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ABREVIATIONS 

5-HTTLPR  Serotonin transporter linked polymorphic region 
 
AAL  Automated anatomical labeling 
 
ADHD  Attention Deficit Hyperactivity Disorder 
 
DTI  Diffusion tensor imaging 
 
DWI  Diffusion weighted imaging 
 
CD  Conduct Disorder 
 
FSL  FMRIB Software Library 
 
GWAS  Genome wide association study 
 
MAOA  Monoamine oxidase A  
 
MRI  Magnetic resonance imaging 
 
NBS  Network based statistics 
 
OCD  Obsessive Compulsive Disorder  
 
OPC  Oppositional Defiant Disorder 
 
PPI  Psychophysiological interactions 
 
SNP  Single nucleotide polymorphism 
 
SPM  Statistical Parametric Mapping 
 
SPSS  Statistical Package for the Social Sciences 
 
PET Positron emission tomography 
 
TBSS  Tract based spatial statistics 
 
VBM  Voxel based morphometry 
 
VNTR  Variable number of tandem repeats 
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1 INTRODUCTION 

1.1 Neuroimaging genetics 

Most neuropsychiatric disorders have strong genetic components in their etiology. Psy-
chiatric disorders tend to run in families, concordance rates in twins are relatively high 
and high to moderate heritability estimates confirm a genetic component (Cardno & 
Gottesman, 2000; Corfield et al., 2017; Edvardsen et al., 2008; Faraone & Larsson, 
2019; Grove et al., 2019; Lam et al., 2019; McGuffin et al., 2003; Sandin et al., 2017). 
However, the genetic architecture of these disorders is complex and not completely 
understood, thus making the identification of specific genetic risk factors challenging. 
One broadly used approach for the identification of genetic risk variants that are statis-
cally associated with psychiatric disease risk are genome wide association studies 
(GWAS). This approach investigates large sets of genetic markers with high variance 
between individuals and compares the frequency of these large sets of genetic variants 
between individuals with a diagnosed disorder or trait of interest and unaffected indi-
viduals. 
GWAS successfully identified genetic risk factors for a broad range of psychiatric dis-
orders (Demontis et al., 2019; Grove et al., 2019; Jansen et al., 2020; Ripke et al., 
2014; Stahl et al., 2019; Wray et al., 2018) confirming that the common disease-com-
mon variant model is applicable to neuropsychiatric disorders. This model states that 
common disorders are caused by a high number of common genetic variants. More 
specifically, large numbers of genetic variants with small individual penetrance add up 
to push genetic load of disease associated genetic variants in an individual towards a 
threshold for disease. Additional complex interactions of genetic risk with the environ-
ment contribute to the etiology of neuropsychiatric disorders as well (Reich & Lander, 
2001). Neuropsychiatry lags behind other disciplines in the identification of risk genes 
and underlying biological mechanisms. Understanding of the pathophysiological path-
ways leading from genetic variance to neuronal alterations to behaviour and ultimately 
to psychiatric disorders is still incomplete. One problem that held back psychiatric re-
search and thus contributed to this incomplete understanding is the lack of easily 
measured, standardized, quantitative phenotypes.  
 
Several neuroanatomic abnormalities haven been linked to a broad range of neuro-
psychiatric disorders as well as genetic risk (A. Meyer-Lindenberg & D. R. Weinberger, 
2006; Thompson et al., 2020). Moreover, neuroimaging phenotypes might be easier to 
quantify than psychiatric symptoms and could therefore be valuable quantitative bi-
omarkers for psychiatric risk. They are however not part of a diagnostic process yet. 
Neuroimaging endophenotypes are quantitative indicators of brain structure or function 
that reflect genetic susceptibility for a disorder (Glahn et al., 2007). The concept behind 
this approach assumes that there is a complex pathway leading from genes to proteins 
to cells, the brain at the macroscopic level, to behavior and ultimately, psychiatric 
symptoms. On this pathway, neuroimaging phenotypes are several steps closer to 
genes than psychiatric diagnoses. Therefore, neuroimaging phenotypes might be more 
relevant to understand pathophysiology of disorders compared to directly linking genes 
to diagnosis. In addition, genetic risk factors may have a higher penetrance at the level 
of the brain than at the level of psychiatric diagnosis because of the neural level being 
more closely aligned to biology. Furthermore, genetic architecture of neuroimaging 
phenotypes might be less complex than that of diagnostic categories (Glahn et al., 
2007; A. Meyer-Lindenberg & D. Weinberger, 2006).  
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Figure 1: Schematic illustration of the pathway from genetic variance to psychiatric symptoms. Neuroim-
aging phenotypes are closer to genetic variance than psychiatric symptoms (own illustration). 

 
 
To be considered an endophenotype for a disorder, a marker has to meet the following 
criteria (Beauchaine, 2009; Gershon & Goldin, 1986; Gottesman & Gould, 2003):  
 
1) be highly heritable 
2) be associated with the phenotype of interest (e.g. formal diagnosis) and segregation 
with clinical diagnosis in the population 
3) be detectable independent of clinical state, e.g. presence prior to manifestation of 
illness and persistence even during periods of remission 
4) cosegregate with the illness in families  
5) be more common in the unaffected family members compared to the general popu-
lation  
6) can be reliably measured, with some degree of specificity to the disorder of interest 
 
Several neuroimaging brain markers such as grey matter volume (Turner et al., 2012), 
neural function (Erk et al., 2014), structural (Bohlken et al., 2016) and functional con-
nectivity (Cao et al., 2016) fulfill these criteria and have been considered as potential 
endophenotypes for psychiatric disease. Nevertheless, the genetic architecture of neu-
roimaging phenotypes remains complex. For instance, the surface area and average 
thickness of the human cerebral cortex are associated with a large number of genetic 
loci which do not reach genome-wide significance (Grasby et al., 2020). Therefore, 
there is a need for novel phenotypes, with higher sensitivity and higher specificity to 
alterations in the brain that are connected to psychiatric entities. 
 

1.2  VNTRs and monoaminergic signaling 

1.2.1 VNTR polymorphisms 

Many neuropsychiatric disorders are highly heritable and most do not follow classical 
Mendelian inheritance patterns (Sullivan et al., 2012). These multifactorial disorders 
with a complex genetic architecture include several common diseases like diabetes 
(Ali, 2013) and asthma (Ferreira et al., 2014). Most neuropsychiatric disorders also fall 
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into that category. These disorders are hypothesized to arise due to the complex inter-
actions of several genetic variants with small individual effect sizes. None of these 
genetic risk factors is sufficient or necessary to cause the disorder in the absence of 
other risk factors. Genetic risk factors interact with additional environmental risk factors 
in the causation of complex disorders (Sullivan et al., 2012). The genetic and environ-
mental risk factors that lead to complex disorders are heterogeneous among affected 
individuals. Many complex diagnostic entities can be usefully subdivided into sub-
groups based on variables such as age of onset, disease progression or biomarkers 
(e.g. blood leptin levels as an indicator of metabolic health). 
 
Several GWAS (Genome wide association studies) have been performed to better un-
derstand the genetic architecture of complex, multigenetic disorders. GWAS have suc-
cessfully identified genetic risk factors for several complex disorders, for instance 
schizophrenia (Ripke et al., 2014). However, even for highly heritable traits, the genetic 
variants identified by GWAS only explain a small proportion of the estimated heritabil-
ity. This phenomenon has been referred to as missing heritability (Maher, 2008; Owen 
& Williams, 2021). Several explanations have been proposed. One hypothesis is that 
in addition to the single nucleotide polymorphisms (SNP), which are well studied and 
easy to genotype with high throughput, other types of genetic variants contribute to the 
heritability of complex disorders. The majority of published GWAS investigated only 
SNPs. However, a significant proportion of heritability might be explained by under-
researched genetic variants (Maher, 2008; Manolio et al., 2009; Marian, 2012).  
 
Variable number of tandem repeats (VNTRs) are one type of genetic polymorphism 
that is not included in GWAS but might still be interesting and relevant in the genetic 
architecture of complex, polygenic disorders (Hannan, 2010). VNTRs are variations in 
the length of repeated sequences in the genome, which are organized in tandem re-
peats. They can be classified as a type of mini-satellite ranging in length from ten to 
one hundred base pairs (Brookes, 2013). Although VNTRs are commonly used in ge-
netic finger-printing for individual identification and paternity testing (Pena & 
Chakraborty, 1994), VNTRs are more difficult to genotype than SNPs as there is no 
high throughput technology allowing easy, fast and cost-efficient genotyping of VNTRs. 
Another problem is the lack of a standardized nomenclature for VNTRs similar to ref-
erence SNP (rs) numbers that identify SNPs uniquely (Brookes, 2013). Due to these 
challenges, screening large numbers of VNTRs is still difficult. However, VNTRs might 
be promising candidates to further our understanding of the genetic architecture un-
derlying complex disorders. Several additional lines of evidence confirm this sugges-
tion. VNTRs have higher potential for mutations leading to a lot of variation that could 
be potentially relevant and show higher penetrance than biallelic markers (Fondon et 
al., 2008). 
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Figure 2: Schematic illustration of alternative alleles of a VNTR on a single strand. Allele A has 4 repeats, 
allele B has 5 repeats (own illustration). 

 
Genes with a high number of VNTRs were shown to be expressed disproportionally in 
the brain (Linthorst et al., 2020) and to be involved in the risk architecture of several 
non-psychiatric complex disorders (Wang et al., 2012), therefore making VNTRs prom-
ising candidate for better understanding the genetic risk for neuropsychiatric disorders. 
Several VNTRs have been shown to be involved in regulating gene expression. This 
type of VNTR is mostly located in the promoter regions of adjacent genes and has 
been shown to have functional effects by altering transcriptional efficiency, thus fine 
tuning gene expression levels (Brookes, 2013). Two well studied functional promoter 
VNTRs that have been linked to neuropsychiatric disorders and associated neuropsy-
chological traits are the monoamine oxidase A (MAOA)-uVNTR polymorphism (Sabol 
et al., 1998) and the 5-HTTLPR (serotonin-transporter-linked polymorphic region)  (K. 
P. Lesch et al., 1996) polymorphism.  
 
Allelic variation in both of these promoter polymorphisms has been linked to risk for 
various neuropsychiatric disorders including depression (Brummett et al., 2007), anxi-
ety (K. P. Lesch et al., 1996) and traits like impulsivity and aggression (Manuck et al., 
2000). However, even for these clearly functional VNTRs, outcomes depend on the 
presence of additional risk factors. The most relevant risk factors interacting with these 
two VNTRs are early life adversity and stress (Caspi et al., 2003; Kim-Cohen et al., 
2006). Earlier neuroimaging studies in healthy individuals showed that variation in 
these promoter VNTRs affected brain structure and function most prominently in the 
limbic system (Hariri et al., 2005). 
 

1.2.2 5-HTTLPR 

Serotonin is a key neurotransmitter regulating several physiological functions and psy-
chological processes including mood, aggression, memory, arousal and sleep. The 
serotonin transporter protein facilitates the uptake of serotonin by the synapse and 
thereby terminates the action of serotonin in the synaptic cleft. The serotonin trans-
porter is a primary target of widely used pharmacological treatments for several psy-
chiatric disorders including major depression and anxiety. 
 
A common VNTR in the promoter region of the serotonin transporter gene has been 
shown to influence transcriptional efficiency of the serotonin transporter gene. This 
length polymorphism consists of a 44-basepair insertion or deletion resulting in a short 
and a long allele which can be subdivided further (Canli & Lesch, 2007; Hariri & 
Holmes, 2006; Nakamura et al., 2000). The long variants have been linked to increased 
transcription of the serotonin transporter in human cell lines (K.-P. Lesch et al., 1996). 
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This polymorphism is triallelic: Additional SNPs have been shown to influence seroto-
nin transporter transcription levels in humans. More specifically, the G allele of rs25531 
polymorphism results in reduced transcriptional activity that is similar to the short VNTR 
even in the presence of the long allele whereas the A allele results in higher levels of 
SERT and corresponding mRNA (Hu et al., 2005). 
 
Allelic variation in the serotonin transporter has been linked to susceptibility for different 
psychiatric disorders and related psychological traits (Canli & Lesch, 2007; Hariri et al., 
2005; Hariri & Holmes, 2006). Psychiatric disorders that have been associated with 
this polymorphism include but are not limited to major depression (Caspi et al., 2003), 
anxiety disorders (K.-P. Lesch et al., 1996), eating disorders (Calati et al., 2011), ADHD 
(Eun et al., 2016) and autism (Camille W. Brune et al., 2006). However, these associ-
ations with psychiatric disorders have been inconclusive and hard to replicate. 
Findings regarding a strong main effect of serotonin transporter on psychiatric risk were 
mixed and effect sizes might have been overestimated by previous under-powered 
studies. Nonetheless, serotonin transporter genotype has been consistently shown to 
moderate the relationship between affective disorders and stress. More specifically, 
early life adversity negatively affected carriers of the transcriptionally less efficient var-
iant who developed increased affective disorders and suicidality whereas no such re-
lationship was found in carriers of the more transcriptionally efficient variant. This ob-
servation agrees well with the diathesis stress model. The diathesis stress mode states 
some multifactorial disorders or traits are caused by an interaction of an inherent bio-
logical vulnerability with environmental stressors. In the absence of adverse environ-
mental conditions, individuals with this increased vulnerability are indistinguishable 
from non-risk-carriers. Only if adverse environmental factors like stress are present, 
increased vulnerability raises the probability for poor outcomes, e.g. developing a neu-
ropsychiatric disorder whereas less vulnerable individuals are less severely affected 
(Colodro-Conde et al., 2018). 
 
Several imaging genetics studies investigated the neural processes underlying this in-
teraction between 5-HTTLPR genotype, stress and affective disorders (Hariri et al., 
2005; Hariri & Holmes, 2006; Heinz et al., 2005). Although a link between amygdala 
structure and function with 5-HTTLPR genotype was identified in several fMRI studies, 
findings have been mixed and initial findings could not always be replicated in larger 
samples (Bastiaansen et al., 2014; Murphy et al., 2013; Viviani et al., 2010). 
In addition, several studies have confirmed an association between serotonin trans-
porter genotype and susceptibility to affective disorders and alterations in neural re-
gions involved in emotion processing, mixed findings, relatively small initial sample 
sizes and a complex relationship between genotype and phenotype (e.g. moderation 
by environment) have made this area of research challenging. 
 
These conflicting results may be explained by at least two factors. First, given the small 
effect size of common genetic variants, earlier studies with small sample sizes may be 
more vulnerable to noise and false-positive findings (Bastiaansen et al., 2014; Murphy 
et al., 2013). Second, as reported previously (Johnstone et al., 2005; Plichta et al., 
2012), amygdala activation during emotion processing per se is a rather unreliable 
phenotype. Prior work of our group has shown a superior reliability and sensitivity of 
connectomic, network-based neuroimaging measures in the study of functional neu-
roimaging phenotypes (Cao et al., 2016; Cao, Plichta, Schäfer, et al., 2014). This find-
ings suggest the potential utility of network-based methods for the study of potential 
associations 5-HTTLPR genetic variation with neuroimaging phenotypes. 
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There is converging evidence from several independent lines of research suggesting 
that that 5-HTTLPR may impact the connectivity of multiple regions in the emotional 
processing network in humans. Nevertheless, many prior studies focused exclusively 
on the amygdala. Apart from the amygdala, efficient emotion processing in humans 
relies on the coordination of multiple other regions including the fusiform gyrus, hippo-
campus, striatum, thalamus, anterior cingulate cortex, insula, and orbitofrontal cortex 
(Etkin et al., 2015; Phillips et al., 2003). These regions form an integrated functional 
brain network that is essential for emotion identification and regulation (Etkin et al., 
2015; Phillips et al., 2003). Ealier studies reported that the connectivity of this emo-
tional brain network is heritable (Budisavljevic et al., 2016) and have connected alter-
ations in this network with the genetic risk for mental disorders including schizophrenia 
(Cao et al., 2016; Cao, Plichta, Schäfer, et al., 2014) and bipolar disorder (Dima et al., 
2016). Further evidence from animal research confirms this suggested association be-
tween genetic variance in the 5-HTT gene and alterations in neural networks involved 
in emotion processing with changes in 5-HTT knock-out mice extending beyond the 
amygdala (Fabre et al., 2000; Mathews et al., 2004; Rioux et al., 1999). PET studies 
in human also demonstrated that the S allele of the 5-HTTLPR is associated with al-
tered 5-HTT concentrations and serotonin receptor binding potentials in several brain 
regions involved in emotion processing including the striatum (Praschak-Rieder et al., 
2007), hippocampus, anterior cingulate gyrus, orbitofrontal cortex, and lateral temporal 
lobe (David et al., 2005).  
Because of this converging evidence suggesting the involvement of a complex network 
in the association between 5-HTT, the brain and psychiatric risk, further imaging ge-
netics research using novel analysis methods in large cohorts applying connectomic 
methods might be promising. 

1.2.3 MAOA 

The monoamine oxidases catalyze the oxidation of monoamines and serve to inacti-
vate neurotransmitters including serotonin, dopamine and norepinephrine (Shih et al., 
1999). In humans, two types of monoamine oxidase are expressed. Monoamine oxi-
dase A (MAO-A) and monoamine oxidase B (MAOA-B). MAOA is present in the outer 
membrane of mitochondria in most cell types. In the human brain, MAOA is expressed 
in neurons and astroglia (Westlund et al., 1988). MAOA is encoded by the MAOA gene, 
which is located on the X-chromosome (Shih et al., 1999). MAOA has been first linked 
to aggression in a Dutch family with a loss of function mutation of this gene. Male 
members of that family presented with a distinctive phenotype including aggression, 
impulsive behavior but also general developmental delays (Brunner et al., 1993). A 
more common VNTR located upstream to the first exon of the MAOA gene has been 
shown to have functional effects on MAOA expression levels. This MAOA uVNTR con-
sists of a 30-basepair motif that can be repeated 2, 3, 3.5, 4, and 5 times. The 2, 3, 
and 5 repeats are defined as low expression variants (MAOA-L), while the 3.5 and 4 
repeat variants are associated with high MAOA expression. In human cell lines, high 
expression variants of MAOA were asscociated with a 2-10-fold increase in transcrip-
tion efficiency (Guo et al., 2008; Sabol et al., 1998).  
 
Allelic variance in this MAOA u-VNTR has been associated with a board range of psy-
chiatric disorders as well impulsive and aggression traits. More specifically, the low 
expressing allelic variants of MAOA have been associated with several aggression 
related outcomes (Buckholtz & Meyer-Lindenberg, 2008; Meyer-Lindenberg et al., 
2006). However, this relation with aggression seems to be less specific than previously 
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assumed. Instead, MAOA has been associated with multiple neuropsychiatric disor-
ders including bipolar disorder (Lim et al., 1995), ADHD (Manor et al., 2002), panic 
disorder (Reif et al., 2014), autism, depression (Brummett et al., 2007) and alcohol 
dependence (Contini et al., 2006). An important commonality of these disorders might 
be emotion regulation. A further commonality might be a relation with stress, particu-
larly during sensitive periods in neurodevelopment in early childhood. Interaction be-
tween MAOA genotype and early life adversity are stronger and more consistent than 
main effects of genotype (Kim-Cohen et al., 2006). 
 
The neurobiological mechanisms by which MAOA‐L impacts aggression are not com-
pletely understood. Although MAOA genotype might moderate responses to stress to 
influence certain behavioral and psychological traits, neuroimaging might be a more 
sensitive marker to subtle differences between individuals carrying the MAOA-high and 
low expression variants and therefore might be able to identify main effects of MAOA 
genotype. Several MRI studies in healthy participants confirmed an effect of MAOA 
genotype that was consistent with the suspected link between MAOA genotype and 
emotion regulation, such as structural and functional alterations in the limbic system 
with carriers of the MAOA-L variant showing reduced grey matter volume (Cerasa et 
al., 2008; Meyer-Lindenberg et al., 2006) and increased amygdala reactivity (Lee & 
Ham, 2008; Meyer-Lindenberg et al., 2006). So the most consistent evidence is con-
verging on cortico‐limbic regions. However, sample sizes in these initial neuroimaging 
genetics studies were often relatively small and the resulting effects were hard to rep-
licate. Furthermore, PET studies directly investigating activity of MAOA did not find 
consistent genotype effects (Fowler et al., 2007). Together, these data suggest that 
the low‐expression allele of MAOA contributes to global alterations in cortico‐limbic 
circuits critically involved in adequate regulation of negative emotions and inhibitory 
control. The most likely mechanism behind this association is  excessive serotonergic 
signaling during vulnerable periods of early brain development (Cases et al., 1995) in 
carriers of low expressing variants of MAOA. Additional environmental risk factors in-
cluding early life adversity and drug intake might exacerbate its impact on monoamin-
ergic neurotransmission (Heinz et al., 2011; Meyer-Lindenberg et al., 2006) most likely 
by epigenetic mechanisms. Although there are several prior studies investigating po-
tential associations of MAOA genotype and variation in brain structure and function, 
most imaging genetics studies on MAOA focused on specific brain functional domains, 
a limited set of predefined neural regions or a single neuroimaging data modality, mak-
ing a more comprehensive understanding of the neural connectomic effects difficult 
(Klein et al., 2017). 
Several converging lines of evidence suggest more widespread, global effects of 
MAOA on neural structural and functional network architecture. First, positron emission 
tomography (PET) and postmortem studies revealed a broad topological distribution of 
MAOA binding potentials and mRNA expression levels across the human brain (Ko-
morowski et al., 2017; Tong et al., 2013). Second, the encoded enzyme is a central 
modulator of stem cell neural differentiation and neural circuit segregation during early 
brain development (Ou et al., 2006; Wang et al., 2011). The results of this human 
imaging research are supported by similar findings in animal models. In MAOA‐defi-
cient mice, the ensuing disturbances in brain maturation are well‐established and in-
clude distributed neural regions and a range of behavioral alterations (Bortolato et al., 
2013; Cheng et al., 2010; Upton et al., 1999). These data suggest that a functional 
change in the  MAOA gene can lead to distributed network effects, which extend across 
brain functional domains and neuroimaging data modalities. 
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 Taken together, these prior findings suggest that additional research in larger cohorts 
applying novel network phenotypes might be useful to further clarify the role of MAOA 
genotype in brain structure and function. 
 

1.3 Relevance of serotonergic candidate genes in psychiatry 

Neuropsychiatric disorders are moderately to highly heritable (Burmeister et al., 2008). 
However, identifying genetic variants involved in the etiology of these disorders has 
been challenging.  
 
There are several approaches that aimed at identifying genetic risk factors for multi-
factorial disorders with complex genetic architecture. Historically, many studies fo-
cused on so called candidate genes. Candidate genes are genes which are suspected 
to be involved in the etiology of a disorder based on prior knowledge (Tabor et al., 
2002). One source of this prior knowledge is pharmacological evidence. For example, 
agents affecting the serotonergic systems have been widely used in the treatment of 
depression and anxiety disorders. This inspired many studies to investigate genes with 
a known function related to serotonin receptors, serotonin transporters or breakdown 
of serotonin, including 5-HTTLPR and MAOA.  
 
 

 
 
 

 
Several studies linked these candidate genes to risk for neuropsychiatric disorders and 
related negative outcomes. However, these early findings were difficult to replicate 
questioning the idea that serotonergic variants have a large effect on psychiatric risk 
(Bosker et al., 2011). Some researchers suggested that these mixed findings might be, 
at least to some extent explained by the presence of interactions between genotype 
and environmental risk factors. Interactions between environmental risk factors includ-
ing stress and early life adversity have been confirmed for both MAOA (Kim-Cohen et 
al., 2006) and 5-HTTLPR (Caspi et al., 2003). Genetic variance in these polymor-
phisms modulated the effect of stress on disease risk. In the presence of additional 

Figure 3: The duration of action of serotonin in the synaptic cleft is limited by reuptale of serotonin 
in the presynaptic neuron and degradation of serotonin by enzymes. Genetic variation in the pro-
moter regions of the MAOA-gene (b) and the 5-HTT gene (a) contributes to  individual differences 
in the efficiency of these processes (own illustration).  
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environmental risk factors, genetic variance in serotonergic polymorphisms was asso-
ciated with risk for several adverse outcomes, e.g. developing a psychiatric disorder or 
increased aggression (Caspi et al., 2003; Kim-Cohen et al., 2006).  
 
Additional studies challenged the notion of a risk variant and a protective variant by 
showing that carriers of the risk variant did benefit more from favorable environmental 
conditions. For example, children carrying the risk variant of MAOA who were exposed 
to psychosocial risk environments showed increased criminality whereas in a support-
ive environment, risk for criminality was reduced (Oreland et al., 2007). Therefore, ge-
netic variants traditionally thought of as risk variants might be more accurately de-
scribed as plasticity variants. In contrast to risk variants which make carriers more sus-
ceptible to negative environmental influences, plasticity variants increase sensitivity to 
environmental influences for better or worse (Belsky et al., 2009). This might make it 
challenging to find simple associations of genetic variants with psychopathology and 
related negative outcomes, especially in large cohorts with only minimal phenotyping. 
An alternative approach to traditional candidate genes are genome-wide association 
studies. With the advent of high-throughput genotyping of large cohorts, a genome-
wide, unbiased search for genetic risk variants became a feasible option (Manolio, 
2010).  

 
Figure 4: Large groups of healthy controls (blue line) and patients (red line) are genotyped using high-
throughput technologies. Subsequent statistical analyses identify genetic variants that are significantly 
more common in affected indiduals compared to healthy controls. A genetic variant that is significantly 
associated with the disorder of interest is identified on chromosome 3 (own illustration). 

 
 
These GWAS mainly focused on SNPs, but some studies did include selected candi-
date genes in addition to a GWAS panel. However, candidate genes rarely show sta-
tistically significant associations with disease status in large samples. Most evidence 
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for a role of candidate genes in the etiology of neuropsychiatric disorders was derived 
from studies with relatively small sample sizes and failed to replicate in adequately 
powered samples. The same holds true for candidate gene by environment interac-
tions. Several well powered study did not find any evidence of an interaction between 
risk genotypes and environmental risk factors (Border et al., 2019; Fergusson et al., 
2011). This lack of replication has led some experts in the field to question the validity 
of the candidate gene approach altogether (Arango, 2017). However, concluding that 
candidate genes do not play a role in neuropsychiatric disorders at all might be prem-
ature. Even in the absence of convincing main effects of most candidate genes on 
disease risk, studying the relation of these candidate genes to brain structure and func-
tion as well as behavioral traits might be informative. Traditional diagnostic categories 
used in the classification of neuropsychiatric disorders do not map well onto biological 
pathways connecting genes to the brain to behavior and ultimately to psychiatric illness 
(Insel et al., 2010). 
 
Patients with the same diagnosis under the current classification system are heteroge-
neous on several levels. For instance, two patients diagnosed with major depression 
do not necessarily have even one common symptom. Furthermore, it has been shown 
that different depression symptoms are not interchangeable indicators of disease 
(Fried & Nesse, 2015). Therefore, grouping study participants in binary categories of 
affected and unaffected individuals without accounting for presence and severity of 
specific symptoms might not be a suitable approach for neuroimaging genetics re-
search aimed at the identification of  biological pathways from genetic risk factors to 
manifestations of disease. In addition, symptom domains are rarely specific for one 
psychiatric disorder but usually shared among several disorders. For instance, difficul-
ties with emotion processing have been observed across diagnostic categories. Al-
tered emotion regulation has been observed in depression, several anxiety disorders 
but are also common in externalizing disorders like ODD or CD and antisocial personal 
disorder in adults (Fernandez et al., 2016).  
 
At the neural level, a considerable overlap in neuroimaging phenotypes has been 
shown suggesting that neural alterations might be more closely related to specific do-
mains of functioning than to traditional diagnostic categories. For instance, altered ac-
tivity in brain regions linked to inhibitory control and salience processing are shared 
between mood disorders and anxiety disorders (Janiri et al., 2020). Similarly, altera-
tions in white matter integrity affecting interhemispheric structural connectivity are 
shared between autism spectrum disorders, ADHD and OCD (Ameis et al., 2016). 
 
A similar pattern of overlap between psychiatric disorders emerged for their genetic 
underpinnings. Several large studies show a strong overlap of genetic risk between 
different neuropsychiatric disorders. For instance, schizophrenia, bipolar disorder, ma-
jor depression, ADHD and autism spectrum disorders share a large proportion of ge-
netic risk attributed to common variants (Lee et al., 2013). In contrast, neurological 
disorders do not share genetic risk with psychiatric disorders suggesting that these 
shared genetic risk factors are common between psychiatric disorders but do not gen-
eralize to other disorders of the brain (Anttila et al., 2018). This confirms again that 
traditional diagnostic boundaries might not map directly to distinct biological pathways. 
Taken together, this evidence suggests that even in the absence of strong genotype 
effects on specific disease risks, candidate genes could potentially be linked to specific 
neuroimaging endophenotypes and psychological traits which in turn might be be rel-
evant for understanding biological mechanisms behind variance in the brain structure, 
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function and behavior. Therefore, our understaning of the pathway from genes to the 
brain to psychological traits might benefit from investigating risk variants with well-es-
tablished biological functions. 
 

1.4 Network phenotypes 

Brain function and thereby complex cognition depends on the orchestration and inter-
action of widely distributed brain regions (Bassett & Sporns, 2017; Medaglia et al., 
2015). Neuropsychiatric disorders have been hypothesized to arise from alterations in 
the communication of complex neural circuits rather than localized, focal aberrations 
in specific brain regions (Canu et al., 2015; Hulshoff Pol & Bullmore, 2013).  
 
Methodological advances in diverse fields ranging from the social sciences to genetics 
led to methods for describing complex phenomena which might be useful for under-
standing the human brain and the complex interactions between highly distributed neu-
ral circuits. The most commonly applied method among these approaches is graph 
theory. Graph theory represents complex interconnected systems in the form of dis-
crete, non-overlapping entities called nodes and their pairwise connections called 
edges, which can be summarized as graphs. The patterns by which edges connect 
nodes make up the networks topology. Local and global aspects of network topology 
can be analyzed using a broad array of measures. This abstract form and simple rep-
resentation result in broad applicability to different spatial and temporal patterns and 
scales of brain physiology (Bassett & Sporns, 2017; Braun et al., 2018). 
 
Network approaches can be applied to neuroscientific questions at different scales. In 
humans, the most commonly studied scale is the macroscale, which is investigated 
using neuroimaging techniques like magnetic resonance imaging. At this scale, the 
smallest elements are individual voxels. For network analyses, theses voxels are often 
grouped together based on regions of interest or parcels according to their features 
which then represent the nodes of the brain network (Bassett & Sporns, 2017). In brain 
network approaches, nodes are distinct neural elements, for example brain regions 
from a predefined atlas. Brain connectivity maps show how brain regions interact. 
These interactions can be anatomical or functional and are referred to as structural or 
functional connectivity respectively. Structural connectivity refers to the physical con-
nections between brain regions. Structural networks are usually sparse and relatively 
stable over time. Most neuroimaging techniques investigate axon bundles, which can 
be measured by diffusion weighted MRI sequences. The most common technique 
used is DWI followed by reconstruction of fiber tracts for connectomic research (Yeh 
et al., 2021). Functional connectivity measures correlated, coordinated activity of brain 
regions. It can be defined by any measure of statistical similarity between pairs of brain 
regions. The most commonly applied method is using (bivariate) Pearson correlations 
between pairs of brain regions or nodes. These temporal patterns can be extracted 
from task-based or resting state data (Friston, 2011).  
 
The shift in perspective to distributed brain function within complex interconnected net-
works resulted in a lot of evidence confirming the relevance of brain network architec-
ture for cognition and complex behavioral phenotypes including neuropsychiatric dis-
orders (Hulshoff Pol & Bullmore, 2013). Furthermore, several network phenotypes 
have been shown to fulfill the criteria for endophenotypes or are heritable (Cao et al., 
2016; Thompson et al., 2013). These links to both variance in clinically relevant behav-
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ioural traits and neuropsychiatric disorders in combination with at least moderate her-
itability suggests that network phenotypes might be promising for the field of neuroim-
aging genetics. This is is especially relevant because the genetic architecture of sev-
eral traditional, well established neuroimaging phenotypes has been shown to be 
nearly as complex as diagnostic categories (Elliott et al., 2018). Therefore, traditional 
neuroimaging measures might not always be optimal endophenotypes for neuroimag-
ing analyses as one of the main goals of the endophenoytpe approach is reducing 
complexity of the investigated pehnptypes to facilitate the identification of associations 
between genetics and the brain. Therefore, new analysis methods with improved sen-
sitivity for the ususally subtle effects of genetic risk factors on the brain and a less 
complex genetic architecture are urgently needed to further the field of neuroimaging 
genetics. 
 
 
 
 
 
 
 
 

 
 
Figure 5: Schematic of a pipeline for the connectomic network analyses applied in empirical study 1 as 
an example for a connectomic approach. The upper panel (b-c) represents the functional connectivity 
analyses applied in the current work. The lower panel (d-e) represents the structural connectivity anal-
yses of empirical study 1. For both types of connectivity analyses, the brain was parcellated according 
to the same atlas (a). For the functional connectivity analyes, timelines from a functional MRI were 
extracted (b). A connectivity matrix with Pearson correlations between each pair of brain regions was 
derived (c). For the structural connectivity analyses, diffusion weighted MRI images were used to esti-
mate the diffusion tensor for further processing. (d) For statistical analyses of structural connectivity we 
applied tract based spatial statistics, a technique for a whole brain voxel wise analysis of diffusion 
weighted data (own illustration). 

 
 

1.5 Emotion regulation 

Genetic variation in the serotonergic system has been linked to the risk for several 
neuropsychiatric disorders including depression (Brummett et al., 2007), bipolar disor-
der (Lim et al., 1995) and ADHD (Manor et al., 2002). A similar association with sero-
tonergic polymorphisms has been described for dimensional measures of normal var-
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iance in personality traits linked to emotional reactivity and regulation. Examples in-
clude a broad range of personality traits like neuroticism (Gonda et al., 2009), trait 
anxiety (K.-P. Lesch et al., 1996) and impulsive aggression (Buckholtz & Meyer-Lin-
denberg, 2008). Further evidence confirms that genetic risk for complex psychiatric 
disorders overlaps with genetic influences on personality traits linked to negative emo-
tionality. For instance, neuroticism and major depression appear to share some of their 
respective genetic backgrounds (Luciano et al., 2018).  
 
Altered emotion regulation has been shown to be present in several psychiatric disor-
ders (Fernandez et al., 2016) and is associated with treatment response (Slee et al., 
2008) and present even after remission (Visted et al., 2018). This suggests that at the 
level of behavioural traits, emotion regulation might be underlying the link between risk 
for neuropsychiatric disorders and genetic variance in serotonergic genes.  
 
Human neuroimaging research shows that the risk variants of some serotonergic pol-
ymorphisms are associated with altered brain function during functional fMRI tasks that 
activate the emotion processing system. The brain regions that were shown to be most 
consistently affected were predominantly in the limbic system and prefrontal regions 
(Hariri et al., 2005; Heinz et al., 2005; Lee & Ham, 2008; Meyer-Lindenberg et al., 
2006; Passamonti et al., 2008). Similar alterations in brain structure have been shown 
in carriers of serotonergic risk variants. For instance, the short allele of the 5-HTTLPR 
length polymorphism is associated with reduced grey matter volume in the amygdala 
and the perigenual cingulate (Pezawas et al., 2005). Emotion processing in human 
relies on the efficient coordination of activity in a network of multiple brain regions in-
cluding the amygdala, fusiform gyrus, hippocampus, striatum, thalamus, anterior cin-
gulate cortex, insula, and orbitofrontalcortex (Etkin et al., 2015; Phillips et al., 2003).  
Prior research shows that this network is heritable (Budisavljevic et al., 2016) and im-
plicated in genetic risk for neuropsychiatric disorders in humans (Cao et al., 2016; Dima 
et al., 2016) suggesting a potential link of serotonergic risk genes with connectivity in 
emotion processing networks. This is further supported by earlier research showing 
that the S allele of the 5-HTTLPR length-polymorphism is associated with altered 5-
HTT concentrations and serotonin receptor binding potentials in multiple regions in the 
emotion processing network (David et al., 2005; Praschak-Rieder et al., 2007). 
 
Serotonin transporter knock-out mice shows very similar alterations in brain regions 
within the emotion processing network (Fabre et al., 2000; Mathews et al., 2004; Rioux 
et al., 1999). Furthermore, knock-out animal models with modifications in the sero-
tonergic system show a complex phenotype including alterations in emotion pro-
cessing. Extensive phenotyping using batteries of tests showed increased anxiety and 
depression like behaviour in rodents lacking the serotonin transporter (Holmes et al., 
2003) and MAO-A deficient mice display increased aggression and impulsivity (Godar 
et al., 2011; Scott et al., 2008). 
Taken together, these findings suggest that genetic variance in polymorphisms linked 
to altered monoaminergic neurotransmission may impact the connectivity of multiple 
regions in the emotional processing network in humans and in turn, alter emotion pro-
cessing abilities even in the general population. 
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1.6 Goals and hypotheses 

Genetic variance in the serotonergic system has been repeatedly associated with 
structural and functional alterations in the limbic system in human neuroimaging stud-
ies. However, the mechanism underlying this link between genetic variance and the 
brain in humans is not well understood. Initial studies had several limitations, e.g. rel-
ative small sample sizes, focus on predefined regions of interest in the brain, and use 
of neuroimaging phenotypes with limited reliability. These shortcomings resulted in 
mixed evidence concerning the effect of serotonergic risk variants on neural structure 
and function. Initial neuroimaging findings relating genetic risk to neural alterations 
were hard to replicate and could not be consistently confirmed by meta-analytic evi-
dence. A comprehensive understanding of the effect of serotonergic variants at the 
whole-brain level is still elusive.  
 
The current project investigates connectomic network phenotypes in a large sample of 
thoroughly phenotyped healthy controls who underwent multimodal MRI, i.e. structural 
and functional using an extensive battery of neuroimaging tasks. For statistical com-
parison of genotype groups I applied an unbiased, whole-brain approach to detect po-
tential effects of serotonergic risk variants on neural connectivity patterns. 
 
More specifically, the following hypotheses were derived: 
 
1) Network phenotypes are more sensitive to the subtle effects of typical genetic risk 
variants than traditional neuroimaging approaches. Therefore, network phenotypes 
might be beneficial for the study of genetic risk for psychiatric disorders on the brain. 
2) Serotonergic risk variants affect connectivity patterns in fronto-temporal circuits con-
firming earlier work. Additionally, applying a whole-brain, connectomic approach will 
detect more widespread effects showing that the influence of serotonergic risk genes 
is not limited to specific brain regions. 
3) Genetic variance in the serotonergic system impacts structural and functional con-
nectivity patterns even without an active task. However, a task that challenges a sig-
nificant cognitive domain, e.g. emotion processing might increase sensitivity. 
4) Networks showing altered connectivity patterns in carriers of serotonergic risk vari-
ants are also associated with differences in emotion regulation. 
To assess these hypotheses, we conducted two empirical studies investingating the 
relationship of genetic variation in the 5-HTTLPR and the MAOA polymorphism with 
brain connectivity at the neural network level and assessing clinical relevance of the 
potential network phenotypes by testing for potential associations with emotion pro-
cessing. 
The first empirical study aimed to identify potential connectomic phenotypes related to 
genetic variation in the 5-HTTLPR polymorphism in healthy participants. The study 
used functional magnetic resonance imaging (fMRI) and applied a well-established 
emotional face-matching task (Hariri et al., 2002). Specifically, this study aimed to (a) 
follow-up on earlier mixed results on the effects of this genotype on amygdala activa-
tion in a larger, well powered sample, (b) search for novel functional phenotypes linked 
to 5-HTTLPR genotype at the neural network level, and (c) investigate the utility and 
reliability of the identified network-based phenotype by multiple follow-up analyses. 
More specifically, this included probing the identified networks test–retest reliability, 
assessing the clinical relevance of the identified network phenotype by testing for as-
sociations with emotion regulation and assessing the specificity of potential findings by 
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testing for the presence of a structural basis or structural confounds in grey and white 
matter. 
The aim of the second empirical study was to extend earlier research on MAOA by 
studying the human brain connectome using multimodal neuroimaging and a regionally 
unconstrained whole‐brain network‐based analysis approach that had to our 
knowledge, not been applied to the study of the MAOA polymorphism before. Again, 
the study analyzed healthy individuals to prevent confounding by the presence of psy-
chiatric disorders.  More specifically, the goal of the study was to examine whether 
functional connectomic alterations during negative emotion processing (a) are limited 
to the cortico‐limbic circuits connected with variation in MAOA genotype by prior stud-
ies, (b) are specific to the emotion processing domain, and (c) go along with similar 
structural alterations in neural network architecture. In supplementary analyses, we 
additionally assessed the spatial distribution of MAOA sensitive links across several 
neuroimaging tasks probing different cognitive domains and neuroimaging modalities. 
We further tested the identified sub‐networks for potential associations with emotion 
regulation ability and recent stressful life events to assess clinical relevance of the 
potential neuroimaging genetic findings. Based on the existing connectivity literature 
(Buckholtz et al., 2008; Denson et al., 2014), we expected to detect a regionally dis-
tributed pattern of “hyperconnected” link clusters in the MAOA‐L carriers. We expected 
this hyperconnectivity pattern to extend across multiple brain functional domains and 
to include comparable structural connectomic alterations. 
 
Please note that several parts of this thesis have already been published by the doc-
toral candidate as a first author. Therefore, certain sections, tables, or figures of this 
thesis will be identical to the following publications: 
 
 
 
Cao H*, Harneit A*, Walter H, Erk S, Braun U, Moessnang C, Geiger LS, Zang Z, 
Mohnke S, Heinz A, Romanczuk-Seiferth N, Mühleisen T, Mattheisen M, Witt SH, 
Cichon S, Nöthen MM, Rietschel M, Meyer-Lindenberg A, Tost H. The 5-HTTLPR Pol-
ymorphism Affects Network-Based Functional Connectivity in the Visual-Limbic Sys-
tem in Healthy Adults. Neuropsychopharmacology. 2018 43(2):406-414. Epub 2017 
Jun 7. *Shared first authors. 
 
Harneit A, Braun U, Geiger-Primo L, Zang Z, Hakobjan M, van Donkelaar MM, Schwei-
ger J, Schwarz K, Gan G, Erk S, Heinz A, Romanczuk-Seiferth N, Witt S, Rietschel M, 
Walter H, Franke B, Meyer-Lindenberg A, Tost H. MAOA-VNTR genotype affects 
structural and functional connectivity in distributed brain networks. Hum Brain Mapp. 
2019 40(18):5202-5212. Epub 2019 Aug 23. 
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2 MATERIALS AND METHODS 

2.1 Empirical study 1 

2.1.1 Participants 

Two hundred and twenty-three healthy individuals with available data on 5-HTTLPR 
genotype as well as functional and structural imaging participated in empirical study 1 
(mean age 33.35 ± 9.92 years, 107 males). The participants were recruited from the 
communities in Mannheim, Bonn and Berlin. All individuals were of European ancestry 
and had no first-degree relative with a mental illness. The exclusion criteria included a 
lifetime history of significant general medical, psychiatric or neurological illness, prior 
drug or alcohol abuse, and head trauma. The participants were assessed with neuro-
psychological measures on emotion regulation and intelligence, including the Emotion 
Regulation Questionnaire (ERQ) (Abler & Kessler, 2009; Gross & John, 2003) and the 
Matrix Reasoning subscale of Wechsler Adult Intelligence Scale (WAIS-MR) 
(Wechsler, 1997). Stressful life events for the last two years were quantified using the 
Social Readjustment Rating Scale (SRRS) (Holmes & Rahe, 1967). 
 

 
Table 1: Sample Characteristics Stratified by 5-HTTLPR Genotype 

 
ll (n=55) ls (n=108) ss (n=60) p-value 

Demographic data 

Age (year) 
34.47 ± 10.01 33.19 ± 9.72 34.30 ± 10.04 0.83 

Sex (M/F) 27/28 55/53 25/35 0.51 

Site (Berlin/Bonn/Mannheim) 20/27/8 55/41/12 20/26/14 0.08 

Education (year) 15.33 ± 2.87 15.57 ± 2.44 15.65 ± 2.51 0.79 

Handedness (right/left/both) 48/6/1 98/6/4 53/7/0 0.33 

Neuropsychological data 

ERQ-suppression 13.35 ± 4.72 13.06 ± 5.15 13.98 ± 4.30 0.53 

ERQ-reappraisal 25.86 ± 7.03 27.25 ± 6.81 28.00 ± 6.70 0.27 

WAIS-MR 20.51 ± 4.52 20.97 ± 3.44 20.98 ± 3.67 0.74 

SRRS 327.36 ± 236.24 274.82 ± 180.85 277.93 ± 191.06 0.27 

fMRI task performances 

Correct ratio face (%) 98.79 ± 0.02 99.00 ± 0.02 98.89 ± 0.03 0.87 

Correct ratio form (%) 97.27 ± 0.04 97.42 ± 0.04 98.06 ± 0.02 0.38 

fMRI data quality 

Signal to noise ratio 95.16 ± 16.04 93.22 ± 18.36 94.39 ± 20.69 0.81 

Sum motion translation (mm) 0.42 ± 0.41 0.43 ± 0.37 0.36 ± 0.29 0.43 

Sum motion rotation (degree) 0.63 ± 0.40 0.66 ± 0.55 0.59 ± 0.51 0.72 

Mean frame-wise displacement (mm) 0.09 ± 0.04 0.09 ± 0.03 0.09 ± 0.04 0.76 
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Abbreviations: ERQ: Emotion Regulation Questionnaire; SRRS: Social Readjustment Rating Scale; 
WAIS-MR: Matrix Reasoning Subscale of Wechsler Adult 
Intelligence Scale, ll: long/long 5-HTTLPR Genotype, ls: long/short 5-HTTLPR Genotype, ss: short/short 
5-HTTLPR Genotype 
Note that ERQ subscale scores were calculated as the sum of contributing item scores, and SRRS were 
derived from the assessment of life events in the last 2 years. 
Categorical variables are reported as numbers of cases, continuous variables are reported as mean and 
SD. 

 

2.1.2 Genotyping 

For each individual, DNA was extracted from EDTA anti-coagulated venous blood 
samples using standard techniques. Polymerase chain reaction was conducted follow-
ing previously described methods with oligonucleotide primers flanking the polymor-
phic region (forward: 5′-TCCTCCGCTTTGGCGCCTCTTCC-3′ and reverse: 5′-
TGGGGGTTGCAGGGGAGATCCTG-3′) (Wendland et al., 2006). The 5-HTTLPR was 
assessed with agarose gel electrophoresis. For the long allele a band of 512 basepairs 
and for the short allele a band of 469 basepairs were visible. In addition, we genotyped 
rs25531 A/G single nucleotide polymorphism (SNP) given the evidence that the G al-
lele renders the L allele functionally similar to the S allele (i.e. LG is equivalent to S) 
(Hu et al., 2005). The SNP was genotyped using restriction enzyme digest of the PCR 
amplicon using HpaII and subsequent agarose gel electrophoresis. The observed gen-
otype distribution did not deviate from Hardy-Weinberg equilibrium (P = 0.94). 
Genotypes for all additional SNPs, including BDNF rs6265, were available from geno-
typing using Illumina Human 610-Quad and Illumina Human 660W-Quad Bead Arrays 
(Illumina, Inc. San Diego, CA, USA). Subsequently, subjects were classified into three 
groups based on the combination of the L/S and rs25531 A/G polymorphisms: ll group 
(including LA/LA, 55 subjects), ls group (including LA/LG and LA/S, 108 subjects), and 
ss group (including LG/LG, LG/S and S/S, 60 subjects). The three genotype groups 
did not show significant differences in demographic, psychological and fMRI perfor-
mance data (all P-values>0.08, Table 1). 
 

2.1.3 MRI Modalities and Task Paradigm 

Multimodal magnetic resonance imaging (MRI) data were collected from all partici-
pants. During the fMRI scan, participants completed a well-established emotional face-
matching task as previously described (Hariri et al., 2002). In brief, the face-matching 
task is an implicit emotional processing paradigm consisting of two conditions: an emo-
tional face condition (matching faces) and a control condition (matching forms). In the 
emotional face condition, subjects were presented with trios of faces depicting fearful 
or angry expressions and were instructed to match the two facial displays belonging to 
the same individual. In the control condition, participants were presented with trios of 
geometric shapes (circles, vertical and horizontal ellipses) and were asked to match 
the two identical shapes. In addition, high-resolution T1-weighted images for each in-
dividual and diffusion weighted images (DWI) for part of the subjects (141 out of 223) 
were acquired. These data allow exploration of potential brain network changes at both 
the functional and structural level. 
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2.1.4 Data Acquisition 

MRI data were acquired with three identical Siemens 3-Tesla scanner systems (Sie-
mens Trio, Erlangen, Germany) located in Berlin, Bonn and Mannheim. The fMRI and 
T1-weighted images were acquired with the same protocol across sites whereas DWI 
data were acquired with slightly different protocols. For fMRI data, gradient-recalled 
echo-planar imaging (GRE-EPI) sequences were used with the following parameters: 
TR 2000ms, TE 30ms, 28 oblique slices per volume, 4mm slice thickness, 1mm slice 
distance, 80° flip angle, 192mm FOV, and 64 × 64 matrix. High-resolution T1 image 
data were acquired by using 3D magnetization-prepared rapid gradient-echo (MP-
RAGE) sequences with the following parameters: TR 1570ms, TE 2.75ms, TI 800ms, 
176 sagittal slices, 1 mm voxel size, 256mm FOV, and 15° flip angle. DWI data were 
acquired by using spin echo EPI sequences with the following parameters: 1) Mann-
heim: TR 14000ms, TE 86ms, 2mm slice thickness, 60 non-collinear directions, b-
value 1000 s/mm2, 1 b0 image, FOV 256 mm; 2) Bonn: TR 12000ms, TE 100ms, 
1.7mm slice thickness, 60 non-colinear directions, b-value 1000 s/mm2, 11 b0 images, 
FOV 220mm; 3) Berlin: TR 8200mm, TE 92ms, 2.3mm slice thickness, 64 non-colinear 
directions, b-value 1200 s/mm2, 7 b0 images, FOV 220mm; 4) additional Mannheim 
cohort: TR 1400ms, TE 93ms, 1.7mm slice thickness, 60 non-collinear directions, b-
value 1500 s/mm2 , 3 b0 images, FOV 220mm. 
 

2.1.5 Data Quality Control 

For assessment of fMRI data quality, we quantified several head motion parameters 
as previously described (Cao et al., 2016; Plichta et al., 2012; Yan et al., 2013), includ-
ing the sum of volume-to-volume translational excursions across the time series, the 
sum of volume-to-volume rotational excursions across the time series, and the mean 
voxel-based frame-wise displacement. Volume-to-volume excursions were calculated 
as the difference of the root mean squared translation (rms(x^2+y^2+z^2)) or root 
mean squared rotation (rms(α^2+β^2+γ^2)) between two successive volumes. Moreo-
ver, the signal-to-noise ratios (SNR) for each participant were computed using the New 
York University dataQuality toolbox (http://cbi.nyu.edu/software/dataQuality.php). As 
shown in Table 1, the three genotype groups were well balanced for all image quality 
measures (P > 0.43). 
 

2.1.6 Amygdala Activation Analysis 

The first analysis of study 1 attempted to replicate the association between 5-
HTTLPR and amygdala activation findings reported in previous studies (Hariri et al., 
2005; Hariri et al., 2002). Here, we closely followed the methods detailed in these 
studies and used standard procedures in Statistical Parametric Mapping (SPM8, 
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). In brief, functional images were rea-
ligned to the first image of the scan, slice time corrected, normalized to the Montreal 
Neurological Institute brain template with resampling to 3 × 3 × 3 mm3 voxels, and 
spatially smoothed with a 9 mm full-width at half-maximum Gaussian kernel. The pre-
processed images were then subjected to first-level general linear model estimation, 
where data were high-pass filtered (cutoff 128 s) and individual maps of the ‘face-
matching>form-matching’ contrast were computed. The contrast images were used 
for a second-level random effects analysis. Here, two different models were em-
ployed: a linear regression model with genotypes ll, ls, and ss encoded as 0, 1 and 2, 
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and an analysis of covariance (ANCOVA) model where subjects with risk allele s 
were compared with those with ll (ll vs s, ie, the same model as used in Hariri et al 
(Hariri et al., 2002). In both models, age, sex, and site were included as nuisance co-
variates. As in prior work, results were reported after family-wise error (FWE) correc-
tion across the mask of bilateral amygdala from the Automated Anatomical Labeling 
atlas (Tzourio-Mazoyer et al., 2002). 
 

2.1.7 Brain Functional Network Analysis 

The functional network analysis followed previously published procedures of our group 
(Cao et al., 2016; Cao, Plichta, Schäfer, et al., 2014). Here, mean time series for each 
of the 270 nodes detailed in Power et al (Power et al., 2011) were extracted from the 
preprocessed images. Notably, the original Power atlas only contained 264 nodes with-
out bilateral hippocampus, bilateral amygdala, and bilateral ventral striatum. To 
achieve whole-brain coverage, we included these nodes based on previously pub-
lished coordinates from meta-analyses (Liu et al., 2011; Sabatinelli et al., 2011; Spreng 
et al., 2009), thereby increasing the total number of nodes to 270 (one node per region 
and hemisphere). The time series were then corrected for mean effects of task condi-
tions, white matter and cerebrospinal fluid signals, and six head motion parameters, 
and were high-pass filtered (cutoff 128 s). Afterwards, we computed pairwise Pearson 
correlation coefficients between the processed time series of each node, resulting in a 
270 × 270 two-dimensional connectivity matrix for each subject. 
 
Following the procedures described in earlier work from our group (Cao et al., 2016), 
we used network-based statistic (NBS) to identify clusters of functional links that were 
linearly correlated with the number of risk allele s. NBS is s statistical method that can 
be applied to identify connections in a whole brain network that are related to a variable 
of interest like genotype group. This method tests all connections of the graph making 
up the brain network for potential associations with measures of interest and effectively 
controls cluster-level FWE for link-wise comparisons, which provides a larger power 
than mass-univariate tests on independent links. To achieve this increased power, 
NBS utilizes the high level of interconnectedness between the connections involved in 
the effect or contrast of interest (Zalesky et al., 2010).  
Here, an initial linear model for the three genotypes ll, ls, and ss (encoded as 0, 1, and 
2) was applied to each of the N(N-1)/2=36315 (N=270) links in the connectivity matri-
ces, with age, sex, and site as covariates of no interest. This produced a P-value matrix 
representing the probability of accepting the null hypothesis for each link. All links with 
P-values⩽0.0001 were then thresholded into a set of suprathreshold links, and con-
nected subnetwork clusters were subsequently identified from the set. The significance 
of the identified clusters was tested by 5000 permutations, where each subject was 
randomly reassigned into a genotype group during each permutation and the maximal 
extent of the identified cluster was recalculated. The corrected P-value for the identified 
cluster was determined by the proportion of the derived cluster sizes in the permutation 
distribution that were larger than the observed group difference. 
 

2.1.8 Follow-up analyses of the Identified Functional Network 

Following the strategy used in prior work of our group(Cao et al., 2016) we performed 
several supplementary analyses to probe the validity of the identified subnetwork by 
examining its test–retest reliability, neuropsychological associations, and potential 
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structural confounds. Here, we reduced data dimensionality by averaging the connec-
tivity of subnetwork links and gray matter volumes of subnetwork nodes for each sub-
ject. This aimed to increase sensitivity and to stay consistent with the NBS method per 
se, which treats the whole cluster as an entity for which the null hypothesis can only 
be rejected at the cluster level (Zalesky et al., 2010). 
 

2.1.9 Test–retest reliability  

Test–retest reliability is an important quality measure for a potential imaging pheno-
type. Here, we reanalyzed the test–retest data from a prior study published by our 
group (Cao, Plichta, Schäfer, et al., 2014) where 26 healthy subjects were scanned 
twice with the same emotional face-matching task within 2 consecutive weeks (mean 
time interval: 14.6±2.1 days, mean age: 24.4±2.8 years, 11 males, see (Cao, Plichta, 
Schäfer, et al., 2014) for sample details). Data processing and analysis followed the 
same procedures described above, and the mean connectivity estimates of the sub-
network were extracted for each subject and session. Intra-class correlation coeffi-
cients (ICCs) were used to quantify reliability, including ICC(2,1) and ICC(3,1), which 
reflect absolute agreement and relative consistency of the measurements between 
sessions, respectively. Based on established criteria (Cicchetti & Sparrow, 1981), 
ICC>0.40 indicates fair reliability, and ICC>0.59 indicates good reliability. 
 

2.1.10 Relationship to emotion regulation  

As 5-HTTLPR is a key regulator of the serotonin system and has been related to 
(mal)adaptive responses to emotional experiences (Caspi et al., 2003), we further ex-
amined whether individuals with higher or lower subnetwork connectivity differed in 
their preferred tendency to regulate emotions. Here, we analyzed the subscale scores 
of the ERQ, a 10-item scale measuring the respondents’ tendency to regulate their 
emotions by either cognitive reappraisal or expressive suppression (Gross & John, 
2003). For the analysis, we median-split participants into low and high connectivity 
groups and used ANCOVA models for the statistical comparison of ERQ subscale 
scores between groups, controlling for age, sex and site. Significance was set at 
P<0.05 after multiple corrections for both the suppression and the reappraisal sub-
scale. 
 

2.1.11 Specificity of the identified genetic association 

To assess the specificity of the identified subnetwork showing a negative association 
with the number of risk alleles for 5-HTTLPR, the network-based statistic (NBS) anal-
ysis described in paragraph 2.1.7 was repeated for an additional unrelated genetic 
polymorphism, the rs6265 in the brain derived neurotrophic factor (BDNF) gene. The 
rs6265 Val66Met is a non-synonymous coding variant which causes a valine to methi-
onine substitution in the BDNF gene. This gene encodes for brain derived neurotrophic 
factor, a key regulator of neural plasticity and development (Minichiello, 2009). The 
BDNF rs6265 polymorphism has been associated with altered activity-dependent 
BDNF secretion (Egan et al., 2003) brain structure and function (Egan et al., 2003; Ho 
et al., 2006; Montag et al., 2009), deficits in cognition (Egan et al., 2003; Pezawas et 
al., 2004; Tost et al., 2013) and susceptibility for a host of psychiatric disorders, includ-



Materials and Methods 

22 

ing depression (Verhagen et al., 2010), bipolar disorder (Sklar et al., 2002) and schiz-
ophrenia (Neves-Pereira et al., 2005). The NBS analysis for the BDNF rs6265 poly-
morphism was performed using exactly the same parameters as specified in the man-
uscript. Apart from the original stringent threshold used in our main analysis (P < 
0.0001), we also examined the association using two more liberal thresholds (P < 
0.001 and < 0.005). Out of the 223 subjects included in the main analysis, BDNF 
rs6265 genotypes were available for 210 individuals (130 G/G, 69 A/G, 11 A/A). Due 
to the low frequency of the A allele, genotypes A/A and A/G were combined into a 
single A-carrier group for statistics. A multiple regression model with BDNF rs6265 
genotype (A-carriers, GG) as variate of interest, and age, sex and site as nuisance 
covariates was applied. 
In addition to the BDNF gene analysis, we performed another supplemental analysis 
to further confirm the specificity of our main finding. In this analysis, we tested 10,000 
randomly selected SNPs for potential associations with mean functional connectivity 
of the identified subnetwork. Whole-genome genotype data were available for 210 of 
the individuals included in the main analysis. Mean connectivity estimates for the sub-
network were extracted for these participants. The set of available SNPs was pruned 
using a linkage disequilibrium (LD) cutoff of R2 = 0.8. Further quality control was per-
formed to exclude SNPs with missing genotype information for any of the 210 partici-
pants and with low minor allele frequencies (i.e. less than 20 individuals for any geno-
type subgroups). From a set of 124,663 SNPs meeting the specified criteria, 10,000 
SNPs were randomly selected. Each of these randomly selected SNPs was tested for 
potential association with the mean subnetwork connectivity using an ANCOVA model 
with genotype as variate of interest and sex, age and site as variates of no interest. 
Bonferroni correction for multiple testing was applied (P < 5e-6). 
 

2.1.12 Voxel-based morphometry (VBM)  

As 5-HTTLPR genotype has been associated with altered volume of several brain re-
gions in earlier studies (Frodl et al., 2008; Pezawas et al., 2005), we further tested 
whether the identified functional alterations were related to gray matter differences. 
Here, we analyzed high-resolution T1 structural data for each subject with VBM. The 
data preprocessing procedures followed those of a previously published study  from 
our group (Cao et al., 2016) and the defaults implemented in the VBM8 toolbox 
(http://dbm.neuro.uni-jena.de/vbm8/). In brief, the images were tissue segmented, spa-
tial normalized to the MNI space with a diffeomorphic image registration algorithm 
(DARTEL), corrected for image intensity non-uniformity and global brain grey matter 
volume, and smoothed with a 10 mm FWHM Gaussian kernel. The mean gray matter 
volumes across all subnetwork nodes for each subject were entered as dependent 
variable into an ANCOVA model with genotype (ll, ls, ss) as variable of interest and 
age, sex, and site as nuisance covariates. In addition, partial correlation was used to 
examine the association between mean gray matter volume and mean subnetwork 
connectivity while controlling for age, sex, and site. 
 

2.1.13 Tract-based spatial statistics (TBSS)  

Earlier studies suggest an association between 5-HTTLPR genotype and microstruc-
tural integrity of brain white matter tracts (Benedetti et al., 2015; Pacheco et al., 2009). 
To test potential white matter correlates, we performed an analysis for participants with 
available DWI data (141 subjects, 39 ll, 62 ls, 40 ss) using TBSS implemented in the 
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FMRIB Diffusion Toolbox (http://www.fmrib.ox.ac.uk/fsl/). For DTI preprocessing the 
following preprocessing steps were performed: correction of the diffusion images for 
head motion and eddy currents by affine registration to a reference (b0) image, extrac-
tion of non-brain tissues (Smith, 2002), and linear diffusion tensor fitting. The resulting 
maps contained voxel-wise parameter estimates for fractional anisotropy (FA), radial 
diffusivity (RD) and axial diffusivity (AD) in individual spaces. After data preprocessing, 
statistical analysis was performed using TBSS (Smith et al., 2006). First, all FA images 
were non-linearly registered into a common reference space (FMRIB58_FA template) 
using the FMRIB's Non-linear Registration Tool (FNIRT) (Rueckert et al., 1999). Sub-
sequently, the resulting transformation matrices were applied to axial and radial diffu-
sivity maps. The mean FA image was calculated to create the mean FA ‘skeleton’, an 
alignment-invariant representation of the center of all tracts common to the group. A 
threshold of FA > 0.2 was chosen to minimize the effects of incidental tracts and partial 
voluming. Each subject's aligned FA data were then projected onto this skeleton via 
perpendicular search for the highest FA value. The estimated non-linear warps and 
projection vectors were subsequently used to register each individual’s diffusion data 
onto the skeleton. The processed images were then fed into a linear regression model 
with genotypes ll, ls, and ss (encoded as 0, 1 and 2) as variable of interest and age, 
sex and site as nuisance variables. Statistical inference was performed using FSL Ran-
domize with 5000 permutations and the significance threshold was set to P < 0.05 after 
FWE correction. To restrict the initial analysis to white matter structures anatomically 
consistent with the identified subnetwork, we constricted our search range by creating 
a merged mask of the major visual-limbic fiber tracts (i.e., bilateral cingulate fasciculus, 
inferior longitudinal fasciculus and uncinated fasciculus) as defined by the Johns Hop-
kins University (JHU) white matter atlas (Susumu Mori, 2005). In addition, to explore 
potential genotype effects outside this mask, a secondary analysis of whole fractional 
anisotropy (FA) skeleton was also performed. In addition, given that only 141 individu-
als had available DWI data, we further added the DWI data of additional 89 healthy 
subjects from a different cohort into the analysis to achieve a comparable sample size 
between the functional and structural studies. The added subjects were recruited from 
communities in and around Mannheim (mean age 26.52±9.28 years, 35 males). The 
same DTI analysis was then performed in the combined sample (in total 230 subjects, 
65 ll, 106 ls, 59 ss). 

2.2 Empirical study 2 

2.2.1 Participants 

We included data from 219 to 284 healthy adult participants per neuroimaging modal-
ity. Individuals were of European ancestry and were recruited from the general popu-
lation at three German sites (Mannheim, Berlin, Bonn). General exclusion criteria were 
a lifetime history of significant general medical, psychiatric, or neurological illness, the 
presence of a first‐degree relative with a history of psychiatric illness, prior drug or 
alcohol abuse, and head trauma. All subjects provided written informed consent for 
protocols approved by the institutional ethical review boards of the Universities of Hei-
delberg, Bonn, and Berlin. Demographic and clinical information was available for all 
individuals. Data on the preferred tendency to regulate emotions (as measured by the 
Emotion Regulation Questionnaire, ERQ) were available in a subset of 259 individuals 
(Gross & John, 2003). Data on the extent of stressful life events in the preceding 
2 years (as measured by the social readjustment rating scale, SRRS) were available 
in a subset of 260 individuals (Holmes & Rahe, 1967). 
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2.2.2 MAOA genotyping 

We genotyped a total of 504 individuals using standard methods to extract genomic 
DNA from lymphoblastoid cell lines. The MAOA 30 bp repeat polymorphism was gen-
otyped using 30 ng genomic DNA as template. PCR was performed with 1x AmpliTaq 
Gold® 360 Master Mix (Life Technologies) and 0.33 mM fluorescently labeled forward 
primer (FAM, VIC, PET or NED - 5’- ACAGCCTGACCGTGGAGAAG-3′) and reverse 
primer (5′- GAACGGACGCTCCATTCGGA -3′) in a total volume of 7,5 µl. Amplification 
was performed using the following protocol: 95⁰C for 10 min followed by 35 cycles of 
denaturation for 30 s at 95⁰C, 30 s annealing at 60⁰C, and primer extension at 72⁰C for 
1 min, followed by a final extension at 72⁰C for 10 min. The product of the amplification 
was diluted 1:20 in H2O. 
Determination of the length of the alleles was performed by direct fragment length 
analysis on an automated capillary sequencer (ABI3730, Applied Biosystems, Nieu-
werkerk a/d Ijssel, The Netherlands) using standard conditions (1 µl of the diluted PCR 
product  together with 9.7 µl formamide and 0.3 µl GeneScan-600 Liz Size 
StandaardTM (Applied Biosystems, Nieuwerkerk aan de IJssel, the Netherlands)). Re-
sults were analyzed with Genemapper version 4.0 (Applied Biosystems). Generally, 
the MAOA genotyping assay has been validated earlier, and 5% blanks as well as 
duplicates between plates were taken along as quality controls during genotyping. 
 
Genotyping was performed in a JCI-accredited laboratory at the Department of Human 
Genetics of the Radboud University Medical Center in Nijmegen. We categorized 2, 3 
and 5 copies of the repeat sequence as MAOA-L and 3.5. or 4 copies as MAOA-H 
(Guo et al., 2008). The exact allele frequencies are given in table 2. As detailed in the 
main manuscript, we excluded all MAOA female heterozygotes from subsequent anal-
ysis. 
Since the MAOA gene is located on the X chromosome, males are hemizygous carriers 
of either one L or H allele. Women carry two alleles and can thus be heterozygous, 
although one of the two alleles is (fully or incompletely) silenced by random X chromo-
some inactivation (Berletch et al., 2011). We addressed this ambiguity by excluding all 
MAOA heterozygous females from subsequent analysis. Sex distribution differed sig-
nificantly between MAOA genotype groups in our study cohort (p < .001). We ad-
dressed this issue by adding sex as a covariate in all statistical analyses. There were 
no additional significant differences in demographic, psychological, and fMRI perfor-
mance data between genotype groups (all p‐values >0.27 Table 3). 
 
 
 
 

Table 2: MAOA genotype distribution 

 L hemi-/ 
homozygotes 

H hemi-/ homozygotes L/H heterozygotes 

    

Female
s 

2r/2
r 

3r/3
r 

5r/5
r 

3.5r/4
r 

3.5r/3.5
r 

4r/4
r 

2r/3.5
r 

3r/3.5
r 

5r/3.5
r 

2r/4
r 

3r/4
r 

5r/4
r 

1 27 1 5 0 129 0 2 0 0 104 4 

      

Males 
2r 3r 5r 3.5r 4r 

- 
1 85 4 3 138 
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Table 3: Sample characteristics stratified by MAOA genotype 

 

H allele 
carriers 

L allele 
carriers 

p‐
value 

Demographics 
   

Age (year) 33.69 ± 10.00 33.18 ± 9.53 0.69 

Sex (males/females) 107 / 89 65 / 15 <0.001 

Site (Berlin/Bonn/Mannheim) 50 / 81 / 65 24 / 33 / 23 0.68 

Education (years), mean ± SD 15.35 ± 2.48 15.69 ± 2.71 0.32 

Handedness (right/left/both) 174 / 17 / 4 73 / 6 / 1 0.85 

Questionnaires 
   

ERQ‐suppression 14.13 ± 4.99 13.30 ± 4.78 0.91 

ERQ‐reappraisal 27.12 ± 6.57 27.49 ± 6.87 0.62 

SRRS 273.05 
± 190.77 

321.11 
± 203.93 

0.76 

fMRI task performance 
   

Faces condition (% correct) 98.74 ± 2.84 97.97 ± 4.89 0.32 

Forms condition (% correct) 97.28 ± 4.07 96.64 ± 5.02 0.55 

2‐back condition (% correct) 75.91 ± 21.47 73.75 ± 21.19 0.40 

0‐back condition (% correct) 98.41 ± 5.93 98.40 ± 5.39 0.94 

MRI data quality 
   

Faces task: Mean frame‐wise displacement 
(mm) 

0.16 ± 0.08 0.17 ± 0.08 0.99 

n‐back task: Mean frame‐wise displacement 
(mm) 

0.14 ± 0.006 0.13 ± 0.06 0.27 

Resting task: Mean frame‐wise displacement 
(mm) 

0.17 ± 0.06 0.16 ± 0.05 0.48 

DTI: Mean frame‐wise displacement (mm) 0.86 ± 0.33 0.81 ± 0.32 0.32 

Abbreviations: DTI, diffusion tensor imaging, ERQ, Emotion Regulation Questionnaire (calculated as 
the sum of contributing subscale item scores), SRRS, social readjustment rating scale (calculated from 
the assessment of life events in the last 2 years). Categorical variables are reported as numbers of 
cases, continuous variables are reported as mean and standard deviation (SD). 

 
 

2.2.3 MRI data acquisition 

We collected multimodal magnetic resonance imaging (MRI) data with three identical 
Siemens 3‐T scanner systems (Siemens Trio, Erlangen, Germany) located at the three 
sites. Table 5 provides an overview of participant numbers and characteristics for each 
data modality.  
 
For fMRI data acquisition, we used gradient-recalled echo-planar imaging (GRE-EPI) 
sequences with the following parameters: TR 2000ms, TE 30ms, 28 oblique slices per 
volume, 4mm slice thickness, 1mm slice distance, 80° flip angle, 192mm FOV, and 64 
× 64 matrix. For DTI data acquisition, we used spin echo EPI sequences with the fol-
lowing parameters: 1) Mannheim: TR 14000ms, TE 86ms, 2mm slice thickness, 60 
non-collinear directions, b-value 1000 s/mm2, 1 b0 image, FOV 256 mm; 2) Bonn: TR 
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12000ms, TE 100ms, 1.7mm slice thickness, 60 non-colinear directions, b-value 1000 
s/mm2, 11 b0 images, FOV 220mm; 3) Berlin: TR 8200mm, TE 92ms, 2.3mm slice 
thickness, 64 non-colinear directions, b-value 1200 s/mm2, 7 b0 images, FOV 220mm. 
Since good quality DTI data were only available for a subset of 211 individuals we 
added 73 DTI data sets from an additional adult cohort of healthy volunteers to obtain 
comparable sample sizes for the functional and the structural connectivity analyses. 
The spin echo EPI sequence of the additional Mannheim cohort had the following pa-
rameters: TR 1400ms, TE 93ms, 1.7mm slice thickness, 60 non-collinear directions, 
b-value 1500 s/mm2, 3 b0 images, FOV 220mm. 
 
 

Table 4: Characteristics of individuals included in the neuroimaging analyses 

 DTI Faces task Resting state N-back 

Sample size (n) 284 247 219 254 

Site 
(Mannheim/Berlin/Bonn) 

142 / 
41/101 

63 / 73 / 111 57 / 56 / 106 66 / 74 / 114 

MAOA genotype (H/L) 200 / 84 175 / 72 155 / 64 179 / 75 

Sex (males/females) 162 / 122 159 / 88 138 / 81 162 / 92 

Age (years), mean ± SD 31.81 ± 
10.23 

34.38 ± 9.83 32.53 ± 9.69 34.30 ± 9.85 

Education (years), mean ± 
SD 

15.53 ± 
2.49 

15.42 ± 2.63 15.44 ± 2.53 15.39 ± 2.63 

 
 
 
 

Table 5: Characteristics of individuals included in the sex-matched samples 

 DTI Faces task Resting state N-back 

Sample size (n) 244 176 162 184 

Site 
(Mannheim/Berlin/Bonn) 

122/37/85 46/56/74 42/42/78 49/52/83 

MAOA genotype (H/L) 200/44 148/28 138/24 156/28 

Sex (males/females) 122/122 88/88 81/81 92/92 

Age (years), mean ± SD 31.62±10.29 34.53±9.77 32.30±9.71 34.17±9.81 

Education (years), mean ± 
SD 

15.47±2.46 15.24±2.52 15.33±2.41 15.21±2.51 

 

2.2.4 MRI paradigms 

We used three well‐established fMRI tasks probing implicit emotion processing (emo-
tional face matching task), resting‐state (rs‐fMRI) and working memory (n‐back task), 
as previously described in detail (Callicott et al., 2003; Cao, Plichta, Schäfer, et al., 
2014; Hariri et al., 2002). All participants were thoroughly trained on the tasks prior to 
the scan. 
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The emotional face matching task (Hariri et al., 2002) is described in more detail in 
paragraph 2.1.3 In brief, is an implicit emotion processing task consisting of an emo-
tional face condition and a control condition. In the emotional face condition, partici-
pants were presented with trios of faces showing either angry or fearful expressions 
and were instructed to match the two facial displays belonging to the same individual. 
In the control condition, participants were presented with geometric shapes and were 
instructed to match the identical shapes. The task consisted of eight performance 
blocks of six trials or 30 s each, with alternating epochs of face- and form-matching 
conditions (task duration: 4.3 min or 130 whole-brain scans).  
Working memory function was studied with an n-back paradigm (Callicott et al., 2004). 
Briefly, a series of visual stimuli (numbers one to four) was displayed on a screen in a 
random order at set locations in a diamond-shaped box. Participants responded to 
each stimulus via a MRI compatible button box with four buttons arranged in the same 
configuration as the stimuli presented on the screen. In the 2-back working memory 
condition, participants were asked to encode the currently seen number, simultane-
ously recall the number seen two presentations previously, and press the button cor-
responding to the position of the number two presentations earlier. In the control con-
dition (0-back), subjects were asked to press the button corresponding to the position 
of the current number presentation. The task was presented in eight blocks of 30 sec-
onds each with alternating 0-back and 2-back conditions (task duration: 4.1 min or 124 
whole-brain scans). During the resting state scan (Cao, Plichta, Schafer, et al., 2014), 
participants were instructed to close their eyes, relax, and refrain from any particular 
mental activity (task duration: 5.0 min or 150 whole-brain scans). After each scan, in-
vestigators confirmed with the participant that they had not fallen asleep in the scanner.  
 

2.2.5 Functional MRI data processing and connectome construction 

Functional networks were constructed following previously published procedures (Cao, 
Plichta, Schäfer, et al., 2014; Zang et al., 2018) using SPM8 and MATLAB and is sim-
ilar to the approach described in paragraph 2.1.7. In short, data preprocessing included 
realignment to the mean image of the time series, slice time correction, spatial normal-
ization to the Montreal Neurological Institute (MNI) EPI template, and smoothing with 
an 8 mm full‐width at half‐maximum (FWHM) Gaussian kernel. For each participant 
and fMRI task, we then extracted the mean time series from the 116 brain regions (or 
nodes) defined by the automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et 
al., 2002). From the node time series, we regressed out white matter and cerebrospinal 
fluid signals, the mean effect of task conditions (active tasks only), and the six head 
motion parameters from the realignment step. The resulting residual time series were 
temporally filtered using a 0.008–0.1 Hz bandpass filter for the resting‐state data and 

a highpass filter (cut‐off 128 s) for the face matching and n‐back data. As functional 
connectivity data can be severely affected by head micromovements, we used in‐
house software to estimate frame‐wise displacement (FD) for all functional data and 
scrubbed all data frames with a FD > .5 mm and interpolated the missing frames using 
a B‐spline interpolation. Subjects with more than 10% affected data frames were ex-
cluded from the analysis. We then calculated pairwise Pearson correlation coefficients 
between each pair of nodes resulting in a 116 × 116 connectivity matrix for each subject 
and functional data type. 
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2.2.6 Structural MRI data processing and connectome construction 

DTI data preprocessing was performed with standard routines implemented in the soft-
ware package FSL (Smith et al., 2004) including the following steps: correction of the 
diffusion images for head motion and eddy currents by affine registration to a reference 
(b0) image, extraction of nonbrain tissues, and linear diffusion tensor fitting. After esti-
mation of the diffusion tensor, we performed deterministic whole‐brain fiber tracking as 
implemented in DSI Studio using a modified FACT algorithm (Yeh et al., 2013). For the 
construction of structural connectivity matrices, we initiated 1,000,000 streamlines for 
each participant. Streamlines with a length of less than 10 mm were removed. The total 
number of successful streamlines between each pair of nodes defined by the AAL atlas 
was then used as estimates of structural connectivity, resulting in a 116 × 116 connec-
tivity matrix for each subject. 
 

2.2.7 Data analysis and statistical inference 

We used network‐based statistics (NBS) to identify clusters of functional and structural 
links significantly differing between MAOA genotype groups. NBS is a well‐established 

method for controlling cluster‐level family‐wise error (FWE) rates for link‐wise compar-
isons while providing an increased power compared to mass‐univariate tests on indi-
vidual links (Zalesky et al., 2010). For comparability between data modalities, we used 
the following identical analysis parameters for all fMRI and DTI data: We identified 
suprathreshold links and sets of connected link clusters using ANOVA models with 
genotype as between‐subjects factor (MAOA high vs. MAOA low) and the covariates 
age, sex, data acquisition site, and sequence protocol (initial threshold: p ≤ .005, un-
corrected). The significance of the link clusters was assessed by performing 5,000 
permutations, in which subjects were randomly reassigned to genotype groups, and 
the maximal extent of the identified cluster was recalculated. The FWE‐corrected p‐
value for the identified clusters was determined by the proportion of cluster sizes in the 
permutation distribution that was larger than the cluster sizes of the observed group 
difference. This procedure was applied to all imaging modalities. 
 

2.2.8 Supplemental exploratory analyses 

To further quantify the spatial distribution of MAOA‐affected node connections across 
the brain and descriptively compare the outcome between different neuroimaging tasks 
and modalities, we post hoc quantified and illustrated the percentage of significant 
“isocoupled” versus “anisocoupled” links, that is, connections between neural nodes 
within the same versus between different major brain subdivisions as defined by the 
six supraordinate labels of the AAL atlas (i.e., frontal, parietal, occipital, temporal, cin-
gulate, and subcortical regions). Moreover, since MAOA is located on the X chromo-
some, and the gene is of interest for impulsivity and aggression, we further explored 
the potential impact of sex on the identified MAOA‐associated cluster links by testing 
the mean cluster connectivity estimates for potential genotype by sex interaction ef-
fects across all imaging modalities. In addition, we tested whether the reported effects 
of MAOA genotype on cluster connectivity remains stable in subsamples with sex‐
matched genotype groups and in separate analyses of males and females, respec-
tively. Details on the participant numbers of the sex‐matched supplemental analyses 
are provided in table 5. 
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2.2.9 Relationship to emotion regulation 

In addition, since MAOA genotype has been linked to dysfunctional responses to neg-
ative emotional events (Kim-Cohen et al., 2006),  we explored whether the connectivity 
estimates of the identified MAOA‐associated sub‐networks across tasks and modali-
ties related to the tendency of individuals to employ a maladaptive emotion regulation 
strategy. For this, we first quantified the mean sub‐network connectivity estimates for 
the MAOA‐associated networks and the scores for ERQ subscales, representing two 
emotion regulation strategies, “cognitive reappraisal” (higher values indicate psychiat-
ric resilience) and “expressive suppression” (higher values indicate psychiatric risk) for 
each individual and subsequently calculated Pearson correlation coefficients, control-
ling for age, sex, and data acquisition site. We used analogous procedures to test sub‐
networks across tasks and modalities for potential associations with recent stressful 
life events (SRRS total scores). 
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3 RESULTS 

3.1 Empirical study 1 

3.1.1 Amygdala Activation Analysis 

In our sample of 223 healthy subjects, we did not detect significant differences in amyg-
dala activation between the three genotypes, neither in the regression (small-volume 
PFWE=0.80) nor in the ANCOVA model (small-volume PFWE=0.79). 
 

3.1.2 Network-Based Functional Connectivity Analysis 

The NBS analysis identified a functional cluster showing significantly negative correla-
tion between the connectivity estimates of the cluster links and the number of risk al-
leles (PFWE=0.03, Figure 7a). The cluster consisted of 14 links interconnecting 15 
pairs of nodes that primarily mapped to the limbic system (hippocampus, orbitofrontal 
cortex, anterior cingulate gyrus), visual system (middle occipital gyrus, fusiform gyrus, 
middle, and inferior temporal gyrus) and subcortex (putamen and thalamus) (see Table 
6 for details). The mean connectivity across all links in the cluster was significantly 
decreased in ls and ss carriers (P=7e-15, Figure 7b). 
 

3.1.3 Test–Retest Reliability of the Phenotype 

Analysis of the test–retest data revealed relatively high ICC values for the connectivity 
metrics of the identified subnetwork (ICC(2,1)=0.69, ICC(3,1)=0.68). This suggests 
good reliability of the NBS-based subnetwork connectivity estimates. 
 

3.1.4 Relationship to Emotion Regulation 

The ANCOVA model revealed a significant difference between the low and high sub-
network connectivity groups with respect to the ERQ suppression scores (F=6.71, 
P=0.01, Figure 7e). Here, the group with the lower connectivity showed significantly 
higher emotion suppression scores than that with the higher connectivity, suggesting 
that healthy individuals with a lower coupling of the subnetwork are more likely to em-
ploy a maladaptive strategy for emotion regulation. No significant group difference was 
detected for the ERQ reappraisal scores (F=0.78, P=0.38). 
 

3.1.5 Specificity of the identified genetic association 

No significant associations between BDNF rs6265 genotype and network-based func-
tional connectivity were detected by NBS at any of the range of tested thresholds 
(PFWE > 0.14). 
Likewise, no significant associations with connectivity of the 5-HTTLPR- sensitive sub-
network were observed for any of the 10,000 tested randomly selected SNPs after 
Bonferroni correction (see Figure 6). In contrast, the association between 5-HTTLPR 
and subnetwork connectivity remained significant even at this very conservative cor-
rection threshold (P = 7e-15). 
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Figure 6: 10,000 randomly selected SNPs were tested  for potential associations with mean functional 
connectivity of the identified subnetwork. Only the association between 5-HTTLPR and subnetwork con-
nectivity remained significant after correcting for multiple comparisons. 

 

3.1.6 Gray Matter Structural Analysis 

The VBM analysis revealed no significant differences in mean gray matter volumes of 
the subnetwork nodes between genotype groups (F=1.08, P=0.34, Figure 7c) and no 
significant correlation between mean gray matter volumes and subnetwork connectivity 
measures (r=0.05, P=0.45). This suggests that the identified functional network alter-
ation is independent of genotype-related differences in gray matter. 
 

3.1.7 White Matter Structural Analysis 

The initial TBSS analysis of 141 individuals revealed no significant differences in FA 
between genotype groups in visual-limbic fiber bundles (PFWE>0.6, Figure 7d). The 
inclusion of 89 additional subjects further confirmed this negative finding (PFWE>0.62). 
Extending the FA analysis to the whole brain white matter skeleton did not reveal any 
genotype effect either (PFWE>0.27). Similar results emerged in additional analyses 
focusing on radial and axial diffusivity (PFWE>0.22). Together these findings suggest 
that the identified functional network alteration is independent of genotype-related dif-
ferences in white matter structure. 
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Figure 7: The identified subnetwork associated with 5-HTTLPR polymorphism (a). The functional con-
nectivity of this subnetwork significantly decreased in both ls and ss carriers (cluster-level PFWE=0.03, 
mean connectivity differences P=7e−15) (b). In contrast, the mean grey matter volumes and mean FA 
values were not significantly different between genotype groups for the identified nodes (c) and inter-
connecting visual-limbic white matter tracts (d), respectively. In addition, participants with lower subnet-
work connectivity showed higher emotional suppression scores (e). Bars indicate mean values and error 
bars indicate standard errors. 

 

Table 6: Details for Nodes and Links in the Identified Subnetwork Ranked by Initial p-values 

1 L. thalamus a R.hippocampus a 4e−6 

2 L. middle temporal gy-
rus b 

L. orbitofrontal cortex b 5e−6 

3 R. orbitofrontal cortex b R. hippocampus a 6e−6 

4 L. middle temporal gy-
rus b 

R. hippocampus a 1e−5 

5 L. anterior cingulate 
cortex a 

L. orbitofrontal cortex b 2e−5 

6 R. inferior temporal gy-
rus c 

R. putamen c 2e−5 

7 R. inferior temporal gy-
rus c 

R. putamen c 3e−5 

8 R. angular gyrus b L. orbitofrontal cortex b 4e−5 

9 L. middle temporal gy-
rus b 

R. fusiform gyrus b 5e−5 

10 L. middle occipital gy-
rus c 

R. hippocampus a 6e−5 

11 L. fusiform gyrus b L. middle temporal gy-
rus b 

7e−5 

12 R. inferior temporal gy-
rus c 

L. middle temporal gy-
rus b 

7e−5 

13 R. middle temporal gy-
rus b 

R. hippocampus a 9e−5 

14 L. middle temporal gy-
rusb 

L. fusiform gyrusb 1e−4 

 
 
Each row represents one pair of connected nodes in the identified subnetwork, ranked by initial p-values. The node 
regions are annotated for relevance for serotonergic neurotransmission as follows: 
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a) Regions with 5-HTT expression in postmortem human brain (Kish et al, 2005; Varnas et al, 2004). 
b) Implicated by positron emission tomography (Savli et al, 2012) 
c) No data on 5-HTT expression available in humans. 

 

3.2 Empirical study 2 

3.2.1 Functional network analyses 

In our starting hypothesis to this work, we posited that alterations in the neural func-
tional connectivity in carriers of the risk‐associated low expression (L) variant in MAOA 

would involve, but not necessarily be exclusive to, frontal‐temporal neural circuits dur-
ing implicit emotion processing. Consistent with this, our NBS analysis of the emotional 
face matching task data identified a distributed cluster of node links with a significantly 
increased functional connectivity in L allele carriers compared to H allele carriers (p 
FWE = 0.037, Figure 8a). The identified sub‐network included, but was not limited to, 

frontal‐temporal areas and consisted of a total of 82 nodes that were connected by 248 
links (or edges). To assess the potential specificity of the identified MAOA‐associated 
functional network effects for emotion processing, we assessed MAOA genotype ef-

fects on the functional connectivity of node links also during resting‐state and working 
memory performance. For resting‐state fMRI, our NBS analysis detected a comparably 
distributed cluster of 176 links interconnecting 82 nodes with a significant increase in 
functional connectivity in MAOA‐L allele carriers compared to MAOA‐H allele carriers 
(pFWE =0.022, Figure 8b). In contrast, the NBS analysis of the working memory data 
yielded a null finding (p FWE = 0.540). 
 
 

3.2.2 Structural network analysis 

The NBS analysis of DWI data identified a brain sub‐network with a significant increase 
in structural connectivity in the MAOA‐L allele carriers compared to H allele carriers (p 
FWE = 0.044, Figure 8c). The identified cluster consisted of 48 links interconnecting 
43 nodes. The cluster was distributed comparably to the MAOA‐related functional links, 

although smaller in extent. For all imaging modalities, details on the identified MAOA‐
associated cluster links are provided in Supplemental tables 7-9. For illustration pur-
poses, the tables include the corresponding anatomical location of nodes in AAL stand-
ard space and highlight the prominent role of frontal lobe connections (bolded) and 
“isocoupled” links (italicized) of the respective anatomical labels. Moreover, the top 
10% of the most significant MAOA‐related nodes and interconnecting links for each 
modality are highlighted in red to facilitate the assessment of important anatomical 
contributors to the respective MAOA‐related cluster findings. 
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Figure 8: Illustration of the whole‐brain spatial distribution (upper panels) and mean connectivity values 
of the identified MAOA‐affected brain sub‐networks stratified by genotype (lower panels) connectivity in 

MAOA‐L allele carriers across (a) emotion processing (p FWE = 0.037, 248 links), (b) resting‐state (p 
FWE = 0.022, 176 links), and (c) diffusion tensor imaging/structural connectivity (p FWE = 0.044, 48 
links) data. Bars indicate mean values, error bars indicate standard errors demonstrating significantly 
increased  

 
 

3.2.3 Supplemental exploratory analyses 

We detected no significant interaction between MAOA genotype and sex on mean net-

work connectivity scores in any MRI modality (all p‐values >0.88). Post hoc regional 
quantification of the MAOA‐significant links suggested a clear commonality across 
tasks and modalities in the form of a higher ratio of affected connections between neu-
ral nodes from different major AAL brain sections (77–88% anisocoupled links, as com-
pared to 12–23% isocoupled links relating different nodes from the same major brain 
subdivision, Figure 9a). In addition, across all MAOA‐significant tasks and modalities, 
a relatively high involvement of links interconnecting the frontal lobe with temporal, 
occipital, and subcortical regions was apparent. Obvious modality‐specific patterns did 
not arise; the regional distribution of altered connections appeared to be the most un-
specific in the structural data and included a higher proportion of MAOA‐associated 
links interconnecting subcortical structures (Figure 9b). Notably, the reported effects of 
MAOA genotype on cluster connectivity remained stable in our follow‐up analyses in 

subsamples with sex‐matched genotype groups across modalities (all p‐values <0.01). 
Similarly, in the sex‐matched subsamples (Table 5), the association of MAOA geno-
type with cluster connectivity estimates remained significant for both genders and 
across modalities when we analyzed males and females separately (all p‐values <.04). 
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Figure 9: (a) Percentage (y axis) of MAOA‐affected connections across tasks and modalities stratified by (x axis) 

the anisocoupled versus isocoupled nature of node links (see text for definition of terms). (b) Percentage (y axis) 
and spatial distribution (x axis) of MAOA‐affected anisocoupled brain links across tasks and modalities. (c) Illustra-
tion of the association (p =0 .041, r = −0.37) between Emotion Regulation Questionnaire (ERQ) cognitive reappraisal 
scores (y axis) and the mean connectivity of the MAOA‐affected structural network (quantified by the mean of the 

successful diffusion tensor imaging [DTI] fiber tracking streamlines). 

 
 

3.2.4 Relationship to emotion regulation 

Our exploratory analyses on the relationship between the MAOA‐associated sub‐net-
work parameters and emotion regulation strategy showed a significant negative corre-
lation between the connectivity of the structural network and the ERQ cognitive reap-
praisal subscale (p = 0.041, r = −0.37, Figure 9c). No significant correlations of the 
structural network with the connectivity parameters of the functional sub‐networks or 
the ERQ expressive suppression subscale were seen (all p‐values >0.335). We did not 
detect any significant associations between MAOA genotype and stressful life events 

as assessed with the Social Readjustment Rating Scale scores (all p‐values >0.18). 
MAOA genotype was not associated with any of the ERQ subscale scores (all p‐values 
>0.16). 
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4 DISCUSSION 

4.1 5-HTTLPR discussion 

The first empirical study used multimodal neuroimaging to identify a potential functional 
connectivity phenotype associated with the 5-HTTLPR genotype at the brain system 
level. Our analyses resulted in several interesting findings, which we will discuss in the 
following. First, in accordance with recent well powered studies (Bastiaansen et al., 
2014; Murphy et al., 2013; Viviani et al., 2010), we failed to replicate the association 
between 5-HTTLPR genotype and amygdala activation reported by prior studies (Hariri 
et al., 2005; Hariri et al., 2002). The negative finding in our relatively large sample 
supports the conclusions of recent meta-analyses, which also failed to find a convinc-
ing association between amygdala activity and genetic variation in the 5-HTTLPR pol-
ymorphism and highlighted a strong publication bias towards a large number of rela-
tively small and probably underpowered neuroimaging studies reporting positive find-
ings (Bastiaansen et al., 2014; Murphy et al., 2013). This outcome fits in well with evi-
dence suggesting that the amygdala strongly habituates to the recurrent presentations 
of emotional stimuli and yields unreliable, highly variable activation estimates (John-
stone et al., 2005; Plichta et al., 2012). Another plausible contributor to earlier positive 
findings is the broad range of other genetic (Pezawas et al., 2008; Surguladze et al., 
2012) and environmental factors (Rabl et al., 2014; van der Doelen et al., 2014) that 
have been shown to potentially interact with 5-HTTLPR, making underpowered studies 
more vulnerable to hidden bias (Bastiaansen et al., 2014). Finally, recent work has 
identified a strong citation preference for 5-HTTLPR studies reporting positive out-
comes and drawing optimistic conclusion about the relevance of amygdala activation 
for linking the 5-HTTLPR polymorphism with alterations at the neural level. This sug-
gests a systematic bias in the published literature which might have lead to an overes-
timation of relevance of this polymorphism (de Vries et al., 2016). Together, these find-
ings and our data encourage the critical re-evaluation of amygdala activation as puta-
tive neural mechanism linking 5-HTTLPR to emotional behavior and to vulnerability to 
psychopathology. 
 
Second, we identified a significant association of 5-HTTLPR genotype with the func-
tional connectivity of a visual-limbic subnetwork. Here, the s allele was associated with 
a dose-dependent decrease in the coupling of several brain regions involved in emo-
tion perception and regulation. The affected brain regions included fusiform gyrus, an-
terior cingulate gyrus, hippocampus, orbitofrontal cortex, striatum, and thalamus (Etkin 
et al., 2015; Phillips et al., 2003). There is a wealth of evidence linking brain regions 
included in the identified subnetwork with emotion processing. For example,  the ante-
rior cingulate cortex is a pivotal hub for top–down control of limbic regions (Etkin et al., 
2015), the orbitofrontal cortex is associated with emotional decision making (Bechara 
et al., 2000), and the hippocampus is a key structure for emotion-related memory pro-
cessing (Etkin et al., 2015; Phillips et al., 2003). The conjoint involvement of this net-
work in emotion processing makes it a plausible target for the study of the role of  5-
HTTLPR genetic variation in emotion processing at the neural level. 
 
Notably, a relative enrichment of 5-HTT (Kish et al., 2005; Varnäs et al., 2004) and 
serotonin receptors (Biegon et al., 1986; Varnäs et al., 2004) has been demonstrated 
for several subnetwork regions in humans (see Table 6) by several earlier studies. In 
addition, animal studies point to a sensitivity of these regions to 5-HTTLPR variation. 
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5-HTT gene knock-out mice are showed enhanced extracellular serotonin level and 
reduced serotonin receptor gene expression in the hippocampus (Fabre et al., 2000; 
Mathews et al., 2004), striatum (Mathews et al., 2004; Rioux et al., 1999), and pre-
frontal cortex (Mathews et al., 2004). In humans, PET studies reported that the s allele 
of the 5-HTTLPR polymorphism relates to significantly lower 5-HTT binding potentials 
in the striatum (Praschak-Rieder et al., 2007) and 5-HT1A receptor binding potentials 
in the hippocampus, anterior cingulate cortex, orbitofrontal cortex, and lateral temporal 
lobe (David et al., 2005). Moreover, altered functional connectivity of part of the de-
tected 5-HTTTLPR sensitive subnetwork has previously been found in s allele carriers, 
in particular the anterior cingulate cortex (Pezawas et al., 2005), prefrontal cortex 
(Heinz et al., 2005), and fusiform gyrus (Kruschwitz et al., 2015). Taken together, these  
prior findings and the results of our analyses support the idea that the neural mecha-
nism behind the involvement 5-HTTLPR in the etiology of psychiatric disorders in-
volves a large-scale network of conjointly interacting visual-limbic brain regions. 
 
Third, several follow-up analyses were performed to probe the robustness of the identi-
fied subnetwork, its relationship to emotion regulation, and potential structural basis. 
In accordance with earlier work of our group (Cao, Plichta, Schäfer, et al., 2014), the 
reported subnetwork metrics showed good test–retest reliability. These findings are in 
stark contrast to the poor robustness of amygdala activation measures (Plichta et al., 
2012) and encourages the use of network-based approaches in the search for func-
tional neuroimaging phenotypes associated with emotional neural systems. 
 
To assess the potential clinical relevance of the identified subnetwork, we further ex-
plored the relationship between this 5-HTTLPR sensitive subnetwork and two comple-
mentary emotion regulation strategies, namely cognitive reappraisal and behavioral 
suppression (Gross & John, 2003). Cognitive reappraisal is an adaptive emotion reg-
ulation strategy that relies on cognitive reframing of negative emotions and thereby 
reduces the negative salience and somatic consequences of emotional experiences. 
In contrast, the emotion suppression strategy is considered maladaptive and relates to 
increased health risks. By applying this strategy, the behavioral expression of emo-
tional experiences is inhibited without internally reducing negative emotions and effec-
tively controlling stress-related somatic consequences of negative emotional experi-
ences (Gross, 2002; Gross & John, 2003). In our data, we detected significantly higher 
suppression scores in the group of individuals showing decreased subnetwork con-
nectivity, suggesting an increased tendency to inhibit outward reactions to emotional 
experiences. Prior work showed that emotion suppression is associated with increased 
stress response to negative events (Gross, 2002) and negatively effects on broad 
range of health-protective variables like well-being, positive emotions, social function-
ing, social support, and memory (Gross, 2002; Gross & John, 2003). As a conse-
quence, individuals with a stronger tendency to suppress their emotions are at in-
creased risk for stress-related psychiatric conditions including mood and anxiety dis-
orders (Gross, 2002). Our findings complement these data and suggest that the neural 
mechanism linking 5-HTTLPR to emotional regulation and risk for psychopathology 
includes connectivity deficits in the visual-limbic system. 
 
 We further explored a potential structural basis for the alteration in the identified  sub-
network in several follow-up analyses. In our data, the VBM and TBSS analyses de-
tected no evidence for associations between 5-HTTLPR and structural neuroimaging 
measures. This lack of evidence for structural alterations suggests that the affected 
network phenotype we identified is primarily functional and unlikely to be accompanied 
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by associated hidden structural alterations. However, there are several limitations to 
our study that need to be considered. First, although a relatively large group of individ-
uals was included in empirical study 1, confidence in our findings might benefit from 
further replication in larger, independant cohorts as failure to replicate prior results has 
been recognized as an important issue in the field of imaging genetics. Second, we 
balanced the included 5-HTTLPR genotype groups for a broad range of demographic, 
psychological, task performance, and data quality-related variables. However, we can-
not fully exclude that our results migh have been influenced by additional confounds 
that we were not able to adequately control in our cohort. Third, despite the increasing 
popularity of NBS-based approaches in the recent literature, the NBS method come 
with its own set of challenges. For example, the identified connectivity differences can 
only be reliably interpreted at the cluster level. Therefore, it is only possible to draw 
straightforward conclusions about the identified subnetwork as a whole. Any analyses 
or conclusions about the involvement of specific brain regions are highly speculative. 
Fourth, empirical study 1 included only healthy participants to avoid confounding our 
results by the presence of psychiatric disorders. However, to assess the clinical rele-
vance of our findings, future studies exploring the significance of the identified subnet-
work in diverse clinical populations, in particular in patients with depression and anxiety 
disorders might be interesting. 
 
In conclusion, our data provide evidence for coupling deficits in the visual-limbic sys-
tem as a network-based neuroimaging phenotype underlying the association of genetic 
variation in the 5-HTTLPR polymorphism with psychiatric risk. The identified connec-
tomic phenotype is test-retest reliable, relates to a maladaptive emotion regulation 
strategy, and is independent of structural alterations in the identified network nodes 
and links making up the identified subnetwork. The results of empirical study 1 suggest 
that further investigating visual-limbic network alterations in larger cohorts including 
transdiagnostic clinical populations is warrented. Furthermore, our results confirmed 
that the relationship between amygdala activity and 5-HTTLPR genotype should be 
critically re-evaluated. 
 

4.2 MAOA discussion 

The main goal of empirical study two was to extend the current understanding of the 
neurogenetic risk architecture of neural networks underlying impulsivity and aggres-
sion. Multimodal neuroimaging and whole‐brain connectomic methods in healthy par-
ticipants stratified by MAOA genotype were used to achive this aim. These analyses 
detected several structural and functional network alterations in healthy carriers of the 
risk‐associated low expressing variant of the MAOA polymorphism. 
 
First, a functional connectomic phenotype during implicit emotion processing manifest-
ing as a regionally distributed set of hyperconnected brain nodes in individuals with the 
MAOA‐L genotype was identified. Among the affected node links, more than 80% of 
these MAOA sensitive edges could be classified as affecting functional interactions 
between distant major anatomical subdivisions of the brain (“anisocoupled links”). 
These observations suggest that the low expressing MAOA variant preferentially af-

fects long‐range connections. These long-range connections might be crucial in the 
efficient control and integration of information across different brain areas with more 
specialized neural functions, thereby enabling a rich set of brain dynamics (Alexander-
Bloch et al., 2013; Betzel & Bassett, 2018). Nearly half (47%) of the affected long-
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range integrative links functionally coupled the frontal cortex to the temporal lobe and 
subcortical regions. These results are in accordance with the established view that 
MAOA‐L mainly exerts its influence on psychiatric risk by impacting prefrontal neural 

circuits with a top‐down regulatory influence on subordinate neural regions generating 
evolutionarily conserved physiological responses (Dorfman et al., 2014). The direc-
tions of the observed MAOA genotype effects are in line with earlier reports as well. As 
in prior connectivity studies on MAOA‐L, the detected connectomic alterations during 
the processing of emotionally charged information manifested as a significant increase 
in functional coupling in empirical study 2 (Buckholtz et al., 2008; Denson et al., 2014). 
This alteration has been previously interpreted as a neurogenetic disruption of prefron-
tal regulatory brain networks which predisposes individuals carrying the MAOA‐L vari-
ant to exaggerated and less controlled emotional responses resulting in increased im-
pulsive arousal and negative emotions. With respect to the first research question of 
empirical study 2, these results suggest that the identified MAOA‐related alterations in 
functional connectivity during negative emotion processing are consistent with the hy-

pothesis stating  a pronounced, but not exclusive, involvement of prefrontal‐limbic cir-
cuits. Taken together, the described emotion processing data are well in line with the 
existing imaging genetics literature and extend our current understanding of MAOA by 

providing novel connectomic insights arising from a whole‐brain network approach. 
 
Second, additional resting state and working memory data were analysed to probe the 
detected network connectivity alterations for specificity to the emotion‐processing do-
main. The study of the human brain at rest provides valuable insights into the basic 
functional architecture of interacting neural networks since connected brain networks 
display coordinated low‐frequency fluctuations in even the absence of external stimu-
lation. Similar to the emotion‐processing domain, the resting‐state analysis identified a 

regionally distributed set of hyperconnected links in MAOA‐L carriers, which mostly 
consisted of distributed nodes from distant anatomical subdivisions of the brain. More 
than two thirds (69%) of the altered links connected the frontal cortex to other cortical 
and subcortical targets. With respect to the second research question, these findings 
suggest that the reported neurogenetic modulation of prefrontal regulatory circuits re-
lated to MAOA‐L is likely not limited to the emotion processing domain, but rather indi-
cates a more global alteration of basic functional architecture of the brain. To date, 
there are only few prior resting state fMRI studies on MAOA, making the integration of 

the presesent findings challenging. However, an earlier exploratory resting‐state study 
using independent component analysis methods reported increased connectivity of 
several prefrontal and temporal areas in the risk‐associated MAOA‐L carriers (Clem-
ens et al., 2015). This is in accordance with the findings of study 2, despite considera-
ble differences in the employed approach. This assumption of a more global impact of 
the MAOA‐L genotype on human brain networkarchitecture is further supported by the 

structural network findings of study 2. Diffusion‐based research is lacking to date in the 
literature on MAOA. The deterministic tracking of white matter projections reported in 
study 2 revealed first evidence for a distributed pattern of hyperconnected node links 
in MAOA‐L carriers. Comparable to the results in the studied functional neuroimaging 
modalities, a large proportion of the affected connections (40%) mapped to frontal “an-
isocoupled” cortical connections. With respect to the third research question, the re-
sults of study 2 thus suggest that the assumed predisposition for an alteration in human 
neural network architecture extends to hard‐wired anatomical links. Anatomical long-
range connections from prefrontal regulatory networks that likely regulate and integrate 
bottom‐up input from other neural regions seemed most notably affected by MAOA-
genotype.  
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No associations between MAOA-genotype and neural network connectivity during per-
formance of a working memory task were observed in study 2. This lack of an associ-
ations appears to contradict the interpretation of global, distributed effects of the variant 
on network architecture. However, working memory tasks typically require coordinated 
frontal‐parietal functions, and only about 3% of MAOA‐sensitive structural links identi-

fied in study 2 pertained to frontal‐parietal connections (see Figure 9). Earlier studies 
on the relationship of genetic variance in MAOA and working memory performance 
resulted in conflicting evidence. Whereas one study described an association during 
high‐load cognitive conditions (Cerasa, Gioia, Fera, et al., 2008; Cerasa, Gioia, Labate, 
et al., 2008), several prior studies reported negative findings (Barnett et al., 2011; 
Dumontheil et al., 2014) (Söderqvist et al., 2014). Importantly, the fMRI n‐back task 
employed in study 2 challenges executive neural networks but is still relatively straight-
forward, and the load on additional regulatory resources for impulsive and emotional 
responses is low. Thus, it seems plausible that while MAOA genotype impacts distrib-

uted regulatory networks involved in top‐down prefrontal regulatory control, including 
alterations in white matter anatomical links, these differences are not focused on 
frontal‐parietal networks. Therefore, the potentially resulting challenges for working 
memory may remain masked or compensated unless additional task requirements re-
lated to high cognitive load including frustration and emotion regulation are added 
(Cerasa, Gioia, Fera, et al., 2008; Cerasa, Gioia, Labate, et al., 2008). Further research 
is needed to corroborate this hypothesis.  
 
The results of study 2 support the notion of MAOA‐related genetic associations with 

connectivity of cortico‐limbic circuits, and structural and functional alterations in these 
circuits have been linked to maladaptive emotion regulation. MAOA genotype itself has 

been previously related to a number of psychiatric risk‐associated behaviors that are 
related to deficient emotion regulatory capacity including impulsivity (Chester et al., 
2015; Meyer-Lindenberg et al., 2006) and aggression (Brunner et al., 1993; Eisen-
berger et al., 2007; Gallardo-Pujol et al., 2013; Kuepper et al., 2013; McDermott et al., 
2009; Raine, 2008) as well as clinical diagnoses of conditions such as major depres-
sion (Fan et al., 2010; Liu et al., 2016) and attention deficit hyperactivity disorder 
(ADHD) (Das et al., 2006; Hwang et al., 2018). Several lines of evidence suggest that 
these behaviors and disorders are shaped by complex gene–environment interactions 
(Melas et al., 2013; Palumbo et al., 2018; Shumay et al., 2012). On a molecular level, 
these gene-environment interactions may relate to epigenetically mediated effects on 
brain network structure and function. Therefore, the extension of the imaging genetic 
approach described in study 2 to MAOA‐related epigenetic network associations and 
the inclusion of transdiagnostic psychiatric populations in future work appears promis-
ing. Next to these suggestions for further research, there are several methodological 
limitations of study 2 meriting further consideration. Firstly, as in virtually all neuroim-
aging studies in humans, the analyzed system level metrics are indirect in nature and 
reflect only to some extent the microscale biological features of neural structure and 
function. Secondly, since we aimed for a common reference framework, study 2 used 
the same anatomical atlas for fMRI and DWI to be able to compare the identified 
MAOA‐sensitive structural and functional brain networks across data modalities. How-
ever, the direct comparison of anatomical and functional connections is limited by the 
inherently different nature of the respective connectivity metrics. Specifically, while the 
identified DWI networks represent deterministic reconstructions of putative structural 
fiber tracts, the investigated functional networks represent the stochastic association 
between the BOLD‐fluctuations of brain regions. Moreover, deterministic structural net-
works are typically sparse, with only 2–10% of the initiated streamlines reaching their 
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target (Betzel & Bassett, 2018; Hagmann et al., 2008), while the functional networks 
are, in principle, fully connected and show a complex structure of interdependent links, 
based on the correlative methods by which they are constructed. Given these differ-
ences between these neuroimaging modalities, study 2 was restricted to a descriptive 
comparison of modalities. Finally, although the identified association between the con-
nectivity estimates of the identified MAOA‐sensitive structural network and the relative 
lack of a protective emotion regulation strategy is plausible in the context of the present 
literature on that variant, this observation reported by study 2 is derived from an ex-
ploratory analysis and requires replication. Nonetheless, reporting this finding might be 
useful for aiding the formation of specific hypotheses in future studies and encourage 
replication attempts in independent cohorts. In conclusion, to our knowledge, study 2  
is the first whole‐brain multimodal connectomic study on the effects of MAOA-genotype 
in healthy human participants. The described data suggest that the low expression 
variant facilitates global, widely distributed alterations in neural network architecture 
across imaging modalities and tasks. These MAOA sensitive networks preferentially 

involve longer‐range links connecting the prefrontal lobe with temporal, occipital, and 
subcortical brain regions. The identified multimodal hyperconnectivity profiles of the 
risk‐associated low expression variant include the structural and functional connec-
tome, although functional networks during low to medium working memory load 
seemed to be unaffected. These findings are well in line with prior studies suggesting 
MAOA‐related genetic alterations in cortico‐limbic circuits critical for negative emotion 
regulation. Similar to the associations between 5-HTTLPR and functional connectivity 
described in study 1, the most likely mechanism behind this association is excessive 
serotonergic signaling during vulnerable periods of early brain development. The re-
sults reported in study 2 extended the existing neuroimaging genetics literature on 
MAOA by novel multimodal whole‐brain connectomic insights. 
 

4.3 General discussion 

The current work confirmed and extended on earlier research linking serotonergic ge-
netic variants with altered neural connectivity. Applying unbiased, connectomic whole 
brain approaches confirmed prior findings showing altered fronto-temporal connectivity 
in carriers of both investigated serotonergic risk variants. The applied novel, connec-
tomic method showed that serotonergic genetic variance affects large, globally distrib-
uted brain networks that include but are not limited to frontotemporal regions. The iden-
tified global, distributed effect is well in line with research about the serotonergic sys-
tem and its complex role in neurodevelopment. Whereas serotonin acts as a neuro-
transmitter in the adult brain and during later stages of neurodevelopment, in early 
prenatal stages of brain development serotonin is involved in a broad range of pro-
cesses including neuronal proliferation, migration, axon targeting and circuitry matura-
tion (Riccio et al., 2011; Vicenzi et al., 2021; Vitalis & Parnavelas, 2003; Wang et al., 
2011). This fits well with a spatially distributed effect on the neural level. Although cer-
tain networks including the frontotemporal networks that have been traditionally asso-
ciated with serotonergic genetic variance might be more sensitive to alterations in the 
level of serotonin (Buckholtz & Meyer-Lindenberg, 2008), a highly localized or specific 
effect seems unlikely. Studies investigating where serotonin is expressed in the brain 
confirm relatively broad, global expression patterns (Kish et al., 2005). This again cor-
responds well to our findings of a more generalized pattern that included but was not 
limited to the frontotemporal regions that were associated with serotonergic risk genes 
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by earlier studies. Furthermore, the present work confirmed that connectomic, unbi-
ased methods are more sensitive to the often subtle effects of genetic risk polymor-
phisms. Traditional voxel-based analysis like VBM, ROI analysis and TBSS showed 
no effects of serotonergic genetic risk variants. In contrast, an unbiased network ap-
proach showed effects on extended brain networks for both 5-HTTLPR and MAOA. 
The effect of 5-HTTLPR was only evident during an emotion processing task. In con-
trast, in addition to an effect on connectivity during emotion processing, variance in 
MAOA genotype had an additional effect on resting state connectivity and anatomic 
connectivity. One possible explanation for this more general effect of MAOA genotype 
is that in contrast to the 5-HTTLPR polymorphism which selectively affects sero-
tonergic neurotransmission, MAOA is not only involved in serotonergic neural signaling 
but catalyzes the metabolism of other monoaminergic neurotransmitters including nor-
adrenaline and dopamine (Buckholtz & Meyer-Lindenberg, 2008). This more general 
effect on monoaminergic neurotransmitters might correspond to the observed broader 
effect on brain connectivity across task domains and imaging modalities. In both stud-
ies, connectivity within the network showing sensitivity to the effects of serotonergic 
genotypes was associated with emotion regulation. This suggests that the networks 
showing altered connectivity during the faces task (study 1 and study 2), and during 
the resting state and anatomical connectivity (study 2) are not only linked to genetic 
variance in the serotonergic system, but are also relevant for emotion processing. In 
turn, this suggests that the detected serotonin sensitive networks might also be clini-
cally relevant in the etiology of disorders featuring altered emotion processing. 
 

4.4 Limitations 

The current study has several limitations.  As already mentioned briefly in the discus-
sion of study 2, combining structural and functional MRI in multimodal analyses is not 
trivial and currently, there is no generally recommended method that can be consid-
ered a gold-standard in the field. Voxel-based methods like fMRI activity analysis and 
more traditional connectivity analyses like PPI (Psychophysiological interaction) or 
seed-based connectivity analyses for functional connectivity and TBSS or tracking of 
connections between preselected regions of interest do not produce results that are 
easy to compare. As NBS only picks up connected clusters of altered connectivity 
(Zalesky et al., 2010) and structural connectivity matrices are more sparse than func-
tional connectivity matrices (Bassett & Sporns, 2017; Sporns et al., 2005), chances of 
finding an altered connected network are higher for functional than structural connec-
tivity. Again, this might be a problem for the direct combination of structure and func-
tion. Furthermore, network analyses like NBS are highly dependent on atlas choice 
(Lord et al., 2016). There is no single brain atlas that is optimal for all types of analyses 
and covers structural and functional subdivisions of the brain equally well. For struc-
tural connectivity, differentiating between adjacent regions deep in grey matter is chal-
lenging. Because anisotropy is low in grey matter, current fiber tracking algorithms 
which rely on a dominant fiber direction do not perform well in regions located deep 
within gray matter. However, for functional connectivity distinguishing accurately be-
tween grey matter regions in close proximity but with distinct functions is feasible and 
informative. Therefore, finding a common parcellation that accurately represent both 
structure and function is challenging and there might not be an optimal choice.  
 
In the current studies, the main findings were stable at least at a trend level when using 
an alternative atlas in exploratory analyses. However, the choice of a different atlas for 
function and structure might have revealed a very different pattern. Testing with a high 
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number of different brain parcellations requires correction for multiple comparisons 
which results in reduced power to detect small effects. Therefore, systematically test-
ing different parcellations was not feasible in these studies. Follow-up studies using a 
multiverse approach to systematically evaluate all analytic choices and their impact on 
resulting altered networks might be interesting to investigate this aspect more system-
atically. Even with a parcellation that reflects both structure and function relatively well 
there are inherent differences between these two modalities which make a direct com-
parison challenging. Functional and structural connectivity matrices differ in sparsity. 
Many regions of the brain are not connected directly by white matter bundles and some 
smaller tracts might not be reliably tracked in the majority of participants resulting in a 
sparse connectivity matrix. In contrast, functional connectivity between regions when 
defined as correlation between timeseries extracted from these regions is rarely ex-
actly zero, even when the temporal correlation between regions is low. Additionnally, 
some brain regions that are not directly anatomical connected can show strong tem-
poral correlation resulting in less sparse connectivity matrices for functional connectiv-
ity. These differences between functional and structural connectivity matrices make 
direct comparisons or analyzing brain structure and function together challenging. An-
other choice that can influence the results of NBS is the statistical threshold (Zalesky 
et al., 2010).  Again, there is no generally recommended value and the results depend 
heavily on this parameter. Conservative thresholds only allow relatively strong and fo-
cused effects to reach statistical significance, whereas more lenient thresholds are 
needed to detect weaker, global effects (Zalesky et al., 2010). As both localized and 
global effects can be relevant and often there is no good prior knowledge suggesting 
the degree of localization of the expected effect, this choice is somewhat arbitrary. The 
current findings showed at least some stability at different thresholds which suggests 
that the observed effects are relatively robust. In the current work, we tried to interpret 
rather distributed, generalized effects by matching brain regions from the atlas of our 
choice to the four lobes of the brain and the cerebellum in order to search for a pattern 
that might escape notice using a finer grained parcellation. Although it was possible to 
identify a pattern suggesting an overrepresentation of fronto-temporal connections 
among the connections affected by MAOA genotype, this analysis was of an explora-
tory nature. A more systematic approach might be needed to show that this apparent 
pattern is stronger than what would be expected by chance if the whole brain was 
equally affected. One of the major strength of this work is the use of multimodal neu-
roimaging in a thoroughly phenotyped cohort. However, there was only partial overlap 
of included subjects in the different modalities. Missing data and data that failed quality 
control are a problem in a subset of subjects. Therefore, combining data at the subject 
level would have reduced our sample size considerably. However, being able to in-
clude a completely overlapping sample which completed all the measurements would 
have opened up the option to look into the pathway from genetics to neural connectivity 
and psychological traits, for instance by using mediation analysis. In both studies, there 
was no evidence for an interaction effect between genotype and stress. This was in 
conflict with several earlier well-powered studies which showed interactions between 
genotype and different measure for adversity and stress (Caspi et al., 2003; Kim-Co-
hen et al., 2006). In the presence of stress, both MAOA and 5-HTTLPR risk carriers 
showed increased negative outcomes, e.g. increased risk for depression and aggres-
sion whereas no strong main effect of genotype on any relevant outcome was ob-
served. However, in our data there was no evidence for an interaction between geno-
type and stress in any modality. A possible explanation is that the measure for stress 
which we used might not accurately reflect stress in the most sensitive time window for 
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influencing the monoaminergic system. Whereas several studies which did find an in-
teraction effect did focus on early life adversity (Caspi et al., 2003; Kim-Cohen et al., 
2006), in our data only measures of stress within the last two years prior to participation 
in the study were available. Furthermore, most of our participants reported relatively 
low exposure to stress resulting in relatively little variance in stress measures. Recruit-
ing participants with a history of high stress exposure, preferably during sensitive peri-
ods in development in early childhood, might increase sensitivity for detecting interac-
tion effects. 
 

4.5 Future directions 

In the current studies, we did not find any evidence for an effect of serotonergic risk 
genes on neural connectivity during working memory. However, a similar multimodal 
approach focusing on genetic variants that have been implicated in working memory 
performance might be interesting. Focusing on known functional variants involved in 
working memory might be a promising approach for verifying the idea that functional 
VNTRs are interesting candidate polymorphisms. In the current study, the effect of 
serotonergic variants which was clearly present in structural and resting state connec-
tivity but absent when another cognitive system got engaged. A similar pattern could 
be observed for n-back with genetic variants showing a link to working memory already 
influencing anatomical connectivity and functional connectivity at rest, but only showing 
an effect on task connectivity when an already fragile system gets challenged by the 
demands of a relevant task. For working memory, dopaminergic polymorphisms might 
be interesting candidates (Bertolino et al., 2006; Diaz-Asper et al., 2008; Fairfield et 
al., 2022; Meyer-Lindenberg, 2010). As both studies 1 and 2 showed an effect of ser-
otonergic VNTRs on connectivity in an emotion processing network, it seems plausible 
that there might be a general effect of serotonergic genetic variants on these pheno-
types. Further studies could test more stringently if this link to serotonergic neurotrans-
mission is a true biological theme and does not emerge by chance. Several ap-
proaches aiming at identifying biologically meaningful themes within sets of genes that 
are associated with a condition have been successfully applied to neuroimaging ge-
netics (Ramanan et al., 2012; Wang et al., 2018). Additional studies examining an as-
sociation between a serotonergic pathway and brain connectivity during emotion pro-
cessing tasks might be an interesting addition. 
 
In adults, methylation of serotonergic risk genes might show stronger effects than gen-
otype. Methylation has been repeatedly shown to be more closely related to sero-
tonergic neurotransmission in the adult brain (Checknita et al., 2020; Shumay et al., 
2012). Even treatment outcomes in disorders with emotion processing problems as a 
symptom has been linked to dynamic changes in methylation. For instance, response 
to desensitization therapy in panic disorder patients was linked to methylation changes 
(Ziegler et al., 2016). Therefore, including methylation and methylation changes, pos-
sibly even longitudinally following participants might add an interesting dynamic and 
developmental aspect to our current findings.  
 
In both studies, only healthy controls were included. This approach prevents confounds 
with presence of disease and thereby is best suited to disentangling biology suscepti-
bility from consequences of living with a neuropsychiatric disorder, e.g. consequences 
of social isolation or genotype differences in reactions to medication. However, extend-
ing the current work to different and diverse transdiagnostic cohorts might be interest-
ing for follow-up studies. As difficulties in regulating emotions are a common symptom 



Discussion 

45 

shared by several disorders, differences in emotional processing and associated net-
works may be present to varying degrees in different disorders (Fernandez et al., 2016; 
Slee et al., 2008; Visted et al., 2018). By including affected individuals, more variance 
in relevant traits and brain connectivity as well as exposure to stress might contribute 
to clarify the clinical relevance of the reported findings. In addition, in cohorts with more 
varied mental health outcomes, interaction effects between stress and genotype might 
become more apparent if there is increased variance in exposure to stress compared 
to our healthy control cohorts. Furthermore, it might be interesting to investigate first 
degree relatives of different patient populations. An intermediate brain connectivity pat-
tern in-between healthy participants and patients would confirm that the altered net-
works we observed are indeed linked to biological vulnerability for less efficient emo-
tion processing. Applying more advanced methods for combining structural and func-
tional connectivity might result in a more comprehensive understanding of neural con-
nectivity. For instance, testing for correlations between structural and functional con-
nectivity differences within individuals might shed light on the nature of the connection 
between altered structural and functional connectivity. Several approaches for combin-
ing functional and structural connectivity have been suggested.  The current study suc-
cessfully linked genetic variation in candidate VNTRs with well-known biological func-
tions to alterations in neural connectivity and emotion regulation. However, several 
well-powered studies failed to replicate genotype effects and genotype by environment 
interaction effects for traditional candidate genes (Border et al., 2019). This lack of 
replication led experts in the field to abandon the candidate gene approach completely 
and focus on GWAS. However, alternative approaches have their own drawbacks. The 
biological interpretation of GWAS results is often challenging (Gallagher & Chen-Plot-
kin, 2018). Therefore, focusing on GWAS hits might not always be useful for under-
standing the biological etiology of neuropsychiatric disorders as GWAS hits are often 
not easily linked to a specific biological process. Most GWAS hits for complex disorders 
are located in non-coding regions of the genome (Pickrell, 2014; Welter et al., 2014). 
Mapping those variants to genes is not straightforward. Even after mapping associated 
variants successfully to genes, the known function of some genes is not always obvi-
ously related to the relevant disorder. Moreover, the resolution of GWAS might not be 
sufficiently fine grained to identify causal variants within linkage disequilibrium blocks. 
As genetic variance in linkage disequilibrium blocks is highly correlated, discerning the 
true source of an association signal is challenging (Boyle et al., 2017). In addition, 
GWAS for a disorder or trait might produce too many hits (Boyle et al., 2017; Gallagher 
& Chen-Plotkin, 2018). There is evidence that some complex, multifactorial disorders 
are influenced by all genes that are expressed in relevant tissues. This might be due 
to the interconnectedness of gene regulatory networks which causes large numbers of 
SNPs to contribute to the heritability of genetically complex traits even if only a small 
set of biologically relevant core genes is informative for explaining the underlying 
mechanisms (Boyle et al., 2017; Liu et al., 2019). This complicates the selection of 
GWAS hits to investigate in neuroimaging studies because it is unclear which variants 
to prioritize and testing a large number of variants causes a heavy burden due to cor-
rection for multiple statistical tests. Therefore, with GWAS hits as candidates for sub-
sequent neuroimaging genetics studies it is difficult to derive a good hypothesis about 
potential effects on the level of the brain and behavior. A different problem for ex-
tremely large studies is that thorough, extensive phenotyping is often not feasible in 
well-powered cohorts. However, most psychiatric phenotypes are complex and a sim-
ple binary diagnosis does not map well on biology (Insel et al., 2010). Therefore, min-
imal phenotyping strategies as used in the majority of GWAS are probably not optimal 
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for characterizing complex phenomena like depression and anxiety. Even in well pow-
ered samples, it was challenging to identify reproducible and significant associations. 
Effects sizes have mostly been small and replication has been challenging. Larger co-
horts did only improve this situation marginally (Howard et al., 2018). For neuroimaging 
genetics studies, there are similar challenges. Extensive phenotyping, performing ad-
vanced neuroimaging analysis techniques and using state-of-the-art techniques for 
data acquisition are not always feasible in extremely large cohorts. However, these 
large sample sizes are needed for reproducible and statistically significant results. As 
innovative technologies and neuroimaging paradigms as well as analysis procedures 
do need extensive testing before they can be applied, extremely large sample sizes 
are not always easily obtained when trying to optimize these phenotypes. Although 
large, unbiased studies of genetic risk for psychiatric disorders are needed to detect 
stable, replicable associations, giving up on the candidate gene approach altogether 
might be premature in the view of the limitations affecting data driven approaches. 
Especially candidate genes with a well understood biological function might be still 
interesting targets for neuroimaging studies aiming at understanding biological mech-
anism on the pathway from genes, to the brain and ultimately, psychiatric disorders. 
As traditional candidate gene approaches and data driven strategies have their respec-
tive limitations and merits, the field of neuroimaging genetics might benefit from an 
integrative approach applying these complimentary strategies to inform each other. 
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5 SUMMARY 

Most neuropsychiatric disorders are at least moderately heritable. Two functional can-
didate variants affecting monoaminergic neurotransmission are MAOA and 5-HTTLPR. 
Earlier neuroimaging studies connected genetic variance in these polymorphisms with 
alterations in brain function and structure mainly in corticolimbic circuits. However, 
these initial findings have been questioned because of failure to replicate in larger co-
horts and lack of clear meta-analytic evidence. Therefore, the current work investigated 
the following hypotheses: 1) Network phenotypes are more sensitive to the subtle ef-
fects of typical genetic risk variants than traditional neuroimaging approaches. 2) Ap-
plying a whole-brain, connectomic approach will detect widespread effects. 3) Genetic 
variance in the serotonergic system impacts structural and functional connectivity pat-
terns even without an active task. However, a task that challenges a significant cogni-
tive domain might increase sensitivity. 4) Networks showing altered connectivity pat-
terns in carriers of serotonergic risk variants are also associated with differences in 
emotion regulation.  
Study 1 examined a sample of 223 healthy subjects with an emotional face processing 
task to re-evaluate the association between 5-HTTLPR and amygdala activation, ex-
plore potential network-based functional connectivity phenotypes for associations with 
5-HTTLPR, and probe the reliability, behavioral significance and potential structural 
confounds of the identified network phenotype. The number of risk alleles was signifi-
cantly correlated with functional connectivity of a visual-limbic subnetwork 
(pFWE=0.03). Notably, individuals with lower subnetwork connectivity had significantly 
higher emotion suppression scores (p=0.01). Study 2 examined healthy individuals 
and used multimodal neuroimaging (sample size range: 219-284 across modalities) 
and network-based statistics (NBS) to probe the specificity of MAOA-L-related connec-
tomic alterations to cortical-limbic circuits and the emotion processing domain. We as-
sessed the spatial distribution of affected links across several neuroimaging tasks and 
data modalities to identify potential alterations in network architecture. Our results re-
vealed a distributed network of node links with a significantly increased connectivity in 
MAOA-L carriers compared to the carriers of the high expression (H) variant. The hy-
perconnectivity phenotype primarily consisted of between-lobe network links and 
showed a pronounced involvement of frontal-temporal connections. Hyperconnectivity 
was observed across functional magnetic resonance imaging (fMRI) of implicit emotion 
processing (pFWE = 0.037), resting-state fMRI (pFWE =0.022), and diffusion tensor 
imaging (pFWE=0.044) data. The current work confirmed and extended on earlier re-
search linking serotonergic genetic variants with altered neural connectivity. Applying 
connectomic whole brain approaches confirmed earlier findings showing altered fronto-
temporal connectivity in carriers of serotonergic risk variants. This novel, connectomic 
method showed that serotonergic genetic variance affects large brain networks that 
include but are not limited to frontotemporal regions. The present work confirmed that 
connectomic, unbiased methods are more sensitive to the often subtle effects of ge-
netic risk polymorphisms. Whereas the effect of 5-HTTLPR was only evident during an 
emotion processing task, MAOA genotype had an effect on resting state connectivity 
and during emotion processing in addition to anatomic connectivity. One possible ex-
planation for this more general effect of MAOA genotype is that in contrast to the 5-
HTTLPR polymorphism which selectively affects serotonergic neurotransmission, 
MAOA is not only involved in serotonergic neural signaling but catalyzes the metabo-
lism of other monoaminergic neurotransmitters including noradrenaline and dopamine. 
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6 ZUSAMMENFASSUNG 

Die meisten neuropsychiatrischen Störungen sind zumindest teilweise erblich. Zwei 
funktionelle genetische Polymorphismen, die die monoaminerge Neurotransmission 
beeinflussen, sind MAOA und 5-HTTLPR. Frühere Hirnbildgebungsstudien haben die 
genetische Varianz dieser Polymorphismen mit verschiedenen Veränderungen der 
Hirnfunktion und -struktur in Verbindung gebracht. Diese Ergebnisse wurden jedoch in 
Frage gestellt, da sie nicht in größeren Stichproben repliziert werden konnten und 
keine eindeutigen meta-analytischen Beweise vorlagen. Daher wurden in der 
vorliegenden Arbeit die folgenden Hypothesen untersucht: 1) Netzwerk-Phänotypen 
sind sensitiver für die subtilen Effekte genetischer Risikovarianten als traditionelle 
Auswertungsverfahren. 3) Genetische Varianz im serotonergen System beeinflusst 
strukturelle und funktionelle Konnektivitätsmuster in Abwesenheit einer aktiven 
Aufgabe. Eine Aufgabe, die eine relevante kognitive Domäne anspricht, kann jedoch 
die Sensitivität erhöhen. 4) Netzwerke mit veränderten Konnektivitätsmustern bei 
Trägern serotonerger Risikovarianten sind auch mit einer veränderten 
Emotionsregulation assoziiert.  
In der ersten Studie wurden 223 gesunde Probanden mit einer emotionalen 
Gesichtsaufgabe im MRT untersucht, um den Zusammenhang zwischen genetischer 
Varianz in 5-HTTLPR und Amygdalaaktivität zu überprüfen, potentielle 
netzwerkbasierte funktionelle Konnektivitätsphänotypen zu identifizieren und die 
Reliabilität, klinische Relevanz und Spezifität potentieller Netzwerkphänotypen zu 
evaluieren. Unsere Ergebnisse zeigten eine signifikante Korrelation zwischen der 
Anzahl der Risikoallele und der funktionellen Konnektivität eines visuell-limbischen 
Subnetzwerkes (pFEW=0.03). Dieses Subnetzwerk umfasste Hirnregionen, die für die 
Emotionsregulation von zentraler Bedeutung sind. Eine geringere Konnektivität 
innerhalb des identifizierten Subnetzwerkes korrelierte zudem mit einer erhöhten 
Emotionsunterdrückung (pFWE=0,01). In der zweiten Studie untersuchten wir 
gesunde Probanden mittels multimodaler MRT-Bildgebung des Gehirns. Eine 
netzwerkbasierte Methode wurde verwendet, um die Spezifität der MAOA-assoziierten 
Veränderungen für die Emotionsverarbeitungsdomäne und kortikolimbische 
Hirnregionen zu evaluieren. Wir untersuchten die räumliche Verteilung der veränderten 
neuronalen Verbindungen in verschiedenen MRI Modalitäten. Unsere Ergebnisse 
zeigten ein räumlich weit verzweigtes Netzwerk mit erhöhter Konnektivität bei Trägern 
der aktiveren MAOA-Variante. Dieser Phänotyp der Hyperkonnektivität umfasste vor 
allem Verbindungen zwischen weiter auseinander liegenden Hirnregionen, wobei 
insbesondere frontotemporale Verbindungen betroffen waren. Diese 
Hyperkonnektivität wurde während einer Emotionsverarbeitungsaufgabe 
(pFWE=0,037), im Ruhezustand (pFEW=0,022) und in diffusionsgewichteten Daten 
(pFEW=0,044) nachgewiesen. Unsere neue Netzwerkmethode zeigte, dass 
serotonerge Genvarianten die Konnektivität großer, weit verzweigter neuronaler 
Netzwerke beeinflussen. Dies bestätigt, dass konnektomische Methoden eine erhöhte 
Sensitivität für die subtilen Effekte genetischer Risikovarianten auf das menschliche 
Gehirn aufweisen. Der Effekt des 5-HTTLPR-Polymorphismus wurde ausschließlich 
während einer Emotionsverarbeitungsaufgabe beobachtet. Im Gegensatz dazu 
beeinflusste der MAOA-Polymorphismus zusätzlich die Konnektivität im Ruhezustand 
und die anatomische Konnektivität. Eine mögliche Erklärung für diesen Unterschied 
ist, dass 5-HTTLPR ausschließlich an der serotonergen Neurotransmission beteiligt 
ist, während MAOA zusätzlich am Noradrenalin- und Dopaminstoffwechsel beteiligt ist. 
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6. SUPPLEMENTAL MATERIAL 

Tables 7-9: Nodes and links of the MAOA-associated subnetworks 
 
For clarity of presentation, we projected the coordinates of nodes from significant links 
to the AAL atlas (Tzourio-Mazoyer et al., 2002) and assigned the respective anatomical 
mask labels to the nodes. Coordinates are given in MNI space (x, y, z). Please note 
that the reported t-values of individual links are based on link-wise comparisons that 
are used to determine the initial network of the NBS analysis. Statistical significance of 
the NBS model is determined based on the number of connected links. Node labels 
mapping to the frontal cortex are bolded. Node labels corresponding to links connect-
ing different nodes within the same major brain subdivision of the AAL atlas (isocou-
pled) are italicized. The top 10% of the most significant MAOA-associated links for 
each modality are highlighted in red. 
 
Abbreviations : precentral gyrus (Precentral), superior frontal gyrus (Frontal_Sup), su-
perior frontal gyrus, orbital part (Frontal_Sup_Orb), middle frontal gyrus (Frontal_Mid), 
middle frontal gyrus, orbital part (Frontal_Mid_Orb), inferior frontal gyrus, pars opercu-
laris (Frontal_Inf_Oper), inferior frontal gyrus, pars triangularis  (Frontal_Inf_Tri), infe-
rior frontal gyrus, pars orbitalis (Frontal_Inf_Orb), Rolandic operculum 
(Rolandic_Oper), supplementary motor area (Supp_Motor_Area), olfactory cortex (Ol-
factory), medial frontal gyrus (Frontal_Sup_Medial), medial orbitofrontal cortex 
(Frontal_Med_Orb), gyrus rectus (Rectus), insula (Insula), anterior cingulate gyrus 
(Cingulum_Ant), midcingulate area (Cingulum_Mid), posterior cingulate gyrus (Cingu-
lum_Post), hippocampus (Hippocampus), parahippocampal gyrus (ParaHippocam-
pal), amydala (Amygdala), calcarine sulcus (Calcarine), cuneus (Cuneus), lingual gy-
rus (Lingual), superior occipital gyrus (Occipital_Sup), middle occipital gyrus (Occipi-
tal_Mid), inferior occipital gyrus (Occipital_Inf), fusiform gyrus (Fusiform), postcentral 
gyrus (Postcentral), superior parietal lobule (Parietal_Sup), inferior parietal lobule (Pa-
rietal_Inf), supramarginal gyrus (SupraMarginal), angular gyrus (Angular), precuneus 
(Precuneus), paracentral lobule (Paracentral_Lobule), caudate nucleus (Caudate), pu-
tamen (Putamen), globus pallidus (Pallidum), thalamus (Thalamus), transverse tem-
poral gyrus (Heschl), superior temporal gyrus (Temporal_Sup), superior temporal pole 
(Temporal_Pole_Sup), middle temporal gyrus (Temporal_Mid), middle temporal pole 
(Temporal_Pole_Mid), inferior temporal gyrus (Temporal_Inf), crus I of cerebellar hem-
isphere (Cerebellum_Crus1), crus II of cerebellar hemisphere (Cerebellum_Crus2), 
lobule III of cerebellar hemisphere (Cerebellum_3), lobule IV, V of cerebellar hemi-
sphere (Cerebellum_4_5), lobule VI of cerebellar hemisphere (Cerebellum_6),  lobule 
VIIB of cerebellar hemisphere (Cerebellum_7b), lobule VIII of cerebellar hemisphere 
(Cerebellum_8), lobule IX of cerebellar hemisphere (Cerebellum_9), lobule X of cere-
bellar hemisphere (Cerebellum_10), Lobule I, II of vermis (Vermis_1_2), lobule III of 
vermis (Vermis_3), Lobule IV, V of vermis (Vermis_4_5), Lobule VI of vermis (Ver-
mis_6), Lobule VII of vermis (Vermis_7), Lobule VIII of vermis (Vermis_8), Lobule IX 
of vermis  (Vermis_9), Lobule X of vermis (Vermis_10). The  succeeding “R.” and “L.” 
indicate the right and left hemisphere, respectively. 
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Table 7: fMRI emotion processing 
 

Brain node 1* Brain node 2* MNI 
coordinate 1# 

MNI 
coordinate 2# 

t-value p-value 

Precentral_R Frontal_Inf_Oper_
L 

40 -8 52 -49 13 19 2.789244 0.002853 

Frontal_Inf_Oper
_L 

Frontal_Inf_Tri_R -49 13 19 49 30 14 2.608844 0.004826 

Frontal_Inf_Oper
_L 

Frontal_Inf_Orb_R -49 13 19 40 32 -12 2.670695 0.004042 

Frontal_Sup_L Rolandic_Oper_L -19 35 42 -48 -8 14 2.62261 0.004641 

Frontal_Sup_Orb
_L 

Rolandic_Oper_L -18 47 -13 -48 -8 14 2.701509 0.003696 

Frontal_Mid_L Rolandic_Oper_L -34 33 35 -48 -8 14 2.791957 0.00283 

Frontal_Mid_Orb
_L 

Rolandic_Oper_L -32 50 -10 -48 -8 14 3.338318 0.000488 

Frontal_Mid_Orb
_R 

Rolandic_Oper_L 32 53 -11 -48 -8 14 2.624582 0.004615 

Frontal_Inf_Orb_
L 

Rolandic_Oper_L -37 31 -12 -48 -8 14 2.701593 0.003695 

Frontal_Inf_Orb_
R 

Rolandic_Oper_L 40 32 -12 -48 -8 14 2.74621 0.003242 

Frontal_Inf_Orb_
R 

Rolandic_Oper_R 40 32 -12 52 -6 15 2.664439 0.004116 

Frontal_Inf_Oper
_L 

Supp_Motor_Area
_L 

-49 13 19 -6 5 61 3.065874 0.001209 

Frontal_Inf_Oper
_L 

Supp_Motor_Area
_R 

-49 13 19 8 0 62 2.931204 0.001851 

Rolandic_Oper_L Frontal_Sup_Medi
al_L 

-48 -8 14 -6 49 31 3.007546 0.001456 

Frontal_Inf_Oper
_L 

Hippocampus_R -49 13 19 28 -20 -10 2.894483 0.002073 

Frontal_Inf_Tri_L Hippocampus_R -47 30 14 28 -20 -10 2.672375 0.004023 

Frontal_Inf_Oper
_L 

ParaHippocampal_
L 

-49 13 19 -22 -16 -21 2.831707 0.002511 

Rolandic_Oper_L ParaHippocampal_
L 

-48 -8 14 -22 -16 -21 2.784064 0.002897 

Frontal_Inf_Oper
_L 

ParaHippocampal_
R 

-49 13 19 24 -15 -20 3.443554 0.000338 

Frontal_Inf_Tri_L ParaHippocampal_
R 

-47 30 14 24 -15 -20 3.072065 0.001185 

Rolandic_Oper_L ParaHippocampal_
R 

-48 -8 14 24 -15 -20 2.808399 0.002693 

Rolandic_Oper_
R 

ParaHippocampal_
R 

52 -6 15 24 -15 -20 2.887219 0.00212 

Frontal_Inf_Oper
_L 

Amygdala_L -49 13 19 -24 -1 -17 3.000939 0.001487 

Frontal_Inf_Tri_L Amygdala_L -47 30 14 -24 -1 -17 2.953339 0.001727 

Rolandic_Oper_L Amygdala_L -48 -8 14 -24 -1 -17 3.057512 0.001242 

Rolandic_Oper_
R 

Amygdala_L 52 -6 15 -24 -1 -17 3.310275 0.000537 

Frontal_Inf_Oper
_L 

Amygdala_R -49 13 19 26 1 -18 3.012266 0.001435 

Precentral_R Calcarine_L 40 -8 52 -8 -79 6 2.6922 0.003798 

Frontal_Inf_Oper
_L 

Calcarine_L -49 13 19 -8 -79 6 3.102684 0.001073 

Rolandic_Oper_L Calcarine_L -48 -8 14 -8 -79 6 3.70804 0.00013 
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Rolandic_Oper_
R 

Calcarine_L 52 -6 15 -8 -79 6 3.605841 0.000189 

Precentral_R Calcarine_R 40 -8 52 15 -73 9 2.792355 0.002826 

Rolandic_Oper_L Calcarine_R -48 -8 14 15 -73 9 2.89704 0.002057 

Rolandic_Oper_
R 

Calcarine_R 52 -6 15 15 -73 9 2.86152 0.002293 

Precentral_R Cuneus_L 40 -8 52 -7 -80 27 2.851949 0.002361 

Rolandic_Oper_L Cuneus_L -48 -8 14 -7 -80 27 2.600447 0.004943 

Precentral_R Cuneus_R 40 -8 52 13 -79 28 2.66735 0.004082 

Frontal_Inf_Oper
_L 

Lingual_L -49 13 19 -16 -68 -5 3.18562 0.000818 

Rolandic_Oper_L Lingual_L -48 -8 14 -16 -68 -5 3.604013 0.00019 

Rolandic_Oper_
R 

Lingual_L 52 -6 15 -16 -68 -5 3.342133 0.000482 

Rolandic_Oper_L Lingual_R -48 -8 14 15 -67 -4 3.419842 0.000368 

Rolandic_Oper_
R 

Lingual_R 52 -6 15 15 -67 -4 2.971499 0.001632 

Rolandic_Oper_L Occipital_Inf_L -48 -8 14 -37 -78 -8 2.639258 0.004425 

Frontal_Inf_Oper
_L 

Fusiform_L -49 13 19 -32 -40 -20 2.74551 0.003249 

Rolandic_Oper_L Fusiform_L -48 -8 14 -32 -40 -20 2.76819 0.003037 

Frontal_Inf_Oper
_L 

Postcentral_R -49 13 19 40 -25 53 2.665739 0.004101 

Rolandic_Oper_L Postcentral_R -48 -8 14 40 -25 53 2.701708 0.003694 

Frontal_Mid_R Parietal_Inf_R 37 33 34 45 -46 50 3.359739 0.000453 

Frontal_Mid_Orb
_R 

Parietal_Inf_R 32 53 -11 45 -46 50 2.643273 0.004375 

Frontal_Sup_L SupraMarginal_L -19 35 42 -57 -34 30 2.609817 0.004813 

Frontal_Sup_Orb
_L 

SupraMarginal_L -18 47 -13 -57 -34 30 2.993317 0.001523 

Frontal_Sup_Orb
_R 

SupraMarginal_L 17 48 -14 -57 -34 30 3.020688 0.001397 

Frontal_Mid_L SupraMarginal_L -34 33 35 -57 -34 30 2.889888 0.002103 

Frontal_Mid_R SupraMarginal_L 37 33 34 -57 -34 30 2.764285 0.003073 

Frontal_Mid_Orb
_L 

SupraMarginal_L -32 50 -10 -57 -34 30 3.339683 0.000486 

Frontal_Mid_Orb
_R 

SupraMarginal_L 32 53 -11 -57 -34 30 3.512509 0.000265 

Frontal_Inf_Orb_
L 

SupraMarginal_L -37 31 -12 -57 -34 30 2.903568 0.002016 

Frontal_Inf_Orb_
R 

SupraMarginal_L 40 32 -12 -57 -34 30 3.543148 0.000237 

Frontal_Sup_Me
dial_L 

SupraMarginal_L -6 49 31 -57 -34 30 3.019961 0.0014 

Frontal_Sup_Me
dial_R 

SupraMarginal_L 8 51 30 -57 -34 30 3.078757 0.00116 

Frontal_Sup_R SupraMarginal_R 20 31 44 57 -32 34 2.724862 0.003452 

Frontal_Sup_Orb
_R 

SupraMarginal_R 17 48 -14 57 -32 34 2.976884 0.001604 

Frontal_Mid_L SupraMarginal_R -34 33 35 57 -32 34 2.975767 0.00161 

Frontal_Mid_R SupraMarginal_R 37 33 34 57 -32 34 3.438229 0.000345 

Frontal_Mid_Orb
_L 

SupraMarginal_R -32 50 -10 57 -32 34 3.01103 0.00144 

Frontal_Mid_Orb
_R 

SupraMarginal_R 32 53 -11 57 -32 34 3.328844 0.000504 

Frontal_Inf_Orb_
L 

SupraMarginal_R -37 31 -12 57 -32 34 2.72396 0.003461 
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Frontal_Inf_Orb_
R 

SupraMarginal_R 40 32 -12 57 -32 34 3.519824 0.000258 

Frontal_Sup_Me
dial_L 

SupraMarginal_R -6 49 31 57 -32 34 2.598843 0.004965 

Frontal_Sup_Me
dial_R 

SupraMarginal_R 8 51 30 57 -32 34 2.765881 0.003058 

Precentral_R Angular_R 40 -8 52 45 -60 39 2.76286 0.003086 

Frontal_Sup_Me
dial_R 

Angular_R 8 51 30 45 -60 39 2.630354 0.00454 

Frontal_Inf_Oper
_L 

Putamen_L -49 13 19 -25 4 2 3.39865 0.000396 

Rolandic_Oper_L Putamen_L -48 -8 14 -25 4 2 2.770999 0.003012 

Rolandic_Oper_
R 

Putamen_L 52 -6 15 -25 4 2 2.997316 0.001504 

Frontal_Inf_Oper
_L 

Putamen_R -49 13 19 27 5 2 3.294054 0.000568 

Rolandic_Oper_L Putamen_R -48 -8 14 27 5 2 2.622979 0.004636 

Rolandic_Oper_
R 

Putamen_R 52 -6 15 27 5 2 3.062953 0.00122 

Frontal_Inf_Oper
_L 

Pallidum_L -49 13 19 -19 0 0 3.496291 0.000281 

Rolandic_Oper_L Pallidum_L -48 -8 14 -19 0 0 2.867384 0.002253 

Rolandic_Oper_
R 

Pallidum_L 52 -6 15 -19 0 0 3.103917 0.001069 

Frontal_Inf_Oper
_L 

Pallidum_R -49 13 19 20 0 0 3.355868 0.00046 

Rolandic_Oper_L Pallidum_R -48 -8 14 20 0 0 2.966931 0.001655 

Rolandic_Oper_
R 

Pallidum_R 52 -6 15 20 0 0 3.251025 0.000657 

Precentral_R Heschl_L 40 -8 52 -43 -19 10 2.834491 0.00249 

Frontal_Sup_Orb
_L 

Heschl_L -18 47 -13 -43 -19 10 2.714338 0.00356 

Precentral_L Heschl_R -40 -6 51 45 -17 10 2.893906 0.002077 

Frontal_Inf_Oper
_L 

Heschl_R -49 13 19 45 -17 10 3.165487 0.000874 

Frontal_Inf_Tri_L Heschl_R -47 30 14 45 -17 10 2.928633 0.001865 

Frontal_Sup_Me
dial_L 

Heschl_R -6 49 31 45 -17 10 2.619154 0.004687 

Precentral_L Temporal_Sup_L -40 -6 51 -54 -21 7 2.762779 0.003087 

Precentral_R Temporal_Sup_L 40 -8 52 -54 -21 7 3.175672 0.000845 

Frontal_Sup_L Temporal_Sup_L -19 35 42 -54 -21 7 3.009291 0.001448 

Frontal_Sup_Orb
_L 

Temporal_Sup_L -18 47 -13 -54 -21 7 3.20227 0.000774 

Frontal_Mid_L Temporal_Sup_L -34 33 35 -54 -21 7 3.175854 0.000844 

Frontal_Mid_Orb
_L 

Temporal_Sup_L -32 50 -10 -54 -21 7 2.650256 0.004288 

Frontal_Inf_Oper
_L 

Temporal_Sup_L -49 13 19 -54 -21 7 2.940814 0.001796 

Frontal_Inf_Orb_
L 

Temporal_Sup_L -37 31 -12 -54 -21 7 2.63616 0.004465 

Frontal_Sup_Me
dial_L 

Temporal_Sup_L -6 49 31 -54 -21 7 3.596051 0.000196 

Frontal_Sup_Me
dial_R 

Temporal_Sup_L 8 51 30 -54 -21 7 3.201194 0.000776 

Frontal_Inf_Oper
_L 

Temporal_Sup_R -49 13 19 57 -22 7 3.118342 0.00102 

Rolandic_Oper_L Temporal_Pole_Su
p_L 

-48 -8 14 -41 15 -20 2.627002 0.004583 



6. Supplemental Material 

65 

Frontal_Inf_Oper
_L 

Temporal_Pole_Su
p_R 

-49 13 19 47 15 -17 3.370703 0.000437 

Frontal_Inf_Tri_L Temporal_Pole_Su
p_R 

-47 30 14 47 15 -17 3.040713 0.00131 

Rolandic_Oper_L Temporal_Pole_Su
p_R 

-48 -8 14 47 15 -17 2.835791 0.00248 

Supp_Motor_Are
a_L 

Temporal_Pole_Su
p_R 

-6 5 61 47 15 -17 2.718938 0.003513 

Precentral_R Temporal_Mid_L 40 -8 52 -57 -34 -2 2.808383 0.002694 

Frontal_Inf_Oper
_L 

Temporal_Mid_L -49 13 19 -57 -34 -2 3.396092 0.0004 

Rolandic_Oper_L Temporal_Mid_L -48 -8 14 -57 -34 -2 2.877629 0.002183 

Supp_Motor_Are
a_R 

Temporal_Mid_L 8 0 62 -57 -34 -2 2.70887 0.003618 

Frontal_Inf_Oper
_L 

Temporal_Mid_R -49 13 19 56 -37 -1 2.838276 0.002461 

Rolandic_Oper_L Temporal_Mid_R -48 -8 14 56 -37 -1 2.794799 0.002806 

Frontal_Inf_Oper
_L 

Cerebellum_3_L -49 13 19 -9 -37 -19 3.030009 0.001356 

Frontal_Inf_Oper
_L 

Cerebellum_4_5_L -49 13 19 -15 -43 -17 3.143643 0.000939 

Rolandic_Oper_L Cerebellum_4_5_L -48 -8 14 -15 -43 -17 3.116455 0.001026 

Frontal_Inf_Oper
_L 

Cerebellum_6_L -49 13 19 -23 -59 -22 2.912824 0.001959 

Rolandic_Oper_L Cerebellum_6_L -48 -8 14 -23 -59 -22 3.276311 0.000603 

Rolandic_Oper_L Cerebellum_6_R -48 -8 14 25 -58 -24 2.729007 0.00341 

Rolandic_Oper_
R 

Cerebellum_6_R 52 -6 15 25 -58 -24 2.626579 0.004589 

Rolandic_Oper_L Cerebellum_7b_L -48 -8 14 -33 -60 -43 2.975994 0.001609 

Frontal_Inf_Oper
_L 

Cerebellum_8_L -49 13 19 -26 -55 -48 2.655705 0.004221 

Rolandic_Oper_L Cerebellum_8_L -48 -8 14 -26 -55 -48 3.150936 0.000917 

Frontal_Sup_L Cerebellum_9_L -19 35 42 -11 -49 -46 2.765881 0.003058 

Frontal_Sup_R Cerebellum_9_L 20 31 44 -11 -49 -46 2.808698 0.002691 

Rolandic_Oper_L Cerebellum_9_L -48 -8 14 -11 -49 -46 2.813476 0.002653 

Frontal_Sup_Me
dial_R 

Cerebellum_9_L 8 51 30 -11 -49 -46 2.864813 0.00227 

Frontal_Inf_Oper
_L 

Vermis_1_2 -49 13 19 1 -39 -20 2.779338 0.002938 

Rolandic_Oper_L Vermis_7 -48 -8 14 1 -72 -25 2.811836 0.002666 

Frontal_Inf_Oper
_L 

Vermis_10 -49 13 19 0 -46 -32 2.782079 0.002914 

Insula_L Amygdala_L -36 7 3 -24 -1 -17 2.888621 0.002111 

Insula_R Amygdala_L 38 6 2 -24 -1 -17 3.218185 0.000734 

Insula_L Postcentral_R -36 7 3 40 -25 53 2.738212 0.003319 

ParaHippocampal
_L 

Heschl_L -22 -16 -21 -43 -19 10 2.816006 0.002632 

Amygdala_L Heschl_L -24 -1 -17 -43 -19 10 2.868592 0.002244 

Fusiform_L Heschl_L -32 -40 -20 -43 -19 10 2.834629 0.002489 

Insula_L Heschl_R -36 7 3 45 -17 10 2.623471 0.00463 

Amygdala_L Heschl_R -24 -1 -17 45 -17 10 3.171374 0.000857 

Insula_L Temporal_Sup_R -36 7 3 57 -22 7 2.709538 0.003611 

Temporal_Sup_L Temporal_Sup_R -54 -21 7 57 -22 7 2.856756 0.002327 

Heschl_R Temporal_Pole_Su
p_L 

45 -17 10 -41 15 -20 2.717225 0.00353 

Temporal_Sup_L Temporal_Mid_L -54 -21 7 -57 -34 -2 2.786839 0.002873 

Temporal_Sup_L Temporal_Mid_R -54 -21 7 56 -37 -1 2.597953 0.004978 
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Fusiform_L Temporal_Pole_Mi
d_L 

-32 -40 -20 -37 15 -34 2.804776 0.002723 

Fusiform_R Temporal_Pole_Mi
d_L 

33 -39 -20 -37 15 -34 2.740031 0.003301 

ParaHippocampal
_R 

Temporal_Pole_Mi
d_R 

24 -15 -20 43 15 -32 2.968823 0.001646 

Fusiform_R Temporal_Pole_Mi
d_R 

33 -39 -20 43 15 -32 2.63286 0.004507 

Heschl_L Temporal_Inf_L -43 -19 10 -51 -28 -23 2.683405 0.003896 

Amygdala_R Cerebellum_4_5_L 26 1 -18 -15 -43 -17 2.799043 0.00277 

Heschl_L Cerebellum_4_5_L -43 -19 10 -15 -43 -17 2.682549 0.003906 

Heschl_L Cerebellum_6_L -43 -19 10 -23 -59 -22 3.194575 0.000794 

Temporal_Sup_L Cerebellum_6_L -54 -21 7 -23 -59 -22 3.083956 0.00114 

Heschl_L Cerebellum_6_R -43 -19 10 25 -58 -24 2.625821 0.004599 

Heschl_L Cerebellum_7b_L -43 -19 10 -33 -60 -43 3.011118 0.00144 

ParaHippocampal
_R 

Cerebellum_7b_R 24 -15 -20 35 -64 -47 2.609186 0.004822 

Heschl_L Cerebellum_8_L -43 -19 10 -26 -55 -48 3.123467 0.001003 

Heschl_L Cerebellum_8_R -43 -19 10 25 -56 -49 2.647387 0.004323 

ParaHippocampal
_L 

Cerebellum_9_L -22 -16 -21 -11 -49 -46 2.822023 0.002585 

ParaHippocampal
_R 

Cerebellum_9_L 24 -15 -20 -11 -49 -46 2.77425 0.002983 

Fusiform_L Cerebellum_9_L -32 -40 -20 -11 -49 -46 2.680481 0.00393 

Fusiform_R Cerebellum_9_L 33 -39 -20 -11 -49 -46 3.032645 0.001345 

Heschl_L Cerebellum_9_L -43 -19 10 -11 -49 -46 2.741878 0.003284 

Temporal_Inf_R Cerebellum_9_L 53 -31 -22 -11 -49 -46 2.842775 0.002428 

ParaHippocampal
_R 

Cerebellum_9_R 24 -15 -20 9 -49 -46 2.622846 0.004638 

Fusiform_L Cerebellum_9_R -32 -40 -20 9 -49 -46 2.82647 0.002551 

Fusiform_R Cerebellum_9_R 33 -39 -20 9 -49 -46 3.05025 0.001271 

Heschl_L Cerebellum_9_R -43 -19 10 9 -49 -46 2.64633 0.004336 

Temporal_Inf_R Cerebellum_9_R 53 -31 -22 9 -49 -46 2.846208 0.002403 

Heschl_L Vermis_8 -43 -19 10 1 -64 -34 2.648404 0.004311 

Fusiform_R Vermis_10 33 -39 -20 0 -46 -32 2.727145 0.003429 

Temporal_Pole_M
id_R 

Vermis_10 43 15 -32 0 -46 -32 2.80612 0.002712 

Parietal_Inf_L SupraMarginal_R -44 -46 47 57 -32 34 2.653946 0.004243 

Parietal_Inf_R SupraMarginal_R 45 -46 50 57 -32 34 3.596016 0.000196 

Postcentral_R Angular_R 40 -25 53 45 -60 39 2.767595 0.003043 

Parietal_Inf_L Putamen_L -44 -46 47 -25 4 2 2.667323 0.004082 

SupraMarginal_L Putamen_L -57 -34 30 -25 4 2 2.808417 0.002693 

SupraMarginal_L Putamen_R -57 -34 30 27 5 2 2.725411 0.003447 

SupraMarginal_R Putamen_R 57 -32 34 27 5 2 2.639713 0.00442 

Postcentral_L Pallidum_L -43 -23 49 -19 0 0 2.646974 0.004328 

Parietal_Sup_L Pallidum_L -24 -60 59 -19 0 0 2.818748 0.002611 

Parietal_Inf_L Pallidum_L -44 -46 47 -19 0 0 2.915913 0.00194 

Parietal_Inf_R Pallidum_L 45 -46 50 -19 0 0 2.698369 0.00373 

SupraMarginal_L Pallidum_L -57 -34 30 -19 0 0 3.064196 0.001215 

SupraMarginal_R Pallidum_L 57 -32 34 -19 0 0 3.001252 0.001486 

Parietal_Inf_L Pallidum_R -44 -46 47 20 0 0 2.610988 0.004797 

SupraMarginal_L Pallidum_R -57 -34 30 20 0 0 2.678445 0.003953 

SupraMarginal_R Pallidum_R 57 -32 34 20 0 0 2.80597 0.002713 

Postcentral_R Heschl_L 40 -25 53 -43 -19 10 3.232439 0.000699 

Postcentral_R Heschl_R 40 -25 53 45 -17 10 2.87488 0.002202 
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Postcentral_R Temporal_Sup_L 40 -25 53 -54 -21 7 3.511396 0.000266 

Parietal_Sup_L Temporal_Sup_L -24 -60 59 -54 -21 7 2.600494 0.004942 

Parietal_Inf_R Temporal_Sup_L 45 -46 50 -54 -21 7 2.850556 0.002371 

Postcentral_R Temporal_Sup_R 40 -25 53 57 -22 7 2.892967 0.002083 

SupraMarginal_L Temporal_Sup_R -57 -34 30 57 -22 7 2.623751 0.004626 

SupraMarginal_L Temporal_Mid_L -57 -34 30 -57 -34 -2 2.689875 0.003824 

SupraMarginal_R Temporal_Mid_L 57 -32 34 -57 -34 -2 2.656672 0.004209 

SupraMarginal_R Temporal_Mid_R 57 -32 34 56 -37 -1 2.672157 0.004025 

Postcentral_R Cerebellum_4_5_L 40 -25 53 -15 -43 -17 2.63115 0.004529 

Parietal_Inf_R Cerebellum_6_L 45 -46 50 -23 -59 -22 3.190445 0.000805 

SupraMarginal_L Cerebellum_6_L -57 -34 30 -23 -59 -22 2.624361 0.004618 

SupraMarginal_R Cerebellum_6_L 57 -32 34 -23 -59 -22 2.723474 0.003466 

Angular_R Cerebellum_6_L 45 -60 39 -23 -59 -22 3.02152 0.001393 

SupraMarginal_L Cerebellum_9_L -57 -34 30 -11 -49 -46 2.675232 0.00399 

Angular_R Cerebellum_9_L 45 -60 39 -11 -49 -46 2.724065 0.00346 

Angular_R Cerebellum_9_R 45 -60 39 9 -49 -46 2.696723 0.003748 

Lingual_L Postcentral_L -16 -68 -5 -43 -23 49 2.608688 0.004829 

Calcarine_L Postcentral_R -8 -79 6 40 -25 53 2.685396 0.003874 

Calcarine_R Postcentral_R 15 -73 9 40 -25 53 2.958247 0.001701 

Cuneus_L Postcentral_R -7 -80 27 40 -25 53 2.95643 0.001711 

Lingual_L Postcentral_R -16 -68 -5 40 -25 53 2.655342 0.004226 

Calcarine_L SupraMarginal_L -8 -79 6 -57 -34 30 2.869188 0.00224 

Cuneus_L SupraMarginal_L -7 -80 27 -57 -34 30 2.607824 0.00484 

Calcarine_L SupraMarginal_R -8 -79 6 57 -32 34 3.251247 0.000657 

Calcarine_R SupraMarginal_R 15 -73 9 57 -32 34 2.715451 0.003549 

Lingual_L SupraMarginal_R -16 -68 -5 57 -32 34 2.750953 0.003197 

Occipital_Sup_L SupraMarginal_R -18 -84 28 57 -32 34 2.662391 0.004141 

Calcarine_L Heschl_L -8 -79 6 -43 -19 10 2.964357 0.001669 

Lingual_L Heschl_L -16 -68 -5 -43 -19 10 2.718108 0.003521 

Calcarine_L Heschl_R -8 -79 6 45 -17 10 3.034207 0.001338 

Lingual_L Heschl_R -16 -68 -5 45 -17 10 3.158041 0.000896 

Lingual_R Heschl_R 15 -67 -4 45 -17 10 2.725905 0.003442 

Calcarine_L Temporal_Sup_L -8 -79 6 -54 -21 7 3.137581 0.000958 

Lingual_L Temporal_Sup_L -16 -68 -5 -54 -21 7 2.944979 0.001773 

Calcarine_L Temporal_Sup_R -8 -79 6 57 -22 7 2.689129 0.003832 

Cuneus_R Temporal_Mid_L 13 -79 28 -57 -34 -2 2.604252 0.00489 

Occipital_Sup_L Temporal_Mid_L -18 -84 28 -57 -34 -2 2.643959 0.004366 

Cingulum_Post_L Amygdala_R -6 -43 25 26 1 -18 2.650216 0.004288 

Cingulum_Post_R Amygdala_R 6 -42 22 26 1 -18 2.843841 0.00242 

Cingulum_Mid_L Calcarine_L -6 -15 42 -8 -79 6 2.699047 0.003723 

Cingulum_Mid_R Calcarine_L 7 -9 40 -8 -79 6 2.843981 0.002419 

Cingulum_Mid_L Calcarine_R -6 -15 42 15 -73 9 2.678941 0.003947 

Cingulum_Mid_L Cuneus_L -6 -15 42 -7 -80 27 2.604551 0.004886 

Pallidum_L Heschl_L -19 0 0 -43 -19 10 2.65299 0.004254 

Putamen_L Cerebellum_9_L -25 4 2 -11 -49 -46 2.871398 0.002225 

Cerebellum_4_5_
L 

Cerebellum_9_L -15 -43 -17 -11 -49 -46 2.708632 0.00362 

Cerebellum_6_R Cerebellum_9_L 25 -58 -24 -11 -49 -46 2.609321 0.00482 

Putamen_L Cerebellum_9_R -25 4 2 9 -49 -46 2.617878 0.004704 

Cerebellum_4_5_
L 

Cerebellum_9_R -15 -43 -17 9 -49 -46 3.465129 0.000314 

Cerebellum_4_5_
R 

Cerebellum_9_R 17 -43 -18 9 -49 -46 2.898954 0.002045 

Cerebellum_6_R Cerebellum_9_R 25 -58 -24 9 -49 -46 2.705926 0.003649 
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Cerebellum_9_L Vermis_7 -11 -49 -46 1 -72 -25 3.040696 0.001311 

Cerebellum_9_R Vermis_7 9 -49 -46 1 -72 -25 2.773311 0.002991 

Cerebellum_9_L Vermis_8 -11 -49 -46 1 -64 -34 3.233686 0.000696 

Cerebellum_9_R Vermis_8 9 -49 -46 1 -64 -34 2.921687 0.001906 

Vermis_7 Vermis_9 1 -72 -25 1 -55 -35 2.704707 0.003662 

Vermis_8 Vermis_9 1 -64 -34 1 -55 -35 3.296187 0.000564 

Cerebellum_3_L Vermis_10 -9 -37 -19 0 -46 -32 3.103545 0.00107 

Cerebellum_4_5_
L 

Vermis_10 -15 -43 -17 0 -46 -32 3.108277 0.001054 

Vermis_1_2 Vermis_10 1 -39 -20 0 -46 -32 2.737448 0.003327 

 
 
 

 
Table 8: fMRI resting state: 
 

Brain node 1* Brain node 2* MNI 
coordinate 1# 

MNI 
coordinate 2# 

t-value p-value 

Precentral_L Precentral_R -40 -6 51 40 -8 52 3.310026 0.000548 

Frontal_Sup_L Frontal_Sup_Orb_
L 

-19 35 42 -18 47 -13 2.957296 0.001727 

Frontal_Sup_L Frontal_Sup_Orb_
R 

-19 35 42 17 48 -14 3.42589 0.000368 

Frontal_Sup_Orb
_R 

Frontal_Mid_L 17 48 -14 -34 33 35 3.102135 0.001091 

Frontal_Mid_Orb
_R 

Frontal_Inf_Oper_
R 

32 53 -11 49 15 21 2.661537 0.004186 

Precentral_L Rolandic_Oper_L -40 -6 51 -48 -8 14 2.770618 0.003045 

Precentral_L Rolandic_Oper_R -40 -6 51 52 -6 15 3.065516 0.001227 

Rolandic_Oper_L Rolandic_Oper_R -48 -8 14 52 -6 15 2.715473 0.003581 

Frontal_Sup_L Olfactory_L -19 35 42 -9 15 -12 3.24721 0.000677 

Frontal_Sup_Orb
_L 

Frontal_Sup_Medi
al_L 

-18 47 -13 -6 49 31 2.764868 0.003097 

Frontal_Sup_Orb
_R 

Frontal_Sup_Medi
al_L 

17 48 -14 -6 49 31 3.392131 0.000413 

Olfactory_L Frontal_Sup_Medi
al_L 

-9 15 -12 -6 49 31 2.678632 0.003985 

Olfactory_R Frontal_Sup_Medi
al_L 

8 16 -11 -6 49 31 2.700088 0.003745 

Olfactory_L Rectus_L -9 15 -12 -6 37 -18 2.647651 0.004356 

Olfactory_R Rectus_L 8 16 -11 -6 37 -18 2.805089 0.002748 

Rectus_L Rectus_R -6 37 -18 7 36 -18 3.076873 0.001183 

Frontal_Mid_Orb
_L 

Insula_L -32 50 -10 -36 7 3 2.648647 0.004343 

Frontal_Inf_Oper
_L 

Insula_L -49 13 19 -36 7 3 2.747888 0.003256 

Frontal_Mid_Orb
_L 

Insula_R -32 50 -10 38 6 2 2.810025 0.002708 

Frontal_Inf_Orb_
L 

Insula_R -37 31 -12 38 6 2 2.669163 0.004095 

Frontal_Med_Orb
_L 

ParaHippocampal_
L 

-6 54 -7 -22 -16 -21 3.052396 0.00128 

Rectus_L ParaHippocampal_
L 

-6 37 -18 -22 -16 -21 2.707983 0.00366 

Precentral_R Amygdala_L 40 -8 52 -24 -1 -17 2.691636 0.003838 

Rolandic_Oper_L Amygdala_L -48 -8 14 -24 -1 -17 3.030543 0.001372 
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Rolandic_Oper_
R 

Amygdala_L 52 -6 15 -24 -1 -17 3.192868 0.000811 

Frontal_Med_Orb
_L 

Amygdala_L -6 54 -7 -24 -1 -17 3.118694 0.001034 

Rectus_L Amygdala_L -6 37 -18 -24 -1 -17 2.677342 0.003999 

Frontal_Med_Orb
_L 

Fusiform_L -6 54 -7 -32 -40 -20 2.918419 0.001948 

Precentral_L Heschl_L -40 -6 51 -43 -19 10 2.623463 0.004667 

Frontal_Inf_Oper
_L 

Heschl_L -49 13 19 -43 -19 10 2.880777 0.002186 

Frontal_Inf_Tri_L Heschl_L -47 30 14 -43 -19 10 2.606768 0.004893 

Rolandic_Oper_L Heschl_L -48 -8 14 -43 -19 10 3.252335 0.000665 

Frontal_Med_Orb
_L 

Heschl_L -6 54 -7 -43 -19 10 2.603532 0.004938 

Precentral_L Heschl_R -40 -6 51 45 -17 10 3.283419 0.000599 

Precentral_R Heschl_R 40 -8 52 45 -17 10 3.004683 0.001489 

Frontal_Inf_Oper
_L 

Heschl_R -49 13 19 45 -17 10 2.831648 0.002537 

Rolandic_Oper_L Heschl_R -48 -8 14 45 -17 10 2.845439 0.002434 

Frontal_Med_Orb
_L 

Heschl_R -6 54 -7 45 -17 10 2.679178 0.003978 

Frontal_Inf_Oper
_L 

Temporal_Sup_R -49 13 19 57 -22 7 2.767341 0.003074 

Frontal_Mid_Orb
_R 

Temporal_Pole_Su
p_R 

32 53 -11 47 15 -17 2.887549 0.002141 

Frontal_Sup_R Temporal_Mid_L 20 31 44 -57 -34 -2 2.837863 0.00249 

Frontal_Sup_Orb
_R 

Temporal_Mid_L 17 48 -14 -57 -34 -2 3.139313 0.000967 

Frontal_Mid_R Temporal_Mid_L 37 33 34 -57 -34 -2 3.404252 0.000396 

Frontal_Inf_Tri_R Temporal_Mid_L 49 30 14 -57 -34 -2 2.737197 0.00336 

Frontal_Sup_Orb
_R 

Temporal_Inf_L 17 48 -14 -51 -28 -23 2.908232 0.00201 

Supp_Motor_Are
a_L 

Temporal_Inf_L -6 5 61 -51 -28 -23 2.803213 0.002763 

Supp_Motor_Are
a_R 

Temporal_Inf_L 8 0 62 -51 -28 -23 2.873163 0.002238 

Precentral_L Postcentral_L -40 -6 51 -43 -23 49 2.910698 0.001995 

Precentral_L Postcentral_R -40 -6 51 40 -25 53 2.776823 0.002989 

Frontal_Mid_Orb
_L 

SupraMarginal_L -32 50 -10 -57 -34 30 3.124828 0.001013 

Frontal_Mid_Orb
_R 

SupraMarginal_L 32 53 -11 -57 -34 30 2.604744 0.004921 

Frontal_Inf_Oper
_L 

SupraMarginal_L -49 13 19 -57 -34 30 3.806711 0.000092 

Frontal_Inf_Tri_L SupraMarginal_L -47 30 14 -57 -34 30 3.333842 0.000505 

Frontal_Mid_Orb
_L 

SupraMarginal_R -32 50 -10 57 -32 34 2.669335 0.004093 

Frontal_Mid_Orb
_R 

SupraMarginal_R 32 53 -11 57 -32 34 2.843103 0.002451 

Frontal_Inf_Tri_L SupraMarginal_R -47 30 14 57 -32 34 2.878164 0.002204 

Frontal_Sup_Orb
_R 

Angular_L 17 48 -14 -45 -61 36 2.635808 0.004506 

Frontal_Inf_Tri_R Angular_L 49 30 14 -45 -61 36 2.603538 0.004938 

Supp_Motor_Are
a_R 

Angular_L 8 0 62 -45 -61 36 2.64333 0.00441 

Frontal_Med_Orb
_R 

Angular_R 7 52 -7 45 -60 39 2.664605 0.004149 
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Frontal_Sup_Orb
_R 

Calcarine_L 17 48 -14 -8 -79 6 3.02667 0.001389 

Frontal_Med_Orb
_L 

Calcarine_L -6 54 -7 -8 -79 6 2.840392 0.002471 

Rectus_L Calcarine_L -6 37 -18 -8 -79 6 3.112357 0.001055 

Rectus_R Calcarine_L 7 36 -18 -8 -79 6 3.021908 0.00141 

Frontal_Med_Orb
_L 

Calcarine_R -6 54 -7 15 -73 9 3.084391 0.001155 

Rectus_L Calcarine_R -6 37 -18 15 -73 9 2.942496 0.001808 

Rectus_R Calcarine_R 7 36 -18 15 -73 9 2.780431 0.002957 

Frontal_Med_Orb
_L 

Lingual_L -6 54 -7 -16 -68 -5 2.760344 0.003139 

Frontal_Med_Orb
_L 

Lingual_R -6 54 -7 15 -67 -4 2.670781 0.004076 

Rectus_L Occipital_Sup_L -6 37 -18 -18 -84 28 2.651426 0.004309 

Frontal_Med_Orb
_L 

Occipital_Sup_R -6 54 -7 23 -81 31 2.703143 0.003712 

Frontal_Inf_Oper
_L 

Occipital_Mid_L -49 13 19 -33 -81 16 2.809851 0.002709 

Frontal_Med_Orb
_L 

Occipital_Mid_L -6 54 -7 -33 -81 16 2.658799 0.004219 

Frontal_Mid_L Occipital_Mid_R -34 33 35 36 -80 19 2.727978 0.003452 

Frontal_Inf_Oper
_L 

Occipital_Mid_R -49 13 19 36 -80 19 2.623193 0.00467 

Frontal_Med_Orb
_L 

Occipital_Mid_R -6 54 -7 36 -80 19 2.934207 0.001855 

Frontal_Inf_Oper
_L 

Occipital_Inf_L -49 13 19 -37 -78 -8 3.082428 0.001162 

Frontal_Med_Orb
_L 

Occipital_Inf_R -6 54 -7 37 -82 -8 2.662238 0.004177 

Rectus_L Occipital_Inf_R -6 37 -18 37 -82 -8 2.631176 0.004565 

Frontal_Sup_Orb
_L 

Putamen_L -18 47 -13 -25 4 2 3.169034 0.000877 

Frontal_Sup_Orb
_R 

Putamen_L 17 48 -14 -25 4 2 3.408039 0.000391 

Frontal_Mid_L Putamen_L -34 33 35 -25 4 2 2.69068 0.003848 

Frontal_Mid_R Putamen_L 37 33 34 -25 4 2 2.730799 0.003424 

Frontal_Mid_Orb
_L 

Putamen_L -32 50 -10 -25 4 2 2.937998 0.001834 

Frontal_Mid_Orb
_R 

Putamen_L 32 53 -11 -25 4 2 2.78863 0.002886 

Frontal_Mid_R Putamen_R 37 33 34 27 5 2 2.69543 0.003796 

Frontal_Mid_Orb
_L 

Putamen_R -32 50 -10 27 5 2 3.154627 0.00092 

Frontal_Inf_Oper
_L 

Putamen_R -49 13 19 27 5 2 2.769493 0.003055 

Frontal_Sup_Orb
_L 

Pallidum_L -18 47 -13 -19 0 0 2.924488 0.001912 

Frontal_Sup_Orb
_R 

Pallidum_L 17 48 -14 -19 0 0 3.543006 0.000243 

Frontal_Sup_Orb
_R 

Pallidum_R 17 48 -14 20 0 0 3.034144 0.001356 

Precentral_L Cerebellum_6_L -40 -6 51 -23 -59 -22 2.779254 0.002968 

Rolandic_Oper_
R 

Cerebellum_6_R 52 -6 15 25 -58 -24 2.85338 0.002376 

Frontal_Sup_L Cerebellum_7b_L -19 35 42 -33 -60 -43 2.810573 0.002703 

Frontal_Mid_L Cerebellum_7b_L -34 33 35 -33 -60 -43 3.015258 0.00144 

Frontal_Sup_L Cerebellum_8_L -19 35 42 -26 -55 -48 2.677109 0.004002 
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Frontal_Sup_Orb
_R 

Cerebellum_9_L 17 48 -14 -11 -49 -46 2.733556 0.003396 

Frontal_Med_Orb
_L 

Cerebellum_9_L -6 54 -7 -11 -49 -46 2.701698 0.003727 

Frontal_Med_Orb
_R 

Cerebellum_9_L 7 52 -7 -11 -49 -46 2.667925 0.00411 

Precentral_L Vermis_4_5 -40 -6 51 1 -52 -6 2.73655 0.003366 

Hippocampus_R ParaHippocampal_
L 

28 -20 -10 -22 -16 -21 2.607378 0.004885 

Hippocampus_L ParaHippocampal_
R 

-26 -21 -10 24 -15 -20 2.713228 0.003604 

ParaHippocampal
_L 

Fusiform_R -22 -16 -21 33 -39 -20 2.640001 0.004452 

ParaHippocampal
_L 

Heschl_L -22 -16 -21 -43 -19 10 2.67281 0.004052 

Amygdala_L Heschl_L -24 -1 -17 -43 -19 10 3.442398 0.000347 

Hippocampus_L Heschl_R -26 -21 -10 45 -17 10 2.923192 0.001919 

Hippocampus_R Heschl_R 28 -20 -10 45 -17 10 3.051368 0.001284 

ParaHippocampal
_L 

Heschl_R -22 -16 -21 45 -17 10 3.143233 0.000954 

ParaHippocampal
_R 

Heschl_R 24 -15 -20 45 -17 10 2.680964 0.003958 

Amygdala_L Heschl_R -24 -1 -17 45 -17 10 3.617983 0.000185 

Fusiform_L Heschl_R -32 -40 -20 45 -17 10 2.752058 0.003216 

Fusiform_R Heschl_R 33 -39 -20 45 -17 10 3.188558 0.000823 

Heschl_L Heschl_R -43 -19 10 45 -17 10 2.782393 0.00294 

Amygdala_L Temporal_Sup_L -24 -1 -17 -54 -21 7 2.966345 0.001679 

Heschl_R Temporal_Sup_L 45 -17 10 -54 -21 7 2.869956 0.00226 

Amygdala_L Temporal_Sup_R -24 -1 -17 57 -22 7 3.132532 0.000988 

Heschl_R Temporal_Sup_R 45 -17 10 57 -22 7 2.999887 0.001511 

Insula_R Temporal_Pole_Su
p_L 

38 6 2 -41 15 -20 2.824411 0.002593 

Heschl_R Temporal_Mid_L 45 -17 10 -57 -34 -2 3.299017 0.000569 

Temporal_Sup_R Temporal_Mid_L 57 -22 7 -57 -34 -2 2.949734 0.001768 

Heschl_R Temporal_Mid_R 45 -17 10 56 -37 -1 2.770025 0.00305 

Temporal_Mid_L Temporal_Mid_R -57 -34 -2 56 -37 -1 3.522856 0.000261 

Heschl_R Temporal_Inf_R 45 -17 10 53 -31 -22 2.931432 0.001871 

ParaHippocampal
_L 

Calcarine_L -22 -16 -21 -8 -79 6 2.712044 0.003617 

ParaHippocampal
_L 

Calcarine_R -22 -16 -21 15 -73 9 2.749748 0.003238 

Amygdala_L Occipital_Mid_L -24 -1 -17 -33 -81 16 2.601968 0.00496 

ParaHippocampal
_L 

Occipital_Mid_R -22 -16 -21 36 -80 19 2.704032 0.003702 

Amygdala_L Occipital_Mid_R -24 -1 -17 36 -80 19 2.778286 0.002976 

ParaHippocampal
_L 

Cerebellum_4_5_L -22 -16 -21 -15 -43 -17 3.19629 0.000802 

Amygdala_L Cerebellum_4_5_L -24 -1 -17 -15 -43 -17 2.691229 0.003842 

Amygdala_L Cerebellum_6_L -24 -1 -17 -23 -59 -22 2.891583 0.002115 

Heschl_R Cerebellum_6_L 45 -17 10 -23 -59 -22 2.816005 0.00266 

Temporal_Mid_L Cerebellum_6_L -57 -34 -2 -23 -59 -22 2.706167 0.003679 

Insula_R Cerebellum_6_R 38 6 2 25 -58 -24 2.750852 0.003228 

Amygdala_L Cerebellum_6_R -24 -1 -17 25 -58 -24 2.610102 0.004847 

Heschl_R Cerebellum_6_R 45 -17 10 25 -58 -24 3.529704 0.000255 

Temporal_Sup_L Cerebellum_6_R -54 -21 7 25 -58 -24 2.643649 0.004406 

Temporal_Sup_R Cerebellum_6_R 57 -22 7 25 -58 -24 2.84481 0.002439 

Heschl_R Vermis_7 45 -17 10 1 -72 -25 2.763879 0.003106 
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Parietal_Sup_R Temporal_Inf_L 25 -59 62 -51 -28 -23 2.71179 0.003619 

SupraMarginal_L Angular_L -57 -34 30 -45 -61 36 2.650908 0.004315 

Angular_R Pallidum_R 45 -60 39 20 0 0 2.600855 0.004975 

Angular_L Cerebellum_8_L -45 -61 36 -26 -55 -48 2.776903 0.002989 

Angular_L Cerebellum_9_L -45 -61 36 -11 -49 -46 3.167401 0.000882 

Angular_R Cerebellum_9_L 45 -60 39 -11 -49 -46 2.787784 0.002893 

Angular_R Cerebellum_9_R 45 -60 39 9 -49 -46 2.685082 0.003911 

Precuneus_R Cerebellum_9_R 9 -56 44 9 -49 -46 2.76376 0.003107 

Lingual_L Heschl_R -16 -68 -5 45 -17 10 2.877591 0.002208 

Lingual_R Heschl_R 15 -67 -4 45 -17 10 2.946722 0.001785 

Cingulum_Mid_L Putamen_L -6 -15 42 -25 4 2 2.854903 0.002365 

Cingulum_Mid_R Putamen_L 7 -9 40 -25 4 2 2.921205 0.001931 

Cingulum_Mid_L Putamen_R -6 -15 42 27 5 2 2.677698 0.003995 

Cingulum_Mid_R Putamen_R 7 -9 40 27 5 2 2.675438 0.004022 

Putamen_L Heschl_L -25 4 2 -43 -19 10 2.64912 0.004337 

Putamen_L Heschl_R -25 4 2 45 -17 10 3.036365 0.001347 

Pallidum_L Heschl_R -19 0 0 45 -17 10 2.631471 0.004562 

Putamen_L Temporal_Sup_L -25 4 2 -54 -21 7 2.650953 0.004315 

Putamen_L Temporal_Sup_R -25 4 2 57 -22 7 2.60751 0.004883 

Putamen_R Temporal_Inf_L 27 5 2 -51 -28 -23 2.976984 0.001624 

Putamen_R Cerebellum_Crus1
_R 

27 5 2 37 -67 -30 2.606937 0.004891 

Pallidum_L Cerebellum_6_L -19 0 0 -23 -59 -22 2.838414 0.002486 

Cerebellum_6_L Cerebellum_6_R -23 -59 -22 25 -58 -24 2.848944 0.002408 

Putamen_L Cerebellum_7b_L -25 4 2 -33 -60 -43 2.642881 0.004416 

Pallidum_L Cerebellum_7b_L -19 0 0 -33 -60 -43 2.848798 0.002409 

Cerebellum_Crus
1_R 

Cerebellum_9_L 37 -67 -30 -11 -49 -46 2.959981 0.001712 

Cerebellum_Crus
2_R 

Cerebellum_9_L 32 -69 -40 -11 -49 -46 3.330639 0.000511 

Cerebellum_7b_L Cerebellum_9_L -33 -60 -43 -11 -49 -46 2.691941 0.003834 

Cerebellum_7b_R Cerebellum_9_L 35 -64 -47 -11 -49 -46 2.721479 0.003518 

Cerebellum_8_L Cerebellum_9_L -26 -55 -48 -11 -49 -46 2.61161 0.004826 

Putamen_L Vermis_3 -25 4 2 1 -40 -11 2.679493 0.003975 

Putamen_R Vermis_3 27 5 2 1 -40 -11 2.674559 0.004032 

Pallidum_L Vermis_3 -19 0 0 1 -40 -11 2.646315 0.004372 

Pallidum_R Vermis_3 20 0 0 1 -40 -11 2.623737 0.004663 

Cerebellum_8_L Vermis_7 -26 -55 -48 1 -72 -25 2.602372 0.004954 

Cerebellum_9_L Vermis_7 -11 -49 -46 1 -72 -25 2.857837 0.002344 

Cerebellum_9_R Vermis_7 9 -49 -46 1 -72 -25 2.615067 0.004779 

 
 
 

 
Table 9: Diffusion tensor imaging 
 

Brain node 1* Brain node 2* MNI 
coordinate 1# 

MNI 
coordinate 2# 

t-value p-value 

Frontal_Sup_Orb
_R 

Frontal_Mid_R 17 48 -14 37 33 34 2.948183 0.001734 

Frontal_Mid_R Frontal_Mid_Orb_
R 

37 33 34 32 53 -11 2.965526 0.001642 

Frontal_Sup_Orb
_R 

Hippocampus_R 17 48 -14 28 -20 -10 3.043932 0.00128 

Frontal_Sup_R Heschl_R 20 31 44 45 -17 10 2.815486 0.00261 
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Frontal_Sup_R Temporal_Mid_L 20 31 44 -57 -34 -2 2.772786 0.002967 

Frontal_Mid_R Temporal_Mid_L 37 33 34 -57 -34 -2 2.912428 0.001939 

Frontal_Sup_R Temporal_Inf_L 20 31 44 -51 -28 -23 3.001188 0.001467 

Frontal_Inf_Tri_R Temporal_Inf_L 49 30 14 -51 -28 -23 3.090496 0.001101 

Frontal_Inf_Tri_L Precuneus_L -47 30 14 -8 -56 48 2.726434 0.003405 

Frontal_Mid_L Cuneus_R -34 33 35 13 -79 28 3.061236 0.00121 

Frontal_Med_Orb
_L 

Cuneus_R -6 54 -7 13 -79 28 2.616205 0.00469 

Frontal_Inf_Tri_R Occipital_Sup_L 49 30 14 -18 -84 28 2.632934 0.00447 

Frontal_Inf_Tri_R Occipital_Mid_L 49 30 14 -33 -81 16 2.655832 0.004185 

Frontal_Sup_Orb
_L 

Occipital_Inf_L -18 47 -13 -37 -78 -8 2.68464 0.003849 

Rectus_L Occipital_Inf_L -6 37 -18 -37 -78 -8 2.606679 0.004819 

Frontal_Sup_R Cingulum_Mid_R 20 31 44 7 -9 40 2.756724 0.003113 

Frontal_Mid_R Cingulum_Mid_R 37 33 34 7 -9 40 2.753009 0.003148 

Frontal_Inf_Tri_R Thalamus_L 49 30 14 -12 -18 8 2.605123 0.00484 

Frontal_Sup_Orb
_R 

Cerebellum_3_R 17 48 -14 12 -34 -19 2.907542 0.001969 

Frontal_Inf_Tri_R Cerebellum_7b_L 49 30 14 -33 -60 -43 2.864093 0.002251 

Frontal_Inf_Tri_R Vermis_7 49 30 14 1 -72 -25 2.692651 0.00376 

Hippocampus_L Pallidum_R -26 -21 -10 20 0 0 3.457133 0.000316 

Hippocampus_L Thalamus_R -26 -21 -10 12 -18 8 2.87939 0.002148 

Hippocampus_R Vermis_7 28 -20 -10 1 -72 -25 3.164489 0.000863 

Precuneus_L Temporal_Sup_L -8 -56 48 -54 -21 7 3.314631 0.00052 

Precuneus_L Temporal_Pole_Su
p_L 

-8 -56 48 -41 15 -20 3.140185 0.000936 

Parietal_Sup_L Temporal_Mid_L -24 -60 59 -57 -34 -2 2.994856 0.001497 

Precuneus_L Temporal_Mid_L -8 -56 48 -57 -34 -2 3.015499 0.001402 

Parietal_Sup_L Temporal_Inf_L -24 -60 59 -51 -28 -23 2.681395 0.003886 

Precuneus_L Pallidum_R -8 -56 48 20 0 0 3.430424 0.000347 

SupraMarginal_R Cerebellum_Crus1
_L 

57 -32 34 -36 -67 -29 2.737971 0.003291 

Precuneus_L Cerebellum_3_R -8 -56 48 12 -34 -19 2.832031 0.002482 

Calcarine_L Temporal_Sup_R -8 -79 6 57 -22 7 3.047353 0.001266 

Cuneus_R Parietal_Inf_L 13 -79 28 -44 -46 47 2.654728 0.004198 

Occipital_Mid_L Parietal_Inf_L -33 -81 16 -44 -46 47 2.630423 0.004503 

Calcarine_L Occipital_Mid_L -8 -79 6 -33 -81 16 2.911814 0.001943 

Calcarine_L Occipital_Inf_L -8 -79 6 -37 -78 -8 2.765985 0.003028 

Cuneus_L Thalamus_L -7 -80 27 -12 -18 8 3.044983 0.001275 

Occipital_Mid_L Cerebellum_10_L -33 -81 16 -23 -34 -42 2.664906 0.004076 

Calcarine_L Vermis_7 -8 -79 6 1 -72 -25 3.445874 0.000329 

Cingulum_Post_R Calcarine_L 6 -42 22 -8 -79 6 2.774792 0.00295 

Pallidum_L Thalamus_L -19 0 0 -12 -18 8 3.133992 0.000955 

Thalamus_R Cerebellum_Crus1
_L 

12 -18 8 -36 -67 -29 2.981882 0.00156 

Pallidum_R Cerebellum_Crus1
_R 

20 0 0 37 -67 -30 2.719439 0.003476 

Cerebellum_6_R Cerebellum_7b_L 25 -58 -24 -33 -60 -43 3.289062 0.000568 

Cerebellum_6_R Cerebellum_9_L 25 -58 -24 -11 -49 -46 2.692418 0.003763 

Cerebellum_Crus
1_R 

Cerebellum_10_L 37 -67 -30 -23 -34 -42 2.785143 0.00286 

Cerebellum_7b_R Vermis_7 35 -64 -47 1 -72 -25 2.768849 0.003003 

 



Curriculum Vitae 

74 

8 CURRICULUM VITAE 

PERSONAL INFORMATION 
 

Name: Anais Buhl, geb. Harneit 

Date of birth:  19.09.1985 

Place of birth:  Hagen 

 
 
 
SECUNDARY EDUCATION 
 

2002 – 2006 Mallinkrodt-Gymnasium Dortmund 

26/06/2006 Abitur 

 
 
 
ACADEMIC EDUCATION 
 

2008-2011 
Psychology 
University of Twente 

31/08/2011 Bachelor of Science 

2012-2014 
Cognitive Neuroscience 
Radboud University Nijmegen 
 

2013-2014 Masterthesis 

24/12/2014 
Master of Science, GPA: 8.5 
 

 
PROFESSIONAL EXPERIENCE 
 
2014-present         Researcher and doctoral candidate at the Central Institute of         
                                       Mental Health in Mannheim 
 
PUBLICATIONS 
 
Sutcliffe JS, Harneit A, Tost H, Meyer-Lindenberg A. Neuroimaging Intermediate Phe-
notypes of Executive Control Dysfunction in Schizophrenia. Biol Psychiatry Cogn Neu-
rosci Neuroimaging. 2016 1(3):218-229. 
 
Cao H*, Harneit A*, Walter H, Erk S, Braun U, Moessnang C, Geiger LS, Zang Z, 
Mohnke S, Heinz A, Romanczuk-Seiferth N, Mühleisen T, Mattheisen M, Witt SH, 
Cichon S, Nöthen MM, Rietschel M, Meyer-Lindenberg A, Tost H. The 5-HTTLPR Pol-



Curriculum Vitae 

75 

ymorphism Affects Network-Based Functional Connectivity in the Visual-Limbic Sys-
tem in Healthy Adults. Neuropsychopharmacology. 2018 43(2):406-414. Epub 2017 
Jun 7. *Shared first authors. 
 
Harneit A, Braun U, Geiger-Primo L, Zang Z, Hakobjan M, van Donkelaar MM, Schwei-
ger J, Schwarz K, Gan G, Erk S, Heinz A, Romanczuk-Seiferth N, Witt S, Rietschel M, 
Walter H, Franke B, Meyer-Lindenberg A, Tost H. MAOA-VNTR genotype affects 
structural and functional connectivity in distributed brain networks. Hum Brain Mapp. 
2019 40(18):5202-5212. Epub 2019 Aug 23. 
 
Schweiger J, Bilek E, Schäfer A, Braun U, Moessnang C, Harneit A, Post P, Schwarz 
K, Romanczuk-Seiferth N, Erk S, Wackerhagen C, Mattheisen M, Mühleisen TW, 
Cichon S, Nöthen MM, Frank J, Witt S, Rietschel M, Heinz A, Walter H, Meyer-Linden-
berg A, Tost H. Effects of BDNF ValMet genotype and schizophrenia familial risk on a 
neural functional network for cognitive control in humans. Neuropsychopharmacology. 
2019 44(3):590-597. Epub 2018 Oct 25. 
 
Chen J, Zang Z, Braun U, Schwarz K, Harneit A, Kremer T, Ma R, Schweiger J, Möss-
nang C, Geiger-Primo L, Cao H, Degenhardt F, Nöthen MM, Tost H, Meyer-Lindenberg 
A, Schwarz, Ph.D E. Association of a Reproducible Epigenetic Risk Profile for Schizo-
phrenia With Brain Methylation and Function. JAMA Psychiatry. 2020 77(6):628-636. 
Epub 2020 Feb 12. 
 
Fehlner P, Bilek E, Harneit A, Böhringer A, Moessnang C, Meyer-Lindenberg A, Tost 
H. Neural responses to social evaluative threat in the absence of negative investigator 
feedback and provoked performance failures. Hum Brain Mapp. 2020 41(8):2092-
2103. Epub 2020 Jan 20. 
 
Wasserthal J, Maier-Hein KH, Neher PF, Northoff G, Kubera KM, Fritze S, Harneit A, 
Geiger-Primo L, Tost H, Wolf RC, Hirjak D. Multiparametric mapping of white matter 
microstructure in catatonia. Neuropsychopharmacology. 2020 45(10):1750-1757. 
Epub 2020 May 5. 
 
Braun U, Harneit A, Pergola G, Menara T, Schäfer A, Betzel RF, Zang Z, Schweiger 
J, Zhang X, Schwarz K, Chen J, Blasi G, Bertolino A, Durstewitz D, Pasqualetti F, 
Schwarz E, Meyer-Lindenberg A, Bassett DS, Tost H. Brain network dynamics during 
working memory are modulated by dopamine and diminished in schizophrenia. Nat 
Commun. 2021 12(1):3478. 
 
Fritze S, Harneit A, Waddington JL, Kubera KM, Schmitgen MM, Otte ML, Geiger LS, 
Tost H, Meyer-Lindenberg A, Wolf RC, Hirjak D. Structural alterations in brainstem, 
basal ganglia and thalamus associated with parkinsonism in schizophrenia spectrum 
disorders. Eur Arch Psychiatry Clin Neurosci. 2021 271(8):1455-1464. Epub 2021 May 
5. 
 
Wasserthal J, Maier-Hein KH, Neher PF, Wolf RC, Northoff G, Waddington JL, Kubera 
KM, Fritze S, Harneit A, Geiger-Primo L, Tost H, Hirjak D. White matter microstructure 
alterations in cortico-striatal networks are associated with parkinsonism in schizophre-
nia spectrum disorders. Eur Neuropsychopharmacol. 2021 50:64-74. Epub 2021 May 
10. 
 



Curriculum Vitae 

76 

Zhang X, Braun U, Harneit A, Zang Z, Geiger-Primo L, Betzel RF, Chen J, Schweiger 
J, Schwarz K, Reinwald J, Fritze S, Witt S, Rietschel M, Nöthen MM, Degenhardt F, 
Schwarz, Ph.D E, Hirjak D, Meyer-Lindenberg A, Bassett DS, Tost H. Generative net-
work models of altered structural brain connectivity in schizophrenia. Neuroimage. 
2021 225:117510. Epub 2020 Nov 4. 
 
O'Leary A, Fernàndez-Castillo N, Gan G, Yang Y, Yotova AY, Kranz TM, Grünewald 
L, Freudenberg F, Antón-Galindo E, Cabana-Domínguez J, Harneit A, Schweiger J, 
Schwarz K, Ma R, Chen J, Schwarz E, Rietschel M, Tost H, Meyer-Lindenberg A, 
Pané-Farré CA, Kircher T, Hamm AO, Burguera D, Mota NR, Franke B, Schweiger S, 
Winter J, Heinz A, Erk S, Romanczuk-Seiferth N, Walter H, Ströhle A, Fehm L, Fydrich 
T, Lueken U, Weber H, Lang T, Gerlach AL, Nöthen MM, Alpers GW, Arolt V, Witt S, 
Richter J, Straube B, Cormand B, Slattery DA, Reif A. Behavioural and functional evi-
dence revealing the role of RBFOX1 variation in multiple psychiatric disorders and 
traits. Mol Psychiatry. 2022 27(11):4464-4473. Epub 2022 Aug 10. 
 
Schwarz K, Mößnang C, Schweiger JI, Harneit A, Schneider M, Chen J, Cao H, 
Schwarz E, Witt S, Rietschel M, Nöthen M, Degenhardt F, Wackerhagen C, Erk S, 
Romanczuk-Seiferth N, Walter H, Tost H, Meyer-Lindenberg A. Ventral Striatal-Hippo-
campus Coupling During Reward Processing as a Stratification Biomarker for Psy-
chotic Disorders. Biol Psychiatry. 2022 91(2):216-225. Epub 2021 Jul 24. 
 



ACKNOWLEDGEMENTS 

77 

9 ACKNOWLEDGEMENTS 

I thank Prof. Dr. Dr. Heike Tost for giving me the opportunity to work on such an exciting 
topic and being part of an excellent research group. I especially appreciate her help 
and support through all stages of my dissertation project, her encouragement during 
times of slower progress in my project and her advice and help in publication pro-
cesses. 
 
Further, I would like to thank Dr. Urs Braun for his advice, help and for sharing his 
extensive experience with me. 
 
I would like to thank Dr. Jamila Andoh for the help and advice with the writing process, 
reading several versions of my dissertations and her valuable feedback and encour-
agement during the writing process. 
 
Last but not least I thank my husband Dr. Patrick Buhl for his support, encouragement 
and understanding during all the stages of my PhD journey. 


