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Summary 

 

Paclitaxel (PTX) is a widely used chemotherapeutic agent against cancer. The drug disrupts 

microtubule dynamics, causing mitotic arrest that activates apoptotic pathways. However, the 

anti-cancer efficacy of PTX is limited to specific cancer types, and its use is often accompanied 

by significant adverse effects. Thus, further investigation into the cellular effects of PTX is 

essential. 

In this study, I investigated the translational response induced by mitotic arrest. Using 

ribosome profiling (RiboSeq), I observed increased transcriptome-wide ribosome occupancy 

at 5’ un-translated regions (5'UTRs) and 5' ends of coding sequences in treated cancer cell 

lines. This effect was independent of the molecular mechanism of mitotic-arrest induction. 

Further computational analysis revealed an increased prediction rate of non-canonical open-

reading frames (ncORFs), specifically upstream and upstream-overlapping ORFs (u/uoORFs) 

within the 5'UTR. Notably, translation rates for these genomic features were elevated. To 

enable further research, I compiled uORFs and uoORFs elements from various cancer cells 

into a comprehensive database. 

Building on these findings, I hypothesized that in vitro PTX treatment may lead to cell surface 

presentation of non-canonical peptides (nuPeptides) by HLA-I complexes. To test this 

hypothesis, state-of-the-art immunopeptidomics were employed to enrich HLA-I ligands and 

perform quantitative peptide detection via mass spectrometry in PTX- or DMSO-treated cells. 

This analysis revealed elevated levels of specific peptides originating from uORF or uoORF 

transcripts. Selected uORFs giving rise to nuPeptides were further validated in a 

complementary approach using uORF-SIINFEKL-reporter constructs and ex vivo CD8+ T 

cells. This demonstrated increased cytokine secretion and cancer cell killing capability upon 

PTX-induced mitotic arrest. 

In summary, my results demonstrate that PTX treatment provokes aberrant mRNA translation 

in the 5'UTR, resulting in nuPeptide synthesis. These ligands bind to HLA-I complexes and 

may trigger immune responses. My findings provide new insights into treatment-induced 

peptide biosynthesis from uORF and uoORF sequences to benefit future immunotherapies. 
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Zusammenfassung 

 

Paclitaxel (PTX) ist ein häufig angewendetes Chemotherapeutikum bei Krebserkrankungen. 

Der Wirkstoff mindert die Dynamiken der Mikrotubuli, welches zu Mitosearrest führt und 

Apoptose Signalwege aktiviert. Allerdings ist die Wirksamkeit von PTX auf spezifische 

Krebsarten beschränkt und die Behandlung ist häufig begleitet von starken Nebenwirkungen. 

Daher sind weitere Untersuchungen der zellulären Effekte von PTX essentiell. 

In dieser Studie untersuchte ich die Reaktion der mRNA-Translation während des 

Mitosearrest. Mittels Ribosome Profiling (RiboSeq) stellte ich eine stärkere Transkriptom-

weite Belegung von Ribosomen an 5’un-translatierten Regionen (5’UTRs) und 5’Enden der 

codierenden Sequenz in mit PTX behandelten Krebszelllinien fest. Dieser Effekt war 

unabhängig vom molekularen Mechanismus der Induktion des Mitosearrests. Die computer-

gestützte Analyse zeigte erhöhte Prognoseraten von nicht-kanonischen offenen Leserahmen 

(ncORFs), im speziellen 5’UTR vorgelagert und vorgelagert-überlappende ORFs (u/uoORFs). 

Bemerkenswerterweise waren die Translationsraten dieser Transkriptbereiche erhöht. Um 

weitere Untersuchungen zu vereinfachen, stellte ich uORF und uoORF Elemente von 

verschiedenen Krebzelllinien in eine umfassende Datenbank zusammen. 

Auf diesen Ergebnissen aufbauend, stellte ich die Hypothese auf, dass in vitro PTX-

Behandlung zur Präsentation von nicht-kanonischen Peptiden (nuPeptides) durch HLA-I 

Komplexe auf der Zelloberfläche führt. Um diese Hypothese zu überprüfen, wurde die 

moderne Immunopeptidomics-Technik angewandt um HLA-I Liganden anzureichern und die 

quantitative Detektion von Peptiden mittels Massenspektrometrie von PTX- oder DMSO-

behandelten Zellen durchzuführen. Diese Analyse ergab höhere Mengen spezifischer 

Peptide, welche von uORF und uoORF Transkripten stammen. Ausgewählte uORFs, welche 

nuPeptides bilden, wurden validiert. In einem ergänzenden Ansatz demonstrierten uORF-

SIINFEKL Reporterkonstrukte in Verbindung mit ex vivo CD8+ T Zellen erhöhte 

Zytokinsekretion und gesteigertes Potential zur Eliminierung von Krebszellen während PTX-

induziertem Mitosearrest. 

In Zusammenfassung bekräftigen meine Ergebnisse, dass PTX-Behandlung anormale 

mRNA-Translation im 5’UTR hervorruft, woraus die nuPeptid-Synthese folgt. Diese Liganden 

binden HLA-I Komplexe und können Immunantworten auslösen. Diese Erkenntnisse 

gewähren neue Einsicht in die behandlungs-induzierte Peptidbiosynthese von uORF und 

uoORF Sequenzen, welche zukünftige Immuntherapien begünstigen werden. 
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1 Introduction 

 
This doctoral thesis describes a phenomenon of aberrant mRNA translation during mitotic-

arrest. This altered process gives rise to protein biosynthesis products which are presented 

on the cell plasma membrane. This introduction provides insights into the related topics of this 

doctoral project. 

 

1.1 Cancer and the immune system 

This chapter aims to provide basic knowledge about cancer, standard-of-care treatments and 

the immune system, counteracting against this malignant disease.  

 

1.1.1 Epidemiology 

Cancer is one of the most abundant diseases globally. On average, every fifth person is likely 

to develop by a cancerous malignancy throughout their lifespan1. This compendium of different 

diseases was thoroughly studied during the current and last century leading to deeper insights. 

Based on this, researchers were able to classify cancer-related features into knowledge-based 

scaffolds that help to understand this disease. 

Human cancers are a spectrum of diseases. Based on World Health Organization (WHO) 

cancer burden statistics, lung, breast and colorectum cancers are the global leading causes 

in cancer-related mortality (Figure 1).   

In general, cancer is classified histologically by the organ/ tissue of origin: carcinoma, 

sarcoma, glioma, blastoma, lymphoma and leukaemia. All of these classes are further 

subdivided by sublayers of different tissues. According to histologic differentiation, over 200 

types of cancers are known, only based on the organ or tissue the malignancy originates 

from2. Based on research and new treatment options of the last decades, general survival 

rates have improved from 35 % to 69.7 % in the last 60 years3. Alongside this strong success, 

the scientific progress is driven by new classifications of cancers into various subtypes.  
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Figure 1: Global Cancer Mortality in 2022 for both sexes. International Agency for Research on Cancer, World 

Health Organization1. Globocan 2022 (version 1.1). https://gco.iarc.who.int 

 

1.1.2 Cancer Heterogeneity 

Cancer diseases harbour an extensive biological heterogeneity between patients and within 

tumours. This is largely mediated by clonal variation in malignant lesions, that is, healthy cells 

acquire or inherit different genetic mutations. These germline mutations induce oncogenic 

signalling, supporting cell proliferation4,5. If the affected cells are not cleared by the immune 

system or apoptosis, these cells outgrow the healthy surrounding tissue, whilst deregulating 

cellular protective mechanisms6. Hence, tumours and metastases cannot be perceived as 

homogenous cell clusters.  

Amongst cancer cells, other cell types are present in a tumour. These can include immune 

cells, fibroblasts, endothelial cells and neurons, in addition to extracellular matrix factors. This 

combination is defined as the tumour microenvironment (TME)7, impacting cancer cell 

proliferation. TME elements can act eradicative to cancer cells, by activation of immune 

responses and cancer killing8. However, TME elements also induce a hostile environment 

against efficient cancer killing and support a local immunosuppressive environment8. The TME 

composition depends on several factors. The tissue of origin, which determines the grade of 

vascularization, immune surveillance, metabolic supply and oxygenation. All of these factors 

shape the TME and produce a unique surrounding for cancer cells, which evolves dynamically 

and requires therapies that can adapt to these changes. 

Lung
1 817 469 (18.7%)

Colorectum
904 019 (9.3%)

Liver
758 725 (7.8%)

Breast
666 103 (6.8%)

Stomach
660 175 (6.8%)Pancreas

467 409 (4.8%)

Others
4 469 932 (45.9%)

Total : 9 743 832
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1.1.3 Chemotherapy 

1.1.3.1 General classification 

Cancer treatment has changed very strongly in the past decades. Despite modern approaches 

of patient stratification based on cancer germline mutations and the individual transcriptomic 

landscape, classical treatment options still imply surgical removal, radiotherapy and 

chemotherapy.  

The latter one involves the combined administration of drugs to tackle tumour heterogeneity. 

The classic major drug classes involve alkylating agents, antimetabolites and mitosis-arresting 

drugs9. Drugs belonging to these classes are used in adjuvant and neoadjuvant treatment 

settings. Adjuvant treatments are administered after surgical removal of tumour masses to 

minimize recurrence and spread of remaining cancer cells. In contrast, neoadjuvant treatment 

settings are administered before surgery to reduce tumour infiltration in healthy tissue, which 

supports induces shrinkage and efficient removal, thus, reduced cancer burden of tissue-

remaining cells. 

 

1.1.3.2 Mitotic-arrest: Applications and Limitations of Paclitaxel 

Mitosis is a sensitive cell state during the cell cycle promoting cell division, in which the nucleus 

is disrupted and chromosome pairs are separated by the microtubule spindle apparatus. This 

particular cell cycle phase is tightly regulated by Cyclin-dependent-kinase 1 (CDK1). Before 

mitosis CDK1 binds cyclin B1, but a inhibitory phosphorylation modulates low activity of CDK1 

in G2 cell cycle phase10,11. However, activated cell division cycle 25 (CDC25) phosphatases 

remove inhibitory phosphorylation of CDK1, which promotes its activity. This activity includes 

the regulation of control of chromosome transmission and coordination of cytokinesis12,13. 

Normal mitotic progression in mammalian cells is considered to take place within less than 

one hour14. Drug-induced mitotic-arrest is a process holding cells in mitosis over the course of 

hours, which underlines the significant difference between these states.  

One sub-class of mitosis-arresting drugs are taxanes. These toxic phytochemicals are 

alkaloids from yew tree species. The mechanism of action of taxanes is described as binding 

to microtubule moieties of the spindle apparatus, which blocks depolymerization and leads to 

a cell cycle arrest in the mitotic metaphase15. 

The lasting stabilization of this structure reduces the cellular ability to separate chromosome 

pairs. The enduring mitotic-arrest induces apoptotic signalling via caspase-activation16. 

However, the generic effect of microtubule-binding may impact also other cellular processes, 

which complicates mechanistic research of these compounds 17.  

Clinical cancer treatment involves the administration of taxanes, of which one very common 

compound is Paclitaxel. The compound binds to b-tubulin between strand B9 and B1018, which 
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prevents microtubule depolymerization. This drug is implicated for the treatment of HIV-

associated Kaposi`s sarcoma, and cancers of lung, ovaries and breast. Paclitaxel is part of 

the standard of care for neoadjuvant and adjuvant treatment of breast cancer. The 

subclassification triple-negative breast cancer is treated with anthracyclines and taxanes in a 

neoadjuvant setting, whereas early stages of this cancer are treated with taxanes in an 

adjuvant regimen19. However, Paclitaxel and Docetaxel are associated with severe adverse 

effects. The most common effects are the reduction of neutrophil granulocytes (neutropenia) 

and leukocytes (leukopenia)20, as well as peripheral neuropathy21. These adverse effects 

immunocompromise patients and drastically reduce quality of life by limb numbness or 

paraesthesia through neuronal axon degeneration. Also, Paclitaxel is suggested to contribute 

to hypersensitivity reactions. Accompanying regimen include the administration of 

dexamethasone with histamine receptor 1/2 antagonists prior to Paclitaxel infusion, which 

reduces these adverse effects, however, anaphylaxis cases are still reported. These effects 

are attributed to immunogenic responses. 

  

1.1.4 The immune system  

The immune system is an intricate network of cells, certain tissues and signalling molecules 

that shape the protection against pathogens and abnormal cells. The major arms are the 

innate immune system, providing non-specific, rapid responses, and the adaptive immune 

system, aiding with targeted, long-lasting protection. These respective immune cells originate 

from hematopoietic stem cells in the bone marrow, which form two lineages: the myeloid and 

lymphoid lineage. Myeloid lineage cells are key components of the innate immune response, 

such as monocytes, macrophages, dendritic cells and granulocytes. These cells are crucial 

for antigen presentation and thus, the activation of adaptive immunity. Lymphoid lineage cells 

drive the adaptive immunity through T cells, B cells and natural killer (NK) cells. Antigen-

presenting-cells (APCs), such as macrophages and dendritic cells, can recognize antigens by 

Toll-like receptors22, which results in their activation. Mature dendritic cells migrate to lymphoid 

organs, where they activate naïve CD8+ T cells via cross-presentation. This process is crucial 

for the initiation of cytotoxic immune responses and immune surveillance. 

In-depth specifics about adaptive and innate immunity are excellently reviewed elsewhere23,24.  

 

1.1.5 HLA Structure and Polymorphism 

Antigen presentation is the key step in adaptive immune response. Antigens (peptides) are 

presented in glycoproteins majorly encoded by the human leukocyte antigen (HLA) gene 

cluster, which is localized on the short arm of the human chromosome 6 25. The HLA definition 
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only comprises human proteins, the general term for vertebrates is major histocompatibility 

complex (MHC). In general, HLA glycoproteins are composed as complexes. HLA-I complexes 

are composed of an a-chain, with three domains, and a b2-microglobulin (b2m). The a1 and a2 

chain form a peptide-binding site, whereas a3 acts as membrane anchor. These complexes 

are presented on almost all nucleated cells and thrombocytes. In contrast, HLA-II complex 

heterodimers are composed of one a-chain, with a1 and a2, and of one b-chain, with b1 and 

b2. HLA-II complexes are expressed on antigen-presenting cells, such as macrophages, 

dendritic cells and B cells.  

Both complexes possess subunits from genetic polymorphic regions, which allows for a high 

diversity, with more than 25,000 known alleles, while every complex can present hundreds or 

thousands of peptides26,25. These alleles possess affinities for peptides of certain lengths 

(HLA-I: 8-10 amino acids; HLA-II: 13-25 amino acids) and amino acid (AA) sequences or 

motifs27. These facts explain the highly diverse landscape of peptides presented on the plasma 

membrane amongst different individuals. The HLA polymorphism enables the diverse peptide-

binding capabilities for pathogen- or tumour-derived peptides. This is supported by allele-

associated increased immune responses against HIV (HLA-B*57)28 or extended survival of 

melanoma patients carrying the HLA-B44 supertype29. On the contrary, the HLA-B62 

supertype is discussed to impair peptide recognition and is associated with poor outcomes in 

melanoma patients29. Thus, the HLA polymorphism and expression strongly impacts the 

degrees of immunosurveillance and immune responses, which can determine patient survival. 

 

1.1.6 Antigen processing 

In order to be presented, MHC ligands need to be processed. For MHC-I complexes, these 

antigens originate from the cellular proteome, although extracellular proteins are also utilized, 

which is defined as ‘cross-presentation’30. However, faulty mRNA translation products, 

including codon misreading or translational frameshifts, induce defective protein folding. 

These misfolded proteins are either ubiquitinylated in the cytosol and subjected for 

proteasomal proteolysis, or are degraded in endolysosomal compartments. The resulting 

spliced peptides are transported into the endoplasmic reticulum (ER) by the transporter 

associated with antigen-processing (TAP). MHC class I complexes are loaded by the peptide 

loading complex (PLC). This complex involves the MHC-I moiety, TAP, Tapasin, ERp57 and a 

chaperone, such as calreticulin or calnexin (Figure 2). First, calreticulin recruits an unloaded 

MHC-I complex into the asymmetric PLC, forming the symmetric and active PLC. Next, TAP 

translocates a cytosolic peptide into the PLC in the ER lumen under ATP hydrolysis. Following 

potential further trimming by ER aminopeptidase associated with antigen processing 
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(ERAAP), peptides are loaded onto MHC-I complexes and are transferred to the Golgi via 

COPII, followed by presentation on the cell plasma membrane25.  

 

 

 

 
Figure 2: HLA-I peptide loading. Calreticulin recruits the MHC-I complex to the peptide loading complex (PLC; 

Tapasin, ERp57, TAP1, TAP2) forming a functional PLC. Next, TAP proteins transport a cytosolic peptide into the 

ER lumen in an ATP-dependent manner. The peptide might be further processed by ERAAP. Upon peptide loading, 
the MHC-I complex dissociates from the PLC and will be transported to the Golgi complex and cell surface. 

ATP/ADP: Adenosine tri/di-phosphate, ERAAP: ER aminopeptidase associated with antigen processing, MHC-I: 

Majyo histocompatibility complex I, TAP: Transporter associated with antigen processing. Reprinted and adapted 
from Pishesha et al. (2022). Reproduced with permission from Springer Nature under License Number 

5953030387499. 

 

1.1.7 Antigen presentation and cytotoxic activity 

Processed antigens are presented on HLA complexes. These peptides are recognized with T 

cell receptors (TCRs) on T cells. HLA-I complex ligands are recognized by CD8+ T cells, 

whereas HLA-II complex ligands are recognized by CD4+ T cells. 

Upon peptide engagement the TCR complex recruits lymphocyte-specific protein tyrosine 

kinases (LCKs), which induces ZAP-70 phosphorylation and interaction, leading to tyrosine 

phosphorylation on the cytosolic tail of the CD3 proteins (immunoreceptor tyrosine-base 

activation motifs, ITAMs). This triggers the local assembly of multi-nuclear signalosomes that 

induce T cell expansion and cytokine transcription. Classical cytokines such as perforin and 

granzyme B, which promote cytotoxicity by induction of apoptosis. Perforin assembles into 

transient pores, allowing rapid intracellular access of granzyme b (GrB)31. GrB is a serine 

protease that activates pro-caspases and additional proteins to induce apoptosis32,33. Another 

key cytokine primarily released by CD8+, CD4+ and NK cells is interferon g  (IFNg). This factor 

activates the gene expression of HLA proteins and peptide processing proteins, which induces 
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higher degrees of ligand cell surface display. However, cytokine expression is strongly 

regulated by RNA-binding proteins during mRNA translation, which allows efficient and rapid 

T cell responses34. 

Summarizing, all factors of HLA complex disposition, peptide supply and processing for cell 

surface display and the subsequent activation of T cells for cytokine secretion are essential 

factors in anti-tumour responses. However, all of these factors are subject to translational 

control. 

 

1.2 mRNA translation 

This chapter provides an in-depth overview of protein biosynthesis, non-canonical mRNA 

translation and its products. 

1.2.1 Translation initiation  

mRNA translation is a strongly regulated process in which ribosomes, tRNAs, amino acids and 

translation factors convert mRNA into proteins. This process is mediated in different process 

steps: initiation, elongation, termination and ribosome recycling, of which initiation is the rate-

limiting step. Translation initiation is divided into cap-independent and cap-dependent 

initiation. The first one is mainly mediated by internal-ribosome entry sites and other structural 

elements binding important factors that recruit mRNAs to ribosomes, defined as cap-

independent translation enhancers (CITEs)35.  

Cap-dependent initiation involves first the binding of the eIF4F complex to the 

7’methylguanosine cap of mRNA 5’ends. This complex includes the cap-binding protein eIF4E, 

the RNA helicase eIF4A and the scaffold protein eIF4G, also interacting with the poly-A-

binding protein PABP of mRNA poly-A 3’ends. Next, the 43S pre-initiation-complex (40 S 

ribosomal subunit, eIF3, eIF1, eIF1A, eIF5) (PIC) and ternary complex (GTP-loaded eIF2, 

initiator methionyl tRNAi) are recruited to assemble the 48 S initiation complex. This complex 

scans the 5’ untranslated region (UTR) until reaching an AUG start codon. The AUG 

recognition elicits GTP hydrolysis in the ternary complex, which induces the 60 S ribosomal 

subunit to bind the 48 S initiation complex. The assembly of both complexes triggers the 

release of eIF2-GDP, the hydrolysis of eIF5B-GTP in connection with the subsequent release 

of eIF5B-GDP and eIF1A. This process forms the active 80 S ribosome, which translates 

mRNA information from the start codon to stop codon (referred to as open-reading-frame, 

ORF)36.  

However, ribosomes can also initiate translation outside the CDS, which is determined as non-

canonical translation (elaborated in section 1.2.6 ORFs). 
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The following steps of elongation involve the addition of amino acids to the growing peptide 

chain. Anticodon-fitting aminoacylated tRNAs enter the ribosome in the A-site, in which the 

aminoacyltransferase activity promotes amino acid addition to form the growing peptide chain. 

When reaching an in-frame stop codon, mRNA translation is terminated, inducing dissociation 

of ribosomal subunits and deacylated tRNAs. The resulting ribosomal subunits are recycled 

for further mRNA translation processes. 
 

1.2.2 Translational Control 

1.2.2.1 4EBP 

Protein biosynthesis is largely mediated by S6K1 (p70S6 Kinase 1) and eIF4E binding protein 

(4EBP). S6K1 phosphorylation by mTORC1 enables PDK1-mediated activation of S6K1. In 

turn, S6K1 phosphorylates and activates mRNA translation-promoting targets, such as eIF4B 
37. On the contrary, 4EBP can associate to the cap-binding protein eIF4E, which prevents 

eIF4F complex formation and hinders cap-dependent translation initiation. 4EBP 

phosphorylation via mTORC1 supports dissociation from eIF4E, allowing efficient translation 

initiation38. However, other major factors are described as translation initiation modulators by 

4EBP phosphorylation, such as CDK1. Despite its well-defined role as cell-cycle modulator, 

CDK1 was reported to replace mTORC1-mediated phosphorylation of 4EBP1. This enables 

the selective cap-dependent mRNA translation of certain transcripts39,40. 
 

1.2.2.2 GCN2 

The major mechanism directly connecting amino acid sensing and mRNA translation is tRNA 

aminoacylation. This highly specific process is catalysed by the class of aminoacyl-tRNA-

synthases. If intracellular amino acid levels are reduced, cognate unloaded tRNAs accumulate 

and bind to the general control non-derepressible 2 (GCN2) kinase supported by GCN141. The 

binding induces conformational changes in GCN2, which induces its kinase activity. 

Subsequently, GCN2 phosphorylates the translation initiation factor 2a (eIF2a). 

Phosphorylated eIF2a blocks the PIC formation by dissociation of eIF2a from the ternary 

complex, which diminishes 5’ cap-dependent translation initiation. The phosphorylation of 

eIF2a induces the integrated stress response (ISR) supporting cellular survival, stress 

recovery and apoptosis42. This induces the expression of ISR downstream targets such as 

asparagine synthetase (ASNS) and damage-inducible transcript 3 (DDIT3 or CHOP). 
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1.2.3 Ribosome Profiling 

One major approach to study mRNA translation is Ribosome Profiling (RiboSeq)43. This deep-

sequencing-based technique enables the detection of ribosome-protected fragments (RPFs) 

of mRNA during translation. 

Throughout this approach, cells are lysed, translation is halted by the addition inhibitors and 

cytosolic mRNA is digested with RNases (Figure 3a). Translating ribosomes act as protective 

elements against RNase and shields about 30 nucleotides of mRNA against enzymatic 

digestion, which is defined as RPF. Hence, any unbound mRNA will be degraded. The 

resulting suspension is enriched for cytosolic ribosomes by density gradient centrifugation. 

Next, resulting RPFs are extracted and prepared for Next-Generation-Sequencing (NGS).  

RPF alignment to a reference genome allows to determine translated mRNA transcripts, as 

well as the exact ribosome location on the mRNA transcript. This gives rise to ORF information, 

which aided the discovery of alternative protein products44,45. Initiation at these positions can 

also be inferred by the usage of certain translation inhibitors. Cycloheximide is commonly used 

to inhibit translation elongation, but compounds such as Harringtonine inhibit ribosomes 

directly after initiation. Harringtonine sterically prevents the insertion of an aminoacyl-tRNA to 

the ribosomal A-site after translation initiation46. This block peptide bond formation and allows 

the detection of local RPF densities originating from translation initiation47. 

RPF periodicity is an important quality measure of RiboSeq data. The ribosome moves along 

the mRNA transcript in 3-nt increments, thus, the majority of RPFs follow this periodicity 

(Figure 3c). Furthermore, ribosome sites can be determined, which opens the path for site-

specific quantification. In fact, reduced AA availability and subsequently lower tRNA 

aminoacylation is associated with ribosome pausing at these codons48. The detection of this 

translation snapshot underlines the importance of RiboSeq to capture and study rapid cellular 

changes. Latest advancements raised bulk RiboSeq to the single-cell level and detected cell 

cycle-dependent ribosome pausing at certain codons, suggesting AA limitations for these cell 

states49. This elegant concept was very recently further refined and elevated to perform single-

cell RiboSeq to capture in vivo translational landscapes during aging50. 
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Figure 3: Overview of RiboSeq, RNAseq and periodicity. During Ribosome Profiling (RiboSeq (a)) cells are 
lysed and mRNAs are subjected to nuclease digestion, leaving only small ribosome footprints or protected 

fragments (RPFs) from where the ribosome was located. During RNAseq (b) sample preparation, mRNAs undergo 

a random fragmentation. After respective size selection, the mRNA fragments are used for NGS library generation 
and are subjected to deep sequencing. Fragment or read mapping highlights the positional differences between 

both approaches: RNAseq read cover the whole transcribed mRNA, whereas RiboSeq reads cover the translated 

area of a particular transcript. (c) The majority of RPFs map to the main ORF of a given mRNA, with only low RPF 
density of in the 5’ and 3’ UTR. Main ORF reads exhibit a periodic 3 nucleotide (nt) pattern because ribosomes 

translate in increments of 3 nt. Reprinted and adapted from Brar and Weissmann et al. (2017) with Licence Number 

5953031299143. 

 

1.2.4 Translational Efficiency 

Classically, gene expression studies mainly focus on RNAseq to determine transcript 

abundance to allow functional hypotheses. However, translational control is a highly regulated 

step, which impacts protein abundance. That is, high transcript abundance does not imply high 

rates of translation. Under the assumption that high RPF density per transcript is proportional 

to translational speed and mRNA abundance, translational efficiency and protein synthesis 

rates can be predicted39. This can be achieved by RNAseq and RiboSeq performance of the 

same sample. Subsequently, RPFs are normalized to transcript abundance, enabling a 

differential perspective about efficiently translated mRNA transcripts51,52.  
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1.2.5 RiboSeq Bioinformatic Developments 

Further developments include full-fetched quality control and processing pipelines like 

RiboseQC and ribosomeProfilingQC53, or the interrogation for specific features such as codon 

content in the ribosomal E,P and A-site48. Over the past years, diverse software emerged to 

predict ORF locations54–56. These genomic features can only be inferred with techniques that 

cover mRNA translation, as sheer transcript abundance is not indicative of translational 

activity. Thus, these tools apply a fundamental advantage in the prediction of conditional ORFs 

and their respective protein biosynthesis products, which were shown to be promising in the 

detection of novel peptides56–58. 
 

1.2.6 non-canonical ORFs and peptides 

mRNA translation is performed in open-reading frames (ORF). The most generic definition of 

an ORF, is a nucleotide sequence with a length divisible by three, that starts with an mRNA 

translation start codon and ends at a stop codon. This definition is broad and includes ORFs 

from coding-sequences (CDSs), named canonical ORFs. But it also includes ORFs from non-

CDS origin, such as UTRs and non-coding RNAs59. 

Non-canonical ORFs (ncORFs) and UTR-originating ORFs can have significant impact onto 

mRNA translation efficiency, by cis-acting sequences that induce or inhibit protein biosynthesis 

of a given transcript60. Upstream-ORFs (uORFs), ORFs that start and end within the 5’UTR, 

are a common feature of mRNAs. A very recent, comprehensive study determined that about 

70 % of human coding genes exhibit translation outside the canonical ORF, with approximately 

60 % happening uORFs or upstream-CDS-overlapping ORFs (uoORFs)61.  

The functional, cis-acting role of uORF-mediated translation is well described for GCN4 in 

yeast. This protein is a regulator of starvation responses, and exhibits four uORFs. Under 

nutrient rich conditions, ribosomes initiate in the uORFs 2-4, leading to termination before the 

translation of the main ORF. However, during nutrient stress conditions, ribosomes scan 

through uORFs 2-4, leading to initiation at the main ORF60,62.  

Start codon fidelity also determines non-canonical translation initiation. The same study 

predicted that 56.7 % genes use an AUG start-codon amongst all ncORFs61. However, 

ribosomes may initiate at other low-fidelity initiation sites (CGA, CUG) under special conditions 

while scanning for coding sequence AUG codons63. Furthermore, the impact of start codon 

fidelity was also shown for the functional absence of the translation elongation factor eIF5A. 

The absence pauses ribosomes during translation, which induces a ribosome-queue and 

upstream-initiation of other ribosomes in the 5’UTR64. 
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Apart from translational control by cis-acting structural interaction, ncORF can give rise to non-

canonical peptides (ncPeptides). These peptides can impact translational efficiency in-trans. 

Such as the 93 AA-long peptide/microprotein from the second uORF of the 1A glucocorticoid 

receptor transcript, which modulates the expression of the same transcript65. Furthermore, 

uORF-derived peptides were also shown to form stable complexes with the downstream-

encoded main ORF protein66. 

Strikingly, recent studies found ncPeptides to be presented in HLA-I complexes on the cell 

membrane of cancer cells67,68. However, non-canonical peptides only contributed to only 3.3 % 

of the HLA-I immunopeptidome in this study. In contrast to the whole proteome, these peptides 

originate from long non-coding RNAs, 5’UTRs and out-of-frame translation shifts68. These 

antigens are presented for T cell recognition and can elicit an immune response to eliminate 

the presenting cell67,69. Thus, ncPeptides significantly enrich the pool of potential immunogenic 

epitopes for the development of cancer vaccines or immunotherapies.  

 

Approximately 1 % of the entire human genome is annotated as protein-coding. However, 

about 75 % is transcribable and maybe subject to protein biosynthesis, which would massively 

expand the compendium of potential peptide targets70,67. Thus, high-throughput peptide 

detection approaches were developed recently to enable faster epitope detection. 

 

 

1.3 Immunopeptidomics 

This chapter provides a systematic overview about the technique, issues and clinical 

importance. 

1.3.1 General approach 

The landscape of peptides presented by the HLA system is defined as immunopeptidome. 

Immunopeptidomics (IPomics) is a technique that enables the identification of peptides 

presented in HLA-I and HLA-II complexes. This elegant approach combines HLA complex I or 

II immunoprecipitation with peptide/ligand isolation and Liquid chromatography (LC)-MS/MS 

detection. Early pioneering work enabled the detection of tens of peptides from billions of cells, 

whereas nowadays tens of thousands of peptides are detected routinely71. Very recent 

technical advancements also allow the detection of epitopes from low input material of patient-

derived xenografts72.  

The usage of IPomics delivers information about the presence or absence of a peptide, but is 

also used to quantify a given epitope between samples73,74. However, to determine the identity 

of a peptide, the sequence needs to be predicted from NGS data to create a database or 
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‘search space’ for possible epitopes. Whole-Genome (WEG), Whole-Exome sequencing 

(WES), RNA seq and RiboSeq data are used to determine tumour-specific peptides. Whereas 

WEG can provide insights into mutational burden of protein-coding segments and 

chromosomal allele amplification, RNAseq delivers a more comprehensive pictures of the 

transcribed RNA landscape and thus, further information about epitope origins can be 

inferred75. However, as mentioned before, only transcript abundance does not support the 

identification of translated peptides. In contrast, RiboSeq provides a sharper picture of which 

parts of a transcript are translated and in which quantity. This enables the collection of a more 

reliable ‘search space’ by exclusion of untranslated regions67. Thus, RiboSeq provides strong 

evidence of potential peptides from mRNA transcript regions or long non-coding RNAs. 

 

 
Figure 4: Immunopeptidomics applications. Immunopeptidomics can answer a broad spectrum of scientific 

hypotheses. Basic research can tackle the question about cell-state dependent peptide sources, alterations peptide 

processing and peptide properties that ensure efficient ligand presentation. Preclinical research tackles the fields 
of treatment-induced immunopeptidome changes, the discovery of new target and the classification of the antigen 

source. Within clinical settings, Immunopeptidomics is utilized to define patient-specific immunogenic peptides, 

which can be used for adoptive transfer of pre-loaded T cells or peptide vaccines. (Creative Commons CC-BY 
license)71 
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1.3.2 Chances and Opportunities 

The steadily-increasing importance of IPomics and its applications are underlined by the 

pushing questions in different scientific fields.  

The academic and clinical interest in which peptide repertoires are presented in different cell 

types is very strong. Providing these identified epitopes to public annotation portals58 is of 

immense public interest, because it allows to filter benign reference peptides to determine 

tumour neo-antigens. Furthermore, it allows the investigation of peptide sources, antigen-

processing factors, such as peptidases and chaperones71. Clinical significance is already 

reached with the identification of tumour-specific or tumour-associated neo-epitopes that 

advance personalized immunotherapies against cancer76,77. Additionally, pre-clinical stage 

usage of IPomics elucidates the source classification of an epitope, as well as initial discovery 

of target peptides (Figure 4). 

 

1.3.3 The Drug-Induced Immunopeptidome  

The pre-clinical identification of opportunities for immunopeptidome modulation holds 

promising paths. Specifically, determination of the treatment-induced immunopeptidome 

remodelling already provided first insights into this new and unexplored field. This scientific 

avenue will be able to identify conditionally presented peptides, holding a great chance to 

identify inducers of autoimmune diseases or antigens for therapeutic exploitation.  

Altering cellular homeostasis changes the expression of source transcripts and resulting 

peptides or proteins. In a cancer-related context, this is a result of systemic medication or 

radiation.  

Pioneering work in the field of chemotherapeutic regimen-induced immunopeptidome 

alterations was conducted with the cytostatic compounds Decitabine and Doxorubicin78,79. A 

72-h treatment with Decitabine induced a differential upregulation of 1855 peptides, while 

23,439 epitopes were detected globally. From the upregulated peptides, only 72 were 

identified as cancer antigens. For Doxorubicin, 239 differentially upregulated HLA-I peptides 

were detected following a time course of 24-h in HCT116 cells, while a total of 3349 unique 

HLA-I ligands were detected. 

 

These findings underline the dynamic adaptation of the immunopeptidome landscape and 

render an understanding of its conditional change. However, the current state of knowledge in 

this field still lays in its infancy. Current studies mainly focus on single and defined cancer cell 

lines, providing basic understanding of the underlying principles of peptide presentation, 

peptide origin in these cells, as well as common HLA ligands68,80. However, a very recent study 

with clinical focus shed light onto tumour neoantigen heterogeneity, showing differential 
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peptide presentation between and within distinct melanoma metastases76. This strengthens 

the clinical impact for future applications. Furthermore, personalized vaccines hold strong 

hopes and expectations, as demonstrated by long-lasting relapse-free survival of pancreatic 

ductal adenocarcinoma (PDAC) patients with immunogenic response to a personalized RNA 

vaccine encoding patient-specific tumour antigens81.  

 

Despite the recent advancements, many more compounds are used as cytostatic drugs in 

chemotherapy. Thus, there is a high potential in finding new treatment-induced epitopes using 

standard-of-care compounds. Furthermore, the identification of these peptides will foster our 

understanding about immunogenic adverse effects and autoimmune diseases associated with 

certain treatments. These findings could improve anti-cancer therapies and patient quality of 

life. 

 

1.4 Project outline  

This doctoral thesis evaluates the translational origin and downstream HLA localization of 

ncORF-derived peptides during mitotic-arrest. Mitosis-arresting compounds are a common 

first-line regimen for different cancers with high prevalence, such as breast cancer.  

Thus, this work provides novelty in the fields of mRNA translation and treatment-associated 

peptide surface display, which will improve our understanding of downstream effects during 

mitotic-arrest and might provide new therapeutic targets. 

 

Research questions: 

1) Translational response to mitotic-arrest 

2) Characterization of non-canonical mRNA translation during mitotic-arrest 

3) Characterization of HLA class I peptides as product of non-canonical mRNA translation 

 

Firstly, I sequenced and analysed RiboSeq data from asynchronous cancer cells or during 

mitotic-arrest, showing strong translational comparability between different arresting drugs. 

These drugs induce higher ribosome counts within the 5’UTR. I inferred RiboSeq data from 

Harringtonine run-off assays, which shows a strong increase of initiating ribosome during 

mitotic-arrest compared to asynchronous cell populations, suggesting active, non-canonical 

mRNA translation in the 5’UTR.  

Next, I predicted translational active ORFs from RiboSeq data of diverse cancer types during 

mitotic-arrest or from asynchronous populations. Next, I obtained highest feature recognition 

for uORFs and uoORFs. Strongly upregulated translational efficiency of uORF/ uoORF 

features from U-2 OS cells during mitotic arrest further supports the hypothesis of active 
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translation in the 5’UTR, which would result in protein biosynthesis products. Thus, I compiled 

these features into a comprehensive database of nucleotide and peptide sequences. 

Next, I analysed Paclitaxel-mediated peptide presentation alterations using IPomics. For this 

I treated U-2 OS and SUM159 cells with Paclitaxel or DMSO, and HLA-I presented peptides 

were determined in collaboration. Peptides originating from uORFs and uoORFs were 

detected. Eventually, I selected uORF sequences for evaluation for PTX-induced non-

canonical peptide translation and presentation followed by targeted CD8+ T cell response, 

which revealed increased cytokine secretion and cancer killing. This underlines the hypothesis 

and potential of aberrant mRNA translation in the 5’UTR during mitotic arrest, which produces 

nuPeptides that are presented on the plasma membrane surface (Figure 5). 

 

 

 

 
Figure 5: Global model of mitotic-arrest induced aberrant translation and ncPeptide presentation. Paclitaxel 

or mitotic-arrest induces ribosomes to locate and initiate at 5’UTR sequences. Non-canonical ORF (ncORF) 

translation gives rise to peptides, that are presented in HLA-I complexes on the plasma membrane. 

 

 

 

 

 

 

 

 



 25 

2 Results 

2.1 Active mRNA translation in the 5’UTR during mitotic-arrest 

 

Mitotic-arrest is a prolonged state in mitosis over the course of hours. Experimentally, this can 

be induced by various agents, which act by different mechanisms. This project explored the 

effects of mitotic-arrest mainly in U-2 OS cells, an osteosarcoma cell line widely used as model 

cell line for the study of mitotic-arrest82–84.  

The following section and figures were adapted in parts from the manuscript entitled 

“Upstream open reading frame translation enhances immunogenic peptide presentation in 

mitotically arrested cancer cells”85. 

 

2.1.1 Consistency of mitotic-arrest induction using various drugs 

To investigate the translational response during mitotic arrest in cancer cells, I analysed cell 

state proportions and translation patterns in the osteosarcoma cell line U-2 OS treated with 

different anti-mitotic compounds to establish models for mitotic-arrest enrichment. Mitotic 

arrest was induced with inhibitors against BI-2536 (BI), which inhibits Polo-like kinase 1 

(PLK1), S-Trityl-L-cysteine (STLC), acting against Eg5, Paclitaxel (PTX) and Nocodazole 

(Noco), which stabilizes or destabilizes tubulin polymerization, respectively. The RiboSeq data 

was obtained with Fabricio Loayza-Puch. 
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Figure 6: Mitotic-arrest induction correlates between inhibitors with different mode-of-action. U-2 OS 

osteosarcoma cells were treated for 16 hours with different mitosis-arresting agents (0.1 µM BI2536, 0.5 µM 

Nocodazole (Noco), 1 µM Paclitaxel (PTX), 1 µM S-Trityl-L-cysteine (STLC)) or DMSO. (a) Cell cycle analysis by 
DNA content with PI incorporation. (b) Immunoblot against Histone3 (H3) (Ser10) phosphorylation. (c) Clustering 

of TMM-normalized counts from RiboSeq, highlighting genes relevant for mitosis and S1 phase (Figure 16 a). (d) 
Pearson Correlation heatmap of the translational landscape from RiboSeq gene counts comparing control and 
mitotic-arrest conditions. PCC = Pearson Correlation Coefficient. 

 

All drugs consistently enriched cell population percentages towards mitosis. I determined this 

with propidium iodide (PI)-staining against DNA content, showing increased G2/M 

percentages. PI intercalates into DNA in an unbiased way, allowing the discrimination of G2/M-

phases with doubled chromosome amount. Additionally, I observed increased phospho-Ser10 

Histone 3 (H3) signal by immunoblotting, despite different compound modes-of-actions 

(Figure 6 a,b). H3 Ser10 phosphorylation is correlated with chromosome condensation during 

mitosis86. Hence, increased G2/M population and phospho-Ser10 H3 staining support the 

finding of mitotic cell enrichment in all drug-treated conditions. Next, I analysed RiboSeq data 

from the same drug treatments and interrogated the translational landscape during mitotic 

arrest. For this, I compared trimmed mean of M-values (TMM)-normalized87,88 counts. TMM-

normalization allows reliable cross-sample comparison, better than ‘reads per kilobase of 

transcript per million mapped reads’ (RPKM) and ‘transcripts per kilobase million’ (TPM)87. 
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Normalized counts exhibited a treatment-specific clustering pattern for mitotic-arrest at key 

mitotic transcripts (Figure 6; Supplement: Table) and in a global manner (Supplement: 
Figure 16 a), in comparison to dimethyl sulfoxid (DMSO) treatment. Furthermore, I determined 

that global translation patterns strongly correlated between mitotic-arrest mechanisms but not 

with DMSO-treated asynchronous cell populations (Figure 6 d). Mitotic-arrest conditions 

exhibited a Pearson correlation coefficient (PCC) range between 0.95 – 0.99, whereas PCC 

range drops to 0.73 - 0.79 in the comparison of DMSO to mitotic-arrest conditions. From this 

collective data, I conclude a comparable mRNA translation response across different 

mechanisms of mitosis arrest induction. 

 

2.1.2 Ribosomes distribute towards the 5’UTR during mitotic-arrest 

Next, I investigated the global transcript distribution of RPFs from RiboSeq data of 

asynchronous or mitotically-arrested U-2 OS cells. In asynchronous cell populations, I 

observed that RPF density was uniform across the CDS. However, during mitotic-arrest, an 

increased proportion of RPF density was localized within the 5’UTR region and CDS start 

proximity (Figure 7 a,c,e). My quantification of global transcript RPF distribution in the 5’UTR 

(metagene profile) showed an increase in mitotically-arrested U-2 OS cells, regardless of the 

mode-of-action (Figure 7 b), which is further supported in two other cell lines (Supplement: 
Figure 16 b-e) and by biological replicate data from U-2 OS cells treated with Noco (Fig.2d). 

During mitosis, mTOR and CDK1 modulate cap-dependent translation initiation through 

different factors, such as 4EBP1 (1.2.2.1 4EBP; p.16). Hence, I analysed RiboSeq data from 

U-2 OS cells treated with DMSO (Control), Noco or Noco + Torin1, a potent mTOR inhibitor. I 

observed that mTOR inhibition does not change Noco-mediated RPF localization in the 5’UTR 

(Figure 6 e,f). Furthermore, I analysed the phosphorylation state of 4EBP1 during mitotic-

arrest with or without Torin1 treatment. In asynchronous U-2 OS cells, mTOR-inhibition 

ablated 4EBP1 phosphorylation. However, I observed that mitotic-arrest induced a 

phosphorylation shift of 4EBP1 with a higher molecular weight (Figure 6 g) in the presence of 

Torin1.  

Thus, I conclude that ribosomes distribute towards the 5’UTR during mitotic-arrest in a mTOR-

independent manner. 
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Figure 7: Mitotic-arrest promotes ribosome location towards the 5'UTR. U-2 OS cells were treated for 16 

hours with indicated mitosis-arresting agents (0.1 µM BI2536, 0.5 µM Nocodazole (Noco), 1 µM Paclitaxel (PTX), 

1 µM S-Trityl-L-cysteine (STLC) and/or for 2 hours with the mTORC1/2-inhbitor Torin1 (250 nM) or DMSO, followed 

by RiboSeq. (a), (c), (e) Metagene profiles of ribosome-protected fragment (RPF) distribution, globally segmented 
into 5’UTR, CDS and 3’UTR. (b), (d), (f) Percent quantification of RPF location. (g) Immunoblot against phospho-

4EBP1 (Thr37/46), 4EBP1, phospho-H3 (Ser10) and GAPDH during combinational treatment of U-2 OS cells 

Torin1 and Nocodazole (Noco).  

 

2.1.3 Ribosomes actively initiate translation in the 5’UTR during mitotic-arrest 

Next, to determine if the altered RPF distribution during mitotic-arrest is associated with 

increased initiation rates, I analysed RiboSeq data from global ribosome run-off experiments 

using Harringtonine with U-2 OS cells. Harringtonine (Harr) associates with the ribosome and 

hinders the formation of the first peptide bond, hence, Harr treatment times correlate positively 

with RPF densities at translation initiation sites (TISs) (Figure 8 a)46,47.  

My analysis of global transcript RPF density in asynchronous cells showed a time-dependent 

accumulation of TISs at the main ORF (Figure 8 b). However, I found that mitotically-arrested 

cells showed an increase in upstream TISs (uTISs) with comparable levels to the main ORF 

under STLC treatment (Figure 8 c). I also observed a similar tendency in MDA-MB-231 cells 

(Supplement: Figure 16 i,j). I quantified normalized uTISs RPF counts in a cross-sample 

comparison, which exhibited a significant increase during STLC treatment (Figure 8 d).   
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Taking together, with my analysis of RiboSeq data, I detected that the mitotic-arrest associated 

translational landscape was highly comparable between different inducers/inhibitors. In 

contrast to asynchronous cells, mitotic-arrest induced a global increase in ribosome 

distribution in the 5’UTR, which arises from actively initiating ribosomes in the 5’UTR. 

 

 
Figure 8: Harringtonine run-off assays determine increased rates of upstream translation initiation sites 
(uTISs). (a) Harringtonine run-off assay scheme. Cells are lysed in presence of Cycloheximide (CHX) and 

Harringtonine (Harr), which block ribosomes during elongation and after initiation, respectively. Thus, initiated 

ribosomes are enriched in a time-dependent manner. U-2 OS cells were treated with DMSO or 1 µM STLC for 16 
hours. Cells were lysed in presence of 100 µg/ml CHX and 2 µg/ml Harr. (b), (c) Metagene profile of ribosome-

protected fragment (RPF) distribution, globally segmented into 5’UTR, CDS and 3’UTR. (d) Violin plot of trimmed 

mean of M-values (TMM)-normalized counts distribution of upstream translation initiation sites (uTISs) comparing 
DMSO and STLC-treated 10 min timepoint samples. Violin width indicates point density. The box plot center line 

indicates the median value, whereas whiskers define the 1.5x interquartile range. p-value determined by students 

t-test.   

 

2.2 Elevated uORF/ uoORF translation in cancer cells during mitotic-arrest  

Ribosomes actively initiate mRNA translation in the 5’UTR during mitotic-arrest. This process 

is defined as non-canonical translation, occurring at non-canonical open-reading frames 

(ncORFs). Thus, I continued to investigate non-canonical translation start sites in RiboSeq 

data. 

2.2.1 Increased detection of uORF and uoORF elements during mitotic-arrest 

To define and characterize 5’UTR initiation events, I gathered RiboSeq data from 

asynchronous U-2 OS cells and during mitotic-arrest induced by various agents. I subjected 

this data to ORF prediction with PRICE (Probabilistic inference of codon activities by an 
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expectation-maximization algorithm)56. This computational method allows ncORF 

identification from RiboSeq data and was shown to outperform other bioinformatic tools in the 

recognition rate of uORFs89. Subsequently, I used this process to extract information about 

predicted ORF moieties and start codons (Figure 9 a,b). 

With the ORF prediction, I found a strong enrichment for uORFs and uoORFs moieties during 

mitotic-arrest of U-2 OS, irrespective of drug molecular mechanism (Figure 9 c). Notably, this 

increase was very pronounced with fold changes between 9-14. I observed the highest 

prediction rates for uORFs and uoORFs with PTX treatment. Additionally, I also observed the 

increase in uORF and uoORF features in two other cell lines (Supplement: Figure 17 a). I 

found coding sequence (CDS) start site prediction only minorly increased.  

Non-canonical translation can initiate at non-CDS ATG and other codons. Thus, I investigated 

the start codon proportions during mitotic-arrest. Interestingly, predicted non-canonical 

uORF/uoORF (nuORFs) from U-2 OS initiated majorly from non-ATG codons (~80 %), 

whereas this number decreased during mitotic-arrest (~70 %). This suggests a shift to 

canonical ATG translation initiation sites in the 5’UTR (Figure 9 d). Next, I identified the 

nuORFs-containing transcripts to biologically characterize the origin of non-canonical 

translation (Figure 9 e). My comparison of these transcripts revealed heterogeneity between 

mitotic-arrest inducing agents, however, 411 transcripts were shared in between all 

treatments. I performed a functional enrichment analysis for these transcripts, which 

highlighted biological processes such as cytoplasmic translation and protein import (Figure 9 

f). The same transcripts also belong to cellular components such as cytoskeleton and focal 

adhesions (Figure 17 b). These findings support further evidence for non-canonical translation 

in the 5’UTR. 
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Figure 9: Mitotic-arrest enhances translation of upstream and upstream-overlapping open-reading frames 
(uORF/uoORF). (a) Experiment scheme of ORF prediction. RiboSeq data from DMSO-treated, asynchronous cells 

and cells during mitotic-arrest was used to computationally determine ORFs (PRICE, Probabilistic inference of 

codon activities by an expectation-maximization algorithm) and extract ORF moieties and start codons. (b) Scheme 
of predicted ORF moieties: uORF = upstream ORF, uoORF = upstream-overlapping, dORF = downstream ORF. 

U-2 OS cells were treated for 16 hours with indicated mitosis-arresting agents (0.1 µM BI2536, 0.5 µM Nocodazole 

(Noco), 1 µM Paclitaxel (PTX), 1 µM S-Trityl-L-cysteine (STLC)) or DMSO. (c)  Fold-change heatmap of ORF 
moiety prediction relative to DMSO condition. (d) Pie charts of uORF start codon prediction highlighting the three 

most common codons ATG, CTG, GTG. (e) Venn diagram showing the intersection of identified uORF-containing 

genes predicted by PRICE. (f) Lollipop plot of over-representation analysis (Gene Ontology: Biological process) 
covering the intersected 411 common uORF-containing genes.  

 

2.2.2 Increased translational levels of nuORF features during mitotic-arrest 

After I identified increased non-canonical initiation sites in the 5’UTR, I determined if these 

features would exhibit elevated translation rates. For this, I calculated translational efficiency 

(TE) for predicted nuORF sites in U-2 OS cells treated with Nocodazole (Figure 10 a). I 

normalized nuORF-mapping RiboSeq reads to RNAseq reads of the same genomic 

coordinates.  

Strikingly, my analysis resulted in increased TE rates for the majority of nuORF features in 

these samples (Figure 10 b). Examples with increased TE in nuORF elements such as 

Data Curation ORF Prediction

ORF moiety
Start Codon

...

...

...

Feature Extraction

A

b c

d

e

Asynchronous

Mitotic-arrest

RiboSeq PRICE Analysis

CTGGGGA
ATGGCCC

uORF
CDS

uoORF
GTGGCGA

...

...

...

Data Curation Genomic CoordinatesORF Prediction

Placeholder 
uORF 
genome coverage

ORF moiety

Start Codon
...
...
...

Feature Extraction Genomic Reference

Peptide Database

Asynchronous

Mitotic-arrest

RiboSeq

U2OS

786-O
HEK293T
HeLa
MCF7
MDAMB-231
MDAMB-468
MIAPACA
PC3
SUM159 CTGGGGA

ATGGCCC

uORF
CDS

uoORF

GTGGCGA

...

...

...

chr1:12040512-12040539

chr2:96874281-96874440

>ID1_uORF_1

5' UTR

uORF

CDS 3' UTR

uoORF

dORF

EIF5A

159 281 

177 229 
54 

95 

411 

99 

86 

43 
65 

87 

140 
124 

109 
Bi2536

(1205)

Nocodazole
(1012)

PTX
(1345)

STLC
(1118)

apoptotic signaling pathway

protein localization to nucleus

response to virus

protein import

cytoplasmic translation

import into nucleus

protein import into nucleus

GO: Biological process 

1.0 1.5 2.0

1.4 1.6 1.8 2.0 2.2
−log10(padj)

−log10(padj)

Count 20 25 30

ORF Prediction

Asynchronous

Mitotic-arrest

RiboSeq

PRICE Analysis

a

Feature Extraction

Data Curation

f

DMSO

CDS

dORF

uORF

uoORF

BI25
36

Noc
od

az
ole PTX

STLC

Fo
ld

 C
ha

ng
e

2
4
6
8
10

Mitotic arrestAsynchronous

Control Nocodazole PTX STLCBI2536

ATG

CTG

GTG

22,4 % 31,6 % 34,1 % 32,5 % 32,2 %

27,0 %24,7 %24,1 %27,8 %
26,6 %

uORF
CDS

uoORF
ORF moiety

...

...

...
CTGGGGA
ATGGCCC

GTGGCGA

...

...

...

Start Codon

1.50 1.75 2.00 2.25 2.50

−log10(p.adjust)

Count 8 12 16 20 24



 32 

pyruvate kinase (PKM), mitochondrial ribosomal protein L51 (MRPL51) and caveolea 

associated protein 1 (CAVIN1) are implicated in critical cellular processes. These include 

energy metabolism, mitochondrial function and oxidative stress response. These examples 

exhibit strong RiboSeq read density increases in predicted uORF locations during mitotic-

arrest, which I did not observe with RNAseq read densities (Figure 10 c). I found upregulated 

nuORF features (Log2 fold change ≥ 1.5, adjusted p-val < 0.05) to be associated with 

biological processes of translation and mitotic spindle assembly, and cellular compartments of 

the nucleus, cytosolic large ribosomal subunit and cytoskeleton. This effectively recapitulated 

the gene set enrichment of mitotic arrest as I observed before (Figure 9 f; Supplement: 
Figure 17 b). Notably, I determined that Harringtonine treatment demonstrated increased RPF 

densities at these predicted uORF start sites (Supplement: Figure 17 d).  

 

 
Figure 10: Differential upregulation of nuORF translation during mitotic-arrest. (a) Experimen scheme of 

translational efficiency calculation. U-2 OS cells were treated with 0.5 µM Nocodazole (Noco) or DMSO for 
16 hours. RiboSeq data was used to computationally determine nuORF features (PRICE, Probabilistic inference 

of codon activities by an expectation-maximization algorithm). nuORF genomic coordinates were extracted and 

compiled into a reference file suitable for read counting. RNAseq and RiboSeq reads mapping nuORF coordinates 
were used to calculate translational efficiency (TE). (b) TE volcano plot of differentially translated nuORF elements 

with highlighted gene names. (c) Exemplary illustrations of nuORF element genome coverage from asynchronous 

cells (DMSO-treated) and during mitotic-arrest (Noco). PKM, Pyruvate kinase; MRPL51, Mitochondrial ribosomal 
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protein L51; CAVIN1, Caveolae associated protein 1. TIS (ATG), canonical CDS translation initiation site using an 

ATG codon. 

2.2.3 Construction of a comprehensive nuORF feature database 

Next, to establish a compendium of uORF and uoORF elements, I curated RiboSeq data from 

various cell lines during asynchronous population or mitotic-arrest.  

Following ORF prediction, I extracted nuORF genomic coordinates to create a database 

(nuORFdB) for the respective DNA and peptide sequences (Figure 11 a). This gave rise to 

10222 sequences, with ~77.5 % and ~22.5 % originating from uORFs or uoORFs, respectively 

(Figure 11 b). I determined that these sequences have a bias towards increased 

Guanine/Cytosine (GC) content (Figure 11 c). I computationally transformed these DNA 

sequences to AA sequences, which gave rise to the AA content. I found increased alanine 

(Ala, A) and arginine (Arg, R) frequencies of ~ 11 % each (Figure 11 e), in comparison to AA 

content of the canonical proteome (Ala: 9 %; Arg: 5.5 %)90, which posed a Arg frequency 

doubling. Furthermore, I calculated peptide length of these 10222 peptides, which was majorly 

covered in the range of 0-40 AA, however, maximum lengths of protein products extended 

further than 200 AA.  

 

 

 
Figure 11: Construction and Characterization of the nuORF database. (a) Experiment scheme for nuORF 

database construction. First, RiboSeq data from asynchronous cells or during mitotic-arrest was curated. Next, 

nuORF features were computationally predicted using PRICE (Probabilistic inference of codon activities by an 
expectation-maximization algorithm). The resulting genomic coordinates were extracted as DNA nucleotide 

sequences, and peptide sequences. (b) Pie chart showing the uORF and uoORF origin quantification of 10,222 

sequences. (c) Pie chart showing the A/T and G/C content in percent of the predicted 10,222 nuORF DNA 
sequences. (d) Pie chart showing the amino acid composition of the predicted nuORF-derived peptides. (e) Bar 

chart showing the length distribution of the predicted nuORF-derived peptides. 
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Taking together, I found that mitotic-arrest is associated with increased uORF and uoORF 

prediction rates and elevated translation rates in hundreds of these sequences. In a 

comprehensive approach, I compiled DNA and subsequent peptide sequences of nuORF 

features from RiboSeq data of various cell lines to construct a nuORF database. 

 

2.3 nuORF features give rise to HLA complex I presented peptides 

Recently, ncORF-originating peptides were reported to be presented on the cellular plasma 

membrane in HLA-I complexes68. These peptides enrich the immunopeptidome landscape 

presented to immune cells. Thus, I investigated whether the predicted nuORF-derived 

peptides from my compiled nuORF database were presented on HLA-I complexes.  

For this, I collaborated with Jonas P. Becker from the DKFZ division of Immunotherapy and 

Immunoprevention. Together, we performed LC-MS/MS-based immunopeptidomics. The 

analysis required my nuORF database and the annotated human proteome as reference files 

(Figure 12 a). For these experiments, I treated U-2 OS cells and the triple-negative breast 

cancer (TNBC) cell line SUM-159PT with DMSO or Paclitaxel (PTX) in replicates of 5x107. 

PTX is a common first-line of treatment regimen in TNBC (1.1.3.2 Mitotic-arrest: 
Applications and Limitations; p.11), thus, providing stronger clinical relevance for future 

applications. 

 

2.3.1 nuORF-derived HLA-presented peptides in U-2 OS cells 

The collaborative immunopeptidomics analysis revealed an HLA class I repertoire of 12,904 

unique annotated proteome-derived peptides. Notably, we found that 127 unique peptides 

were derived from nuORFs sequences, representing about 1 % of the HLA-I 

immunopeptidome in U-2 OS during mitotic-arrest (Figure 12 b). HLA allotype binding 

prediction revealed that 90 % of proteome-derived peptides and 91 % of nuORF-derived 

peptides bind U-2 OS-specific HLA allotypes. Also, both peptide types exhibited normal length 

distribution for HLA class I peptides, with a majority of 9-mers (Figure 12 b,c,e). Peptide 

sequence clustering of my samples for proteome-derived and nuORF-derived epitopes 

revealed similar motifs with dominant aspartic acid moieties in the 2nd position and aromatic 

AAs in the 9th position (Figure 12 d) for the U-2 OS allele HLA-B*44:02. Importantly, we 

determined that nuORF-derived peptide retention time (RT) showed a strong correlation with 

the respective observed RT, which was comparable with proteome-derived peptides (Figure 
12 f). 
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Figure 12: nuORF-derived HLA-presented peptides reveal comparable characteristics to annotated 
peptides in U-2 OS cells. (a) Experiment scheme of Immunopeptidomics. Cells are lysed and HLA-I complexes 
are immunoprecipitated and bound peptides are detected with LC-MS/MS. Resulting peptide spectra are scanned 

against the nuORF database and annotated proteome to identify non-canonical nuORF-derived peptides and 

canonical peptides. (b) HLA allele binding prediction of identified peptide sequences for the annotated proteome 
and nuORF-derived peptides. (c) Peptide ligand length distribution with corresponding predicted HLA allele 

proportion. (d) Sequence motif plots for unique peptides from the annotated proteome (6,624) and nuORF-derived 

peptides (58) for the HLA-B*44:02 allele. (e) Predicted binding affinity plotted against percentage of eluted ligand 
(EL) peptides predicted by NetMHCpan-4.1. Calculated for peptides derived from the annotated proteome (small 

spots) and nuORF-derived peptides (big spots) in asynchronous and mitotically arrested U-2 OS. Peptide 

categorization: Strong binder (%EL rank 0 – 0.5), weak binder (%EL rank 0.5 – 2.0), non-binder (%EL rank 2.0 – 
100). (f) Observed retention time (RT) plotted against predicted RT of proteome-annotated (black) and nuORF-

derived peptides (red). R2, coefficient of determination. 

 

2.3.2 nuORF-derived HLA-presented peptides in SUM-159PT cells 

Our immunopeptidomics analysis of SUM-159PT cells revealed an HLA class I repertoire of 

25655 unique proteome-derived peptides. Strikingly, 166 unique nuORF-derived peptides 

were detected, representing about 0.5 % of the SUM-159PT HLA class I immunopeptidome 

(Figure 14 a). 
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exhibited normal length distribution for HLA class I peptides, with a majority of 9-mers (Figure 
14 b). Peptide sequence clustering of my samples for proteome-derived and nuORF-derived 
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epitopes revealed similar motifs with dominant glutamine moieties in the 2nd position and 

aromatic AAs in the 9th position (Figure 13 c) for the allele HLA-B*15:01. Also, nuORF-derived 

peptides are predicted majorly with strong and weak binding affinities (Figure 13 d). We 

determined that ligands exhibited retention times (RT) with strong correlation to the respective 

observed RT, comparable to proteome-derived peptides (Figure 13 e). 

 

 
Figure 13: nuORF-derived HLA-presented peptides reveal comparable characteristics to annotated 
peptides in SUM-159PT cells. (a) HLA allele binding prediction of identified peptide sequences for the annotated 

proteome and nuORF-derived peptides in SUM-159PT cells. (b) Peptide ligand length distribution with 
corresponding predicted HLA allele proportion. (c) Sequence motif plots for unique peptides from the annotated 

proteome (4,402) and nuORF-derived peptides (59) in the SUM-159PT allele HLA-B*15:01. (d) Predicted binding 

affinity plotted against percentage of eluted ligand (EL) peptides predicted by NetMHCpan-4.1. Calculated for 

peptides derived from the annotated proteome (small spots) and nuORF-derived peptides (big spots) in 
asynchronous and mitotically arrested SUM-159PT cells. Peptide categorization: Strong binder (%EL rank 0 – 0.5), 

weak binder (%EL rank 0.5 – 2.0), non-binder (%EL rank 2.0 – 100). (e) Observed retention time (RT) plotted 

against predicted RT of proteome-annotated (black) and nuORF-derived peptides (red). R2, coefficient of 
determination. 
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leads to the question of abundance quantification and how treatment-induced peptides can be 

exploited for improved cancer therapies. 

 

2.4.1 Differential HLA class I nuORF-derived peptide presentation upon PTX-induced 
mitotic-arrest 

The impact of HLA class I peptide presentation during mitotic-arrest remained 

uncharacterized. Thus, we performed label-free quantification of HLA-presented peptides 

following PTX treatment with U-2 OS and SUM-159PT cells. I detected moderately enriched 

nuORF-derived peptides for both cell lines, with 13 and 25 peptides for U-2 OS and SUM-

159PT, respectively (Log2 fold change ≥ 0.5; adjusted p-val ≤ 0.05) (Figure 14 a,b; 
Supplement: Figure 18 a,b). Importantly, I observed that these elevated candidates showed 

increased translation during mitotic-arrest, but mRNA transcript levels did not change (Figure 
14 c). Furthermore, I determined that Harringtonine treatment increased RPF densities at 

predicted nuORF initiation start sites (Figure 14 d).  

One of the detected peptides originates from the EIF4G2 gene, which is implicated for the 

translation of mRNAs for cell91. An additional peptide originates from the HMGA1 gene. The 

corresponding protein modulates chromatin structure to promote gene expression for G2/M 

transition92,93 and was shown to regulate microtubule-destabilization, which supports TNBC 

motility with reduced PTX sensitivity93. To infer the biological context, I performed a functional 

over-representation analysis of genes expressing increasingly presented nuORF-derived 

peptides in U-2 OS cells. My analysis revealed an association with cellular components, such 

as the cytoskeleton and adherens junctions (Figure 18 c). Strikingly, I did not find one of the 

identified peptide sequences in the HLA Ligand Atlas58, which is a public-accessible 

compendium of benign human HLA peptides across organs and HLA alleles. Furthermore, I 

aligned nuPeptide candidates against annotated RefSeq protein sequences using NCBI 

Protein BLAST, which did not reveal any match. This included Leu/Ile permutations, which 

cannot be distinguished by mass spectrometry. This provides evidence about the novelty of 

PTX treatment-associated HLA class I nuORF peptides. 

Taking together, I demonstrated that U-2 OS and SUM-159PT cells presented nuORF-derived 

peptides. I was able to detect that the properties of these new epitopes align with proteome-

derived peptides and are moderately-enriched in cells during mitotic-arrest. Thus, these 

antigenic peptides might be new promising immunotherapy targets. 
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Figure 14: Quantitative analysis of HLA class I presented nuORF-derived peptides. (a) Volcano plot showing 

the label-free quantification of HLA class I immunopeptidome, highlighting nuORF-derived peptides (big spots) and 

peptides from the annotated proteome (small spots). Red peptides: Log2 fold change ³ 0.5 and adjusted p-value 

< 0.05. Blue peptides: Log2 fold change ≤ 0.5 and adjusted p-value < 0.05. P-values were calculated using a 
Bayes-moderated t-test with two-sided p-values. (b) nuORF-containing gene with Log2 fold change peptide 

abundance and corresponding peptide sequence. nuORF element genome coverage plots from asynchronous 

cells (DMSO-treated) and/or during mitotic-arrest (Noco) showing 5’UTRs and CDS partials (c-f). RiboSeq and 
RNAseq genome coverage for EIF4G2 (c) and HMGA1 (d). RiboSeq genome coverage from Harringtonine (Harr) 

run-off assays in mitotically arrested U-2 OS cells for EIF4G2 (e) and HMGA1 (f). Harringtonine and/ or CHX 

treatment was performed for 10 min. TIS (ATG), canonical CDS translation initiation site using an ATG codon. 

 

2.4.2 PTX-mediated increased uORF-derived peptide display promotes targeted cancer 
killing 

The presentation of nuORF-derived HLA class I peptides surface upon Paclitaxel treatment 

holds a promising opportunity for targeted immunotherapy. Thus, chemotherapy-induced 

display of nuORF-derived peptides in cancer cells can alter the immunopeptidome landscape, 

which might offer unique immunogenic signatures.  

To explore this, F. Loayza-Puch and me generated luciferase reporter constructs, which 

contain 5’UTRs from transcripts that gave rise to increased peptide presentation during 

mitotic-arrest. To assure equal peptide stability between conditions, peptide sequences 

identified by immunopeptidomics were replaced by the SIINFEKL peptide sequence. This 
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ligand originates from chicken ovalbumin (OVA) and can be presented on murine H-2Kb 

alleles. The SIINFEKL:H-2Kb complex is recognized by transgenic CD8+ OT-I T cells, as well 

as the commercial dye-conjugated antibody clone 25-D1.1694, suitable for flow cytometry 

applications.  

For this validation 5’UTRs of EIF4G2 and TPX2 were chosen. Peptides from these respective 

uORFs were also detected in an initial IPomics experiment with the group of Reuven Agami 

at the NKI Amsterdam, Netherlands. (Figure 14). Therefore, cross-institutional finding of the 

same uORF origins supported the decision to validate 5’UTR translation with these 

sequences. The following experiments were performed and analysed by Z. Tang and F. 

Loayza-Puch. 

To assess the extent of PTX-induced SIINFEKL presentation, Z. Tang and F. Loayza-Puch 

transfected uORF-SIINFEKL reporters into the murine cancer cells line TC1. Z. Tang 

determined SIINFEKL presentation by flow cytometry and F. Loayza-Puch analysed the data. 

Asynchronous cell population did not induce strong 25-D1.16 recognition. In contrast, mitotic-

arrest led to a strong increase of SIINFEKL presentation, independent of the agent’s mode-of-

action (Supplement: Figure 18 d,e). Notably, reporter mRNA levels were not altered during 

mitotic-arrest (Supplement: Figure 18 f). Next, we mutated the peptide start sites from ATG 

to ATA to investigate the start codon importance in these 5’UTRs. Flow cytometry 

measurement by Z. Tang and analysis by F. Loayza-Puch revealed a loss-of-signal with 

reduced SIINFEKL presentation in mutated start codon reporters, underlining the impact of 

active uORF translation on effective antigen presentation (Supplement: Figure 18 g).  
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Figure 15: Increased uORF-derived peptide presentation promotes targeted immune response against 
cancer cells in mitotic-arrest. (a) Model of uORF reporter system. Two 5’UTRs were cloned into the pGL3-

luciferase vector, in which the uORF-derived peptide sequence was replaced by the SIINFEKL sequence. (b) 
Functional model of the uORF reporter system in combination with SIINFEKL-specific OT-1 T cells. During normal 

proliferation, ribosomes do not translate the uORF. However, during PTX-induced mitotic-arrest, ribosomes initiate 

at the uORF sequence and translate the SIINFEKL peptide. Upon SIINFEKL-MHCI binding, SIINFEKL-specific OT-

1 T cells recognize cancer cells and initiate cancer killing. IFN-g secretion (c) and T cell killing (d) in murine TC1 

cells, transfected with the uORF-SIINFEKL reporters and arrested in mitosis for 16 hours before T cell addition. 

IFN-g secretion (e) and T cell killing (f) in murine TC1 cells, transfected with the start codon-mutated uORF-

SIINFEKL reporters and arrested in mitosis for 16 hours before T cell addition. Control cells were treated with equal 

volumes of DMSO for the same time. Data shown represents the mean ± SD from biological replicates: n = 3 for 

IFN-g secretion, n = 5 for T cell killing. Statistical analysis was carried out with a two-tailed unpaired t-test. NS, non-

significant. *** p-value < 0.001.   
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Next, I hypothesized if uORF-derived peptides might elicit an enhanced T cell-mediated 

cytotoxicity, which was performed and analysed by Rossella Del Pizzo and Fabricio Loayza-

Puch. For this, R. Del Pizzo activated OT-I CD8+ T cells with aCD3, aCD28 and IL-12 ex vivo 

for 72 hours and co-cultured them in vitro with asynchronous or mitotically arrested TC1 cells. 

The culture medium was harvested for ELISA, while the culture plate was subjected to crystal 

violet staining and analysis by F. Loayza-Puch.  

Strikingly, T cells only secreted higher levels of IFNg upon co-culture with reporter-expressing, 

mitotically arrested TC1 cells (Figure 15 b,c). Furthermore, we observed enhanced cytotoxic 

activity only in reporter-expressing, mitotically arrested TC1 cells (Figure 15 d). Neither mitotic 

arrest nor transfection alone induced elevated IFNg secretion or increased cytotoxicity. 

Strikingly, start codon mutation of uORF-SIINFEKL reporters exhibited a loss-of-function in 

terms of IFNg secretion and antigen-specific CD8+ T cell-mediated cytotoxicity (Figure 15 e,f). 
Taking together, I determined nuORF-derived peptides that are HLA class I presented in an 

increased manner. uORF-SIINFEKL reporter constructs were created to assess the extent of 

PTX-induced peptide presentation. In a collective effort we detected that PTX-mediated 

mitotic-arrest induced increased SIINFEKL presentation, a reporter-specific increase of IFNg 

secretion in CD8+ T cells and enhanced cancer killing capacities against cancer cells. 

 

In summary, I demonstrated that the general process of mitotic-arrest induces ribosomes to 

localize and initiate at the 5’UTR of mRNA transcripts. Here, ribosomes translate uORF and 

uoORF sequences into peptides or proteins of variable size in a differential manner. My data 

supports that nuORF-derived peptides are presented on HLA complex I structures in a 

differential fashion. Furthermore, I was able to show that uORF sequences can give rise to 

targeted CD8+ T cell cytokine release and cancer killing. 
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3 Discussion 

The aim of this doctoral thesis was to unravel the translational response during mitotic-arrest. 

In summary, I demonstrated that the general process of mitotic-arrest causes ribosomes to 

localize and initiate at the 5’UTR of mRNA transcripts. Here, ribosomes translate uORF and 

uoORF sequences into peptides or proteins of variable size. My data supports that nuORF-

derived peptides are presented on HLA complex I structures in a differential manner. 

Furthermore, I was able to show that uORF sequences can give rise to targeted CD8+ T cell 

cytokine release and cancer killing. 

 

3.1 Active mRNA translation in the 5’UTR during mitotic-arrest 

Initially, I uncovered that cellular responses to mitotic-arrest are similar in U-2 OS cells, treated 

with drugs that possess different modes-of-action. I observed that all drugs efficiently enriched 

U-2 OS cells in mitotic-arrest, as seen by H3 Ser10 phosphorylation86 and PI staining for DNA 

content (Figure 6). While I dissected translational signatures, it was evident that each drug 

induced the translation of a specific transcript set, which differed from the other agents 

(Supplement: Figure 16 a). Still, I observed that high proportions of translational activation 

were shared between drug treatments, which allowed for high Pearson correlation coefficients 

between mitotic-arrest conditions in contrast to asynchronous cells treated with DMSO 

(Figure 6 c,d). Thus, H3 phosphorylation, DNA content and translational signatures support 

the usage of any tested compound to explore translational responses during mitotic-arrest. 

Furthermore, all of these agents induce changes in ribosome density, across the CDS and in 

the 5’UTR of cancer cells (Figure 7 a-f, Supplement: Figure 16 b-e).  

Notably, I tested if the ISR (Supplement: Figure 16 f,g,h) induced increased ribosome density 

in the 5’UTR by the inhibition of the eIF2a phosphatases with Salubrinal. This treatment 

induced the downstream transcription of CHOP and ASNS (Figure 16 f) but I did not find 

increased ribosome density levels in the 5’UTR. This suggests active ISR upon Salubrinal 

treatment, which fails to mimic the observed translational phenotype of aberrant ribosome 

location. In return, other signalling cascades need to be responsible for this finding. 

Cap-dependent translation is highly regulated by mTOR and CDK1, which modulate 4EBP1 

phosphorylation. Unphosphorylated 4EBP1 binds eIF4E, also known as the cap-binding 

protein, that is, translation initiation is hindered. In contrast, phosphorylated 4EBP1 does not 

bind eIF4E, which allows cap-dependent initiation. Hence, mTOR and CDK1 are considered 

regulators of translation (1.2.2.1 4EBP). I found that mTORC1/2 inhibition with Torin1 did not 

change ribosome density in the 5’UTR and did not modulate 4EBP1 phosphorylation levels. 

This data suggests a mTOR-independent modulation of translation. Thus, 4EBP1 
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phosphorylation is very likely mediated by CDK1. In fact, CDK1-dependent 4EBP1 modulation 

during mitotic-arrest, independent of mTOR, was already reported39. Furthermore, CDK1 is 

annotated to phosphorylate ribosomal proteins and translation initiation factors, which aids 

efficient protein biosynthesis during mitotic progression39,40,95. Notably, presence of CDK1 

increases after about 14 h incubation with Nocodazole96 comparable to the incubation time of 

16 hours used to obtain my data in this thesis. To elucidate the role of CDK1-dependent 4EBP1 

phosphorylation on translation initiation in this phenotype, I suggest further experiments with 

phospho-silent mutants of 4EBP1. Genomic ablation of 4EBP1 with overexpression of a 

phospho-silent 4EBP1 mutant protein would elucidate the impact on translation initiation in the 

5’UTR. 

CDK1 was also reported to phosphorylate the DENR:MCTS1 complex97 (density regulated re-

initiation and release factor: malignant T-cell-amplified sequence 1). Interestingly, this complex 

promotes post-termination recycling of 40 S ribosomes and translation re-initiation to the CDS 

start sites after uORF sequences with a strong Kozak context97,98. Thus, DENR could induce 

ribosome recycling after uORF and uoORF initiation and induce CDS re-initiation during 

mitotic-arrest. This would explain 5’UTR ribosome initiation in close proximity to the CDS start, 

(upstream and downstream) as found by Harringtonine run-assays (Figure 8 b,c). Phospho-

site mutation of Ser73 to Ala73 would channel a DENR loss-of-function with subsequent 

proteasomal digestion, where Asp26 to Glu26 would prevent DENR degradation97. The 

functional combination of genetic DENR KO with over-expression of S73A and D26E 

mutations and RiboSeq would aid to discriminate if the aberrant translational phenotype is 

induced via the CDK1-DENR axis. 

 

On the contrary, other reported mechanisms of non-canonical translation initiation highlight 

functional lack of translation elongation factors that induce ribosome queues in the CDS, 

leading to initiation in the 5’UTR64. However, this study pointed out increased translation 

initiation at sub-optimal codons, that is, non-ATG codons. This is in contrast to my finding of 

increased ATG start codon utilization in predicted uORF sequences. Thus, the observed 

translation phenotype in my data might only be explained by multiple factors. Future 

experiments aiming to understand the mechanism of ribosome initiation in the 5’UTR during 

mitotic-arrest should first include pharmacological inhibition of CDK1 in combination with 

immunoblotting for 4EBP1 phosphorylation state, as well as translational efficiency to study 

quantitative translational changes. However, CDK1 also promotes mitotic progression, 

hypoxia signalling and apoptosis99–101. Because of the broad signalling cascades mediated by 

CDK1, exploration for other downstream targets would be advantageous, such as 4EBP1 and 

DENR. 
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These experiments would demonstrate the possible impact of CDK1 on translation initiation 

in the 5’UTR. 

However, if non-canonical translation initiation is mediated in a cell cycle-dependent manner, 

it needs to be unravelled if ribosomes localize at the same uTISs elements throughout other 

cell cycle stages in a time-dependent manner. The exploration will ensure the identification of 

uTISs features exclusive to mitotic-arrest. Therefore, I suggest to perform further RiboSeq 

experiments of cells arrested in G1, G2 and M phase using the CDK1 inhibitor RO-3306102. 

This inhibitor prevents the progression from G2 to M, which would serve as G2-enriched cell 

population. Upon washing out and release from this drug, cells will proceed through mitosis 

within 45 min102, which would serve as mitotic cell population. Harvesting and replating mitotic 

cells will allow cell cycle progression to harvest an G1 fraction after about three hours. 

Additional PI staining will ensure the cell population enrichment in the respective phase. 

Further approaches would be cell synchronization followed by release and time-dependent 

cell harvest using thymidine, as reported for G1 and S phase enrichment103. This approach 

would ensure the normal transition through cell cycle phases compared to arrest by chemical 

inhibition, which in return would reduce biological variation. 

 

 

3.2 Elevated uORF/ uoORF translation in cancer cells during mitotic-arrest  

The presence of increased RPF density in the 5’UTR prompted me to investigate non-

canonical translation. In an exploratory approach I predicted ORF features in RiboSeq data 

from cancer cells during mitotic-arrest. I determined increased rates of predicted ORFs for 

upstream ORFs (uORFs) and upstream-overlapping ORFs (uoORFs) in mitotically arrested 

cells (Figure 9 c; Supplement: Figure 17 a). Particularly important is the upregulation in U-

2 OS treated with different mitotic-arrest inducing agents. I found a consistent increase in 

comparison to the DMSO-treated asynchronous cells, regardless of the drug`s mode-of-

action. This prompted towards a general cellular response during mitotic-arrest in U-2 OS, 

PC3 and MDA-MB-231 cells. This finding supports the hypothesis of actively-initiating 

ribosomes in the 5’UTR. 

Notably, I also determined slightly increased prediction rates for CDS ORFs. However, to a 

much smaller extent when compared to uORF and uoORF features. This CDS ORF increase 

can be explained by two factors. First, by read amount differences, that is, less reads in the 

mitotic-arrest samples in comparison to the DMSO condition (DMSO: 12,788,200; BI2536: 

8,364,051; Noco: 6,224,505; PTX: 7,850,182; STLC: 6,172,391). This means overall more 

reads that are associated with CDS ORF features in the DMSO condition. However, lower 

total read amounts in mitotic-arrest samples support the significance of the detection of 
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nuORFs in these samples. The second factor would be the mitotic-arrest phenotype, which 

induced this raise by increased RPF densities at the 5’end of CDSs (Figure 7 a,c,e). Elevated 

read amounts will be detected as CDS ORF in a stronger manner. Thus, the translational 

phenotype of upstream accumulating ribosomes might be solely responsible for the increased 

detection rates of CDS ORFs. 

ORF prediction is a computational field with strong bioinformatic resources. Most of these 

algorithms rely on high-quality RiboSeq data to identify ORFs with the characteristic 3-nt 

periodicity of translating ribosomes. Using these tools, researchers uncovered thousands of 

human non-canonical ORFs, which shapes our understanding of these transcriptomic 

features.  However, a recent comparison of ORF-predicting tools pointed out differences in 

the prediction rates of small-upstream ORFs and low cross-overlap104. Tool-overlapping 

features exhibited higher translation levels and amounts of in-frame reads. Unfortunately, this 

study did not include PRICE although this tool was published 5 years before the report on tool 

comparison. In contrast, benchmarking of prediction rates per ORF feature revealed the 

advantage of PRICE in the discovery of high-confidence ORFs in the 5’UTR89. However, future 

annotations should combine the intersected output of different tools to ensure high ORF 

feature coverage. Still, I conclude that the usage of PRICE for the definition of uORF and 

uoORF features was advantageous against the use of other resources.  

Start codon selection is an important process throughout CDS mRNA translation. However, 

non-canonical translation initiation underlies different start codon mechanisms. CDS ORFs 

begin with optimal ATG codons, whereas ribosomes initiate at ncORFs with CTG or ATA 

codons64. Interestingly, my ORF prediction data suggests increased ATG-dependent 

translation during mitotic-arrest (Figure 9 d), because ATG codon percentages increase, 

whereas CTG and GTG start codon percentages remain stable. In contrast, the quantity of 

other non-canonical codon percentages decreased (TTG, AAG, ACG, AGG, ATC). This 

supports a model in which sub-optimal start codons are replaced by optimal start codons, 

which encourages the hypothesis of active translation-initiation in the 5’UTR.  

Despite the highly correlated translational response upon mitotic-arrest with different agents 

(Figure 6 d), my prediction of uORF-containing genes resulted in a treatment-specific 

scattering. The overlap of all treatments is 411 shared genes, which equals 27 % of the input 

amount considering approximately 1100 uORF-containing genes per condition (Figure 9 e). 

However, this number raises significantly, when considering at least two mitotic-arrest 

induction approaches. The difference in uORF-containing genes most likely originates from 

the distinct mechanisms of mitotic-arrest induction. However, my over-representation analysis 

of the 411 shared genes revealed biological functions in nuclear transport and cytoplasmic 

translation (Figure 9 f). Notably, I found that several ribosomal proteins are part of the shared 

uORF-containing genes. All transcripts of cytosolic ribosomal proteins belong to the category 
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of TOPmotif mRNAs (5’ terminal oligo-pyrimidine motif), which starts with an m7G capped C 

nucleotide with 4-15 downstream pyrimidines105. Translation of TOPmotif mRNAs is proposed 

to be regulated by CDK1 through phosphorylation of LARP1 and S6K106,107, which again 

underlines the potential regulatory function of CDK1 for ncORF translation during mitotic-

arrest. The overlap with TOPmotif mRNAs is RPS2, RPS20, RPS24, RPL10, RPL14, RPL17, 

RPL26, RPL27, RPL39, RPL41 and NAP1L1. This raises the question why only these 

transcripts were found as overlap between the four mitotic-arrest mechanisms and not more 

TOPmotif mRNAs. Thus, the overlapping transcripts need to be further characterized in the 

face of other TOPmotif transcripts (as explained later) 

The upregulated translation of nuORF sequences (Figure 10 b) shown by my translational 

efficiency (TE) analysis sets a quantitative perspective to 5’UTR translation initiation. An over-

representation analysis of genes belonging to upregulated transcripts containing nuORFs 

revealed the GO biological terms translation and mitotic spindle organization and cellular 

compartments of the large cytosolic ribosome subunit. This underlines the prior findings of the 

uORF-containing gene overlap between the four inductors of mitotic-arrest (Figure 9 e). 

However, as shown exemplary, other upregulated nuORF-containing genes are associated 

with energy metabolism, mitochondrial translation and oxidative stress responses. 

Corresponding genome coverage data (Figure 10 c) strongly supports the global findings, as 

RNAseq read densities do not change upon treatment. However, I found RiboSeq read 

densities to be increased locally in uORF genomic coordinates, meaning that mRNA transcript 

levels do not change, but mRNA translation levels of uORF sequences are elevated upon 

mitotic-arrest. This suggests increased TE. Notably, I observed a general trend for upregulated 

TE in U-2 OS cells treated with Noco. However, this result was obtained from pseudo-

replicates of matching RNAseq and RiboSeq data to infer general tendencies of uORF 

translational efficiency. Thus, it is crucial to further validate this finding in U-2 OS with at least 

three biological replicates of matching RNAseq and RiboSeq data to solidify reliable 

conclusions of this finding. 

 

Further exploration of this finding should include the repetition of RiboSeq and RNAseq for 

samples during mitotic-arrest with multiple biological replicates (n ≥ 3) and increased 

sequencing depth for RiboSeq. nuORF sequences only comprise a minor fraction of reads 

obtained from RiboSeq, thus, improving read coverage will help to expand and solidify the 

finding of increased TE rates. Furthermore, the current RNAseq data was obtained from poly-

A enrichment using oligo-dT primers. While this approach allows the enrichment of mRNA, it 

also reduces upstream read coverage108. Therefore, this approach might hamper the 

differential analysis of 5’UTR reads by TE calculation. Thus, I would recommend to use an 
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rRNA-depleted total RNAseq approach for further experiments to enrich for 5’UTR read 

coverage. 

Importantly, the current RiboSeq data was exclusively obtained from highly proliferative cancer 

cells, that harbour genetic driver mutations. Despite the importance for cancer research, the 

underlying principles of nuORF translation should also be studied in un-transformed or non-

malignant cells. Functional uORFs are annotated to be translated during cellular stress 

responses, such as amino acid starvation62. Healthy, non-dividing cells should not be affected 

by paclitaxel as rapidly-dividing cancer cells are. Thus, to elucidate the functional role of the 

uORFs that I have found during mitotic-arrest, I suggest RiboSeq experiments of minorly 

transformed cells, such as RPE-1 cells. Also, human or murine primary cells, such as 

fibroblasts or keratinocytes, would be suitable model systems. Paclitaxel treatment in these 

cells would either determine new nuORF elements or features similar to mitotic-arrest. Equal 

elements would reduce the importance for therapeutic exploitation, because these nuORFs 

will give rise to peptides in cancer cells and healthy body cells, which is unfavourable. The 

remaining, mitotic-arrest exclusive features would need to be deeply characterized. 

 

To expand our understanding of translational control of these upregulated elements, I suggest 

further classification based on multiple parameters: Kozak motifs, nuORF length, codon 

context, amino acid content, uORF distance to CDS, GC content and structure prediction.  

Kozak sequences are eukaryotic motifs that include start codons and adjacent nucleotides109. 

These sequences regulate efficiency of translation initiation110. ATG codons provide a strong 

initiation context, however, adjacent sequence motifs can modulate the efficiency. Next, short 

nuORF sequences might provide a TE benefit over longer sequences, because start-to-end 

translation can be performed faster. On the contrary, fast translation of short nuORFs might 

be able to skew TE data towards false negative elements. TE calculation is based on 

unnormalized count tables for pre-defined elements, such as a full mRNA transcript or a uORF. 

These counts serve as input for differential expression analysis. Thus, fast translation of small 

nuORFs would result in a low read count for this element, which might be misinterpreted as 

low TE. On the contrary, count normalization by length e.g., TPM (Transcripts per kilobase 

million), for expression analysis is strictly not recommended88. Hence, analysis of nuORF 

length might reveal a data skew for certain lengths. As another parameter, codon context of 

nuORFs will determine TE. Slowly-translated codons induce ribosomal pauses during 

translation111, which reduces TE. On the contrary, amino acid content might also modulate 

translational speed. The presence of high arginine levels with a high-arginine content uORF-

originating peptide resulted in reduced peptidyl transferase centre activity of ribosomes, based 

on experiments in Neurospora crassa and wheat germ extracts112. Elements of the nuORF 

database exhibit an increased percentage of arginine and alanine (both ~11 %), in contrast to 
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the canonical proteome content of these amino acids (Arg: 5.5 %, Ala: 9 %)90, marking 

differential amino acid content as an important parameter of this database. This feature would 

pose a substantial issue in the detection of nuPeptide with standard proteomics workflows, 

because these incorporate protein digestion with trypsin. This enzyme cleaves peptides and 

proteins at the C-terminal side of Arg and lysine (Lys). Thus, peptide sizes/ molecular weight 

would dramatically drop and may contribute to low coverage of nuPeptides in standard 

proteomic workflows. 

 

Also, uORF distance to CDS might reveal supportive data. RPF distribution in the metagene 

profiles (Figure 8 b,c; Supplements: Figure 16 i, j) during Harringtonine treatment showed 

the strongest read density increase in direct vicinity to the CDS, suggesting uORF-CDS-

distance is very likely to impact TE. Furthermore, global mRNA GC content was shown to 

increase in close vicinity of the translation start site113. This is supported by the GC content in 

the nuORF database (61.4 %), which I have compiled. The average genome GC content is 

about 41 %113. Increased GC contents are associated with complex mRNA secondary 

structure formation. These structures impact translation of the main ORF114,115.  Thus, the 

integration of these parameters with TE data for the classification of nuORF elements would 

pose a substantial gain for the mechanistic characterization of non-canonical translation 

during mitotic-arrest. 

In summary, I was able to detect uORF and uoORF-mediated translation, which is associated 

with increased TE, which lead to the compilation of the nuORF database. However, I highly 

suggest further characterization and expansion of these sequences as explained above. 

 

3.3 nuORF features give rise to HLA complex I presented peptides 

Non-canonical peptides can be presented on the cell surface. Recent work reported that 

5’UTR and 3’UTR peptides were found in HLA complex I structures56,68. Furthermore, other 

drug treatment, such as Doxorubicin and Decitabine, were reported as inductors of tumour 

neoepitopes78,79. Thus, I sought to determine if 5’UTR nuORF elements would give rise to non-

canonical, upstream/upstream-overlapping peptides (nuPeptides) during mitotic-arrest, which 

would be presented on the cell surface. This would hold a promising strategy in the 

identification of new treatment-associated targets for immunotherapy. Additionally, the 

induction of mitotic-arrest with in-clinic chemotherapeutic agent PTX in U-2 OS and the TNBC 

cell line SUM159-PT underlines the potential clinical relevance. 

nuORF-derived peptides were detected for both cell lines using immunopeptidomics in 

collaboration with the DKFZ division of Immunotherapy and Immunoprevention. This is in line 

with prior findings that nuORFs encode biologically relevant, HLA-presented peptides in 
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benign and malignant cells, which suggests a role in cancer cell development and survival116. 

Strikingly, annotated proteome-derived and nuORF-derived peptides for U-2 OS and SUM159 

cells exhibited comparable key peptide parameters. Proteome-derived and nuORF peptides 

cluster to the annotated HLA-alleles of each cell line with high binding affinities (Figure 12 
b,d,c; Figure 13 a,c,d). Interestingly, nuORF-derived peptides are predicted to bind more to 

the HLA-A*32:01 allele and less to HLA-A*02:01 in U-2 OS (Figure 12 b). Conversely, in SUM-

159PT cells, nuORF-derived peptides are predicted to bind less to the HLA-A*02:01 allele, 

whereas the rate of predicted no-binder slightly increases (Figure 13 a). During antigen 

processing, source proteins/ peptides are degraded by the proteasome into peptides. Thus, 

enrichment of certain protein substrates enriches a certain peptide pool. These peptides can 

exhibit different peptide sequences. The resulting possible peptide motifs affect which HLA 

allele is bound. Thus, the allele binding changes in both cell lines suggest alterations in the 

source peptide/ protein pool.  

For practical considerations, this abundance change could affect the usage of HLA-A*02:01 

peptides for screening of immunogenicity, which would need allotype-matching PBMCs 

(peripheral blood mononuclear cell). HLA-A*02:01 is one of the most common alleles globally 
117, thus, screening T cell activation and cytokine release with HLA-A*02:01-binding peptides 

against this allele would enable a broader and globally-relevant applicability.  

HLA complex I peptide length is another key parameter for high quality immunopeptidomics 

data. Normal HLA complex I peptide lengths vary between 8-11 AA residues, whereas HLA 

complex II peptides exhibits lengths between 13-25 AA residues. Notably, I found that 

annotated proteome and nuORF-derived peptides showed equal peptide k-mer distributions, 

peaking at 9-mer sequences (Figure 12 c; Figure 13 b). In both cell lines, nuORF-derived 

peptides exhibit a small increase in 11-mer peptides. Notably, cellular stress conditions have 

been described to induce the HLA class I binding to peptides with > 10 AA residues. This was 

shown for 11-mer, 12-mer and 14-mer peptides118,119,120 due to viral infection or immune 

responses. Perhaps, the 11-mer nuPeptides will also induce stable HLA binding and 

immunogenic responses. 

Altogether, the comparable allele clustering, binding affinities and peptide length distribution 

between annotated proteome-derived and nuPeptides supports the authenticity of nuPeptides 

as HLA class I binders and their comparable quality to annotated proteome-derived peptides. 

This suggests that nuPeptides may represent an underappreciated source of cancer antigens. 

 

Next, I aimed to quantify nuPeptide presentation in response to mitotic-arrest. For this, I 

compared peptides from PTX treated cells in comparison to DMSO. With the aim of finding 

overlapping HLA-A*02:01-binding peptides between U-2 OS and SUM-159PT, I set 

moderately-low constraints for log2 fold change (LFC ≥ 0.5) and suitable constraints for the 
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adjusted p-value (p-adj ≤ 0.05). Hence, I identified 13 and 25 nuPeptides in U-2 OS and SUM-

159PT cells during mitotic-arrest, respectively. Corresponding transcripts levels of these 

candidates during mitotic arrest did not indicate changes, whereas RiboSeq read density 

markedly increased in the respective uORF sequence, which is further supported by increased 

read densities at upstream initiation sites using Harringtonine run-off assays (Figure 8 b,c). 

Furthermore, I found none of the listed peptides to be annotated in the HLA ligand atlas or 

aligned against RefSeq protein using ‘National Center for Biotechnology Information’ NCBI 

protein BLAST. This underlines their treatment-associated and novel nature. Thus, we have 

termed these sequences as “therapy-induced uORF/uoORF-derived epitopes”. 

Qualitative analysis of presented ligands in U-2 OS and SUM-159PT cells did not show 

presentation of treatment-specific nuPeptides, meaning that nuPeptides were also found in 

DMSO-treated asynchronous samples. This effect can potentially be mediated by two factors. 

First, low levels translation of nuPeptides as part of normal cell homeostasis or low baseline 

level of cellular stressors, that mediated the translation of nuORF features. Second, 

asynchronous cell population of highly dividing cancer cells contain mitotic cells in small 

fractions (Figure 6 a,b; Figure 7 g). The PI staining that I have performed in U-2 OS cells 

showed enrichment of G2/M state cells of about 36 %, contributing to G2 and M state. This is 

also in line with my immunoblot experiment in Figure 7 g, which showed minor abundance of 

phospho-Ser10 H3 in the DMSO and DMSO+Torin1 condition, that is, mitotic cells in the 

asynchronous population.  

Despite the moderate threshold, I did not detect a peptide overlap between the two cell lines. 

This might be mediated by several factors: stochastic proteasomal digestion of proteins/ 

peptides for HLA presentation. This might induce peptide sequence variances. Furthermore, 

U-2 OS and SUM-159PT exhibit different HLA alleles, which harbour differential peptide 

binding affinities. Thus, future experiments for the identification of shared peptides should be 

performed with allele-matching cancer cell lines.  

The overall moderate presentation of nuPeptides in comparison to annotated proteome-

derived peptides can be explained by the overall low abundance of nuPeptides in the global 

proteome. Abundant proteins dominate the pool of cleaved peptides suitable for HLA loading. 

Despite the translational up-regulation of nuORF sequences, I found that canonical proteins 

of the annotated proteome dominate the peptide pool, leaving only small space for nuPeptides 

(~1 % in U-2 OS and ~0.5 % in SUM-159PT of total peptides). Recent publications also 

highlight the overall amount of uORF- and uoORF-derived peptides as 0.75 %, of total mapped 

peptides68.  

Peptide stability poses an additional factor for peptide presentation. nuPeptides might be 

classified as ‘defective ribosomal products’ (DRiPs), which are rapidly cleaved by the 

proteasome upon translation121. Furthermore, nuORF-mediated peptides are described to be 
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more instable and have more intrinsic disordered regions122. This suggests that nuPeptides 

also exhibit reduced stability, which would further reduce the number of determined HLA class 

I ligands. 

 

The number of down-regulated peptides upon mitotic-arrest might result from lower translation 

rates of this feature. The nuORF database was constructed from multiple cell lines using high-

confidence features from asynchronous cells and mitotic-arrest. Thus, nuPeptides would 

appear to be down-regulated in mitotic arrest, if these were highly present in asynchronous 

cells. These high-confidence features would also be part of the database. Furthermore, PTX 

treatment might give rise to peptides with stronger HLA binding affinities, which would shift 

peptides with lower HLA binding affinities towards down-regulated ligands in this condition.  

Future experiments should establish the connection of elevated nuPeptide presentation with 

immunogenicity. First, identified target peptides should be technically validated in LC-MS/MS 

using isotope-labelled synthetic peptides to assure peptide spectrum authenticity. Next, 

peptide-induced immunogenicity should be screened against allotype-matching PBMCs from 

human donors. This can be achieved by ELIspot assays and flow cytometry, to determine T 

cell activation and cytokine synthesis, such as IFNg, TNFa and GranzymeB. With this 

approach immunogenic peptides can be identified, which poses a substantial knowledge gain 

in the field of immunotherapy. 

Post-translational modification, such as phosphorylation, modulate peptide HLA class I and II 

binding123,124. Therefore, this modification might preserve peptides from degradation. Notably, 

cancer-associated deregulation of protein phosphorylation can give rise to new epitopes123, 

which were shown to promote robust CD8+ T cell responses125. Interestingly, I observed 

detection of predicted low-binding affinity or predicted non-binder peptides in the IPomics data 

from U-2 OS and SUM-159-PT cells (Figure 12 b, Figure 13 b). This finding might be 

mediated by peptide phosphorylation anchors, that allow HLA class I binding. Thus, I highly 

suggest to perform phosphoproteomics on asynchronous cell populations and cells during 

mitotic-arrest. This would allow further classification of source proteins and modified HLA 

ligands. Identified phospho-peptides should also be synthesized with this modification and 

tested for induction of immunogenicity. This approach will significantly enrich the pool of 

possible peptide targets. 

 

Collectively, my findings provide confident evidence about the differential presentation of novel 

nuPeptides in HLA complex I structures upon mitotic-arrest with PTX. This emphasizes the 

role of the therapy-induced immunopeptidome. 
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3.4 Paclitaxel induces differential nuORF-derived peptide presentation and 

cancer killing 

Next, I investigated the targeted immunogenic potential of PTX-induced uORF translation. I 

selected two high-confidence uORF elements with upregulated HLA complex I presentation: 

EIF4G2 and TPX2. I prepared 5’UTR-SIINFEKL reporter constructs as an orthogonal 

approach to underline the functional role of uORF peptides to elicit immune responses. For 

this, 5’UTRs were cloned into luciferase reporter vectors by F. Loayza-Puch with the uORF-

derived peptide sequence change to SIINFEKL. This peptide originates from chicken 

ovalbumin and is recognized by murine OT-I CD8+ T cell with transgenic TCRs. Replacing the 

actual peptide sequence with SIINFEKL allowed for better comparison between different 

uORFs, because peptide stability is equal and allows the comparison of the presentation of 

two different uORF sequences. Furthermore, the exchange also allowed the focus on 

translational control of uORFs during PTX-induced mitotic-arrest. Furthermore, the SIINFEKL 

peptide has strong binding affinity to the murine H2-Kb allele, which reduces the need of 

allotyping for fitting human alleles of the original nuPeptide. Thus, for these experiments the 

murine cancer cell line TC1 was chosen. These experiments aimed to model PTX-induced 

uORF translation and peptide presentation. These experiments were performed in a collective 

effort with Rossella Del Pizzo, Zhiwei Tang and Fabricio Loazya-Puch. 

 

First, we transfected uORF-SIINFEKL reporter constructs in TC1 followed by DMSO treatment 

or mitotic-arrest. SIINFEKL presentation was inferred with the dye-conjugated 25-D1.16 

antibody, which specifically detects SIINFEKL-loaded H2-Kb and aids detection of SIINFEKL 

presentation by flow cytometry. Mitotic-arrest significantly increased SIINFEKL presentation, 

regardless of the molecular mechanism of arrest induction (Supplement: Figure 18 d,e). Start 

codon mutation from optimal ATG to sub-optimal ATA reduced SIINFEKL-presentation.  

Next, we investigated the immune response induction of uORF-induced SIINFEKL 

presentation. For this, TC1 cells we transfected with the uORF-SIINFEKL constructs, treated 

with PTX and co-cultured with ex vivo activated OT-I T cells. I found that co-culture induced a 

significant increase in IFNg secretion and T cell-mediated cancer killing. This effect was only 

observed in transfected TC1 cells treated with PTX and not with PTX alone (Figure 15 c,d). 

Notably, I also observed reduced IFNg secretion and cancer killing capabilities when using 

start codon mutated constructs from optimal ATG to suboptimal ATA. 

These findings provide evidence that uORF-mediated peptide presentation can be induced by 

mitotic-arrest, regardless of the molecular mechanism. Also, uORF-derived peptides can elicit 

cytokine secretion and cancer killing. Furthermore, from this data I conclude that start codon 

strength appears to be an important factor for the non-canonical translation of uORFs in 5’UTR 
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sequences. Importantly, I did not find the increased SIINFEKL presentation to be mediated by 

differential reporter abundance, as RT-qPCR detection of luciferase transcript levels were 

comparable for both constructs between DMSO and PTX treatment (Supplement: Figure 18 

f). This rules out a treatment-induced bias of transcriptional upregulation. 

PTX can induce T cell-mediated cytotoxicity in an TCR-independent manner by release of 

cytotoxic extracellular vesicles126. Notably, to eliminate any potential TCR-independent cancer 

killing, TC1 cells were washed and medium was changed before T cell addition by Rossella 

Del Pizzo. Thus, preventing OT-I CD8+ T cells from PTX exposition. This is supported by the 

lack of cancer killing capacity of OT-I against un-transfected TC1 cells treated with PTX. 

 

PTX is a potent compound for the induction of mitotic-arrest and is commonly used as first-

line of therapy in the treatment of breast cancer, ovarian cancer and non-small lung cancer. 

Beyond the annotated function of microtubule stabilization of the mitotic spindle apparatus, 

PTX is reported to elicit immunomodulatory effects in malignant and non-malignant cells. Apart 

from mitotic-arrest, PTX was shown to induce immunogenic cell death (ICD). This apoptotic 

phenomenon induces immune responses, thus, contributes to cancer killing of residual tumour 

cells127. ICD is characterized by the release of damage-associated molecular patterns 

(DAMPs). Indeed, PTX promotes the exposure calreticulin and ERp57 (protein disulfide 

isomerase family A member 3) DAMPs, which contribute to T cell activation and antigen-

presenting cell (APC) activation127,128. Additionally, PTX increases levels of IFNg secreting 

CD8+ T cell and IL2 secreting CD4+ T cells. Hence, PTX supports the activation of APCs, 

cytotoxic and helper T cells which is crucial for efficient anti-tumour immunity.  

On the contrary, PTX was shown to contribute to metastasis by promoting lysyl oxidase (LOX) 

expression in CD8+ T cells, which induces remodelling of the extracellular matrix129. This host-

mediated mechanism aids cancer cell seeding and invasion. 

As described before, PTX also induces very strong adverse effects in patients. These imply 

immunogenic hypersensitivity reaction, solvent-dependent and independent. The PTX solvent 

Cremophor EL® was shown to promote aerobic glycolysis and inflammatory gene expression 

via NF-kB activation130. However, adverse effects are still reported for drug formulations 

without this particular solvent131. Thus, the inflammatory induction by PTX might be partially 

explained with nuPeptide presentation. But this leaves the question if the intra-venous 

systemic administration of PTX also alters the immunopeptidome landscape in other tissues, 

such as internal organs, muscle or skin.  

This divergence underlines the importance of future research on PTX effects on cancer and 

immune cells.  
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3.5 Perspective 

This work contributed to the field of PTX research with the discovery of its new role as 

uORF/uoORF-derived peptide inducer. These findings present a promising strategy to elicit 

immune responses in chemotherapy-treated cancer. 

In perspective, the presented findings should be further supported by the investigation of the 

potential role of the CDK1-DENR axis, as mentioned above. Comprehensive TE calculation 

following PTX treatment in cancer cell lines will establish a deeper understanding of nuORF 

translation. Subsequent immunogenicity screening of upregulated peptides will determine the 

immunogenic potential of nuPeptides in vitro. 

However, the transformation of these fundamental biology findings to clinical settings is crucial. 

As described above, peptide sequences and nuORF sources vary in between cell lines, based 

on specific allele expression and probably genetic driver mutations, which influence the 

baseline transcriptional landscape. Only expressed transcripts that contain nuORF sequences 

will provoke non-canonical translation. Thus, a comprehensive nuORF compendium of solid 

cancers will help to identify cancer-specific nuORF translation. This can be achieved by 

quantitative RiboSeq performance from cancer cell lines and patient-derived xenografts of 

different cancer types. This would allow the collection and characterization of nuORF features, 

based on the listed parameters above: Kozak motif, nuORF length, codon context, amino acid 

content, uORF distance to CDS, GC content and structure prediction. This comprehensive 

collection will aid the identification of cancer type-dependently translated nuORF features. In 

combination with low-input immunopeptidomics novel nuPeptides can be determined and 

further classified for immunogenicity screening.  

Throughout tumorigenesis, cancer cell harbour genetic mutations, such as single-nucleotide-

variants (SNVs). These SNVs are well-studied in the context of transcriptional changes or 

loss-of-function in the resulting protein132,133. In addition, integration of RNAseq into the nuORF 

characterization will support the identification of mutated 5’UTR regions. Correlating 5’UTR 

mutations with nuORF translation might reveal mutational hot spots, that alter translation and 

the resulting peptide sequences. Mutated tumour peptides are more likely to elicit immune 

responses, thus, in-depth knowledge about 5’UTR mutations will aid the discovery of new 

immunotherapy targets. 

In respective to adverse effects and auto-immunity, performing immunopeptidomics from 

internal organs, muscle and skin tissue in immunocompetent mouse models following PTX 

treatment will shape our understanding how cytostatic drugs might provoke severe 

immunogenic adverse effects, such as anaphylaxis. Eventually, this knowledge will foster 

refined effective cancer treatments with less adverse effects for the sake of better patient 

quality of life. 
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4 Methods 
 

The text of the following chapter has been taken from the manuscript entitled “Upstream open 

reading frame translation enhances immunogenic peptide presentation in mitotically arrested 

cancer cells”85 and was originally written by myself. 

 

4.1 Method descriptions 

4.1.1 Cell culture 

I cultured all cell lines in DMEM High Glucose (Table 5) supplemented with 10 % FBS and 

1 % PenStrep at 37 °C and 5 % CO2. For mitotic shake-off experiments, I cultured cells to a 

confluency of 70 % and treated with mitosis-arresting compounds for 16 hours (BI: 0.1 µM, 

Nocodazole: 0.5 µM, Paclitaxel: 1 µM, STLC: 5 µM). I harvested mitotic cells using physical 

disruption via shake-off. I centrifuged the medium at 600x g for 10 min at 4 °C and washed 

the cell pellets in ice-cold PBS. All cell lines were regularly checked for contamination. 

 

4.1.2 PI staining 

To determine mitotic-arrested population fractions, I harvested cells during mitotic-arrest and 

stained DNA content with propidium iodide (PI). In brief, I harvested cells as described above 

and resuspended in them in Flow Wash Buffer (Table 7). Next, I counted cells with a Casy 

Counter system and adjusted to equal cell amounts. I fixed cells in ice-cold absolute ethanol 

and stored them overnight at -20 °C. I washed cells three times with Flow Wash Buffer until 

resuspension in PI staining buffer and incubation at 37 °C for 30 min under constant shaking. 

Next, I washed all samples twice with Flow Wash Buffer, filtered into round-bottom tubes with 

cell strainer and measured with a BD Canto II system. To select PI-stained single cells the 

following gating strategy was applied to all samples: I separated cells using FSC and SSC to 

distinguish cell populations from debris. Next, I identified single cells by combining FSC-H and 

FSC-A, followed by 488 nm excitation and filtering for BL84/42 signal (Table 1, Table 
2)(Supplement: Figure 19). 

 

4.1.3 Immunoblotting 

I harvested cell pellets and lysed in whole-cell lysis buffer. Next, I added 1 µl of 0.1 M MgCl2 

solution and 2.5 U of Benzonase (Table 10) and incubated at 37 °C for 10 min to digest DNA. 

I used the Bradford assay to determine and level protein input. Next, I diluted lysates with 

water and 4x Laemmli Buffer (Table 6) (supplemented with 10 % b-mercaptoethanol). I used 
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SDS-PAGE to separate samples and transferred to nitrocellulose membranes using a 

TurboBlot system with transfer-buffer. Next, I blocked membranes in TBS-T (Table 7) plus 

either 5 % non-fat dry milk or 5 % BSA for 1 hour at room temperature. I diluted primary 

antibodies (Table 12) in TBS-T plus either 5 % non-fat dry milk or 5 % BSA and incubated with 

the membrane overnight at 4 °C and gentle rotation. Next, I washed the membranes 4 times 

with TBS-T for 5 min at room temperature before incubating with the secondary antibody in 

TBS-T for 1 hour at room temperature, protected from light. Eventually, I washed the 

membranes 4x with TBS-T and one wash with TBS for 5 min each, followed by imaging by an 

Odyssey Clx system. 

 

4.1.4 RiboSeq 

RiboSeq library preparation was performed as published before43. 

I processed RiboSeq samples as the following. At experiment end point, I washed cells with 

ice-cold PBS supplemented with 100 µg/ml CHX. Next, I resuspended the samples in lysis 

buffer (20 mM Tris-HCl pH 7.5, 10 mM MgCl2, 100 mM KCl, 1 % Triton-X 100, supplemented 

with 100 µg/ml CHX, 2 mM DTT and 1x Complete Protease Inhibitor (Roche)) (Table 3,Table 
4, Table 7) and treated with 1300 U/ ml RNaseI (Ambion) (Table 10). I layered the samples 

onto sucrose gradients, prepared from sucrose concentrations of 47 % to 7 % with 20 mM 

TRIS-HCl pH 7.5, 10 mM MgCl2, 100 mM KCl, 100 µg/ml CHX and 2 mM DTT. Next, samples 

were centrifuged for 2 hours at 36,000 rpm and 4 °C using a Beckman-Coulter ultracentrifuge 

(Table 1) and SW41-Ti rotor. Subsequently, I harvested monosome-containing fractions and 

digested with 50 µl recombinant Proteinase K (Roche) and 1 % SDS for 45 min at 45 °C. Next, 

I extracted total RNA using a standard phenol-chloroform-guanidinium thiocyanate protocol 

(Table 8). I size selected the resulting ribosome protected fragments (RPFs) (Table 9) with a 

denaturing urea-polyacrylamide gel and 3’ dephosphorylated these using T4 PNK at 37 °C for 

1 hour. Next, I ligated 5’ pre-adenylated linkers to the 3’ end of RPFs using T4 RNA Ligase 2 

truncated KQ at 22 °C for 3 hours, following residual linker degradation with RecJf and 5’ yeast 

de-adenylase for 45 min at 30 °C. Next, I performed rRNA depletion using custom biotinylated 

rRNA-oligonucleotides and streptavidin-coated magnetic beads. After reverse transcription 

using the SuperScriptIII First-Strand Synthesis Kit and RNA denaturation with 5 M NaOH for 

3 min at 95 °C, I circularized RPFs with the CircLigase ssDNA Ligase (Table 10) and 

submitted these to index integration via PCR with the Q5 High Fidelity 2x Master Mix (Table 
13,Table 14). I size selected the resulting samples with an 8 % non-denaturing PAGE gel. 

Next, I quantified the DNA via Qubit dsDNA HS kit and adjusted to 2 nM concentration, suitable 

for NextSeq2000 sequencing.  
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4.1.5 Harringtonine assay 

Harringtonine assay-based RiboSeq data was supplied by Fabricio Loayza-Puch and Reuven 

Agami. In brief, cells were treated with 2 µg/ml Harringtonine at different time points before 

harvest. Control cells were scraped into medium, whereas cells arrested in mitosis were 

harvested by physical disruption and collecting medium. All samples were pelleted and 

resuspended in lysis buffer (20 mM Tris-HCl pH 7.5, 10 mM MgCl2, 100 mM KCl, 1 % Triton-

X 100, supplemented with 100 µg/ml CHX, 2 mM DTT and 1x Complete Protease Inhibitor) 

(Table 3,Table 4). Thus, all samples were exposed to same Harringtonine treatment time. 

 

4.1.6 5’UTR cloning  

I amplified a synthetic DNA template containing the 5' UTR and the coding sequence for the 

SIINKEKL peptide by PCR using primers with overlapping sequences complementary to the 

pGL3-Promoter vector (Promega). Following PCR, I gel-purified the fragments to remove any 

non-specific products. I linearized the pGL3-Promoter vector using HindIII- HF. I combined the 

purified insert and linearized vector with NEBuilder HiFi DNA Assembly Master Mix and 

incubated the samples at 50°C for 60 minutes. I transformed the assembled product into 

competent cells for propagation and further analysis.  

 

4.1.7 Mice 
OT-I animals were bred in the German Cancer Research Center (DFKZ) animal facility. All 

mice were kept in a pathogen-free facility and used according to the DFKZ and following 

permission by the controlling government office (Regierungspräsidium Karlsruhe) according 

to the German Animal Protection Law, and in compliance with the EU Directive on animal 

welfare, Directive 2010/63/EU. 

 

4.1.8 CD8+ T cell isolation and culture 

I isolated primary naïve CD8+ OT-I T cells using the MojoSort Mouse CD8 Tcell isolation kit 

and subsequently activated them for 72 hours on plates coated with 2 µg/ml aCD3 and 2 µg/ml 

aCD28 at 37 °C (Table 12). I maintained the T cells in RPMI1640 supplemented with 10 % 

FBS, 1 % penicillin-streptomycin, 1 mM sodium pyruvate, 20 mM HEPES, 50 µM b-

mercaptoethanol and 10 ng/ml murine IL-2. 
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4.1.9 T cell killing assay 
First, TC1 cells were transfected with the uORF-SIINFEKL reporters using Lipofectamine 3000 

by Zhiwei Tang. Following 24 hours post-transfection, F. Loayza-Puch seeded uORF-

SIINFEKL-reporter transfected mouse cancer cells (TC1) in 12-well plates with DMEM High-

Glucose medium and treated these with 1 µM PTX the next day. The cells were washed by F. 

Loayza-Puch with PBS and he replaced the medium with CD8+ OT-I T cells in RPMI1640 

medium at a ratio 1:2. Following 24 hours of incubation at 37 °C in a 5 % CO2 atmosphere, 

the cells were washed with PBS and stained with crystal violet by F. Loayza-Puch to evaluate 

the killing efficiency. Imaging  and analysis  was conducted by F. Loayza-Puch using the Dual 

Lens System V850 Pro Scanner (Epson), and colony area was quantified using a previously 

published ImageJ plugin134. 

 

4.1.10 Flow cytometry  

TC1 cells were transfected with the uORF-SIINFEKL reporters using Lipofectamine 3000 by 

Zhiwei Tang. The following steps were also performed by Zhiwei Tang. After 24 hours post-

transfection, cells were synchronized in mitosis by treatment with 1 μM PTX for an additional 

16 hours. Following mitotic arrest, cells were washed with PBS, detached using PBS-EDTA, 

and then pelleted. The cells were subsequently washed with PBS containing 0.5% BSA and 

incubated on ice and in the dark with APC-conjugated anti-mouse H-2Kb-SIINFEKL antibodies 

(Table 12) for 30 minutes. After incubation, the cells were washed twice with PBS containing 

0.1% BSA and analysed using a FACS Canto II cytometer. Data analysis was conducted by 

Zhiwei Tag using FlowJo V10.4 software. 

 

4.1.11 IFN-γ quantification  

Cytokine release from OT-I CD8+ T cell co-culture was measured from the cell supernatant 

by Rossella Del Pizzo using the ELISA MAX Deluxe Set Mouse IFN-γ, following the 

manufacturer’s guidelines. Each sample was analysed with the Multiskan FC plate reader 

(Table 1), using absorbance readings at 450 nm and 570 nm for subtraction. Final 

concentrations were calculated by Rossella Del Pizzo using a 4-parameter logistic curve-fitting 

algorithm in GraphPad Prism.  

 

4.1.12 Quantitative real-time PCR  

I reverse-transcribed a total of 500 ng of RNA using LunaScript RT Supermix and performed 

quantitative real-time PCR with Luna Universal qPCR Mix. I obtained Ct values using the 
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QuantStudio 5 RT qPCR System and analysed the data with QuantStudio Design and Analysis 

Software v2.6.0. Eventually, I calculated mRNA fold change of target genes using the ΔΔCt135 

method, with mRNA expression normalized to GAPDH. Primers are listed in (Table 15). 

 

4.1.13 Immunopeptidomics sample processing 

I harvested Input cell lines (U-2 OS, SUM159) for immunopeptidomics in triplicates with 5x107 

cells per replicate. I treated the cell line U-2 OS with 1 µM PTX and SUM159 with 0.1 µM PTX. 

For DMSO-treated control conditions, I gently scraped cells in ice-cold PBS. For PTX-treated 

conditions, I harvested mitotic cells using physical disruption by shake-off, spun them at 

600x g for 10 min at 4 °C and washed with ice-cold PBS. I counted all samples of all conditions 

using a CASY II system and snap-frozen. 

 
The following parts were performed and described by Rebecca Köhler and Jonas P. Becker 

from the DKFZ Division of Immunotherapy and Immunoprevention85.  

Immunoprecipitation of HLA class I:peptide complexes was performed as previously 

described136 with additional steps for the forced oxidation of methionine using H2O2 and 

reduction and alkylation of cysteine using tris(2-carboxyethyl)phosphine (TCEP) and 

iodoacetamide (IAA). Lyophilized peptides were dissolved in 12 µl of 5% ACN in 0.1% TFA 

and spiked with 0.5µl of 100 fmol/µl Peptide Retention Time Calibration (PRTC) Mixture 

(Pierce) and 10 fmol/µl JPTRT 11 (a subset of peptides from the Retention Time 

Standardization Kit; JPT) and transferred to QuanRecovery Vials with MaxPeak HPS (Waters, 

Milford, MA, USA). All samples were analyzed using an UltiMate 3000 RSLCnano system 

coupled to an Orbitrap Exploris 480 equipped with a FAIMS Pro Interface (Thermo Fisher 

Scientific). For chromatographic separation, peptides were first loaded onto a trapping 

cartridge (Acclaim PepMap 100 C18 μ-Precolumn, 5μm, 300 μm i.d. x 5 mm, 100 Å; Thermo 

Fisher Scientific) and then eluted and separated using a nanoEase M/Z Peptide BEH C18 

130A 1.7µm, 75µm x 200mm (Waters). Total analysis time was 120 min and separation was 

performed using a flow rate of 0.3 µl/min with a gradient starting from 1% solvent B (100% 

ACN, 0.1% TFA) and 99% solvent A (0.1% FA in H2O) for 0.5 min. Concentration of solvent B 

was increased to 2.5% in 12.5 min, to 28.6% in 87 min and then to 38.7% in 1.4 min. 

Subsequently, concentration of solvent B was increased to 80% in 2.6 min and kept at 80% 

solvent B for 5 min for washing. Finally, the column was re-equilibrated at 1% solvent B for 11 

min. The LC system was coupled on-line to the mass spectrometer using a Nanospray-Flex 

ion source (Thermo Fisher Scientific), a SimpleLink Uno liquid junction (FossilIonTech) and a 

CoAnn ESI Emitter (Fused Silica 20 µm ID, 365 µm OD with orifice ID 10 µm; CoAnn 

Technologies). The mass spectrometer was operated in positive mode and a spray voltage of 
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2400 V was applied for ionization with an ion transfer tube temperature of 275 °C. For ion 

mobility separation, the FAIMS module was operated with standard resolution and a total 

carrier gas flow of 4.0 l/min. Each sample was injected twice using either a compensation 

voltage of -50 V or -70 V for maximal orthogonality and thus increased immunopeptidome 

coverage. Full Scan MS spectra were acquired for a range of 300 – 1650 m/z with a resolution 

of 120.000 (RF Lens 50%, AGC Target 300%). MS/MS spectra were acquired in data-

independent mode using 44 previously determined dynamic mass windows optimized for HLA 

class I peptides with an overlap of 0.5 m/z. HCD collision energy was set to 28% and MS/MS 

spectra were recorded with a resolution of 30.000 (normalized AGC target 3000%). 

 

4.1.14 Immunopeptidomics spectra analysis 

This analysis was performed and described by Jonas P. Becker85.  

MS raw data was analysed using Spectronaut software (version 17.6; Biognosys137) and 

searched against the UniProtKB/Swiss-Prot database (retrieved: 21.10.2021, 20387 entries) 

as well as a database containing protein sequences longer than 7 amino acids predicted from 

translation of uORFs. Search parameters were set to non-specific digestion and a peptide 

length of 7-15 amino acids. Carbamidomethylation of cysteine and oxidation of methionine 

were included as variable modifications. Results were reported with 1% FDR at the peptide 

level. Peptides identified by Spectronaut were further analyzed using NetMHCpan 4.1 binding 

predictions138, Gibbs 2.0 clustering of peptide sequences139, and retention time prediction by 

DeepLC140. uORF-derived peptide sequences were manually validated using Skyline (version 

22141) by comparison against spectral libraries in silico predicted using PROSIT142. Normalized 

spectral angles (NSAs) were calculated as described previously143. Quantification of HLA class 

I-presented peptides was performed as described previously74 using the raw output at the MS2 

level from Spectronaut 17.6 with cross-run normalization disabled and a custom script in the 

R programming language. Peptides with an FDR ≤ 0.05 and an foldchange > 2 were defined 

as “hits” while peptides with an FDR ≤ 0.2 and an foldchange ≥ 1.5 were defined as 

“candidates”. All results were visualized using in-house developed R scripts. 

 

4.1.15 RiboSeq data processing 

Samples were sequenced in cooperation with the group of Reuven Agami at the Netherlands 

Cancer Institute, Amsterdam, or I sequenced the samples at the Sequencing Open Lab 

affiliated with the DKFZ Genomics Core Facility. The FASTQ raw data was provided by the 

DKFZ Genomics Core Facility. In brief, I trimmed sample adapters using cutadapt (v3.4)144 

and demultiplexed with barcode_splitter from FASTX-toolkit (v0.0.6) (Gordon and Hannon, 
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2010). I dropped fragments smaller than 30 nt. I performed UMIs extraction using umi_tools 

(v1.1.1)145 By BLAST-Like Alignment Tool (BLAT) (v36x2), I filtered out and discarded rRNA 

reads146. The rRNA index for RNA18S5, RNA28S5 and RNA5-8S5 was constructed by 

Ekaterina Stepanova manually from NCBI RefSeq annotation. I aligned the remaining reads 

with Spliced Transcripts Alignment to a Reference (STAR) (v2.5.3a)147 to GRCh37/hg19 with 

--outSAMtype BAM Unsorted --readFilesCommand zcat --quantMode TranscriptomeSAM 

GeneCounts --outSAMmapqUnique 0. I obtained genome coverage bigwig tracks using 

samtools (v1.15.1)148 and bedtools (v2.24.0)149. 

 

4.1.16 Read clustering 

I filtered counting tables from hg19 alignment with ³ 20 reads per sample and feature. Next, I 

determined trimmed mean of M-values (TMM) for cross sample comparison using the 

“calcNormFactors” function from edgeR150. I used the resulting TMM-normalized counts per 

million for heatmap creation using the libraries pheatmap, RColorBrewer and viridis with R 

Statistical Software (v4.2.0; R Core Team). 

 

4.1.17 Transcript distribution 

To analyse ribosome transcript distribution, I used a the transcript distribution software of the 

Diricore package48. The following paragraph describes the rationale of this analysis. 

The most representative isoform for each gene was selected by using a hierarchical selection 

strategy. RPF counts were obtained for each selected transcript and intra-gene normalization 

was performed by dividing the cumulative read counts for each region (5’UTR, CDS, 3’UTR) 

by the total RPF counts for that transcript, to allow comparison across different regions of the 

same transcript. Next, RPF density was computed across regions for every transcript using 

read count interpolation over a fixed grid of 2000 points. Transcripts with fewer than 50 reads 

were excluded from the downstream analysis. Next, interpolated RPF densities across 

transcripts were averaged and subjected to Gaussian smoothing for noise reduction. Finally, 

resulting RPF densities were plotted with corresponding transcript regions. All analysis parts 

were conducted using custom Python scripts incorporating numpy, scipy, and matplotlib 

libraries. 
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4.1.18 RPF Location Percentage 

To obtain percentages of RPFs within the 5’UTR and 3’UTR, I performed an analysis with 

Ribowaltz (v1.2.0)151 with R Statistical Software (v4.2.0; R Core Team). I extracted the numeric 

values from the P-site percentage feature of Ribowaltz. 

 

4.1.19 Over-representation analysis 

I calculated enriched gene sets by clusterProfiler152 (Figure 9 f, Figure 17 b) with R Statistical 

Software (v4.2.0; R Core Team) and using a custom background of all genes detected in this 

RiboSeq experiment. For the over—representation analyses of genes of differentially 

translated nuORF features (Figure 10; Supplement: Figure 17 d) and nuPeptides (Figure 
14; Supplement: Figure 18 c), I performed an analysis using enrichR153 without the use of a 

custom background.   

 

4.1.20 Upstream translation initiation sites quantification 

I predicted uORF and uoORF genomic coordinates from U-2 OS RiboSeq data, compiled this 

information in SAF format and used it for counting using featureCounts154 from the subread 

package (v1.5.1). I filtered the resulting counting tables for ³ 5 reads per sample and feature. 

Next, I determined trimmed mean of M-values (TMM) for cross sample comparison using the 

“calcNormFactors” function from edgeR150. I subjected normalized counts per million to 

sample-specific outlier calculation using the Grupps function. Subsequently, I calculated 

Log2(TMM-normalized counts) using a custom awk script. 

 

4.1.21 ORF Prediction  

I predicted ORFs using PRICE56. In brief, I re-aligned umi-extracted and rRNA filtered FASTQ 

files using STAR (v2.5.3a) to GRCh37/hg19 with important outSAMattributes needed by 

PRICE (--outSAMtype BAM Unsorted --alignEndsType Extend5pOfReads12 --

outSAMattributes nM MD NH --readFilesCommand zcat --quantMode TranscriptomeSAM 

GeneCounts --outSAMmapqUnique 0). I prepared the PRICE reference genome as described 

using hg19 FASTA and GTF files from Gencode. Next, I ran PRICE with the respective BAM 

files using ‘~/Gedi/Gedi_1.0.5/gedi -e Price -D -genomic hg19 -progress -plot’. Subsequently, 

I quantified all ORF features with p-value ≤ 0.05 with standard UNIX-commands in a custom 

bash script. 

Subsequently, I adjusted ORF tables from PRICE to the BED format with chromosome, ORF 

feature start position, ORF feature end position, ORF feature ID, chromosome strand and 
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Gene ID. Next, I converted the resulting BED6 files to BED12 format1, which I used as input 

for bedtools149 getfasta with -s -name -split. Eventually, I generated peptide sequences using 

the faTrans program from the UCSC utility tools155. 

 

4.1.22 RNAseq Processing 

Samples were sequenced in cooperation with the group of Reuven Agami at the Netherlands 

Cancer Institute, Amsterdam. FASTQ files were provided by FLP. First, I performed adapter 

trimming with cutadapt (v3.4). Next, I aligned samples to GRCh37/hg19 using STAR147 

(v2.5.3a) with GRCh37/hg19 with --outSAMtype BAM Unsorted --readFilesCommand zcat --

quantMode TranscriptomeSAM GeneCounts --outSAMmapqUnique 0. I obtained genome 

coverage bigwig tracks using samtools148 (v1.15.1) and bedtools149 (v2.24.0). 

 

4.1.23 Translational efficiency 

I calculated translational efficiency of ncORFs by extracting IDs, start and end positions of 

predicted uORF and uoORF features (p-value < 0.05) from PRICE ORF tables and arranged 

these in SAF format, creating a ncORF SAF reference file. Next, I determined read counts in 

ncORF regions with featureCounts154 (v1.5.1) and genome-based BAM files from RNAseq and 

RiboSeq. I subjected the resulting aggregated count matrix to RiboDiff52 (v0.2.1) calculation. I 

discarded features with missing calculation. I generated this data using pseudo-replicates 

prepared with seqkit shuffle and split function156 from the existing RNAseq data. 

 

4.1.24 Data availability  

The sequence data from this study have been submitted to the GEO repository: GSE281253. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier PXD057839.  

 

 

 

 

 

 

 
1 https://github.com/muhligs/bed6ToBed12 
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4.2 Tables 

Table 1: Technical devices 

Product Supplier 
Adventurer Scale Otthaus 

BBD6220 Heraeus 

BTD Grant 

Centrifuge 5424R Eppendorf 

Centrifuge 5425 Eppendorf 

FACS Canto II BD 

Gel Dox XR+ Bio-Rad 

Innova U725 New Brunswick Scientific 

Kern EWJ Kern & Sohn 

MediLine LCexv 4010 Liebherr 

MediLine LGex 3410 Liebherr 

Mini-Vav-Power Peqlab 

Multifuge X312 Thermo Fisher Scientific  

NextSeq 2000 Illumina 

Nu-437-600E NuAire 

Odyssey Licor 

PowerPac HC Bio-Rad 

Qubit3 Invitrogen 

T100 Thermal Cycler Bio-Rad 

Thermomixer Comfort Eppendorf 

Trans-Blot Turbo Bio-Rad 

Waterbath  Memmert 

Multiskan FC plate reader Thermo Fisher Scientific 

Dual Lens System V850 Pro Scanner Epson 

QuantStudio 5 RT qPCR System Thermo Fisher Scientific 
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Table 2: Software 

Product Supplier 
ImageLab 6.1 Bio Rad 

Image Studio Licor 

GraphPad Prism GraphPad Software Inc. 

FlowJo BD  

FACSDiva BD 

 

 
 

Table 3: General Chemicals 

Product Supplier Reference 
Triton X-100 Sigma Aldrich T8787-250ml 

TRIS Acros Organics 167620010 

MgCl2 Sigma Aldrich M2393-500g 

KCl Sigma Aldrich P5405-250g 

CHX Sigma Aldrich C7698-5G 

SDS 20 % Solution Sigma Aldrich 05030-1L-F 

DTT Sigma Aldrich D0631-10G 

cOmplete Protease Inhibitor Merck 11873580001 

NaCl Fisher Chemical S/3160/60 

EDTA Sigma Aldrich EDS-1kg 

GlycoBlue Thermo Fisher Scientific AM9516 

SYBR Gold Thermo Fisher Scientific S11494 

RNaseIn Plus Promega N2611 

Borate Sigma Aldrich 31146-2.5kg 

Glycerol Sigma Aldrich G6279-1L 

TEMED Sigma Aldrich T7024-25ml 

40 % Acrylamide/Bis Solution, 19:1  Bio-Rad 1610144 

40 % Acrylamide/Bis Solution, 37.5:1 Bio-Rad 1610148 

b-mercaptoethanol Sigma Aldrich M6250 

Propidiumiodide Sigma Aldrich 537060 
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Table 4: General Lab Supplies 

Product Supplier Reference 
0.45 µM Filter Merck SLHAR33SS 

15 ml Centrifuge tubes Sarstedt 62.554.502 

18 G x 1 1/2’’ needle  Terumo NN-1838S 

50 ml Centrifuge tubes Greiner Bio One 227 261 

50 ml Syringe Terumo SS+50ES1 

Nitrocellulose 0.45 µM Thermo Fisher Scientific 1620115 

Round-Bottom Tubes Falcon (FACS) 352235 

UltraClear Tubes Beckmann Coulter 344059 

 
 
Table 5: Cell Culture Media and Reagents 

Product Supplier Reference 
DMEM High-Glucose Thermo Fisher Scientific 41966-029  

FBS Thermo Fisher Scientific 10270-106 

Pen/Strep Thermo Fisher Scientific 15140-122  

DMSO Thermo Fisher Scientific  D8418-50ml 

RPMI1640 Thermo Fisher Scientific 21875-034 

Sodium pyruvate Thermo Fisher Scientific 11360-070 

Lipofectamine 3000 Thermo Fisher Scientific L3000008 

 
 
 

Table 6: Pre-formulated buffers 

Product Supplier Reference 
5 M Ammonium Acetate Thermo Fisher Scientific AM9070G 

PBS Thermo Fisher Scientific 10977-035 

4x Laemmli Buffer Bio-Rad 1610747 

5x Bradford Reagent SERVA 39222.03 

HEPES Sigma Aldrich H4034 
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Table 7: In-house buffers 

Buffer Formulation 
Whole-cell lysis buffer  1 M TRIS pH 7.5 

10 % Glycerol 

2 % SDS 

PBS + CHX 100 µg/ml CHX 

In PBS 

Transfer Buffer 240 mM TRIS 

195 mM Glycin 

0.5 % SDS 

Flow Wash Buffer 1 mM EDTA 

In PBS 

Flow PI Buffer 50 µg/ml PI 

0.2 mg/ml RNase A 

0.4 % Triton X-100 

1 mM EDTA 

In PBS 

RiboSeq Lysis Buffer 20 mM TRIS pH 7.5 

10 mM MgCl2 

100 mM KCl 

1 % Triton X-100 

RIPA Lysis Buffer 50 mM TRIS pH 7.5 

150 mM NaCl 

0.5 % Sodium desoxycholate 

0.1 % SDS 

1 % Triton X-100 

TBS 0.2 M TRIS 

1.5 M NaCl 

Ad pH 7.5 

TBST 0.2 M TRIS 

1.5 M NaCl 

0.1 % SDS 

Ad pH 7.5 

SDS Running Buffer (10x) 248 mM TRIS 

1.92 M Glycine 

1 % SDS 
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Ad pH 8.3 

TBE 89 mM TRIS 

89 mM Borate 

2 mM EDTA 

 
 
Table 8: RNA extraction chemicals 

Product Supplier Reference 
TRI Reagent Zymo Research R2050-1-200 

Ethanol Sigma Aldrich 32221-2.5L-M 

Propan-2-ol VWR 20842.330 

Chloroform VWR 22711.260  

 
 
 
Table 9: Gel Compositions 

Product Formulation 
12 % PAA Denaturing Gel Urea 

10x TBE 

40 % AA/Bis 19:1 

dH2O 

APS 

TEMED 

4.8 g 
1 ml 
3 ml 
2.5 ml 
50 µl 
10 µl 

8 % PAA Denaturing Gel Urea 

10x TBE 

40 % AA/Bis 19:1 

dH2O 

APS 

TEMED 

4.8 g 
1 ml 
2 ml 
3.5 ml 
50 µl 
10 µl 

8 % PAA Non-Denaturing Gel 10x TBE 

40 % AA/Bis 19:1 

dH2O 

APS 

TEMED 

1 ml 
2 ml 
3.5 ml 
50 µl 
10 µl 

12 % SDS-PAGE Resolving Gel dH2O 

TRIS pH 8.8 

3.1 ml 
1.8 ml 
70 µl 
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SDS 10 % 

40 % AA/Bis 37.5:1 

APS 

TEMED 

2.1 ml 
70 µl 
2.8 µl 

SDS-PAGE Stacking Gel dH2O 

TRIS pH 8.8 

SDS 10 % 

40 % AA/Bis 37.5:1 

APS 

TEMED 

2.7 ml 
0.4 ml 
35 µl 
0.4 ml 
35 µl 
3.5 µl 

 
Table 10: Enzyme and kit systems 

Enzyme Supplier Reference 
Benzonase Merck 70746-4 

SuperScript III First-Strand Synthesis System Thermo Fisher Scientific 18080051  

CircLigase II ssDNA ligase  LGC BioSearch CL9021K 

RNaseI Ambion AM2294 

Proteinase K Roche 3115828001 

Mth RNA Ligase New England Biolabs M2611AA 

T4 PNK New England Biolabs M0201S 

T4 Rnl2 K227Q New England Biolabs M0351L 

5‘Deadenylase New England Biolabs M0331S 

RecJf Exonuclease New England Biolabs M0264S 

Q5 Highfidelity 2x Master Mix New England Biolabs M0494S 

HindIII-HF New England Biolabs R3104 
NEBuilder HiFi DNA Assembly Master Mix New England Biolabs E2621 

ELISA MAX Deluxe Set Mouse IFN-γ BioLegend 430815 

Luna Script RT SuperMix New England Biolabs M3010L 

Luna Universal qPCR Mix New England Biolabs M3003X 

 

 
Table 11: List of cytostatic compounds 

Compound Supplier Reference 
PTX Santa Cruz sc-201439 

STLC Torcris 2191 

BI2536 Cell Signalling Technology 26744 
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Nocodazole Sigma-Aldrich M1404 

Harringtonine Santa Cruz sc-204771 

 
Table 12: Antibodies and Cytokines 

Antibody/ Cytokine Supplier Reference 
Phospho-H3 (Ser10) Cell Signaling  9701 

Phospho-4EB1 (Thr37/46) Cell Signaling 2855 

GAPDH Proteintech 60004-I-Ig 

4EBP1 Cell Signaling  9644 

Calnexin Proteintech 66903-1-Ig 

Phospho-eIF2a (S51) Cell Signaling 9721S 

eIF2a Cell Signaling 5324S 

IRDye aRabbit 800CW Licor 926-32211 

IRDye aMouse 680RD Licor 926-32210 

aCD3 BioXCell BE0001-1 

aCD28 BioXCell BE0015-1 

IL-2 BioLegend  575404 

MojoSort Mouse CD8 Tcell isolation kit BioLegend 480007 

aH2-Kb-SIINFEKL clone 25-D1.16 BioLegend 141606 

 

 
Table 13: Library PCR temperature profile 

Temperature Time [min:sec] Cycles 
98 °C 0:30 1 

98 °C 0:10 

Variable 65 °C 0:10 

72 °C 0:05  

72 °C 5:00 1 

12 °C  Infinite 1 

 
 
 
Table 14: RiboSeq Library Oligonucleotides 

Identifier Sequence  
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3’linker 

ATCGT 

/5Phos/NNNNNATCGTAGATCGGAAGAGCACACGTCTGAA/3ddC/  IDT 

3’linker 
AGCTA 

/5Phos/NNNNNAGCTAAGATCGGAAGAGCACACGTCTGAA/3ddC/  IDT 

3’linker 
CGTAA  

/5Phos/NNNNNCGTAAAGATCGGAAGAGCACACGTCTGAA/3ddC/  IDT 

3’linker 
CTAGA  

/5Phos/NNNNNCTAGAAGATCGGAAGAGCACACGTCTGAA/3ddC/  IDT 

3’linker 
GATCA  

/5Phos/NNNNNGATCAAGATCGGAAGAGCACACGTCTGAA/3ddC/  IDT 

3’linker 
GCATA  

/5Phos/NNNNNGCATAAGATCGGAAGAGCACACGTCTGAA/3ddC/  IDT 

3’linker 
TAGAC  

/5Phos/NNNNNTAGACAGATCGGAAGAGCACACGTCTGAA/3ddC/  IDT 

3’linker 
TCTAG  

/5Phos/NNNNNTCTAGAGATCGGAAGAGCACACGTCTGAA/3ddC/  IDT 

RT 
Primer 

/5Phos/NNAGATCGGAAGAGCGTCGTGTAGGGAAAGAG/- 
iSp18/ GTGACTGGAGTTCAGACGTGTGCTC  
 

IDT 

Ligation 
Control 

rUrGrUrUrArGrGrGrArUrArArCrArGrGrGrUrArArUrGrCrGrA- 
NNNNNCGATCTGATCGGAAGAGCACACGTCTGAArC  
 

IDT 

RT 
Control  

/5Phos/NNAGATCGGAAGAGCGTCGTGTAGGGAAAGAG/iSp18/- 
GTGACTGGAGTTCAGACGTGTGCTCTTC CGATCACAGTC- 
NNNNNTCGCATTACCCTGTTATCCCTAACAT  
 

IDT 

PCR 
Forward 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC IDT 

PCR 
Reverse 1 

CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTG  IDT 

PCR 
Reverse 2 

CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTG  IDT 

PCR 
Reverse 3 

CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTG  IDT 

34mer 
Product 

rArUrGrUrArCrArCrUrArGrGrGrArUrArArCrArGrGrGrUrArArUrCrArArCrGrCrGrA  IDT 

 
Table 15: RT-qPCR primer 

Target Sequence Supplier 
ASNS forward CGACCAAAAGAAGCCTTCAG Sigma 

ASNS reverse CCACTTGGGCATCCAGTAAT Sigma 

CHOP forward TGGAAGCCTGGTATGAGGAC Sigma 

CHOP reverse TGTGACCTCTGCTGGTTCTG Sigma 

GAPDH forward GAGTCAACGGATTTGGTCGT Sigma 

GAPDH reverse TTGATTTTGGAGGGATCTCG Sigma 

 
Table 16: Reporter Cloning Oligonucleotides 

Target Sequence Supplier 
eIF4G2  GCAGACGGCAACCGGGCCGCTG 

ATTGGGCGGCGAAGGAGCCATT 
CGGGGAGACTCTGGTGGGTTCG 

Sigma 
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uORF SIINFEKL template GCTGCCCCAAGAGTGATAAGTTC 
GGCTTCAGACACGCCTTAGCGCC 
AGCAGTGAGTCGGAGCTCTATGT 
CCATCATCAACTTCGAAAAGCTC 
TGGCGGCTGCAGCAGCGACTCC 
TCTGAGCTGAGTTTGAGGCCGTC 
CCCGACTCCTTCCTCCCCCTTCC 
CTCCCCCTTTTTTTTGTTTTCCGT 
TCCCCTTTCCCCTCCCTTCCCTA 
TCCCCGACGACCGGATCCTGAG 
GAGGCAGCTGCGGTGGCAGCTG 
CTGAGTTCTCGGTGAAGGTATTT 
CATTTCTCCTGTCCCCTCCCCTC 
CCCACCCCATCTATTAATATTATT 
CTTTTGAAGATTCTTCGTTGTCA 
AGCCGCCAAA 

eIF4G2 uORF SIINFEKL 

Forward primer 

AGGCCTAGGCTTTTGCAAAAGCAGACGGCAACCGGGCC 
 

Sigma 

eIF4G2 uORF SIINFEKL 

Reverse primer 

CCAACAGTACCGGAATGCCATTTGGCGGCTTGACAACGAAGAATCTTC Sigma 

TPX2 

uORF SIINFEKL template 

TGTAGGCCTGATAGACTGATTAA 
ACCACAGAAGGTGACCTGCTGA 
GAAAAGTGGTACAAATACTGGGA 
AAAACCTGCTCTTCTGCGTTATC 
CATCATCAACTTCGAAAAGCTCA 
AAGCTCTTATTCCTATGATGCCC 
CCTCGGATTTCCATCATCAACTT 
CGAAAAGCTCATGAAGGAGATA 
CTCAAAACATAGATTCAT 

Sigma 

TPX2 uORF SIINFEKL 

Forward primer 

AGGCCTAGGCTTTTGCAAAATGTAGGCCTGATAGACTG 
 

Sigma 

TPX2 uORF SIINFEKL 

Reverse primer 

CCAACAGTACCGGAATGCCAATGAATCTATGTTTTGAGTATCTC Sigma 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Supplements 
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Figure 16: Mitotic-arrest induces active translation in the 5'UTR. (a) Clustered TMM-normalized counts of 

RiboSeq data obtained from U-2 OS cells treated with DMSO or different mitotic-arrest inducing agents (0.1 µM 
BI2536, 0.5 µM Nocodazole (Noco), 1 µM Paclitaxel (PTX), 1 µM S-Trityl-L-cysteine (STLC)). Metagene profiles of 

PC3 (b) and MDA-MB-231 (d) cells treated with DMSO or 0.5 µM Nocodazole (Noco) for 16 hours. Percent 

quantification of RPF location for PC3 (c) and MDA-MB-231 (e) cells treated with DMSO or 0.5 µM Nocodazole 
(Noco) for 16 hours. (f) RT-qPCR bar plot of indicated targets in U-2 OS cells either treated with DMSO of 50 µM 

Salubrinal for 16 hours. Data represents mean ± SD from technical replicates. Statistical analysis was performed 

using a two-tailed unpaired t-test. *** p-value < 0.001. (h) Metagene profile of U-2 OS cells either treated with 
DMSO or 50 µM Salubrinal for 16 hours. Metagene profiles of Harringtonine run-off assays in MDA-MB-231 cells 

treated with DMSO (i) or 1 µM STLC (j). 
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Figure 17: Mitotic-arrest enhances translation of upstream and upstream-overlapping open-reading frames 
(uORF/uoORF) in various cancer cells. (a) Proportion of ORF types from RiboSeq data in PC3 and MDA-MB-
231 cells either treated with DMSO or 0.5 µM Nocodazole (Noco). (b),(c) Volcano plot of over-representation 

analysis (Gene Ontology: Biological Process and/ or Cellular Component) from common uORF-containing genes 

listed in Figure 9 e (b) or from nuORF-bearing transcripts (c) with increased translational efficiency in Figure 10 
b. Volcano plots represents single terms as points with corresponding odds ratio and -log10(p-value). Larger and 

darker-coloured points represent more significantly enriched gene sets for the particular term. (d) RPF genome 

coverage from Harringtonine run-off assays in U-2 OS cells treated with 1 µM STLC for 16 hours and additional 
CHX or CHX and Harringtonine for 10 min. CHX, Cycloheximide. Harr, Harringtonine.  
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Figure 18: Paclitaxel induces differential presentation of nuORF-derived peptides and immune responses. 
(a) Volcano plot showing the label-free quantification of HLA class I immunopeptidome in SUM-159-PT cells, 

highlighting nuORF-derived peptides (big spots) and peptides from the annotated proteome (small spots). Red 

peptides: Log2 fold change ≥ 0.5 and adjusted p-value < 0.05. Blue peptides: Log2 fold change ≤ -0.5 and adjusted 

p-value < 0.05. P-values were calculated using a Bayes moderated t-test with two-sided p-values. (b) nuORF-
containing gene with Log2 fold change peptide abundance and corresponding peptide sequence from SUM-159-

PT cells. (c) Over-representation analysis (Gene Ontology: Biological Process and Cellular Component) from 

upregulated nuORF-derived peptides in U-2 OS cells from Figure 12 b. (d-g) Detection of SIINFEKL:H-2K by flow 
cytometry, shown as bar plot of Mean Fluorescence Intensity (MFI) from murine TC1 cells transfected with 

respective uORF-reporter: (d) Treatment with 1 µM Paclitaxel (PTX) for 16 hours. (e) Treatment with DMSO, 

0.1 µM BI2536, 0.5 µM Nocodazole (Noco), or 1 µM S-Trityl-L-cysteine (STLC) for 16 hours. (f) RT-qPCR of firefly 
luciferase in TC1 cells transfected with respective uORF-reporter constructs. Cells were treated with 1 µM PTX for 

16 hours. (g) TC1 cells were transfected with start codon mutated uORF-reporter constructs and treated with 1 µM 

PTX for 16 hours. (d-g) All data represent mean ± SD from biologically independent experiments (n = 3). Statistical 
analysis was conducted using a two-tailed unpaired t-test. *** p-value < 0.001. 
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Figure 19: Cell cycle analysis gating strategy. (a) Flow cytometry data was gated against FSC-A and SSC-A to 

separate cells from cellular debris. Next, single cell populations were obtained by gating FSC-H vs FSC-A (b). 
Eventually, propidium iodide signal (c) was obtained by excitement with the BD Canto II 488 nm laser and detection 
with a 584/42 bandpass filter. 
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Table 17: Supplementary descriptive table. Selected genes from Figure 6 c 

Gene Symbol Full gene name 
ANLN Anillin, Actin-binding protein 

MAD2L1 Mitotic Arrest Deficient 2-Like Protein 1 

CDC20 Cell Division Cycle 20 

CENPE Centromere Protein P 

TPX2 Targeting-protein for Xklp2, Microtubule Nucleation factor 

KIF2C Kinesin-like protein 2C 

AURKA Aurora kinase A 

TIPIN TIMELESS interacting protein 

GINS1 GINS complex subunit 1 

PLK1 Polo-like kinase 1 

PRC1 Protein regulator of cytokinesis 

CCNB1 Cyclin B1 

AURKB Aurora kinase B 

TOP2A DNA Topoisomerase II A 

CLSPN Claspin 

ORC1 Origin recognition complex subunit 1 

CDKN1B Cyclin dependent kinase inhibitor 1B 

PCNA Proliferating cell nuclear antigen 

BRCA1 Breast cancer type 1 susceptibility protein 

POLA1 DNA polymerase alpha 1 

MYC Myc proto-oncogene protein 

MCM10 Minichrosome maintenance 10 replication initiation factor  
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