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Abstract

Acute myeloid leukemia (AML) is a hematological cancer characterised by a block in dif-
ferentiation and accelerated proliferation of myeloid progenitor cells. Epigenetic regulators
are among the most frequent targets for mutations and structural variations in AML, and
the disruption of these genes can result in profound epigenetic heterogeneity between and
within tumors. Deletion 5q [del(5q)] is the most common copy number alteration (CNA)
in older AML patients and is associated with poor clinical outcome and therapy resistance,
however the mechanisms linking del(5q) to leukemic development and progression are not
understood.

I began this thesis with an analysis of DNA methylation profiles from 477 elderly AML
patients using a DNA methylome deconvolution approach. Here I discovered that del(5q)
AML constitutes an epigenetically distinct subgroup characterised by a unique signature of
DNA hypermethylation. In an attempt to pinpoint the epigenetic disturbance leading this
signature to arise, I investigated the 5q Minimally Deleted Region (MDR) for potential
epigenetic regulators, and identified the H3K9me1/2 demethylase KDM3B as a promising
target. Precise mapping of the MDR, together with differential transcriptional, protein and
mutational analysis of 5q genes strengthened the argument that KDM3B is the most likely
candidate for haploinsufficiency in del(5q) AML. I further linked the del(5q) methylation
signature to dysregulation of other H3K9me1/2 regulators, and consistent overexpression
of the de novo DNA methyltransferase and leukemic stem cell marker, DNMT3B. More-
over, I discovered that del(5q) and MECOM -overexpressing leukemias share a common
DNA methylation signature, which in both subgroups coincides with increased expression
of DNMT3B. These findings suggest that del(5q) AML deserves to be reappraised as an
epigenetically-defined subgroup, which I suggest may be driven by haploinsufficiency of
KDM3B.

Reduction in protein levels of KDM3B should result in an increase in H3K9me1/2. In ad-
dition, I hypothesised that haploinsufficiency of this enzyme may result in an imbalanced
removal of H3K9me1/2, such that variable patterns of these histone marks may arise be-
tween cells. Such cell-to-cell epigenomic heterogeneity could provide a powerful driving
force for leukemic progression by allowing selection of favorable phenotypes throughout
cancer evolution and in response to therapy. To study this phenomenon, I developed a
heterogeneity metric called epiCHAOS (epigenetic/Chromatin Heterogeneity Assessment
Of Single cells). EpiCHAOS is the first tool that enables quantitative comparisons of
epigenetic heterogeneity between single-cell groups/clusters within a biological sample. I
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validated epiCHAOS in silico and demonstrated its functionality by applying the met-
ric to a range of biological datasets from developmental systems, cancers, and aging, to
investigate both genome-wide and region-specific differences in epigenetic heterogeneity.

Finally, to investigate the epigenetic consequences of KDM3B disruption in AML, I an-
alyzed single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq)
data generated from KDM3B -heterozygous OCI-AML3 cell lines, which were established
to mimic haploinsufficiency of the enzyme. Heterozygous deletion of KDM3B resulted in
the expected global chromatin compaction as well as epigenetic heterogeneity at H3K9me1/2-
associated regions.

This thesis provides two important contributions for the research community. First, my
findings shed light on the mechanisms driving one of the most aggressive forms of AML,
which until now has not been studied from an epigenetic perspective, and where KDM3B
has received very little attention as a putative target gene. Secondly, I provide the first
computational strategy for quantitative single-cell analysis of epigenomic heterogeneity,
which should offer a useful tool for biologists, especially those interested in stemness,
plasticity and mechanisms of therapy resistance in cancer.
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Zusammenfassung

Die Akute Myeloische Leukämie (AML) ist eine hämatologische Krebserkrankung, die
durch eine Blockade der Differenzierung myeloider Vorläuferzellen entsteht. Epigenetische
Regulatoren sind in AML häufig mutiert oder von strukturellen Variationen betroffen, und
die Störung dieser Gene kann zu einer tiefgreifenden epigenetischen Heterogenität zwischen
und innerhalb von Tumoren führen. Del(5q) ist die häufigste Kopienzahlveränderung bei
älteren AML-Patienten und wird mit einem schlechten klinischen Ergebnis und Therapie-
resistenz in Verbindung gebracht. Die Mechanismen, die den del(5q) mit der Entwicklung
und dem Fortschreiten von Leukämie in Verbindung bringen, sind bislang nicht verstan-
den.

Ich begann diese Arbeit mit einer Analyse von DNA-Methylierungsprofilen von 477 älteren
AML-Patienten unter Verwendung eines Methylom-Dekonvolutionsansatzes. Dabei ent-
deckte ich, dass del(5q) AML eine einzigartige epigenetische Untergruppe darstellt, die
durch DNA-Hypermethylierung gekennzeichnet ist. In einem Versuch, die epigenetische
Störung zu bestimmen, die zur Entstehung dieser Signatur führt, untersuchte ich die mi-
nimal deletierte 5q-Region (MDR) auf potenzielle epigenetische Regulatoren und identifi-
zierte die H3K9me1/2-Demethylase KDM3B als vielversprechendes Ziel. Eine genaue Kar-
tierung der MDR sowie eine differenzielle Transkriptions-, Protein- und Mutationsanalyse
von 5q-Genen untermauerten das Argument, dass KDM3B der wahrscheinlichste Kandidat
für Haploinsuffizienz bei del(5q)-MDR ist. Ich brachte die del(5q)-Methylierungssignatur
außerdem mit einer Dysregulation anderer H3K9me1/2-Regulatoren und einer konsisten-
ten Überexpression der de novo-DNA-Methyltransferase und des leukämischen Stamm-
zellmarkers DNMT3B in Verbindung. Darüber hinaus entdeckte ich, dass del(5q)- und
MECOM-überexprimierende Leukämien eine gemeinsame DNA-Methylierungssignatur auf-
weisen, die in beiden Untergruppen mit einer erhöhten Expression von DNMT3B einher-
geht. Diese Ergebnisse legen nahe, dass del(5q) AML als epigenetisch definierte Unter-
gruppe neu bewertet werden sollte, die durch Haploinsuffizienz von KDM3B verursacht
werden könnte.

Eine Verringerung des Proteinspiegels von KDM3B sollte zu einem Anstieg von H3K9me1/2
führen. Darüber hinaus habe ich die Hypothese aufgestellt, dass eine Haploinsuffizienz die-
ses Enzyms zu einer unausgewogenen Entfernung von H3K9me1/2 führt, sodass zwischen
den Zellen unterschiedliche Muster dieser Histonmarkierungen auftreten könnten. Eine
solche epigenomische Heterogenität von Zelle zu Zelle könnte eine treibende Kraft für
die Entwicklung von Leukämie darstellen, indem sie die Auswahl günstiger Phänotypen
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während der Krebsentwicklung und als Reaktion auf die Therapie ermöglicht. Um dieses
Phänomen zu untersuchen, habe ich ein Heterogenitätsmaß namens epiCHAOS (epigene-
tic/Chromatin Heterogeneity Assessment Of Single cells) entwickelt, welches Vergleiche
der epigenomischen Heterogenität in Einzelzelldatensätzen ermöglicht. Ich habe epiCHA-
OS in silico validiert und seine Funktionalität demonstriert, indem ich das Maß auf eine
Reihe biologischer Datensätze aus Entwicklungssystemen, Krebs und Alterung angewen-
det habe, die zeigte, dass es sowohl genomweite als auch regionsspezifische Unterschiede
in der epigenetischen Heterogenität gibt.

Um schließlich die epigenetischen Folgen der KDM3B-Störung bei AML zu untersuchen,
habe ich Einzelzell-ATAC-seq-Daten analysiert, die aus KDM3B-heterozygoten OCI-AML3-
Zelllinien generiert wurden. Diese Zellen wurden als Modell der Haploinsuffizenz von
KDM3B entwickelt. Die heterozygote Deletion von KDM3B führte zur erwarteten globalen
Chromatinverdichtung sowie zu epigenetischer Heterogenität in H3K9me1/2-assoziierten
Regionen.

Diese Arbeit liefert zwei wichtige Beiträge für die wissenschaftliche Gemeinschaft. Erstens
zeigen meine Ergebnisse, dass eine hochaggresive Form von AML eine epigenetisch defi-
nierte Untergruppe der Erkrankung darstellt. Diese Untergruppe ist durch Dysregulation
von KDM3B definiert, welches bislang wenig untersucht wurde. Zweitens liefere ich die
erste computerbasierte Strategie zur quantitativen Einzelzellanalyse der epigenomischen
Heterogenität, die ein nützliches Werkzeug für Krebsbiologen darstellen wird. EpiCHA-
OS ist besonder relevant für Forschende im Bereich von Stammzellen, Plastizität und zur
Untersuchung von Therapieresistenz.
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Chapter 1

Introduction

1.1 Acute Myeloid Leukemia

AML is the most common form of acute leukemia in adults, and is also the most aggressive,

with a five-year survival rate of 24% [1]. It is characterised by the clonal expansion

of abnormally differentiated myeloid progenitor cells known as blasts, which results in

impaired production of normal hematopoietic cells in the bone marrow and blood.

Normal hematopoeitic development begins with the hematopoietic stem cell (HSC)s – a

quiescent population with a unique capacity for self-renewal and the ability to differenti-

ate into different hematopoeitic progenitors [multipotent progenitor (MPP)s, lymphoid-

primed multipotent progenitor (LMPP)s, common myeloid progenitor (CMP)s, common

lymphoid progenitor (CLP)s, granuloyte/monocyte progenitor (GMP)s and megakary-

ocyte/erythroid progenitor (MEP)s]. These hematopoietic stem or progenitor cell (HSPC)s

ultimately give rise to the range of committed cell types of the myeloid (monocytes and

neutrophils), lymphoid [B, T and Natural Killer (NK) cells] and erythroid (red blood

cells) lineages (Figure 1.1). Although there is controversy about whether these HSPC

stages exist as distinct hierarchically organised cell states, or rather form a differentiation

continuum [2], AML is thought usually to develop at a stage of hematopoietic development

around the GMP, with fewer cases arising from pre-GMP stages of differentiation [3].

Depending on the type of genetic or cytogenetic alterations which are detected, AML is

diagnosed clinically by the presence of either >10 or >20 percent of blast cells in the bone

marrow or peripheral blood [4].
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Figure 1.1: Healthy and malignant hematopoiesis. Schematic describing normal
hematopoietic cell differentiation (left) and the emergence of AML (right). HSCs give
rise to hematopoietic progenitor cells (MPPs, LMPPs, CMPs, GMPs, CLPs and MEPs),
which in turn give rise to committed cell types of the myeloid [monocytes (Mono), neu-
trophils (Neut), eosinophils (Eos), basophils (Baso), macrophages (Mac) and dendritic
cells (DC)], lymphoid (B-cell, T-cell and NK-cells) and megakaryocyte/erythroid lineage
[red blood cells (RBC), mast cells (Mast), and megakaryocytes (MgK), which will give
rise to platelets]. AML can arise from different stages of myeloid progenitor development.
AML leukemic stem cell (LSC)s – which resemble HSCs in their self-renewing capacity –
give rise to leukemic blasts which proliferate in the bone marrow and blood.

1.1.1 Genetic and epigenetic dysregulation in AML

By comparison to most solid tumors, the mutational burden and frequency of cytoge-

netic abnormalities in AML is relatively low [5]. Nevertheless, certain classes of genes are

recurrently targeted for mutations; these include genes encoding hematopoietic transcrip-

tion factor (TF)s such as RUNX1 and CEBPα, signalling molecules such as FLT3 and

RAS, splicing factors such as SRSF2, cohesin complex components such as RAD21 and

STAG2 – and most notably, epigenetic enzymes [6]. Structural genomic alterations includ-

ing translocations, inversions, CNAs, and enhancer hijacking events are also detected in a

considerable number of AML patients, many of which also disrupt hematopoietic TFs and

epigenetic enzymes [7, 8]. Epigenetic dysregulation is considered to be a defining feature
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of AML, wherein regulators of DNA methylation such as DNMT3A and TET2, histone

modifiers such as KMT2A, EZH2, and other chromatin factors such as NPM1 and ASXL1

are among the earliest and most common targets for mutations, structural rearrangements

and copy number alterations [9, 10, 11, 12, 13, 14, 15, 16]. These aberrations can dis-

rupt global epigenetic regulation, leading to changes in DNA methylation and chromatin

architecture. As a result, AML represents a heterogeneous class of tumors – not only

genetically, phenotypically and clinically, but also at the epigenetic level [16, 17].

1.1.2 AML in the elderly

Like most cancers, AML is more common in older individuals, with a median age of di-

agnosis between 68 and 72 years [18]. In this thesis I will focus on AML in the elderly,

in which the clinical and molecular characteristics differ from those in younger adults

and in pediatric AML patients [19]. In particular, older patients more often present

with complex cytogenetics and a high incidence of deletions on chromosome 5, 7 and

17. Elderly patients tend to have worse clinical outcome and a higher frequency of ther-

apy resistance [19]. Recurrent translocations and inversions such as t(8;21) and inv(16),

which are associated with favorable outcome, are by contrast more common in younger

patients [19, 20], whereas fusion genes such as RUNX1::RUNX1T1, CBFB::MYH11, and

KMT2A::MLLT3, are especially common in pediatric AML and rarely occur in adults [21].

It is also especially notable that AML in older patients is often preceded by myelodys-

plastic syndrome (MDS) – a premalignant hematological disorder, which often already

harbor AML-associated mutations and cytogenetic changes such as del(5q), del(7q), tri-

somy 8, mutations in DNMT3A, ASXL1, TET2, TP53 and others [19, 20]. Given these

distinctions, and the fact that many of the above alterations influence epigenetic pro-

cesses, it seems justifiable to separate age-specific cohorts for the purpose of epigenetic

characterisation.

1.1.3 AML treatment and clinical stratification

Therapeutic management of AML in younger adults typically involves induction chemother-

apy and hematopoietic stem cell transplantation [22]. Recently, targeted therapies such as

FLT3 inhibitors and IDH inhibitors have also been incorporated into the clinical regimen

for certain AML subgroups [22]. In older AML patients, and other cases in which intensive

chemotherapy may not be tolerated, the current standard of care involves treatment with

venetoclax – a BCL2 inhibitor – and a hypomethylating agent, azacitidine or decitabine

[23]. While most patients respond well to these regimens, relapse is common in certain

subgroups.

Frameworks for categorising AML in order to guide clinical decisions are continuously

evolving. Traditionally, the French American British (FAB) nomenclature was used to

characterise AML into subgroups based on the morphological appearance and differenti-

ation stage of the leukemic cells [24]. Current protocols instead stratify AML based on
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cytogenetic and genetic findings into three risk groups with favorable, intermediate and

unfavorable prognosis, which were recently updated in the 2022 European LeukemiaNet

(ELN) recommendations [4]. The favorable risk group includes patients with t(8;21) and

inv(16), while the unfavorable risk group include patients with inv(3);t(3;3), t(6;9), t(9;22),

t(8;16), del(5q), monosomy 7/5, or a complex karyotype (ckAML) [4]. Beyond these cy-

togenetic factors, mutations are also being incorporated into AML risk stratification, for

example bZIP in-frame CEBPA mutations are indicative of a favorable outcome, whereas

mutations in TP53, ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1,

and ZRSR2 are associated with inferior outcome [25, 4]. The intermediate risk category

includes patients with t(9;11), FLT3-ITD mutations, and other cytogenetic and molecular

abnormalities which are neither classified as favorable or adverse [4].

1.1.4 Leukemic stem cells

According to the Cancer Stem Cell (CSC) hypothesis, cancers are organised as cellular

hierarchies, at the apex of which resides a type of multipotent cancer cell which exhibits

characteristics of normal stem cells – namely, the ability to self-renew and repopulate the

tumor mass [26]. In AML, these cells are referred to as LSCs, and are distinguished from

leukemic blasts – the transformed cells which make up the bulk of the tumor. In AML this

stem cell capacity is usually proven based on the ability of cells to engraft and give rise

to leukemia in immune-deficient mice – an ability that was linked to the CD34+CD38-

immunophenotype [27]. In clinical settings, LSCs are believed to be a major contributor

to therapy resistance and relapse [28]. This has been attributed to the fact that LSCs can

exist in a state of cell-cycle quiescence, which allows them to avoid cell-cycle-dependent

therapeutic insults [29]. A similar phenomenon is also well documented in other cancer

types, where a population of so-called cancer persister cells can exist for years in a state

of dormancy, giving rise to relapse if they later re-enter the cell cycle [30].

Based on this understanding, LSC gene expression signatures have been developed as

predictive/prognostic biomarkers that could be used to identify AML patients at high

risk of relapse after induction chemotherapy. Most notable is the LSC17 score, which

is calculated as the weighted gene expression of 17 genes which were selected based on

differential expression between LSC+ and LSC- cell fractions, as well as their expression

associating with worse clinical outcome [31]. The LSC17 score is known to be increased

in the more aggressive AML subgroups such as ckAML.

1.1.5 AML with a complex karyotype

CkAML is an aggressive AML subgroup defined by the presence of ≥3 unrelated chromo-

some abnormalities in the absence of other class-defining genetic lesions [32, 33]. CkAML

comprises about 10-12 percent of AML patients, but is more common in the elderly, espe-

cially in patients progressing from the pre-malignant MDS, and in therapy-related AML.

As mentioned above, ckAML falls into the category of unfavorable risk, however, unlike
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some other events in this category, ckAML remains mechanistically a poorly understood

subgroup. The majority of chromosomal aberrations in ckAML are unbalanced changes

such as deletions and gains, rather than balanced changes such as translocations and

inversions [34]. Attempts to further characterise ckAML have been limited, with the ex-

ception of the “typical” and “atypical” subclassification proposed by Mrozek et al. [33].

By this definition, “typical” ckAML are those which carry deletions on chromosome 5/7q

and/or 17p, and are characterised by a higher frequency of TP53 mutations and a worse

clinical outcome compared to “atypical” ckAML lacking these alterations [33, 35]. How-

ever, with the exception of del(17p), which is linked to the famous tumor suppressor gene

(TSG), TP53, the mechanisms linking the most common chromosome deletions [del(5q)

and del(7q)] to the development and progression of aggressive leukemias are largely un-

known.

1.1.6 Past and present perspectives on deletion 5q AML

A deletion in the long arm of chromosome 5 is the most common copy number alteration

in older AML patients, occurring in about 80% of patients with ckAML, and in rare cases,

as a sole abnormality [33]. Del(5q) is an early event in leukemogenesis. This is evidenced

firstly by the fact that del(5q) is typically a clonal event, and secondly by its frequent

occurrence in premalignant MDS, which can progress to ckAML over time [36, 37, 38].

Although the deleted regions are typically large, spanning several tens of megabase (MB)s,

analyses of overlapping deleted segments across large numbers of patients have resulted

in the definition of a minimally deleted region (MDR) within 5q31.2, where the search

for del(5q) TSGs has focused [39, 40, 41, 42]. A conservative definition of the MDR in

del(5q) AML and high risk MDS is a region of around 1MB containing 50 genes, flanked

by IL9 and UBE2D2 [43, 44], however regions as small as four genes have been proposed

[42]. While this 5q31.2 MDR is common to high-risk MDS and AML, it is important

to distinguish this region from the more telomeric 5q32-33 locus associated with low-

risk MDS or so-called “5q syndrome”, which has been linked to haploinsufficiency of the

ribosomal gene RPS14, located on 5q33. Ebert et al. identified RPS14 as the 5q-syndrome

haploinsufficiency target through ribonucleic acid (RNA) interference screening, whereby

each of the 40 genes in the 5q32-33 MDR were systematically inhibited, and the effects

on HSPC function were evaluated. Here only shRNAs targeting the RPS14 gene resulted

in a block in erythroid differentiation, which recapitulated clinical symptoms of the 5q

syndrome [45, 46].

Haploinsufficiency is a gene dosage effect, whereby loss of only one allele is sufficient to

reduce protein levels of its product in such a way that impairs normal cellular function

and contributes to tumorigenesis [47]. This stands in contrast to the classic definition of a

TSG, which was originally proposed by Knudson, where two “hits” (inactivating mutations

or deletions) are required in order for a malignant phenotype to be fully propagated [48].

Since no genes within the 5q31.2 locus were identified to be recurrently mutationally
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inactivated on the second allele, the prevailing hypothesis is that the del(5q) phenotype

in high-risk AML is also driven by haploinsufficiency of one or more genes in the MDR.

Several genes within and around the MDR have been investigated as haploinsufficiency

candidates, including CTNNA1 [44], EGR1 [49, 50], CSNK1A1 [51], KDM3B [52], DELE1

[37] and ETF1 [53]. However, attempts to pinpoint the target of del(5q), and to delineate

the mechanisms linking the loss of these genes to leukemic progression in AML have been

inconclusive.

CTNNA1, which encodes for the alpha-catenin protein, has been highly regarded among

putative del(5q) targets since its proposition in a 2007 study by Liu et al. [44]. Here,

the promoter of the CTNNA1 gene was found to be epigenetically silenced, resulting in

biallelic inactivation of the gene in a subset of del(5q) samples. This evidence for a “second

hit” led the authors to speculate that CTNNA1 may be a tumor suppressor. Moreover,

they showed that restoration of the gene’s expression in a del(5q) cell line resulted in en-

hanced cell death. Considering the role of catenin family proteins in regulating cytoskeletal

organisation, the authors suggested a model whereby the loss of CTNNA1 in leukemia-

initiating/stem cells may disrupt the balance between symmetric (a stem cell giving rise

to two identical stem cells, thereby replenishing the stem cell pool) versus asymmetric (a

stem cell giving rise to one stem and one differentiated cell) cell fate decisions. They hy-

pothesised that an increase in symmetric cell divisions resulting from CTNNA1 loss could

confer a selective advantage to the malignant stem cell pool [44]. However, this remained

speculation and was not experimentally validated. The authors also noted inconsistencies

in the loss of CTNNA1 expression among del(5q) patients, with 4 out of the 12 del(5q)

cases studied retaining normal levels of CTNNA1 expression. Later, Mikhalkovitch et al.

carried out a range of functional experiments in vivo to follow up on the role of CTNNA1

in AML, and did not detect any signs of aberrant HSC function or the development of

myeloid neoplasms in CTNNA1 -deficient mice [54]. It is also important to note that

CTNNA1 lies slightly outside most restricted definitions of the MDR [55, 39, 56, 57, 42],

making it unlikely to be the key leukemogenic factor.

The same year that CTNNA1 emerged as a promising candidate, Joslin et al. reported

on the haploinsufficiency of the EGR1 gene [49]. EGR1 encodes a zinc-finger TF with

diverse roles in regulating proliferation, differentiation and apoptosis. They showed that

haploinsufficiency of EGR1 led to disrupted myeloid development in an AML mouse model

treated with an alkylating agent [49]. EGR1 was considered a promising candidate because

it had already been identified as a classical tumor suppressor in other cancer types [58]

and was known to play a role in regulating important tumor suppressors including TP53

and PTEN [59, 60]. It was suggested that haploinsufficiency of EGR1 confers a fitness

advantage to HSCs in conditions of stress, such as following chemotherapy, potentially

explaining why del(5q) is more common in therapy-related AML and in the setting of

chronic inflammation associated with aging [50]. EGR1 remains today one of the most

plausible del(5q) target genes, however, some researchers have been cautious to accept
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this tempting explanation. Independent studies reported that EGR1 was inconsistently

downregulated in AML patients with del(5q) [61], and that its expression did not correlate

with the del(5q) clonal burden [62]. Moreover, the fact that EGR1-deficient cells in Joslin

et al.’s study did not show evidence of hematopoietic disruption in the absence of a DNA

damaging agent led to some scepticism [49]. Later studies suggested that the ability of

EGR1-haploinsufficient HSCs to clonally expand was highly variable among recipients.

This led to the proposition that another gene – CSNK1A1 – deletion of which led to

a more consistent and stronger clonal advantage in competitive transplantation assays –

may be a more likely target [63, 64]. Schneider et al. showed that haploinsufficiency of

CSNK1A1 induced HSC expansion, with homozygous deletion conferring HSC failure [51].

Moreover, CSNK1A1 was found to be targeted by mutations in some cases of MDS [51].

Nevertheless this gene lies somewhat distal to the high-risk MDR, making it unlikely a

sole del(5q) target in AML.

To date, the smallest interval of the 5q MDR proposed by Mackinnon et al. comprises

only EGR1, REEP1, KDM3B and ETF1 (the latter being on the border of the region and

included tentatively) [42]. Of these genes, only KDM3B gene expression was found to be

significantly reduced in del(5q) samples [61]. Later it was shown that introducing KDM3B

into a del(5q) leukemic cell line suppressed clonogenic growth, suggesting that KDM3B,

which encodes for a H3K9me1/2 demethylase enzyme, might act as a haploinsufficient

TSG [52]. Nevertheless KDM3B received very little attention compared to other putative

targets.

Evidently, the identity of the pivotal del(5q) target gene(s) remains controversial, and the

quest to discover such genes is ongoing. For example, a recent study by Spinella et al.

suggested that haploinsufficiency of the DELE1 gene, which encodes a mitochondrial pro-

tein, could contribute to leukemia progression by inhibiting mitochondrial stress-induced

apoptosis [37].

1.2 Epigenetics

The term “epigenetics” refers to any mitotically/meiotically heritable regulatory elements

of the genome which can influence gene expression but which do not involve modifications

of the underlying DNA sequence. While the DNA sequence remains stable throughout or-

ganismal development – being largely identical between different differentiated cell types

and the zygote from which they derived – epigenetic marks are dynamic and reversible, be-

ing continuously remodeled throughout the cell cycle, and influenced by cell-cell signaling

and environmental factors including aging and diseases [65, 66, 67]. The most recognised

– but not only – function of epigenetic modifications is in the control of gene expression

[68].

The proper organisation of the DNA strand within the nucleus is provided by the chro-
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matin structure. Chromatin can be categorised as either heterochromatin, which exists

in a highly compact and transcriptionally inactive state, or euchromatin, which is loosely

packaged, thus allowing access by TFs and other elements required to permit transcrip-

tional activity [68]. Heterochromatin can be further subdivided into the permanently

repressed “constitutive heterochromatin” – which encompasses repetitive regions such as

the centromeres and telomeres – and the more dynamic “facultative heterochromatin” –

which may be active or inactive depending on the cellular context [69]. Chromatin ac-

cessibility and epigenetic control of gene expression is mediated by an array of chemical

and protein modifications which occur either on the DNA itself, or on the tails of histone

proteins which form the nucleosomes around which the DNA are wrapped (Figure 1.2).

1.2.1 DNA methylation

The primary epigenetic modification of DNA is methylation – the covalent addition of a

methyl group (CH3) to the 5’ Carbon of the cytosine base within a CpG dinucleotide. CpG

dinucleotides are positions of the genome where a cytosine is followed by a guanine. Such

sites occur throughout the genome but are enriched in clusters of close proximity – known

as CpG islands – which are present at the promoters of most active genes [70]. While most

CpG sites throughout the genome are stably methylated, CpG islands in the promoters of

active genes are typically unmethylated, and methylation of such promoters is associated

with gene silencing [70]. Outside of CpG islands, the link between DNA methylation

and gene expression is more variable; for example, methylation of gene bodies has been

shown to correlate with active gene expression and may have an impact on gene splicing

[71], whereas intergenic methylation can influence gene activity through the modulation

of enhancers, insulators, and other regulatory elements [71].

DNA methylation is mediated by a family of enzymes called DNA methyltransferase

(DNMT)s, which catalyze the transfer of a methyl group from S-adenosylmethionine

(SAM) to DNA. This family includes the so-called maintenance methyltransferase, DNMT1,

and the de novo methyltransferases, DNMT3A and DNMT3B [72]. The latter are pre-

dominantly active during embryogenesis where they are responsible for establishing the

patterns of DNA methylation in developing tissues [72]. Meanwhile, DNMT1 is stably

expressed in all adult tissues where it copies the already established methylation pattern

to daughter cells as part of every cell division [73]. DNA demethyation can be a passive

process, whereby dividing cells fail to remethylate newly synthesised daughter strands,

for example, if DNMT1 is inhibited. However, DNA can also be actively demethylated

– a mechanism mediated by the family of so-called ten-eleven translocation (TET) en-

zymes [74]. These enzymes add a hydroxyl group onto methylated cytosines, which are

subsequently converted back to unmethylated cytosines. Each different cell type harbors

a unique signature of DNA methylation which instructs cell-type-specific gene expression

and is thus essential for maintaining cell identity throughout mitotic cell divisions [75].
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1.2.2 Histone modifications and nucleosome positioning

Beyond DNA methylation, various epigenetic modifications of histone proteins also play

a role in regulating gene expression. Four core histone proteins – H2A, H2B, H3 and H4

– each present in two units – form an octamer, around which approximately 147 base

pairs of DNA is wrapped. Each such unit is called a nucleosome, and the positioning of

such nucleosomes has a critical impact on the regulation of gene expression, by influencing

the accessibility of chromatin to TFs and other regulatory proteins [76]. Nucleosome-free,

open chromatin regions are associated with active transcription, whereas the positioning

of nucleosomes over promoters or enhancers can inhibit the binding of such factors and

thereby repress transcriptional activity [76]. Within the nucleosome, each histone protein

consists of a globular domain and an N-terminal tail which protrudes from the nucleo-

some, where it is accessible for placement of various epigenetic modifications. Chemical

modifications to the histone tail affect chromatin structure and ultimately gene expression

by altering the electrostatic interactions between histones and DNA, and by providing a

platform for the recruitment of other chromatin modifying proteins and complexes that

modulate transcription [77].

The best studied of such modifications are histone methylation and acetylation, but oth-

ers exist such as ubiquitination and phosphorylation. The effect of such modifications on

gene expression depends not only on the chemical group added, but also at which location

within the histone complex and which amino acid is modified. For example, H3K9me3

(trimethylation of the ninth position Lysine on histone H3) is a repressive chromatin mark

associated with gene silencing, whereas H3K4me3 (trimethylation of the 4th position Ly-

sine on histone H3) is associated with gene activation and is typically found at the pro-

moters of expressed genes [77]. The overall effect on the chromatin conformation and gene

expression is determined by the combination of histone modifications on different residues

as well as the number of moieties which are attached (for example H3K9 may be mono, di,

or tri-methylated, with different consequences). A large number of enzymes participate

in the modification of histones, for example histone lysine methyltransferase (KMT)s and

lysine demethylase (KDM)s mediate the addition and removal of methyl groups to histone

lysine residues, while histone acetyltransferase (HAT)s and histone deacetylase (HDAC)s

control the placement of acetyl groups. Each of these families contain numerous enzymes

which exhibit overlapping but distinct patterns of activity and tissue/context-specificity

[77].

DNA and histone modifications are closely interconnected. For example, repressive hi-

stone marks can direct the establishment of DNA methylation [78], and de novo DNA

methyltransferases, DNMT3A and DNMT3B are known to interact with several histone

methyltransferases including SUV39H1, EZH2 and G9a [79, 80].
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Figure 1.2: Epigenetic modifications of the DNA and histones. Schematic out-
lining the structure of chromosomes and the major sites of epigenetic modifications in the
genome. Histone modifications occur on the tails of histone proteins, which make up the
nucleosomes around which DNA is wrapped to form chromatin. The second main epige-
netic modification – DNA methlation – involves the addition of a methyl group (CH3) to
the 5’ carbon of the cytosine ring at CpG dinucleotides.

1.2.3 Epigenetics and epigenetic enzymes beyond the regulation of gene

expression

While epigenetics is most often studied as a system overseeing the regulation of gene

expression, the importance of epigenetics extends beyond transcriptional control. For

example, epigenetic processes are tightly linked to genome stability and DNA repair [81].

In fact, a prevailing theory is that DNA methylation evolutionarily evolved as a means of

protecting against genomic disruption by parasitic insertions [82].

The loosening of chromatin structure facilitated by epigenetic modifications is a critical

step in the early DNA damage response, which is needed to improve the accessibility

of chromatin for the DNA repair machinery [83]. Various chromatin remodelling com-

plexes and regulators of histone modifications are also recruited to sites of DNA damage

where they have been implicated in DNA damage detection and repair processes such as

non-homologous end-joining (NHEJ) and homologous recombination (HR). Most notably,

phosphorylation of the histone H2A is a crucial event in response to DNA damage, and is

thought to facilitate the accumulation of DNA repair proteins at damaged sites [84].

Enzymes which mediate histone (de-)/methylation and (de-)/acetylation can also partici-

pate in post-translational modification of other non-histone proteins, thereby functioning

as regulators of protein activity. An important example is the regulation of the tumor-
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suppressor TP53 by lysine methylation and acetylation. Acetylation of various lysine

residues in the TP53 protein were shown to increase during DNA damage, serving to in-

duce its activity as a transcription factor. Lysine methylation – mediated by enzymes such

as SET9, LSD1, G9a and others – has been shown to have both activating and repressive

effects on TP53 activity, depending on the amino acid position and number of methyl

groups [85].

1.2.4 Epigenetic disorder in cancer

Cancer has historically been studied as a genetic disease, in which mutations and structural

alterations in the DNA give rise to uncontrolled proliferation and evasion of growth sig-

nals and thereby drive malignant progression [86]. Nowadays, epigenetic reprogramming

is appreciated as a hallmark of cancer, and it is increasingly recognised that epigenetic dis-

turbances can themselves represent cancer driver events, by influencing the transcriptional

state of cancer-associated genes [87].

Changes in DNA methylation are the most widely studied epigenetic aberrations in can-

cer, and are a notable feature of most tumors [88]. Typically, abnormal hypermethylation

affects CpG-rich rich regions of the genome such as promoters. Promoter CpG hyperme-

thylation has been recognised as a mechanism of silencing TSGs, and has been described

for several well known tumor suppressors including VHL in clear cell renal carcinoma and

BRCA1 in breast and ovarian cancers [89, 90]. Beyond these notable targets, a striking

example of the widespread CpG island hypermethylation in cancer is the so-called “CpG

Island Methylator Phenotype” or “CIMP”, which has been most famously recognised in

a subset of colorectal cancers, though it has also been observed in other cancer types

[91]. CIMP colorectal cancers display exceptionally high levels of CpG island hyperme-

thylation, resulting in the inactivation of several TSGs, most notably the DNA mismatch

repair gene, MLH1, suppression of which gives rise to genomic instability [92]. CpG hy-

permethylation in cancer is also associated with an increased rate of cytosine to thymine

mutations, which include hotspot mutations for critical TSGs such as TP53 [93]. Epige-

netic alterations in other regulatory regions such as enhancers and CTCF binding sites

can also lead to altered gene expression by influencing promoter/enhancer interactions

and disrupting the structure of topologically associated domains [94, 95]. In contrast to

the localised hypermethylation of CpG islands, cancer cells are characterised by global

hypomethylation throughout repetitive DNA sequences and late replicating regions of

the genome, which in normal cells remain extensively methylated [96]. This global hy-

pomethylation is thought to be linked to the rate of cell proliferation, which is reflected

in its association with late replication timing [97]. In this scenario, the methylation main-

tenance machinery may fail to remethylate newly synthesised daughter strands during

successive rounds of rapid cell division and replication, resulting in a progressive loss of

methylation in regions of the cancer genome that replicate later in the S phase of the cell

cycle [97]. Global hypomethylation is also believed to promote genomic instability in can-
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cer by interfering with the protective function of heterochromatin, notably at telomeres,

centromeres and other repetitive regions [98]. Loss of methylation was shown to destabilise

peri-centromeric chromatin, thereby promoting large-scale chromosomal rearrangements

[96]. Hypomethylation-mediated de-repression of transposable elements can also encour-

age genomic rearrangements [99]. Thus, epigenomic and genomic disorder in cancer cells

need to be appreciated as closely interconnected developments.

The importance of epigenetic dysregulation in human cancer is highlighted by the high

frequency of mutations in epigenetic regulators – especially writers and erasers (enzymes

which add or remove epigenetic modifications, respectively) of histone methylation. For

example, mutations in EZH2 – which encodes a component of the polycomb repressive

complex 2 (polycomb repressive complex (PRC)2) that mediates H3K27me3 methylation

– are common in lymphoma (activating mutations) and leukemia (inactivating mutations)

[100, 101] and EZH2 overexpression has been linked to worse clinical outcome in several

other cancer types [102]. Mutations in the H3K27me3 demethylase KDM6A/UTX are

also prevalent in several cancer types including bladder, lung and breast cancer [103]. The

gene encoding the H3K4me1 methyltransferase, KMT2D/MLL2, is mutated in about 10

percent of all cancers, being among the most frequently mutated genes in lung, bladder and

head and neck cancer [103]. These are just a few examples which highlight the pervasive

involvement of epigenetic regulators in the mutational landscape of human cancers.

Metabolic disruptions can also manifest in epigenetic changes. A typical example is in

AML with mutations in IDH1/2, which results in the accumulation of the oncometabo-

lite 2-Hydroxyglutarate (2-HG). This oncometabolite serves as a competitive inhibitor of

various α-ketoglutarate-dependent epigenetic enzymes, including the TET family of DNA

demethylases as well as various histone lysine demethylases. IDH mutations therefore

result in a signature of DNA hypermethylation [12].

Coupled with the fact that epigenetic alterations are, in principle, reversible events, this

background has precipitated a growing interest in epigenetic strategies for cancer therapy

[104]. Some such therapeutic compounds are already in clinical use; most notably, the

DNA hypomethylating agents, azacitidine and decitabine, which are part of the standard

clinical regimen for older patients with AML [105]. Other epigenetic drugs have recently

entered clinical development, including for example EZH2 inhibitors, which are undergoing

clinical trials for several tumor types including lymphomas and prostate cancer [106].

Epigenetic alterations have also attracted attention from a clinical perspective beyond

therapeutic targeting. For example, since epigenetic alterations in cancer are thought to

be early events which might precede malignant transformation, they have also gained in-

terest as potential biomarkers for early detection, diagnosis and clinical decision-making.

For example, hypermethylation of MGMT, which encodes the DNA repair enzyme O6-

methylguanine-DNA methyltransferase, was identified as a key prognostic and predic-

tive biomarker in glioma, where it indicates a favorable response to alkylating agent
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chemotherapy [107]. In the future, DNA-methylation-based liquid biopsies to detect

cancer-associated alterations in circulating tumor DNA or cell-free DNA might also offer

promising avenues for detection and monitoring of tumor progression [108, 109].

A deeper understanding of the causes and consequences of epigenetic dysregulation in

cancer could therefore have valuable translational implications.

1.2.5 Epigenetic strategies for cancer subgrouping

Patterns of epigenetic dysregulation – in particular DNA methylation – have become of

interest for cancer subgrouping. Defining subgroups within heterogeneous tumors can

aid diagnosis, risk stratification and therapeutic decision-making, as well as improving

how researchers can approach the study of disease. A particularly successful example

is the DNA methylation-based characterisation of tumors of the central nervous system

proposed by Capper et al. [110], which is now used routinely in diagnostic settings. A

similar approach was also later proposed for the classification of sarcomas [111].

In this thesis I will focus on AML, a salient example of epigenetic dysregulation and

heterogeneity in cancer. Several previous attempts were undertaken to define epigenetic

subgroups in AML using DNA methylation profiles. For example Figueroa et al. identi-

fied 16 methylation based AML subgroups using the HpaII tiny fragment enrichment by

ligation-mediated polymerase chain reaction (HELP) assay [112], which focuses on methy-

lation at promoters. These categories were later redefined to 14 subgroups using Enhanced

Reduced Representation Bisulfite Sequencing (ERRBS) [113]. More recently, Giacopelli

et al. defined a set of 13 methylation-based subgroups, so-called “epitypes” using EPIC

and 450K array data from the BEAT and the cancer genome atlas (TCGA) AML cohorts

[114]. These studies and others have succeeded in linking methylation signatures to many

of the most common mutations and structural rearrangements including mutations in

DNMT3A, NPM1, and CEBPA, as well as inv(16), t(15;17) and t(8;21) (rearrangements

disrupting CBFβ, PML/RARA and RUNX1/RUNX1T, respectively). Other studies have

identified DNA methylation signatures associated with overexpression of the oncogene,

MECOM/EVI-1 [115], as well as rearrangements of the KMT2A/MLL locus [32].

1.2.6 Epigenetic heterogeneity and its implications in cancer

Complex biological systems exhibit heterogeneity at multiple levels – from the genetic

diversity distinguishing individual organisms from one another, to the epigenetically-

regulated functional diversity of tissues and cell types within an organism, and more

subtle cell-to-cell variations between cells of a defined type [116].

Cell-to-cell epigenetic heterogeneity is essential for the proper functioning of biological

organisms, where it is thought to contribute to the maintainance of pluripotency and

the control of differentiation and cell fate decisions [117]. The property of stemness is
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associated with an elevated stochastic molecular variation, which endows cells with the

potential to follow any of a range of differentiation trajectories. Such molecular “noise” is

believed to decrease as cells become progressively more differentiated, during which they

commit to a designated cell fate, and acquire the stable transcriptional program which that

lineage demands [118]. Such heterogeneity can however have detrimental implications in

the context of malignancy [118].

Cancers are in many respects heterogeneous entities. Inter-tumor heterogeneity – referring

to the differences between tumors from any two individuals – implies that any two tumors

of a given type can evolve in very different directions – exhibiting variations in genetic

profiles, phenotypic behaviours (e.g. growth, metabolic and immune dynamics) as well

as potentially harboring different epigenetic patterns. This inter-individual heterogeneity

entails that patients with the same tumor type may not respond to treatment in a “one-

size-fits-all” manner – an anomaly that has precipitated a growing interest in personalised

oncology [119]. However, the promise of personalised cancer therapy is complicated by an

additional layer of heterogeneity – that which exists between cells within any individual

tumor, i.e. intra-tumor or inter-cellular heterogeneity.

Cancer formation begins with the clonal expansion of a single transformed cell, but a tumor

can grow to become a heterogeneous mass, exhibiting a range of phenotypic characteristics

[120, 121]. Intra-tumor heterogeneity emerges in part through the acquisition of different

mutations in different cells, resulting in genetically distinct subclones. However, as the

classical genetic view of cancer has expanded to one encompassing epigenetic disorder, it is

also increasingly appreciated that phenotypic heterogeneity within tumors can stem from

cell-to-cell differences in the patterns of DNA and histone modifications and chromatin

accessibility [122].

In recent years this phenomenon of inter-cellular heterogeneity – closely linked to the

concept of cancer plasticity – has received particular attention as a potential driver of

tumor evolution and therapy resistance [120, 123, 124]. In this scenario, the capacity of a

single tumor to exhibit a variety of epigenetic, transcriptional and ultimately functional

states, creates a fitness advantage, enabling that tumor to adapt and respond to a variety

of external and internal stresses, including microenvironmental pressures and therapeutic

insults. This represents a major clinical challenge [121]. The higher the heterogeneity,

the greater the chances that a part of the tumor will be intrinsically tolerant to a certain

stressor, such that this subset of cells can persist in the face of therapy, and ultimately

outgrow to form a resistant tumor.

Another advantage of such cell-to-cell heterogeneity in cancer evolution is in facilitating

a “division of labor” that allows a tumor to function efficiently as a system, wherein dif-

ferent cells can take on different roles for the benefit of the whole. One can consider

for example the functional diversity underlying the process of cancer metastasis. The

metastatic cascade begins with degradation of the extracellular matrix and invasion of
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local tissues, followed by extravasation and dissemination into the bloodstream. There,

cells must survive passage through the circulation before ultimately settling and colonising

a distant organ, where they will need to adapt to the foreign conditions of a new microen-

vironment. This undertaking requires a diversity of sometimes conflicting “skills” that

cannot be shared by a homogeneous group of cells, but more likely distributed across a

phenotypically heterogeneous and/or plastic cell population [125, 126]. In epithelial can-

cers, this process is also believed to be facilitated by a so-called epithelial/mesenchymal

plasticity, whereby epithelial cells of the primary tumor acquire a mesenchymal phenotype

(epithelial-to-mesenchymal transition) that endows them with invasive characteristics, and

later reacquire epithelial traits (mesenchymal-to-epithelial transition) to allow attachment

and colonisation in the metastatic site [127].

1.2.7 Techniques for studying epigenetic modifications

Various modern technologies have been developed to facilitate epigenetic studies, includ-

ing methods for measuring DNAmethylation, histone modification, chromatin accessibility

and conformation. A range of techniques for studying DNA methylation have been estab-

lished, most of which rely on the principle of bisulfite conversion. Here, DNA is treated

with sodium bisulfite, resulting in the conversion of unmethylated cytosine residues to

uracils, while methylated cytosines remain unchanged. Methylated and unmethylated

cytosines can thus be distinguished. Genome-wide profiles of DNA methylation can be

obtained using sequencing techniques such as whole genome bisulfite sequencing (WGBS),

or reduced representation bisulifte sequencing (RRBS), the latter being restricted to CpG-

dense regions of the genome [128, 129]. Array-based technologies have also been developed

such as the Illumina Infinium HumanMethylation450 (450K) and HumanMethylationEPIC

(EPIC) arrays, which provide methylation measurements at 450,000 and 850,000 CpG sites

throughout the genome, respectively, with most probes covering promoters, enhancers

and other regulatory regions of the genome [130, 131]. These technologies use specialised

probes that distinguish between methylated and unmethylated cytosines based on the ra-

tio of fluorescence signal produced during single-base extension and hybridisation with

bisulfite-converted DNA [130].

Various techniques have also been developed for studying genome-wide patterns of histone

modifications, as well as measuring DNA binding sites for TFs and other proteins. The

most widely used is Chromatin Immunoprecipitation with sequencing (ChIP-seq), which

relies on the principle of immunoprecipitation; using an antibody specific to the protein

(or histone modification) of interest, to capture and enrich DNA segments to which the

protein is attached [132]. Later, the purified DNA can be sequenced to determine precisely

which regions in the genome the protein (or histone modification) has bound. Other tech-

niques for studying histone modifications include Cleavage Under Targets & Release Using

Nuclease (CUT&RUN) [133] and Antibody-guided Chromatin Tagmentation (ACT)-seq

[134], which offer advantages over ChIP-seq, such as requiring a lower number of input
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cells.

Genome-wide patterns of chromatin accessibility can be studied using the assay for ATAC-

seq [135]. This can provide a broader insight into the gene regulatory landcape, since it

does not require a priori knowledge about any specific epigenetic modification. ATAC-

seq relies on the use of an enzyme called Tn5 transposase, which recognises regions of

accessible chromatin, cuts the DNA at those regions, and tags it for sequencing [135].

In recent years, studies of DNA methylation, histone modifications and chromatin accessi-

bility have been transformed by developments in single-cell sequencing technologies [136,

137, 138]. Single-cell ATAC-seq is currently the most widely used method for studying

epigenetic patterns at the single cell level [136].

1.2.8 Techniques for studying epigenetic heterogeneity

Understanding intratumor heterogeneity is essential to the study of cancer, however it

has historically been challenging to study this phenomenon due to technological limita-

tions. Until recently, most studies of cancer have relied on traditional “bulk” sequencing

approaches, by which subtle variations within cell populations are easily blurred. Since

epigenetic signals are highly cell-type-specific, epigenetic data derived from tumor biop-

sies can be expected to retain signals from both tumor cells, and various non-cancerous

cell types of the tumor microenvironment, with the added complexity that the tumor cell

component likely itself represents a heterogeneous population. This cell-to-cell hetero-

geneity generally complicates the downstream analyses and interpretation of epigenomic

data, making it difficult to decipher the causes and consequences of cancer-cell-specific

epigenetic disturbances [139].

To address this challenge, various technical and computational strategies have been devel-

oped which facilitate studies of epigenetic heterogeneity at different scales. Most notably,

the emergence and continuous evolution of single-cell sequencing technologies have made

it possible to disentangle intratumor and microenvironmental heterogeneity at unprece-

dented resolution, at the genomic, transcriptomic and epigenomic levels. Using technolo-

gies such as single-cell RNA sequencing (scRNA-seq) and single-cell ATAC-seq (scATAC-

seq), the presence of transcriptionally and epigenetically distinct clusters within tumors

– the simplest layer of epigenetic heterogeneity – has been demonstrated across a broad

range of cancer types [140, 141, 142, 143].

Several computational strategies were also developed to study transcriptional and epige-

netic heterogeneity using “bulk” data. Methylome deconvolution provides one strategy for

studying the epigenetic heterogeneity within a tumor and its microenvironment. This is a

computational method designed to extract cell–type-specific information and other recur-

ring sources of epigenetic variation in DNA methylation data from bulk tissue samples such

as tumors [144]. A few recent studies have incorporated methods to quantify cell-to-cell
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heterogeneity at the transcriptional level using distance-based or entropy-based metrics,

or to quantify transcriptional “noise” using metrics such as the coefficient of variation

[145, 146, 147, 148]. Others have taken advantage of read-level DNA methylation data

to devise metrics of epigenetic heterogeneity that can be applied to bulk sequencing data

[149, 150, 151, 152, 153]. However, such strategies are limited in discerning heterogeneity

between from heterogeneity within cell states, and there have been no attempts so far to

develop quantitative metrics of epigenetic heterogeneity in single-cell data.
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Chapter 2

Motivation & Aims

AML with a complex karyotype remains a poorly understood subgroup, for which improved

characterisation will be needed to decipher the molecular events leading to profound ge-

nomic instability and chemoresistance, and ultimately to point towards novel therapeutic

avenues for AML patients. Perhaps most pressing is the need to understand the recurrent

chromosomal aberrations which exemplify the most aggressive of these tumors, and for

which the critical genes and underlying mechanisms remain elusive – the most common

of which is del(5q). In this thesis I set out to improve our molecular understanding of

AML in older patients through a DNA methylation-based characterisation. My initial

findings led me to focus on del(5q) AML, and to investigate the H3K9me1/2 demethylase

KDM3B as a haploinsufficiency candidate in this subgroup. In the later part of the thesis,

I investigate the hypothesis that haploinsufficiency of KDM3B gives rise to cell-to-cell epi-

genetic heterogeneity. This hypothesis also motivated the development and validation of a

computational strategy to quantify epigenetic heterogeneity in single-cell data. I therefore

begin this thesis with a search for order in AML methylomes, which eventually leads me

to a search for “chaos”. The aims of the thesis are summarised below:

2.1 Characterising the DNA methylation landscape of AML

in the elderly

The initial aim of this thesis was to characterise the DNA methylation landscape in elderly

AML patients. Towards this, I focused on a DNA methylation dataset from 477 elderly

AML patients from the ASTRAL-1 clinical trial [14, 154]. My specific aims were:

• Identify the major DNA methylation signatures in AML in the elderly using a methy-

lome deconvolution approach

• Analyze and interpret the biological sources of each of these methylation signatures
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by comparison to known hematopoietic cell types/states, and mutational, cytoge-

netic and clinical features of tumors

• Place elderly AML patients into epigenetic subgroups and describe each subgroup

in terms of its molecular, clinical and cytogenetic characteristics

2.2 Investigating the epigenetic underpinnings of del(5q)

AML

My findings from this initial analysis suggested that AML with a deletion on chromosome

5q [del(5q)] may represent an epigenetically distinct subgroup, which was previously un-

recognised. This led me to seek an explanation for why del(5q) patients behave differently

at the epigenetic level. Here, my specific aims were as follows:

• Investigate the MDR on chromosome 5 in a search for candidate target genes

• Investigate the transcriptional or mutational correlates of the del(5q) methylation

signature with epigenetic regulators functionally related to the identified target gene,

KDM3B

2.3 Developing a computational strategy to quantify cell-

to-cell epigenomic heterogeneity

In the latter part of this thesis, I will investigate the hypothesis that haploinsufficiency

of KDM3B gives rise to cell-to-cell epigenetic heterogeneity, which may provide a fit-

ness advantage throughout leukemic progression. In order to investigate this, I designed

epiCHAOS (epigenetic/Chromatin Heterogeneity Assessment of Single cells) - a compu-

tational strategy to quantify cell-to-cell epigenetic heterogeneity in single-cell epigenomic

data. Here my aims were as follows:

• Conceive of a suitable metric for quantifying cell-to-cell heterogeneity using single-

cell epigenomics data

• Validate the performance of the above metric using synthetic datasets where hetero-

geneity can be controlled

• Explore the functionality of epiCHAOS by applying it to a wide range of biological

datasets from development, cancer and aging

• Use epiCHAOS to investigate differences in epigenetic heterogeneity between groups

of cells and across different genomic regions
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2.4 Investigating the epigenetic consequences of KDM3B

haploinsufficiency

In the final chapter of this thesis, I aimed to investigate the epigenetic consequences of

KDM3B disruption in AML. For this I analyzed single-cell ATAC-seq data derived from

an OCI-AML3 cell line in which KDM3B was heterozygously deleted to mimic haploin-

sufficiency. Specifically, my aims were as follows:

• Identify the epigenetic differences in KDM3B deletion cells

• Apply epiCHAOS to test whether haploinsufficiency of KDM3B results in cell-to-cell

epigenetic heterogeneity

21



22



Chapter 3

DNA methylation-based

characterisation of Acute Myeloid

Leukemia

3.1 Results

3.1.1 Epigenetic characterisation of AML in older patients using methy-

lome deconvolution

Note: The deconvolution pipeline described in this section, including CpG selection, K

and Lambda selection and independent component analysis (ICA) was performed together

with Linda Welte – a Masters student, under my supervision. The main findings pre-

sented within this and the following chapter also appear in the results of Kelly et al. [155]

(manuscript under preparation).

I began this doctoral thesis with the aim of characterising the DNA methylation landscape

of AML in the elderly. Towards this, I analysed DNA methylation EPIC array profiles

previously generated from the bone marrow or peripheral blood of 477 AML patients who

had participated in the ASTRAL-1 clinical trial [154, 14]. This cohort was comprised

of diagnostic samples from treatment naive AML patients, who were selected based on

ineligibility for intensive chemotherapy, and was therefore enriched for elderly patients,

with a median age of 77 (range 59-94 years).

I applied MeDeCom [156, 144] – an established reference-free DNA methylome decon-

volution protocol based on constrained non-negative matrix factorisation, which allows

decomposition of a set of bulk methylomes to recover their constituent latent methyla-

tion component (LMC)s and the proportions of LMCs across patients (Fig. 3.1A). For
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deconvolution, I selected the 20,000 most variably methylated CpG sites across patients

in order to retain the most informative features, while reducing computational burden.

In this way, I partitioned the original “bulk” methylation matrix into a set of 11 LMCs,

selected based on cross-validation (Appendix, Fig. 8.1). LMCs can be conceptualised as

methylation “signatures” which summarise the major sources of DNA methylation vari-

ation within a dataset. In AML samples, they may represent for example different cell

types present in the bone marrow or blood (signatures of non-leukemic origin) or other

sources of epigenetic variation, such as the effects of mutations in epigenetic regulators

(disease-specific sources).

By investigating the differences in LMC proportions across patients, I aimed to decipher

the various cell-type-specific and disease-specific signatures, to link each disease-specific

signature to distinct molecular and clinical features, and to use the LMCs to define a set of

DNA methylation-based subgroups in elderly AML. Wherever specified in the proceeding

sections, I also utilised publicly available DNA methylation data from two independent

datasets to validate my interpretations – BEAT-OSU (EPIC array, n = 272) [114] and

TCGA AML (450K array, n = 190). I separately estimated LMC proportions in these

cohorts using a factor regression method provided by MeDeCom.

3.1.2 Methylation signatures of normal hematopoietic cell types and

HSPC stages

Since DNA methylation is highly cell-type specific, I first wanted to identify which of the

11 components are derived from non-leukemic cell types present in the bone marrow or

peripheral blood. For this I used a previously published DNA methylation dataset from a

range of healthy hematopoietic cell types including monocytes, neutrophils, HSPCs, CD4+

and CD8+ T-cells, B-cells and natural killer (NK) cells [157]. I assessed the similarity be-

tween methylation profiles of each LMC and those of each normal hematopoietic cell type

using Pearson correlations. I found that LMC1 strongly correlated with the methylomes of

differentiated myeloid cells (neutrophils and monocytes), while LMC9 correlated strongly

with lymphoid cell methylomes (Fig. 3.1B). In line with this, the monocyte/neutrophil-

like LMC1 was enriched for hypomethylation of gene ontologies relating to neutrophil/-

macrophage signaling processes, such as “granulocyte activation”, “neutrophil activation”,

“neutrophil degranulation” and “neutrophil mediated immunity” (Appendix, Table 8.1).

Meanwhile, LMC9-hypomethylated CpG sites were enriched for gene ontologies relating to

lymphocyte activity, such as “T cell activation”, “lymphocyte differentiation” and “anti-

gen receptor-mediated signaling pathway” (Appendix, Table 8.2). As further confirmation,

I estimated tumor purity in these samples using the established InfiniumPurify algorithm,

and as expected, identified a strong correlation between LMC9 proportion and estimated

sample purity [158] (Fig. 3.1C). Among the remaining LMCs, LMC8 showed a strong

similarity to the methylomes of untransformed hematopoietic progenitor cells (Fig. 3.1B).
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Figure 3.1: Linking LMCs to hematopoietic cell types. A. Schematic outlining
the methylome deconvolution approach and its application to the EPIC array dataset.
Methylation data measured from bulk samples is represented as a matrix with n columns
(samples) and m rows (CpG sites). MeDeCom decomposes the matrix to derive two further
matrices; one of LMCs (m CpGs x k LMCs) and one of LMC proportions (k LMCs x n
samples). B. Heatmap showing correlation of AML LMCs to normal hematopoietic cell
methylomes. Colour intensity represents Pearson correlation coefficient. C. Scatter plot
correlating LMC9 proportion with sample purity estimated by InfiniumPurify. Pearson
correlation coefficient and p-value shown.
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As it is believed that AML can arise from different stages of myeloid progenitor devel-

opment, which are epigenetically distinct, I hypothesised that some LMCs might reflect

differences in the leukemic cell of origin. To test this I estimated the likely cell of origin

of each AML methylome according to a previous strategy [159]: using 450K data from a

range of sorted hematopoietic progenitor cells (HSCs, MPPs, LMPPs, CMPs, GMPs and

MEPs) from healthy donors, I obtained a set of CpG sites that were differentially methy-

lated between states. Based on hierarchical clustering on these CpG sites I identified three

groups of GMP-like, MEP/CMP-like and MPP/LMPP-like AML samples (Fig. 3.2A). As

previously described, the majority of AML samples resembled GMP stage methylomes,

with smaller groups bearing similarity to the less differentiated progenitors. I tested for

differences in LMC proportions across these three groups, and identified two components

associated with less differentiated stages: LMC7 was strongly enriched in MPP/LMPP-like

AML while LMC11 was enriched in MEP/CMP-like samples (Fig. 3.2B).

Figure 3.2: Linking LMCs to hematopoietic progenitor cell states. A. Heatmap
obtained from hierarchical clustering of AML methylomes together with HSC, MPP,
LMPP, CMP, MEP and GMP cells. Samples are clustered based on 216 regions of
differential methylation between progenitor cell states. The resulting GMP-like (257),
MPP/LMPP-like (47) and CMP/MEP-like (13) clusters serve as an estimate of the AML
cells of origin. B. Density plots comparing LMC7 and LMC11 proportions in AML methy-
lomes predicted to derive from GMP-like, MPP/LMPP-like, and CMP/MEP-like cells of
origin as defined in (A).
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3.1.3 Methylation signatures reflecting disruption of epigenetic regula-

tors and transcription factors

Next, I decided to investigate which of the remaining LMCs might reflect epigenetic dis-

ruptions due to mutations in epigenetic regulators, which are common in AML. I tested

for differences in LMC proportions in relation to patients’ mutational status, and identi-

fied several LMCs enriched in patients carrying epigenetic regulator mutations, or their

combinations (Fig. 3.3). I observed an enrichment of LMC4 in NPM1 -mutated sam-

ples, and LMC5 in AML with CEBPA mutations. LMC10 was enriched in samples car-

rying co-occurring mutations in DNMT3A and NPM1 LMC10 captured a signature of

hypomethylation, with the lowest global methylation of all LMCs (median beta value =

0.29), consistent with previous descriptions of DNMT3A-mutated AML [160]. LMC10

was also increased in FLT3-ITD mutated AML and was enriched for hypomethylation

at STAT transcription factor binding site (TFBS)s, as has been previously described for

this subgroup [114] (Appendix, Table 8.3). In contrast, LMC11, which was enriched in

IDH1/2 mutated AML, had the highest methylation of all LMCs (median beta value =

0.81), capturing a global hypermethylation signature which is typical of this subgroup

[161]. Methylomes predicted to derive from less differentiated cells (MEP/CMP-like and

MPP/LMPP-like AML) also carried higher levels of LMC11 compared to the more dif-

ferentiated GMP-like AML. Interestingly, patients with co-occurring DNMT3A/IDH and

DNMT3A/TET2 mutations, rather than carrying either global hyper/hypomethylation

signatures, were enriched for the normal HSPC-like LMC8. This pattern is reminiscent

of the epigenetic antagonism described by Glass et al., who showed that IDH1/DNMT3A

dual mutation resulted in a methylation landscape similar to normal CD34+ cells [113].

LMC6 was enriched in samples with co-occurring NPM1/TET2 and NPM1/IDH muta-

tions (Fig. 3.3), and was also closely associated with MLL/KMT2A rearrangements and

monocytic M1 FAB classification (Fig. 3.4A).

Figure 3.3: Methylation signatures associated with epigenetic regulator muta-
tions. Boxplots showing association of selected LMCs with mutations and combinations
of mutations in epigenetic regulators. Wilcoxon’s p-values shown.
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The remaining components, LMC2 and LMC3, were not associated with any specific epi-

genetic regulator mutations. To gain insight into these signatures, I considered their

association to cytogenetic features, which might also disrupt epigenetic regulators or tran-

scription factors. I found that LMC2 was increased in patients with inv(16), however

many LMC2-high patients did not carry this alteration. I hypothesised that other events

in these patients might converge on a similar epigenetic disruption. Since inv(16) results

in disruption of the RUNX1 binding partner CBFβ, I investigated samples with other

RUNX1/CBFβ-associated alterations. I found that LMC2 was the dominant signature in

patients carrying a range of alterations convergent on the disruption of RUNX1 signal-

ing (Fig. 3.4B), being especially high in a subset of ckAML carrying RUNX1 mutations

and/or deletions in chromosome 21q, in which the MDR has been mapped to the RUNX1

locus [162]. LMC2 was also enriched in patients with mutations in CBFβ, and consistent

with this, both RUNX1 and CBFβ transcription factor binding sites were highly enriched

among LMC2-hypermethylated CpG sites (Appendix, Table 8.4). Finally, I found that

LMC3 was enriched in patients with ckAML compared to those with normal karyotype or

with fewer than three CNAs (Fig. 3.4C).

Figure 3.4: Epigenetic signatures linked to MLL rearrangement, RUNX1 dis-
ruption and ckAML. A. Boxplots showing association of LMC6 with M5 (monocytic
AML) FAB classification (left) and KMT2A/MLL rearrangement (right). Analysis is
based on estimated LMC proportions in the BEAT AML cohort. Wilcoxon’s p-values
shown. B. Bar plots showing association of LMC2 with RUNX1/CBFB disruption in
ASTRAL-1 and TCGA cohorts. Patient samples are ordered by increasing LMC2 pro-
portion. C. Boxplots comparing LMC3 proportion in relation to patterns of copy number
variation. Patients are classified as normal, intermediate or complex karyotype according
to the presence of CNAs as detected by Conumee [normal karyotype (nk)AML; no CNAs,
intermediate karyotype; 1-2 CNAs, complex karyotype (ck)AML; ≥ 3 CNAs]. Wilcoxon’s
p-values shown.
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3.1.4 DNA methylation subgroups defined by unique molecular, cyto-

genetic and clinical features

Next, to define methylation-based subgroups, I applied consensus k-means clustering to the

matrix of LMC proportions [163]. For this I excluded the lymphoid-like and neutrophil-

like components, LMC1 and LMC9, such that only leukemic-cell signatures – and not

signatures of the microenvironment – would drive clustering of patients (Fig. 3.5). I

selected k = 9 as the optimum number of clusters based on the Cumulative Distribution

Function (CDF) [163] (Appendix, Fig. 8.2). Each of the resulting clusters was either

dominated by one LMC, or two co-occurring LMCs, and could be linked to a defining

molecular or cytogenetic feature; an LMC2-high cluster representing RUNX1 disruption,

an LMC3-high cluster enriched for ckAML, an LMC4-high cluster enriched for NPM1

mutations, an LMC5-high cluster enriched for CEBPA mutations, an LMC11-high cluster

enriched for IDH mutations, an LMC7-high cluster enriched for LMMP/MMP-like AML,

and the remaining clusters associated with combinations of IDH, DNMT3A and NPM1

mutated samples (Fig. 3.5)

Figure 3.5: DNA methylation-based subgroups. Heatmap of LMC proportions used
to define methylation-based subgroups by consensus k-means clustering. Lymphoid-like
(LMC9) and neutrophil-like (LMC1) components, and low purity samples (lower tertile
InfiniumPurify score) are excluded for clustering. Heatmap is annotated for mutations
in DNMT3A, IDH1/2, CEBPA, NPM1 and RUNX1, CNV patter. (complex karyotype,
normal karyoptype, or otherwise) and predicted cell of origin (as defined in Fig. 3.2).
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I investigated the clinical significance of each of these LMCs by performing survival analy-

ses using data from the BEAT AML cohort. As expected, given its enrichment in ckAML,

LMC3 was exclusively associated with poor clinical outcome [34]. Meanwhile LMC5 was

associated with improved overall survival, consistent with the known association of CEBPA

mutation with favorable prognosis [164]. LMC10 was also associated with favorable out-

come, albeit with marginal statistical significance (Fig. 3.6).

Figure 3.6: Survival analysis of LMCs. Forest plot showing the association of each
latent methylation component (LMC) with overall survival. Survival analysis was per-
formed using clinical data from the BEAT AML cohort. Cox proportional hazard ratio’s
and p-values are shown.
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3.1.5 Del(5q) AML is an epigenetically distinct subgroup defined by a

signature of DNA hypermethylation

In the previous section I noted that LMC3 was enriched in ckAML samples. However,

the levels of LMC3 were also highly variable within this subgroup; not all ckAML samples

carried LMC3, and some non-ckAML samples also carried the signature. This prompted

me to investigate in more detail, whether any specific CNA patterns might distinguish

LMC3-high from LMC3-low patients. I compared LMC3 proportions between ckAML pa-

tients with or without each individual chromosome/arm-level CNA. After multiple testing

correction, I found only one significant association: LMC3 was strongly enriched in pa-

tients carrying a deletion in chromosome 5q (Fig. 3.7A-B). I validated this association in

two independent datasets from TCGA and BEAT-OSU AML cohorts and found a similar

pattern (Appendix, Fig. 8.3). Moreover, I showed that LMC3 was not specific to ckAML

samples, but that patients with an isolated 5q deletion also carried significantly higher

LMC3 proportion compared to non-ckAML samples lacking 5q deletions (Fig. 3.7B). Im-

portantly, LMC3 showed no independent association with del(7q) or any other recurrent

CNAs (Fig. 3.7A).

Since del(5q) AML has been shown to be enriched for LSCs [165], which may be epige-

netically distinct from leukemic blasts [159], I considered whether LMC3 might reflect

an LSC-specific epigenetic signature. I used a previously described 450K dataset from

sorted AML LSCs (CD34+CD38+/CD38-) and blasts (CD34-) to compare the levels of

LMC3 between LSC and blast counterparts of del(5q) samples[159]. I found that LMC3

was present in both del(5q) LSCs and blasts (Appendix, Fig. 8.4A). The signature did

appear higher in del(5q) LSCs compared to blasts, however this could not be statistically

determined, since the dataset contained only a single del(5q) patient.

Three del(5q) patients in the ASTRAL-1 dataset had unusually low LMC3 proportions,

so I decided to investigate these as outliers: I found that one of these samples carried a

co-occurring IDH mutation and therefore resembled other IDH mutated samples, being

dominated by LMC11 ; the second was affected by whole genome duplication and therefore

retained three copies of 5q, and the third carried a deletion spanning only the distal region

of 5q and not the MDR. These outlying cases strengthened my hypothesis that the LMC3

methylation signature results from the loss of some entity from the 5q deleted region.

3.1.6 A hypermethylation signature enriched at developmental genes

To begin to disentangle the source of this methylation signature, I investigated the epige-

netic differences between LMC3-high AML and other AML patients. I began by defining

a set of CpG sites which are differentially methylated in LMC3-high AML; firstly I com-

pared the methylomes of the LMC3-high AML cluster to all remaining AML clusters, and

secondly to the methylomes of normal HSCs. This way, the analysis could leverage all

850,000 CpG sites covered by the assay, and I could consider methylation changes from a
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Figure 3.7: Linking the LMC3 methylation signature to del(5q) AML. A. Vol-
cano plot summarising the comparison of LMC3 levels against each copy number gain and
loss among ckAML patients. The x-axis depicts the difference in mean LMC3 proportion
between patients with and without the specified CNA, and the y-axis shows the -log10
transformed, Bonferroni-corrected Wilcoxon p-value for each comparison. The dotted red
line indicates an adjusted p-value of 0.05. B. Boxplots comparing LMC3 proportion in pa-
tients with and without del(5q), among all (left), all non-ckAML (middle) and all ckAML
(right) patients from our cohort. Wilcoxon’s p-values shown.

normal state as well as between malignant states. Both comparisons revealed a majority

of hypermethylated CpG sites in LMC3-high AML (Fig. 3.8A). Taking the overlap from

both comparisons, I defined a set of LMC3-specific hypermethylation (2020 CpG sites)

and hypomethylation (426 CpG sites) events. I investigated the enrichments of TFBSs

and gene ontologies for both of these sets. LMC3 hypomethylated regions showed few

enrichments of gene ontology terms or TFBSs; therefore I focused my analysis of LMC3 as

a signature of hypermethylation. LMC3 hypermethylated sites were distributed through-

out CpG islands and shores as well as at CpG poor intragenic regions and gene bodies,

but were not noticably enriched at any of these regions compared to other CpG sites on

the EPIC array. Locus enrichment analysis of LMC3-specific hypermethylated CpG sites

revealed an enrichment at sites of H3K27me3, binding sites for the PRC2 complex and for

the H3K9/36 demethylase, KDM4A (Fig. 3.8B). This pattern of hypermethylation may

be relevant in the context of LSCs, since methylation of polycomb targets in other can-

cers has been suggested to lock cells in an undifferentiated state [166]. Furthermore, gene

ontology enrichment analysis revealed that these hypermethylated sites were enriched for

various developmental gene sets (Appendix, Table 8.5). This included an enrichment of

homeobox genes, which are believed to play an important role in AML biology (Fig. 3.8C)

[167]. Such regions were largely unmethylated both in healthy HSCs and throughout the

differentiated hematopoietic lineage (Appendix Fig. 8.4B).

To evaluate whether this hypermethylation translates to the level of gene expression, I

performed gene set variation analysis (GSVA) [168], and investigated the pathway-level
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changes in gene expression that correlated with LMC3. In line with the enrichment of

developmental genes among del(5q) hypermethylated sites, numerous gene sets associated

with developmental processes and stem cell differentiation were found among the top gene

sets negatively correlating with LMC3 (Appendix, Table 8.6).

Figure 3.8: Locus and gene set enrichments of LMC3-hypermethylated CpG
sites. A. Venn diagram showing the number of overlapping CpG sites detected as hy-
po/hypermethylated in the LMC3-high AML subgroup by comparison to other AML sub-
groups and normal HSCs. B. Bar plot showing top 10 locus enrichments among LMC3-
high hypermethylated CpG sites, ranked by -log10 transformed p-values. C. Venn diagram
showing the intersection of homeobox genes among del(5q) hypermethylated CpG sites.
Hypergeometric p-value is shown indicating enrichment of the gene set.
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3.1.7 LMC3 carries prognostic significance independently of del(5q)

Del(5q) AML, being part of the subgroup of so-called “typical ckAML”, is known to

be associated with dismal clinical outcome [33]. The above association of LMC3 with

lower overall survival was therefore unsurprising. Yet, given that a substantial number of

AML patients without del(5q) also carry high levels of LMC3, I decided to investigate the

clinical significance of this methylation signature beyond the known prognostic indication

of del(5q) itself. For this I took advantage of publicly available clinical and drug sensitivity

data from the BEAT-OSU AML cohort, which contained a sufficiently large number of

LMC3-high patients both bearing and lacking del(5q). I separated patients into two groups

based on LMC3 proportion – LMC3-high (above mean levels of LMC3) and LMC3-low

(below mean levels of LMC3) – and further separated the LMC3-high group into two

groups based on the presence or absence of del(5q). Irrespective of del(5q) status, I found

that LMC3-high patients had significantly lower overall survival (Fig. 3.9A) as well as

overall reduced drug sensitivity (Fig. 3.9B).

Figure 3.9: LMC3 is associated with poor prognosis and reduced drug sensi-
tivity independently of del(5q) status. A. Kaplan Meier survival plot comparing
overall survival of patients in the BEAT AML cohort. Patients are separated into LMC3-
high and LMC3-low groups based on mean LMC3 proportion, and LMC3-high patients
further stratified as del(5q) or otherwise. Pairwise log rank p-values shown. B. Boxplot
comparing overall drug sensitivity based on ex vivo drug sensitivity screens on BEAT
AML samples. Patients are separated as in (A). For each patient, the proportion of drug
sensitivities is quantified after assigning binary sensitive/resistant calls for each sample to
each drug. Samples within the top 20% of area under the curve (AUC) values for a given
drug were considered sensitive.
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3.1.8 LMC3 is present at low levels in a small subgroup of del(5q) MDS

Individuals with MDS often carry interstitial deletions in chromosome 5q which overlap

with the MDR in AML. Although the majority of del(5q) MDS do not develop to aggres-

sive disease, some such patients are at risk of progression to ckAML. DNA methylation

patterns were previously found to separate del(5q) MDS into two subgroups, with the

more hypermethylated subgroup demonstrating poorer overall survival [169]. This led me

to consider whether a similar methylation signature might be present in a subset of del(5q)

MDS. To test this I estimated LMC proportions in a del(5q) MDS 450K dataset [169]. As

expected, MDS methylomes for the most part resembled those of untransformed HSPCs,

being enriched for the HSPC-like LMC8, however LMC3 was also present at low levels

in a small number of samples (Fig. 3.10A). Clustering of MDS methylomes revealed a

clear separation of two del(5q) MDS subgroups; one of which harboured an LMC3-like

methylation signature, though at lower levels than del(5q) AML (Fig. 3.10B).

Figure 3.10: LMC3 is present at low levels in a small subgroup of del(5q)
MDS. A. Heatmap of LMC proportions defined in ASTRAL-1 AML and estimated here
in 450K data from del(5q) MDS samples [169]. B. Heatmap resulting from hierarchical
clustering of the same MDS samples based on CpG sites which are hypermethylated in
the LMC3-high AML subgroup. LMC3 proportion is annotated above.
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3.2 Discussion

Improved epigenetic characterisation of AML in the elderly

AML is an epigenetically heterogeneous cancer type, and numerous attempts have been

made to characterise AML based on DNA methylomes (see Introduction for details).

These studies have highlighted the complex DNA methylation landscape of AML, wherein

distinct epigenetic patterns have been linked to many of the most common mutational

and cytogenetic events [112, 113, 114, 115, 32].

The results presented in this chapter represent the largest comprehensive DNAmethylation-

based characterisation of elderly AML patients to date. My approach differed from pre-

vious studies in two main ways; first, instead of subgrouping patients based on clustering

of “bulk” methylation signals, I incorporated a methylome deconvolution method. The

main advantage of this strategy is that it allowed me to identify and exclude methyla-

tion signatures derived from non-leukemic cell-types, and thus focus on cancer-specific

signatures. Moreover, this approach offered the possibility to decipher intra-tumor het-

erogeneity among leukemic cells themselves, insofar as LMCs can be expected to represent

different leukemic cell states. Secondly, my study focused on elderly AML patients, in

which certain cytogenetic alterations are especially prevalent. What proved particularly

important is the fact that our cohort included a much higher frequency of ckAML com-

pared to previous analyses. CkAML is typically viewed as a genetic disease and has never

been comprehensively characterised from an epigenetic perspective. Previous work by

Giacopelli et al. revealed that ckAML is associated with a DNA methylation pattern

characterised by hypermethylation at PRC2 targeted regions and features of inflamma-

tion [114], however, perhaps due to the relatively small number of ckAML samples in

that study, the authors did not narrow down their observation to any particular subgroup

within ckAML. Owing to the large number of ckAML patients in our cohort, it was pos-

sible to show that the methylation signature I identified was specifically associated with

the 5q deletion, and not with ckAML more generally, or with any other recurrent CNAs

in this subgroup.

Opening an epigenetic perspective on ckAML and del(5q)

It is quite surprising that despite the widespread disruption of epigenetic enzymes in

almost all other AML subgroups – and the usual absence of such mutations in del(5q)

AML – an epigenetic basis for del(5q) has never been postulated. Here I suggest that

del(5q) AML represents an epigenetically distinct subgroup defined by a unique signature

of DNA hypermethylation – a finding which could shed light on the mechanisms underlying

leukemic progression in some of the most aggressive AML patients.

Although del(5q) has not been linked to epigenetic dysregulation before, it is interesting to

note that some of the most highly-regarded candidate target genes of del(7q) – the second

36



most common CNA in ckAML, which often co-occurs with del(5q) – encode epigenetic

regulators – most notably the H3K27me3 methyltransferase, EZH2 [170], and the H3K4

methyltransferase MLL3/KMT2C [171]. Both of these genes are located within the MDR

on chromosome 7 and are mutated in a subset of del(7q) AML patients. Given this

background, and the fact that del(5q) and del(7q) co-occur in many ckAML patients,

it is important to clarify that the methylation signature I identified was independently

associated with del(5q) and not with del(7q). This leads to the enticing question which I

will tackle inChapter 4 of this thesis: might there also be an epigenetic regulator targeted

by the deletion on chromosome 5? If it is the case that both of the most recurrent CNAs in

ckAML target epigenetic regulators, it may be time to reevaluate the idea that ckAML is

driven by genetic aberrations, and to appreciate it rather as an epigenetically dysregulated

subgroup.

In this chapter I also noted that a subset of individuals with del(5q) MDS harbour a

similar methylation signature – though at lower levels – compared to del(5q) AML. Many

cases of del(5q) MDS are not considered at high risk of progression to ckAML, but some

– mostly those which acquire in addition a TP53 mutation – progress to ckAML with

poor clinical outcomes [172]. Since I have also shown that this methylation signature is

associated with worse overall survival in AML patients – even in patients which do not

harbour 5q deletions – it would be interesting to investigate whether LMC3 may provide

insight into the risk of progression of del(5q) MDS to AML.

“Epigenetic antagonism” in AML with co-occurring & conflicting mutations

Beyond the identification of a del(5q) methylation signature, a few further interesting ob-

servations from this analysis should be highlighted. One was the finding that co-occurring

mutations in DNMT3A/IDH or DNMT3A/TET2 resulted in a methylation signature re-

sembling normal HSPCs. A similar phenomenon was previously described by Glass et al.,

for IDH mutations, which they termed “epigenetic antagonism”, but this was not previ-

ously shown for TET2 mutations [113]. It would be interesting to investigate this finding

at the single-cell level to clarify whether the observed normal-like methylome actually re-

flects the compounded effects of these two epigenetic aberrations within the same cells, or

whether separate subpopulations of mutated cells exist which appear to antagonise when

examined in data from mixed populations.

An epigenetic signature of RUNX1 disruption

My analysis also highlighted the epigenetic similarity of AML with aberrations affecting

the RUNX1 signaling network. I identified a methylation signature common to AML

with RUNX1 mutations and del(21q), in which the minimally deleted region peaks at

the RUNX1 locus. Additionally, mutations and inversions [inv(16)] affecting the RUNX1

binding partner, CBFβ, resulted in the same signature. Individually, some of these events

have been linked to DNA methylation changes in previous studies [173, 174], but were not
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previously described to converge on a common epigenetic signature.

In summary, these findings highlight a need to explore epigenetic mechanisms of disease

progression in ckAML, and may in particular open a new perspective towards understand-

ing the del(5q) subgroup.
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Chapter 4

Investigating the epigenetic

underpinnings of del(5q) AML

4.1 Results

In the previous chapter I have shown that AML with del(5q) represents an epigenetically

distinct subgroup, which is separable from other AML subgroups based on DNA methy-

lation patterns. Del(5q) AML has not previously been characterised from an epigenetic

perspective, and the mechanisms underlying this recurrent deletion remain largely elusive.

I therefore hypothesised that LMC3 might offer some insight into the pathogenesis of this

aggressive subgroup. In this chapter I will set out to understand what links the dele-

tion on chromosome 5 to an aberrant epigenetic state, reflected in the DNA methylation

landscape.

4.1.1 Mutations in epigenetic regulators are rare in del(5q) AML

To first exclude the possibility that LMC3 is caused by a mutation in an epigenetic regu-

lator, I examined the frequency of mutations in a range of epigenetic regulators in del(5q)

AML. Interestingly, I found that epigenetic regulator mutations were significantly less fre-

quent in del(5q) patients compared to other AML cases (Fig. 4.1) – an association that was

not apparent for ckAML in general. I concluded that LMC3 is not caused by a mutation

in an epigenetic regulator, and considered instead whether the loss of an epigenetic regu-

lator encoded from the deleted chromosome might explain the observed hypermethylation

signature.
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Figure 4.1: Mutations in epigenetic regulators are rare in del(5q) AML. A. Bar
plot comparing the frequency of each individual epigenetic regulator mutation in del(5q)
and other AML samples. B. Bar plot illustrates the frequency of epigenetic regulator
mutations (genes listed in A.) in del(5q) AML and other AML samples. Fisher’s exact test
was used to compare the frequency of having at least one epigenetic regulator mutation.
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4.1.2 Narrowing down candidate genes in the minimally deleted region

A number of candidate TSGs have been localised to the minimally deleted region at 5q31.2,

however there remains no clear mechanistic explanation that convincingly links the loss

of any such gene to leukemic progression [41, 39, 40]. Finding a methylation signature

enriched in del(5q) patients encouraged me to consider the question of del(5q) target

genes from an alternative perspective. I decided to interrogate the minimally deleted 5q

region and to examine the genes within this interval as potential drivers of epigenetic

dysregulation.

I began by analyzing the overlap of significantly deleted segments using methylation based

(Conumee) copy number profiles from 79 del(5q) cases from the ASTRAL-1 cohort [14].

This allowed me to define a MDR of approximately 1.5MB — an interval containing

20 genes, flanked by MYOT and SIL1. This definition was largely in agreement with

previously defined MDRs (Fig. 4.2). To narrow down a list of likely candidates, I first

correlated the expression of each gene within the region against the levels of LMC3. To

remain cautious, I considered the 50 genes flanked by Il9 and UBE2D2 as an accepted

and conservative definition of the MDR [43, 44]. Only three of these genes demonstrated a

significant correlation which was maintained in independent datasets: the histone Lysine

Demethylase 3B (KDM3B); the Eukaryotic Translation Termination Factor 1 (ETF1 ),

and Catenin Alpha 1 (CTNNA1 ) (Fig. 4.2A). All three of these genes have been studied

as candidate tumor suppressors in del(5q) AML before [52, 53, 44], with CTNNA1 being

the most acknowledged candidate given evidence for its promoter methylation as a possible

inactivating “second hit” [44]. I, however, find multiple lines of evidence to argue that

KDM3B is the most likely del(5q) target gene.
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Figure 4.2: The 5q minimally deleted region peaks at the location of
H3K9me1/2 demethylase KDM3B. A. Scatter plot summarising the correlations
between LMC3 and gene expression of the genes within the minimally deleted 5q re-
gion (genes flanked by IL9 and UBE2D2 inclusively) among ckAML samples from the
ASTRAL-1 (y-axis) and TCGA (x-axis) cohorts. Genes highlighted in red are those
whose expression was significantly negatively correlated with LMC3 in both tested co-
horts. EGR1 – a renowned candidate for haploinsufficiency in del(5q) AML – is labelled
for comparison. B. Density plot showing the frequency of deleted segments on chromosome
5 among del(5q) samples in the ASTRAL-1 cohort. The location of the MDR at 5q31.2 is
shown. Minimally deleted intervals described in the literature are indicated in the zoomed
region. Dotted gray lines indicate the boundaries of the minimally deleted region that
could be defined in the ASTRAL-1 cohort. Bar plots show the -log10 adjusted p-value
from differential expression analysis comparing del(5q) to other AML in the ASTRAL-1
(pink) and TCGA (blue) cohort, for all genes within the MDR. C. Plot of the mutational
frequency of 5q genes in del(5q) samples from TCGA AML. KDM3B is labelled as the
only gene on chromosome 5 which is affected by mutations in more than one del(5q) AML
sample.
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4.1.3 Evidence for KDM3B as the target of the 5q deletion

Firstly, it is important to note that CTNNA1 and ETF1 both lie outside of the minimally

deleted intervals which Horrigan et al., Zhao et al., Liang et al., and MacKinnon et al.,

have proposed [42, 57, 40, 56] – KDM3B is therefore the only one of the three MDR genes

correlating with LMC3 which is contained within all versions of the MDR described in

the literature. One study by MacKinnon et al., in fact narrowed down the MDR to an

interval containing only four genes (KDM3B, EGR1, ETF1 and REEP2 ), of which only

KDM3B is downregulated in del(5q) AML [42] (Fig. 4.2B).

Next, I performed differential gene expression analyses comparing del(5q) to other AML

patients in our own dataset of 40 ckAML samples, and in the TCGA dataset. Strikingly, I

found that KDM3B was the most significantly downregulated of all genes within the MDR

in both datasets (Fig. 4.3A-B). In fact, even beyond the minimally deleted region, no other

gene on the entire chromosome arm showed as significant a reduction in expression that

was conserved in both datasets.

Figure 4.3: KDM3B gene and protein levels are reduced in del(5q) AML. A-
B. Volcano plots resulting from differential expression analysis comparing del(5q) to other
AML cases in the TCGA (A) and ASTRAL-1 ckAML (B) RNA-seq datasets. Genes
located on chromosome 5q (yellow) and within the minimally deleted region (red) are
highlighted. C. Boxplot comparing the protein abundance of KDM3B in del(5q) and
other AML patient samples from the Kramer et al. dataset [175].
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Thirdly, I examined the protein expression of MDR candidate genes using two proteomics

datasets from AML patient samples, which both revealed a significant reduction in KDM3B

protein expression in del(5q) patients (Fig. 4.3C & Appendix, Table 8.7). I further ana-

lyzed proteome data from the cancer cell line encyclopedia (CCLE) [176]. Here, KDM3B

was the only MDR gene which exhibited a significant reduction in protein expression in

del(5q) cell lines compared to other AML cell lines. While I observed a similar trend for

ETF1 and CTNNA1, neither of these reached statistical significance (Appendix, Table

8.7).

Next, I inspected the mutation status of MDR genes in the TCGA and ASTRAL-1 cohorts.

Here, I found that KDM3B was affected by somatic mutations in two del(5q) samples from

the TCGA AML cohort, and one sample from the ASTRAL-1 cohort, while no mutations

were detected in del(5q) samples for any other genes within the MDR, and no other gene

on the whole chromosome arm was mutated in more than one del(5q) sample (Fig. 4.2C).

In fact, considering all genes mutated in TCGA AML patients, KDM3B was among only

seven genes which were mutated in more than one del(5q) sample, and was surpassed only

by TP53 in its mutational frequency in this subgroup. Moreover, no KDM3B mutations

were detected in any sample without del(5q) in this dataset. This evidence that KDM3B

can – rarely but recurrently – acquire a second hit, further supports its probable role in

leukemogenesis.

Next, I performed a pan-cancer and pan-tissue analysis of KDM3B expression in TCGA

and genotype-tissue expression portal (GTEx) data, where I observed higher expression of

KDM3B in AML compared to every other tumor and normal tissue type. This suggests

that KDM3B may be an important gene in this disease context, and that the disruption

of KDM3B may have important biological consequences (Fig. 4.4).

Taken together with the fact that KDM3B is the only epigenetic regulator encoded from

the minimally deleted region, I reasoned that the loss or haploinsufficiency of this gene

might explain the observed methylation signature in del(5q) patients. Specifically, I hy-

pothesised that depletion of KDM3B should prevent the demethylation of H3K9me1/2,

resulting in increased H3K9me1/2, and consequently triggering de novo DNA methylation

at its targeted regions.
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Figure 4.4: KDM3B expression is higher in AML than in other tumor and
normal tissue types. Bar plot comparing KDM3B gene expression across different
tumor and normal tissues from the TCGA and GTEx datasets. Analysis was performed
in the GEPIA portal [177].
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4.1.4 Mutual exclusivity of del(5q) and IDH mutations

KDM3B is a metabolically-regulated demethylase, whose activity depends on the avail-

ability of α-Ketoglutarate (α-KG), and therefore on the proper functioning of the IDH

enzymes, which catalyze α-KG production [178]. It is therefore interesting to note that

del(5q) occurs in a mutually exclusive pattern with mutations in IDH1/2 (Fig. 4.5A),

while these two subgroups share partially overlapping patterns of DNA hypermethylation,

which can be seen upon clustering of AML bulk methylomes based on the most variable

CpG sites (Fig. 4.5B). This observation may be comparable to what has been described

for the mutual exclusivity of TET2/IDH mutations in AML, which reflects the metabolic

dependency of TET enzymes on α-KG [12]. That is, since α-KG is depleted in IDH mutant

tumors, the activity of KDM3B and other histone lysine demethylases should be therein

impaired (Fig. 4.5C). In this way del(5q) and IDH mutation may converge on partially

overlapping epigenetic disruptions.

Figure 4.5: Del(5q) and IDH mutation are mutually exclusive events char-
acterised by DNA hypermethylation. A. Mutual exclusivity of del(5q) and IDH
(pooled IDH1/2 ) mutations in the TCGA and ASTRAL-1 AML cohorts. B. Hierarchical
clustering of ASTRAL-1 AML samples based on the 5000 most variable CpG sites on
the EPIC array, indicating co-clustering of del(5q) and IDH -mutated AML. C. Schematic
describing the effects of IDH on epigenetic regulation including activity of TET DNA
demethylases and histone lysine demethylases (KDMs).
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4.1.5 Linking the del(5q) methylation signature to DNMT3B

Beyond the effects of KDM3B depletion, I speculated that the variability in LMC3 levels –

within and outside of the del(5q) subgroup – might be explained by differences in the ex-

pression of other epigenetic regulators. To investigate this, I obtained a list of 1012 genes

known to participate in epigenetic processes, and tested each gene’s expression for a corre-

lation with LMC3 (Fig. 4.6A). Considering the average correlation coefficients across three

independent datasets from ASTRAL-1, BEAT and TCGA AML, I found that KDM3B

exhibited the strongest negative correlation, while the de novo DNA methyltransferase,

DNMT3B, showed one of the strongest positive correlations with LMC3 among epige-

netic regulators (Fig. 4.6A). Features of del(5q) hypermethylation clearly align with the

previously described activity of DNMT3B, which is known to predominantly methylate

developmental genes and polycomb targeted sites [179]. Moreover, DNMT3B is known to

have activity at sites of H3K9me1/2 and to interact with the H3K9me1/2 methyltrans-

ferase G9a [180, 181]. Overexpression of DNMT3B downstream of KDM3B depletion

could thereby contribute to the del(5q) hypermethylation signature.

Figure 4.6: DNMT3B overexpression correlates with the del(5q) hyperme-
thylation signature. A. Gene expression of all epigenetic-related genes was tested for
correlation with LMC3 proportion in ASTRAL-1 (ckAML), TCGA and BEAT AML co-
horts. Shown are the Pearson correlation coefficients for the top 5 positive and negative
correlations, ranked by mean correlation across the three cohorts. B. Scatter plots corre-
lating DNMT3B gene expression and LMC3 proportion in ASTRAL-1, TCGA and BEAT
AML datasets, overall and among del(5q) samples. Pearson correlation coefficients and
p-values are shown.
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I assessed the expression patterns of DNMT3B pan-cancer using TCGA data, where I

found it to be higher in AML compared to all other tumor types, except testicular germ

cell tumors, which derive from embryonic origin (Fig. 4.7).

Figure 4.7: DNMT3B is overexpressed in AML compared to other non-
embryonic tumor types. Bar plot comparing DNMT3B gene expression [median tran-
scripts per million (TPM)] across all TCGA tumor types. LAML: acute myeloid leukemia;
TCGT: testicular germ cell tumors.

There is emerging evidence to suggest that this methyltransferase may be an important

gene in AML, where its overexpression has been linked to features of leukemic stemness and

poor prognosis [182, 31]. DNMT3B is in fact the highest weighted of the 17 genes which

contribute to the prognostic stemness signature, LSC17, as well as other previously estab-

lished stemness signatures in pediatric AML [31, 183]. I noted a high correlation between

LMC3 and the LSC17 score, which is maintained both overall and within the subgroup of

complex karyotype patients (Fig. 4.8A). I confirmed this pattern in independent datasets.

Importantly, since others have pointed out high LSC17 as a feature of “typical” ckAML

[ckAML encompassing del(5q), del(7q) and/or del(17p)] [165] , I repeated this analysis

on the subgroup of typical ckAML and found that LMC3/del(5q) correlated with LSC17

independently of the typical/atypical classification, i.e. del(5q) patients generally carried

higher LSC17 scores compared to typical ckAMLs in which 5q is retained (Fig. 4.8A). I

also reanalysed gene expression data from the LSC17 study, which revealed that DNMT3B

is the top most significantly upregulated gene in LSCs by comparison to their leukemic

blast counterparts (Fig. 4.8B). Taken together, these data suggest that DNMT3B might

not only contribute to the del(5q) hypermethylation signature, but also may be linked to

stemness features of the del(5q) phenotype.

Interestingly, while mutations in DNMT3B are rare in AML (3/480 patients), I found that

they occur alongside 5q deletions in two out of three cases, which stands out in contrast

to the relative paucity of epigenetic gene mutations in del(5q) AML (Fig. 4.1).
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Figure 4.8: The del(5q) methylation signature correlates with features of
leukemic stem cells. A. Scatter plots showing the correlation between LMC3 pro-
portion and LSC17 score among ckAML (left) and among “typical” [containing del(5q),
del(7q) and/or del(17p)] ckAML (right) from the ASTRAL-1 cohort. Pearson coefficients
and p-values are indicated. B. Volcano plot resulting from differential expression analysis
of LSC+ vs LSC- AML cells using gene expression data from the Ng et al. LSC17 study
[31].
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4.1.6 Overexpression of DNMT3B in del(5q) AML may be regulated

by DNA methylation in LSCs

To consider possible mechanisms leading to DNMT3B overexpression, I examined its

methylation status. In EPIC array data, l observed hypomethylation of a CpG site within

the DNMT3B promoter in del(5q) patients, which correlated strongly with its gene expres-

sion, suggesting that DNMT3B itself might be activated through epigenetic mechanisms

in this subgroup (Fig. 4.9A). Speculating that this event might be specific to LSCs, I

examined its methylation status in del(5q) samples which were sorted to separate LSCs

from leukemic blasts [159], and found that del(5q) LSCs were fully unmethylated at this

region, while del(5q) blasts remained methylated (Fig. 4.9B). This suggests that the dif-

ferences in methylation and expression of DNMT3B among AML samples may reflect the

proportion of LSCs. However, since the associated LMC3 methylation signature appeared

to be present in both LSCs and blasts (Appendix, Fig. 8.4), it may be that the signature

is initiated by DNMT3B in LSCs, and propagated by maintenance methyltransferases to

their blast progeny.

Figure 4.9: DNMT3B overexpression in AML may be regulated by methyla-
tion. A-B. Scatter plots correlating DNMT3B gene expression and promoter methylation
at cg26553763 in all AML samples (A) and among del(5q) samples (B) from the ASTRAL-
1 cohort. Pearson correlation coefficients and p-values shown. C. Bar plot comparing the
methylation status of the DNMT3B promoter CpG site cg26553763 in LSCs and blasts in
a del(5q) patient from the Jung et al. dataset [159].
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4.1.7 Linking the del(5q) methylation signature to H3K9me1/2 methy-

lation

Above I hypothesised that the del(5q) methylation signature might reflect increased lev-

els of H3K9me1/2 along the genome, resulting from KDM3B deficiency. To support this

link to H3K9me1/2, I next tested whether other regulators of H3K9me1/2 correlated with

LMC3 levels. I found that LMC3 was positively correlated with the gene expression of

two key H3K9me1/2 methyltransferases; EHMT2/G9a and PRDM16 (Fig. 4.10A). Both

of these enzymes have opposing activity to KDM3B, and both have been described to

be overexpressed and linked to poor outcome and features of leukemic stemness in AML

[184, 185]. I also quantified LMC3 proportions in methylation data from an AML pa-

tient overexpressing the H3K9me1 methyltransferase, PRDM16 [186], and found levels of

LMC3 comparable to that of del(5q) AML (Fig. 4.10B). Notably, DNMT3B and EHMT2

expression also maintained a correlation with LMC3 independently of del(5q) status, i.e.

del(5q) patients with higher expression of DNMT3B/EHMT2 tend to have higher levels

of LMC3 compared to del(5q) patients with lower expression of these genes (Fig. 4.10C).

Figure 4.10: The del(5q) hypermethylation signature correlates with expres-
sion of H3K9me1/2 methyltransferases. A. Correlation plot depicting Pearson co-
efficients for the correlation of DNMT3B, G9a and PRDM16 gene expression with LMC3
proportion in the ASTRAL-1 ckAML cohort. B. Dot plot comparing LMC3 levels in
del(5q) AML (yellow) and in an AML sample overexpressing H3K9me1 methyltransferase,
PRDM16 (red). C. Boxplots comparing the gene expression (log2 transformed TPM) of
G9a and DNMT3B in del(5q) samples separated by median LMC3 proportion. Wilcoxon’s
p-values shown.
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Since H3K9me2 is associated with the formation of Lamina Associated Domain (LAD)s, I

investigated the enrichment of LAD-associated genes among LMC3-hypermethylated and

differentially expressed genes. I observed a significant enrichment of genes within LADs

among LMC3-hypermethylated genes as well as among genes downregulated in del(5q)

compared to other ckAML patients (Fig. 4.11).

Figure 4.11: Genes within lamina-associated domains are dysregulated in
del(5q) AML. A. Venn diagram showing the overlap of genes within lamina-associated
domains (LAD genes) and genes with CpG sites hypermethylated in the LMC3-high AML
subgroup (by comparison to all other AML subgroups and normal HSCs). Hypergeometric
p-value is shown. B. Venn diagram showing the overlap of genes within lamina-associated
domains (LAD genes) and genes downregulated in del(5q) AML (by comparison to other
ckAML patients in the ASTRAL-1 cohort). Hypergeometric p-value is shown.
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4.1.8 Epigenetic similarity of del(5q) andMECOM -overexpressing AML

converge on overexpression of DNMT3B

AML with t(3;3)/inv(3) is a subgroup associated with overexpression of theMECOM/EVI-

1 oncogene [187]. This subgroup has been previously shown to exhibit a distinct hyper-

methylation signature [115], mediated by MECOM’s interactions with DNMT3B [188].

Moreover, the H3K9me2 methyltransferase, G9a/EHMT2 is a known MECOM binding

partner [189]. To support my hypothesised role for DNMT3B in bringing about the

del(5q) hypermethylation signature, I investigated whether a similar methylation pattern

might be detected in this subgroup. I found that AML overexpressing MECOM/EVI-1, or

carrying the associated t(3;3)/inv(3) alterations (where gene expression was not available),

did carry significantly higher levels of LMC3 compared to other patients without 5q dele-

tions (Fig. 4.12A). In line with this, I found that DNMT3B was consistently upregulated

in both del(5q) patients and MECOM-high/inv(3) AML (Fig. 4.12B), suggesting that the

epigenetic similarity between these two subgroups converges on the overexpression of this

de novo DNA methyltransferase.

Figure 4.12: Epigenetic similarity of del(5q) and MECOM/EVI-1 -
overexpressing AML converge on overexpression of DNMT3B. A. Bar
plots showing association of LMC3 with MECOM overexpression and the associated
t(3;3)/inv(3) in ASTRAL-1, TCGA and BEAT AML cohorts. Samples are ordered by
increasing LMC3 proportion. B. Boxplots comparing gene expression of DNMT3B [log
transformed reads per kilobase million (RPKM)] in del(5q), MECOM -overexpressing AML
and other AML samples from the TCGA and BEAT AML cohorts.
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4.2 Discussion

Recurrent deletions in the genomes of cancer cells are typically viewed as suspected loca-

tions of TSGs. In del(5q) AML however, no gene has been found which fits the classical

definition of a tumor suppressor, with evidence for recurrent mutation or otherwise inac-

tivation of the second allele [190].

Here, building on results from Chapter 3, I decided to reevaluate the long-standing ques-

tion of del(5q) TSGs, and to consider the possibility that del(5q) AML may be driven

by previously overlooked epigenetic mechanisms. In this chapter, I have combined data

on the copy number, transcriptional, protein and mutational patterns of genes within

the MDR on chromosome 5. I have presented multiple lines of evidence suggesting that

KDM3B - a H3K9me1/2 demethylase encoded from the MDR on chromosome 5q31.2 - is

the most plausible del(5q) target gene. These findings lead me to hypothesise that hap-

loinsufficiency of KDM3B disrupts the global epigenetic landscape of myeloid progenitor

cells and thereby contributes to the development and progression of aggressive leukemias.

Understanding how exactly these events unfold will require much further investigation,

however I will consider this question in the following discussion, and in Chapter 6 of this

thesis I will examine one hypothesis in more detail.

KDM3B and (dys-)regulation of H3K9me1/2

KDM3B encodes a histone demethylase most known for its activity at lysines H3K9me1

and H3K9me2, and which has recently also been found to have activity at arginine

H4R3me2s [191]. H3K9me2 is a repressive chromatin mark and a defining feature of hete-

rochromatin, which together with H3K9me3 is associated with gene silencing and is found

at transcriptionally inactive sections of the genome such as transposable elements and

satellite repeats [192]. However, since KDM3B has activity at mono- and di-methylated

lysines rather than trimethylated lysines, it may also play a role in organising faculta-

tive heterochromatin, for example in regulating LADs and the expression of tissue-specific

genes [193, 194].

The role of H3K9me1 in the genome is more complex. As well as serving as a precursor

for the heterochromatic marks H3K9me2/3, H3K9me1 is also enriched in the bodies of

actively transcribed genes, as well as at active promoters and enhancers, and at chromatin

boundary regions such as the edges of heterochromatin domains [195]. The repressive argi-

nine modification, H4R3me2s, was also shown to be acted on by KDM3B in hematopoietic

cells, where it supposedly controls the expression of numerous key hematopoietic regulators

[191].

While these are the only three histone marks known to be directly influenced by KDM3B,

it is important to recognise that many epigenetic marks are closely interconnected, such

that KDM3B could indirectly influence the distribution of other histone modifications as
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well as the methylation of DNA. For example, histone lysine methylation and acetylation

are thought to be physically as well as functionally antagonistic and to occur in a mutually

exclusive pattern, such that an increase in H3K9me may be sufficient to bring about a

concomitant reduction in H3K9ac, which is associated with active transcription [196].

Moreover, repressive histone modifications are known to direct the establishment of de

novo DNA methylation [78].

As is the case for many epigenetic regulators in cancer, both tumor-suppressing and tumor-

promoting roles of KDM3B have been described across different cancer types. For example,

overexpression of the gene was linked to poor recurrence-free survival in non-small cell lung

cancer [197], and it was also suggested to promote the growth of liver cancer cells [198].

Meanwhile, KDM3B was shown to have an anti-proliferative effect in prostate cancer

[199], and both tumor suppressor and oncogenic roles of KDM3B have been proposed in

colorectal and breast cancer [200, 201, 202, 203]. Mutations in KDM3B were also described

in Wilms tumor [204], and de novo and inherited mutations in KDM3B have been reported

to result in a rare neurodevelopmental disorder referred to as Diets-Jongmans syndrome

[205]. Interestingly, in a study of 14 individuals with Diets-Jongmans syndrome, two were

found to develop cancer in childhood, one of which was a case of AML [205].

In the hematopoietic system, it is easy to imagine that genome-wide dysregulation of

H3K9me1/2 could have dangerous implications. Patterns of H3K9me1/2 have been shown

to regulate lineage commitment in HSCs [206], and regulators of H3K9me1/2 are known

to be disrupted in other AML subgroups. For example, overexpression of the H3K9me1

methyltransferase PRDM16 and the H3K9me2 methyltransferase EHMT2/G9a – events

which may be analagous to depletion of KDM3B, and which I have shown correlate with

a similar epigenetic signature as in del(5q) AML – have been previously linked to poor

outcome and features of leukemic stemness [184, 185].

While KDM3B is not among the more widely studied epigenetic enzymes in AML, and has

received relatively little attention in studies of del(5q) AML compared to other MDR genes

[52], a few recent studies have highlighted its importance in hematopoietic development

and malignancy. In a 2018 study, Li et al. showed that knockout of KDM3B resulted

in downregulation of key hematopoietic regulatory genes, and defective hematopoiesis

in mice, which displayed anemia and leukocytosis [191]. This study demonstrated that

KDM3B is an essential epigenetic player during hematopoietic development. Evidence for

tumor suppressor activity of KDM3B in del(5q) cell lines was suggested in a 2018 study

by Xu et al. [52]. More recently, Gray et al. showed that depletion of KDM3B promotes

amplification and rearrangements of the MLL/KMT2A locus in AML, through regulation

of H3K9me1/2 and CTCF occupancy [207]. Given this background it is easy to imagine

that KDM3B disruption, even to the extent of haploinsufficiency, could have profound

phenotypic effects during myeloid development.

Although I identified a couple of instances where KDM3B appears to be biallelically in-
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activated (with a deletion on one allele and a mutation on the other), it is clear that the

vast majority of del(5q) patients lose only one copy of the gene. This raises the ques-

tion – if loss of KDM3B is beneficial for disease progression, why are “double hits” not

observed more often? I suggest that the heterozygous loss of KDM3B may represent a

case of so-called “obligate haploinsufficiency” – a phenomenon proposed by Berger et al.

wherein partial loss of the implicated gene results in a stronger tumorigenic outcome than

complete loss [208]. This can happen due for example to the activation of compensatory

mechanisms that would make up for the gene’s complete absence, or if some level of ex-

pression of the gene is critical for cell survival. The NPM1 gene for example, which is

frequently mutated in AML, is typically inactivated on only a single allele, since complete

loss of the protein is embryonically lethal and incompatible with cell growth. Considering

that many of the common epigenetic gene mutations in AML – such as DNMT3A, TET2

and ASXL1 – are typically heterozygous events, it is tempting to speculate that “obligate

haploinsufficiency” may be more common for epigenetic regulators than for other TSGs.

In the later part of this thesis, I will consider the hypothesis that the imbalance in

H3K9me1/2 resulting from heterozygous loss of KDM3B could give rise to heterogene-

ity in epigenetic patterns from cell to cell. If del(5q) AML cells express lower than normal

levels of KDM3B, the enzyme may only be able to cover a limited fraction of its binding

sites. Assuming that the search for binding sites happens randomly, one might expect

that the resulting patterns of H3K9me1/2 along the genome might differ from cell to cell.

Such epigenomic heterogeneity could disrupt normal transcriptional patterns, and could

potentially contribute to cancer progression and therapy resistance by increasing tumor

plasticity. This hypothesis relies on the idea that KDM3B expression is partially reduced

rather than completely abolished. However, as complete loss of KDM3B might result in

compensatory changes in the expression of other histone lysine regulators, a shift in the

balance of histone modifications, potentially leading to cell-to-cell heterogeneity, might

also be possible in this scenario. I will investigate this hypothesis in Chapter 6 of this

thesis.

Notes on the haploinsufficiency of other chromosome 5 genes

In the Introduction of this thesis I have already outlined the prevailing hypotheses and

pitfalls regarding the putative target gene(s) in del(5q) AML. In light of my findings here,

a number of additional points should be discussed.

The data I have presented suggest that KDM3B is the most likely target of the 5q deletion,

being the only gene in the MDR which is consistently downregulated at both the gene

and protein expression levels in del(5q) patients, which is contained within all previously

described versions of the MDR, and which is recurrently (albeit rarely) affected by somatic

mutations in del(5q) patients. However it is not certain whether KDM3B acts alone or

in combination with other haploinsufficient targets on chromosome 5. Since deletions

on chromosome 5 typically span several MB and focal deletions are extremely rare, it
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is difficult to rule out potential cooperative or combined effects. Perhaps most notable

among putative del(5q) TSGs is EGR1, which lies adjacent to KDM3B at the peak of the

MDR [49]. Although my own and previous analyses have highlighted the lack of consistent

downregulation of this gene in del(5q) AML [61], contradicting the idea that loss of EGR1

is sufficient to explain del(5q) leukemogenesis, it is still tempting to consider a possible

involvement of EGR1, since it is recognised as a tumor suppressor in several other cancers

[58].

Another of the most acknowledged putative target genes in del(5q) AML is CTNNA1,

which encodes the alpha-catenin protein; an important regulator of cell adhesion and actin

cytoskeletal organisation [44]. The main reason why CTNNA1 has received more atten-

tion in this regard than other MDR genes is that it was shown to be affected by promoter

hypermethylation in some del(5q) patients, providing an epigenetic route for silencing the

remaining active allele [209]. In light of my findings, this idea deserves to be reappraised.

In fact it was previously shown in the KG1α del(5q) cell line, that the hypermethylation

of the CTNNA1 promoter was accompanied by enrichment of inactivating histone marks

including H3K9me2 [209]. This leads me to suspect that this hypermethylation, rather

than representing a selective silencing mechanism targeting the CTNNA1 gene as a “sec-

ond hit”, may rather be a bystander of the more widespread epigenetic changes which I

believe are driven by the depletion of KDM3B.

One of the major roles of H3K9me2 is in the formation of LADs – regions of the genome

which exist in close contact to the nuclear lamina, and which contain many tissue-specific

genes, most of which are transcriptionally inactive or expressed at low levels [193]. I

have shown that genes within LADs are significantly enriched among those differentially

methylated/expressed in del(5q) AML. In this regard, it is interesting to note that one of

the other 5q genes which has been previously proposed as a likely candidate is LMNB1,

which encodes one of the two critical protein components of the nuclear lamina [210].

Although LMNB1 lies outside of the 5q31.2 MDR, its locus would still be affected in

the vast majority of del(5q) cases. Acquired Pelgar Huet Anomaly (PHA) or pseudo-

PHA is a dysplastic change observed in myeloid malignancies, especially in high-risk MDS

and AML with del(5q), which is characterised by hyposegmentation and clumping of the

nuclear chromatin of myeloid cells [211, 210]. While the inherited form of PHA is caused

by mutations in the Lamin B receptor, the acquired form was recently linked to the loss

of LMNB1 in del(5q) MDS/AML [210]. Considering their shared role in the regulation of

H3K9me2/LADs, it is intriguing to theorise on the possible combined effect of KDM3B

and LMNB1 disruption, and to consider whether loss of KDM3B may also contribute to

the pseudo-PHA observed in AML cells.
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Potential implications of KDM3B haploinsufficiency beyond epigenetic regu-

lation

With this new perspective on del(5q) AML, it is worth returning to some of the unsolved

questions about this intriguing subgroup: for example, why is it that del(5q) appears so

often in the context of ckAML? Could the epigenetic dysregulation in del(5q) AML be

directly linked in any way to the genomic instability and frequent TP53 mutations which

exemplify this subgroup, or are these events simply coincident? It is important to note

that del(5q) is an early event in AML, which usually occurs before other CNAs and thus

likely precedes the development of a complex karyotype [36, 37, 38, 172]. Therefore it

is probably not simply that del(5q) is the CNA which is selected amid the large-scale

genomic disarray, being most advantageous to the tumor, leading it to appear more often

than other CNAs in ckAML. The fact that del(5q) seems to happen first rather suggests

that a tumor with del(5q) is somehow more likely to acquire a TP53 mutation and/or

develop a complex karyotype than one without. How and why this occurs will be an

important direction of future study.

Dysregulation of histone modifying enzymes in cancer is typically linked to altered tran-

scriptional regulation. Nevertheless, it is also worth considering possible effects of KDM3B

haploinsufficiency beyond the epigenetic regulation of histones. For example, as a post-

translational modification, lysine methylation can be important in regulating the activity

of non-histone proteins. In this regard, it is important to note that H3K9me2 methyl-

transferases like G9a have been shown to regulate the activity of the TP53 protein [212,

213]. It would be interesting to investigate whether KDM3B might also play a role in

regulating the activity or stability of TP53, especially given the frequent coocurrence of

TP53 mutations and del(5q) in AML. Among all CNAs in AML, del(5q) exhibits by far

the most significant association with TP53 mutations [214]. In other cancers, the cooccur-

rence of TP53 mutations with other genomic events can indicate a synergy or functional

interaction between the two events. It is intriguing to speculate whether – and in what

way – the depletion of KDM3B might provide a greater selective advantage in the context

of a TP53 mutation.

Interestingly, KDM3B has also been previously linked to genomic instability in cancer.

Saavedra et al. suggested that depletion of KDM3B can promote genomic instability by

influencing histone protein metabolism and causing increased expression of histone proteins

[215]. Increased histone protein production can contribute to chromatin over-compaction

and replication stress. Moreover, many histone methyltransferases and demethylases, in-

cluding demethylases of H3K9me2, have been shown to be recruited to sites of DNA

damage, suggesting that the removal of H3K9me2 may play a role in the DNA damage re-

sponse [216]. One possibility is that the removal of such repressive marks may be necessary

to facilitate the loosening of chromatin that allows access of the DNA repair machinery

at damaged sites. The involvement of KDMs in the DNA damage and repair pathways

provides a tempting explanation for the frequent disruption of such enzymes in cancer,

58



and might provide a clue as to the link between del(5q) and genomic instability that would

be worthwhile investigating in future studies in the context of ckAML.

Notably, Salzberg et al. have also identified the presence of large H3K9me2 blocks in AML

cells, which they found to be enriched at sites of AML-specific mutations and chromosomal

translocations [217]. Along similar lines, Gray et al. proposed that depletion of KDM3B

and consequent accumulation of H3K9me2 can promote copy number amplifications and

rearrangements of the MLL/KMT2A locus in AML – a mechanism that could conceivably

extend to other genomic regions [207].

Linking del(5q) AML to other epigenetically dysregulated subgroups

To strengthen my argument for KDM3B as a target of del(5q) AML, I have also drawn

attention to the epigenetic similarities between del(5q) AML and a number of other AML

subgroups in which H3K9me1/2 regulation is disturbed. Firstly, I have commented on the

mutual exclusivity and shared hypermethylation of del(5q) and IDH -mutated AML, and

secondly on the epigenetic link between del(5q), MECOM and PRDM16 overexpression.

These may be indications of convergent evolution.

KDM3B belongs to the family of α-KG dependent dioxygenases. The activity of such

enzymes is known to be inhibited in the presence of mutated IDH, owing to accumulation

of the oncometabolite 2-HG, which is a competitive inhibitor of α-KG. By this mechanism,

mutant IDH has been shown to promote an increase in histone lysine methylation, includ-

ing the H3K9me2 mark [218, 178]. My observation that del(5q) and IDH1/2 mutations

occur in a mutually exclusive manner in AML patients, while exhibiting overlapping pat-

terns of DNA hypermethylation, can therefore be taken as further evidence for KDM3B

as a target of the deletion. Similarly, mutual exclusivity of mutations in IDH and TET2

– another α-KG-dependent enzyme – is a well established phenomenon in AML [12]. My

findings suggest that a similar metabolic dependency might underlie the mutual exclusiv-

ity of del(5q) and IDH mutations, and that the two events might converge on partially

overlapping epigenetic pathways represented by reduced KDM3B activity. In this regard,

it is interesting to note a recent study by Waarts et al. who showed using a clustered reg-

ularly interspaced short palindromic repeats (CRISPR) dependency screen that KDM3B

is a selective dependency of IDH/TET -mutant HSCs [219].

Another AML subgroup for which a DNA hypermethylation signature has been previ-

ously described is AML overexpressing MECOM/EVI-1 ; a potent oncogene which can be

activated through enhancer hijacking events and other genomic alterations on chromo-

some 3 [115]. In previous studies, MECOM was shown to drive DNA hypermethylation

through its interactions with H3K9 methyltransferases as well as the DNA methyltrans-

ferase, DNMT3B [115]. Here, I have shown that AML overexpressing MECOM carry high

levels of the same methylation signature as del(5q) patients, and that these patients con-

comitantly overexpress the DNMT3B gene to similar levels as del(5q). This is particularly
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intriguing given that MECOM, in its longer isoform, encodes the H3K9me1 methyltrans-

ferase, PRDM3 – an enzyme with opposing activity to KDM3B. Several studies have

reported on the biological correlates of AML overexpressing MECOM and its homolog,

the H3K9me1 methyltransferase, PRDM16 [186, 185]. Here, I have shown that both of

these events result in a similar methylation pattern as del(5q) AML, lending weight to

the assumption that this signature is related to the reduced activity of a H3K9me1/2

demethylase.

The overexpression of DNMT3B in AML is an intriguing phenomenon, as this de novo

methyltransferase is predominantly active during embryogenesis and silenced in healthy

adult tissues. Nevertheless, DNMT3B has been shown to be aberrantly expressed in some

tumor types including colorectal and breast cancers, as well as myeloid and lymphoid

leukemias [179, 220, 31, 221, 222]. Recently DNMT3B has emerged as a potentially

important player in AML, where its expression is higher than other non-embryonic tumors,

and where it has been linked to features of leukemic stemness and poor prognosis [182, 31].

In this chapter, I have identified a DNA methylation signature associated with DNMT3B

in AML. I have shown that DNMT3B overexpression is a common feature of the del(5q)

subgroup, and I have highlighted DNMT3B as the most strikingly upregulated gene in

LSCs by comparison to non-self-renewing leukemic blasts. I hypothesise that DNMT3B

is recruited to sites of H3K9me1/2 in KDM3B-depleted cells, resulting in a pattern of

methylation in del(5q) AML resembling that of MECOM/PRDM16 -overexpressing AML.

Looking forward, it will be important to understand how DNMT3B overexpression comes

about in del(5q) patients, and if/how this is directly linked to the depletion of KDM3B.

Interactions between DNMT3B and H3K9me1/2 have been extensively documented, and

one could speculate that a rise in H3K9me1/2 might somehow trigger increased expression

of the gene, though this would need to be experimentally tested. It may also be that

DNMT3B expression marks a specific stage in HSPC development, or that it simply reflects

an enrichment of LSCs – or a specific type of LSCs – in del(5q)/MECOM/PRDM16 -

overexpressing tumors.

Conclusion

In summary, I have suggested that haploinsufficiency of the H3K9me1/2 demethylase

KDM3B, and overexpression of DNMT3B, may explain the epigenetic disruption in del(5q)

AML. These findings shed new light on a highly aggressive and poorly understood AML

subgroup and highlight a need for follow-up studies to disentangle the precise role of

H3K9me1/2 in AML pathogenesis.
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Chapter 5

EpiCHAOS: a metric for

quantifying epigenomic

heterogeneity in single cell data

In the previous chapter of this thesis, I proposed that KDM3B is a likely target for

haploinsufficiency in del(5q) AML. I presented the hypothesis that haploinsufficiency of

KDM3B could give rise to cell-to-cell heterogeneity in the repressive chromatin modifi-

cations, H3K9me1/2. With the ultimate aim of investigating this hypothesis, I was in-

spired to develop a computational strategy to quantify cell-to-cell epigenetic heterogeneity

in single-cell data, which I have called epiCHAOS (epigenetic/Chromatin Heterogeneity

Assessment of Single cells). In this chapter, I will present the development and validation

of epiCHAOS, and demonstrate the functionality of the method through applications in a

range of biological settings.

The main findings presented in this chapter also appear in a modified form in the results

of Kelly et al. [223].

5.1 Results

5.1.1 Development and in silico validation of epiCHAOS

I designed epiCHAOS to assign a cell-to-cell epigenetic heterogeneity score at the level

of cell clusters, or other user-defined groups of interest e.g. cell types, timepoints or

treatment conditions. I initially focused on scATAC-seq data, since this is currently the

most commonly used single-cell epigenomics modality. To compute epiCHAOS scores,

data is first extracted from each single-cell group of interest in the form of a binarised

matrix. This represents a peaks-by-cells or tiles-by-cells matrix in the case of scATAC-
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seq (where 1’s signify positions of open chromatin, and 0’s represent closed chromatin

or missing values), or any other regions-by-cells matrix in the case of other single-cell

epigenomics data types. Depending on the biological question, cells may be stratified

based on predefined clusters, cell types, treatment conditions, or any other annotated

phenotype of interest. For each group or cluster, I then calculate the distances between all

pairs of cells using a count-centered version of the Jaccard distance [224], which ensures

that data with a greater or fewer number of 1’s are not perceived as being more or less

heterogeneous. Finally, I compute the mean of all pairwise distances per group or cluster

as its epiCHAOS score. For simplicity of interpretation, I fit epiCHAOS scores to a range

of 0-1, such that the lowest score in any given analysis will be equal to 0, and the highest

will be equal to 1 (Fig.5.1A).

Figure 5.1: Calculation of epiCHAOS scores. Schematic describing epiCHAOS
calculation. Using single-cell epigenomics data in binarised matrix form, epiCHAOS scores
are assigned per cluster by computing the mean of all pairwise cell-to-cell distances using
a chance-centered Jaccard index followed by regression-based adjustment for sparsity. µ
= mean per cluster. Formula for the Jaccard index is shown.

To assess how epiCHAOS behaves in artificial situations of increasing heterogneity, I first

generated in silico a series of 100 synthetic datasets mimicking the structure of binarised

scATAC-seq matrices, in which I controlled the levels of heterogeneity, while fixing the total

count. To do this I first generated a random binary matrix which would represent the first

and expectedly most heterogeneous dataset in the series. Then, in each subsequent matrix,

I incrementally introduced homogeneity by removing a defined number of 1’s from selected

n rows, and adding them to a different selected n rows. In this way, a constant number

of 1’s is maintained, while “cell-to-cell” (or column-to-column) heterogeneity gradually

decreases. Using this system, I showed that the epiCHAOS score is highly correlated with

the true controlled heterogeneity (Pearson R=0.99), reflecting the expected behaviour of

the Jaccard Index (Fig. 5.2A).

Next, I verified that heterogeneity can be detected both in cases of increasing and de-

creasing counts, such that both heterogeneous gains or losses of chromatin accessibility

would similarly be detected. To test this I simulated a further series of scATAC-like matri-

ces in which I incrementally increased heterogeneity, while either increasing or decreasing

genome-wide chromatin accessibility. Taking as baseline an scATAC-seq dataset from hu-

man monocytes, I incrementally perturbed the data with either addition or removal of

1’s. Specifically, in the first series, I randomly selected 10, 20, 30, 40 and 50% of 1’s, and

replaced them by 0’s, and in the second series, I randomly selected corresponding numbers
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of 0’s and replaced them by 1’s. I showed that epiCHAOS correctly detects differences in

heterogeneity both in cases where counts are added and removed (Fig. 5.2B).

Since single-cell epigenomics data are typically very sparse, it was important to confirm

that epiCHAOS does not perceive differences in sparsity as differences in heterogeneity. I

first investigated whether epiCHAOS correlated with the total number of 1’s by generating

a series of completely random datasets with varying total number of 1’s. I found no

correlation between epiCHAOS scores and total number of 1’s between these synthetic

datasets, which confirmed the expected behaviour of the count-centred Jaccard index

(Fig. 5.2C).

In real single-cell datasets however, differences in coverage may be more complex since

they are accompanied by differences in the number of missing values representing false

negatives. Genome-wide differences in detected ATAC signals can appear due to technical

reasons, i.e. reflecting differences in sequencing depth, but can also have biological sources.

For instance, if a sample contains quiescent cells, where a large part of the chromatin is

compacted, genome-wide ATAC-seq signals will be reduced. In cancer cells, deletions

or gains of chromosomal material can result in a lower or higher number of fragments

within the affected region, respectively. I used two different strategies to investigate how

epiCHAOS would behave in biologically relevant datasets with varying sparsity. First, I

implemented a previously published method, scReadSim [225], to simulate datasets with

varying sequencing depth, using a scATAC-seq dataset from HSCs as a baseline [226].

Secondly, I called CNAs in scATAC-seq data from a liver cancer cell line [227], and inves-

tigated differences in epiCHAOS scores at regions of large CNAs in cells with and without

the respective lesion. In both of these scenarios, I found that higher heterogeneity can

be perceived in data with lower total number of counts or fragments, reflecting lower

sequencing depth (Fig. 5.2D), or chromosomal deletions (Fig. 5.3). This necessitated

an adjustment of the epiCHAOS score for sparsity. To do this, I implemented a linear

regression-based adjustment for the total number of 1’s across cell groups/clusters, which

resulted in a sparsity-adjusted heterogeneity score. For applications to cancer samples, I

used a similar approach but corrected separately for each chromosome. I showed that this

adjusted score is no longer affected by differences in genome-wide chromatin accessibility

or sequencing depth (Fig. 5.2E), or by the presence of large-scale deletions and gains in

tumor samples (Fig. 5.3).
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Figure 5.2: Validation of epiCHAOS in synthetic datasets. A. Scatter plot
illustrating the correlation between epiCHAOS scores (epiCHAOS) and controlled het-
erogeneity across 100 synthetic datasets. Pearson correlation coefficient and p-value is
shown. B. Bar plots illustrate increasing heterogeneity after perturbation of scATAC-seq
data from sorted monocytes by either randomly adding or randomly removing 10-50 %
of 1’s. C. Scatterplot illustrating the absence of correlation between epiCHAOS scores
(epiCHAOS) and total count across a series of 100 randomly generated datasets ordered by
increasing total counts. Pearson correlation coefficient and p-value is shown. D-E. Box-
plots comparing raw epiCHAOS scores before (D) and after (E) adjustment for sparsity
across six simulated single-cell ATAC-seq datasets. Data were simulated using scReadSim
with sequencing depth varying from 50,000 to 100,000 counts. ScATAC-seq data from
hematopoietic stem cells subset from the Granja et al. 2019 dataset [226] were used as
the baseline counts matrix.
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Figure 5.3: EpiCHAOS scores are not influenced by copy number. A. Selection
of cells with subclonal copy number loss on chromosome 13 in the Hep-1 cell line. Line plot
(left) shows the mean copy number among single cells on chromosome 13. Copy number
was called using epiAneuFinder, where 1 = diploid, 0 = loss and 2 = gain. X-axis displays
chromosome location. The highlighted region was selected as a region of subclonal deletion
for which to test the effects of copy number alterations on epiCHAOS scores. Density plot
(right) shows the distribution of cells with and without deletion in the selected region. B.
After reducing the peaks-by-cells matrix for peaks within the deleted region (highlighted
in (A)), one group of 100 deletion cells and five groups of 100 diploid cells were sampled
for epiCHAOS calculation. Scatterplots show the relationship between epiCHAOS scores
(epiCHAOS) and counts (average counts per cell in the group in the subsetted peaks
matrix) before (left) and after (right) adjustment for total counts. EpiCHAOS scores
were adjusted for counts by fitting a linear regression model of epiCHAOS scores against
counts (average counts per cell in the group) and taking the residuals of the model as an
adjusted score. Each point represents a group of either diploid or deleted cells on which
epiCHAOS scores are computed. C. Selection of cells with subclonal copy number gain
on chromosome 5 in the Hep-1 cell line. C-D. Plots show the same as in (A-B) in the
situation of a copy number gain (increased counts).
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As an additional in silico validation strategy, I created synthetic mixtures of various epige-

netically distinct cell types. For this I utilised a previously published human hematopoietic

dataset [226]. I synthesised mixtures of two to five cell types including all possible combi-

nations of HSCs, monocytes, B-cells, CD8-T cells and plasmacytoid dendritic cells (pDCs)

(Fig. 5.4A). To focus on regions which are differentially accessible between cell types, I

subset the peaks-by-cells matrix to the 500 top marker peaks for each cell type, and then

applied epiCHAOS to each individual cell type and mixture. As expected, I found that

epiCHAOS scores were lowest in individual cell types, and increased in proportion to the

number of cell types in the mixture, being highest when all five cell types were mixed (Fig.

5.4B).

Figure 5.4: Validation of epiCHAOS in in silico cell-type mixtures. A. Uniform
Manifold Approximation & Projection (UMAP) embedding illustrates scATAC profiles
from five selected cell types of human bone marrow [226]. After selecting 500 top dif-
ferentially accessible peaks for each cell type, in silico mixtures of two to five cell types
in all possible combinations were created. B. Boxplots show the relationship between
epiCHAOS scores (epiCHAOS) and number of cell types (x-axis) after in silico mixing.
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5.1.2 EpiCHAOS scores are minimally influenced by technical noise and

choice of clustering parameters

To ensure that epiCHAOS does not perceive “noisier” data as higher heterogeneity, I in-

vestigated the relationship between epiCHAOS scores and a range of established metrics

of technical noise in scATAC-seq data; the fraction of reads in peaks (FRIP) score, tran-

scription start site (TSS) enrichment score and nucleosome ratio. For this I used the same

liver cancer cell line dataset (used for CNA analysis in the previous section) and separated

cells into bins of increasing technical noise according to each specified metric. I found no

correlation between epiCHAOS score and any of the above metrics of cell quality except

in cases of extremely low TSS enrichment scores where epiCHAOS scores tended to be

increased (Appendix, Fig. 8.5). In any case, such cells are routinely filtered out as part

of standard quality control. I also confirmed that epiCHAOS was not influenced by the

number of cells per cluster (Appendix, Fig. 8.5).

I also investigated how epiCHAOS behaves under different clustering parameters. For

this, I selected as an example a scATAC-seq dataset from breast cancer [140]. I performed

clustering in ArchR using a range of clustering resolutions from 0.1 to 0.9 and then in-

vestigated the resulting epiCHAOS scores. For each resolution, I tested the correlations

between per-single-cell epiCHAOS scores and found that every comparison yielded a Pear-

son R greater than 0.9 (Appendix, Fig. 8.6). This suggests that overall, a similar pattern

of epiCHAOS scores emerges in different cell groups regardless of clustering resolution.
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5.1.3 EpiCHAOS reflects epigenetic heterogeneity associated with de-

velopmental plasticity

Having validated the performance of epiCHAOS in a range of synthetic datasets, I next

moved on to real biological applications. First, in order to show that epiCHAOS generates

results that make biological sense, I focused on a biological setting where there are prior

expectations about epigenetic heterogeneity: developmental systems. Here, it is generally

accepted that uncommitted, multipotent cell types, which need to retain their ability to

differentiate down numerous different trajectories, should exhibit high cell-to-cell epige-

netic heterogeneity, potentially with different cells being primed for different cell fates.

By contrast, terminally differentiated cell types have already committed to a specific fate,

and have no longer such a need to diversify. We would therefore expect such cells to be

more fixed or stable at the epigenetic level, and to exhibit lower epigenetic heterogeneity

[118, 228]. I decided to apply epiCHAOS to a range of developmental contexts to see how

the results align with this accepted biological paradigm.

I selected scATAC-seq datasets from three different examples of developmental systems;

human hematopoiesis (bone marrow mononuclear cells) [226], drosophila embryogenesis

and mouse gastrulation [229]. Across hematopoietic cell types, epiCHAOS scores were

highest in HSCs, followed by other hematopoietic progenitor cells (CLPs, CMPs, LMPPs,

and early erythroid cells). As expected, I detected lower epiCHAOS scores in the more

differentiated cells of the myeloid, erythroid and lymphoid lineages (Fig. 5.5A).

Similarly, in data from mouse gastrulation, epiCHAOS scores were highest in less differen-

tiated cells, especially in the primitive streak and in primordial germ cells, and decreased

throughout the formation of distinct meso-, endo- and ectodermal lineages (Fig. 5.5B).

In Drosophila embryogenesis, I also observed high epigenetic heterogeneity at the earliest

multipotent stages including undifferentiated cells, blastoderm and germ cells (Fig. 5.5C),

however I detected even higher epiCHAOS scores in neural cells, supposedly reflecting the

extraordinary functional heterogeneity of the neural compartment [230].
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Figure 5.5: EpiCHAOS reflects epigenetic heterogeneity associated with de-
velopmental plasticity. Violin plots (left) showing epiCHAOS scores (epiCHAOS) com-
puted in scATAC-seq data from (A) human hematopoiesis [226], (B) mouse gastrulation
[229] and (C) drosophila embryogenesis [231]. EpiCHAOS scores were computed per-cell
type as annotated in the original publications. Violins represent the scores computed
in five random subsamples of 100 cells from each cell type, or once where fewer than
100 cells were available. Plots are ordered by epiCHAOS scores and progenitor cells and
undifferentiated tissue types are highlighted in blue. UMAP embeddings (right) illustrat-
ing epiCHAOS scores in the same datasets as in violin plots. UMAPs are coloured by
epiCHAOS scores computed per annotated cell/tissue type.
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To investigate this outside of an embryonic context, I applied epiCHAOS to scATAC-seq

data from the a pan-tissue atlas, where I found that epiCHAOS scores were generally

higher in neural tissues compared to all other tissue types with the exception of placenta

[232] (Fig. 5.6).

Figure 5.6: EpiCHAOS scores are increased in neural tissues and placenta. A-
B Bar plots of epiCHAOS scores (epiCHAOS) in different tissues (A) and cell types (B)
from the human scATAC-seq cell atlas [232]. Neural and placental tissues are highlighted.

To assess how epiCHAOS compared to previously established measurements of cellular

plasticity, I correlated epiCHAOS scores with CytoTRACE – a scRNA-based metric de-

signed to capture stemness/plasticity, which is based on the observation that the number

of expressed genes per cell decreases during cellular differentiation [233]. In the hematopoi-

etic system, epiCHAOS correlated moderately with CytoTRACE scores (Fig. 5.7), and in

some cases the pattern of epiCHAOS scores across cell types was better representative of

the differentiation trajectory than that of CytoTRACE. For example epiCHAOS detected

higher heterogeneity in naive CD8+ and CD4+ T-cells compared to memory T cells, re-

flecting the expectation that naive T cells should have greater developmental potential.

This was not detected by CytoTRACE, suggesting that epiCHAOS captures some features

of cellular plasticity that might not be detectable at the transcriptional level. Similarly in

gastrulation and embryogenesis datasets, epiCHAOS correlated with previously annotated

metrics of developmental time (Fig. 5.7).

Next, I investigated whether this pattern of epigenetic heterogeneity was reflected by

higher transcriptional heterogeneity in less differentiated cells (Fig. 5.8). For this I used a

previously described metric of cell-to-cell transcriptional heterogeneity. While I generally

observe higher transcriptional heterogeneity in less differentiated cells, overall correlations

between epiCHAOS and transcriptional heterogeneity were moderate.

Collectively these data suggested that epiCHAOS can provide an accurate approximation

of epigenetic heterogeneity indicative of developmental plasticity. This encouraged me to

apply epiCHAOS to data from malignant settings, considering that it might also serve as

an indicator of plasticity in cancer.
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Figure 5.7: EpiCHAOS scores correlate with developmental time. Scatter plots
correlating epiCHAOS scores (epiCHAOS) with developmental time as defined by (left)
CytoTRACE score, averaged across cells (human hematopoietic system), (middle) devel-
opmental time in days at sample collection, averaged across cells (mouse gastrulation), or
(right) predicted developmental time in hours (Drosophila embryogenesis). EpiCHAOS
scores represent the average of pseudo-replicates shown in Fig. 5.5. Linear regression lines
are displayed and Pearson correlation coefficients and p-values indicated.

Figure 5.8: Correlation between epigenetic and transciptional heterogeneity
in developmental settings. Scatterplots show the correlation of epiCHAOS scores
(epiCHAOS) with transcriptional heterogeneity scores in human hematopoiesis (left),
mouse gastrulation (middle) and drosophila embryogenesis (right). Transcriptional hetero-
geneity is quantified using the associated scRNA-seq data (not data from the same cells)
by taking the mean of pairwise euclidean distances between all cells within a group/clus-
ter.

71



5.1.4 EpiCHAOS correlates with features of plasticity in malignant cells

To investigate epigenetic heterogeneity in malignancy, I selected two previously published

scATAC-seq datasets from 16 breast [140] and 16 liver [234] cancer patients. To inves-

tigate whether epigenetic heterogeneity coincides with particular features of tumor cells,

I calculated molecular signature scores for each malignant cluster by summarising the

scATAC-seq gene score matrices across biological pathways. I applied epiCHAOS to each

dataset, subset for malignant cell clusters, and correlated the resulting epiCHAOS scores

against each molecular signature (Fig. 5.9A).

Epithelial-to-mesenchymal transition (EMT) – a process which is considered integral to

breast cancer plasticity and metastasis – was among the top gene sets correlated with

epiCHAOS scores across breast cancer cell clusters [235] (Fig. 5.9B). EMT-related signal-

ing pathways such as TGF-beta and WNT signaling, were also correlated with epiCHAOS

scores (Appendix, Fig. 8.7). Clusters with high epiCHAOS scores also displayed higher

accessibility of genes within various previously described gene expression signatures of the

more aggressive invasive and metaplastic breast cancer subtypes (Appendix, Fig. 8.7).

Gene sets related to EMT were similarly correlated with epiCHAOS scores in liver cancer,

and the average accessibility of previously described prognostic gene signatures of liver

cancer was increased in clusters with high epiCHAOS scores (Fig. 5.9B, Appendix Fig.

8.7).

These recurring correlations between epiCHAOS and EMT scores hinted at a possible link

between epigenetic heterogeneity and plasticity in cancer cells. To investigate this further I

applied epiCHAOS to a scATAC-seq dataset from childhood ependymoma comprising mul-

tiple differentiated (astrocytes, ependymal cells, neural progenitor cells, and mesenchymal-

like cells) as well as undifferentiated tumor cell types [236]. Fittingly, epiCHAOS scores

were increased in the population of undifferentiated cells, which were previously shown to

be enriched in more aggressive ependymomas [236, 237] (Fig. 5.9C-D). Among malignant

cell types, the lowest epiCHAOS scores were detected in ependymal cells (Fig. 5.9C-D),

which represent the latest stage of differentiation, and which are known to be associated

with less aggressive disease [238].

In summary, these data indicate that the measure of cell-to-cell epigenetic heterogeneity

provided by epiCHAOS can capture features of cancer cell plasticity and dedifferentiation,

which correlate with aggressive tumor phenotypes.
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Figure 5.9: EpiCHAOS correlates with features of plasticity in malignant cells
and epigenetic heterogeneity in aging. A. Schematic describing breast [140] and
liver cancer [234] datasets used for epiCHAOS calculation. B-C. Dot plots illustrate or-
dered Pearson coefficients after correlation of per-cluster epiCHAOS scores against gene
set scores for all Hallmark Gene Ontology biological processes in breast (B) and liver can-
cer (C). Top 5 correlations in each dataset are highlighted and labeled below. D. UMAP
embedding (left) of scATAC-seq data from five primary and two metastatic childhood
ependymoma tumors [236]. Cells are coloured by epiCHAOS scores (epiCHAOS) com-
puted for each cell type. Undifferentiated cells are highlighted in red. Violin plot (right)
ordered by epiCHAOS scores (epiCHAOS) for all malignant and non-malignant cell types
annotated in ependymoma tumors. Malignant cell types are highlighted in blue. Violins
represent the scores computed in five random subsamples of 100 cells from each cell type,
or once where fewer than 100 cells were available. E. Violin plot ordered by epiCHAOS
scores computed in scATAC-seq data from old (blue; n = 3) and young (black; n = 2)
mouse HSCs [239]. Violins represent the scores computed in five random subsamples of
100 cells from each group.

73



5.1.5 EpiCHAOS reveals increased epigenetic heterogeneity associated

with hematopoietic aging

Next I investigated whether epiCHAOS would detect differences in epigenetic heterogene-

ity associated with aging – a process which has been shown to correlate with accumulating

stochastic variation in epigenetic marks [240]. For this I applied epiCHAOS to a scATAC-

seq dataset from HSCs derived from old (3 mice, 24 months) and young (2 mice, 2 months)

mouse bone marrow [239]. In agreement with previous studies, epiCHAOS detected in-

creased epigenetic heterogeneity in aged HSCs compared to those from younger animals

(Fig. 5.9E).

5.1.6 EpiCHAOS reveals elevated epigenetic heterogeneity at PRC2 tar-

geted regions and promoters of developmental genes

This chapter has so far focused on comparisons of genome-wide epigenetic heterogeneity

between different cell types or conditions. Next, I decided to investigate how different

classes of genomic regions might differ in epigenetic heterogeneity within a single group of

cells.

For this I focused on bone marrow HSCs from the previously described scATAC-seq dataset

from human hematopoiesis [226]. To compare epigenetic heterogeneity across different

genomic regions, I utilised annotated chromatin/transcription factor binding profiles from

the encyclopedia of DNA elements (ENCODE) database, subsetting the peaks-by-cells

matrix to regions overlappng with each of the included factors. Here, epiCHAOS detected

especially high epigenetic heterogeneity at PRC2 targeted regions, as well as at binding

sites for CCCTC-binding factor (CTCF) and Cohesin (Fig. 5.10A). Repeating this analysis

for each of the hematopoietic cell types individually, I found that the pattern of epigenetic

heterogeneity across regions was largely consistent across cell types, with the majority

of between-cell-type Pearson correlations greater than 0.7. (Appendix, Fig. 8.8). To

validate this finding, I compared epiCHAOS scores to the DNA methylation variation

across CpG sites in HSCs (analysis of RRBS data performed by Martina Braun), which

I summarised for each TFBS, as an independent measurement of per-region epigenetic

heterogeneity. I detected a similar pattern of epigenetic heterogeneity at the level of DNA

methylation, with PRC2 targets standing out as the most variably methylated regions,

followed by binding sites for CTCF and cohesin (Fig. 5.10B). To discern whether this

pattern translates to elevated transcriptional heterogeneity, I calculated transcriptional

noise for each gene in HSCs using a previously described strategy based on the coefficient

of variation [241]. Consistent with their higher epiCHAOS scores, and in line with previous

reports [242, 117], I found that transcriptional noise was significantly increased at genes

targeted by the PRC2 complex compared to non-PRC2 targets (Fig. 5.10C).
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Figure 5.10: EpiCHAOS reveals increased heterogeneity at binding sites
for PRC2, CTCF and cohesin. A. Ordered dot plot showing epiCHAOS scores
(epiCHAOS) computed across region sets for each ENCODE chromatin factor binding
site in HSCs, ordered by epiCHAOS scores. Top 20 region sets (cell type and binding site)
are labeled. B. Scatter plot comparing epiCHAOS scores (epiCHAOS) with DNA methy-
lation variation at each chromatin factor binding site as in (A). PRC2 targets (binding
sites for EZH2/SUZ12, red), CTCF targets (orange) and Cohesin binding sites (binding
sites for RAD21/SMC3, blue) are highlighted. X-axis represents the average of per-CpG
methylation variances across 10 individuals at all CpG sites overlapping with the respec-
tive region set. Values are scaled to a 0-1 range. C. Boxplot comparing transcriptional
noise, measured using the coefficient of variation (CV), between PRC2 target genes and
other genes in HSCs using scRNA-sequencing (RNA-seq) data from Granja et al. [226].
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Next, I compared epigenetic heterogeneity across sets of functionally related genes, cal-

culating epiCHAOS scores at promoter-associated peaks subset for each gene ontology

biological process. This analysis revealed elevated heterogeneity at genes associated with

developmental processes including “cell fate commitment”, “cell fate specification” and

“somatic stem cell division” (Fig. 5.11A). This pattern also correlated quite well between

different hematopoietic cell types, with the majority of between-cell type comparisons

yielding a Pearson correlation coefficient above 0.7 (Appendix, Fig. 8.9). Nevertheless,

some interesting distinctions also appeared between cell types, with certain gene sets

showing increased heterogeneity in a cell-type specific manner; most notably, I found that

the cell-to-cell accessibility of bivalent genes and genes related to cell fate specification

appeared to be highly heterogeneous in HSCs, but relatively homogeneous in more differ-

entiated cell types (Fig. 5.11B).

Figure 5.11: EpiCHAOS reveals increased heterogeneity of developmental
genes. A. Ordered dot plot showing epiCHAOS scores (epiCHAOS) computed across pro-
moters for each gene ontology biological process in HSCs, ordered by epiCHAOS scores. B.
Bar plots comparing epiCHAOS ranks for the set of (left) bivalent genes and (right) genes
within the “cell-fate specification” Gene Ontology term across different hematopoietic cell
types. The higher the rank indicates that the selected gene set has higher epiCHAOS
scores compared to other gene sets in that celltype. Ranks were -log(10) transformed for
display.

These observations encouraged me to consider whether certain genomic regions might con-

tribute a greater amount to the increased genome-wide heterogeneity I had observed in

hematopoietic stem/progenitors compared to more differentiated cell types. This question

required a means of assessing differential epiCHAOS scores between two cell groups or con-

ditions. For this I used a permutation approach, comparing the difference in epiCHAOS

scores between two groups of interest with that between pairs of 1000 randomly com-

puted groups of cells sampled from the same pool of cells. This allowed the calculation

of p-values to assess the significance of difference in epiCHAOS scores between two cell

groups at each selected set of genomic regions. I performed this comparison for HSCs vs.
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monocytes, HSCs vs. B-cells and HSCs vs. CD8T-cells, using the subset of ENCODE

chromatin factor binding sites that were previously defined in the hematopoietic system.

In all three comparisons I found that binding sites for the PRC2 complex component

EZH2 displayed the greatest increase in epiCHAOS scores in the HSC group, hinting that

epigenetic heterogeneity at these key genomic regions might be an important feature of

HSC plasticity or developmental potential (Fig. 5.12).

Figure 5.12: EpiCHAOS reveals increased heterogeneity at PRC2 target re-
gions in HSCs compared to differentiated blood cells. Volcano plots illustrate
differential heterogeneity between HSCs and monocytes (left), B-cells (middle) and CD8+
T-cells (right). Differential heterogeneity was tested for each ENCODE TFBS (binding
sites measured in K562 cells). For each TFBS, the -log10(p-value) obtained by permu-
tation test is displayed on the y-axis, and the difference in epiCHAOS scores between
the two cell types is displayed on the x-axis, where a higher number indicates a higher
heterogeneity in HSCs compared to the other tested cell type.

5.1.7 EpiCHAOS is applicable to single-cell epigenomics data from any

modality

So far I have focused on demonstrating epiCHAOS’ capabilities in scATAC-seq data, which

is currently the most commonly used modality for single-cell epigenomics studies. Yet,

technologies for studying DNA methylation and histone modifications at single-cell resolu-

tion are also emerging and are likely to soon come into wider use. To prove the utility of my

metric for applications to diverse epigenomics data types, I tested epiCHAOS in three addi-

tional datasets from different single-cell modalities: (i) single-cell nucleosome, methylation

and transcription sequencing (scNMT-seq) data from mouse gastrulation [243], (ii) single-

cell targeted analysis of the methylome (scTAM-seq) [137] data from mouse hematopoiesis

[244], and single-cell chromatin immunoprecipitation sequencing (scChIP-seq) data from

breast cancer cells [138].

In the mouse gastrution dataset, I calculated DNA methylation-based epiCHAOS scores

across cells at promoters, gene bodies and CpG islands, and found largely similar patterns

as I previously observed at the level of chromatin accessibility, with increased heterogeneity

in the epiblast compared to more differentiated germ layers (Fig. 5.13A). I also detected

a moderate correlation between promoter-wide DNA methylation-based and ATAC-based
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epiCHAOS scores from the same cells (Fig. 5.13B).

In scTAM-seq data from the hematopoietic system [137, 244], I found that DNAmethylation-

based heterogeneity was highest in more primitive hematopoietic progenitor cells such as

HSCs and early MPPs and progressively decreased towards more differentiated progeni-

tors such as GMPs and pre-B cells (Fig. 5.13C). This pattern was roughly in line with my

previous observations at the level of chromatin accessibility (Fig. 5.5A).

Finally, I applied epiCHAOS to H3K27me3 scChIP-seq data from a previous study of

breast cancer resistance to Capecitabine therapy [138]. Here, I detected increased epige-

netic heterogeneity in resistant compared to sensitive cells – a finding that was reported,

but not quantitatively investigated, in the original paper, and which supports the potential

contribution of cell-to-cell epigenetic heterogeneity in the emergence of therapy resistance

(Fig. 5.13D).

These data illustrate that epiCHAOS is not restricted to a single data type, but is broadly

applicable for comparisons of cell-to-cell heterogeneity in any kind of single-cell epige-

nomics data.

5.2 Discussion

From inter- to intra-cluster assessment of epigenetic heterogeneity

Single-cell sequencing technologies have revolutionised the study of genetic, transcriptional

and epigenetic heterogeneity in health and disease. At the epigenetic level, the main

application of these techniques has been to highlight the presence of epigenetically distinct

populations of cells – a layer that can be thought of as “macro-heterogeneity” or inter -

cluster heterogeneity. In this thesis, my aim was rather to tackle the question of how cell-

to-cell heterogeneity can be quantified within populations or groups of cells (i.e. “micro-

heterogeneity” or intra-cluster heterogeneity) – such that it would be possible to determine

whether a given group, condition or cluster of cells is more or less heterogeneous than

another. Here, I have presented epiCHAOS; a quantitative metric of cell-to-cell epigenetic

heterogeneity computed from single-cell epigenomics data. I have extensively validated

the performance of epiCHAOS using a range of synthetic and real single-cell epigenomics

datasets, and showcased its usage in a range of biological systems from development to

malignancy and aging, to investigate both genome-wide and region-specific heterogeneity.

Epigenetic heterogeneity and plasticity in development, cancer, and aging

For biological validation of epiCHAOS, I focused on scenarios where biological expectations

could be drawn from previous studies. For example, in developmental systems it is believed

is that less differentiated and more developmentally plastic cell types should have higher

heterogeneity compared to more differentiated and functionally specialised ones [228, 118].
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Application of epiCHAOS to various datasets from developmental contexts revealed pat-

terns of epigenetic heterogeneity in agreement with this biological paradigm. Subsequently,

I showed that epigenetic heterogeneity is increased with age in the hematopoietic system,

which reflects the expected stochastic decay of epigenetic information which has been es-

tablished as a hallmark of aging [240, 245]. What has been described as “epigenetic drift”

– the progressive noise in epigenetic marks, most notably DNA methylation, that occurs

Figure 5.13: EpiCHAOS is applicable to multiple types of single-cell epige-
nomics data. A. Bar plots comparing epiCHAOS scores (epiCHAOS) across different
lineages of mouse gastrulation using scNMT-seq DNA methylation data from Argelaguet
et al. [243]. Methylation data summarised across promoters, gene-bodies or CpG islands
were used for epiCHAOS computation. Epiblast is coloured in blue. B. Scatter plot
comparing promoter-wide epiCHAOS scores across different gastrulation lineages using
single-cell DNA methylation [epiCHAOS (DNAm)] and ATAC-seq [epiCHAOS (ATAC)]
data from the same cells as in (A). Linear regression line is shown with Pearson correlation
coefficient and p-value. C. UMAP embedding generated from scTAM-seq DNA methy-
lation data from Scherer et al. [244]. Hematopoietic progenitor state and epiCHAOS
scores are annotated. GMP: granulocyte monocyte progenitor, EryP: Erythroid progeni-
tor, MEP: myeloid/erythroid progenitor, MPP: multipotent progenitor, HSC: hematopoi-
etic stem cell, MkP: megakaryocyte progenitor. D. EpiCHAOS scores calculated using
scChIP-seq data for H3K27me3 from Grosselin et al. [138]. Cells were obtained from a
patient-derived xenograft (PDX) breast cancer model, separated based on sensitivity or
resistance to Capecitabine. Ten subsamples of 100 cells each were taken per condition.
Boxplot shows comparison of epiCHAOS scores (epiCHAOS) between sensitive and resis-
tant cells. Wilcoxon’s p-value is shown.
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with aging – is thought to reflect a progressive decline in the fidelity of the replication-

associated DNA methylation maintenance system. This is supported by the fact that

different tissues exhibit signs of epigenetic aging to differing degrees, such that correlates

with their proliferative history [246, 247]. Thus, studies of epigenetic aging have typically

focused on DNA methylation, and the phenomenon has not been demonstrated before at

the level of cell-to-cell chromatin accessibility.

Moreover, in showing that epiCHAOS correlates with EMT signatures in cancer, and

is increased in dedifferentiated tumor cell-types, I provide evidence to support the notion

that epigenetic heterogeneity may be linked to cancer cell plasticity or stemness. However,

since this analysis was limited to a small number of tumor types, it will be valuable to

further explore these correlates in a broader pan-cancer context.

Differences in heterogeneity along the genome

As well as exploring the differences in genome-wide heterogeneity between cell types/s-

tates, I also applied epiCHAOS to investigate the preferential heterogeneity of specific ge-

nomic regions, where I found that in particular, there is elevated cell-to-cell heterogeneity

at binding sites for polycomb complexes, CTCF and cohesin. The increased heterogeneity

at polycomb targeted regions can be understood in the context of previous studies which

have highlighted the increased transcriptional noise and DNA methylation-based hetero-

geneity of these loci. For example, Kar et al. have shown that PRC2 targets display higher

cell-to-cell variation in gene expression, with a low transcriptional burst frequency giving

rise to oscillatory patterns between transcriptionally “on” and “off” states over time [242].

Kumar et al. demonstrated that polycomb targeted genes are heterogeneously expressed

within colonies of pluripotent stem cells compared to other gene categories [117]. This

heterogeneity may be related to the fact that many PRC2 targets are associated with

bivalent chromatin states – characterised by the presence of both active and repressive

histone marks. Faure et al. showed that genes with bivalent chromatin exhibit higher

transcriptional noise [248]. Similarly, Feinberg & Irizarry have demonstrated that DNA

methylation stochasticity is increased at developmental genes – many of which are also tar-

geted by PRC2 [249]. The novelty of my analyses is in demonstrating that these patterns

of variability can be observed at the epigenetic level between single cells. Furthermore,

my investigation of differential heterogeneity between hematopoietic cell types revealed

that polycomb-targeted regions also appear to be the most preferentially heterogeneous

in stem cells compared to more differentiated cells. Notably, PRC2 targeted regions also

exhibit increased epigenetic variation in cancer by comparison to normal tissues [250]. It is

interesting to speculate whether epigenetic heterogeneity at these specific genomic regions

might play a role in tumor evolution and plasticity, and how this might be influenced by

the frequent disruption of PRC2 complex components in cancer [251].

Beyond PRC2 binding sites, I also showed that epigenetic heterogeneity is increased at

binding sites for the chromatin regulators, CTCF and cohesin. This observation also

80



seems to be consistent with recent genome-wide chromatin interaction studies in single

cells, which revealed that CTCF/cohesin-mediated chromatin loops are highly variable

between cells, compared to other regions of the genome [252].

Future perspectives

Understanding how epigenetic heterogeneity influences different stages of malignant evo-

lution – from tumor initiation to progression, remission and relapse – and deciphering its

role in the progression to metastasis and therapy response, could have important impli-

cations for our perception and treatment of cancer. In providing a computational strat-

egy to explore these phenomena, epiCHAOS should be a valuable addition to the cancer

research community, especially to those focusing on plasticity and stemness, and non-

genetic mechanisms of therapy resistance. Going forward, it will be possible to investigate

whether epigenetic heterogeneity is increased in pre-/cancerous tissues compared to their

cells of origin, whether it changes with increasing disease severity, whether it increases the

propensity for metastatic progression, therapeutic resistance (generally or to certain kinds

of therapies), and whether it influences – or is influenced by – responses to other internal

or external stresses. It will be possible to determine whether tumors become more homo-

geneous after treatment with the selection of certain subclones, or if subclones with higher

heterogeneity are rather selected for. Future studies might also investigate if and how epi-

genetic heterogeneity is influenced by treatment with epigenetic-based therapies such as

DNA hypomethylating agents, and whether mutations in epigenetic regulators in cancer

cells can give rise to heterogeneity in a certain context. Furthermore it will be interesting

to understand whether epigenetic heterogeneity arises in concert with, or independently

of genomic heterogeneity, e.g. differences in mutational patterns between cells within a

tumor. EpiCHAOS might also be complimented by additional metrics to evaluate the sim-

ilarity across different clusters, such that both inter- and intra-cluster measurements are

taken into consideration to better quantitatively appreciate the heterogeneity of complex

tumors.

Beyond these questions, epiCHAOS should also yield novel biological insights outside of

the cancer field, for instance in developmental biology, aging and immunity. It will be

possible for example to investigate whether epigenetic heterogeneity is a general feature

of aging or whether it is restricted to certain tissues such as blood, whether it is increased

in the immune compartment during an immune or inflammatory response, and whether

such heterogeneity is observed in other disease states in which plasticity programs are

activated, such as wound healing and fibrosis.

While epiCHAOS is designed to be applicable to any kind of single cell data in the form

of a binarised regions-by-cells matrix, an alternative metric is needed for calculations of

transcriptional heterogeneity due to the continuous nature of these data. In this chapter

I have utilised previously described strategies for computing heterogeneity in scRNA-seq

data, based on pairwise euclidean distances [147]. In general I noted that the correlations
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between epiCHAOS and transcriptional heterogeneity scores are not particularly strong,

however it is unclear whether this observation is biologically meaningful, or only reflects

the lack of a validated metric for quantifying transcriptional heterogeneity between cells.

A potential problem with the existing strategy is that it detects higher heterogeneity in

cells that express more genes. Similarly, the coefficient of variation – a metric which

is widely used as a measurement of per-gene transcriptional noise, and which I used to

measure this property of PRC2 target genes – is known to correlate with the level of gene

expression, being generally increased for lowly expressed genes [253]. Establishing and

validating a reliable metric for transcriptional heterogeneity will therefore be a worthwhile

task of future studies, and the results presented in this chapter which rely on these existing

metrics should be interpreted with caution.
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Chapter 6

Investigating the epigenetic

consequences of KDM3B

haploinsufficiency in AML

6.1 Results

To investigate the epigenetic consequences of KDM3B haploinsufficiency in AML, we gen-

erated KDM3B heterozygous and homozygous deletions in the OCI-AML3 cell line using

a CRISPR system (experimental work performed by Ashish Goyal) (Fig. 6.1). We con-

firmed by Western blot (performed by Fiona Brown-Burke) that the protein expression of

KDM3B was reduced in the heterozygous deletion cells to approximately half of baseline

levels, and was almost completely eradicated in the homozygous deletion cells. This was

accompanied by a concomitant increase in H3K9me1 (Fig. 6.2A). My aim in this chapter

was to assess whether the heterozygous deletion of KDM3B – which mimics the haploinsuf-

ficient expression levels observed in del(5q) AML patients – results in increased cell-to-cell

epigenetic heterogeneity (see Chapter 2: Discussion for details on this hypothesis). For

this we performed scATAC-seq, which would allow general comparisons of chromatin ac-

cessibility as well as heterogeneity between clones (experimental work performed by Fiona

Brown-Burke, Oliver Mucke and Afzal Syed).
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Figure 6.1: Hypothesis: the effects of KDM3B haploinsufficiency on epige-
netic heterogeneity. Schematic describing the working hypothesis (left) and experi-
mental strategy (right) used to investigate the effects of KDM3B haploinsufficiency in
AML. I hypothesised that the heterozygous deletion of KDM3B would result in a haploin-
sufficient reduction of KDM3B protein levels and activity, such that a random subset of
KDM3B targets may lose KDM3B activity in each cell. This may give rise to epigenetic
heterogeneity between cells, and potentially contribute to phenotypic plasticity and ther-
apy resistance. To investigate this, KDM3B-heterozygous deletion cells were generated
from the OCI-AML3 cell line using CRISPR technology, and profiled by scATAC-seq. Us-
ing these data, epigenetic heterogeneity can be compared between samples by applying
epiCHAOS.
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6.1.1 Heterozygous deletion of KDM3B results in global chromatin

compaction

Clustering of cells based on ATAC-seq signals did not reveal a clear separation of KDM3B-

knockout (KO)/wild-type (WT) cells, but rather the majority of cells formed a gradient

with differences in the proportion of KO/WT cells across clusters (Fig. 6.2B-C). Within

this gradient, Cluster 5 was dominated by KO cells, while Cluster 3 was dominated by

WT cells. One distinct cluster of cells also emerged – Cluster 1 – which was dominated

by KO cells and separated from other WT and KO cells. This separation, and the fact

that the cells in this cluster had mostly inaccessible chromatin, suggested that it likely

represents a state of cell-cycle quiescence.

Figure 6.2: Heterozygous deletion of KDM3B in the OCI-AML3 cell line. A.
Western blot (generated by Fiona Brown-Burke) showing KDM3B and H3K9me1 pro-
tein levels in KDM3B-heterozygous deletion (KO5, KO15), KDM3B-homozygous deletion
(KO7) and WT OCI-AML3 cells. B-C. UMAP representations of the same cells profiled
by scATAC-seq, coloured according to assigned cluster (B) and sample (C).

To understand the effects of KDM3B deletion I first inspected the differences in global

chromatin accessibility between clones. I observed an overall compaction of chromatin in

KDM3B-deletion cells, with the lowest accessibility in homozygous deletion cells, at regions

associated with heterochromatin (Fig. 6.3). This pattern was observed genome-wide,

and at heterochromatic regions as well as regions associated with H3K9me1/2, including

H3K9me2-associated LADs (Fig. 6.3). Promoters and regions associated with more active

chromatin also lost accessibility in KO cells but to a similar extent in homozygous and

heterozygous deletion cells, in line with the idea that loss of one copy of KDM3B may be

sufficient to affect transcriptional programs 6.3).

To better understand the differences in chromatin accessibility between states, I defined

the set of differentially accessible peaks between the KO-dominated Cluster 5 and the

remaining clusters (excluding the outlying Clusters 1 and 2 which likely reflect cell cycle

effects). As expected, the majority of peaks showed lower accessibility in Cluster 5; only 53

peaks were preferentially accessible in Cluster 5, while 19,493 were preferentially accessible

outside of Cluster 5. Nevertheless, I found a unique pattern of TF motif enrichment among
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Figure 6.3: Heterozygous deletion of KDM3B results in global chromatin com-
paction. Line plots comparing the average chromatin accessibility at scATAC-seq regions
overlapping with selected chromHMM states (left) and regions associated with H3K9me1/2
(right) in KDM3B-heterozygous deletion (KO5, KO15), KDM3B-homozygous deletion
(KO7) and WT OCI-AML3 cells.

Cluster 5 marker peaks, including enrichment of CEBPB, GATA, SOX family members,

and various homeobox TFs (Fig. 6.4A). Meanwhile the loss of chromatin accessibility in

KO compared to WT cells appeared to be a genome-wide event, such that the top TF

motif enrichments outside of Cluster 5 included ubiquitous factors such as YY1 and SP1

(Fig. 6.4B).
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Figure 6.4: Transcription factor motif enrichments in KDM3B-KO cells. A-
B. Transcription factor motif enrichments in (A) and outside of (B) Cluster 5 – the
scATAC-seq cluster dominated by KDM3B-KO cells. Two outlying and potentially cell-
cycle-related clusters (Clusters 1 and 2, see Fig. 6.2B) were excluded from the analysis.
Motifs are ranked by enrichment score and coloured according to log10(adjusted p-value).
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6.1.2 Heterozygous deletion of KDM3B results in cell-to-cell epigenetic

heterogeneity at H3K9me1/2-associated regions

I next considered whether the heterozygous deletion of KDM3B could give rise to het-

erogeneity in epigenetic patterns from cell to cell. I applied epiCHAOS (see Chapter

5 for details) to investigate this hypothesis. EpiCHAOS detected higher genome-wide

epigenetic heterogeneity in both KDM3B -heterozygous clones compared to WT and ho-

mozygous deletion cells. This pattern was not evident at promoter-associated peaks, but

rather at regions associated with H3K9me1 and H3K9me2, including LADs (Fig. 6.5).

In summary, these data suggest that the heterozygous loss of KDM3B in del(5q) AML can

lead to accumulation of heterochromatic marks in a pattern that is heterogeneous from

cell to cell.

Figure 6.5: Heterozygous deletion of KDM3B results in cell-to-cell epige-
netic heterogeneity. Boxplots comparing epiCHAOS scores (epiCHAOS) in KDM3B-
heterozygous deletion (KO5, KO15), KDM3B-homozygous deletion (KO7) and WT OCI-
AML3 cells which were profiled by scATAC-seq. The leftmost plot shows epiCHAOS
scores computed across all peaks. In subsequent plots, peaks were subset for regions as-
sociated with H3K9me1/2, LADs and promoters, respectively. Boxes depict epiCHAOS
scores computed in five random subsamples of 100 cells from each sample.
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6.2 Discussion

In this chapter, I investigated the hypothesis that the heterozygous loss of the H3K9me1/2

demethylase KDM3B may give rise to cell-to-cell epigenetic heterogeneity in AML cells.

The rationale behind this was that if the levels of the enzyme are not sufficient to occupy

all of the regions which it normally targets, a random fraction of the genome may lose

KDM3B activity in each cell. I hypothesised that the fraction of KDM3B-targeted regions

would thereby be reduced in all cells, but that the specific distribution of targeted and

non-targeted regions would differ from cell to cell, resulting in variable patterns of its

associated histone marks. A similar phenomenon has been proposed in a 2019 study in

breast cancer by Hinohara et al. [147]. There it was shown that overexpression of the H3K4

demethylases KDM5A/B results in transcriptional heterogeneity, and this was postulated

as a mechanism of non-genetic resistance to endocrine therapies in breast cancer patients

[147].

My data suggest that heterozygous deletion of the lysine demethylase, KDM3B, in the

OCI-AML3 cell line results in increased genome-wide cell-to-cell epigenetic heterogeneity,

which is detectable at the level of chromatin accessibility, and is especially apparent at

regions associated with H3K9me1/2. Noting that these findings are preliminary and will

require experimental repeats, they may provide a conceptual link between the heterozygous

deletion of KDM3B, leukemic progression and therapy resistance in patients with del(5q)

AML, that will need to be investigated in future studies.

Therapy resistance represents a major clinical hurdle in many cancer types including

some of the more aggressive AML subgroups such as del(5q) AML [34]. Intra-tumor

heterogeneity has been posited as a crucial driver of therapy resistance in cancer; however,

historically, the primary focus in this domain has been on genetic heterogeneity – the

existence of multiple mutationally distinct subpopulations of cells within a tumor [124].

Non-genetic heterogeneity has recently emerged as a compelling explanation for cancer

plasticity and therapeutic tolerance in mutationally stable tumors [254]. As highlighted in

a recent study by Nuno et al., a significant portion of AML relapses do not involve changes

in driver mutations, suggesting that epigenetic changes may be primarily responsible for

therapy resistance and relapse in this disease [255].

Beyond epigenetic heterogeneity, I also observed a genome-wide reduction in chromatin

accessibility in KDM3B depleted AML cells, likely reflecting a global accumulation of

repressive histone marks. Such global chromatin compaction is itself an intriguing conse-

quence of KDM3B haploinsufficiency, as it may have several downstream effects on genome

stability, cell-cycle maintenance and DNA repair, that could also conceivably contribute

to leukemic progression. For example, it has been shown that the strength of the DNA

damage response can be impaired in the context of chromatin compaction [256], meaning

that mutations and structural genomic alterations may be more likely to accumulate in

cells with abnormally compact chromatin.
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Interestingly, despite this overall compaction of chromatin, a small number of peaks gained

accessibility in KDM3B-depleted cells. Among these, GATA transcription factor motifs

were among the most enriched. GATA is a critical regulator of erythroid differentiation

[257], and GATA binding sites were also found to be enriched in LSC-specific open chro-

matin compared to that of non-self-renewing blasts [258]. Since del(5q) AML is known

to display an erythroid-biased differentiation state [259], and elevated expression of LSC

markers [165], it would be interesting to further investigate whether these differences in

chromatin accessibility could reflect a shift towards a more LSC-like or erythroid-like cell

state.

Several outstanding questions remain regarding the role of KDM3B in AML biology, leav-

ing significant scope for future studies. As a starting point, it will be important to assess

the changes in the levels and patterns of H3K9me1/2 and other interconnected histone

marks that result from KDM3B deletion, and it may be possible to assess epigenetic het-

erogeneity of these specific histone marks at the single cell level using techniques such as

single-cell ChIP-seq. Furthermore, the consequences of this epigenetic heterogeneity have

yet to be explored – most notably, whether this heterogeneity leads to increased resistance

to AML therapies, as is observed in del(5q) patients. It will also be interesting to further

explore the link between global chromatin compaction and genome instability in the con-

text of del(5q) AML, where the depletion of KDM3B potentially precedes the acquisition

of TP53 mutations and subsequent accumulation of CNAs.
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Chapter 7

Conclusions & Future Perspectives

The work presented within this thesis lays important foundations for understanding the

order and chaos of the epigenome in cancer cells.

First, my findings offer a novel perspective on the mechanisms driving one of the most

aggressive forms of acute leukemia in adults; del(5q) AML. Through a comprehensive

DNA methylation-based characterisation, I have shown that del(5q) AML is an epigenet-

ically distinct subgroup, and I have provided compelling evidence that haploinsuffiency of

KDM3B may be a critical event in this disease.

The role of KDM3B in AML remains relatively unchartered territory. Within the scope of

this thesis, I have explored one hypothesis that might link haploinsufficiency of KDM3B

to leukemic progression. My findings suggest that heterozygous deletion of KDM3B can

promote epigenetic heterogeneity in chromatin accessibility at the single cell level – a phe-

nomenon which could have important implications for leukemic evolution and therapy re-

sistance. These data are, however, preliminary, and will require confirmation in a repeated

experiment. Moreover, the downstream consequences of this epigenetic heterogeneity will

deserve to be investigated in future studies. There is also much scope for investigation

into how the heterozygous deletion of this gene may contribute to leukemogenesis in other

ways. Future studies might be directed to teasing apart the potential influence of KDM3B

depletion on genomic instability, TP53 mutation selection, and erythroid bias, which are

typical features of del(5q) AML.

It is important to recognise that del(5q) is only one of the recurrent cancer CNAs whose

target genes and underlying mechanisms have not yet been elucidated. This might raise

speculation as to whether other recurrent CNAs in other cancer types might similarly

target haploinsufficient epigenetic regulators that were overlooked in the search for classical

oncogenes and tumor suppressors. A study by Zach et al. has shown for example that

genomic regions of peak amplifications which recur in a pan-cancer context, but which do
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not contain already known oncogenes, are strikingly enriched for genes involved in histone

modification [260]. The findings and strategies presented here might therefore inspire

a pan-cancer inquiry into haploinsufficient epigenetic regulators, and further efforts to

understand the recurrent disruption of histone modifying enzymes in tumor cells.

The second major contribution of this doctoral thesis was in presenting a novel strategy

for studying epigenetic heterogeneity at the single-cell level. With the recent expan-

sion of single-cell epigenomics studies in cancer, and the growing interest in concepts of

non-genetic cellular heterogeneity and plasticity in this domain, epiCHAOS could offer a

valuable tool towards unravelling the role of epigenetic heterogeneity in tumor evolution.
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Chapter 8

Materials and Methods

8.1 DNA methylation analyses

8.1.1 Preprocessing of EPIC array data from the ASTRAL-1 cohort

MethylationEPIC array data from AML 477 samples (after removal of three samples due

to quality concerns) were obtained from patients from the ASTRAL-1 study [14, 154].

The cohort was enriched for elderly patients, with a median age of 77 (range 59-94 years).

Clinical and molecular annotations (age, sex, karyotype and mutation status for a range

of epigenetic regulators) for these samples were obtained from clinical collaborators prior

to this study. EPIC array profiling and calling of CNAs to determine ckAML status was

performed by Anna Riedel (DKFZ, Heidelberg) prior to this study [14].

Raw idat files were used to perform quality control, preprocessing and normalisation of

the DNA methylation data using the RnBeads R package [261]. Filtering was applied to

remove single nucleotide polymorphism (SNP)-overlapping probes, cross-reactive probes,

sites outside of CpG context and CpGs mapping to sex chromosomes, as well as probes

with detection p-value > 0.05 and sites covered by fewer than three beads. Beta-values

were normalised and background subtraction carried out using the “scaling.internal” and

“sesame.noobsb” methods, respectively.

8.1.2 Methylome deconvolution

Methylome deconvolution was performed using the MeDeCom R package [144] according

to an established pipeline [156]. MeDeCom is a reference-free deconvolution method based

on constrained non-negative matrix factorisation, which aims to decompose of a set of bulk

methylomes to recover their constituent LMCs and the proportions of LMCs within each

patient sample. For deconvolution, the 20,000 most variable CpG sites across patients were

selected, in order to reduce computational demands while retaining the most informative
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features in the dataset. Potential confounding factors including age, sex, batch, Sentrix

ID and Sentrix position were adjusted for using ICA, implemented within the MeDeCom

package. Deconvolution was performed using a range of K values (number of LMCs) from

2:15. K = 11 was selected as the optimum number of LMCs based on the cross-validation

error. The regularisation parameter lambda = 0.01 was selected (after testing values of 0,

0.1, 0.01, 0.001 and 0.0001) in order to minimise the cross validation error.

8.1.3 Estimating sample purity

Sample purity was estimated from the methylation data using the InfiniumPurify method

[262] InfiniumPurify infers tumor purity in a cancer-type-specific manner based on a kernel

density estimation method, using a predefined set of CpG sites that are found to be

differentially methylated between tumor (in this case, AML) and corresponding normal

tissue. Samples with low estimated purity (lower tertile) were excluded from downstream

analyses to avoid spurious interpretations due to the apparent abundance of lymphoid

cells in some samples.

8.1.4 Estimation of LMC proportions in external datasets

To validate our interpretations of LMCs, the factorise regression function from the MeDe-

Com R package was used to derive an estimate of the original LMC proportions in two pub-

licly available datasets comprising HumanMethylationEPIC/450K data from the TCGA

and BEAT-OSU AML cohorts. Clinical and molecular annotations for TCGA-AML were

retrieved from the Genomic Data Commons using the TCGAbiolinks package, and for

BEAT AML were obtained from the supplementary tables of Tyner et al. [263].

8.1.5 Prediction of Leukemic Cell of Origin

A predicted cell of origin was assigned to each AML sample according to previously estab-

lished methods [159]. HumanMethylation450K data from sorted hematopoietic progenitor

cell states from healthy donors, including HSCs, MPPs, LMPPs, CMPs, GMPs and MEPs,

was used as a reference. A set of 216 differentially methylated regions were identified by

Jung et al. from pairwise comparison between the differentiation states [159]. Hierarchical

clustering of AML together with normal progenitor cell samples, on the methylation of

CpGs sites within these regions, resulted in three groups of GMP-like (more differentiated),

MEP/CMP-like and MPP/LMPP-like (less differentiated) AMLs. LMC proportions were

compared between these three groups by Wilcoxon’s test.

8.1.6 Biological interpretation of LMCs

To identify LMCs derived from non-leukemic cell types, LMC proportions were correlated

against methylomes of normal hematopoietic cells using EPIC array data from Salas et al.

[157] For further interpretation, sets of LMC-specific hypomethylated and hypermethy-

lated CpG sites were defined for each LMC as those with a methylation beta value > 0.5
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above or below the mean of the remaining LMCs. Gene ontology and transcription factor

binding site enrichment analyses for the resulting CpGs were performed using the clus-

terProfiler [264] and genomic locus overlap enrichment analysis (LOLA) [265] R packages.

To identify LMCs associated with mutations or cytogenetic subgroups, LMC proportions

were compared between groups using Wilcoxon tests.

8.1.7 Defining LMC-based subgroups

To define LMC-based subgroups, consensus k-means clustering [163] was applied to the

matrix of LMC proportions, excluding the lymphoid-like and neutrophil-like components,

LMC1 and LMC9. Euclidean distance and complete inner linkage were used for clustering.

K = 9 was selected as the optimum number of clusters based on inspection of the CDF

and delta under the CDF curves.

8.1.8 Differential methylation analysis

A set of CpG sites which are differentially methylated in LMC3-high AML was defined by

comparing the methylomes of the LMC3-high AML cluster (from consensus clustering) to

(i) all remaining AML clusters, and (ii) normal HSCs. By this strategy the analysis was

no longer restricted to those 20,000 CpG sites used for deconvolution, and could consider

methylation changes from a normal state as well as between malignant states. Differential

methylation between groups was computed at the level of CpG sites using RnBeads. CpG

sites with absolute mean beta value difference > 0.2 and False Discovery Rate (FDR)

adjusted p-value < 0.05 were considered differentially methylated. CpG sites which were

consistently hypo/hypermethylated in both comparisons were taken forward for enrich-

ment analyses. Among differentially methylated sites, enrichments of transcription factor

binding sites and gene ontologies were calculated using the LOLA [265] and clusterProfiler

[264] R packages, respectively. The list of homeobox genes was retrieved from Wilming

et al. [266] and tested for enrichment among LMC3 hypermethylated CpGs using the

hypergeometric test.

8.1.9 Comparison of DNA methylation in del(5q) LSCs and blasts

To compare LMC3 levels in del(5q) LSCs vs blasts, 450K methylation data from sorted

LSCs (CD34+CD38+/CD38-) and blasts (CD34-) was downloaded from the (GSE63409)

[159]. Conumee copy number profiles were generated to identify samples with 5q deletions.

LMC proportions were estimated using Medecom’s factor regression approach.

8.1.10 DNA methylation variation

For comparisons with epiCHAOS scores, DNA methylation variation at different genomic

regions was computed in HSCs. Data from Adelman et al. [267] were used to calculate

DNA methylation variability by computing variance per CpG site in HSC-enriched lineage-

negative (Lin- CD34+ CD38-) samples across the eight male donors. A maximum quantile
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threshold of 0.005 was established for missing values per site. Any sites that surpassed

this threshold were removed (analysis performed by Martina Braun). For each ENCODE

TFBS, the average of variances was calculated for all CpG sites overlapping with the

respective regions.

8.2 Gene expression analysis

Differential gene expression analysis using RNA-seq datasets for the ASTRAL-1 ckAML

and TCGA cohorts was performed using DEseq2 with default parameters [268]. Pan-

cancer and pan-tissue gene expression analyses for KDM3B and DNMT3B were per-

formed using TCGA and GTEx data from the gene expression profiling interactive analy-

sis (GEPIA) portal [177]. To investigate pathway-level gene expression changes associated

with the del(5q) methylation signature, GSVA was performed using the GSVA R package

[168] and the resulting pathway-level expression scores were tested for correlation with

LMC3 proportion. Stemness scores were computed for each patient using the weighted

sum of expression of the 17 LSC17 genes as defined by Ng et al. [31].

To compare gene expression in LSC+ and LSC- blasts, microarray data were downloaded

from Ng et al. [31] (GSE76009). Differential gene expression of microarray data was

computed using the Limma R package [269]. The same dataset was used for comparisons of

KDM3B gene expression between LSC and blast counterparts of del(5q) samples. Del(5q)

status for the samples was obtained from the corresponding authors.

8.3 Copy number and mutational analyses

8.3.1 Mutual exclusivity of mutations & CNA patterns

Mutual exclusivity of del(5q) and IDH mutations was determined based on the Poisson-

Binomial distribution as implemented in the Rediscover R package [270].

8.3.2 Investigation of the 5q minimally deleted region

Copy number profiles were generated from EPIC array data with the Conumee R package

using 20 AML samples of known normal karyotype samples as “flat genome” controls. The

minimally deleted region was defined from the ASTRAL-1 AML cohort using the Conumee

segmentation results. In each sample, segments mapping to chromosome 5q were selected

which had a p-value < 0.05 for loss at that region. The frequency of loss in 10KB bins

was calculated and the minimal genomic interval having the highest frequency of loss

was determined. This definition was compared to that of six studies of del(5q) AML

or high-risk MDS identified from a literature search, which each proposed a variation

on the minimal interval of interest, largely overlapping with our own definition. For

all downstream analyses of MDR genes, the 50 genes flanked by Il9 and UBE2D2 were
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considered as an accepted and conservative definition of the MDR [43, 44]. The expression

of MDR genes was correlated against LMC3 proportions using Pearson correlation.

8.3.3 Assessment of del(5q) mutations

The mutation status of 5q MDR genes in the TCGA AML cohort was retrieved using

the TCGAretriever package [271]. Single nucleotide variants were called in whole genome

sequencing data from ASTRAL-1 patient samples using mutect2 [272] (analysis performed

by Dr. Etienne Sollier, DKFZ, Heidelberg).

8.4 Protein expression analysis

Protein expression of MDR genes was examined using proteome data from the CCLE [176].

AML cell lines were selected using the DepMap portal [273] and identified as del(5q) or

otherwise. Protein expression was compared between groups by Wilcoxon’s test, excluding

outliers from the analysis if their expression was > 3 standard deviation from the mean

of all AML cell lines. Tandem mass tag (TMT) proteome data for 44 AML patients was

retrieved from Kramer et al. [175]. Abundance values were calculated from reporter-ion

intensity, log2 transformed and median centered at 0. A second mass-spectrometry-based

proteome dataset of 177 AML samples including 3 del(5q) samples was obtained from

Jajavelu et al. [274]. KDM3B protein expression was compared between del(5q) and

other AML patient samples by Wilcoxon’s tests.

8.5 Clinical data analyses

Clinical data from the BEAT AML cohort were used to investigate the prognostic relevance

of LMCs. Hazard ratios and p-values were calculated using cox proportional hazard models

to test the association of each LMC with overall survival. To further assess the prognostic

value of LMC3, samples from this cohort were separated into LMC3-high and LMC3-low

groups based on the mean LMC3 level, and the LMC3-high group was further subdivided

into del(5q)-positive and del(5q)-negative patients. Conumee copy number profiles were

generated and used to reliably define samples as del(5q) or otherwise. Pairwise Log rank

test p-values were computed using the survival and survminer R packages.

Ex vivo drug sensitivity data for 122 small molecule inhibitors was obtained from the

BEAT AML cohort [263]. To compare global drug sensitivities between patient subgroups,

binary sensitive or resistant calls were assigned for each sample to each drug, considering

samples with the highest 20% of AUC values for a given drug as sensitive. Then for each

sample, the proportion of drug sensitivities was quantified, and these proportions were

compared between LMC3-high [+/-del(5q)] and LMC3-low subgroups.
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8.6 Single-cell epigenome and transcriptome analyses

8.6.1 Calculating epiCHAOS scores

EpiCHAOS heterogeneity scores were calculated for each given cluster or otherwise defined

group of cells using a binarised matrix of scATAC or other single-cell epigenomics data.

First, pairwise distances were calculated between all cells within the cluster using a chance-

centered version of the Jaccard index. The Jaccard index is defined as the intersection

between two sets (in this scenario, the number of matching 1’s or matching 0’s between a

pair of cells/columns) divided by the size of their union (in this scenario the total number

of measured loci/rows). Chance centering was introduced to control for differences in the

relative number of ones and zeros [224]. Afterwards, the mean of all pairwise distances per

cluster was computed. To remove any further effect of sparsity a linear regression model

of the raw heterogeneity scores was fitted against the total number of detected accessible

peaks (reflected by the total number of 1’s), averaged across cells in the respective cluster,

and the residuals of this model were taken as the adjusted epiCHAOS scores. Finally,

the scores were transformed to an interval of 0-1, and subtracted from 1 to convert the

similarity metric to a distance metric.

ScATAC-seq data from the Hep-1 liver cancer cell line [227] was used to test whether

epiCHAOS scores correlate with measures of technical noise. Cells were stratified into

bins (20 bins of 100 cells each) based on various quality control metrics: FRIP scores, TSS

enrichment scores and nucleosome ratio, which were calculated using ArchR [275].

DNA CNAs were inferred in the Hep-1 cell line using epiAneuFinder [276] with a window-

Size=100,000 and minFrags=20,000. To investigate the influence of CNAs on epiCHAOS

scores, the most prominent examples of large subclonal copy number gains (gain on chro-

mosome 5) and deletions (deletion on chromosome 13) were selected by visual inspection,

and cells were stratified based on the presence or absence of each alteration. EpiCHAOS

scores were calculated across peaks in the affected chromosome and compared between

cells with diploid or alternative states. To correct for CNAs when applying epiCHAOS to

cancer datasets, a per-chromosome count-corrected epiCHAOS score was derived, where

epiCHAOS scores were calculated per chromosome, implementing a linear regression-based

adjustment for the total number of 1’s on that chromosome, and then the average of per-

chromosome scores were taken as the global epiCHAOS scores.

Unless otherwise specified, epiCHAOS was calculated using the entire peaks-by-cells ma-

trix. To allow a more robust comparison between groups, epiCHAOS scores were calcu-

lated on five random subsamples of 100 cells from each group/cluster, except in groups/-

clusters which contained fewer than 100 cells. Since the scNMT-seq data contained fewer

than 100 cells in most groups, epiCHAOS scores were calculated only once for each cell

type. ENCODE TFBS regions from the LOLA core database [265] were used for compar-

isons of heterogeneity at different genomic regions, for which scATAC peaks matrices were
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subsetted to obtain peaks overlapping with each genomic region. Similarly, for compar-

isons across gene sets, data were subsetted for peaks overlapping with promoters of each

gene set using the gene ontology ´´biological process” (GO:BP) gene sets from MsigDB

[277].

8.6.2 Generating synthetic datasets with controlled heterogeneity

To test the performance of epiCHAOS, synthetic datasets were generated in silico in a way

that simulates the structure of binarised scATAC-seq peak matrices. First a series of 100

synthetic datasets with controlled heterogeneity was created, in which each dataset has an

equal total count. To do this a random binary matrix was created, which would represent

the first dataset in the series. In each subsequent dataset, homogeneity was incrementally

introduced by removing a set number of 1’s from selected n rows, and adding them to a

different selected n rows, in such a way that a constant number of 1’s is maintained, while

heterogeneity decreases.

To test situations where the genome-wide chromatin accessibility is increasing or decreas-

ing, binarised data from an example scATAC-seq dataset were perturbed to create datasets

of increasing heterogeneity with either addition or removal of 1’s. Specifically, 10, 20, 30,

40 and 50% of 1’s were selected at random and replaced by 0’s, and corresponding numbers

of 0’s were selected at random and replaced by 1’s.

To test that epiCHAOS is not influenced by differences in sparsity, a series of 100 random

binary datasets was generated with each dataset having equal dimensions and incremen-

tally increasing total number of 1’s. Their epiCHAOS scores were then computed and

tested for a correlation with their total count.

As an additional validation approach semi-synthetic scATAC-seq datasets were created by

mixing data from distinct cell types. Using scATAC-seq data from human bone marrow

[226] five cell types were selected; HSCs, Monocytes, CD8-CM T cells, B-cells and plasma-

cytoid dendritic cell (DC)s. The top 500 differentially accessible peaks for each cell type

were identified and used to create in silico mixtures of two to five cell types in all possible

combinations.

8.6.3 Simulating scATAC-seq data with varying sequencing depth

The scReadSim package was used to simulate scATAC-seq data of varying sequencing

depths [225]. A subset of scATAC-seq data from HSCs from the Granja et al. dataset

was used as input [226]. Data were reduced to 10,000 randomly selected peaks for ease

of processing. Simulated scATAC-seq matrices comprising each 500 cells were generated

with sequencing depth ranging from 50,000 to 100,000 counts, in increments of 10,000.

EpiCHAOS scores were calculated across matrices on five subsamples of 100 cells from

each condition.
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8.6.4 scATAC-seq data processing and analysis

Publicly available scATAC-seq datasets for human hematopoiesis [226], mouse gastrulation

[229], drosophila embryogenesis [231], breast cancer [140], liver cancer [234], ependymoma

[236], HSC aging [239] and liver cancer cell lines [227]were downloaded from the respec-

tive publications. For analyses in developmental datasets and in ependymoma, processed

counts matrices were used as provided by the authors, where cell types were previously an-

notated. For breast and liver cancer datasets, fragments files were downloaded, processed

and analyzed using ArchR [275]. Cells with TSS enrichment scores less than 4 or number

of fragments higher than 1,000 were removed, and doublets were filtered out using default

parameters. Iterative Latent Semantic Indexing (LSI) was performed followed by cluster-

ing using the Seurat method. Gene score matrices were generated using ArchR and used

for subsetting cancer datasets for epithelial cells based on inspection of epithelial cellular

adhesion molecule (EPCAM) scores. After reclustering epithelial cells, peak calling was

performed using macs2 [278]. To assign gene set/pathway scores to each cluster, gene set

annotations were obtained from MSigDB using the msigdbr R package [277]. Gene scores

were first averaged across all cells within each cluster, and then the mean score of all genes

within a given gene set was computed to assign gene set scores per cluster.

8.6.5 Differential heterogeneity analysis

Differential heterogeneity analyses were performed for each region using a permutation

approach, whereby the difference in epiCHAOS scores between two selected cell types

were compared with that between pairs of 1,000 randomly computed groups sampled from

the same pool of cells. P-values were calculated as the quantile of the distribution of

sampled permutations for which the difference in heterogeneity scores was greater than

that between the two test groups.

8.6.6 scRNA-seq analyses

scRNAseq datasets for human hematopoiesis [226], mouse gastrulation [229] and drosophila

embryogenesis [231]were downloaded from the respective publications and analyzed using

Seurat. Cell-to-cell transcriptional heterogeneity was calculated by computing pairwise

euclidean distances according to the methods of Hinohara et al. [147]. Developmental

potential was calculated per cell using CytoTRACE [233] and assigned as a mean per

celltype for downstream analyses. Transcriptional noise per gene was estimated using the

coefficient of variation as previously described [241]. A list of PRC2-target genes used for

comparison of transcriptional noise was obtained from Ben-Porath et al. [279].

8.6.7 scChIP-seq analysis

ScChIP-seq counts matrices representing 50kb non-overlapping bins of H3K27me3 from

human breast cancer PDX cells that were sensitive or resistant to Capecitibine (HBCx-

95 and HBCx-95-CapaR) were downloaded from GSE117309 and processed as described
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by Grosselin et al. [138]. Cells having a total number of unique reads in the upper

percentile were removed as outliers, and genomic regions not represented in at least 1%

of all cells were filtered out. Data corresponding to non-standard chromosomes and the Y

chromosome were excluded. Cells with a total number of unique reads less than 1,600 were

removed. Counts matrices were binarised and cells from each condition were subsampled

to select ten groups of 100 cells each for epiCHAOS calculation.

8.6.8 scNMT-seq and scTAM-seq analysis

ScNMT-seq DNA methylation and ATAC data from mouse gastrulation [243], summarised

across promoters, gene bodies and CpG islands, were accessed using the SingleCellMulti-

Modal R package. ScTAM-seq data from mouse hematopoiesis were obtained from Scherer

et al. [244], downloaded from https://figshare.com/ndownloader/files/42479346, and an-

alyzed using Seurat.

8.6.9 scATAC-seq data analysis from KDM3B deletion cells

ScATAC-seq data were processed using cellranger-atac and analyzed in R using the ArchR

package [275]. Cells called as doublets or with nFrags < 1000 or TSS enrichment score < 4

were filtered out to remove low quality cells. Clusters were called using the Seurat method

after Iterative LSI. Peaks were called using macs2 version 2.1.2.1. Differentially accessible

peaks were identified between the KO dominated Cluster 5 and all other clusters, excluding

the likely cell cycle-related Clusters 1 and 2. Motif enrichment analysis was performed

in ArchR using the ENCODE motif set, with FDR <= 0.05 & Log2FC >= 1 selected as

cutoffs to define marker peaks. Genomic annotations for LADs were obtained from Guelen

et al. [280], ChIP-seq peaks for H3K9me2 (K562 cells) from Salzberg et al. [217], and

H3K9me1 (CD133+ cells) from Cui et al. [281].
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Appendix

Figure 8.1: Selection of MeDeCom parameters. A. Plot of cross validation (CV)
error used for K selection over 2-15 LMCs. The selected K value is highlighted. B.
Selection of regularisation parameter Lambda (log scale) over a range of 0 to 0.1. The
selected Lambda value is highlighted.

Table 8.1: Top 10 Gene Ontology enrichments among LMC1 hypomethylated CpG sites

ID Description qvalue

GO:0036230 granulocyte activation 7.89E-06
GO:0042119 neutrophil activation 7.89E-06
GO:0043312 neutrophil degranulation 2.10E-05
GO:0002446 neutrophil mediated immunity 2.10E-05
GO:0002283 neutrophil activation involved in immune response 2.10E-05
GO:0045785 positive regulation of cell adhesion 0.007284
GO:0051258 protein polymerization 0.008722
GO:0010506 regulation of autophagy 0.025752
GO:0051056 regulation of small GTPase mediated signal transduction 0.025752
GO:0016050 vesicle organization 0.025752
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Table 8.2: Top 10 Gene Ontology enrichments among LMC9 hypomethylated CpG sites

ID Description qvalue

GO:0042110 T cell activation 4.67E-11
GO:1903131 mononuclear cell differentiation 7.71E-09
GO:0002768 immune response-regulating cell surface receptor signaling pathway 7.71E-09
GO:0002764 immune response-regulating signaling pathway 7.71E-09
GO:0030098 lymphocyte differentiation 7.88E-09
GO:0050851 antigen receptor-mediated signaling pathway 9.82E-09
GO:0002429 immune response-activating cell surface receptor signaling pathway 2.05E-08
GO:0002757 immune response-activating signal transduction 2.05E-08
GO:0050854 regulation of antigen receptor-mediated signaling pathway 1.03E-07
GO:1903039 positive regulation of leukocyte cell-cell adhesion 1.32E-07

Table 8.3: Top 20 LOLA enrichments among LMC10 hypomethylated CpG sites

collection cellType antibody qValue

codex Macrophage CEBPB 0
encode IMR90 CEBPB 6.57E-234
encode MCF10A-Er-Src c-Fos 5.72E-225
encode MCF10A-Er-Src c-Fos 9.14E-221
encode MCF10A-Er-Src c-Fos 1.06E-215
encode MCF10A-Er-Src c-Fos 2.26E-204
encode MCF10A-Er-Src STAT3 2.77E-198
codex Monocyte SPI1 8.04E-189
encode HeLa-S3 CEBPB 3.88E-179
cistrome HepG2 liver cells CEBPa 3.49E-178
encode A549 CEBPB 2.45E-177
encode MCF10A-Er-Src STAT3 1.22E-176
codex Macrophage SPI1 2.39E-163
encode HepG2 CEBPB 8.36E-163
encode MCF10A-Er-Src STAT3 2.16E-162
encode MCF10A-Er-Src STAT3 1.16E-159
encode HeLa-S3 p300(SC-584) 1.20E-129
encode GM12891 PU.1 2.66E-122
encode GM12878 RUNX3(SC-101553) 2.57E-118
cistrome normal liver cells CEBPa 1.74E-117
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Table 8.4: Top 20 LOLA enrichments among LMC2 hypermethylated CpG sites

collection cellType antibody qValue

codex Acute Myeloid Leukemia RUNX1 1.49E-48
codex T-Cell MYB 1.06E-26
codex Hematopoietic Stem and Progenitor Cells TCF7L2 1.10E-25
codex Lymphoma cell RUNX1 1.10E-25
codex T-Cell TAL1 1.50E-21
codex Leukaemia cell TCF3 3.15E-18
codex Acute Myeloid Leukemia RUNX1 7.59E-18
codex T-Cell MYB 3.01E-17
codex B-cells RUNX3 9.96E-17
encode GM12878 RUNX3(SC-101553) 1.32E-16
codex T-Cell MYB 2.85E-13
codex Leukaemia cell RUNX1 7.96E-13
codex Leukaemia cell RUNX1 1.70E-12
codex Leukaemia cell CBFB 3.25E-12
codex Hematopoietic Stem and Progenitor Cells GATA2 9.49E-11
codex T-Cell MYB 1.22E-10
codex T-cell acute lymphoblastic leukemia cells NOTCH1 1.96E-10
codex Acute Myeloid Leukemia RUNX1 2.19E-09
codex Hematopoietic Stem and Progenitor Cells FLI1 3.37E-09
codex T-Cell MYB 3.29E-08

Figure 8.2: Selection of K for consensus clustering. Plots of the CDF and area
under the CDF curve, used for K selection in consensus clustering.
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Figure 8.3: Del(5q) AML is defined by a unique DNA methylation signature.
A. Boxplots comparing LMC3 proportion in del(5q) and 5q-retained AML samples from
BEAT and TCGA AML cohorts. Wilcoxon’s p-values shown. B. Boxplots comparing
LMC3 proportion in TP53 mutated and wildtype AML, among del(5q) ckAML cases (left),
non-del(5q) ckAML cases (middle), and non-del(5q), non-ckAML cases (right). Wilcoxon’s
p-values shown.

Table 8.5: Top 20 Gene Ontology enrichments among CpG sites hypermethylated in the
LMC3-high AML subgroup

ID Description qvalue

GO:0007389 pattern specification process 5.68E-22
GO:0003002 regionalization 1.42E-21
GO:0048568 embryonic organ development 1.39E-17
GO:0048562 embryonic organ morphogenesis 9.62E-17
GO:0001501 skeletal system development 1.60E-16
GO:0045165 cell fate commitment 1.74E-14
GO:0048706 embryonic skeletal system development 3.93E-14
GO:0048705 skeletal system morphogenesis 4.86E-14
GO:0009952 anterior-posterior pattern specification 1.37E-13
GO:0048704 embryonic skeletal system morphogenesis 6.48E-12
GO:0007156 homophilic cell adhesion via plasma membrane adhesion molecules 3.22E-11
GO:0001708 cell fate specification 3.47E-11
GO:0021953 central nervous system neuron differentiation 3.47E-11
GO:0048736 appendage development 1.39E-10
GO:0060173 limb development 1.39E-10
GO:0035107 appendage morphogenesis 2.44E-10
GO:0035108 limb morphogenesis 2.44E-10
GO:0030900 forebrain development 5.23E-10
GO:0090596 sensory organ morphogenesis 2.18E-09
GO:0030326 embryonic limb morphogenesis 2.18E-09
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Table 8.6: Top 20 Gene Ontologies negatively correlated with LMC3 obtained from
GSVA analysis in ckAML samples

GOBP Pearson R

Regulation of glycogen starch synthase activity -0.608875967
Glomerulus vasculature morphogenesis -0.574876515
Positive regulation of glycogen starch synthase activity -0.539524829
Regulation of mesenchymal stem cell differentiation -0.535494396
Embryonic appendage morphogenesis -0.522072
Spinal cord oligodendrocyte cell differentiation -0.519429794
Mesenchymal stem cell differentiation -0.518130661
Digestive system development -0.515509563
Embryonic hindlimb morphogenesis -0.512169902
Nose development -0.505983294
Synaptic assembly at neuromuscular junction -0.503123939
Positive regulation of glycogen metabolic process -0.502850725
Chloride transmembrane transport -0.501355414
Hindlimb morphogenesis -0.499991245
Epithelial cell proliferation involved in prostate gland development -0.499539371
Male genitalia development -0.491339939
Regulation of synaptic assembly at neuromuscular junction -0.490940823
Regulation of skeletal muscle cell differentiation -0.487533998
Regulation of muscle organ development -0.480012261
Cell migration involved in kidney development -0.469764292

Figure 8.4: Comparisons of LMC3 in LSCs and blasts, and in the normal
hematopoietic system. A. Heatmap showing estimated LMC proportions in sorted
AML blasts and LSCs using 450K data from Jung et al. [159]. Samples deriving from
a del(5q) patient are annotated. B. Heatmap showing the methylation levels of LMC3-
hypermethylated CpG sites in the normal hematopoietic lineage.
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Table 8.7: Comparison of protein expression of putative del(5q) target genes in del(5q)
and other AML patient samples and cell lines from Kramer et al. 2022 [175], Jayavelu
et al. 2022 [274] and CCLE [176] datasets. Data for EGR1 protein expression was not
available in the Kramer et al. and Jayavelu et al datasets and is therefore not shown.

Dataset Material Protein Wilcoxon p-value

CCLE AML cell lines KDM3B 0.011
Kramer et al. AML patient samples KDM3B 0.00077
Jayavelu et al. AML patient samples KDM3B 0.0055
Kramer et al. AML patient samples ETF1 0.0021
Jayavelu et al. AML patient samples ETF1 0.37
CCLE AML cell lines CTNNA1 0.5
Kramer et al. AML patient samples CTNNA1 0.87
Jayavelu et al. AML patient samples CTNNA1 0.87
CCLE AML cell lines EGR1 0.11

Figure 8.5: EpiCHAOS scores are not influenced by technical confounders. Bar
plots of epiCHAOS scores (epiCHAOS) computed on 20 bins of 100 Hep-1 cells ordered
by increasing (top left) FRIP scores, (bottom left) TSS enrichment scores, (top right)
nucleosome ratio, and (bottom right) cluster size, where the number of cells in each group
increases in increments of 25 cells, from 25 to 500 cells.
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Figure 8.6: EpiCHAOS scores are minimally influenced by clustering parame-
ters. Heatmap displays the Pearson correlation coefficients from per-single-cell correlation
of epiCHAOS scores across different clustering resolutions from 0.1 to 0.9. Clusters were
defined in scATAC-seq data from breast cancer epithelial cells from Kumegawa et al. [140]
and epiCHAOS scores calculated for each cluster at each resolution.
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Figure 8.7: Correlating epiCHAOS scores to cancer relevant pathways in
breast and liver cancer. A-B. UMAP representations of scATAC-seq clusters from
(A) breast and (B) liver cancer samples after subsetting epithelial cells. Clusters are
coloured by epiCHAOS scores (epiCHAOS). C. Correlation plots of epiCHAOS scores
with selected gene sets from MSigDB. Pearson correlation coefficients are shown.
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Figure 8.8: Patterns of heterogeneity at different genomic regions are corre-
lated across hematopoietic cell types. Correlation heatmap depicting the similarity
in per-region epiCHAOS scores between cell types from human bone marrow [226]. Corre-
lations were computed across all chromatin factor binding sites from the ENCODE TFBS
database. Pearson’s correlation coefficients are shown.
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Figure 8.9: Patterns of heterogeneity at different gene sets are correlated
across hematopoietic cell types. Correlation heatmap depicting the similarity in per-
gene-set epiCHAOS scores between cell types from human bone marrow [226]. Correlations
were computed across all gene ontology biological processes (GO:BP). Pearson’s correla-
tion coefficients are shown.
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Acronyms

2-HG 2-Hydroxyglutarate.

ACT Antibody-guided Chromatin Tagmentation.
AML Acute myeloid leukemia.
ATAC-seq assay for transposase-accessible chromatin with sequencing.
AUC area under the curve.

CCLE cancer cell line encyclopedia.
CDF Cumulative Distribution Function.
ChIP-seq Chromatin Immunoprecipitation with sequencing.
CLP common lymphoid progenitor.
CMP common myeloid progenitor.
CNA copy number alteration.
CRISPR clustered regularly interspaced short palindromic repeats.
CTCF CCCTC-binding factor.
CUT&RUN Cleavage Under Targets & Release Using Nuclease.

DC dendritic cell.
DNA deoxyribonucleic acid.
DNMT DNA methyltransferase.

EMT Epithelial-to-mesenchymal transition.
ENCODE encyclopedia of DNA elements.
EPCAM epithelial cellular adhesion molecule.
ERRBS Enhanced Reduced Representation Bisulfite Sequencing.

FAB French American British.
FDR False Discovery Rate.
FRIP fraction of reads in peaks.

GEPIA gene expression profiling interactive analysis.
GMP granuloyte/monocyte progenitor.
GSVA gene set variation analysis.
GTEx genotype-tissue expression portal.

HAT histone acetyltransferase.
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HDAC histone deacetylase.
HELP HpaII tiny fragment enrichment by ligation-mediated polymerase chain re-

action.
HSC hematopoietic stem cell.
HSPC hematopoietic stem or progenitor cell.

ICA independent component analysis.

KDM lysine demethylase.
KMT lysine methyltransferase.
KO knockout.

LAD Lamina Associated Domain.
LMC latent methylation component.
LMPP lymphoid-primed multipotent progenitor.
LOLA genomic locus overlap enrichment analysis.
LSC leukemic stem cell.
LSI Latent Semantic Indexing.

MB megabase.
MDR Minimally Deleted Region.
MDS myelodysplastic syndrome.
MEP megakaryocyte/erythroid progenitor.
MPP multipotent progenitor.

NK natural killer.

PDX patient-derived xenograft.
PRC polycomb repressive complex.

RNA ribonucleic acid.
RNA-seq RNA-sequencing.
RPKM reads per kilobase million.

SAM S-adenosylmethionine.
SNP single nucleotide polymorphism.

TCGA the cancer genome atlas.
TF transcription factor.
TFBS transcription factor binding site.
TPM transcripts per million.
TSG tumor suppressor gene.
TSS transcription start site.

UMAP Uniform Manifold Approximation & Projection.
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WT wild-type.

α-KG α-Ketoglutarate.
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[4] Hartmut Döhner et al. “Diagnosis and management of AML in adults: 2022 recom-
mendations from an international expert panel on behalf of the ELN”. In: Blood,
The Journal of the American Society of Hematology 140.12 (2022), pp. 1345–1377.

[5] Zachary R Chalmers et al. “Analysis of 100,000 human cancer genomes reveals the
landscape of tumor mutational burden”. In: Genome medicine 9 (2017), pp. 1–14.
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