API with own script/client

Figure 1. The overall architecture of Project-W

Why not just use OpenAIs own service?

Some research fields deal with sensitive data that cannot be
shared with third parties
i.e. recordings containing private interviews or medical
information
Uploading these audio files to e.g. OpenAIs servers would, for
example, violate data protection requirements

Why a server-client architecture?

The alternative would be to run whisper locally on every users
machine
Viable, there are many great graphical programs for whisper
out there that run purely locally
However you might encounter some problems with that
approach:

High hardware requirements (GPUs), especially for larger models and
longer audio recordings
Difficult installation: CUDA driver, download of models, ...
Installation on a fleet of machines across many operating systems. What
about smartpones, iPads, ...?
Possibly still more difficult to use: Many programs tend to be a bit more
technical

-> A website that every user can just visit from any device with a
deployment of runners on proper GPU-backed hardware might be
the better approach.

User flow (alpha software, subject to change)

1. Login (or Signup) (Fig. 2)
2. Create a new job (Fig. 3)
3. Fill in details and select audio file, submit job (Fig. 4)
4. Wait for job to complete (Fig. 5)
5. Download transcript as a text file (Fig. 6)

Figure 2. Login mask

Figure 3. Main screen without any submitted jobs

Figure 4. Job submission mask

Figure 5. Main screen with one job listed that is currently running

Figure 6. Main screen with one job listed that has finished

Give it a try!

(a) https://project-w.
urz.uni-heidelberg.de

(b) https://limesurvey.
urz.uni-heidelberg.de/

index.php/461259

(c) https://github.com/
JulianFP/project-W

Figure 7. Links to our current test instance, a feedback survey for the project and
the main Github repository

Architecture

Project-W consists of three components (Fig. 1):

Clients
Served to the user’s browser over a simple webserver (e.g. nginx)
Runs entirely in the browser after that (no nodejs or similar required on
the server, just static files)
Communicates with the Backend over its REST-API

Backend
REST-API with database and application state
HTTP-server, accessible over internet/intranet
Manages jobs, runners and authenticates users
Users submit their jobs to the Backend, backend then assigns them to
runners

Runners
Communicate over HTTP with the Backend as well
They download the jobs that the backend assigned to them and execute
them
Runners execute whisper and do the actual compute
HTTP-client only, can stay behind firewall and don’t need to be accessible
Recommended to have multiple of them (each can only process one job
at a time) running on GPU-servers

Technology stack

Backend (after rewrite)
FastAPI web-framework in Python
Asynchronous using asyncio
PostgreSQL as a central database
Redis for caching and keeping the application state
(i.e. information about runner)
Connects to SMTP server to send emails to users
(account confirmation, notifications)
Deployable as a docker container using docker
compose
Kubernetes helm chart planned
Configurable over YAML config file

Client
Svelte JS-framework in Typescript
Compiles to HTML, CSS and JS files that can be
served by any web server as static files
Svelte-spa-router for hash-based routing
flowbite-svelte and tailwindcss for UI components
and styling

Runner
Written in Python with asyncio
Executes Whisper transcription
Deployable as a docker container, preferable on
multiple GPU machines

Hosting requirements

Backend
Low hardware requirment, e.g. VM with some cores
Accessible over intranet/internet, open on ports 80/443
Domain that points to its IP, some way to get a valid SSL certificate for
that domain

Runners
Need to be able to access backend as clients, but no ports need to be
opened
At least two runners running on GPUs are recommended (although CPU
is also possible)

Planned future work

The backend is currently being rewritten from the ground up
Switch from Flask to FastAPI framework
Multiple authentication backends with LDAP and OIDC
Separate application state from web server into Redis
Everything is now asynchronous
More efficient, better performance, better code quality
Kubernetes for High-availability

More features
Speaker diarization (so that the transcript contains information about
who talked when)
More advanced transcription settings (temperature, prompt, timestamps,
customizable output format)
Translation abilities
Permission and tag system for who can access which runners,

Await results of current evaluation and implement feedback
Stabilize project, get out of alpha stage

E-Science-Tage 2025 Scientific Software Center and URZ, Heidelberg University


